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1 Overview 
This guide describes how you can use Docker to simplify multi-architecture application deployment on both 
embedded devices and servers.  

Scaling up software environments quickly can be a difficult and time-consuming task. In this guide, we will show 
you how Docker abstracts operating systems and hardware details, allowing you to develop more efficiently 
because you can focus on applications. Benefits include: 

• Improved productivity 

• Increased infrastructure utilization 

• Ability to run both legacy environments and new architectures  

We will also show you how using Arm and Docker allows you to: 

• Explore a diversity of compute choices 

• Simplify application development for Arm hardware 

• Work in the cloud and deploy at the edge 

1.1. Before you begin 

This guide assumes that you are familiar with container concepts. If you are not familiar with container concepts, 
you can learn more at Docker Get Started. 

You will also need the following: 

• Access to GitHub, so that you can find and use a hello world PHP example for Docker.  

• An AWS account, to launch an A1 instance in Elastic Compute Cloud (EC2). There will be a small charge to use 
the option that is required in this guide. See Related information to learn more.  

• A Raspberry Pi 3 or Raspberry Pi 4 running Raspbian, if you want to follow and run the example in this guide on 
an embedded device. 

https://docs.docker.com/get-started/
https://aws.amazon.com/ec2/
https://www.raspberrypi.org/downloads/raspbian/
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2 Multi-architecture containers? 
To facilitate multi-platform portability, Docker and Arm have built multi-architecture container images with 
transparent support for the Arm architecture.  

These multi-architecture containers abstract away underlying hardware details, allowing you to 
develop consistently reproducible environments for the Arm architecture. You can use this functionality across 
various platforms like Windows or Mac laptops, servers in the cloud, and embedded or IoT devices. Another benefit 
of this functionality is that you can try the Arm architecture with almost no change to the development process.   

Multi-architecture containers provide native execution on Arm servers in the cloud and on embedded devices. The 
same containers can be run and validated on the desktop using instruction translation. For example, you can 
develop an application with Docker on a desktop machine and then move the application to a server, 
cloud machine, or embedded device.   

In this guide, we will describe how to use multi-architecture containers at each step of the development process. At 
the end of the guide, you will be able to: 

• Install Docker on a local desktop machine 

• Create an application in a Docker image 

• Push the Docker image to a registry like Docker Hub 

• Install Docker on a cloud machine like an AWS A1 instance 

• Run the application in the cloud 

Both Windows and Mac are supported.  

We will also show how to run the same image is run on a Raspberry Pi.  

2.1. Local development 

Even though much software deployment happens in the cloud or on an embedded system, developers often 
prefer to run locally to get started and to fix simple issues. One of the benefits of containers is they can be easily 
migrated to different types of machines. Docker facilitates these migrations and enables applications to run on the 
Arm architecture.   

 

https://hub.docker.com/
https://aws.amazon.com/ec2/instance-types/a1/
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3 Install Docker 
In this section of the guide, we will  install Docker Desktop for Windows or Mac. To install Docker Desktop, follow 
these steps: 

1. Download the package. 

2. Install Docker Desktop either by dragging the whale icon into your Applications folder on Mac or clicking 
though the installer on Windows.  

Note: Docker Desktop for Windows requires Microsoft Hyper-V to run. The Docker Desktop for Windows installer 
enables Hyper-V for you. Restart your machine if you are prompted to enact this change. 

Commands starting with > are for PowerShell on Windows but are identical on Mac. Commands starting with $ are 
for bash on Linux. Do not enter the > or the $ on any operating system. 

3. Open Windows PowerShell, or Windows Command Prompt, and run hello-world to confirm that Docker is set 
up correctly, if it is, it will look like the following: 

> docker run hello-world 

 

Hello from Docker! 

This message shows that your installation appears to be working correctly. 

 

To generate this message, Docker took the following steps: 

 1. The Docker client contacted the Docker daemon. 

 2. The Docker daemon pulled the "hello-world" image from the Docker Hub. 

    (amd64) 

 3. The Docker daemon created a new container from that image which runs the 

    executable that produces the output you are currently reading. 

 4. The Docker daemon streamed that output to the Docker client, which sent it 

    to your terminal. 

 

To try something more ambitious, you can run an Ubuntu container with: 

 $ docker run -it ubuntu bash 

 

Share images, automate workflows, and more with a free Docker ID: 

 https://hub.docker.com/ 

https://www.docker.com/products/docker-desktop
https://www.docker.com/products/docker-desktop
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4 Multi-architecture images 
In this section of the guide, we explain multi-architecture containers. Multi-architecture containers support 
execution as an Arm image or as an x86 image.  

For example, to run a Python container with the x86_64 architecture on a Windows PC, you can execute the 
command that is shown in the following code block:  

> docker run python:2 python -c "import platform; print 'Python running on arch: %s' 
%platform.machine()" 

Python running on arch: x86_64 

The following code shows another example using Ubuntu Linux and printing the architecture using uname: 

> docker run ubuntu uname -a 

Linux 436761beed66 4.9.125-linuxkit #1 SMP Fri Sep 7 08:20:28 UTC 2018 x86_64 x86_64 
x86_64 GNU/Linux 

You might want to deploy your application on an Arm server on AWS, or on an Arm embedded board. Developing 
an application using Docker on an x86 machine may introduce incompatibilities when running the same software 
on an Arm machine. Docker Desktop allows you to create and test Arm images from your Windows desktop.  

The best way to create images for Arm is to use the new buildx command which is included in Docker Desktop. 
The command usage is shown in this code: 

> docker buildx 

 

Usage:  docker buildx COMMAND 

 

Build with BuildKit 

 

Management Commands: 

  imagetools  Commands to work on images in registry 

 

Commands: 

  bake        Build from a file 

  build       Start a build 

  create      Create a new builder instance 

  inspect     Inspect current builder instance 

  ls          List builder instances 

  rm          Remove a builder instance 

  stop        Stop builder instance 

  use         Set the current builder instance 

 

Run 'docker buildx COMMAND --help' for more information on a command. 
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Let's use a simple Dockerfile to see how the same Dockerfile supports multiple architectures with no modifications. 
Use a text editor to create a two-line Dockerfile with the contents that are shown in the following code: 

FROM alpine 

RUN apk --no-cache add curl 

The --no-cache argument is a useful trick to not cache the index and keep containers small. 

Now we look at how to build images for different platforms using buildx. Follow these steps: 

1. Create a new builder instance and use it, then build three images which are stored locally, this can be seen in 
the following code: 

> docker buildx create --name mybuilder 

> docker buildx use mybuilder 

> docker buildx build --platform linux/amd64 -t alpine-amd64 --load . 

> docker buildx build --platform linux/arm64 -t alpine-arm64 --load . 

> docker buildx build --platform linux/arm/v7 -t alpine-arm32 --load . 

2. Run each image, including the Arm images, on the local desktop, as you can see in the following code: 
> docker run alpine-amd64 uname -a 

Linux 4bc3bd4b8ff0 4.9.125-linuxkit #1 SMP Fri Sep 7 08:20:28 UTC 2018 x86_64 Linux 

 

> docker run alpine-arm64 uname -a 

Linux 404631ac3379 4.9.125-linuxkit #1 SMP Fri Sep 7 08:20:28 UTC 2018 aarch64 Linux 

 

> docker run alpine-arm32 uname -a 

Linux 5a869d794098 4.9.125-linuxkit #1 SMP Fri Sep 7 08:20:28 UTC 2018 armv7l Linux 

Now the images for each architecture are on this local machine. However, the goal is to save a single image that 
works on all platforms. This can be done with a single buildx command which pushes directly to a repository 
like Docker Hub. Using a repository is an easy way to migrate images to other machines, because the images can be 
pulled directly from the repository using any machine. 

3. Create a Docker Hub account if you do not have one. You can go to hub.docker.com and click Sign Up. 

Once pushed, buildx can be used to inspect the image and see that it supports three platforms, using the 
following code: 

> docker buildx build  --platform linux/amd64,linux/arm64,linux/arm/v7 -t 
jasonrandrews/alpine-test --push . 

 

> docker buildx imagetools inspect jasonrandrews/alpine-test 

Name:      docker.io/jasonrandrews/alpine-test:latest 

MediaType: application/vnd.docker.distribution.manifest.list.v2+json 

Digest:    sha256:6f36d248c3b139dc998cd7129a768cf068dd6371ecd6f027ce43c49b6bf80aa4 

 

Manifests: 

  Name:      docker.io/jasonrandrews/alpine-
test:latest@sha256:aaf426c683e2b1369fdba62e6c420980402fc3706c59ec59eacf0d1ab419e719 

https://hub.docker.com/
https://hub.docker.com/
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  MediaType: application/vnd.docker.distribution.manifest.v2+json 

  Platform:  linux/amd64 

 

  Name:      docker.io/jasonrandrews/alpine-
test:latest@sha256:5966f7b12b7c7ba3146102cf3079e57cccaf1de7228651661276dd1606d84108 

  MediaType: application/vnd.docker.distribution.manifest.v2+json 

  Platform:  linux/arm64 

 

  Name:      docker.io/jasonrandrews/alpine-
test:latest@sha256:12e131c1e16083f5d8a8dcaf8b52b10e78612cea439e98b1cd32fe9a60a3cefa 

  MediaType: application/vnd.docker.distribution.manifest.v2+json 

  Platform:  linux/arm/v7 

4. Check your repositories by going to hub.docker.com and signing in with the same account you pushed to. 

If the new image is run with just the name, it will automatically run the native version. You can use the image name 
from the inspect command to specify the Arm image to run on Docker Desktop, as you can see in this code: 

> docker run jasonrandrews/alpine-test uname -m 

x86_64 

 

> docker run jasonrandrews/alpine-
test:latest@sha256:5966f7b12b7c7ba3146102cf3079e57cccaf1de7228651661276dd1606d84108 
uname -m 

aarch64 

 

> docker run jasonrandrews/alpine-
test:latest@sha256:12e131c1e16083f5d8a8dcaf8b52b10e78612cea439e98b1cd32fe9a60a3cefa 
uname -m 

armv7l 

Docker abstracts the underlying operating system and the underlying hardware architecture. This helps to avoid 
architecture-specific bugs during development. We have shown how to create a single repository with support for 
three architectures using the buildx command.  

To create multi-architecture support for more than one hundred official images, follow these steps: 

1. Build the application using Docker. A Dockerfile is provided and you can see the command to build the image in 
the following code: 

> docker build -t php-example docker-php-hello-world 

Sending build context to Docker daemon   76.8kB 

Step 1/2 : FROM php:5.6-apache 

5.6-apache: Pulling from library/php 

5e6ec7f28fb7: Pull complete 

cf165947b5b7: Pull complete 

7bd37682846d: Pull complete 

99daf8e838e1: Pull complete 

ae320713efba: Pull complete 

https://hub.docker.com/
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ebcb99c48d8c: Pull complete 

9867e71b4ab6: Pull complete 

936eb418164a: Pull complete 

bc298e7adaf7: Pull complete 

ccd61b587bcd: Pull complete 

b2d4b347f67c: Pull complete 

56e9dde34152: Pull complete 

9ad99b17eb78: Pull complete 

Digest: sha256:0a40fd273961b99d8afe69a61a68c73c04bc0caa9de384d3b2dd9e7986eec86d 

Status: Downloaded newer image for php:5.6-apache 

 ---> 24c791995c1e 

Step 2/2 : COPY public/ /var/www/html/ 

 ---> 00a704f44d8a 

Successfully built 00a704f44d8a 

Successfully tagged php-example:latest 

2. Run the image with Docker using the following code: 
> docker run -it --rm -p 80:80 php-example 

AH00558: apache2: Could not reliably determine the server's fully qualified domain 
name, using 172.17.0.2. Set the 'ServerName' directive globally to suppress this 
message 

AH00558: apache2: Could not reliably determine the server's fully qualified domain 
name, using 172.17.0.2. Set the 'ServerName' directive globally to suppress this 
message 

[Mon Apr 22 14:34:24.853585 2019] [mpm_prefork:notice] [pid 1] AH00163: Apache/2.4.25 
(Debian) PHP/5.6.40 configured -- resuming normal operations 

[Mon Apr 22 14:34:24.853661 2019] [core:notice] [pid 1] AH00094: Command line: 'apache2 
-D FOREGROUND' 

172.17.0.1 - - [22/Apr/2019:14:34:34 +0000] "GET / HTTP/1.1" 200 520 "-" "Mozilla/5.0 
(Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) 
Chrome/73.0.3683.103 Safari/537.36" 

3. Open a browser and connect to the port 80 on the local machine. You will see what is displayed in the 
following screenshot:  
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4. Enter a name in the box and confirm that the hello world application is working. The application also prints the 
output of uname -m so that we can confirm the platform. You will see something like the following screenshot: 

 
 

Now, let's prepare and run the same application for multiple architectures, including Arm: 

1. Follow the preceding steps 1-5.  

2. Use the new buildx flow to create all the images and push them to Docker Hub with a single command.  

3. Run the native image by specifying the image name. 

4. Test the Arm images by specifying the full name that is provided by the buildx inspect command, this 
should look like the following code: 

> docker buildx build  --platform linux/amd64,linux/arm64,linux/arm/v7 -t 
jasonrandrews/php-example --push docker-php-hello-world 
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> docker run -it --rm -p 80:80 jasonrandrews/php-example 

 

> docker buildx imagetools inspect jasonrandrews/php-example  

docker buildx imagetools inspect jasonrandrews/php-example 

Name:      docker.io/jasonrandrews/php-example:latest 

MediaType: application/vnd.docker.distribution.manifest.list.v2+json 

Digest:    sha256:82242b9bdacb51c6201c3f4943f2139ba77c1b1233d0e18862c12c1649d1c1be 

 

Manifests: 

  Name:      docker.io/jasonrandrews/php-
example:latest@sha256:6e4f5a17b2fd4803a43d4586e2f928c04174c42d16d2b07a7444344d77c7458f 

  MediaType: application/vnd.docker.distribution.manifest.v2+json 

  Platform:  linux/amd64 

 

  Name:      docker.io/jasonrandrews/php-
example:latest@sha256:4b47c9e79d744f039e893324fcadcabdcd7f33134740abf908115e7a9226de95 

  MediaType: application/vnd.docker.distribution.manifest.v2+json 

  Platform:  linux/arm64 

 

  Name:      docker.io/jasonrandrews/php-
example:latest@sha256:27cf14ff1a5f9079e9b58262c763d1b75c8760e4934d488006bd480163843344 

  MediaType: application/vnd.docker.distribution.manifest.v2+json 

  Platform:  linux/arm/v7 

   

> docker run -it --rm -p 80:80 docker.io/jasonrandrews/php-
example:latest@sha256:4b47c9e79d744f039e893324fcadcabdcd7f33134740abf908115e7a9226de95 

Images have been created for three platforms. They are amd64, arm64, and amr32. If the arm64 image is run the 
output below now shows AArch64 from uname -m. This is an image created for the AArch64 architecture which is 
running on a Windows or MacOS machine but thinks it is an Arm machine: 
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We now have a single command to create the Docker image with multi-architecture support for the hello world 
PHP application for amd64, arm64, and arm32, and to store the image in Docker Hub. 

With the application now in an accessible repository, the next step is to pull and run the images on other machines, 
like an Arm-based cloud server or an embedded device. We will look at this in Setting up an Arm server. 



Getting started with Docker Version  

 
 

Copyright © 2015, 2016, 2019 Arm Limited (or its affiliates). All rights reserved. 
Non-Confidential 

Page 15 of 22 

5  Setting up an Arm server 
One way to execute the example application on an Arm server is to use Amazon Web Services (AWS). The A1 
instance type features 64-bit Arm Neoverse cores, powered by custom silicon that is designed by AWS. 

You need an AWS account to launch an A1 instance in Elastic Compute Cloud (EC2). Here are the steps to launch an 
A1 instance on AWS: 

1. Create an AWS account if you do not already have one. 

2.  Navigate to the EC2 dashboard and select Launch Instance.  

3. Select the Amazon Machine Image (AMI) for the cloud instance. 

The AMI includes the operating system and hardware architecture.  

4. Select the Ubuntu Server 18.04 OS, and click the 64-bit (Arm) button to the right of the image name as seen in 
the following screenshot:  

 

 

5. Click Select and chose any A1 instance type. For this example, the a1.medium option with one CPU and 2GB 
RAM is enough. No additional configuration parameters are needed.  

When creating the instance, ensure that the security group is set up to allow port 22 for ssh access and port 80 for 
the PHP application.  

6. Click Review and Launch and then Launch to create your instance. You will be prompted to select a private key 
pair to connect to this instance.  

7. Select Create a new key pair, type in a key pair name, for example, A1-PHP-example and select Download Key 
Pair. Keep this A1-PHP-example.pem file safe and accessible. You will need this file to connect to this instance 
remotely. More information about how to use the key pair from different operating systems is provided in 
the AWS documentation. 

This option is not eligible for free-tier AWS usage, but the charges to just try it are minimal, see Related 
information. 

8. Navigate back to the EC2 dashboard > Instances tab to view the created machine instance. Highlighting the 
instance displays relevant data on the bottom of the screen, for example the description, status, and tags of 
the instance. Under the Description tab, there is a Public DNS (IPv4) section representing this IP address of this 
instance. You can also use the IP address under the IPv4 Public IP. 

9. Copy the IP address and use it with the key pair file to ssh into the machine. There are different ways to 
connect. You can use the AWS documentation for more information. The username to ssh into the machine is 
ubuntu. A simple command-line connection would be what you can see in the following code: 

> ssh -i A1-PHP-example.pem ubuntu@A1InstanceIP 

https://aws.amazon.com/
https://aws.amazon.com/ec2/instance-types/a1/
https://aws.amazon.com/ec2/instance-types/a1/
https://aws.amazon.com/ec2/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AccessingInstances.html
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Running this command will log in to the created instance with the ubuntu username. 

With an instance created and connected, the next steps are to install Docker and run the containerized application 
in the cloud. We will explore this in Docker installation. 
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6   Docker installation 
Follow these steps to install Docker on supported Linux systems.  

Execute this terminal command:  

$ sudo apt-get update 

$ sudo apt-get upgrade 

$ curl -fsSL get.docker.com -o get-docker.sh && sh get-docker.sh 

1. Add the ubuntu user, which is what you are currently, to the Docker group. This will allow you to avoid 
needing super user (sudo) to run the Docker command, as you can see in the following code:  

$ sudo usermod -aG docker $USER 

2. Log out and back in again for the change to take effect. 

3. Test the install with a quick hello-world run, as you can see here: 
Hello from Docker! 

This message shows that your installation appears to be working correctly. 

 

To generate this message, Docker took the following steps: 

 1. The Docker client contacted the Docker daemon. 

 2. The Docker daemon pulled the "hello-world" image from the Docker Hub. 

    (arm64v8) 

 3. The Docker daemon created a new container from that image which runs the 

    executable that produces the output you are currently reading. 

 4. The Docker daemon streamed that output to the Docker client, which sent it 

    to your terminal. 

 

To try something more ambitious, you can run an Ubuntu container with: 

 $ docker run -it ubuntu bash 

 

Share images, automate workflows, and more with a free Docker ID: 

 https://hub.docker.com/ 

 

For more examples and ideas, visit: 

 https://docs.docker.com/get-started/ 
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7 Run Docker on an Arm server 
In Docker installation, we explained how to install Docker on an Arm server. Now let’s look at how to run the 
containerized application on the AWS Arm instance. 

There are several ways to get a Docker image onto this cloud instance, from rebuilding it locally from a Dockerfile 
to pulling a pre-compiled image from Docker Hub. In Multi-architecture images, we pushed the PHP example 
images to Docker Hub so that we can run them immediately. 

Follow these steps to run the PHP Docker image on an Arm server: 

1. Run the following command in the terminal in the AWS instance: 
$ docker run --rm -it -p 80:80 jasonrandrews/php-example 

Using the docker run command will automatically fetch the image from Docker Hub, if the image is not found 
locally. Running this command pulls the application from Docker Hub and run it on this AWS A1 instance. 

2. Open a web browser and paste the IP address of the A1 instance into the browser to view the PHP example 
application. The same PHP example application appears with the uname -m showing AArch64. 

The Docker image was developed using multi-architecture containers. This means that the behavior during 
development and deployment will be the same, even though the application was developed on a different 
hardware architecture than Arm. 

In Execute on an embedded device, we will look at how to use the PHP example application on an embedded 
device. 
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8 Execute on an embedded device 
Although the example in this guide focuses on a cloud-based application, the same flow applies to at-scale 
embedded use-cases as well.  

The benefits of abstracting hardware differences during development and using the Arm architecture also apply in 
the embedded space. Docker makes software deployment for IoT and embedded systems easier because you do 
not need to flash individual boards, install necessary dependencies, or build scripts to copy files to boards. 
Downloading and running a Docker image ensures environment consistency and simplifies deployment across 
embedded or IoT devices. 

Let's run the same PHP example application on a Raspberry Pi 3 or a Raspberry Pi 4. Some boards may require 
some minor Linux kernel modifications to ensure that the Docker engine can run properly. The Raspberry Pi 
running Raspbian will run Docker with no configuration changes. Follow installation instructions to install Raspbian 
and boot the Raspberry Pi from an SD card. 

The instructions to run the PHP example application are the same as the AWS A1 instance. The only difference is 
that Raspbian runs only 32-bit images.  

Follow these steps: 

1. Enable the ssh server and connect to the board. 

2. Run the same commands that you ran on the A1 instance, as you can see in the following code: 
$ sudo apt-get update 

$ sudo apt-get upgrade 

$ curl -fsSL get.docker.com -o get-docker.sh && sh get-docker.sh  

$ sudo usermod -aG docker $USER 

3. Add the pi user to the docker group to avoid needing sudo to run the docker command.  

4. Log out and back in again.  

5. Test the install with a quick hello-world run, as you can see here: 
$ docker run hello-world 

Unable to find image 'hello-world:latest' locally 

latest: Pulling from library/hello-world 

c1eda109e4da: Already exists 

Digest: sha256:92695bc579f31df7a63da6922075d0666e565ceccad16b59c3374d2cf4e8e50e 

Status: Downloaded newer image for hello-world:latest 

 

Hello from Docker! 

This message shows that your installation appears to be working correctly. 

 

To generate this message, Docker took the following steps: 

 1. The Docker client contacted the Docker daemon. 

 2. The Docker daemon pulled the "hello-world" image from the Docker Hub. 

    (arm32v7) 

 3. The Docker daemon created a new container from that image which runs the 

https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/
https://www.raspberrypi.org/downloads/raspbian/
https://www.raspberrypi.org/documentation/installation/installing-images/README.md
https://www.raspberrypi.org/documentation/remote-access/ssh/
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    executable that produces the output you are currently reading. 

 4. The Docker daemon streamed that output to the Docker client, which sent it 

    to your terminal. 

 

To try something more ambitious, you can run an Ubuntu container with: 

 $ docker run -it ubuntu bash 

 

Share images, automate workflows, and more with a free Docker ID: 

 https://hub.docker.com/ 

 

For more examples and ideas, visit: 

 https://docs.docker.com/get-started/ 

6. Run the PHP example application. The example application is the same as it was with Docker Desktop on 
Windows or Mac, on the AWS A1 Arm server, and on the Raspberry Pi. 

$ docker run --rm -it -p 80:80 jasonrandrews/php-example 

7. Open a browser on the Raspberry Pi, or on another computer on the network, and enter in the IP address of 
the Pi. You will see the same PHP example application appear, but this time the response shows the uname as 
armv7l. The same command runs the PHP example application on the Windows, or Mac, desktop, the Arm 
server in AWS, and the Raspberry Pi. 
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9 Related information 
Here are some resources related to material in this guide: 

• AWS 

o AWS A1 instance 

o AWS documentation 

o AWS pricing information 

• Docker Hub  

o Docker get started 

o Official Images on Docker Hub 

o Docker Desktop 

• Raspberry Pi  

o Raspbian 

https://aws.amazon.com/ec2/instance-types/a1/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AccessingInstances.html
https://aws.amazon.com/ec2/pricing/on-demand/
https://hub.docker.com/
https://hub.docker.com/
https://docs.docker.com/get-started/
https://docs.docker.com/docker-hub/official_images/
https://www.docker.com/products/docker-desktop
https://www.raspberrypi.org/
https://www.raspberrypi.org/downloads/raspbian/
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10 Next steps 
This guide has shown the benefits for software developers of using Docker Desktop for software development for 
Arm. Use multi-architecture containers for development leads to faster time to market and lower deployment 
costs. Almost any software project in almost any industry can leverage these benefits. 
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