
Arm® CoreLink™ MMU-700 System
Memory Management Unit

Revision: r0p1

Technical Reference Manual

Copyright © 2019–2021 Arm Limited or its affiliates. All rights reserved.
101542_0001_04_en

Arm® CoreLink™ MMU-700 System Memory Management Unit
Technical Reference Manual
Copyright © 2019–2021 Arm Limited or its affiliates. All rights reserved.

Release Information

Document History

Issue Date Confidentiality Change

0000-01 25 October 2019 Confidential First issue for r0p0 BET release

0000-02 30 March 2020 Confidential First issue for r0p0 LAC release

0001-03 14 September 2020 Non-Confidential First issue for r0p1 EAC release

0001-04 19 February 2021 Non-Confidential Second issue for r0p1 EAC release

Non-Confidential Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information contained in
this document may be protected by one or more patents or pending patent applications. No part of this document may be
reproduced in any form by any means without the express prior written permission of Arm. No license, express or implied, by
estoppel or otherwise to any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use
the information for the purposes of determining whether implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE
WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, and has
undertaken no analysis to identify or understand the scope and content of, third party patents, copyrights, trade secrets, or other
rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING
OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure of
this document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof is
not exported, directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s customers is
not intended to create or refer to any partnership relationship with any other company. Arm may make changes to this document at
any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any click through or signed written
agreement covering this document with Arm, then the click through or signed written agreement prevails over and supersedes the
conflicting provisions of these terms. This document may be translated into other languages for convenience, and you agree that if
there is any conflict between the English version of this document and any translation, the terms of the English version of the
Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited (or its
subsidiaries) in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this document may be the
trademarks of their respective owners. Please follow Arm’s trademark usage guidelines at http://www.arm.com/company/policies/
trademarks.

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

 Arm® CoreLink™ MMU-700 System Memory Management Unit

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

2

Non-Confidential

http://www.arm.com/company/policies/trademarks
http://www.arm.com/company/policies/trademarks

(LES-PRE-20349)

Additional Notices

Some material in this document is based on IEEE 754-2008 IEEE Standard for Binary Floating-Point Arithmetic. The IEEE
disclaims any responsibility or liability resulting from the placement and use in the described manner.

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license restrictions in
accordance with the terms of the agreement entered into by Arm and the party that Arm delivered this document to.

Unrestricted Access is an Arm internal classification.

Product Status

The information in this document is Final, that is for a developed product.

Web Address

developer.arm.com

Progressive terminology commitment

Arm values inclusive communities. Arm recognizes that we and our industry have used terms that can be offensive. Arm strives to
lead the industry and create change.

This document includes terms that can be offensive. We will replace these terms in a future issue of this document.

If you find offensive terms in this document, please contact terms@arm.com.

 Arm® CoreLink™ MMU-700 System Memory Management Unit

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

3

Non-Confidential

https://developer.arm.com
mailto:terms@arm.com

Contents
Arm® CoreLink™ MMU-700 System Memory
Management Unit Technical Reference Manual

Preface
About this book 7
Feedback .. 10

Chapter 1 Introduction
1.1 About the CoreLink™ MMU-700 System Memory Management Unit 1-12
1.2 Compliance .. 1-13
1.3 Features 1-15
1.4 Interfaces 1-17
1.5 Configurable options .. 1-18
1.6 Product documentation and design flow .. 1-19
1.7 Product revisions 1-21

Chapter 2 Functional description
2.1 About the functions .. 2-23
2.2 Interfaces 2-31
2.3 Operation 2-40
2.4 Constraints and limitations of use .. 2-57
2.5 Configuration options and methodology .. 2-75
2.6 Debug capability .. 2-84

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

4

Non-Confidential

Chapter 3 Programmers model
3.1 About the programmers model .. 3-86
3.2 SMMU architectural registers 3-88
3.3 MMU-700 memory map 3-93
3.4 MMU-700 registers summary 3-96
3.5 TCU component and peripheral ID registers 3-102
3.6 TCU PMU registers 3-103
3.7 TCU microarchitectural registers 3-106
3.8 TCU RAS registers 3-114
3.9 TCU system discovery registers .. 3-120
3.10 TCU PIU integration registers .. 3-135
3.11 TCU TMU integration registers .. 3-138
3.12 TBU component and peripheral ID registers 3-140
3.13 TBU PMU registers .. 3-141
3.14 TBU microarchitectural registers 3-144
3.15 TBU RAS registers 3-147
3.16 TBU system discovery registers .. 3-153
3.17 TBU integration registers 3-166

Appendix A Signal descriptions
A.1 TCU signals Appx-A-170
A.2 TBU signals Appx-A-183
A.3 TCU and TBU shared signals .. Appx-A-196
A.4 DTI signals Appx-A-197

Appendix B ELA signal descriptions
B.1 TCU observation interfaces Appx-B-204
B.2 ACE-Lite TBU observation interfaces .. Appx-B-209
B.3 LTI TBU observation interfaces Appx-B-213

Appendix C Software initialization examples
C.1 Initializing the SMMU Appx-C-217
C.2 Enabling the SMMU Appx-C-222

Appendix D Revisions
D.1 Revisions Appx-D-224

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

5

Non-Confidential

Preface

This preface introduces the Arm® CoreLink™ MMU‑700 System Memory Management Unit Technical
Reference Manual.

It contains the following:
• About this book on page 7.
• Feedback on page 10.

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

6

Non-Confidential

 About this book
This book is for the Arm® CoreLink™ MMU‑700 System Memory Management Unit.

 Product revision status

The rxpy identifier indicates the revision status of the product described in this book, for example, r1p2,
where:

rx Identifies the major revision of the product, for example, r1.
py Identifies the minor revision or modification status of the product, for example, p2.

 Intended audience

This book is written for system designers, system integrators, and programmers who are designing or
programming a System-on-Chip (SoC) that uses the MMU‑700.

 Using this book

This book is organized into the following chapters:

Chapter 1 Introduction
This chapter provides an overview of the MMU‑700 System Memory Management Unit (SMMU).

Chapter 2 Functional description
This chapter describes the functionality of the MMU‑700.

Chapter 3 Programmers model
This chapter describes the MMU‑700 programmers model.

Appendix A Signal descriptions
This appendix describes the MMU‑700 external signals.

Appendix B ELA signal descriptions
This section describes the SIGNALGRP<n>, SIGQUAL<n>, and SIGCLKEN<n> signals of
the TCU and TBU components that are used to interface with external ELA.

Appendix C Software initialization examples
This appendix provides examples of how software can initialize and enable the MMU‑700.

Appendix D Revisions
This appendix describes the technical changes between released issues of this book.

Glossary

The Arm® Glossary is a list of terms used in Arm documentation, together with definitions for those
terms. The Arm Glossary does not contain terms that are industry standard unless the Arm meaning
differs from the generally accepted meaning.

See the Arm® Glossary for more information.

Typographic conventions

italic
Introduces special terminology, denotes cross-references, and citations.

bold
Highlights interface elements, such as menu names. Denotes signal names. Also used for terms
in descriptive lists, where appropriate.

monospace
Denotes text that you can enter at the keyboard, such as commands, file and program names,
and source code.

 Preface
 About this book

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

7

Non-Confidential

https://developer.arm.com/support/arm-glossary

monospace
Denotes a permitted abbreviation for a command or option. You can enter the underlined text
instead of the full command or option name.

monospace italic
Denotes arguments to monospace text where the argument is to be replaced by a specific value.

monospace bold
Denotes language keywords when used outside example code.

<and>

Encloses replaceable terms for assembler syntax where they appear in code or code fragments.
For example:

MRC p15, 0, <Rd>, <CRn>, <CRm>, <Opcode_2>

SMALL CAPITALS

Used in body text for a few terms that have specific technical meanings, that are defined in the
Arm® Glossary. For example, IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN, and
UNPREDICTABLE.

Timing diagrams

The following figure explains the components used in timing diagrams. Variations, when they occur,
have clear labels. You must not assume any timing information that is not explicit in the diagrams.

Shaded bus and signal areas are undefined, so the bus or signal can assume any value within the shaded
area at that time. The actual level is unimportant and does not affect normal operation.

Clock

HIGH to LOW

Transient

HIGH/LOW to HIGH

Bus stable

Bus to high impedance

Bus change

High impedance to stable bus

Figure 1 Key to timing diagram conventions

Signals

The signal conventions are:

Signal level
The level of an asserted signal depends on whether the signal is active-HIGH or active-LOW.
Asserted means:
• HIGH for active-HIGH signals.
• LOW for active-LOW signals.

Lowercase n

At the start or end of a signal name, n denotes an active-LOW signal.

 Preface
 About this book

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

8

Non-Confidential

 Additional reading

Arm publications

This document contains information that is specific to this product. See the following documents
for other relevant information:

Table 1 Arm publications

Document name Document ID Licensee only

Arm® CoreLink™ MMU‑700 System Memory Management Unit Configuration and
Integration Manual

101543 Y

Arm® CoreLink™ MMU‑700 System Memory Management Unit Release Note PJDOC‑1779577084‑28963 Y

Arm® CoreLink™ LPD‑500 Low Power Distributor Technical Reference Manual 100361 N

Arm® CoreLink™ LPD‑500 Low Power Distributor Integration and Implementation
Manual

100362 Y

Arm® CoreSight™ System‑on‑Chip SoC‑600 Technical Reference Manual 100806 N

Arm® CoreSight™ ELA‑600 Embedded Logic Analyzer Technical Reference Manual 101088 N

Arm® CoreSight™ ELA‑600 Embedded Logic Analyzer Configuration and Integration
Manual

101089 Y

Arm® CoreLink™ ADB‑400 AMBA® Domain Bridge User Guide DUI 0615 Y

Arm® System Memory Management Unit Architecture Specification, SMMU
architecture versions 3.0, 3.1 and 3.2

IHI 0070C.a N

Arm® Architecture Reference Manual, Armv8, for Armv8‑A architecture profile DDI 0487E.a N

AMBA® AXI and ACE Protocol Specification IHI 0022H N

AMBA® 4 AXI4‑Stream Protocol Specification IHI 0051A N

AMBA® APB Protocol Specification IHI 0024C N

AMBA® DTI Protocol Specification IHI 0088E N

AMBA® LTI Protocol Specification IHI 0089A N

AMBA® Low Power Interface Specification, Arm® Q‑Channel and P‑Channel
Interfaces

IHI 0068C N

Arm® Architecture Reference Manual Supplement, Memory System Resource
Partitioning and Monitoring (MPAM), for Armv8‑A

DDI 0598B.a N

Arm® Architecture Reference Manual Supplement Reliability, Availability, and
Serviceability (RAS), for Armv8‑A

DDI 0587C.b N

Arm® Server Base System Architecture 7.0 Platform Design Document DEN 0029 N

 Preface
 About this book

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

9

Non-Confidential

https://developer.arm.com/documentation/100361/latest
https://developer.arm.com/documentation/100806/latest
https://developer.arm.com/documentation/101088/latest
https://static.docs.arm.com/ihi0070/ca/IHI_0070_C_a_System_Memory_Management_Unit_Arm_Architecture_Specification.pdf
https://static.docs.arm.com/ihi0070/ca/IHI_0070_C_a_System_Memory_Management_Unit_Arm_Architecture_Specification.pdf
https://developer.arm.com/documentation/ddi0487/latest
https://developer.arm.com/documentation/ihi0022/latest
https://developer.arm.com/documentation/ihi0051/latest
https://developer.arm.com/documentation/ihi0024/latest
https://developer.arm.com/documentation/ihi0088/latest
https://developer.arm.com/documentation/ihi0089/latest
https://developer.arm.com/documentation/ihi0068/latest
https://developer.arm.com/documentation/ihi0068/latest
https://developer.arm.com/documentation/ddi0598/latest
https://developer.arm.com/documentation/ddi0598/latest
https://developer.arm.com/documentation/ddi0587/latest
https://developer.arm.com/documentation/ddi0587/latest
https://developer.arm.com/documentation/den0029/latest

 Feedback

 Feedback on this product

If you have any comments or suggestions about this product, contact your supplier and give:
• The product name.
• The product revision or version.
• An explanation with as much information as you can provide. Include symptoms and diagnostic

procedures if appropriate.

 Feedback on content

If you have comments on content then send an e-mail to errata@arm.com. Give:

• The title Arm CoreLink MMU‑700 System Memory Management Unit Technical Reference Manual.
• The number 101542_0001_04_en.
• If applicable, the page number(s) to which your comments refer.
• A concise explanation of your comments.

Arm also welcomes general suggestions for additions and improvements.
 Note

Arm tests the PDF only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the quality of the
represented document when used with any other PDF reader.

 Preface
 Feedback

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

10

Non-Confidential

mailto:errata@arm.com

Chapter 1
Introduction

This chapter provides an overview of the MMU‑700 System Memory Management Unit (SMMU).

It contains the following sections:
• 1.1 About the CoreLink™ MMU‑700 System Memory Management Unit on page 1-12.
• 1.2 Compliance on page 1-13.
• 1.3 Features on page 1-15.
• 1.4 Interfaces on page 1-17.
• 1.5 Configurable options on page 1-18.
• 1.6 Product documentation and design flow on page 1-19.
• 1.7 Product revisions on page 1-21.

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

1-11

Non-Confidential

1.1 About the CoreLink™ MMU-700 System Memory Management Unit
The MMU‑700 is a System-level Memory Management Unit (SMMU) that translates an input address to
an output address. This translation is based on address mapping and memory attribute information that is
available in the MMU‑700 internal registers and translation tables.

The MMU‑700 implements the Arm SMMU architecture version 3.2, SMMUv3.2, as the Arm® System
Memory Management Unit Architecture Specification, SMMU architecture versions 3.0, 3.1 and 3.2
defines.

An address translation from an input address to an output address is described as a stage of address
translation. The MMU‑700 can perform:

• Stage 1 translations that translate an input virtual address (VA) to an output physical address (PA) or
intermediate physical address (IPA)

• Stage 2 translations that translate an input IPA to an output PA
• Combined stage 1 and stage 2 translations that translate an input VA to an IPA, and then translate that

IPA to an output PA. The MMU‑700 performs translation table walks for each stage of the translation.

In addition to translating an input address to an output address, a stage of address translation also defines
the memory attributes of the output address. With a two-stage translation, the stage 2 translation can
modify the attributes that the stage 1 translation defines. A stage of address translation can be disabled or
bypassed, and the MMU‑700 can define memory attributes for disabled and bypassed stages of
translation.

The MMU‑700 uses inputs from the requesting master to identify a context. Configuration tables in
memory define how the MMU‑700 is to translate each context, such as which translation tables to use.

The MMU‑700 can cache the result of a translation table lookup in a Translation Lookaside Buffer
(TLB). It can also cache configuration tables in a configuration cache.

The MMU‑700 contains the following key components:
• Translation Buffer Units (TBUs) that use a TLB to cache translation tables
• A Translation Control Unit (TCU) that controls and manages address translations
• Distributed Translation Interface (DTI) interconnect components that connect multiple TBUs to the

TCU

Related concepts
2.1 About the functions on page 2-23

1 Introduction
1.1 About the CoreLink™ MMU-700 System Memory Management Unit

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

1-12

Non-Confidential

https://static.docs.arm.com/ihi0070/ca/IHI_0070_C_a_System_Memory_Management_Unit_Arm_Architecture_Specification.pdf
https://static.docs.arm.com/ihi0070/ca/IHI_0070_C_a_System_Memory_Management_Unit_Arm_Architecture_Specification.pdf

1.2 Compliance
The MMU‑700 complies with, or implements, the specifications that this section describes. This
Technical Reference Manual (TRM) complements architecture reference manuals, architecture
specifications, protocol specifications, and relevant external standards. It does not duplicate information
from these sources.

1.2.1 Arm architecture

The MMU‑700 implements parts of the Armv8.4 Virtual Memory System Architecture (VMSA), as the
Arm® Architecture Reference Manual, Armv8, for Armv8‑A architecture profile defines. The SMMUv3.2
architecture describes the parts of VMSA that apply to the MMU‑700.

1.2.2 SMMU architecture

The MMU‑700 implements the SMMUv3.2 architecture, as the Arm® System Memory Management Unit
Architecture Specification, SMMU architecture versions 3.0, 3.1 and 3.2 defines.

Related concepts
2.4.1 SMMUv3 implementation on page 2-57

1.2.3 AMBA Distributed Translation Interface protocol

The MMU‑700 implements the Distributed Translation Interface (DTI) protocol, as the AMBA® DTI
Protocol Specification defines.

The DTI interfaces use an AXI4‑Stream interface, as the AMBA® 4 AXI4‑Stream Protocol Specification
defines.

Related concepts
2.3.1 DTI overview on page 2-40

1.2.4 AMBA ACE5-Lite and AMBA AXI5 protocol

The MMU‑700 complies with the AMBA ACE5‑Lite protocol.

For more information, see the AMBA® AXI and ACE Protocol Specification.

Related concepts
2.4.2 AMBA implementation on page 2-60

1.2.5 AMBA APB protocol

The MMU‑700 complies with the AMBA APB4 protocol, as the AMBA® APB Protocol Specification
defines.

1.2.6 LTI protocol

The MMU‑700 complies with the LTI protocol, as the AMBA® LTI Protocol Specification defines.

Related concepts
LTI TBU LTI interface on page 2-36

1.2.7 LPI Q-Channel protocol

The MMU‑700 complies with the LPI Q-Channel, as the AMBA® Low Power Interface Specification,
Arm® Q‑Channel and P‑Channel Interfaces defines.

Related references
A.1.6 TCU LPI_PD interface signals on page Appx-A-174
A.1.7 TCU LPI_CG interface signals on page Appx-A-174

1 Introduction
1.2 Compliance

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

1-13

Non-Confidential

https://developer.arm.com/documentation/ddi0487/latest
https://static.docs.arm.com/ihi0070/ca/IHI_0070_C_a_System_Memory_Management_Unit_Arm_Architecture_Specification.pdf
https://static.docs.arm.com/ihi0070/ca/IHI_0070_C_a_System_Memory_Management_Unit_Arm_Architecture_Specification.pdf
https://developer.arm.com/documentation/ihi0088/latest
https://developer.arm.com/documentation/ihi0088/latest
https://developer.arm.com/documentation/ihi0051/latest
https://developer.arm.com/documentation/ihi0022/latest
https://developer.arm.com/documentation/ihi0024/latest
https://developer.arm.com/documentation/ihi0089/latest
https://developer.arm.com/documentation/ihi0068/latest
https://developer.arm.com/documentation/ihi0068/latest

A.2.5 TBU LPI_PD interface signals on page Appx-A-190
A.2.6 TBU LPI_CG interface signals on page Appx-A-191

1 Introduction
1.2 Compliance

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

1-14

Non-Confidential

1.3 Features
The MMU‑700 provides the following features:

Compliance with the SMMUv3.2 architecture
• Support for stage 1 translation, stage 2 translation, and stage 1 followed by stage 2

translation
• Support for Armv8 AArch32 and AArch64 translation table formats
• Support for 4KB, 16KB, and 64KB granule sizes in AArch64 format
• Support for PCI Express (PCIe) integration, including:

— Address Translation Services (ATS), including full and split‑stage ATS
— Process Address Space IDs (PASIDs)
— Access Control Services (ACS)

• Support for Page Request Interface (PRI), as SMMUv3 defines. PRI is an optional PCIe
ATS extension that enables support for unpinned memory in PCIe.

• Support for MPAM
• Support for Secure‑EL2
• Masters can be stalled while a processor handles translation faults, enabling software support

for on‑demand paging
• Configuration tables in memory can support more than a million active translation contexts
• Queues in memory perform MMU‑700 management. There is no requirement to stall a

processor when it accesses the MMU‑700.
• A Performance Monitoring Unit (PMU) in each TBU and TCU that enables MMU‑700

performance to be investigated
• Reliability, Serviceability, and Availability (RAS) features for RAM corruption detection and

correction

Support for AMBA interfaces
• ACE5‑Lite TBU transaction interfaces that support cache stash transactions, deallocating

transactions, and cache maintenance
• An architected AXI5 extension that communicates per‑transaction translation stream

information
• An ACE5‑Lite+Distributed Virtual Memory (DVM) TCU table walk interface that enables

Armv8.5 processors to perform shared TLB invalidate operations without accessing the
MMU‑700 directly

• An ACE5 Low‑Power extension that enables the TCU to subscribe to DVM TLB invalidate
requests on powerup and powerdown without reprogramming the DTI interconnect

• AMBA DTI communication between the TCU and TBUs, enabling masters to request
translations and implement TBU functionality internally

• Support for the AMBA Low‑Power Interface (LPI) Q‑Channel so that standard controllers
can control power and clock gating

• AXI5 WAKEUP signaling on all interfaces, including DTI and APB interfaces
• Support for ACE5‑Lite atomic transactions in the ACE‑Lite TBU
• Support for LTI
• Support for a dedicated Generic Interrupt Controller (GIC) integration, with Message

Signaled Interrupts (MSIs) supported for common interrupt types

Support for flexible integration
• You can place a configurable number of TBUs close to the masters being translated
• Communication between TBU and TCU over AXI4‑Stream is supported using the supplied

DTI interconnect components, or any other AXI4‑Stream interconnect
• DTI interconnect components support hierarchical topologies and control the tradeoff

between the number of wires and the DTI bandwidth

1 Introduction
1.3 Features

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

1-15

Non-Confidential

Support for high‑performance translation
• Scalable configurable MicroTLB and Main TLB (MTLB) in the TBU can reduce the number

of translation requests to the TCU
• TBU direct indexing and MTLB partitioning enable the use of MTLB entries to be managed

outside the TBU, improving real‑time translation performance
• Optimization enables storage of all architecturally‑defined page and block sizes, including

contiguous page and block entries, as a single entry in the TBU and TCU TLBs (WCs)
• Per‑TBU prioritization in the TCU enables high‑priority transaction streams to be translated

before low‑priority streams
• TCU prefetch of translation tables, which can be enabled on a per‑context basis, improves

translation performance for real‑time masters that access memory linearly
• Hit‑Under‑Miss (HUM) support in the TBU enables transactions with different AXI IDs to

be propagated out of order, when a translation is available
• TBU detects multiple transactions that require the same translation so that only one TBU

request to the TCU is required
• TCU detects multiple translations that require the same table in memory so that only one

TCU memory request is required
• Multi‑level, multi‑stage walk caches in the TCU reduce translation cost by performing only

part of the table walk process on a miss
• A configurable number of concurrent translations in the TBU and TCU promotes high

translation throughput

Trace debugging
Using a CoreSight ELA‑600 Embedded Logic Analyzer

1 Introduction
1.3 Features

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

1-16

Non-Confidential

1.4 Interfaces
Both the TCU and TBU support the following common interfaces:

• Clocks and resets
• Distributed Translation Interface (DTI)
• Tie‑offs
• Interrupts
• PMU snapshot
• Test and debug
• LPI clock gating
• LPI powerdown

The TCU also supports the following interfaces:

• Programming
• System coherency
• Queue and Table Walk (QTW)/DVM
• Generic Interrupt Controller (GIC) Message Signaled Interrupt (MSI) interface

The ACE‑Lite TBU also supports the following interfaces:
• Transaction slave (TBS)
• Transaction master (TBM)

The LTI TBU also supports the Local Translation Interface (LTI).

Related concepts
2.2 Interfaces on page 2-31

1 Introduction
1.4 Interfaces

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

1-17

Non-Confidential

1.5 Configurable options
The MMU‑700 is highly configurable and provides configuration options for each of the main
components.

For the TCU, you can configure the following:

• Size of each cache
• Data width of the QTW/DVM interface
• Number of translations that can be performed at the same time
• Number of translation requests that can be accepted from all DTI masters

For the TBU, you can configure the following:

• Size of each cache
• Number of transactions that can be translated at the same time
• Register slices

For the ACE‑Lite TBU, you can configure the following:
• Write data buffer depth
• Number of outstanding read and write transactions that the TBM interface supports
• Width of data, ID, User, StreamID, and SubstreamID signals on the TBS and TBM interfaces

 Note

Depths are specified as a discrete number of entries.

You can also configure the DTI interconnect components to meet your system requirements.

See 2.5 Configuration options and methodology on page 2-75.

Related concepts
2.5 Configuration options and methodology on page 2-75

1 Introduction
1.5 Configurable options

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

1-18

Non-Confidential

1.6 Product documentation and design flow
This section describes the MMU‑700 documentation in relation to the design flow.

1.6.1 Documentation

The MMU‑700 documentation is as follows:

Technical Reference Manual
The Technical Reference Manual (TRM) describes the functionality and the effects of functional
options on the behavior of the MMU‑700. It is required at all stages of the design flow. The
choices that are made in the design flow can mean that some behaviors that are described in the
TRM are not relevant. If you are programming the MMU‑700, then contact:
• The implementer to determine:

— The build configuration of the implementation
— The integration, if any, that was performed before implementing the MMU‑700

• The integrator to determine the pin configuration of the device that you are using.

Configuration and Integration Manual
The Configuration and Integration Manual (CIM) describes:
• The available build configuration options and related issues in selecting them.
• How to integrate the MMU‑700 into an SoC. This section describes the pins that the

integrator must tie off to configure the macrocells for the required integration.
• The processes to sign off on the configuration, integration, and implementation of the design.

The CIM is a confidential book that is only available to licensees.

1.6.2 Design flow

The MMU‑700 is delivered as synthesizable RTL. Before it can be used in a product, it must go through
the following processes:

Implementation
The implementer configures and synthesizes the RTL to produce a hard macrocell. This process
might include integrating RAMs into the design.

Integration
The integrator connects the implemented design into an SoC. Integration includes connecting
the design to a memory system and peripherals.

Programming
The system programmer develops the software to configure and initialize the MMU‑700, and
tests the required application software.

Each process is separate, and can include implementation and integration choices that affect the behavior
and features of the MMU‑700.

The operation of the final device depends on:

Build configuration
The implementer chooses the options that affect how the RTL source files are pre-processed.
These options usually include or exclude logic that affects one or more of the following:
• Area
• Maximum frequency
• Features of the resulting macrocell

Configuration inputs
The integrator configures some features of the MMU‑700 by tying inputs to specific values.
These configurations affect the start-up behavior before any software configuration is made.

1 Introduction
1.6 Product documentation and design flow

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

1-19

Non-Confidential

Software configuration
The programmer configures the MMU‑700 by programming particular values into registers.
This configuration affects the behavior of the MMU‑700.

Related concepts
1.5 Configurable options on page 1-18
2.5 Configuration options and methodology on page 2-75
Related references
1.2 Compliance on page 1-13

1 Introduction
1.6 Product documentation and design flow

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

1-20

Non-Confidential

1.7 Product revisions
This section describes the differences in functionality between product revisions:

r0p0 First release.
r0p0-
r0p1

The following changes apply to this release:
• New system discovery registers. See 3.9 TCU system discovery registers on page 3-120

and 3.16 TBU system discovery registers on page 3-153.
• New parameters. See 2.5.2 TCU buffer configuration options on page 2-75 and

2.5.8 TBU buffer configuration options on page 2-81.
• New stitching flow.
• New generate executable.

1 Introduction
1.7 Product revisions

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

1-21

Non-Confidential

Chapter 2
Functional description

This chapter describes the functionality of the MMU‑700.

It contains the following sections:
• 2.1 About the functions on page 2-23.
• 2.2 Interfaces on page 2-31.
• 2.3 Operation on page 2-40.
• 2.4 Constraints and limitations of use on page 2-57.
• 2.5 Configuration options and methodology on page 2-75.
• 2.6 Debug capability on page 2-84.

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

2-22

Non-Confidential

2.1 About the functions
The major functional blocks of the MMU‑700 are the Translation Buffer Unit (TBU), Translation
Control Unit (TCU), and Distributed Translation Interface (DTI) interconnect.

The following figure shows an example system that uses the MMU‑700.

I/O coherent
masters

DTI-TBUDTI-TBU

DTI

DTI-ATS

Fully coherent
masters

Slaves

Processor Processor GPU

Other
master

PCIe master with
ATS

Memory system PeripheralPeripheral

CoreLink Coherent Mesh Network

TBU TBU
CoreLink
MMU-700

DTI interconnect

TCU

Figure 2-1 Example system with the MMU-700

The following figure shows an example system that uses the MMU‑700 and includes a Local Translation
Interface (LTI) TBU.

2 Functional description
2.1 About the functions

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

2-23

Non-Confidential

I/O coherent
masters

DTI-TBUDTI-TBU

DTI

DTI-ATS

Fully coherent
masters

Slaves

Processor Processor GPU

Other
master

PCIe master with
ATS

Memory system PeripheralPeripheral

CoreLink Coherent Mesh Network

ACE-Lite TBU LTI TBU
CoreLink
MMU-700

DTI interconnect

TCU

CHI

LTI

Figure 2-2 Example system with the MMU-700 and LTI TBU

The MMU‑700 contains the following key components:

Translation Buffer Unit (TBU)
The TBU contains Translation Lookaside Buffers (TLBs) that cache translation tables. The
MMU‑700 implements a TBU that can be connected to single master or multiple masters. It is
also possible to connect multiple TBUs to a single master to improve performance. These TBUs
are local to the corresponding master and can be one of the following:
• ACE‑Lite TBU
• LTI TBU

Translation Control Unit (TCU)
The TCU controls and manages the address translations. The MMU‑700 implements a single
TCU. In MMU‑700-based systems, the AMBA DTI protocol defines the standard for
communicating with the TCU. See the AMBA® DTI Protocol Specification.

DTI interconnect
The DTI interconnect connects multiple TBUs to the TCU.

When an MMU‑700 TBU receives a transaction on the TBS or LA interface, it looks for a matching
translation in its TLBs. If it has a matching translation, it uses it to translate the transaction and outputs
the transaction on the TBM interface. If it does not have a matching translation, it requests a new
translation from the TCU using the DTI interface.

When the TCU receives a DTI translation request, it uses the QTW interface to perform:

• Configuration table walks, which return configuration information for the translation context
• Translation table walks, that return translation information that is specific to the transaction address

The TCU contains caches that reduce the number of configuration and translation table walks that are to
be performed. Sometimes no walks are required.

When the TBU receives the translation from the TCU, it stores it in its TLBs. If the translation was
successful, the TBU uses it to translate the transaction, otherwise it terminates it.

A processor controls the TCU by:

2 Functional description
2.1 About the functions

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

2-24

Non-Confidential

https://developer.arm.com/documentation/ihi0088/latest

• Writing commands to a Command queue in memory
• Receiving events from an Event queue in memory
• Writing to its configuration registers using the programming interface

See the Arm® System Memory Management Unit Architecture Specification, SMMU architecture versions
3.0, 3.1 and 3.2 for more information about the following:
• Translation
• How software communicates with the TCU

This section contains the following subsections:
• 2.1.1 Translation Buffer Unit on page 2-25.
• 2.1.2 Translation Control Unit on page 2-27.
• 2.1.3 DTI interconnect on page 2-30.

2.1.1 Translation Buffer Unit

A typical SMMUv3‑based system includes multiple Translation Buffer Units (TBUs). Each TBU is
located close to the component for which it provides address translation.

A TBU can be one of the following:
• ACE‑Lite TBU
• Local Translation Interface (LTI) TBU

A TBU intercepts transactions and provides the required translation from a Translation Lookaside Buffer
(TLB) if possible. If a TLB does not contain the required translation, the TBU requests translations from
the TCU and then caches the translation in one of the TLBs.

The following figure shows the ACE‑Lite TBU.

Q-Channel

MMU-700 TBU

ACE-Lite

DTI over AXI4-Stream

ACE-Lite

Slave interface

Write data buffer Micro TLB

PMU
Main TLB

Clock and power
control

Transaction
tracker

Translation
manager

Master interface

DTI
interface

Figure 2-3 MMU-700 ACE-Lite TBU

The following figure shows the LTI TBU.

2 Functional description
2.1 About the functions

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

2-25

Non-Confidential

https://static.docs.arm.com/ihi0070/ca/IHI_0070_C_a_System_Memory_Management_Unit_Arm_Architecture_Specification.pdf
https://static.docs.arm.com/ihi0070/ca/IHI_0070_C_a_System_Memory_Management_Unit_Arm_Architecture_Specification.pdf

Q-Channel

MMU-700 TBU

DTI over AXI4-Stream

LTI bus

Local Translation Interface (LTI)

Micro TLB

PMU
Main TLB

Clock and power
control

Transaction
tracker

Translation
manager

DTI
interface

Figure 2-4 MMU-700 LTI TBU

The TBU consists of:

Master and slave interfaces

ACE‑Lite TBU
For the TBS and TBM interfaces.

LTI TBU
For the LTI.

MicroTLB
The TBU compares incoming transactions with translations that are cached in the micro TLB
before looking in the Main TLB (MTLB). The MicroTLB provides end‑to‑end translation from
an input address to an output address. You can use a tie‑off signal to configure the cache
replacement policy as either round‑robin or Pseudo Least Recently Used (PLRU).

Main TLB
Each TBU includes an optional Main TLB (MTLB) that caches translation table walk entries
from:
• Stage 1 translations
• Stage 2 translations
• Stage 1 combined with stage 2 translations

The MTLB is a set associative cache structure with a configurable number of ways and banks.

If multiple translation sizes are in use, a single transaction might require multiple lookups.
Lookups are pipelined to permit a sustained rate of one lookup per cycle.

TBU direct indexing enables the MMU‑700 to manage MTLB entries externally to the TBU.
Direct indexing improves the predictability of TBU performance, for bus masters that have
real‑time performance requirements.

2 Functional description
2.1 About the functions

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

2-26

Non-Confidential

TBU hazarding

If the MicroTLB lookup results in a miss, the transaction checks whether there are any pending
transactions from which it can use the translation. This method is called forming a hazard. If the
transaction hazards on any pending transactions, then the transaction waits until the response is
available for the hazarded transaction and uses that response. The number of unique addresses
that form a hazard is limited. The TBUCFG_HZRD_ENTRIES parameter controls the number of
unique addresses. For information about TBUCFG_HZRD_ENTRIES, see 2.5.4 ACE-Lite TBU I/O
configuration options on page 2-78 and 2.5.6 LTI TBU configuration options on page 2-80.

For more information about TBU hazarding, see the Arm® CoreLink™ MMU‑700 System
Memory Management Unit Configuration and Integration Manual.

Translation manager

The translation manager manages translation requests that are in progress. Each transaction
occupies a translation slot until it is propagated downstream through the ACE‑Lite TBM, or an
LTI translation response is returned. All transactions are hazard‑checked to reduce the
possibility of duplicate translation requests being sent to the TCU.

There is no restriction on the ordering of transactions with different AXI IDs/LTI Order Groups
(OGs). Transactions with different AXI IDs can be propagated downstream out‑of‑order.

All transactions with a given AXI ID/LTI OG value must remain ordered. The translation
manager propagates such transactions when the translation is ready, provided no other
transaction with the same AXI ID/LTI OG is already waiting.

For more information about AXI transaction identifiers, see the AMBA® AXI and ACE Protocol
Specification.

For more information about LTI OGs, see the AMBA® LTI Protocol Specification.

Write data buffer

The write data buffer is available in the ACE‑Lite TBU only. The optional write data buffer
enables write transactions with different AXI IDs to progress through the TBU out‑of‑order. It
reorders the data to match the downstream transaction order.

PMU
The PMU counts TBU performance‑related events.

Clock and power control
The TBU has its own clock and power control, that the Q‑Channels provide.

DTI interface
The master DTI interface uses the DTI protocol, typically over AXI4‑Stream, to enable the TBU
to communicate with a slave component. For the MMU‑700, the slave component is the TCU.
Although you can implement DTI over different transport protocols, the MMU‑700 interfaces
use AXI4‑Stream.

Transaction tracker
The transaction trackers manage outstanding read and write transactions, permitting invalidation
and synchronization to take place without stalling the AXI interfaces.

Related concepts
2.3 Operation on page 2-40
Related references
2.3.3 TBU direct indexing and MTLB partitioning on page 2-46
3.2 SMMU architectural registers on page 3-88

2.1.2 Translation Control Unit

A typical SMMUv3‑based system includes a single Translation Control Unit (TCU). The TCU is usually
the largest block in the system, and performs several roles.

2 Functional description
2.1 About the functions

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

2-27

Non-Confidential

https://developer.arm.com/documentation/ihi0022/latest
https://developer.arm.com/documentation/ihi0022/latest
https://developer.arm.com/documentation/ihi0089/latest

The TCU:
• Manages the memory queues
• Performs translation table walks
• Performs configuration table walks
• Implements backup caching structures
• Implements the SMMU programmers model

The following figure shows the TCU with its main interfaces.

Q-Channel

APB

MMU-700 TCU

ACE-Lite + DVM

DTI over AXI4-Stream

RAM-based logic

Translation
request buffer

Configuration
cache

DTI
interface

Walk caches and TLB

S1L0 S1L1 S1L2 S1L3

S2L0 S2L1 S2L2 S2L3

PMU Translation
manager

Clock and power
control Queue manager

QTW/DVM
interface Register file

Figure 2-5 MMU-700 TCU

The TCU consists of:

Walk cache
The TCU is a set-associative walk cache that has a configurable number of banks and ways and
stores the results of translation table walks. During MMU‑700 configuration, the cache line
entries can be programmatically split to create separate walk caches that are reserved for:
• Stage 1 level 0 table entries
• Stage 1 level 1 table and block entries
• Stage 1 level 2 table and block entries
• Stage 1 level 3 table entries
• Stage 2 level 0 table entries
• Stage 2 level 1 table and block entries
• Stage 2 level 2 table and block entries
• Stage 2 level 3 table entries

To enable and disable the walk cache for a particular stage and level of translation, use the
3.7.1 TCU_CTRL register on page 3-106. If an error occurs for a cache line entry, the
3.8.3 TCU_ERRSTATUS register on page 3-116 identifies the affected entry.

The walk cache is useful in cases where a translation request results in a miss in other TCU
caches. A subsequent hit in the walk cache requires only a single memory access to complete
the translation table walk and fetch the required descriptor.

2 Functional description
2.1 About the functions

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

2-28

Non-Confidential

Configuration cache
The configuration caches are 4‑way set‑associative cache structures that store configuration
information. Each entry stores the Context Descriptor (CD) and Stream Table Entry (STE)
contents for a translation context.

 Note

The configuration cache does not cache the contents of intermediate configuration tables.

Translation manager

The translation manager manages translation requests that are in progress. All translation table
walks and configuration table walks are hazard-checked to reduce the possibility of multiple
transactions requesting duplicate walks.

Translation request buffer

The translation request buffer stores translation requests from TBUs when all translation
manager slots are full. The translation request buffer supports more slots than the translation
manager. When correctly configured, this buffer has enough space to store all translation
requests that TBUs can issue simultaneously. This buffer therefore prevents the DTI interface
from becoming blocked.

PMU

The PMU counts TCU performance‑related events and has a configurable number of counters to
count the events.

Clock and power control

The TCU has its own clock and power control, that the Q‑Channels provide.

Queue manager

The queue manager manages all SMMUv3 Command queues and Event queues that are stored
in memory.

QTW/DVM interface

The Queue and Table Walk (QTW)/Distributed Virtual Memory (DVM) interface is an ACE‑Lite
+DVM master interface.

Register file

The register file implements the SMMUv3 programmers model, as the Arm® System Memory
Management Unit Architecture Specification, SMMU architecture versions 3.0, 3.1 and 3.2
defines.

DTI interface

The slave DTI interface uses the DTI protocol, typically over AXI4‑Stream, to enable the TCU
to communicate with a master component. For the MMU‑700, the master component is either a
TBU or a PCIe master.

Related concepts
2.2 Interfaces on page 2-31
2.3.7 TCU transaction handling on page 2-51
2.3.8 TCU prefetch on page 2-51
2.3 Operation on page 2-40
Related references
3.2 SMMU architectural registers on page 3-88

2 Functional description
2.1 About the functions

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

2-29

Non-Confidential

https://static.docs.arm.com/ihi0070/ca/IHI_0070_C_a_System_Memory_Management_Unit_Arm_Architecture_Specification.pdf
https://static.docs.arm.com/ihi0070/ca/IHI_0070_C_a_System_Memory_Management_Unit_Arm_Architecture_Specification.pdf

2.1.3 DTI interconnect

The TCU and TBUs use a DTI interface to communicate. The DTI interconnect enables the DTI
interface to use the AXI4‑Stream transport protocol.

The DTI interconnect can connect any components that conform to the AXI4‑Stream protocol, as the
Arm® AMBA® Distributed Translation Interface (DTI) Protocol Specification defines.

The DTI interconnect contains internal components that are hierarchically composable, that is, they can
be connected in different ways to suit your system requirements. For example, within an MMU‑700
system, you can use the switch component to combine the DTI interfaces of multiple TBUs into a single
DTI interface. You can then connect the combined DTI interface to another DTI interconnect that is
closer to the TCU.

The DTI interconnect includes switch, sizer, and register slice components.

Switch
The switch connects multiple DTI masters, such as TBUs, to a DTI slave such as a TCU. The
switch implements the following parallel networks:
• For TBU to TCU traffic, a network that connects multiple AXI4‑Stream slave interfaces to a

single AXI4‑Stream master interface
• For TCU to TBU traffic, a network that connects a single AXI4‑Stream slave interface to

multiple AXI4‑Stream master interfaces

 Note

The switch does not store any data, and therefore does not require a Q‑Channel clock gating
interface.

Sizer
The sizer connects channels that have different data widths, enabling different tradeoffs of
bandwidth to area. The sizer supports conversion between any of the supported AXI4‑Stream
data widths:
• 1 byte
• 4 bytes
• 10 bytes
• 20 bytes

The sizer includes a Q‑Channel interface to provide clock gating control.

Register slice
Use the register slice to improve timing. The register slice includes a Q‑Channel interface to
provide clock gating control.
The MMU‑700 DTI interconnect components do not include a component to connect different
clock and power domains. You can connect DTI interfaces in different clock and power domains
by using the Bidirectional AXI4-Stream (BAS) configuration of the ADB‑400 AMBA Domain
Bridge.

Related concepts
2.3 Operation on page 2-40

2 Functional description
2.1 About the functions

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

2-30

Non-Confidential

2.2 Interfaces
The MMU‑700 includes interfaces for each of the TCU, TBU, and DTI interconnect components.

The DTI interconnect consists of switch, sizer, and register slice components that you can connect
separately, and these components therefore have their own interfaces.

The PMU snapshot interface is common to both TCU and TBU.

This section contains the following subsections:
• 2.2.1 TCU interfaces on page 2-31.
• 2.2.2 TBU interfaces on page 2-34.
• 2.2.3 DTI interconnect interfaces on page 2-37.

2.2.1 TCU interfaces

The MMU‑700 TCU includes several master and slave interfaces.

The following figure shows the TCU interfaces.

APB4

PROG

MMU-700 TCU

Clock and reset

DTI

ACE-Lite+DVM

Q-Channel

Q-ChannelLPI_CG

LPI_PD

QTW/DVMGIC, MSI

Figure 2-6 TCU interfaces

TCU Queue and Table Walk/Distributed Virtual Memory interface

The Queue and Table Walk/Distributed Virtual Memory (QTW/DVM) interface is an ACE‑Lite+DVM
master interface.

The QTW/DVM interface issues the following transaction types:
• ReadNoSnoop
• WriteNoSnoop
• ReadOnce
• WriteUnique
• DVM Complete

The QTW/DVM interface uses the write address transaction ID signal awid_qtw, and the read address
transaction ID signal, arid_qtw.

External ID Width = TCU_ID_WIDTH = MAX(4, ceil(log2(TCUCFG_PTW_SLOTS)) + 2).

The smallest possible TCU_ID_WIDTH value is 4.

See 2.5 Configuration options and methodology on page 2-75.

The following table shows the possible values of arid_qtw.

2 Functional description
2.2 Interfaces

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

2-31

Non-Confidential

Table 2-1 arid_qtw assignment

Transaction type arid_qtw[1:0] arid_qtw[TCU_ID_WIDTH-1:2]

Command Queue walk 2’b00 Bits [3:2] = 2’b00.

If TCU_ID_WIDTH > 4, bits {TCU_ID_WIDTH - 1 :4} are 0.

DVM Complete 2’b00 Bits [3:2] = 2’b01.

If TCU_ID_WIDTH > 4, bits {TCU_ID_WIDTH - 1 :4} are 0.

Configuration table walk 2’b01 Indicates the configuration table walk slot that is requesting the configuration table walk

Page table walk 2’b10 Indicates the page table walk slot that is requesting the page table walk

The following table shows the possible values of arid_qtw.

Table 2-2 awid_qtw assignment

Transaction type awid_qtw[1:0] awid_qtw[TCU_ID_WIDTH-1:2]

PRI Queue Write 2’b00 Bits [3:2] = 2’b01.

If TCU_ID_WIDTH > 4, bits {TCU_ID_WIDTH - 1:4} are 0.

Event Queue write 2’b00 Bits [3:2] = 2’b10.

If TCU_ID_WIDTH > 4, bits {TCU_ID_WIDTH - 1:4} are 0.

MSI write 2’b00 Bits [3:2] = 2’b11.

If TCU_ID_WIDTH > 4, bits {TCU_ID_WIDTH - 1:4} are 0.

HTTU Write 2’b11 Indicates the page table walk slot requesting the HTTU write

To support 16‑bit Virtual Machine IDentifiers (VMIDs), the interface provides DVMv8.4 support.

The interface does not issue cache maintenance operations or exclusive accesses.

TCU PROG interface

The PROG interface is an AMBA APB4 slave interface. It enables software to program the MMU‑700
internal registers and read the Performance Monitoring Unit (PMU) registers and the Debug registers.

This interface runs synchronously with the other TCU interfaces.

The applicable address width for this interface depends on the value of TCUCFG_NUM_TBU:

• When TCUCFG_NUM_TBU = 14, the address width is 21 bits
• When TCUCFG_NUM_TBU = 62, the address width is 23 bits

Transactions are Read-As-Zero, Writes Ignored (RAZ/WI) when any of the following apply:
• An unimplemented register is accessed
• PSTRB[3:0] is not 0b1111 for write transfers
• PPROT[1] is not set to 0 for Secure register accesses

For more information, see the AMBA® APB Protocol Specification.

Related references
A.1.3 TCU programming interface signals on page Appx-A-173

TCU LPI_PD interface

This Q‑Channel slave interface manages LPI powerdown for the TCU.

2 Functional description
2.2 Interfaces

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

2-32

Non-Confidential

https://developer.arm.com/documentation/ihi0024/latest

For more information, see the AMBA® Low Power Interface Specification, Arm® Q‑Channel and
P‑Channel Interfaces.

Related references
A.1.6 TCU LPI_PD interface signals on page Appx-A-174

TCU LPI_CG interface

This Q‑Channel slave interface enables LPI clock gating for the TCU.

For more information, see the AMBA® Low Power Interface Specification, Arm® Q‑Channel and
P‑Channel Interfaces.

Related references
A.1.7 TCU LPI_CG interface signals on page Appx-A-174

TCU DTI interface

The DTI interface manages communication between the TBUs and the TCU, using the DTI protocol.
The DTI protocol can be conveyed over different transport layer mediums, including AXI4‑Stream.

The TCU includes a slave DTI interface and each TBU includes a master DTI interface. To permit
bidirectional communication, each DTI interface includes one AXI4‑Stream master interface and one
AXI4‑Stream slave interface.

For more information, see the AMBA® DTI Protocol Specification and the AMBA® 4 AXI4‑Stream
Protocol Specification.

Related concepts
2.3.1 DTI overview on page 2-40
Related references
A.1.8 TCU DTI interface signals on page Appx-A-175

TCU interrupt interfaces

This interface provides global, per-context, and performance interrupts. A direct MSI interface to a
Generic Interrupt Controller (GIC) is also supported, to avoid complex dependencies in the system.

Related references
A.1.10 TCU MSI interface signals on page Appx-A-176

TCU SYSCO signaling

The MMU‑700 provides a hardware system coherency interface. This master interface permits the TCU
to remove itself from a coherency domain in response to an LPI request.

The SYSCO signals include the syscoreq_qtw and syscoack_qtw handshake signals to enter or exit a
coherency domain.

If the sup_btm signal is tied LOW, the syscoreq_qtw signal is always driven LOW and syscoack_qtw is
ignored.

Related references
A.1.13 TCU ELA debug signals on page Appx-A-180

TCU tie-off signals

The TCU tie‑off signals enable you to initialize various operating parameters on exit from reset state.

Related references
A.1.12 TCU tie-off signals on page Appx-A-179

2 Functional description
2.2 Interfaces

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

2-33

Non-Confidential

https://developer.arm.com/documentation/ihi0068/latest
https://developer.arm.com/documentation/ihi0068/latest
https://developer.arm.com/documentation/ihi0068/latest
https://developer.arm.com/documentation/ihi0068/latest
https://developer.arm.com/documentation/ihi0088/latest
https://developer.arm.com/documentation/ihi0051/latest
https://developer.arm.com/documentation/ihi0051/latest

TCU ELA observation interface

This Embedded Logic Analyzer (ELA) observation master interface drives the signal group, signal
qualifier, and signal clock enable ELA signals to the on‑chip ELA module, if present.

When TCUCFG_USE_ELA_DEBUG is 0, these signals are tied to 0. See 2.5.3 TCU debug configuration
options on page 2-78.

For more information about the interface signals, see B.1 TCU observation interfaces
on page Appx-B-204.

Related concepts
2.3.6 Distributed Virtual Memory (DVM) messages on page 2-50
2.3.9 Error responses on page 2-53
2.4.2 AMBA implementation on page 2-60
Related references
A.1.2 TCU QTW/DVM interface signals on page Appx-A-170

2.2.2 TBU interfaces

Each MMU‑700 TBU includes several master and slave interfaces.

The following figure shows the ACE‑Lite TBU interfaces.

MMU-700 TBU

Clock and reset

DTIQ-Channel

Q-ChannelLPI_CG

LPI_PD

TBS

ACE-Lite

ACE-Lite

TBM

Figure 2-7 ACE-Lite TBU interfaces

The following figure shows the LTI TBU interfaces.

MMU-700 TBU

LTI

 Clock and reset
DTIQ-Channel

Q-ChannelLPI_CG

LPI_PD

LTI LTI

LA LC LR

LTI

LM

Figure 2-8 LTI TBU interfaces

ACE-Lite TBU TBS interface

The transaction slave interface, TBS, is an ACE5‑Lite interface on which the ACE‑Lite TBU receives
incoming untranslated memory accesses.

This interface supports a 64‑bit address width.

2 Functional description
2.2 Interfaces

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

2-34

Non-Confidential

The interface implements optional signals to support the following AXI5 extensions:
• Wakeup_Signals
• Untranslated_Transactionsv2
• Cache_Stash_Transactions
• DeAllocation_Transactions
• Atomic_Transactions
• Loopback_Signals
• Poison
• Unique_ID_Support
• Read_Data_Chunking
• CMO_On_Read, Persist_CMO

For more information, see 2.4.2 AMBA implementation on page 2-60.

The TBS interface supports ACE Exclusive accesses.

If a transaction is terminated in the TBU, the transaction tracker returns the transaction with the
user‑defined AXI RUSER and BUSER bits set to 0.

Related concepts
2.3.9 Error responses on page 2-53
Related references
A.2.2 TBU TBS interface signals on page Appx-A-183

ACE-Lite TBU TBM interface

The transaction master interface, TBM, is an ACE5‑Lite interface on which the ACE‑Lite TBU sends
outgoing translated memory accesses.

The AXI ID of a transaction on this interface is the same as the AXI ID of the corresponding transaction
on the TBS interface.

This interface supports a 52‑bit address width, and TBUCFG_DATA_WIDTH defines the data width. See:

• 2.5.4 ACE-Lite TBU I/O configuration options on page 2-78
• 2.5.6 LTI TBU configuration options on page 2-80

This interface can issue read and write transactions until the outstanding transaction limit is reached. The
MMU‑700 provides parameters that permit you to configure:

• The outstanding read transactions limit
• The outstanding write transactions limit
• The total outstanding read and write transactions limit

The interface implements optional signals to support the following AXI5 extensions:
• Wakeup_Signals
• Untranslated_Transactionsv2a

• Cache_Stash_Transactions
• DeAllocation_Transactions
• Atomic_Transactions
• Loopback_Signals
• Ordered Write Observation
• Poison
• Unique_ID_Support
• Read_Data_Chunking
• Read_Interleaving_Disabledb

• CMO_On_Read, Persist_CMO
• MPAM_Support

a The TBM does not support the Untranslated_Transactions property. The TBM contains the axmmusecsid and axmmusid signals for backwards‑compatability with
other SMMU products. These signals are not required for normal operation of the MMU‑700 and you can ignore them.

b The BIU supports the Read_Interleaving_Disabled property provided that terminated transaction responses are not interleaved.

2 Functional description
2.2 Interfaces

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

2-35

Non-Confidential

For more information, see 2.4.2 AMBA implementation on page 2-60.

When receiving an SLVERR or DECERR response to a downstream transaction, the TBM interface
propagates the same response to the TBS interface.

Related concepts
2.3.9 Error responses on page 2-53
2.4.2 AMBA implementation on page 2-60
Related references
A.2.3 TBU TBM interface signals on page Appx-A-187

LTI TBU LTI interface

The LTI interface supports two virtual channels, one for reads and one for writes. User signals are not
implemented. You can define other LTI properties by using configuration parameters.

The interface contains the following channels:

LA Request channel. Address and attributes that require translation are sent to the TBU.
LR Response channel. Provides the translated address and attributes to the LTI device.
LC Completion channel. LTI devices must provide information about completion to the TBU.
LM Link Management channel. Contains:

• LMOPENREQ
• LMOPENACK
• LMASKCLOSE
• LMACTIVE

For more information, see the following:
• 2.4.4 LTI implementation on page 2-74
• 2.5 Configuration options and methodology on page 2-75
• AMBA® LTI Protocol Specification

TBU LPI_PD interface

This Q‑Channel slave interface manages LPI powerdown for the TBU.

For more information, see the AMBA® Low Power Interface Specification, Arm® Q‑Channel and
P‑Channel Interfaces.

Related references
A.2.5 TBU LPI_PD interface signals on page Appx-A-190

TBU LPI_CG interface

This Q‑Channel slave interface enables LPI clock gating for the TBU.

For more information, see the AMBA® Low Power Interface Specification, Arm® Q‑Channel and
P‑Channel Interfaces.

Related references
A.2.6 TBU LPI_CG interface signals on page Appx-A-191

TBU DTI interface

The TBU DTI interface enables master devices with their own TLB and prefetch capability to request
translations from the MMU‑700. This interface uses the DTI‑TBU protocol for communication between
the TBU and the TCU.

The TCU includes a slave DTI interface and each TBU includes a master DTI interface. To permit
bidirectional communication, each DTI interface includes one AXI4‑Stream master interface and one
AXI4‑Stream slave interface.

2 Functional description
2.2 Interfaces

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

2-36

Non-Confidential

https://developer.arm.com/documentation/ihi0089/latest
https://developer.arm.com/documentation/ihi0068/latest
https://developer.arm.com/documentation/ihi0068/latest
https://developer.arm.com/documentation/ihi0068/latest
https://developer.arm.com/documentation/ihi0068/latest

For more information, see the AMBA® DTI Protocol Specification and the AMBA® 4 AXI4‑Stream
Protocol Specification.

Related concepts
2.3.1 DTI overview on page 2-40
Related references
A.2.7 TBU DTI interface signals on page Appx-A-191

TBU interrupt interfaces

This interface provides global, per-context, and performance interrupts.

Related references
A.2.8 TBU interrupt signals on page Appx-A-192

TBU tie-off signals

The TBU tie‑off signals enable you to initialize various operating parameters on exit from reset state.

Related references
A.2.9 TBU tie-off signals on page Appx-A-192

TBU ELA observation interface

This Embedded Logic Analyzer (ELA) observation master interface drives the signal group, signal
qualifier, and signal clock enable ELA signals to the on‑chip ELA module, if present.

When TBUCFG_USE_ELA_DEBUG is 0, these signals are tied to 0. See 2.5.9 TBU debug configuration
options on page 2-82.

For more information about the interface signals, see:
• B.2 ACE-Lite TBU observation interfaces on page Appx-B-209
• B.3 LTI TBU observation interfaces on page Appx-B-213

2.2.3 DTI interconnect interfaces
The DTI interconnect includes interfaces for each of the switch, sizer, and register slice components.

DTI interconnect switch interfaces

The DTI interconnect switch component includes dedicated interfaces.

The following figure shows the DTI interconnect switch interfaces.

DTI interconnect switch

UP_M

DN_S0

DN_M

UP_S0 DN_S1 UP_S1 DN_Sn UP_Sn

Figure 2-9 DTI interconnect switch interfaces

2 Functional description
2.2 Interfaces

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

2-37

Non-Confidential

https://developer.arm.com/documentation/ihi0088/latest
https://developer.arm.com/documentation/ihi0051/latest
https://developer.arm.com/documentation/ihi0051/latest

The following table provides more information about the switch interfaces.

Table 2-3 DTI interconnect switch interfaces

Interface Interface type Protocol Description

DN_Sn Slave AXI4‑Stream Slave downstream interface. One DN_Sn interface is present for each slave interface.

UP_Sn Master Slave upstream interface. One UP_Sn interface is present for each slave interface.

DN_M Master Master downstream interface

UP_M Slave Master upstream interface

 Note

The interconnect switch does not store any data, and therefore does not require a Q‑Channel clock‑gating
interface.

DTI interconnect sizer interfaces

The DTI interconnect sizer component includes dedicated interfaces.

The following figure shows the DTI interconnect sizer interfaces.

DTI interconnect sizer

UP_M

DN_S

DN_M

UP_SLPI_CG

Figure 2-10 DTI interconnect sizer interfaces

The following table provides more information about the sizer interfaces.

2 Functional description
2.2 Interfaces

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

2-38

Non-Confidential

Table 2-4 DTI interconnect sizer interfaces

Interface Interface type Protocol Description

LPI_CG Slave Q‑Channel Clock gating interface

DN_S Slave AXI4‑Stream Slave downstream interface

UP_S Master Slave upstream interface

DN_M Master Master downstream interface

UP_M Slave Master upstream interface

DTI interconnect register slice interfaces

The DTI interconnect register slice component includes dedicated interfaces.

The following figure shows the DTI interconnect register slice interfaces.

DTI interconnect register slice

UP_M

DN_S

DN_M

UP_SLPI_CG

Figure 2-11 DTI interconnect register slice interfaces

The following table provides more information about the register slice interfaces.

Table 2-5 DTI interconnect register slice interfaces

Interface Interface type Protocol Description

LPI_CG Slave Q‑Channel Clock gating interface

DN_S Slave AXI4‑Stream Slave downstream interface

UP_S Master Slave upstream interface

DN_M Master Master downstream interface

UP_M Slave Master upstream interface

2 Functional description
2.2 Interfaces

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

2-39

Non-Confidential

2.3 Operation
This section provides information about the operation of the MMU‑700 features.

This section contains the following subsections:
• 2.3.1 DTI overview on page 2-40.
• 2.3.2 Performance Monitoring Unit on page 2-41.
• 2.3.3 TBU direct indexing and MTLB partitioning on page 2-46.
• 2.3.4 RAS implementation on page 2-47.
• 2.3.5 Quality of Service on page 2-50.
• 2.3.6 Distributed Virtual Memory (DVM) messages on page 2-50.
• 2.3.7 TCU transaction handling on page 2-51.
• 2.3.8 TCU prefetch on page 2-51.
• 2.3.9 Error responses on page 2-53.
• 2.3.10 Conversion between ACE-Lite and Armv8 attributes on page 2-53.
• 2.3.11 AXI USER bits that MMU-700 TBU defines on page 2-55.

2.3.1 DTI overview

In an MMU‑700‑based system, the AMBA DTI protocol defines the standard for communicating with a
TCU.

The AMBA DTI protocol includes both:

• DTI‑TBU protocol, for communication between a TBU and a TCU
• DTI‑ATS protocol, for communication between a PCIe Root Complex and a TCU

The DTI protocol is a point‑to‑point protocol. Each channel consists of a link, a DTI master, and a DTI
slave. The DTI masters in the respective protocols are:

• The TBU, in the DTI‑TBU protocol
• The PCIe Root Complex, in the DTI‑ATS protocol

The DTI slave in both DTI‑TBU and DTI‑ATS is the TCU.

DTI masters and slaves communicate using defined DTI messages. The DTI protocol defines the
following message groups:

• Page request
• Register access
• Translation request
• Connection and disconnection
• Invalidation and synchronization

The DTI_TBU_CONDIS_REQ message initiates a TBU connection or disconnection handshake. The
TBU uses this message to connect to the TCU. During connection, the TBU can specify the number of
requested translation tokens. The DTI master uses the TOK_TRANS_REQ field to request translation
tokens. For the TBU, the max_tok_trans signal defines the number of translation tokens that the TBU
requests.

The TBU uses the TOK_INV_GNT field to grant invalidation tokens. The TBU grants only one
invalidation token, and the TCU is only capable of issuing one invalidate message at a time.

A DTI master uses a DTI_TBU_CONDIS_REQ or a DTI_ATS_CONDIS_REQ message to initiate a
connection handshake. If the master provides a TID value that is greater than the maximum supported
TID that TCUCFG_NUM_TBU defines, the slave sends a Connect Deny message.

A translation request to the TCU where StreamID ≥ 224 results in a fault and an SMMUv3
C_BAD_STREAMID event. If the TBU receives an invalidation request where StreamID ≥ 224, any

2 Functional description
2.3 Operation

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

2-40

Non-Confidential

comparisons with a StreamID value fail. No TLB entries are invalidated, but other effects that do not
consider the supplied StreamID occur as normal.

 Note

• The TBU never generates translation requests with StreamID ≥ 224

• The TCU never generates invalidation requests with StreamID ≥ 224

For more information, see the AMBA® DTI Protocol Specification.

2.3.2 Performance Monitoring Unit

The MMU‑700 includes a PMU for the TCU and a PMU for each TBU. The PMU events and counters
indicate the runtime performance of the MMU‑700.

The MMU‑700 includes logic to gather various statistics on the operation of the MMU during runtime,
using events and counters. These events, which the SMMUv3 architecture defines, provide useful
information about the behavior of the MMU. You can use this information when debugging or profiling
traffic.

SMMUv3 architectural performance events

Both the TCU and the TBU implement performance events that the SMMUv3 Performance Monitor
extension defines.

The SMMU_PMCG_SMR0 register can filter some events so that only events with a particular StreamID
are counted. This event filtering includes:
• Speculative transactions and translations
• Transactions and translations that result in a terminated transaction or a translation fault

The following table shows the architecturally defined MMU‑700 TCU performance events.

Table 2-6 SMMUv3 performance events for the TCU

Event Event ID SMMU_PMCG_SMR0
filterable

Description

Clock cycle 0x0 No Counts clock cycles.

Cycles where the clock is gated after a clock
Q‑Channel handshake are not counted.

Transaction 0x1 Yes Counts translation requests that originate from a
DTI‑TBU or DTI‑ATS master

TLB miss caused by incoming
transaction or translation request

0x2 Yes Counts translation requests where the translation
walks new translation table entries

Configuration cache miss caused
by transaction or translation
request

0x3 Yes Counts translation requests where the translation
walks new configuration table entries

Translation table walk access 0x4 Yes Counts translation table walk accesses

Configuration structure access 0x5 Yes Counts configuration table walk accesses

PCIe ATS Translation Request
received

0x6 Yes Counts translation requests that originate from a
DTI‑ATS master

The following table shows the architecturally defined MMU‑700 TBU performance events.

2 Functional description
2.3 Operation

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

2-41

Non-Confidential

https://developer.arm.com/documentation/ihi0088/latest

Table 2-7 SMMUv3 performance events for the TBU

Event Event ID SMMU_PMCG_SMR0
filterable

Description

Clock cycle 0x0 No Counts clock cycles.

Cycles where the clock is gated after a clock Q‑Channel
handshake are not counted.

Transaction 0x1 Yes Counts transactions that are issued on the TBM interface

TLB miss caused by
incoming transaction or
translation request

0x2 Yes Counts non-speculative translation requests that are
issued to the TCU

PCIe ATS Translation
Request received

0x7 Yes Counts ATS‑translated transactions that are issued on the
TBM interface

For more information, see the Arm® System Memory Management Unit Architecture Specification,
SMMU architecture versions 3.0, 3.1 and 3.2.

MMU-700 TCU events

The MMU‑700 PMU can be configured to monitor a range of IMPLEMENTATION DEFINED TCU performance
events.

The SMMU_PMCG_SMR0 register can filter some TCU performance events so that only events with a
particular StreamID are counted. This event filtering includes:

• Speculative transactions and translations
• Transactions and translations that result in a terminated transaction or a translation fault

The following table shows the TCU performance events.

Table 2-8 MMU-700 TCU performance events

Event Event ID SMMU_PMCG_SMR0
filterable

Description

S1L0WC lookup 0x80 Yes Counts translation requests that access the S1L0WC walk cache

S1L0WC miss 0x81 Yes Counts translation requests that access the S1L0WC walk cache and
do not result in a hit

S1L1WC lookup 0x82 Yes Counts translation requests that access the S1L1WC walk cache

S1L1WC miss 0x83 Yes Counts translation requests that access the S1L1WC walk cache and
do not result in a hit

S1L2WC lookup 0x84 Yes Counts translation requests that access the S1L2WC walk cache

S1L2WC miss 0x85 Yes Counts translation requests that access the S1L2WC walk cache and
do not result in a hit

S1L3WC lookup 0x86 Yes Counts translation requests that access the S1L3WC walk cache

S1L3WC miss 0x87 Yes Counts translation requests that access the S1L3WC walk cache and
do not result in a hit

2 Functional description
2.3 Operation

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

2-42

Non-Confidential

https://static.docs.arm.com/ihi0070/ca/IHI_0070_C_a_System_Memory_Management_Unit_Arm_Architecture_Specification.pdf
https://static.docs.arm.com/ihi0070/ca/IHI_0070_C_a_System_Memory_Management_Unit_Arm_Architecture_Specification.pdf

Table 2-8 MMU-700 TCU performance events (continued)

Event Event ID SMMU_PMCG_SMR0
filterable

Description

S2L0WC lookup 0x88 Yes Counts translation requests that access the S2L0WC walk cache

S2L0WC miss 0x89 Yes Counts translation requests that access the S2L0WC walk cache and
do not result in a hit

S2L1WC lookup 0x8A Yes Counts translation requests that access the S2L1WC walk cache

S2L1WC miss 0x8B Yes Counts translation requests that access the S2L1WC walk cache and
do not result in a hit

S2L2WC lookup 0x8C Yes Counts translation requests that access the S2L2WC walk cache

S2L2WC miss 0x8D Yes Counts translation requests that access the S2L2WC walk cache and
do not result in a hit

S2L3WC lookup 0x8E Yes Counts translation requests that access the S2L3WC walk cache

S2L3WC miss 0x8F Yes Counts translation requests that access the S2L3WC walk cache and
do not result in a hit

WC read 0x90 Yes Counts reads from the walk cache RAMs, excluding reads that
invalidation requests cause

 Note

A single walk cache lookup might result in multiple RAM reads. This
behavior permits contiguous entries to be located.

Buffered
translation

0x91 Yes Counts translations written to the translation request buffer because
all translation slots are full

CC lookup 0x92 Yes Counts lookups into the configuration cache

CC read 0x93 Yes Counts reads from the configuration cache RAMs, excluding reads
that invalidation requests cause

 Note

A single cache lookup might result in multiple RAM reads. This
behavior permits contiguous entries to be located.

CC miss 0x94 Yes Counts lookups into the configuration cache that result in a miss

Speculative
translation

0xA0 Yes Counts translation requests that are marked as Speculative

2 Functional description
2.3 Operation

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

2-43

Non-Confidential

 Note

A single DTI translation request might correspond to multiple translation request events in either of the
following circumstances:
• A translation results in a stall fault event and is restarted
• If a translation results in a stall fault event, because the Event queue is full, the translation is retried

when an Event queue slot becomes available

MMU-700 TBU events

The MMU‑700 PMU can be configured to monitor a range of IMPLEMENTATION DEFINED TBU performance
events.

The SMMU_PMCG_SMR0 register can filter the TBU performance events so that only events with a
particular StreamID are counted. This event filtering includes:
• Speculative transactions and translations
• Transactions and translations that result in a terminated transaction or a translation fault

The following table shows the TBU performance events.

Table 2-9 MMU-700 TBU performance events

Event Event
ID

SMMU_PMCG_SMR0
filterable

Description

Main TLB
lookup

0x80 Yes Counts Main TLB lookups

Main TLB miss 0x81 Yes Counts translation requests that miss in the Main TLB

Main TLB read 0x82 Yes Counts once per access to the Main TLB RAMs, excluding reads that
invalidation requests cause

 Note

A transaction might access the Main TLB multiple times to look for
different page sizes.

Micro TLB
lookup

0x83 Yes Counts Micro TLB lookups

Micro TLB
miss

0x84 Yes Counts translation requests that miss in the Micro TLB

Slots full 0x85 No Counts once per cycle when all slots are occupied and not ready to issue
transactions downstream.

This Secure event is visible only when the SMMU_PMCG_SCR.SO bit is
set to 1.

Out of
translation
tokens

0x86 No Counts once per cycle when a translation request cannot be issued because
all translation tokens are in use.

This Secure event is visible only when the SMMU_PMCG_SCR.SO bit is
set to 1.

2 Functional description
2.3 Operation

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

2-44

Non-Confidential

Table 2-9 MMU-700 TBU performance events (continued)

Event Event
ID

SMMU_PMCG_SMR0
filterable

Description

Write data
buffer full

0x87 No Counts once per cycle when a transaction is blocked because the write data
buffer is full.

This Secure event is visible only when the SMMU_PMCG_SCR.SO bit is
set to 1.

DCMO
downgrade

0x8B Yes For the ACE‑Lite TBU, counts when either:
• A MakeInvalid transaction on the TBS interface is output as

CleanInvalid on the TBM interface
• A ReadOnceMakeInvalid transaction on the TBS interface is output as

ReadOnceCleanInvalid on the TBM interface

For the LTI TBU, counts once per cycle when an LTI DCMO or R‑DCMO
transaction on the LA channel is responded to with a downgrade on the LR
channel

Stash fail 0x8C Yes For the ACE‑Lite TBU, counts when either:

• A WriteUniquePtlStash or WriteUniqueFullStash transaction on TBS is
output as a WriteNoSnoop or WriteUnique transaction on the TBM
interface

• A StashOnceShared or StashOnceUnique transaction on the TBS
interface has a valid translation, but is terminated in the TBU

For the LTI TBU, counts once whenever either an:
• LTI WDCP transaction on the LA channel is downgraded as W on the

LR channel.
• LTI DCP transaction on the LA channel that is responded to as

FaultRAZWI on the LR channel is counted. This can be because of:
— Memory attributes or DCP, R, W, or X permission check failure in

the TLBU
— DTI fault response with Non‑Abort

The transaction that is responded to with FaultAbort because of DTI
StreamDisable or GlobalDisable is not counted

 Note

A StashOnceShared or StashOnceUnique transaction that is terminated
because of a StreamDisable or GlobalDisable translation response does not
cause this event to count

SMMUv3 PMU register architectural options

The SMMUv3 architecture defines the Performance Monitor Counter Group (PMCG) configuration
register, SMMU_PMCG_CFGR. An MMU‑700 implementation assumes fixed values for
SMMU_PMCG_CFGR, and these values define behavioral aspects of the implementation.

The following table shows the SMMU_PMCG_CFGR register options that the MMU‑700 TCU and
TBU use.

2 Functional description
2.3 Operation

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

2-45

Non-Confidential

Table 2-10 MMU-700 SMMU_PMCG_CFGR register architectural options

Field Default value Description for default value

SID_FILTER_TYPE 1 A single StreamID filter applies to all PMCG counters

CAPTURE 1 Capture of counter values into SVRn registers is supported

MSI 0 The counter group does not support Message Signaled Interrupts
(MSIs)

RELOC_CTRS 1 The PMCG registers are relocated to page 1 of the PMU address map

SIZE 0x31 The counter group implements 32‑bit counters

MPAM 0 Memory System Resource Partitioning and Monitoring (MPAM)

NCTR NCTR for the TCU TCUCFG_PMU_COUNTERS - 1 The counter group includes TCUCFG_PMU_COUNTERS counters. See
2.5.2 TCU buffer configuration options on page 2-75.

TCTR for the TBU TBUCFG_PMU_COUNTERS - 1 The counter group includes TBUCFG_PMU_COUNTERS counters. See
2.5.8 TBU buffer configuration options on page 2-81.

Related references
3.3 MMU-700 memory map on page 3-93

PMU snapshot interface

The Performance Monitoring Unit (PMU) snapshot interface is included on the TCU and on each TBU.
You can use this asynchronous interface to initiate a PMU snapshot. A simultaneous snapshot of each
counter register is created and copied to the respective SMMU_PMCG_SVRn register.

The PMU snapshot sequence is a 4-phase handshake. Both pmusnapshot_req and pmusnapshot_ack
are LOW after reset. A snapshot occurs on the rising edge of pmusnapshot_req, and is equivalent to
writing the value 1 to SMMU_PMCG_CAPR.CAPTURE.

The pmusnapshot_req signal is sampled using synchronizing registers. A register drives
pmusnapshot_ack so that the connected component can sample the signal asynchronously.

Related concepts
2.3.4 RAS implementation on page 2-47
Related references
A.1.5 TCU PMU snapshot interface signals on page Appx-A-174
A.2.4 TBU PMU snapshot interface signals on page Appx-A-190

2.3.3 TBU direct indexing and MTLB partitioning

TBU direct indexing can help your system to meet real‑time translation requirements by enabling the
MMU‑700 to manage Main TLB (MTLB) entries externally to the TBU.

 Note

If you use the direct indexing and MTLB partitioning features, MPAM is not valid.

Direct indexing enables real‑time translation requirements to be met, as follows:

• It can be guaranteed that different streams do not overwrite prefetched entries
• The MTLB can be partitioned into different sets of entries that different streams use

2 Functional description
2.3 Operation

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

2-46

Non-Confidential

If you configure your system to not use direct indexing, you can select MTLB partitioning. MTLB
partitioning has similar behavior, but only the most significant TLB index bits are provided, and the other
bits are generated internally.

Direct indexing is enabled for a TBU when TBUCFG_DIRECT_IDX = 1.

When TBUCFG_DIRECT_IDX = 1, or when an MTLB is partitioned, the width of the AxUSER signals on
the TBS interface is extended to convey the indexing information that is required for TBU direct
indexing or MTLB partitioning.

 Note

The table shows the extended bits in the order MSB first.

Table 2-11 Extended aruser_s and awuser_s bits for MTLB partitioning

Field name Width Description

mtlbidx When direct indexing is enabled, the width of this field is log2(TBUCFG_MTLB_DEPTH) -
 log2(TBUCFG_MTLB_WAYS).

When direct indexing is not enabled, the width of this field is 0.

MTLB index

mtlbway When direct indexing is enabled, the width of this field is log2(TBUCFG_MTLB_WAYS).

When direct indexing is not enabled, the width of this field is 0.

MTLB way

mtlbpart log2(TBUCFG_MTLB_PARTS) MTLB partition

- TBUCFG_AWUSER_WIDTH for awuser_s.

TBUCFG_ARUSER_WIDTH for aruser_s.

Regular AxUSER signals

If an MTLB is partitioned:

• The MTLB size is multiplied by TBUCFG_MTLB_PARTS
• The mtlbpart field defines the log2(TBUCFG_MTLB_PARTS) most significant index bits

When direct indexing is enabled for a TBU:
• Lookups and updates to the MTLB use the mtlbidx field
• Updates to the MTLB use the way that mtlbway specifies
• Lookups to the MTLB operate on all ways simultaneously

To maintain system performance, Arm recommends that you disable DVM invalidation on TBUs on
which direct indexing is enabled. Disable DVM invalidation by setting the appropriate
TCU_NODE_CTRLn.DIS_DVM bit. See 3.7.1 TCU_CTRL register on page 3-106.

2.3.4 RAS implementation

Reliability, Availability, and Serviceability (RAS) features enable SRAM corruption to be detected and
corrected, optionally generating interrupts into the system. All MMU‑700 RAM‑based caches support
RAS error detection and correction. This section describes RAS implementation in the CoreLink
MMU‑700 System Memory Management Unit.

MMU‑700 implements a combination of Single-Error-Correct-Double-Error-Detect (SECDED) and
Double-Error-Detect (DED) error correction mechanisms.

SECDED is used in RAMs where a double error usually means that the SMMU cannot contain this error
and must raise a Critical Error Interrupt. DED is used in TLB TAGS or DATA, where a single or double
error can be recovered by fetching data from System Memory.

2 Functional description
2.3 Operation

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

2-47

Non-Confidential

Also, the SMMU raises Fault Handling Interrupts (FHIs), Error Recovery Interrupts (ERIs), and
CRitical Error Interrupts (CRIs) based on a contained error or uncontained error respectively.

The following table shows the RAMs in MMU‑700, and actions that are taken when errors occur.

Table 2-12 RAM RAS error sources

RAM name Error correction and
detection mechanism

RAS error triggered RAS interrupts triggered

BIU WDB ROBUFF_D SEC CE FHI

DED Poison supported: DE FHI

Poison not supported: UE (UC) ERI, FHI, and CRI

BIU WDB ROBUFF_C SEC CE FHI

DED UE (UC) FHI, ERI, and CRI

BIU WDB ROBUFF_P SEC CE FHI

DED UE (UC) FHI, ERI, and CRI

TLBU TOU OGQ SEC CE FHI

DED UE (UC) FHI, ERI, and CRI

TLBU TOU UOQ SEC CE FHI

DED UE (UC) FHI, ERI, and CRI

TLBU TOU DTIQ SEC CE FHI

DED UE (UC) FHI, ERI, and CRI

TLBU TOU REQ SEC CE FHI

DED UE (UC) FHI, ERI, and CRI

TLBU TOU RSP SEC CE FHI

DED UE (UC) FHI, ERI, and CRI

TLBU TOU LB SEC CE FHI

DED UE (UC) FHI, ERI, and CRI

TLBU TOU HLB_ENTRY LEFT SEC CE FHI

DED UE (UC) FHI, ERI, and CRI

TLBU TOU HLB_ENTRY RIGHT SEC CE FHI

DED UE (UC) FHI, ERI, and CRI

TLBU TOU HLB PTR LEFT SEC CE FHI

DED UE (UC) FHI, ERI, and CRI

TLBU TOU HLB PTR RIGHT SEC CE FHI

DED UE (UC) FHI, ERI, and CRI

TLBU DCU MTLB PLIM SEC CE FHI

DED UE (UC) FHI, ERI, and CRI

TLBU DCU MTLB PCNT SEC CE FHI

DED UE (UC) FHI, ERI, and CRI

TLBU DCU MTLB REPL SEC CE FHI

DED UE (UC) FHI, ERI, and CRI

2 Functional description
2.3 Operation

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

2-48

Non-Confidential

Table 2-12 RAM RAS error sources (continued)

RAM name Error correction and
detection mechanism

RAS error triggered RAS interrupts triggered

TLBU DCU MTLB TAGS SED CE FHI

DED CE FHI

TLBU DCU MTLB DATA SED CE FHI

DED CE FHI

TMU TWB BSU SEC CE FHI

DED UE (UC) FHI, ERI, and CRI

TMU HZU PTR SEC CE FHI

DED UE (UC) FHI, ERI, and CRI

TMU TWB WMB LKP STATUS SEC CE FHI

DED UE (UC) FHI, ERI, and CRI

TMU TWB WMB WLK STATUS SEC CE FHI

DED UE (UC) FHI, ERI, and CRI

TMU TWB WMB SCRATCH SEC CE FHI

DED UE (UC) FHI, ERI, and CRI

TMU HTTU RAM SEC CE FHI

DED UE (UC) FHI, ERI, and CRI

TMU WCB MWC PLIM SEC CE FHI

DED UE (UC) FHI, ERI, and CRI

TMU WCB MWC PCNT SEC CE FHI

DED UE (UC) FHI, ERI, and CRI

TMU WCB MWC REPL SEC CE FHI

DED UE (UC) FHI, ERI, and CRI

TMU WCB MWC TAGS SED CE FHI

DED CE FHI

TMU WCB MWC DATA SED CE FHI

DED CE FHI

TMU CCB MCC PLIM SEC CE FHI

DED UE (UC) FHI, ERI, and CRI

TMU CCB MCC PCNT SEC CE FHI, ERI, and FHI on DED

DED UE (UC) FHI, ERI, and CRI

TMU CCB MCC REPL SEC CE FHI

DED UE (UC) FHI, ERI, and CRI

TMU CCB MCC TAGS SED CE FHI

DED CE FHI

TMU CCB MCC DATA SED CE FHI

DED CE FHI

2 Functional description
2.3 Operation

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

2-49

Non-Confidential

2.3.5 Quality of Service

You can program the TCU with a priority level for each TBU. The priority level is applied to every
translation from that TBU.

The TCU uses this priority level to:
• Arbitrate between translations that are waiting in the translation request buffer when translation

manager slots become available
• Arbitrate between translation manager slots when they access the caches and perform configuration

table walks and translation table walks
• Determine the AXI AxQOS value for translation table walks and configuration table walks that the

TCU issues on the QTW/DVM interface

The arbiters contain starvation avoidance mechanisms to prevent transactions from being stalled
indefinitely.

The TBU does not implement any prioritization between transactions. Arm recommends that bus masters
with different QoS requirements use separate TBUs for translation.

Related references
3.7.5 TCU_NODE_CTRLn register on page 3-110
3.7.2 TCU_QOS register on page 3-107

2.3.6 Distributed Virtual Memory (DVM) messages

The QTW/DVM interface supports DVM messages. The MMU‑700 supports DVMv8.4.

The interface supports DVM transactions of message types TLB Invalidate and Synchronization. The
interface accepts all other DVM transaction message types, and sends a snoop response, but otherwise
ignores such transactions.

Tie the sup_btm input signal HIGH when the system supports Broadcast TLB Maintenance.

When Broadcast TLB Maintenance is supported, you can use SMMU_CR2 and SMMU_S_CR2 to
control how the SMMU handles TLB Invalidate operations as follows:

SMMU_CR2.PTM = 0 Non‑secure TLB Invalidate operations are applied to the TLBs.
SMMU_CR2.PTM = 1 Non‑secure TLB Invalidate operations have no effect.
SMMU_S_CR2.PTM = 0 Secure TLB Invalidate operations are applied to the TLBs.
SMMU_S_CR2.PTM = 1 Secure TLB Invalidate operations have no effect.

 Note

When sup_btm is tied HIGH, the reset value of SMMU_CR2.PTM and SMMU_S_CR2.PTM is 1.

 Note

Although TLB Invalidate operations have no effect when PTM = 1, the QTW/DVM interface still returns
the appropriate response.

The QTW/DVM interface might receive DVM Sync transactions without receiving a DVM TLB
Invalidate transaction, or when the PTM bits have masked a TLB Invalidate. If no DVM TLB Invalidate
operations have occurred since the most recent DVM Sync transaction, subsequent DVM Sync
transactions result in an immediate DVM Complete transaction. This behavior ensures that the TCU does
not affect system DVM performance unless TLB Invalidate operations are performed.

The DTI interface allocates the access permissions and shareability of DVM Complete transactions as
follows:
• ARPROT = 0b000, indicating Unprivileged, Secure, Data access
• ARDOMAIN = 0b01, indicating Inner Shareable

2 Functional description
2.3 Operation

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

2-50

Non-Confidential

For a DVM Operation or DVM Sync request on the AC channel, the snoop response signal
CRRESP[4:0] is always set to 0b00000.

Related references
3.2 SMMU architectural registers on page 3-88

2.3.7 TCU transaction handling

The transaction width, burst length, and transfer size that the TCU supports depend on the transaction
type.

The following table shows the TCU support for read transactions.

Table 2-13 TCU support for read transactions

Transaction type Transaction width ARID[n:2] ARID[1:0]

Level 1 Stream table or Level 1 Context Descriptor table lookup 64‑bit Config slot number 2'b01

Stream table or Context Descriptor table lookup 512‑bit Config slot number 2'b01

Translation table lookup 64‑bit PTW slot number 2'b10

Command queue read 128‑bit All 0 2'b00

DVM Complete - Bit 2 is 1 and all other bits are 0 2'b00

DVM Complete transactions are always one beat of full data width.

Command queue reads and DVM Complete transactions are independent of translation slots. Therefore,
the maximum number of read transactions that the TCU can issue at any time is TCUCFG_PTW_SLOTS + 2.

The following table shows the TCU support for write transactions.

Table 2-14 TCU support for write transactions

Transaction type Transaction width AWID[1:0]

Event queue write 256‑bit 2'b00

PRI queue write 128‑bit 2'b00

Message Signaled Interrupt (MSI) 32‑bit 2'b00

HTTU write 128‑bit 2'b11

Only one write transaction can be outstanding at a time.

All read and write transactions are aligned to the transaction size.

2.3.8 TCU prefetch

The TCU can prefetch translations on a per‑context basis to improve translation performance for
real‑time masters that access memory linearly. If TCU prefetch is enabled, a second translation request
occurs after the original request. This second translation request is regarded as the prefetch because it is
an advance request of the next translation that is expected to be requested. This second request is
Speculative and is used to allocate into the caches of the TCU.

Software can enable TCU prefetch for a particular translation context by programming the Stream Table
Entry (STE). Bits [121:120] are IMPLEMENTATION DEFINED in the SMMUv3 architecture. See the Arm®

System Memory Management Unit Architecture Specification, SMMU architecture versions 3.0, 3.1 and
3.2.

The MMU‑700 uses these bits for the PF field as follows:

PF, bits [121:120]

2 Functional description
2.3 Operation

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

2-51

Non-Confidential

https://static.docs.arm.com/ihi0070/ca/IHI_0070_C_a_System_Memory_Management_Unit_Arm_Architecture_Specification.pdf
https://static.docs.arm.com/ihi0070/ca/IHI_0070_C_a_System_Memory_Management_Unit_Arm_Architecture_Specification.pdf
https://static.docs.arm.com/ihi0070/ca/IHI_0070_C_a_System_Memory_Management_Unit_Arm_Architecture_Specification.pdf

This field determines whether prefetch is enabled or disabled for the translation context that this
STE defines as follows:

0b00 Prefetching disabled
0b01 Reserved
0b10 Forward prefetching
0b11 Backward prefetching

Prefetching disabled
TCU prefetch does not occur

Reserved
Reserved values must not be used

Forward prefetching
The address to be prefetched is the first address following the end of the translation range, as
DTI_TBU_TRANS_RESP.TRANS_RNG/DTI_ATS_TRANS_RESP.TRANS_RNG indicates

Backward prefetching
The address to be prefetched is the last address before the beginning of the translation range, as
DTI_TBU_TRANS_RESP.TRANS_RNG/DTI_ATS_TRANS_RESP.TRANS_RNG indicates

Whenever a miss occurs in the micro TLB and Main TLB of the TBU, the TBU sends a translation
request to the TCU. If the STE for the translation is programmed to enable prefetch, each translation
request to the TCU can also potentially result in a prefetch that occurs after the original request is
complete. When each incoming translation request completes its translation in the TCU, the STE.PF field
indicates whether TCU prefetch is enabled. If TCU prefetch is enabled, a second translation request, the
prefetch request, is then issued into the same TCU translation slot. This prefetch request is Speculative,
and only allocates into the TCU walk caches. A translation response for the prefetch is not returned to
the TBU.

When the TCU handles each incoming translation request from the TBU, translation table walks might or
might not occur depending on whether there is a hit in each level of walk cache that is looked up.
Translation table walks also might or might not occur for the subsequent prefetch request. The number of
memory accesses that are performed for this prefetch are unrelated to the number of memory accesses
that are performed for the original translation request.

Consider the following examples:

1. An incoming translation request might hit in the lowest level of walk cache, but the subsequent
prefetch request might still require at least one translation table walk to memory.

2. The original translation request might require multiple translation table walks, but the subsequent
prefetch request might hit in the lowest level of walk cache and not require any memory accesses. If
the prefetch request hits in the lowest level of walk cache, then the walk caches are not updated and
no memory accesses are performed.

 Note

The walk cache uses a round‑robin replacement policy..

The prefetch can only occur when the original request is complete irrespective of whether translation
table walks were required. The prefetch must wait for completion because it uses the same translation
slot as the original request. Waiting for completion of the original request means that by the time it
becomes possible for the prefetch to be initiated, the TCU might have already received a non‑speculative
request for the next translation and begun to handle this request using a separate translation slot.
Therefore, TCU prefetch only results in a performance advantage if the number of cycles between each
sequential translation request from the TBU is greater than the number of cycles that is taken for the
TCU to handle the original translation request and to start the subsequent prefetch.

2 Functional description
2.3 Operation

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

2-52

Non-Confidential

Even if TCU prefetch is enabled, a prefetch does not occur if one of the following caused the original
request:

• A Speculative translation request, that is, DTI_TBU_TRANS_REQ.PERM[1:0] = 2'b11, if a TBU
receives a StashOnceShared, StashOnceUnique, or StashTranslation transaction

• A translation request for an atomic transaction that provides a data response, that is,
DTI_TBU_TRANS_REQ.PERM[1:0] = 2'b10, if a TBU receives an AtomicLoad, AtomicSwap, or
AtomicCompare transaction

If the original translation request returns one the following, prefetch also does not occur:
• Fault response
• Global bypass response
• Stream bypass response

 Note

Prefetch applies to both ATS and non‑ATS translation requests.

2.3.9 Error responses

AMBA defines external AXI slave error, SLVERR, and external AXI decode error, DECERR. The
MMU‑700 error response behavior depends on the interface.

The TCU QTW/DVM interface treats SLVERR and DECERR identically, as an abort.

When terminating a transaction, the TBS interface generates a SLVERR response.

If the TBU TBM interface receives a SLVERR or DECERR response to a downstream transaction, it
propagates the same abort type to the TBS interface.

2.3.10 Conversion between ACE-Lite and Armv8 attributes

The SMMUv3 architecture defines attributes in terms of the Armv8 architecture. See the Arm®

Architecture Reference Manual, Armv8, for Armv8‑A architecture profile. The MMU‑700 components
are therefore required to perform conversion between ACE‑Lite and Armv8 attributes.

The TBU must convert:
• ACE‑Lite attributes to Armv8 attributes when it receives transactions on the Transaction Slave (TBS)

interface
• Armv8 attributes to ACE‑Lite attributes when it outputs transactions on the Transaction Master

(TBM) interface

The TCU must convert Armv8 attributes to ACE‑Lite attributes when it outputs transactions on the
QTW/DVM interface.

Slave interface memory type attribute handling

The memory attributes that apply to the TBS interface are contained in the AxCACHE and
AxDOMAIN signals.

The following table shows the ACE‑Lite to Armv8 attribute conversions that the TBU TBS interface
performs.

Table 2-15 MMU-700 ACE-Lite to Armv8 memory attribute conversions

AxCACHE attribute AxDOMAIN attribute Armv8 memory attribute Armv8 Shareability

Device Non‑bufferable System Device‑nGnRnE Outer Shareable

Device Bufferable System Device‑nGnRE Outer Shareable

2 Functional description
2.3 Operation

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

2-53

Non-Confidential

https://developer.arm.com/documentation/ddi0487/latest
https://developer.arm.com/documentation/ddi0487/latest

Table 2-15 MMU-700 ACE-Lite to Armv8 memory attribute conversions (continued)

AxCACHE attribute AxDOMAIN attribute Armv8 memory attribute Armv8 Shareability

Normal Non‑cacheable Bufferable

Normal Non‑cacheable Non‑bufferable

Write‑Through No Allocate

Write‑Through Read‑Allocate

Write‑Through Write‑Allocate

Write‑Through Read and Write‑Allocate

Any Normal Inner Non‑cacheable Outer
Non‑cacheable

Outer Shareable

Write‑Back No Allocate

Write‑Back Read‑Allocate

Write‑Back Write‑Allocate

Write‑Back Read‑Allocate Write‑Allocate

Non‑shareable

Inner Shareable

Outer Shareable

Normal Inner Write‑Back Outer
Write‑Back

Non‑shareable

Non‑shareable

Outer Shareable

 Note

• Write-Back transactions are always treated as non-transient
• The Armv8‑A Read‑Allocate and Write‑Allocate hints are the same as the hints that the AxCACHE

Write‑Back type provides
• The TBU TBS interface converts instruction writes into data writes, that is, it treats awprot_s[2] as 0

Master interface memory type attribute handling

The memory attributes that apply to the TBM and the QTW/DVM interfaces are contained in the
AxCACHE and AxDOMAIN signals.

In addition, the TBU TBM interface can use the AxLOCK signal to indicate an Exclusive access. The
QTW/DVM interface does not use the AxLOCK signal.

On the TBU TBM interface, a bit on AxUSER indicates whether the memory type before the conversion
is Outer Cacheable.

The following table shows the Armv8 to ACE‑Lite attribute conversions that the master interfaces
perform.

Table 2-16 MMU-700 Armv8 to ACE-Lite memory attribute conversions

Armv8 memory attribute AxCACHE attribute AxDOMAIN attribute AxLOCK attribute AxUSER
Outer
Cacheable

Device-nGnRnE Device Non‑bufferable System As Transaction Slave
(TBS) AxLOCK
value

0

Device-GRE

Device-nGRE

Device-nGnRE

Device Bufferable System As TBS AxLOCK
value

0

2 Functional description
2.3 Operation

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

2-54

Non-Confidential

Table 2-16 MMU-700 Armv8 to ACE-Lite memory attribute conversions (continued)

Armv8 memory attribute AxCACHE attribute AxDOMAIN attribute AxLOCK attribute AxUSER
Outer
Cacheable

Normal Inner Non‑cacheable Outer
Non‑cacheable

Normal Inner Write‑Through Outer
Non‑cacheable

Normal Inner Write‑Back Outer
Non‑cacheable

Normal Non‑cacheable
Bufferable

System As TBS AxLOCK
value

0

Normal Inner Non‑cacheable Outer
Write‑Through

Normal Inner Write‑Through Outer
Write‑Through

Normal Inner Write‑Back Outer
Write‑Through

Normal Inner Non‑cacheable Outer
Write‑Back

Normal Inner Write‑Through Outer
Write‑Back

Normal Non‑cacheable
Bufferable

System As TBS AxLOCK
value

1

Normal Inner Write-Back Outer
Write‑Back

Write‑Back No Allocate

Write‑Back
Read‑Allocate

Write‑Back
Write‑Allocate

Write‑Back Read and
Write‑Allocate

If AxBURST == FIXED,
Non‑shareable.

If AxBURST != FIXED, the
attribute reflects the Armv8
Shareability:
• Non‑shareable
• Inner Shareable
• Outer Shareable

0 1

Related references
2.3.11 AXI USER bits that MMU-700 TBU defines on page 2-55

2.3.11 AXI USER bits that MMU-700 TBU defines

The TBU TBM interface AxUSER signals, aruser_m and awuser_m, have 5 bits more than
TBUCFG_AxUSER_WIDTH defines. These extra bits are output in higher‑order bits of aruser_m and
awuser_m.

The following table shows the MMU‑700‑defined aruser_m and awuser_m bits, where w represents the
AXI USER bus width that TBUCFG_AxUSER_WIDTH defines.

Table 2-17 MMU-700-defined aruser_m and awuser_m bits

Bit position Value

[w+4] Outer Cacheable

[w+3:w] The IMPLEMENTATION DEFINED page‑based hardware attributes

2 Functional description
2.3 Operation

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

2-55

Non-Confidential

Page Based Hardware Attribute (PBHA) in SMMUs

The Arm architecture defines that 4 bits in both stage 1 and stage 2 leaf page table entry formats are
reserved for software use. Armv8.4 and SMMUv3.2 define a mechanism where software can declare that
it does not require them, on a per bit basis.

See the following:
• Arm® Architecture Reference Manual, Armv8, for Armv8‑A architecture profile
• Arm® System Memory Management Unit Architecture Specification, SMMU architecture versions 3.0,

3.1 and 3.2

The Page Based Hardware Attribute (PBHA) mechanism effectively hands over control of those bits to
IMPLEMENTATION DEFINED hardware purposes. These bits are called PBHA bits.

For more information about PBHA bits, see the Arm® CoreLink™ MMU‑700 System Memory
Management Unit Configuration and Integration Manual.

Related references
Master interface memory type attribute handling on page 2-54

2 Functional description
2.3 Operation

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

2-56

Non-Confidential

https://developer.arm.com/documentation/ddi0487/latest
https://static.docs.arm.com/ihi0070/ca/IHI_0070_C_a_System_Memory_Management_Unit_Arm_Architecture_Specification.pdf
https://static.docs.arm.com/ihi0070/ca/IHI_0070_C_a_System_Memory_Management_Unit_Arm_Architecture_Specification.pdf

2.4 Constraints and limitations of use
Certain usage constraints and limitations apply to the MMU‑700.

Unless otherwise specified, an IMPLEMENTATION DEFINED field in a structure that the MMU‑700:
• Generates is 0
• Reads is ignored

This section contains the following subsections:
• 2.4.1 SMMUv3 implementation on page 2-57.
• 2.4.2 AMBA implementation on page 2-60.
• 2.4.3 MPAM implementation on page 2-67.
• 2.4.4 LTI implementation on page 2-74.

2.4.1 SMMUv3 implementation

This section describes SMMUv3 implementation in the CoreLink MMU‑700 System Memory
Management Unit.

ID register architectural options

This section describes ID register architectural options in the CoreLink MMU‑700 System Memory
Management Unit.

The following table shows the architectural options for MMU‑700 from the Arm® System Memory
Management Unit Architecture Specification, SMMU architecture versions 3.0, 3.1 and 3.2 that the
SMMUv3 ID registers expose.

2 Functional description
2.4 Constraints and limitations of use

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

2-57

Non-Confidential

https://static.docs.arm.com/ihi0070/ca/IHI_0070_C_a_System_Memory_Management_Unit_Arm_Architecture_Specification.pdf
https://static.docs.arm.com/ihi0070/ca/IHI_0070_C_a_System_Memory_Management_Unit_Arm_Architecture_Specification.pdf

Table 2-18 SMMUv3 ID registers options

Register Field Value Description

SMMU_IDR0 S2P 1 Stage 2 translation supported

S1P 1 Stage 1 translation supported

TTF 11 AArch64 and AArch32 translation supported

COHACC sup_cohacc Coherent accesses supported, system configuration
option

BTM sup_btm Broadcast TLB maintenance, system configuration
option

HTTU[1:0] {sup_httu, 1’b0} Access and dirty flag update supported

DORMHINT 0 Dormant hint is not supported

Hyp 1 EL2‑E2H is supported

ATS 1 ATS is supported

NS1ATS 0 Stage 1‑only ATS is supported

ASID16 1 16‑bit ASID is supported

MSI 1 Message Signaled Interrupts (MSIs) are supported

SEV sup_sev Send event is supported, system configuration
option

ATOS 0 ATOS is not supported

PRI 1 PRI is supported

VMW 1 VMID wildcard matching supported

VMID16 1 16‑bit VMIDs are supported

CD2L 1 2‑level context descriptor tables are supported

VATOS 0 Virtual ATOS is not supported

TTENDIAN 2’b00 Mixed‑endian translation walks are supported

STALL_MODEL {1’b0, SMMU_S_CR0.NSSTALLD} Stall and terminate models that are supported
unless the Secure world disables Non‑secure
stalling

TERM_MODEL 0 Terminating a transaction with RAZ/WI is
supported

ST_LEVEL 01 2‑level stream table is supported

SMMU_IDR1 SIDSIZE 24 24‑bit stream IDs are supported

SSIDSIZE 20 20‑bit substream IDs are supported

PRIQS 5’b10011 219 PRI queue entries are supported

EVENTQS 5’b10011 219 Event queue entries are supported

CMDQS 5’b10011 219 Command queue entries are supported

ATTR_PERMS_OVR 1 Incoming permission attributes can be overridden

ATTR_TYPES_OVR 1 Incoming memory attributes can be overridden

REL 0 N/A, not fixed base addresses

QUEUES_PRESET 0 Not fixed queue base addresses

TABLES_PRESET 0 Not fixed table base addresses

SMMU_IDR2 BA_VATOS 0 N/A, no VATOS support

2 Functional description
2.4 Constraints and limitations of use

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

2-58

Non-Confidential

Table 2-18 SMMUv3 ID registers options (continued)

Register Field Value Description

SMMU_IDR3 HAD 1 Hierarchical attribute disable supported

PBHA 1 Page‑based hardware attributes are supported

XNX 1 EL0/EL1 stage 2 execute control is supported

PPS 1 PASID, when present always used in PRI
auto‑generated response

MPAM 1 MPAM is supported

FWB 1 S2 control of memory type is supported

STT 1 Small translation tables are supported

RIL 1 Range‑based invalidation and Level hint are
supported

BBML 2 Break before Make level 2 is supported

SMMU_IDR4 IMPDEF 0 No IMPLEMENTATION DEFINED features

SMMU_IDR5 OAS sup_oas Output address size, system configuration option

GRAN4K 1 4K translation granule is supported

GRAN16K 1 16K translation granule is supported

GRAN64K 1 64K translation granule is supported

VAX 01 Virtual addresses of 52 bits per CD.TTBx are
supported

STALL_MAX TCUCFG_XLATE_SLOTS Maximum number of outstanding stalled
transactions

SMMU_IIDR Implementor 0x43B Arm implementation

Revision MAX(p_level, ecorevnum) Where p_level is:

0 For p0
1 For p1

Variant 0 r0

ProductID 0x487 Second SMMUv3 implementation from Arm

SMMU_AIDR ArchMinorRev 2 Arch rev 2

ArchMajorRev 0 SMMUv3

SMMU_S_IDR0 MSI 1 Secure MSIs are supported

STALL_MODEL 2’b00 Stall and terminate model is supported

SMMU_S_IDR1 S_SIDSIZE 24 24‑bit Secure stream IDs are supported

SEL2 1 Secure EL2 is supported

SECURE_IMPL 1 Two Security states are implemented

SMMU_S_IDR3 SAMS 1 Secure ATS maintenance is not implemented

SMMU_S_IDR4 IMPDEF 0 No IMPLEMENTATION DEFINED features

Non-implemented commands and events

This section describes the non‑implemented commands and events in the CoreLink MMU‑700 System
Memory Management Unit.

2 Functional description
2.4 Constraints and limitations of use

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

2-59

Non-Confidential

Event queue
MMU‑700 does not generate the following events:
• F_UUT
• F_TLB_CONFLICT
• F_CFG_CONFLICT
• E_PAGE_REQUEST
• IMPDEF_EVENTn

Command queue
The following commands are accepted but silently ignored:
• CMD_PREFETCH_CONFIG
• CMD_PREFETCH_ADDR
• CMD_CFGI_VMS_PIDM

The CMD_ATC_INV command is supported for the Non‑secure Command queue only. If the TCU
encounters this command in the Secure Command queue, it results in a Secure Command queue error
with reason code CERROR_ILL.

IMPLEMENTATION DEFINED fields

This section describes the IMPLEMENTATION DEFINED fields in the CoreLink MMU‑700 System Memory
Management Unit.

Unless otherwise specified, IMPLEMENTATION DEFINED fields in structures that MMU‑700:
• Generates are 0
• Reads are ignored

Non-implemented registers

This section describes the non‑implemented registers in the CoreLink MMU‑700 System Memory
Management Unit.

The following optional registers are not implemented and are RAZ/WI:

• SMMU_IDR4
• SMMU_STATUSR
• SMMU_GATOS_*
• SMMU_S_GATOS_*
• SMMU_VATOS_*

The following PMCG registers are not implemented and are RAZ/WI:
• SMMU_PMCG_IRQ_CFG0
• SMMU_PMCG_IRQ_CFG1
• SMMU_PMCG_IRQ_CFG2

Related references
3.2 SMMU architectural registers on page 3-88

2.4.2 AMBA implementation

This section describes AMBA implementation in the CoreLink MMU‑700 System Memory Management
Unit.

ACE-Lite feature support

The CoreLink MMU‑700 System Memory Management Unit supports many ACE‑Lite features.

The following table shows the ACE‑Lite features that the CoreLink MMU‑700 System Memory
Management Unit supports.

2 Functional description
2.4 Constraints and limitations of use

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

2-60

Non-Confidential

Table 2-19 ACE-Lite feature support

Specification issue Interface properties ACE-Lite TBU TCU

E Ordered_Write_Observation Y N

F.2 Wakeup_Signals Y Y

Check_Type N N

Poison Y Y

Trace_Signals N N

QoS_Accept N N

Loopback_Signals Y N

Untranslated_Transactions Y N

NSAccess_Identifiers N N

Persist_CMO Y N

DVM_v8.1 - Y

Coherency_Connection_Signals - Y

Cache_Stash_Transactions Y N

Atomic_Transactions Y Y

DeAllocation_Transactions Y N

WriteEvict_Transaction N N

Barrier_Transactions N N

G MPAM_Support Y Y

Unique_ID_Support Y Y

Check_Type (Odd_Parity_Byte_All) N N

Read_Data_Reordering Y Y

Partial_Read_Data Y N

Persistent CMO Enhancements N N

2 Functional description
2.4 Constraints and limitations of use

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

2-61

Non-Confidential

Table 2-19 ACE-Lite feature support (continued)

Specification issue Interface properties ACE-Lite TBU TCU

H DVMv8.4 N Y

Memory Tagging Y N

Read_Interleaving_Disabled Y Y

Transaction Response Extensions Y Y

Untranslated_Transactions Extensions Y N

CMO_On_Read N N

CMO_On_Write N N

Read_Data_Chunking Y N

Write_Plus_CMO N N

MTE_Support N N

Prefetch_Transaction Y Y

WriteZero_Transaction N N

Consistent_DECERR N N

Exclusive_Accesses Y N

Max_Transaction_Bytes N N

Regular_Transactions_Only N N

Shareable_Transactions Y Y

SLVERR and DECERR

This section describes SLVERR and DECERR in the CoreLink MMU‑700 System Memory Management
Unit.

The TCU QTW interface treats SLVERR and DECERR identically, as an abort.

The TBU TBS interface generates SLVERR when terminating a transaction that requires an abort
response.

If the TBU TBM interface receives an SLVERR or DECERR response to a downstream transaction, the
same abort type is propagated to the TBS interface.

Attribute handling

This section describes attribute handling in the CoreLink MMU‑700 System Memory Management Unit.

When translation is enabled and a PCIe Root Complex issues transactions to a TBU, the following apply,
depending on the type of transaction:

Untranslated (non‑ATS) transaction

The SMMU applies attributes that a combination of the input attributes, STE overrides, and
translation table descriptors determine.

Fully‑translated (full ATS) transaction

The SMMU does not modify the attributes that are encoded in the fully translated transaction.
The unmodified attributes are used as the output attributes.

2 Functional description
2.4 Constraints and limitations of use

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

2-62

Non-Confidential

Partially‑translated (Split‑stage ATS) transaction

The ATS translation response from the TCU to the PCIe Root Complex includes Stage 1 and
Stage 2 attributes. The Stage‑1‑translated transaction to the TBU encodes these Stage 1 and
Stage 2 attributes. The SMMU performs Stage 2 translation and combines the Stage 2 attributes
a second time, but this does not affect the output attributes. The output attributes remain the
same as the attributes that the TBU receives for the Stage-1-translated transaction.

For information about the preceding transactions and their attributes, see the Arm® System Memory
Management Unit Architecture Specification, SMMU architecture versions 3.0, 3.1 and 3.2.

 Note

TBUs that are connected to a PCIe Root Complex must have the pcie_mode input signal tied HIGH, as
the table in A.2.9 TBU tie-off signals on page Appx-A-192 describes.

Slave interface attribute handling

This section describes the slave interface attribute handling in the CoreLink MMU‑700 System Memory
Management Unit.

The TBU TBS interface converts the incoming ACE‑Lite attributes into Armv8 attributes.

The following table shows the slave interface attribute handling.

Table 2-20 Slave interface attribute handling

ACE-Lite

AxCACHE

ACE-Lite

AxDOMAIN

Armv8

memory type

Armv8

shareability

Description

Device Non‑bufferable SY Device-nGnRnE OSH -

Device Bufferable SY Device-nGnRE OSH -

Normal Non‑cacheable
Bufferable,

Normal Non‑cacheable
Non‑bufferable,

Write‑Through No‑allocate,

Write‑Through Read-Allocate,

Write‑Through Write‑Allocate,

Write‑Through Read and
Write‑Allocate

Any Normal-iNC-oNC OSH Normal Non‑cacheable Non‑bufferable is a
deprecated AxCACHE type and is
converted to Normal Non‑cacheable
Bufferable.

Write‑Through types are converted to
Non‑cacheable on input to match the
normalization step on output.

Write‑back No‑allocate,

Write‑back Read‑Allocate,

Write‑back Write‑Allocate,

Write‑back Read and
Write‑Allocate

NSH/ISH/OSH Normal‑iWB‑oWB NSH/OSH The Armv8 RA and WA hints depend on
the Write‑Back type.

The transaction is always treated as
non‑transient.

All ISH Shareability types are converted to
OSH.

Slave interface AxPROT handling

Instruction writes are converted into data writes on the TBU TBS interface. In effect, AWPROT[2] is
ignored and always treated as 0.

2 Functional description
2.4 Constraints and limitations of use

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

2-63

Non-Confidential

https://static.docs.arm.com/ihi0070/ca/IHI_0070_C_a_System_Memory_Management_Unit_Arm_Architecture_Specification.pdf
https://static.docs.arm.com/ihi0070/ca/IHI_0070_C_a_System_Memory_Management_Unit_Arm_Architecture_Specification.pdf

Master interface attribute handling

This section describes the master interface attribute handling in the CoreLink MMU‑700 System
Memory Management Unit.

Normalization
Both AMBA master interfaces, TBU TBM interface and TCU QTW interface, carry normalized
attributes using the standard Cortex Armv8 scheme:
• Memory that is marked as Inner Write‑Back Cacheable and Outer Write‑Back Cacheable is output as

Write‑Back Cacheable
• Memory that is marked as Inner Non‑cacheable or Write‑Through Cacheable, or Outer

Non‑cacheable or Write‑Through Cacheable, is output as Non‑cacheable, Outer Shareable

On the TBU TBM interface, a bit on AxUSER indicates whether the output memory type before this
conversion is outer cacheable.

The following table shows how the Armv8 transaction types are translated into AMBA ACE‑Lite
signals.

Table 2-21 Armv8 transaction types translated into AMBA ACE-Lite signals

Armv8

Memory Type

AxCACHE (TBM, QTW) AxDOMAIN (TBM, QTW) AxLOCK (TBM) AxUSER outer
cacheable bit
(TBM)

Device‑nGnRnE Device No‑bufferable SY TBS AxLOCK value 0

Device‑GRE,

Device‑nGRE,

Device‑nGnRE

Device Bufferable SY TBS AxLOCK value 0

Normal‑iNC‑oNC,

Normal‑iWT‑oNC,

Normal‑iWB‑oNC

Normal Non‑cacheable Bufferable SY TBS AxLOCK value 0

Normal‑iNC‑oWT,

Normal‑iWT‑oWT,

Normal‑iWB‑oWT,

Normal‑iNC‑oWB,

Normal‑iWT‑oWB

Normal Non‑cacheable Bufferable SY TBS AxLOCK value 1

Normal‑iWB‑oWB Write‑back No‑allocate /

Write‑back Read‑Allocate /

Write‑back Write‑Allocate /

Write‑back Read and
Write‑Allocate, depending on the
Armv8 outer allocate hints.

AxBURST = FIXED: NSH

AxBURST != FIXED: NSH
or OSH, depending on the
Armv8 Shareability

0 1

AxCACHE encodings

Where there are multiple legal values for AxCACHE as the AMBA® AXI and ACE Protocol Specification
describes, the canonical, non‑bracketed, one is used. Therefore, only the AxCACHE encodings that the
following table shows are used.

2 Functional description
2.4 Constraints and limitations of use

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

2-64

Non-Confidential

Table 2-22 AxCACHE encodings

AMBA memory type ARCACHE AWCACHE

Device Non‑bufferable 0000 0000

Device Bufferable 0001 0001

Normal Non‑cacheable Bufferable 0011 0011

Write‑back No‑allocate 1011 0111

Write‑back Read‑Allocate 1111 0111

Write‑back Write‑Allocate 1011 1111

Write‑back Read and Write‑Allocate 1111 1111

AxREGION

This section describes the AxREGION in the CoreLink MMU‑700 System Memory Management Unit.

This signal is not required.
• On QTW, it is driven as 0
• On TBM, it reflects the value of the corresponding TBS transaction, or is driven as 0 if the

transaction originated in the TBU

DVM interface

This section describes the DVM interface in the CoreLink MMU‑700 System Memory Management
Unit.

Supported DVM operations

In response to an ACSNOOP request, the CRRESP field is always driven as 0b00000.

All DVM operations are handled in a protocol‑compliant manner, because the interconnect does not
know that the TCU does not need DVM operations other than TLB invalidate. Any DVM operation with
a DVM Message Type in ACADDR[14:12] other than TLB Invalidate or Synchronization is accepted
and responded to on the CR channel but otherwise ignored.

DVM complete
DVM Complete messages are presented with:
• ARPROT[2:0] = 0b000, that is, Unprivileged Secure Data
• ARDOMAIN[1:0] = 0b10, that is, Outer Shareable

Internally terminated transactions

This section describes the internally terminated transactions in the CoreLink MMU‑700 System Memory
Management Unit.

Transactions that are terminated inside the TBU are returned with all RUSER and BUSER bits zero.

Transaction types

This section describes the transaction types in the CoreLink MMU‑700 System Memory Management
Unit.

MMU‑700 supports several special transaction types, distinguished by a nonzero encoding of
AxSNOOP. This section describes how each transaction type is handled.

Unless otherwise specified, transactions are propagated on TBM with the same transaction type that was
presented on TBS.

2 Functional description
2.4 Constraints and limitations of use

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

2-65

Non-Confidential

An ordinary read or ordinary write is one with AxSNOOP = 0b0000, that is, depending on
AxDOMAIN, and whether it is a read or a write, one of the following:

• ReadNoSnoop
• ReadOnce
• WriteNoSnoop
• WriteUnique

In the AMBA® LTI Protocol Specification, see:
• Section 5.2 for information about the mapping of LTI transactions to AXI types
• Section 6 for information about handling LTI responses to convert them to AXI responses

Transactions that can result in a translation fault

In an MMU‑700 system, some transactions can result in a translation fault, and certain behavior is
associated with such transactions.

The MMU‑700 treats the following transactions as ordinary reads when calculating translation faults:

• CleanShared
• CleanInvalid
• MakeInvalid
• CleanSharedPersist
• ReadOnceMakeInvalid
• ReadOnceCleanInvalid

Therefore, these transactions might require either read permission or execute permission at the
appropriate privilege level.

The MMU‑700 treats the following transactions as ordinary writes when calculating translation faults:
• WriteUniquePtlStash
• WriteUniqueFullStash

Therefore, these transactions require write permission at the appropriate privilege level.

CleanShared, CleanInvalid, MakeInvalid, and CleanSharedPersist transactions do not have a memory
type. The input transaction and output transaction memory type and allocation hints are ignored and
replaced by Normal, Inner Write‑Back, Outer Write‑Back, Read Allocate, Write Allocate. This behavior
means that the ARDOMAIN output on the TBM interface is never System Shareable for these
transactions, because they are never Non‑cacheable or Device.

The MMU‑700 treats transactions that pass the translation fault check as follows:

MakeInvalid transactions
The MMU‑700 converts MakeInvalid transactions to CleanInvalid transactions, unless the
translation also grants write permission and Destructive Read Enable (DRE) permission.

ReadOnceMakeInvalid and ReadOnceCleanInvalid transactions
The MMU‑700 outputs ReadOnceMakeInvalid transactions as ReadOnceCleanInvalid
transactions, unless the translation also granted write permission and DRE permission.
If the final transaction attributes on the TBU TBM interface are not Inner Shareable Write-Back
or Outer Shareable Write-Back, the MMU‑700 converts ReadOnceMakeInvalid and
ReadOnceCleanInvalid transactions into ordinary reads.

WriteUniquePtlStash and WriteUniqueFullStash transactions
If they pass the translation fault check, the MMU‑700 converts WriteUniquePtlStash and
WriteUniqueFullStash transactions to ordinary write transactions if either:
• The translation did not grant Directed Cache Prefetch (DCP) permission
• The final transaction attributes on the TBU TBM interface are not Inner Shareable or Outer

Shareable Write‑Back

If such a conversion occurs, AWSTASH* is driven as 0.

2 Functional description
2.4 Constraints and limitations of use

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

2-66

Non-Confidential

https://developer.arm.com/documentation/ihi0089/latest

Transactions that cannot result in a translation fault

In an MMU‑700 system, certain transactions cannot result in a translation fault, and certain behavior is
associated with such transactions.

The following transactions never result in a translation fault:

• StashOnceShared
• StashOnceUnique
• StashTranslation

If any of these transactions require a translation request to the TCU, the MMU‑700 issues a Speculative
translation request on the DTI interconnect. StashOnceShared and StashOnceUnique transactions are
terminated in the TBU, with a BRESP value of OKAY, when any of the following cases apply:

• The translation did not grant Directed Cache Prefetch (DCP) permission
• The final transaction attributes on the TBM interface are not Inner Shareable or Outer Shareable

Write‑Back
• The translation did not grant any of read, write, or execute permission at the appropriate privilege

level
 Note

Only one of these permissions is required for the stash transaction to be permitted.

 Note

A BRESP value of OKAY indicates transaction success. The MMU‑700 always generates this value
when a StashOnceShared or a StashOnceUnique transaction is terminated in the TBU. This behavior
applies even when a StreamDisable or GlobalDisable translation response causes the transaction to be
terminated.

The MMU‑700 never propagates StashTranslation transactions downstream, and uses StashTranslation
only to prefetch Main TLB contents. MMU‑700 always terminates StashTranslation transactions with a
BRESP value of OKAY, even if no translation could be stored in the Main TLB.

The TBU ignores AWPROT[0] and AWPROT[2] for StashTranslation transactions, because they do not
affect Speculative translation requests.

 Note

A StashTranslation transaction can be used to prefetch translations into the Main TLB of the MMU‑700.
However, for this prefetching to be useful, any subsequent transactions that intend to take advantage of
the translations that have been prefetched into the Main TLB must use the same StreamID as the original
prefetch. The StreamID identifies a translation context. Using a different StreamID for a subsequent
transaction means that this subsequent transaction uses a different translation context to the translation
that has been prefetched into the Main TLB and might lead to a TLB miss.

2.4.3 MPAM implementation

This section describes Memory System Resource Partitioning and Monitoring (MPAM) implementation
in the CoreLink MMU‑700 System Memory Management Unit.

This section describes the MPAM architectural options that MMU‑700 uses from the Arm® Architecture
Reference Manual Supplement, Memory System Resource Partitioning and Monitoring (MPAM), for
Armv8‑A.

Certain MPAM registers are implemented.

Registers that are not described are not implemented.

2 Functional description
2.4 Constraints and limitations of use

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

2-67

Non-Confidential

https://developer.arm.com/documentation/ddi0598/latest
https://developer.arm.com/documentation/ddi0598/latest
https://developer.arm.com/documentation/ddi0598/latest

MPAM capacity partitioning manages the following:
• TBU MTLB
• TCU configuration cache
• Walk caches

No other mechanism from the Arm® Architecture Reference Manual Supplement, Memory System
Resource Partitioning and Monitoring (MPAM), for Armv8‑A is implemented.

TCU MPAM

This section describes TCU Memory System Resource Partitioning and Monitoring (MPAM)
implementation in the CoreLink MMU‑700 System Memory Management Unit.

Internally, RIS is truncated to 1 bit, but externally it is the normal 4 bits.

RIS 0 = WCB

RIS 1 = CCB

Because RIS is internally truncated to 1 bit, there is no illegal RIS. It is therefore not necessary to report
fewer controls in the ID registers for illegal RIS. It is also not necessary to RAZ/WI accesses to the
control registers for illegal RIS.

The following table shows the TCU MPAM registers that are implemented.

2 Functional description
2.4 Constraints and limitations of use

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

2-68

Non-Confidential

https://developer.arm.com/documentation/ddi0598/latest
https://developer.arm.com/documentation/ddi0598/latest

Table 2-23 TCU MPAM registers implemented

Register Field Value usedc Value
not
usedd

Description

MPAMF_IDR_LO

(0x0000, Shared)

PARTID_MAX 1, 63, 511 1, 63,
511

In the TBU, set to:

(2TBUCFG_PARTID_WIDTH - 1)

In the TCU, set to
(2TCUCFG_PARTID_WIDTH - 1)

PMG_MAX 1 1 Two Non‑secure Performance
Monitoring groups supported per
PARTID

HAS_CCAP_PART 1 0 Supports cache maximum
capacity partitioning

HAS_CPOR_PART 0 0 Cache portion partitioning not
supported

HAS_MBW_PART 0 0 Memory Bandwidth partitioning
not supported

HAS_PRI_PART 0 0 Priority partitioning not
supported

EXT 1 1 EXTended MPAMF_IDR

HAS_IMPL_IDR 0 0 Does not have
IMPLEMENTATION‑SPECIFIC
partitioning features

HAS_MSMON 1 0 Supports performance
monitoring by matching a
combination of PARTID and
PMG

HAS_PARTID_NRW 0 0 Does not have
MPAMF_PARTID_NRW_IDR,
MPAMCFG_INTPARTID or
intPARTID mapping support

c Indicates the values when Resource is in use.
d Indicates the values when Resource is not in use.

2 Functional description
2.4 Constraints and limitations of use

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

2-69

Non-Confidential

Table 2-23 TCU MPAM registers implemented (continued)

Register Field Value usedc Value
not
usedd

Description

MPAMF_IDR_HI

(0x0004, Shared)

HAS_RIS 1 0 Has Resource Instance Selector

NO_IMPL_PART 1 0 There are no IMPLEMENTATION
DEFINED resource controls that
MPAMF_IMPL_IDR defines

NO_IMPL_MSMON 1 0 There are no IMPLEMENTATION
DEFINED resource monitors that
MPAMF_IMPL_IDR defines

HAS_EXTD_ESR 0 1 MPAMF_ESR is 64‑bits.

Not relevant because HAS_ESR
is 0.

HAS_ESR 0 1 MPAMF_ESR and
MPAMF_ECR are not
implemented

RIS_MAX 0 or 1 0 Maximum RIS value used in the
MSC:

In the TBU, set to 0

In the TCU, set to 1

MPAMF_SIDR

(0x0008, S-Only)

S_PARTID_MAX 1, 63, 511 1, 63,
511

In the TBU, set to

(2TBUCFG_PARTID_WIDTH - 1)

In the TCU, set to

(2TCUCFG_PARTID_WIDTH - 1)

S_PMG_MAX 1 - Two Secure Performance
Monitoring groups supported per
PARTID

MPAMF_MSMON_IDR

(0x0080, Shared)

MSMON_CSU 1 - Performance monitor supported
for Cache Storage Usage by
PARTID and PMG

MSMON_MBWU 0 - No performance monitor for
Memory Bandwidth Usage by
PARTID and PMG

HAS_LOCAL_CAPT_EVNT 1 - Has the local capture event
generator and the
MSMON_CAPT_EVNT register

MPAMF_CCAP_IDR

(0x0038, Shared)

CMAX_WD 8 - 256 fractions are supported

c Indicates the values when Resource is in use.
d Indicates the values when Resource is not in use.

2 Functional description
2.4 Constraints and limitations of use

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

2-70

Non-Confidential

Table 2-23 TCU MPAM registers implemented (continued)

Register Field Value usedc Value
not
usedd

Description

MPAMF_CSUMON_IDR

(0x0088, Shared)

NUM_MON 4 - Four monitoring counters are
implemented

HAS_CAPTURE 1 - Has an
MSMON_CSU_CAPTURE
register for every MSMON_CSU
and supports the capture event
behavior

MPAMF_IIDR

(0x0018, Shared)

All fields All fields valid - Implementation ID Register

MPAMF_AIDR

(0x0020, Shared)

ArchMajorRev

ArchMinorRev

0x1

0x10

- MPAM architecture v1.10

MPAMCFG_PART_SEL

(0x0100, Banked)

PARTID_SEL Bits
[TCUCFG_PARTID_WIDTH -
 1:0] or
[TBUCFG_PARTID_WIDTH -
 1:0] valid

- Can select up to 512 partitions to
configure, based on
TBUCFG_PARTID_WIDTH,
TCUCFG_PARTID_WIDTH.

When direct index or direct
partitioning is enabled, this
register does not reflect any
meaningful value.

RIS Bits [27:24] valid - Resource Instance Selector.

When direct index or direct
partitioning is enabled, this
register does not reflect any
meaningful value.

MPAMCFG_CMAX

(0x0108, Banked)

CMAX Bits [15:8] valid - Can choose up to 256 fractions.

When direct index or direct
partitioning is enabled, this
register does not reflect any
meaningful value.

MSMON_CFG_MON_SEL

(0x0800, Banked)

MON_SEL Bits [1:0] valid - Selects the monitor to configure.

When direct index or direct
partitioning is enabled, this
register does not reflect any
meaningful value.

RIS Bits [27:24] valid - Resource Instance Selector.

When direct index or direct
partitioning is enabled, this
register does not reflect any
meaningful value.

c Indicates the values when Resource is in use.
d Indicates the values when Resource is not in use.

2 Functional description
2.4 Constraints and limitations of use

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

2-71

Non-Confidential

Table 2-23 TCU MPAM registers implemented (continued)

Register Field Value usedc Value
not
usedd

Description

MSMON_CFG_CSU_FLT

(0x0810, Banked)

PARTID Bits
[TCUCFG_PARTID_WIDTH -
 1:0] or
[TBUCFG_PARTID_WIDTH -
 1:0] valid

- Can select up to 512 partitions to
configure, based on
TCUCFG_PARTID_WIDTH,
TBUCFG_PARTID_WIDTH.

When direct index or direct
partitioning is enabled, this
register does not reflect any
meaningful value.

PMG 0 - Can select up to PMG number 1.

When direct index or direct
partitioning is enabled, this
register does not reflect any
meaningful value.

MSMON_CFG_CSU_CTL

(0x0818, Banked)

EN Valid field. - The monitor instance is enabled
or disabled to collect
information.

When direct index or direct
partitioning is enabled, this
register does not reflect any
meaningful value.

CAPT_EVNT 3’b111 - Capture occurs when a
MSMON_CAPT_EVNT register
is written.

All other values are not
supported.

When direct index or direct
partitioning is enabled, this
register does not reflect any
meaningful value.

CAPT_RESET RES0. - There is no reason to ever reset a
CSU monitor.

When direct index or direct
partitioning is enabled, this
register does not reflect any
meaningful value.

OFLOW_STATUS RES0 - Overflow is not possible for a
CSU monitor.

When direct index or direct
partitioning is enabled, this
register does not reflect any
meaningful value.

c Indicates the values when Resource is in use.
d Indicates the values when Resource is not in use.

2 Functional description
2.4 Constraints and limitations of use

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

2-72

Non-Confidential

Table 2-23 TCU MPAM registers implemented (continued)

Register Field Value usedc Value
not
usedd

Description

MSMON_CFG_CSU_CTL

(0x0818, Banked)

OFLOW_INTR RES0 - This MPAM implementation
does not support
OFLOW_INTR.

When direct index or direct
partitioning is enabled, this
register does not reflect any
meaningful value.

OFLOW_FRZ RES0 - Overflow is not possible for a
CSU monitor.

When direct index or direct
partitioning is enabled, this
register does not reflect any
meaningful value.

SUBTYPE RES0 - This field is reserved for future
use.

When direct index or direct
partitioning is enabled, this
register does not reflect any
meaningful value.

MSMON_CSU

(0x0840, Banked)

All fields All fields valid - Cache storage usage value.

When direct index or direct
partitioning is enabled, this
register does not reflect any
meaningful value.

MON_CSU_CAPTURE

(0x0848, Banked)

All fields All fields valid - Capture cache storage usage.

When direct index or direct
partitioning is enabled, this
register does not reflect any
meaningful value.

MSMON_CAPT_EVNT

(0x0808, Banked)

All fields All fields valid - Capture event.

When direct index or direct
partitioning is enabled, this
register does not reflect any
meaningful value.

TBU MPAM

This section describes TBU Memory System Resource Partitioning and Monitoring (MPAM)
implementation in the CoreLink MMU‑700 System Memory Management Unit.

When TBUCFG_MTLB_DEPTH == 0, the resource is not present, and when TBUCFG_DIRECT_IDX == 1, the
resource is present but does not have Memory System Resource Partitioning and Monitoring (MPAM)
controls. The associated ID Registers must report values of limited control under these circumstances.
Therefore, many non‑ID control registers are RAZ/WI in such circumstances.

c Indicates the values when Resource is in use.
d Indicates the values when Resource is not in use.
c Indicates the values when Resource is in use.
d Indicates the values when Resource is not in use.

2 Functional description
2.4 Constraints and limitations of use

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

2-73

Non-Confidential

For information about the TBU MPAM registers that are implemented, see the table in TCU MPAM
on page 2-68.

2.4.4 LTI implementation

This section describes Local Translation Interface (LTI) implementation in the CoreLink MMU‑700
System Memory Management Unit.

The parameters in the following table are chosen for LTI.

Table 2-24 LTI parameters

Name Value Description

LTI_VC_COUNT 2 Two LTI Virtual channels are chosen, one for read and one for write

LTI_ID_WIDTH TBUCFG_ID_WIDTH Equal to ID width of incoming transaction

LTI_SID_WIDTH TBUCFG_SID_WIDTH Equal to width of incoming SID

LTI_OG_WIDTH TBUCFG_LTI_OG_WIDTH Equal to width of incoming Ordering groups

LTI_TLBLOC_WIDTH - Width of TLB location, in bits

LTI_LOOP_WIDTH - For LTI TBU, the value is equal to TBUCFG_LTI_LOOP_WIDTH.

For ACE‑Lite TBU, the value is a sum of a constant that must be defined, plus all
the User signal widths on the AXI interface.

LTI_LAUSER_WIDTH 0 The LRUSER single bit indicates whether that transaction has been filtered for
performance monitoring purposes

LTI_LRUSER_WIDTH 1

LTI_LCUSER_WIDTH 0

2 Functional description
2.4 Constraints and limitations of use

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

2-74

Non-Confidential

2.5 Configuration options and methodology
The TBU, TCU, and BAS components in the CoreLink MMU‑700 System Memory Management Unit
are delivered as SystemVerilog that you can parameterize. No rendering step is required to configure
these components. There are several versions of the switch component, part of the BAS components that
are delivered, to accommodate different numbers of slave interfaces.

This section contains the following subsections:
• 2.5.1 TCU I/O configuration options on page 2-75.
• 2.5.2 TCU buffer configuration options on page 2-75.
• 2.5.3 TCU debug configuration options on page 2-78.
• 2.5.4 ACE-Lite TBU I/O configuration options on page 2-78.
• 2.5.5 TBU register slice configuration options on page 2-79.
• 2.5.6 LTI TBU configuration options on page 2-80.
• 2.5.7 Common LTI TBU and ACE-Lite TBU configuration options on page 2-80.
• 2.5.8 TBU buffer configuration options on page 2-81.
• 2.5.9 TBU debug configuration options on page 2-82.

2.5.1 TCU I/O configuration options

You can configure the TCU I/O.

The following table shows the TCU I/O configuration options.

Table 2-25 TCU I/O configuration options

Interface and module name Configuration name Options Description

QTW TCUCFG_QTW_DATA_WIDTH 64, 128, 256, 512 ACE‑Lite_DVM interface data width.
 Note

The same width is used for walk cache entries.

2.5.2 TCU buffer configuration options

You can configure the TCU buffer.

The following table shows the TCU buffer configuration options.

Table 2-26 TCU buffer configuration options

Configuration name Options Description

TCUCFG_CC_DEPTH 4, 8, 16, 32, 64, 128, 256, 512,
1024, 2048, 4096

Configuration cache depth, in entries

TCUCFG_WC_DEPTH 8, 64, 128, 256, 512, 1024, 2048,
4096, 8192, 16384, 32768, 65536

Walk cache depth, in entries
 Note

(TCUCFG_WC_DEPTH/TCUCFG_WC_BANKS)/
TCUCFG_WC_WAYS) must be > 1

TCUCFG_WC_BANKS 1, 2, 4 Number of banks in Walk Cache
 Note

(TCUCFG_WC_DEPTH/TCUCFG_WC_BANKS)/
TCUCFG_WC_WAYS) must be > 1

2 Functional description
2.5 Configuration options and methodology

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

2-75

Non-Confidential

Table 2-26 TCU buffer configuration options (continued)

Configuration name Options Description

TCUCFG_WC_WAYS 4, 8, 16 Number of ways in walk cache
 Note

(TCUCFG_WC_DEPTH/TCUCFG_WC_BANKS)/
TCUCFG_WC_WAYS) must be > 1

TCUCFG_NUM_TBU 14, 62 Maximum number of DTI masters, that is, DTI‑TBU and
DTI‑ATS masters, that the TCU supports. The value is two
less than 16/64 to better fit into system memory maps.

 Note

The ACE‑Lite TBU and LTI TBU are both examples of
DTI‑TBU masters. Integration TBU components count as
two DTI masters because they contain two ACE‑Lite
TBUs.

TCUCFG_XLATE_SLOTS 4, 8, 16, 32, 64, 128, 256, 512,
1024, 2048, 4096

Total permitted translation requests from all DTI masters
 Note

This value must be greater than or equal to
TCUCFG_PTW_SLOTS.

TCUCFG_PTW_SLOTS 2, 4, 8, 16, 32, 64, 128, 256, 512 Number of parallel translation table walks

TCUCFG_CTW_SLOTS 1, 2, 4.
 Note

This value must not be greater than
TCUCFG_PTW_SLOTS.

Number of parallel configuration table walks

TCUCFG_WC_LKP_SLOTS 2-28 Walk Cache Lookup slots.

The number of lookup slots that the walk cache uses.

If you do not specify a value, the default value is used to
provide the best performance when one page size is active
in the walk cache.

Reduce the value if TCU performance is not critical and
increase the value if more than one page size is active in
the walk cache.

Make sure that the value is not greater than
TCUCFG_PTW_SLOTS.

You can:
• Increase the value of this parameter to improve

performance, but with greater area
• Decrease the value of this parameter to save area but

with reduced performance

TCUCFG_CC_IDXGEN_MODE 0, 1 Index generation mode for the configuration cache

0 Polynomial. Polynomial is the recommended setting
for most systems.

1 Simple.

2 Functional description
2.5 Configuration options and methodology

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

2-76

Non-Confidential

Table 2-26 TCU buffer configuration options (continued)

Configuration name Options Description

TCUCFG_DTI_ATS 0, 1, 2, 3, 4, 5, 6, 7, 8 Number of DTI-ATS masters
 Note

TCUCFG_NUM_TBU is the total number of DTI‑TBU and
DTI‑ATS masters. TCUCFG_DTI_ATS is the total number
of DTI‑ATS masters.

TCUCFG_PMU_COUNTERS 4, 16, 32 Number of PMU counters

TCUCFG_PARTID_WIDTH 1, 6, 9 Width of PARTID that is supported

1 When set to 1, PARTID sent on DTI Interface is all
zeros

6 When set to 6, PARTID[8:6] sent on DTI Interface is
set to 0

TCUCFG_HZU_DEPTH 2, 4, 8, 16, 32, 64. Number of hazard cache entries

TCUCFG_PREFETCH_SUPPORTED 0, 1 Specifies whether prefetch is supported

TCUCFG_DATARAM_TYPE 0, 1, 2 RAM type for data group of RAMs

0 Two ports. One port is for reads and one port is for
writes.

1 One port, that is, one port for both reads and writes.
2 2 × one port, that is, banked configuration. See the

Arm® CoreLink™ MMU-700 System Memory
Management Unit Configuration and Integration
Manual.

 Note

If this parameter is set to 2 and the depth of any particular
RAM is 1 or 2, then the type is automatically set to 0. Arm
recommends that the RAM is implemented as registers in
these cases.

2 Functional description
2.5 Configuration options and methodology

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

2-77

Non-Confidential

Table 2-26 TCU buffer configuration options (continued)

Configuration name Options Description

TCUCFG_SLOTRAM_TYPE 0, 1, 2 RAM type for slot group of RAMs

0 Two ports. One port is for reads and one port is for
writes.

1 One port, that is, one port for both reads and writes.
2 2 × one port, that is, banked configuration. See the

Arm® CoreLink™ MMU-700 System Memory
Management Unit Configuration and Integration
Manual.

 Note

If this parameter is set to 2 and the depth of any particular
RAM is 1 or 2, then the type is automatically set to 0. Arm
recommends that the RAM is implemented as registers in
these cases.

TCUCFG_CACHERAM_TYPE 0, 1 RAM type for cache group of RAMs

0 Two ports. One port is for reads and one port is for
writes

1 One port, that is, one port for both reads and writes

2.5.3 TCU debug configuration options

You can configure the TCU debug options.

The following table shows the TCU debug configuration options.

Table 2-27 TCU debug configuration options

Configuration name Options Description

TCUCFG_USE_ELA_DEBUG 0, 1 Set the TCUCFG_USE_ELA_DEBUG parameter as follows:

0 The SIGCLKEN<n>, SIGNALGRP<n>, and SIGQUAL<n> signals are driven to 0.

1 The SIGCLKEN<n>, SIGNALGRP<n>, and SIGQUAL<n> signals are driven to
according to B.1 TCU observation interfaces on page Appx-B-204.

2.5.4 ACE-Lite TBU I/O configuration options

You can configure the ACE‑Lite TBU I/O.

The following table shows the ACE‑Lite TBU I/O configuration options.

Table 2-28 ACE-Lite TBU I/O configuration options

Interface and
module
name

Configuration name Options Description

TBS, TBM TBUCFG_ID_WIDTH 1-32 AXI ID width.

TBS, TBM TBUCFG_DATA_WIDTH 64, 128, 256,
512

AXI data width.

2 Functional description
2.5 Configuration options and methodology

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

2-78

Non-Confidential

Table 2-28 ACE-Lite TBU I/O configuration options (continued)

Interface and
module
name

Configuration name Options Description

TBS, TBM TBUCFG_ARUSER_WIDTH

TBUCFG_AWUSER_WIDTH

TBUCFG_RUSER_WIDTH

TBUCFG_WUSER_WIDTH

TBUCFG_BUSER_WIDTH

1-128 AXI USER bus widths.

TBS, TBM TBUCFG_STASH_SUPPORT 0, 1 Include stash ID signals.

TBS, TBM TBUCFG_LOOP_WIDTH 1-8 AXI loopback signal width.

TBS, TBM TBUCFG_WBUF_DEPTH 0, 8, 16, 32, 64,
128, 256, 512,
1024, 2048

Write buffer depth. This parameter selects the maximum number
of beats that can be stored in the write buffer.

A value of 0 causes the write buffer not to be implemented. For
example, for masters where most transactions are reads.

TBS, TBM TBUCFG_LFIFO_DEPTH 0, 4 Latency FIFO depth. Supported values are as follows:

0, 4.

TBS, TBM TBUCFG_OT_TRACKER_TYPE 0, 1 Type of the outstanding transaction tracker used.

0 Table.
1 Loopback. Loopback signals to track outstanding

transactions. This setting increases the loopback signal width
by 2 on the TBM. When using this mode, 4095 outstanding
transactions are supported.

TBS, TBM TBUCFG_ROT_DEPTH 4, 8, 16, 32, 64,
128, 256, 512

Number of outstanding read transactions. This configuration is
valid only when TBUCFG_OT_TRACKER_TYPE is 0.

TBS, TBM TBUCFG_WOT_DEPTH 4, 8, 16, 32, 64,
128, 256, 512

Number of outstanding write transactions. This configuration is
valid only when TBUCFG_OT_TRACKER_TYPE is 0.

TBS, TBM TBUCFG_DATARAM_TYPE 0, 1, 2 RAM type for data group of RAMs.

0 Two ports, that is, one port for reads and one port for writes.
1 One port, that is, one port for both reads and writes.
2 2 × one port, that is, banked configuration. See the Arm®

CoreLink™ MMU-700 System Memory Management Unit
Configuration and Integration Manual.

 Note

If this parameter is set to 2 and the depth of any particular RAM
is 1 or 2, then the type is automatically set to 0. Arm
recommends that the RAM is implemented as registers in these
cases.

2.5.5 TBU register slice configuration options

You can configure the TBU register slice.

The following table shows the TBU register slice configuration options.

2 Functional description
2.5 Configuration options and methodology

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

2-79

Non-Confidential

Table 2-29 TBU register slice configuration options

Configuration name Configuration options

TBUCFG_SI_AR_HNDSHK_MODE Supported values are as follows:

0 FULL: Fully registered, double‑buffered register slice.
1 FWD: Registered on the forward path only, that is, the direction that xVALID on the

corresponding interface indicates.
2 REV: Registered on the reverse path only, that is, the direction that xREADY on the

corresponding interface indicates.
3 BP: Bypass register slice.

TBUCFG_SI_R_HNDSHK_MODE

TBUCFG_SI_AW_HNDSHK_MODE

TBUCFG_SI_W_HNDSHK_MODE

TBUCFG_SI_B_HNDSHK_MODE

TBUCFG_MI_AR_HNDSHK_MODE

TBUCFG_MI_R_HNDSHK_MODE

TBUCFG_MI_AW_HNDSHK_MODE

TBUCFG_MI_W_HNDSHK_MODE

TBUCFG_MI_B_HNDSHK_MODE

2.5.6 LTI TBU configuration options

You can configure the Local Translation Interface (LTI) TBU.

The following table shows the LTI TBU configuration options.

Table 2-30 LTI TBU configuration options

Configuration name Options Description

TBUCFG_LTI_ID_WIDTH 1-32 LTI ID width.

TBUCFG_LTI_LOOP_WIDTH 1-256 LTI loop width.

2.5.7 Common LTI TBU and ACE-Lite TBU configuration options

You can configure the common LTI TBU and ACE‑Lite TBU options.

Common LTI TBU and ACE-Lite TBU configuration options

The following table shows the common LTI TBU and ACE‑Lite TBU configuration options.

Table 2-31 Common LTI TBU and ACE-Lite TBU configuration options

Configuration name Options Description

TBUCFG_SID_WIDTH 8, 16, 20 Stream ID width.

TBUCFG_SSID_WIDTH 1, 8, 20 SubstreamID width.

TBUCFG_DIRECT_IDX 0, 1 Direct indexing.
 Note

Must be 0 if TBUCFG_MTLB_DEPTH = 0.

2 Functional description
2.5 Configuration options and methodology

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

2-80

Non-Confidential

Table 2-31 Common LTI TBU and ACE-Lite TBU configuration options (continued)

Configuration name Options Description

TBUCFG_MTLB_PARTS 1, 2, 4, 8, 16 Number of main TLB partitions.
 Note

Must be 1 if TBUCFG_MTLB_DEPTH = 0.

Must be 1 if TBUCFG_DIRECT_IDX = 1.

TBUCFG_MTLB_PARTS × TBUCFG_MTLB_DEPTH must not exceed 65536.

TBUCFG_LTI_OG_WIDTH 1-5 LTI ordering groups width.

Number of ordering groups = 2^ TBUCFG_LTI_OG_WIDTH.

TBUCFG_LA_HNDSHK_MODE 0, 1, 2, 3 Handshake mode on Address channel before TLB lookup. Supported values are as
follows:

0 FULL: Fully registered, double‑buffered register slice.

1 FWD: Registered on the forward path only, that is, the direction that xVALID on the
corresponding interface indicates.

2 REV: Registered on the reverse path only, that is, the direction that xREADY on the
corresponding interface indicates.

3 BP: Bypass register slice.

TBUCFG_LR_HNDSHK_MODE 0, 1, 2, 3 Handshake mode on translation response path. Supported values are as follows:

0 or 1 FWD: Registered on the forward path only, that is, the direction that LAVALID
on the corresponding interface indicates.

2 or 3 BP: Bypass register slice.

 Note

If the TBUCFG_LR_HNDSHK_MODE parameter is set to:

0 or 1 The LTI master must provide at least three LR credits to achieve full utilization
of the LTI interface.

2 or 3 The LTI master must provide at least two LR credits to achieve full utilization
of the LTI interface.

2.5.8 TBU buffer configuration options

You can configure the TBU buffer.

The following table shows the TBU buffer configuration options.

2 Functional description
2.5 Configuration options and methodology

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

2-81

Non-Confidential

Table 2-32 TBU buffer configuration options

Configuration name Options Description

TBUCFG_XLATE_SLOTS 2, 4, 8, 16, 32, 64,
128, 256, 512, 1024

Number of translation slots, controlling the Hit‑Under‑Miss capability of the
TBU

TBUCFG_MTLB_LKP_SLOTS 2-28 Number of MTLB lookup slots.

Use the default value to provide the best performance when one page size is
active in the MTLB.

You can:
• Increase the value of this parameter if more than one page size is active in

the MTLB
• Decrease the value of this parameter if the TBU performance is not critical

Ensure that the value of TBUCFG_MTLB_LKP_SLOTS is not greater than
TBUCFG_XLATE_SLOTS

TBUCFG_UTLB_DEPTH 4, 8, 12, 16, 32, 64 Micro TLB depth, in entries

TBUCFG_MTLB_DEPTH 0, 32, 64, 128, 256,
512, 1024, 2048,
4096, 8192, 16384,
32768, 65536

Main TLB depth, in entries

TBUCFG_MTLB_WAYS 4, 8, 16 Number of ways in the MTLB

TBUCFG_MTLB_BANKS 1, 2, 4 Number of banks in the MTLB

TBUCFG_PMU_COUNTERS 4, 16, 32 Number of PMU counters

TBUCFG_PARTID_WIDTH 1, 6, 9 Width of PARTID supported.

When set to 1, the PARTID that is received on the DTI interface is ignored
because there is only one partition.

When set to 6, PARTID[8:6] received on the DTI interface is ignored.

TBUCFG_HZRD_ENTRIES 0, 4, 8, 16, 32, 64 Number of hazard entries

TBUCFG_SLOTRAM_TYPE 0, 1, 2 RAM type for slot group of RAMs.

0 Two ports, that is, one port for reads and one port for writes.
1 One port, that is, one port for both reads and writes.
2 2 × one port, that is, banked configuration. See the Arm® CoreLink™

MMU-700 System Memory Management Unit Configuration and
Integration Manual.

 Note

If this parameter is set to 2 and the depth of any particular RAM is 1 or 2, then
the type is automatically set to 0. Arm recommends that the RAM is
implemented as registers in these cases.

TBUCFG_CACHERAM_TYPE 0, 1 RAM type for cache group of RAMs.

0 Two ports, that is, one port for reads and one port for writes
1 One port, that is, one port for both reads and writes

2.5.9 TBU debug configuration options

You can configure the TBU debug options.

2 Functional description
2.5 Configuration options and methodology

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

2-82

Non-Confidential

The following table shows the TBU debug configuration options.

Table 2-33 TBU debug configuration options

Configuration name Options Description

TBUCFG_USE_ELA_DEBUG 0, 1 Set the TBUCFG_USE_ELA_DEBUG parameter as follows:

0 The SIGCLKEN<n>, SIGNALGRP<n>, and SIGQUAL<n> signals are driven to 0

1 The SIGCLKEN<n>, SIGNALGRP<n>, and SIGQUAL<n> signals are driven
according to:
• B.2 ACE-Lite TBU observation interfaces on page Appx-B-209
• B.3 LTI TBU observation interfaces on page Appx-B-213

2 Functional description
2.5 Configuration options and methodology

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

2-83

Non-Confidential

2.6 Debug capability
The CoreLink MMU‑700 System Memory Management Unit provides debug functionality using the
CoreSight ELA‑600 Embedded Logic Analyzer.

For more information about debug capability, see the Arm® CoreLink™ MMU‑700 System Memory
Management Unit Configuration and Integration Manual.

 Note

The CoreSight ELA‑600 Embedded Logic Analyzer is a separate licensed product that is not included
with the CoreLink MMU‑700 System Memory Management Unit.

Configuration options

For TCU configuration options, see 2.5.3 TCU debug configuration options on page 2-78.

For TBU configuration options, see 2.5.9 TBU debug configuration options on page 2-82.

Signals

For TCU observation signals, see B.1 TCU observation interfaces on page Appx-B-204.

For ACE‑Lite TBU observation signals, see B.2 ACE-Lite TBU observation interfaces
on page Appx-B-209.

For LTI TBU observation signals, see B.3 LTI TBU observation interfaces on page Appx-B-213.

2 Functional description
2.6 Debug capability

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

2-84

Non-Confidential

Chapter 3
Programmers model

This chapter describes the MMU‑700 programmers model.

It contains the following sections:
• 3.1 About the programmers model on page 3-86.
• 3.2 SMMU architectural registers on page 3-88.
• 3.3 MMU-700 memory map on page 3-93.
• 3.4 MMU-700 registers summary on page 3-96.
• 3.5 TCU component and peripheral ID registers on page 3-102.
• 3.6 TCU PMU registers on page 3-103.
• 3.7 TCU microarchitectural registers on page 3-106.
• 3.8 TCU RAS registers on page 3-114.
• 3.9 TCU system discovery registers on page 3-120.
• 3.10 TCU PIU integration registers on page 3-135.
• 3.11 TCU TMU integration registers on page 3-138.
• 3.12 TBU component and peripheral ID registers on page 3-140.
• 3.13 TBU PMU registers on page 3-141.
• 3.14 TBU microarchitectural registers on page 3-144.
• 3.15 TBU RAS registers on page 3-147.
• 3.16 TBU system discovery registers on page 3-153.
• 3.17 TBU integration registers on page 3-166.

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

3-85

Non-Confidential

3.1 About the programmers model
This section provides general information about the MMU‑700 register properties.

The following information applies to the MMU‑700 registers:

• The base address is not fixed, and can be different for any particular system implementation. The
offset of each register from the base address is fixed.

• Access type is described as follows:

RW Read and write
RO Read‑only
WO Write‑only
RAZ Read‑As‑Zero
WI Writes ignored

• Do not attempt to access reserved or unused address locations. Reading these locations results in
RAZ and writing to these locations results in WI.

• Unless otherwise stated in the accompanying text:
— Do‑Not‑Modify UNDEFINED register bits
— Ignore UNDEFINED register bits on reads
— All register bits are reset to 0 by a system or Cold reset

• Bit positions that are described as reserved are:
— In an RW register, RAZ/WI
— In an RO register, RAZ
— In a WO register, WI

The MMU‑700 registers are accessed using the PROG APB4 slave interface on the TCU, and cannot be
accessed directly through any other slave interfaces.

Some registers are 64 bits, but the PROG APB4 interface is 32 bits. Because software accesses 64‑bit
registers 32 bits at a time, such accesses are not guaranteed to be 64‑bit atomic. This behavior does not
cause problems for software, because the SMMUv3 architecture does not require 64‑bit atomic access to
any registers.

The programmer's model contains separate TBU and TCU regions for internal control, RAS, and
identification registers. Writes to unmapped or reserved registers are ignored, and reads SBZ. Non‑secure
accesses to Secure registers are RAZ/WI. The MMU‑700 implements the identification register scheme
that the SMMUv3 architecture defines.

The MMU‑700 implements all the Performance Monitor Counter Group (PMCG) registers that the
SMMUv3 architecture defines, except for:

• SMMU_PMCG_IRQ_CFG0
• SMMU_PMCG_IRQ_CFG1
• SMMU_PMCG_IRQ_CFG2

The MMU‑700 does not implement the following SMMUv3 architectural registers, and accesses to these
locations are RAZ/WI:
• SMMU_IDR4
• SMMU_STATUSR
• SMMU_GATOS_*
• SMMU_S_GATOS_*
• SMMU_VATOS_*

For more information about the SMMU architectural registers, see the Arm® System Memory
Management Unit Architecture Specification, SMMU architecture versions 3.0, 3.1 and 3.2.

This section contains the following subsection:
• 3.1.1 Clearing ERRSTATUS registers on page 3-87.

3 Programmers model
3.1 About the programmers model

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

3-86

Non-Confidential

https://static.docs.arm.com/ihi0070/ca/IHI_0070_C_a_System_Memory_Management_Unit_Arm_Architecture_Specification.pdf
https://static.docs.arm.com/ihi0070/ca/IHI_0070_C_a_System_Memory_Management_Unit_Arm_Architecture_Specification.pdf

3.1.1 Clearing ERRSTATUS registers

Software can clear the TCU_ERRSTATUS and TBU_ERRSTATUS registers by writing ones to fields
that are set.

For more information about these registers, see the following:

• 3.8.3 TCU_ERRSTATUS register on page 3-116
• 3.15.3 TBU_ERRSTATUS register on page 3-149

If both of the following are true, a write to the register is ignored:
• Any of the V, UE, OF, CE, DE, fields are nonzero before the write.
• The write does not clear the nonzero V, UE, OF, CE, DE fields to zero by writing ones to the

applicable field or fields.
 Note

CE must be cleared by writing 2’b11 to the field.

If a valid clearing write reaches the ERRSTATUS register on the same cycle as a new error, the new
record is applied as though no previous error existed:

ERRSTATUS.V = 0.

3 Programmers model
3.1 About the programmers model

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

3-87

Non-Confidential

3.2 SMMU architectural registers
The MMU‑700 implements many of the SMMU architectural registers, that the Arm® System Memory
Management Unit Architecture Specification, SMMU architecture versions 3.0, 3.1 and 3.2 defines.

The following table lists the SMMUv3 architectural registers that the MMU‑700 implements.
 Note

All writable register fields reset to 0 unless the SMMU architecture specifies otherwise.

Table 3-1 SMMUv3 architectural registers

Register Name Description

SMMU_S_IDR0 - SMMU_S_IDR3 SMMU Secure feature
Identification Registers

Provides information about the Secure features that
the SMMU implementation supports

SMMU_S_CR0 Secure global Control Register 0 Provides global configuration of the Secure SMMU

SMMU_S_CR0ACK Secure global Control Register 0
update Acknowledge

Provides acknowledgment of completion of updates to
SMMU_S_CR0

SMMU_S_CR1

SMMU_S_CR2

Secure global Control Registers Provides the controls for Secure table and queue
access attributes

SMMU_S_INIT Secure Initialization control register Provides a control to invalidate all Secure SMMU
caching on system initialization

SMMU_S_GBPA Secure Global Bypass Attribute
register

Controls the global bypass attributes that are used for
transactions from Secure streams when the MMU is
disabled

SMMU_S_IRQ_CTRL Secure Interrupt Control register Contains enables for SMMU interrupts

SMMU_S_IRQ_CTRLACK Secure Interrupt Control register
update Acknowledge

Provides acknowledgment of the completion of
updates to SMMU_S_IRQ_CTRL

SMMU_S_GERROR Secure Global Error status register Provides information on Secure global programming
interface errors

SMMU_S_GERRORN Secure Global Error
Acknowledgment register

Contains the acknowledgment fields for
SMMU_S_GERROR errors

SMMU_S_GERROR_IRQ_CFG0 -
SMMU_S_GERROR_IRQ_CFG2

Secure Global Error IRQ
Configuration register

Contains the Secure MSI address configuration for the
GERROR IRQ

SMMU_S_STRTAB_BASE Secure Stream Table Base address
register

Contains the base address and attributes for the Secure
Stream table

SMMU_S_STRTAB_BASE_CFG Secure Stream Table Base
Configuration register

Contains configuration fields for the Secure Stream
table

SMMU_S_CMDQ_BASE Secure Command queue Base
address register

Contains the base address and attributes for the Secure
Command queue

3 Programmers model
3.2 SMMU architectural registers

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

3-88

Non-Confidential

https://static.docs.arm.com/ihi0070/ca/IHI_0070_C_a_System_Memory_Management_Unit_Arm_Architecture_Specification.pdf
https://static.docs.arm.com/ihi0070/ca/IHI_0070_C_a_System_Memory_Management_Unit_Arm_Architecture_Specification.pdf

Table 3-1 SMMUv3 architectural registers (continued)

Register Name Description

SMMU_S_CMDQ_PROD Secure Command queue Producer
index register

Contains the Secure Command queue index for writes
by the producer

SMMU_S_CMDQ_CONS Secure Command queue Consumer
index register

Contains the Secure Command queue index for reads
by the consumer

SMMU_S_EVENTQ_BASE Secure Event queue Base address
register

Contains the base address and attributes for the Secure
Event queue

SMMU_S_EVENTQ_PROD Secure Event queue Producer index
register

Contains the Secure Event queue index for writes by
the producer

SMMU_S_EVENTQ_CONS Secure Event queue Consumer
index register

Contains the Secure Event queue index for reads by
the consumer

SMMU_S_EVENTQ_IRQ_CFG0 -
SMMU_S_EVENTQ_IRQ_CFG2

Secure Event queue IRQ
Configuration registers

Contains the MSI address configuration for the Secure
Event queue IRQ

SMMU_IDR0 - SMMU_IDR3

SMMU_IDR5

SMMU feature Identification
Registers

Provides information about the features that the
SMMU implementation supports

SMMU_IIDR Implementation Identification
Register

Provides implementer, part, and revision information
for the SMMU implementation

SMMU_AIDR Architecture Identification Register Identifies the SMMU architecture version to which
the implementation conforms

SMMU_CR0 Non‑secure global Control Register
0

Provides the controls for the global configuration of
the Non‑secure SMMU

SMMU_CR0ACK Non‑secure global Control Register
0 update Acknowledge register

Provides acknowledgment of completion of updates to
SMMU_CR0

SMMU_CR1 Non‑secure global Control Register
1

Provides the controls for Non‑secure table and queue
access attributes

SMMU_CR2 Non‑secure global Control Register
2

Provides the controls for the configuration of the
global Non‑secure features

SMMU_GBPA Non‑secure Global Bypass
Attribute register

Controls the global bypass attributes that are used for
transactions from Non‑secure streams when the MMU
is disabled

SMMU_IRQ_CTRL Non‑secure Interrupt Control
register

Provides IRQ enable flags for edge‑triggered wired
outputs, if implemented, and MSI writes, if
implemented

SMMU_IRQ_CTRLACK Non‑secure Interrupt Control
register update Acknowledge
register

Provides acknowledgment of the completion of
updates to SMMU_IRQ_CTRL

SMMU_GERROR Non‑secure Global Error status
register

Provides information about Non‑secure global
programming interface errors

3 Programmers model
3.2 SMMU architectural registers

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

3-89

Non-Confidential

Table 3-1 SMMUv3 architectural registers (continued)

Register Name Description

SMMU_GERRORN Non‑secure Global Error
acknowledgment register

Contains the acknowledgment fields for
SMMU_GERROR errors

SMMU_GERROR_IRQ_CFG0 Non‑secure Global Error IRQ
Configuration register 0

Contains the MSI address configuration for the
GERROR IRQ

SMMU_GERROR_IRQ_CFG1 Non‑secure Global Error IRQ
Configuration register 1

Contains the MSI payload configuration for the
GERROR IRQ

SMMU_GERROR_IRQ_CFG2 Non‑secure Global Error IRQ
Configuration register 2

Contains the MSI attribute configuration for the
GERROR IRQ

SMMU_STRTAB_BASE Non‑secure Stream Table Base
address register

Contains the base address and attributes for the
Non‑secure Stream table

SMMU_STRTAB_BASE_CFG Non‑secure Stream Table
Configuration register

Contains configuration fields for the Non‑secure
Stream table

SMMU_CMDQ_BASE Non‑secure Command queue Base
address register

Contains the base address and attributes for the
Non‑secure Command queue

SMMU_CMDQ_PROD Non‑secure Command queue
Producer index register

Contains the Non‑secure Command queue index for
writes by the producer

SMMU_CMDQ_CONS Non‑secure Command queue
Consumer index register

Contains the Non‑secure Command queue index for
reads by the consumer

SMMU_EVENTQ_BASE Non‑secure Event queue Base
address register

Contains the base address and attributes for the
Non‑secure Event queue

SMMU_EVENTQ_PROD Non‑secure Event queue Producer
index register

Contains the Non‑secure Event queue index for writes
by the producer

SMMU_EVENTQ_CONS Non‑secure Event queue Consumer
index register

Contains the Non‑secure Event queue index for reads
by the consumer

SMMU_EVENTQ_IRQ_CFG0 Non‑secure Event queue IRQ
Configuration register 0

Contains the MSI address configuration for the Event
queue IRQ

SMMU_EVENTQ_IRQ_CFG1 Non‑secure Event queue IRQ
Configuration register 1

Contains the MSI payload configuration for the Event
queue IRQ

SMMU_EVENTQ_IRQ_CFG2 Non‑secure Event queue IRQ
Configuration register 2

Contains the MSI attribute configuration for the Event
queue IRQ

SMMU_PRIQ_BASE Non‑secure PRI queue Base address
register

Contains the base address and attributes for the
Non‑secure PRI queue

SMMU_PRIQ_PROD Non‑secure PRI queue Producer
index register

Contains the Non‑secure PRI queue index for writes
by the producer

SMMU_PRIQ_CONS Non‑secure PRI queue Consumer
index register

Contains the Non‑secure PRI queue index for reads by
the consumer

3 Programmers model
3.2 SMMU architectural registers

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

3-90

Non-Confidential

Table 3-1 SMMUv3 architectural registers (continued)

Register Name Description

SMMU_PRIQ_IRQ_CFG0 Non‑secure PRI queue IRQ
Configuration register 0

Contains the MSI address configuration for the PRI
queue IRQ

SMMU_PRIQ_IRQ_CFG1 Non‑secure PRI queue IRQ
Configuration register 1

Contains the MSI payload configuration for the PRI
queue IRQ

SMMU_PRIQ_IRQ_CFG2 Non‑secure PRI queue IRQ
Configuration register 2

Contains the MSI attribute configuration for the PRI
queue IRQ

The MMU‑700 implements an SMMUv3 Performance Monitor Counter Group (PMCG) in the TCU and
in each TBU. The following table lists the registers that the MMU‑700 implements in each PMCG.

Table 3-2 SMMUv3 PMCG registers

Register Name Description

SMMU_PMCG_EVCNTR0 -
SMMU_PMCG_EVCNTR3

SMMU PMCG Event Counter
registers

Contains the values of the event counters

SMMU_PMCG_EVTYPER0 -
SMMU_PMCG_EVTYPER3

SMMU PMCG Event Type
configuration registers

Configures the events that the corresponding counter
counts

SMMU_PMCG_SVR0 -
SMMU_PMCG_SVR3

SMMU PMCG Shadow Value
Registers

Contains the shadow value of the corresponding event
counter

SMMU_PMCG_SMR0 SMMU PMCG Stream Match
filter Register

Configures the stream match filter for the
corresponding event counter

SMMU_PMCG_CNTENSET0 SMMU PMCG Counter Enable
Set register

Provides the set mechanism for the counter enables

SMMU_PMCG_CNTENCLR0 SMMU PMCG Counter Enable
Clear register

Provides the clear mechanism for the counter enables

SMMU_PMCG_INTENSET0 SMMU PMCG Interrupt
contribution Enable Set register

Provides the set mechanism for the counter interrupt
contribution enables

SMMU_PMCG_INTENCLR0 SMMU PMCG Interrupt
contribution Enable Clear
register

Provides the clear mechanism for the counter interrupt
enables

SMMU_PMCG_OVSCLR0 SMMU PMCG Overflow Status
Clear register

Provides the clear mechanism for the overflow status
bits and provides read access to the overflow status bit
values

SMMU_PMCG_OVSSET0 SMMU PMCG Overflow Status
Set register

Provides the set mechanism for the overflow status
bits and provides read access to the overflow status bit
values

SMMU_PMCG_CAPR SMMU PMCG Counter shadow
value Capture Register

Controls the counter shadow value capture mechanism

3 Programmers model
3.2 SMMU architectural registers

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

3-91

Non-Confidential

Table 3-2 SMMUv3 PMCG registers (continued)

Register Name Description

SMMU_PMCG_SCR SMMU PMCG Secure Control
Register

Secure Control Register

SMMU_PMCG_CFGR SMMU PMCG Configuration
information Register

Provides information about the PMCG implementation

SMMU_PMCG_CR SMMU PMCG Control Register Contains the Performance Monitor control flags

SMMU_PMCG_CEID0 -
SMMU_PMCG_CEID1

SMMU PMCG Common Event
ID registers

Contains the lower and upper 64 bits of the Common
Event identification bitmap

SMMU_PMCG_IRQ_CTRL SMMU PMCG IRQ enable
register

Contains the Performance Monitors IRQ enable

SMMU_PMCG_IRQ_CTRLACK SMMU PMCG IRQ enable
Acknowledge register

Provides acknowledgment of the completion of
updates to SMMU_PMCG_IRQ_CTRL

SMMU_PMCG_AIDR SMMU PMCG Architecture
Identification Register

Provides the Performance Monitor Architecture
Identification

SMMU_PMCG_ID_REGS ID registers IMPLEMENTATION DEFINED

SMMU_PMCG_PMAUTHSTATUS PMU Authentication Status
register

Performance Monitor authentication status

SMMU_PMCG_PMDEVARCH PMU Device Architecture
register

Performance Monitor architecture identifier

SMMU_PMCG_PMDEVTYPE PMU Device Type register Performance Monitor device type

Related concepts
2.4.1 SMMUv3 implementation on page 2-57

3 Programmers model
3.2 SMMU architectural registers

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

3-92

Non-Confidential

3.3 MMU-700 memory map
The MMU‑700 memory map contains all registers.

This section contains the following subsections:
• 3.3.1 Main MMU‑700 memory map on page 3-93.
• 3.3.2 TCU memory map on page 3-93.
• 3.3.3 TBU memory map on page 3-94.

3.3.1 Main MMU-700 memory map

The main MMU‑700 memory map includes the TCU and all TBUs, and the maximum number of
implemented TBUs.

The following table shows the full memory map.

Table 3-3 Main MMU-700 memory map

Address range Description

0x000000 - 0x03FFFC TCU registers

0x040000 - 0x05FFFC TBU0 registers.

Includes microarchitectural, RAS, ID, MPAM, and PMCG registers.

0x060000 - 0x07FFFC TBU1 registers.

Include microarchitectural, RAS, ID, MPAM, and PMCG registers.

0x080000 - 0x09FFFC TBU2 registers.

Includes microarchitectural, RAS, ID, MPAM, and PMCG registers.

... ...

0x7C0000 - 0x7DFFFC TBU60 registers.

Includes microarchitectural, RAS, ID, MPAM, and PMCG registers.

0x7E0000 - 0x7FFFFC TBU61 registers.

Includes microarchitectural, RAS, ID, MPAM, and PMCG registers.

 Note

This document describes all TBU and TCU register addresses relative to the base address for that
component.

3.3.2 TCU memory map

The TCU memory map contains various categories of registers.

The TCU IMPLEMENTATION DEFINED registers include the following:

• 3.7 TCU microarchitectural registers on page 3-106 for controlling microarchitectural features
• 3.9 TCU system discovery registers on page 3-120
• 3.8 TCU RAS registers on page 3-114
• 3.6 TCU PMU registers on page 3-103

3 Programmers model
3.3 MMU-700 memory map

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

3-93

Non-Confidential

The following registers are also included:
• 3.10 TCU PIU integration registers on page 3-135.
• Walk cache stage and level Memory System Resource Partitioning and Monitoring (MPAM)

maximum capacity registers.
• MPAM memory‑mapped registers.

The following table shows the MMU‑700 TCU memory map.

Table 3-4 MMU-700 TCU memory map

Address range Description

0x00000-0x0FFFC TCU registers, page 0, including:
• SMMUv3 registers, page 0
• TCU Performance Monitor Counter Group (PMCG) registers, page 0, starting at offset 0x02000
• TCU microarchitectural registers
• TCU system discovery registers
• TCU MPAM registers

0x10000-0x1FFFC TCU registers, page 1.

This address range contains the SMMUv3 registers, page 1.

0x20000-0x2FFFC TCU registers, page 2.

This address range contains the TCU PMCG registers, page 1, starting at offset 0x22000.

0x30000-0x3FFFC Reserved.

The following table shows how the TCU IMPLEMENTATION DEFINED PMCG, and MPAM registers are
allocated to regions of the TCU address space. Other regions are reserved.

Table 3-5 TCU PMCG, RAS, and MPAM register allocation to regions of TCU address space

Address range Description

0x00FD0-0x00FFC SMMU ID registers

0x02000-0x02FFC Performance Monitor, page 0

0x03000-0x03FFC MPAM Non‑secure registers

0x08E00-0x08E7C Microarchitectural features and integration registers

0x08E34-0x08E78 System discovery registers

0x08E80-0x08EFC Reliability, Availability, and Serviceability (RAS) registers

0x09000-0x097FC TCU node microarchitecture registers

0x09800-0x0981C Walk cache stage and level MPAM maximum capacity registers

0x0B000-0x0BFFC MPAM Secure registers

0x22000-0x22FFC Performance Monitor, page 1

3.3.3 TBU memory map

The TBU memory map contains various categories of registers.

The TBU registers contain the following:

3 Programmers model
3.3 MMU-700 memory map

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

3-94

Non-Confidential

• IMPLEMENTATION DEFINED 3.14 TBU microarchitectural registers on page 3-144 for controlling
microarchitectural features

• 3.16 TBU system discovery registers on page 3-153
• 3.15 TBU RAS registers on page 3-147
• Direct access to cache state
• 3.13 TBU PMU registers on page 3-141
• Performance Monitor counter registers, on a separate 64KB page to enable it to be paged for direct

access from a Guest OS

The following table shows the TBU memory map.

Table 3-6 TBU memory map

Address range Description

0x08E00-0x08E7C Microarchitectural registers.

System discovery registers.

Integration registers.

0x08E80-0x08EFC RAS

0x00FD0-0x00FFC ID registers

0x02000-0x02FFC Performance Monitor page 0

0x12000-0x12FFC Performance Monitor page 1

0x03000-0x03FFC TBU MPAM Non‑secure registers

0x0B000-0x0BFFC TBU MPAM Secure registers

 Note

Any regions that the table does not show are reserved.

3 Programmers model
3.3 MMU-700 memory map

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

3-95

Non-Confidential

3.4 MMU-700 registers summary
The register summary describes the MMU‑700 registers and some key characteristics.

This section contains the following subsections:
• 3.4.1 TCU identification registers summary on page 3-96.
• 3.4.2 TCU and TBU PMU identification registers summary on page 3-96.
• 3.4.3 TCU Reliability, Availability, and Service registers summary on page 3-97.
• 3.4.4 TCU microarchitectural registers summary on page 3-97.
• 3.4.5 TCU system discovery registers summary on page 3-98.
• 3.4.6 TCU integration registers summary on page 3-98.
• 3.4.7 TBU identification registers summary on page 3-99.
• 3.4.8 TBU Reliability, Availability, and Serviceability registers summary on page 3-99.
• 3.4.9 TBU microarchitectural registers summary on page 3-100.
• 3.4.10 TBU system discovery registers summary on page 3-100.
• 3.4.11 TBU integration registers summary on page 3-100.

3.4.1 TCU identification registers summary

The MMU‑700 contains TCU identification registers.

The following table shows the TCU identification registers in offset order from the base memory
address.

Table 3-7 TCU identification registers summary

Name Offset Type Description

SMMU_CIDR3 0x00FFC RO 3.5 TCU component and peripheral ID registers on page 3-102

SMMU_CIDR2 0x00FF8 RO

SMMU_CIDR1 0x00FF4 RO

SMMU_CIDR0 0x00FF0 RO

SMMU_PIDR3 0x00FEC RO

SMMU_PIDR2 0x00FE8 RO

SMMU_PIDR1 0x00FE4 RO

SMMU_PIDR0 0x00FE0 RO

SMMU_PIDR7 0x00FDC RO

SMMU_PIDR6 0x00FD8 RO

SMMU_PIDR5 0x00FD4 RO

SMMU_PIDR4 0x00FD0 RO

3.4.2 TCU and TBU PMU identification registers summary

The TCU and the TBU use the same PMU identification registers.

The following table shows the TCU and TBU PMU identification registers in offset order from the base
memory address.

3 Programmers model
3.4 MMU-700 registers summary

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

3-96

Non-Confidential

Table 3-8 TCU and TBU PMU identification registers summary

Name Offset Type Description

SMMU_PMCG_PMAUTHSTATUS 0x00FB8 RO 3.6 TCU PMU registers on page 3-103

3.13 TBU PMU registers on page 3-141SMMU_PMCG_PIDR4 0x02FD0 RO

SMMU_PMCG_PIDR5 0x02FD4 RO

SMMU_PMCG_PIDR6 0x02FD8 RO

SMMU_PMCG_PIDR7 0x02FDC RO

SMMU_PMCG_PIDR0 0x02FE0 RO

SMMU_PMCG_PIDR1 0x02FE4 RO

SMMU_PMCG_PIDR2 0x02FE8 RO

SMMU_PMCG_PIDR3 0x02FEC RO

SMMU_PMCG_CIDR0 0x02FF0 RO

SMMU_PMCG_CIDR1 0x02FF4 RO

SMMU_PMCG_CIDR2 0x02FF8 RO

SMMU_PMCG_CIDR3 0x02FFC RO

3.4.3 TCU Reliability, Availability, and Service registers summary

The MMU‑700 contains TCU Reliability, Availability, and Service (RAS) registers.

The following table shows the TCU RAS registers in offset order from the base memory address.

Table 3-9 TCU RAS registers summary

Name Offset Type Width Description

TCU_ERRFR 0x08E80 RO, Secure 64‑bit 3.8.1 TCU_ERRFR register on page 3-114

TCU_ERRCTLR 0x08E88 RW, Secure 64‑bit 3.8.2 TCU_ERRCTLR register on page 3-115

TCU_ERRSTATUS 0x08E90 RW, Secure 64‑bit 3.8.3 TCU_ERRSTATUS register on page 3-116

TCU_ERRGEN 0x08EC0 RW, Secure 64‑bit 3.8.4 TCU_ERRGEN register on page 3-119

3.4.4 TCU microarchitectural registers summary

The MMU‑700 contains TCU microarchitectural registers.

The following table shows the TCU microarchitectural registers in offset order from the base memory
address.

Table 3-10 TCU microarchitectural registers summary

Name Offset Type Width Description

TCU_CTRL 0x08E00 RW 32‑bit 3.7.1 TCU_CTRL register on page 3-106

TCU_QOS 0x08E04 RW 32‑bit 3.7.2 TCU_QOS register on page 3-107

TCU_CFG 0x08E08 RO 32‑bit 3.7.3 TCU_CFG register on page 3-108

TCU_STATUS 0x08E10 RO 32‑bit 3.7.4 TCU_STATUS register on page 3-109

TCU_SCR 0x08E18 RW, Secure 32‑bit 3.7.7 TCU_SCR register on page 3-112

3 Programmers model
3.4 MMU-700 registers summary

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

3-97

Non-Confidential

Table 3-10 TCU microarchitectural registers summary (continued)

Name Offset Type Width Description

TCU_NODE_CTRLn 0x09000-0x093FC RW 32‑bit 3.7.5 TCU_NODE_CTRLn register on page 3-110

TCU_NODE_STATUSn 0x09400-0x097FC RO 32‑bit 3.7.6 TCU_NODE_STATUSn register on page 3-111

TCU_WC_SxLy_CMAX 0x09800-0x0981C RW 32‑bit 3.7.8 TCU_WC_SxLy_CMAX registers on page 3-113

3.4.5 TCU system discovery registers summary

The MMU‑700 contains TCU system discovery registers.

The following table shows the TCU system discovery registers in offset order from the base memory
address.

Table 3-11 TCU system discovery registers summary

Name Offset Type Width Description

TCU_SYSDISC0 0x08E34 RO 32‑bit 3.9.1 TCU_SYSDISC0 system discovery register on page 3-120

TCU_SYSDISC1 0x08E38 RO 32‑bit 3.9.2 TCU_SYSDISC1 system discovery register on page 3-121

TCU_SYSDISC2 0x08E3C RO 32‑bit 3.9.3 TCU_SYSDISC2 system discovery register on page 3-122

TCU_SYSDISC3 0x08E40 RO 32‑bit 3.9.4 TCU_SYSDISC3 system discovery register on page 3-122

TCU_SYSDISC4 0x08E44 RO 32‑bit 3.9.5 TCU_SYSDISC4 system discovery register on page 3-123

TCU_SYSDISC5 0x08E48 RO 32‑bit 3.9.6 TCU_SYSDISC5 system discovery register on page 3-124

TCU_SYSDISC6 0x08E4C RO 32‑bit 3.9.7 TCU_SYSDISC6 system discovery register on page 3-125

TCU_SYSDISC7 0x08E50 RO 32‑bit 3.9.8 TCU_SYSDISC7 system discovery register on page 3-126

TCU_SYSDISC8 0x08E54 RO 32‑bit 3.9.9 TCU_SYSDISC8 system discovery register on page 3-126

TCU_SYSDISC9 0x08E58 RO 32‑bit 3.9.10 TCU_SYSDISC9 system discovery register on page 3-127

TCU_SYSDISC10 0x08E5C RO 32‑bit 3.9.11 TCU_SYSDISC10 system discovery register on page 3-128

TCU_SYSDISC11 0x08E60 RO 32‑bit 3.9.12 TCU_SYSDISC11 system discovery register on page 3-129

TCU_SYSDISC12 0x08E64 RO 32‑bit 3.9.13 TCU_SYSDISC12 system discovery register on page 3-130

TCU_SYSDISC13 0x08E68 RO 32‑bit 3.9.14 TCU_SYSDISC13 system discovery register on page 3-130

TCU_SYSDISC14 0x08E6C RO 32‑bit 3.9.15 TCU_SYSDISC14 system discovery register on page 3-131

TCU_SYSDISC15 0x08E70 RO 32‑bit 3.9.16 TCU_SYSDISC15 system discovery register on page 3-132

TCU_SYSDISC16 0x08E74 RO 32‑bit 3.9.17 TCU_SYSDISC16 system discovery register on page 3-133

TCU_SYSDISC17 0x08E78 RO 32‑bit 3.9.18 TCU_SYSDISC17 system discovery register on page 3-134

3.4.6 TCU integration registers summary

The MMU‑700 contains TCU integration registers.

The following table shows the TCU integration registers in offset order from the base memory address.

3 Programmers model
3.4 MMU-700 registers summary

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

3-98

Non-Confidential

Table 3-12 TCU integration registers summary

Name Offset Type Width Description

ITEN 0x08E20 RW 32‑bit 3.10.1 ITEN register for the TCU on page 3-135

ITOP_PIU 0x08E24 RW 32‑bit 3.10.2 ITOP register for the TCU Programmer Interface Unit on page 3-135

ITOP_TMU 0x08E2C RW 32‑bit 3.11.1 ITOP register for the TCU Translation Management Unit on page 3-138

ITIN_TMU 0x08E30 RO 32‑bit 3.11.2 ITIN register for the TCU Translation Management Unit on page 3-139

3.4.7 TBU identification registers summary

The MMU‑700 contains TBU identification registers.

The following table shows the TBU identification registers in offset order from the base memory
address.

Table 3-13 TBU identification registers summary

Name Offset Type Description

SMMU_CIDR3 0x00FFC RO 3.12 TBU component and peripheral ID registers on page 3-140

SMMU_CIDR2 0x00FF8 RO

SMMU_CIDR1 0x00FF4 RO

SMMU_CIDR0 0x00FF0 RO

SMMU_PIDR3 0x00FEC RO

SMMU_PIDR2 0x00FE8 RO

SMMU_PIDR1 0x00FE4 RO

SMMU_PIDR0 0x00FE0 RO

SMMU_PIDR7 0x00FDC RO

SMMU_PIDR6 0x00FD8 RO

SMMU_PIDR5 0x00FD4 RO

SMMU_PIDR4 0x00FD0 RO

3.4.8 TBU Reliability, Availability, and Serviceability registers summary

The MMU‑700 contains TBU Reliability, Availability, and Serviceability (RAS) registers.

The following table shows the TBU RAS registers in offset order from the base memory address.

Table 3-14 TBU RAS registers summary

Name Offset Width Type Description

TBU_ERRFR 0x08E80 64‑bit RO, Secure 3.15.1 TBU_ERRFR register on page 3-147

TBU_ERRCTLR 0x08E88 64‑bit RW, Secure 3.15.2 TBU_ERRCTLR register on page 3-148

TBU_ERRSTATUS 0x08E90 64‑bit RW, Secure 3.15.3 TBU_ERRSTATUS register on page 3-149

TBU_ERRGEN 0x08EC0 64‑bit RW, Secure 3.15.4 TBU_ERRGEN register on page 3-152

RAS error reporting

When a Correctable Error (CE) occurs:

3 Programmers model
3.4 MMU-700 registers summary

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

3-99

Non-Confidential

A CE is reported in 3.15.3 TBU_ERRSTATUS register on page 3-149.

If TBU_ERRCTLR.FI is set, an interrupt is raised on ras_fhi. See TBU interrupt interfaces
on page 2-37.

3.4.9 TBU microarchitectural registers summary

The MMU‑700 contains TBU microarchitectural registers.

The following table shows the TBU microarchitectural registers in offset order from the base memory
address.

Table 3-15 TBU microarchitectural registers summary

Name Offset Type Width Description

TBU_CTRL 0x08E00 RW 32‑bit 3.14.1 TBU_CTRL register on page 3-144

TBU_SCR 0x08E18 RW, Secure 32‑bit 3.14.2 TBU_SCR register on page 3-145

3.4.10 TBU system discovery registers summary

The MMU‑700 contains TBU system discovery registers.

The following table shows the TBU system discovery registers in offset order from the base memory
address.

Table 3-16 TBU system discovery registers summary

Name Offset Type Width Description

TBU_SYSDISC0 0x08E30 RO 32‑bit 3.16.1 TBU_SYSDISC0 system discovery register on page 3-153

TBU_SYSDISC1 0x08E34 RO 32‑bit 3.16.2 TBU_SYSDISC1 system discovery register on page 3-154

TBU_SYSDISC2 0x08E38 RO 32‑bit 3.16.3 TBU_SYSDISC2 system discovery register on page 3-155

TBU_SYSDISC3 0x08E3C RO 32‑bit 3.16.4 TBU_SYSDISC3 system discovery register on page 3-155

TBU_SYSDISC4 0x08E40 RO 32‑bit 3.16.5 TBU_SYSDISC4 system discovery register on page 3-156

TBU_SYSDISC5 0x08E44 RO 32‑bit 3.16.6 TBU_SYSDISC5 system discovery register on page 3-157

TBU_SYSDISC6 0x08E48 RO 32‑bit 3.16.7 TBU_SYSDISC6 system discovery register on page 3-158

TBU_SYSDISC7 0x08E4C RO 32‑bit 3.16.8 TBU_SYSDISC7 system discovery register on page 3-159

TBU_SYSDISC8 0x08E50 RO 32‑bit 3.16.9 TBU_SYSDISC8 system discovery register on page 3-159

TBU_SYSDISC9 0x08E54 RO 32‑bit 3.16.10 TBU_SYSDISC9 system discovery register on page 3-160

TBU_SYSDISC10 0x08E58 RO 32‑bit 3.16.11 TBU_SYSDISC10 system discovery register on page 3-161

TBU_SYSDISC11 0x08E5C RO 32‑bit 3.16.12 TBU_SYSDISC11 system discovery register on page 3-162

TBU_SYSDISC12 0x08E60 RO 32‑bit 3.16.13 TBU_SYSDISC12 system discovery register on page 3-163

TBU_SYSDISC13 0x08E64 RO 32‑bit 3.16.14 TBU_SYSDISC13 system discovery register on page 3-163

TBU_SYSDISC14 0x08E68 RO 32‑bit 3.16.15 TBU_SYSDISC14 system discovery register on page 3-164

3.4.11 TBU integration registers summary

The MMU‑700 contains TBU integration registers.

The following table shows the TBU integration registers in offset order from the base memory address.

3 Programmers model
3.4 MMU-700 registers summary

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

3-100

Non-Confidential

Table 3-17 TBU integration registers summary

Name Offset Type Width Description

ITEN 0x08E20 RW 32‑bit 3.17.1 ITEN register on page 3-166

ITOP_TBU 0x08E24 RW 32‑bit 3.17.2 ITOP_TBU register on page 3-166

ITIN_TBU 0x08E28 RW 32‑bit 3.17.3 ITIN_TBU register on page 3-167

3 Programmers model
3.4 MMU-700 registers summary

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

3-101

Non-Confidential

3.5 TCU component and peripheral ID registers
This section describes the TCU component and peripheral ID registers.

The following table shows the TCU component and peripheral ID registers.

Table 3-18 TCU component and peripheral ID registers

Name Offset Field Value Description

SMMU_CIDR3,
Component ID3

0x00FFC [7:0] 0xB1 Preamble

SMMU_CIDR2,
Component ID2

0x00FF8 [7:0] 0x05 Preamble

SMMU_CIDR1,
Component ID1

0x00FF4 [7:0] 0xF0 Preamble

SMMU_CIDR0,
Component ID0

0x00FF0 [7:0] 0x0D Preamble

SMMU_PIDR3,
Peripheral ID3

0x00FEC [7:4] MAX(p_level,
ecorevnum)

REVAND, minor
revision

Where: p_level is:

0 For p0
1 For p1

[3:0] 0x00 CMOD

SMMU_PIDR2,
Peripheral ID2

0x00FE8 [7:4] 0x00 REVISION, major
revision

[3] 1 JEDEC‑assigned value
for DES always used

[2:0] 3 DES_1: bits [6:4] bits of
the JEP106 Designer
code

SMMU_PIDR1,
Peripheral ID1

0x00FE4 [7:4] 0xB DES_0: bits [3:0] of the
JEP106 Designer code

[3:0] 0x4 PART_1: bits [11:8] of
the Part number

SMMU_PIDR0,
Peripheral ID0

0x00FE0 [7:0] 0x87 PART_0: bits [7:0] of the
Part number

SMMU_PIDR7,
Peripheral ID7

0x00FDC - RES0 Reserved

SMMU_PIDR6,
Peripheral ID6

0x00FD8

SMMU_PIDR5,
Peripheral ID5

0x00FD4

SMMU_PIDR4,
Peripheral ID4

0x00FD0 [7:4] 0x0 SIZE = 4KB

[3:0] 0x4 DES_2: JEP106
Designer continuation
code

3 Programmers model
3.5 TCU component and peripheral ID registers

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

3-102

Non-Confidential

3.6 TCU PMU registers
This section describes the Performance Monitor Unit (PMU) registers. The Performance Monitor
counter registers, on a separate 64KB page, enable it to be paged for direct access from a Guest OS.

This section contains the following subsections:
• 3.6.1 Registers on page 3-103.
• 3.6.2 Events on page 3-104.
• 3.6.3 SMMU_PMCG_CFGR on page 3-104.
• 3.6.4 SMMU_PMCG_CEID{0-1} registers on page 3-104.
• 3.6.5 PMU ID registers on page 3-104.

3.6.1 Registers

The TBU and TCU support the same PMCG registers.

These registers follow the register layout that the Arm® System Memory Management Unit Architecture
Specification, SMMU architecture versions 3.0, 3.1 and 3.2 Performance Monitor Extension describes.

The following PMCG registers, that the Arm® System Memory Management Unit Architecture
Specification, SMMU architecture versions 3.0, 3.1 and 3.2 defines, are implemented:

• SMMU_PMCG_EVCNTR{0-(TCUCFG_PMU_COUNTERS-1)}
• SMMU_PMCG_EVTYPER{0-(TCUCFG_PMU_COUNTERS-1)}
• SMMU_PMCG_SVR{0-(TCUCFG_PMU_COUNTERS-1)}
• SMMU_PMCG_SMR0

— All counters share this mask register
— The mask is 24 bits because the TCU uses 24‑bit StreamIDs

• SMMU_PMCG_CNTENSET0
• SMMU_PMCG_CNTENCLR0
• SMMU_PMCG_INTENSET0
• SMMU_PMCG_INTSENCLR0
• SMMU_PMCG_OVSCLR0
• SMMU_PMCG_OVSSET0
• SMMU_PMCG_CAPR
• SMMU_PMCG_SCR
• SMMU_PMCG_CFGR. See 3.6.3 SMMU_PMCG_CFGR on page 3-104.
• SMMU_PMCG_CR
• SMMU_PMCG_CEID{0-1}. See 3.6.4 SMMU_PMCG_CEID{0-1} registers on page 3-104.
• SMMU_PMCG_IRQ_CTRL
• SMMU_PMCG_IRQ_CTRLACK
• SMMU_PMCG_AIDR, indicates SMMUv3.2
• SMMU_PMCG_ID_REGS

The following registers are not implemented, because the PMCG does not support MSIs:

• SMMU_PMCG_IRQ_CFG0
• SMMU_PMCG_IRQ_CFG1
• SMMU_PMCG_IRQ_CFG2
• SMMU_PMCG_IRQ_STATUS

The following registers are not implemented, because the PMCG implementation does not support
MPAM:
• SMMU_PMCG_GMPAM
• SMMU_PMCG_MPAMIDR
• SMMU_PMCG_S_MPAMIDR

3 Programmers model
3.6 TCU PMU registers

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

3-103

Non-Confidential

https://static.docs.arm.com/ihi0070/ca/IHI_0070_C_a_System_Memory_Management_Unit_Arm_Architecture_Specification.pdf
https://static.docs.arm.com/ihi0070/ca/IHI_0070_C_a_System_Memory_Management_Unit_Arm_Architecture_Specification.pdf
https://static.docs.arm.com/ihi0070/ca/IHI_0070_C_a_System_Memory_Management_Unit_Arm_Architecture_Specification.pdf
https://static.docs.arm.com/ihi0070/ca/IHI_0070_C_a_System_Memory_Management_Unit_Arm_Architecture_Specification.pdf

3.6.2 Events

In this description, a translation request corresponds to a translation slot allocation.

A single DTI translation request might correspond to multiple translation request events if:

• A translation results in a stall fault event and is restarted
• A translation results in a stall fault event when the Event queue is full, and is later retried when the

Event queue becomes non‑full

Each event indicates:
• Whether the SMMU_PMCG_SMR0 register can filter it
• For events that cannot be filtered, whether they are only visible when Secure events are visible by

SMMU_PMCG_SCR.SO = 1

For more information about the architectural and IMPLEMENTATION DEFINED events that are implemented,
see SMMUv3 architectural performance events on page 2-41.

The following events are also counted for prefetch accesses:

0x80-0x90
Walk cache events.

0x92-0x94
Configuration cache events.

0xC0-0xC8
RAS events.

3.6.3 SMMU_PMCG_CFGR

An MMU‑700 implementation assumes fixed values for SMMU_PMCG_CFGR, and these values define
behavioral aspects of the implementation.

For information about the SMMU_PMCG_CFGR field values, see SMMUv3 PMU register architectural
options on page 2-45.

3.6.4 SMMU_PMCG_CEID{0-1} registers

The SMMU_PMCG_CEID{0-1} registers indicate the architectural events that are supported. They are
described as 64‑bit registers, but are accessed 32 bits at a time through the 32‑bit PROG interface.

The following table shows the SMMU_PMCG_CEID{0-1} registers.

Table 3-19 SMMU_PMCG_CEID{0-1} registers

Address Register Value

0x02E20 SMMU_PMCG_CEID0 0x0000007F

0x02E28 SMMU_PMCG_CEID1 0x00000000

3.6.5 PMU ID registers

The PMU ID registers appear only in Performance Monitor Page 0. Page 1 does not contain any ID
registers.

The following table shows the PMU ID registers.

Table 3-20 PMU ID registers

Address Name Field Value Description

0x02FFC SMMU_PMCG_CIDR3, Component ID3 [7:0] 0xB1 Preamble

0x02FF8 SMMU_PMCG_CIDR2, Component ID2 [7:0] 0x05 Preamble

3 Programmers model
3.6 TCU PMU registers

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

3-104

Non-Confidential

Table 3-20 PMU ID registers (continued)

Address Name Field Value Description

0x02FF4 SMMU_PMCG_CIDR1, Component ID1 [7:0] 0x90 Preamble

0x02FF0 SMMU_PMCG_CIDR0, Component ID0 [7:0] 0x0D Preamble

0x02FEC SMMU_PMCG_PIDR3, Peripheral ID3 [7:4] MAX(p_level,
ecorevnum)

REVAND, minor revision, where p_level is:

0 For p0

1 For p1

[3:0] 0x00 CMOD

0x02FE8 SMMU_PMCG_PIDR2, Peripheral ID2 [7:4] 0x00 REVISION, major revision

[3] 1 JEDEC-assigned value for DES always used

[2:0] 3 DES_1: bits [6:4] bits of the JEP106
Designer code

0x02FE4 SMMU_PMCG_PIDR1, Peripheral ID1 [7:4] 0xB DES_0: bits [3:0] of the JEP106 Designer
code

[3:0] 0x4 PART_1: bits [11:8] of the Part number

0x02FE0 SMMU_PMCG_PIDR0, Peripheral ID0 [7:0] 0x87 PART_0: bits [7:0] of the Part number

0x02FDC SMMU_PMCG_PIDR7, Peripheral ID7 - RES0 Reserved

0x02FD8 SMMU_PMCG_PIDR6, Peripheral ID6 - RES0 Reserved

0x02FD4 SMMU_PMCG_PIDR5, Peripheral ID5 - RES0 Reserved

0x02FD0 SMMU_PMCG_PIDR4, Peripheral ID4 [7:4] 0x0 SIZE = 4KB

[3:0] 0x4 DES_2: JEP106 Designer continuation code

0x00FB8 SMMU_PMCG_PMAUTHSTATUS [7:0] 0x00 No authentication interface is implemented

The PMDEVARCH and PMDEVTYPE registers are implemented as the Arm® System Memory
Management Unit Architecture Specification, SMMU architecture versions 3.0, 3.1 and 3.2 defines.

3 Programmers model
3.6 TCU PMU registers

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

3-105

Non-Confidential

https://static.docs.arm.com/ihi0070/ca/IHI_0070_C_a_System_Memory_Management_Unit_Arm_Architecture_Specification.pdf
https://static.docs.arm.com/ihi0070/ca/IHI_0070_C_a_System_Memory_Management_Unit_Arm_Architecture_Specification.pdf

3.7 TCU microarchitectural registers
You can set the TCU microarchitectural registers at boot time to optimize TCU behavior for your system.
Arm recommends that you use the default values for most systems.

The 3.7.7 TCU_SCR register on page 3-112 is Secure‑only. Non‑secure access to this register is
Read‑As‑Zero (RAZ)/Write‑Ignored (WI).

TCU_SCR.NS_UARCH controls Non‑secure access to registers in this section other than TCU_SCR.
Non‑secure accesses to these registers, when TCU_SCR.NS_UARCH = 0, are RAZ and WI.

The following registers:

• 3.7.1 TCU_CTRL register on page 3-106
• 3.7.2 TCU_QOS register on page 3-107
• 3.7.5 TCU_NODE_CTRLn register on page 3-110
• 3.7.8 TCU_WC_SxLy_CMAX registers on page 3-113

Can only be written when the following occur:
• SMMU_CR0.SMMUEN = 0.
• SMMU_CR0ACK.SMMUEN = 0.
• SMMU_S_CR0.SMMUEN = 0.
• SMMU_S_CR0ACK.SMMUEN = 0.

After modifying these registers, software must issue an INV_ALL operation using the SMMU_S_INIT
register, before it sets SMMUEN to 1. Failure to issue the operation results in UNPREDICTABLE behavior.

This section contains the following subsections:
• 3.7.1 TCU_CTRL register on page 3-106.
• 3.7.2 TCU_QOS register on page 3-107.
• 3.7.3 TCU_CFG register on page 3-108.
• 3.7.4 TCU_STATUS register on page 3-109.
• 3.7.5 TCU_NODE_CTRLn register on page 3-110.
• 3.7.6 TCU_NODE_STATUSn register on page 3-111.
• 3.7.7 TCU_SCR register on page 3-112.
• 3.7.8 TCU_WC_SxLy_CMAX registers on page 3-113.

3.7.1 TCU_CTRL register

The TCU Control register disables TCU features. If the hit rate of the individual walk cache is too low,
you can disable individual walk caches to improve performance in some systems. Do not modify the
AUX bits unless directed to do so by Arm.

Configurations

This register is available in all configurations.

Attributes

The TCU_CTRL register attributes are as follows:

Width 32‑bit
Functional group TCU microarchitectural features. See 3.7 TCU microarchitectural registers

on page 3-106.
Address offset 0x08E00

Type RW
Reset value 0

Bit descriptions

The following figure shows the bit assignments.

3 Programmers model
3.7 TCU microarchitectural registers

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

3-106

Non-Confidential

31 11 1016 15 8 7 0

AUX[31:20] AUX[7:0]

14

WCS2L2_DIS
WCS2L3_DIS

913 1219 1820

WCS1L0_DIS
WCS1L1_DIS
WCS1L2_DIS
WCS1L3_DIS
WCS2L0_DIS
WCS2L1_DIS

DONT_HASH_ASID
AUX[18:16]

Figure 3-1 TCU_CTRL register bit assignments

The following table shows the bit descriptions.

Table 3-21 TCU_CTRL register bit descriptions

Bits Name Description

[31:20] AUX[31:20] Reads the value that is written, but has no other effect

[19] DONT_HASH_ASID When set to 1, ASID is not used in the hash to create walk cache indices

[18:16] AUX[18:16] Reads the value that is written, but has no other effect

[15] WCS2L3_DIS Walk cache disable.

When a bit of this field is set, it disables the corresponding stage and level of walk cache.

WCS2L3_DIS is in bit [15], through to WCS1L0_DIS that is in bit [8].

[14] WCS2L2_DIS

[13] WCS2L1_DIS

[12] WCS2L0_DIS

[11] WCS1L3_DIS

[10] WCS1L2_DIS

[9] WCS1L1_DIS

[8] WCS1L0_DIS

[7:0] AUX[7:0] Reads the value written, but has no other effect

3.7.2 TCU_QOS register

This register selects the QoS value to attach to transactions issued from the TCU.

 Note

The QoS value that is associated with each transaction does not take account of other transactions that
are blocked behind it. For example, although translations with a high priority setting in
TCU_NODE_CTRLn are normally progressed before translations with a lower priority, it is possible for
a low‑priority page table walk to block a higher priority page table walk from being issued from the
TCU.

Configurations

This register is available in all configurations.

Attributes

The TCU_QOS register attributes are as follows:

3 Programmers model
3.7 TCU microarchitectural registers

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

3-107

Non-Confidential

Width 32‑bit
Functional group TCU microarchitectural features. See 3.7 TCU microarchitectural registers

on page 3-106.
Address offset 0x08E04

Type RW
Reset value 0

Bit descriptions

The following figure shows the bit assignments.

31 0

QOS_PTW0

347811121516

Reserved

QOS_QUEUE

192023242728

QOS_PTW1
QOS_PTW2
QOS_PTW3

QOS_MSI
QOS_DVMSYNC

Figure 3-2 TCU_QOS register bit assignments

The following table shows the bit descriptions.

Table 3-22 TCU_QOS register bit descriptions

Bits Name Description

[31:28] - Reserved

[27:24] QOS_DVMSYNC QoS level to use for DVM Sync Completion messages

[23:20] QOS_MSI QoS level to use for MSIs

[19:16] QOS_QUEUE QoS level to use for queue accesses

[15:12] QOS_PTW3 QoS level to use for translation table walks for translations that are requested from nodes with
TCU_NODE_CTRLn.PRIORITY = 3

[11:8] QOS_PTW2 QoS level to use for translation table walks for translations that are requested from nodes with
TCU_NODE_CTRLn.PRIORITY = 2

[7:4] QOS_PTW1 QoS level to use for translation table walks for translations that are requested from nodes with
TCU_NODE_CTRLn.PRIORITY = 1

[3:0] QOS_PTW0 QoS level to use for translation table walks for translations that are requested from nodes with
TCU_NODE_CTRLn.PRIORITY = 0

3.7.3 TCU_CFG register

This section describes the TCU Configuration Information register.

Configurations

This register is available in all configurations.

Attributes

The TCU_CFG register attributes are as follows:

3 Programmers model
3.7 TCU microarchitectural registers

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

3-108

Non-Confidential

Width 32‑bit
Functional group TCU microarchitectural features. See 3.7 TCU microarchitectural registers

on page 3-106.
Address offset 0x08E08

Type RO

Bit descriptions

The following figure shows the bit assignments.

31 0341516

Reserved XLATE_SLOTS Reserved

Figure 3-3 TCU_CFG register bit assignments

The following table shows the bit descriptions.

Table 3-23 TCU_CFG register bit descriptions

Bits Name Description

[31:16] - Reserved

[15:4] XLATE_SLOTS Number of translation slots that are available to be shared between all nodes. The value is
TCUCFG_XLATE_SLOTS. See 2.5.2 TCU buffer configuration options on page 2-75.

[3:0] - Reserved

3.7.4 TCU_STATUS register

This section describes the TCU Status Information register.

Configurations

This register is available in all configurations.

Attributes

The TCU_STATUS register attributes are as follows:

Width 32‑bit
Functional group TCU microarchitectural features. See 3.7 TCU microarchitectural registers

on page 3-106.
Address offset 0x08E10

Type RO
Reset value 0

Bit descriptions

The following figure shows the bit assignments.

31 34 0

ReservedReserved

1617

GNT_XLATE_SLOTS

Figure 3-4 TCU_STATUS register bit assignments

The following table shows the bit descriptions.

3 Programmers model
3.7 TCU microarchitectural registers

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

3-109

Non-Confidential

Table 3-24 TCU_STATUS register bit descriptions

Bits Name Description

[31:17] - Reserved

[16:4] GNT_XLATE_SLOTS Number of translation slots that are currently allocated to connected nodes. This information can be
useful for debugging purposes.

[3:0] - Reserved

3.7.5 TCU_NODE_CTRLn register

The TCU_NODE_CTRLn register controls how the TCU communicates with a single DTI master, either
a TBU or a PCIe Root Complex implementing ATS.

Each DTI master has a node ID, with the control register for:
• Node 0 at address 0x09000
• Node 1 at address 0x09004

The number of registers that are implemented corresponds to the value of TCUCFG_NUM_TBU. See
2.5.2 TCU buffer configuration options on page 2-75.

Configurations

This register is available in all configurations.

Attributes

The TCU_NODE_CTRLn register attributes are as follows:

Width 32‑bit
Functional group TCU microarchitectural features. See 3.7 TCU microarchitectural registers

on page 3-106.
Address offset 0x09000-0x093FC
Type RW
Reset value 0

Bit descriptions

The following figure shows the bit assignments.

31 1 0234

Reserved

PRI_LEVEL
Reserved
DIS_DVM

5

Figure 3-5 TCU_NODE_CTRL register bit assignments

The following table shows the bit descriptions.

3 Programmers model
3.7 TCU microarchitectural registers

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

3-110

Non-Confidential

Table 3-25 TCU_NODE_CTRLn register bit descriptions

Bits Name Description

[31:5] - Reserved

[4] DIS_DVM Disable DVM.

When this bit is set, the node does not participate in DVM invalidation. This setting can improve performance if
the node can be slow to respond to invalidations issued over DTI.

This bit is only used for TBU nodes. It is ignored for ATS nodes.

[3:2] - Reserved

[1:0] PRI_LEVEL Priority level.

Translation requests from a node with a higher priority level are normally progressed before translation requests
from a node with a lower priority level.

3.7.6 TCU_NODE_STATUSn register

The TCU_NODE_STATUSn register provides status for each node, similarly to TCU_NODE_CTRLn.
Each node has a single status register.

The number of registers that are implemented corresponds to the value of TCUCFG_NUM_TBU. See
2.5.2 TCU buffer configuration options on page 2-75.

Configurations

This register is available in all configurations.

Attributes

The TCU_NODE_STATUSn register attributes are as follows:

Width 32‑bit
Functional group TCU microarchitectural features. See 3.7 TCU microarchitectural registers

on page 3-106.
Address offset 0x09400-0x097FC
Type RO

Bit descriptions

The following figure shows the bit assignments.

31 1 02

Reserved

CONNECTED
ATS

Figure 3-6 TCU_NODE_STATUS register bit assignments

The following table shows the bit descriptions.

3 Programmers model
3.7 TCU microarchitectural registers

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

3-111

Non-Confidential

Table 3-26 TCU_NODE_STATUSn register bit descriptions

Bits Name Description

[31:2] - Reserved

[1] ATS Indicates whether the node implements ATS:

0 The node is a TBU connected using DTI‑TBU

1 The node is a PCIe Root Complex supporting ATS, connected using DTI‑ATS

This bit is only valid when CONNECTED = 1. When CONNECTED = 0, this bit is 0.

[0] CONNECTED Indicates whether the DTI link for this node is in the connected state:

0 Node currently not in the connected state, including the states transitioning to and from connected state

1 Node currently in the connected state

When not connected, write accesses to TBU registers are ignored and read accesses return 0. However, the
state might change between reading this register and attempting to access the TBU.

3.7.7 TCU_SCR register

The TCU Secure Control register controls whether Non‑secure software is permitted to access each TCU
register group.

This register does not control Secure access to the Performance Monitor registers. The
SMMU_PMCG_SCR register controls Secure access to these registers as the Arm® System Memory
Management Unit Architecture Specification, SMMU architecture versions 3.0, 3.1 and 3.2 defines.

Configurations

This register is available in all configurations.

Attributes

The TCU_SCR register attributes are as follows:

Width 32‑bit
Functional group TCU microarchitectural features. See 3.7 TCU microarchitectural registers

on page 3-106.
Address offset 0x08E18

Type Secure, RW
Reset value sec_override. See A.1.12 TCU tie-off signals on page Appx-A-179.

Bit descriptions

The following figure shows the bit assignments.

31 1 0

NS_INIT

234

Reserved

NS_UARCH
NS_RAS

Reserved

Figure 3-7 TCU_SCR register bit assignments

The following table shows the bit descriptions.

3 Programmers model
3.7 TCU microarchitectural registers

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

3-112

Non-Confidential

https://static.docs.arm.com/ihi0070/ca/IHI_0070_C_a_System_Memory_Management_Unit_Arm_Architecture_Specification.pdf
https://static.docs.arm.com/ihi0070/ca/IHI_0070_C_a_System_Memory_Management_Unit_Arm_Architecture_Specification.pdf

Table 3-27 TCU_SCR register bit descriptions

Bits Name Description

[31:4] - Reserved

[3] NS_INIT Non‑secure register access that is permitted to the SMMU_S_INIT register

[2] - Reserved

[1] NS_RAS Non‑secure register access that is permitted for RAS registers.

When this bit is 0, Non‑secure writes to the following register addresses are ignored, and Non‑secure reads
return zero:

0x08E80-0x08EC0.

The sec_override input sets the reset value of this signal. See A.1.12 TCU tie-off signals on page Appx-A-179.

[0] NS_UARCH Non‑secure register access is permitted for microarchitectural registers

When this bit is 0, Non‑secure writes to the following register addresses are ignored, and Non‑secure reads
return zero:

0x08E00-0x08E7C

0x09000-0x093FC

The sec_override input sets the reset value of this signal. See A.1.12 TCU tie-off signals on page Appx-A-179.

If Secure translation might be used, Arm recommends that software does not set this bit.

3.7.8 TCU_WC_SxLy_CMAX registers

TCU_WC_SxLy_CMAX registers enable you to set maximum capacities for the TCU walk cache
RAMS, per stage and level.

The encoding of the TCU_WC_SxLy_CMAX registers is the same as the encoding for the
MPAMCFG_CMAX registers that the Arm® Architecture Reference Manual Supplement, Memory System
Resource Partitioning and Monitoring (MPAM), for Armv8‑A defines. These registers are readable and
writeable registers.

The following table describes the TCU_WC_SxLy_CMAX registers.

Table 3-28 TCU_WC_SxLy_CMAX registers

Address Name Field Position Meaning

0x09800 TCU_WC_S1L0_CMAX CMAX [7:0] Maximum capacity for TCU Walk Cache stage 1 level 0

0x09804 TCU_WC_S1L1_CMAX CMAX [7:0] Maximum capacity for TCU Walk Cache stage 1 level 1

0x09808 TCU_WC_S1L2_CMAX CMAX [7:0] Maximum capacity for TCU Walk Cache stage 1 level 2

0x0980C TCU_WC_S1L3_CMAX CMAX [7:0] Maximum capacity for TCU Walk Cache stage 1 level 3

0x09810 TCU_WC_S2L0_CMAX CMAX [7:0] Maximum capacity for TCU Walk Cache stage 2 level 0

0x09814 TCU_WC_S2L1_CMAX CMAX [7:0] Maximum capacity for TCU Walk Cache stage 2 level 1

0x09818 TCU_WC_S2L2_CMAX CMAX [7:0] Maximum capacity for TCU Walk Cache stage 2 level 2

0x981C TCU_WC_S2L3_CMAX CMAX [7:0] Maximum capacity for TCU Walk Cache stage 2 level 3

3 Programmers model
3.7 TCU microarchitectural registers

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

3-113

Non-Confidential

https://developer.arm.com/documentation/ddi0598/latest
https://developer.arm.com/documentation/ddi0598/latest

3.8 TCU RAS registers
This section describes Reliability, Availability, and Serviceability (RAS).

The RAS registers implement the RAS Extension registers, single record format.

Non‑secure accesses to these registers, when TCU_SCR.NS_RAS = 0, are RAZ/WI. See 3.7.7 TCU_SCR
register on page 3-112.

The RAS registers enable software to monitor the following classes of error:
• Corrected Errors (CEs) in the RAMs used by the configuration cache.
• CEs in the RAMs used by the walk caches.

This section contains the following subsections:
• 3.8.1 TCU_ERRFR register on page 3-114.
• 3.8.2 TCU_ERRCTLR register on page 3-115.
• 3.8.3 TCU_ERRSTATUS register on page 3-116.
• 3.8.4 TCU_ERRGEN register on page 3-119.

3.8.1 TCU_ERRFR register

Use the TCU Error Feature register to discover how the TCU handles errors.

Configurations

This register is available in all configurations.

Attributes

The TCU_ERRFR register attributes are as follows:

Width 32‑bit
Functional group Reliability, Availability, and Serviceability (RAS). See 3.8 TCU RAS registers

on page 3-114.
Address offset 0x08E80

Type S, RO

Bit descriptions

The following figure shows the bit assignments.

31 24 23 22 21 18 17 16 15 14 12 11 10 9 8 7 6 5 4 3 2 1 0

EDUIFIUECFICECDUICIReserved

Reserved ReservedReserved

Figure 3-8 TCU_ERRFR register bit assignments

The following table shows the bit descriptions.

Table 3-29 TCU_ERRFR register bit descriptions

Bits Name Description Value

[31:24] - Reserved -

[23:22] CI Critical Error Interrupt is always enabled 01b

[21:18] - Reserved -

3 Programmers model
3.8 TCU RAS registers

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

3-114

Non-Confidential

Table 3-29 TCU_ERRFR register bit descriptions (continued)

Bits Name Description Value

[17:16] DUI Does not support this feature 00b

[15] - Reserved -

[14:12] CEC Does not implement the standard corrected error counter model 000b

[11:10] CFI Does not support this feature 00b

[9:8] UE In‑band error signaling feature is always enabled 01b

[7:6] FI Fault handling interrupt is controllable 10b

[5:4] UI Error Recovery Interrupt always enabled for UE 01b

[3:2] - Reserved -

[1:0] ED Error detection is always enabled 01b

3.8.2 TCU_ERRCTLR register

Use the TCU Error Control register to enable fault handling interrupts.

Configurations

This register is available in all configurations.

Attributes

The TCU_ERRCTLR register attributes are as follows:

Width 32‑bit
Functional group Reliability, Availability, and Serviceability (RAS). See 3.8 TCU RAS registers

on page 3-114.
Address offset 0x08E88

Type S, RW
Reset value 1

Bit descriptions

The following figure shows the bit assignments.

31 02

Reserved

34

FI
Reserved

Figure 3-9 TCU_ERRCTLR register bit assignments

The following table shows the bit descriptions.

Table 3-30 TCU_ERRCTLR register bit descriptions

Bits Name Description

[31:4] - Reserved

[3] FI Fault handling interrupt enable

[2:0] - Reserved

3 Programmers model
3.8 TCU RAS registers

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

3-115

Non-Confidential

3.8.3 TCU_ERRSTATUS register

Use the TCU Error Control register to enable fault handling interrupts.

Certain bits in this register are cleared by writing a 1 to their bit position. These writes are ignored in
certain circumstances to avoid race conditions where a new error has occurred which software has not
yet observed.

Configurations

This register is available in all configurations.

Attributes

The TCU_ERRSTATUS register attributes are as follows:

Width 32‑bit
Functional group Reliability, Availability, and Serviceability (RAS). See 3.8 TCU RAS registers

on page 3-114.
Address offset 0x08E90

Type Secure, RW
Reset value 0

Bit descriptions

The following figure shows the bit assignments.

SERR

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 8 7 0

IERRUETCEV

Reserved
UE

ER
OF

Reserved

DE
PN

CI
Reserved

Figure 3-10 TCU_ERRSTATUS register bit assignments

The following table shows the bit descriptions.

Table 3-31 TCU_ERRSTATUS register bit descriptions

Bits Name Description

[31] - Reserved

[30] V Status Register valid. The possible values of this bit are:

0 ERRSTATUS is not valid

1 ERRSTATUS is valid. At least one error has been recorded

If any of the UE, DE, or CE bits are set to 1, and are not being cleared to 0 in the same write, direct writes to this bit
are ignored. This bit is read/write-one-to-clear.

This bit resets to zero on a reset.

3 Programmers model
3.8 TCU RAS registers

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

3-116

Non-Confidential

Table 3-31 TCU_ERRSTATUS register bit descriptions (continued)

Bits Name Description

[29] UE Uncorrected error, or errors. The possible values of this bit are:

0 No errors that could not be corrected or deferred

1 At least one error detected that has not been corrected or deferred

Direct writes to this bit are ignored if the OF bit is set to 1 and is not being cleared to zero in the same write. This bit
is read/write-one-to-clear.

[28] ER Error Reported. The possible values of this bit are:

0 No in‑band error (External abort) is reported

1 The node to the master making the access or other transaction signaled an External abort

Writes to this field are ignored.

[27] OF Overflow.

Multiple errors are detected. This bit is set to 1 when:
• An Uncorrected error is detected and the previous error syndrome is kept because UE == 1
• A Deferred error is detected and the previous error syndrome is discarded because DE == 1
• A Corrected error is detected and the CE field might be updated for the new Corrected error
• A Deferred error is detected and UE == 1
• A Corrected error is detected and either or both the DE or UE bits are set to 1

This bit is cleared by writing a 1 to it. A write of 0 is ignored.

[26] - Reserved

[25:24] CE Correctable Error, or errors.

00b No correctable errors recorded

10b At least one Corrected error recorded

Other values are Reserved.

This field is cleared by writing 11b to it. If OF is set and not being cleared, the write is ignored. A write of any value
other than 11b is ignored.

[23] DE Deferred error, or errors. The possible values of this bit are:

0 No errors were deferred

1 At least one error was not corrected and deferred

This error is raised when wpoison is set in BIU.

If the OF bit is set to 1 and is not being cleared to 0 in the same write, direct writes to this bit are ignored.

This bit is read/write-one-to-clear.

[22] PN Poison. The possible values of this bit are:

0 Uncorrected error or deferred error is recorded because a corrupt value was detected, for example, by an Error
Detection Code (EDC)

1 Uncorrected error or deferred error is recorded because a poison value was detected

Writes to this field are ignored.

3 Programmers model
3.8 TCU RAS registers

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

3-117

Non-Confidential

Table 3-31 TCU_ERRSTATUS register bit descriptions (continued)

Bits Name Description

[21:20] UET Uncorrected Error Type. Describes the state of the component after detecting or consuming an Uncorrected error.
The possible values of this field are:

0b00 Uncorrected error, Uncontainable error (UC)

0b11 Uncorrected error, Signaled or Recoverable error (UER)

[19] CI Indicates whether a critical error condition has been recorded. The possible values of this bit are:

0 No critical error condition

1 Critical error condition

Writes to this field are ignored.

[18:16] - Reserved

[15:8] IERR IMPLEMENTATION DEFINED error code. When SERR≠0, this field indicates the source of the error:

12h PIU CMD RPOISON

11h TMU CCB MCC DATA

10h TMU CCB MCC TAGS

0Fh TMU WCB MWC DATA

0Eh TMU WCB MWC TAGS

0Dh TMU CCB MCC REPL

0Ch TMU CCB MCC PCNT

0Bh TMU CCB MCC PLIM

0Ah TMU WCB MWC REPL

09h TMU WCB MWC PCNT

08h TMU WCB MWC PLIM

07h Reserved

06h Reserved

05h TMU HTTU RAM

04h TMU TWB WMB SCRATCH

03h TMU TWB WMB WLK STATUS

02h TMU TWB WMB LKP STATUS

01h TMU HZU PTR

00h TMU TWB BSU

Writes to this field are ignored.

[7:0] SERR The error code provides information about the earliest unacknowledged error.

It can contain the following values:

2 Single or double error from RAMs that are not CCB or WCB TAGS or DATA

8 Single or double error from CCB or WCB data

9 Single or double error from CCB or WCB tags

21 Poisoned data read from downstream

All other values are reserved.

Writes to this field are ignored.

3 Programmers model
3.8 TCU RAS registers

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

3-118

Non-Confidential

3.8.4 TCU_ERRGEN register

Use the TCU Error Generation Register to test software for when a RAS error occurs in the RAM.

The field locations are same as for 3.15.3 TBU_ERRSTATUS register on page 3-149.

When this register is updated, the TCU_ERRSTATUS register is also updated with the same value, as
long as the write data generates a valid error record.

A write to ERRGEN is valid if all the following is true:
• ERRGEN.V is set
• At least one of the following is true (CE is legal if CE == 2’b00 or CE == 2’b10):

— ERRGEN.UE is set and CE is legal
— ERRGEN.DE is set and CE is legal
— ERRGEN.CE is set to 2’b10

• One of the following is true:
— UET == 2'b00
— UET == 2'b11 and UE == 1

• If a valid error record is written, then the appropriate interrupt, or interrupts, are also generated.

This register has identical fields to TCU_ERRSTATUS. See 3.15.3 TBU_ERRSTATUS register
on page 3-149.

Configurations

This register is available in all configurations.

Attributes

The TCU_ERRGEN register attributes are as follows:

Width 64‑bit
Functional group Reliability, Availability, and Serviceability (RAS). See 3.8 TCU RAS registers

on page 3-114.
Address offset 0x08EC0

Type Secure, RW
Reset value 0

3 Programmers model
3.8 TCU RAS registers

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

3-119

Non-Confidential

3.9 TCU system discovery registers
This section describes the TCU system discovery registers.

This section contains the following subsections:
• 3.9.1 TCU_SYSDISC0 system discovery register on page 3-120.
• 3.9.2 TCU_SYSDISC1 system discovery register on page 3-121.
• 3.9.3 TCU_SYSDISC2 system discovery register on page 3-122.
• 3.9.4 TCU_SYSDISC3 system discovery register on page 3-122.
• 3.9.5 TCU_SYSDISC4 system discovery register on page 3-123.
• 3.9.6 TCU_SYSDISC5 system discovery register on page 3-124.
• 3.9.7 TCU_SYSDISC6 system discovery register on page 3-125.
• 3.9.8 TCU_SYSDISC7 system discovery register on page 3-126.
• 3.9.9 TCU_SYSDISC8 system discovery register on page 3-126.
• 3.9.10 TCU_SYSDISC9 system discovery register on page 3-127.
• 3.9.11 TCU_SYSDISC10 system discovery register on page 3-128.
• 3.9.12 TCU_SYSDISC11 system discovery register on page 3-129.
• 3.9.13 TCU_SYSDISC12 system discovery register on page 3-130.
• 3.9.14 TCU_SYSDISC13 system discovery register on page 3-130.
• 3.9.15 TCU_SYSDISC14 system discovery register on page 3-131.
• 3.9.16 TCU_SYSDISC15 system discovery register on page 3-132.
• 3.9.17 TCU_SYSDISC16 system discovery register on page 3-133.
• 3.9.18 TCU_SYSDISC17 system discovery register on page 3-134.

3.9.1 TCU_SYSDISC0 system discovery register

The TCU system discovery registers discover components in the system.

Configurations

This register is available in all configurations.

Attributes

The TCU_SYSDISC0 register attributes are as follows:

Width 32‑bit
Functional group TCU system discovery registers. See 3.9 TCU system discovery registers

on page 3-120.
Address offset 0x08E34

Type RO
Reset value TCUCFG_WC_DEPTH. See 2.5.2 TCU buffer configuration options on page 2-75.

Bit descriptions

The following figure shows the bit assignments.

TCUCFG_WC_DEPTH

31 16 0

Reserved

17

Figure 3-11 TCU_SYSDISC0 register bit assignments

The following table shows the bit descriptions.

3 Programmers model
3.9 TCU system discovery registers

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

3-120

Non-Confidential

Table 3-32 TCU_SYSDISC0 register bit descriptions

Bits Name Description

[31:17] - Reserved

[16:0] TCUCFG_WC_DEPTH The read data reflects the chosen parameter value, for example:

17’h0_0008 : 8

….

17’h1_0000 : 65536

3.9.2 TCU_SYSDISC1 system discovery register

The TCU system discovery registers discover components in the system.

Configurations

This register is available in all configurations.

Attributes

The TCU_SYSDISC1 register attributes are as follows:

Width 32‑bit
Functional group TCU system discovery registers. See 3.9 TCU system discovery registers

on page 3-120.
Address offset 0x08E38

Type RO
Reset value TCUCFG_CC_DEPTH. See 2.5.2 TCU buffer configuration options on page 2-75.

Bit descriptions

The following figure shows the bit assignments.

TCUCFG_CC_DEPTH

31 12 0

Reserved

13

Figure 3-12 TCU_SYSDISC1 register bit assignments

The following table shows the bit descriptions.

Table 3-33 TCU_SYSDISC1 register bit descriptions

Bits Name Description

[31:13] - Reserved

[12:0] TCUCFG_CC_DEPTH The read data reflects the chosen parameter value, for example:

13’h0004 : 4

….

13’h1000 : 4096

3 Programmers model
3.9 TCU system discovery registers

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

3-121

Non-Confidential

3.9.3 TCU_SYSDISC2 system discovery register

The TCU system discovery registers discover components in the system.

Configurations

This register is available in all configurations.

Attributes

The TCU_SYSDISC2 register attributes are as follows:

Width 32‑bit
Functional group TCU system discovery registers. See 3.9 TCU system discovery registers

on page 3-120.
Address offset 0x08E3C

Type RO
Reset value TCUCFG_WC_WAYS. See 2.5.2 TCU buffer configuration options on page 2-75.

Bit descriptions

The following figure shows the bit assignments.

31 5 4 0

Reserved

TCUCFG_WC_WAYS

Figure 3-13 TCU_SYSDISC2 register bit assignments

The following table shows the bit descriptions.

Table 3-34 TCU_SYSDISC2 register bit descriptions

Bits Name Description

[31:5] - Reserved

[4:0] TCUCFG_WC_WAYS The read data reflects the chosen parameter value, for example:

5’h04 : 4

….

5’h10 : 16

3.9.4 TCU_SYSDISC3 system discovery register

The TCU system discovery registers discover components in the system.

Configurations

This register is available in all configurations.

Attributes

The TCU_SYSDISC3 register attributes are as follows:

Width 32‑bit

3 Programmers model
3.9 TCU system discovery registers

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

3-122

Non-Confidential

Functional group TCU system discovery registers. See 3.9 TCU system discovery registers
on page 3-120.

Address offset 0x08E40

Type RO
Reset value TCUCFG_WC_BANKS. See 2.5.2 TCU buffer configuration options on page 2-75.

Bit descriptions

The following figure shows the bit assignments.

31 3 2 0

Reserved

TCUCFG_WC_BANKS

Figure 3-14 TCU_SYSDISC3 register bit assignments

The following table shows the bit descriptions.

Table 3-35 TCU_SYSDISC3 register bit descriptions

Bits Name Description

[31:3] - Reserved

[2:0] TCUCFG_WC_BANKS The read data reflects the chosen parameter value, for example:

3’b001 : 1

….

3’b100 : 4

3.9.5 TCU_SYSDISC4 system discovery register

The TCU system discovery registers discover components in the system.

Configurations

This register is available in all configurations.

Attributes

The TCU_SYSDISC4 register attributes are as follows:

Width 32‑bit
Functional group TCU system discovery registers. See 3.9 TCU system discovery registers

on page 3-120.
Address offset 0x08E44

Type RO
Reset value TCUCFG_XLATE_SLOTS. See 2.5.2 TCU buffer configuration options on page 2-75.

Bit descriptions

The following figure shows the bit assignments.

3 Programmers model
3.9 TCU system discovery registers

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

3-123

Non-Confidential

TCUCFG_XLATE_SLOTS

31 12 0

Reserved

13

Figure 3-15 TCU_SYSDISC4 register bit assignments

The following table shows the bit descriptions.

Table 3-36 TCU_SYSDISC4 register bit descriptions

Bits Name Description

[31:13] - Reserved

[12:0] TCUCFG_XLATE_SLOTS The read data reflects the chosen parameter value, for example:

13’h0004 : 4

….

13’h1000 : 4096

3.9.6 TCU_SYSDISC5 system discovery register

The TCU system discovery registers discover components in the system.

Configurations

This register is available in all configurations.

Attributes

The TCU_SYSDISC5 register attributes are as follows:

Width 32‑bit
Functional group TCU system discovery registers. See 3.9 TCU system discovery registers

on page 3-120.
Address offset 0x08E48

Type RO
Reset value TCUCFG_PTW_SLOTS. See 2.5.2 TCU buffer configuration options on page 2-75.

Bit descriptions

The following figure shows the bit assignments.

TCUCFG_PTW_SLOTS

31 9 0

Reserved

10

Figure 3-16 TCU_SYSDISC5 register bit assignments

The following table shows the bit descriptions.

3 Programmers model
3.9 TCU system discovery registers

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

3-124

Non-Confidential

Table 3-37 TCU_SYSDISC5 register bit descriptions

Bits Name Description

[31:10] - Reserved

[9:0] TCUCFG_PTW_SLOTS The read data reflects the chosen parameter value, for example:

9’h002 : 2

….

9’h200 : 512

3.9.7 TCU_SYSDISC6 system discovery register

The TCU system discovery registers discover components in the system.

Configurations

This register is available in all configurations.

Attributes

The TCU_SYSDISC6 register attributes are as follows:

Width 32‑bit
Functional group TCU system discovery registers. See 3.9 TCU system discovery registers

on page 3-120.
Address offset 0x08E4C

Type RO
Reset value TCUCFG_CTW_SLOTS. See 2.5.2 TCU buffer configuration options on page 2-75.

Bit descriptions

The following figure shows the bit assignments.

31 3 2 0

Reserved

TCUCFG_CTW_SLOTS

Figure 3-17 TCU_SYSDISC6 register bit assignments

The following table shows the bit descriptions.

Table 3-38 TCU_SYSDISC6 register bit descriptions

Bits Name Description

[31:3] - Reserved

[2:0] TCUCFG_CTW_SLOTS The read data reflects the chosen parameter value, for example:

3’b001 : 1

….

3’b100 : 4

3 Programmers model
3.9 TCU system discovery registers

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

3-125

Non-Confidential

3.9.8 TCU_SYSDISC7 system discovery register

The TCU system discovery registers discover components in the system.

Configurations

This register is available in all configurations.

Attributes

The TCU_SYSDISC7 register attributes are as follows:

Width 32‑bit
Functional group TCU system discovery registers. See 3.9 TCU system discovery registers

on page 3-120.
Address offset 0x08E50

Type RO
Reset value TCUCFG_CC_IDXGEN_MODE. See 2.5.2 TCU buffer configuration options on page 2-75.

Bit descriptions

The following figure shows the bit assignments.

31 1 0

Reserved

TCUCFG_CC_IDXGEN_MODE

Figure 3-18 TCU_SYSDISC7 register bit assignments

The following table shows the bit descriptions.

Table 3-39 TCU_SYSDISC7 register bit descriptions

Bits Name Description

[31:1] - Reserved

[0] TCUCFG_CC_IDXGEN_MODE The read data reflects the chosen parameter value, for example:

1’b0 : 0

….

1’b1 : 1

3.9.9 TCU_SYSDISC8 system discovery register

The TCU system discovery registers discover components in the system.

Configurations

This register is available in all configurations.

Attributes

The TCU_SYSDISC8 register attributes are as follows:

Width 32‑bit

3 Programmers model
3.9 TCU system discovery registers

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

3-126

Non-Confidential

Functional group TCU system discovery registers. See 3.9 TCU system discovery registers
on page 3-120.

Address offset 0x08E54

Type RO
Reset value TCUCFG_DTI_ATS. See 2.5.2 TCU buffer configuration options on page 2-75.

Bit descriptions

The following figure shows the bit assignments.

31 34 0

Reserved

TCUCFG_DTI_ATS

Figure 3-19 TCU_SYSDISC8 register bit assignments

The following table shows the bit descriptions.

Table 3-40 TCU_SYSDISC8 register bit descriptions

Bits Name Description

[31:4] - Reserved

[3:0] TCUCFG_DTI_ATS The read data reflects the chosen parameter value, for example:

4’b0000 : 0

….

4’b1000 : 8

3.9.10 TCU_SYSDISC9 system discovery register

The TCU system discovery registers discover components in the system.

Configurations

This register is available in all configurations.

Attributes

The TCU_SYSDISC9 register attributes are as follows:

Width 32‑bit
Functional group TCU system discovery registers. See 3.9 TCU system discovery registers

on page 3-120.
Address offset 0x08E58

Type RO
Reset value TCU_CFG_NUM_TBU. See 2.5.2 TCU buffer configuration options on page 2-75.

Bit descriptions

The following figure shows the bit assignments.

3 Programmers model
3.9 TCU system discovery registers

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

3-127

Non-Confidential

31 56 0

Reserved

TCU_CFG_NUM_TBU

Figure 3-20 TCU_SYSDISC9 register bit assignments

The following table shows the bit descriptions.

Table 3-41 TCU_SYSDISC9 register bit descriptions

Bits Name Description

[31:6] - Reserved

[5:0] TCU_CFG_NUM_TBU The read data reflects the chosen parameter value, for example:

6’h01 : 1

….

6’h3E : 62

3.9.11 TCU_SYSDISC10 system discovery register

The TCU system discovery registers discover components in the system.

Configurations

This register is available in all configurations.

Attributes

The TCU_SYSDISC10 register attributes are as follows:

Width 32‑bit
Functional group TCU system discovery registers. See 3.9 TCU system discovery registers

on page 3-120.
Address offset 0x08E5C

Type RO
Reset value TCUCFG_NUM_PMU_COUNTERS. See 2.5.2 TCU buffer configuration options

on page 2-75.

Bit descriptions

The following figure shows the bit assignments.

31 56 0

Reserved

TCUCFG_NUM_PMU_COUNTERS

Figure 3-21 TCU_SYSDISC10 register bit assignments

The following table shows the bit descriptions.

3 Programmers model
3.9 TCU system discovery registers

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

3-128

Non-Confidential

Table 3-42 TCU_SYSDISC10 register bit descriptions

Bits Name Description

[31:6] - Reserved

[5:0] TCUCFG_NUM_PMU_COUNTERS The read data reflects the chosen parameter value, for example:

6’h04 : 4

….

6’h20 : 32

3.9.12 TCU_SYSDISC11 system discovery register

The TCU system discovery registers discover components in the system.

Configurations

This register is available in all configurations.

Attributes

The TCU_SYSDISC11 register attributes are as follows:

Width 32‑bit
Functional group TCU system discovery registers. See 3.9 TCU system discovery registers

on page 3-120.
Address offset 0x08E60

Type RO
Reset value TCUCFG_PARTID_WIDTH. See 2.5.2 TCU buffer configuration options on page 2-75.

Bit descriptions

The following figure shows the bit assignments.

31 3 0

Reserved

TCUCFG_PARTID_WIDTH

4

Figure 3-22 TCU_SYSDISC11 register bit assignments

The following table shows the bit descriptions.

Table 3-43 TCU_SYSDISC11 register bit descriptions

Bits Name Description

[31:4] - Reserved

[3:0] TCUCFG_PARTID_WIDTH The read data reflects the chosen parameter value, for example:

4’b0001 : 1

….

4’b1001 : 9

3 Programmers model
3.9 TCU system discovery registers

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

3-129

Non-Confidential

3.9.13 TCU_SYSDISC12 system discovery register

The TCU system discovery registers discover components in the system.

Configurations

This register is available in all configurations.

Attributes

The TCU_SYSDISC12 register attributes are as follows:

Width 32‑bit
Functional group TCU system discovery registers. See 3.9 TCU system discovery registers

on page 3-120.
Address offset 0x08E64

Type RO
Reset value TCUCFG_HZU_DEPTH. See 2.5.2 TCU buffer configuration options on page 2-75.

Bit descriptions

The following figure shows the bit assignments.

31 3 0

Reserved

TCUCFG_HZU_DEPTH

4

Figure 3-23 TCU_SYSDISC12 register bit assignments

The following table shows the bit descriptions.

Table 3-44 TCU_SYSDISC12 register bit descriptions

Bits Name Description

[31:4] - Reserved

[3:0] TCUCFG_HZU_DEPTH The read data reflects the chosen parameter value, for example:

7’h02 : 2

….

7’h40 : 64

3.9.14 TCU_SYSDISC13 system discovery register

The TCU system discovery registers discover components in the system.

Configurations

This register is available in all configurations.

Attributes

The TCU_SYSDISC13 register attributes are as follows:

Width 32‑bit

3 Programmers model
3.9 TCU system discovery registers

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

3-130

Non-Confidential

Functional group TCU system discovery registers. See 3.9 TCU system discovery registers
on page 3-120.

Address offset 0x08E68

Type RO
Reset value TCUCFG_PREFETCH_SUPPORTED. See 2.5.2 TCU buffer configuration options

on page 2-75.

Bit descriptions

The following figure shows the bit assignments.

31 1 0

Reserved

TCUCFG_PREFETCH_SUPPORTED

Figure 3-24 TCU_SYSDISC13 register bit assignments

The following table shows the bit descriptions.

Table 3-45 TCU_SYSDISC13 register bit descriptions

Bits Name Description

[31:1] - Reserved

[0] TCUCFG_PREFETCH_SUPPORTED The read data reflects the chosen parameter value, for example:

1’b0 : 0

….

1’b1 : 1

3.9.15 TCU_SYSDISC14 system discovery register

The TCU system discovery registers discover components in the system.

Configurations

This register is available in all configurations.

Attributes

The TCU_SYSDISC14 register attributes are as follows:

Width 32‑bit
Functional group TCU system discovery registers. See 3.9 TCU system discovery registers

on page 3-120.
Address offset 0x08E6C

Type RO
Reset value TCUCFG_DATARAM_TYPE. See 2.5.2 TCU buffer configuration options on page 2-75.

Bit descriptions

The following figure shows the bit assignments.

3 Programmers model
3.9 TCU system discovery registers

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

3-131

Non-Confidential

31 1 0

Reserved

TCUCFG_DATARAM_TYPE

2

Figure 3-25 TCU_SYSDISC14 register bit assignments

The following table shows the bit descriptions.

Table 3-46 TCU_SYSDISC14 register bit descriptions

Bits Name Description

[31:2] - Reserved

[1:0] TCUCFG_DATARAM_TYPE The read data reflects the chosen parameter value, for example:

2’b00 : 0

….

2’b10 : 2

3.9.16 TCU_SYSDISC15 system discovery register

The TCU system discovery registers discover components in the system.

Configurations

This register is available in all configurations.

Attributes

The TCU_SYSDISC15 register attributes are as follows:

Width 32‑bit
Functional group TCU system discovery registers. See 3.9 TCU system discovery registers

on page 3-120.
Address offset 0x08E70

Type RO
Reset value TCUCFG_SLOTRAM_TYPE. See 2.5.2 TCU buffer configuration options on page 2-75.

Bit descriptions

The following figure shows the bit assignments.

31 1 0

Reserved

TCUCFG_SLOTRAM_TYPE

2

Figure 3-26 TCU_SYSDISC15 register bit assignments

The following table shows the bit descriptions.

3 Programmers model
3.9 TCU system discovery registers

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

3-132

Non-Confidential

Table 3-47 TCU_SYSDISC15 register bit descriptions

Bits Name Description

[31:2] - Reserved

[1:0] TCUCFG_SLOTRAM_TYPE The read data reflects the chosen parameter value, for example:

2’b00 : 0

….

2’b10 : 2

3.9.17 TCU_SYSDISC16 system discovery register

The TCU system discovery registers discover components in the system.

Configurations

This register is available in all configurations.

Attributes

The TCU_SYSDISC16 register attributes are as follows:

Width 32‑bit
Functional group TCU system discovery registers. See 3.9 TCU system discovery registers

on page 3-120.
Address offset 0x08E74

Type RO
Reset value TCUCFG_CACHERAM_TYPE. See 2.5.2 TCU buffer configuration options on page 2-75.

Bit descriptions

The following figure shows the bit assignments.

31 1 0

Reserved

TCUCFG_CACHERAM_TYPE

2

Figure 3-27 TCU_SYSDISC16 register bit assignments

The following table shows the bit descriptions.

Table 3-48 TCU_SYSDISC16 register bit descriptions

Bits Name Description

[31:2] - Reserved

[1:0] TCUCFG_CACHERAM_TYPE The read data reflects the chosen parameter value, for example:

2’b00 : 0

….

2’b01 : 1

3 Programmers model
3.9 TCU system discovery registers

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

3-133

Non-Confidential

3.9.18 TCU_SYSDISC17 system discovery register

The TCU system discovery registers discover components in the system.

Configurations

This register is available in all configurations.

Attributes

The TCU_SYSDISC17 register attributes are as follows:

Width 32‑bit
Functional group TCU system discovery registers. See 3.9 TCU system discovery registers

on page 3-120.
Address offset 0x08E78

Type RO
Reset value TCUCFG_QTW_DATA_WIDTH. See 2.5.1 TCU I/O configuration options on page 2-75.

Bit descriptions

The following figure shows the bit assignments.

TCUCFG_QTW_DATA_WIDTH

31 9 0

Reserved

10

Figure 3-28 TCU_SYSDISC17 register bit assignments

The following table shows the bit descriptions.

Table 3-49 TCU_SYSDISC17 register bit descriptions

Bits Name Description

[31:10] - Reserved

[9:0] TCUCFG_QTW_DATA_WIDTH The read data reflects the chosen parameter value, for example:

10’h040 : 64

….

10’h200 : 512

3 Programmers model
3.9 TCU system discovery registers

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

3-134

Non-Confidential

3.10 TCU PIU integration registers
This section describes the Programmer Interface Unit (PIU) integration registers.

This section contains the following subsections:
• 3.10.1 ITEN register for the TCU on page 3-135.
• 3.10.2 ITOP register for the TCU Programmer Interface Unit on page 3-135.

3.10.1 ITEN register for the TCU

Integration mode register for the TCU.

Configurations

This register is available in all configurations.

Attributes

The ITEN register attributes are as follows:

Width 32‑bit
Functional group Performance monitor. See 3.8 TCU RAS registers on page 3-114.
Address offset 0x08E20

Type RW
Reset value 0

Bit descriptions

The following figure shows the bit assignments.

31 1 0

Reserved

ITEN

Figure 3-29 ITEN register bit assignments

The following table shows the bit descriptions.

Table 3-50 ITEN register bit descriptions

Bits Name Description

[31:1] - Reserved

[0] ITEN 0 Integration mode is disabled

1 Integration mode is enabled

3.10.2 ITOP register for the TCU Programmer Interface Unit

This section describes the TCU ITOP register for the Programmer Interface Unit (PIU).

Configurations

This register is available in all configurations.

3 Programmers model
3.10 TCU PIU integration registers

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

3-135

Non-Confidential

Attributes

The ITOP register attributes are as follows:

Width 32‑bit
Functional group Programmer Interface Unit (PIU) integration registers. See 3.10 TCU PIU

integration registers on page 3-135.
Address offset 0x08E24

Type RW
Reset value 0

Bit descriptions

The following figure shows the bit assignments.

31 8 7 6 5 4 3 2 1 0

Reserved

event_q_irpt_ns
event_q_irpt_s

pri_q_irpt
cmd_sync_irpt_ns

cmd_sync_irpt_s
global_irpt_ns

global_irpt_s
evento

91011

ras_cri
ras_eri

ras_fhi

Figure 3-30 ITOP register bit assignments

The following table shows the bit descriptions.

Table 3-51 ITOP register bit descriptions

Bits Name Description

[31:11] - Reserved, SBZ

[10] event_q_irpt_ns 0 When ITEN.ITEN == 0, SBZ

1 When ITEN.ITEN == 1, the value driven to event_q_irpt_ns

[9] event_q_irpt_s 0 When ITEN.ITEN == 0, SBZ

1 When ITEN.ITEN == 1, the value driven to event_q_irpt_s

[8] pri_q_irpt 0 When ITEN.ITEN == 0, SBZ

1 When ITEN.ITEN == 1, the value driven to pri_q_irpt

[7] cmd_sync_irpt_ns 0 When ITEN.ITEN == 0, SBZ.

1 When ITEN.ITEN == 1, the value driven to cmd_sync_irpt_ns

[6] cmd_sync_irpt_s 0 When ITEN.ITEN == 0, SBZ

1 When ITEN.ITEN == 1, the value driven to cmd_sync_irpt_s

[5] global_irpt_ns 0 When ITEN.ITEN == 0, SBZ

1 When ITEN.ITEN == 1, the value driven to global_irpt_ns

3 Programmers model
3.10 TCU PIU integration registers

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

3-136

Non-Confidential

Table 3-51 ITOP register bit descriptions (continued)

Bits Name Description

[4] global_irpt_s 0 When ITEN.ITEN == 0, SBZ

1 When ITEN.ITEN == 1, the value driven to global_irpt_s

[3] evento 0 When ITEN.ITEN == 0, SBZ

1 When ITEN.ITEN == 1, the value driven to evento

[2] ras_fhi 0 When ITEN.ITEN == 0, SBZ

1 When ITEN.ITEN == 1, the value driven to ras_fhi

[1] ras_eri 0 When ITEN.ITEN == 0, SBZ

1 When ITEN.ITEN == 1, the value driven to ras_eri

[0] ras_cri 0 When ITEN.ITEN == 0, SBZ

1 When ITEN.ITEN == 1, the value driven to ras_cri

See:
• A.1.9 TCU interrupt signals on page Appx-A-175
• A.1.11 TCU event interface signal on page Appx-A-177

3 Programmers model
3.10 TCU PIU integration registers

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

3-137

Non-Confidential

3.11 TCU TMU integration registers
This section describes the TCU Translation Management Unit (TMU) integration registers.

This section contains the following subsections:
• 3.11.1 ITOP register for the TCU Translation Management Unit on page 3-138.
• 3.11.2 ITIN register for the TCU Translation Management Unit on page 3-139.

3.11.1 ITOP register for the TCU Translation Management Unit

This section describes the ITOP register for the TCU Translation Management Unit (TMU).

Configurations

This register is available in all configurations.

Attributes

The ITOP register attributes are as follows:

Width 32‑bit
Functional group TCU Translation Management Unit (TMU) integration registers. See 3.11 TCU

TMU integration registers on page 3-138.
Address offset 0x08E2C

Type RW
Reset value 0

Bit descriptions

The following figure shows the bit assignments.

31 2 1 0

Reserved

pmu_irpt
pmu_snapshot_ack

Figure 3-31 ITOP register bit assignments

The following table shows the bit descriptions.

Table 3-52 ITOP register bit descriptions

Bits Name Description

[31:2] - Reserved, SBZ

[1] pmu_irpt 0 When ITEN.ITEN == 0, SBZ

1 When ITEN.ITEN == 1, the value driven to pmu_irpt

[0] pmu_snapshot_ack 0 When ITEN.ITEN == 0, SBZ

1 When ITEN.ITEN == 1, the value driven to pmusnapshot_ack

See:
• A.1.9 TCU interrupt signals on page Appx-A-175
• A.1.5 TCU PMU snapshot interface signals on page Appx-A-174

3 Programmers model
3.11 TCU TMU integration registers

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

3-138

Non-Confidential

3.11.2 ITIN register for the TCU Translation Management Unit

This section describes the ITIN register for the TCU Translation Management Unit (TMU).

Configurations

This register is available in all configurations.

Attributes

The ITIN register attributes are as follows:

Width 32‑bit
Functional group TCU Translation Management Unit (TMU) integration registers. See 3.11 TCU

TMU integration registers on page 3-138.
Address offset 0x08E30

Type RO
Reset value 0

Bit descriptions

The following figure shows the bit assignments.

31 1 0

Reserved

pmu_snapshot_req

Figure 3-32 ITIN register bit assignments

The following table shows the bit descriptions.

Table 3-53 ITIN register bit descriptions

Bits Name Description

[31:1] - Reserved, SBZ

[0] pmu_snapshot_req 0 When ITEN.ITEN == 0, SBZ

1 When ITEN.ITEN == 1, reflects pmusnapshot_req

See A.1.5 TCU PMU snapshot interface signals on page Appx-A-174.

3 Programmers model
3.11 TCU TMU integration registers

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

3-139

Non-Confidential

3.12 TBU component and peripheral ID registers
This section describes the TBU component and peripheral ID registers.

The following table shows the TBU component and peripheral ID.

Table 3-54 TBU component and peripheral ID registers

Name Offset Field Value Description

SMMU_CIDR3, Component ID3 0x00FFC [7:0] 0xB1 Preamble

SMMU_CIDR2, Component ID2 0x00FF8 [7:0] 0x05 Preamble

SMMU_CIDR1, Component ID1 0x00FF4 [7:0] 0xF0 Preamble

SMMU_CIDR0, Component ID0 0x00FF0 [7:0] 0x0D Preamble

SMMU_PIDR3, Peripheral ID3 0x00FEC [7:4] MAX(p_level,
ecorevnum)

REVAND, minor revision.

Where p_level is:

0 For p0
1 For p1

[3:0] 0x00 CMOD

SMMU_PIDR2, Peripheral ID2 0x00FE8 [7:4] 0x00 REVISION, major revision

[3] 1 JEDEC‑assigned value for DES always used

[2:0] 3 DES_1: bits [6:4] bits of the JEP106 Designer
code

SMMU_PIDR1, Peripheral ID1 0x00FE4 [7:4] 0xB DES_0: bits [3:0] of the JEP106 Designer code

[3:0] 0x4 PART_1: bits [11:8] of the Part number

SMMU_PIDR0, Peripheral ID0 0x00FE0 [7:0] 0x88 PART_0: bits [7:0] of the Part number

SMMU_PIDR7, Peripheral ID7 0x00FDC - RES0 Reserved

SMMU_PIDR6, Peripheral ID6 0x00FD8

SMMU_PIDR5, Peripheral ID5 0x00FD4

SMMU_PIDR4, Peripheral ID4 0x00FD0 [7:4] 0x0 SIZE = 4KB

[3:0] 0x4 DES_2: JEP106 Designer continuation code

3 Programmers model
3.12 TBU component and peripheral ID registers

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

3-140

Non-Confidential

3.13 TBU PMU registers
This section describes the Performance Monitor Unit (PMU).

The TBU PMU registers follow the register layout that the Arm® System Memory Management Unit
Architecture Specification, SMMU architecture versions 3.0, 3.1 and 3.2 Performance Monitor Extension
describes.

This section contains the following subsections:
• 3.13.1 Registers on page 3-141.
• 3.13.2 Events on page 3-141.
• 3.13.3 SMMU_PMCG_CFGR on page 3-142.
• 3.13.4 SMMU_PMCG_CEID{0-1} registers on page 3-142.
• 3.13.5 PMU ID registers on page 3-143.

3.13.1 Registers

The TBU and TCU support the same PMCG registers.

See 3.6 TCU PMU registers on page 3-103.

SMMU_PMCG_SMR0 is 24 bits, because the TBU uses 24‑bit StreamIDs architecturally, even though a
static tie‑off sets either 8 bits or 16 bits.

3.13.2 Events

Each event indicates whether the SMMU_PMCG_SMR0 register can filter it. For events that cannot be
filtered, whether they are visible only when Secure events are visible by SMMU_PMCG_SCR.SO = 1.

The following table shows the architectural events that are implemented.

Table 3-55 Architectural events

Event ID Description Filterable Secure only Description

0 Clock cycle No No Counts every clock cycle.

Does not count cycles where the clock is gated after a
clock Q‑Channel handshake.

1 Transaction Yes - Counts once per transaction issued downstream into the
system

2 TLB miss that an incoming
transaction or translation request
causes

Yes - Counts once per non-speculative TCU translation request

7 PCIe ATS Translated Transaction
passed through SMMU

Yes - Counts once per ATS transaction that is issued into the
system

The following table shows the IMPLEMENTATION DEFINED events that are implemented.

Table 3-56 IMPLEMENTATION DEFINED events

Event ID Description Filterable Secure
only

Description

0x80 Main TLB lookup Yes - Counts once per transaction that accesses the Main TLB

0x81 Main TLB miss Yes - Counts once per transaction that accesses the Main TLB and does not hit

3 Programmers model
3.13 TBU PMU registers

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

3-141

Non-Confidential

https://static.docs.arm.com/ihi0070/ca/IHI_0070_C_a_System_Memory_Management_Unit_Arm_Architecture_Specification.pdf
https://static.docs.arm.com/ihi0070/ca/IHI_0070_C_a_System_Memory_Management_Unit_Arm_Architecture_Specification.pdf

Table 3-56 IMPLEMENTATION DEFINED events (continued)

Event ID Description Filterable Secure
only

Description

0x82 Main TLB read Yes - Counts once per access to the Main TLB RAMs. A transaction might
access the Main TLB multiple times to look for different page sizes.

0x83 Micro TLB lookup Yes - Counts once per lookup in the Micro TLB

0x84 Micro TLB miss Yes - Counts once per miss in the Micro TLB

0x85 Slots full No Yes Counts once per cycle when all slots are occupied and not ready to issue
downstream

0x86 Out of translation
tokens

No Yes Counts once per cycle when a translation request cannot be issued
because all translation tokens are in use

0x87 Write data buffer
full

No Yes Counts once per cycle when a transaction is blocked because the write
data buffer is full

0x8B DCMO downgrade Yes - Counts once whenever either:
• A MakeInvalid transaction on TBS is output as CleanInvalid on

TBM
• A ReadOnceMakeInvalid transaction on TBS is output as

ReadOnceCleanInvalid on TBM

0x8C DCP fail Yes - Counts once whenever either:
• An LTI WDCP transaction on the LA channel is downgraded as W

on the LR channel.
• An LTI DCP transaction on the LA channel is responded to as

FaultRAZWI on the LR channel is counted. This response can be
because of memory attributes or DCP, R, W, X permission check
failure in the TLBU or the DTI fault response with Non-Abort. The
transaction responded with FaultAbort because of DTI
StreamDisable, GlobalDisable is not counted.

3.13.3 SMMU_PMCG_CFGR

An MMU‑700 implementation assumes fixed values for SMMU_PMCG_CFGR, and these values define
behavioral aspects of the implementation.

For information about the SMMU_PMCG_CFCR fields values, see SMMUv3 PMU register
architectural options on page 2-45.

See also 2.5 Configuration options and methodology on page 2-75.

3.13.4 SMMU_PMCG_CEID{0-1} registers

The SMMU_PMCG_CEID{0-1} registers indicate the architectural events that are supported. They are
described as 64‑bit registers, but they are accessed 32 bits at a time through the 32‑bit DTI register access
messages.

The following table shows the SMMU_PMCG_CEID{0-1} registers.

Table 3-57 SMMU_PMCG_CEID{0-1} registers

Name Offset Value

SMMU_PMCG_CEID0 0x02e20 0x00000087

SMMU_PMCG_CEID1 0x02e28 0x00000000

3 Programmers model
3.13 TBU PMU registers

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

3-142

Non-Confidential

3.13.5 PMU ID registers

The PMU ID registers are defined as follows. The PMU ID registers appear only in Performance
Monitor Page 0. Page 1 does not contain any ID registers.

The following table shows the PMU ID registers.

Table 3-58 PMU ID registers

Name Offset Field Value Description

SMMU_PMCG_CIDR3, Component ID3 0x02FFC [7:0] 0xB1 Preamble

SMMU_PMCG_CIDR2, Component ID2 0x02FF8 [7:0] 0x05 Preamble

SMMU_PMCG_CIDR1, Component ID1 0x02FF4 [7:0] 0x90 Preamble

SMMU_PMCG_CIDR0, Component ID0 0x02FF0 [7:0] 0x0D Preamble

SMMU_PMCG_PIDR3, Peripheral ID3 0x02FEC [7:4] MAX(p_level,
ecorevnum)

REVAND, minor revision, where p_level is:

0 For p0

1 For p1

[3:0] 0x00 CMOD

SMMU_PMCG_PIDR2, Peripheral ID2 0x02FE8 [7:4] 0x00 REVISION, major revision

[3] 1 JEDEC‑assigned value for DES always used

[2:0] 3 DES_1: bits [6:4] bits of the JEP106
Designer code

SMMU_PMCG_PIDR1, Peripheral ID1 0x02FE4 [7:4] 0xB DES_0: bits [3:0] of the JEP106 Designer
code

[3:0] 0x4 PART_1: bits [11:8] of the Part number

SMMU_PMCG_PIDR0, Peripheral ID0 0x02FE0 [7:0] 0x88 PART_0: bits [7:0] of the Part number

SMMU_PMCG_PIDR7, Peripheral ID7 0x02FDC - RES0 Reserved

SMMU_PMCG_PIDR6, Peripheral ID6 0x02FD8 Reserved

SMMU_PMCG_PIDR5, Peripheral ID5 0x02FD4 Reserved

SMMU_PMCG_PIDR4, Peripheral ID4 0x02FD0 [7:4] 0x0 SIZE = 4KB

[3:0] 0x4 DES_2: JEP106 Designer continuation code

SMMU_PMCG_PMAUTHSTATUS 0x02FB8 [7:0] 0x00 No authentication interface is implemented

The PMAUTHSTATUS, PMDEVARCH, and PMDEVTYPE registers are implemented as the Arm®

System Memory Management Unit Architecture Specification, SMMU architecture versions 3.0, 3.1 and
3.2 defines.

3 Programmers model
3.13 TBU PMU registers

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

3-143

Non-Confidential

https://static.docs.arm.com/ihi0070/ca/IHI_0070_C_a_System_Memory_Management_Unit_Arm_Architecture_Specification.pdf
https://static.docs.arm.com/ihi0070/ca/IHI_0070_C_a_System_Memory_Management_Unit_Arm_Architecture_Specification.pdf
https://static.docs.arm.com/ihi0070/ca/IHI_0070_C_a_System_Memory_Management_Unit_Arm_Architecture_Specification.pdf

3.14 TBU microarchitectural registers
You can set the microarchitectural registers at boot time to optimize TBU behavior for your system. Arm
recommends that you use the default values for most systems.

The 3.14.2 TBU_SCR register on page 3-145 is Secure‑only. Non‑secure access to this register is
Read‑As‑Zero (RAZ)/Writes‑Ignored (WI).

Non‑secure access to the 3.14.1 TBU_CTRL register on page 3-144when TBU_SCR.NS_UARCH = 0 is
RAZ/WI.

This section contains the following subsections:
• 3.14.1 TBU_CTRL register on page 3-144.
• 3.14.2 TBU_SCR register on page 3-145.

3.14.1 TBU_CTRL register

The TBU_CTRL register disables TBU features. Do not modify the bits in this register unless Arm
instructs you to do so.

Configurations

This register is available in all configurations.

Attributes

The TBU_CTRL register attributes are as follows:

Width 32‑bit
Functional group TBU microarchitectural features. See 3.14 TBU microarchitectural registers

on page 3-144.
Address offset 0x08E00

Type RW
Reset value 0

Bit descriptions

The following figure shows the bit assignments.

31 16 15 0

AUX[15:1]Reserved

1

HAZARD_DIS

Figure 3-33 TBU_CTRL register bit assignments

The following table shows the bit descriptions.

3 Programmers model
3.14 TBU microarchitectural registers

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

3-144

Non-Confidential

Table 3-59 TBU_CTRL register bit descriptions

Bits Name Description

[31:20] - Reserved

[15:1] [AUX15:1] Reads the value that is written, but has no other effect

[0] HAZARD_DIS 0 When this bit is clear, and multiple outstanding transactions access the same page, the TBU sends a
single translation request and uses that for all the affected transactions.

1 When this bit is set, disables hazarding between translation requests from transactions in the same page.
Post reset, this bit can be set to 1 once, but cannot be cleared again without a reset.

3.14.2 TBU_SCR register

This section describes the TBU Secure Control register.

Configurations

This register is available in all configurations.

Attributes

The TBU_SCR register attributes are as follows:

Width 32‑bit
Functional group Reliability, Availability, and Serviceability (RAS). See 3.8 TCU RAS registers

on page 3-114.
Address offset 0x08EC0

Type RW
Reset value sec_override. See A.2.9 TBU tie-off signals on page Appx-A-192.

Bit descriptions

The following figure shows the bit assignments.

31 01

Reserved

2

NS_UARCH
NS_RAS

Figure 3-34 TBU_SCR register bit assignments

The following table shows the bit descriptions.

3 Programmers model
3.14 TBU microarchitectural registers

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

3-145

Non-Confidential

Table 3-60 TBU_SCR register bit descriptions

Bits Name Description

[31:2] - Reserved

[1] NS_RAS Non‑secure register access that is permitted for microarchitectural registers.

When this bit is 0, Non‑secure writes to the following register addresses are ignored, and Non‑secure reads
return zero:

0x08E80-0x08EC0

The sec_override input sets the reset value of this signal. See A.2.9 TBU tie-off signals on page Appx-A-192.

[0] NS_UARCH Non‑secure register access that is permitted for TBU_CTRL.

When this bit is 0, Non‑secure writes to TBU_CTRL is ignored, and Non‑secure reads return zero.

The sec_override input sets reset value of this signal. See A.2.9 TBU tie-off signals on page Appx-A-192.

If Secure translation might be used, Arm recommends that software does not set this bit.

3 Programmers model
3.14 TBU microarchitectural registers

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

3-146

Non-Confidential

3.15 TBU RAS registers
This section describes Reliability, Availability, and Serviceability (RAS) registers.

These registers implement the RAS Extension registers, single record format.

Non‑secure accesses to these registers, when TBU_SCR.NS_RAS = 0, are RAZ/WI.

The RAS registers enable software to monitor the following classes of error:
• Corrected Errors (CEs) in the RAMs that the Main TLB uses.
• CEs in the RAMs, that the Write Data Buffer uses.

RAS error reporting

When a CE occurs:

A CE is reported in 3.15.3 TBU_ERRSTATUS register on page 3-149.

If TBU_ERRCTLR.FI is set, an interrupt is raised on ras_fhi. See TBU interrupt interfaces
on page 2-37.

This section contains the following subsections:
• 3.15.1 TBU_ERRFR register on page 3-147.
• 3.15.2 TBU_ERRCTLR register on page 3-148.
• 3.15.3 TBU_ERRSTATUS register on page 3-149.
• 3.15.4 TBU_ERRGEN register on page 3-152.

3.15.1 TBU_ERRFR register

Error Feature Register.

Configurations

This register is available in all configurations.

Attributes

The TBU_ERRFR register attributes are as follows:

Width 32‑bit
Functional group TBU Reliability, Availability, and Serviceability (RAS). See 3.15 TBU RAS registers

on page 3-147.
Address offset 0x08E80

Type Secure, RO
Reset value 0

Bit descriptions

The following figure shows the bit assignments.

31 24 23 22 21 18 17 16 15 14 12 11 10 9 8 7 6 5 4 3 2 1 0

EDUIFIUECFICECDUICIReserved

Reserved ReservedReserved

Figure 3-35 TBU_ERRFR register bit assignments

The following table shows the bit descriptions.

3 Programmers model
3.15 TBU RAS registers

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

3-147

Non-Confidential

Table 3-61 TBU_ERRFR register bit descriptions

Bits Name Description Value

[31:24] - Reserved -

[23:22] CI Critical Error Interrupt is always enabled 01b

[21:18] - Reserved -

[17:16] DUI Does not support feature 00b

[15] - Reserved -

[14:12] CEC Does not implement the standard corrected error counter model 000b

[11:10] CFI Does not support feature 00b

[9:8] UE In‑band error signaling feature is not enabled 00b

[7:6] FI Fault handling interrupt is controllable 10b

[5:4] UI Error Recovery Interrupt always enabled for UE 01b

[3:2] - Reserved -

[1:0] ED Error detection is always enabled 01b

3.15.2 TBU_ERRCTLR register

Use the TBU Error Control register to enable fault handling interrupts.

Configurations

This register is available in all configurations.

Attributes

The TBU_ERRCTLR register attributes are as follows:

Width 32‑bit
Functional group TBU Reliability, Availability, and Serviceability (RAS). See 3.15 TBU RAS registers

on page 3-147.
Address offset 0x08E88

Type S, RW
Reset value 1

Bit descriptions

The following figure shows the bit assignments.

31 02

Reserved

34

FI
Reserved

Figure 3-36 TBU_ERRCTLR register bit assignments

The following table shows the bit descriptions.

3 Programmers model
3.15 TBU RAS registers

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

3-148

Non-Confidential

Table 3-62 TBU_ERRCTLR register bit descriptions

Bits Name Description

[31:4] - Reserved

[3] FI Fault handling interrupt enable

[2:0] - Reserved

3.15.3 TBU_ERRSTATUS register

This section describes the TBU_ERRSTATUS register.

Certain bits in this register are cleared by writing a 1 to their bit position. These writes are ignored in
certain circumstances to avoid race conditions where a new error has occurred that software has not yet
observed.

Configurations

This register is available in all configurations.

Attributes

The TBU_ERRSTATUS register attributes are as follows:

Width 32‑bit
Functional group TBU Reliability, Availability, and Serviceability (RAS). See 3.15 TBU RAS registers

on page 3-147.
Address offset 0x08E90

Type Secure, RW
Reset value 0

Bit descriptions

The following figure shows the bit assignments.

SERR

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 8 7 0

IERRUETCEV

Reserved
UE

Reserved
OF

Reserved

DE

Reserved

CI
Reserved

Figure 3-37 TBU_ERRSTATUS register bit assignments

The following table shows the bit descriptions.

3 Programmers model
3.15 TBU RAS registers

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

3-149

Non-Confidential

Table 3-63 TBU_ERRSTATUS register bit descriptions

Bits Name Description

[31] - Reserved

[30] V Status Register valid. The possible values of this bit are as follows:

0 ERRSTATUS is not valid

1 ERRSTATUS is valid, meaning that at least one error has been recorded

This field is read/write-one-to-clear. Clearing depends on other ERRSTATUS fields. See 3.1.1 Clearing ERRSTATUS
registers on page 3-87.

This bit resets to zero on a reset.

[29] UE Uncorrected errors. The possible values of this bit are:

0 No errors that could not be corrected or deferred

1 At least one error is detected that has not been corrected or deferred

This field is read/write-one-to-clear. Clearing depends on other ERRSTATUS fields. See 3.1.1 Clearing ERRSTATUS
registers on page 3-87.

[28] - Reserved

[27] OF Overflow. Multiple errors detected. This bit is set to 1 when:
• Any error is received and TBU_ERRSTATUS.V is already set, and not being cleared on the same cycle
• Multiple errors are received on the same cycle

This field is read/write-one-to-clear. Clearing depends on other ERRSTATUS fields. See 3.1.1 Clearing ERRSTATUS
registers on page 3-87.

[26] - Reserved

[25:24] CE Correctable Errors:

00b No correctable errors recorded

10b At least one corrected error recorded

Other values are Reserved.

Clearing depends on other ERRSTATUS fields. See 3.1.1 Clearing ERRSTATUS registers on page 3-87.

[23] DE Deferred errors. The possible values of this bit are as follows:

0 No errors were deferred

1 At least one error was not corrected and deferred

This field is read/write-one-to-clear. Clearing depends on other ERRSTATUS fields. See 3.1.1 Clearing ERRSTATUS
registers on page 3-87.

[22] - Reserved

[21:20] UET Uncorrected Error Type. Describes the state of the component after detecting or consuming an Uncorrected error.
The possible values of this field are as follows:

0b00 Uncorrected error, UnContainable error (UC)

Writes to this field are ignored.

3 Programmers model
3.15 TBU RAS registers

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

3-150

Non-Confidential

Table 3-63 TBU_ERRSTATUS register bit descriptions (continued)

Bits Name Description

[19] CI Indicates whether a critical error condition has been recorded. The possible values of this bit are as follows:

0 No critical error condition

1 Critical error condition

Writes to this field are ignored.

[18:16] - Reserved

[15:8] IERR IMPLEMENTATION DEFINED error code. This field indicates the source of the error as follows:

15h BIU WDB ROBUFF_P

14h BIU WDB ROBUFF_C

13h BIU WDB ROBUFF_D

12h Reserved

11h Reserved

10h TLBU DCU MTLB DATA

0Fh TLBU DCU MTLB TAGS

0Eh TLBU DCU MTLB REPL

0Dh TLBU DCU MTLB PCNT

0Ch TLBU DCU MTLB PLIM

0Bh TLBU TOU HLB_ENTRY RIGHT

0Ah TLBU TOU HLB_ENTRY LEFT

09h TLBU TOU HLB PTR RIGHT

08h TLBU TOU HLB PTR LEFT

07h Reserved

06h Reserved

05h TLBU TOU DTIQ

04h TLBU TOU UOQ

03h TLBU TOU OGQ

02h TLBU TOU LB

01h TLBU TOU RSP

00h TLBU TOU REQ.

Writes to this field are ignored.

[7:0] SERR Error code.

This provides information about the earliest unacknowledged Error.

It can contain the following values:

0 No error

2 Single or double error from RAMs that are not MTLB TAGS or DATA

8 Single or double error from MTLB Data

9 Single or double error from MTLB Tags

All other values are reserved.

Writes to this field are ignored.

3 Programmers model
3.15 TBU RAS registers

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

3-151

Non-Confidential

3.15.4 TBU_ERRGEN register

Error Generation Register. Use the TBU_ERRGEN register to test software for when a RAS error
occurs.

The field locations are same as for the 3.15.3 TBU_ERRSTATUS register on page 3-149.

When this register is updated, the 3.15.3 TBU_ERRSTATUS register on page 3-149 is also updated with
the same value, as long as the write data generates a valid error record.

A write to ERRGEN is valid if all the following is true:
• ERRGEN.V is set
• At least one of the following is true (CE is legal if CE == 2’b00 or CE == 2’b10):

— ERRGEN.UE is set and CE is legal
— ERRGEN.DE is set and CE is legal
— ERRGEN.CE is set to 2’b10

• UET must be 2'b00

If a valid error record is written, then the appropriate interrupt, or interrupts, are also generated.

This register has identical fields to 3.15.3 TBU_ERRSTATUS register on page 3-149.

Configurations

This register is available in all configurations.

Attributes

The TBU_ERRGEN register attributes are as follows:

Width 32‑bit
Functional group TBU Reliability, Availability, and Serviceability (RAS). See 3.15 TBU RAS registers

on page 3-147.
Address offset 0x08EC0

Type S, RW
Reset value 0

Bit descriptions

See the bit descriptions in 3.15.3 TBU_ERRSTATUS register on page 3-149.

3 Programmers model
3.15 TBU RAS registers

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

3-152

Non-Confidential

3.16 TBU system discovery registers
This section describes the TBU system discovery registers.

This section contains the following subsections:
• 3.16.1 TBU_SYSDISC0 system discovery register on page 3-153.
• 3.16.2 TBU_SYSDISC1 system discovery register on page 3-154.
• 3.16.3 TBU_SYSDISC2 system discovery register on page 3-155.
• 3.16.4 TBU_SYSDISC3 system discovery register on page 3-155.
• 3.16.5 TBU_SYSDISC4 system discovery register on page 3-156.
• 3.16.6 TBU_SYSDISC5 system discovery register on page 3-157.
• 3.16.7 TBU_SYSDISC6 system discovery register on page 3-158.
• 3.16.8 TBU_SYSDISC7 system discovery register on page 3-159.
• 3.16.9 TBU_SYSDISC8 system discovery register on page 3-159.
• 3.16.10 TBU_SYSDISC9 system discovery register on page 3-160.
• 3.16.11 TBU_SYSDISC10 system discovery register on page 3-161.
• 3.16.12 TBU_SYSDISC11 system discovery register on page 3-162.
• 3.16.13 TBU_SYSDISC12 system discovery register on page 3-163.
• 3.16.14 TBU_SYSDISC13 system discovery register on page 3-163.
• 3.16.15 TBU_SYSDISC14 system discovery register on page 3-164.

3.16.1 TBU_SYSDISC0 system discovery register

The TBU system discovery registers discover components in the system.

Configurations

This register is available in all configurations.

Attributes

The TBU_SYSDISC0 register attributes are as follows:

Width 32‑bit
Functional group TBU system discovery registers. See 3.16 TBU system discovery registers

on page 3-153.
Address offset 0x08E30

Type RO
Reset value TBUCFG_MTLB_DEPTH. See 2.5.8 TBU buffer configuration options on page 2-81.

Bit descriptions

The following figure shows the bit assignments.

TBUCFG_MTLB_DEPTH

31 16 0

Reserved

17

Figure 3-38 TBU_SYSDISC0 register bit assignments

The following table shows the bit descriptions.

3 Programmers model
3.16 TBU system discovery registers

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

3-153

Non-Confidential

Table 3-64 TBU_SYSDISC0 register bit descriptions

Bits Name Description

[31:17] - Reserved

[16:0] TBUCFG_MTLB_DEPTH The read data reflects the chosen parameter value, for example:

17’h0_0008 : 8

….

17’h1_0000 : 65536

3.16.2 TBU_SYSDISC1 system discovery register

The TBU system discovery registers discover components in the system.

Configurations

This register is available in all configurations.

Attributes

The TBU_SYSDISC1 register attributes are as follows:

Width 32‑bit
Functional group TBU system discovery registers. See 3.16 TBU system discovery registers

on page 3-153.
Address offset 0x08E34

Type RO
Reset value TBUCFG_UTLB_DEPTH. See 2.5.8 TBU buffer configuration options on page 2-81.

Bit descriptions

The following figure shows the bit assignments.

31 7 6 0

TBUCFG_UTLB_DEPTH

Figure 3-39 TBU_SYSDISC1 register bit assignments

The following table shows the bit descriptions.

Table 3-65 TBU_SYSDISC1 register bit descriptions

Bits Name Description

[31:7] - Reserved

[6:0] TBUCFG_UTLB_DEPTH The read data reflects the chosen parameter value, for example:

7’h04 : 4

….

7’h40 : 64

3 Programmers model
3.16 TBU system discovery registers

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

3-154

Non-Confidential

3.16.3 TBU_SYSDISC2 system discovery register

The TBU system discovery registers discover components in the system.

Configurations

This register is available in all configurations.

Attributes

The TBU_SYSDISC2 register attributes are as follows:

Width 32‑bit
Functional group TBU system discovery registers. See 3.16 TBU system discovery registers

on page 3-153.
Address offset 0x08E38

Type RO
Reset value TBUCFG_MTLB_WAYS. See 2.5.8 TBU buffer configuration options on page 2-81.

Bit descriptions

The following figure shows the bit assignments.

31 5 4 0

Reserved

TBUCFG_MTLB_WAYS

Figure 3-40 TBU_SYSDISC2 register bit assignments

The following table shows the bit descriptions.

Table 3-66 TBU_SYSDISC2 register bit descriptions

Bits Name Description

[31:5] - Reserved

[4:0] TBUCFG_MTLB_WAYS The read data reflects the chosen parameter value, for example:

5’h04 : 4

….

5’h10 : 16

3.16.4 TBU_SYSDISC3 system discovery register

The TBU system discovery registers discover components in the system.

Configurations

This register is available in all configurations.

Attributes

The TBU_SYSDISC3 register attributes are as follows:

Width 32‑bit

3 Programmers model
3.16 TBU system discovery registers

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

3-155

Non-Confidential

Functional group TBU system discovery registers. See 3.16 TBU system discovery registers
on page 3-153.

Address offset 0x08E3C

Type RO
Reset value TBUCFG_MTLB_BANKS. See 2.5.8 TBU buffer configuration options on page 2-81.

Bit descriptions

The following figure shows the bit assignments.

31 3 2 0

Reserved

TBUCFG_MTLB_BANKS

Figure 3-41 TBU_SYSDISC3 register bit assignments

The following table shows the bit descriptions.

Table 3-67 TBU_SYSDISC3 register bit descriptions

Bits Name Description

[31:3] - Reserved

[2:0] TBUCFG_MTLB_BANKS The read data reflects the chosen parameter value, for example:

3’b001 : 1

….

3’b100 : 4

3.16.5 TBU_SYSDISC4 system discovery register

The TBU system discovery registers discover components in the system.

Configurations

This register is available in all configurations.

Attributes

The TBU_SYSDISC4 register attributes are as follows:

Width 32‑bit
Functional group TBU system discovery registers. See 3.16 TBU system discovery registers

on page 3-153.
Address offset 0x08E40

Type RO
Reset value TBUCFG_XLATE_SLOTS. See 2.5.8 TBU buffer configuration options on page 2-81.

Bit descriptions

The following figure shows the bit assignments.

3 Programmers model
3.16 TBU system discovery registers

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

3-156

Non-Confidential

TBUCFG_XLATE_SLOTS

31 12 0

Reserved

13

Figure 3-42 TBU_SYSDISC4 register bit assignments

The following table shows the bit descriptions.

Table 3-68 TBU_SYSDISC4 register bit descriptions

Bits Name Description

[31:13] - Reserved

[12:0] TBUCFG_XLATE_SLOTS The read data reflects the chosen parameter value, for example:

13’h0004 : 4

….

13’h1000 : 4096

3.16.6 TBU_SYSDISC5 system discovery register

The TBU system discovery registers discover components in the system.

Configurations

This register is available in all configurations.

Attributes

The TBU_SYSDISC5 register attributes are as follows:

Width 32‑bit
Functional group TBU system discovery registers. See 3.16 TBU system discovery registers

on page 3-153.
Address offset 0x08E44

Type RO
Reset value TBUCFG_PMU_COUNTERS. See 2.5.8 TBU buffer configuration options on page 2-81.

Bit descriptions

The following figure shows the bit assignments.

31 56 0

Reserved

TBUCFG_PMU_COUNTERS

Figure 3-43 TBU_SYSDISC5 register bit assignments

The following table shows the bit descriptions.

3 Programmers model
3.16 TBU system discovery registers

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

3-157

Non-Confidential

Table 3-69 TBU_SYSDISC5 register bit descriptions

Bits Name Description

[31:6] - Reserved

[5:0] TBUCFG_PMU_COUNTERS The read data reflects the chosen parameter value, for example:

6’h04 : 4

….

6’h20 : 32

3.16.7 TBU_SYSDISC6 system discovery register

The TBU system discovery registers discover components in the system.

Configurations

This register is available in all configurations.

Attributes

The TBU_SYSDISC6 register attributes are as follows:

Width 32‑bit
Functional group TBU system discovery registers. See 3.16 TBU system discovery registers

on page 3-153.
Address offset 0x08E48

Type RO
Reset value TBUCFG_SID_WIDTH. See 2.5.7 Common LTI TBU and ACE-Lite TBU configuration

options on page 2-80.

Bit descriptions

The following figure shows the bit assignments.

31 5 4 0

Reserved

TBUCFG_SID_WIDTH

Figure 3-44 TBU_SYSDISC6 register bit assignments

The following table shows the bit descriptions.

Table 3-70 TBU_SYSDISC6 register bit descriptions

Bits Name Description

[31:5] - Reserved

[4:0] TBUCFG_SID_WIDTH The read data reflects the chosen parameter value, for example:

5’h08 : 8

….

5’h14 : 20

3 Programmers model
3.16 TBU system discovery registers

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

3-158

Non-Confidential

3.16.8 TBU_SYSDISC7 system discovery register

The TBU system discovery registers discover components in the system.

Configurations

This register is available in all configurations.

Attributes

The TBU_SYSDISC7 register attributes are as follows:

Width 32‑bit
Functional group TBU system discovery registers. See 3.16 TBU system discovery registers

on page 3-153.
Address offset 0x08E4C

Type RO
Reset value TBUCFG_SSID_WIDTH. See 2.5.7 Common LTI TBU and ACE-Lite TBU configuration

options on page 2-80.

Bit descriptions

The following figure shows the bit assignments.

31 4 0

Reserved

TBUCFG_SSID_WIDTH

5

Figure 3-45 TBU_SYSDISC7 register bit assignments

The following table shows the bit descriptions.

Table 3-71 TBU_SYSDISC7 register bit descriptions

Bits Name Description

[31:5] - Reserved

[4:0] TBUCFG_SSID_WIDTH The read data reflects the chosen parameter value, for example:

5’h01 : 1

….

5’h14 : 20

3.16.9 TBU_SYSDISC8 system discovery register

The TBU system discovery registers discover components in the system.

Configurations

This register is available in all configurations.

Attributes

The TBU_SYSDISC8 register attributes are as follows:

Width 32‑bit

3 Programmers model
3.16 TBU system discovery registers

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

3-159

Non-Confidential

Functional group TBU system discovery registers. See 3.16 TBU system discovery registers
on page 3-153.

Address offset 0x08E50

Type RO
Reset value TBUCFG_DIRECT_IDX. See 2.5.7 Common LTI TBU and ACE-Lite TBU configuration

options on page 2-80.

Bit descriptions

The following figure shows the bit assignments.

31 1 0

Reserved

TBUCFG_DIRECT_IDX

Figure 3-46 TBU_SYSDISC8 register bit assignments

The following table shows the bit descriptions.

Table 3-72 TBU_SYSDISC8 register bit descriptions

Bits Name Description

[31:1] - Reserved

[0] TBUCFG_DIRECT_IDX The read data reflects the chosen parameter value, for example:

1’b0 : 0

….

1’b1 : 1

3.16.10 TBU_SYSDISC9 system discovery register

The TBU system discovery registers discover components in the system.

Configurations

This register is available in all configurations.

Attributes

The TBU_SYSDISC9 register attributes are as follows:

Width 32‑bit
Functional group TBU system discovery registers. See 3.16 TBU system discovery registers

on page 3-153.
Address offset 0x08E54

Type RO
Reset value TBUCFG_MTLB_PARTS. See 2.5.7 Common LTI TBU and ACE-Lite TBU configuration

options on page 2-80.

Bit descriptions

The following figure shows the bit assignments.

3 Programmers model
3.16 TBU system discovery registers

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

3-160

Non-Confidential

31 5 0

Reserved

TBUCFG_MTLB_PARTS

4

Figure 3-47 TBU_SYSDISC9 register bit assignments

The following table shows the bit descriptions.

Table 3-73 TBU_SYSDISC9 register bit descriptions

Bits Name Description

[31:5] - Reserved

[4:0] TBUCFG_MTLB_PARTS The read data reflects the chosen parameter value, for example:

5’h00 : 0

….

5’h10 : 16

3.16.11 TBU_SYSDISC10 system discovery register

The TBU system discovery registers discover components in the system.

Configurations

This register is available in all configurations.

Attributes

The TBU_SYSDISC10 register attributes are as follows:

Width 32‑bit
Functional group TBU system discovery registers. See 3.16 TBU system discovery registers

on page 3-153.
Address offset 0x08E58

Type RO
Reset value TBUCFG_LTI_OG_WIDTH. See 2.5.7 Common LTI TBU and ACE-Lite TBU

configuration options on page 2-80.

Bit descriptions

The following figure shows the bit assignments.

31 56 0

Reserved

TBUCFG_LTI_OG_WIDTH

Figure 3-48 TBU_SYSDISC10 register bit assignments

The following table shows the bit descriptions.

3 Programmers model
3.16 TBU system discovery registers

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

3-161

Non-Confidential

Table 3-74 TBU_SYSDISC10 register bit descriptions

Bits Name Description

[31:6] - Reserved

[5:0] TBUCFG_LTI_OG_WIDTH The read data reflects the chosen parameter value, for example:

6’h00 : 0

….

6’h20 : 32

3.16.12 TBU_SYSDISC11 system discovery register

The TBU system discovery registers discover components in the system.

Configurations

This register is available in all configurations.

Attributes

The TBU_SYSDISC11 register attributes are as follows:

Width 32‑bit
Functional group TBU system discovery registers. See 3.16 TBU system discovery registers

on page 3-153.
Address offset 0x08E5C

Type RO
Reset value TBUCFG_PARTID_WIDTH. See 2.5.8 TBU buffer configuration options on page 2-81.

Bit descriptions

The following figure shows the bit assignments.

31 3 0

Reserved

TBUCFG_PARTID_WIDTH

4

Figure 3-49 TBU_SYSDISC11 register bit assignments

The following table shows the bit descriptions.

Table 3-75 TBU_SYSDISC11 register bit descriptions

Bits Name Description

[31:4] - Reserved

[3:0] TBUCFG_PARTID_WIDTH The read data reflects the chosen parameter value, for example:

4’b0001 : 1

….

4’b1001 : 9

3 Programmers model
3.16 TBU system discovery registers

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

3-162

Non-Confidential

3.16.13 TBU_SYSDISC12 system discovery register

The TBU system discovery registers discover components in the system.

Configurations

This register is available in all configurations.

Attributes

The TBU_SYSDISC12 register attributes are as follows:

Width 32‑bit
Functional group TBU system discovery registers. See 3.16 TBU system discovery registers

on page 3-153.
Address offset 0x08E60

Type RO
Reset value TBUCFG_HZRD_ENTRIES. See 2.5.8 TBU buffer configuration options on page 2-81.

Bit descriptions

The following figure shows the bit assignments.

31 6 0

Reserved

TBUCFG_HZRD_ENTRIES

7

Figure 3-50 TBU_SYSDISC12 register bit assignments

The following table shows the bit descriptions.

Table 3-76 TBU_SYSDISC12 register bit descriptions

Bits Name Description

[31:7] - Reserved

[6:0] TBUCFG_HZRD_ENTRIES The read data reflects the chosen parameter value, for example:

7’h00 : 0

….

7’h40 : 64

3.16.14 TBU_SYSDISC13 system discovery register

The TBU system discovery registers discover components in the system.

Configurations

This register is available in all configurations.

Attributes

The TBU_SYSDISC13 register attributes are as follows:

Width 32‑bit

3 Programmers model
3.16 TBU system discovery registers

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

3-163

Non-Confidential

Functional group TBU system discovery registers. See 3.16 TBU system discovery registers
on page 3-153.

Address offset 0x08E64

Type RO
Reset value TBUCFG_SLOTRAM_TYPE. See 2.5.8 TBU buffer configuration options on page 2-81.

Bit descriptions

The following figure shows the bit assignments.

31 1 0

Reserved

TBUCFG_SLOTRAM_TYPE

2

Figure 3-51 TBU_SYSDISC13 register bit assignments

The following table shows the bit descriptions.

Table 3-77 TBU_SYSDISC13 register bit descriptions

Bits Name Description

[31:2] - Reserved

[1:0] TBUCFG_SLOTRAM_TYPE The read data reflects the chosen parameter value, for example:

2’b00 : 0

….

2’b10 : 2

3.16.15 TBU_SYSDISC14 system discovery register

The TBU system discovery registers discover components in the system.

Configurations

This register is available in all configurations.

Attributes

The TBU_SYSDISC14 register attributes are as follows:

Width 32‑bit
Functional group TBU system discovery registers. See 3.16 TBU system discovery registers

on page 3-153.
Address offset 0x08E68

Type RO
Reset value TBUCFG_CACHERAM_TYPE. See 2.5.8 TBU buffer configuration options on page 2-81.

Bit descriptions

The following figure shows the bit assignments.

3 Programmers model
3.16 TBU system discovery registers

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

3-164

Non-Confidential

31 1 0

Reserved

TBUCFG_CACHERAM_TYPE

2

Figure 3-52 TBU_SYSDISC14 register bit assignments

The following table shows the bit descriptions.

Table 3-78 TBU_SYSDISC14 register bit descriptions

Bits Name Description

[31:2] - Reserved

[1:0] TBUCFG_CACHERAM_TYPE The read data reflects the chosen parameter value, for example:

2’b00 : 0

….

2’b01 : 1

3 Programmers model
3.16 TBU system discovery registers

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

3-165

Non-Confidential

3.17 TBU integration registers
This section describes the TBU integration registers.

This section contains the following subsections:
• 3.17.1 ITEN register on page 3-166.
• 3.17.2 ITOP_TBU register on page 3-166.
• 3.17.3 ITIN_TBU register on page 3-167.

3.17.1 ITEN register

This section describes the ITEN register.

Configurations

This register is available in all configurations.

Attributes

The ITEN register attributes are as follows:

Width 32‑bit
Functional group TBU integration registers. See 3.4.11 TBU integration registers summary

on page 3-100.
Address offset 0x08E20

Type RW
Reset value 0

Bit descriptions

The following figure shows the bit assignments.

31 1 0

Reserved

ITEN

Figure 3-53 ITEN register bit assignments

The following table shows the bit descriptions.

Table 3-79 ITEN register bit descriptions

Bits Name Description

[31:1] - Reserved

[0] ITEN 0 Integration mode is disabled

1 Integration mode is enabled

3.17.2 ITOP_TBU register

This section describes the ITOP register for the TBU.

Configurations

This register is available in all configurations.

3 Programmers model
3.17 TBU integration registers

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

3-166

Non-Confidential

Attributes

The ITOP_TBU register attributes are as follows:

Width 32‑bit
Functional group TBU integration registers. See 3.4.11 TBU integration registers summary

on page 3-100.
Address offset 0x08E24

Type RW
Reset value 0

Bit descriptions

31 4 3 2 1 0

Reserved

pmu_irpt
pmu_snapshot_ack

ras_fhi
ras_eri

5

ras_cri

Figure 3-54 ITOP_TBU register bit assignments

The following table shows the bit descriptions.

Table 3-80 ITOP_TBU register bit descriptions

Bits Name Description

[31:5] - Reserved, SBZ

[4] pmu_irpt 0 When ITEN.ITEN == 0, SBZ

1 When ITEN.ITEN == 1, the value driven to pmu_irpt

[3] pmu_snapshot_ack 0 When ITEN.ITEN == 0, SBZ

1 When ITEN.ITEN == 1, the value driven to pmusnapshot_ack

[2] ras_fhi 0 When ITEN.ITEN == 0, SBZ

1 When ITEN.ITEN == 1, the value driven to ras_fhi

[1] ras_eri 0 When ITEN.ITEN == 0, SBZ

1 When ITEN.ITEN == 1, the value driven to ras_eri

[0] ras_cri 0 When ITEN.ITEN == 0, SBZ

1 When ITEN.ITEN == 1, the value driven to ras_cri

See:
• A.2.8 TBU interrupt signals on page Appx-A-192
• A.1.5 TCU PMU snapshot interface signals on page Appx-A-174

3.17.3 ITIN_TBU register

This section describes the ITIN register for the TBU.

3 Programmers model
3.17 TBU integration registers

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

3-167

Non-Confidential

Configurations

This register is available in all configurations.

Attributes

The ITIN_TBU register attributes are as follows:

Width 32‑bit
Functional group TBU integration registers. See 3.4.11 TBU integration registers summary

on page 3-100.
Address offset 0x08E28

Type RO
Reset value 0

Bit descriptions

The following figure shows the bit assignments.

31 1 0

Reserved

pmu_snapshot_req

Figure 3-55 ITIN_TBU register bit assignments

The following table shows the bit descriptions.

Table 3-81 ITIN_TBU register bit descriptions

Bits Name Description

[31:1] - Reserved, SBZ

[0] pmu_snapshot_req 0 When ITEN.ITEN == 0, SBZ

1 When ITEN.ITEN == 1, reflects pmusnapshot_req

See A.1.5 TCU PMU snapshot interface signals on page Appx-A-174.

3 Programmers model
3.17 TBU integration registers

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

3-168

Non-Confidential

Appendix A
Signal descriptions

This appendix describes the MMU‑700 external signals.

It contains the following sections:
• A.1 TCU signals on page Appx-A-170.
• A.2 TBU signals on page Appx-A-183.
• A.3 TCU and TBU shared signals on page Appx-A-196.
• A.4 DTI signals on page Appx-A-197.

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

Appx-A-169

Non-Confidential

A.1 TCU signals
This section describes the MMU‑700 TCU signals.

This section contains the following subsections:
• A.1.1 TCU clock and reset signals on page Appx-A-170.
• A.1.2 TCU QTW/DVM interface signals on page Appx-A-170.
• A.1.3 TCU programming interface signals on page Appx-A-173.
• A.1.4 TCU SYSCO interface signals on page Appx-A-173.
• A.1.5 TCU PMU snapshot interface signals on page Appx-A-174.
• A.1.6 TCU LPI_PD interface signals on page Appx-A-174.
• A.1.7 TCU LPI_CG interface signals on page Appx-A-174.
• A.1.8 TCU DTI interface signals on page Appx-A-175.
• A.1.9 TCU interrupt signals on page Appx-A-175.
• A.1.10 TCU MSI interface signals on page Appx-A-176.
• A.1.11 TCU event interface signal on page Appx-A-177.
• A.1.12 TCU tie-off signals on page Appx-A-179.
• A.1.13 TCU ELA debug signals on page Appx-A-180.

A.1.1 TCU clock and reset signals

The TCU uses a single set of standard clock and reset signals.

The following table shows the clock and reset signals.

Table A-1 Clock and reset signals

Signal Width Direction Description

clk 1‑bit Input Global clock

resetn 1‑bit Input Global reset

A.1.2 TCU QTW/DVM interface signals

The TCU QTW/DVM interface signals are based on the AMBA ACE5‑Lite signals.

The following table shows the TCU QTW/DVM interface signals.

Table A-2 TCU QTW/DVM interface signals

Signal Width Direction Description

acaddr_qtw 52‑bit Input Snoop address

acprot_qtw 3‑bit Input Snoop protection type

acready_qtw 1‑bit Output Snoop address ready

acsnoop_qtw 4‑bit Input Snoop transaction type

acvalid_qtw 1‑bit Input Snoop address valid

arid_qtw See e Output Read address ID

e QTW_ID_WIDTH‑bit.

QTW_ID_WIDTH is calculated as follows:

((log2(TCUCFG_PTW_SLOTS) + 2) > 4) ? (log2(TCUCFG_PTW_SLOTS) + 2) : 4; See 2.5.2 TCU buffer configuration options on page 2-75.

A Signal descriptions
A.1 TCU signals

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

Appx-A-170

Non-Confidential

Table A-2 TCU QTW/DVM interface signals (continued)

Signal Width Direction Description

araddr_qtw 52‑bit Output Read address

arburst_qtw 2‑bit Output Burst type

arcache_qtw 4‑bit Output Memory type

ardomain_qtw 2‑bit Output Shareability domain

arlen_qtw 8‑bit Output Burst length

arlock_qtw 1‑bit Output Lock type

arprot_qtw 3‑bit Output Protection type

arqos_qtw 4‑bit Output QoS identifier

arready_qtw 1‑bit Input Read address ready

arsize_qtw 3‑bit Output Burst size

arsnoop_qtw 4‑bit Output Transaction type

arvalid_qtw 1‑bit Output Read address valid

awid_qtw See f Output Write address ID

awaddr_qtw 52‑bit Output Write address

awburst_qtw 2‑bit Output Burst type

awcache_qtw 4‑bit Output Memory type

awdomain_qtw 2‑bit Output Shareability domain

awlen_qtw 8‑bit Output Burst length

awlock_qtw 1‑bit Output Lock type

awprot_qtw 3‑bit Output Protection type

awqos_qtw 4‑bit Output QoS identifier

awready_qtw 1‑bit Input Write address ready

awsize_qtw 3‑bit Output Burst size

awsnoop_qtw 4‑bit Output Transaction type

awvalid_qtw 1‑bit Output Write address valid

f QTW_ID_WIDTH‑bit.

QTW_ID_WIDTH is calculated as follows:

((log2(TCUCFG_PTW_SLOTS) + 2) > 4) ? (log2(TCUCFG_PTW_SLOTS) + 2) : 4; See 2.5.2 TCU buffer configuration options on page 2-75.

A Signal descriptions
A.1 TCU signals

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

Appx-A-171

Non-Confidential

Table A-2 TCU QTW/DVM interface signals (continued)

Signal Width Direction Description

crready_qtw 1‑bit Input Snoop response ready

crresp_qtw 5‑bit Output Snoop response

crvalid_qtw 1‑bit Output Snoop response valid

rid_qtw See g Input Read data ID

rdata_qtw See h Input Read data

rlast_qtw 1‑bit Input Read last

rready_qtw 1‑bit Output Read ready

rresp_qtw 2‑bit Input Read response

rvalid_qtw 1‑bit Input Read valid

wdata_qtw See i Output Write data

wlast_qtw 1‑bit Output Write last

wready_qtw 1‑bit Input Write ready

wstrb_qtw See j Output Write strobe

wvalid_qtw 1‑bit Output Write valid

bid_qtw See k Input Response ID

bready_qtw 1‑bit Output Response ready

bresp_qtw 2‑bit Input Write response

bvalid_qtw 1‑bit Input Write response valid

awakeup_qtw 1‑bit Output Wakeup

acwakeup_qtw 1‑bit Input Snoop wakeup

acvmidext_qtw 4‑bit Input Snoop Extended Virtual Machine IDentifier (VMID)

For more information about these signals, see the AMBA® AXI and ACE Protocol Specification.

g QTW_ID_WIDTH‑bit.

QTW_ID_WIDTH is calculated as follows:

((log2(TCUCFG_PTW_SLOTS) + 2) > 4) ? (log2(TCUCFG_PTW_SLOTS) + 2) : 4; See 2.5.2 TCU buffer configuration options on page 2-75.
h TCUCFG_QTW_DATA_WIDTH‑bit. See 2.5.1 TCU I/O configuration options on page 2-75.
i TCUCFG_QTW_DATA_WIDTH‑bit. See 2.5.1 TCU I/O configuration options on page 2-75.
j (TCUCFG_QTW_DATA_WIDTH/8)‑bit. See 2.5.1 TCU I/O configuration options on page 2-75.
k QTW_ID_WIDTH‑bit.

QTW_ID_WIDTH is calculated as follows:

((log2(TCUCFG_PTW_SLOTS) + 2) > 4) ? (log2(TCUCFG_PTW_SLOTS) + 2) : 4; See 2.5.2 TCU buffer configuration options on page 2-75.

A Signal descriptions
A.1 TCU signals

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

Appx-A-172

Non-Confidential

https://developer.arm.com/documentation/ihi0022/latest

A.1.3 TCU programming interface signals

The TCU programming interface signals are based on the AMBA APB4 signals.

The following table shows the TCU programming interface signals.

Table A-3 TCU programming interface signals

Signal Width Direction Description

paddr_prog See l Input Peripheral address

psel_prog 1‑bit Input Peripheral select

penable_prog 1‑bit Input Enable for transfer

pwrite_prog 1‑bit Input Write transaction indicator

pprot_prog 3‑bit Input Protection type

pwdata_prog 32‑bit Input Write data

pstrb_prog 4‑bit Input Write data strobe

pslverr_prog 1‑bit Output Error response

prdata_prog 32‑bit Output Read data

pready_prog 1‑bit Output Transfer ready

pwakeup_prog 1‑bit Input Interface wakeup

For more information about these signals, see the AMBA® APB Protocol Specification.

A.1.4 TCU SYSCO interface signals

The following table shows the TCU SYSCO interface signals.

Table A-4 TCU SYSCO interface signals

Signal Width Direction Description

syscoreq_qtw 1‑bit Output System coherency request.

This output transitions:

HIGH To indicate that the master is requesting to enter the coherency domain.

LOW To indicate that the master is requesting to exit the coherency domain.

syscoack_qtw 1‑bit Input System coherency acknowledge.

This input transitions to the same level as syscoreq_qtw when the request to enter or exit the
coherency domain is complete.

For more information about these signals, see the AMBA® AXI and ACE Protocol Specification.

l If TCUCFG_NUM_TBU is 62, the width of paddr_prog is 23‑bit. Otherwise, the width of paddr_prog is 21‑bit. See 2.5.2 TCU buffer configuration options
on page 2-75.

A Signal descriptions
A.1 TCU signals

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

Appx-A-173

Non-Confidential

https://developer.arm.com/documentation/ihi0024/latest
https://developer.arm.com/documentation/ihi0022/latest

A.1.5 TCU PMU snapshot interface signals

The following table shows the TCU PMU snapshot interface signals.

Table A-5 TCU PMU snapshot interface signals

Signal Width Direction Description

pmusnapshot_req 1‑bit Input PMU snapshot request. The PMU snapshot occurs on the rising edge of pmusnapshot_req.
 Note

Connect to the debug infrastructure of your SoC.

pmusnapshot_ack 1‑bit Output PMU snapshot acknowledge. The TCU uses this signal to acknowledge that the PMU
snapshot has occurred.

This signal is LOW after reset.
 Note

Connect to the debug infrastructure of your SoC.

A.1.6 TCU LPI_PD interface signals

The following table shows the TCU LPI_PD interface signals.

Table A-6 TCU LPI_PD interface signals

Signal Width Direction Description

qactive_pd 1‑bit Output Component active

qreqn_pd 1‑bit Input Quiescence request

qacceptn_pd 1‑bit Output Quiescence accept

qdeny_pd 1‑bit Output Quiescence deny

For more information about these signals, see the AMBA® Low Power Interface Specification, Arm®

Q‑Channel and P‑Channel Interfaces.

A.1.7 TCU LPI_CG interface signals

The following table shows the TCU LPI_CG interface signals.

Table A-7 TCU LPI_CG interface signals

Signal Width Direction Description

qactive_cg 1‑bit Output Component active

qreqn_cg 1‑bit Input Quiescence request

qacceptn_cg 1‑bit Output Quiescence accept

qdeny_cg 1‑bit Output Quiescence deny

A Signal descriptions
A.1 TCU signals

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

Appx-A-174

Non-Confidential

https://developer.arm.com/documentation/ihi0068/latest
https://developer.arm.com/documentation/ihi0068/latest

For more information about these signals, see the AMBA® Low Power Interface Specification, Arm®

Q‑Channel and P‑Channel Interfaces.

A.1.8 TCU DTI interface signals

The following table shows the TCU DTI interface signals.

Table A-8 TCU DTI interface signals

Signal Width Direction Description

tvalid_dti_dn 1‑bit Master to slave Flow control signal

tready_dti_dn 1‑bit Slave to master Flow control signal

tdata_dti_dn 20‑bit Master to slave Message data signal

tid_dti_dn See m Master to slave Identifies the master that initiated the message

tlast_dti_dn 1‑bit Master to slave Indicates the last cycle of a message

tkeep_dti_dn 20‑bit Master to slave This signal indicates valid bytes

tvalid_dti_up 1‑bit Slave to master Flow control signal

tready_dti_up 1‑bit Master to slave Flow control signal

tdata_dti_up 160‑bit Slave to master Message data signal

tdest_dti_up See n Slave to master Identifies the master that is receiving the message

tlast_dti_up 1‑bit Slave to master Indicates the last cycle of a message

tkeep_dti_up 20‑bit Slave to master Indicates valid bytes

twakeup_dti_up 1‑bit Slave to master Wakeup signal

twakeup_dti_dn 1‑bit Master to slave Wakeup signal

For more information about the DTI signals, see the AMBA® 4 AXI4‑Stream Protocol Specification.

For more information about DTI protocol messages, see the AMBA® DTI Protocol Specification.

A.1.9 TCU interrupt signals

The TCU interrupt signals are edge‑triggered. The interrupt controller must detect the rising edge of
these signals.

The TCU can also output the Secure and Non-secure Event queue, SYNC complete commands, and
global interrupts as Message Signaled Interrupts (MSIs) on the QTW/DVM interface. If the system
supports capturing MSIs from the TCU, there is no requirement to connect the corresponding interrupt
signals in this interface.

The following table shows the TCU interrupt signals.

m If TCUCFG_NUM_TBU is 62, the width of tid_dti_dn is 6‑bit. Otherise, the width of tid_dti_dn is 4‑bit. See 2.5.2 TCU buffer configuration options on page 2-75.
n If TCUCFG_NUM_TBU is 62, the width of tdest_dti_up is 6‑bit. Otherise, the width of tdest_dti_up is 4‑bit. See 2.5.2 TCU buffer configuration options

on page 2-75.

A Signal descriptions
A.1 TCU signals

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

Appx-A-175

Non-Confidential

https://developer.arm.com/documentation/ihi0068/latest
https://developer.arm.com/documentation/ihi0068/latest
https://developer.arm.com/documentation/ihi0051/latest
https://developer.arm.com/documentation/ihi0088/latest

Table A-9 TCU interrupt interface signals

Signal Width Direction Description

event_q_irpt_s 1‑bit Output Event queue, Secure interrupt. Asserts a Secure interrupt to indicate that the Event queue is
not empty or has overflowed.

event_q_irpt_ns 1‑bit Output Event queue, Non‑secure interrupt. Asserts a Non‑secure interrupt to indicate that the Event
queue is not empty or has overflowed.

cmd_sync_irpt_ns 1‑bit Output SYNC complete, Non‑secure interrupt. Asserts a Non‑secure interrupt to indicate that the
CMD_SYNC command is complete.

cmd_sync_irpt_s 1‑bit Output SYNC complete, Secure interrupt. Asserts a Secure interrupt to indicate that the CMD_SYNC
command is complete.

global_irpt_ns 1‑bit Output Asserts a global Non‑secure interrupt

global_irpt_s 1‑bit Output Asserts a global Secure interrupt

ras_fhi 1‑bit Output Fault handling RAS interrupt for a contained error

ras_eri 1‑bit Output Error recovery RAS interrupt for an uncontained error

ras_cri 1‑bit Output Critical error interrupt, for an uncontainable uncorrected error

pmu_irpt 1‑bit Output Asserts a PMU interrupt.
 Note

The MMU‑700 cannot output PMU interrupts as MSIs. You must connect this output to an
interrupt controller.

pri_q_irpt_ns 1‑bit Output Asserts a Page Request Interface (PRI) queue interrupt

A.1.10 TCU MSI interface signals

This section describes the TCU Message Signaled Interrupt (MSI) interface.

See the GIC MSI Delivery Interface document for more information.

The interface follows the AXI4‑Stream protocol and uses the signals in the following table to send MSIs.

The following table shows the TCU MSI interface signals.

Table A-10 TCU MSI interface signals

Signal AXI4-Stream signal Width Direction Description

msitvalid TVALID 1‑bit Output Indicates valid data to the GIC

msitready TREADY 1‑bit Input Indicates acceptance by the GIC

msitdata TDATA 64‑bit Output Data being passed to the GIC

msitwakeup TWAKEUP, AMBA extension 1‑bit Output Indicates that a transaction is ongoing

msirtvalid TVALID 1‑bit Input Indicates that the GIC has accepted an MSI

msirtready TREADY 1‑bit Output Indicates that the device has accepted the response packet

msirtwakeup TWAKEUP, AMBA extension 1‑bit Input Indicates that a transaction is ongoing

A Signal descriptions
A.1 TCU signals

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

Appx-A-176

Non-Confidential

A.1.11 TCU event interface signal

The TCU event interface signal is an event output for connection to processors.

The following table shows the TCU event interface signal.

A Signal descriptions
A.1 TCU signals

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

Appx-A-177

Non-Confidential

Table A-11 TCU event interface signal

Signal Width Direction Description

evento 1‑bit Output The evento signal is asserted for one cycle to indicate an event that enables processors to wake up from
the Wait For Event (WFE) low‑power state.

Connect the evento signal of the TCU to the event interface of Arm processors. Processors that use the
DynamIQ Shared Unit (DSU) have a different event handshake mechanism.

The mechanism that the DSU uses is the successor to the mechanism that some MMUs use.

Arm processors can use the following event mechanisms:

• Some processors have an eventi input to connect directly to the evento output from the MMU.
• Some processors, including DSU‑based systems, have a req/ack handshake mechanism that

requires the evento signal from the MMU to be converted and uses the eventiack, eventireq,
eventoack, and eventoreq signals.

 Note

You can also route the evento signal through other interconnects such as the Arm CoreLink CMN‑600
Coherent Mesh Network instead of connecting evento directly to the processor. These interconnects,
like the DSU, only support the newer event mechanism.

If the rest of your system uses the newer event mechanism, you must add logic to convert events that
the MMU‑700 generates, which uses the older event mechanism.

In both mechanisms, in the signal names:

i Represents events that are inputs to a particular component.

o Represents events that are outputs from a particular component.

 Note

For the signals, the handshake mechanism uses one input and one output in each direction. This is
because the acknowledgment of the request operates in the opposite direction to the original request.

The MMU‑700 has an event output and therefore only has the evento signal. The processor has an input
interface to receive the event from the MMU‑700, and other devices. This input interface uses the
eventiack and eventireq signals, if the processor uses the newer mechanism.

The required conversion is from the older mechanism, eventi and evento signals, to the newer
mechanism, eventiack, eventireq, eventoack, and eventoreq signals.

When connecting the MMU‑700 to a DSU, the only signals to consider are the following:

• evento signal of the MMU‑700.
• eventiack and eventireq signals of the DSU.

Some processors have an eventi input instead.

You can use the Channel Pulse to Channel adapter that is provided in the CoreSight System‑on‑Chip
SoC-600. For more information about this component, see Chapter 6.11 in the Arm® CoreSight™

System‑on‑Chip SoC‑600 Technical Reference Manual.
 Note

To use the Channel Pulse to Channel adapter from CoreSight System‑on‑Chip SoC‑600, you must be a
licensee of the SoC‑600 product. If you are not a licensee of SoC‑600, you must add your own logic.

For more information, see the documentation for your processor or DSU.

A Signal descriptions
A.1 TCU signals

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

Appx-A-178

Non-Confidential

https://developer.arm.com/documentation/100806/latest
https://developer.arm.com/documentation/100806/latest

A.1.12 TCU tie-off signals

The TCU tie‑off signals are sampled between exiting reset and the LPI_PD interface first entering the
Q_RUN state. Ensure that the value of these signals does not change when the LPI_PD interface is in the
Q_STOPPED or Q_EXIT state for the first time after exiting reset.

The following table shows the TCU tie‑off signals.

Table A-12 TCU tie-off signals

Signal Width Direction Description

sup_cohacc 1‑bit Input This signal indicates whether the QTW interface is I/O‑coherent. Tie HIGH when the TCU is
connected to a coherent interconnect.

sup_btm 1‑bit Input This signal indicates whether the Broadcast TLB Maintenance is supported. Tie HIGH when
the TCU is connected to an interconnect that supports DVM.

sup_sev 1‑bit Input This signal indicates whether the Send Event mechanism is supported. Tie HIGH when evento
is connected.

sup_oas[2:0] 3‑bit Input Output address size supported.

The encodings for this input are as follows:

0b000 32 bits

0b001 36 bits

0b010 40 bits

0b011 42 bits

0b100 44 bits

0b101 48 bits

0b110 52 bits

You must not use other encodings. Other encodings are treated as 0b110.

sec_override 1‑bit Input When HIGH, certain registers are accessible to Non‑secure accesses from reset, as the
3.7.7 TCU_SCR register on page 3-112 settings describe

ecorevnum[3:0] 4‑bit Input Tie this signal to 0 unless directed otherwise by Arm

msi_addr[51:0] 52‑bit Input If the programmed MSI address in SMMU_(S_)_*_IRQ_CFG0.ADDR matched msi_addr,
then an MSI is generated on the GIC AXI‑Stream interface

A Signal descriptions
A.1 TCU signals

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

Appx-A-179

Non-Confidential

Table A-12 TCU tie-off signals (continued)

Signal Width Direction Description

tcu_sid[31:0] 32‑bit Input Used to generate DeviceID for TCU‑generated MSIs

sup_httu 1‑bit Input 0 When set to 0, sup_httu indicates that the ACE‑Lite interface that is connected to the
TCU cannot support atomics. The TCU cannot perform Hardware Translation Table
Update (HTTU) transactions.

1 When set to 1, sup_httu indicates that the ACE‑Lite interface that is connected to the
TCU can support atomics. The TCU uses atomic transactions to perform HTTU.

The impact of sup_httu on SMMU_IDR0.HTTU is as follows:

sup_httu is 1'b0
SMMU_IDR0.HTTU is 2'b00

sup_httu is 1'b1
SMMU_IDR0.HTTU is 2'b10

See 2.4.1 SMMUv3 implementation on page 2-57.

For more information about the SMMUv3 ID signals, see the Arm® System Memory Management Unit
Architecture Specification, SMMU architecture versions 3.0, 3.1 and 3.2.

A.1.13 TCU ELA debug signals

The MMU‑700 TCU includes Embedded Logic Analyzer (ELA) debug signals.

The following table shows the ELA enable signal.

Table A-13 ELA enable signal

Signal Width Direction Description

ela_enable 1‑bit Input ela_enable is an asynchronous input port. When TCUCFG_USE_ELA_DEBUG is 0, the SMMU
ignores the value of the signal. When TCUCFG_USE_ELA_DEBUG is 1, ela_enable acts as a clock
enable for the TCU ELA observation interface. If ELA debug is required, drive ela_enable HIGH.
If ELA debug is not required, drive ela_enable LOW to reduce the dynamic power consumption of
the SMMU.

The following table shows the TCU ELA debug signals.

Table A-14 TCU ELA debug signals

Signal Width Direction Description

Signal group 0 signals

signalgrp0 128‑bit Output See B.1 TCU observation
interfaces on page Appx-B-204

sigqual0 4‑bit

sigclken0 1‑bit

Signal group 1 signals

signalgrp1 128‑bit Output See B.1 TCU observation
interfaces on page Appx-B-204

sigqual1 4‑bit

sigclken1 1‑bit

A Signal descriptions
A.1 TCU signals

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

Appx-A-180

Non-Confidential

https://static.docs.arm.com/ihi0070/ca/IHI_0070_C_a_System_Memory_Management_Unit_Arm_Architecture_Specification.pdf
https://static.docs.arm.com/ihi0070/ca/IHI_0070_C_a_System_Memory_Management_Unit_Arm_Architecture_Specification.pdf

Table A-14 TCU ELA debug signals (continued)

Signal Width Direction Description

Signal group 2 signals

signalgrp2 128‑bit Output See B.1 TCU observation
interfaces on page Appx-B-204

sigqual2 4‑bit

sigclken2 1‑bit

Signal group 3 signals

signalgrp3 128‑bit Output See B.1 TCU observation
interfaces on page Appx-B-204

sigqual3 4‑bit

sigclken3 1‑bit

Signal group 4 signals

signalgrp4 128‑bit Output See B.1 TCU observation
interfaces on page Appx-B-204

sigqual4 4‑bit

sigclken4 1‑bit

Signal group 5 signals

signalgrp5 128‑bit Output See B.1 TCU observation
interfaces on page Appx-B-204

sigqual5 4‑bit

sigclken5 1‑bit

Signal group 6 signals

signalgrp6 128‑bit Output See B.1 TCU observation
interfaces on page Appx-B-204

sigqual6 4‑bit

sigclken6 1‑bit

Signal group 7 signals

signalgrp7 128‑bit Output See B.1 TCU observation
interfaces on page Appx-B-204

sigqual7 4‑bit

sigclken7 1‑bit

Signal group 8 signals

signalgrp8 128‑bit Output See B.1 TCU observation
interfaces on page Appx-B-204

sigqual8 4‑bit

sigclken8 1‑bit

Signal group 9 signals

signalgrp9 128‑bit Output See B.1 TCU observation
interfaces on page Appx-B-204

sigqual9 4‑bit

sigclken9 1‑bit

Signal group 10 signals

A Signal descriptions
A.1 TCU signals

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

Appx-A-181

Non-Confidential

Table A-14 TCU ELA debug signals (continued)

Signal Width Direction Description

signalgrp10 128‑bit Output See B.1 TCU observation
interfaces on page Appx-B-204

sigqual10 4‑bit

sigclken10 1‑bit

Signal group 11 signals

signalgrp11 128‑bit Output See B.1 TCU observation
interfaces on page Appx-B-204

sigqual11 4‑bit

sigclken11 1‑bit

A Signal descriptions
A.1 TCU signals

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

Appx-A-182

Non-Confidential

A.2 TBU signals
This section describes the MMU‑700 TBU signals.

This section contains the following subsections:
• A.2.1 TBU clock and reset signals on page Appx-A-183.
• A.2.2 TBU TBS interface signals on page Appx-A-183.
• A.2.3 TBU TBM interface signals on page Appx-A-187.
• A.2.4 TBU PMU snapshot interface signals on page Appx-A-190.
• A.2.5 TBU LPI_PD interface signals on page Appx-A-190.
• A.2.6 TBU LPI_CG interface signals on page Appx-A-191.
• A.2.7 TBU DTI interface signals on page Appx-A-191.
• A.2.8 TBU interrupt signals on page Appx-A-192.
• A.2.9 TBU tie-off signals on page Appx-A-192.
• A.2.10 TBU ELA debug signals on page Appx-A-193.

A.2.1 TBU clock and reset signals

The TBU uses a single set of standard clock and reset signals.

The following table shows the clock and reset signals.

Table A-15 Clock and reset signals

Signal Width Direction Description

clk 1‑bit Input Global clock

resetn 1‑bit Input Global reset

A.2.2 TBU TBS interface signals

The TBU TBS interface signals are based on the AMBA ACE5‑Lite signals.

The following table shows the TBU TBS interface signals.

Table A-16 TBU TBS interface signals

Signal Width Direction Description

clk 1‑bit Input Clock input

resetn 1‑bit Input Active‑LOW reset signal

araddr_s 64‑bit Input Read address

arburst_s 2‑bit Input Burst type

arcache_s 4‑bit Input Memory type

ardomain_s 2‑bit Input Shareability domain

arid_s See o Input Read address ID

arlen_s 8‑bit Input Burst length

arlock_s 1‑bit Input Lock type

o TBUCFG_ID_WIDTH‑bit. See 2.5.4 ACE-Lite TBU I/O configuration options on page 2-78.

A Signal descriptions
A.2 TBU signals

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

Appx-A-183

Non-Confidential

Table A-16 TBU TBS interface signals (continued)

Signal Width Direction Description

arprot_s 3‑bit Input Protection type

arqos_s 4‑bit Input Quality of Service (QoS)

arready_s 1‑bit Output Read address ready

arregion_s 4‑bit Input Region identifier

arsize_s 3‑bit Input Burst size

armmussid_s See p Input These signals indicate the StreamID, SubstreamID, and ATS translated
status of the originating transaction.

These signals are defined by the AXI5 Untranslated_Transactions
extension.

armmusid_s See q Input

armmussidv_s 1‑bit Input

armmusecsid_s 1‑bit Input

arvalid_s 1‑bit Input Read address valid

awaddr_s 64‑bit Input Write address

awatop_s 6‑bit Input Atomic operation

awburst_s 2‑bit Input Burst type

awcache_s 4‑bit Input Memory type

awdomain_s 4‑bit Input Shareability domain

awid_s See r Input Write address ID

awlen_s 8‑bit Input Burst length

awlock_s 1‑bit Input Lock type

awprot_s 3‑bit Input Protection type

awqos_s 4‑bit Input QoS

awready_s 1‑bit Output Write address ready

awregion_s 4‑bit Input Region identifier

awsize_s 3‑bit Input Burst size

p TBUCFG_SSID_WIDTH‑bit. See 2.5.7 Common LTI TBU and ACE-Lite TBU configuration options on page 2-80.
q TBUCFG_SID_WIDTH‑bit. See 2.5.7 Common LTI TBU and ACE-Lite TBU configuration options on page 2-80.
r TBUCFG_ID_WIDTH‑bit. See 2.5.4 ACE-Lite TBU I/O configuration options on page 2-78.

A Signal descriptions
A.2 TBU signals

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

Appx-A-184

Non-Confidential

Table A-16 TBU TBS interface signals (continued)

Signal Width Direction Description

awmmussid_s See s Input These signals indicate the StreamID, SubstreamID, and ATS translated
status of the originating transaction.

These signals are defined by the AXI5 Untranslated_Transactions
extension.

awmmusid_s See t

awmmussidv_s 1‑bit

awmmusecsid_s 1‑bit

awvalid_s 1‑bit Input Write address valid

bid_s See u Output Response ID

bready_s 1‑bit Input Response ready

bresp_s 3‑bit Output Write response

bvalid_s 1‑bit Output Write response valid

rdata_s See v Output Read data

rid_s See w Output Read ID

rlast_s 1‑bit Output Read last

rready_s 1‑bit Input Read ready

rresp_s 3‑bit Output Read response

rvalid_s 1‑bit Output Read valid

wdata_s See x Input Write data

wlast_s 1‑bit Input Write last

wready_s 1‑bit Output Write ready

wstrb_s See y Input Write strobes

wvalid_s 1‑bit Input Write valid

aruser_s See z Input Read address (AR) channel User signal

awuser_s See aa Input Write address (AW) channel User signal

wuser_s See ab Input Write data (W) channel User signal

s TBUCFG_SSID_WIDTH‑bit. See 2.5.7 Common LTI TBU and ACE-Lite TBU configuration options on page 2-80.
t TBUCFG_SID_WIDTH‑bit. See 2.5.7 Common LTI TBU and ACE-Lite TBU configuration options on page 2-80.
u TBUCFG_ID_WIDTH‑bit. See 2.5.4 ACE-Lite TBU I/O configuration options on page 2-78.
v TBUCFG_DATA_WIDTH‑bit. See 2.5.4 ACE-Lite TBU I/O configuration options on page 2-78.
w TBUCFG_ID_WIDTH‑bit. See 2.5.4 ACE-Lite TBU I/O configuration options on page 2-78.
x TBUCFG_DATA_WIDTH‑bit. See 2.5.4 ACE-Lite TBU I/O configuration options on page 2-78.
y (TBUCFG_DATA_WIDTH/8)‑bit. See 2.5.4 ACE-Lite TBU I/O configuration options on page 2-78.
z (TBUCFG_ARUSER_WIDTH + LTI_TLBLOC_WIDTH_RAW -)‑bit. See 2.5.4 ACE-Lite TBU I/O configuration options on page 2-78.

aa (TBUCFG_AWUSER_WIDTH + LTI_TLBLOC_WIDTH_RAW -)‑bit. See 2.5.4 ACE-Lite TBU I/O configuration options on page 2-78.
ab TBUCFG_WUSER_WIDTH‑bit. See 2.5.4 ACE-Lite TBU I/O configuration options on page 2-78.

A Signal descriptions
A.2 TBU signals

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

Appx-A-185

Non-Confidential

Table A-16 TBU TBS interface signals (continued)

Signal Width Direction Description

ruser_s See ac Output Read data (R) channel User signal

buser_s See ad Output Write response (B) channel User signal

awakeup_s 1‑bit Input Wakeup signal

arsnoop_s 4‑bit Input Transaction type of read transaction

awsnoop_s[3] 4‑bit Input Transaction type of write transaction

awstashnid_s[10:0] 11‑bit Input These signals are defined by the AXI5 Cache_Stash_Transactions
extension.

If TBUCFG_STASH = 0, these signals are ignored.
awstashniden_s 1‑bit Input

awstashlpid_s[4:0] 5‑bit Input

awstashlpiden_s 1‑bit Input

archunken_s 1‑bit Input Read data chunking enable

aridunq_s 1‑bit Input Read address channel unique ID indicator, active‑HIGH

arloop_s See ae Input Loopback value for a read transaction. Reflected back on RLOOP.

awidunq_s 1‑bit Input Write address channel unique ID indicator, active‑HIGH

awloop_s See af Input Loopback value for a write transaction

wpoison_s See ag Input Indicates that the write data in this transfer has been corrupted

bidunq_s 1‑bit Input Write response channel unique ID indicator, active‑HIGH

bloop_s See ah Input Loopback value for a write response

rchunknum_s [CHUNKNUM_WIDTH - 1:0] Input Read data chunk number

rchunkstrb_s [CHUNKSTRB_WIDTH - 1:0] Input Read data chunk strobe

rchunkv_s 1‑bit Input Valid signal of RCHUNKNUM and RCHUNKSTRB

ridunq_s 1‑bit Input Read data channel unique ID indicator, active‑HIGH

rloop_s See ai Input Loopback value for a read response

rpoison_s See aj Input Indicates that the read data in this transfer has been corrupted

ac TBUCFG_RUSER_WIDTH‑bit. See 2.5.4 ACE-Lite TBU I/O configuration options on page 2-78.
ad TBUCFG_BUSER_WIDTH‑bit. See 2.5.4 ACE-Lite TBU I/O configuration options on page 2-78.
ae TBUCFG_LOOP_WIDTH‑bit. See 2.5.4 ACE-Lite TBU I/O configuration options on page 2-78.
af TBUCFG_LOOP_WIDTH‑bit. See 2.5.4 ACE-Lite TBU I/O configuration options on page 2-78.
ag [(TBUCFG_DATA_WIDTH/64)‑bit. See 2.5.4 ACE-Lite TBU I/O configuration options on page 2-78.
ah TBUCFG_LOOP_WIDTH‑bit. See 2.5.4 ACE-Lite TBU I/O configuration options on page 2-78.
ai TBUCFG_LOOP_WIDTH‑bit. See 2.5.4 ACE-Lite TBU I/O configuration options on page 2-78.
aj (TBUCFG_DATA_WIDTH / 64)‑bit. See 2.5.4 ACE-Lite TBU I/O configuration options on page 2-78.

A Signal descriptions
A.2 TBU signals

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

Appx-A-186

Non-Confidential

A.2.3 TBU TBM interface signals

The TBU TBM interface signals are based on the AMBA ACE5‑Lite signals.

The following table shows the TBU TBM interface signals.

Table A-17 TBU TBM interface signals

Signal Width Direction Description

aclk 1‑bit Input Clock input

araddr_m 52‑bit Output Read address

arburst_m 2‑bit Output Burst type

arcache_m 4‑bit Output Memory type

ardomain_m 2‑bit Output Shareability domain

aresetn 1‑bit Input Active‑LOW reset signal

arid_m See ak Output Read address ID

arlen_m 8‑bit Output Burst length

arlock_m 1‑bit Output Lock type

arprot_m 3‑bit Output Protection type

arqos_m 4‑bit Output Quality of Service (QoS)

arready_m 1‑bit Input Read address ready

arregion_m 4‑bit Output Region identifier

arsize_m 3‑bit Output Burst size

armmusid_m See al Output These signals indicate the StreamID of the originating transaction

armmusecsid_m 1‑bit Output

arvalid_m 1‑bit Output Read address valid

awaddr_m 52‑bit Output Write address

awatop_m 6‑bit Output Atomic operation

awburst_m 2‑bit Output Burst type

awcache_m 4‑bit Output Memory type

awdomain_m 2‑bit Output Shareability domain

awid_m See am Output Write address ID

ak TBUCFG_ID_WIDTH‑bit. See 2.5.4 ACE-Lite TBU I/O configuration options on page 2-78.
al TBUCFG_SID_WIDTH‑bit. See 2.5.7 Common LTI TBU and ACE-Lite TBU configuration options on page 2-80.

am TBUCFG_ID_WIDTH‑bit. See 2.5.4 ACE-Lite TBU I/O configuration options on page 2-78.

A Signal descriptions
A.2 TBU signals

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

Appx-A-187

Non-Confidential

Table A-17 TBU TBM interface signals (continued)

Signal Width Direction Description

awlen_m 8‑bit Output Burst length

awlock_m 1‑bit Output Lock type

awprot_m 3‑bit Output Protection type

awqos_m 4‑bit Output QoS

awready_m 1‑bit Input Write address ready

awregion_m 4‑bit Output Region identifier

awsize_m 3‑bit Output Burst size

awmmusid_m See an Output These signals indicate the StreamID of the originating transaction.

The Generic Interrupt Controller (GIC) uses these signals to determine
the DeviceID of MSIs that originate from upstream masters.

awmmusecsid_m 1‑bit Output

awvalid_m 1‑bit Output Write address valid

bid_m See ao Input Response ID

bready_m 1‑bit Output Response ready

bresp_m 2‑bit Input Write response

bvalid_m 1‑bit Input Write response valid

rdata_m See ap Input Read data

rid_m See aq Input Read ID

rlast_m 1‑bit Input Read last

rready_m 1‑bit Output Read ready

rresp_m 2‑bit Input Read response

rvalid_m 1‑bit Input Read valid

wdata_m See ar Output Write data

wlast_m 1‑bit Output Write last

wready_m 1‑bit Input Write ready

wstrb_m See as Output Write strobes

an TBUCFG_SID_WIDTH‑bit. See 2.5.7 Common LTI TBU and ACE-Lite TBU configuration options on page 2-80.
ao TBUCFG_ID_WIDTH‑bit. See 2.5.4 ACE-Lite TBU I/O configuration options on page 2-78.
ap TBUCFG_DATA_WIDTH‑bit. See 2.5.4 ACE-Lite TBU I/O configuration options on page 2-78.
aq TBUCFG_ID_WIDTH‑bit. See 2.5.4 ACE-Lite TBU I/O configuration options on page 2-78.
ar TBUCFG_DATA_WIDTH‑bit. See 2.5.4 ACE-Lite TBU I/O configuration options on page 2-78.
as (TBUCFG_DATA_WIDTH / 8)‑bit. See 2.5.4 ACE-Lite TBU I/O configuration options on page 2-78.

A Signal descriptions
A.2 TBU signals

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

Appx-A-188

Non-Confidential

Table A-17 TBU TBM interface signals (continued)

Signal Width Direction Description

wvalid_m 1‑bit Output Write valid

aruser_m See at Output Read address (AR) channel User signal

awuser_m See au Output Write address (AW) channel User signal

wuser_m See av Output Write data (W) channel User signal

ruser_m See aw Input Read data (R) channel User signal

buser_m See ax Input Write response (B) channel User signal

awakeup_m 1‑bit Output Wakeup signal

arsnoop_m 4‑bit Output Transaction type of read transaction

awsnoop_m[3:0] 4‑bit Output Transaction type of write transaction

Read data chunking enable - Output The AXI5 Cache_Stash_Transactions extension defines these signals. See
AMBA® AXI and ACE Protocol Specification.

If TBUCFG_STASH = 0, these signals are ignored.
Read address channel unique ID
indicator, active‑HIGH

Loopback value for a read
transaction. Reflected back on
RLOOP

Indicates the SMMU flow for
managing translation faults

archunken_m 1‑bit Output Read data chunking enable

aridunq_m 1‑bit Output Read address channel unique ID indicator, active‑HIGH

arloop_m See ay Output Loopback value for a read transaction. Reflected back on RLOOP

armmuflow_s 2‑bit Input (Output) Indicates the SMMU flow for managing translation faults

armpam_m 11‑bit Output Read address channel MPAM information

awidunq_m 1‑bit Output Write address channel unique ID indicator, active‑HIGH

awloop_m See az Output Loopback value for a write transaction

awmmuflow_s 2‑bit Input (Output) Indicates the SMMU flow for managing translation faults

awmpam_m 11‑bit Output Write address channel MPAM information

wpoison_m See ba Output Indicates that the write data in this transfer has been corrupted

at (TBUCFG_ARUSER_WIDTH‑+ 4)‑bit. See 2.5.4 ACE-Lite TBU I/O configuration options on page 2-78.
au (TBUCFG_AWUSER_WIDTH‑+ 4)‑bit. See 2.5.4 ACE-Lite TBU I/O configuration options on page 2-78.
av TBUCFG_WUSER_WIDTH‑bit. See 2.5.4 ACE-Lite TBU I/O configuration options on page 2-78.
aw TBUCFG_RUSER_WIDTH‑bit. See 2.5.4 ACE-Lite TBU I/O configuration options on page 2-78.
ax TBUCFG_BUSER_WIDTH‑bit. See 2.5.4 ACE-Lite TBU I/O configuration options on page 2-78.
ay If TBUCFG_OT_TRACKER_TYPE is 1, the width of arloop_m is (TBUCFG_LOOP_WIDTH + 2)‑bit. Otherise, the width of arloop_m is TBUCFG_LOOP_WIDTH‑bit. See

2.5.4 ACE-Lite TBU I/O configuration options on page 2-78.
az If TBUCFG_OT_TRACKER_TYPE is 1, the width of awloop_m is (TBUCFG_LOOP_WIDTH + 2)‑bit. Otherwise, the width of awloop_m is TBUCFG_LOOP_WIDTH‑bit.

See 2.5.4 ACE-Lite TBU I/O configuration options on page 2-78.
ba (TBUCFG_DATA_WIDTH / 64)‑bit. See 2.5.4 ACE-Lite TBU I/O configuration options on page 2-78.

A Signal descriptions
A.2 TBU signals

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

Appx-A-189

Non-Confidential

https://developer.arm.com/documentation/ihi0022/latest

Table A-17 TBU TBM interface signals (continued)

Signal Width Direction Description

bidunq_m 1‑bit Input (Output) Write response channel unique ID indicator, active‑HIGH

bloop_m See bb Output Loopback value for a write response

rchunknum_m See bc Output Read data chunk number

rchunkstrb_m See bd Output Read data chunk strobe

rchunkv_m 1‑bit Output Valid signal of RCHUNKNUM and RCHUNKSTRB

ridunq_m 1‑bit Output Read data channel unique ID indicator, active‑HIGH

rloop_m See be Output Loopback value for a read response

rpoison_m See bf Output Indicates that the read data in this transfer has been corrupted

A.2.4 TBU PMU snapshot interface signals

The following table shows the TBU PMU snapshot interface signals.

Table A-18 TBU PMU snapshot interface signals

Signal Width Direction Description

pmusnapshot_req 1‑bit Input PMU snapshot request. The PMU snapshot occurs on the rising edge of pmusnapshot_req.
 Note

Connect to the debug infrastructure of your SoC.

pmusnapshot_ack 1‑bit Output PMU snapshot acknowledge. The TBU uses this signal to acknowledge that the PMU
snapshot has occurred.

This signal is LOW after reset.
 Note

Connect to the debug infrastructure of your SoC.

A.2.5 TBU LPI_PD interface signals

The following table shows the TBU LPI_PD interface signals.

bb If TBUCFG_OT_TRACKER_TYPE is 1, the width of awloop_m is (TBUCFG_LOOP_WIDTH + 2)‑bit. Otherwise, the width of awloop_m is TBUCFG_LOOP_WIDTH‑bit.
See 2.5.4 ACE-Lite TBU I/O configuration options on page 2-78.

bc If TBUCFG_DATA_WIDTH is 128, then the width of rchunknum_m is 8‑bit.

If TBUCFG_DATA_WIDTH is 256, then the width of rchunknum_m is 7‑bit.

If TBUCFG_DATA_WIDTH is 512, then the width of rchunknum_m is 6‑bit.

If TBUCFG_DATA_WIDTH is 1024, then the width of rchunknum_m is 5‑bit.

Otherwise, the width of rchunknum_m is 1‑bit. See 2.5.4 ACE-Lite TBU I/O configuration options on page 2-78.
bd If TBUCFG_DATA_WIDTH is 64, then the width of rchunkstrb_m is 1‑bit. Otherwise, the width of rchunkstrb_m is (TBUCFG_DATA_WIDTH / 128)‑bit. See

2.5.4 ACE-Lite TBU I/O configuration options on page 2-78.
be If TBUCFG_OT_TRACKER_TYPE is 1, the width of rloop_m is (TBUCFG_LOOP_WIDTH + 2)‑bit. Otherwise, the width of rloop_m is TBUCFG_LOOP_WIDTH‑bit. See

2.5.4 ACE-Lite TBU I/O configuration options on page 2-78.
bf (TBUCFG_DATA_WIDTH / 64)‑bit. See 2.5.4 ACE-Lite TBU I/O configuration options on page 2-78.

A Signal descriptions
A.2 TBU signals

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

Appx-A-190

Non-Confidential

Table A-19 TBU LPI_PD interface signals

Signal Width Direction Description

qactive_pd 1‑bit Output Component active

qreqn_pd 1‑bit Input Quiescence request

qacceptn_pd 1‑bit Output Quiescence accept

qdeny_pd 1‑bit Output Quiescence deny

For more information about these signals, see the AMBA® Low Power Interface Specification, Arm®

Q‑Channel and P‑Channel Interfaces.

A.2.6 TBU LPI_CG interface signals

The following table shows the TBU LPI_CG interface signals.

Table A-20 TBU LPI_CG interface signals

Signal Width Direction Description

qactive_cg 1‑bit Output Component active

qreqn_cg 1‑bit Input Quiescence request

qacceptn_cg 1‑bit Output Quiescence accept

qdeny_cg 1‑bit Output Quiescence deny

For more information about these signals, see the AMBA® Low Power Interface Specification, Arm®

Q‑Channel and P‑Channel Interfaces.

A.2.7 TBU DTI interface signals

The following table shows the TBU DTI interface signals.

Table A-21 TBU DTI interface signals

Signal Width Direction Description

tvalid_dti_dn 1‑bit (Master to slave), Output Flow control signal

tready_dti_dn 1‑bit (Slave to master), Input Flow control signal

tdata_dti_dn 160‑bit (Master to slave), Output Message data signal

tlast_dti_dn 1‑bit (Master to slave), Output Indicates the last cycle of a message

tkeep_dti_dn 20‑bit (Master to slave), Output Indicates valid bytes

tvalid_dti_up 1‑bit (Slave to master), Input Flow control signal

tready_dti_up 1‑bit (Master to slave), Output Flow control signal

tdata_dti_up 160‑bit (Slave to master), Input Message data signal

A Signal descriptions
A.2 TBU signals

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

Appx-A-191

Non-Confidential

https://developer.arm.com/documentation/ihi0068/latest
https://developer.arm.com/documentation/ihi0068/latest
https://developer.arm.com/documentation/ihi0068/latest
https://developer.arm.com/documentation/ihi0068/latest

Table A-21 TBU DTI interface signals (continued)

Signal Width Direction Description

tlast_dti_up 1‑bit (Slave to master), Input Indicates the last cycle of a message

tkeep_dti_up 20‑bit (Slave to master), Input Indicates valid bytes

twakeup_dti_up 1‑bit (Slave to master), Input Wakeup signal

twakeup_dti_dn 1‑bit (Master to slave), Output Wakeup signal

For more information about the DTI signals, see the AMBA® 4 AXI4‑Stream Protocol Specification.

For more information about DTI protocol messages, see the AMBA® DTI Protocol Specification.

A.2.8 TBU interrupt signals

The TBU interrupt signals are edge‑triggered. The interrupt controller must detect the rising edge of
these signals.

The MMU‑700 TBU cannot output these interrupts as Message Signaled Interrupts (MSIs). These
signals must be connected to an interrupt controller.

The following table shows the TBU interrupt signals.

Table A-22 TBU interrupt signals

Signal Width Direction Description

ras_fhi 1‑bit Output Fault handling RAS interrupt for a contained error

ras_eri 1‑bit Output Error recovery RAS interrupt for an uncontained error

ras_cri 1‑bit Output Critical error interrupt, for an uncontainable uncorrected error

pmu_irpt 1‑bit Output PMU interrupt

A.2.9 TBU tie-off signals

The TBU tie‑off signals are sampled between exiting reset and the LPI_PD interface first entering the
Q_RUN state. Ensure that the value of these signals does not change when the LPI_PD interface is in the
Q_STOPPED or Q_EXIT state for the first time after exiting reset.

The following table shows the TBU tie‑off signals.

Table A-23 TBU tie-off signals

Signal Width Direction Description

ns_sid_high See bg Input Provides the high‑order StreamID bits for all transactions with a Non‑secure StreamID that
pass through the TBU

s_sid_high See bh Input Provides the high‑order StreamID bits for all transactions with a Secure StreamID that pass
through the TBU

bg (24 - TBUCFG_SID_WIDTH‑bit. See 2.5.7 Common LTI TBU and ACE-Lite TBU configuration options on page 2-80.
bh (24 - TBUCFG_SID_WIDTH‑bit. See 2.5.7 Common LTI TBU and ACE-Lite TBU configuration options on page 2-80.

A Signal descriptions
A.2 TBU signals

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

Appx-A-192

Non-Confidential

https://developer.arm.com/documentation/ihi0051/latest
https://developer.arm.com/documentation/ihi0088/latest

Table A-23 TBU tie-off signals (continued)

Signal Width Direction Description

max_tok_trans See bi Input Indicates the number of DTI translation tokens to request when connecting to the TCU, minus
1

pcie_mode 1‑bit Input You must tie this signal HIGH when the TBU is connected to a PCIe interface.

When this signal is HIGH, the TBU interprets the input AXI memory types as encoding PCI
'No Snoop' information.

In order for the TBU to provide correct operation, transactions from the PCIe interface must
be delivered to the TBU with the following AXI memory types:

Normal Non‑Cacheable Bufferable
When 'No Snoop' is set for the transaction

Write‑Back
When 'No Snoop' is not set for the transaction

This TBU behavior is a requirement of the Arm® Server Base System Architecture 7.0
Platform Design Document.

If this signal is HIGH, the attributes of TBS interface transactions are always combined with
the translation attributes, even if stage 1 translation is enabled. That is, the transaction
attributes are always calculated as if the DTI_TBU_TRANS_RESP.STRW field is EL1‑S2,
regardless of the actual STRW value.

If this signal is HIGH, the input attribute and shareability override information in the
ATTR_OVR field of the DTI_TBU_TRANS_RESP message is ignored. For SMMUv3, PCIe
masters do not support this feature.

sec_override 1‑bit Input When HIGH, certain registers are accessible to Non‑secure accesses from reset, as the
TBU_SCR register settings describe. See 3.14.2 TBU_SCR register on page 3-145.

ecorevnum[3:0] 4‑bit Input Tie this signal to 0 unless directed otherwise by Arm

utlb_roundrobin 1‑bit Input Defines the Micro TLB entry replacement policy.

When LOW, the Micro TLB uses a Pseudo Least Recently Used (PLRU) replacement policy.
This policy typically provides the best average performance.

When HIGH, the Micro TLB uses a round‑robin replacement policy. With this policy, the
oldest entry is evicted when the Micro TLB is full.

Tie this signal HIGH if you want to prevent newer translations from being evicted, even if
older translations have been used more recently. Otherwise, tie this signal LOW.

poison_support 1‑bit Input When LOW, the ACE‑Lite TBU does not drive the wpoison signal HIGH in any condition. It
handles the RAS errors in the write data buffer by generating a RAS error interrupt and a
Service Failure Mode (SFM) request to the TCU.

When HIGH, poison_support drives wpoison when driving the write data that has a RAS
error.

A.2.10 TBU ELA debug signals

The MMU‑700 TBU includes Embedded Logic Analyzer (ELA) debug signals.

The following table shows the ELA enable signal.

bi (log2TBUCFG_XLATE_SLOTS)‑bit. See 2.5.8 TBU buffer configuration options on page 2-81.

A Signal descriptions
A.2 TBU signals

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

Appx-A-193

Non-Confidential

https://developer.arm.com/documentation/den0029/latest
https://developer.arm.com/documentation/den0029/latest

Table A-24 ELA enable signal

Signal Width Direction Description

ela_enable 1‑bit Input ela_enable is an asynchronous input port. When TBUCFG_USE_ELA_DEBUG is 0, the SMMU
ignores the value of the signal. When TBUCFG_USE_ELA_DEBUG is 1, ela_enable acts as a clock
enable for the TBU ELA observation interface. If ELA debug is required, drive ela_enable HIGH.
If ELA debug is not required, drive ela_enable LOW to reduce the dynamic power consumption of
the SMMU.

ACE-Lite TBU ELA debug signals

The following table shows the ACE‑Lite TBU ELA debug signals.

Table A-25 ACE-Lite TBU ELA debug signals

Signal Width Direction Description

Signal group 0 signals

signalgrp0 128‑bit Output See B.2 ACE-Lite TBU
observation interfaces
on page Appx-B-209.sigqual0 4‑bit

sigclken0 1‑bit

Signal group 1 signals

signalgrp1 128‑bit Output See B.2 ACE-Lite TBU
observation interfaces
on page Appx-B-209.sigqual1 4‑bit

sigclken1 1‑bit

Signal group 2 signals

signalgrp2 128‑bit Output See B.2 ACE-Lite TBU
observation interfaces
on page Appx-B-209.sigqual2 4‑bit

sigclken2 1‑bit

Signal group 3 signals

signalgrp3 128‑bit Output See B.2 ACE-Lite TBU
observation interfaces
on page Appx-B-209.sigqual3 4‑bit

sigclken3 1‑bit

Signal group 4 signals

signalgrp4 128‑bit Output See B.2 ACE-Lite TBU
observation interfaces
on page Appx-B-209.sigqual4 4‑bit

sigclken4 1‑bit

LTI TBU ELA debug signals

The following table shows the LTI TBU ELA debug signals.

A Signal descriptions
A.2 TBU signals

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

Appx-A-194

Non-Confidential

Table A-26 LTI TBU ELA debug signals

Signal Width Direction Description

Signal group 0 signals

signalgrp0 128‑bit Output See B.3 LTI TBU observation
interfaces on page Appx-B-213.

sigqual0 4‑bit

sigclken0 1‑bit

Signal group 1 signals

signalgrp1 128‑bit Output See B.3 LTI TBU observation
interfaces on page Appx-B-213.

sigqual1 4‑bit

sigclken1 1‑bit

Signal group 2 signals

signalgrp2 128‑bit Output See B.3 LTI TBU observation
interfaces on page Appx-B-213.

sigqual2 4‑bit

sigclken2 1‑bit

Signal group 3 signals

signalgrp3 128‑bit Output See B.3 LTI TBU observation
interfaces on page Appx-B-213.

sigqual3 4‑bit

sigclken3 1‑bit

Signal group 4 signals

signalgrp4 128‑bit Output See B.3 LTI TBU observation
interfaces on page Appx-B-213.

sigqual4 4‑bit

sigclken4 1‑bit

Signal group 5 signals

signalgrp5 128‑bit Output See B.3 LTI TBU observation
interfaces on page Appx-B-213.

sigqual5 4‑bit

sigclken5 1‑bit

Signal group 6 signals

signalgrp6 128‑bit Output See B.3 LTI TBU observation
interfaces on page Appx-B-213.

sigqual6 4‑bit

sigclken6 1‑bit

A Signal descriptions
A.2 TBU signals

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

Appx-A-195

Non-Confidential

A.3 TCU and TBU shared signals
This section describes the MMU‑700 shared TCU and TBU signals.

This section contains the following subsection:
• A.3.1 TCU and TBU test and debug signals on page Appx-A-196.

A.3.1 TCU and TBU test and debug signals

The test and debug signals are common to the TCU and TBU.

The following table shows the test and debug signals.

Table A-27 Test and debug signals

Signal Width Direction Description

dftcgen 1‑bit Input Clock gate enable.

To enable architectural clock gates for the aclk clock, set this signal HIGH during scan shift.

dftrstdisable 1‑bit Input Reset disable.

To disable reset, set this signal HIGH during scan shift.

dftramhold 1‑bit Input Preserve RAM state.

To preserve the state of the RAMs and their connected registers, set this signal HIGH during
scan shift.

MBISTRESETN 1‑bit Input MBIST mode reset. This active‑LOW signal is encoded as follows:

0 Reset MBIST functional logic.

1 Normal operation.

MBISTREQ 1‑bit Input MBIST test request. This signal is encoded as follows:

0 Normal operation.

1 Enable MBIST testing.

A Signal descriptions
A.3 TCU and TBU shared signals

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

Appx-A-196

Non-Confidential

A.4 DTI signals
This section describes the MMU‑700 DTI signals.

This section contains the following subsections:
• A.4.1 DTI interconnect switch signals on page Appx-A-197.
• A.4.2 DTI interconnect sizer signals on page Appx-A-199.
• A.4.3 DTI interconnect register slice signals on page Appx-A-201.

A.4.1 DTI interconnect switch signals

The DTI interconnect switch provides signals for each of its interfaces.

The switch provides one DN_Sn slave downstream interface per slave interface. The following table
shows the DN_Sn signals.

Table A-28 DTI interconnect switch DN_Sn interface signals

Signal Width Direction Description

tvalid_dti_dn_sn 1‑bit Input, slave to master Flow control signal

tready_dti_dn_sn 1‑bit Output, master to slave Flow control signal

tdata_dti_dn_sn See bj Slave to master Message data signal

tid_dti_dn_sn See bk Input, slave to master Indicates the master that initiated the message

tlast_dti_dn_sn 1‑bit Input, slave to master Indicates the last cycle of a message

tkeep_dti_dn_sn See bl Input, slave to master Indicates valid bytes

twakeup_dti_dn_sn 1‑bit Input, slave to master Wakeup signal

The switch provides one UP_Sn slave upstream interface per slave interface. The following table shows
the UP_Sn signals.

Table A-29 DTI interconnect switch UP_Sn interface signals

Signal Width Direction Description

tvalid_dti_up_sn 1‑bit Output, master to slave Flow control signal

tready_dti_up_sn 1‑bit Input, slave to master Flow control signal

tdata_dti_up_sn See bm Output, master to slave Message data signal

tdest_dti_up_sn See bn Output, master to slave Indicates the master that initiated the message

tlast_dti_up_sn 1‑bit Output, master to slave Indicates the last cycle of a message

bj DATA_WIDTH (width of the payload). Can be 160‑bit, 80‑bit, 32‑bit, or 8‑bit, depending on the sizing of the payload before it.
bk ID_WIDTH = (log2(total number of masters being switched))‑bit.
bl (DATA_WIDTH / 8)‑bit.

bm DATA_WIDTH (width of the payload). Can be 160‑bit, 80‑bit, 32‑bit, or 8‑bit, depending on the sizing of the payload before it.
bn ID_WIDTH = (log2(total number of masters being switched))‑bit.

A Signal descriptions
A.4 DTI signals

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

Appx-A-197

Non-Confidential

Table A-29 DTI interconnect switch UP_Sn interface signals (continued)

Signal Width Direction Description

tkeep_dti_up_sn See bo Output, master to slave Indicates valid bytes

twakeup_dti_up_sn 1‑bit Output, master to slave Wakeup signal

The switch provides a DN_M master downstream interface. The following table shows the DN_M
signals.

Table A-30 DTI interconnect switch DN_M interface signals

Signal Width Direction Description

tvalid_dti_dn_m 1‑bit Output, slave to master Flow control signal

tready_dti_dn_m 1‑bit Input, master to slave Flow control signal

tdata_dti_dn_m See bp Output, slave to master Message data signal

tid_dti_dn_m See bq Output, slave to master Indicates the master that initiated the message

tlast_dti_dn_m 1‑bit Output, slave to master Indicates the last cycle of a message

tkeep_dti_dn_m See br Output, slave to master Indicates valid bytes

twakeup_dti_dn_m 1‑bit Output, slave to master Wakeup signal

The switch provides an UP_M master upstream interface. The following table shows the UP_M signals.

Table A-31 DTI interconnect switch UP_M interface signals

Signal Width Direction Description

tvalid_dti_up_m 1‑bit Input, master to slave Flow control signal

tready_dti_up_m 1‑bit Output, slave to master Flow control signal

tdata_dti_up_m See bs Input, master to slave Message data signal

tdest_dti_up_m See bt Input, master to slave Indicates the master that initiated the message

tlast_dti_up_m 1‑bit Input, master to slave Indicates the last cycle of a message

tkeep_dti_up_m See bu Input, master to slave Indicates valid bytes

twakeup_dti_up_m 1‑bit Input, slave to master Wakeup signal

bo (DATA_WIDTH / 8)‑bit.
bp DATA_WIDTH (width of the payload). Can be 160‑bit, 80‑bit, 32‑bit, or 8‑bit, depending on the sizing of the payload before it.
bq ID_WIDTH = (log2(total number of masters being switched))‑bit.
br (DATA_WIDTH / 8)‑bit.
bs DATA_WIDTH (width of the payload). Can be 160‑bit, 80‑bit, 32‑bit, or 8‑bit, depending on the sizing of the payload before it.
bt ID_WIDTH = (log2(total number of masters being switched))‑bit.
bu (DATA_WIDTH / 8)‑bit.

A Signal descriptions
A.4 DTI signals

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

Appx-A-198

Non-Confidential

A.4.2 DTI interconnect sizer signals

The DTI interconnect sizer provides signals for each of its interfaces.

The sizer provides an LPI_CG clock gating interface. The following table shows the LPI_CG signals.

Table A-32 DTI interconnect sizer LPI_CG interface signals

Signal Width Direction Description

qactive_cg 1‑bit Output Component active

qreqn_cg 1‑bit Input Quiescence request

qacceptn_cg 1‑bit Output Quiescence accept

qdeny_cg 1‑bit Output Quiescence deny

The sizer provides a DN_S slave downstream interface. The following table shows the DN_S signals.

Table A-33 DTI interconnect sizer DN_S interface signals

Signal Width Direction Description

tvalid_dti_dn_s 1‑bit Input Flow control signal

tready_dti_dn_s 1‑bit Output Flow control signal

tdata_dti_dn_s See bv Input Message data signal

tid_dti_dn_s See bw Input Indicates the master that initiated the message

tlast_dti_dn_s 1‑bit Input Indicates the last cycle of a message

tkeep_dti_dn_s See bx Input Indicates valid bytes

twakeup_dti_dn_s 1‑bit Input Wakeup signal

The sizer provides an UP_S slave upstream interface. The following table shows the UP_S signals.

Table A-34 DTI interconnect sizer UP_S interface signals

Signal Width Direction Description

tvalid_dti_up_s 1‑bit Output Flow control signal

tready_dti_up_s 1‑bit Input Flow control signal

tdata_dti_up_s See by Output Message data signal

tdest_dti_up_s See bz Output Indicates the master that initiated the message

bv INPUT_DATA_WIDTH. Can be 160‑bit, 80‑bit, 32‑bit, or 8‑bit, depending on the sizing of the payload before it.
bw ID_WIDTH = (log2(total number of masters that are connected to the sizer))‑bit.
bx (INPUT_DATA_WIDTH / 8)‑bit.
by INPUT_DATA_WIDTH. Can be 160‑bit, 80‑bit, 32‑bit, or 8‑bit.
bz ID_WIDTH = (log2(total number of masters that are connected to the sizer))‑bit.

A Signal descriptions
A.4 DTI signals

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

Appx-A-199

Non-Confidential

Table A-34 DTI interconnect sizer UP_S interface signals (continued)

Signal Width Direction Description

tlast_dti_up_s 1‑bit Output Indicates the last cycle of a message

tkeep_dti_up_s See ca Output Indicates valid bytes

twakeup_dti_up_s 1‑bit Output Wakeup signal

The sizer provides a DN_M master downstream interface. The following table shows the DN_M signals.

Table A-35 DTI interconnect sizer DN_M interface signals

Signal Width Direction Description

tvalid_dti_dn_m 1‑bit Input Flow control signal

tready_dti_dn_m 1‑bit Input Flow control signal

tdata_dti_dn_m See cb Output Message data signal

tid_dti_dn_m See cc Output Indicates the master that initiated the message

tlast_dti_dn_m 1‑bit Output Indicates the last cycle of a message

tkeep_dti_dn_m See cd Output Indicates valid bytes

twakeup_dti_dn_m 1‑bit Input Wakeup signal

The sizer provides an UP_M master upstream interface. The following table shows the UP_M signals.

Table A-36 DTI interconnect sizer UP_M interface signals

Signal Width Direction Description

tvalid_dti_up_m 1‑bit Input Flow control signal

tready_dti_up_m 1‑bit Output Flow control signal

tdata_dti_up_m See ce Input Message data signal

tdest_dti_up_m See cf Input Indicates the master that initiated the message

tlast_dti_up_m 1‑bit Input Indicates the last cycle of a message

tkeep_dti_up_m See cg Input Indicates valid bytes

twakeup_dti_up_m 1‑bit Input Wakeup signal

ca (INPUT_DATA_WIDTH / 8)‑bit
cb OUTPUT_DATA_WIDTH‑bit. OUTPUT_DATA_WIDTH can be 160‑bit, 80‑bit, 32‑bit, or 8‑bit.
cc ID_WIDTH = (log2(total number of masters that are connected to the sizer))‑bit.
cd (OUTPUT_DATA_WIDTH / 8)‑bit.
ce OUTPUT_DATA_WIDTH. Can be 160‑bit, 80‑bit, 32‑bit, or 8‑bit.
cf ID_WIDTH = (log2(total number of masters that are connected to the sizer))‑bit.
cg (OUTPUT_DATA_WIDTH / 8)‑bit.

A Signal descriptions
A.4 DTI signals

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

Appx-A-200

Non-Confidential

A.4.3 DTI interconnect register slice signals

The DTI interconnect register slice provides signals for each of its interfaces.

The register slice provides an LPI_CG clock gating interface. The following table shows the LPI_CG
signals.

Table A-37 DTI interconnect register slice LPI_CG interface signals

Signal Width Direction Description

qactive_cg 1‑bit Output Component active

qreqn_cg 1‑bit Input Quiescence request

qacceptn_cg 1‑bit Output Quiescence accept

qdeny_cg 1‑bit Output Quiescence deny

The register slice provides a DN_S slave downstream interface. The following table shows the DN_S
signals.

Table A-38 DTI interconnect register slice DN_S interface signals

Signal Width Direction Description

tvalid_dti_dn_s 1‑bit Slave to master Flow control signal

tready_dti_dn_s 1‑bit Master to slave Flow control signal

tdata_dti_dn_s See ch Slave to master Message data signal

tid_dti_dn_s See ci Slave to master Indicates the master that initiated the message

tlast_dti_dn_s 1‑bit Slave to master Indicates the last cycle of a message

tkeep_dti_dn_s See cj Slave to master Indicates valid bytes

The register slice provides an UP_S slave upstream interface. The following table shows the UP_S
signals.

Table A-39 DTI interconnect register slice UP_S interface signals

Signal Width Direction Description

tvalid_dti_up_s 1‑bit Master to slave Flow control signal

tready_dti_up_s 1‑bit Slave to master Flow control signal

tdata_dti_up_s See ck Master to slave Message data signal

tdest_dti_up_s See cl Master to slave Indicates the master that initiated the message

ch DATA_WIDTH of the register slice. Can be 160‑bit, 80‑bit, 32‑bit, or 8‑bit.
ci ID_WIDTH = (log2(total number of masters that are connected to the register slice))‑bit.
cj (DATA_WIDTH / 8)‑bit.
ck DATA_WIDTH of the register slice. Can be 160‑bit, 80‑bit, 32‑bit, or 8‑bit.
cl ID_WIDTH = (log2(total number of masters that are connected to the register slice))‑bit.

A Signal descriptions
A.4 DTI signals

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

Appx-A-201

Non-Confidential

Table A-39 DTI interconnect register slice UP_S interface signals (continued)

Signal Width Direction Description

tlast_dti_up_s 1‑bit Master to slave Indicates the last cycle of a message

tkeep_dti_up_s See cm Master to slave Indicates valid bytes

The register slice provides a DN_M master downstream interface. The following table shows the DN_M
signals.

Table A-40 DTI interconnect register slice DN_M interface signals

Signal Width Direction Description

tvalid_dti_dn_m 1‑bit Slave to master Flow control signal

tready_dti_dn_m 1‑bit Master to slave Flow control signal

tdata_dti_dn_m See cn Slave to master Message data signal

tid_dti_dn_m See co Slave to master Indicates the master that initiated the message

tlast_dti_dn_m 1‑bit Slave to master Indicates the last cycle of a message

tkeep_dti_dn_m See cp Slave to master Indicates valid bytes

The register slice provides an UP_M master upstream interface. The following table shows the UP_M
signals.

Table A-41 DTI interconnect register slice UP_M interface signals

Signal Width Direction Description

tvalid_dti_up_m 1‑bit Master to slave Flow control signal

tready_dti_up_m 1‑bit Slave to master Flow control signal

tdata_dti_up_m See cq Master to slave Message data signal

tdest_dti_up_m See cr Master to slave Indicates the master that initiated the message

tlast_dti_up_m 1‑bit Master to slave Indicates the last cycle of a message

tkeep_dti_up_m See cs Master to slave Indicates valid bytes

cm (DATA_WIDTH / 8)‑bit
cn DATA_WIDTH of the register slice. Can be 160‑bit, 80‑bit, 32‑bit, or 8‑bit.
co ID_WIDTH = (log2(total number of masters that are connected to the register slice))‑bit.
cp (DATA_WIDTH / 8)‑bit.
cq DATA_WIDTH of the register slice. Can be 160‑bit, 80‑bit, 32‑bit, or 8‑bit.
cr ID_WIDTH = (log2(total number of masters that are connected to the register slice))‑bit.
cs (DATA_WIDTH / 8)‑bit.

A Signal descriptions
A.4 DTI signals

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

Appx-A-202

Non-Confidential

Appendix B
ELA signal descriptions

This section describes the SIGNALGRP<n>, SIGQUAL<n>, and SIGCLKEN<n> signals of the TCU
and TBU components that are used to interface with external ELA.

It contains the following sections:
• B.1 TCU observation interfaces on page Appx-B-204.
• B.2 ACE-Lite TBU observation interfaces on page Appx-B-209.
• B.3 LTI TBU observation interfaces on page Appx-B-213.

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

Appx-B-203

Non-Confidential

B.1 TCU observation interfaces
This section describes the TCU observation interfaces, SIGNALGRP<n>, SIGQUAL<n>, and
SIGCLKEN<n> signals that are used to interface to an external CoreSight ELA‑600 Embedded Logic
Analyzer. <n> represents the number in the signal name.

Signal group output ports are present on each component. However, only a subset is used.

The SIGCLKEN<n> signal is set to 1 for the signal groups in the 'Enabled signal groups' column in the
following table. Groups that are not enabled have their SIGCLKEN<n> signals set to 0. If ela_enable is
driven LOW, all SIGCLKEN<n> signals are set to 0.

The following table shows the signal group output ports that are valid for the TCU.

Table B-1 Number of signal groups per module for the TCU

Component Parameter Enabled signal groups Total

TCU TCUCFG_QTW_DATA_WIDTH <= 128 0, 1, 2, 3, 4, 5, 6, 10 8

TCUCFG_QTW_DATA_WIDTH == 256 0, 1, 2, 3, 4, 5, 6, 7, 10, 11 10

TCUCFG_QTW_DATA_WIDTH == 512 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 12

The following table shows the SIGNALGPR<n> bits for the signal groups of the TCU.

Some buses, if configured to be larger than the 128‑bit signal group width, are spread across multiple
groups. The MMU‑700 delays sections of the signal by a cycle so that the ELA can sample 128‑bit
chunks of the data one cycle after another. The Number of cycles of delay column in the table indicates
the number of cycles, from when the signal is observable on a MMU‑700 interface, to when the signal is
observable on the ELA observation interface.

Table B-2 TCU observation interface signals

SIGNALGRP<n> Bits Signal name SIGQUAL<n> 4’b{MSB..LSB} Number of
cycles of
delay

0 [127:0] tdata_dti_dn[127:0] 1’b0, (tready_dti_dn AND tvalid_dti_dn),
tready_dti_dn, tvalid_dti_dn

1

1 [127:0] tdata_dti_up[127:0] 1’b0, (tready_dti_up AND tvalid_dti_up),
tready_dti_up, tvalid_dti_up

1

B ELA signal descriptions
B.1 TCU observation interfaces

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

Appx-B-204

Non-Confidential

Table B-2 TCU observation interface signals (continued)

SIGNALGRP<n> Bits Signal name SIGQUAL<n> 4’b{MSB..LSB} Number of
cycles of
delay

2 [127:124] Unused - -

[123:118] tid_dti_dn tvalid_dti_up, (tready_dti_up AND
tvalid_dti_up), tvalid_dti_dn, (tready_dti_dn
AND tvalid_dti_dn)

0

[117:86] tdata_dti_dn[159:128]

[85:66] tkeep_dti_dn

[65] tlast_dti_dn

[64] twakeup_dti_dn

[63] tready_dti_dn

[62] tvalid_dti_dn

[61:56] tdest_dti_up

[55:24] tdata_dti_up[159:128]

[23:4] tkeep_dti_up

[3] tlast_dti_up

[2] twakeup_dti_up

[1] tready_dti_up

[0] tvalid_dti_up

B ELA signal descriptions
B.1 TCU observation interfaces

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

Appx-B-205

Non-Confidential

Table B-2 TCU observation interface signals (continued)

SIGNALGRP<n> Bits Signal name SIGQUAL<n> 4’b{MSB..LSB} Number of
cycles of
delay

3 [127] Unused - -

[126] ridunq_qtw rvalid_qtw, (rready_qtw AND rvalid_qtw),
arvalid_qtw, (arready_qtw AND arvalid_qtw)

1

[125:118] rpoison_qtw

[117] rlast_qtw

[116:106] rid_qtw

[105] rready_qtw

[104] rvalid_qtw

[103:93] arid_qtw

[92:92] aridunq_qtw

[91:81] armpam_qtw

[80:79] ardomain_qtw

[78:75] aruser_qtw

[74:71] arqos_qtw

[70:67] arcache_qtw

[66:65] arburst_qtw

[64:62] arsize_qtw

[61:54] arlen_qtw

[53:2] araddr_qtw

[1] arready_qtw

[0] arvalid_qtw

B ELA signal descriptions
B.1 TCU observation interfaces

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

Appx-B-206

Non-Confidential

Table B-2 TCU observation interface signals (continued)

SIGNALGRP<n> Bits Signal name SIGQUAL<n> 4’b{MSB..LSB} Number of
cycles of
delay

4 [127] Unused - -

[126] crready_qtw 1'b0, (crready_qtw AND crvalid_qtw),
(bready_qtw AND bvalid_qtw), (awready_qtw
AND awvalid_qtw)

1

[125] crvalid_qtw

[124:114] bid_qtw

[113] bidunq_qtw

[112] bready_qtw

[111] bvalid_qtw

[110] awakeup_qtw

[109:99] awid_qtw

[98:93] awatop_qtw

[92] awidunq_qtw

[91:81] awmpam_qtw

[80:79] awdomain_qtw

[78:75] awuser_qtw

[74:71] awqos_qtw

[70:67] awcache_qtw

[66:65] awburst_qtw

[64:62] awsize_qtw

[61:54] awlen_qtw

[53:2] awaddr_qtw

[1] awready_qtw

[0] awvalid_qtw

5 [127] syscoack_qtw 2’b00, (wready_qtw AND wvalid_qtw),
(acready_qtw AND acvalid_qtw)

1

[126] syscoreq_qtw

[125:62] wstrb_qtw

[61] wlast_qtw

[60] wready_qtw

[59] wvalid_qtw

[58] acwakeup_qtw

[57:6] acaddr_qtw

[5:2] acvmidext_qtw

[1] acready_qtw

[0] acvalid_qtw

B ELA signal descriptions
B.1 TCU observation interfaces

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

Appx-B-207

Non-Confidential

Table B-2 TCU observation interface signals (continued)

SIGNALGRP<n> Bits Signal name SIGQUAL<n> 4’b{MSB..LSB} Number of
cycles of
delay

6 [127:0] rdata_qtw[127:0] 1’b0, (rready_qtw AND rvalid_qtw),
rready_qtw, rvalid_qtw

1

7 [127:0] rdata_qtw[255:128] 1’b0, (rready_qtw AND rvalid_qtw),
rready_qtw, rvalid_qtw

2

8 [127:0] rdata_qtw[383:256] 1’b0, (rready_qtw AND rvalid_qtw),
rready_qtw, rvalid_qtw

3

9 [127:0] rdata_qtw[511:384] 1’b0, (rready_qtw AND rvalid_qtw),
rready_qtw, rvalid_qtw

4

10 [127:0] wdata_qtw_demuxedct[127:0] 1'b0, (wready_qtw AND wvalid_qtw),
wready_qtw, wvalid_qtw

1

11 [127:0] wdata_qtw_demuxed[255:128] 1'b0, (wready_qtw AND wvalid_qtw),
wready_qtw, wvalid_qtw

2

ct When the TCUQTWDATAWIDTH parameter is set to 512, the wdate_qtw_demuxed signal contains the active 256 bits of the 512‑bit bus. The wstrb_qtw signal
remains as 64 bits and is unmodified. See 2.5 Configuration options and methodology on page 2-75.

B ELA signal descriptions
B.1 TCU observation interfaces

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

Appx-B-208

Non-Confidential

B.2 ACE-Lite TBU observation interfaces
This section describes the ACE‑Lite TBU observation interfaces, SIGNALGRP<n>, SIGQUAL<n>,
and SIGCLKEN<n> signals that are used to interface to an external CoreSight ELA‑600 Embedded
Logic Analyzer. <n> represents the number in the signal name.

Signal group output ports are present on each component. However, only a subset is used.

The SIGCLKEN<n> signal is set to 1 for the signal groups in the 'Enabled signal groups' column in the
following table. Groups that are not enabled have their SIGCLKEN<n> signals set to 0. If ela_enable is
driven LOW, all SIGCLKEN<n> signals are set to 0.

The following table shows the signal group output ports that are valid for the ACE‑Lite TBU.

Table B-3 Number of signal groups per module for the ACE-Lite TBU

Component Parameter Enabled signal groups Total

ACE‑Lite TBU 0, 1, 2, 3, 4 5

The following table shows the SIGNALGPR<n> bits for the signal groups of the ACE‑Lite TBU.

Some buses, if configured to be larger than the 128‑bit signal group width, are spread across multiple
groups. The MMU‑700 delays sections of the signal by a cycle so that the ELA can sample 128‑bit
chunks of the data one cycle after another. The Number of cycles of delay column in the table indicates
the number of cycles, from when the signal is observable on a MMU‑700 interface, to when the signal is
observable on the ELA observation interface.

Table B-4 ACE-Lite TBU observation interface signals

SIGNALGRP<n> Bits Signal name SIGQUAL<n> 4’b{MSB..LSB} Number of
cycles of delay

0 [127:123] awuser_TLBLOC 1’b0, (awready_m AND awvalid_m), awready_m,
awvalid_m

1

[122] awidunq_m

[121:116] awatop_m

[115:114] awdomain_m

[113:110] awqos_m

[109:107] awprot_m

[106:103] awcache_m

[102:101] awburst_m

[100:98] awsize_m

[97:90] awlen_m

[89:86] awregion_m

[85:54] awid_m

[53:2] awaddr_m

[1] awready_m

[0] awvalid_m

B ELA signal descriptions
B.2 ACE-Lite TBU observation interfaces

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

Appx-B-209

Non-Confidential

Table B-4 ACE-Lite TBU observation interface signals (continued)

SIGNALGRP<n> Bits Signal name SIGQUAL<n> 4’b{MSB..LSB} Number of
cycles of delay

1 [127:114] Unused - -

[113:103] awmpam_m 1’b0, (awready_m AND awvalid_m), awready_m,
awvalid_m

2

[102:83] awmmusid_m

[82] awmmusecsid_m

[81:72] awloop_m

[71] awstashlpiden_m

[70:66] awstashlpid_m

[65] awstashniden_m

[64:54] awstashnid_m

[53:2] awaddr_m

[1] awready_m

[0] awvalid_m

2 [127:117] Unused - -

[116:65] araddr_m 1’b0, (arready_m AND arvalid_m), arready_m,
arvalid_m

1

[64:63] ardomain_m

[62:59] arqos_m

[58:56] arprot_m

[55:52] arcache_m

[51:50] arburst_m

[49:47] arsize_m

[46:39] arlen_m

[38:34] aruser_TLBLOC

[33:2] arid_m

[1] arready_m

[0] arvalid_m

B ELA signal descriptions
B.2 ACE-Lite TBU observation interfaces

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

Appx-B-210

Non-Confidential

Table B-4 ACE-Lite TBU observation interface signals (continued)

SIGNALGRP<n> Bits Signal name SIGQUAL<n> 4’b{MSB..LSB} Number of
cycles of delay

3 [127:113] Unused - -

[112:] archunken_m 1’b0, (arready_m AND arvalid_m), arready_m,
arvalid_m

2

[111:101] armpam_m

[100:91] arloop_m

[90] aridunq_m

[89:70] armmusid_m

[69] armmusecsid_m

[68:65] arregion_m

[64:63] ardomain_m

[62:59] arqos_m

[58:56] arprot_m

[55:52] arcache_m

[51:50] arburst_m

[49:47] arsize_m

[46:39] arlen_m

[38:34] aruser_TLBLOC

[33:2] arid_m

[1] arready_m

[0] arvalid_m

B ELA signal descriptions
B.2 ACE-Lite TBU observation interfaces

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

Appx-B-211

Non-Confidential

Table B-4 ACE-Lite TBU observation interface signals (continued)

SIGNALGRP<n> Bits Signal name SIGQUAL<n> 4’b{MSB..LSB} Number of
cycles of delay

4 [127:98] Unused - -

[97] wlast_m 1'b0, (wready_m AND wvalid_m), (bready_m AND
bvalid_m), (rready_m AND rvalid_m)

1

[96] wready_m

[95] wvalid_m

[94:85] bloop_m

[84:84] bidunq_m

[83:82] bresp_m

[81:50] bid_m

[49] bready_m

[48] bvalid_m

[47] ridunq_m

[46:37] rloop_m

[36] rlast_m

[35:34] rresp_m

[33:2] rid_m

[1] rready_m

[0] rvalid_m

5 [127:0] Unused - -

6

7

8

9

10

11

B ELA signal descriptions
B.2 ACE-Lite TBU observation interfaces

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

Appx-B-212

Non-Confidential

B.3 LTI TBU observation interfaces
This section describes the LTI TBU observation interfaces, SIGNALGRP<n>, SIGQUAL<n>, and
SIGCLKEN<n> signals that are used to interface to an external CoreSight ELA‑600 Embedded Logic
Analyzer. <n> represents the number in the signal name.

Signal group output ports are present on each component. However, only a subset is used.

The SIGCLKEN<n> signal is set to 1 for the signal groups in the 'Enabled signal groups' column in the
following table. Groups that are not enabled have their SIGCLKEN<n> signals set to 0. If ela_enable is
driven LOW, all SIGCLKEN<n> signals are set to 0.

The following table shows the signal group output ports that are valid for the LTI TBU.

Table B-5 Number of SignalGroups per module for the LTI TBU

Component Parameter Enabled signal groups Total

LTI TBU When TBUCFG_LTI_LOOP_WIDTH <= 128 bits 0, 1, 2, 3, 5 5

When TBUCFG_LTI_LOOP_WIDTH > 128 bit 0, 1, 2, 3, 4, 5, 6 7

The following table shows the SIGNALGPR<n> bits for the signal groups of the LTI TBU.

Some buses, if configured to be larger than the 128‑bit signal group width, are spread across multiple
groups. The MMU‑700 delays sections of the signal by a cycle so that the ELA can sample 128‑bit
chunks of the data one cycle after another. The Number of cycles of delay column in the table indicates
the number of cycles, from when the signal is observable on a MMU‑700 interface, to when the signal is
observable on the ELA observation interface.

Table B-6 LTI TBU observation interface signals

SIGNALGRP<n> Bits Signal name SIGQUAL<n> 4’b{MSB..LSB} Number of cycles of delay

0 [127:112] latlbloc 3’b000, lavalid 0

[111:80] laid

[79:78] laflow

[77:74] laattr

[73:70] latrans

[69:67] laprot

[66:65] lacredit

[64:1] laaddr

[0] lavalid

B ELA signal descriptions
B.3 LTI TBU observation interfaces

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

Appx-B-213

Non-Confidential

Table B-6 LTI TBU observation interface signals (continued)

SIGNALGRP<n> Bits Signal name SIGQUAL<n> 4’b{MSB..LSB} Number of cycles of delay

1 [127] Unused - -

[126:122] laog 3’b000, lavalid 1

[121] laogv

[120:101] lassid

[100] lassidv

[99:80] lasid

[79] lasecsid

[78] lavc

[77:74] laattr

[73:70] latrans

[69:67] laprot

[66:65] lacredit

[64:1] laaddr

[0] lavalid

2 [127:121] Unused - -

[120] lmaskclose 2’b00, lcvalid, lrvalid 0

[119] lmactive

[118] lmopenack

[117] lmopenreq

[116] lcctag

[115] lccredit

[114] lcvalid

[113:103] lrmpam

[102:99] lrhwattr

[98:95] lrattr

[94:43] lraddr

[42:40] lrprot

[39:37] lrresp

[36] lrctag

[35:4] lrid

[3] lrvc

[2:1] lrcredit

[0] lrvalid

3 [127:0] laloop[127:0] 3’b000, lavalid 1

B ELA signal descriptions
B.3 LTI TBU observation interfaces

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

Appx-B-214

Non-Confidential

Table B-6 LTI TBU observation interface signals (continued)

SIGNALGRP<n> Bits Signal name SIGQUAL<n> 4’b{MSB..LSB} Number of cycles of delay

4 [127:0] laloop[255:128] 3’b000, lavalid 2

5 [127:0] lrloop[127:0] 3’b000, lrvalid 1

6 [127:0] lrloop[255:128] 3’b000, lrvalid 2

7 [127:0] Unused - -

8

9

10

11

B ELA signal descriptions
B.3 LTI TBU observation interfaces

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

Appx-B-215

Non-Confidential

Appendix C
Software initialization examples

This appendix provides examples of how software can initialize and enable the MMU‑700.

It contains the following sections:
• C.1 Initializing the SMMU on page Appx-C-217.
• C.2 Enabling the SMMU on page Appx-C-222.

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

Appx-C-216

Non-Confidential

C.1 Initializing the SMMU
Software must initialize the MMU‑700 before you can use it.

The MMU‑700 supports Secure and Non‑secure translation worlds. This section defines how to initialize
Non‑secure translation. The procedures for initializing Secure translation are similar, and require you to
access the corresponding MMU‑700 Secure registers.

 Note

This section does not describe how to create translation tables. For more information, see the Arm®

Architecture Reference Manual, Armv8, for Armv8‑A architecture profile.

For more information about MMU‑700 initialization, see the Arm® System Memory Management Unit
Architecture Specification, SMMU architecture versions 3.0, 3.1 and 3.2.

This section contains the following subsections:
• C.1.1 Allocating the Command queue on page Appx-C-217.
• C.1.2 Allocating the Event queue on page Appx-C-217.
• C.1.3 Configuring the Stream table on page Appx-C-218.
• C.1.4 Initializing the Command queue on page Appx-C-218.
• C.1.5 Initializing the Event queue on page Appx-C-218.
• C.1.6 Invalidating TLBs and configuration caches on page Appx-C-219.
• C.1.7 Creating a basic Context Descriptor on page Appx-C-219.
• C.1.8 Creating a Stream Table Entry on page Appx-C-220.

C.1.1 Allocating the Command queue

The MMU‑700 uses the Command queue to receive commands. Software must allocate memory for the
Command queue and configure the appropriate registers in the SMMU.

To allocate the Command queue, ensure that your software performs the following steps:

Procedure
1. Allocate memory for the Command queue.
2. Configure the Command queue size and base address by writing to the SMMU_CMDQ_BASE

register.
 Note

The queue size can affect how many bits of the SMMU_CMDQ_CONS and SMMU_CMDQ_PROD
indices are writeable. It is therefore important that you perform this step before writing to
SMMU_CMDQ_CONS and SMMU_CMDQ_PROD.

3. Set the queue read index in SMMU_CMDQ_CONS and the queue write index in
SMMU_CMDQ_PROD to 0.

 Note

Setting the queue read index and the queue write index to the same value indicates that the queue is
empty.

C.1.2 Allocating the Event queue

The MMU‑700 uses the Event queue to signal events. Software must allocate memory for the Event
queue and configure the appropriate registers in the MMU.

To allocate the Event queue, ensure that your software performs the following steps:

C Software initialization examples
C.1 Initializing the SMMU

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

Appx-C-217

Non-Confidential

https://developer.arm.com/documentation/ddi0487/latest
https://developer.arm.com/documentation/ddi0487/latest
https://static.docs.arm.com/ihi0070/ca/IHI_0070_C_a_System_Memory_Management_Unit_Arm_Architecture_Specification.pdf
https://static.docs.arm.com/ihi0070/ca/IHI_0070_C_a_System_Memory_Management_Unit_Arm_Architecture_Specification.pdf

Procedure
1. Allocate memory for the Event queue.
2. Configure the Event queue size and base address by writing to the SMMU_EVENTQ_BASE register.

 Note

The queue size can affect how many bits of the SMMU_EVENTQ_CONS and
SMMU_EVENTQ_PROD indices are writeable. It is therefore important that you perform this step
before writing to SMMU_EVENTQ_CONS and SMMU_EVENTQ_PROD.

3. Set the queue read index in SMMU_EVENTQ_CONS and the queue write index in
SMMU_EVENTQ_PROD to 0.

 Note

Setting the queue read index and the queue write index to the same value indicates that the queue is
empty.

C.1.3 Configuring the Stream table

The Stream table is a configuration structure in memory that uses a Context Descriptor (CD) to locate
translation data for a transaction. Software must allocate memory for the Stream table, configure the
table format, and populate the table with Stream Table Entries (STEs).

To configure the Stream table, ensure that your software performs the following steps:

Procedure
1. Allocate memory for the Stream table.
2. Configure the format and size of the Stream table by writing to SMMU_STRTAB_BASE_CFG.
3. Configure the base address for the Stream table by writing to SMMU_STRTAB_BASE.
4. Prevent uninitialized memory being interpreted as a valid configuration by setting STE.V = 0 for

each STE to mark it as invalid.
5. Ensure that written data is observable to the SMMU by performing a Data Synchronization Barrier

(DSB) operation.
If SMMU_IDR0.COHACC = 0, the system does not support coherent access to memory for the TCU.
In such cases, you might require extra steps to ensure that the SMMU can observe the written data.

C.1.4 Initializing the Command queue

Software must initialize the Command queue by enabling it and checking that the enable operation is
complete.

To initialize the Command queue, ensure that your software performs the following steps:

Procedure
1. Enable the Command queue by setting the SMMU_S_CR0.CMDQEN bit to 1.
2. Check that the enable operation is complete by polling SMMU_S_CR0ACK until CMDQEN reads as

1.

C.1.5 Initializing the Event queue

Software must initialize the Event queue by enabling it and checking that the enable operation is
complete.

To initialize the Event queue, ensure that your software performs the following steps:

Procedure
1. Enable the Event queue by setting the SMMU_S_CR0.EVENTQEN bit to 1.

C Software initialization examples
C.1 Initializing the SMMU

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

Appx-C-218

Non-Confidential

2. Check that the enable operation is complete by polling SMMU_S_CR0ACK until EVENTQEN reads
as 1.

C.1.6 Invalidating TLBs and configuration caches

Before use, the MMU‑700 TLBs and configuration cache structures must be invalidated by issuing
commands to the Command queue. Alternatively, Secure software can invalidate all TLBs and caches
with a single write.

To invalidate TLB entries, ensure that your software issues the appropriate command for the translation
context. To invalidate:

• TLB entries for Non-secure EL1 contexts, issue CMD_TLBI_NSNH_ALL
• TLB entries for EL2 contexts, issue CMD_TLBI_EL2_ALL
• TLB entries for EL3 contexts, issue CMD_TLBI_EL3_ALL
• TLB entries for Secure EL1 contexts, issue CMD_TLBI_NH_ALL

 Note

Commands to invalidate Secure TLB entries can only be issued through the Secure Command queue. For
a system that implements two Security states, Secure software must issue the appropriate command to
the Secure Command queue for the first TLB invalidation. If your system does not use Secure software,
you can permit Non‑secure software to access SMMU_S_INIT by using either sec_override or the
3.7.7 TCU_SCR register on page 3-112.

To invalidate both the TCU configuration cache and the TBU combined configuration cache and TLB,
issue the CMD_CFGI_ALL command.

To force all previous commands to complete, issue CMD_SYNC.

To invalidate all configuration caches and TLB entries for all translation regimes and Security states,
ensure that Secure software:
1. Sets SMMU_S_INIT.INV_ALL to 1. The SMMU sets SMMU_S_INIT.INV_ALL to 0 after the

invalidation completes.
2. Polls SMMU_S_INIT.INV_ALL to check it is set to 0 before continuing the SMMU configuration.

For more information about issuing commands to the Command queue, see the Arm® System Memory
Management Unit Architecture Specification, SMMU architecture versions 3.0, 3.1 and 3.2.

C.1.7 Creating a basic Context Descriptor

A Context Descriptor (CD) is a data structure in system memory. A CD defines how Stage 1 translation
is performed. The SubstreamID is used to select the CD.

To create a CD, ensure that your software performs the following steps:
1. Allocate 64 bytes of memory for the CD.
2. Configure the CD fields according to the information in the following table.

Table C-1 Configuring the CD

Field Description

AA64 Translation table format:

0 AArch32.
1 AArch64.

EPD0 Enable translations for TTB0 by setting EPD0 to 0.

TTB0 Base address of translation table 0.

C Software initialization examples
C.1 Initializing the SMMU

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

Appx-C-219

Non-Confidential

https://static.docs.arm.com/ihi0070/ca/IHI_0070_C_a_System_Memory_Management_Unit_Arm_Architecture_Specification.pdf
https://static.docs.arm.com/ihi0070/ca/IHI_0070_C_a_System_Memory_Management_Unit_Arm_Architecture_Specification.pdf

Table C-1 Configuring the CD (continued)

Field Description

TG0 Translation granule size for TTB0 when CD.AA64 = 1.

IR0

OR0

Cacheability attribute to use for translation table walks to TTB0:

00 Non-cacheable.
01 Write-Back Cacheable, Read-Allocate Write-Allocate.
10 Write-through Cacheable, Read-Allocate.

SH0 Shareability of translation table walks to TTB0:

00 Non-shareable.
01 Outer Shareable.
10 Inner Shareable.

EPD1 If the StreamWorld supports split address spaces, enable table walks for TTB1.

ENDI The endianness for the translation tables.

IPS The IPA size when CD.AA64 = 1.

ASET Defines whether the ASID values are shared with the ASID values of an Arm processor.
 Note

If you expect this context to receive broadcast TLB invalidation commands from a PE, set ASET to 0.

V Valid CD. This field must be set to 1.

C.1.8 Creating a Stream Table Entry

Each Stream Table Entry (STE) configures how Stage 2 translation is performed, and how the Context
Descriptor (CD) table can be found. The StreamID is used to select an STE.

To create an STE, ensure that your software performs the following steps:
1. Allocate 64 bytes of memory for the STE.
2. Set the STE.Config field as required for Stage 1 translation, Stage 2 translation, or translation bypass:

0b000 No traffic can pass through the MMU. An abort is returned.
0b100 Stage 1 and Stage 2 bypass.
0b101 Stage 1 translation Stage 2 bypass.
0b110 Stage 1 bypass Stage 2 translation.
0b111 Stage 1 and Stage 2 translation.

3. If Stage 1 translation is enabled, you can set the following fields:

STE.S1CDMax Controls whether STE.S1ContextPtr points to a single CD or a CD table.
STE.S1Fmt If STE.S1CDMax > 0, configures the format of the CD table.
STE. S1ContextPtr Contains a pointer to either a CD or a CD table. If Stage 2 translation is

enabled, this pointer is an intermediate physical address (IPA), otherwise it is
an untranslated physical address PA.

4. If Stage 2 translation is enabled, you can set the following fields:

STE.S2TTB Points to the Stage 2 translation table base address.
STE.S2PS Contains the PA size of the stage 2 PA range.
STE.S2AA64 Indicates whether the Stage 2 tables are AArch32 or AArch64 format.

C Software initialization examples
C.1 Initializing the SMMU

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

Appx-C-220

Non-Confidential

STE.S3ENDI Set this field to the required endianness for the stage 2 translation tables.
STE.S2AFFD Disable Access Flag faults for Stage 2 translation.
STE.S2TG 0b00: 4KB.

0b01: 64KB.
0b10: 16KB.

STE.S2IR0 and
STE.S2OR0

0b00: Non-cacheable.
0b01: Write-Back Cacheable, Read-Allocate Write-Allocate.
0b10: Write-through Cacheable, Read-Allocate.

STE.S2SH0 0b00: Non-shareable.
0b01: Outer Shareable.
0b10: Inner Shareable.

STE.S2VMID Contains the VMID associated with these translations.

C Software initialization examples
C.1 Initializing the SMMU

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

Appx-C-221

Non-Confidential

C.2 Enabling the SMMU
Software can enable the SMMU by writing to SMMU_CR0 after the Stream table is populated.

To enable the SMMU, carry out the following procedure.

Procedure
1. Ensure that all Stream table entries are populated in memory.
2. Set the SMMU_CR0.SMMUEN bit to 1.
3. Check that the enable operation is complete by polling SMMU_CR0ACK until SMMUEN reads as 1.

C Software initialization examples
C.2 Enabling the SMMU

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

Appx-C-222

Non-Confidential

Appendix D
Revisions

This appendix describes the technical changes between released issues of this book.

It contains the following section:
• D.1 Revisions on page Appx-D-224.

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

Appx-D-223

Non-Confidential

D.1 Revisions
This appendix describes the technical changes between released issues of this book.

Table D-1 Issue 0000-01

Change Location

First release -

Table D-2 Differences between issue 0000-01 and issue 0000-02

Change Location

Improvements to descriptions Throughout the document

Table D-3 Differences between issue 0000-02 and issue 0001-03

Change Location

Improvements to descriptions Throughout the document

Added new parameters • 2.5.2 TCU buffer configuration options on page 2-75
• 2.5.8 TBU buffer configuration options on page 2-81

Added system discovery registers • 3.9 TCU system discovery registers on page 3-120
• 3.16 TBU system discovery registers on page 3-153

Table D-4 Differences between issue 0001-03 and issue 0001-04

Change Location

Improvements to descriptions Throughout the document

Added a 'Width' column to all signal description tables Appendix A Signal descriptions on page Appx-A-169

D Revisions
D.1 Revisions

101542_0001_04_en Copyright © 2019–2021 Arm Limited or its affiliates. All rights
reserved.

Appx-D-224

Non-Confidential

	Arm® CoreLink™ MMU‑700 System Memory Management Unit Technical Reference Manual
	Table of Contents
	Preface
	About this book
	Product revision status
	Intended audience
	Using this book
	Glossary
	Typographic conventions
	Timing diagrams
	Signals

	Additional reading

	Feedback
	Feedback on this product
	Feedback on content

	1 : Introduction
	1.1 : About the CoreLink™ MMU‑700 System Memory Management Unit
	1.2 : Compliance
	1.2.1 : Arm architecture
	1.2.2 : SMMU architecture
	1.2.3 : AMBA Distributed Translation Interface protocol
	1.2.4 : AMBA ACE5-Lite and AMBA AXI5 protocol
	1.2.5 : AMBA APB protocol
	1.2.6 : LTI protocol
	1.2.7 : LPI Q-Channel protocol

	1.3 : Features
	1.4 : Interfaces
	1.5 : Configurable options
	1.6 : Product documentation and design flow
	1.6.1 : Documentation
	1.6.2 : Design flow

	1.7 : Product revisions

	2 : Functional description
	2.1 : About the functions
	2.1.1 : Translation Buffer Unit
	2.1.2 : Translation Control Unit
	2.1.3 : DTI interconnect

	2.2 : Interfaces
	2.2.1 : TCU interfaces
	TCU Queue and Table Walk/Distributed Virtual Memory interface
	TCU PROG interface
	TCU LPI_PD interface
	TCU LPI_CG interface
	TCU DTI interface
	TCU interrupt interfaces
	TCU SYSCO signaling
	TCU tie-off signals
	TCU ELA observation interface

	2.2.2 : TBU interfaces
	ACE-Lite TBU TBS interface
	ACE-Lite TBU TBM interface
	LTI TBU LTI interface
	TBU LPI_PD interface
	TBU LPI_CG interface
	TBU DTI interface
	TBU interrupt interfaces
	TBU tie-off signals
	TBU ELA observation interface

	2.2.3 : DTI interconnect interfaces
	DTI interconnect switch interfaces
	DTI interconnect sizer interfaces
	DTI interconnect register slice interfaces

	2.3 : Operation
	2.3.1 : DTI overview
	2.3.2 : Performance Monitoring Unit
	SMMUv3 architectural performance events
	MMU-700 TCU events
	MMU-700 TBU events
	SMMUv3 PMU register architectural options
	PMU snapshot interface

	2.3.3 : TBU direct indexing and MTLB partitioning
	2.3.4 : RAS implementation
	2.3.5 : Quality of Service
	2.3.6 : Distributed Virtual Memory (DVM) messages
	2.3.7 : TCU transaction handling
	2.3.8 : TCU prefetch
	2.3.9 : Error responses
	2.3.10 : Conversion between ACE-Lite and Armv8 attributes
	Slave interface memory type attribute handling
	Master interface memory type attribute handling

	2.3.11 : AXI USER bits that MMU-700 TBU defines
	Page Based Hardware Attribute (PBHA) in SMMUs

	2.4 : Constraints and limitations of use
	2.4.1 : SMMUv3 implementation
	ID register architectural options
	Non-implemented commands and events
	IMPLEMENTATION DEFINED fields
	Non‑implemented registers

	2.4.2 : AMBA implementation
	ACE-Lite feature support
	SLVERR and DECERR
	Attribute handling
	Slave interface attribute handling
	Master interface attribute handling

	AxREGION
	DVM interface
	Internally terminated transactions
	Transaction types
	Transactions that can result in a translation fault
	Transactions that cannot result in a translation fault

	2.4.3 : MPAM implementation
	TCU MPAM
	TBU MPAM

	2.4.4 : LTI implementation

	2.5 : Configuration options and methodology
	2.5.1 : TCU I/O configuration options
	2.5.2 : TCU buffer configuration options
	2.5.3 : TCU debug configuration options
	2.5.4 : ACE-Lite TBU I/O configuration options
	2.5.5 : TBU register slice configuration options
	2.5.6 : LTI TBU configuration options
	2.5.7 : Common LTI TBU and ACE-Lite TBU configuration options
	2.5.8 : TBU buffer configuration options
	2.5.9 : TBU debug configuration options

	2.6 : Debug capability

	3 : Programmers model
	3.1 : About the programmers model
	3.1.1 : Clearing ERRSTATUS registers

	3.2 : SMMU architectural registers
	3.3 : MMU-700 memory map
	3.3.1 : Main MMU‑700 memory map
	3.3.2 : TCU memory map
	3.3.3 : TBU memory map

	3.4 : MMU-700 registers summary
	3.4.1 : TCU identification registers summary
	3.4.2 : TCU and TBU PMU identification registers summary
	3.4.3 : TCU Reliability, Availability, and Service registers summary
	3.4.4 : TCU microarchitectural registers summary
	3.4.5 : TCU system discovery registers summary
	3.4.6 : TCU integration registers summary
	3.4.7 : TBU identification registers summary
	3.4.8 : TBU Reliability, Availability, and Serviceability registers summary
	3.4.9 : TBU microarchitectural registers summary
	3.4.10 : TBU system discovery registers summary
	3.4.11 : TBU integration registers summary

	3.5 : TCU component and peripheral ID registers
	3.6 : TCU PMU registers
	3.6.1 : Registers
	3.6.2 : Events
	3.6.3 : SMMU_PMCG_CFGR
	3.6.4 : SMMU_PMCG_CEID{0-1} registers
	3.6.5 : PMU ID registers

	3.7 : TCU microarchitectural registers
	3.7.1 : TCU_CTRL register
	3.7.2 : TCU_QOS register
	3.7.3 : TCU_CFG register
	3.7.4 : TCU_STATUS register
	3.7.5 : TCU_NODE_CTRLn register
	3.7.6 : TCU_NODE_STATUSn register
	3.7.7 : TCU_SCR register
	3.7.8 : TCU_WC_SxLy_CMAX registers

	3.8 : TCU RAS registers
	3.8.1 : TCU_ERRFR register
	3.8.2 : TCU_ERRCTLR register
	3.8.3 : TCU_ERRSTATUS register
	3.8.4 : TCU_ERRGEN register

	3.9 : TCU system discovery registers
	3.9.1 : TCU_SYSDISC0 system discovery register
	3.9.2 : TCU_SYSDISC1 system discovery register
	3.9.3 : TCU_SYSDISC2 system discovery register
	3.9.4 : TCU_SYSDISC3 system discovery register
	3.9.5 : TCU_SYSDISC4 system discovery register
	3.9.6 : TCU_SYSDISC5 system discovery register
	3.9.7 : TCU_SYSDISC6 system discovery register
	3.9.8 : TCU_SYSDISC7 system discovery register
	3.9.9 : TCU_SYSDISC8 system discovery register
	3.9.10 : TCU_SYSDISC9 system discovery register
	3.9.11 : TCU_SYSDISC10 system discovery register
	3.9.12 : TCU_SYSDISC11 system discovery register
	3.9.13 : TCU_SYSDISC12 system discovery register
	3.9.14 : TCU_SYSDISC13 system discovery register
	3.9.15 : TCU_SYSDISC14 system discovery register
	3.9.16 : TCU_SYSDISC15 system discovery register
	3.9.17 : TCU_SYSDISC16 system discovery register
	3.9.18 : TCU_SYSDISC17 system discovery register

	3.10 : TCU PIU integration registers
	3.10.1 : ITEN register for the TCU
	3.10.2 : ITOP register for the TCU Programmer Interface Unit

	3.11 : TCU TMU integration registers
	3.11.1 : ITOP register for the TCU Translation Management Unit
	3.11.2 : ITIN register for the TCU Translation Management Unit

	3.12 : TBU component and peripheral ID registers
	3.13 : TBU PMU registers
	3.13.1 : Registers
	3.13.2 : Events
	3.13.3 : SMMU_PMCG_CFGR
	3.13.4 : SMMU_PMCG_CEID{0-1} registers
	3.13.5 : PMU ID registers

	3.14 : TBU microarchitectural registers
	3.14.1 : TBU_CTRL register
	3.14.2 : TBU_SCR register

	3.15 : TBU RAS registers
	3.15.1 : TBU_ERRFR register
	3.15.2 : TBU_ERRCTLR register
	3.15.3 : TBU_ERRSTATUS register
	3.15.4 : TBU_ERRGEN register

	3.16 : TBU system discovery registers
	3.16.1 : TBU_SYSDISC0 system discovery register
	3.16.2 : TBU_SYSDISC1 system discovery register
	3.16.3 : TBU_SYSDISC2 system discovery register
	3.16.4 : TBU_SYSDISC3 system discovery register
	3.16.5 : TBU_SYSDISC4 system discovery register
	3.16.6 : TBU_SYSDISC5 system discovery register
	3.16.7 : TBU_SYSDISC6 system discovery register
	3.16.8 : TBU_SYSDISC7 system discovery register
	3.16.9 : TBU_SYSDISC8 system discovery register
	3.16.10 : TBU_SYSDISC9 system discovery register
	3.16.11 : TBU_SYSDISC10 system discovery register
	3.16.12 : TBU_SYSDISC11 system discovery register
	3.16.13 : TBU_SYSDISC12 system discovery register
	3.16.14 : TBU_SYSDISC13 system discovery register
	3.16.15 : TBU_SYSDISC14 system discovery register

	3.17 : TBU integration registers
	3.17.1 : ITEN register
	3.17.2 : ITOP_TBU register
	3.17.3 : ITIN_TBU register

	A : Signal descriptions
	A.1 : TCU signals
	A.1.1 : TCU clock and reset signals
	A.1.2 : TCU QTW/DVM interface signals
	A.1.3 : TCU programming interface signals
	A.1.4 : TCU SYSCO interface signals
	A.1.5 : TCU PMU snapshot interface signals
	A.1.6 : TCU LPI_PD interface signals
	A.1.7 : TCU LPI_CG interface signals
	A.1.8 : TCU DTI interface signals
	A.1.9 : TCU interrupt signals
	A.1.10 : TCU MSI interface signals
	A.1.11 : TCU event interface signal
	A.1.12 : TCU tie-off signals
	A.1.13 : TCU ELA debug signals

	A.2 : TBU signals
	A.2.1 : TBU clock and reset signals
	A.2.2 : TBU TBS interface signals
	A.2.3 : TBU TBM interface signals
	A.2.4 : TBU PMU snapshot interface signals
	A.2.5 : TBU LPI_PD interface signals
	A.2.6 : TBU LPI_CG interface signals
	A.2.7 : TBU DTI interface signals
	A.2.8 : TBU interrupt signals
	A.2.9 : TBU tie-off signals
	A.2.10 : TBU ELA debug signals

	A.3 : TCU and TBU shared signals
	A.3.1 : TCU and TBU test and debug signals

	A.4 : DTI signals
	A.4.1 : DTI interconnect switch signals
	A.4.2 : DTI interconnect sizer signals
	A.4.3 : DTI interconnect register slice signals

	B : ELA signal descriptions
	B.1 : TCU observation interfaces
	B.2 : ACE-Lite TBU observation interfaces
	B.3 : LTI TBU observation interfaces

	C : Software initialization examples
	C.1 : Initializing the SMMU
	C.1.1 : Allocating the Command queue
	C.1.2 : Allocating the Event queue
	C.1.3 : Configuring the Stream table
	C.1.4 : Initializing the Command queue
	C.1.5 : Initializing the Event queue
	C.1.6 : Invalidating TLBs and configuration caches
	C.1.7 : Creating a basic Context Descriptor
	C.1.8 : Creating a Stream Table Entry

	C.2 : Enabling the SMMU

	D : Revisions
	D.1 : Revisions

