
ARM Software Development Toolkit
Version 2.50

Reference Guide
Copyright © 1997, 1998 ARM Limited. All rights reserved.
ARM DUI 0041C

ARM Software Development Toolkit
Reference Guide

Copyright © 1997, 1998 ARM Limited. All rights reserved.

Release Information

The following changes have been made to this book.

Proprietary Notice

ARM, Thumb, StrongARM, and the ARM Powered logo are registered trademarks of ARM Limited.

Angel, ARMulator, EmbeddedICE, Multi-ICE, ARM7TDMI, ARM9TDMI, and TDMI are trademarks of
ARM Limited.

All other products or services mentioned herein may be trademarks of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this document
may be adapted or reproduced in any material form except with the prior written permission of the copyright
holder.

The product described in this document is subject to continuous developments and improvements. All
particulars of the product and its use contained in this document are given by ARM in good faith. However,
all warranties implied or expressed, including but not limited to implied warranties of merchantability, or
fitness for purpose, are excluded.

This document is intended only to assist the reader in the use of the product. ARM Limited shall not be liable
for any loss or damage arising from the use of any information in this document, or any error or omission in
such information, or any incorrect use of the product.

Change History

Date Issue Change

Jan 1997 A Created from ARM DUI 0020. Includes major updates for SDT 2.10

June 1997 B Updated for SDT 2.11

Nov 1998 C Updated for SDT 2.50
ii Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

Contents
ARM Software Development Toolkit Reference
Guide

Preface
About this book .. viii
Further reading .. x
Typographical conventions .. xiii
Feedback ... xiv

Chapter 1 Introduction
1.1 About the ARM Software Development Toolkit ... 1-2
1.2 Supported platforms .. 1-5
1.3 What is new? .. 1-6

Chapter 2 The ARM Compilers
2.1 About the ARM compilers ... 2-2
2.2 File usage ... 2-6
2.3 Command syntax .. 2-10

Chapter 3 ARM Compiler Reference
3.1 Compiler-specific features ... 3-2
3.2 C and C++ implementation details .. 3-14
3.3 Standard C implementation definition .. 3-25
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. iii

Contents
3.4 Standard C++ implementation definition .. 3-35
3.5 C and C++ language extensions .. 3-37
3.6 Predefined macros ... 3-40
3.7 Implementation limits .. 3-43
3.8 Limits for integral numbers ... 3-46
3.9 Limits for floating-point numbers .. 3-47
3.10 C++ language feature support .. 3-49

Chapter 4 The C and C++ Libraries
4.1 About the runtime libraries ... 4-2
4.2 The ANSI C library .. 4-5
4.3 The ARM C++ libraries ... 4-14
4.4 The embedded C library ... 4-18
4.5 Target-dependent ANSI C library functions .. 4-26
4.6 Target-dependent I/O support functions ... 4-29
4.7 Target-dependent kernel functions ... 4-35
4.8 Target-dependent operating system functions ... 4-40

Chapter 5 Assembler
5.1 Command syntax .. 5-3
5.2 Format of source lines .. 5-8
5.3 Predefined register and coprocessor names .. 5-9
5.4 Built-in variables ... 5-10
5.5 ARM pseudo-instructions ... 5-11
5.6 Thumb pseudo-instructions .. 5-19
5.7 Symbols .. 5-25
5.8 Directives .. 5-30
5.9 Expressions and operators ... 5-88

Chapter 6 Linker
6.1 About the linker ... 6-2
6.2 Command syntax .. 6-4
6.3 Building blocks for objects and images .. 6-12
6.4 Image file formats ... 6-13
6.5 Image structure ... 6-15
6.6 Specifying an image memory map ... 6-17
6.7 About scatter loading .. 6-21
6.8 The scatter load description file .. 6-23
6.9 Area placement and sorting rules ... 6-31
6.10 Linker-defined symbols ... 6-33
6.11 Including library members .. 6-36
6.12 Automatic inclusion of libraries ... 6-38
6.13 Handling relocation directives ... 6-40

Chapter 7 ARM Symbolic Debugger
7.1 About armsd ... 7-2
iv Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

Contents
7.2 Command syntax .. 7-3
7.3 Running armsd .. 7-5
7.4 Alphabetical list of armsd commands .. 7-9
7.5 Specifying source-level objects ... 7-48
7.6 Armsd variables .. 7-53
7.7 Low-level debugging ... 7-58
7.8 armsd commands for EmbeddedICE .. 7-61
7.9 Accessing the Debug Communications Channel 7-63

Chapter 8 Toolkit Utilities
8.1 Functions of the toolkit utilities .. 8-2
8.2 The fromELF utility .. 8-3
8.3 ARM profiler .. 8-6
8.4 ARM librarian .. 8-8
8.5 ARM object file decoder .. 8-10
8.6 ARM executable format decoder ... 8-11
8.7 ANSI to PCC C Translator .. 8-12
8.8 The Flash downloader .. 8-15

Chapter 9 ARM Procedure Call Standard
9.1 About the ARM Procedure Call Standard ... 9-2
9.2 APCS definition ... 9-6
9.3 C language calling conventions .. 9-16
9.4 Function entry examples ... 9-18
9.5 Function exit .. 9-24

Chapter 10 Thumb Procedure Call Standard
10.1 About the Thumb Procedure Call Standard .. 10-2
10.2 TPCS definition ... 10-3
10.3 C language calling conventions .. 10-7
10.4 Function entry examples ... 10-9
10.5 Function exit .. 10-12

Chapter 11 Floating-point Support
11.1 About floating-point support .. 11-2
11.2 The ARM floating-point library ... 11-3
11.3 Floating-point instructions ... 11-7
11.4 Configuring the FPA support code for a new environment 11-13
11.5 Controlling floating-point exceptions ... 11-14

Chapter 12 ARMulator
12.1 About the ARMulator ... 12-2
12.2 Modeling an ARM-based system .. 12-3
12.3 Basic model interface .. 12-7
12.4 The memory interface ... 12-13
12.5 Memory model interface .. 12-16
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. v

Contents
12.6 Coprocessor model interface .. 12-24
12.7 Operating system or debug monitor interface .. 12-36
12.8 Using the floating-point emulator (FPE) ... 12-40
12.9 Accessing ARMulator state .. 12-42
12.10 Exceptions .. 12-55
12.11 Upcalls .. 12-57
12.12 Memory access functions ... 12-68
12.13 Event scheduling functions ... 12-70
12.14 ARMulator specific functions .. 12-75
12.15 Accessing the debugger ... 12-83
12.16 Events ... 12-87

Chapter 13 ARM Image Format
13.1 Overview of the ARM Image Format .. 13-2
13.2 AIF variants .. 13-3
13.3 The layout of AIF .. 13-4

Chapter 14 ARM Object Library Format
14.1 Overview of ARM Object Library Format .. 14-2
14.2 Endianness and alignment ... 14-3
14.3 Library file format .. 14-4
14.4 Time stamps .. 14-7
14.5 Object code libraries .. 14-8

Chapter 15 ARM Object Format
15.1 ARM Object Format .. 15-2
15.2 Overall structure of an AOF file .. 15-4
15.3 The AOF header chunk (OBJ_HEAD) .. 15-7
15.4 The AREAS chunk (OBJ_AREA) ... 15-12
15.5 Relocation directives ... 15-13
15.6 Symbol Table Chunk Format (OBJ_SYMT) .. 15-16
15.7 The String Table Chunk (OBJ_STRT) ... 15-20
15.8 The Identification Chunk (OBJ_IDFN) ... 15-21
vi Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

Preface

This preface introduces the ARM Software Development Toolkit and its reference
documentation. It contains the following sections:

• About this book on page viii

• Further reading on page x

• Typographical conventions on page xiii

• Feedback on page xiv.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. vii

Preface
About this book

This book provides reference information for the ARM Software Development Toolkit.
It describes the command-line options to the assembler, linker, compilers and other
ARM tools, and gives reference material on software included with the Toolkit, such as
the ARMulator.

Organization

This book is organized into the following chapters:

Chapter 1 Introduction

Read this chapter for an introduction to the ARM Software Development
Toolkit version 2.5, and details of the changes that have been made since
version 2.11a

Chapter 2 The ARM Compilers

Read this chapter for an explanation of all command-line options
accepted by the ARM C and C++ compilers.

Chapter 3 ARM Compiler Reference

Read this chapter for a description of the language features provided by
the ARM C and C++ compilers, and for information on standards
conformance and implementation details.

Chapter 4 The C and C++ Libraries

Read this chapter for a description of how to retarget and rebuild the
ARM C and C++ libraries.

Chapter 5 Assembler

Read this chapter for an explanation of all command-line options
accepted by the ARM assembler. In addition, this chapter documents
features such as the directives and pseudo-instructions supported by the
assembler.

Chapter 6 Linker

Read this chapter for an explanation of all command-line options
accepted by the linker, and for reference information on linker features
such as scatter loading.

Chapter 7 ARM Symbolic Debugger

Read this chapter for an explanation of all command-line options
accepted by the ARM symbolic debugger.
viii Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

Preface
Chapter 8 Toolkit Utilities

Read this chapter for a description of the utility programs provided with
the ARM Software Development Toolkit, including fromELF, the ARM
profiler, the ARM librarian, and the ARM object file decoders.

Chapter 9 ARM Procedure Call Standard

This chapter defines the ARM Procedure Call Standard (APCS).

Chapter 10 Thumb Procedure Call Standard

This chapter defines the Thumb Procedure Call Standard (TPCS).

Chapter 11 Floating-point Support

Read this chapter for reference information on floating-point support in
the Software Development Toolkit.

Chapter 12 ARMulator

Read this chapter for reference material relating the the ARMulator.

Chapter 13 ARM Image Format

Read this chapter for a description of the AIF file format.

Chapter 14 ARM Object Library Format

Read this chapter for a description of the ALF file format.

Chapter 15 ARM Object Format

Read this chapter for a description of the AOF file format.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. ix

Preface
Further reading

This section lists publications from both ARM Limited and third parties that provide
additional information on developing for the ARM processor, and general information
on related topics such as C and C++ development.

ARM publications

This book contains reference information that is specific to the ARM Software
Development Toolkit. For additional information, refer to the following ARM
publications:

• ARM Software Development Toolkit User Guide (ARM DUI 0040)

• ARM Architectural Reference Manual (ARM DUI 0100)

• ARM Reference Peripheral Specification (ARM DDI 0062)

• ARM Target Development System User Guide (ARM DUI 0061)

• the ARM datasheet for your hardware device.

Other publications

This book is not intended to be an introduction to the ARM assembly language, C, or
C++ programming languages. It does not try to teach programming in C or C++, and it
is not a reference manual for the C or C++ standards. The following texts provide
general information:

ARM architecture

• Furber, S., ARM System Architecture (1996). Addison Wesley Longman, Harlow,
England. ISBN 0-201-40352-8.

ISO/IEC C++ reference

• ISO/IEC JTC1/SC22 Final CD (FCD) Ballot for CD 14882: Information
Technology - Programming languages, their environments and system software
interfaces - Programming Language C++

This is the December 1996 version of the draft ISO/IEC standard for C++. It is
referred to hereafter as the Draft Standard.
x Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

Preface
C++ programming guides

The following books provide general C++ programming information:

• Ellis, M.A. and Stroustrup, B., The Annotated C++ Reference Manual (1990).
Addison-Wesley Publishing Company, Reading, Massachusetts. ISBN
0-201-51459-1.

This is a reference guide to C++.

• Stroustrup, B., The Design and Evolution of C++ (1994). Addison-Wesley
Publishing Company, Reading, Massachusetts. ISBN 0-201-54330-3.

This book explains how C++ evolved from its first design to the language in use
today.

• Meyers, S., Effective C++ (1992). Addison-Wesley Publishing Company,
Reading, Massachusetts. ISBN 0-201-56364-9.

This provides short, specific, guidelines for effective C++ development.

• Meyers, S., More Effective C++ (1996). Addison-Wesley Publishing Company,
Reading, Massachusetts. ISBN 0-201-63371-X.

The sequel to Effective C++.

C programming guides

The following books provide general C programming information:

• Kernighan, B.W. and Ritchie, D.M., The C Programming Language (2nd edition,
1988). Prentice-Hall, Englewood Cliffs, NJ, USA. ISBN 0-13-110362-8.

This is the original C bible, updated to cover the essentials of ANSI C.

• Harbison, S.P. and Steele, G.L., A C Reference Manual (second edition, 1987).
Prentice-Hall, Englewood Cliffs, NJ, USA. ISBN 0-13-109802-0.

This is a very thorough reference guide to C, including useful information on
ANSI C.

• Koenig, A, C Traps and Pitfalls, Addison-Wesley (1989), Reading, Mass. ISBN
0-201-17928-8.

This explains how to avoid the most common traps and pitfalls in C programming.

ANSI C reference

• ISO/IEC 9899:1990, C Standard
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. xi

Preface
This is available from ANSI as X3J11/90-013. The standard is available from the
national standards body (for example, AFNOR in France, ANSI in the USA).
xii Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

Preface
Typographical conventions

The following typographical conventions are used in this book:

typewriter Denotes text that may be entered at the keyboard, such as commands, file
and program names, and source code.

typewriter Denotes a permitted abbreviation for a command or option. The
underlined text may be entered instead of the full command or option
name.

typewriter italic

Denotes arguments to commands and functions where the argument is to
be replaced by a specific value.

italic Highlights important notes, introduces special terminology, denotes
internal cross-references, and citations.

bold Highlights interface elements, such as menu names. Also used for
emphasis in descriptive lists, where appropriate, and for ARM processor
signal names.

typewriter bold

Denotes language keywords when used outside example code.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. xiii

Preface
Feedback

ARM Limited welcomes feedback on both the Software Development Toolkit, and the
documentation.

Feedback on this book

If you have any comments on this book, please send email to errata@arm.com giving:

• the document title

• the document number

• the page number(s) to which you comments apply

• a concise explanation of your comments.

General suggestions for additions and improvements are also welcome.

Feedback on the ARM Software Development Toolkit

If you have any problems with the ARM Software Development Kit, please contact your
supplier. To help us provide a rapid and useful response, please give:

• details of the release you are using

• details of the platform you are running on, such as the hardware platform,
operating system type and version

• a small stand-alone sample of code that reproduces the problem

• a clear explanation of what you expected to happen, and what actually happened

• the commands you used, including any command-line options

• sample output illustrating the problem

• the version string of the tool, including the version number and date.
xiv Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

Chapter 1
Introduction

This chapter introduces the ARM Software Development Toolkit version 2.50 and
describes the changes that have been made since SDT version 2.11a. It contains the
following sections:

• About the ARM Software Development Toolkit on page 1-2

• Supported platforms on page 1-5

• What is new? on page 1-6.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 1-1

Introduction
1.1 About the ARM Software Development Toolkit

The ARM Software Development Toolkit (SDT) consists of a suite of applications,
together with supporting documentation and examples, that enable you to write and
debug applications for the ARM family of RISC processors.

You can use the SDT to develop, build, and debug C, C++, or ARM assembly language
programs.

1.1.1 Components of the SDT

The ARM Software Development Toolkit consists of the following major components:

• command-line development tools

• Windows development tools

• utilities

• supporting software.

These are described in more detail below.

Command-line development tools

The following command-line development tools are provided:

armcc The ARM C compiler. The compiler is tested against the Plum Hall C
Validation Suite for ANSI conformance. It compiles ANSI or PCC source
into 32-bit ARM code.

tcc The Thumb C compiler. The compiler is tested against the Plum Hall C
Validation Suite for ANSI conformance. It compiles ANSI or PCC source
into 16-bit Thumb code.

armasm The ARM and Thumb assembler. This assembles both ARM assembly
language and Thumb assembly language source.

armlink The ARM linker. This combines the contents of one or more object files
with selected parts of one or more object libraries to produce an
executable program. The ARM linker creates ELF executable images.

armsd The ARM and Thumb symbolic debugger. This enables source level
debugging of programs. You can single step through C or assembly
language source, set breakpoints and watchpoints, and examine program
variables or memory.
1-2 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

Introduction
Windows development tools

The following windows development tools are provided:

ADW The ARM Debugger for Windows. This provides a full Windows
environment for debugging your C, C++, and assembly language source.

APM The ARM Project Manager. This is a graphical user interface tool that
automates the routine operations of managing source files and building
your software development projects. APM helps you to construct the
environment, and specify the procedures needed to build your software.

Utilities

The following utility tools are provided to support the main development tools:

fromELF The ARM image conversion utility. This accepts ELF format input files
and converts them to a variety of output formats, including AIF, plain
binary, Extended Intellec Hex (IHF) format, Motorola 32-bit S record
format, and Intel Hex 32 format.

armprof The ARM profiler displays an execution profile of a program from a
profile data file generated by an ARM debugger.

armlib The ARM librarian enables sets of AOF files to be collected together and
maintained in libraries. You can pass such a library to the linker in place
of several AOF files.

decaof The ARM Object Format decoder decodes AOF files such as those
produced by armasm and armcc.

decaxf The ARM Executable Format decoder decodes executable files such as
those produced by armlink.

topcc The ANSI to PCC C Translator helps to translate C programs and headers
from ANSI C into PCC C, primarily by rewriting top-level function
prototypes.

topcc is available for UNIX platforms only, not for Windows.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 1-3

Introduction
Supporting software

The following support software is provided to enable you to debug your programs,
either under emulation, or on ARM-based hardware:

ARMulator The ARM core emulator. This provides instruction accurate emulation of
ARM processors, and enables ARM and Thumb executable programs to
be run on non-native hardware. The ARMulator is integrated with the
ARM debuggers.

Angel The ARM debug monitor. Angel runs on target development hardware
and enables you to develop and debug applications running on
ARM-based hardware. Angel can debug applications running in either
ARM state or Thumb state.

1.1.2 Components of C++ version 1.10

ARM C++ is not part of the base Software Development Toolkit. It is available
separately. Contact your distributor or ARM Limited if you want to purchase ARM
C++.

ARM C++ version 1.10 consists of the following major components:

armcpp This is the ARM C++ compiler. It compiles draft-conforming C++ source
into 32-bit ARM code.

tcpp This is the Thumb C++ compiler. It compiles draft-conforming C++
source into 16-bit Thumb code.

support software

The ARM C++ release provides a number of additional components to
enable support for C++ in the ARM Debuggers, and the ARM Project
Manager.

Note
 The ARM C++ compilers, libraries, and enhancements to the ARM Project Manager
and ARM Debuggers are described in the appropriate sections of the ARM Software
Development Toolkit User Guide and Reference Guide.
1-4 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

Introduction
1.2 Supported platforms

This release of the ARM Software Development Toolkit supports the following
platforms:

• Sun workstations running Solaris 2.5 or 2.6

• Hewlett Packard workstations running HP-UX 10

• IBM compatible PCs running Windows 95, Windows 98, or Windows NT 4.

The Windows development tools (ADW and APM) are supported on IBM compatible
PCs running Windows 95, Windows 98, and Windows NT 4.

The SDT is no longer supported on the following platforms:

• Windows NT 3.51

• SunOS 4.1.3

• HP-UX 9

• DEC Alpha NT.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 1-5

Introduction
1.3 What is new?

This section describes the major changes that have been made to the Software
Development Toolkit since version 2.11a. The most important new features are:

• Improved support for debug of optimized code.

• Instruction scheduling compilers.

• Reduced debug data size.

• New supported processors. ARMulator now supports the latest ARM processors.

• ADW enhancements. SDT 2.50 provides a new ADW capable of remote
debugging with Multi-ICE, and able to accept DWARF 1 and DWARF 2 debug
images.

The preferred and default debug table format for the SDT is now DWARF 2. The ASD
debug table format is supported for this release, but its use is deprecated and support for
it will be withdrawn in future ARM software development tools.

The preferred and default executable image format is now ELF. Refer to the ELF
description in c:ARM250\PDF\specs for details of the ARM implementation of standard
ELF format.

Demon-based C libraries are no longer included in the toolkit release, and RDP is no
longer supported as a remote debug protocol.

The following sections describe the changes in more detail:

• Functionality enhancements and new functionality on page 1-7

• Changes in default behavior on page 1-12

• Obsolete and deprecated features on page 1-15.
1-6 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

Introduction
1.3.1 Functionality enhancements and new functionality

This release of the ARM Software Development Toolkit introduces numerous
enhancements and new features. The major changes are described in:

• Improved support for debug of optimized code

• Instruction scheduling compilers on page 1-8

• Reduced debug data size on page 1-8

• New supported processors on page 1-9

• ADW enhancements on page 1-9

• Interleaved source and assembly language output on page 1-10

• New assembler directives and behavior on page 1-10

• Long long operations now compile inline on page 1-10

• Angel enhancements on page 1-11

• ARMulator enhancements on page 1-11

• New fromELF tool on page 1-11

• New APM configuration dialogs on page 1-12.

Improved support for debug of optimized code

Compiling for debug (-g), and the optimization level (-O), have been made orthogonal
in the compilers.There are 3 levels of optimization:

-O0 Turns off all optimization, except some simple source transformations.

-O1 Turns off structure splitting, range splitting, cross-jumping, and
conditional execution optimizations. Also, no debug data for inline
functions is generated.

-O2 Full optimization.

The -O0 option gives the best debug view, but with the least optimized code.

The -O1 option gives a satisfactory debug view, with good code density. By default no
debug data is emitted for inline functions, so they cannot be debugged. With DWARF1
debug tables (-dwarf1 command-line option), variables local to a function are not
visible, and it is not possible to get a stack backtrace.

The -O2 option emits fully optimized code that is still acceptable to the debugger.
However, the correct values of variables are not always displayed, and the mapping of
object code to source code is not always clear, because of code re-ordering.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 1-7

Introduction
A new pragma has been introduced to specify that debug data is to be emitted for inline
functions. The pragma is #pragma [no]debug_inlines. You can use this pragma to
bracket any number of inline functions. It can be used regardless of the level of
optimization chosen.

Impact

Any existing makefiles or APM projects that use –g+ –gxo will now get the behavior
defined by –g+ -O1. The SDT 2.11a option -g+ -gxr is still supported by SDT 2.50, and
has the same functionality as in SDT 2.11a, but will not be supported by future releases.

Instruction scheduling compilers

The compilers have been enhanced to perform instruction scheduling. Instruction
scheduling involves the re-ordering of machine instruction to suit the particular
processor for which the code is intended. Instruction scheduling in this version of the C
and C++ compilers is performed after the register allocation and code generation phases
of the compiler.

Instruction scheduling is of benefit to code for the StrongARM1 and ARM9 processor
families:

• if the -processor option specifies any processor other than the StrongARM1,
instruction scheduling suitable for the ARM 9 is performed

• if -processor StrongARM1 is specified, instruction scheduling for the StrongARM1
is performed.

By default, instruction scheduling is turned on. It can be turned off with the
-zpno_optimize_scheduling command-line option.

Reduced debug data size

In SDT 2.50 and C++ 1.10, the compilers generate one set of debug areas for each input
file, including header files. The linker is able to detect multiple copies of the set of
debug areas corresponding to an input file that is included more than once, and emits
only one such set of debug areas in the final image. This can result in a considerable
reduction in image size. This improvement is not available when ASD debug data is
generated.

In SDT 2.11a and C++ 1.01 images compiled and linked for debug could be
considerably larger than expected, because debug data was generated separately for
each compilation unit. The linker emitted all the debug areas, because it was unable to
identify multiple copies of debug data belonging to header files that were included more
than once.
1-8 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

Introduction
Impact

Existing makefiles and APM projects generate smaller debug images, and therefore the
images load more quickly into the debugger. This feature cannot be disabled.

New supported processors

ARMulator models for the ARM9TDMI, ARM940T, ARM920T, ARM710T,
ARM740T, ARM7TDMI-S, ARM7TDI-S, and ARM7T-S processors have been added
to SDT 2.50. These are compatible with the memory model interfaces from the SDT
2.11a ARMulator.

These processor names (and those of all other released ARM processors) are now
permitted as arguments to the –processor command-line option of the compilers and
assembler.

ADW enhancements

ADW has been enhanced to provide the following additional features:

• Support for remote debug using Multi-ICE.

• Support for reading DWARF 2 debug tables.

• The command-line options supported by armsd that are suitable for a GUI
debugger are now understood on the ADW command line. This enables you, for
example, always to start ADW in remote debug mode. The available
command-line options are:

— -symbols

— -li, -bi

— -armul

— -adp –linespeed baudrate -port [s=serial_port[,p=parallel_port]] |

[e=ethernet_address]

• A delete all breakpoints facility.

• Save and restore all window formats. Windows retain the format they were given.

• Breakpoints can be set as 16-bit or 32-bit. The dialog box for setting a breakpoint
has been modified to enable breakpoints to be set either as ARM or Thumb
breakpoints, or for the choice to be left to the debugger.

• The display of low-level symbols can be sorted either alphabetically or by address
order (sorting was by address order only in SDT 2.11a). You can choose the order
that is used.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 1-9

Introduction
• Locals, Globals, and Debugger Internals windows format is now controlled by
$int_format, $uint_format, $float_format, $sbyte_format, $ubyte_format,
$string_format, $complex_format. These formats are available by selecting
Change Default Display Formats from the Options menu.

• The Memory window now has halfword and byte added to its display formats.

• Value fields in editable windows (for example, Variable windows and Memory
windows) are now edit in place, rather than using a separate dialog box for
entering new values.

A copy of ADW is also supplied in a file named MDW.exe to maintain backwards
compatibility with the Multi-ICE release.

Interleaved source and assembly language output

The compilers in SDT 2.50 and C++ 1.10 have been enhanced to provide an assembly
language listing, annotated with the original C or C++ source that produced the
assembly language. Use the command-line options -S –fs to get interleaved source and
assembly language.

This facility is not available if ASD debug tables are requested (-g+ -asd).This facility
is only easily accessible from the command line, and is not integrated with APM.

New assembler directives and behavior

The SDT 2.11a assemblers (armasm and tasm) have been merged into a single
assembler, called armasm, that supports both ARM code and Thumb code. In addition,
it provides functionality previously supported only by tasm, such as the CODE16 and
CODE32 directives, and the -16 and -32 command-line options. The assembler starts in
ARM state by default. A tasm binary is shipped with SDT 2.50 for compatibility
reasons, however this binary only invokes armasm –16.

The assembler now supports the following FPA pseudo-instructions:

• LDFS fp-register, =fp-constant

• LDFD fp-register, =fp-constant

• LDFE fp-register, =fp-constant

and the new directives DCWU and DCDU.

Long long operations now compile inline

In the C and C++ compilers, the implementation of the long long data type has been
optimized to inline most operators. This results in smaller and faster code. In particular:
1-10 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

Introduction
long long res = (long long) x * (long long) y;

translates to a single SMULL instruction, instead of a call to a long long multiply function,
if x and y are of type int.

Angel enhancements

Angel has been enhanced to enable full debug of interrupt-driven applications.

ARMulator enhancements

The following enhancements have been made to the ARMulator:

• Total cycle counts are always displayed.

• Wait states and true idle cycles are counted separately if a map file is used.

• F bus cycle counts are displayed if appropriate.

• Verbose statistics are enabled by the line Counters=True in the armul.cnf file. For
cached cores, this adds counters for TLB misses, write buffer stalls, and cache
misses.

• The instruction tracer now supports both Thumb and ARM instructions.

• A new fast memory model is supplied, that enables fast emulation without cycle
counting. This is enabled using Default=Fast in the armul.cnf file.

• Trace output can be sent to a file or appended to the RDI log window.

New fromELF tool

The fromELF translation utility is a new tool in SDT 2.50. It can translate an ELF
executable file into the following formats:

• AIF family

• Plain binary

• Extended Intellec Hex (IHF) format

• Motorola 32 bit S record format

• Intel Hex 32 format

• Textual Information.

This tool does not have a GUI integrated with APM. It can be called directly from the
command line, or by editing your APM project to call fromELF after it calls the linker.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 1-11

Introduction
New APM configuration dialogs

The Tool Configurer dialog boxes have been modified to reflect:

• the new features available in the compilers, assembler, and the linker

• the new default behavior of these tools.

Each selectable option on the dialog boxes now has a tool tip that displays the
command-line equivalent for the option.

1.3.2 Changes in default behavior

The changes that have been made to the default behavior of the SDT are described in:

• Stack disciplines

• Default Procedure Call Standard (APCS and TPCS)

• Default debug table format on page 1-13

• Default image file format on page 1-13

• Default processor in the compilers and assembler on page 1-14

• RDI 1.0 and RDI 1.5 support on page 1-14

• Register names permitted by the assembler on page 1-14.

Stack disciplines

The ARM and Thumb compilers now adjust the stack pointer only on function entry and
exit. In previous toolkits they adjusted the stack pointer on block entry and exit. The
new scheme gives improved code size.

Default Procedure Call Standard (APCS and TPCS)

The default Procedure Call Standard (PCS) for the ARM and Thumb compilers, and
the assembler in SDT 2.50 and C++ 1.10 is now:

-apcs 3/32/nofp/noswst/narrow/softfp

Note
 The new default PCS will not perform software stack checking and does not use a frame
pointer register. This generates more efficient and smaller code for use in embedded
systems.

The default procedure call standard for the ARM (not Thumb) compiler in SDT 2.11a
was -apcs 3/32/fp/swst/wide/softfp.

The default procedure call standard for the ARM (not Thumb) assembler in SDT 2.11a
was -apcs 3/32/fp/swst.
1-12 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

Introduction
Impact

Existing makefiles and APM project files where the PCS was not specified will generate
code that does not perform software stack checking and does not use a frame pointer
register. This will result in smaller and faster code, because the default for previous
compilers was to emit function entry code that checked for stack overflow and set up a
frame pointer register.

Default debug table format

In SDT 2.50 and C++ 1.10 the default debug table format is DWARF 2. DWARF 2 is
required to support debugging C++, and to support the improvements in debugging
optimized code.

The default debug table format emitted by the SDT 2.11a compilers and assemblers was
ASD.If DWARF debug table format was chosen, the SDT 2.11a compilers and
assemblers emitted DWARF 1.0.3.

Impact

Existing makefiles and APM project files where debugging information was requested
will now result in DWARF 2 debug data being included in the executable image file.
Previous behavior can be obtained from the command line by specifying -g+ -asd or -g+
-dwarf1, or by choosing these from the appropriate Tool Configuration dialog boxes in
APM.

Default image file format

The default image file format emitted by the linker has changed from AIF to ELF.

Impact

Existing makefiles in which no linker output format was chosen, and existing APM
project files in which the Absolute AIF format was chosen, will now generate an ELF
image. If you require an AIF format image, use -aif on your armlink command line, or
choose Absolute AIF on the Output tab of the APM Linker options dialog box. This
will then generate a warning from the linker. AIF images can also be created using the
new fromELF tool.

Note
 When the ARM debuggers load an executable AIF image they switch the processor
mode to User32. For ELF, and any format other than executable AIF, the debuggers
switch the processor mode to SVC32. This means that, by default, images now start
running in SVC32 mode rather than User32 mode. This better reflects how the ARM
core behaves at reset.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 1-13

Introduction
C code that performs inline SWIs must be compiled with the -fz option to ensure that
the SVC mode link register is preserved when the SWI is handled.

Default processor in the compilers and assembler

The default processor for the SDT 2.11a ARM (not Thumb) compilers was ARM6. In
SDT 2.50 and C++ 1.10 this has been changed to ARM7TDMI. The default processor
for the assembler has changed from -cpu generic –arch 3 to -cpu ARM7TDMI.

Impact

Existing makefiles and APM project files where the processor was not specified (with
the -processor option) will generate code that uses halfword loads and stores
(LDRH/STRH) where appropriate, whereas such instructions would not previously have
been generated. Specifying -arch 3 on the command line prevents the compilers from
generating halfword loads and stores.

RDI 1.0 and RDI 1.5 support

A new variant of the Remote Debug Interface (RDI 1.5) is introduced in SDT 2.50. The
version used in SDT 2.11a was 1.0.

The debugger has been modified so that it will function with either RDI 1.0 or RDI 1.5
client DLLs.

Impact

Third party DLLs written using RDI 1.0 will continue to work with the versions of
ADW and armsd shipped with SDT 2.50.

Register names permitted by the assembler

In SDT 2.50, the assembler pre-declares all PCS register names, but also allows them
to be declared explicitly through an RN directive.

In SDT 2.11a the procedure call standard (PCS) register names that the assembler would
pre-declare were restricted by the variant of the PCS chosen by the -apcs option. For
example, -apcs /noswst would disallow use of sl as a register name.

Impact

Any source files that declared PCS register names explicitly will continue to assemble
without fault, despite the change to the default PCS.
1-14 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

Introduction
1.3.3 Obsolete and deprecated features

The features listed below are either obsolete or deprecated. Obsolete features are
identified explicitly. Their use is faulted in SDT 2.50. Deprecated features will be made
obsolete in future ARM toolkit releases. Their use is warned about in SDT 2.50. These
features are described in:

• AIF, Binary AIF, IHF and Plain Binary Image formats

• Shared library support on page 1-16

• Overlay support on page 1-16

• Frame pointer calling standard on page 1-16

• Reentrant code on page 1-17

• ARM Symbolic Debug Table format (ASD) on page 1-17

• Demon debug monitor and libraries on page 1-17

• Angel as a linkable library, and ADP over JTAG on page 1-17

• ROOT, ROOT-DATA and OVERLAY keywords in scatter load description on
page 1-18

• Automatically inserted ARM/Thumb interworking veneers on page 1-18

• Deprecated PSR field specifications on page 1-18

• ORG no longer supported in the assembler on page 1-18.

AIF, Binary AIF, IHF and Plain Binary Image formats

Because the preferred (and default) image format for the SDT is now ELF, the linker
emits a warning when instructed to generate an AIF image, a binary AIF image, an IHF
image or a plain binary image.

Impact

Any makefiles with a link step of -aif, -aif -bin, -ihf, or -bin now produce a warning
from the linker. For existing APM projects where an Absolute AIF image has been
requested on the Linker configuration Output tab, there will be no warning. However,
an ELF image is created instead, because this is the new default for the linker.

The preferred way to generate an image in an deprecated format is to create an ELF
format image from the linker, and then to use the new fromELF tool to translate the ELF
image into the desired format.

Future release

In a future release of the linker, these formats will be obsolete, and their use will be
faulted.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 1-15

Introduction
Shared library support

This feature is obsolete. The Shared Library support provided by previous versions of
the SDT has been removed for SDT 2.50. The linker faults the use of the -shl
command-line option.

Impact

Any makefile or APM project file that uses the Shared Library mechanism will now
generate an error from the linker. The SDT 2.11a linker can be used if this facility is
required.

Future release

A new Shared Library mechanism will be introduced in a future release of the linker.

Overlay support

Use of the -overlay option to the linker and use of the OVERLAY keyword in a scatter load
description file are now warned against by the linker.

Impact

Any makefile, APM project file, or scatter load description file that uses the overlay
mechanism will now generate a warning from the linker.

Future release

A future release of the linker will subsume the overlay functionality into the scatter
loading mechanism.

Frame pointer calling standard

Use of a frame pointer call standard when compiling C or C++ code is warned against
in the SDT 2.50 and ARM C++ 1.10 versions of the compilers.

Impact

Any makefile or APM project file that uses a frame pointer call standard (-apcs /fp)
will now generate a warning from the compilers.

Future release

A new procedure call standard will be introduced with a future release of the compilers.
1-16 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

Introduction
Reentrant code

Use of the reentrant procedure call standard when compiling C or C++ code is warned
against in the SDT 2.50 and ARM C++ 1.10 versions of the compilers.

Impact

Any makefile or APM project file that uses the reentrant procedure call standard (-apcs
/reent) will now generate a warning from the compilers.

Future release

A new procedure call standard will be introduced with a future release of the compilers.

ARM Symbolic Debug Table format (ASD)

Because the preferred (and default) debug table format is now DWARF 2, the compilers
and assembler will warn when asked to generate ASD debug tables.

Impact

Any makefiles with a compiler or assembler command-line option of -g+ –asd will now
produce a warning. For existing APM projects in which debugging information has
been requested, there will be no warning and DWARF 2 debug tables will be emitted
instead, because this is the new default for the compilers and assembler.

Future release

In a future release of the compilers and assembler, ASD will be made obsolete, and its
use will be faulted.

Demon debug monitor and libraries

This feature is obsolete. The Demon Debug monitor is now obsolete and support for it
has been removed from the SDT. There is no longer a remote_d.dll selectable as a
remote debug connection in ADW, and Demon C libraries are not supplied with SDT
2.50.

Angel as a linkable library, and ADP over JTAG

This feature is obsolete. Full Angel is no longer available as a library to be linked with
a client application. The version of Angel that runs on an EmbeddedICE and acts as an
ADP debug monitor (adpjtag.rom) is also no longer available.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 1-17

Introduction
ROOT, ROOT-DATA and OVERLAY keywords in scatter load description

In the SDT 2.11 manuals, use of the ROOT, ROOT-DATA and OVERLAY keywords in a scatter
load description file was documented, and a later Application Note warned against its
use. The linker now warns against use of these keywords.

Impact

Any existing scatter load descriptions that use ROOT, ROOT-DATA or OVERLAY keywords will
now generate a warning, but the behavior will be as expected.

Future release

In a future release of the linker, use of ROOT, ROOT-DATA and OVERLAY will be faulted.

Automatically inserted ARM/Thumb interworking veneers

In SDT 2.11a, the linker warned of calls made from ARM code to Thumb code or from
Thumb code to ARM code (interworking calls) when the destination of the call was not
compiled for interworking with the -apcs /interwork option. In spite of the warning, an
interworking return veneer was inserted.In SDT 2.50, the linker faults inter-working
calls to code that cannot return directly to the instruction set state of the caller, and
creates no executable image.

Impact

Existing code that caused the interworking warning in SDT 2.11a is now faulted
because the return veneers inserted by the SDT 2.11a linker can cause incorrect program
behavior in obscure circumstances.

Deprecated PSR field specifications

The assembler now warns about the use of the deprecated field specifiers CPSR,
CPSR_flg, CPSR_ctl, CPSR_all, SPSR, SPSR_flg, SPSR_ctl, and SPSR_all.

ORG no longer supported in the assembler

The ORG directive is no longer supported in the assembler. Its use conflicts with the
scatter loading mechanism supported by the linker.

Impact

Existing assembly language sources that use the ORG directive will no longer assemble.
The effect of the ORG directive can be obtained by using the scatter loading facility of the
linker.
1-18 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

Chapter 2
The ARM Compilers

This chapter provides details of the command-line options to the ARM and Thumb, C
and C++ compilers. It assumes that you are familiar with the basic concepts of using
command-line software development tools, such as those provided with the ARM
Software Development Toolkit. For an introduction to command-line development, see
the ARM Software Development Toolkit User Guide.

This chapter contains the following sections:

• About the ARM compilers on page 2-2

• File usage on page 2-6

• Command syntax on page 2-10.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 2-1

The ARM Compilers
2.1 About the ARM compilers

The ARM C and C++ compilers compile both ANSI C and the dialect of C used by
Berkeley UNIX. Wherever possible, the compilers adopt widely used command-line
options that are familiar to users of both UNIX and Windows/MS-DOS.

In addition, the ARM C++ compilers compile C++ that conforms to the ISO/IEC Draft
Standard for C++ (December 1996). See C++ language feature support on page 3-49
for a detailed description of ARM C++ language support.

Note
 The ARM C compilers are provided as standard with the Software Development
Toolkit. The ARM C++ compilers are available separately. Contact your distributor or
ARM Limited if you want to purchase the ARM C++ compilers.

2.1.1 Compiler variants

All ARM C and C++ compilers accept the same basic command-line options. The
descriptions in this chapter apply to all compilers. Where specific compilers have added
features or restrictions they are noted in the text. Where an option applies only to C++
this is also noted in the text.

There are two variants of the C compiler:

armcc compiles C source into 32-bit ARM code

tcc compiles C source into 16-bit Thumb code.

Throughout this chapter, armcc and tcc are referred to together as the ARM C
compilers.

There are two variants of the C++ compiler:

armcpp compiles C or C++ source into 32-bit ARM code

tcpp compiles C or C++ source into 16-bit Thumb code.

Throughout this chapter, armcpp and tcpp are referred to together as the ARM C++
compilers.
2-2 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

The ARM Compilers
2.1.2 Source language modes

The ARM compilers have a number of distinct source language modes that can be used
to compile several varieties of C and C++ source code. The source language modes
supported are:

ANSI C mode

In ANSI C mode, the ARM compilers are tested against release 7.00 of
the Plum Hall C Validation Suite (CVS). This suite has been adopted by
the British Standards Institute for C compiler validation in Europe.

The compiler behavior differs from the behavior described in the
language conformance sections of the CVS in the following ways:

• An empty initializer for an aggregate of complete type generates a
warning unless -fussy is specified. For example:
int x[3] = {};

• The expression sin(DBL_MAX) causes a floating-point trap if -apcs
/hardfp is specified.

• There is no support for the wctype.h and wchar.h headers.

PCC mode In PCC mode, the compilers accept the dialect of C that conforms to the
conventions of Berkeley UNIX (BSD 4.2) Portable C compiler C (PCC).
This dialect is based on the original Kernighan and Ritchie definition of
C, and is the one used on Berkeley UNIX systems.

C++ mode This mode applies only to the ARM C++ compilers. In C++ mode, the
ARM C++ compilers compile C++ as defined by the ISO/IEC Draft
Standard. The compilers are tested against Suite++, The Plum Hall
Validation Suite for C++, version 4.00. This is the default language mode
for the ARM C++ compilers.

Cfront mode

This mode applies only to the ARM C++ compilers. In Cfront mode, the
ARM C++ compilers are more likely to accept programs that Cfront
accepts. For example, in Cfront mode the scope of identifiers declared in
for statements extends to the end of the statement or block containing the
for statement.

The following differences change the way C++ programs that conform to
the C++ Draft Standard behave:

• In Cfront mode D::D in the following example is a copy constructor
and D::operator= is a copy assignment:
struct B { };
struct D { D(const B&); operator=(const B&); };
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 2-3

The ARM Compilers
In non-Cfront mode, the compiler generates an implicit copy
constructor and copy assignment. A warning is generated. In C++
mode, only 'const D&' or 'D&' will work.

• Implicit conversions to void**, void***, and so on, are allowed. For
example:
int* p;
void **pp = &p;

This is not normally allowed in C or C++. No warning is given.

• The scope of variables declared in for statements extends to the end
of the enclosing scope. For example:
for (int i = 0; i < 10; ++i) g(i);
int j = i; // accepted only in Cfront mode

No warning is given.

• The macro __CFRONT_LIKE is predefined to 1.

The following differences allow programs that do not conform to the
Draft Standard to compile:

• Typedefs are allowed in some places where only true class names
are permitted by the Draft Standard. For example:
struct T { T(); ~T(); };
typedef T X;
X::X() { } // not legal
void f(T* p) { p->X::~X(); }// not legal

No warning is given.

• The following constructs generate warnings instead of errors:

— jumps past initializations of objects with no constructor

— delete [e] p

— enum {,k}

— enum {k2,}

— class T { friend X; }; // should be friend class X

For more information on how to use compiler options to set the source mode for the
compiler, refer to Setting the source language on page 2-15.

2.1.3 Compatibility between compilers

The code generated by armcc is completely compatible with that generated by armcpp.
Similarly, the code generated by tcc is completely compatible with that generated by
tcpp.
2-4 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

The ARM Compilers
Note
 Refer to the ARM Software Development Toolkit User Guide for information on how to
link compiled ARM and Thumb code together.

2.1.4 Library support

The SDT provides ANSI C libraries in both source and binary form, and Rogue Wave
C++ libraries in prebuilt binary form. Refer to Chapter 4 The C and C++ Libraries for
detailed information about the libraries.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 2-5

The ARM Compilers
2.2 File usage

This section describes:

• the file naming conventions used by the ARM compilers

• how the ARM compilers search for #include header files and source files.

2.2.1 Naming conventions

The ARM compilers use suffix naming conventions to identify the classes of file
involved in the compilation and linking processes. The names used on the command
line, and as arguments to preprocessor #include directives, map directly to host file
names under UNIX and Windows/MS-DOS.

The ARM compilers recognize the following file suffixes:

filename.c A C or C++ source file.

In addition, the ARM C++ compilers recognize suffixes of the
form .c*, such as:

• .cpp

• .cp

• .c++

• .cc

and their uppercase equivalents.

filename.h A header file. This is a convention only. It is not specifically
recognized by the compiler.

filename.o An ARM object file.

filename.s An ARM or Thumb assembly language file.

filename.lst A compiler listing file. This is an output file only.

Portability

The ARM compilers support multiple file naming conventions on all supported hosts.
Follow these guidelines:

• ensure that filenames do not contain spaces

• make embedded pathnames relative, rather than absolute.

In each host environment the compilers support:

• Native filenames.
2-6 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

The ARM Compilers
• Pseudo UNIX filenames. These have the format:
host-volume-name:/rest-of-unix-file-name

• UNIX filenames.

Filenames are parsed as follows:

• a name starting with host-volume-name:/ is a pseudo UNIX filename

• a name that does not start with host-volume-name:/ and contains / is a UNIX
filename

• otherwise, the name is a host name.

Filename validity

The compilers do not check that filenames are acceptable to the host file system. If a
filename is not acceptable, the compiler reports that the file could not be opened, but
gives no further diagnosis.

Output files

By default, the object, assembler, and listing files created by a compiler are stored in the
current directory. Object files are written in ARM Object Format (AOF). AOF is
described in Chapter 15 ARM Object Format.

2.2.2 Included files

There are a number of factors that affect how the ARM compilers search for #include
header files and source files. These include:

• The -I and -j compiler options.

• The -fk and -fd compiler options.

• The value of the environment variable ARMINC.

• Whether the filename is an absolute filename or a relative filename.

• Whether the filename is between angle brackets or double quotes. This
determines whether or not the file is sought in the in-memory file system.

The in-memory file system

The ARM compilers have the ANSI C library headers built into a special, textually
compressed, in-memory file system. By default, the C header files are used from this
file system. The in-memory file system can be specified explicitly on the command line
as -j- and -I-.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 2-7

The ARM Compilers
In addition, the C++ header files that are equivalent to the C library header files are also
stored in the in-memory file system. The Rogue Wave library header files, and the
ARM-supplied headers such as iostream.h are not stored in the in-memory file system.

Enclosing a #include filename in angle brackets indicates that the included file is a
system file and ensures that the compiler looks first in its built-in file system. For
example:

#include <stdio.h>

Enclosing a #include filename in double quotes indicates that it is not a system file. For
example:

#include "myfile.h"

In this example, the compiler looks for the specified file in the appropriate search path.
Refer to Specifying search paths on page 2-16 for detailed information on how the
ARM compilers search for include files.

The current place

By default, the ARM compilers adopt the search rules used by Berkeley UNIX systems.
Under these rules, source files and #include header files are searched for relative to the
current place. The current place is the directory containing the source or header file
currently being processed by the compiler.

When a file is found relative to an element of the search path, the name of the directory
containing that file becomes the new current place. When the compiler has finished
processing that file, it restores the previous current place. At each instant, there is a stack
of current places corresponding to the stack of nested #include directives.

For example, if the current place is ~/arm250/include and the compiler is seeking the
include file sys/defs.h, it will locate ~/arm250/include/sys/defs.h if it exists.

When the compiler begins to process defs.h, the current place becomes
~/arm250/include/sys. Any file included by defs.h that is not specified with an absolute
pathname is sought relative to ~/arm250/include/sys.

You can disable the stacking of current places with the compiler option -fk. This option
makes the compiler use the search rule originally described by Kernighan and Ritchie
in The C Programming Language. Under this rule, each non-rooted user #include is
sought relative to the directory containing the source file that is being compiled.
2-8 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

The ARM Compilers
The ARMINC environment variable

You can set the ARMINC environment variable to specify a list of directories to be
searched for included header and source files. Directories listed here will be searched
immediately after any directories specified by the -I option on the command line. If the
-j option is used, ARMINC is ignored.

The search path

Table 2-1 shows how the various command-line options affect the search path used by
the compiler for included header and source files. The search path is different for double
quoted include files and angle bracketed include files. The following conventions are
used in the table:

• :mem means the in-memory file system in which the ARM compilers store ANSI
C and some C++ header files. See The in-memory file system on page 2-7 for more
information.

• ARMINC is the list of directories specified by the ARMINC environment variable, if
it is set.

• CP is the current place. See The current place on page 2-8 for more information.

• Idir and jdirs are the directories specified by the -I and -j compiler options.
Note that multiple -I options may be specified and that directories specified by -I
are searched before directories specified by -j, irrespective of their relative order
on the command line. To specify the in-memory file system use -I-, or -j-.

Table 2-1 Include file search paths

Compiler
Option

<include> "include.h"

not -I or -j :mem, ARMINC CP, ARMINC,:mem

-j jdirs CP, jdirs

-I :mem, Idirs, ARMINC CP, Idirs, ARMINC, :mem

both -I and -j Idirs, jdirs CP, Idirs, jdirs

-fd no effect Removes CP from the search path.
Double quoted include files are
searched for in the same way as
angle bracketed include files.

-fk no effect Makes CP follow Kernighan and
Ritchie search rules.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 2-9

The ARM Compilers
2.3 Command syntax

This section describes the command syntax for the ARM C and C++ compilers.

Many aspects of compiler operation can be controlled using command-line options. All
options are prefixed by a minus sign, and some options are followed by an argument. In
most cases the ARM C and C++ compilers allow space between the option letter and
the argument.

2.3.1 Invoking the compiler

The command for invoking the ARM compilers is:

compiler_name [PCS-options] [source-language] [search-paths]
[preprocessor-options] [output-format] [target-options] [debug-options]
[code-generation-options] [warning-options] [additional-checks] [error-options]
[miscellaneous-options] {source}…

where:

compiler_name is one of armcc, tcc, armcpp, tcpp.

PCS-options specify the procedure call standard to use. See Procedure Call
Standard options on page 2-13 for details.

source-language specifies the source language that is accepted by the compiler. The
default is ANSI C for the C compilers and Draft Standard C++ for
the C++ compilers. See Setting the source language on page 2-15
for details.

search-paths specify the directories that are searched for included files. See
Specifying search paths on page 2-16 for details.

preprocessor-options

control aspects of the preprocessor, including preprocessor output
and macro definitions. See Setting preprocessor options on
page 2-17 for details.

output-format specifies the format for the compiler output. You can use these
options to generate assembly language output (including
interleaved source and assembly language), listing files and
unlinked object files. See Specifying output format on page 2-18
for details.

target-options specify the target processor and architecture. See Specifying the
target processor and architecture on page 2-19 for details.
2-10 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

The ARM Compilers
debug-options specify whether or not debug tables are generated, and their
format. See Generating debug information on page 2-22 for
details.

code-generation-options

specify options such as optimization, endianness, and alignment
of data produced by the compiler. See Controlling code
generation on page 2-23 for details.

warning-options control whether specific warning messages are generated. See
Controlling warning messages on page 2-28 for details.

additional-checks

specify a number of additional checks that can be applied to your
code, such as checks for data flow anomalies and unused
declarations. See Specifying additional checks on page 2-31 for
details.

error-options allow you to:

• turn specific recoverable errors off

• downgrade specific errors to warnings.

See Controlling error messages on page 2-32 for details.

pragma-options allows you to emulate #pragma directives. See Pragma emulation
on page 2-34 for details.

source are the filenames of one or more text files containing C or C++
source code, or - to specify keyboard input. By default, the
compiler looks for source files, and creates object, assembler, and
listing files in the current directory.

The following points apply to specifying compiler options:

• Compiler options beginning with -W (warning options), -e (error options), and -f
can have multiple modifiers specified. For example, -fh and -fp can be combined
as -fph. Similarly -Wf and -Wg can be combined as -Wfg.

• Other compiler options, such as debug options, may have specific shortcuts for
common combinations. These are described in the appropriate sections below.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 2-11

The ARM Compilers
Reading compiler options from a file

The following option enables you to read additional command-line options from a file:

-via filename

Opens a file and reads additional command-line options from it. For
example:

armcpp -via input.txt options source.c

The options specified in filename are read at the same time as any other
command-line options are parsed. If -via is specified in the Extra
command line arguments text box of the APM Compiler Configuration
dialog, the command-line options are immediately read into the tool
configuration settings.

You can nest -via calls within -via files.

Specifying keyboard input

Use - (minus) as the source filename to instruct the compiler to take input from the
keyboard. Input is terminated by entering Ctrl-D under UNIX, or Ctrl-Z under a MS
Windows DOS environment.

An assembly listing for the function is sent to the output stream at the end of each C or
C++ function if either:

• no output file is specified

• the -E compiler option is not specified.

If an output file is specified with the -o option, an object file is written. If the -E option
is specified, the preprocessor output is sent to the output stream.

Getting help and version information

Use the -help compiler option to view a summary of the compiler command-line
options.

Use the -vsn compiler option to display the version string for the compiler.

Redirecting standard errors

Use the -errors filename compiler option to redirect compiler error output to a file.
2-12 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

The ARM Compilers
2.3.2 Procedure Call Standard options

This section applies to both:

• the ARM Procedure Call Standard (APCS), used by armcc and armcpp

• the Thumb Procedure Call Standard (TPCS), used by tcc and tcpp.

Refer to Chapter 9 ARM Procedure Call Standard and Chapter 10 Thumb Procedure
Call Standard for more information on the ARM and Thumb procedure call standards.

Use the following command-line options to specify the variant of the procedure call
standard (PCS) that is to be used by the compiler:

-apcs qualifiers

The following rules apply to the -apcs command-line option:

• there must be a space between -apcs and the first qualifier

• at least one qualifier must be present, and there must be no space between
qualifiers.

If no -apcs options are specified, the default for all compilers is:

-apcs /nofp/noswst/narrow/softfp/nonreentrant

The qualifiers are listed below.

Stack checking

/swstackcheck

Software stack-checking PCS variant.

/noswstackcheck

No software stack-checking PCS variant. This is the default.

Frame pointers

/fp Use a dedicated frame-pointer register. This option is obsolete and is
provided for backwards compatibility only.

/nofp Do not use a frame-pointer register. This is the default.

Floating-point compatibility

/softfp Use software floating-point library functions for floating-point code.
This is the default for ARM processors without an FPU, and the only
floating-point option available in tcc or tcpp.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 2-13

The ARM Compilers
This option implies -fpu none. Use the -fpu option in preference to
/softfp and /hardfp. See Specifying the target processor and architecture
on page 2-19 for more information.

/hardfp Generate ARM coprocessor instructions for the FPA floating-point unit.
You may also specify /fpregargs or /nofpregargs. The /hardfp and
/softfp options are mutually exclusive. This option is not available in tcc
or tcpp.

This option implies -fpu fpa. Use the -fpu option in preference to /softfp
and /hardfp. See Specifying the target processor and architecture on
page 2-19 for more information.

/fpregargs Floating-point arguments are passed in floating-point registers. This
option is not available for in tcc or tcpp, and is the default for ARM if
/hardfp is selected.

/nofpregargs

Floating-point arguments are not passed in floating-point registers. This
option is not available in tcc or tcpp. This option is obsolete and is
available for backwards compatibility only.

ARM/Thumb interworking

/nointerwork

Compile code for no ARM/Thumb interworking. This is the default.

/interwork Compile code for ARM/Thumb interworking. Refer to the ARM Software
Development Toolkit User Guide for more information on ARM/Thumb
interworking.

Narrow parameters

/narrow For functions with parameters of narrow type (char, short, float), this
option converts the corresponding actual arguments to the type of the
parameter. This is known as caller-narrowing. It requires that all calls be
within the scope of a declaration containing the function prototype.

This is the default. In PCC mode, /narrow only affects ANSI-style
function prototypes. PCC-style functions always use callee-narrowing
(see the /wide PCS option).
2-14 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

The ARM Compilers
/wide For functions with parameters of narrow type (char, short, float), this
option applies the default argument promotions to its corresponding
actual arguments, and passes them as int or double. This is known as
callee-narrowing. This option is obsolete and is provided for backwards
compatibility only.

Reentrancy

/reentrant Reentrant PCS variant. This option is obsolete and is provided for
backwards compatibility only. The SDT 2.5 linker will not link objects
compiled with -apcs /reentrant.

/nonreentrant

Non-reentrant PCS variant. This is the default.

2.3.3 Setting the source language

This section describes options that have a major effect on the source language accepted
by the compiler. The compiler modes are described in detail in Source language modes
on page 2-3. See also, Controlling code generation on page 2-23.

The following options can be used to specify the source language that the compiler is to
accept, and how strictly it enforces the standards or conventions of that language. If no
source language option is specified, the C compilers attempt to compile ANSI C, and
the C++ compilers attempt to compile C++ that conforms to the Draft Standard.

-ansi Compiles ANSI standard C. This is the default for armcc and tcc.

-ansic Compiles ANSI standard C. This option is synonymous with the -ansi
option.

-cfront This option applies to the C++ compilers only.

The compiler alters its behavior so that it is more likely to accept C++
programs that Cfront accepts.

-fussy Is extra strict about enforcing conformance to the ANSI C standard, Draft
C++ standard, or PCC conventions. For example, in C++ mode the
following code gives an error when compiled with -fussy and a warning
without:

static struct T {int i; };

Because no object is declared, the static is spurious. In a strict reading
of the C++ Draft Standard, it is illegal.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 2-15

The ARM Compilers
-pcc Compiles (BSD 4.2) Portable C compiler C. This dialect is based on the
original Kernighan and Ritchie definition of C, and is the one used to
build UNIX systems. The -pcc option alters the language accepted by the
compiler, however the built-in ANSI C headers are still used. See also, the
-zc option in Controlling code generation on page 2-23.

The -pcc option alters the language accepted by the compilers in the
following ways:

• char is signed

• sizeof is signed

• an approximation of early UNIX-style C preprocessing is used.

-pedantic This is a synonym for -fussy.

-strict This is a synonym for -fussy.

2.3.4 Specifying search paths

The following options allow you to specify the directories that are searched for included
files. The precise search path will vary depending on the combination of options
selected, and whether the include file is enclosed in angle brackets or double quotes.
Refer to Included files on page 2-7 for full details of how these options work together.

-I, dir-name Adds the specified directory to the list of places that are searched for
included files. The directories are searched in the order they are given, by
multiple -I options. The in-memory file system is specified by -I-.

-fk Uses Kernighan and Ritchie search rules for locating included files. The
current place is defined by the original source file and is not stacked. See
The current place on page 2-8 for more information. If you do not use this
option, Berkeley-style searching is used.

-fd Makes the handling of quoted include files the same as angle-bracketed
include files. Specifically, the current place is excluded from the search
path.

-j, dir-list Adds the specified comma-separated list of directories to the end of the
search path, after all directories specified by -I options. Use -j- to search
the in-memory file system.
2-16 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

The ARM Compilers
2.3.5 Setting preprocessor options

The following command-line options control aspects of the preprocessor. Refer to
Pragmas controlling the preprocessor on page 3-3 for descriptions of other
preprocessor options that can be set by pragmas.

-E Executes only the preprocessor phase of the compiler. By default, output
from the preprocessor is sent to the standard output stream and can be
redirected to a file using standard UNIX/MS-DOS notation. For example:

compiler-name -E source.c > rawc

You can also use the -o option to specify an outputfile.

By default, comments are stripped from the output. See also the -C option,
below.

-C Retains comments in preprocessor output when used in conjunction with
-E. Note that this option is different from the -c (lowercase) option, that
suppresses the link step. See Specifying output format on page 2-18 for a
description of the -c option.

-M Executes only the preprocessor phase of the compiler, as with -E. This
option produces a list of makefile dependency lines suitable for use by a
make utility.

By default, output is on the standard output stream. You can redirect
output to a file by using standard UNIX/MS-DOS notation. For example:

compiler-name -M source.c >> Makefile

You can also specify an output file with the -o option.

-MD As with -M. This option writes a list of makefile dependency lines suitable
for use by a make utility to inputfilename.d

-MD- This option applies to the ARM Project Manager. When specified in the
APM build step command line it writes makefile dependencies to the
invoking Project Manager.

-D, symbol=value

Defines symbol as a preprocessor macro, as if the following line were at
the head of the source file:

#define symbol value

This option can be repeated.

-D, symbol Defines symbol as a preprocessor macro, as if the following line were at
the head of the source file:

#define symbol
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 2-17

The ARM Compilers
The symbol is given the default value 1. This option can be repeated.

-U, symbol Undefines symbol, as if the following line were at the head of the source
file:

#undef symbol

This option can be repeated.

2.3.6 Specifying output format

By default, source files are compiled and linked into an executable image. You can use
the following options to direct the compiler to create unlinked object files, assembly
language files, and listing files from C or C++ source files. You can also specify the
output directory for files created by the compiler. Refer to Setting preprocessor options
on page 2-17 for information on creating listings from the preprocessor output.

-c Does not perform the link step. The compiler compiles the source
program, and leaves the object files in either the current directory, or the
output directory if specified by the -o option. Note that this option is
different from the -C (uppercase) option described in Setting
preprocessor options on page 2-17.

-list Creates a listing file. This consists of lines of source interleaved with
error and warning messages. You can gain finer control over the contents
of this file by using the -fi, -fj, and -fu options in combination with
-list.

-fi When used with -list, lists the lines from any files included with
directives of the form #include "file".

-fj When used with -list, lists the lines from any files included with
directives of the form #include <file>.

-fu When used with -list, lists unexpanded source. By default, if -list is
specified, the compiler lists the source text as seen by the compiler after
preprocessing. If -fu is specified, the unexpanded source text is listed. For
example:

p = NULL; /* assume #defined NULL 0 */

If -fu is not specified, this is listed as:

p = 0;

If -fu is specified it is listed as:

p = NULL;
2-18 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

The ARM Compilers
-o , file Names the file that holds the final output of the compilation:

• *** Do not use an ItemizedList’s Mark attribute ***
in conjunction with -c, it names the object file

• in conjunction with -S, it names the assembly language file

• in conjunction with -E, it specifies the output file for preprocessed
source.

• if none of -c , -S, or -E are specified, it names the final output of the
link step.

If no -o option is specified, the name of the output file defaults to the
name of the input file with the appropriate filename extension. For
example, the output from file1.c is named file1.o if the -c option is
specified, and file1.s if -S is specified. If -E is specified output is sent to
the standard output stream.

If none of -c, -S, or -E is specified, an executable image called file2 is
created.

If file is specified as -, output is sent to the standard output stream.

-S Writes a listing of the assembly language generated by the compiler to a
file, and does not generate object code. The name of the output file
defaults to file.s in the current directory, where file.c is the name of the
source file stripped of any leading directory names. The default can be
overridden with the -o option.

-fs When used with -S, writes a file containing C or C++ source code
interleaved line by line with the assembly language generated by the
compiler from that source code.

2.3.7 Specifying the target processor and architecture

The options described below specify the target processor or architecture for a
compilation. The compiler may take advantage of certain features of the selected
processor or architecture, such as support for halfword instructions and instruction
scheduling. This may make the code incompatible with other ARM processors.

If neither a -processor or -architecture option is specified, the default is -processor
ARM7TDMI.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 2-19

The ARM Compilers
The following general points apply to processor and architecture options:

• If you specify a -architecture option, the compiler compiles code that runs on
any processor that supports that architecture.

— To enable halfword load and store instructions, specify one of the
architecture 4 options, or specify an appropriate processor using a
-processor option such as ARM7TDMI, ARM9TDMI, or StrongARM1.

— To enable long multiply, specify -architecture 3M, -architecture 4,
-architecture 4M, or -architecture 4T, or specify an appropriate -processor
option such as ARM7DMI.

• If you specify a -processor option, the compiler compiles code and optimizes
specifically for that processor. The code may be incompatible with other ARM
processors that support the same architecture.

For example, a -processor option may imply the presence of specific
coprocessors, or allow instruction scheduling for optimum performance on the
specified processor.

• Specifying a Thumb-aware processor, such as -processor ARM7TDMI, to armcc or
armcpp does not make these compilers generate Thumb code. It only allows
features of the processor to be used, such as support for halfword instructions.
You must use tcc or tcpp to generate Thumb code.

The following options are available:

-architecture n

Specifies the ARM architecture version that compiled code will comply
with. Valid values for n are:

• 3

• 3M

• 4

• 4M

• 4xM. This is architecture 4M without long multiply instructions.

• 4T

• 4TxM. This is architecture 4T without long multiply instructions.

It is not necessary to specify both -architecture and -processor. If a
-architecture option is specified and a -processor option is not, the
default processor is generic.

-cpu , name This is a synonym for the -processor option.
2-20 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

The ARM Compilers
-fpu, name Select the target FPU, where name is one of:

none No FPU. Use software floating point library. This option
implies /softfp.

fpa Floating Point Accelerator. This option implies /hardfp.

-processor, name

Compiles code for the specified ARM processor where name is the name
of the ARM processor. It is not necessary to specify both -architecture
and -processor. The -processor option is specific to an individual
processor. The -architecture option compiles code for any processor that
conforms to the specified architecture. Valid values are:

ARM6 Implements architecture 3.

ARM7 Implements architecture 3.

ARM7M Implements architecture 3M.

ARM7TM Implements architecture 4T.

ARM7T Implements architecture 4TxM.

ARM7TDI Implements architecture 4TxM.

ARM7TDMI Implements architecture 4T. This is the default if no
-processor and no -architecture options are
specified. If -architecture is specified and
-processor is not, the default processor is generic.

ARM8 Implements architecture 4.

ARM9 Implements architecture 4.

ARM9TDMI Implements architecture 4T.

SA-110 Implements architecture 4.

StrongARM1 Implements architecture 4.

generic This processor name is used when compiling for a
specified architecture and no -processor option is
specified.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 2-21

The ARM Compilers
2.3.8 Generating debug information

Use the following options to specify whether debug tables are generated for the current
compilation, and the format of the debug table to be generated. Refer to Pragmas
controlling debugging on page 3-4 for more information on controlling debug
information.

Note
 Optimization criteria may impose limitations on the debug information that can be
generated by the compiler. Refer to Defining optimization criteria on page 2-24 for
more information.

Debug table generation options

The following options specify how debug tables are generated:

-g+ Switches the generation of debug tables on for the current compilation.
Debug table options are as specified by -gt. Optimization options for
debug code are as specified by -O. -g is a synonym for -g+, but its use is
deprecated. By default, the -g+ option is equivalent to:

-g+ -dwarf2 -O0 -gt

By default, debug data is not generated for inline functions. You can
change this by using the debug_inlines pragma. Refer to Pragmas
controlling debugging on page 3-4 for more information.

-g- Switches the generation of debug tables off for the current compilation.
This is the default.

-gt, [letters]

When used with -g+, specifies the debug tables entries that generate
source level objects. Debug tables can be very large, so it can be useful to
limit what is included:

-gt All available entries are generated. This is the default.

-gtp Tables should not include preprocessor macro definitions.
This option is ignored if DWARF1 debug tables are generated,
because there is then no way to describe macros.

The effect of:

-g+ -gtT-options

can be combined in:

-gT-options
2-22 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

The ARM Compilers
-gx, [letters]

The following options are obsolete and are provided for backwards
compatibility only. Use the -O options instead. Refer to Defining
optimization criteria on page 2-24.

These options specify the level of optimization allowed when generating
debug tables:

-gx No optimizations. This has the same effect as the -O0 option.

-gxr Unoptimized register allocation. This option is supported in
this release of the Software Development Toolkit, but its use is
not recommended.

-gxo This option has the same effect as the -O1 option.

Debug table format options

The following options control the format of the debug table generated when debug table
generation is turned on with -g+:

-asd Use ASD debug table format. This option is obsolete and is provided for
backwards compatibility only.

-dwarf Use DWARF1 debug table format. This option is obsolete and is provided
for backwards compatibility only. Specify -dwarf1 or -dwarf2.

-dwarf1 Use DWARF1 debug table format. This option is not recommended for
C++.

If DWARF1 debug tables are generated and a procedure call standard that
does not use a frame-pointer register is used (always the case with
Thumb, and the default with ARM), local variables that have been
allocated to the stack cannot be displayed by the debugger. In addition,
stack backtrace is not possible.

-dwarf2 Use DWARF2 debug table format. This is the default.

2.3.9 Controlling code generation

The following options allow you to control various aspects of the code generated by the
compiler, such as optimization, use of the code and data areas, endianness, and
alignment. Refer to Pragmas on page 3-2 for information on additional code generation
options that are controlled using pragmas. This section describes:

• Defining optimization criteria on page 2-24

• Setting the number of instructions for literals on page 2-25

• Controlling code and data areas on page 2-25
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 2-23

The ARM Compilers
• Setting endianness on page 2-27

• Controlling SWI calling standards on page 2-27

• Setting load and store options on page 2-27

• Setting alignment options on page 2-27.

Defining optimization criteria

-Ospace Optimize to reduce image size at the expense of increased execution time.
For example, large structure copies are done by out-of-line function calls
instead of inline code.

-Otime Optimize to reduce execution time at the expense of a larger image. For
example, compile:

while (expression) body…;

as:

if (expression) {
do body…;
while (expression);

}

If neither -Otime or -Ospace is specified, the compiler uses a balance
between the two. You can compile time-critical parts of your code with
-Otime, and the rest with -Ospace. You should not specify both -Otime and
-Ospace at the same time.

-O, number Specifies the level of optimization to be used. The optimization levels
are:

-O0 Turn off all optimization, except some simple source
transformations. This is the default optimization level if debug
tables are generated with -g+. It gives the best debug view and
the lowest level of optimization.

-O1 Turn off the following optimizations:

• structure splitting

• range splitting

• cross-jumping

• conditional execution.

If this option is specified and debug tables are generated with
-g+ it gives a satisfactory debug view with good code density.

-O2 Generate fully optimized code. If used with -g+, this option
produces fully optimized code that is acceptable to the
debugger, though the mapping of object code to source code is
not always clear.
2-24 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

The ARM Compilers
This is the default optimization level if debug tables are not
generated.

Optimization options have the following effect on the debug view produced when
compiling with -g+:

• If DWARF1 debug tables are generated (-dwarf1 compiler option) and a
procedure call standard that does not use a frame-pointer register is used (always
the case with Thumb, and the default with ARM), local variables that have been
allocated to the stack cannot be displayed by the debugger, regardless of
optimization level. In addition, stack backtrace is not possible.

• For all debug tables formats, if optimization levels 1 and higher are used the
debugger may display misleading values for local variables. If a variable is not
live at the point where its value is interrogated, its location may be used for some
other variable. In addition, the compiler replaces some local variables with
constant values at each place the variable is used.

• For all debug table formats, if optimization level 2 is used the value of variables
that have been subject to range splitting or structure splitting cannot be displayed.

Refer to Pragmas controlling optimization on page 3-5 for more information on
controlling optimization.

Setting the number of instructions for literals

-zi, Number The compiler selects a value for the maximum number of instructions
allowed to generate an integer literal inline before using LDR rx,=value on
the basis of the -Otime, -Ospace, and -processor options.

You can alter this behavior by setting Number to an integer between 1 and
4. Lower numbers generate less code at the possible expense of speed,
depending on your memory system. The effect of altering this value is
small, and is usually not significant.

Controlling code and data areas

-fw Allows string literals to be writable, as expected by some UNIX code, by
allocating them in the program data area rather than the notionally
read-only code area. This also stops the compiler reusing a multiply
occurring string literal.

-fy Treats enumerations as signed integers. This option is off by default (no
forced integers).
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 2-25

The ARM Compilers
-zc Make char signed. It is normally unsigned in C++ and ANSI C modes,
and signed in PCC mode. The sign of char is set by the last option
specified that would normally affect it. For example, if you specify both
the -ansic and -zc options and you want to make char signed in ANSI C
mode, you must specify the -zc option after the -ansic option.

-zo Generates one AOF area for each function. This can result in increased
code size.

Normally the compiler generates one AOF function for each C
compilation unit, and at least one AOF function for each C++
compilation unit.

This option enables the linker to remove unused functions when the
-remove linker option is specified.

-zt Disallows tentative declarations. If this option is specified, the compiler
assumes that any occurrence of a top level construct such as int i; is a
definition without initializer, rather than a tentative definition. Any
subsequent definition with initializer in the same scope will generate an
error. This may fault code that conforms to the ANSI specification.

This option has effect only for C, not for C++. Tentative declarations are
not permitted in C++. This option is useful in combination with the -zz
and -zas options.

-zz, ZI_Threshold_Size

Sets the value of the zero-initialized data threshold size. The compiler
will place uninitialized global variables in the Zero Initialized (ZI) data
area if their size is greater than ZI_Threshold_Size bytes.

For example, you can force uninitialized global variables of any size to
be placed in the ZI data area by specifying -zz0, though this may increase
your code size.

Use this option in combination with -zt to avoid increased code size.
Option -zzt provides a convenient shorthand. The default threshold size
is 8 bytes.

-zzt, ZI_Threshold_Size

Combines the -zt and -zz options. For example, specify -zzt0 to force the
compiler to disallow tentative declarations and place all uninitialized
global variables in the ZI data area.
2-26 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

The ARM Compilers
Setting endianness

-bigend Compiles code for an ARM operating with big-endian memory. The most
significant byte has lowest address.

-littleend Compiles code for an ARM operating with little-endian memory. The
least significant byte has lowest address. This is the default.

Controlling SWI calling standards

-fz Instructs the compiler that an inline SWI may overwrite the contents of
the link register. This option is usually used for modules that run in
Supervisor mode, and that contain inline SWIs. You must use this option
when compiling code that contains inline SWIs.

Setting load and store options

-za, Number Specifies whether LDR may only access word-aligned addresses. Valid
values are:

-za0 LDR is not restricted to accessing word-aligned addresses. This
is the default.

-za1 LDR may only access word-aligned addresses.

-zr, Number Limits the number of register values transferred by load multiple and
store multiple instructions generated by the compiler to Number. Valid
values for Number are 3 to 16 inclusively. The default value is 16.

You can use this option to reduce interrupt latency. Note that the inline
assembler is not subject to the limit imposed by the -zr option.

The Thumb compiler does not support this option.

Setting alignment options

-zas, Number Specifies the minimum byte alignment for structures. Valid values for
Number are:

1, 2, 4, 8

The default is 4 for both ARM and Thumb compilers. This allows
structure copying to be implemented more efficiently by copying in units
of words, rather than bytes. Setting a lower value reduces the amount of
padding required, at the expense of the speed of structure copying.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 2-27

The ARM Compilers
-zap, Number Specifies whether pointers to structures are assumed to be aligned on at
least the minimum byte alignment boundaries, as set by the -zas option.
Valid values are:

-zap1 Pointers to structures are assumed to be aligned on at least the
minimum byte alignment boundaries set by -zas. This is the
default.

-zap0 Pointers to structures are not assumed to be aligned on at least
the minimum byte alignment boundaries set by -zas. Casting
short[] to struct {short, short,...} does not cause a
problem.

-zat, Number Specifies the minimum byte alignment for top-level static objects, such
as global variables. Valid values for Number are:

1, 2, 4, 8

The default is 4 for the ARM compilers and 1 for the Thumb compilers.

2.3.10 Controlling warning messages

The compiler issues warnings to indicate potential portability problems or other
hazards. The compiler options described below allow you to turn specific warnings off.
For example, you may wish to turn warnings off if you are in the early stages of porting
a program written in old-style C. The options are on by default, unless specified
otherwise. See also Specifying additional checks on page 2-31 for descriptions of
additional warning messages.

The general form of the -W compiler option is:

-W[options][+][options]

where options are one or more characters.

If the + character is included in the characters following the -W, the warnings
corresponding to any following letters are enabled rather than suppressed.

You can specify multiple options. For example:

-Wad+fg

turns off the warning messages specified by a, d, and turns on the warning message
specified by f and g.

The warning message options are as follows:

-W Suppresses all warnings. If one or more letters follow the option, only the
warnings controlled by those letters are suppressed.
2-28 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

The ARM Compilers
-Wa Suppresses the warning message:

Use of the assignment operator in a condition context

This warning is given when the compiler encounters a statement such as:

if (a = b) {...

where it is possible that:

if ((a = b) != 0) {...

was intended, or that:

if (a == b) {...

was intended. This warning is suppressed by default in PCC mode.

-Wb Suppresses the warning message:

ANSI C forbids bit field type 'type'

where 'type' is char or short.

-Wd Suppresses the warning message:

Deprecated declaration foo() - give arg types

This warning is given when a declaration without argument types is
encountered in ANSI C mode. This warning is suppressed by default in
PCC mode.

In ANSI C, declarations like this are deprecated. However, it is
sometimes useful to suppress this warning when porting old code.

In C++, void foo(); means void foo(void); and no warning is generated.

-Wf Suppresses the message:

Inventing extern int foo()

This is an error in C++ and a warning in ANSI C. Suppressing this may
be useful when compiling old-style C in ANSI C mode. This warning is
suppressed by default in PCC mode.

-Wg Suppresses the warning given if an unguarded header file is #included.
This warning is off by default. It can be enabled with -W+g. An unguarded
header file is a header file not wrapped in a declaration such as:

#ifdef foo_h
#define foo_h
/* body of include file */
#endif

-Wi Suppresses the implicit constructor warning. This warning applies to
C++ only. It is issued when the code requires a constructor to be invoked
implicitly. For example:
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 2-29

The ARM Compilers
struct X { X(int); };
X x = 10; // actually means, X x = X(10);

// See the Annotated C++
// Reference Manual p.272

This warning is off by default. It can be enabled with -W+i.

-Wl Lower precision in wider context. This warning arises in cases like:

long x; int y, z; x = y*z

where the multiplication yields an int result that is then widened to long.
This warns in cases where the destination is long long, or where the target
system defines 16-bit integers or 64-bit longs. This option is off by
default. It can be enabled with -W+l.

-Wn Suppresses the warning message:

Implicit narrowing cast

This warning is issued when the compiler detects the implicit narrowing
of a long expression in an int or char context, or the implicit narrowing
of a floating-point expression in an integer or narrower floating-point
context.

Such implicit narrowing casts are almost always a source of problems
when moving code that has been developed on a fully 32-bit system (such
as ARM C++) to a system in which integers occupy 16 bits and longs
occupy 32 bits. This is suppressed by default.

-Wp Suppresses the warning message:

non-ANSI #include <…>

The ANSI C standard requires that you use #include <…> for ANSI C
headers only. However, it is useful to disable this warning when
compiling code not conforming to this aspect of the standard. This option
is suppressed by default, unless the -fussy option is specified.

-Wr Suppresses the implicit virtual warning. This warning is issued when a
non-virtual member function of a derived class hides a virtual member of
a parent class. It is applicable to C++ only. For example:

struct Base { virtual void f(); };
struct Derived : Base { void f(); };

// warning 'implicit virtual'

Adding the virtual keyword in the derived class avoids the warning.

-Ws Warns when the compiler inserts padding in a struct. This warning is off
by default. It can be enabled with -W+s.
2-30 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

The ARM Compilers
-Wt Suppresses the unused this warning. This warning is issued when the
implicit this argument is not used in a non-static member function. It is
applicable to C++ only. The warning can be avoided by making the
member function a static member function.

-Wu For C code, suppresses warnings about future compatibility with C++ for
both armcpp and tcpp. This option is off by default. It can be enabled with
-W+u.

-Wv Suppresses the warning message: Implicit return in non-void context

This is most often caused by a return from a function that was assumed
to return int, because no other type was specified, but is being used as a
void function. This is widespread in old-style C. This warning is
suppressed by default in PCC mode.

This is always an error in C++.

-Wx Disables not used warnings such as:

Warning: function 'foo' declared but not used

2.3.11 Specifying additional checks

The options described below control a variety of compiler features, including features
that make some checks more rigorous than usual. These additional checks can be an aid
to portability and good coding practice.

-fa Checks for certain types of data flow anomalies. The compiler performs
data flow analysis as part of code generation. The checks enabled by this
option indicate when an automatic variable could have been used before
it has been assigned a value. The check is pessimistic and will sometimes
report an anomaly where there is none, especially in code like this:

int initialized = 0, value;
…
if (initialized) { int v = value; …
… value = …; initialized = 1; }

Here, value is read-only if initialized has been set. This is a semantic
deduction, not a data flow implication, so -fa reports an anomaly. In
general, it is useful to check all code using -fa at some stage during its
development.

-fh Checks that:

• all external objects are declared before use

• all file-scoped static objects are used
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 2-31

The ARM Compilers
• all predeclarations of static functions are used between their
declaration and their definition. For example:
static int f(void);
static int f(void){return 1;}
line 2: Warning: unused earlier static declaration of 'f'

If external objects are only declared in included header files and are never
inline in a source file, these checks directly support good modular
programming practices.

When writing production software, you are encouraged to use the -fh
option in the later stages of program development. The extra diagnostics
produced can be annoying in the earlier stages.

-fp Reports on explicit casts of integers to pointers, for example:

char *cp = (char *) anInteger;

This warning indicates potential portability problems.

Casting explicitly between pointers and integers, although not clean, is
not harmful on the ARM processor where both are 32-bit types.

This option also causes casts to the same type to produce a warning. For
example:

int f(int i) {return (int)i;}
// Warning: explicit cast to same type.

-fv Reports on all unused declarations, including those from standard
headers.

-fx Enables all warnings that are suppressed by default.

2.3.12 Controlling error messages

The compiler issues errors to indicate that serious problems exist in the code it is
attempting to compile.

The compiler options described below allow you to:

• turn specific recoverable errors off

• downgrade specific errors to warnings.

Caution
 These options force the compiler to accept C and C++ source that would normally
produce errors. If you use any of these options to ignore error messages, it means that
your source code does not conform to the appropriate C or C++ standard.
2-32 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

The ARM Compilers
These options may be useful during development, or when importing code from other
environments, however they may allow code to be produced that does not function
correctly and you are advised to correct the code, rather than using these options.

The general form of the -e compiler option is:

-e[options][+][options]

where options are one or more of the letters described below.

If the + character is included in the characters following the -e, the errors corresponding
to any following letters are enabled rather than suppressed.

You can specify multiple options. For example:

-eac

turns off the error messages specified by a and c

The following options are on by default unless specified otherwise:

-ea This option applies to C++ only. Downgrades access control errors to
warnings. For example:

class A { void f() {}; }; // private member
A a;
void g() { a.f(); } // erroneous access

-ec Suppresses all implicit cast errors, such as implicit casts of a non-zero int
to pointer.

-ef Suppresses errors for unclean casts, such as short to pointer.

-ei Downgrades constructs of the following kind from errors to warnings.
For example:

const i;
Error: declaration lacks type/storage-class (assuming 'int'): 'i'

This option applies to C++ only.

-el Suppresses errors about linkage disagreements where functions are
implicitly declared extern and later defined as static. This option applies
to C++ only.

-ep Suppresses the error that occurs if there are extraneous characters at the
end of a preprocessor line. This error is suppressed by default in PCC
mode.

-ez Suppresses the error that occurs if a zero-length array is used.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 2-33

The ARM Compilers
2.3.13 Pragma emulation

The following compiler option emulates #pragma directives:

-zp[No_], FeatureName

Emulates #pragma directives. See Pragmas on page 3-2 for details.
2-34 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

Chapter 3
ARM Compiler Reference

This chapter describes the reference information you may need in order to make
effective use of the ARM compilers. It contains the following sections:

• Compiler-specific features on page 3-2

• C and C++ implementation details on page 3-14

• Standard C implementation definition on page 3-25

• Standard C++ implementation definition on page 3-35

• C and C++ language extensions on page 3-37

• Predefined macros on page 3-40

• Implementation limits on page 3-43

• Limits for integral numbers on page 3-46

• Limits for floating-point numbers on page 3-47

• C++ language feature support on page 3-49.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 3-1

ARM Compiler Reference
3.1 Compiler-specific features

This section describes the compiler-specific features supported by the ARM C and C++
compilers, including:

• pragmas

• function declaration keywords

• variable declaration keywords

• type qualifiers.

The features described here are not portable to other compilers.

3.1.1 Pragmas

Pragmas are recognized by the compiler in the following form:

#pragma [no_]feature-name

You can also specify pragmas from the compiler command line using:

-zp[no_]FeatureName

Table 3-1 lists the pragmas recognized by the ARM compilers.

Table 3-1 Pragmas

Pragma Name
On by
default?

check_memory_accesses No

check_printf_formats Yes

check_scanf_formats Yes

check_stack Yes

continue_after_hash_error No

debug Yes

debug_inlines No

force_top_level No

include_only_once

once (synonym)

No

optimize_crossjump Yes
3-2 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

ARM Compiler Reference
The following sections describe these pragmas in more detail.

Pragmas controlling the preprocessor

The following pragmas control aspects of the preprocessor. Refer to Setting
preprocessor options on page 2-17 for descriptions of other preprocessor options that
can be set from the command line.

continue_after_hash_error

Compilation continues after #error.

include_only_once

The containing #include file is included only once. If its name recurs in a
subsequent #include directive, the directive is ignored. This affects only
the file currently being processed.

once is a synonym for include_only_once.

force_top_level

The containing #include file should only be included at the top level of a
file. A syntax error results if the pragma is found within a function.

Pragmas controlling printf/scanf argument checking

The following pragmas control type checking of printf-like and scanf-like arguments.

check_printf_formats

Marks a function declared as a printf-like function, so that the arguments
are type checked against the literal format string. If the format is not a
literal string, no type checking is done. The format string must be the last
fixed argument. For example:

optimize_cse Yes

optimize_multiple_loads Yes

optimize_scheduling Yes

side_effects Yes

Table 3-1 Pragmas (continued)

Pragma Name
On by
default?
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 3-3

ARM Compiler Reference
#pragma check_printf_formats
extern void myprintf(const char * format,...);

//printf format
#pragma no_check_printf_formats

check_scanf_formats

Marks a function declared as a scanf-like function, so that the arguments
are type checked against the literal format string. If the format is not a
literal string, no type checking is done. The format string must be the last
fixed argument. For example:

#pragma check_scanf_formats
extern void myformat(const char * format,...);

//scanf format
#pragma no_check_scanf_formats

Pragmas controlling debugging

The following pragmas control aspects of debug table generation:

debug Controls whether debug tables are produced. If #pragma no_debug is
specified, debug tables are not generated until the next #pragma debug.
This pragma overrides the debug_inlines pragma. It has effect only if
debug table generation is enabled with the -g+ compiler option.

debug_inlines

Controls whether debug tables are produced for inline functions. This
pragma has effect only if debug table generation is enabled with the -g+
compiler option.

By default the ARM compilers do not generate debug data for inline
functions when compiling for debug. Calls to inline functions are treated
in the same way as if -g+ were not in use.

If #pragma debug_inlines is specified, debug tables are generated in the
following ways:

• If DWARF 1 debug tables are generated (-dwarf1 compiler option),
inline functions are treated as though they were declared static,
rather than inline.

• If DWARF 2 debug tables are generated (the default), the compiler
generates a common code AOF area for each inline function at its
point of definition and never inlines calls to inline functions.
3-4 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

ARM Compiler Reference
Pragmas controlling optimization

The following pragmas allow fine control over where specific optimizations are applied.
Refer to Defining optimization criteria on page 2-24 for information on optimization
options that are specified from the compiler command line.

Note
 If you are turning off specific optimizations to stop the compiler from optimizing
memory access instructions, consider using the volatile qualifier instead. volatile is
also available in PCC mode unless -fussy is specified. Refer to volatile on page 3-13 for
more information.

optimize_crossjump

Controls cross-jumping (the common tail optimization). This is disabled
if the -Otime compiler option is specified.

optimize_cse

Controls common sub-expression elimination.

optimize_multiple_loads

Controls the optimization of multiple load (LDR) instructions to a single
load multiple (LDM) instruction.

optimize_scheduling

Controls instruction scheduling. Instruction scheduling is the re-ordering
of machine instructions to suit the target processor. The ARM compilers
perform instruction scheduling after register allocation and code
generation.

If the -processor StrongARM1 command-line option is specified, the
compiler performs instruction scheduling for the StrongARM1.
Otherwise, the compiler performs ARM9 instruction scheduling.

Instruction scheduling is on by default.

no_side_effects

Use of this pragma is deprecated. Use the __pure keyword instead. This
pragma asserts that all function declarations up to the next #pragma
side_effects describe pure functions.

Functions that are pure are candidates for common sub-expression
elimination. By default, functions are assumed to be impure. That is, it is
assumed that they have side-effects. This pragma enables you to tell the
compiler that specific functions are candidates for common
sub-expression elimination.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 3-5

ARM Compiler Reference
A function is properly defined as pure only if its result depends solely on
the value of its scalar argument. This means that a pure function cannot
use global variables, or dereference pointers, because the compiler
assumes that the function does not access memory at all, except for the
stack. When called twice with the same parameters, it must return the
same value.

no_side_effects has the same effect as the __pure keyword.

Pragmas controlling code generation

The following pragmas control how code is generated. Many other code generation
options are available from the compiler command line. Refer to Controlling code
generation on page 2-23 for more information.

no_check_stack

If stack checking is enabled with -apcs /swst, this pragma disables the
generation of code at function entry that checks for stack limit violation.
This should be used only if the function uses less than 256 bytes of stack.

Note that you must use no_check_stack if you are writing a signal handler
for the SIGSTAK event. When this event occurs, stack overflow has
already been detected. Checking for it again in the handler results in fatal,
circular recursion.

check_memory_accesses

This pragma instructs the compiler to precede each access to memory by
a call to the appropriate one of:

__rt_rd?chk
__rt_wr?chk

where ? equals 1, 2, or 4 for byte, halfword, and word writes respectively.
It is up to your library implementation to check that the address given is
reasonable.

3.1.2 Function declaration keywords

Several function declaration keywords tell the compiler to give a function special
treatment. These function declaration keywords are not portable to other compilers.

__inline This instructs the compiler to compile C functions inline. The semantics
of __inline are exactly the same as the C++ inline keyword:

__inline int f(int x) {return x*5+1:}
int f(int x, int y) {return f(x), f(y);}
3-6 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

ARM Compiler Reference
The compiler always compiles functions inline when __inline is used,
except when debug_inlines is specified (see Pragmas controlling
debugging on page 3-4). Code density and performance could be
adversely affected if this keyword is specified for large functions that are
called from multiple places.

__irq This enables a C or C++ function to be used as an interrupt routine. All
registers, except floating-point registers, are preserved, not just those
normally preserved under the APCS. Also, the function is exited by
setting the pc to lr–4 and the PSR to its original value. This keyword is
not available in tcc or tcpp.

Refer to Chapter 9 Handling Processor Exceptions in the ARM Software
Development Toolkit User Guide for detailed information on using __irq.

__pure Asserts that a function declaration is pure.

Functions that are pure are candidates for common sub-expression
elimination. By default, functions are assumed to be impure. That is, it is
assumed that they have side-effects. This keyword tells the compiler that
specific functions are candidates for common sub-expression
elimination.

A function should only properly defined as pure if its result depends only
on the value of its arguments and has no side effects. This means that it
cannot use global variables, or dereference pointers, because the
compiler assumes that the function does not access memory at all, except
for the stack. When called twice with the same parameters, it must return
the same value.

__swi A SWI taking up to four integer-like arguments in registers r0 to
r(argcount–1), and returning up to four results in registers r0 to
r(resultcount–1), can be described by a function declaration. This causes
function invocations to be compiled inline as a SWI.

For a SWI returning 0 results use:

void __swi(swi_number) swi_name(int arg1,…, int argn);

For example:

void __swi(42) terminate_proc(int procnum);

For a SWI returning 1 result, use:

int __swi(swi_number) swi_name(int arg1,…, int argn);

For a SWI returning more than 1 result use:

struct { int res1,…,resn; }
__value_in_regs
__swi(swi_number) swi_name(int arg1,…,int argn);
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 3-7

ARM Compiler Reference
The __value_in_regs qualifier is needed to specify that a small
non-packed structure of up to four words (16 bytes) is returned in
registers, rather than by the usual structure passing mechanism defined in
the ARM Procedure Call Standard.

Refer to Chapter 9 Handling Processor Exceptions in the ARM Software
Development Toolkit User Guide for more information.

__swi_indirect

An indirect SWI that takes the number of the SWI to call as an argument
in r12 can be described by a function declaration such as:

int __swi_indirect(ind_num) swi_name(int real_num,
 int arg1, … argn);

where:

ind_num

Is the SWI number used in the SWI instruction.

real_num

Is the SWI number passed in r12 to the SWI handler. It can be
specified at function call.

For example:

int __swi_indirect(0) ioctl(int swino, int fn,
 void *argp);

This can be called as:

ioctl(IOCTL+4, RESET, NULL);

It compiles to a SWI 0 with IOCTL+4 in r12.

Note that your system SWI handlers must support __swi_indirect.

__value_in_regs

This instructs the compiler to return a non-packed structure of up to four
words in registers rather than using the stack. For example:

typedef struct int64_struct {
unsigned int lo;
unsigned int hi;

} int64;
__value_in_regs extern int64 mul64(unsigned a,

unsigned b);

Refer to the ARM Software Development Toolkit User Guide for
information on the default method of passing and returning structures.
3-8 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

ARM Compiler Reference
__weak If any extern function or object declaration is weak, the linker does not
fault an unresolved reference to the function or object. If the reference
remains unresolved, its value is assumed to be zero.

If the reference is made from code that compiles to a Branch or Branch
Link instruction, the reference is resolved as branching to itself. It is not
possible to reference an unresolved weak symbol with a Branch or
Branch Link instruction only. There must be a guard, such as:

__weak void f(void);
...
if(f) f();

___weak (three underscores) is a synonym for __weak (two underscores).

3.1.3 Variable declaration keywords

This section describes the implementation of various standard and ARM-specific
variable declaration keywords. Standard C or C++ keywords that do not have
ARM-specific behavior or restrictions are not documented. See also Type qualifiers on
page 3-11 for information on qualifiers such as volatile, and __packed.

Standard keywords

Note
 The following keywords can be used only on local variables.

register You can declare any number of auto variables to have the storage class
register. Depending on the variant of the ARM Procedure Call Standard
(APCS) that is in use, there are between five and seven integer registers
available, and four floating-point registers.

In general, declaring more than four integer register variables and two
floating-point register variables is not recommended.

Objects of the following types can be declared to have the register
storage class:

• Any integer type.

• Any pointer type.

• Any integer-like structure, such as any one word struct or union in
which all addressable fields have the same address, or any one word
structure containing bitfields only. The structure must be padded to
32 bits.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 3-9

ARM Compiler Reference
• A floating-point type. The double precision floating-point type
double occupies two ARM registers if the software floating-point
library is used.

The register keyword is regarded by the compiler as a suggestion only.
Other variables, not declared with the register keyword, may be held in
registers for extended periods and register variables may be held in
memory for some periods.

ARM-specific keywords

Note
 The following keywords can be used only on global variables.

The following variable declaration keywords allow you to specify that a declared
variable is allocated to a global register variable:

__global_reg(n)

Allocates the declared variable to a global integer register variable.
Global register variables cannot be qualified or initialized at declaration.
Valid types are:

• Any integer type except long long.

• Any pointer type.

__global_freg(n)

Allocates the declared variable to a global floating-point register variable.
The variable must have type float or double. This keyword is legal only
if -fpu fpa or -apcs /hardfp is specified.

The global register must be specified in all declarations of the same variable. For
example, the following is an error:

int x; __global_reg(1) x; // error

In addition, __global_reg variables in C cannot be initialized at definition. For example,
the following is an error in C, and not in C++:

__global_reg(1) int x=1; /* error */

Depending on the APCS variant in use, between five and seven integer registers and
four floating-point registers are available for use as global register variables. In practice,
using more than three global integer register variables and two global floating-point
register variables is not recommended.
3-10 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

ARM Compiler Reference
Unlike register variables declared with the standard register keyword, the compiler
will not move global register variables to memory as required. If you declare too many
global variables, code size will increase significantly or, in some cases, your program
may not compile.

Note the following important points:

• You must exercise care when using global register variables. There is no check at
link time to ensure that direct calls are sensible. If possible, any global register
variables used in a program should be defined in each compilation unit of the
program. In general, it is best to place the definition in a global header file.

• Because a global register variable maps to a callee-saved register, its value is
saved and restored across a call to a function in a compilation unit that does not
use it as a global register variable, such as a library function.

• Calls back into a compilation unit that uses a global register variable are
dangerous. For example, if a global register using function is called from a
compilation unit that does not declare the global register variable, the function
will read the wrong values from its supposed global register variables.

3.1.4 Type qualifiers

This section describes the implementation of various standard C, C++, and
ARM-specific type qualifiers. These type qualifiers can be used to instruct the compiler
to treat the qualified type in a special way. Standard qualifiers that do not have
ARM-specific behavior or restrictions are not documented.

Note
 __packed is not, strictly speaking, a type qualifier. It is included in this section because
it behaves like a type qualifier in most respects.

__packed

The __packed qualifier sets the alignment of any valid type to 1. This means:

• there is no padding inserted to align the packed object

• objects of packed type are read or written using unaligned accesses.

The __packed qualifier cannot be used on:

• floating-point types

• structures or unions with floating-point fields.

The __packed qualifier does not affect local variables of integral type.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 3-11

ARM Compiler Reference
The top level alignment specified with the -zat compiler option is applied to global
objects. This means that there can be padding between two packed globals. The
structure alignment specified with the -zas compiler option does not apply to packed
structures.

Packed types must be specified with __packed. If you want to use packed rather than
__packed, you must define it:

#define packed __packed

The __packed qualifier applies to all members of a structure or union when it is declared
using __packed. There is no padding between members, or at the end of the structure.
All sub-structures of a packed structure must be declared using __packed.

A packed structure or union is not assignment compatible with the corresponding
unpacked structure. Because the structures have a different memory layout, the only
way to assign a packed structure to an unpacked structure is by a field by field copy.

The effect of casting away __packed is undefined. The effect of casting a non-packed
structure to __packed is undefined. It is legal to implicitly cast a pointer to an integral
type to a pointer to a packed integral type.

There are no packed array types. A packed array is simply an array of objects of packed
type. There is no padding.

Note
 On ARM processors, access to unaligned data can be expensive, taking up to seven
instructions and three work registers. Data accesses through packed structures should
be minimized to avoid increase in code size, or performance loss.

The __packed qualifier is useful to map a structure to an external data structure, or for
accessing unaligned data, but it is generally not useful to save data size because of the
relatively high cost of access.

See Example 3-1.

Example 3-1

typedef __packed struct
{

char x; // all fields inherit the __packed qualifier
int y;

}X; // 5 byte structure, natural alignment = 1
int f(X *p)
{

3-12 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

ARM Compiler Reference
return p->y;// does an unaligned read
}
typedef struct
{

short x;
char y;
__packed int z;
char a;

}Y; // 8 byte structure, natural alignment = 2
int g(Y *p)
{

return p->z + p->x; // only unaligned read for z
}

volatile

The standard qualifier volatile informs the compiler that the qualified type contains
data that may be changed from outside the program. The compiler will not attempt to
optimize accesses to volatile qualified types. For example, volatile structures can be
mapped onto memory-mapped hardware.

In ARM C and C++, a volatile qualified object is accessed if any word or byte (or
halfword on ARM architecture that have halfword support) of the object is read or
written. For volatile qualified objects, reads and writes occur as directly implied by the
source code, in the order implied by the source code. The effect of accessing a volatile
short is undefined for ARM architectures that do not have halfword support.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 3-13

ARM Compiler Reference
3.2 C and C++ implementation details

This section describes implementation details for the ARM compilers, including:

• character sets and identifiers

• sizes, ranges and implementation details for basic data types

• implementation details for structured data types

• implementation details for bitfields.

This section describes details for both C and C++ implementations. Where a feature
applies specifically to one language, it is noted in the text.

3.2.1 Character sets and identifiers

The following points apply to the character sets and identifiers expected by the
compilers:

• An identifier can be of any length. The compiler truncates an identifier after 256
characters, all of which are significant.

• Uppercase and lowercase characters are distinct in all internal and external
identifiers. An identifier may also contain a dollar ($) character unless the -fussy
compiler option is specified.

• Calling setlocale(LC_CTYPE, "ISO8859-1") makes the isupper() and islower()
functions behave as expected over the full 8-bit Latin-1 alphabet, rather than over
the 7-bit ASCII subset.

• The characters in the source character set are assumed to be ISO 8859-1 (Latin-1
Alphabet), a superset of the ASCII character set. The printable characters are
those in the range 32 to 126 and 160 to 255. Any printable character may appear
in a string or character constant, and in a comment.

• The ARM compilers do not support multibyte character sets.

• Other properties of the source character set are host specific.

The properties of the execution character set are target-specific. The ARM C and C++
libraries support the ISO 8859-1 (Latin-1 Alphabet) character set, so the following
points are valid:

• The execution character set is identical to the source character set.

• There are eight bits in a character in the execution character set.
3-14 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

ARM Compiler Reference
• There are four chars/bytes in an int. If the memory system is:

little-endian the bytes are ordered from least significant at the lowest
address to most significant at the highest address.

big-endian the bytes are ordered from least significant at the highest
address to most significant at the lowest address.

• A character constant containing more than one character has the type int. Up to
four characters of the constant are represented in the integer value. The first
character in the constant occupies the lowest-addressed byte of the integer value.
Up to three following characters are placed at ascending addresses. Unused bytes
are filled with the NULL (\0) character.

• All integer character constants that contain a single character, or character escape
sequence, are represented in both the source and execution character sets (by an
assumption that may be false in any given retargeting of the generic ARM C
library).

• Characters of the source character set in string literals and character constants
map identically into the execution character set (by an assumption that may be
false in any given retargeting of the generic ARM C library).

• No locale is used to convert multibyte characters into the corresponding wide
characters (codes) for a wide character constant. This is not relevant to the generic
implementation.

The character escape codes are shown in Table 3-2.

Table 3-2 Escape codes

Escape sequence Char value Description

\a 7 Attention (bell)

\b 8 Backspace

\f 9 Form feed

\n 10 New line

\r 11 Carriage return

\t 12 Tab

\v 13 Vertical tab

\xnn 0xnn ASCII code in hexadecimal

\nnn 0nnn ASCII code in octal
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 3-15

ARM Compiler Reference
3.2.2 Basic data types

This section provides information about how the basic data types are implemented in
ARM C and C++.

Size and alignment of basic data types

Table 3-3 gives the size and natural alignment of the basic data types. Note that type
alignment varies, depending on the context in which the type is used:

• The alignment of top level static objects such as global variables is the maximum
of the natural alignment for the type and the value set by the -zat compiler option.
For example, if -zat2 is specified, a global char variable has an alignment of 2.
This option is described in Setting alignment options on page 2-27.

• Local variables are always word aligned. For example, a local char variable has
an alignment of 4.

• The natural alignment of a packed type is 1.

Table 3-3 Size and alignment of data types

Type Size in bits Natural alignment

char 8 1 (byte aligned)

short 16 2 (halfword aligned)

int 32 4 (word aligned)

long 32 4 (word aligned)

long long 64 4 (word aligned)

float 32 4 (word aligned)

double 64 4 (word aligned)

long double 64 4 (word aligned)

all pointers 32 4 (word aligned)

boola

a. Applies to C++ only.

32 4 (word aligned)
3-16 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

ARM Compiler Reference
Char

The following points apply to the char data type:

• Data items of type char are unsigned by default. In C++ mode and ANSI C mode
they may be explicitly declared as signed char or unsigned char.

• In PCC mode there is no signed keyword. Therefore a char is signed by default
and may be declared unsigned if required.

Integer

Integers are represented in two's complement form. The high word of long long integers
is always at the highest address. Refer to Operations on integral types on page 3-18 for
more information.

Float

Floating-point quantities are stored in IEEE format. float values are represented by
IEEE single precision values. double and long double values are represented by IEEE
double precision values. In double and long double quantities, the word containing the
sign, the exponent, and the most significant part of the mantissa is stored at the lower
machine address. Refer to Operations on floating-point types on page 3-18 for more
information.

Pointers

The following remarks apply to all pointer types in C, and to all pointer types except
pointers to members in C++:

• Adjacent bytes have addresses that differ by one.

• The macro NULL expands to the value 0.

• Casting between integers and pointers results in no change of representation.

• The compiler warns of casts between pointers to functions and pointers to data,
except when PCC mode is specified.

• The type size_t is defined as unsigned int, except in PCC mode where it is
signed.

• The type ptrdiff_t is defined as signed int.

Refer to Pointer subtraction on page 3-19 for more information.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 3-17

ARM Compiler Reference
3.2.3 Operations on basic data types

The ARM compilers perform the usual arithmetic conversions set out in relevant
sections of the C and C++ standards. The following sections document additional points
that should be noted with respect to arithmetic operations.

Operations on integral types

The following points apply to operations on the integral types:

• All signed integer arithmetic uses a two's complement representation.

• Bitwise operations on signed integral types follow the rules that arise naturally
from two's complement representation. No sign extension takes place.

• Right shifts on signed quantities are arithmetic.

• Any quantity that specifies the amount of a shift is treated as an unsigned 8-bit
value.

• Any value to be shifted is treated as a 32-bit value.

• Left shifts of more than 31 give a result of zero.

• Right shifts of more than 31 give a result of zero from a shift of an unsigned or
positive signed value. They yield –1 from a shift of a negative signed value.

• The remainder on integer division has the same sign as the divisor.

• If a value of integral type is truncated to a shorter signed integral type, the result
is obtained by discarding an appropriate number of most significant bits. If the
original number was too large, positive or negative, for the new type, there is no
guarantee that the sign of the result will be the same as the original.

• A conversion between integral types does not raise a processor exception.

• Integer overflow does not raise a processor exception.

• Integer division by zero raises a SIGFPE exception.

Operations on floating-point types

The following points apply to operations on floating-point types:

• Normal IEEE 754 rules apply.

• Rounding is to the nearest representable value by default.
3-18 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

ARM Compiler Reference
• Conversion from a floating-point type to an integral type causes a floating-point
exception to be raised only if the value cannot be represented in the destination
type (int or long long).

• Floating-point underflow is disabled by default.

• Floating-point overflow raises a SIGFPE exception by default.

• Floating-point divide by zero raises a SIGFPE exception by default.

Pointer subtraction

The following remarks apply to all pointers in C, and to pointers other than pointers to
members in C++:

• When two pointers are subtracted, the difference is obtained as if by the
expression:

((int)a - (int)b) / (int)sizeof(type pointed to)

• If the pointers point to objects whose size is one, two, or four bytes, the natural
alignment of the object ensures that the division will be exact, provided the
objects are not packed.

• For longer types, such as double and struct, the division may not be exact unless
both pointers are to elements of the same array. Also, the quotient may be rounded
up or down at different times. This can lead to inconsistencies.

Expression evaluation

The compiler performs the usual arithmetic conversions (promotions) set out in the
appropriate C or C++ standard before evaluating an expression. The following should
be noted:

• The compiler may re-order expressions involving only associative and
commutative operators of equal precedence, even in the presence of parentheses.
For example, a + (b – c) may be evaluated as (a + b) – c if a, b, and c are integer
expressions.

• Between sequence points, the compiler may evaluate expressions in any order,
regardless of parentheses. Thus the side effects of expressions between sequence
points may occur in any order.

• The compiler may evaluate function arguments in any order.

Any detail of order of evaluation not prescribed by the relevant standard may vary
between releases of the ARM compilers.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 3-19

ARM Compiler Reference
3.2.4 Structured data types

This section describes the implementation of the structured data types union, enum, and
struct. It also discusses structure padding and bitfield implementation.

Unions

When a member of a union is accessed using a member of a different type, the resulting
value can be predicted from the representation of the original type. No error is given.

Enumerations

An object of type enum is implemented in the smallest integral type that contains the
range of the enum. The type of an enum will be one of the following, according to the
range of the enum:

• unsigned char

• signed char

• unsigned short

• signed short

• signed int.

Implementing enum in this way can reduce the size of data. The command-line option
-fy sets the underlying type of enum to signed int. Refer to Chapter 2 The ARM
Compilers for more information on the -fy option.

Structures

The following points apply to:

• all C structures

• all C++ structures and classes that do not have virtual functions or base classes.

Structure Alignment

The alignment of a non-packed structure is the larger of:

• The maximum alignment required by any of its fields.

• The minimum alignment for all structures, as set by the -zas
compiler option. If the natural alignment of a structure is smaller
than this, padding is added to the end of the structure. This option
is described in Setting alignment options on page 2-27.

Field alignment
3-20 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

ARM Compiler Reference
Structures are arranged with the first-named component at the lowest
address. Fields are aligned as follows:

• A field with a char type is aligned to the next available byte.

• A field with a short type is aligned to the next even-addressed byte.

• Bitfield alignment depends on how the bitfield is declared. Refer to
Bitfields in packed structures on page 3-24 for more information.

• All other types are aligned on word boundaries.

Structures may contain padding to ensure that fields are correctly aligned, and that the
structure itself is correctly aligned. For example, Figure 3-1 shows an example of a
conventional, non-packed structure. In the example, bytes 1, 2, and 3 are padded to
ensure correct field alignment. Bytes 10 and 11 are padded to ensure correct structure
alignment.

The compiler pads structures in two ways, depending on how the structure is defined:

• Structures that are defined as static or extern are padded with zeroes.

• Structures on the stack or heap, such as those defined with malloc() or auto, are
padded with garbage. That is, pad bits will contain whatever was previously
stored in memory. You cannot use memcmp() to compare padded structures defined
in this way.

Figure 3-1 Conventional structure example

Bitfields

The ARM compilers handle bitfields in non-packed structures in the following way.

example

0 1 2 3 4 5 6 7 8 9 10 11
c x s

word
boundary

byte

sizeof(example) == 12 (3 words)

struct {char c; int x; short s;} ex

padding for padding
field alignment for structure

alignment
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 3-21

ARM Compiler Reference
Bitfields are allocated in containers. A container is a correctly aligned object of a
declared type. Bitfields are allocated so that the first field specified occupies the
lowest-addressed bits of the word, depending on configuration:

little-endian lowest addressed means least significant.

big-endian lowest addressed means most significant.

A bitfield container may be any of the integral types, except that long long bitfields are
not supported.

Note
 The compiler warns about non int bitfields. You can disable this warning with the -Wb
compiler option.

A plain bitfield, declared without either signed or unsigned qualifiers, is treated as
unsigned, except in PCC mode where it is signed. For example, int x:10 allocates an
unsigned integer of 10 bits.

A bitfield is allocated to the first container of the correct type that has a sufficient
number of unallocated bits. For example:

struct X {
int x:10;
int y:20;

};

The first declaration allocates an integer container in which 10 bits are allocated. At the
second declaration, the compiler finds the existing integer container, checks that the
number of unallocated bits are sufficient, and allocates y in the same container as x.

A bitfield is wholly contained within its container. A bitfield that does not fit in a
container is placed in the next container of the same type. For example, if an additional
bitfield is declared for the structure above:

struct X {
int x:10;
int y:20;
int z:5;

};

the declaration of z overflows the container. The compiler pads the remaining two bits
for the first container and assigns a new integer container for z.

Bitfield containers may overlap each other. For example:
3-22 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

ARM Compiler Reference
struct X{
int x:10;
char y:2;

};

The first declaration allocates an integer container in which 10 bits are allocated. These
10 bits occupy the first byte, and two bits of the second byte of the integer container. At
the second declaration, the compiler checks for a container of type char. There is no
suitable container, so the compiler allocates a new correctly aligned char container.

Because the natural alignment of char is 1, the compiler searches for the first byte that
contains a sufficient number of unallocated bits to completely contain the bitfield. In the
above example, the second byte of the int container has two bits allocated to x, and six
bits unallocated. The compiler allocates a char container starting at the second byte of
the previous int container, skips the first two bits that are allocated to x, and allocates
two bits to y.

If y is declared char y:8

struct X{
int x:10;
char y:8;

}

the compiler pads the second byte and allocates a new char container to the third byte,
because the bitfield cannot overflow its container.

Note that the same basic rules apply to bitfield declarations with different container
types. For example, adding an int bitfield to the example above:

struct X{
int x:10;
char y:8;
int z:5;

}

The compiler allocates an int container starting at the same location as the int x:10
container, and allocates a 5-bit bitfield. The structure as a whole looks like this:

x a 10-bit bitfield

padding 6 bits

y an 8-bit bitfield

z a 5-bit bitfield

unallocated 3 unallocated bits.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 3-23

ARM Compiler Reference
You can explicitly pad a bitfield container by declaring a bitfield of size zero. A bitfield
of zero size fills the container up to the end if the container is non-empty. A subsequent
bitfield declaration will start a new container.

Bitfields in packed structures

Bitfield containers in packed structures have an alignment of 1. Therefore, the
maximum bit padding for a bitfield in a packed structure is 7 bits. For an unpacked
structure, the maximum padding is 8*sizeof(container-type)–1 bits.

Packed structures

A packed structure is one in which the alignment of the structure, and of the fields
within it, is always 1, independent of the alignment specified by the -zas compiler
option. Floating-point types cannot be fields of packed structures.

Packed structures are defined with the __packed qualifier. There is no command-line
option to change the default packing of structures. Refer to Type qualifiers on page 3-11
for more information.
3-24 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

ARM Compiler Reference
3.3 Standard C implementation definition

Appendix G of the ISO C standard (IS/IEC 9899:1990 (E)) collects together
information about portability issues. Subclause G3 lists the behavior that each
implementation must document.

The following subsections correspond to the relevant sections of subclause G3. It
describes aspects of the ARM C compiler and ANSI C library that are not defined by
the ISO C standard, and that are implementation-defined.

Note
 This section does not duplicate information that is applicable to both C and C++
implementations. This is provided in C and C++ implementation details on page 3-14.
This section provides references where applicable.

3.3.1 Translation

Diagnostic messages produced by the compiler are of the form:

source-file, line-number: severity: explanation

where severity is one of:

Warning A helpful message from the compiler.

Error A violation of the ANSI specification from whichthe compiler is
able to recover by guessing the intention.

Serious error A violation of the ANSI specification from which no recovery is
possible because the intention is not clear.

Fatal An indication that the compiler limits have been exceeded, or that
the compiler has detected a fault in itself (for example, not enough
memory).

3.3.2 Environment

The mapping of a command line from the ARM-based environment into arguments to
main() is implementation-specific. The generic ARM C library supports the following:

• main

• interactive device

• standard input, output, and error streams.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 3-25

ARM Compiler Reference
main()

The arguments given to main() are the words of the command line (not including I/O
redirections), delimited by white space, except where the white space is contained in
double quotes.

Note that:

• a whitespace character is any character of which isspace() is true

• a double quote or backslash character (\) inside double quotes must be preceded
by a backslash character

• an I/O redirection will not be recognized inside double quotes.

Interactive device

In an unhosted implementation of the ARM C library, the term interactive device may
be meaningless. The generic ARM C library supports a pair of devices, both called :tt,
intended to handle a keyboard and a VDU screen. In the generic implementation:

• no buffering is done on any stream connected to :tt unless I/O redirection has
taken place

• if I/O redirection other than to :tt has taken place, full file buffering is used
(except where both stdout and stderr have been redirected to the same file, where
line buffering is used).

Standard input, output and error streams

Using the generic ARM C library, the standard input, output and error streams stdin,
stdout, and stderr can be redirected at runtime. For example, if mycopy is a program
which simply copies the standard input to the standard output, the following line runs
the program:

mycopy < infile > outfile 2> errfile

and redirects the files as follows:

stdin is redirected to infile

stdout is redirected to outfile

stderr is redirected to errfile

The following shows the permitted redirections:

0< filename reads stdin from filename

< filename reads stdin from filename
3-26 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

ARM Compiler Reference
1> filename writes stdout to filename

> filename writes stdout to filename

2> filename writes stderr to filename

2>&1 writes stderr to the same place as stdout

>& filename writes both stdout and stderr to filename

>> filename appends stdout to filename

>>& filename appends both stdout and stderr to filename

3.3.3 Identifiers

Refer to Character sets and identifiers on page 3-14 for details.

3.3.4 Characters

Refer to Character sets and identifiers on page 3-14 for a description of the characters
in the source character set.

3.3.5 Integers

Refer to Integer on page 3-17 for details.

3.3.6 Floating-point

Refer to Float on page 3-17 for details. In addition, floating-point support is
documented in Chapter 11 Floating-point Support.

3.3.7 Arrays and pointers

Refer to Pointers on page 3-17 for details.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 3-27

ARM Compiler Reference
3.3.8 Registers

Using the ARM C compiler, you can declare any number of objects to have the storage
class register.

Refer to Variable declaration keywords on page 3-9 for a description of how ARM
implement the register storage class.

3.3.9 Structures, unions, enumerations, and bitfields

The ISO/IEC C standard requires that the following implementation details are
documented for structured data types:

• The outcome when a member of a union is accessed using a member of different
type.

• The padding and alignment of members of structures.

• Whether a plain int bitfield is treated as a signed int bitfield or as an unsigned int
bitfield.

• The order of allocation of bitfields within a unit.

• Whether a bitfield can straddle a storage-unit boundary.

• The integer type chosen to represent the values of an enumeration type.

These implementation details are documented in the relevant sections of C and C++
implementation details on page 3-14.

Unions

Refer to Unions on page 3-20 for details.

Padding and alignment of structure members

Refer to Structures on page 3-20 for details.

Enumerations

Refer to Enumerations on page 3-20 for details.

Bitfields

Refer to Bitfields on page 3-21 for details.
3-28 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

ARM Compiler Reference
3.3.10 Qualifiers

An object that has volatile-qualified type is accessed if any word or byte (or halfword
on ARM architectures that have halfword support) of it is read or written. For
volatile-qualified objects, reads and writes occur as directly implied by the source code,
in the order implied by the source code.

The effect of accessing a volatile-qualified short is undefined on ARM architectures
that do not have halfword support.

3.3.11 Declarators

The number of declarators that may modify an arithmetic, structure or union type is
limited only by available memory.

3.3.12 Statements

The number of case values in a switch statement is limited only by memory.

3.3.13 Preprocessing directives

A single-character constant in a preprocessor directive cannot have a negative value.

The ANSI standard header files are contained within the compiler itself and may be
referred to in the way described in the standard (using, for example, #include <stdio.h>,
etc.).

Quoted names for includable source files are supported. The compiler will accept host
filenames or UNIX filenames. In the latter case, on non-UNIX hosts, the compiler tries
to translate the filename to a local equivalent.

The recognized #pragma directives are shown in Pragmas on page 3-2.

The date and time of translation are always available, so __DATE__ and __TIME__ always
give the date and time respectively.

3.3.14 Library functions

The precise attributes of a C library are specific to a particular implementation of it. The
generic ARM C library has or supports the following features:

• The macro NULL expands to the integer constant 0.

• If a program redefines a reserved external identifier, an error may occur when the
program is linked with the standard libraries. If it is not linked with standard
libraries, no error will be detected.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 3-29

ARM Compiler Reference
• The assert() function prints the following message and then calls the abort()
function:

*** assertion failed: expression, file filename, line linenumber

The following functions usually test only for characters whose values are in the range 0
to 127 (inclusive):

• isalnum()

• isalpha()

• iscntrl()

• islower()

• isprint()

• isupper()

• ispunct()

Characters with values greater than 127 return a result of 0 for all these functions except
iscntrl() which returns non-zero for 0 to 31, and 128 to 255.

Setlocale call

After the call setlocale(LC_CTYPE, "ISO8859-1"), the statements in Table 3-4 apply to
character codes and affect the results returned by the ctype() functions:

Table 3-4 Character codes

Code Description

128 to 159 control characters

160 to 191 punctuation

192 to 214 uppercase

215 punctuation

216 to 223 uppercase

224 to 246 lowercase

247 punctuation

248 to 255 lowercase
3-30 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

ARM Compiler Reference
Mathematical functions

The mathematical functions return the values in Table 3-5.

Where –HUGE_VAL is returned, a number is returned which is defined in the header
math.h. Consult the errno variable for the error number.

The mathematical functions set errno to ERANGE on underflow range errors.

A domain error occurs if the second argument of fmod() is zero, and –HUGE_VAL is
returned.

Signal function

The set of signals for the generic signal() function shown in Table 3-6.

Table 3-5 Mathematical functions

Function Condition Returned value

log(x) x <= 0 –HUGE_VAL

log10(x) x <= 0 –HUGE_VAL

sqrt(x) x < 0 –HUGE_VAL

atan2(x,y) x = y = 0 –HUGE_VAL

asin(x) abs(x) > 1 –HUGE_VAL

acos(x) abs(x) > 1 –HUGE_VAL

pow(x,y) x=y=0 –HUGE_VAL

Table 3-6 Signal function signals

Signal Description

SIGABRT abort

SIGFPE arithmetic exception

SIGILL illegal instruction

SIGINT attention request from user
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 3-31

ARM Compiler Reference
The default handling of all recognized signals is to print a diagnostic message and call
exit(). This default behavior applies at program startup.

When a signal occurs, if func points to a function, the equivalent of signal(sig,
SIG_DFL) is first executed. If the SIGILL signal is received by a handler specified to the
signal() function, the default handling is reset.

Generic ARM C library

The generic ARM C library also has the following characteristics relating to I/O. Note
that a given targeting of the ARM C library may not have the same characteristics:

• The last line of a text stream does not require a terminating newline character.

• Space characters written out to a text stream immediately before a newline
character do appear when read back in.

• No null characters are appended to a binary output stream.

• The file position indicator of an append mode stream is initially placed at the end
of the file.

• A write to a text stream does not cause the associated file to be truncated beyond
that point (device dependent).

• The characteristics of file buffering are as intended by section 4.9.3 of the ANSI
C standard. The maximum number of open files is set in stdio.h as:

#define _SYS_OPEN 16

if Angel is in use.

• A zero-length file (in which no characters have been written by an output stream)
does exist.

• The same file can be opened many times for reading, but only once for writing or
updating. A file cannot be open simultaneously for reading on one stream and for
writing or updating on another.

SIGSEGV bad memory access

SIGTER
M

termination request

SIGSTAK stack overflow

Table 3-6 Signal function signals (continued)

Signal Description
3-32 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

ARM Compiler Reference
• Local time zones and Daylight Saving Time are not implemented. The values
returned will always indicate that the information is not available.

• The status returned by exit() is the same value that was passed to it. For
definitions of EXIT_SUCCESS and EXIT_FAILURE, refer to the header file stdlib.h.

• The error messages returned by the strerror() function are identical to those
given by the perror() function.

• If the size of area requested is zero, calloc(), malloc() and realloc() return NULL.

• abort() closes all open files, and deletes all temporary files.

• fprintf() prints %p arguments in hexadecimal format (lowercase) as if a precision
of 8 had been specified. If the variant form (%#p) is used, the number is preceded
by the character @.

• fscanf() treats %p arguments identically to %x arguments.

• fscanf() always treats the character "-" in a %...[...] argument as a literal
character.

• ftell() and fgetpos() set errno to the value of EDOM on failure.

• perror() generates the messages in Table 3-7.

The following characteristics, required to be specified in an ANSI-compliant
implementation, are unspecified in the generic ARM C library:

• the validity of a filename

• whether remove() can remove an open file

• the effect of calling the rename() function when the new name already exists

• the effect of calling getenv() (the default is to return NULL, no value available)

• the effect of calling system()

Table 3-7 perror() messages

Error Message

0 No error (errno = 0)

EDOM EDOM - function argument out of range

ERANGE ERANGE - function result not representable

ESIGNUM ESIGNUM - illegal signal number to signal() or raise()

others Error code number has no associated message
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 3-33

ARM Compiler Reference
• the value returned by clock().
3-34 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

ARM Compiler Reference
3.4 Standard C++ implementation definition

This section gives details of those aspects of the ARM C++ implementation that the
Draft Standard identifies as implementation defined.

When used in ANSI C mode, the ARM C++ compilers are identical to the ARM C
compiler. Refer to Standard C implementation definition on page 3-25 for details.

3.4.1 Integral conversion (section 4.7 of the Draft Standard)

During integral conversion, if the destination type is signed, the value is unchanged if it
can be represented in the destination type (and bitfield width). Otherwise, the value is
truncated to fit the size of the destination type and a warning is given.

3.4.2 Standard C++ library implementation definition

This section describes the Rogue Wave Standard C++ library that is supplied with ARM
C++. For information on implementation-defined behavior that is defined in the
Standard C++ library, refer to the Rogue Wave HTML documentation that is included
with this release of ARM C++. By default, this is installed in the /HTML directory of your
SDT installation directory.

Version 1.2.1 of the Rogue Wave library provides a subset of the library defined in the
January 1996 Draft Standard. There are slight differences from the December 1996
version of the Draft Standard.

The Standard C++ library is distributed in binary form only. It is built into the armcpplib
library, together with additional library functions described in Library support on
page 2-5.

The library is also supplied as pre-built object files to enable you to rebuild armcpplib
if required. Refer to Chapter 4 The C and C++ Libraries for more information on
rebuilding armcpplib.

Table 3-8 on page 3-36 lists the library features that are supported in version 1.2.1 of
the library. The most significant features missing from this release are:

• iostream

• locale

• valarray

• typeinfo. Note that iostream and typeinfo are supported in a basic way by the
ARM C++ library additions. Refer to Library support on page 2-5 for more
information.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 3-35

ARM Compiler Reference
For detailed information on the Rogue Wave Standard C++ library, refer to the Rogue
Wave HTML documentation that is included with this release of ARM C++.

Table 3-8 Standard C++ library support

Draft
Standard
Section

Library Feature

18.2.1 Numeric limits

19.1 Exception classes

20.3 Function objects

20.4.2 Raw storage iterator

20.4.3 Memory handling primitives

20.4.4 Specialized algorithms for raw
storage

20.4.5 Template class auto_ptr

21 Strings library

23 Containers library

24 Iterators library (except sections
24.5.3 and 24.5.4)

25 Algorithms library

26.2 Complex number

26.4 Generalized numeric operations
3-36 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

ARM Compiler Reference
3.5 C and C++ language extensions

This section describes the language extensions supported by the ARM C and C++
compilers.

3.5.1 C Language Extensions

The compilers support the following extensions to the ANSI C language. None of these
extensions is available if the compiler is restricted to compiling strict ANSI C, for
example, by specifying the -fussy compiler option.

// comments

The character sequence // starts a comment. As in C++, the comment is terminated by
the next newline character. Note that comment removal takes place after line
continuation has been performed, so:

// this is a - \
single comment

The characters of a comment are examined only to find the comment terminator,
therefore:

• // has no special significance inside a comment introduced by /*

• /* has no special significance inside a comment introduced by //

3.5.2 C and C++ language extensions

The compilers support the following extensions to both the ANSI C language, and the
Draft ISO/IEC C++ language. Refer to C Language Extensions for language extensions
that apply only to C. None of these extensions is available if the compiler is restricted
to compiling strict ANSI C or strict draft C++, for example by specifying the -fussy
compiler option.

Identifiers

The $ character is a legal character in identifiers.

Void returns and arguments

Any void type is permitted as the return type in a function declaration, or the indicator
that a function takes no argument. For example, the following is permitted:
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 3-37

ARM Compiler Reference
typedef void VOID;
int fn(VOID); // Error in -fussy C and C++
VOID fn(int x); // Error in -fussy C

Long long

ARM C and C++ support 64-bit integer types through the type specifier long long. long
long int and unsigned long long int are integral types. They behave analogously to
long and unsigned long int with respect to the usual arithmetic conversions.

Integer constants may have:

• an LL suffix to force the type of the constant to long long, if it will fit, or to
unsigned long long if it will not

• an LLU (or ULL) suffix to force to the constant to unsigned long long.

Format specifiers for printf() and scanf() may include ll to specify that the following
conversion applies to an (unsigned) long long argument, as in %lld.

In addition, a plain integer constant is of type (unsigned) long long if its value is large
enough. This is a quiet change. For example in strict ANSI C, 2147483648 has type
unsigned long. In ARM C++ it has the type long long. This means that the value of the
expression 2147483648 > –1 is 0 in strict C and C++, and 1 in ARM C and C++.

The following restrictions apply to long long:

• long long bitfields are not supported.

• long long enumerators are not available.

• The controlling expression of a switch statement may not have (unsigned) long
long type. Consequently case labels must also have values that can be contained
in a variable of type unsigned long.

Inline Assembler

The ARM C compilers support inline assembly language with the __asm specifier.

The ARM C++ compilers support the syntax proposed in the Draft C++ Standard, with
the restriction that the string-literal must be a single string. For example:

asm("instruction[;instruction]");

The asm declaration must be inside a C or C++ function. You cannot include comments
in the string literal.
3-38 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

ARM Compiler Reference
In addition to the syntax proposed in the Draft Standard, ARM C++ supports the C
compiler __asm syntax when used with both asm and __asm.

The ARM inline assembler implements the full ARM instruction set, including generic
coprocessors, halfword instructions and long multiply.

The Thumb inline assembler implements the full Thumb instruction set.

Syntax

The inline assembler is invoked with the assembler specifier, and is followed by a list
of assembler instructions inside braces. For example:

__asm
{

instruction [; instruction]
...
[instruction]

}

If two instructions are on the same line, you must separate them with a semicolon. If an
instruction is on multiple lines, line continuation must be specified with the backslash
character (\). C or C++ comments may be used anywhere within an inline assembly
language block.

An asm statement may be used anywhere a C++ statement is expected. The __asm
keyword is a synonym supported for compatibility with C.

Refer to Chapter 8 Mixed Language Programming in the ARM Software Development
Toolkit User Guide for detailed information on using the inline assemblers from both C
and C++.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 3-39

ARM Compiler Reference
3.6 Predefined macros

Table 3-9 lists the macro names predefined by the ARM C and C++ compilers. Where
the value field is empty, the symbol concerned is merely defined, as though by (for
example) -D__arm on the command line.

Table 3-9 Predefined macros

Name Value Notes

__STDC__ 1 defined in all compiler modes except PCC mode

__cplusplus 1 defined in C++ compiler mode

__CFRONT_LIKE 1 defined in -cfront compiler mode

__arm defined if using armcc, tcc, armcpp , or tcpp

__thumb defined if using tcc or tcpp

__SOFTFP__ defined if compiling to use the software
floating-point library (-apcs /softfp)

__APCS_NOSWST defined if -apcs /noswst in use

__APCS_REENT defined if -apcs /reent in use

__APCS_INTERWORK defined if -apcs /interwork in use

__APCS_32 defined unless -apcs /26bit is in use

__APCS_NOFP defined if -apcs /nofp in use (no frame pointer)

__APCS_FPREGARGS defined if -apcs /fpregargs is in use

__BIG_ENDIAN defined if compiling for a big-endian target

__DIALECT_FUSSY defined if -fussy is specified.

__DIALECT_PCC defined if -pcc is specified.

__TARGET_ARCH_xx xx represents the target architecture. The value of xx
depends on the target architecture. For example, if
the compiler options -arch 4T or -cpu ARM7TDMI are
specified then __TARGET_ARCH_4T is defined, and no
other symbol starting with _TARGET_ARCH_ is defined.
3-40 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

ARM Compiler Reference
__TARGET_CPU_xx xx represents the target cpu. The value of xx is
derived from the -processor compiler option, or the
default if none is specified. For example, if the
compiler option -processor ARM7TM is specified then
_TARGET_CPU_ARM7TM is defined and no other symbol
starting with _TARGET_CPU_ is defined.

If the target architecture only is specified, without a
target CPU then _TARGET_CPU_generic is defined.

If the processor name contains hyphen (-)
characters, these are mapped to an underscore (_).
For example, -processor SA-110 is mapped to
__TARGET_CPU_SA_110.

__TARGET_FEATURE_HALFWORD defined if the target architecture supports halfword
and signed byte access instructions.

__TARGET_FEATURE_MULTIPLY defined if the target architecture supports the long
multiply instructions MULL and MULAL.

__TARGET_FEATURE_THUMB defined if the target architecture is Thumb-aware.

__ARMCC_VERSION Gives the version number of the compiler. The value
is the same for armcc and tcc; it is a decimal
number, whose value can be relied on to increase
monotonically between releases.

__CLK_TCK 100 centisecond clock definition

__sizeof_int 4 sizeof(int), but available in preprocessor
expressions

__sizeof_long 4 sizeof(long), but available in preprocessor
expressions

__sizeof_ptr 4 sizeof(void *), but available in preprocessor
expressions

__FILE__ the presumed full pathname of the current source
file

__MODULE__ contains the filename part of the value of __FILE__

Table 3-9 Predefined macros (continued)

Name Value Notes
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 3-41

ARM Compiler Reference
__LINE__ the line number of the current source file

__DATE__ the date of translation of the source file

__TIME__ the time of translation of the source file

Table 3-9 Predefined macros (continued)

Name Value Notes
3-42 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

ARM Compiler Reference
3.7 Implementation limits

This section lists implementation limits for the ARM C and C++ compilers.

3.7.1 Draft Standard Limits

The Draft C++ Standard standard recommends certain minimum limits that a
conforming compiler should accept. You should be aware of these when porting
applications between compilers. A summary is given in Table 3-10. A limit of mem
indicates that no limit is imposed by the ARM compilers, other than that imposed by the
availability of memory.

Table 3-10 Implementation limits

Description Recommended ARM

Nesting levels of compound statements, iteration control structures, and
selection control structures.

256 mem

Nesting levels of conditional inclusion. 256 mem

Pointer, array, and function declarators (in any combination) modifying an
arithmetic, structure, union, or incomplete type in a declaration.

256 mem

Nesting levels of parenthesized expressions within a full expression. 256 mem

Number of initial characters in an internal identifier or macro name. 1024 mem

Number of initial characters in an external identifier. 1024 mem

External identifiers in one translation unit. 65536 mem

Identifiers with block scope declared in one block. 1024 mem

Macro identifiers simultaneously defined in one translation unit. 65536 mem

Parameters in one function declaration. Note that overload resolution is
sensitive to the first 32 arguments only.

256 mem

Arguments in one function call. Note that overload resolution is sensitive to the
first 32 arguments only.

256 mem

Parameters in one macro definition. 256 mem

Arguments in one macro invocation. 256 mem

Characters in one logical source line. 65536 mem

Characters in a character string literal or wide string literal after concatenation. 65536 mem
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 3-43

ARM Compiler Reference
Size of a C++ object. 262144 8388607

Nesting levels of #include file. 256 mem

Case labels for a switch statement, excluding those for any nested switch
statements.

16384 mem

Data members in a single class, structure, or union. 16384 mem

Enumeration constants in a single enumeration. 4096 mem

Levels of nested class, structure, or union definitions in a single
struct-declaration-list.

256 mem

Functions registered by atexit(). 32 33

Direct and indirect base classes 16384 mem

Direct base classes for a single class 1024 mem

Members declared in a single class 4096 mem

Final overriding virtual functions in a class, accessible or not 16384 mem

Direct and indirect virtual bases of a class 1024 mem

Static members of a class 1024 mem

Friend declarations in a class 4096 mem

Access control declarations in a class 4096 mem

Member initializers in a constructor definition 6144 mem

Scope qualifications of one identifier 256 mem

Nested external specifications 1024 mem

Template arguments in a template declaration 1024 mem

Recursively nested template instantiations 17 mem

Handlers per try block 256 mem

Throw specifications on a single function declaration 256 mem

Table 3-10 Implementation limits (continued)

Description Recommended ARM
3-44 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

ARM Compiler Reference
3.7.2 Internal limits

In addition to the limits described in Table 3-10 on page 3-43, the compiler has internal
limits listed in Table 3-11.

Table 3-11 Internal limits

Description ARM

Maximum number of relocatable references in a single translation unit. 65536

Maximum number of virtual registers. 65536

Maximum number of overload arguments. 32

Number of characters in a mangled name before it may be truncated. 128

Number of bits in the smallest object that is not a bit field (CHAR_BIT). 8

Maximum number of bytes in a multibyte character, for any supported locale
(MB_LEN_MAX).

1

ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 3-45

ARM Compiler Reference
3.8 Limits for integral numbers

The following table gives the ranges for integral numbers as implemented in ARM C
and C++. The third column of the table gives the numerical value of the range endpoint.
The right hand column gives the bit pattern (in hexadecimal) that would be interpreted
as this value by the ARM compilers.

When entering constants, you must be careful about the size and sign of the quantity.
Constants are interpreted differently in decimal and hexadecimal/octal. See the
appropriate C or C++ standard, or any of the recommended textbooks on the C and C++
programming language for more details.

Table 3-12 Integer ranges

Constant Meaning End-point Hex Value

CHAR_MAX Maximum value of char 255 0xff

CHAR_MIN Minimum value of char 0 0x00

SCHAR_MAX Maximum value of signed char 127 0x7f

SCHAR_MIN Minimum value of signed char –128 0x80

UCHAR_MAX Maximum value of unsigned char 255 0xff

SHRT_MAX Maximum value of short 32767 0x7fff

SHRT_MIN Minimum value of short –32768 0x8000

USHRT_MAX Maximum value of unsigned short 65535 0xffff

INT_MAX Maximum value of int 2147483647 0x7fffffff

INT_MIN Minimum value of int –2147483648 0x80000000

LONG_MAX Maximum value of long 2147483647 0x7fffffff

LONG_MIN Minimum value of long –2147483648 0x80000000

ULONG_MAX Maximum value of unsigned long 4294967295 0xffffffff
3-46 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

ARM Compiler Reference
3.9 Limits for floating-point numbers

The following tables give the characteristics, ranges, and limits for floating-point
numbers as implemented in ARM C and C++. Note also:

• when a floating-point number is converted to a shorter floating-point number, it
is rounded to the nearest representable number

• the properties of floating-point arithmetic accord with IEEE 754.

Table 3-13 Floating-point limits

Constant Meaning Value

FLT_MAX Maximum value of float 3.40282347e+38F

FLT_MIN Minimum value of float 1.17549435e–38F

DBL_MAX Maximum value of double 1.79769313486231571e+308

DBL_MIN Minimum value of double 2.22507385850720138e–308

LDBL_MAX Maximum value of long double 1.79769313486231571e+308

LDBL_MIN Minimum value of long double 2.22507385850720138e–308

FLT_MAX_EXP Maximum value of base 2 exponent for type
float

128

FLT_MIN_EXP Minimum value of base 2 exponent for type
float

–125

DBL_MAX_EXP Maximum value of base 2 exponent for type
double

1024

DBL_MIN_EXP Minimum value of base 2 exponent for type
double

–1021

LDBL_MAX_EXP Maximum value of base 2 exponent for type
long double

1024

LDBL_MIN_EXP Minimum value of base 2 exponent for type
long double

–1021

FLT_MAX_10_EXP Maximum value of base 10 exponent for type
float

38

FLT_MIN_10_EXP Minimum value of base 10 exponent for type
float

–37

DBL_MAX_10_EXP Maximum value of base 10 exponent for type
double

308
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 3-47

ARM Compiler Reference
DBL_MIN_10_EXP Minimum value of base 10 exponent for type
double

–307

LDBL_MAX_10_EXP Maximum value of base 10 exponent for type
long double

308

LDBL_MIN_10_EXP Minimum value of base 10 exponent for type
long double

–307

Table 3-14 Other floating-point characteristics

Constant Meaning Value

FLT_RADIX Base (radix) of the ARM floating-point number
representation

2

FLT_ROUNDS Rounding mode for floating-point numbers 1 (nearest)

FLT_DIG Decimal digits of precision for float 6

DBL_DIG Decimal digits of precision for double 15

LDBL_DIG Decimal digits of precision for long double 15

FLT_MANT_DIG Binary digits of precision for type float 24

DBL_MANT_DIG Binary digits of precision for type double 53

LDBL_MANT_DIG Binary digits of precision for type long double 53

FLT_EPSILON Smallest positive value of x such that 1.0 + x != 1.0
for type float

1.19209290e–7F

DBL_EPSILON Smallest positive value of x such that 1.0 + x != 1.0
for type double

2.2204460492503131e–16

LDBL_EPSILON Smallest positive value of x such that 1.0 + x != 1.0
for type long double

2.2204460492503131e–16L

Table 3-13 Floating-point limits (continued)

Constant Meaning Value
3-48 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

ARM Compiler Reference
3.10 C++ language feature support

The ARM C++ compilers support the majority of the language features described in the
ISO/IEC December 1996 Draft Standard for C++. This section lists the C++ language
features defined in the Draft Standard, and states whether or not that language feature
is supported by ARM C++.

3.10.1 Major language feature support

Table 3-15 shows the major language features supported by this release of ARM C++.

3.10.2 Minor language feature support

Table 3-16 shows the minor language features supported by this release of ARM C++.

Table 3-15 Major language feature support

Major Language
Feature

Draft Standard
Section

Supported

Core language 1 to 13 Yes

Templates 14 Partial. Templates are supported except for the export
feature.

Exceptions 15 None

Libraries 17 to 27 Partial. Refer to Standard C++ library implementation
definition on page 3-35.

Table 3-16 Minor language feature support

Minor Language Feature Supported

Namespaces No

Runtime type identification (RTTI) Partial. Typeid is supported for static types and expressions with
non-polymorphic type. See also the restrictions on new style casts.

New style casts Partial. ARM C++ supports the syntax of new style casts, but does
not enforce the restrictions. New style casts behave in the same
manner as old style casts.

Array new/delete Yes

Nothrow new No, but new does not throw.

bool type Yes
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 3-49

ARM Compiler Reference
wchar_t type No

explicit keyword No

Static member constants No

extern inline Partial. This is supported except for functions that have static data.

Full linkage specification Yes

for loop variable scope change Yes

Covariant return types No

Default template arguments Yes

Template instantiation directive Yes

Template specialization directive Yes

typename keyword Yes

Member templates Yes

Partial specialization for class
template

Yes

Partial ordering of function
templates

Yes

Universal character names No

Table 3-16 Minor language feature support (continued)

Minor Language Feature Supported
3-50 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

Chapter 4
The C and C++ Libraries

This chapter describes how to rebuild the ARM C and C++ libraries. It also describes
how to retarget the standard C library to your own hardware and operating system
environment. It contains the following sections:

• About the runtime libraries on page 4-2

• The ANSI C library on page 4-5

• The ARM C++ libraries on page 4-14

• The embedded C library on page 4-18

• Target-dependent ANSI C library functions on page 4-26

• Target-dependent I/O support functions on page 4-29

• Target-dependent kernel functions on page 4-35

• Target-dependent operating system functions on page 4-40.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 4-1

The C and C++ Libraries
4.1 About the runtime libraries

There are three runtime libraries provided to support compiled C and C++:

• the ANSI C library

• the C++ library

• the embedded C library.

Note
 The C++ library is supplied with the ARM C++ compilers. The C++ compilers and C++
libraries are available separately. Contact your distributor, or ARM Limited if you want
to purchase ARM C++.

The embedded and ANSI C libraries are supplied in:

• source form, for retargeting to your ARM-based hardware

• binary form, targeted at the common environment supported by the ARMulator,
Angel, EmbeddedICE, and Multi-ICE, so that you can immediately run and
debug programs under the ARMulator, or on a development board.

The Rogue Wave parts of the C++ libraries are supplied in binary form only, both as
precompiled library variants and as sublibraries that allow you to rebuild the libraries.
The ARM part of the C++ library is supplied as both source and binary.

Retargeting the ANSI C library requires some knowledge of ARM assembly language,
and some understanding of the ARM processor and hardware being used. Refer to the
following documentation for more information:

• the datasheet for your processor

• the assembly language chapters of the ARM Software Development Toolkit User
Guide and the ARM Software Development Toolkit Reference Guide.

• the ARM Architectural Reference Manual.

4.1.1 The ANSI C library

The ARM C library conforms to the ANSI C library specification. The library is
targeted at the common operating environment supported by ARM debugging software
and hardware. Angel semihosting SWIs are called for C library functions, such as
printf(), that require operating system support. This environment is supported by:

• the ARMulator, through its support for Angel SWIs

• the ARM evaluation and development boards, because these are supplied with
Angel built into ROM

• EmbeddedICE and Multi-ICE.
4-2 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

The C and C++ Libraries
Refer to Chapter 13 Angel in the ARM Software Development Toolkit User Guide for
more information on Angel C library support and the Angel semihosting SWIs.

The ANSI C library contains:

• target-independent modules written in ANSI C, such as printf()

• target-independent modules written in ARM assembly language, such as divide()
and memcpy()

• target-dependent modules written in ANSI C, such as default signal handlers like
the clock module

• target-dependent modules written in ARM assembly language.

You can build the target-independent portions of the library immediately. If you are
building a new APCS library variant you must modify the appropriate library makefile.
If you are retargeting the C library to your own operating environment, you must modify
the target-dependent portions of the library to implement them on your system.

Refer to The ANSI C library on page 4-5 for detailed information on the C library.

4.1.2 The C++ library

The ARM C++ library supports most of the standard library functions defined in the
January 1996 C++ Draft Standard. ARM C++ library support consists of:

The ANSI C library

The ARM C++ compilers use the same ANSI C library as the ARM C
compilers.

The ARM C++ library

This library consists of:

• The Rogue Wave Standard C++ library version 1.2.1.

• Helper functions for the C++ compiler, and a number of additional
C++ functions not supported by the Rogue Wave library.

By default the C++ libraries are installed in c:ARM250\lib. The accompanying header
files are installed in c:ARM250\include. Refer to The ARM C++ libraries on page 4-14
for detailed information on C++ library support.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 4-3

The C and C++ Libraries
4.1.3 The embedded C library

The embedded C library is a subset of the full ANSI C library that:

• does not use static data

• does not rely on underlying system functionality

• minimizes dependencies between functions within the library.

You can link the embedded C library with an application running from read-only
memory on a target board. Refer to The embedded C library on page 4-18 for more
information. Refer to Chapter 10 Writing Code for ROM in the ARM Software
Development Toolkit User Guide for an example of how to use the embedded C library.

4.1.4 Library naming conventions

The ANSI C and C++ libraries are supplied as 26 precompiled variants targeted at
Angel. The embedded C library is supplied as four precompiled variants. The library
filenames are postfixed with letters and digits that identify the variant.

Library names have the form:

libname_<apcs_variant>.<bits><bytesex>

where:

apcs_variant identifies the APCS options with which the librarywas compiled.
Refer to Table 4-1 on page 4-5 and Table 4-2 on page 4-6 for a list
of precompiled C library variants supplied with this release. Refer
to Automatic inclusion of libraries on page 6-38 for a full
description of library naming conventions.

bits can be one of:

32 compiled as an ARM library.

16 compiled as a Thumb library.

bytesex can be one of:

l compiled for a little-endian target.

b compiled for a big-endian target.
4-4 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

The C and C++ Libraries
4.2 The ANSI C library

This section describes the ANSI C library. It provides information on using the
precompiled libraries, and retargeting the library.

4.2.1 Using the ANSI C library

The ANSI C library variants are listed in Table 4-1, and Table 4-2 on page 4-6.

If you are building your C code with APCS options that are supported by one of the
precompiled library variants, the linker selects a precompiled library version that is
compatible.

If you select APCS options for which a suitable precompiled library variant does not
exist, the linker warns that the library file cannot be found. In this case you must build
a library variant that supports your APCS options, and name it appropriately so that the
linker selects your library variant.

Refer to Retargeting the ANSI C library on page 4-6 for more information on building
a new library variant. Refer to Automatic inclusion of libraries on page 6-38 for more
information on library selection and naming.

Table 4-1 Precompiled Thumb library variants

Thumb libraries Description

armlib.16l armlib.16b Compiled with no software stack checking.

armlib_i.16l

armlib_i.16b

Compiled for interworking.

armlib_s.16l

armlib_s.16b

Compiled with software stack checking.

armlib_si.16l

armlib_si.16b

Compiled for interworking, and with software stack checking.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 4-5

The C and C++ Libraries
4.2.2 Retargeting the ANSI C library

The ANSI C library is supplied in full source form so that you can rebuild it, or retarget
it to your own operating system and hardware environment.

The C library source files are installed in c:ARM250\cl. The top level of this directory
contains the generic assembly language and C source code.

Table 4-2 Precompiled ARM library variants

Library Description

armlib.32l armlib.32b Compiled with software stack checking, frame pointer, and
software floating-point.

armlib_c.32l

armlib_c.32b

Compiled with no software stack checking.

armlib_cn.32l

armlib_cn.32b

Compiled with no software stack checking and no frame pointer.

armlib_h.32l

armlib_h.32b

Compiled with hardware floating-point, software stack checking,
and frame pointer.

armlib_hc.32l

armlib_hc.32b

Compiled with hardware floating-point and frame pointer, and
with no software stack checking.

armlib_hcn.32l

armlib_hcn.32b

Compiled with hardware floating-point, no software stack
checking, and no frame pointer.

armlib_r.32l

armlib_r.32b

Compiled with software stack checking, frame pointer, hardware
floating-point, and fp arguments in fp registers.

armlib_rc.32l

armlib_rc.32b

Compiled with frame pointer, hardware floating-point, fp
arguments in fp registers, and no software stack checking.

armlib_rcn.32l

armlib_rcn.32b

Compiled with hardware floating-point, fp arguments in fp
registers, no software stack checking, and no frame pointer.
4-6 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

The C and C++ Libraries
Additional code is contained in the subdirectories listed in Table 4-3.

The target-independent code is generally grouped into one file for each section of the
ANSI C library. Conditional compilation and assembly is used to build a fine-grain
library, usually with one object file for each function.

The procedure for retargeting the C library is:

1. Copy the complete C library to the target directory and modify the source.

2. Define the Angel environment, if required.

3. Modify the makefile that matches your target environment the closest.

4. Make the library.

These steps are described in detail in the following sections.

Copying and modifying the sources

Follow these steps to copy and modify the C library source files:

1. Copy the complete c:ARM250\cl source directory and all its contents to a new
directory. The new directory is your target directory. If you copy the \cl directory
outside c:ARM250 you must also copy c:ARM250\include to the same directory.

2. Modify the source files as required.

If you are rebuilding the existing ARM library with your own APCS options you
can skip this step. Refer to Editing the makefile on page 4-8 for information on
specifying options to build a new C library variant.

Table 4-3 C library subdirectories

\angel Contains targeting code for the Angel semihosted C library. The library
is called semihosted because many functions, such as file I/O, are
implemented on the host computer, through the host C library.

\embedded Contains embedded C library specific functions.

\thumb Contains Thumb-specific implementations of C library functions.

\clib.b The build directory. This directory contains a separate subdirectory for
each standard variant of the C libraries.

\fplib Contains source code for the software floating-point library.

\fpehead Contains assembly language macros and definitions used by the
software floating-point library code.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 4-7

The C and C++ Libraries
If you are porting the C library to your own hardware and operating system
environment, you must provide code to implement the C library functions that are
dependent on the target environment.

The target-dependent functions that you may need to implement are described in:

• Target-dependent ANSI C library functions on page 4-26

• Target-dependent I/O support functions on page 4-29

• Target-dependent kernel functions on page 4-35

• Target-dependent operating system functions on page 4-40.

In addition, if you are retargeting the library to your own operating environment
you must supply code to initialize the runtime libraries. See Initializing the
runtime libraries on page 4-9 for more information.

Defining the Angel environment

If you are building a library that uses Angel semihosting SWIs to access system
function, you must supply the definition of the Angel environment. The ARM ANSI C
library Angel definitions are in c:ARM250\cl\angel\h_os.h and
c:ARM250\cl\angel\h_os.s.

These files contain C and assembly language definitions to support Angel SWIs and
breakpoints.

Editing the makefile

The makefiles for all prebuilt library variants are installed in
c:ARM250\cl\clib.b\library_variant where library_variant is either:

• angel_apcs_variant for Angel-targeted libraries

• embedded_apcs_variant for embedded libraries.

The makefiles are named:

• makefile.pc for Windows makefiles

• makefile.unix for UNIX makefiles.

Follow these steps to edit the makefile:

1. Select the makefile that corresponds most closely to your target environment. For
example, to build a C library that is targeted to a processor without a
floating-point coprocessor, use a makefile that builds a library with
-apcs /softfp.

2. Modify the makefile. The makefile has two parts:

• Definitions of selected options for the target environment. Specify the
options you want in this part of the makefile.
4-8 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

The C and C++ Libraries
• A list of object files that are built by the makefile. If you add new source
files to the C library, you must include them in this list.

Refer to Makefile options on page 4-10 for a description of the makefile options.

3. Rename or copy the makefile to makefile. For example, from a Windows DOS
command-line type:

copy makefile.pc makefile

Building the target-specific library

Follow these steps to build the target-specific library:

1. Change directory to the build subdirectory of the target directory containing the
makefile. For example, from a Windows DOS command-line type:

cd c:\ARM250\Cl\clib.b\angel_cn.32l

to change to the build directory for a no software stack check, no frame pointer,
little-endian library targeted at Angel.

2. From the DOS command-line type armmake clean

to remove any object and library files from previous builds.

3. This step is required only if you are building from a Windows DOS
command-line.

Type armmake via

This command constructs the via files that are used during the build to control
assembly and compilation operations. The via files are required because of the
command-line length restrictions imposed by MS-DOS.

4. Type armmake all

This command makes your C library. The library is saved in the target directory,
with the name defined in the LIBNAME makefile option.

Initializing the runtime libraries

Under Angel, the C runtime libraries are initialized as part of Angel initialization. If you
are retargeting the C library to your own environment, your operating system or
application must initialize the runtime libraries.

To initialize the libraries you must call __rt_lib_init with four parameters:

• the top of the stack

• the start of the code area (Image$$RO$$Base)

• the end of the code area (Image$$RO$$Limit)
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 4-9

The C and C++ Libraries
• a pointer to a C++ init block (__cpp_initialise and __cpp_finalise).

Example 4-1 shows an implementation of the initialization code.

Example 4-1

IMPORT __rt_lib_init
IMPORT |Image$$RO$$Base|
IMPORT |Image$$RO$$Limit|
IMPORT |__cpp_initialise|, WEAK
IMPORT |__cpp_finalise|, WEAK
AREA LibInit, CODE, READONLY

init_library
ADR r0, TOS
LDMIA r0, {r0-r3}
B __rt_lib_init
; Return to the caller when we return...

TOS DCD 0x3fffffc ; My Top Of Stack Address
DCD |Image$$RO$$Base|
DCD |Image$$RO$$Limit|
DCD |__cpp_initialise|
DCD |__cpp_finalise|
END

Makefile options

The supplied makefiles for the C library variants have the following options:

LIBTYPE Specify the type of library you wish to build:

=angel build an Angel semihosting library.

=embedded build the embedded library.

LIBNAME Specify the name for your output library file. You must use a name with
the correct APCS file extension if you want the linker to automatically
link with your library. You can do this by specifying a name of the form:

libname.$(PCSZ)$(ENDIAN)

Refer to Automatic inclusion of libraries on page 6-38 for more
information on naming conventions.

TARGET Specify whether the target system is ARM or Thumb:

=arm the target is ARM.

=thumb the target is Thumb.
4-10 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

The C and C++ Libraries
memcpy Specify how the following memory functions are implemented:

=small The functions memcpy(), memmove(), and memset() are
implemented by generic C code. The C code attempts to do as
much work as possible in word units. Each function occupies
approximately 100 bytes.

=fast The functions memmove() and memcpy() are implemented
together in assembly language. The code attempts to do the
move eight words at a time, using LDM and STM instructions.

The two functions occupy approximately 1200 bytes. The
memset() function is implemented similarly, and occupies
approximately 200 bytes.

divide Specify how divide is implemented:

=small A small but slow implementation of division
(approximately one bit per iteration).

=unrolled Unsigned and signed divide are unrolled eight times
for greater speed. This option increases code size.
Complete unrolling of divide is possible, but should
be done with care because the size increase might
result in decreased performance on a cached ARM.

Both variants include fast unsigned and signed divide by 10.

stdfile_redirection

Specify whether command-line redirection is enabled:

=on Redirection is enabled. Standard UNIX-style file redirection
syntax can be used from the image argument string (<, >, >>, >&,
1>&2).

=off Redirection is disabled.

backtrace Specify whether stack backtracing is enabled. This option is obsolete and
is provided for backwards compatibility only. Backtrace works only for
code compiled to use a frame pointer:

=on The default signal handler ends by producing a call-stack
traceback to stderr.

Use of this variant is not encouraged. It increases the
proportion of the library that is linked into all images, and
provides functionality that is better obtained from a separate
debugger.

=off No backtracing selected.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 4-11

The C and C++ Libraries
stack Specify the type of stack used by the library:

=contiguous Use a contiguous stack.

=chunked Use a chunked stack.

fp_type Specify floating-point support:

=fplib Include software floating-point routines in the C library. Refer
to Chapter 11 Floating-point Support for information on
floating-point support.

=hardfp The library expects hardware floating-point support.

PCSZ Specify whether the library is built for 32-bit or 26-bit ARM processors:

=32 Build for a 32-bit address space.

=26 Build for a 26-bit address space. This option is obsolete and is
provided for backwards compatibility only.

ENDIAN Select the endianness of the library:

=b Big-endian.

=l Little-endian.

FPIS Select the floating-point instruction set:

=2 Release 2 FPA instructions. This option is obsolete and is
provided for backwards compatibility only.

=3 Release 3 FPA instructions.

FPREGARGS

Specify whether or not floating-point arguments are passed in
floating-point registers:

fpregargs Floating-point arguments are passed in
floating-point registers.

nofpregargs Floating-point arguments are passed in integer
registers.

FPTYPE Select the floating-point APCS options. Set FPTYPE to either:

softfp Floating-point instructions are handled by software.

hardfp/fpe$(FPIS)/$(FPREGARGS)
Floating-point instructions are handled by hardware.
4-12 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

The C and C++ Libraries
LDMLIMIT

Specify the maximum number of registers allowed in load multiple and
store multiple instructions. You can use this option to minimize interrupt
latency.

INTERWORK

Specify whether the library supports interworking between ARM code
and Thumb code:

=interwork Build an interworking library variant.

=nointerwork Build a non-interworking library variant.

APCSA Specify additional APCS options for the assembler. Refer to Chapter 5
Assembler for details of the APCS options accepted by the assembler.

APCSC Specify additional APCS options for the compiler, other than those
specified by INTERWORK and FPTYPE. Refer to Chapter 2 The ARM
Compilers for details of the APCS options accepted by the compilers.

CC Specify the compiler to be used for the build. Select an appropriate value
depending on the values of TARGET and INTERWORK:

CC=$ARMCC For ARM libraries.

CC=$TCC For Thumb or interworking options.

CCFLAGS Set CCFLAGS for additional compiler options. Refer to Chapter 2 The
ARM Compilers for a full list of compiler options.

AS Specify the assembler to be used for the build:

Set AS to $(ARMASM) or $(TASM). Select an appropriate value
depending on the values of TARGET and INTERWORK.

ASFLAGS Set ASFLAGS for additional assembler options. Refer to Chapter 5
Assembler for a full list of assembler options.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 4-13

The C and C++ Libraries
4.3 The ARM C++ libraries

This section describes ARM C++ library support. It provides information on how to use
the standard C library from C++, and how to rebuild the C++ library. For detailed
information on the contents of the C++ library, refer to:

• Standard C++ library implementation definition on page 3-35

• The Rogue Wave online documentation in c:ARM250\Html.

4.3.1 Using the libraries

The ARM C++ library is provided with the same APCS, endian, and ARM/Thumb
variants as the C library variants listed in Precompiled ARM library variants on
page 4-6 and Precompiled Thumb library variants on page 4-5. For C++, the libraries
are named armcpplib_apcs_variant.

You must build your code with APCS options that are supported by one of the
precompiled library variants. The linker selects a precompiled library version that is
compatible with the APCS options you select for the assembler and compiler. Refer to
Automatic inclusion of libraries on page 6-38 for more information.

If you select APCS options for which a suitable precompiled library variant does not
exist, the linker warns that the library file cannot be found.

Note
 Because the ARM C++ library is supplied in binary form only, you cannot rebuild the
library with non-supported APCS options.

The source for the Rogue Wave Standard C++ library is not freely distributable. It may
be obtained from Rogue Wave Software Inc., or through ARM Ltd, for an additional
licence fee.

Using the standard C library from C++

If you use only the ANSI C headers and your own headers with the C++ compiler, you
need only the following library support:

C++ compiler helper functions

You can build a runtime version of the C++ helper functions from
c:ARM250\Armcpplib_kit\cpplib\runtime.c

From the DOS command-line, type:

armcpp -apcs APCS_options -DALL runtime.c

to build the runtime.o object file.
4-14 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

The C and C++ Libraries
Alternatively, you can use one of the prebuilt ARM C++ library variants.
See Using the standard C++ library for more information.

An ANSI C library binary

The ANSI C libraries are located in c:ARM250\lib. Refer to The ANSI C
library on page 4-5 for more information on the standard ANSI C
libraries.

Using the standard C++ library

When you build your C++ code the linker selects an appropriate precompiled C++
library version.The ARM C++ library provides:

Rogue Wave Standard C++ library

This is supplied in binary form only, as part of the precompiled armcpplib
variants, and as sublibraries that you can use to rebuild armcpplib
libraries.

The library files are located in c:ARM250\Armcpplib_kit\stdlib.

Additional library functions

These functions are built into the C++ library to support the compiler, and
to provide basic support for some parts of the Standard C++ library that
are not supported by the Rogue Wave implementation.

Source code for the additional functions is located in
c:ARM250\lib\Armcpplib_kit\cpplib. The header files are installed in
c:ARM250\include.

The additional functions are:

• C++ compiler helper functions. Calls to these functions are
generated by the compiler to implement certain language
constructs.

• Support for the new operator. The header file new.h is installed in
c:ARM250\include. If you are using the Rogue Wave Standard C++
library header new, you do not need new.h

• Partial implementation of the type_info class. The header file
typeinfo is installed in c:ARM250\include.

• Partial support for C++ iostreams. The header file iostream.h is
installed in c:ARM250\include. In addition, an identical header file
named stream.h is installed in c:ARM250\include for compatibility
with previous releases of ARM C++.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 4-15

The C and C++ Libraries
4.3.2 Rebuilding the ARM C++ library

The ARM C++ library consists of two subsections:

• Prebuilt sublibrary files for the Rogue Wave Standard C++ library. These are
installed in c:ARM250\Armcpplib_kit\stdlib, or the equivalent UNIX directory.

• Source code and rebuild scripts for the ARM C++ library additions. These are
installed in c:ARM250\Armcpplib_kit\cpplib, or the equivalent UNIX directory.

The source for the ARM C++ library additions can be modified as you wish. The source
for the Rogue Wave Standard C++ library is not freely distributable. It can be obtained
from Rogue Wave Software Inc., or through ARM Ltd, for an additional licence fee.

Follow these steps to rebuild a particular variant of the armcpplib library:

1. Change directory to:

Armcpplib_kit\cpplib\cpplib.b\platform

where platform is either cchppa, gccsolrs, intelrel, depending on your
installation.

2. From the system command-line type:

armmake lib_cpplib_variant

where variant is the name of the library variant you want to build. If you are
building under UNIX, type the name of your make utility instead of armmake.

Variant names follow the suffix naming conventions described in Library naming
conventions on page 4-4. The makefile supports the same APCS variants as the C
library variants described in Table 4-1 on page 4-5 and Table 4-2 on page 4-6.

For example, to build a little-endian ARM library with no software stack
checking, and no frame pointer type:

armmake lib_cpplib_cn.32l

This creates cpplib_cn.32l.

You can type armmake all to compile all 26 APCS variants.

3. Create a temporary directory and copy the new cpplib variant to it.

4. Copy the equivalent precompiled Rogue Wave library to your temporary
directory. For the example in step 2, copy Armcpplib_kit\stdlib\stdlib_cn.32l.

5. Type the following commands to extract the object files from the two libraries and
create a new armcpplib library:

armlib -e cpplib_cn.32l *
armlib -e stdlib_cn.32l *
armlib -c -o armcpplib_cn.32l *.o*
4-16 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

The C and C++ Libraries
If you are building under UNIX you must escape the * character. Type:

armlib -e cpplib_hc.32l *
armlib -e stdlib_hc.32l *
armlib -c -o armcpplib_hc.32l *.o*

The new library is ready for use.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 4-17

The C and C++ Libraries
4.4 The embedded C library

The ARM embedded C library addresses problems caused by linking the standard ANSI
C library into an embedded system. The ARM embedded C library is a subset of the full
ANSI C library that addresses the following issues:

• The standard ANSI C library relies on underlying Angel SWIs for its operation.
Unless your embedded system supports these SWIs in its SWI handler, the C
library will not work correctly.

• For the standard ANSI C library to execute, the memory system must be
configured in the way expected by the C library. This may not be easy to support
in your embedded system.

• There is a minimum overhead of about 3KB when the standard ANSI C library is
included. The embedded C library has no overhead.

• The ANSI C library is non-reentrant. This may cause problems in embedded
systems.

Refer to Example 3: Using the embedded C library on page 10-19 of the ARM Software
Development Toolkit User Guide for an example of how to use the embedded C library.

4.4.1 Embedded C library functions

The functions in the embedded C library are:

Runtime support functions

These functions carry out operations that are not available as ARM
instructions, such as division. These functions are provided by the
embedded C library.

Software floating-point library

When the compiler compiles code for use with software floating-point, it
generates calls to routines in the library to perform floating-point
operations. For example, to perform a double-precision multiply, the
compiler generates a call to _dmul. All such routines are provided as
standard by the embedded C library.

C library subset

This provides a subset of the C library routines. Only functions that fulfil
the criteria described below have been included in the embedded C
library. Refer to C library subset on page 4-19 for a complete list of the
included functions.
4-18 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

The C and C++ Libraries
Static data

The embedded C library does not make any use of static data. Because of this, it is
automatically fully reentrant.

Operating-system independence

The embedded C functions do not rely on the underlying operating system in any way.

Many functions in the full ANSI library rely on the underlying OS to perform functions
such as writing characters, or opening files. These functions are excluded from the
embedded C library. For example, functions such as printf() are excluded, but
sprintf() is not.

Standalone functions

Many functions in the full ANSI C library rely on a number of other functions in the C
library to perform their operations. For example, printf() relies on functions such as
ferror() and fputc(). This means that a single call to printf() includes a large amount
of the C library code.

The embedded C library breaks many of these dependencies so that only the minimum
amount of code needed to perform the operation is included.

C library subset

Table 4-4 lists the C library functions that are supported in the embedded C library.

Table 4-4 Supported C library functions

File Functions

math.h acoscosfmodmo
dftan

asincoshfre
xppowtanh

atanexpldex
psin

atan2fabslo
gsinh

ceilfloorlo
g10sqrt

stdlib.h abs
calloc
malloc
strtoul

atoi
div
qsort

atol
free
realloc

atof
labs
strtod

bsearch
ldiv
strtol

ctype.h isalnumislowe
risxdigit

isalphaispr
inttolower

iscntrlispu
ncttoupper

isdigitissp
ace

isgraphisup
per
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 4-19

The C and C++ Libraries
4.4.2 Embedded C library variants

Thefollowing variants of the embedded C library are provided:

embedded\armlib_i.16l

Thumb little-endian interworking version with no software stack check
and no frame pointer.

embedded\armlib_i.16b

Thumb big-endian interworking version with no software stack check
and no frame pointer.

embedded\armlib_cn.32l

ARM little-endian non-interworking version with no software stack
check and no frame pointer.

embedded\armlib_cn.32b

ARM big-endian non-interworking version with no software stack check
and no frame pointer.

Building other variants

If you want to build different variants of the embedded C library (for example, to add
software stack checking), see Retargeting the ANSI C library on page 4-6.

string.h memchrstrncpy
strlenstrspn

memcmpstrnc
mpstrchrstr
str

memcpystrca
tstrcspn
strxfrm

memmove
strcmpstrnc
atstrpbrk

memsetstrcp
ystrrchr

stdio.h sprintf sscanf

setjmp.h setjmp longjmp

Table 4-4 Supported C library functions (continued)

File Functions
4-20 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

The C and C++ Libraries
4.4.3 Callouts from the embedded C library

Because the embedded C library is designed to be completely independent of static data,
or any operating system specific calls, it cannot perform operations that are operating
system specific, or that reference static data directly. Instead, it performs a callout to a
user-supplied function to perform these operations. There are four callouts that the
embedded C library may make:

__rt_trap()

Called when an exception is generated in the embedded C library.

__rt_errno_addr()

Called to get the address of the variable errno.

__rt_fp_status_addr()

Called by the floating-point support code to get the address of the
floating-point status word.

__rt_heapdescriptor()

Called by the heap storage management functions to get the heap
descriptor.

In most cases, the embedded C library tests for the existence of the callout function
before calling it. If the function does not exist, a default action is taken.

The callout functions and their default actions are described in the following sections.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 4-21

The C and C++ Libraries
4.4.4 __rt_trap

The embedded C library performs a callout to __rt_trap() to handle exceptions such as
division by zero.

The following error codes may be generated by the embedded C library, and must be
handled by __rt_trap():

0x80000020 Integer divide by zero.

0x80000200 Invalid floating-point operation.

0x80000201 Floating-point overflow.

0x80000202 Floating-point divide by zero.

Syntax

void __rt_trap(ErrBlock *err, RegSet regs)

where:

err is a pointer to a block containing an error codefollowed by a
zero-terminated string describing the error. ErrBlock is defined as:

typedef struct {unsigned ErrCode;
char ErrString[252];

} ErrBlock;

regs is a block of 16 words containing the values in the registers at the time of
the exception. RegSet is defined as:

typedef unsigned RegSet[16];

If __rt_trap() is not defined, the embeddedC library executes an undefined instruction.
4-22 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

The C and C++ Libraries
4.4.5 __rt_errno_addr

This function is called to obtain the address of the C library errno variable when the
embedded C library attempts to read or write errno. The embedded C library may set
errno to:

1, ERRDOM Input argument domain error.

2, ERRANGE Result range error.

Syntax

volatile int *__rt_errno_addr(void)

If __rt_errno_addr() is not defined,the embedded C library does not attempt to set or
read errno.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 4-23

The C and C++ Libraries
4.4.6 __rt_fp_status_addr

This function returns the address of the floating-point status register. Example 4-2
shows how__rt_fp_status_addr() is defined.

Example 4-2

/*
Descriptions of these bits may be found on page 9-8 of the 7500FE data sheet. The software
floating-point library does not implement the IXE or UFE exceptions
*/
#define IOC_Bit (1 << 0) /* Invalid op cumulative */
#define DZC_Bit (1 << 1) /* Divide zero cumulative */
#define OFC_Bit (1 << 2) /* Overflow cumulative */
#define UFC_Bit (1 << 3) /* Underflow cumulative */
#define IXC_Bit (1 << 4) /* Inexact cumulative */
#define ND_Bit (1 << 8) /* No denormalised numbers */
#define IOE_Bit (1 << 16) /* Invalid operation exception */
#define DZE_Bit (1 << 17) /* Divide zero exception */
#define OFE_Bit (1 << 18) /* Overflow exception */
#define UFE_Bit (1 << 19) /* Underflow exception */
#define IXE_Bit (1 << 20) /* Inexact exception */
#define FP_SW_LIB 0x40000000
#define FP_SW_EMU 0x01000000
#define FP_HW_FPA 0x81000000
/* This enables all supported exceptions. It is useful to have them enabled by
default. */
static unsigned __fp_status_flags = FP_SW_LIB+IOE_Bit+DZE_Bit+OFE_Bit;
unsigned *__rt_fp_status_addr(void)
{
 return &__fp_status_flags;}

If __rt_fp_status_addr() is not defined, the embedded C library does not attempt to
read or write the floating-point status register. For the purposes of raising exceptions, it
assumes that the following exception enable bits are set:

const unsigned __fp_status_default =FP_SW_LIB+IOE_Bit+DZE_Bit+OFE_Bit;

4.4.7 __rt_embeddedalloc_init

The heap manager manages a single contiguous area of memory. To initialize the heap
manager, declare and call the following function from the startup code of your
embedded system.
4-24 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

The C and C++ Libraries
Syntax

void *__rt_embeddedalloc_init(void *base, size_t size)

Return

This function returns a pointer to a heap descriptor. Youmust call this function before
any other heap functions are used.

4.4.8 __rt_heapdescriptor

This function is called from the storage management functions. The value returned by
this function must be the same as that returned by the call to __rt_embeddedalloc_init().
This function is not optional, because the heap cannot work without the heap descriptor.

Syntax

void *__rt_heapdescriptor(void)
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 4-25

The C and C++ Libraries
4.5 Target-dependent ANSI C library functions

Implementation of the following ANSI standard functions fully depends on the target
operating system. None of these functions are used internally by the library. This means
that, if any of these functions are not implemented, only clients that directly call the
function will fail.

The target-dependent ANSI C library functions are:

• clock()

• _clock_init()

• getenv()

• _getenv_init()

• remove()

• rename()

• system()

• time().

4.5.1 clock

The standard C library clock function from time.h.

Syntax

clock_t clock(void)

Implementation

The compiler is expected to predefine __CLK_TCK ifthe units of clock_t differ from the
default of centiseconds. If this is not done, you must edit time.h to define appropriate
values for CLK_TCK and CLOCKS_PER_SEC.
4-26 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

The C and C++ Libraries
4.5.2 _clock_init

An optional initialization function for clock().

Syntax

___weak void _clock_init(void)

Implementation

This function is declared weak. You should initialize clock() if it must work with a
read-only timer. If implemented, _clock_init() is called from the library initialization
code.

4.5.3 getenv

The standard C library getenv() function from stdlib.h.

Syntax

char *getenv(const char *string)

4.5.4 _getenv_init

An optional initialization function for getenv().

Syntax

___weak void _getenv_init(void)

Implementation

This function is declared weak. If it is implemented, it is called from the library
initialization code.

4.5.5 remove

The standard C library remove() function from stdio.h.

Syntax

int remove(const char *pathname)
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 4-27

The C and C++ Libraries
4.5.6 rename

The standard C library rename() function from stdio.h.

Syntax

int rename(const char *old, const char *new)

4.5.7 system

The standard C library system() function from stdlib.h.

Syntax

int system(const char *string)

4.5.8 time

Thestandard C library time() function from time.h.

Syntax

time_t time(time_t *timer)
4-28 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

The C and C++ Libraries
4.6 Target-dependent I/O support functions

The C library, as supplied, only conveniently handles byte-stream files. This means that
handling other file types in the target-independent I/O support code can be done, but
may be complicated to implement. For example, block stream files are simple to support
in the absence of user-supplied buffers.

If any I/O function is used, hostsys.h must define the type FILEHANDLE. The value of
FILEHANDLE is returned by _sys_open() and identifies an open file on the host system.
There must be at least one distinguished value of type FILEHANDLE. It is defined by the
macro NONHANDLE, and is used to distinguish a failed call to _sys_open().

For an unaltered __rt_lib_init(), the macro TTYFILENAME must be defined as a string to
be used in opening a file to terminal.

The macro HOSTOS_NEEDSENSURE should be defined if the host operating system requires
an ensure operation to flush OS file buffers to disk if an OS write is followed by an OS
read that itself requires a seek (the flush happens before the seek).

The target-dependent input and output functions are:

• _sys_open()

• _sys_close()

• _sys_read()

• _sys_write()

• _sys_ensure()

• _sys_flen()

• _sys_iserror()

• _sys_istty()

• _sys_tmpnam()

• _sys_ttywrch.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 4-29

The C and C++ Libraries
4.6.1 _sys_open

Open a file.

Syntax

FILEHANDLE _sys_open(const char *name, int openmode)

Implementation

This function is required by fopen() and freopen().These in turn are required if any I/O
function is to be used.

The openmode parameter is a bitmap, in which the bits mostly correspond directly to the
ANSI mode specification. Refer to hostsys.h for details. Target-dependent extensions
are possible, in which case freopen() must also be extended.

4.6.2 _sys_close

Close a file previously opened with _sys_open().

Syntax

int _sys_close(FILEHANDLE fh)

Implementation

This function must be defined if any I/O function is to beused. The return value is 0 or
an error indication.
4-30 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

The C and C++ Libraries
4.6.3 _sys_read

Read the contents of a file into a buffer.

Syntax

int _sys_read (FILEHANDLE fh, unsigned char *buf, unsigned len,
int mode)

Implementation

This function must be defined if any input function or scanf() variant is to be used. The
mode argument is a bitmap describing the state of the FILE connected to fh, as for
_sys_write(). The return value is one of the following:

• the number of characters not read (that is, len - result were read)

• an error indication

• an EOF indicator. The EOF indication involves the setting of 0x80000000 in the
normal result. The target-independent code is capable of handling either:

early EOF where the last read from a file returns some characters plus
an EOF indicator

late EOF where the last read returns just EOF:
int _sys_seek(FILEHANDLE fh, long pos)

The function must be defined if any input or output function is to be used. It puts
the file pointer at offset pos from the beginning of the file. The result is >= 0 if
okay, and is negative for an error.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 4-31

The C and C++ Libraries
4.6.4 _sys_write

Write the contents of a buffer to a file previously opened with _sys_open().

Syntax

int _sys_write(FILEHANDLE fh, const unsigned char *buf, unsigned
len, int mode)

Implementation

This function must be defined if any output function or printf() variant is to be used.
The mode parameter is a bitmap describing the state of the FILE connected to fh. See the
_IOxxx constants in ioguts.h for its meaning. Only a few of these bits are expected to be
needed by _sys_write().

The return value is the number of characters not written (that is, non-0 denotes a failure
of some sort), or a negative error indicator.

4.6.5 _sys_ensure

Flush buffers associated with a file.

Syntax

int _sys_ensure(FILEHANDLE fh)

Implementation

This function is required only if you define HOSTOS_NEEDSENSURE.A call to _sys_ensure()
flushes any buffers associated with fh, and ensures that the file is up to date on the
backing store medium. The result is >= 0 if okay, and is negative for an error.
4-32 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

The C and C++ Libraries
4.6.6 _sys_flen

Return the current length of a file.

Syntax

long _sys_flen(FILEHANDLE fh)

Implementation

This function returns the current length of the file fh,or a negative error indicator. It is
needed in order to convert fseek(, SEEK_END) into (, SEEK_SET) as required by
_sys_seek(). It must be defined if fseek() is to be used. You can adopt a different model
here if the underlying system directly supports seeking relative to the end of a file, in
which case _sys_flen() can be eliminated.

4.6.7 _sys_iserror

This function determines if the return value for any of the _sys functions is an error.

Syntax

int _sys_iserror(int status)

Implementation

A _sys_iserror() function, or a _sys_iserror() macro,is required if any of the _sys
functions that return an int value are implemented.

4.6.8 _sys_istty

Determine if a file is connected to a terminal.

Syntax

int _sys_istty(FILE *f)

Implementation

This function must return non-zero if the argument file isconnected to a terminal.

This function is used to provide default unbuffered behavior (in the absence of a call to
set(v)buf), and to disallow seeking. It must be defined if any output function, including
sprintf() variants, or fseek() is to be used.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 4-33

The C and C++ Libraries
4.6.9 _sys_tmpnam

This function converts a file number (fileno) for a temporary file into a unique filename,
such as tmp0001.

Syntax

void _sys_tmpnam(char *name, int fileno)

Implementation

This function must be defined if tmpnam() or tmpfil() areto be used. It returns the
filename in name.

4.6.10 _ttywrch

Write a character, notionally to the console.

Syntax

void _ttywrch(int ch)

Implementation

This function is required. It is used in the host-independentpart of the library in the
last-ditch error reporter, when writing to stderr is believed to have failed or to be unsafe.
For example, it is used in the default SIGSTK handler.
4-34 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

The C and C++ Libraries
4.7 Target-dependent kernel functions

The Kernel handles the entry to, and exit from, an application linked with the library. It
also exports some variables for use by other parts of the library. Details of what the
kernel must do depend on the target environment.

You can use the ARMulator-host C library kernel in cl\angel\kernel.s as a prototype.

The target-dependent kernel functions are:

• __main()

• __rt_exit()

• __rt_command_string()

• __rt_trap()

• __rt_alloc()

• __rt_malloc()

• __rt_free().

4.7.1 __main

This function provides the entry point to the application.

Syntax

__main()

Implementation

This function is called after low-level library initialization.The initialization required
depends on the target environment. It may include:

• Initializing heap, stack, and fp support.

• Calling appropriate __osdep_xxx_init() functions if they have been implemented.
Refer to Target-dependent operating system functions on page 4-40 for more
information.

__main() must call __rt_lib_init() to initialize the body of the library. Refer to
Initializing the runtime libraries on page 4-9 for more information.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 4-35

The C and C++ Libraries
4.7.2 __rt_exit

Finalize library initialization.

Syntax

void __rt_exit(int ret_code)

Implementation

This mandatory function finalizes the library, not includingcalling atexit() handlers. It
returns to the operating system with its argument as a completion code. It is called by
__main() or __exit().

4.7.3 __rt_command_string

Return the command-line string used to invoke the program.

Syntax

char *__rt_command_string(char *str, int len)

Implementation

This mandatory function returns the address of the stringused to invoke the program.
The command-line is stored in buffer str of length len if the buffer is large enough to
store it.
4-36 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

The C and C++ Libraries
4.7.4 __rt_trap

Handle a fault, such as the processor detected a trap and enabled fp exception.

Syntax

void __rt_trap(ErrBlock *err, RegSet regs)

where:

err is a pointer to a block containing an error codefollowed by a
zero-terminated string describing the error. ErrBlock is defined as:

typedef struct {unsigned ErrCode;
char ErrString[252];

} ErrBlock;

regs is a block of 16 words containing the registers at the time of the
exception. RegSet is defined as:

typedef unsigned RegSet[16];

If __rt_trap() is not defined, the embeddedC library executes an undefined instruction.

Implementation

This function is mandatory. The argument register set describes the processor state at
the time of the fault, with the pc value addressing the faulting instruction (except
perhaps in the case of imprecise floating-point exceptions). The implementation in the
ARMulator kernel is usually adequate.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 4-37

The C and C++ Libraries
4.7.5 __rt_alloc

The low-level memory allocator underlying malloc().

Syntax

The syntax is:

unsigned __rt_alloc(unsigned minwords, void **block)

Implementation

The malloc() function allocates memoryonly between HeapBase and HeapTop. A call
to __rt_alloc() attempts to move HeapTop.

__rt_alloc() should try to allocate a block of a size greater than or equal to minwords. If
this is not available, and if __osdep_heapsupport_extend() is defined, it should be called
to attempt to move HeapTop. Otherwise (or if the call fails) it should allocate the largest
possible block of sensible size.

The return value is the size of block allocated, and *block is set to point to the start of
the allocated block. The return value may be 0 if no sensibly-sized block can be
allocated. Allocations are rounded up to a suitable size to avoid an excessive number of
calls to __rt_alloc().

4.7.6 __rt_malloc

A function pointer to a primitive memory allocation function.

Syntax

void *(*__rt_malloc)(size_t n)

Implementation

The kernel should initialize this function pointer to pointto a primitive memory
allocation function. The library itself contains no calls to malloc() other than those from
functions of the malloc family, such as calloc(). The function pointed to by
__rt_malloc() is called instead.

If malloc() is linked into the image, __rt_malloc() is set to malloc() during
initialization. Otherwise it is set to __malloc(). The use of __rt_malloc() ensures that
allocations succeed if they are made before malloc() is initialized, and prevents
malloc() from being linked into an image if it is not used.
4-38 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

The C and C++ Libraries
4.7.7 __rt_free

A function pointer to a primitive memory freeing function.

Syntax

extern void (*__rt_free)(void *)

Implementation

The kernel should initialize this function pointer to pointto a primitive memory freeing
function. See __rt_malloc on page 4-38.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 4-39

The C and C++ Libraries
4.8 Target-dependent operating system functions

The target-dependent operating system functions are:

• __osdep_traphandlers_init()

• __osdep_traphandlers_finalise()

• __osdep_heapsupport_init()

• __osdep_heapsupport_finalise()

• __osdep_heapsupport_extend()

• _hostos_error_string()

• _hostos_signal_string().

4.8.1 __osdep_traphandlers_init

Install a handler to catch processor aborts and pass them to __rt_trap() .

Syntax

void __osdep_traphandlers_init(void)

4.8.2 __osdep_traphandlers_finalise

Remove the processor handlers installed by the __osdep_traphandlers_init() function.

Syntax

void __osdep_traphandlers_finalise(void)

4.8.3 __osdep_heapsupport_init

Initialize heap support.

Syntax

void __osdep_heapsupport_init(HeapDescriptor *hd)

Implementation

This function must be provided, but may be empty. It is calledwhen the heap is being
initialized.

4.8.4 __osdep_heapsupport_finalise

Finalize heap support.
4-40 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

The C and C++ Libraries
Syntax

void __osdep_heapsupport_finalise(void)

Implementation

This function must be provided, but may be empty. It is calledwhen the heap is being
finalized.

4.8.5 __osdep_heapsupport_extend

Extend the heap.

Syntax

__value_in_regs struct ExtendResult __osdep_heapsupport_extend(int size,
HeapDescriptor *hd)

where ExtendResult isa structure of the form:

struct ExtendResult{int acqsize;
void * acqbase;
};

Implementation

This function requests extension of the heap by at least size bytes. The return values are
the number of bytes acquired, and the base address of the new acquisition. This function
must be provided, but an empty version that returns:

struct{
0;
NULL;}

is sufficient if heap extension is not needed.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 4-41

The C and C++ Libraries
4.8.6 _hostos_error_string

Return an error message.

Syntax

char *_hostos_error_string(int no, char *buf)

Implementation

This function is called to return a string describing an erroroutside the set ERRxxx defined
in errno.h. It may generate the message into the supplied buf if it needs to do so. It must
be defined if perror() or strerror() is to be used.

4.8.7 _hostos_signal_string

Return a signal description.

Syntax

char *_hostos_signal_string(int no)

Implementation

This function is called to return a string describing a signalwhose number is outside the
set SIGxxx defined in signal.h.
4-42 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

Chapter 5
Assembler

This chapter describes the language features that are provided by the ARM assembler,
such as pseudo-instructions, directives and macros. It contains the following sections:

• Command syntax on page 5-3

• Format of source lines on page 5-8

• Predefined register and coprocessor names on page 5-9

• Built-in variables on page 5-10

• ARM pseudo-instructions on page 5-11

• Thumb pseudo-instructions on page 5-19

• Symbols on page 5-25

• Directives on page 5-30

• Expressions and operators on page 5-88.

See Table 5-1 on page 5-2 to locate individual pseudo-instructions or directives.

This chapter does not contain detailed information on how to write ARM assembly
language. Refer to Chapter 5 Basic Assembly Language Programming in the ARM
Software Development Toolkit User Guide for tutorial information on how to use many
of the language features described here.

For detailed information on ARM and Thumb instruction mnemonics, refer to the ARM
Architectural Reference Manual and the ARM FPA10 Data Sheet.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 5-1

Assembler
Table 5-1 Directives and pseudo-instructions

Directives: Reporting: Assembly control:

AREA on page 5-38 ASSERT on page 5-40 [or IF on page 5-33

CODE16 on page 5-42 INFO or ! on page 5-67 | or ELSE on page 5-34

CODE32 on page 5-43 OPT on page 5-77] or ENDIF on page 5-34

END on page 5-55 SUBT on page 5-85 GET or INCLUDE on page 5-63

ENTRY on page 5-56 TTL on page 5-86 INCBIN on page 5-66

NOFP on page 5-76 Symbol definition: MACRO on page 5-72

ROUT on page 5-81 CN on page 5-41 MEND on page 5-74

Data definition: CP on page 5-44 MEXIT on page 5-75

on page 5-31 EQU or * on page 5-57 WEND on page 5-86

% on page 5-32 EXPORT or GLOBAL on page 5-58 WHILE on page 5-87

^ or MAP on page 5-35 FN on page 5-59

ALIGN on page 5-36 GBLA on page 5-60 ARM pseudo-instructions:

DATA on page 5-45 GBLL on page 5-61 ADR on page 5-12

DCB or = on page 5-46 GBLS on page 5-62 ADRL on page 5-13

DCD or & on page 5-47 IMPORT or EXTERN on page 5-64 LDFD on page 5-14

DCDU on page 5-48 KEEP on page 5-68 LDFS on page 5-15

DCFD on page 5-49 LCLA on page 5-69 LDR on page 5-16

DCFDU on page 5-50 LCLL on page 5-70 NOP on page 5-18

DCFS on page 5-51 LCLS on page 5-71

DCFSU on page 5-52 RLIST on page 5-79 Thumb pseudo-instructions:

DCW on page 5-53 RN on page 5-80 ADR on page 5-20

DCWU on page 5-54 SETA on page 5-82 LDR on page 5-21

LTORG on page 5-72 SETL on page 5-83 MOV on page 5-23

SETS on page 5-84 NOP on page 5-24
5-2 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

Assembler
5.1 Command syntax

Note
 The ARM assembler, armasm, assembles both ARM and Thumb assembly languages.
The obsolete Thumb assembler, tasm, is provided in the Software Development Toolkit
for backwards compatibility only.

Invoke the ARM assembler using this command:

armasm [-apcs[none|3[/qualifier[/qualifier[...]]]]] [-arch{architecture}]
[-bigend|-littleend] [-checkreglist] [-cpu{ARMcore}] [-depend{dependfile}]
[-errors{errorfile}] [-g] [-help] [-keep] [-i{dir} [,dir]…] [-list{listingfile}
[options]] [-maxcache{n}] [-MD-] [-nocache] [-noesc] [-noregs] [-nowarn]
[-o{filename}] [-predefine{"directive}"] [-processor{ARMcore}] [-unsafe]
[-via{file}] [-16|-32] {inputfile}

where:

-apcs [none|3[/qualifier[/qualifier]]]

specifies whether you are using the ARM Procedure Call Standard or not,
and may specify some attributes of code areas. See Chapter 6 Using the
Procedure Call Standards in the ARM Software Development Toolkit
User Guide for more information.

none specifies that inputfile does not use APCS. APCS registers
are not set up. Qualifiers are not allowed.

3 specifies that inputfile uses APCS version 3. APCS registers
are set up. This is the default.

Values for qualifier are:

nointerwork

specifies that the code is not suitable for ARM/Thumb
interworking. This is the default.

interwork

specifies that the code is suitable for ARM/Thumb
interworking. This option has the same effect as specifying the
INTERWORK attribute for all code areas in the source files to be
assembled. Refer to the ARM Software Development Toolkit
User Guide for more information on ARM/Thumb
interworking.

swstackcheck

specifies that the code in inputfile carries out software stack
checking.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 5-3

Assembler
noswstackcheck

specifies that the code in inputfile does not carry out software
stack-limit checking. This is the default.

reentrant

specifies that the code in inputfile is reentrant. This option is
obsolete and is provided for backwards compatibility only.
The SDT version 2.50 linker does not link objects assembled
with -apcs /reentrant.

nonreentrant

specifies that the code in inputfile is non reentrant. This is the
default.

fp specifies that the code in inputfile uses a frame pointer. This
option is obsolete and is provided for backwards compatibility
only.

nofp specifies that the code in inputfile does not use a frame
pointer. This is the default.

-arch architecture

sets the target architecture. Some processor-specific instructions produce
either errors or warnings if assembled for the wrong target architecture.
See also the -unsafe assembler option. Valid values for architecture are
3, 3m, 4, 4T, 4TxM.

-bigend instructs the assembler to assemble code suitable for a big-endian ARM.
This option sets the built-in variable {ENDIAN} to big. The default is
-littleend.

-checkreglist

instructs the assembler to check RLIST, LDM, and STM register lists to ensure
that all registers are provided in increasing register number order. If this
is not the case, a warning is given.

-cpu ARMcore

sets the target ARM core. Valid values for ARMcore are:

ARM6 an ARM 6 family processor.

ARM7 an ARM 7 family processor.

ARM7M an ARM 7 family processor with fast multiplier.

ARM7T an ARM 7 family processor with Thumb.

ARM7TDI an ARM 7 family processor with Thumb and debug
extensions.
5-4 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

Assembler
ARM7TDMI an ARM 7 family processor with Thumb, debug
and fast multiplier.

ARM7TM an ARM 7 family processor with Thumb and fast
multiplier.

ARM8 an ARM 8 family processor.

ARM9 an ARM 9 family processor.

ARM9TM an ARM 9 family processor with Thumb and fast
multiplier.

StrongARM1 a StrongARM1 processor.

SA-110 an SA-110 processor.

-depend , dependfile

instructs the assembler to save source file dependency lists. These are
suitable for use with make utilities.

-errors errorfile

instructs the assembler to output error messages to errorfile.

-g instructs the assembler to generate debug tables. Use the following
command-line options to control the behavior of -g:

-dwarf to select DWARF1 debug tables. This option is obsolete. Use
-dwarf2 or -dwarf1.

-dwarf1 to select DWARF1 debug tables. This option is not
recommended for C++.

-dwarf2 to select DWARF2 debug tables. This is the default and is
selected if -g with no dwarf option is specified.

-help instructs the assembler to display a summary of the assembler
command-line options.

-keep instructs the assembler to keep local labels in the symbol table of the
object file, for use by the debugger. See KEEP directive on page 5-68.

-i{dir} [,dir]…

adds directories to the source file search path so that arguments to
GET/INCLUDE directives do not need to be fully qualified. See GET or
INCLUDE directive on page 5-63 and INCBIN directive on page 5-66.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 5-5

Assembler
-list listingfile options

instructs the assembler to output a detailed listing of the assembly
language produced by the assembler to listingfile. Use the following
command-line options to control the behavior of -list:

-noterse

turns the terse flag off. When this option is on, lines skipped
due to conditional assembly do not appear in the listing. If the
terse option is off, these lines do appear in the listing. The
default is on.

-width sets the listing page width. The default is 79 characters.

-length sets the listing page length. Length zero means an unpaged
listing. The default is 66 lines.

-xref instructs the assembler to list cross-referencing information on
symbols, including where they were defined and where they
were used, both inside and outside macros. The default is off.

-littleend

instructs the assembler to assemble code suitable for a little-endian ARM.
This option sets the built-in variable {ENDIAN} to little. This is the
default.

-maxcache, n

sets the maximum source cache size to n. The default is 8MB.

-MD- is for the use of the ARM Project Manager. It instructs the assembler to
write makefile dependencies to the Project Manager.

-nocache turns off source caching. By default the assembler caches source files on
the first pass and reads them from memory on the second pass.

-noesc instructs the assembler to ignore C-style escaped special characters, such
as \n and \t.

-noregs instructs the assembler not to predefine register names. Refer to
Predefined register and coprocessor names on page 5-9 for a list of
predefined register names.

-nowarn turns off warning messages.
5-6 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

Assembler
-o filename

names the output object file. If this option is not specified, the assembler
uses the second command-line argument that is not a valid command-line
option as the name of the output file. If there is no such argument, the
assembler creates an object filename of the form inputfilename.o

-predefine "directive"

instructs the assembler to pre-execute one of the SET directives. You must
enclose directive in double quotes. See:

• SETA directive on page 5-82.

• SETL directive on page 5-83.

• SETS directive on page 5-84.

The assembler executes a corresponding GBLL, GBLS, or GBLA directive to
define the variable before setting its value. Arguments to SETS must be
enclosed in escaped double quotation marks, for example:

-pd "Version SETS \"beta-4\""
-pd "VersionNum SETA 4"

-processor ARMcore

is a synonym for -cpu

-unsafe allows assembly of a file containing instructions that are not available on
the specified architecture and processor. Corresponding error messages
are changed to warning messages.

-via file instructs the assembler to open file and read in command-line arguments
to the assembler.

-16 instructs the assembler to interpret instructions as Thumb instructions.
This is equivalent to placing a CODE16 directive at the head of the source
file.

-32 instructs the assembler to interpret instructions as ARM instructions.
This is the default.

inputfile specifies the input file for the assembler. Input files must be ARM or
Thumb assembly language source files.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 5-7

Assembler
5.2 Format of source lines

The general form of source lines in an ARM assembly language module is:

{symbol} {instruction|directive|pseudo-instruction} {;comment}

All three sections of the source line are optional. Instructions cannot start in the first
column. They must be preceded by white space even if there is no preceding symbol.

You can use blank lines to make your code more readable.

symbol is usually a label. See Labels on page 5-27. In instructions and
pseudo-instructions it is always a label. In some directives it is a symbol for a variable
or a constant. This is made clear in the description of the directive.

symbol must begin in the first column and cannot contain any whitespace character such
as a space or a tab. See Symbol naming rules on page 5-25.
5-8 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

Assembler
5.3 Predefined register and coprocessor names

The following register names and coprocessor names are predefined by the ARM
assembler. All register and coprocessor names are case-sensitive.

5.3.1 Predeclared register names

The following register names are predeclared:

• R0-R15

• r0-r15

• a1-a4

• v1-v8

• sp and SP

• lr and LR

• pc and PC

• sl and SL

Note
 fp, FP, ip, IP, sb, and SB are also predeclared. This is for backwards compatibility only.

5.3.2 Predeclared program status register names

The following program status register names are predeclared:

• cpsr and CPSR

• spsr and SPSR

5.3.3 Predeclared floating-point register names

The following floating-point register names are predeclared:

• f0-f7

• F0-F7

5.3.4 Predeclared coprocessor names

The following coprocessor names and coprocessor register names are predeclared:

• p0-p15

• c0-c15
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 5-9

Assembler
5.4 Built-in variables

Table 5-2 lists the built-in variables defined by the ARM assembler.

Built-in variables cannot be set using the SETA, SETL, or SETS directives. They can be used
in expressions or conditions, for example:

IF {ARCHITECTURE} = "4T"

Table 5-2 Built-in variables

{PC} or . Address of current instruction.

{VAR} or @ Current value of the storage area location counter.

{TRUE} Logical constant true.

{FALSE} Logical constant false.

{OPT} Value of the currently-set listing option. The OPT directive can be
used to save the current listing option, force a change in it, or
restore its original value.

{CONFIG} Has the value 32 if the assembler is in ARM mode, and the value 16
if it is in Thumb mode.

{ENDIAN} Has the value big if the assembler is in big-endian mode, and the
value little if it is in little-endian mode.

{CODESIZE} Has the value 16 if compiling Thumb code. Otherwise, 32.

{CPU} Has the name of the selected cpu, or generic ARM if no cpu has been
specified.

{ARCHITECTURE} Has the value of the selected ARM architecture:

• 3

• 3M

• 4

• 4T

• 4TxM

{PCSTOREOFFSET} Is the offset between the address of theSTR pc,[...] orSTM Rb,{...
pc} instruction and the value of pc stored out. This varies depending
on the CPU and architecture specified.
5-10 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

Assembler
5.5 ARM pseudo-instructions

The ARM assembler supports a number of pseudo-instructions that are translated into
the appropriate combination of ARM or Thumb instructions at assembly time.

The pseudo-instructions available in ARM state are described in the following sections:

• ADR ARM pseudo-instruction on page 5-12

• ADRL ARM pseudo-instruction on page 5-13

• LDFD ARM pseudo-instruction on page 5-14

• LDFS ARM pseudo-instruction on page 5-15

• LDR ARM pseudo-instruction on page 5-16

• NOP ARM pseudo-instruction on page 5-18.

Refer to Thumb pseudo-instructions on page 5-19 for information on
pseudo-instructions that are available in Thumb state.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 5-11

Assembler
5.5.1 ADR ARM pseudo-instruction

The ADR pseudo-instruction loads a program-relative or register-relative address into a
register.

Syntax

The syntax of ADR is:

ADR{condition} register,expression

where:

register is the register to load.

expression

is a program-relative or register-relative expressionthat evaluates to:

• a non word-aligned address within 255 bytes

• a word-aligned address within 1020 bytes.

The address can be either before or after the address of the instruction or
the base register.

See Register-relative and program-relative expressions on page 5-89.

Usage

ADR always assembles to one instruction. The assembler attempts to produce a single ADD
or SUB instruction to load the address. If the address cannot be constructed in a single
instruction, an error is generated and the assembly fails.

Use the ADRL pseudo-instruction to assemble a wider range of effective addresses.

If expression is program-relative, it must evaluate to an address in the same code area
as the ADR pseudo-instruction. Otherwise the address may be out of range after linking.

Example

start MOV r0,#10
ADR r4,start ; => SUB r4,pc,#0xc
5-12 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

Assembler
5.5.2 ADRL ARM pseudo-instruction

The ADRL pseudo-instruction loads a program-relative or register-relative address into a
register. It is similar to the ADR pseudo-instruction. ADRL can load a wider range of
addresses than ADR because it generates two data processing instructions.

Syntax

The syntax of ADRL is:

ADRL{condition} register,expression

where:

register is the register to load.

expression is a register-relative or program-relative expression that evaluates to:

• a non word-aligned address within 64KB

• a word-aligned address within 256KB.

The address can be either before or after the address of the instruction or
the base register. See Register-relative and program-relative expressions
on page 5-89.

Usage

ADRL always assembles to two instructions. Even if the address can be reached in a single
instruction, a second, redundant instruction is produced.

If the assembler cannot construct the address in two instructions, it generates an error
message and the assembly fails. See LDR ARM pseudo-instruction on page 5-16 for
information on loading a wider range of addresses. See also Chapter 5 Basic Assembly
Language Programming in the ARM Software Development Toolkit User Guide.

If expression is program-relative, it must evaluate to an address in the same code area
as the ADRL pseudo-instruction. Otherwise the address may be out of range after linking.

Note
 ADRL is not available when assembling Thumb instructions. Use it only in ARM code.

Example

start MOV r0,#10
ADRL r4,start + 60000 ; => ADD r4,pc,#0xe800

; ADD r4,r4,#0x254
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 5-13

Assembler
5.5.3 LDFD ARM pseudo-instruction

The LDFD pseudo-instruction loads a floating-point register with a double precision
floating-point constant.

Note
 You can use LDFD only if your system has a Floating Point Accelerator, or software that
emulates one.

This section describes the LDFD pseudo-instruction only. Refer to the ARM FPA10 Data
Sheet for information on the LDFD instruction.

Syntax

The syntax of LDFD is:

LDFD{condition} fp-register,=expression

where:

condition is an optional condition code.

fp-register

is the floating-point register to be loaded.

expression

evaluates to a floating-point constant. The assemblerplaces the constant
in a literal pool and generates a program-relative LDFD instruction to read
the constant from the literal pool. Two words are used to store the
constant in the literal pool.

The offset from pc to the constant must be less than 4KB. You are
responsible for ensuring that there is a literal pool within range. See
LTORG directive on page 5-72 for more information.

Usage

The range for double precision numbers is:

• Maximum 1.79769313486231571e+308

• Minimum 2.22507385850720138e–308.

Example

LDFD f1,=3.12E106 ; loads 3.12E106 into f1
5-14 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

Assembler
5.5.4 LDFS ARM pseudo-instruction

The LDFS pseudo-instruction loads a floating-point register with a single precision
floating-point constant.

Note
 You can use LDFS only if your system has a Floating Point Accelerator, or software that
emulates one.

This section describes the LDFS pseudo-instruction only. Refer to the ARM FPA10 Data
Sheet for information on the LDFS instruction.

Syntax

The syntax of LDFS is:

LDFS{condition} fp-register,=expression

where:

condition is an optional condition code.

fp-register

is the floating-point register to be loaded.

expression

evaluates to a floating-point constant. The assemblerplaces the constant
in a literal pool and generates a program-relative LDFS instruction that
reads the constant from the literal pool.

The offset from the pc to the constant must be less than 4KB. You are
responsible for ensuring that there is a literal pool within range. See
LTORG directive on page 5-72 for more information.

Usage

The range for single precision values is:

• Maximum 3.40282347e+38F

• Minimum 1.17549435e–38F.

Example

LDFS f1,=3.12E-6 ; loads 3.12E-6 into f1
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 5-15

Assembler
5.5.5 LDR ARM pseudo-instruction

The LDR pseudo-instruction loads a register with either:

• a 32-bit constant value

• an address.

Note
 This section describes the LDR pseudo-instruction only. Refer to the ARM Architectural
Reference Manual for information on the LDR instruction.

Syntax

The syntax of LDR is:

LDR{condition} register,=[expression | label-expression]

where:

condition is an optional condition code.

register is the register to be loaded.

expression

evaluates to a numeric constant:

• If the value of expression iswithin range of a MOV or MVN instruction,
the assembler generates the appropriate instruction.

• If the value of expression is not within range of a MOV or MVN
instruction, the assembler places the constant in a literal pool and
generates a program-relative LDR instruction that reads the constant
from the literal pool.

The offset from the pc to the constant must be less than 4KB. You
are responsible for ensuring that there is a literal pool within range.
See LTORG directive on page 5-72 for more information.

label-expression

is a program-relative or external expression. The assembler places the
value of label-expression in a literal pool and generates a
program-relative LDR instruction that loads the value from the literal pool.

The offset from the pc to the value in the literal pool must be less than
4KB. You are responsible for ensuring that there is a literal pool within
range. See LTORG directive on page 5-72 for more information.
5-16 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

Assembler
If label-expression is an external expression, or is not contained in the
current area, the assembler places a linker relocation directive in the
object file. The linker ensures that the correct address is generated at link
time.

Usage

The LDR pseudo-instruction is used for two main purposes:

• to generate literal constants when an immediate value cannot be moved into a
register because it is out of range of the MOV and MVN instructions.

• to load a program-relative or external address into a register. The address remains
valid regardless of where the linker places the AOF area containing the LDR.

Refer to Chapter 5 Basic Assembly Language Programming in the ARM Software
Development Toolkit User Guide for a more detailed explanation of how to use LDR, and
for more information on MOV and MVN.

Example

LDR r1,=0xfff ; loads 0xfff into r1
;

LDR r2,=place ; loads the address of
; place into r2
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 5-17

Assembler
5.5.6 NOP ARM pseudo-instruction

NOP generates the preferred ARM no-operation code. This is:

MOV r0,r0

Syntax

The syntax of NOP is:

NOP

Usage

NOP cannot be used conditionally.Not executing a no-operation is the same as executing
it, so conditional execution is not required.

Condition codes are unaltered by NOP.
5-18 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

Assembler
5.6 Thumb pseudo-instructions

The ARM assembler supports a number of pseudo-instructions that are translated into
the appropriate combination of ARM or Thumb instructions at assembly time.

The pseudo-instructions that are available in Thumb state are in the following sections:

• ADR Thumb pseudo-instruction on page 5-20

• LDR Thumb pseudo-instruction on page 5-21

• MOV Thumb pseudo-instruction on page 5-23

• NOP Thumb pseudo-instruction on page 5-24.

Refer to ARM pseudo-instructions on page 5-11 for information on pseudo-instructions
that are available in ARM state.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 5-19

Assembler
5.6.1 ADR Thumb pseudo-instruction

The ADR pseudo-instruction loads a program-relative or register-relative address into a
register.

Syntax

The syntax of ADR is:

ADR register, expression

where:

register is the register to load.

expression

is a register-relative or program-relative expressionthat evaluates to a
word-aligned address within the range +4 to +1020 bytes. expression
must be defined locally, it cannot be imported.

Refer to ^ or MAP directive on page 5-35 for more information on
register-relative expressions.

Usage

In Thumb state, ADR can generate word-aligned addresses only. Use the ALIGN directive
to ensure that expression is aligned.

If expression is program-relative, it must evaluate to an address in the same code area
as the ADR pseudo-instruction. There is no guarantee that the address will be within range
after linking if it resides in another AOF area.

Example

ADR r4,txampl ; => ADD r4,pc,#nn
; code
ALIGN

txampl DCW 0,0,0,0
5-20 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

Assembler
5.6.2 LDR Thumb pseudo-instruction

The LDR pseudo-instruction loads a low register with either:

• a 32-bit constant value

• an address.

Note
 This section describes the LDR pseudo-instruction only. Refer to the ARM Architectural
Reference Manual for information on the LDR instruction.

Syntax

The syntax of LDR is:

LDR register, =[expression | label-expression]

where:

register is the register to be loaded. LDR canaccess the low registers (r0-r7) only.

expression

evaluates to a numeric constant:

• If the value of expression is within range of a MOV instruction, the
assembler generates the instruction.

• If the value of expression is not within range of a MOV instruction,
the assembler places the constant in a literal pool and generates a
program-relative LDR instruction that reads the constant from the
literal pool.

The offset from the pc to the constant must be positive and less than
1KB. You are responsible for ensuring that there is a literal pool
within range. See LTORG directive on page 5-72 for more
information.

label-expression

is a program-relative or external expression. The assembler places the
value of label-expression in a literal pool and generates a
program-relative LDR instruction that loads the value from the literal pool.

The offset from the pc to the value in the literal pool must be positive and
less than 1KB. You are responsible for ensuring that there is a literal pool
within range. See LTORG directive on page 5-72 for more information.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 5-21

Assembler
If label-expression is an external expression, or is not contained in the
current area, the assembler places a linker relocation directive in the
object file. The linker ensures that the correct address is generated at link
time.

Usage

The LDR pseudo-instruction is used for two main purposes:

• to generate literal constants when an immediate value cannot be moved into a
register because it is out of range of the MOV instruction.

• to load a program-relative or external address into a register. The address remains
valid regardless of where the linker places the AOF area containing the LDR.

Refer to Chapter 5 Basic Assembly Language Programming in the ARM Software
Development Toolkit User Guide for a more detailed explanation of how to use LDR, and
for more information on MOV.

Example

LDR r1, =0xfff ; loads 0xfff into r1
;

LDR r2, =labelname ; loads the address of
; labelname into r2
5-22 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

Assembler
5.6.3 MOV Thumb pseudo-instruction

The Thumb MOV pseudo-instruction moves the value of a low register to another low
register (r0-r7).

The Thumb MOV instruction cannot move values from one low register to another.

Note
 The ADD immediate instruction generated by the assembler has the side-effect of
updating the condition codes.

Syntax

The syntax of MOV is:

MOV Rd,Rs

where:

Rd is the destination register.

Rs is the source register.

Usage

The MOV pseudo-instruction usesan ADD immediate instruction with a zero immediate
value.

Refer to the ARM Architectural Reference Manual for more information on the Thumb
MOV instruction.

Example

MOV Rd, Rs ; generates the opcode for ADD Rd, Rs, #0
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 5-23

Assembler
5.6.4 NOP Thumb pseudo-instruction

NOP generates the preferred Thumb no-operation instruction. This is:

MOV r8,r8

Syntax

The syntax for NOP is:

NOP

Usage

Condition codes are unaltered by NOP.
5-24 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

Assembler
5.7 Symbols

You can use symbols to represent variables, addresses, and numeric constants. Symbols
representing addresses are also called labels. See:

• Variables on page 5-26

• Numeric constants on page 5-29

• Labels on page 5-27.

5.7.1 Symbol naming rules

The following general rules apply to symbol names:

• You can use uppercase letters, lowercase letters, numeric characters, or the
underscore character in symbol names.

• Do not use numeric characters for the first character of symbol names, except in
local labels. See Local labels on page 5-28.

• Symbol names are case-sensitive.

• All characters in the symbol name are significant.

• Symbol names must be unique within their scope.

• Symbols must not use built-in variable names or predefined symbol names. See
Predefined register and coprocessor names on page 5-9 and Built-in variables on
page 5-10.

• Symbols should not use the same name as instruction mnemonics or directives.
The assembler can distinguish between them through their relative positions on
the input line but it makes the code difficult to read.

If you need to use a wider range of characters in symbols, for example, when working
with compilers, use enclosing bars to delimit the symbol name. For example:

|C$$code|

The bars are not part of the symbol. You cannot use bars, semicolons, or newlines even
within the bars.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 5-25

Assembler
5.7.2 Variables

The value of a variable can be changed as assembly proceeds. Variables are of three
types:

• numeric

• logical

• string.

The type of a variable cannot be changed.

The range of possible values of a numeric variable is the same as the range of possible
values of a numeric constant or numeric expression. See Numeric constants on
page 5-29 and Numeric expressions on page 5-89.

The range of possible values of a logical variable is {TRUE} or {FALSE}. See Logical
expressions on page 5-89.

The range of possible values of a string variable is the same as the range of values of a
string expression. See String expressions on page 5-88.

Use the GBLA, GBLL, GBLS, LCLA, LCLL, and LCLS directives to declare symbols representing
variables, and assign values to them using the SETA, SETL, and SETS directives. See:

• GBLA directive on page 5-60

• GBLL directive on page 5-61

• GBLS directive on page 5-62

• LCLA directive on page 5-69

• LCLL directive on page 5-70

• LCLS directive on page 5-71

• SETA directive on page 5-82

• SETL directive on page 5-83

• SETS directive on page 5-84.
5-26 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

Assembler
5.7.3 Assembly time substitution of variables

You can use a string variable for a whole line of assembly language, or any part of a line.
Use the variable with a $ prefix in the places where the value is to be substituted for the
variable. The dollar character instructs the assembler to substitute the string into the
source code line before checking the syntax of the line.

Use a dot to mark the end of the variable name if the following character would be
permissible in a symbol name. See Symbol naming rules on page 5-25. You must set the
contents of the variable before you can use it.

Example

add4ff SETS " ADD r4,r4,#0xFF" ; set up add4ff
; (note the leading space)

$add4ff.00 ; invoke add4ff,
; producing

ADD r4,r4,#0xFF00

5.7.4 Labels

Labels are symbols representing the addresses in memory of instructions or data. They
may be program-relative, register-relative, or absolute:

Program-relative labels

These represent the program counter plus or minus a numeric constant.
Use them as targets for branch instructions, or to access small items of
data embedded in code areas. You can define program-relative labels
using a label on an instruction or on one of the Define Constant directives.
See:

• DCB or = directive on page 5-46

• DCD or & directive on page 5-47

• DCDU directive on page 5-48

• DCFD directive on page 5-49

• DCFDU directive on page 5-50

• DCFS directive on page 5-51

• DCFSU directive on page 5-52

• DCW directive on page 5-53

• DCWU directive on page 5-54.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 5-27

Assembler
Register-relative labels

These represent a named register plus a numeric constant. They are most
often used to access data in data areas. You can define them with any of
the Define Constant directives, the BASED Rn attribute of the AREA directive,
or with a storage map. See:

• ^ or MAP directive on page 5-35

• % directive on page 5-32

• AREA directive on page 5-38.

Absolute addresses

These are numeric constants. They are integers in the range 0 to 232–1.
They address the memory directly. The most common uses of absolute
addresses are in exception handling routines and for accessing
memory-mapped I/O ports.

5.7.5 Local labels

A local label is a number in the range 0-99, optionally followed by a name. The same
number can be used for more than one local label in an AOF area.

Local labels are used for instructions that are the target for branches. You cannot use
them for data. Typically they are used for loops and conditional code within a routine,
or for small subroutines that are only used locally. They are particularly useful in
macros. See MACRO directive on page 5-72.

Use the ROUT directive to limit the scope of local labels. See ROUT directive on
page 5-81. A reference to a local label refers to a matching label within the same scope.
If there is no matching label within the scope in either direction, the assembler generates
an error message and the assembly fails.

You can use the same number for more than one local label even within the same scope.
By default, the assembler links a reference to a local label:

• to the most recent local label of the same number, if there is one within the scope

• to the next following local label of the same number, if there is not one within the
scope.

Use the optional parameters to modify this search pattern if required.

Syntax

The syntax of a local label is:

n{routname}
5-28 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

Assembler
The syntax of a reference to a local label is:

%{F|B}{A|T}n{routname}

where:

n is the number of the local label.

routname is the name of the current scope.

% introduces the reference.

F instructs the assembler to search forwards only.

B instructs the assembler to search backwards only.

A instructs the assembler to search all macro levels.

T instructs the assembler to look at this macro level only.

If neither F or B is specified, the assembler searches backwards first, then forwards.

If neither A or T is specified, the assembler searches all macros from the current level to
the top level, but does not search lower level macros.

If routname is specified in either a label or a reference to a label, the assembler checks it
against the name of the nearest preceding ROUT directive. If it does not match, the
assembler generates an error message and the assembly fails.

5.7.6 Numeric constants

Numeric constants are 32-bit integers. You can set them using unsigned numbers in the
range 0 to 232–1, or signed numbers in the range –231 to 231–1. However, the assembler
makes no distinction between –n and 232– n. Relational operators such as >= use the
unsigned interpretation. This means that 0 > –1 is {FALSE}.

Use the EQU directive to define constants. See EQU or * directive on page 5-57. You
cannot change the value of a numeric constant after you define it.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 5-29

Assembler
5.8 Directives

The assembler provides directives to support:

• data structure definitions and allocation of space for data

• partitioning of files into logical subdivisions

• error reporting and control of assembly listing

• definition of symbols

• conditional and repetitive assembly, and inclusion of subsidiary files.

See Table 5-1 on page 5-2 to locate individual directives within this section. The
directives are described in the following sections in alphabetical order.

5.8.1 Nesting directives

MACRO definitions, WHILE...WEND loops, IF...ENDIF conditions and GET or INCLUDE
directives can be nested within themselves or within each other to a total depth of 256.

5.8.2 ! directive

See INFO or ! directive on page 5-67.
5-30 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

Assembler
5.8.3 # directive

The # directive describes space within a storage map that has been defined using the ^
directive.

Syntax

The syntax of # is:

{label} # expression

where:

label is an optional label. If specified, label is assigned the value of the storage
location counter, @. The storage location counter is then incremented by
the value of expression.

expression

is an expression that evaluates to the number of bytes to increment the
storage counter.

Usage

If a storage map is set by a ^ directive that specifies a base-register, the base register is
implicit in all labels defined by following # directives, until the next ^ directive. These
register-relative labels can be quoted in load and store instructions. Refer to ^ or MAP
directive on page 5-35.

Note
 You must be careful when using ^, #, and register-relative labels. Refer to Chapter 5
Basic Assembly Language Programming in the ARM Software Development Toolkit
User Guide for more information.

Example

The following example shows how register-relative labels are defined using the ^ and #
directives.

^ 0,r9 ; set @ to the address stored in r9
4 ; increment @ by 4 bytes

Lab # 4 ; set Lab to the address [r9 + 4]
; and then increment @ by 4 bytes

LDR r0,Lab ; equivalent to LDR r0,[r9,#4]
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 5-31

Assembler
5.8.4 % directive

The % directive reserves a zeroed block of memory.

Syntax

The syntax of % is:

{label} % numeric-expression

where:

numeric-expression

evaluates to the number of zeroed bytes to reserve.

Usage

You must use a DATA directive if you use % to define labeled data within Thumb code.
Refer to DATA directive on page 5-45 for more information.

Use the ALIGN directive to align any code following a % directive. Refer to ALIGN
directive on page 5-36 for more information.

See also:

• DCB or = directive on page 5-46

• DCW directive on page 5-53

• DCD or & directive on page 5-47

• DCWU directive on page 5-54

• DCDU directive on page 5-48.

Example

AREA MyData, DATA, READWRITE
data1 % 255 ; defines 255 bytes of zeroed store

5.8.5 & directive

See DCD or & directive on page 5-47.

5.8.6 * directive

See EQU or * directive on page 5-57.
5-32 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

Assembler
5.8.7 = directive

See DCB or = directive on page 5-46.

5.8.8 [or IF directive

The IF directive introduces a condition that is used to decide whether to assemble a
sequence of instructions and/or directives. [and IF are synonyms.

Syntax

The syntax of IF is:

IF logical-expression

 ...

{ELSE

 ...}

ENDIF

where:

logical-expression

is an expression that evaluates to either {TRUE} or {FALSE}.

See Relational operators on page 5-92.

Usage

Use IF with ENDIF, and optionally with ELSE, for sequences of instructions and/or
directives that are only to be assembled or acted on under a specified condition. See also
| or ELSE directive on page 5-34 and] or ENDIF directive on page 5-34.

IF...ENDIF conditions can be nested. See Nesting directives on page 5-30.

Example

[Version = "1.0" ; IF ...
; code and/or
; directives
| ; ELSE
; code and/or
; directives
] ; ENDIF
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 5-33

Assembler
5.8.9 | or ELSE directive

The ELSE directive marks the beginning of a sequence of instructions and/or directives
that are to be assembled if the preceding condition fails. | and ELSE are synonyms.

Syntax

The syntax of ELSE is:

ELSE

Usage

See [or IF directive on page 5-33.

5.8.10] or ENDIF directive

The ENDIF directive marks the end of a sequence of instructions and/or directives that
are to be conditionally assembled.] and ENDIF are synonyms.

Syntax

The syntax of ENDIF is:

ENDIF

Usage

See [or IF directive on page 5-33.
5-34 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

Assembler
5.8.11 ^ or MAP directive

The ^ directive sets the origin of a storage map to a specified address. The storage-map
location counter, @, is set to the same address. MAP is a synonym for ^.

Syntax

The syntax of ^ is:

^ expression{,base-register}

where:

expression

is a numeric or program-relative expression:

• If base-register is not specified, expression evaluates to the
address where the storage map starts. The storage map location
counter is set to this address.

• If the expression is program-relative, you must have defined the
label before you use it in the map. The map requires the definition
of the label during the first pass of the assembler.

base-register

specifies a register. If base-register is specified, the address where the
storage map starts is the sum of expression, and the value in
base-register at runtime.

Usage

Use the ^ directive in combination with the # directive to describe a storage map.

Specify base-register to define register-relative labels. The base register becomes
implicit in all labels defined by following # directives, until the next ^ directive. The
register-relative labels can be used in load and store instructions. Refer to # directive on
page 5-31 for an example.

The ^ directive can be used any number of times to define multiple storage maps.

The @ counter is set to zero before the first ^ directive is used.

Examples

^ 0,r3
^ 0xff,r3
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 5-35

Assembler
5.8.12 ALIGN directive

By default, the ALIGN directive aligns the current location within the code to a word
(4-byte) boundary.

Syntax

The syntax of ALIGN is:

ALIGN {expression{,offset-expression}}

where:

expression

can be any power of 2 from 20 to231. The current location is aligned to the
next 2n-byte boundary. If this parameter is not specified, ALIGN sets the
instruction location to the next word boundary.

offset-expression

defines a byte offset from the alignment specified by expression.

Usage

Use ALIGN to ensure that your code is correctly aligned. As a general rule it is safer to
use ALIGN frequently through your code.

Use ALIGN to ensure that Thumb addresses are word aligned when required. For
example, the ADR Thumb pseudo-instruction can only load addresses that are word
aligned.

Use ALIGN when data definition directives appear in code areas. When data definition
directives (DCB, DCW, DCWU, DCDU and %) are used in code areas, the program counter does
not necessarily point to a word boundary. When the assembler encounters the next
instruction mnemonic it inserts up to 3 bytes, if required, to ensure that the instruction
is:

• word aligned in ARM state

• halfword aligned in Thumb state.

In this case, a label that appears on a source line by itself does not address the following
instruction. Use ALIGN to ensure that the label addresses the following instruction. You
can use ALIGN 2 to align on a halfword (2-byte) boundary in Thumb code.

Use ALIGN with a coarser setting to take advantage of caches on some ARM processors.
For example, the ARM940T has a cache with 4-word lines. Use ALIGN 16 to align
function entries on 16-byte boundaries and maximize the efficiency of the cache.
5-36 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

Assembler
Alignment is relative to the start of the AOF area where the routine is located. You must
ensure that the area is also aligned to the same, or coarser, boundaries. The ALIGN
attribute on the AREA directive is specified differently. See AREA directive on page 5-38
and the example below.

Examples

AREA Example, CODE, READONLY
start LDR r6,=label1

DCB 1 ; pc misaligned
ALIGN ; ensures that label1 addresses

label1 ; the following instruction.
MOV r5,#0x5
AREA cacheable, CODE, ALIGN=4

rout1 ; code ; aligned on 16-byte boundary
; code
MOV pc,lr ; aligned only on 4-byte boundary
ALIGN 16 ; now aligned on 16-byte boundary

rout2 ; code
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 5-37

Assembler
5.8.13 AREA directive

The AREA directive instructs the assembler to assemble a new code or data area. Areas
are independent, named, indivisible chunks of code or data that are manipulated by the
linker. Refer to Chapter 5 Basic Assembly Language Programming in the ARM Software
Development Toolkit User Guide and Chapter 6 Linker in the ARM Software
Development Toolkit Reference Guide for more information.

Syntax

The syntax of the AREA directive is:

AREA name{,attr}{,attr}...

where:

name is the name that the area is to be given.

You can choose any name for your areas. However, names startingwith a
digit must be enclosed in bars or a missing area name error is generated.
For example, |1_DataArea|.

Certain names are conventional. For example, |C$$code| is used for code
areas produced by the C compiler, or for code areas otherwise associated
with the C library.

attr are one or more comma-delimited area attributes. Valid attributes are:

ALIGN=expression

By default, AOF areas are aligned on a 4-byte boundary.

expression can have any integer value between 2 and 31. The
area is aligned on a 2expression-byte boundary. For example, if
expression is 10, the area is aligned on a 1KB boundary.

CODE Contains machine instructions. READONLY is the default.

COMDEF Is a common area definition. This AOF area may contain code
or data. It must be identical to any other area of the same name
in other source files.

Identical AOF areas with the same name are overlaid in the
same area of memory by the linker. If any are different, the
linker generates a warning and does not overlay the areas.

COMMON Is a common data area. You must not define any code or data
in it. It is initialized to zeroes by the linker. All common areas
with the same name are overlaid in the same area of memory
5-38 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

Assembler
by the linker. They do not all need to be the same size. The
linker allocates as much space as is required by the largest
common area of each name.

DATA Contains data, not instructions. READWRITE is the default.

INTERWORK

Indicates that the code area is suitable for ARM/Thumb
interworking.

NOINIT Indicates that the data area is initialized to zero. It contains
only space reservation directives, with no initialized values.

PIC Indicates position-independent code. It can execute at any
address without modification.

READONLY

Indicates that this area should not be written to.

READWRITE

Indicates that this area may be read from and written to.

Usage

There must be at least one AREA directive for an assembly.

Use the AREA directive to subdivide your source file into AOF areas. You must use a
different name for each area within the same source file.

You should normally use separate AOF areas for code and data. Large programs can
usually be conveniently divided into several code areas. Large independent data sets are
also usually best placed in separate areas.

The scope of local labels is defined by AOF areas, optionally subdivided by ROUT
directives. See Local labels on page 5-28 and ROUT directive on page 5-81.

If no AREA directive is specified, the assembler generates an AOF area with the name
|$$$$$$$|, and produces a diagnostic message. This limits the number of error messages
caused by the missing directive, but does not lead to a successful assembly.

Example

The following example defines a read-only code area named Example.

AREA Example,CODE,READONLY ; An example code area.
; code
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 5-39

Assembler
5.8.14 ASSERT directive

The ASSERT directive generates an error message during the second pass of the assembly
if a given assertion is false.

Syntax

The syntax of ASSERT is:

ASSERT logical-expression

where:

logical-expression

is an assertion that can evaluate to either {TRUE} or {FALSE}.

Usage

Use ASSERT to ensure that any necessarycondition is met during assembly.

If the assertion is false an error message is generated and assembly fails.

See also INFO or ! directive on page 5-67.

Example

ASSERT label1 <= label2 ; Tests if the address
; represented by label1
; is <= the address
; represented by label2.
5-40 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

Assembler
5.8.15 CN directive

The CN directive defines a name for a coprocessor register.

Syntax

The syntax of CN is:

name CN numeric-expression

where:

name is the name to be defined for the coprocessor register.

numeric-expression

evaluates to a coprocessor register number from0 to 15.

Usage

Use CN to allocate convenient names to registers, to help you to remember what you use
each register for. Be careful to avoid conflicting uses of the same register under different
names.

The names c0 to c15 are predefined.

Example

power CN 6 ; defines power as a symbol for
; coprocessor register 6
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 5-41

Assembler
5.8.16 CODE16 directive

The CODE16 directive instructs the assembler to interpret subsequent instructions as
16-bit Thumb instructions.

Syntax

The syntax of CODE16 is:

CODE16

Usage

Use CODE16 when branching to Thumbstate with the BX instruction. CODE16 precedes code
at the destination of the branch.

The assembler inserts a byte of padding, if necessary, to bring following Thumb code
into halfword alignment. CODE16 does not assemble to an instruction that changes the
mode. It only instructs the assembler to assemble Thumb instructions.

See also CODE32 directive on page 5-43.

Example

This example shows how CODE16 can be used to branch from ARM to Thumb
instructions.

AREA ThumbEx, CODE, READONLY
; This area starts in ARM state

ADR r0,start+1 ; Load the address and set the
; least significant bit

BX r0 ; Branch and exchange
; instruction sets
; Not necessarily in the same area

CODE16 ; Following instructions are Thumb
start MOV r1,#10 ; Thumb instructions
5-42 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

Assembler
5.8.17 CODE32 directive

The CODE32 directive instructs the assembler to interpret subsequent instructions as
32-bit ARM instructions.

Syntax

The syntax of CODE32 is:

CODE32

Usage

Use CODE32 to when branching to ARMstate from Thumb state. CODE32 precedes code at
the destination of the branch.

The assembler inserts up to three bytes of padding, if necessary, to bring following
ARM code into word alignment. CODE32 does not assemble to an instruction that changes
the mode. It only instructs the assembler to assemble ARM instructions.

See also CODE16 directive on page 5-42.

Example

CODE16 ; Start this area in Thumb state
AREA ThumbEx, CODE, READONLY
MOV r1,#10 ; Thumb instructions
ADR r0,goarm ; Load the address and leave the

; least significant bit clear.
BX r0 ; Branch and exchange instruction

; sets
; Not necessarily in the same area

CODE32 ; Following instructions are ARM
goarm MOV r4,#15 ; ARM instructions
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 5-43

Assembler
5.8.18 CP directive

The CP directive defines a name for a specified coprocessor. The coprocessor number
must be within the range 0 to 15.

Syntax

The syntax of CP is:

name CP numeric-expression

where:

name is the name to be assigned to the coprocessor. name cannotbe the same as
any of the predefined names listed in Predefined register and coprocessor
names on page 5-9.

numeric-expression

evaluates to a coprocessor number from 0 to 15.

Usage

Use CP to allocate convenient names to coprocessors, to help you to remember what you
use each one for. Be careful to avoid conflicting uses of the same coprocessor under
different names.

The names p0 to p15 are predefined for coprocessors 0 to 15.

Example

dmu CP 6 ; defines dmu as a symbol for
; coprocessor 6
5-44 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

Assembler
5.8.19 DATA directive

The DATA directive informs the assembler that a label is a data-in-code label. This means
that the label is the address of data within a code segment.

Syntax

The syntax of DATA is:

label DATA

where:

label is the label of the data definition. The DATA directivemust be on the same
line as label.

Usage

You must use the DATA directive when you define data in a Thumb code area with any of
the data-defining directives such as DCD, DCB, and DCW.

When the linker relocates a label in a Thumb code area, it assumes that the label
represents the address of a Thumb routine. The linker adds 1 to the value of the label so
that the processor is switched to Thumb state if the routine is called with a BX
instruction.

If a label represents the address of data within a Thumb code area, you do not want the
linker to add 1 to the label. The DATA directive marks the label as pointing to data within
a code area and the linker does not add 1 to its value.

You can use DATA to mark data-in-code in ARM code areas. The DATA directive is ignored
by the assembler in ARM code areas.

Example

AREA example, CODE
Thumb_fn ; code

; code
MOV pc, lr

Thumb_Data DATA
DCB 1, 3, 4
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 5-45

Assembler
5.8.20 DCB or = directive

The DCB directive allocates one or more bytes of memory, and defines the initial runtime
contents of the memory. = is a synonym for DCB.

Syntax

The syntax of DCB is:

{label} DCB expression{,expression}...

where:

expression

is either:

• A numeric expression that evaluates to an integer in the range –128
to 255. See Numeric expressions on page 5-89.

• A quoted string. The characters of the string are loaded into
consecutive bytes of store.

Usage

You must use the DATA directive if you use DCB to define labeled data within Thumb code.
Refer to DATA directive on page 5-45 for more information.

If DCB is followed by an instruction, use an ALIGN directive to ensure that the instruction
is aligned. Refer to ALIGN directive on page 5-36 for more information.

See also:

• DCW directive on page 5-53

• DCD or & directive on page 5-47

• DCWU directive on page 5-54

• DCDU directive on page 5-48

• % directive on page 5-32

Example

Unlike C strings, ARM assembler strings are not null-terminated. You can construct a
null-terminated C string using DCB as follows:

C_string DCB "C_string",0
5-46 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

Assembler
5.8.21 DCD or & directive

The DCD directive allocates one or more words of memory, aligned on 4-byte boundaries,
and defines the initial runtime contents of the memory. & is a synonym for DCD.

Syntax

The syntax of DCD is:

{label} DCD expression{,expression}

where:

expression

is either:

• A numeric expression. See Numeric expressions on page 5-89.

• A program-relative expression.

Usage

You must use the DATA directive if you use DCD to define labeled data within Thumb code.
Refer to DATA directive on page 5-45 for more information.

DCD inserts up to 3 bytes of padding before the first defined word, if necessary, to achieve
4-byte alignment. Use DCDU if you do not require alignment.

See also:

• DCB or = directive on page 5-46

• DCW directive on page 5-53

• DCWU directive on page 5-54

• DCDU directive on page 5-48

• % directive on page 5-32

Example

data1 DCD 1,5,20 ; Defines 3 words containing
; decimal values 1, 5, and 20

data2 DCD mem06 ; Defines 1 word containing the
; address of the label mem06

data3 DCD glb + 4 ; Defines 1 word containing
; 4 + the value of glb
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 5-47

Assembler
5.8.22 DCDU directive

The DCDU directive allocates one or more words of memory, not necessarily aligned, and
defines the initial runtime contents of the memory.

Syntax

The syntax of DCDU is:

{label} DCDU expression{,expression}...

where:

expression

is either:

• A numeric expression. See Numeric expressions on page 5-89.

• A program-relative expression.

Usage

Use DCDU to define data words with arbitrary alignment.

You must use the DATA directive if you use DCDU to define labeled data within Thumb
code. Refer to DATA directive on page 5-45 for more information.

If DCDU is followed by code, use an ALIGN directive to ensure that the instructions are
word aligned. Refer to ALIGN directive on page 5-36 for more information.

DCDU does not insert padding when preceding code is unaligned. Use DCD if you require
alignment.

See also:

• DCB or = directive on page 5-46

• DCW directive on page 5-53

• DCD or & directive on page 5-47

• DCWU directive on page 5-54

• % directive on page 5-32

Example

AREA MyData, DATA, READWRITE
DCB 255 ; Now misaligned ...

data1 DCDU 1,5,20 ; Defines 3 words containing
; 1, 5 and 20, not word aligned
5-48 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

Assembler
5.8.23 DCFD directive

The DCFD directive allocates memory for word-aligned double precision floating-point
numbers, and defines the initial runtime contents of the memory. Double precision
numbers occupy two words and must be word aligned to be used in arithmetic
operations.

Syntax

The syntax of DCFD is:

{label} DCFD fp-constant{,fp-constant}...

where:

fp-constant

is a double precision floating-point value in one of the following forms:

{-}digits E{-}digits
{-}{digits}.digits{E{-}digits}

E may also be written in lowercase.

Usage

The assembler inserts up to three bytes of padding before the first defined number, if
necessary, to achieve 4-byte alignment. Use DCFDU if you do not require alignment.

The range for double precision numbers is:

• Maximum 1.79769313486231571e+308

• Minimum 2.22507385850720138e–308

Examples

DCFD 1E308,-4E-100
DCFD 10000,-.1,3.1E26
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 5-49

Assembler
5.8.24 DCFDU directive

The DCFDU directive allocates eight bytes of memory for arbitrarily aligned double
precision floating-point numbers, and defines the initial runtime contents of the
memory.

Syntax

The syntax of DCFDU is:

{label} DCFDU fp-constant{,fp-constant}...

where:

fp-constant

is a double precision floating-point value in one of the following forms:

{-}digits E{-}digits
{-}{digits}.digits{E{-}digits}

E may also be written in lowercase.

Usage

DCFDU defines floating-point values with arbitrary alignment.

The range for double precision numbers is:

• Maximum 1.79769313486231571e+308

• Minimum 2.22507385850720138e–308

Examples

DCFDU 1E308,-4E-100
DCFDU 100,-.1,3.1E26
5-50 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

Assembler
5.8.25 DCFS directive

The DCFS directive allocates memory for word-aligned single precision floating-point
numbers, and defines the initial runtime contents of the memory. Single precision
numbers occupy one word and must be word aligned to be used in arithmetic operations.

Syntax

The syntax of DCFS is:

{label} DCFS fp-constant{,fp-constant}...

where:

fp-constant

is a single precision floating-point value in one of the following forms:

{-}digits E{-}digits
{-}{digits}.digits{E{-}digits}

E may also be written in lowercase.

Usage

DCFS inserts up to three bytes of padding before the first defined number, if necessary to
achieve 4-byte alignment. Use DCFSU if you do not require alignment.

The range for single precision values is:

• Maximum 3.40282347e+38F

• Minimum 1.17549435e–38F

Example

DCFS 1E3,-4E-9
DCFS 1.0,-.1,3.1E6
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 5-51

Assembler
5.8.26 DCFSU directive

The DCFSU directive allocates memory for arbitrarily aligned single precision
floating-point numbers, and defines the initial runtime contents of the memory.

Syntax

The syntax of DCFSU is:

{label} DCFSU fp-constant{,fp-constant}...

where:

fp-constant

is a single precision floating-point value in one of the following forms:

{-}digits E{-}digits
{-}{digits}.digits{E{-}digits}

E may also be written in lowercase.

Usage

Use DCFSU to define floating-point values with arbitrary alignment.

DCFSU does not insert padding when preceding code is unaligned. Use DCFS if you require
alignment.

The range for single precision values is:

• Maximum 3.40282347e+38F

• Minimum 1.17549435e–38F

Example

DCFSU 1E3,-4E-9
DCFSU 1.0,-.1,3.1E6
5-52 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

Assembler
5.8.27 DCW directive

The DCW directive allocates one or more halfwords of memory, aligned on 2-byte
boundaries, and defines the initial runtime contents of the memory.

Syntax

The syntax of DCW is:

{label} DCW expression{,expression}...

where:

expression

is a numeric expression that evaluates to an integer in the range –32768
to 65535. See Numeric expressions on page 5-89.

Usage

You must use a DATA directive if you use DCW to define labeled data within Thumb code.
Refer to DATA directive on page 5-45 for more information.

If DCW is followed by an instruction, use an ALIGN directive to ensure that the instruction
is word aligned. Refer to ALIGN directive on page 5-36 for more information.

DCW inserts a byte of padding before the first defined halfword if necessary to achieve
2-byte alignment. Use DCWU if you do not require alignment.

See also:

• DCB or = directive on page 5-46

• DCD or & directive on page 5-47

• DCWU directive on page 5-54

• DCDU directive on page 5-48

• % directive on page 5-32

Example

AREA MiscData, DATA, READWRITE
data DCW -225,2*number ; number must already be

DCW number+4 ; defined
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 5-53

Assembler
5.8.28 DCWU directive

The DCWU directive allocates one or more unaligned halfwords of memory, and defines
the initial runtime contents of the memory.

Syntax

The syntax of DCWU is:

{label} DCWU expression{,expression}...

where:

expression

is a numeric expression that evaluates to an integer in the range –32768
to 65535. See Numeric expressions on page 5-89.

Usage

Use DCWU to define data halfwords with arbitrary alignment, in packed structures for
example.

You must use a DATA directive if you use DCWU to define labeled data within Thumb code.
Refer to DATA directive on page 5-45 for more information.

If DCWU is followed by code, use an ALIGN directive to ensure that instructions are word
aligned. Refer to ALIGN directive on page 5-36 for more information.

DCWU does not insert padding when preceding code is unaligned. Use DCW if you require
alignment.

See also:

• DCB or = directive on page 5-46

• DCW directive on page 5-53

• DCD or & directive on page 5-47

• DCDU directive on page 5-48

• % directive on page 5-32

Example

AREA DataB2, DATA, READWRITE
oddbits DCB 1,2,3 ; now not word aligned

DCWU number,-255,4 ; these will each occupy two
; bytes, but not necessarily
; aligned
5-54 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

Assembler
5.8.29 ELSE directive

See | or ELSE directive on page 5-34

5.8.30 END directive

The END directive informs the assembler that it has reached the end of a source file.

Syntax

The syntax of END is:

END

Usage

Every assembly language source file must end with END ona line by itself.

If the source file has been included in a parent file by a GET directive, the assembler
returns to the parent file and continues assembly at the first line following the GET
directive. See GET or INCLUDE directive on page 5-63 for more information.

If END is reached in the top-level source file during the first pass without any errors, the
second pass begins.

If END is reached in the top-level source file during the second pass, the assembler
finishes the assembly and writes the appropriate output.

5.8.31 ENDIF directive

See] or ENDIF directive on page 5-34
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 5-55

Assembler
5.8.32 ENTRY directive

The ENTRY directive declares its offset in its containing AOF area to be the unique entry
point to any program containing the area.

Syntax

The syntax of ENTRY is:

ENTRY

Usage

You must specify one and only one ENTRY directive for a program. If ENTRY does not exist,
or if more than one ENTRY exists, a error message is generated at link time. If more than
one ENTRY exists in a single source file, an error message is generated at assembly time.

For applications written entirely or partially in C or C++, the entry point is frequently
located in the library code.

Example

AREA ARMex, CODE, READONLY
ENTRY ; Entry point for the application
5-56 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

Assembler
5.8.33 EQU or * directive

The EQU directive gives a symbolic name to a numeric constant. * is a synonym for EQU.

Syntax

The syntax of EQU is:

name EQU expression

where:

name is the symbolic name to assign to the value.

expression

is a fixed, register-relative, or program-relativevalue.

Usage

Use EQU to define constants. This is similar to the use of #define to define a constant in C.

See also:

• ^ or MAP directive on page 5-35

• # directive on page 5-31

• Symbols on page 5-25

• Register-relative and program-relative expressions on page 5-89.

Example

num EQU 2 ; assigns the value 2 to the symbol num.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 5-57

Assembler
5.8.34 EXPORT or GLOBAL directive

The EXPORT directive declares a symbol that can be used by the linker to resolve symbol
references in separate object and library files. GLOBAL is a synonym for EXPORT.

Syntax

The syntax of EXPORT is:

EXPORT symbol {[qualifier{,qualifier}{,qualifier}]}

where:

symbol is the symbol name to export. The symbol name iscase-sensitive.

qualifier can be any of:

FPREGARGS

meaning that symbol refers to a function that expects
floating-point arguments to be passed in floating-point
registers.

DATA meaning that symbol refers to a data location rather than a
function or a procedure entry point.

LEAF denotes that the exported function is a leaf function that calls
no other functions. This qualifier is obsolete.

Usage

Use EXPORT to allow code in other files to refer to symbols in the current file.

Use the DATA attribute to inform the linker that symbol should not be the target of
branches.

See also IMPORT or EXTERN directive on page 5-64.

Example

AREA Example,CODE,READONLY
EXPORT DoAdd ; Export the function name

; to be used by external
; modules.

DoAdd ADD r0,r0,r1

5.8.35 EXTERN directive

See IMPORT or EXTERN directive on page 5-64
5-58 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

Assembler
5.8.36 FN directive

The FN directive defines a name for a specified floating-point register. The names f0-f7
and F0-F7 are predefined.

Syntax

The syntax of FN is:

name FN numeric-expression

where:

name is the name to be assigned to the floating-pointregister. name cannot be the
same as any of the predefined names listed in Predefined register and
coprocessor names on page 5-9.

numeric-expression

evaluates to a floating-point register number from 0 to 7.

Usage

Use FN to allocate convenient names to floating-point registers, to help you to remember
what you use each one for. Be careful to avoid conflicting uses of the same register
under different names.

Example

energy FN 6 ; defines energy as a symbol for
; floating-point register 6
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 5-59

Assembler
5.8.37 GBLA directive

The GBLA directive declares and initializes a global arithmetic variable. The range of
values that arithmetic variables may take is the same as that of numeric expressions. See
Numeric expressions on page 5-89.

Syntax

The syntax of GBLA is:

GBLA variable-name

where:

variable-name

is the name of the arithmetic variable. variable-name mustbe unique
amongst symbols within a source file.

variable-name is initialized to 0.

Usage

Using GBLA for a variable that is already defined re-initializes the variable to 0. The scope
of the variable is limited to the source file that contains it.

Set the value of the variable with the SETA directive. See SETA directive on page 5-82.

See also LCLA directive on page 5-69 for information on setting local arithmetic
variables.

Global variables can also be set with the -predefine assembler command-line option.
Refer to Command syntax on page 5-3 for more information.

Example

GBLA objectsize ; declare the variable name
objectsize SETA 0xff ; set its value

% objectsize ; quote the variable
5-60 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

Assembler
5.8.38 GBLL directive

The GBLL directive declares and initializes a global logical variable. Possible values of a
logical variable are {TRUE} and {FALSE}.

Syntax

The syntax of GBLL is:

GBLL variable-name

where:

variable-name

is the name of the logical variable. variable-name mustbe unique amongst
symbols within a source file.

variable-name is initialized to {FALSE}.

Usage

Using GBLL for a variable that is already defined re-initializes the variable to {FALSE}.
The scope of the variable is limited to the source file that contains it.

Set the value of the variable with the SETL directive. See SETL directive on page 5-83.

See LCLL directive on page 5-70 for information on setting local logical variables.

Global variables can also be set with the -predefine assembler command-line option.
Refer to Command syntax on page 5-3 for more information.

Example

GBLL testrun
testrun SETL {TRUE}

IF testrun
; testcode
ENDIF
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 5-61

Assembler
5.8.39 GBLS directive

The GBLS directive declares and initializes a global string variable. The range of values
that string variables may take is the same as that of string expressions. See String
expressions on page 5-88.

Syntax

The syntax of GBLS is:

GBLS variable-name

where:

variable-name

is the name of the string variable. variable-name mustbe unique amongst
symbols within a source file.

variable-name is initialized to a null string, "".

Usage

Using GBLS for a variable that is already defined re-initializes the variable to a null string.
The scope of the variable is limited to the source file that contains it.

Set the value of the variable with the SETS directive. See SETS directive on page 5-84.

See LCLS directive on page 5-71 for information on setting local string variables.

Global variables can also be set with the -predefine assembler command-line option.
Refer to Command syntax on page 5-3 for more information.

Example

GBLS version ; declare the variable
version SETS "Version 1.0" ; set its value

; code
INFO 0,version ; use the variable
5-62 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

Assembler
5.8.40 GET or INCLUDE directive

The GET directive includes a file within the file being assembled. The included file is
assembled. INCLUDE is a synonym for GET.

Syntax

The syntax of GET is:

GET filename

where:

filename is the name of the file to be included in the assembly.The assembler
accepts pathnames in either UNIX or MS-DOS format.

Usage

GET is useful for including macro definitions, EQUs, and storage maps in an assembly.
When assembly of the included file is complete, assembly continues at the line
following the GET directive.

By default the assembler searches the current place for included files. The current place
is the directory where the calling file is located. Use the -i assembler command-line
option to add directories to the search path. File names and directory names must not
contain spaces.

The included file may contain additional GET directives to include other files. See
Nesting directives on page 5-30.

If the included file is in a different directory from the current place, this becomes the
current place until the end of the included file. The previous current place is then
restored.

GET cannot be used to include object files. See INCBIN directive on page 5-66.

Example

AREA Example, CODE, READONLY
GET file1.s ; includes file1 if it exists

; in the current place.
GET c:\project\file2.s ; includes file2
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 5-63

Assembler
5.8.41 GLOBAL directive

See EXPORT or GLOBAL directive on page 5-58

5.8.42 IF directive

See [or IF directive on page 5-33

5.8.43 IMPORT or EXTERN directive

The IMPORT directive provides the assembler with a name that is not defined in the
current assembly. EXTERN is a synonym for IMPORT. See also EXPORT or GLOBAL
directive on page 5-58.

Syntax

The syntax of IMPORT is:

IMPORT symbol{[qualifier{,qualifier}]}

where:

symbol is a symbol name defined in a separately assembledsource file, object file,
or library. The symbol name is case-sensitive.

qualifier can be:

FPREGARGS

specifies that symbol defines a function that expects
floating-point arguments passed in floating-point registers.

WEAK prevents the linker generating an error message if the symbol
is not defined elsewhere. It also prevents the linker searching
libraries that are not already included.

Usage

The name is resolved at link time to a symbol defined in a separate object file. The
symbol is treated as a program address. If [WEAK] is not specified, the linker generates
an error if no corresponding symbol is found at link time.

If [WEAK] is specified and no corresponding symbol is found at link time:

• if the reference is the destination of a Branch or Branch Link instruction, the value
of the symbol is taken as the address of the referencing instruction. The
instruction becomes B {PC} or BL {PC}.
5-64 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

Assembler
• otherwise, the value of the symbol is taken as zero.

You must avoid executing B {PC} and BL {PC} at runtime as they are non-terminating
loops.

To avoid trying to access symbols that are not found at link time, use code like the
example below to test your environment at runtime.

Example

This example tests to see if the C++ library has been linked, and branches conditionally
on the result.

AREA Example, CODE, READONLY
IMPORT __CPP_INITIALIZE[WEAK] ; If C++ library linked

; gets the address of
; CPP_INIT function.

LDR r0,__CPP_INITIALIZE ; If not linked, address
; is zeroed.

CMP r0,#0 ; Test if zero.
BEQ nocplusplus ; Branch on the result.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 5-65

Assembler
5.8.44 INCBIN directive

The INCBIN directive includes a file within the file being assembled. The file is included
as it is, without being assembled.

Syntax

The syntax of INCBIN is:

INCBIN filename

where:

filename is the name of the file to be included in the assembly.The assembler
accepts pathnames in either UNIX or MS-DOS format.

Usage

You can use INCBIN to include executable files, literals, or any arbitrary data. The
contents of the file are added to the current AOF area, byte for byte, without being
interpreted in any way. Assembly continues at the line following the INCBIN directive.

By default the assembler searches the current place for included files. See GET or
INCLUDE directive on page 5-63 for information on the current place. Use the -i
assembler command-line option to add directories to the search path. File names and
directory names must not contain spaces.

Example

AREA Example, CODE, READONLY
INCBIN file1.dat ; includes file1 if it

; exists in the
; current place.

INCBIN c:\project\file2.txt ; includes file2

5.8.45 INCLUDE directive

See GET or INCLUDE directive on page 5-63
5-66 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

Assembler
5.8.46 INFO or ! directive

The INFO directive supports diagnostic generation on either pass of the assembly.

! is a synonym for INFO.

Syntax

The syntax of INFO is:

INFO numeric-expression, string-expression

where:

numeric-expression

is a numeric expression that is evaluated duringassembly. If the
expression evaluates to zero:

• no action is taken during pass one

• string-expression is printed during pass two.

If the expression does not evaluate to zero, string-expression is printed
as an error message and the assembly fails.

string-expression

is an expression that evaluates to a string.

Usage

INFO provides a flexible means for creating custom error messages. See Numeric
expressions on page 5-89 and String expressions on page 5-88 for additional
information on numeric and string expressions.

See also ASSERT directive on page 5-40.

Examples

INFO 0, "Version 1.0"
IF endofdata <= label1
INFO 4, "Data overrun at label1"
ENDIF
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 5-67

Assembler
5.8.47 KEEP directive

The KEEP directive instructs the assembler to retain local symbols in the symbol table in
the object file.

Syntax

The syntax of KEEP is:

KEEP {symbol}

where:

symbol is the name of the local symbol to keep. If symbol isnot specified, all local
symbols are kept except register-relative symbols.

Usage

By default, the assembler only describes exported symbols in its output object file. Use
KEEP to preserve local symbols that can be used to help debugging. Kept symbols appear
in the ARM debuggers and in linker map files.

KEEP can be used only after the definition of symbol. This does not apply to KEEP without
symbol.

KEEP cannot preserve register-relative symbols. See ^ or MAP directive on page 5-35.

Example

label ADC r2,r3,r4
KEEP label ; makes label available to debuggers
ADD r2,r2,r5
5-68 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

Assembler
5.8.48 LCLA directive

The LCLA directive declares and initializes a local arithmetic variable. Local variables
can be declared only within a macro.

The range of values that arithmetic variables may take is the same as that of numeric
expressions. See Numeric expressions on page 5-89.

Syntax

The syntax of LCLA is:

LCLA variable-name

where:

variable-name

is the name of the variable to set. The name mustbe unique within the
macro that contains it. The initial value of the variable is 0.

Usage

See also MACRO directive on page 5-72. The scope of the variable is limited to a
particular instantiation of the macro that contains it.

Using LCLA for a variable that is already defined re-initializes the variable to 0.

Set the value of the variable with the SETA directive. See SETA directive on page 5-82.

See GBLA directive on page 5-60 for information on declaring global arithmetic
variables.

Example

; Calculate the next-power-of-2
; number >= the value given.

MACRO ; Declare a macro
$rslt NPOW2 $value ; Macro prototype line

LCLA newval ; Declare local arithmetic
; variable newval.

newval SETA 1 ; Set value of newval to 1
WHILE (newval < $value)

; Repeat a loop that
newval SETA (newval :SHL:1) ; multiplies newval by 2

WEND ; until newval >= $value.
$rslt EQU (newval) ; Return newval in $rslt

MEND ; No runtime instructions here!
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 5-69

Assembler
5.8.49 LCLL directive

The LCLL directive declares and initializes a local logical variable. Local variables can
be declared only within a macro. Possible values of a logical variable are {TRUE} and
{FALSE}.

Syntax

The syntax of LCLL is:

LCLL variable-name

where:

variable-name

is the name of the variable to set. The name mustbe unique within the
macro that contains it. The initial value of the variable is {FALSE}.

Usage

See also MACRO directive on page 5-72. The scope of the variable is limited to a
particular instantiation of the macro that contains it.

Using LCLL for a variable that is already defined re-initializes the variable to {FALSE}.

Set the value of the variable with the SETL directive. See SETL directive on page 5-83.

See GBLL directive on page 5-61 for information on declaring global logical variables.

Example

MACRO ; Declare a macro
$label cases $x ; Macro prototype line

LCLL xisodd ; Declare local logical variable
; xisodd.

xisodd SETL $x:MOD:2=1 ; Set value of xisodd according
; to $x

$label ; code
IF xisodd ; Assemble following code only

; if $x is odd.
; code
ENDIF
MEND ; End of macro
5-70 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

Assembler
5.8.50 LCLS directive

The LCLS directive declares and initializes a local string variable. Local variables can be
declared only within a macro. The initial value of the variable is a null string, "".

Syntax

The syntax of LCLS is:

LCLS variable-name

where:

variable-name

is the name of the variable to set. The name mustbe unique within the
macro that contains it.

Usage

See also MACRO directive on page 5-72. The scope of the variable is limited to a
particular instantiation of the macro that contains it.

Using LCLS for a variable that is already defined re-initializes the variable to a null string.

Set the value of the variable with the SETS directive. See SETS directive on page 5-84.

See GBLS directive on page 5-62 for information on declaring global logical variables.

Example

MACRO ; Declare a macro
$label message $a ; Macro prototype line

LCLS err ; Declare local string
; variable err.

err SETS "error no: " ; Set value of err
$label ; code

INFO 0, "err":CC::STR:$a ; Use string
MEND
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 5-71

Assembler
5.8.51 LTORG directive

The LTORG directive instructs the assembler to assemble the current literal pool
immediately.

Syntax

The syntax of LTORG is:

LTORG

Usage

The assembler executes an LTORG directiveat the end of every code area, as defined by
the AREA directive at the beginning of the following area, or the end of the assembly.

Use LTORG to ensure that literal pools are assembled within range of the LDR, LDFD, and
LDFS pseudo-instructions. Refer to LDR ARM pseudo-instruction on page 5-16 and LDR
Thumb pseudo-instruction on page 5-21 for more information. Large programs may
require several literal pools.

Place LTORG directives after unconditional branches or subroutine return instructions so
that the processor does not attempt to execute the constants as instructions.

The assembler word-aligns data in literal pools.

Example

AREA Example, CODE, READONLY
start BL func1
func1 ; function body

; code
LDR r1,=0x55555555 ; => LDR R1, [pc, #offset to

; Literal Pool 1]
; code
MOV pc,lr ; end function
LTORG ; Literal Pool 1 contains

; literal &55555555.
data % 4200 ; Clears 4200 bytes of memory,

; starting at current location.
END ; Default literal pool is empty.

5.8.52 MACRO directive

The MACRO directive marks the start of the definition of a macro. Macro expansion
terminates at the MEND directive. See Chapter 5 Basic Assembly Language Programming
in the ARM Software Development Toolkit User Guide for further information.
5-72 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

Assembler
Syntax

Two directives are used to define a macro. The syntax is:

MACROmacro_prototype; codeMEND

The MACRO directive must be followed by a macro prototype statement on the next line.
The syntax of the macro prototype statement is:

{$label} macroname {$parameter1{,$parameter2}...}

where:

$label is a parameter that is substituted with a symbol given when the macro is
invoked. The symbol is usually, but not necessarily, a label.

macroname is the name of the macro. It must not begin with an instruction or directive
name.

$parameter

is a parameter that is substituted when the macro is invoked. A default
value for a parameter may be set using this format:

$parameter="default value"

Double quotes must be used if there are any spaces within, or at either end
of, the default value.

Usage

There must be no unclosed WHILE...WEND loops or unclosed IF...ENDIF conditions when
the MEND directive is reached. See MEXIT directive on page 5-75 if you need to allow an
early exit from a macro, for example from within a loop.

Within the macro body, parameters such as $label, $parameter can be used in the same
way as other variables. See Assembly time substitution of variables on page 5-27. They
are given new values each time the macro is invoked. Parameters must begin with $ to
distinguish them from ordinary symbols. Any number of parameters can be used.

$label is optional. It is useful if the macro defines internal labels. It is treated as a
parameter to the macro. It does not necessarily represent the first instruction in the
macro expansion. The macro defines the locations of any labels.

Use | as the argument to use the default value of a parameter. An empty string is used
if the argument is omitted.

In a macro that uses several internal labels, it is useful to define each internal label as
the base label with a different suffix.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 5-73

Assembler
Use a dot between a parameter and following text, or a following parameter, if a space
is not required in the expansion. Do not use a dot between preceding text and a
parameter.

Macros define the scope of local variables. See LCLA directive on page 5-69, LCLL
directive on page 5-70 and LCLS directive on page 5-71.

Macros can be nested. See Nesting directives on page 5-30.

Example

MACRO ; start macro definition
$label xmac $p1,$p2

; code
$label.loop1 ; code

; code
BGE $label.loop1

$label.loop2 ; code
BL $p1
BGT $label.loop2
; code
ADR $p2
; code
MEND ; end macro definition

abc xmac subr1,de ; invoke macro
; code ; this is what is

abcloop1 ; code ; is produced when
; code ; the macro is
BGE abcloop1 ; expanded

abcloop2 ; code
BL subr1
BGT abcloop2
; code
ADR de
; code

5.8.53 MAP directive

See ^ or MAP directive on page 5-35

5.8.54 MEND directive

The MEND directive marks the end of a macro definition.

See MACRO directive on page 5-72.
5-74 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

Assembler
5.8.55 MEXIT directive

The MEXIT directive is used to exit a macro definition before the end.

Syntax

The syntax of MEXIT is:

MEXIT

Usage

Use MEXIT when you need an exit fromwithin the body of a macro. Any unclosed
WHILE...WEND loops or IF...ENDIF conditions are closed by the assembler before the
macro is exited.

See also MACRO directive on page 5-72.

Example

MACRO
$abc macroabc $param1,$param2

; code
WHILE condition1

; code
IF condition2

; code
MEXIT

ELSE
; code

ENDIF
WEND
; code
MEND
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 5-75

Assembler
5.8.56 NOFP directive

The NOFP directive disallows floating-point instructions in an assembly language source
file.

Syntax

The syntax of NOFP is:

NOFP

Usage

Use NOFP to ensure that no floating-pointinstructions are used in situations where there
is no support for floating-point instructions either in software, or in target hardware.

If a floating-point instruction occurs after the NOFP directive, an Unknown opcode error is
generated and the assembly fails.

If a NOFP directive occurs after a floating-point instruction, the assembler generates the
error:

Too late to ban floating point instructions

and the assembly fails.
5-76 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

Assembler
5.8.57 OPT directive

The OPT directive sets listing options from within the source code.

Syntax

The syntax of OPT is:

OPT n

where:

n is the OPT directive setting. Table 5-3 lists valid settings.

Table 5-3 OPT directive settings

OPT n Effect

1 Turns on normal listing.

2 Turns off normal listing.

4 Page throw. Issues an immediate formfeed and starts a new page.

8 Resets the line number counter to zero.

16 Turns on listing for SET, GBL and LCL directives.

32 Turns off listing for SET, GBL and LCL directives.

64 Turns on listing of macro expansions.

128 Turns off listing of macro expansions.

256 Turns on listing of macro invocations.

512 Turns off listing of macro invocations.

1024 Turns on the first pass listing.

2048 Turns off the first pass listing.

4096 Turns on listing of conditional directives.

8192 Turns off listing of conditional directives.

16384 Turns on listing of MEND directives.

32768 Turns off listing of MEND directives.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 5-77

Assembler
Usage

Specify the -list assembler option to turn on listing.

By default the -list option produces a normal listing that includes variable
declarations, macro expansions, call-conditioned directives, and MEND directives. The
listing is produced on the second pass only. Use the OPT directive to modify the default
listing options from within your code. Refer to Command syntax on page 5-3 for
information on the -list option.

You can use OPT to format code listings. For example, you can specify a new page before
functions and areas.

Example

AREA Example, CODE, READONLY
start ; code

; code
BL func1
; code
OPT 4 ; places a page break before func1

func1 ; code
5-78 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

Assembler
5.8.58 RLIST directive

The RLIST (register list) directive gives a name to a set of registers.

Syntax

The syntax of RLIST is:

name RLIST {list-of-registers}

where:

name is the name to be given to the set of registers.

list-of-registers

is a comma-delimited list of register names and/orregister ranges. The
register list must be enclosed in braces.

Usage

Use RLIST to give a name to a set of registers to be transferred by the LDM or STM
instructions.

LDM and STM always put the lowest physical register numbers at the lowest address in
memory, regardless of the order they are supplied to the LDM or STM instruction. If you
have defined your own symbolic register names it can be less apparent that a register list
is not in increasing register order.

Use the -checkreglist assembler option to ensure that the registers in a register list are
supplied in increasing register order. If registers are not supplied in increasing register
order, a warning is issued.

Example

Context RLIST {r0-r6,r8,r10-r12,r15}
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 5-79

Assembler
5.8.59 RN directive

The RN directive defines a register name for a specified register.

Syntax

The syntax of RN is:

name RN numeric-expression

where:

name is the name to be assigned to the register. name cannotbe the same as any
of the predefined names listed in Predefined register and coprocessor
names on page 5-9.

numeric-expression

evaluates to a register number from 0 to 15.

Usage

Use RN to allocate convenient names to registers, to help you to remember what you use
each register for. Be careful to avoid conflicting uses of the same register under different
names.

Examples

regname RN 11 ; defines regname for register 11
sqr4 RN r6 ; defines sqr4 for register 6
5-80 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

Assembler
5.8.60 ROUT directive

The ROUT directive marks the boundaries of the scope of local labels. See Local labels
on page 5-28.

Syntax

The syntax of ROUT is:

{name} ROUT

where:

name is the name to be assigned to the scope.

Usage

Use the ROUT directive to limit the scope of local labels. This makes it easier for your to
avoid referring to a wrong label by accident. The scope of local labels is the whole AOF
area if there are no ROUT directives in it. See AREA directive on page 5-38.

Use the name option to ensure that each reference is to the correct local label. If the name
of a label or a reference to a label does not match the preceding ROUT directive, the
assembler generates an error message and the assembly fails.

Example

; code
routineaA ROUT ; ROUT is not necessarily a routine

; code
3routineA ; code ; this label is checked

; code
BEQ %4routineA ; this reference is checked
; code
BGE %3 ; refers to 3 above, but not checked
; code

4routineA ; code ; this label is checked
; code

otherstuff ROUT ; start of next scope
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 5-81

Assembler
5.8.61 SETA directive

The SETA directive sets the value of a local or global arithmetic variable.

Syntax

The syntax of SETA is:

variable-name SETA expression

where:

variable-name

is the name of a variable declared by a GBLA or LCLA directive.

expression

is a numeric expression. See Numeric expressions on page 5-89.

Usage

You must declare variable-name using a LCLA or GBLA directive before using SETA. Refer
to GBLA directive on page 5-60 and LCLA directive on page 5-69 for more information.

Example

GBLA VersionNumber
VersionNumber SETA 21
5-82 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

Assembler
5.8.62 SETL directive

The SETL directive sets the value of a local or global logical variable.

Syntax

The syntax of SETL is:

variable-name SETL expression

where:

variable-name

is the name of a variable declared by a GBLL or LCLL directive.

expression

is an expression that evaluates to either {TRUE} or {FALSE}.

Usage

You must declare variable-name using a LCLL or GBLL directive before using SETL. Refer
to GBLL directive on page 5-61 and LCLL directive on page 5-70 for more information.

Example

GBLL Debug
Debug SETL {TRUE}
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 5-83

Assembler
5.8.63 SETS directive

The SETS directive sets the value of a local or global string variable.

Syntax

The syntax of SETS is:

variable-name SETS string-expression

where:

variable-name

is the name of the variable declared by a GBLS or LCLS directive.

string-expression

is a string expression. See String expressions on page 5-88.

Usage

You must declare variable-name using an LCLS or GBLS directive before using SETS. Refer
to GBLS directive on page 5-62 and LCLS directive on page 5-71 for more information.

Example

GBLS VersionString
VersionString SETS "Version 1.0"
5-84 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

Assembler
5.8.64 SUBT directive

The SUBT directive places a subtitle on the pages of a listing file. The subtitle is printed
on each page until a new SUBT directive is issued.

Syntax

The syntax of SUBT is:

SUBT subtitle

where:

subtitle is the subtitle.

Usage

Use SUBT to place a subtitle at thetop of the pages of a listing file. Subtitles appear in the
line below the titles. See TTL directive on page 5-86. If you want the subtitle to appear
on the first page, the SUBT directive must be on the first line of the source file.

Use additional SUBT directives to change subtitles. Each new SUBT directive takes effect
from the top of the next page.

Example

TTL First Title ; places a title on the first
; and subsequent pages of a
; listing file.

SUBT First Subtitle ; places a subtitle on the
; second and subsequent pages
; of a listing file.

AREA Example, CODE, READONLY
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 5-85

Assembler
5.8.65 TTL directive

The TTL directive inserts a title at the start of each page of a listing file. The title is
printed on each page until a new TTL directive is issued.

Syntax

The syntax of TTL is:

TTL title

where:

title is the title.

Usage

Use the TTL directive to place a titleat the top of the pages of a listing file. If you want
the title to appear on the first page, the TTL directive must be on the first line of the source
file.

Use additional TTL directives to change the title. Each new TTL directive takes effect from
the top of the next page.

Example

TTL First Title ; places a title on the first
; and subsequent pages of a
; listing file.

AREA Example, CODE, READONLY

5.8.66 WEND directive

See WHILE directive on page 5-87.

Syntax

The syntax of WEND is:

WEND
5-86 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

Assembler
5.8.67 WHILE directive

The WHILE directive starts a sequence of instructions or directives that are to be
assembled repeatedly. The sequence is terminated with a WEND directive. See WEND
directive on page 5-86.

Syntax

The syntax of WHILE is:

WHILE logical-expression

code

WEND

where:

logical-expression

is an expression that can evaluate to either {TRUE} or {FALSE}. See Logical
expressions on page 5-89.

Usage

Use the WHILE directive, together with the WEND directive, to assemble a sequence of
instructions a number of times. The number of repetitions may be zero.

You can use IF...ENDIF conditions within WHILE...WEND loops.

WHILE...WEND loops can be nested. See Nesting directives on page 5-30.

Example

count SETA 1 ; you are not restricted to
WHILE count <= 4 ; such simple conditions

count SETA count+1 ; In this case,
; code ; this code will be
; code ; repeated four times

WEND
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 5-87

Assembler
5.9 Expressions and operators

Expressions are combinations of symbols, values, unary and binary operators, and
parentheses. There is a strict order of precedence in their evaluation:

1. Expressions in parentheses are evaluated first.

2. Operators are applied in precedence order.

3. Adjacent unary operators are evaluated from right to left.

4. Binary operators of equal precedence are evaluated from left to right.

The assembler includes an extensive set of operators for use in expressions. Many of the
operators resemble their counterparts in high-level languages such as C. See Unary
operators on page 5-90 and Binary operators on page 5-91.

5.9.1 String expressions

String expressions consist of combinations of string literals, string variables, string
manipulation operators, and parentheses. See:

• SETS directive on page 5-84

• Variables on page 5-26

• String manipulation operators on page 5-91

• Unary operators on page 5-90.

String literals consist of a series of characters contained between double quote
characters. The length of a string literal is restricted by the length of the input line. See
Format of source lines on page 5-8.

Characters that cannot be placed in string literals can be placed in string expressions
using the :CHR: unary operator. Any ASCII character from 0 to 255 is allowed.

The value of a string expression cannot exceed 512 characters in length. It may be of
zero length.

Example

improb SETS "literal":CC:(strvar2:LEFT:4)
; sets the variable improb to the value
; "literal" with the left-most four
; characters of the contents of
; string variable strvar2 appended
5-88 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

Assembler
5.9.2 Numeric expressions

Numeric expressions consist of combinations of symbols representing numeric
constants, numeric variables, actual numeric constants, binary operators, and
parentheses. See Variables on page 5-26, Numeric constants on page 5-29 and Binary
operators on page 5-91.

Numeric expressions can contain register-relative or program-relative expressions if the
overall expression evaluates to a value that does not include a register or the program
counter.

Numeric expressions evaluate to 32-bit integers. You may interpret them as unsigned
numbers in the range 0 to 232–1, or signed numbers in the range –231 to 231–1. However,
the assembler makes no distinction between –n and 232– n. Relational operators such as
>= use the unsigned interpretation. This means that 0 > –1 is {FALSE}.

Example

a SETA 256*256MOV r1,#(a*22)

5.9.3 Register-relative and program-relative expressions

A register-relative expression evaluates to a named register plus or minus a numeric
constant. It is normally a label in a register-based area combined with a numeric
expression. See ^ or MAP directive on page 5-35.

A program-relative expression evaluates to the program counter (pc) plus or minus a
numeric constant. It is normally a label in a non register-based area combined with a
numeric expression.

Example

LDR r4,=data+4*n ; n is an assembly-time variable
; code
MOV pc,lr

data DCW value0
; n-1 DCW directives
DCW valuen ; data+4*n points here
; more DCW directives

5.9.4 Logical expressions

Logical expressions consist of combinations of logical constants ({TRUE} or {FALSE}),
logical variables, Boolean operators, relations, and parentheses. See Boolean operators
on page 5-93.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 5-89

Assembler
Relations consist of combinations of variables, literals, constants, or expressions with
appropriate relational operators. See Relational operators on page 5-92.

5.9.5 Unary operators

Unary operators have the highest precedence (bind most tightly) and are evaluated first.
A unary operator precedes its operand and adjacent operators are evaluated from right
to left.

Table 5-4 Operator precedence

Operator Usage Description

? ?A Number of bytes of executable code generated by line
defining symbol A.

BASE :BASE:A If A is a pc-relative or register-relative expression:

BASE returns the number of its register
component

BASE is most useful in macros.

INDEX :INDEX:A If A is a register-relative expression:

INDEX returns the offset from that base register.

INDEX is most useful in macros.

+ and - +A

-A

Unary plus. Unary minus. + and – can act on numeric and
program-relative expressions.

LEN :LEN:A Length of string A.

CHR :CHR:A One-character string, ASCII code A.

STR :STR:A Hexadecimal string of A.

STR returns an eight-digit hexadecimal string
corresponding to a numeric expression, or the string "T" or
"F" if used on a logical expression.

NOT :NOT:A Bitwise complement of A.

LNOT :LNOT:A Logical complement of A.

DEF :DEF:A {TRUE} if A is defined, otherwise {FALSE}.
5-90 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

Assembler
5.9.6 Binary operators

Binary operators are written between the pair of sub-expressions they operate on.
Operators of equal precedence are evaluated in left to right order. The binary operators
are presented below in groups of equal precedence, in decreasing precedence order.

Multiplicative operators

These are the binary operators that bind most tightly and have the highest precedence:

These operators act only on numeric expressions.

String manipulation operators

In the two slicing operators LEFT and RIGHT:

• A must be a string

• B must be a numeric expression.

In CC, A and B must both be strings.

Table 5-5 Multiplicative operators

Operator Usage Explanation

* A*B multiply

/ A/B divide

MOD A:MOD:B A modulo B

Table 5-6 String manipulation operators

Operator Usage Explanation

LEFT A:LEFT:B the left-most B characters of A

RIGHT A:RIGHT:B the right-most B characters of A

CC A:CC:B B concatenated on to the end of A
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 5-91

Assembler
Shift operators

The shift operators act on numeric expressions, shifting or rotating the first operand by
the amount specified by the second.

Note
 SHR is a logical shift and does not propagate the sign bit.

Addition and logical operators

The bitwise operators act on numeric expressions. The operation is performed
independently on each bit of the operands to produce the result.

Relational operators

Relational operators act on two operands of the same type to produce a logical value.

The operands may be:

• numeric

• program-relative

Table 5-7 Shift operators

Operator Usage Explanation

ROL A:ROL:B rotate A left by B bits

ROR A:ROR:B rotate A right by B bits

SHL A:SHL:B shift A left by B bits

SHR A:SHR:B shift A right by B bits

Table 5-8 Addition and logical operators

Operator Usage Explanation

AND A:AND:B bitwise AND of A and B

OR A:OR:B bitwise OR of A and B

EOR A:EOR:B bitwise Exclusive OR of A and B

+ A+B add A to B

- A-B subtract B from A
5-92 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

Assembler
• register-relative

• strings.

Strings are sorted using ASCII ordering. String A is less than string B if it is a leading
substring of string B, or if the left-most character in which the two strings differ is less
in string A than in string B.

Arithmetic values are unsigned, so the value of 0>-1 is {FALSE}.

Boolean operators

These are the weakest binding operators with the lowest precedence.

In all three cases both A and B must be expressions that evaluate to either {TRUE} or
{FALSE}.

The Boolean operators perform the standard logical operations on their operands.

Table 5-9 Relational operators

Operator Usage Explanation

= A=B A equal to B

> A>B A greater than B

>= A>=B A greater than or equal to B

< A<B A less than B

<= A<=B A less than or equal to B

/= A/=B A not equal to B

<> A<>B A not equal to B

Table 5-10 Boolean operators

Operator Usage Explanation

LAND A:LAND:B logical AND of A and B

LOR A:LOR:B logical OR of A and B

LEOR A:LEOR:B logical Exclusive OR of A and B
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 5-93

Assembler
5-94 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

Chapter 6
Linker

This chapter describes the ARM linker, armlink. The full command syntax is given, as
well as reference information on the linker itself, its input and output file formats, and
memory maps. This chapter also includes reference information on scatter loading that
enables you to specify the memory map of an image to the linker. This chapter contains
the following information:

• About the linker on page 6-2

• Command syntax on page 6-4

• Building blocks for objects and images on page 6-12

• Image file formats on page 6-13

• Image structure on page 6-15

• Specifying an image memory map on page 6-17

• About scatter loading on page 6-21

• The scatter load description file on page 6-23

• Area placement and sorting rules on page 6-31

• Linker-defined symbols on page 6-33

• Including library members on page 6-36

• Handling relocation directives on page 6-40

• Automatic inclusion of libraries on page 6-38.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 6-1

Linker
6.1 About the linker

The ARM linker allows you to:

• link together a collection of object files and object libraries to construct an
executable image

• partially link a collection of object files into an object file that can be used as input
for a link step.

6.1.1 Input to armlink

Input to the ARM linker consists of:

• one or more object files in ARM Object Format (AOF). This format is described
in detail in Chapter 15 ARM Object Format.

• optionally, one or more object libraries as described in Chapter 14 ARM Object
Library Format.

6.1.2 Output from armlink

Output from a successful invocation of the ARM linker is in the form of either:

• an executable image in one of several output formats: ELF, AIF, BIN. These are
detailed in Image file formats on page 6-13.

• a consolidated object file in ARM Object Format (AOF).

Constructing an executable image

When you use the ARM linker to construct an executable image, it:

• resolves symbolic references between the input object files

• extracts object modules from object libraries to satisfy otherwise unsatisfied
symbolic references

• sorts object fragments (areas) according to their attributes and names, and merges
similarly attributed and named fragments into contiguous chunks

• relocates relocatable values

• generates an executable image.
6-2 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

Linker
Constructing a consolidated object

When you use the ARM linker to construct a consolidated object, it:

• sorts object fragments (areas) according to their attributes and names, and merges
similarly attributed and named fragments into contiguous chunks

• performs pc-relative relocations between merged areas

• minimizes the symbol table

• leaves unresolved references as unresolved

• generates a consolidated object file that can be used as an input to a subsequent
link step.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 6-3

Linker
6.2 Command syntax

This section gives a summary of the armlink command-line options. It describes their
functional groups, and then gives the complete syntax for each of these options in
armlink syntax on page 6-6.

6.2.1 Summary of armlink options

The following lists give a brief overview of each armlink command-line option. The
options are arranged into functional groups.

Accessing help and information

You can get help and information on the armlink command and its options, and the
armlink version number, using the following options:

-help
-vsn

Selecting the output file and output format

You name the output file using the following option:

-output

and use one of these options to select the output file format:

-elf
-aof
-aif
-aif -bin
-bin

If no file format option is selected, the default is -elf.

Note
 Only the -elf option will be supported in future releases. For this reason, use of the
other file format options is deprecated. For more information on the ARM
implementation of ELF, refer to the ARM ELF file format description in
c:\ARM250\PDF\specs.

Specifying memory map information

You use the following options to specify simple memory maps:
6-4 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

Linker
-ro-base
-rw-base

These options define the addresses of the code and data areas.

For more complex images, you use the option:

-scatter

The concept of scatter loading is described in About scatter loading on page 6-21. For
examples of using -scatter, -ro-base, and -rw-base, please refer to Chapter 10 Writing
Code for ROM in the ARM Software Development Toolkit User Guide.

Note
 The -base and -data options supported by previous versions of armlink are obsolete,
and future versions of armlink will not support them. You should use -ro-base and
-rw-base instead.

Controlling image construction

These options control debugging information, libraries, and how to include and place
areas:

-debug / -nodebug
-nozeropad
-remove
-noremove
-dupok
-entry
-first
-last
-libpath
-scanlib / -noscanlib

Note
 The -workspace option supported by previous versions of armlink is obsolete.

Generating image-related information

These options control how you extract and present information on the image:

-info
-map
-symbols
-xref
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 6-5

Linker
By default, the linker prints the requested information on the standard output stream,
stdout. However, the information can be redirected to a file using the host stream
redirection facilities or the -list command-line option.

Controlling the linker

These options control some aspects of how the linker operates:

-errors
-list
-verbose
-via
-case / -nocase
-match
-unresolved / -u

6.2.2 armlink syntax

The complete armlink command syntax is:

armlink [-help] {-output file} [-vsn]
[[-elf]|[-aof]|[-aif]|[-aif -bin]|[-bin]] [-scatter file] [-ro-base address]
[-rw-base address] [[-debug]|[-nodebug]] [-nozeropad] [[-remove]|[-noremove]]
[-dupok] [[-entry entryaddress]|[-entry offset+object(area)]]
[-first object(area)] [-last object(area)] [-libpath path]
[[-scanlib]|[-noscanlib]] [-info topic-list] [-map] [-symbols file] [-xref]
[-errors file] [-list file] [-verbose] [-via file] [[-case]|[-nocase]]
[-match flags] [[-unresolved symbol]|[-u symbol]] {input-file-list}

where:

-help prints a summary of the command-line options.

-vsn displays the armlink version number.

-output file specifies the name of the output file (consolidated object or
executable image).

-elf generates the image in ELF format. This is the default.

Future versions of the ARM linker will output images in ELF file
format only. You can use the fromELF utility to convert an ELF
file to another format. This utility is described in Chapter 8 Toolkit
Utilities.
6-6 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

Linker
-aof generates the consolidated object in AOF. Because AOF can only
be used to represent an object, this option is interpreted by the
linker as a request for partial linking of the input objects into a
consolidated object.

-aif generates the image in executable AIF format. Because -aif will
not be supported in future releases, you are recommended to use
-elf to produce the output file, then run the fromELF utility to
convert to AIF format.

-aif -bin generates the image in non-executable AIF format. Because -aif
-bin will not be supported in future releases, you are
recommended to use -elf to produce the output file, then run the
fromELF utility to convert to AIF BIN.

-bin generates the image in plain binary format. Because -bin will not
be supported in future releases, you are recommended to use -elf
to produce the output file, then run the fromELF utility to convert
to BIN.

-scatter file creates the image memory map using the scatter-loading
description contained in file. The description provides grouping
and placement details of the various regions, sections, and areas in
the image.

-ro-base address

sets the execution address of the region containing the RO section
of the image to address. This is also its load address. If this option
is not specified, the default RO base address of 0x8000 is used, or
0x0 for binary images (unless specified by -scatter).

-rw-base address

sets the execution address of the second execution region to
address. If this option is used, the image has two execution
regions. If the execution address of the first execution region is not
specified, the default value is used. The default address for the RW
section is the end of the RO section. For example, if the RO
section begins at 0x8000, and is 0x1000 bytes long, the default
RW address is 0x9000.

-debug includes debug information in the output file. The linker adds
low-level symbolic debugging data to an image (except binary
images), even if the objects were compiled or assembled without
any debugging information. This is the default.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 6-7

Linker
-nodebug turns off the inclusion of debug information in the output file. The
image is then smaller, but you cannot debug it at source level.

-nozeropad does not include zero-initialized areas in a binary image. By
default, the linker includes the zero-initialized areas in the image
by filling in a sequence of zeroes. However, if the creation of such
areas can be postponed till run time, the linker can produce a
smaller image by not including the zero-initialized areas. This
option is only meaningful if the image is being output in a plain
binary format (with the -bin option).

-noremove does not remove areas unreachable from the area containing the
entry point.

-remove removes unused areas from the image. An area is considered to be
used if it contains the image entry point, or if it is referred to from
a used area.

You must take care not to remove interrupt handlers when using
-remove.

-dupok allows duplicate symbols so that an area can be included more
than once in the image. However, if -noremove is also specified, the
image must not contain multiple copies of the area.

-entry entrypoint

specifies the entry point of the image. The entrypoint may be
given as either:

entry_address an absolute address.

offset+object(area)

an offset within an area within a particular
object. For example:
-entry 8+startup(C$$code)

There must be no spaces within the argument to -entry. The area
and object names are matched case-insensitively. This latter form
is often more convenient, and is mandatory when specifying an
entry point for unused area elimination. (See the -remove option).

-first object(area)

places area from object first in the RO section of the image if it is
a non ZI area. If it is a ZI area, it is placed first in the ZI section.
This can be used to force an area that maps low addresses to be
6-8 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

Linker
placed first (typically the reset and interrupt vector addresses).
There must be no space between object and the following open
parenthesis.

When using scatter loading, use +FIRST instead.

-last object(area)

places area from object last in the RW or RO section of the image
if it is a non-ZI area. If it is a ZI area, it is placed last in the ZI
section. For example, this can be used to force an area that
contains a checksum to be placed last in the RW section. There
must be no space between object and the following open
parenthesis.

When using scatter loading, use +LAST instead.

-libpath path specifies a path that is used to search for libraries. This path
overrides the path specified by the ARMLIB environment variable. If
you do not specify a path using -libpath, the linker searches in the
path specified by ARMLIB, else searches the libraries defined in the
file Lib$$Request$$library$$variant. See Automatic inclusion of
libraries on page 6-38 for more information on including
libraries, and $$variant.

-scanlib (default) allows scanning of default libraries to resolve references.

-noscanlib prevents the scanning of default libraries in a link step. This is the
opposite of -scanlib. (See also -libpath above).

-info topic-list

prints information about specified topics, where topic-list is a
comma-separated list of topic keywords. A topic keyword may be
one of the following:

Totals reports the total code and data sizes in the
image. The totals are broken down into
separate totals for object and library files.

Sizes gives a detailed breakdown of the code and
data sizes for each input object and
interworking veneers.

Interwork is ignored in this release of the linker.

Unused lists all unused areas, when used with the
-remove option.

Note that spaces are not allowed between keywords in a list. For
example, you can enter:
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 6-9

Linker
-info sizes,totals

but not:

-info sizes, totals

-map creates an image map listing the base and size of each constituent
area.

-symbols file lists each symbol used in the link step (including linker-generated
symbols) and its value, in the named file. A filename of minus (-)
names the standard output stream instead of a file.

-xref lists cross-references between input areas.

-errors file redirects the diagnostics from the standard error stream to file.

-list file redirects the standard output stream to file. This is useful in
conjunction with -map, -xref, and -symbols.

-verbose prints messages indicating progress of the link operation.

-via file reads a further list of input filenames and linker options from file.
Each filename and option must be given on a separate line, and
cannot occupy more than one line.

You can enter multiple -via options on the armlink command line.
The -via options can also be included within a via file.

-case uses case-sensitive symbol name matching. This is the default.

-nocase uses case-insensitive symbol name matching.

-match flags sets the default and symbol-matching options so that pc-relative
implies code relocation. Each option is controlled by a single bit
in flags:

0x01 matches an undefined symbol of the form _sym to a
symbol definition of the form sym.

0x02 matches an undefined symbol of the form sym to a
symbol definition of the form _sym.

0x04 matches an undefined symbol of the form
Module_Symbol to a definition of the form
Module.Symbol.

0x08 matches an undefined symbol of the form symbol_type
to a definition of the form symbol.

0x10 treats all pc-relative relocation directives as relocating
instructions. This is the default.
6-10 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

Linker
These options are usually set by configuring the linker when it is
installed. Do not override options accidentally when using -match
from the command line.

-unresolved symbol

matches each reference to an undefined symbol to the global
definition of symbol. Note that symbol must be both defined and
global, otherwise it will appear in the list of undefined symbols,
and the link step will fail. This option is particularly useful during
top-down development, when it may be possible to test a
partially-implemented system (where the lower levels of code are
missing) by connecting each reference to a missing function to a
dummy function that does nothing.

This option does not display warnings.

-u symbol As for -unresolved, but this option displays warnings for each
unused symbol encountered.

input-file-list is a space-separated list of object and library files.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 6-11

Linker
6.3 Building blocks for objects and images

Figure 6-1 shows how objects and images are built.

Figure 6-1 Building blocks for an image

Areas These are the code and data items from which both objects and images
are built. An area contains code or initialized data, or describes a
fragment of memory that is not initialized or that must be set to zero
before the image can execute. The attributes of an area describe whether
it is read-only, read-write, executable, initialized, zero-initialized or
non-initialized. Areas are further grouped into bigger building blocks
called sections and regions, that are used to build images.

Sections These are sequences of areas that are contiguous in the address space and
have the same attributes. A section has the same attributes as those of its
constituent areas. A section containing read-only, executable areas is a
read-only, executable section.

Regions These are sequences of sections contiguous in the address space. The
constituent sections need not have the same attributes. A region may
consist of a read-write section followed by a zero-initialized section.

In terms of these building blocks:

Object This consists of one or more areas.

Image This consists of one or more regions. The image types supported by
armlink are detailed in Image file formats on page 6-13.

������

������������

�������	

�������
 �������
�	

�������	�	

�������	�

�������	��

�����
�	�	

�����
�	�

�����
�	�

�����	�
�	

�����	�	�	

�����	�	�

�����	���	

�����	���

6-12 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

Linker
6.4 Image file formats

The ARM linker can produce an image in the following file formats:

• Executable and Linkable Format (ELF)

• ARM Image Format (AIF)

• Plain Binary format.

Note
 Future versions of the ARM Linker will output images only in ELF file format. You can
use the fromELF utility to convert ELF into all the other required formats. This utility
is described in Chapter 8 Toolkit Utilities.

6.4.1 ELF format

Executable ARM ELF images conform to the TIS Portable Formats Specification
version 1.1. Implementation specific details are described in the ARM ELF File Format,
available in ARM250\PDF\specs. ELF is the default file format for producing an executable
image. Other formats are supported to maintain backward compatibility with previous
versions of the ARM linker.

6.4.2 AIF format

There are three variants of the AIF file format:

• Executable AIF format.

• Non-executable AIF format.

• Extended AIF format. This is a special type of non-executable AIF format.

See Chapter 13 ARM Image Format for full details of this format.

6.4.3 Plain binary format

An image in plain binary format is a sequence of bytes to be loaded into memory at a
known address. The linker is not concerned with how this address is communicated to
the loader, or where to enter the loaded image.

In order to produce a plain binary output, there must be:

• No unresolved symbolic references between the input objects (each reference
must resolve directly or through an input library).

• An absolute base address (given by the -ro-base option to armlink, or in the
scatter load description file). This is set to 0x0 if it is not specified.

• Complete performance of all relocation directives.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 6-13

Linker
Input areas that have the read-only attribute are placed at the low-address end of the
image, followed by initialized writable areas. By default, the zero-initialized areas are
consolidated at the end of the file where a block of zeros of the appropriate size is
written. If the -nozeropad linker option is specified, the application must create the
zero-initialized area at runtime.

Note
 If the scatter-loaded image contains zero-initialized sections, these sections must be
created by the application startup code at runtime using the initialization information
generated by the linker. The executable file contains just the initialization information
for such sections, not the sections themselves.
6-14 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

Linker
6.5 Image structure

The structure of an image is defined by the number of its constituent regions and
sections, and their positions in the memory map at image loading and image execution
times. The structure of an image is distinct from its layout in the executable file. The
executable file layout is defined by the file format.

6.5.1 Load and execution memory maps of an Image

Image regions are placed in the system memory map at load time. Before you can
execute the image, you might need to move some of its regions to their execution
locations, and create the zero-initialized sections at locations described by information
contained in the image file.

For example, initialized read-write data may need to be copied from its load address in
ROM to its execution address in RAM.

The memory map of an image has two distinct views:

• the load view

• the execution view.

Figure 6-2 Load and execution memory maps

Table 6-1 on page 6-16 compares the load and execution views.

���������

��������� ���������

������

������

�
�
�

������

�	�
����������������

���������

�
�
�

������

������
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 6-15

Linker
Table 6-1 Comparing load and execution

Load Execution

Load view describes each image region, section,
and area in terms of the address it is
located at when the image is loaded
into memory, before it starts
executing.

Execution view describes each image region, section, and
area in terms of the address it is located at
while the image is executing.

Load address is the address at which an area,
section, or region is loaded into
memory before the image containing
it starts executing. The load address
of an area, a section, or a region may
differ from its execution address.

Execution address is the address at which an area, section, or
region is located while the image
containing it is being executed.

Load section is a section in the load address space. Execution section is a section in the execution address space.

Load region is a region in the load address space. Execution region is a region in the execution address space.

Load image In the load view, an image consists of
one or more load regions, each of
which may contain one or more load
sections.

Execution image In the execution view, an image consists of
one or more execution regions, each of
which may contain one or more execution
sections.
6-16 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

Linker
6.6 Specifying an image memory map

An image can consist of any number of regions, sections, and areas. Any number of
regions can have different load and execution addresses.

To construct the memory map of an image, the linker needs information on:

grouping describing how input areas are grouped into sections and regions.

placement describing where image regions should be located in the memory maps.

Depending on the complexity of the memory maps of the image, there are two ways to
pass this information to the linker:

• Command-line options for simple cases. A simple image has at most two
execution regions.

• Scatter loading for more complex cases. Scatter loading gives you complete
control over the grouping and placement of image components by means of a
scatter load description that is passed to the linker in a text file. This is described
in full in About scatter loading on page 6-21.

6.6.1 Simple images

A simple image consists of:

• a read-only (RO) section

• a read-write (RW) section

• a zero-initialized (ZI) section.

The sections contain the input RO, RW, and ZI areas respectively. If the image does not
have any RO, RW, or ZI areas, the linker does not create the corresponding RO, RW, or
ZI sections.

In a simple image, you specify the execution addresses at which the Read-Only section
and the Read-Write section are placed in the memory map using the following linker
options:

-RO-base exec_address

instructs the linker to place the Read-Only section at exec_address (for
example, the address of the first location in ROM)

-RW-base exec_address

 instructs the linker to place the Read-Write section at exec_address

At application load time, the RO region is loaded at its execution address and the RW
region is loaded immediately after the RO region.The RW (data) section may contain
code, because programs sometimes modify themselves (or generate code and execute
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 6-17

Linker
it). Similarly, the RO (code) area may contain read-only data (for example string literals,
floating-point constants, ANSI C const data).Using the addresses passed to it, the linker
generates the symbols required to allow the region to be copied from its load address to
its execution addresses. These symbols describe the execution address and the limit of
each region. They are defined independently of any input files and, along with all other
external names containing $$, are reserved by ARM.

In a simple image, the load address of the region containing the RO section is the same
as its execution address so this region never needs to be moved before execution.

Load view

In the load view, the simplest image has a single load region consisting of the RO and
RW load sections placed consecutively in the memory map.

Note
 The ZI section does not exist at load time (except for binary images, unless -nozeropad
is used). It is created before execution using the description of the section contained in
the image file.

Execution view

In the execution view, the image has two execution regions containing the three
execution sections:

• The RW and the ZI execution sections are placed consecutively, forming one
execution region.

• If no separate RW base address is given, this execution region also includes the
RO execution section, and the image has only one execution region.

• If separate RO and RW base addresses are given, the RO execution section is
placed separately from the RW and ZI execution sections, in its own execution
region.

One execution region

In the execution view, the RO, RW, and ZI sections are laid out consecutively in a single
execution region. The execution address of the region containing the RO section is the
same as its load address. However, the ZI section still needs to be created before
execution begins.

You specify the execution address (that is also its load address) using:
6-18 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

Linker
-ro-base execution_address

where execution_address is the execution address of the execution region.

Figure 6-3 Simple image with one execution region

As an example, this approach is suitable for OS-based systems that load programs (code
and data) into RAM (such as Angel on a PID board).

The symbols describing the load and/or execution addresses are listed in Section-related
symbols on page 6-34.

Two execution regions

In Figure 6-4, there are two execution regions.

Figure 6-4 Simple image with two execution regions

Because of this, you must specify two execution addresses:

-ro-base execution_address_1 -rw-base execution_address_2

�	�
����������������

�
�
�

���������

���������

����������

���������

������

	
����������
��

	
�����	����
��

	
����������
��

	
�����������

	
�����������

	
�����	�����

���������

���������

������
��������

������

�������������� ��������������

������

�	�
����������������

�
�
�

���������

���������

����������

������

	
����������
��

	
�����	����
��

	
����������
��

	
�����������

	
�����	�����

��������� ���
���������������

���������

���������
	
�����������

�����!
���������������

�������������� ��������������

������
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 6-19

Linker
where:

execution_address_1

is the execution address of the RO execution region. The first
execution region contains the RO section. The execution address
of the first execution region (containing the RO section) is also the
same as its load address.

execution_address_2

is the execution address of the RW execution region.
The execution address of the second execution region is different
from its load address, so it needs to be moved from its load address
before execution begins. The second execution region contains
RW and ZI sections. The ZI section needs to be created before
execution begins.

The symbols created are listed in Section-related symbols on page 6-34.

As an example, this approach is suitable for simple ROM-based embedded systems, or
OS-based systems that load programs.
6-20 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

Linker
6.7 About scatter loading

The scatter loading mechanism enables you to specify the memory map of an image to
the linker. Scatter loading gives you complete control over the grouping and placement
of image components. It is capable of describing complex image maps consisting of
multiple regions scattered in the memory map at load and execution time. Figure 6-5 on
page 6-22 shows an example of a complex memory map.

An image consists of one or more regions. Each region contains one or more sections,
and each section contains one or more areas. The load and execution address for a
region need not be the same.

To construct the memory map of an image, the linker needs:

• grouping information describing how input areas are grouped into sections and
regions

• placement information describing the addresses where image regions should be
located in the memory maps.

You specify this information using a scatter load description in a text file that is passed
to the linker.

For examples of using scatter loading, please refer to Chapter 10 Writing Code for ROM
in the ARM Software Development Toolkit User Guide.

6.7.1 Symbols defined for scatter loading

When the linker is creating an image using a scatter load description, it defines some
region-related symbols independently of any of its input files. These are described in
Region-related symbols on page 6-33.

6.7.2 Command-line option

The linker command-line option for using scatter loading is:

-scatter description_file_name

This instructs the linker to construct the image memory map as described in
description_file_name. The format of the description file is given in The scatter load
description file on page 6-23.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 6-21

Linker
Figure 6-5 Scatter loaded memory map

�

�

�

������

������

���������"

���������"	

���������"	

���������"

���������"	

���������"

���������"

�

�

#

�

�

�

�

�

�

�

$

�

�

�

�������

�������

���������"

���������"	

���������"	

�	�
����������������
�������
6-22 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

Linker
6.8 The scatter load description file

An image is made up of regions and areas. Every region in the image can have a
different load and execution address.

The types of region used in scatter loading are:

load region The memory occupied by a program when it has been loaded into
memory, but before it starts executing can be split into a set of
disjoint load regions. Each load region is a contiguous chunk of
bytes, and contains one or more execution regions.

execution region The memory used by a program while it is executing can also be
split into a set of disjoint execution regions. Each execution
regions belongs to only one load region. An area must be in one,
and only one, execution region.

6.8.1 Describing the memory map to the linker

The scatter load description is a text file that describes the memory map of the image to
the linker. The description file allows you to specify:

• the number of load regions in the image

• the load address and maximum length of each load region

• the execution regions derived from each load region

• the execution address of each execution region

• the constituent areas of each execution region.

The file format reflects the hierarchy of load regions, execution regions, and areas.

Note
 Sections are not used in the scatter load description file. The scatter load description file
only selects areas into each region. Internally, each region is made up of sections.

The assignment of areas to regions is completely independent of the order in which
patterns are written in the scatter load description.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 6-23

Linker
The description itself is a sequence of tokens, whitespace, and comments, as shown in
Table 6-2.

Table 6-2 Scatter load description

Item Description

Special
character

Single-characters with special significance are:

(
)
{
}
"
,
+
;

LPAREN
RPAREN
LBRACE
RBRACE
QUOTE
COMMA
PLUS
SEMIC

Tokens Tokens are: LPAREN
RPAREN
LBRACE
RBRACE
QUOTE
COMMA
PLUS
SEMIC

Comments Comments begin with a SEMIC and extend to the end of the current line. This means that a WORD
cannot begin with a SEMIC (unless the WORD and SEMIC are enclosed in QUOTEs).

Numbers A NUMBER encodes a 32-bit unsigned value, and has one of the forms:

Prefix:

O

&

ox

Ox

Number:

octal-digit+

hex-digit+

hex-digit+

hex-digit+

decimal-digit+

Word A WORD is an alternation of quoted and unquoted WORD-segments:

Unquoted WORD segment terminates on the first character in the set {Whitespace, LPAREN,
RPAREN, LBRACE, RBRACE, COMMA, PLUS, QUOTE}

Quoted WORD segment is enclosed by QUOTE characters and may contain any characters
except newline. All other characters of which isspace() is true
are translated to space. Two consecutive QUOTEs stand for the
literal QUOTE character and do not begin or end a quoted
WORD-segment.
6-24 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

Linker
6.8.2 Structure of the description file

Structurally, a scatter load description is a sequence of load region descriptions:

Scatter-description ::= load-region-description+

Load region description

A load region has:

• a name

• a base address

• an optional maximum size

• a non-empty list of execution regions.

The linker allows an empty description.

The syntax is:

load-region-description ::=load-region-name base-address [max-size]
LBRACE execution-region-description+ RBRACE

where:

load-region-name

names the load region. Only the first 31 characters are significant.
Use fewer characters if your system has a shorter limit on
directory entries. The linker uses the first 31 characters to produce
base and limit symbols for the region.

In multi-file output formats (for example -bin), load-region-name
is used to name the file containing initializing data for this load
region.

base-address is the address where the contents of the region are loaded. It must
be a word-aligned NUMBER, so &1234ABDC, 0x1e4, 4000, and 0
are acceptable, but 1234CD is not.

max-size is an optional NUMBER. If max-size is specified, the linker generates
an error if the region has more than max-size bytes allocated to it.

execution-region-description

is described in the following subsection.

Execution region description

An execution region is described by a name and a base address.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 6-25

Linker
The syntax is:

execution-region-description ::=exec-region-name base-designator
LBRACE area-description* RBRACEbase-designator ::= base-address

| + offset

where:

exec-region-name

names the execution region. Only the first 31 characters are
significant. Use fewer characters if your system has a shorter limit
on directory entries.

base-designator describes the base address:

base-address is the address at which objects in the region
should be linked. It must be a word-aligned
NUMBER.

+ offset describes a base address that is offset bytes
beyond the end of the preceding execution
region. The length of a region is always a
multiple of four bytes, so offset must also
be a multiple of four bytes. If there is no
preceding execution region (that is, if this is
the first in the load region) then + offset
means offset bytes after the base of the
containing load region.

area-description

is described in the following subsection.

Area description

An area-description is a pattern that identifies areas by:

• module name (object file name, library member name, or library file name)

• area name, or area attributes such as READ-ONLY, or CODE.

Note
 Only areas that match both the module-selector-pattern and at least one area-selector
are included in the execution region.

If you omit LPAREN area-selectors RPAREN, the default is +RO.

The syntax is:
6-26 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

Linker
area-description ::=module-selector-pattern [LPAREN area-selectors RPAREN]

where:

module-selector-pattern

is a pattern constructed from literal text, and the wildcard characters *
(matches 0 or more characters) and ? (matches any single character). For
example:

armlib.

An area matches a module-selector-pattern if:

• The name of the object file containing the area or name of the
library member (with no leading pathname) matches the
module-selector-pattern.

• The full name of the library from which the area was extracted
matches the module-selector-pattern.

Matching is case-insensitive, even on hosts with case-sensitive file
naming.

area-selectors

is a comma-separated list of expressions. Each expression is a pattern
against which the area name, or the name of an attribute you want the
selected area to have, is matched. In the latter case the name must be
preceded by a plus character (+). You may omit any comma immediately
followed by a PLUS.

See ARM/Thumb interworking veneers on page 6-28 for information on
assigning ARM/Thumb interworking veneers to an execution region.

area-selectors ::=(PLUS area-attrs | area-pattern)([COMMA]
PLUS area-attrs| COMMA area-pattern)*

where:

area-pattern is a pattern that is matched case-insensitively
against the area name. It is constructed from literal
text, and the wildcard characters * (matches 0 or
more characters) and ? (matches any single
character).

area-attrs is an attribute selector matched against the area
attributes. Each area-attrs follows a PLUS keyword
or + character.

All selectors are case insensitive. The following
selectors are recognized:

• RO-CODE
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 6-27

Linker
• RO-BASED-DATA

• RO (includes RO-CODE and RO-DATA)

• RO-DATA (includes RO-BASED-DATA)

• RW-STUB-DATA (shared library stub data)

• RW-DATA (includes RW-BASED-DATA and
RW-STUB-DATA)

• RW (includes RW-CODE and RW-DATA)

• ZI

• ENTRY (the area containing the ENTRY point)

RO-NOTBASED-DATA cannot be specified directly.
RO-BASED-DATA must be selected in one region and
(less specifically) RO-DATA in another.

The following synonyms are recognized:

• CODE (= RO-CODE)

• CONST (= RO-DATA)

• TEXT (= RO)

• DATA (= RW)

• BSS (= ZI)

The following pseudo-attributes are recognized:

• FIRST

• LAST

FIRST and LAST can be used to mark the first and last
areas in an execution region if the placement order
is important (for example, if the ENTRY must be first
and a checksum last). The first occurrence of FIRST
or LAST as an area-attrs terminates the list.

ARM/Thumb interworking veneers

ARM/Thumb interworking veneers are built in an area called IWV$$Code. You can assign
this area to an execution region just like any other area using the area-selector:

*(IWV$$Code)

Although there is no associated module-selector-pattern, * still matches as there is only
one IWV$$Code area, so this selection is unambiguous.
6-28 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

Linker
6.8.3 Resolving multiple matches

If an area matches more than one execution region, the matches are resolved as
described below. If a unique match cannot be found, armlink faults the scatter
description. Each area is selected by a module-selector-pattern and an area-selector.

In the following explanation:

• m1 and m2 represent module-selector-patterns.

• s1 and s2 represent area-selectors.

• the term ‘iff’ means if and only if

• the greater than operator (>) denotes more specific. For example:

m1,s1 > m2,s2

means that the m1,s1 pair is more specific than the m2,s2 pair.

In the case of multiple matches, the linker determines which region to assign the area to
on the basis of which module-selector-pattern, area-selector pair is the most specific.

For example, if area A matches m1,s1 for execution region R1, and m2,s2 for execution
region R2, the linker:

• assigns A to R1 iff m1,s1 > m2,s2

• assigns A to R2 iff m2,s2 > m1,s1

• diagnoses the scatter description as faulty if neither m1,s1 > m2,s2 nor m2,s2 >
m1,s1.

The linker determines the most specific module-selector-pattern,area-selector pair in
the following way:

• For the module selector patterns:

m1 > m2 iff (text(m1) matches pattern(m2)) && !(text(m2)
matches pattern(m1))

• For the area selectors:

— If s1 and s2 are both patterns matching area names, the same definition as
for module selector patterns is used.

— If one of s1, s2 matches the area name and the other matches the area
attributes then s1 and s2 are unordered and the description is diagnosed as
faulty.

— If both s1 and s2 match area attributes, s1 > s2 is defined by:
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 6-29

Linker
ENTRY > RO-CODE > RO
ENTRY > RO-BASED-DATA > RO-DATA > RO
ENTRY > RW-CODE > RW
ENTRY > RW-BASED-DATA > RW-DATA > RW
ENTRY > RW-STUB-DATA > RW-DATA > RW

No other members of the s1 > s2 relation between area attributes exist.

• For the module-selector-pattern,area-selector pair:

m1,s1 > m2,s2 if and only if either of the following is true:

— s1 is a literal area name (that is, it contains no pattern characters) and s2
matches area attributes other than +ENTRY

— (m1 > m2) || !(m2 > m1) && (s1 > s2).

The consequences of this matching strategy include:

• Descriptions are independent of the order in which they are written.

• Generally, the more specific the description of an object is, the more specific the
description of the areas it contains. area-selectors are not examined unless:

— Object selection is inconclusive.

— One selector fully names an area and the other selects by attribute.

In this case, the explicit area name is more specific than any attribute other
than ENTRY (that selects exactly one area from one object). This is the case
even if the object selector associated with the area name is less specific than
that associated with the attribute.

6.8.4 Obsolete features

The following features are obsolete:

• ROOT

• ROOT-DATA

• OVERLAY.

Note
 These are supported by the current version of armlink for backwards compatibility only
and will not be supported in future versions of armlink. Using these features in a
description file generates a warning from armlink.
6-30 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

Linker
6.9 Area placement and sorting rules

The linker sorts all the areas within a region according to their attributes. Areas with
identical attributes form a contiguous block within the region. Each contiguous block
of areas is defined as a section.

You need not specify explicitly the addresses or number of sections within a region,
because this is done by the linker. There are as many sections in a region as there are
non-empty area attribute sets. The base address of each section is governed by the
sorting order defined by the linker.

While generating an image, the ARM linker sorts the input areas in the following order:

• by attribute

• by area name

• by their positions in the input list, except where overridden by a -first or -last
option. This is described in Using FIRST and LAST to place areas on page 6-32.

By default, the ARM linker creates an image consisting of an RO, an RW, and optionally
a ZI, section. The RO section can be protected at runtime on systems that have memory
management hardware.

Page alignment of the RO and RW sections of the image can be forced using the area
alignment attribute of AOF areas. You set this using the ALIGN attribute of the ARM
assembler AREA directive (see AREA directive on page 5-38).

6.9.1 Ordering areas by attribute

Portions of the image associated with a particular language runtime system are collected
together into a minimum number of contiguous regions. (This applies particularly to
code regions that may have associated exception handling mechanisms.) More
precisely, the linker orders areas by attribute as follows:

• read-only code

• read-only based data

• read-only data

• read-write code

• based data

• other initialized data

• zero-initialized (uninitialized) data

• debugging tables (optional).

Areas that have the same attributes are ordered by their names. Names are considered
to be case-sensitive, and are compared in alphabetical order, using the ASCII collation
sequence for characters.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 6-31

Linker
Identically attributed and named areas are ordered according to their relative positions
in the input list.

As a consequence of these rules, the positioning of identically attributed and named
areas included from libraries is not predictable. However, if library L1 precedes library
L2 in the input list, all areas included from L1 will precede each area included from L2.
If more precise positioning is required, you can extract modules manually, and include
them in the input list.

6.9.2 Using FIRST and LAST to place areas

Within a region, all read-only code areas are contiguous and form a section that must
precede the section containing all the read-only based data areas.

If you are not using scatter loading, you use the -first and -last linker options to place
areas.

If you are using scatter loading, you use the pseudo-attributes FIRST and LAST in the
scatter load description file to mark the first and last areas in an execution region if the
placement order is important (for example, if the ENTRY must be first and a checksum
last).

However, FIRST and LAST must not violate the basic attribute sorting order. This means
that an area can be first (or last) in the execution region if the execution section in which
it is contained is the first (or last) section in the region. For example, in an execution
region containing any read-only areas, the FIRST area must be a read-only area.
Similarly, if the region contains any ZI data, the LAST area must be a ZI area.

Within each section, areas are sorted according to their names, and then by their
positions in the input order.

6.9.3 Aligning areas

Once areas have been ordered and the base address has been fixed, the linker may insert
padding to force each area to start at an address that is a multiple of:

2(area alignment)

Areas are commonly aligned at word boundaries.
6-32 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

Linker
6.10 Linker-defined symbols

The ARM Linker defines some symbols independently of any of its input files. These
symbols contain the character sequence $$ and are reserved by ARM along with all
other external names containing this sequence.

These symbols are used to specify region-base-addresses, section-base-addresses, and
area-base-addresses and their limits. They can be imported and used as relocatable
addresses by your assembly language programs, or referred to as extern symbols from
your C or C++ source code. Examples of such usage are provided in Chapter 10 Writing
Code for ROM in the ARM Software Development Toolkit User Guide.

6.10.1 Region-related symbols

These symbols are generated when the linker is creating an image using a scatter
loading description. The description names all the load and execution regions in the
image, besides providing their load and execution addresses. The scatter load
description file is explained in The scatter load description file on page 6-23.

The linker generates three symbols for every region present in the image, shown in
Table 6-3.

For every region containing a ZI section, the linker generates two additional symbols,
shown in Table 6-4.

Table 6-3 Region-related linker symbols

Symbol Description

Load$$region_name$$Base the load address of the region

Image$$region_name$$Base the execution address of the region

Image$$region_name$$Length the execution region length in bytes
(multiple of 4)

Table 6-4 Additional symbols for ZI sections

Symbol Description

Image$$region_name$$ZI$$Base the execution address of the ZI section in
this region.

Image$$region_name$$ZI$$Length the length of the ZI section in bytes
(multiple of 4)
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 6-33

Linker
Note
 A scatter load image is not padded with zeros, and requires the ZI sections to be created
dynamically. This means that there is no need for a load address symbol for ZI data.

6.10.2 Section-related symbols

The symbols shown in Table 6-5 are generated when the linker is creating a simple
image that has three sections (RO, RW and ZI) that are combined into one or two
execution regions, when -ro-base and/or -rw-base are specified.

Note
 Section-related symbols do not contain useful information if scatter loading is used to
specify region information. Code that uses section-related symbols will not produce
expected results. In such cases, only the region-related symbols described in
Region-related symbols on page 6-33 should be used.

Table 6-5 Section-related linker symbols

Symbol Description

Image$$RO$$Base Address of the start of the RO section:

• If the image has one execution region, Image$$RW$$Base is
the same as Image$$RO$$Limit.

• If the image has two execution regions, Image$$RW$$Base is
different from Image$$RO$$Limit.

Image$$RO$$Limit Address of the byte beyond the end of the RO section

Image$$RW$$Base Address of the start of the RW section

Image$$RW$$Limit Address of the byte beyond the end of the ZI section.

Image$$ZI$$Base Address of the start of the ZI section

Image$$ZI$$Limit Address of the byte beyond the end of the ZI section.
6-34 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

Linker
6.10.3 Area-related symbols

For every area present in the image, the linker generates the symbols in Table 6-6.

Table 6-6 Area-related linker symbols

Symbol Description

Areaname$$Base Address of the start of the consolidated area called Areaname.

Areaname$$Limit Address of the byte beyond the end of the consolidated area called
Areaname.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 6-35

Linker
6.11 Including library members

An object file may contain references to external objects (functions and variables). The
linker attempts to resolve these references by matching them to definitions found in
other object files and libraries. A library is a collection of AOF files stored in an ARM
Library Format file. Usually, at least one library file is specified in the input list. The
important differences between object files and libraries are:

• each object file in the input list appears in the output unconditionally, whether or
not anything refers to it

• a member from a library is included in the output if, and only if, an object file or
an already-included library member makes a non-weak reference to it.

6.11.1 Processing the input file list

The linker processes its input list as follows:

1. The object files are linked together, ignoring the libraries. Usually there will be a
resultant set of references to as yet undefined symbols. Some of these may be
weak. These are allowed to remain unsatisfied, and do not cause library members
to be loaded.

2. The libraries are then processed in the order that they appear in the input file list:

a. The library is searched for members containing symbol definitions that
match currently unsatisfied, non-weak references.

b. Each such member is loaded, satisfying some unsatisfied references,
possibly including weak ones. This may create new unsatisfied references,
again, possibly including weak ones.

c. The search of the library is repeated until no further members are loaded
from the library.

d. The libraries are re-processed as described in Step 2 until no further
members are loaded.

If any non-weak reference remains unsatisfied at the end of a linking operation, other
than one that generates partially-linked, relocatable AOF, the linker generates an error
message.

While processing the object files and libraries specified to the linker on its command
line, a warning is given if symbols are seen requesting different variants of the same
library, but all requested variants are added to the list of requested libraries (in the order
they are requested by the input files).
6-36 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

Linker
The libraries in the list are searched only if there are still unsatisfied non-weak
references after all specified objects and libraries have been loaded. They are obtained
from the directory specified to the linker by use of a -libpath argument (or configured
as its library path using the graphical configuration tool), or failing that, from the
directory which is the value of the environment variable ARMLIB.

6.11.2 Including library members

To forcibly include a library member, put the name(s) of the library member(s) in
parentheses after the library name. There must be no space between the library name
and the opening parenthesis. Multiple member names must be separated by commas.
There must be no space in the list of member names.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 6-37

Linker
6.12 Automatic inclusion of libraries

The ARM linker automatically searches for a C library that matches the attributes of the
object files being linked. To do this, the filenames of the C libraries are annotated with
letters and digits to identify them. The annotation has the form:

armlib_<apcs_variant>.<bits><bytesex>

The compiler and assembler generate a weak reference to symbols with names
Lib$$Request$$library$$variant for required libraries, where variant is determined by
the APCS options in use. this is described above, except that armcc with apcs/interwork
generates a reference to the Thumb interworking libraries. The ARM and Thumb C
compilers and assemblers require only the armlib library.

6.12.1 For ARM libraries

apcs_variant is the concatenation of a hardware floating-point option:

h hardware floating-point, instruction set 3.

r hardware floating-point, instruction set 3, fp arguments
in fp registers.

2 hardware floating-point, instruction set 2.

z hardware floating-point, instruction set 2, fp arguments
in fp registers.

 with a software stack checking option:

c no software stack checking.

 with an interworking option:

i compiled for ARM/Thumb interworking.

 and a frame pointer option:

n does not use a frame pointer.

bits is 32.

bytesex is either:

l little-endian

b big-endian

Example

The following example is an ARM little-endian C library, with no software stack
checking and no frame pointer:
6-38 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

Linker
armlib_cn.32l

6.12.2 For Thumb libraries

apcs_variant is the concatenation of a software stack checkingoption:

s software stack checking.

and an interworking option:

i compiled for ARM/Thumb interworking.

bits is 16

bytesex is either:

l little-endian

b big-endian

Example

The following example is a Thumb little-endian C library compiled for interworking:

armlib_i.16l

Note
 Not all combinations are possible. Only a subset of the possible combinations are made
by ARM as part of a release.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 6-39

Linker
6.13 Handling relocation directives

This section describes how the linker implements the relocation directives defined by
ARM Object Format.

6.13.1 The subject field

A relocation directive describes the relocation of a single subject field, that may be:

• a byte

• a halfword (2 bytes, halfword-aligned)

• a word (4 bytes, word-aligned)

• a value derived from a suitable sequence of instructions.

The relocation of a word value cannot overflow. In the other cases, overflow is
diagnosed by the linker. This is described in The relocation of instruction sequences on
page 6-41.

6.13.2 The relocation value

A relocation directive refers either to:

• the value of a symbol

• the base address of an AOF area in the same object file as the AOF area containing
the directive.

This value is called the relocation value, and the subject field is modified by it, as
described in the following subsections.

6.13.3 PC-relative relocation

A pc-relative relocation directive requests the following modification of the subject
field:

subject-field = subject_field + relocation_value
 - base_of_area_containing(subject_field)

A special case of pc-relative relocation occurs when the relocation value is specified to
be the base of the area containing the subject field. In this case, the relocation value is
not added. This caters for a pc-relative branch to a fixed location, for example:

subject-field = subject_field -
 base_of_area_containing(subject_field)
6-40 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

Linker
6.13.4 Additive relocation

A plain additive relocation directive modifies the subject field as follows:

subject_field = subject_field + relocation_value

6.13.5 Based area relocation

A based area relocation directive relocates a subject field by the offset of the relocation
value within the consolidated area containing it:

subject_field = subject_field + relocation_value
- base_of_area_group_containing(relocation_value)

6.13.6 The relocation of instruction sequences

The linker recognizes that the following instruction sequences define a relocatable
value:

• an ARM B or BL instruction

• a Thumb BL instruction pair.

If bit 0 of the relocation offset is set, the linker relocates a Thumb instruction sequence.
The only Thumb instruction sequence that can be relocated is a BL instruction pair. In
the relocation of a B or BL instruction, word offsets are converted to and from byte
offsets.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 6-41

Linker
6-42 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

Chapter 7
ARM Symbolic Debugger

The ARM Symbolic Debugger, armsd, is an interactive source-level debugger providing
high-level debugging support for languages such as C, and low-level support for
assembly language. This chapter contains the following information:

• About armsd on page 7-2

• Command syntax on page 7-3

• Running armsd on page 7-5

• Alphabetical list of armsd commands on page 7-9

• Specifying source-level objects on page 7-48

• Armsd variables on page 7-53

• Low-level debugging on page 7-58

• armsd commands for EmbeddedICE on page 7-61

• Accessing the Debug Communications Channel on page 7-63.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 7-1

ARM Symbolic Debugger
7.1 About armsd

The ARM symbolic debugger can be used to debug programs assembled or compiled
using the ARM assembler, and the ARM C compiler, if those programs have been
produced with debugging enabled. A limited amount of debugging information can be
produced at link time, even if the object code being linked was not compiled with
debugging enabled. The symbolic debugger is normally used to run ARM Image
Format images.

7.1.1 Selecting a debugger

Armsd supports:

• remote debugging

• debugging using the ARMulator

• remote debugging using ADP.

7.1.2 Automatic command execution on startup

The symbolic debugger obeys commands from an initialization file, if one exists, before
it reads commands from the standard input. The initialization file is called armsd.ini.

The current directory is searched first, and then the directory specified by the
environment variable HOME.
7-2 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

ARM Symbolic Debugger
7.2 Command syntax

You invoke armsd using the command given below. Underlining is used to show the
permitted abbreviations.

The full list of commands available when armsd is running is given in Alphabetical list
of armsd commands on page 7-9.

7.2.1 Command-line options

armsd [-help] [-vsn] [[-little]|[-big]] [-proc name] [[-fpe]|[-nofpe]]
[-symbols] [-o name] [-script name] [-exec] [-iname] [[-rem]|[-armul]|[-adp
options]] image_name arguments

where:

-help gives a summary of the armsd command-line options.

-vsn displays information on the armsd version.

-little specifies that memory should be little-endian.

-big specifies that memory should be big-endian.

-proc name specifies the cpu type.

-fpe instructs the ARMulator to load the FPE on startup.

-nofpe instructs the ARMulator not to load the FPE on startup. When
testing code compiled using the floating-point library, you may
not want to load the FPE.

-symbols loads an image file containing debug information but does not
download the image.

-o name writes output from the debuggee to the named file.

-script name takes commands from the named file (reverts to stdin on reaching
EOF).

-exec asks the debugger to execute immediately and quit when
execution stops.

-iname adds name to the set of paths to be searched to find source files.

-rem selects remote debugging. By default this will be ADP.

-armul selects the software ARM Emulator (ARMulator).
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 7-3

ARM Symbolic Debugger
-adp options selects remote debugging using ADP. Select one of the following
options to specify the ADP port to use:

-port expr

selects serial communications, where expr can be any
of:
1
2device_names=1
s=2
s=device_name

To select serial and parallel communications, expr can
be:

s=n,p=m

where n and m can be 1, 2 or a device name.

To select ethernet communications, expr is:

e=id

where id is the ethernet address of the target board.

In the case of serial and/or parallel communications,
h=0 may be prefixed to the port expression. This
switches off the heartbeat feature of ADP.

-linespeed n

sets the line speed to n.

-loadconfig name

specifies the file containing configuration data to be
loaded.

-selectconfig name version

specifies the target configuration to be used.

-reset resets the target processor immediately (if supported
for target).

-clock n

specifies the clock speed in Hz (suffixed with K or M)
for the ARMulator. This is only valid with an armsd.map
file.

image_name gives the name of the file to debug. You can also specify this
information using the load command. See load on page 7-31 for
more information.

arguments give program arguments. You can also specify this information
using the load command. See load on page 7-31 for more
information.
7-4 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

ARM Symbolic Debugger
7.3 Running armsd

This section lists all armsd commands. They are first briefly listed in functional groups,
and then are explained fully in Alphabetical list of armsd commands on page 7-9.

The functional groups are:

• Symbols

• Controlling execution

• Program context

• Low-level debugging

• Coprocessor support

• Profiling commands

• Miscellaneous.

The semicolon character (;) separates two commands on a single line.

Note
 The debugger queues commands in the order it receives them, so that any commands
attached to a breakpoint are not executed until all previously queued commands have
been executed.

7.3.1 Symbols

These commands allow you to view information on armsd symbols:

symbols lists all symbols (variables) defined in the given or current context, along
with their type information.

variable provides type and context information on the specified variable (or
structure field).

arguments shows the arguments that were passed to the current procedure, or another
active procedure.

7.3.2 Controlling execution

These commands allow you to control execution of programs by setting and clearing
watchpoints and breakpoints, and by stepping through instructions and statements:

break adds breakpoints.

call calls a procedure.

go starts execution of a program.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 7-5

ARM Symbolic Debugger
istep steps through one or more instructions.

load loads an image for debugging.

reload reloads the object file specified on the armsd command line, or with the
last load command.

return returns to the caller of the current procedure (passing back a result).

step steps execution through one or more statements.

unbreak removes a breakpoint.

unwatch clears a watchpoint.

watch adds a watchpoint.

7.3.3 Reading and writing memory

These commands allow you to set and examine program context:

getfile reads from a file and writes the content to memory.

putfile writes the contents of an area of memory to a file.

7.3.4 Program context

These commands allow you to set and examine program context:

where prints the current context as a procedure name, line number in the file,
filename and the line of code.

backtrace prints information about all currently active procedures.

context sets the context in which the variable lookup occurs.

out sets the context to be the same as that of the current context's caller.

in sets the context to that called from the current level.

7.3.5 Low-level debugging

These commands allow you to select low-level debugging and to examine and display
the contents of memory, registers, and low-level symbols:

language sets up low-level debugging if you are already using high-level
debugging.
7-6 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

ARM Symbolic Debugger
registers displays the contents of ARM registers 0 to 14, the program counter (pc)
and the status flags contained in the processor status register (psr).

fpregisters

displays the contents of the eight floating-point registers f0 to f7 and the
floating-point processor status register FPSR.

examine allows you to examine the contents of the memory between a pair of
addresses, displaying it in both hexadecimal and ASCII formats, with 16
bytes per line.

list displays the contents of the memory between a specified pair of addresses
in hexadecimal, ASCII and instruction format, with four bytes (one
instruction) per line.

find finds all occurrences in memory of a given integer value or character
string.

lsym displays low-level symbols and their values.

7.3.6 Coprocessor support

The symbolic debugger's coprocessor support enables access to registers of a
coprocessor through a debug monitor that is ignorant of the coprocessor. This is only
possible if the registers of the coprocessor are read (if readable) and written (if writable)
by a single coprocessor data transfer (CPDT) or a coprocessor register transfer (CPRT)
instruction in a non-user mode. For coprocessors with more unusual registers, there
must be support code in a debug monitor.

coproc describes the register set of a coprocessor and specifies how the contents
of the registers are formatted for display.

cregdef describes how the contents of a coprocessor register are formatted for
display.

cregisters displays the contents of all readable registers of a coprocessor, in the
format specified by an earlier coproc command.

cwrite writes to a coprocessor register.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 7-7

ARM Symbolic Debugger
7.3.7 Profiling commands

The following commands allow you to start, stop, and reset the profiler, and to write
profiling data to a file.

pause prompts you to press a key to continue.

profclear resets profiling counts.

profon starts collecting profiling data.

profoff stops collecting profiling data.

profwrite writes profiling information to a file.

7.3.8 Miscellaneous commands

These are general commands.

! passes the following command to the host operating system.

| introduces a comment line.

alias defines, undefines, or lists aliases. It allows you to define your own
symbolic debugger commands.

comment writes a message to stderr.

help displays a list of available commands, or help on a particular command.

log sends the output of subsequent commands to a file as well as the screen.

obey executes a set of debugger commands which have previously been stored
in a file, as if they were being typed at the keyboard.

print examines the contents of the debugged program's variables.

type types the contents of a source file, or any text file, between a specified
pair of line numbers.

while is part of a multi-statement line.

quit terminates the current symbolic debugger session and closes any open log
or obey files.
7-8 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

ARM Symbolic Debugger
7.4 Alphabetical list of armsd commands

This section explains how the armsd command syntax is annotated, and lists the
terminology used. Every armsd command is listed and explained, starting with the !
command on page 7-11.

7.4.1 Annotating the command syntax

typewriter Shows command elements that you should type at the keyboard.

typewriter Underlined text shows the permitted abbreviation of a command.

typewriter Represents an item such as a filename or variable name. You should
replace this with the name of your file, variable, and so on.

{} Items in braces are optional. The braces are used for clarity and should
not be typed.

* A star (*) following a set of braces means that the items in those braces
can be repeated as many times as required. Many command names can be
abbreviated. The braces here show what can be left out. In the one case
where braces are required by the debugger, these are enclosed in quote
marks in the syntax pattern.

7.4.2 Names used in syntax descriptions

These terms are used in the following sections for the command syntax descriptions:

context The activation state of the program. See Variable names and context on
page 7-48.

expression An arbitrary expression using the constants, variables and operators
described in Expressions on page 7-50. It is either a low-level or a
high-level expression, depending on the command.

Low-level Low-level expressions are arbitrary expressions using constants,
low-level symbols and operators. High-level variables may be included in
low-level expressions if their specification starts with # or $, or if they are
preceded by ^.

High-level High level expressions are arbitrary expressions using constants,
variables and operators. Low-level symbols may be included in
high-level expressions by preceding them with @.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 7-9

ARM Symbolic Debugger
 The list, find, examine, putfile, and getfile commands require
low-level expressions as arguments. All other commands require
high-level expressions.

location A location within the program (see Program locations on page 7-49).

variable A reference to one of the program's variables. Use the simple variable
name to look at a variable in the current context, or add more information
as described in Variable names and context on page 7-48 to see the
variable elsewhere in the program.

format is one of:

• hex

• ascii

• string

This is a sequence of characters enclosed in double quotes ("). A
backslash (\) may be used as an escape character within a string.

• A C printf() function format descriptor. Table 7-1 shows some
common descriptors.

Table 7-1 Format descriptors

Type Format Description

int

%d

%u

%x

Only use this if the expression being printed yields an integer:

Signed decimal integer (default for integers)

Unsigned integer Hexadecimal (lowercase letters)

same as hex

char %c Character (same as ascii)

Only use this if the expression being printed yields an integer.

char * %s Pointer to character (same as string)

Only use this for expressions which yield a pointer to a
zero-terminated string.

void * %p Pointer (same as %.8x), for example, 00018abc

This can be used with any kind of pointer.

float

%e

%f

%g

Only use this for floating-point results:

Exponent notation, for example, 9.999999e+00

Fixed point notation, for example, 9.999999

General floating-point notation, for example, 1.1, 1.2e+06
7-10 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

ARM Symbolic Debugger
7.4.3 ! command

The ! command gives access to the command line of the host system without quitting
the debugger.

Syntax

The syntax of ! is:

!command

where:

command is the operating system command to execute.

Usage

Any command whose first character is ! is passed to the host operating system for
execution.

7.4.4 | command

The | command introduces a comment line.

Syntax

The syntax of | is:

|comment

where:

comment is a text string

Usage

This command allows you to annotate your armsd file.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 7-11

ARM Symbolic Debugger
7.4.5 alias

The alias command defines, undefines, or lists aliases. It allows you to define symbolic
debugger commands.

Syntax

The syntax of alias is:

alias {name{expansion}}

where:

name is the name of the alias.

expansion is the expansion for the alias.

Usage

If no arguments are given, all currently defined aliases are displayed. If expansion is not
specified, the alias named is deleted. Otherwise expansion is assigned to the alias name.

The expansion may be enclosed in double quotes (") to allow the inclusion of characters
not normally permitted or with special meanings, such as the alias expansion character
(‘) and the statement separator (;).

Aliases are expanded whenever a command line or the command list in a do clause is
about to be executed.

Words consisting of alphanumeric characters enclosed in backquotes (‘) are expanded.
If no corresponding alias is found they are replaced by null strings. If the character
following the closing backquote is non-alphanumeric, the closing backquote may be
omitted. If the word is the first word of a command, the opening backquote may be
omitted. To use a backquote in a command, precede it with another backquote.
7-12 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

ARM Symbolic Debugger
7.4.6 arguments

The arguments command shows the arguments that were passed to the current, or other
active procedure.

Syntax

The syntax of arguments is:

arguments {context}

where:

context specifies the program context to display. If context is not specified, the
current context is used (normally the procedure active when the program
was suspended).

Usage

You use the arguments command to display the name and context of each argument
within the specified context.

7.4.7 backtrace

The backtrace command prints information about all currently active procedures,
starting with the most recent, or for a given number of levels.

Syntax

The syntax of backtrace is:

backtrace {count}

where:

count specifies the number of levels to trace. This is an optional argument. If
you do not specify count, the currently active procedures are traced.

Usage

When your program has stopped running, because of a breakpoint or watchpoint, you
use backtrace to extract information on currently active procedures. You can access
information like the current function, the line of source code calling the function and so
on.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 7-13

ARM Symbolic Debugger
7.4.8 break

The break command allows you to specify breakpoints.

Syntax

The syntax of the break command is:

break{/size} {loc {count} {do '{'command{;command}'}'} {if expr}}

where:

/size specifies which code type to break:

/16 specifies the instruction size as Thumb.

/32 specifies the instruction size as ARM.

With no size specifier, break tries to determine the size of breakpoint to
use by extracting information from the nearest symbol at or below the
address to be broken. This usually chooses the correct size, but you can
set the size explicitly.

loc specifies where the breakpoint is to be inserted. For more information,
see Program locations on page 7-49.

count specifies the number of times the statement must be executed before the
program is suspended. It defaults to 1, so if count is not specified, the
program will be suspended the first time the breakpoint is encountered.

do specifies commands to be executed when the breakpoint is reached. Note
that these commands must be enclosed in braces, represented in the
pattern above by braces within quotes. Each command must be separated
by semicolons.

If you not specify a do clause, break displays the program and source line
at the breakpoint. If you want the source line displayed in conjunction
with the do clause, use where as the first command in the do clause to
display the line.

expr makes the breakpoint conditional upon the value of expr.

Usage

The break command specifies breakpoints at:

• procedure entry and exit

• lines

• statements within a line.

Each breakpoint is given a number prefixed by #. A list of current breakpoints and their
numbers is displayed if break is used without any arguments. If a breakpoint is set at a
procedure exit, several breakpoints may be set, with one for each possible exit.
7-14 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

ARM Symbolic Debugger
Note
 Use unbreak to delete any unwanted breakpoints. This is described in unbreak on
page 7-44.

7.4.9 call

The call command calls a procedure.

Syntax

The syntax of the call command is:

call {/size} loc {(expression-list)}

where:

/size specifies which code type to break:

/16 specifies the instruction size as Thumb.

/32 specifies the instruction size as ARM.

With no size specifier, call tries to determine the instruction set of the
destination code by extracting information from the nearest symbol at or
below the address to call. This usually chooses the correct size, but you
can set the size explicitly. The command correctly sets the PSR T-bit
before the call and restores it on exit.

loc is a function or low-level address.

expression_list

is a list of arguments to the procedure. String literals are not permitted as
arguments. If you specify more than one expression, separate the
expressions with commas.

Usage

If the procedure (or function) returns a value, examine it using:

print $result for integer variables

print $fpresult for floating-point variables.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 7-15

ARM Symbolic Debugger
7.4.10 coproc

The coproc command describes the register set of a coprocessor and specifies how the
contents of the registers are formatted for display.

Syntax

The syntax of the coproc command is:

coproc cpnum {rno{:rno1} size access values {displaydesc}*}*

where:

size is the register size in bytes.

access may comprise the letters:

R the register is readable.

W the register is writable.

D the register is accessed through CPDT instructions (if not
present, the register is accessed through CPRTs).

values the format depends on whether the register is to be accessed
through CPRT instructions. If so, it comprises four integer values
separated by a space or comma. These values form bits 0 to 7 and
16 to 23 of a MRC instruction to read the register, and bits 0 to 7 and
16 to 23 of a MCR instruction to write the register:

r0_7, r16_23, w0_7, w16_23

If not, it comprises two integer values to form bits 12 to 15 and bit
22 of CPDT instructions to read and write the register:

b12_15, b22

displaydesc is one of the items listed in Table 7-2 on page 7-17.

Usage

Each command may describe one register, or a range of registers, that are accessed and
formatted uniformly.

Example

For example, the floating-point coprocessor might be described by the command:

copro 1 0:7 16 RWD 1,8
 8 4 RW 0x10,0x30,0x10,0x20 w0[16:20] 'izoux' "_" w0[0:4] 'izoux'
 9 4 RW 0x10,0x50,0x10,0x40
7-16 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

ARM Symbolic Debugger
Table 7-2 Values for displaydesc argument

Item Definition

string is printed as is.

field string string is to be used as a printf format string to display the value of
field.

field is one of the forms:

wn the whole of the nth word of the
register value

w[bit] bit bit of the nth word of the register
value

wn[bit1:bit2] bits bit1 to bit2 inclusive of the nth
word of the register value. The bits
may be given in either order.

field '{' string {string}* '}' field must take be either wn[bit] or wn[bit1:bit2]. There must be
one string for each possible value of field. The string in the
appropriate position for the value of field is displayed (the
first string for value 0, and so on).

field 'letters' field must take one of the forms wn[bit] or wn[bit1:bit2] above.
There must be one character in letters for each bit of field.
The letters are displayed in uppercase if the corresponding
bit of the field is set, and in lowercase if it is clear. The first
letter represents the lowest bit if bit1 < bit2. Otherwise it
represents the highest bit.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 7-17

ARM Symbolic Debugger
7.4.11 context

The context command sets the context in which the variable lookup occurs.

Syntax

The syntax of the context command is:

context context

where:

context specifies the program context. If context is not specified, the context is
reset to the active procedure.

Usage

The context command affects the default context used by commands which take a
context as an argument. When program execution is suspended, the search context is set
to the active procedure.

7.4.12 cregisters

The cregisters command displays the contents of all readable registers of a
coprocessor.

Syntax

The syntax of the cregisters command is:

cregisters cpnum

where

cpnum selects the coprocessor.

Usage

The contents of the registers is displayed in the format specified by an earlier coproc
command. The formatting options are described in Table 7-2 on page 7-17.
7-18 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

ARM Symbolic Debugger
7.4.13 cregdef

The cregdef command describes how the contents of a coprocessor register are
formatted for display.

Syntax

The syntax of the cregdef command is:

cregdef cpnum rno displaydesc

where:

cpnum selects the coprocessor.

rno selects the register number in the selected coprocessor.

displaydesc describes how the processor contents are formatted for display.

Usage

The contents of the registers is displayed according to the formatting options described
in Table 7-2 on page 7-17.

7.4.14 cwrite

The cwrite command writes to a coprocessor register.

Syntax

The syntax of the cwrite command is:

cwrite cpnum rno val{val...}*

where:

cpnum selects the coprocessor.

rno selects the register number in the named coprocessor.

val each val is an integer value and there must be one val item for each word
of the coprocessor register.

Usage

Before you write to a coprocessor register, you must define that register as writable.
This is described in coproc on page 7-16.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 7-19

ARM Symbolic Debugger
7.4.15 examine

The examine command allows you to examine the contents of memory.

Syntax

The syntax of the examine command is:

examine {expression1} {, {+}expression2 }

where:

expression1 gives the start address. The default address used is either:

• the address associated with the current context, minus 64, if
the context has changed since the last examine command was
issued

• the address following the last address displayed by the last
examine command, if the context has not changed since the
last examine command was issued.

expression2 specifies the end address, which may take three forms:

• if omitted, the end address is the value of the start address
+128

• if expression2 is preceded by +, the end address is given by
the value of the start line + expression2

• if there is no +, the end line is the value of expression2.

The $examine_lines variable can be used to alter the default
number of lines displayed from its initial value of 8 (128 bytes).

Usage

This command allows you to examine the contents of the memory between a pair of
addresses, displaying it in both hexadecimal and ASCII formats, with 16 bytes per line.
Low-level symbols are accepted by default.
7-20 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

ARM Symbolic Debugger
7.4.16 find

The find command finds all occurrences in memory of a given integer value or character
string.

Syntax

The syntax of the find command is either of the following:

find expression1 {,expression2 {,expression3}}

find string {,expression2 {,expression3}}

where:

expression1 gives the words in memory to search for

expression2 specifies the lower boundary for the search. If expression2 is
absent, the base of the currently loaded image is used.

expression3 specifies the upper boundary for the search. If expression3 is
absent, the top (R/W limit) of the currently loaded image is used.

string specifies the string to search for.

Usage

If the first form is used, the search is for words in memory whose contents match the
value of expression1.

If the second form is used, the search is for a sequence of bytes in memory (starting at
any byte boundary) whose contents match those of string.

Low-level symbols are accepted by default.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 7-21

ARM Symbolic Debugger
7.4.17 fpregisters

The fpregisters command displays the contents of the eight floating-point registers f0
to f7 and the floating-point processor status register (FPSR).

Syntax

The syntax of the fpregisters command is:

fpregisters[/full]

where:

/full includes detailed information on the floating-point numbers in the
registers.

Usage

There are two formats for the display of floating-point registers.

fpregisters displays the registers and FPSR, and the full version includes
detailed information on the floating-point numbers in the
registers. This produces the following display:

f0 = 0 f1 = 3.1415926535
f2 = Inf f3 = 0
f4 = 3.1415926535 f5 = 1
f6 = 0 f7 = 0
fpsr = %IZOux_izoux

fpregisters/full

produces a more detailed display:

f0 = I + 0x3fff 1 0x0000000000000000
f1 = I + 0x4000 1 0x490fdaa208ba2000
f2 = I +u0x43ff 1 0x0000000000000000
f3 = I - 0x0000 0 0x0000000000000000
f4 = I + 0x4000 1 0x490fdaa208ba2000
f5 = I + 0x3fff 1 0x0000000000000000
f6 = I + 0x0000 0 0x0000000000000000
f7 = I + 0x0000 1 0x0000000000000000
fpsr = 0x01070000

(Note that fpregisters/full does not output both sets of values.)

The format of this display is (for example):

F S Exp J Mantissa

I +u0x43ff 1 0x0000000000000000
7-22 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

ARM Symbolic Debugger
where:

F is a precision/format specifier:

F single precision

D double precision

E extended precision

I internal format

P packed decimal

S is the sign.

Exp is the exponent.

J is the bit to the left of the binary point.

Mantissa are the digits to the right of the binary point.

u The u between the sign and the exponent
indicates that the number is flagged as
uncommon, in this example infinity. This
applies only to internal format numbers.

In the FPSR description, the first set of letters indicates the
floating-point mask and the second the floating-point flags. The
status of the floating-point mask and flag bits is indicated by their
case. Uppercase means the flag is set and lowercase means that it
is cleared.

The flags are:

I Invalid operation

Z Divide by zero

O Overflow

U Underflow

X Inexact
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 7-23

ARM Symbolic Debugger
7.4.18 go

The go command starts execution of the program.

Syntax

The syntax of the go command is:

go {while expression}

where:

while If while is used, expression is evaluated when a breakpoint is
reached. If expression evaluates to true (that is. non-zero), the
breakpoint is not reported and execution continues.

expression specifies the expression to evaluate.

Usage

The first time go is executed, the program starts from its normal entry point. Subsequent
go commands resume execution from the point at which it was suspended.

7.4.19 getfile

The getfile command reads from a file and writes the content to memory.

Syntax

The syntax of the getfile command is:

getfile filename expression

where:

filename names the file to read from.

expression defines the memory location to write to.

Usage

The contents of the file are read as a sequence of bytes, starting at the address which is
the value of expression. Low-level symbols are accepted by default.

7.4.20 help

The help command displays a list of available commands, or help on commands.
7-24 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

ARM Symbolic Debugger
Syntax

The syntax of the help command is:

help {command}

where:

command is the name of the command you want help on.

Usage

The display includes syntax and a brief description of the purpose of each command. If
you need information about all commands, as well as their names, type help *.

7.4.21 in

The in command changes the current context by one activation level.

Syntax

The syntax of the in command is:

in

Usage

The in command sets the context to that called from the current level. It is an error to
issue an in command when no further movement in that direction is possible.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 7-25

ARM Symbolic Debugger
7.4.22 istep

The istep command steps execution through one or more instructions.

Syntax

The syntax of the istep command is:

istep {in} {count|w{hile} expression}istep out

Usage

This command is analogous to the step command except that it steps through one
instruction at a time, rather than one high-level language statement at a time.

7.4.23 language

The language command sets the high-level language.

Syntax

The syntax of the language command is:

language {language}

where:

language specifies the language to use. Enter one of the following:

• none

• C

• F77

• PASCAL

• ASM

Usage

The symbolic debugger uses any high-level debugging tables generated by a compiler
to set the default language to the appropriate one for that compiler, whether it is Pascal,
Fortran or C. If it does not find high-level tables, it sets the default language to none,
and modifies the behavior of where and step so that:

where reports the current program counter and instruction

step steps by one instruction
7-26 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

ARM Symbolic Debugger
7.4.24 let

The let command allows you to change the value of a variable or contents of a memory
location.

Syntax

The syntax of the let command is:

{let} {variable | location} = expression{{,} expression}*

where:

variable names the variable to change.

location names the memory location to change.

expression contains the expression or expressions.

Usage

The let command is used in low-level debugging to change memory. If the left-side
expression is a constant or a true expression (and not a variable), it is treated as a word
address, and memory at that location (and if necessary the following locations) is
changed to the values in the following expression(s).

An equals sign (=) or a colon (:) can separate the variable or location from the
expression. If multiple expressions are used, they must be separated by commas or
spaces.

Variables can only be changed to compatible types of expression. However, the
debugger converts integers to floating-point and vice versa, rounding to zero. The value
of an array can be changed, but not its address, because array names are constants. If the
subscript is omitted, it defaults to zero.

If multiple expressions are specified, each expression is assigned to variable[n-1],
where n is the nth expression.

See also let on page 7-56 for more information on the let command.

Specifying the source directory

The variable $sourcedir is used to specify the directory or directories which contain the
program source files. It can be set using the command:

{let} $sourcedir = string

where string should be a valid directory name. For example:
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 7-27

ARM Symbolic Debugger
let $sourcedir=myhome

The debugger reassigns the value of $sourcedir and stores the two values dir and
old_dir:

ARMSD: let $sourcedir = "temp"
ARMSD: p $sourcedir
"temp"
ARMSD: lo dhry
ARMSD: b main:119
ARMSD: go

Dhrystone Benchmark, Version 2.1 (Language: C)
Program compiled without 'register' attribute
Breakpoint #1 at #dhry_1:main, line 119 of dhry_1.c
119 printf ("\n");

ARMSD: p $sourcedir
"temp source_dir"

You can also include pathnames for directory trees, for example:

let $sourcedir=myhome src src/src2 src/src2/src3

Note
 No warning is displayed if you enter an invalid file or pathname.

Command-line arguments

Command-line arguments for the debuggee can be specified using the let command
with the root-level variable $cmdline. The syntax in this case is:

{let} $cmdline = string

The program name is automatically passed as the first argument, and thus should not be
included in the string. The setting of $cmdline can be examined using print.

go starts execution of the program.

getfile reads the contents of an area of memory from a file.

load loads an image for debugging.

putfile writes the contents of an area of memory to a file.

reload reloads the object file specified on the armsd command line, or the last
load command.

type types the contents of a source file, or any text file, between a specified
pair of line numbers.
7-28 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

ARM Symbolic Debugger
Reading and writing bytes and halfwords (shorts)

When you specify a write to memory in armsd, a word value is used. For example:

 let 0x8000 = 0x01

makes armsd transfer a word (4 bytes) to memory starting at the address 0x8000. The
bytes at 0x8001, 0x8002 and 0x8003 are zeroed.

To write only a single byte, you must indicate that a byte transfer is required. You can
do this with:

let *(char *)0xaddress = value

Similarly, to read from an address use:

print *(char *)0xaddress

You can also read and write half-words (shorts) in a similar way:

let *(short *)0x8000 = valueprint /%x *(short *)0x8000

where /%x displays in hex.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 7-29

ARM Symbolic Debugger
7.4.25 list

The list command displays the contents of the memory between a specified pair of
addresses in hexadecimal, ASCII and instruction format, with four bytes (one
instruction) per line.

Syntax

The syntax of the list command is:

list{/size} {expression1}{, {+}expression2 }

where:

size distinguishes between ARM and Thumb code:

/16 lists as Thumb code.

/32 lists as ARM code.

With no size specifier, list tries to determine the instruction set
of the destination code by extracting information from the nearest
symbol at or below the address to start the listing.

expression1 gives the start address. If unspecified, this defaults to either:

• the address associated with the current context minus 32, if
the context has changed since the last list command was
issued

• the address following the last address displayed by the last
list command, if the context has not changed since the last
list command was issued.

expression2 gives the end address. It may take three forms:

• if expression2 is omitted, the end address is the value of the
start address + 64

• if it is preceded by +, the end address is the start line +
expression2

• if there is no +, the end line is the value of expression2.

Usage

The $list_lines variable can alter the default number of lines displayed from its initial
value of 16 (64 bytes).

Low-level symbols are accepted by default.
7-30 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

ARM Symbolic Debugger
7.4.26 load

The load command loads an image for debugging.

Syntax

The syntax of the load command is:

load{/profile-option} image-file {arguments}

where:

profile-option specifies which profiling option to use:

/callgraph directs the debugger to provide the image
being loaded with counts which enable the
dynamic call-graph to be constructed (for
use with profiling).

/profile directs the debugger to prepare the image
being loaded for flat profiling.

image-file is the name of the file to be debugged.

arguments are the command-line arguments the program normally takes.

Usage

image-file and any necessary arguments may also be specified on the command-line
when the debugger is invoked. See Command-line options on page 7-3 for more
information.

If no arguments are supplied, the arguments used in the most recent load or reload,
setting of $cmdline, or command-line invocation are used again.

The load command clears all breakpoints and watchpoints.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 7-31

ARM Symbolic Debugger
7.4.27 log

The log command sends the output of subsequent commands to a file as well as to the
screen.

Syntax

The syntax of the log command is:

log filename

where:

filename is the name of the file where the record of activity is being stored.

Usage

To terminate logging, type log without an argument. The file can then be examined
using a text editor or the type command.

Note
 The debugger prompt and the debug program input/output is not logged.
7-32 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

ARM Symbolic Debugger
7.4.28 lsym

The lsym command displays low-level symbols and their values.

Syntax

The syntax of the lsym command is:

lsym pattern

where:

pattern is a symbol name or part of a symbol name.

Usage

The wildcard (*) matches any number of characters at the start and/or end of the pattern:

lsym *fred displays information about fred, alfred

lsym fred* displays information about fred, frederick

lsym *fred* displays information about alfred, alfreda, fred, frederick

The wildcard ? matches one character:

lsym ??fred matches Alfred

lsym Jo? matches Joe, Joy, and Jon

7.4.29 obey

The obey command executes a set of debugger commands which have previously been
stored in a file, as if they were being typed at the keyboard.

Syntax

The syntax of the obey command is:

obey command-file

where:

command-file is the file containing the list of commands for execution.

Usage

You can store frequently-used command sequences in files, and call them using obey.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 7-33

ARM Symbolic Debugger
7.4.30 out

The out command changes the current context by one activation level and sets the
context to be that of the caller of the current context.

Syntax

The syntax of the out command is:

out

Usage

It is an error to issue an out command when no further movement in that direction is
possible.

7.4.31 pause

The pause command prompts you to press a key to continue.

Syntax

The syntax of the pause command is:

pause prompt-string

where:

prompt-string is a character string written to stderr.

Usage

Execution continues only after you press a key. If you press ESC while commands are
being read from a file, the file is closed before execution continues.
7-34 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

ARM Symbolic Debugger
7.4.32 print

The print command examines the contents of the debugged program's variables, or
displays the result of arbitrary calculations involving variables and constants.

Syntax

The syntax of the print command is:

print{/format} expression

where:

/format selects a display format, as described in Table 7-1 on page 7-10. If
no /format string is entered, integer values default to the format
described by the variable $format. Floating-point values use the
default format string %g.

expression enters the expression for evaluation.

Usage

Pointer values are treated as integers, using a default fixed format %.8x, for example,
000100e4.

See also print on page 7-55 for more information on the print command.

7.4.33 profclear

The profclear command clears profiling counts.

Syntax

The syntax of the profclear command is:

profclear

Usage

For more information on the ARM profiler, refer to Chapter 8 Toolkit Utilities.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 7-35

ARM Symbolic Debugger
7.4.34 profoff

The profoff command stops the collection of profiling data.

Syntax

The syntax of the profoff command is:

profoff

Usage

For more information on the ARM profiler, refer to Chapter 8 Toolkit Utilities.

7.4.35 profon

The profon command starts the collection of profiling data.

Syntax

The syntax of the profon command is:

profon {interval}

where:

interval is the time between PC-sampling in microseconds.

Usage

Lower values have a higher performance overhead, and slow down execution, but higher
values are not as accurate.

7.4.36 profwrite

The profwrite command writes profiling information to a file.

Syntax

The syntax of the profwrite command is:

profwrite {filename}

where:

filename is the name of the file to contain the profiling data.
7-36 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

ARM Symbolic Debugger
Usage

The generated information can be viewed using the armprof utility. This is described in
Chapter 8 Toolkit Utilities.

7.4.37 putfile

The putfile command writes the contents of an area of memory to a file. The data is
written as a sequence of bytes.

Syntax

The syntax of the putfile command is:

putfile filename expression1, {+}expression2

where:

filename specifies the name of the file to write the data into.

expression1 specifies the lower boundary of the area of memory to be written.

expression2 specifies the upper boundary of the area of memory to be written.

Usage

The upper boundary of the memory area is defined as follows:

• if expression2 is not preceded by a + character, the upper boundary of the memory
area is the value of:

expression2 - 1

• if expression2 ispreceded by a + character, the upper boundary of the memory area
is the value of:

expression1 + expression2 - 1.

Low-level symbols are accepted by default.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 7-37

ARM Symbolic Debugger
7.4.38 quit

The quit command terminates the current armsd session.

Syntax

The syntax of the quit command is:

quit

Usage

This command also closes any open log or obey files.

7.4.39 readsyms

The readsyms command loads debug information from a specified file (like the symbols
command).

Syntax

The syntax of the readsyms command is:

readsyms

Usage

The corresponding code must be present in another way (for example, via a getfile, or
by being in ROM).
7-38 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

ARM Symbolic Debugger
7.4.40 registers

The registers command displays the contents of ARM registers 0 to 14, the program
counter, and the status flags contained in the processor status register.

Syntax

The syntax of the registers command is:

registers {mode}

where:

mode selects the registers to display. For a list of mode names, refer to
Predefined symbols on page 7-59.

This option may also take the value all, where the contents of all registers
of the current mode are displayed, together with all banked registers for
other modes with the same address width.

Usage

If used with no arguments, or if mode is the current mode, the contents of all registers of
the current mode are displayed. If the mode argument is specified, but is not the current
mode, the contents of the banked registers for that mode are displayed.

A sample display produced by registers might look like this:

Example 7-1

R0 = 0x00000000 R1 = 0x00000001 R2 = 0x00000002 R3 = 0x00000003
R4 = 0x00000004 R5 = 0x00000005 R6 = 0x00000006 R7 = 0x00000007
R8 = 0x00000008 R9 = 0x00000009 R10= 0x0000000a R11= 0x0000000b
R12= 0x0000000c R13= 0x0000000d R14= 0x0000000e
PC = 0x00008000 PSR= %NzcVIF_SVC26
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 7-39

ARM Symbolic Debugger
7.4.41 reload

The reload command reloads the object file specified on the armsd command line, or
with the last load command.

Syntax

The syntax of the reload command is:

reload{/profile-option} {arguments}

where

profile-option specifies which profiling option to use:

/callgraph tells the debugger to provide the image
being loaded with counts to enable the
dynamic call-graph to be constructed (for
use with profiling).

/profile directs the debugger to prepare the image
being loaded for flat profiling.

arguments are the command-line arguments the
program normally takes. If no arguments are
specified, the arguments used in the most
recent load or reload setting of $cmdline or
command-line invocation are used again.

Usage

Breakpoints (but not watchpoints) remain set after a reload command.

7.4.42 return

The return command returns to the caller of the current procedure, passing back a result
where required.

Syntax

The syntax of the return command is:

return {expression}

where:

expression contains the expression to be evaluated.
7-40 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

ARM Symbolic Debugger
Usage

You cannot specify the return of a literal compound data type such as an array or record
using this command, but you can return the value of a variable, expression or compound
type.

7.4.43 step

The step command steps execution through one or more program statements.

Syntax

The syntax of the step command is:

step {in} {out} {count|w{hile} expression} step out

where:

in continues single-stepping into procedure calls, so that each
statement within a called procedure is single-stepped. If in is
absent, each procedure call counts as a single statement and is
executed without single stepping.

out steps out of a function to the line of originating code which
immediately follows that function. This is useful when step in has
been used too often.

count specifies the number of statements to be stepped through: if it is
omitted only one statement will be executed.

while continues single-stepped execution until its expression evaluates
as false (zero).

expression is evaluated after every step.

Usage

To step by instructions rather than statements:

• use the istep command

• or enter language none.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 7-41

ARM Symbolic Debugger
7.4.44 symbols

The symbols command lists all symbols defined in the given or current context, with
their type information.

Syntax

The syntax of the symbols command is:

symbols {context}

where:

context defines the program context:

• To see global variables, define context as the filename with no path
or extension.

• To see internal variables, use symbols $.

Usage

The information produced is listed in the form:

name type, storage-class
7-42 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

ARM Symbolic Debugger
7.4.45 type

The type command types the contents of a source file, or any text file, between a
specified pair of line numbers.

Syntax

The syntax of the type command is:

type {expression1} {, {{+}expression2} {,filename} }

where:

expression1 gives the start line. If expression1 is omitted, it defaults to:

• the source line associated with the current context minus 5,
if the context has changed since the last type command was
issued

• the line following the last line displayed with the type
command, if the context has not changed.

expression2 gives the end line, in one of three ways:

• if expression2 is omitted, the end line is the start line +10

• if expression2 is preceded by +, the end line is given by the
value of the start line + expression2

• if there is no +, the end line is simply the value of
expression2.

Usage

To look at a file other than that of the current context, specify the filename required and
the locations within it.

To change the number of lines displayed from the default setting of 10, use the
$type_lines variable.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 7-43

ARM Symbolic Debugger
7.4.46 unbreak

The unbreak command removes a breakpoint.

Syntax

The syntax of the unbreak command is:

unbreak {location | #breakpoint_num}

where:

location is a source code location.

breakpoint_num is the number of the breakpoint

Usage

If there is only one breakpoint, delete it using unbreak without any arguments.

Note
 A breakpoint always keeps its assigned number. Breakpoints are not renumbered when
another breakpoint is deleted, unless the deleted breakpoint was the last one set.

7.4.47 unwatch

The unwatch command clears a watchpoint.

unwatch

Syntax

The syntax of the unwatch command is:

unwatch {variable |#watchpoint_number}

where:

variable is a variable name.

variable is the number of a watchpoint (preceded by #) set using the watch
command.

Usage

If only one watchpoint has been set, delete it using unwatch without any arguments.
7-44 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

ARM Symbolic Debugger
7.4.48 variable

The variable command provides type and context information on the specified variable
(or structure field).

Syntax

The syntax of the variable command is:

variable variable

where:

variable specifies the variable to examine.

Usage

variable can also return the type of an expression.

7.4.49 watch

The watch command sets a watchpoint on a variable.

Syntax

The syntax of the watch command is:

watch {variable}

where:

variable names the variable to watch.

Usage

If variable is not specified, a list of current watchpoints is displayed along with their
numbers. When the variable is altered, program execution is suspended. As with break
and unbreak, these numbers can subsequently be used to remove watchpoints.

Bitfields are not watchable.

If EmbeddedICE is available, ensure that watchpoints use hardware watchpoint
registers to avoid any performance penalty.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 7-45

ARM Symbolic Debugger
Note
 When using the C compiler, be aware that the code produced can use the same register
to hold more than one variable if their lifetimes do not overlap. If the register variable
you are investigating is no longer being used by the compiler, you may see a value
pertaining to a completely different variable.

Adding watchpoints may make programs execute very slowly, because the value of
variables has to be checked every time they could have been altered. It is more practical
to set a breakpoint in the area of suspicion and set watchpoints once execution has
stopped.

7.4.50 where

The where command prints the current context and shows the procedure name, line
number in the file, filename and the line of code.

Syntax

The syntax of the where command is:

where {context}

where:

context specifies the program context to examine.

Usage

If a context is specified after the where command, the debugger displays the location of
that context.
7-46 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

ARM Symbolic Debugger
7.4.51 while

The while command is only useful at the end of an existing statement. You enter
multi-statement lines by separating the statements with ; characters.

Syntax

The syntax of the while command is:

statement; {statement;} while expression

where:

expression gives the expression to be evaluated.

Usage

Interpretation of the line continues until expression evaluates to false (zero).
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 7-47

ARM Symbolic Debugger
7.5 Specifying source-level objects

This section gives information on variables, program locations, expressions and
constants.

7.5.1 Variable names and context

You can usually just refer to variables by their names in the original source code. To
print the value of a variable, type:

print variable

High-level languages

With structured high-level languages, variables defined in the current context can be
accessed by giving their names. Other variables should be preceded by the context (for
example. filename of the function) in which they are defined. This also gives access to
variables that are not visible to the executing program at the point at which they are
being examined. The syntax in this case is:

procedure:variable

Global variables

Global variables can be referenced by qualifying them with the module name or
filename if there is likely be any ambiguity. For example, because the module name is
the same as a procedure name, you should prefix the filename or module name with #.
The syntax in this case is:

#module:variable

Ambiguous declarations

If a variable is declared more than once within the same procedure, resolve the
ambiguity by qualifying the reference with the line number in which the variable is
declared as well as, or instead of, the function name:

#module:procedure:line-no:variable

Variables within activations of a function

To pick out a particular activation of a repeated or recursive function call, prefix the
variable name with a backslash (\) followed by an integer. Use 1 for the first activation,
2 for the second and so on. A negative number will look backwards through activations
7-48 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

ARM Symbolic Debugger
of the function, starting with \-1 for the previous one. If no number is specified and
multiple activations of a function are present, the debugger always looks at the most
recent activation.

To refer to a variable within a particular activation of a function, use:

procedure\{-}activation-number:variable

Expressing context

The complete syntax for the various ways of expressing contextis:

{#}module{{:procedure}*
{\{-}activation-number}}
{#}procedure{{:procedure}*
{\{-}activation-number}}#

Specifying variable names

The complete syntax for specifying a variable name is:

{context:.{line-number:::}}variable

The various syntax extensions needed to differentiate between different objects rarely
need to be used together.

7.5.2 Program locations

Some commands require arguments that refer to locations in the program. You can refer
to a location in the program by:

• procedure entry and exit

• program line numbers

• statement within a line.

In addition to the high-level program locations described here, low-level locations can
also be specified. See Low-level symbols on page 7-58 for further details.

Procedure entry and exit

Using a procedure name alone sets a breakpoint (see break on page 7-14) at the entry
point of that procedure. To set a breakpoint at the end of a procedure, just before it
returns, use the syntax:

procedure:$exit
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 7-49

ARM Symbolic Debugger
Program line numbers

Program line numbers can be qualified in the same way as variable names, for example:

#module:123procedure:3

Line numbers can sometimes be ambiguous, for example when a file is included within
a function. To resolve any ambiguities, add the name of the file or module in which the
line occurs in parentheses. The syntax is:

number(filename)

Statement within a line

To refer to a statement within a line, use the line number followed by the number of the
statement within the line, in the form:

line-number.statement-number

So, for example, 100.3 refers to the thirdstatement in line 100.

7.5.3 Expressions

Some debugger commands require expressions as arguments. Their syntax is based on
C. A full set of operators is available. The lower the number, the higher the precedence
of the operator. These are shown in the following table, in descending order of
precedence.

Table 7-3 Precedence of operators

Precedence Operator Purpose Syntax

1 () Grouping a * (b + c)

[] Subscript isprime[n]

. Record selection rec.field,a.b.c

rec->next -> Indirect selection rec->next is identical to

(*rec).next

2 ! Logical NOT !finished

~ Bitwise NOT ~mask

- Unary minus -a

* Indirection *ptr
7-50 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

ARM Symbolic Debugger
Subscripting can only be applied to pointers and array names. The symbolic debugger
checks both the number of subscripts and their bounds, in languages which support such
checking. It is inadvisable to use out-of-bound array accesses. As in C, the name of an
array may be used without subscripting to yield the address of the first element.

The prefix indirection operator * is used to de-reference pointer values. If ptr is a
pointer, *ptr yields the object to which it points.

& Address &var

3 * Multiplication a * b

/ Division a / b

% Integer remainder a % b

4 + Addition a + b

- Subtraction a - b

5 >> Right shift a >> 2

<< Left shift a >> 2

6 < Less than a < b

> Greater than a > b

<= Less than or equal a <= b

>= Greater than or equal a >= b

7 == Equal a == 0

!= Not equal a != 0

8 & Bitwise AND a & b

9 ^ Bitwise EOR a ^ b

10 | Bitwise OR a | b

11 && Logical AND a && b

12 || Logical OR a || b

Table 7-3 Precedence of operators (continued)

Precedence Operator Purpose Syntax
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 7-51

ARM Symbolic Debugger
If the left-hand operand of a right shift is a signed variable, the shift is an arithmetic one
and the sign bit is preserved. If the operand is unsigned, the shift is a logical one and
zero is shifted into the most significant bit.

Note
 Expressions must not contain function calls that return non-primitive values.

7.5.4 Constants

Constants may be decimal integers, floating-point numbers, octal integers or
hexadecimal integers. Note that 1 is an integer whereas 1. is a floating-point number.

Character constants are also allowed. For example, A yields 65, the ASCII code for the
character A.

Address constants may be specified by the address preceded with an @ symbol. For
commands which accept low-level symbols by default, the @ may be omitted.
7-52 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

ARM Symbolic Debugger
7.6 Armsd variables

This section lists the variables available in armsd, and gives information on
manipulating them.

7.6.1 Summary of armsd variables

Many of the debugger's defaults can be modified by setting variables. Table 7-4 lists the
variables. Most of these are described elsewhere in this chapter in more detail.

Table 7-4 armsd variables

Variable Description

$clock number of microseconds since simulation started. This variable
is read-only. This variable is read only, and is only available if a
processor clock speed has been specified (See the ARM
Software Development Toolkit User Guide for information on
how to specify the emulated processor clock speed)

$cmdline argument string for the debuggee.

$echo non-zero if commands from obeyed files should be echoed
(initially set to 01).

$examine_lines default number of lines for the examine command (initially set
to 8).

$int_format default format for printing integer values (initially set to %ld").

$float_format default format for printing floating-point values (initially set to
%ld").

$fpresult floating-point value returned by last called function (junk if
none, or if a floating-point value was not returned). This
variable is read-only. $fpresult returns a result only if the image
has been build for hardware floating-point. If the image is built
for software floating-point, it returns zero.

$inputbase base for input of integer constants (initially set to 10).

$list_lines default number of lines for list command (initially set to 16).

$memory_statistics outputs any memory map statistics which the ARMulator has
been keeping. This variable is read-only. See the ARM Software
Development Toolkit User Guide for further details.

$rdi_log rdi logging is enabled if non-zero, and serial line logging is
enabled if bit 1 is set (initially set to 0).
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 7-53

ARM Symbolic Debugger
$result integer result returned by last called function (junk if none, or if
an integer result was not returned). This variable is read-only.

$sourcedir directory containing source code for the program being
debugged (initially set to the current directory).

$statistics outputs any statistics which the ARMulator has been keeping.
This variable is read-only.

$statistics_inc similar to $statistics, but outputs the difference between the
current statistics and those when $statistics was last read. This
variable is read-only.

$top_of_memory This is used to enable EmbeddedICE to return sensible values
when a HEAP_INFO SWI call is made to determine where the
heap and stack should be placed in memory. The default is
0x80000 (512KB). This should be modified before executing a
program on the target if the memory size available differs from
this.

$type_lines default number of lines for the type command.

$vector_catch indicates whether or not execution should be caught when
various conditions arise. The default value is %RUsPDAifE.
Capital letters indicate that the condition is to be intercepted:

R reset

U undefined instruction

S SWI

P prefetch abort

D data abort

A address exception

I IRQ

F FIQ

E Error (for Demon only. Do not use for Angel)

Table 7-4 armsd variables (continued)

Variable Description
7-54 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

ARM Symbolic Debugger
armsd internal variables

The variables in Table 7-5 are included to support EmbeddedICE and Multi-ICE.

7.6.2 Accessing variables

The following commands are available for accessing variables.

print

This command examines the contents of the debugged program's variables, or displays
the result of arbitrary calculations involving variables and constants. Its syntax is:

p{rint}{/format} expression

For example:

print/%x listp->next

prints field next of structure listp.

If no format string is entered, integer values default to the format described by the
variable $format. Floating-point values use the default format string %g. Pointer values
are treated as integers, using a default fixed format %.8x, for example, 000100e4.

Table 7-5 armsd variables for EmbeddedICE

Variable Description

$icebreaker_lockedpoints shows or sets locked EmbeddedICE macrocell points.

$semihosting_enabled enables or disables semihosting.

$semihosting_vector sets up semihosting SWI vector. Semihosting is
described in the ARM Software Development Toolkit
User Guide.

$semihosting_arm_swi defines which ARM SWIs are interpreted as
semihosting requests by the debug agent.

$semihosting_thumb_swi defines which Thumb SWIs are interpreted as
semihosting requests by the debug agent.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 7-55

ARM Symbolic Debugger
let

The let command allows you to change the value of a variable or contents of a memory
location. Its syntax is:

{let} variable = expression{{,} expression}*
{let} memory-location = expression{{,} expression}*

An equals sign(=) or a colon(:) can be used to separate the variable or location from the
expression. If multiple expressions are used, they must be separated by commas or
spaces.

Variables can only be changed to compatible types of expression. However, the
debugger will convert integers to floating-point and vice versa, rounding to zero. The
value of an array can be changed, but not its address, because array names are constants.
If the subscript is omitted, it defaults to zero. If multiple expressions are specified, each
expression is assigned to variable[n- 1], where n is the nth expression.

The let command is used in low-level debugging to change memory. If the left-hand
side expression is a constant or a true expression (and not a variable) it is treated as a
word address, and memory at that location (and if necessary the following locations) is
changed to the values in the following expression(s).

Available variable formats are now:

• $format_int

• $format_uint

• $format_float

• $format_sbyte

• $format_ubyte

• $format_string

• $format_complex.

7.6.3 Formatting integer results

You can set the default format string used by the print command for the output of
integer results by using let with the root-level variable $format. This is initially set to %d.

{let} $format = string

Note
 When using floating-point formats, integers will not print correctly. The contents of
string should be a format as described in Names used in syntax descriptions on
page 7-9.
7-56 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

ARM Symbolic Debugger
7.6.4 Specifying the base for input of integer constants

You use the $inputbase variable to set the base used for the input of integer constants.

{let} $inputbase = expression

If the input base is set to 0, numbers will be interpreted as octal if they begin with 0.
Regardless of the setting of $inputbase, hexadecimal constants are recognized if they
begin with 0x.

Note
 $inputbase only specifies the base for the input of numbers. Specify the output format
by setting $format to an appropriate value.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 7-57

ARM Symbolic Debugger
7.7 Low-level debugging

Low-level debugging tables are generated automatically when programs are linked with
the -debug flag set (this is enabled by default). You cannot include high-level debugging
tables in an image without also including low-level debugging tables. There is no need
to enable debugging at the compilation stage for low-level debugging only; you just
specify debugging when linking the program.

7.7.1 Low-level symbols

Low-level symbols are differentiated from high-level ones by preceding them with @.

The differences between high and low-level symbols are:

• a low-level symbol for a procedure refers to its call address, often the first
instruction of the stack frame initialization

• the corresponding high-level symbol refers to the address of the code generated
by the first statement in the procedure.

Low-level symbols can be used with most debugger commands. For example, when
used with the watch command they stop execution if the word at the location named by
the symbol changes. Low-level symbols can also be used where a command would
expect an address expression.

Certain commands (list, find, examine, putfile, and getfile) accept low-level symbols
by default. To specify a high-level symbol, precede it by ^.

Memory addresses can also be used with commands and should also be preceded by @.

Note
 Low-level symbols do not have a context and so they are always available.
7-58 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

ARM Symbolic Debugger
7.7.2 Predefined symbols

There are several predefined symbols, as shown in Table 7-6. To differentiate these from
any high-level or low-level symbols in the debugging tables, precede them with #.

Table 7-6 High-level symbols for low-level entities

Symbol Description

r0 - r14 The general-purpose ARM registers 0 to 14.

r15 The address of the instruction which is about to execute. This may include
the condition code flags, interrupt enable flags, and processor mode bits,
depending on the target ARM architecture. Note that this value may be
different from the real value of register 15 due to the effect of pipelining.

pc The address of the instruction which is about to execute.

sp The stack pointer (r13).

lr The link register (r14)

fp The frame pointer (r11).

psr and cpsr psr and cpsr are synonyms for the current mode's processor status register.
The values displayed for the condition code flags, interrupt enable flags,
and processor mode bits, are an alphabetic letter per condition code and
interrupt enable flag, and a mode name (preceded by an underscore) for the
mode bits. This mode name will be one of USER26, IRQ26, FIQ26,
SVC26, USER32, IRQ32, FIQ32, SVC32, UNDEF32, ABORT32 and
SYSTEM32. Note that spsr is not defined if the processor is not capable
of 32-bit operation. See also Application Note 11, Differences Between
ARM6 Series and Earlier Processors.

spsr spsr is the saved status register for the current mode. The values displayed
are listed above in psr and cpsr.

f0 to f7 The floating-point registers 0 to 7.

fpsr The floating-point status register.

fpcr The floating-point control register.

a1 to a4 These refer to arguments 1 to 4 in a procedure call (stored in r0 to r3).

v1 to v7 These refer to the five to seven general-purpose register variables which
the compiler allocates (stored in r4 to r10).
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 7-59

ARM Symbolic Debugger
Printing register information

All these registers can be examined with the print command and changed with the let
command. For example, the following form displays the processor status register (psr):

print/%x #psr

Setting the PSR

The let command can also set the psr, using the usual syntax for psr flags.

For example, the N and F flags could be set, the V flag cleared, and the I, Z and C flags
left untouched and the processor set to 32-bit supervisor mode, by typing:

let #psr = %NvF_SVC32

The following example changes to User mode:

psr = %_User32

Note
 The percentage sign must precede the condition flags and the underscore which in turn
must precede the processor mode description.

Using # with low-level symbols

Normally, you do not need to use # to access a low-level symbol. You can use # to force
a reference to a root context if you see the error message:

Error: Name not found

For example, use #pc=0 instead of pc=0.

sb Static base, as used in re-entrant variants of the ARM Procedure Call
Standard (APCS) (r9/v6).

sl The stack limit register, used in variants of the APCS which implement
software stack limit checking (r10/v7).

ip Used in procedure entry and exit and as a scratch register (r12).

Table 7-6 High-level symbols for low-level entities (continued)

Symbol Description
7-60 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

ARM Symbolic Debugger
7.8 armsd commands for EmbeddedICE

The following armsd commands are included for compatibility with EmbeddedICE.

7.8.1 listconfig

The listconfig command lists the configurations known to the debug agent.

Syntax

The syntax of the listconfig command is:

listconfig file

where:

file specifies the file where the list of configurations is written.

7.8.2 loadagent

The loadagent command downloads a replacement EmbeddedICE ROM image, and
starts it (in RAM).

Syntax

The syntax of the loadagent command is:

loadagent

7.8.3 loadconfig

The loadconfig command loads an EmbeddedICE configuration data file.

Syntax

The syntax of the loadconfig command is:

loadconfig file

where:

file names the EmbeddedICE configuration data file to load.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 7-61

ARM Symbolic Debugger
7.8.4 readsyms

The readsyms command loads an image file containing debug information but does not
download the image.

Syntax

The syntax of the readsyms command is:

readsyms file

where:

file names the image file to load.

7.8.5 selectconfig

The selectconfig command selects the EmbeddedICE configuration to use.

Syntax

The syntax of the selectconfig command is:

selectconfig name version

where:

name is the name of the configuration data to be used

version indicates the version which should be used:

any accepts any version number. This is the default.

n uses version n.

n+ uses version n or later.
7-62 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

ARM Symbolic Debugger
7.9 Accessing the Debug Communications Channel

The debugger accesses the debug communication channel using the following
commands.

For more information, see Application Note 38: Using the ARM7TDMI's Debug
Communication Channel.

7.9.1 ccin

The ccin command selects a file containing Communications Channel data for reading.
This command also enables Host to Target Communications Channel communication.

Syntax

The syntax of the ccin command is:

ccin filename

where:

filename names the file containing the data for reading.

7.9.2 ccout

The ccout command selects a file where Communications Channel data is written, and
also enables Target to Host Communications Channel communication.

Syntax

The syntax of the ccout command is:

ccout filename

where:

filename names the file where the data is written.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 7-63

ARM Symbolic Debugger
7-64 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

Chapter 8
Toolkit Utilities

This chapter describes the software utilities provided with the Software Development
Toolkit. It contains the following sections:

• Functions of the toolkit utilities on page 8-2

• The fromELF utility on page 8-3

• ARM profiler on page 8-6

• ARM librarian on page 8-8

• ARM object file decoder on page 8-10

• ARM executable format decoder on page 8-11

• ANSI to PCC C Translator on page 8-12

• The Flash downloader on page 8-15.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 8-1

Toolkit Utilities
8.1 Functions of the toolkit utilities

fromelf The fromELF utility takes linker output files and produces image
files. You can use it to produce any of a variety of formats of image
file. You can also use it to display various information from the
input files, or to generate text files containing the information.

armprof The ARM profiler displays an execution profile of a program from
a profile data file generated by an ARM debugger.

armlib The ARM librarian enables sets of AOF files to be collected
together and maintained in libraries. You can pass such a library
to the linker in place of several AOF files.

decaof The ARM Object Format decoder decodes AOF files such as those
produced by armasm and armcc.

decaxf The ARM Executable Format decoder decodes executable files
such as those produced by armlink or armcc.

topcc The ANSI to PCC C Translator helps to translate C programs and
headers from ANSI C into PCC C, primarily by rewriting
top-level function prototypes.

topcc is available for UNIX platforms only, not for Windows.

Flash downloader The Flash downloader enables you to download binary images to
the Flash memory of supported ARM development and evaluation
boards.
8-2 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

Toolkit Utilities
8.2 The fromELF utility

fromELF is a utility that can translate Executable Linkable Format (ELF) image format
files produced by the ARM Linker into other formats.

fromELF outputs the following image formats:

• ARM Image Format (AIF) family. The AIF family includes executable AIF, and
non-executable AIF.

• Plain binary format.

• Extended Intellec Hex (IHF) format.

• Motorola 32 bit S record format.

• Intel Hex 32 format.

• ELF format (resaves as ELF).

8.2.1 fromELF command-line options

The fromELF command syntax is as follows:

fromelf [-h] [-nodebug] [-nozeropad] {input_file} [-text/n…[output_file]]
[{output_format output_file}] …

where:

-h shows help and usage information. If this option is specified,
fromELF exits after showing the help message. It ignores
everything else on the command line. Calling fromELF without
any parameters produces the same help information.

-nodebug does not put debug information in the output files. If -nodebug is
specified, it affects all output formats. It overrides the -text/g
option.

-nozeropad does not expand zero initialized areas in the output image. This
option is valid only if the output is a binary file. It is ignored for
all other file formats.

input_file specifies the ELF file to be translated. Pathnames with appropriate
directory separators for the OS are accepted.

fromELF only accepts ARM executable ELF files.

fromELF does not accept linkable or relocatable ELF files.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 8-3

Toolkit Utilities
-text/n… Displays text information, where n… selects any combination of
the following information categories:

c disassembles code

d prints contents of the data sections

g prints debug information

r prints relocation information

s prints the symbol table

t prints the string table(s)

v prints detailed information on each segment and
section header of the image.

The information is displayed on stdout, if an output_file is not
specified.

output_format can be one of the following:

-aif ARM Image Format (AIF) file

-bin plain binary

-aifbin non-executable AIF

-ihf Extended Intellec Hex format

-m32 Motorola 32-Bit format (32 bit 'S' records)

-i32 Intel Hex-32 format

-elf ELF format (resaves as ELF).

Each output_format must be followed by an output_file.

output_file specifies the name of the output file. Pathnames with appropriate
directory separators for the OS are accepted.

Each output_file must be distinct. FromELF does not check if the
same output file is specified for more than one output format, and
simply uses the same filename to produce the output. If any file of
the same name already exists, it is overwritten without any
warning message.

If output_file is the same as input_file, fromELF does not create
the output in that format, and moves on to the next format. A
warning is given for each invalid output filename.
8-4 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

Toolkit Utilities
8.2.2 Multiple output formats

Although multiple output formats are allowed, multiple outputs using the same format
are not allowed. Each output_format can only appear once in the list of outputs, and only
one output file is written using any particular format.

The following command is invalid:

fromelf -nodebug inp.axf -aif out1.aif -bin out2.bin -aif out3.aif

The second use of -aif in the command list is ignored, and only two output files are
created, out1.aif, and out2.bin.

8.2.3 Image structure

fromELF can translate a file from ELF to other formats. It cannot alter the image
structure. It is not possible to change a scatter loaded ELF image into a non scatter
loaded image in another format. Any structural information must be provided to the
Linker at link time.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 8-5

Toolkit Utilities
8.3 ARM profiler

The ARM Profiler, armprof, displays an execution profile of a program from a profile
data file generated by an ARM debugger. The profiler displays one of two types of
execution profile depending on the amount of information present in the profile data:

• If only pc-sampling information is present, the profiler can display only a flat
profile giving the percentage time spent in each function itself, excluding the time
spent in any of its children.

• If function call count information is present, the profiler can display a call graph
profile that shows not only the percentage time spent in each function, but also the
percentage time accounted for by calls to all children of each function, and the
percentage time allocated to calls from different parents.

See Profiling on page 11-19 in the ARM Software Development Toolkit User Guide for
additional information.

8.3.1 Profiler command-line options

A number of options are available to control the format and amount of detail present in
the profiler output. The command syntax is as follows:

armprof [[-parent]|[-noparent]] [[-child]|[-nochild]] [-sort options] prf_file

where:

-parent displays information about the parents of each function in the
profile listing. This gives information about how much time is
spent in each function servicing calls from each of its parents.

-noparent turns off the parent listing.

-child displays information about the children of each function. The
profiler displays the amount of time spent by each child
performing services on behalf of the parent.

-nochild turns off the child listing.

-sort option sorts the profile information using one of the following options:

cumulative sorts the output by the total time spent in
each function and all its children.

self sorts the output by the time spent in each
function (excluding the time spent in its
children).
8-6 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

Toolkit Utilities
descendants sorts the output by the time spent in all a
function's children but excluding time spent
in the function itself.

calls sorts the output by the number of calls to
each function in the listing.

prf_file specifies the file containing the profile information.

By default, child functions are listed, but not parent functions, and the output is sorted
by cumulative time.

Example

armprof -parent sort.prf

8.3.2 Sample output

The profiler output is split into a number of sections, each section separated by a line.
Each section gives information on a single function. In a flat profile (one with no parent
or child function information) each section is a single line.

The following shows sample sections for functions called insert_sort and strcmp.

Name cum% self% desc% calls
--

main 17.69% 60.06% 1
insert_sort 77.76% 17.69% 60.06% 1

strcmp 60.06% 0.00% 243432
--

qs_string_compare 3.21% 0.00% 13021
shell_sort 3.46% 0.00% 14059
insert_sort 60.06% 0.00% 243432

strcmp 66.75% 66.75% 0.00% 270512
--
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 8-7

Toolkit Utilities
8.4 ARM librarian

The ARM librarian, armlib, enables sets of AOF files to be collected together and
maintained in libraries. Such a library can then be passed to the linker in place of several
AOF files. However, linking with an object library file does not necessarily produce the
same results as linking with all the object files collected into the object library file. This
is because of the way armlink processes its input files:

• each object file in the input list appears in the output unconditionally (although
unused areas are eliminated if the output is AIF or if the -remove option is
specified)

• a module from a library file is only included in the output if an object file or
previously processed library file refers to it.

For more information on how armlink processes its input files, refer to Chapter 6
Linker.

When an object is extracted from a library, armlib drops the path and drive components
of the object name. When an object is added to a library, armlib always drops the drive
component, and by default also drops the path component of the object name.

8.4.1 Librarian command-line options

The syntax of the armlib command is:

armlib [-h] [[-c]|[-i]|[-d]|[-e]] [-o] [-n] [-p] [-l] [-s] [-t dir] [-v file]
library [[file_list]|[member_list]]

where:

-h or -help gives online details of the armlib command.

-c creates a new library containing files in file_list.

-i inserts files in file_list into the library. Existing members of the
library are replaced by members of the same name.

-d deletes members in member_list from the library.

-e extracts members in member_list, placing them in files of the same
name. The contents of the library are not changed.

-o adds an external symbol table to an object library.This is on by
default, but can be turned off by -n.

-n does not add an external symbol table to an object library.
8-8 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

Toolkit Utilities
-p respects paths of files and objects. Note that any drive names
specified are always dropped.

-l lists the library. This may be specified together with any other
option.

-s lists the symbol table. This may be specified together with any
other option

-t dir extracts files to a different directory, specified in dir. This option
is used in conjunction with -e.

-v file reads in additional arguments from a file, in the same way as the
armlink -via option, described in Chapter 6 Linker.

library names the library file.

file_list names the files to be used as input to the library. You can use the
wildcards * and ? to specify the files.

member_list names the library members to work on. You can use the wildcards
* and ? to specify the library members.

8.4.2 Examples

armlib -c mylib obj1 obj2 obj3...
armlib -e mylib ?sort*
armlib -e -t /tmp/mylib mylib.a
armlib -d mylib hash
armlib -i mylib quick_sort.o quick_hash1.o
armlib -l -s ansilib
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 8-9

Toolkit Utilities
8.5 ARM object file decoder

The ARM Object Format file decoder, decaof, is a tool that decodes AOF files such as
those produced by armasm and armcc. The full specification of AOF can be found in
Chapter 14 ARM Object Library Format.

8.5.1 Object file decoder command-line options

The syntax of the decaof command is:

decaof [-a] [-b] [-c] [-d] [-g] [-h] [-q] [-r] [-s] [-t] [-z] file [file...]

where:

-a prints area contents in hex (and implicitly includes -d).

-b prints only the area declarations (brief).

-c disassembles code areas (and implicitly includes -d).

-d prints area declarations.

-g prints debug areas formatted readably.

-h gives online details of the decaof command.

-q gives a summary of the area sizes only.

-r prints relocation directives (and implicitly includes -d).

-s prints the symbol table.

-t prints the string table(s).

-z prints a one-line code and data size summary per file.

file names the AOF file(s) to decode. Each file must be an AOF file.

If no options are specified, the effect is of -dst.

8.5.2 Example

decaof -q test.o
C$$code 4748
C$$data 152
8-10 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

Toolkit Utilities
8.6 ARM executable format decoder

The ARM executable format file decoder, decaxf, is a tool that decodes executable files
such as those produced by armlink.

8.6.1 Executable file decoder command-line options

The syntax of the decaxf command is:

decaxf [-c] [-g] [-h] [-s] [-t] [-d] [-r] file [file...]

where:

-c disassembles code.

-g prints debug areas.

-h gives online details of the decaxf command. You can also enter -help.

-s prints the symbol table.

-t prints the string table(s) (for ELF files only)

-r displays relocation information (for ELF files only)

-d displays the contents of the data section(s) (for ELF files only)

file names the AXF file(s) to decode. Each file must be an AXF file.

If no options are specified, summary information about the segments of the file is
output.

8.6.2 Examples

decaxf -gst my_elf.axf
decaxf -c test1.axf test2.axf test3.axf
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 8-11

Toolkit Utilities
8.7 ANSI to PCC C Translator

The topcc program helps to translate (suitable) C programs and headers from the ANSI
dialect of C into the PCC dialect of C. It does this mainly by rewriting top-level function
prototypes (whether declarations or definitions).

The topcc translator does its translation before the C preprocessing phase of any
following compilation, and ignores preprocessor flag settings. It cannot help with the
translation of sources if function prototypes have been obscured, for example, by
preprocessor macros.

The translation is limited, and other differences between the ANSI and PCC dialects
must be dealt with in the source before translation, although some can be corrected after
translation.

topcc is available for UNIX platforms only, not for Windows.

8.7.1 ANSI to PCC C command-line options

The command syntax for topcc is:

topcc [-d] [-c] [-e] [-p] [-s] [-t] [-v] [-l] [input_file[output_file]]

where:

-d describes what the program does

-c does not remove the keyword const

-e does not remove #error....

-p does not remove #pragma....

-s does not remove the keyword signed

-t does not remove the second argument to va_start()

-v does not remove the keyword volatile

-l does not add #line directives

input_file defaults to stdin

output_file defaults to stdout
8-12 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

Toolkit Utilities
8.7.2 Translation details

Top-level function declarations are rewritten with their argument lists enclosed in /* and
*/. For example, declarations like:

type foo(argument-list);

are rewritten as:

type foo(/* argument-list */);

Any comment tokens /* or */ in the original argument list are removed.

Function definition prototypes are rewritten in PCC style. For example, definitions like:

type foo(type1 a1, type2 a2) {...}

are rewritten as:

type foo(a1, a2)
type1 a1;
type2 a2;
{...}

and:

type foo(void)
{...

is rewritten as:

type foo()
{...

Notes on the example

The ... declaration in a function definition (denoting a variable-length argument) is
replaced by int va_alist. The second argument to calls of the va_start macro is
removed. (varargs.h defines va_start as a macro taking one argument. stdarg.h adds a
second argument.) However, topcc does not replace #include <varargs.h> with #include
<stdargs.h>.

Warnings are given of occurrences of ANSI keywords const, enum, signed, and volatile.

const, signed, and volatile are removed.

Type void * is converted to VoidStar. To be compatible with PCC, this should be defined
as char * using a typedef.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 8-13

Toolkit Utilities
ANSI C's unsigned and unsigned long constants are rewritten using the typecasts
(unsigned) and (unsigned long). For example, 300ul becomes (unsigned long)300L.

After rewrites that change the number of lines in the file, #line directives are included
to resynchronize line numbering. These quote the source filename, so that debugging
tools then refer to the ANSI form of sources.

8.7.3 Issues with topcc

topcc takes no account of the setting of conditional compilation options. This is
deliberate. It converts all conditionally compilable variants in parallel.

• Braces must be nested reasonably within conditionally-compilable sections, or
topcc may lose track of the brace nesting depth. This is used to determine whether
it is within, or between, top-level definitions and declarations.

• It is not possible, in practice, to track brace-nesting depth without regard to
reprocessing, as topcc uses heuristics to match conditionally-compiled braces. If
topcc cannot match braces, it gives the message:

mis-matched, conditionally included braces.

topcc cannot concatenate adjacent string literals. You caneliminate these from the input
program beforehand. All important uses of ANSI-style implicit concatenation involve
some mix of literals and preprocessor variables. topcc does not know about
preprocessor variables.

If topcc finds an extra closing brace and starts processing text prematurely as if it were
at the top level, it can damage function calls and macro invocations. In general, you
should compare the output of topcc with its input (using a file difference utility) to check
that changes have been reasonably localized to function headers and declarations. If
necessary, you can inhibit most other translations to make these principal changes more
visible. (See ANSI to PCC C command-line options on page 8-12)
8-14 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

Toolkit Utilities
8.8 The Flash downloader

The Flash downloader is a utility provided with the ARM Software Development
Toolkit, and integrated into the ARM Debugger for Windows. The Flash downloader is
installed in:

ARM250\Bin\flash.li, a little-endian version.

ARM250\Bin\flash.bi, a big-endian version.

8.8.1 The Flash downloader

You can use the Flash downloader to program Flash memory on the board. This works
only if Angel is running from RAM (the default) at the time, or if EmbeddedICE
interface or Multi-ICE is being used rather than Angel. The correct version for the
endianness of the board should be used.

The downloaded file must be in plain binary format. Refer to The fromELF utility on
page 8-3 for information on converting an ELF format file to plain binary.

The Flash downloader fails if it does not recognize the Flash being used, because it must
understand how to program it. As supplied, the Flash downloader recognizes the two
Flash devices supported by the ARM Development Board. Refer to the ARM Target
Development System User Guide for more information.

If you are targeting a different target system you must produce your own download
utility. You can use the source for the Flash downloader as a basis. The source is
provided with the ARM Development Board, and is available from the ARM web site
at http://www.arm.com.

If you are using armsd, the Flash downloader should be passed either the argument -e,
or the name of the file to be downloaded into Flash.

If the file is being downloaded, you are prompted for the sector from where the
programming should start. If you are downloading Angel, it should be programmed into
the start of the Flash, from sector 0.

If you have the Angel Ethernet Kit, the Flash downloader program can be used to
override the default IP address and net mask used by Angel for Ethernet
communication. To do this from armsd, pass the Flash download program the argument
-e. The program prompts for the IP address and net mask. If you are using the ARM
Debugger for Windows, select the appropriate option from the menu.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 8-15

Toolkit Utilities
Using the Flash downloader from ADW

Follow these steps to use the Flash downloader from ADW:

1. Select Flash Download… from the File menu. The Flash Download dialog is
displayed (Figure 8-1).

Figure 8-1 Flash Download dialog

2. Enter a pathname or click Browse to select a binary file to download.

Note
 The pathname to the binary file must not contain spaces.

3. Click OK. The Flash downloader reads the binary file and request a start address
in the console window of the Debugger (Figure 8-2).

Figure 8-2 Entering a start address

4. Enter an address. The console window displays the progress as the Flash is
written.

Using the Flash downloader from armsd

To use the Flash downloader from the command line, write a batch file containing this
command:

armsd -adp -port s,p -line 38400 -exec flash ROMname
8-16 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

Toolkit Utilities
where:

flash is the name of the flash downloader, either:

• ARM250\Bin\flash.li for a little-endian system

• ARM250\Bin\flash.bi for a big-endian system.

ROMname is the name of the binary file that you want to be programmed into Flash
memory.

Note
 The pathname to the binary file must not contain spaces.

Execute the batch file to download to Flash. Enter the address to start writing from when
prompted to do so.

Refer to the ARM Target Development System User Guide for more information.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 8-17

Toolkit Utilities
8-18 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

Chapter 9
ARM Procedure Call Standard

This chapter describes the ARM Procedure Call Standard. It contains the following
sections:

• About the ARM Procedure Call Standard on page 9-2

• APCS definition on page 9-6

• C language calling conventions on page 9-16

• Function entry examples on page 9-18

• Function exit on page 9-24.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 9-1

ARM Procedure Call Standard
9.1 About the ARM Procedure Call Standard

The ARM Procedure Call Standard (APCS) is a set of rules that regulates and facilitates
calls between separately compiled or assembled program fragments.

The APCS defines:

• constraints on the use of registers

• stack conventions

• passing of machine-level arguments and the return of machine-level results at
externally visible function or procedure calls.

Because ARM processors are used in a wide variety of systems, the APCS is not a single
standard but a consistent family of standards. (See APCS variants below for details of
the variants in the family.) When you implement systems such as runtime systems,
operating systems, embedded control monitors, you must choose the variant or variants
most appropriate to your requirements.

The different members of the APCS family are not binary compatible. If you are
concerned with long-term binary compatibility you must choose your options carefully.

Throughout this chapter, the term function is used to mean function, procedure, or
subroutine.

9.1.1 APCS variants

Previous versions of the toolkit supported 48 basic APCS variants, derived from 5
independent choices (2 x 2 x 3 x 2 x 2), as follows:

• Address size:

— 32-bit

— 26-bit.

• Reentrancy:

— non-reentrant

— reentrant.

• Floating-point architecture:

— software floating-point (no floating-point hardware)

— hardware floating-point with floating-point arguments passed in
floating-point registers

— hardware floating-point with floating-point arguments not passed in
floating-point registers.
9-2 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

ARM Procedure Call Standard
• Stack limit checking:

— no software stack checking

— software stack checking.

• Call frames linked through a frame pointer register:

— No frame pointer register used. Call frames not linked.

— Frame pointer register used. Call frames linked.

• Wide and narrow arguments:

— Passing C/C++ language narrow arguments in widened form. In previous
versions of the toolkit, this was the default:

— Passing C/C++ language narrow arguments in narrow form. This is the
default for this version of the toolkit.

For this release of the toolkit:

• Only 32-bit APCS variants are supported. 26-bit APCS variants are no longer
supported, and are not documented.

• Only non-reentrant APCS variants are supported. Reentrant APCS variants are
obsolete. These variants are documented for backwards compatibility only.

• For hardware floating-point architectures, floating-point arguments are passed in
floating-point registers by default. APCS variants that pass floating-point
arguments in integer registers are used only for interworking with the TPCS.
Refer to Chapter 10 Thumb Procedure Call Standard for more information on the
TPCS.

• Only APCS variants that do not require a frame pointer register are supported.
APCS variants that require a frame pointer register are obsolete. These variants
are documented for backwards compatibility only.

• Narrow arguments are passed in narrow form by default. However, /wide remains
a fully supported option.

• The toolkit continues to support fully the options to build for ARM-Thumb
interworking or not.

For the ARM compilers and assembler, these options are specified with:

toolname -apcs [/interwork|/nointerwork]
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 9-3

ARM Procedure Call Standard
Thefollowing choices are supported for this release of the toolkit. Code conforming to
one APCS variant is not compatible with code conforming to another:

Stack limit checking

The APCS defines conventions for software stack limit checking
sufficient to support efficiently most requirements, including those of
multiple threads and chunked stacks.

For the ARM compilers and assembler, these options are specified with:

toolname -apcs [/swst|/noswst]

Use /swst if you think that your stackmight overflow and not be trapped
by memory management hardware. Use /noswst to get the smallest,
fastest code.

Floating-point architecture

The APCS variant you choose will depend on your floating-point
hardware. If your system includes a hardware floating-point unit, use the
hardware floating-point APCS variant. If not, use the software
floating-point APCS variant. For the ARM compilers and assembler,
these options are specified with:

toolname -fpu [fpa|none]

or:

toolname -apcs [/hardfp|/softfp]

Use the -fpu option in preference to /hardfp and /softfp.

If hardware floating-point is selected you can choose whether
floating-pointarguments are passed in floating-point registers:

Arguments in floating-point registers
This is the default.

Arguments not in floating-point registers
Use this option to interwork with the TPCS. Thumb cannot use
hardfp.

For the ARM compilers and assembler, these options are specified with:

toolname -apcs /hardfp[/fpr|/nofpr]

Reentrant or non-reentrant

Thisoption is obsolete. You should use reentrant variants of the APCS
only if it is necessary to support existing code.

The reentrant variant of the APCS supports the generation of code that is
free of relocation directives. This is position-independent code that
addresses all data indirectly through a static base register.
9-4 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

ARM Procedure Call Standard
Frame pointer or no frame pointer

Requiring the use of a frame pointer register is obsolete. You should use
APCS variants that use a frame pointer register only if it is necessary to
support existing code.

For the ARM compilers and assembler, these options are specified with:

toolname -apcs [/fp|/nofp]
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 9-5

ARM Procedure Call Standard
9.2 APCS definition

This section defines the ARM Procedure Call Standard. Whereexamples are given,
these do not form part of the standard. They are given only to aid clarity.

9.2.1 APCS conformance

The APCS defines two levels of conformance:

conforming A program fragment that conforms to the APCS while making a call to
an external function (one that is visible between compilation units) is said
to be conforming.

strictly conforming

A program that conforms to the APCS at all instants of execution is said
to be strictly conforming.

In general, compiled code is expected to be strictly conforming. Hand written assembly
language code is expected to be conforming.

Whether or not program fragments for a particular ARM-based environment are
required to conform strictly to the APCS is part of the definition of that environment.

9.2.2 APCS register names and roles

The ARM architecture with the FPA coprocessor defines:

• 15 visible general purpose integer registers

• a 32-bit program counter register

• eight floating-point registers.

In non-user processor modes, some general purpose registers are banked. In all modes,
the availability of the floating-point instruction set depends on the processor model,
hardware, and operating system. Refer to the ARM Architectural Reference Manual for
a detailed description of the ARM register banks and processor modes.
9-6 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

ARM Procedure Call Standard
Table 9-1, below, and Table 9-2 on page 9-8 give the names and functions of the ARM
registers under the APCS.

General purpose registers

The 16 integer registers are divided into 3 sets:

• four argument registers that can also be used as scratch registers or as caller-saved
register variables

• five callee-saved registers, conventionally used as register variables

• seven registers that have a dedicated role, at least some of the time, in at least one
variant of the APCS (see APCS variants on page 9-2).

The registers sp, lr and pc have dedicated roles in all variants of the APCS.

Table 9-1 APCS registers

Register APCS name APCS role

r0 a1 argument 1/scratch register/result

r1 a2 argument 2/scratch register/result

r2 a3 argument 3/scratch register/result

r3 a4 argument 4/scratch register/result

r4 v1 register variable

r5 v2 register variable

r6 v3 register variable

r7 v4 register variable

r8 v5 register variable

r9 sb/v6 static base/register variable

r10 sl/v7 stack limit/stack chunk handle/register variable

r11 fp/v8 frame pointer/register variable

r12 ip scratch register/new-sb in inter-link-unit calls

r13 sp lower end of the current stack frame

r14 lr link register/scratch register

r15 pc program counter
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 9-7

ARM Procedure Call Standard
The ip register has a dedicated role only during function call. At other times it may be
used as a scratch register. Conventionally, ip is used by compiler code generators as a
local code generator temporary register.

There are dedicated roles for sb, fp, and sl in some variants of the APCS. In other
variants they may be used as callee-saved registers.

The APCS permits lr to be used as a register variable when it is not in use during a
function call. It further permits an ARM system specification to forbid such use in some,
or all, non-user ARM processor modes.

Floating-point registers (FPA Architecture)

Each ARM floating-point (FP) register holds one FP value of single, double, extended
or internal precision. A single precision value occupies one machine word. A double
precision value occupies two words. An extended precision value occupies three words,
as does an internal precision value.

Floating-point registers are divided into two sets, analogous to the subsets a1 through
a4 and v1 through v5/v7 of the general registers:

• Registers f0 through f3 need not be preserved by called functions. f0 is the FP
result register, and f0 through f3 may hold the first four FP arguments. See Data
representation and argument passing on page 9-14 and APCS variants on
page 9-2.

• Registers f4 through f7, the variable registers, preserved by callees.

Table 9-2 APCS floating-point registers

Name Number APCS Role

f0 0 FP argument 1/FP result/FP scratch register

f1 1 FP argument 2/FP scratch register

f2 2 FP argument 3/FP scratch register

f3 3 FP argument 4/FP scratch register

f4 4 floating-point register variable

f5 5 floating-point register variable

f6 6 floating-point register variable

f7 7 floating-point register variable
9-8 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

ARM Procedure Call Standard
9.2.3 The stack

The APCS supports both contiguous and chunked stacks. The stack must be readable
and writable by the executing program.

Chunked stacks

Chunked stacks have the following properties:

• A chunked stack can be extended by allocating additional chunks
anywhere in memory.

• A chunked stack is a singly-linked list of activation records, linked
through a stack backtrace data structure (see The stack backtrace
data structure on page 9-11), stored at the high-address end of each
activation record.

• Each contiguous chunk of the stack must be allocated to activation
records in descending address order. At all instants of execution, sp
must point to the lowest used address of the most recently allocated
activation record.

• There are no constraints on the ordering of multiple stack chunks
in the address space.

• A chunked stack must be limit-checked. It can be extended only
when a limit check fails.

Contiguous stacks

Contiguous stacks have the following properties:

• A contiguous stack can be extended at its low address only.

• The activation records in a contiguous stack need not be linked
together through a stack backtrace data structure.

Stack chunk limit

Associated with sp is a possibly implicit stack chunk limit, below which sp must not be
decremented.

At all instants of execution, the memory between sp and the stack chunk limit must
contain nothing of value to the executing program. It may be modified unpredictably by
the execution environment.

There are two types of stack chunk limit:

implicit The stack chunk limit is said to be implicit if chunk overflow is detected
and handled by the execution environment. If the stack chunk limit is
implicit, sl may be used as v7, an additional callee-saved variable register.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 9-9

ARM Procedure Call Standard
explicit The stack chunk limit is said to be explicit if chunk overflow is detected
and handled by the program and its library support code.

If the conditions of the remainder of this subsection hold at all instants of execution, the
program conforms strictly to the APCS. If they hold at, and during, external function
calls (visible between compilation units), the program conforms to the APCS.

If the stack chunk limit is explicit, sl must:

• point at least 256 bytes above it

• identify the current stack chunk in a system-defined manner

• at all times, identify the same chunk as sp points into.

The values of sl, fp and sp must be multiples of 4.

(sl >= stack_chunk_limit + 256 allows the most common limit checks to be made very
cheaply during function entry.)

This final requirement implies that on changing stack chunks, registers sl and sp must
be loaded simultaneously using:

LDM ..., {..., sl, sp}.

In general, this means that return from a function executing on an extension chunk to
one executing on an earlier-allocated chunk should be through an intermediate function
invocation, specially fabricated when the stack was extended.
9-10 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

ARM Procedure Call Standard
9.2.4 The stack backtrace data structure

For chunked stacks, the value in fp must be zero or must point to a list of stack backtrace
data structures that describe the sequence of outstanding function calls. If this constraint
holds when external functions are called, the program is conforming. If it holds at all
instants of execution, the program is strictly conforming.

The stack backtrace data structure shows between four and 27 words, with those words
higher on the page being at higher addresses in memory. The values shown in brackets
are optional, and their presence need not imply the presence of any other. The
floating-point values are stored in an internal format, and occupy three words each.
Figure 9-1 shows the stack backtrace structure.

save code pointer[fp, #0] <-fp points to here
return link value[fp, #-4]
return sp value[fp, #-8]
return fp value[fp, #-12]

{saved v7 value}
{saved v6 value}
{saved v5 value}
{saved v4 value}
{saved v3 value}
{saved v2 value}
{saved v1 value}
{saved a4 value}
{saved a3 value}
{saved a2 value}
{saved a1 value}

{saved f7 value}three words
{saved f6 value}three words
{saved f5 value}three words
{saved f4 value}three words

Figure 9-1 Stack backtrace structure

The save code pointer

The save code pointer (the value of pc) is the value of the pc at the instruction that starts
to create the stack backtrace structure. Typically this is a store multiple instruction of
the form:

STMFD sp!, {optional_registers,old_fp,sp,lr,pc}

The save code pointer (the value of pc) allows the function corresponding to a stack
backtrace structure to be located.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 9-11

ARM Procedure Call Standard
Function exit

Table 9-3 shows the registers to which the values in the stack backtrace structure are
restored on function exit.

9.2.5 Function invocations and stack backtrace structures

Note
 The following applies only to APCS variants that use a frame pointer register.

If function invocation A calls function B, then A is termed a direct ancestor of the
invocation of B. If invocation A[1] calls invocation A[2] calls... calls B, then each of the
A[i] is an ancestor of B and invocation A[i] is more recent than invocation A[j] if i > j.

The return fp value must be 0, or must be a pointer to a stack backtrace data structure
created by an ancestor of the function invocation that created the backtrace structure
pointed to by fp. No more recent ancestor must have created a backtrace structure.
(There may be any number of tail called invocations between invocations that create
backtrace structures.)

9.2.6 Control arrival

At the instant when control arrives at the target function:

• pc contains the address of an entry point to the target function (reentrant functions
may have two entry points).

• lr contains the value to restore to pc on exit from the function (the return link
value. See The stack backtrace data structure on page 9-11).

• sp points at or above the current stack chunk limit. If the limit is explicit, it must
point at least 256 bytes above it. See The stack on page 9-9.

Table 9-3 Function exit

Value Restored to

return link value pc

return sp value sp

return fp value fp
9-12 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

ARM Procedure Call Standard
• For APCS variants that use a frame pointer register, fp contains 0 or points to the
most recently created stack backtrace structure. See The stack backtrace data
structure on page 9-11.

• The space between sp and the stack chunk limit is readable and writable memory
that the called function can use as temporary workspace and overwrite with any
values before the function returns. See The stack on page 9-9.

• Arguments are marshalled as described in Data representation and argument
passing on page 9-14.

Reentrant functions

Note
 This section describes obsolete facilities. It is provided for backwards compatibility
only.

A reentrant target function has two entry points. Control arrives:

• at the intra-link-unit entry point if the caller has been directly linked with the
callee

• at the inter-link-unit entry point if the caller has been separately linked with a stub
of the callee.

In non-static-data-using leaf functions, the two entry points are at the same address.
Otherwise they are separated by a single instruction.

On arrival at the intra-link-unit entry point, sb must identify the static data of the link
unit that contains both the caller and the callee.

On arrival at the inter-link-unit entry point, either:

• ip must identify the static data of the link unit containing the target function.

• The target function must make neither direct nor indirect use of static data. In
practice this usually means that the callee must be a leaf function that makes no
direct use of static data.

The way in which sb identifies the static data of a link unit is not specified by the APCS.

If the call is by tail continuation, calling function means the function that will be
returned to if the tail continuation is converted to a return.

If code is not required to be reentrant or shareable, sb may be used as v6, an additional
variable register. (See Table 9-1 on page 9-7.)
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 9-13

ARM Procedure Call Standard
9.2.7 Data representation and argument passing

Argument passing in the APCS is defined in terms of an ordered list of machine-level
values passed from the caller to the callee, and a single word or floating-point result
passed back from the callee to the caller. Each value in the argument list is either:

• an integer value of size one word

• a floating-point value of size one, two, or three words.

A callee may corrupt any of its arguments, however passed.

The APCS does not define:

• the layout in store of records, arrays, as so forth, used by ARM-targeted compilers
for C and C++

• the order in which language-level arguments are mapped into their machine-level
representations.

This means that, the mapping from language-level data types and arguments to APCS
words is defined by each language implementation, not by the APCS. There is no reason
why two ARM-targeted implementations of the same language cannot use different
mappings and not support cross-calling.

Implementors are encouraged to adopt not just the APCS standard, but to accommodate
the natural mappings of source language objects into argument words. Guidance about
this is given in C language calling conventions on page 9-16.

At the instant control arrives at the target function, the argument list must be allocated
as follows:

• in the APCS variants that support the passing of floating-point arguments in
floating-point registers (see APCS variants on page 9-2), the first four
floating-point arguments (or fewer if the number of floating-point arguments is
less than four) are in machine registers f0 through f3. Refer to Chapter 6 Using
the Procedure Call Standards in the ARM Software Development Toolkit User
Guide for more information.

• the first four remaining argument words (or fewer if there are fewer than four
argument words remaining in the argument list) are in machine registers a1
through a4

• the remainder of the argument list (if any) is in memory, at the location addressed
by sp and higher addressed words from this point on.

A floating-point value not passed in a floating-point register is treated as one, two, or
three integer values, according to its precision.
9-14 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

ARM Procedure Call Standard
9.2.8 Control return

When the return link value for a function call is placed in the pc:

• sp, fp, sl/v7, sb/v6, v1-v5, and f4-f7 must contain the same values as they did at
the instant of control arrival.

• If the function returns a simple value of one word or less, the value must be in a1.
A language implementation is not obliged to consider all single-word values
simple. See Non-simple value return on page 9-17 for more information.

• If the function returns a simple floating-point value, the value must be in f0 for
hardfp APCS variants. For softfp variants, a floating-point result is returned in r0,
or r0 and r1.

The values of ip, lr, a2-a4, f1-f3 and any stacked arguments are undefined. The
definition of control return means that this is a callee saved standard. The caller's CPSR
flags are not preserved across a function call.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 9-15

ARM Procedure Call Standard
9.3 C language calling conventions

This section describes the conventions that apply to C language arguments and return
values.

9.3.1 Argument representation

A floating-point value occupies one, two, or three words, as appropriate to its type.
Floating-point values are encoded in IEEE 754 format, with the most significant word
of a double having the lowest address. Refer to Chapter 11 Floating-point Support for
more information on floating-point support.

char, short, pointer and other integral values occupy one word in an argument list. long
long (__int64) values occupy two words.

On the ARM, characters are naturally unsigned. ANSI C and C++ have signed,
unsigned, and plain (do not care) char types. Classic C does not have the signed char
type, so plain char must be considered signed. In PCC mode (-pcc compiler option), the
C compilers treat a plain char as signed, and widen its value appropriately when it is
used as an argument.

A structured value occupies an integral number of integer words, even when it contains
only floating-point values.

9.3.2 Argument list marshalling

Argument values are marshalled in the order written in the source program.

If the called function accepts a fixed number of arguments, and if passing floating-point
arguments in FP registers, the first four floating-point arguments are loaded into FP
registers.

The first four of the remaining argument words are loaded into a1 through a4, and the
remainder are pushed onto the stack in reverse order. As a consequence, an FP value can
be passed in integer registers, or even split between an integer register and the stack.

Arguments later in a stacked argument list have higher addresses than those earlier in
the stacked argument list.
9-16 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

ARM Procedure Call Standard
9.3.3 Non-simple value return

A non-simple type is any non floating-point type greater than one word in size
(including structures containing only floating-point fields), and certain one-word
structured types.

A structure is termed integer-like if its size is less than or equal to one word, and the
offset of each of its addressable subfields is zero. An integer-like structured result is
considered simple and is returned in a1.

The following are both integer-like:

struct {int a:8, b:8, c:8, d:8;}
union {int i; char *p;}

The following is not integer-like:

struct {char a; char b; char c; char d;}

A multi-word or non integer-like result is returned to an address passed as an additional
first argument to the function call.

At machine level:

TT tt = f(x, ...);

is implemented as:

TT tt; f(&tt, x, ...);
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 9-17

ARM Procedure Call Standard
9.4 Function entry examples

A complete discussion of function entry is complex. This section covers some of the
most important issues and special cases.

Note
 This section includes descriptions of the reentrant variant of the APCS, and the format
of the stack backtrace structure. This information is obsolete and is provided for
backwards compatibility only.

The important issues for function entry are:

• establishing the static base (obsolete reentrant APCS variants only)

• creating the stack backtrace data structure (only for APCS variants that use a
frame pointer register)

• saving the floating-point variable registers if required

• checking for stack overflow if the stack chunk limit is explicit.

9.4.1 Definitions

The following terms are used to identify particular types of functions.

Leaf functions

A function is termed leaf if its body contains no function calls. A leaf function that
makes no use of static data need not establish a static base.

Tail calls or tail continuation functions

If function F calls function G immediately before an exit from F, the call-exit sequence
can often be replaced instead by a return to G. After this transformation, the return to G
is called a tail call or tail continuation.

There are many subtle considerations when using tail continuations. If stacked
arguments are unstacked by callers (almost mandatory for variadic callees), G cannot
be directly tail called if G itself takes stacked arguments. This is because there is no
return to F to unstack them.

If this call to G takes fewer arguments than the current call to F, some of F's stacked
arguments can be replaced by G's stacked arguments. However, this may not be easy to
assert if F is variadic. There may be no tail call of G if the address of any of F's
arguments or local variables has leaked out of F. This is because on return to G, the
address may be invalidated by adjustment of the stack pointer. In general, this precludes
tail calls if any local variable or argument has its address taken.
9-18 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

ARM Procedure Call Standard
Frameless functions

For APCS variants that use a frame pointer register, a function does not need to create
a stack backtrace structure if it uses no v-registers and either:

• it is a leaf function

• all the function calls it makes from its body are tail calls.

Such functions are termed frameless.

Stack backtrace structures need not be created for APCS variants that do not use a frame
pointer register.

9.4.2 Establishing the static base

Note
 Reentrant variants of the APCS are obsolete.

A reentrant function can be entered directly via a call from the same link unit (an
intra-link-unit call), or indirectly through a function pointer or direct call from another
link unit (an inter-link-unit call).

The general scheme for establishing the static base in reentrant code is:

intra MOV ip, sb ; intra link unit (LU) calls target here
inter ; inter-LU calls target here, having loaded

; ip via an inter-LU or fn-pointer veneer.
; create backtrace structure, saving sb

MOV sb, ip ; establish sb for this LU
; rest of entry

Code that does not have to be reentrant does not need to use a static base. Code that is
reentrant is marked as such, allowing the linker to create the inter-link-unit veneers
needed between independent reentrant link units, and between reentrant and
non-reentrant code.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 9-19

ARM Procedure Call Standard
9.4.3 Creating the stack backtrace structure

For non-reentrant, nonvariadic functions, a stack backtrace structure can be created
using three instructions:

MOV ip, sp ; save current sp,
; ready to save as old sp

STMFD sp!, {a1-a4, v1-v5, sb, fp, ip, lr, pc}
;as needed

SUB fp, ip, #4

Each argument register a1 through a4 has to be saved only if a memory location is
needed for the corresponding parameter, either because it has been spilled by the
register allocator or because its address has been taken.

Each of the registers v1 through v7 has to be saved only if used by the called function.
The minimum set of registers to be saved is {fp, old-sp, lr, pc}.

A reentrant function must avoid using ip in its entry sequence:

STMFD sp!, {sp, lr, pc}
STMFD sp!, {a1-a4, v1-v5, sb, fp} ; as needed
ADD fp, sp, #8+4*|{a1-a4, v1-v5, sb, fp}|

; as used above

sb (also known as v6) must be saved by a reentrant function if it calls any function from
another link unit (which would alter the value in sb). This means that, in general, sb
must be saved on entry to all non-leaf, reentrant functions.

For variadic functions the entry sequence is still more complicated. Usually, you have
to make a contiguous argument list on the stack. For non-reentrant variadic functions,
use:

MOV ip, sp ; save current sp, ready to
; save as old sp

STMFD sp!,{a1-a4} ; push arguments on stack
STMFD sp!,{v1-v6, fp, ip, lr, pc}

; push other registers on
; stack as needed

SUB fp, ip, #20 ; if all of a1-a4 pushed...

It is not necessary to push arguments corresponding to fixed parameters, though saving
a1-a4 is little more expensive than just saving, say, a3-a4.

Floating-point arguments are never passed to variadic functions in floating-point
registers.
9-20 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

ARM Procedure Call Standard
9.4.4 Saving and restoring floating-point registers

The Issue 2 FPA instruction set defines two instructions for saving and restoring the
floating-point registers:

• Store Floating Multiple (SFM)

• Load Floating Multiple (LFM).

These are as follows:

• SFM and LFM are exact inverses

• SFM will never trap, whatever the IEEE trap mode and the value transferred (unlike
STFE which can trap on storing a signalling NaN)

• SFM and LFM transfer 3-word internal representations of floating-point values
which vary from implementation to implementation, and which, in general, are
unrelated to any of the supported IEEE representations

• any 1-4, cyclically contiguous floating-point registers can be transferred by
SFM/LFM (for example, {f4-f7}, {f6, f7, f0}, {f7, f0}, {f1}).

Function entry

On function entry, a typical use of SFM might be as follows:

SFMFD f4, 4, [sp]! ; save f4-f7 on a
; Full Descending stack,
; adjusting sp as values are pushed.

Function exit

On function exit, the corresponding sequence might be:

LFMEA f4, 4, [fp, #-N] ; restore f4-f7
; fp-N points just
; above the floating-point
; save area.

For chunked stacks, sp-relative addressing may be unavailable on function exit if the
stack has been discontiguously extended.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 9-21

ARM Procedure Call Standard
9.4.5 Checking for stack limit violations

In some environments, stack overflow detection is implicit. An off-stack reference
causes an address error or memory fault, which may in turn cause stack extension or
program termination.

In other environments, the validity of the stack must be checked on function entry, and
at other times if the function:

• Uses 256 bytes or less of stack space.

• Uses more than 256 bytes of stack space, but the amount is known and bounded
at compile time.

• Uses an amount of stack space unknown until runtime. This does not arise in C,
apart from in stack-based implementations of the non-standard, BSD-UNIX
alloca() function. The APCS does not easily support alloca().

The check for stack limit violation is made at the end of the function entry sequence, by
which time ip is available as a work register.

If the check fails, a standard runtime support function is called, either
__rt_stkovf_split_small or __rt_stkovf_split_big.

Any environment that supports explicit stack-limit checking must provide functions that
can do one of the following:

• terminate execution

• extend the existing stack chunk, and decrement sl

• allocate a new stack chunk, reset sp and sl to point into it, and guarantee that an
immediate repeat of the limit check will succeed.

Stack limit checking (small, fixed frames)

For frames of 256 bytes or less the limit check is as follows:

; create the activation record.
CMPS sp, sl
BLLO |__rt_stkovf_split_small|
SUB sp, sp, #size of locals ; <= 256, by hypothesis

This adds two instructions and, in general, only two cycles to function entry.

After a call to __rt_stkovf_split_small, fp and sp do not necessarily point into the same
stack chunk. Arguments passed on the stack must be addressed by offsets from fp, not
by offsets from sp.
9-22 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

ARM Procedure Call Standard
Stack limit checking (large, fixed frames)

For frames bigger than 256 bytes, the limit check proceeds as follows:

SUB ip, sp, #FrameSizeBound ; can do in 1 instr
CMPS ip, sl
BLLO |__rt_stkovf_split_big|
SUB sp, sp, #InitFrameSize ; may require > 1 instr

where:

FrameSizeBound

can be any convenient constant at least as big as the largest frame the
function will use.

InitFrameSize

is the initial stack frame size. Subsequent adjustments within the called
function require no limit check.

Note
 Functions containing nested blocks may use different amounts of stack at different
instants during their execution.

After a call to __rt_stkovf_split_big, fp and sp do not necessarily point into the same
stack chunk. Arguments passed on the stack must be addressed by offsets from fp, not
by offsets from sp.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 9-23

ARM Procedure Call Standard
9.5 Function exit

Function exit can usually be implemented in a single instruction (this is not the case if
floating-point registers have to be restored). Typically, there are at least as many
function exits as entries, so it is always advantageous to move an instruction from an
exit sequence to an entry sequence.

If exit is a single instruction, further instructions can be saved in multi-exit functions by
replacing branches to a single exit with the exit instructions themselves.

Saving and restoring floating-point registers is discussed in Saving and restoring
floating-point registers on page 9-21.

To exit from functions that use no stack and save no floating-point registers, use:

MOV pc, lr

or:

BX lr

for interworking code.

To exit from other functions that use a frame pointer register and save no floating-point
registers, use a pre-decrement load multiple (LDMEA):

LDMEA fp, {v1-v5, sb, fp, sp, pc} ; as saved

Here, fp must point just below the save code pointer, as this value is not restored.

A function that does not use a frame pointer register must unwind the stack in its exit
sequence. Generally this means:

• Increment sp by the amount that it was explicitly decremented in the function
body.

• Pop saved registers from the stack in the reverse order to that in which they were
pushed.
9-24 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

Chapter 10
Thumb Procedure Call Standard

This chapter describes the Thumb procedure call standard. It contains the following
sections:

• About the Thumb Procedure Call Standard on page 10-2

• TPCS definition on page 10-3

• C language calling conventions on page 10-7

• Function entry examples on page 10-9

• Function exit on page 10-12.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 10-1

Thumb Procedure Call Standard
10.1 About the Thumb Procedure Call Standard

The Thumb Procedure Call Standard (TPCS) is a set of rules that govern inter-calling
between functions written to the Thumb subset of the ARM instruction set.

The TPCS is a cut-down version of the APCS. If you are unfamiliar with the APCS and
its terminology, you will find it helpful to read Chapter 9 ARM Procedure Call Standard
before continuing with this chapter.

Specifically, the TPCS does not allow:

• Disjoint stack extension (stack chunks). Under the TPCS, the stack must be
contiguous. However, this does not necessarily prohibit the use of co-routines.

• Calling the same entry point with different sets of static data (multiple
instantiation, or reentrancy). Multiple instantiation can be implemented at a user
level, by placing in a struct all variables that need to be multiply instantiated, and
passing each function a pointer to the struct.

• Hardware floating-point. Thumb code cannot access floating-point (FP)
instructions without switching to ARM state. Floating-point is supported
indirectly by defining how FP values are passed to, and returned from, Thumb
functions in integer registers.
10-2 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

Thumb Procedure Call Standard
10.2 TPCS definition

This section defines the Thumb Procedure Call Standard. Where examples are given
these do not form part of the standard. They are given only to aid clarity.

10.2.1 TPCS register names

The Thumb register subset has:

• eight visible general purpose registers (r0-r7), referred to as the low registers

• a stack pointer (sp)

• a link register (lr)

• a program counter (pc).

In addition, the Thumb subset can access the rest of the ARM registers (r8-r15, referred
to as the high registers) singly through a set of special instructions. See the ARM
Architectural Reference Manual for details.

Table 10-1 shows the names and roles of the Thumb registers in the context of the
TPCS.

Table 10-1 TPCS registers

Register TPCS name TPCS role

r0 a1 argument 1/scratch register/result

r1 a2 argument 2/scratch register/result

r2 a3 argument 3/scratch register/result

r3 a4 argument 4/scratch register/result

r4 v1 register variable

r5 v2 register variable

r6 v3 register variable

r7 v4/wr register variable/work register in function entry/exit

r8 (v5) (ARM v5 register, no defined role in Thumb)

r9 (v6) (ARM v6 register, no defined role in Thumb)

r10 sl (v7) stack limit

r11 fp (v8) frame pointer (usually not used in Thumb state)
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 10-3

Thumb Procedure Call Standard
10.2.2 The Stack

The stack contains a series of activation records allocated in descending address order.
These activation records may be linked through a stack backtrace data structure but
there is no obligation for code under the TPCS to create a stack backtrace structure.

A stack limit is said to be implicit if stack overflow is detected and handled by the
execution environment, otherwise it is explicit. Associated with sp is a possible implicit
stack limit, below which sp must not be decremented unless a suitable trapping
mechanism is in place to detect below-limit reads or writes.

At all instants of execution, the memory between sp and the stack limit must contain
nothing of value to the executing program. This memory may be modified
unpredictably by the execution environment.

If the stack limit is explicit, sl must point at least 256 bytes above it. The values of sl, fp
and sp are multiples of 4.

Note
 fp is usually not used in Thumb state.

Implicit or explicit stack limit checking

Stack limit checking may be:

implicit performed by the memory management hardware

explicit performed by the program and its library support code.

The TPCS defines conventions for software stack-limit checking sufficient to support
most requirements.

r12 (ip) (ARM ip register, no defined role in Thumb. May be used
as a temporary register on Thumb function entry/exit.)

r13 sp stack pointer (full descending stack)

r14 lr link register

r15 pc program counter

Table 10-1 TPCS registers (continued)

Register TPCS name TPCS role
10-4 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

Thumb Procedure Call Standard
10.2.3 Control arrival

At the instant when control arrives at the target function:

• pc contains the address of an entry point to the target function.

• lr contains the value to restore to pc on exit from the function (the return link
value, see The stack backtrace data structure on page 9-11).

• sp points at or above the current stack limit. If the limit is explicit, sp will point at
least 256 bytes above it (see The Stack on page 10-4).

• If the function is built to use a frame pointer register, fp contains 0 or points to the
most recently created stack backtrace structure (see The stack backtrace data
structure on page 9-11). This is not usual in Thumb state.

• The space between sp and the stack limit must be readable and writable memory
which the called function can use as temporary workspace, and overwrite with
any values before the function returns (see The Stack on page 10-4).

Arguments are marshalled as described below.

10.2.4 Data representation and argument passing

Argument passing in the TPCS is defined in terms of an ordered list of machine-level
values passed from the caller to the callee, and a single-word or floating-point result
passed back from the callee to the caller. Each value in the argument list must be either:

• an integer value of size one word

• a floating-point value of size one, two, or three words.

A callee may corrupt any of its arguments, however passed.

At the instant control arrives at the target function, the argument list is allocated as
follows:

• the first four argument words (or fewer if there are fewer than four argument
words remaining in the argument list) are in machine registers a1-a4

• the remainder of the argument list (if any) is in memory, at the location addressed
by sp and higher addressed words thereafter.

A floating-point value is treated as one, two, or three integer values, as appropriate to
its precision. The TPCS does not support the passing or returning of floating-point
values in ARM floating-point registers.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 10-5

Thumb Procedure Call Standard
10.2.5 Control return

When the return link value for a function call is placed in the pc:

• sp, fp, sl, v6, v5, and v1-v4 contain the same values as they did at the instant of
control arrival. If the function returns a simple value of size one word or less, the
value is contained in a1.

• If the function returns a simple value of size one word or less, then the value must
be in a1. A language implementation is not obliged to consider all single-word
values simple. See Non-simple value return on page 10-8.

• If the function returns a simple floating-point value, the value is encoded in a1,
{a1, a2}, or {a1, a2, a3}, depending on its precision.

Note
 fp is usually not used by Thumb state code.
10-6 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

Thumb Procedure Call Standard
10.3 C language calling conventions

This section describes the conventions that apply to C language arguments and return
values.

10.3.1 Argument representation

A floating-point value occupies one, two, or three words, as appropriate to its type.
Floating-point values are encoded in IEEE 754 format, with the most significant word
of a double having the lowest address.

char, short, pointer and other integral values occupy one word in an argument list. long
long (__int64) values occupy two words in an argument list. Structure values are treated
as a sequence of integer words, even if all fields have floating-point type.

Characters are naturally unsigned. ANSI C has signed, unsigned, and plain chars.

10.3.2 Argument list marshalling

Argument values are marshalled in the order written in the source program.

The first 4 argument words are loaded into a1-a4, and the remainder are pushed onto the
stack in reverse order. This means that arguments later in the argument list have higher
addresses than those earlier in the argument list. As a consequence, a floating-point
value can be passed in integer registers, or even split between an integer register and the
stack.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 10-7

Thumb Procedure Call Standard
10.3.3 Non-simple value return

A non-simple type is any non-floating-point type of size greater than one word
(including structures containing only floating-point fields), and certain single-word
structured types.

A structure is considered integer-like if its size is less than or equal to one word, and the
offset of each of its addressable subfields is zero. An integer-like structured result is
considered simple and is returned in register a1.

Integer-like structures:

struct {int a:8, b:8, c:8, d:8;} union {int i; char *p;}

Non integer-like structures:

struct {char a; char b; char c; char d;}

A multi-word or non-integer-like result is returned to an address passed as an additional
first argument to the function call. At the machine level:

TT tt = f(x, ...);

is implemented as:

TT tt; f(&tt, x, ...);
10-8 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

Thumb Procedure Call Standard
10.4 Function entry examples

A complete discussion of function entry is complex. This section discusses a few of the
most important issues and special cases.

10.4.1 Definitions

The following terms are used to identify particular types of functions.

Tail calls or tail continuation functions

If function F calls function G immediately before an exit from F, the call-exit sequence
can often be replaced instead by a return to G. After this transformation, the return to G
is called a tail call or tail continuation.

Note
 Tail continuation is difficult with the Thumb instruction set because of the limited range
of the B instruction (+/-2048 bytes).

10.4.2 Simple function entry

The simplest entry sequence for functions is:

PUSH{save-registers, lr} ; Save registers as needed.

The corresponding exit sequence is:

POP {save-registers, pc}

It is sometimes necessary to save {a1-a4} before {v1-v4}, if the arguments can be
addressed as a single array of arguments accessed from the address of one of the saved
argument registers.

In this case, the function entry sequence becomes:

PUSH{a1-a4} ; as necessary
PUSH{save-registers, lr}

and the corresponding exit sequence becomes:

POP {save-registers}
POP {a3}
ADD sp, sp, #16
MOV pc, a3
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 10-9

Thumb Procedure Call Standard
10.4.3 Checking for stack limit violations

In some environments, stack overflow detection is implicit. An off-stack reference
causes an address error or memory fault which may, in turn, cause stack extension or
program termination.

In other environments, the availability of stack space must be checked whenever sp is
decremented (at least on function entry).

The check for stack limit violation is made at the end of the function entry sequence. If
the check fails, one of the following standard runtime support functions is called:

• __16__rt_stkovf_split_small

• __16__rt_stkovf_split_big.

Each environment that supports explicit stack limit checking must provide these
functions to either:

• terminate execution

• extend the existing stack, decrementing sl.

Stack limit checking: small, fixed frames

For frames of 256 bytes or less, the limit check may be implemented as follows:

CMP sp, sl
BHS no_ovf
BL |__16__rt_stkovf_split_small|

no_ovf

Stack limit checking: large, fixed frames

For frames larger than 256 bytes, the limit check may be implemented as follows:

LDR wr, framesize
ADD wr, sp
CMP wr, sl
BHS no_ovf
BL |__16__rt_stkovf_split_big|

no_ovf
MOV sp,wr
; ...
ALIGN

framesize
DCD -Framesize
10-10 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

Thumb Procedure Call Standard
Note
 Functions containing nested blocks may use different amounts of stack at different
times during their execution. If this is the case, subsequent stack adjustments require no
limit check if the initial stack check examines the maximum stack depth.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 10-11

Thumb Procedure Call Standard
10.5 Function exit

To exit from a function that saves no registers use:

MOV pc, lr

or:

BX lr

for interworking code.

where lr has the same value as it had on entry to the function.

To exit otherwise use:

POP {saved-registers, pc}

lr does not need to be preserved.

To exit from functions that create a stack backtrace structure, use:

LDR wr, [sp, #fp-offset] ; Restore fp
MOV fp, wr
LDR a4, [sp, #lr_offset] ; Get lr in a4
POP {saved-regs}
ADD sp, sp, #16+pushed-args*4; pushed-args*4 only

; needed if variadic
MOV pc, a4 ; Return
10-12 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

Chapter 11
Floating-point Support

This chapter describes the different types of floating-point mechanisms. It contains the
following sections:

• About floating-point support on page 11-2

• The ARM floating-point library on page 11-3

• Floating-point instructions on page 11-7

• Configuring the FPA support code for a new environment on page 11-13

• Controlling floating-point exceptions on page 11-14.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 11-1

Floating-point Support
11.1 About floating-point support

Floating-point arithmetic on the ARM can be done in three ways:

• software floating-point library (fplib), supplied as part of the ARM C libraries

• hardware coprocessor (FPA) that executes a floating-point instruction set

• software floating point emulation (FPE), such as that used by the ARMulator.

When the floating-point library is used, the compiler makes calls to the library routines
to do floating-point calculations. For the other options, the compiler uses floating-point
instructions that are executed by either the FPA or the floating-point support code
(FPASC), or emulated by a floating-point emulator.

The software floating-point library cannot use a hardware FPA, and it does not support
some little-used facilities of the IEEE 754-1985 floating-point arithmetic standard. If
either of these is required for your system, you are recommended to use FPASC.

Because use of floating-point library calls and use of floating-point instructions implies
different procedure calling conventions, it is not possible to combine the two methods.

The ARM compilers default to the software floating-point library. You can switch
armcc and armcpp to generate floating-point coprocessor instructions (see Chapter 6
Using the Procedure Call Standards in the ARM Software Development Toolkit User
Guide for more information).

For more information on floating-point support, refer to:

• the ARM FPA 10 datasheet (ARM DDI 0020I)

• the IEEE standard for binary floating-point arithmetic (IEEE 754-1985).

11.1.1 Thumb

The Thumb C compiler does not generate floating-point instructions, because these are
not available in the Thumb instruction set. The software floating-point library is the
only option available for tcc.
11-2 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

Floating-point Support
11.2 The ARM floating-point library

The ARM software floating-point library provides a set of functions such as _dadd to
add two doubles.

The code compiled using the ARM floating-point library cannot use the following
facilities of the IEEE standard:

• underflow exceptions

• inexact exceptions

• rounding modes other than round to nearest

• extended precision.

11.2.1 Usage

The following APCS options control which floating-point mechanism is used by the
compilers:

/softfp Use software floating-point library functions. This is the default for ARM
processors without an FPU, and the only floating-point option available
to Thumb compilers.

/hardfp Generate ARM coprocessor instructions for the FPA floating-point unit.
You may also specify /fpregargs or /nofpregargs. The /hardfp and
/softfp options are mutually exclusive. This option is not available for
Thumb compilers.

Note that /hardfp implies -fpu fpa. Use the -fpu option in preference to
/softfp and /hardfp.

Refer to Chapter 2 The ARM Compilers for more information.

11.2.2 Combining hardfp and softfp systems

With the software floating-point library, functions pass floating-point types in integer
registers. FPA systems pass floating-point results in floating-point registers. The two
return methods are not compatible. You should not mix ARM floating-point instructions
and calls to the softfp library.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 11-3

Floating-point Support
11.2.3 Floating-point library register usage

The software floating-point library provides a number of functions for basic
floating-point operation. IEEE double precision (double) values are passed in pairs of
registers, and single precision (float) numbers are passed in a single register.

For example, _dadd is the function to add two double precision numbers. It can be
considered as having the prototype:

extern double _dadd(double, double);

That is, the two numbers to be added are passed in r0/r1 and r2/r3. The result is returned
in r0/r1.

Similarly, the function _fadd (single precision add) has the two arguments passed in r0
and r1, and the result returned in r0. Table 11-1 gives the complete set of functions
provided by the software floating-point library.

Table 11-1 Floating point library functions

Function Operation Arg1 (type) Arg2 (type) Result (type)

_dadd A+B r0/r1 (double) r2/r3 (double) r0/r1 (double)

_dsub A–B r0/r1 (double) r2/r3 (double) r0/r1 (double)

_drsb B–A r0/r1 (double) r2/r3 (double) r0/r1 (double)

_dmul A*B r0/r1 (double) r2/r3 (double) r0/r1 (double)

_ddiv A/B r0/r1 (double) r2/r3 (double) r0/r1 (double)

_drdv B/A r0/r1 (double) r2/r3 (double) r0/r1 (double)

_dneg –A r0/r1 (double) r0/r1 (double)

_fadd A+B r0 (float) r1 (float) r0 (float)

_fsub A–B r0 (float) r1 (float) r0 (float)

_frsb B–A r0 (float) r1 (float) r0 (float)

_fmul A*B r0 (float) r1 (float) r0 (float)

_fdiv A/B r0 (float) r1 (float) r0 (float)

_frdv B/A r0 (float) r1 (float) r0 (float)

_fneg –A r0 (float) r0 (float)

_dgr A>B r0/r1 (double) r2/r3 (double) r0 (boolean)
11-4 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

Floating-point Support
_dgeq A>=B r0/r1 (double) r2/r3 (double) r0 (boolean)

_dls A<B r0/r1 (double) r2/r3 (double) r0 (boolean)

_dleq A<=B r0/r1 (double) r2/r3 (double) r0 (boolean)

_dneq A!=B r0/r1 (double) r2/r3 (double) r0 (boolean)

_deq A==B r0/r1 (double) r2/r3 (double) r0 (boolean)

_fgr A>B r0 (float) r1 (float) r0 (boolean)

_fgeq A>=B r0 (float) r1 (float) r0 (boolean)

_fls A<B r0 (float) r1 (float) r0 (boolean)

_fleq A<=B r0 (float) r1 (float) r0 (boolean)

_fneq A!=B r0 (float) r1 (float) r0 (boolean)

_feq A==B r0 (float) r1 (float) r0 (boolean)

_dflt (double)A r0 (int) r0/r1 (double)

_dfltu (double)A r0 (unsigned) r0/r1 (double)

_dfix (int)A r0/r1 (double) r0 (int)

_dfixu (unsigned)A r0/r1 (double) r0 (unsigned)

_fflt (float)A r0 (int) r0 (float)

_ffltu (float)A r0 (unsigned) r0 (float)

_ffix (int)A r0 (float) r0 (int)

_ffixu (int)A r0 (float) r0 (unsigned)

_f2d (double)A r0 (float) r0/r1 (double)

_d2f (float)A r0/r1 (double) r0 (float)

Table 11-1 Floating point library functions (continued)

Function Operation Arg1 (type) Arg2 (type) Result (type)
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 11-5

Floating-point Support
11.2.4 Type formats

int, unsigned 32-bit integer quantities.

boolean either 0 (False) or 1 (True)

float IEEE single precision floating-point number. (See Figure 11-1)

double IEEE double precision floating-point number. (See Figure 11-2)

Figure 11-1 IEEE single precision floating-point format

Figure 11-2 IEEE double precision floating-point format

�	

���� �������
�� � �!���� "��

�%
�

 %

�	

���� �������
�� � �!����#$
�#�� �% "��

�%
% 	& %

�� � �!����#$"�#�� �% "��

�� ��#&� '

�!��'#&� '
11-6 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

Floating-point Support
11.3 Floating-point instructions

The ARM assembler supports a comprehensive floating-point instruction set.
Floating-point operations are performed to the IEEE 754 standard. There are eight
floating-point registers, numbered f0 to f7. Floating-point operations, like integer
operations, are performed between registers.

Note
 Floating-point operations are only usable from armcc and in ARM assembly language
modules. They cannot be used from Thumb code because Thumb does not support the
coprocessor instructions.

Precision must be specified for many floating-point operations where shown as prec
below. The options are:

S single

D double

E extended

P packed BCD (only available for LDF and STF instructions).

In the following instruction patterns, round represents the rounding mode. It defaults to
round to nearest. It can be set in the appropriate instructions to:

P round to +infinity

M round to –infinity

Z round to zero.

In the following instruction patterns, Rx represents an ARM register, and Fx a
floating-point register.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 11-7

Floating-point Support
11.3.1 Floating-point data transfer: LDF and STF
LDF load data to floating-point register

STF store data from floating-point register

The syntax of these instructions is:

opcode{cond}prec Fd, [Rn,#offset]{!}
[Rn]{,#offset}
program-or-register-relative-expression

The memory address can be expressed in one of three ways, as shown above. In the first,
pre-indexed form, an ARM register Rn holds the base address, to which an offset can be
added if necessary. Writeback of the effective address to Rn can be enabled using ! The
offset must be divisible by 4, and within the range –1020 to 1020 bytes.

With the second, post-indexed form, writeback of Rn+offset to Rn after the transfer is
automatic, and the data is transformed from address Rn, not address Rn plus offset.
Alternatively, a program-relative or register-relative expression can be used, in which
case the assembler generates a pc-relative or register-relative, pre-indexed address. If it
is out of range an error results.

11.3.2 Floating-point register transfer: FLT and FIX

FLT integer to floating-point transfer Fn := Rd

The syntax of this instruction is:

FLT{condition}prec{round} Fn,Rd

where Rd is an ARM register.

FIX floating-point to integer transfer Rd := Fn

The syntax of this instruction is:

FIX{condition}{round} Rd,Fn
11-8 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

Floating-point Support
11.3.3 Floating-point register transfer: status and control

The following instructions transfer values between the status and control registers of the
floating-point coprocessor, and an ARM general purpose register. The syntax of the
instructions is:

opcode{condition} Rd

The instructions are:

WFS write floating-point status FPSR:= Rd
RFS read floating-point status Rd:=FPSR
WFC write floating-point control register

FPCR:= Rd (privileged modes only)
RFC read floating-point control register

Rd:=FPCR (privileged modes only)

WFC and RFC should never be used by code outside the floating-point system (that is, the
FPA and FPASC). They are only documented here for completeness.

11.3.4 Floating-point multiple data transfer: LFM and SFM

The load and store multiple floating point instructions are:

LFM load floating-point multiple

SFM store floating-point multiple

These instructions are used for block data transfers between the floating-point registers
and memory. Values are transferred in an internal 96-bit format, with no loss of
precision and with no possibility of an IEEE exception occurring, (unlike STFE which
may fault on storing a trapping NaN).

There are two forms, depending on whether the instruction is being used for stacking
operations or not. The first, nonstacking, form is:

opcode{condition} Fd,count,[Rn] [Rn,#offset]{!}
[Rn],#offset

The first register to transfer is Fd, and the number of registers to transfer is count. Up to
four registers can be transferred, always in ascending order. The count wraps round at
f7, so if f6 is specified with four registers to transfer, f6, f7, f0, and f1 will be transferred
in that order.

With pre-indexed addressing, the destination/source register can be specified with or
without an offset expressed in bytes. Writeback of the effective address to Rn can be
specified with !.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 11-9

Floating-point Support
With post-indexed addressing (the third form above), writeback is automatically
enabled, and the data is transferred from address Rn, not (Rn plus offset). Note that r15
cannot be used with writeback, and that offset must be divisible by 4 and in the range
–1020 to 1020, as for other coprocessor loads and stores.

The second form adds a two-letter stacking mnemonic (below ss) to the instruction and
optional condition codes. The mnemonic FD denotes a full descending stack
(pre-decrement push, post-increment pop), while EA denotes an empty ascending stack
(post-increment push, pre-decrement pop). The syntax is as follows:

opcode{condition}ss Fd,count,[Rn]{!}

FD and EA define pre-indexingand post-indexing, and the up/down bit by reference to the
form of stack required. Unlike the integer block-data transfer operations, only FD and EA
stacks are supported. The character !, if present, enables writeback of the updated base
address to Rn. r15 cannot be the base register if writeback is enabled.

The possible combinations of mnemonics are listed below:

LFMFD load floating-point multiple from a full descending stack (post-increment
load)

LFMEA load floating-point multiple from an empty ascending stack
(pre-decrement load)

SFMFD store floating-point multiple to a full descending stack (pre-decrement
store)

SFMEA store floating-point multiple to an empty ascending stack (post-increment
store)

11.3.5 Floating-point comparisons: CMF and CNF

The following instructions provide floating-point comparisons. The syntax of the
instructions is:

opcode{condition} Fn,Fm

The instructions are:

CMF compare floating-point compare Fn with FmCMFECNF
compare negated floating-point compare Fn with -FmCNFE

CMF and CNF onlyraise exceptions for signalling NaN operands and should be used to test
for equality (Z clear/set) and unorderedness (V set/clear). To comply with IEEE
754-1985, all other tests should use CMFE or CNFE, which may raise an exception if either
of the operands is any sort of NaN.
11-10 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

Floating-point Support
11.3.6 Floating-point binary operations

The following instructions provide floating-point binary operations. The syntax of the
instructions is:

binop{condition}prec{round} Fd,Fn,Fm

where:

Fm Can be either a floating-point register, or oneof the floating-point
constants, #0, #1, #2, #3, #4, #5, #10, or #0.5.

Fast operations produce results that may only be accurate to single
precision.

The instructions are:

ADF add Fd:=Fn+Fm
MUF multiply Fd:=Fn*Fm
SUF subtract Fd:=Fn–Fm
RSF reverse subtract Fd:=Fm–Fn
DVF divide Fd:=Fn/Fm
RDF reverse divide Fd:=Fm/Fn
POW power Fd:=Fn to the power of Fm
RPW reverse power Fd:=Fm to the power of Fn
RMF remainder Fd:=remainder of Fn/Fm
FML fast multiply Fd:=Fn*Fm
FDV fast divide Fd:=Fn/Fm
FRD fast reverse divide Fd:=Fm/Fn
POL polar angle Fd:=polar angle of Fn,Fm

(=ATN(Fm/Fn) whenever the
quotient exists)
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 11-11

Floating-point Support
11.3.7 Floating-point unary operations

The following instructions provide floating-point unary operation. The syntax of the
instructions is:

unop{condition}prec{round} Fd,Fm

where:

Fm can be either a floating-point register or one ofthe floating-point
constants #0, #1, #2, #3, #4, #5, #10, or #0.5.

The instructions are:

MVF move Fd:=Fm
MNF move negated Fd:=–Fm
ABS absolute value Fd:=ABS(Fm)
RND round to integral value Fd:=integer value of Fm

(using current rounding mode)
URD unnormalized round Fd:= integer value of Fm,

possibly in abnormal form
NRM normalize Fd:= normalised form of Fm
SQT square root Fd:=square root of Fm
LOG logarithm to base 10 Fd:=log Fm
LGN logarithm to base e Fd:=ln Fm
EXP exponent Fd:=eFm
SIN sine Fd:=sine of Fm
COS cosine Fd:=cosine of Fm
TAN tangent Fd:=tangent of Fm
ASN arc sine Fd:=arc sine of Fm
ACS arc cosine Fd:=arc cosine of Fm
ATN arc tangent Fd:=arc tangent of Fm
11-12 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

Floating-point Support
11.4 Configuring the FPA support code for a new environment

For information on how to configure the FPASC for a new environment, see Application
Note 10: Configuring the FPA Support Code/FPE (ARM DAI 0040).

Note
 This application note also discusses configuring floating-point emulation (FPE). The
linkable FPE library is no longer supported by the ARM Software Development Toolkit.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 11-13

Floating-point Support
11.5 Controlling floating-point exceptions

Both the /hardfp and /softfp modes provide a function, called __fp_status(), for
setting and reading the status of either the FPA or the floating-point library.

Example 11-1 is an extract from stdlib.h:

Example 11-1

extern unsigned int __fp_status(unsigned int /* mask */,unsigned int /*flags*/);
#define __fpsr_IXE0x100000 /* inexact exception trap enable bit */
#define __fpsr_UFE0x80000 /* underflow exception trap enable bit */
#define __fpsr_OFE0x40000 /* overflow exception trap enable bit */
#define __fpsr_DZE0x20000 /* divide by zero exception trap enable bit */
#define __fpsr_IOE0x10000 /* invalid operation exception trap enable bit */
#define __fpsr_IXC0x10 /* inexact exception flag bit */
#define __fpsr_UFC0x8 /* underflow exception flag bit */
#define __fpsr_OFC0x4 /* overflow exception flag bit */
#define __fpsr_DZC0x2 /* divide by zero exception flag bit */
#define __fpsr_IOC0x1 /* invalid operation exception flag bit */

mask and flags are bitfields that correspond directly to the floating-point status register
(FPSR) in the FPA and the floating-point library.

The function __fp_status() returns the current value of the status register, and also sets
the writable bits of the word (the exception control and flag bytes) to:

new = (old & ~mask) ^ flags;

Four different operations can be performed on each statusregister bit, determined by the
respective bits in mask and flags. These are shown in Table 11-2.

Table 11-2 Status register bit operations

mask bit flags bit effect

0 0 no effect

0 1 toggle bit in status register

1 0 clear bit in status register

1 1 set bit in status register
11-14 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

Floating-point Support
11.5.1 Return value

The __fp_status() function returns a one word (four byte) result that contains the
current value of the status register, before any changes are applied.

Initially all exceptions are enabled, and no flags are set.

System ID byte

Bits 31:24 contain a system ID byte. The currently defined values are:

0x00 pre-FPA floating-point emulator

0x01 FPA compatible floating-point emulator

0x40 floating-point library

0x80 FPPC (obsolete)

0x81 FPA10 (with FPASC module)

The top bit (bit 31) is used to distinguish between hardware and software systems, and
bit 30 is used to distinguish between software emulators and software libraries.

Exception trap enable byte

Each bit of the exception trap enable byte corresponds to one type of floating-point
exception.

Note
 The current floating-point library never produces those exceptions marked with a *. A
bit in the cumulative exception flags byte is set as a result of executing a floating-point
instruction only if the corresponding bit is not set in the exception trap enable byte. If
the corresponding bit in the exception trap enable byte is set, a runtime error occurs
(SIGFPE is raised in a C environment).

Bits 23:16 control the enabling of exceptions on floating-point errors:

bits 23:21 reserved

bit 20 (IXE) inexact exception enable*

bit 19 (UFE) underflow exception enable*

bit 18 (OFE) overflow exception enable

bit 17 (DZE) divide by zero exception enable
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 11-15

Floating-point Support
bit 16 (IOE) invalid operation exception enable

A set bit causes the system to take an exception trap if an error occurs. Otherwise a bit
is set in the cumulative exception flags (see Figure 11-3) and the IEEE defined result is
returned.

Figure 11-3 Cumulative exception flags byte

System control byte

This byte is not used in the floating-point library system. Refer to the FPA datasheet for
details of its meaning under FPA.

In particular, the NaN exception control bit (bit 9) is not supported by the floating-point
library.

Exception flags byte

Bits 7:0 contain flags for whether each exception has occurred in the same order as the
exception trap enable byte (see Figure 11-4). Exceptions occur as defined by IEEE 754.

Figure 11-4 Exception trap enable byte

7...5 4 3 2 1 0

Reserved IXC UFC OFC DZC IOC

23 22 21 20 19 18 17 16

Reserved IXE UFE OFE DZE IOE
11-16 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

Floating-point Support
11.5.2 Example

Example 11-2 gives four examples of using __fp_status().

Example 11-2

status = __fp_status(0,0);
/* reads the status register, does not change it */
__fp_status(__fpsr_DZE,0);
/* disable divide-by-zero exception trap */
overflow = __fp_status(__fpsr_OFC,0) & __fpsr_OFC;
/* read (and clear) overflow exception flag bit */
/* Report the type of floating-point system being used. */
switch (flags=(__fp_status(0,0)>>24))

{
case 0x0: case 0x1:

printf("Software emulation\n");
break;

case 0x40:
printf("Software library\n");
break;

case 0x80: case 0x81:
printf("Hardware\n");
break;

default:
printf("Unknown ");
if (flags & (1<<7))
 printf("hardware\n");
else
 printf("software %s\n",
 flags & (1<<6) ? "library" : "emulation");
break;

}

ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 11-17

Floating-point Support
11-18 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

Chapter 12
ARMulator

This chapter gives reference information about the ARMulator. It contains the following
sections:

• About the ARMulator on page 12-2

• Modeling an ARM-based system on page 12-3

• Basic model interface on page 12-7

• The memory interface on page 12-13

• Memory model interface on page 12-16

• Coprocessor model interface on page 12-24

• Operating system or debug monitor interface on page 12-36

• Using the floating-point emulator (FPE) on page 12-40

• Accessing ARMulator state on page 12-42

• Exceptions on page 12-55

• Upcalls on page 12-57

• Memory access functions on page 12-68

• Event scheduling functions on page 12-70

• ARMulator specific functions on page 12-75

• Accessing the debugger on page 12-83

• Events on page 12-87.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 12-1

ARMulator
12.1 About the ARMulator

The ARMulator is a program that emulates the instruction sets and architecture of
various ARM processor cores. It provides an environment for the development of
ARM-targeted software on the supported workstation and PC host systems.

The ARMulator is instruction-accurate. That is, it models the instruction set and counts
cycles accurately. As a result, it is well suited to software development and
benchmarking of ARM-targeted software. It is not a cycle-accurate model because it
does not model the precise timing characteristics of processors.

The ARMulator also supports a full ANSI C library to enable complete C programs to
run on the emulated system. Refer to Chapter 4 The C and C++ Libraries for more
information on C library support. See also Chapter 13 Angel in the ARM Software
Development Toolkit User Guide for information on the C library semihosting SWIs
supported by ARMulator.

The ARMulator is transparently connected to the ARM debuggers to provide a
hardware-independent ARM software development environment. Communication
takes place across the Remote Debug Interface (RDI). You can supply models written
in C that interface to the external interface of the ARMulator.

This chapter provides details of the functions you can use to write your own models. For
additional information about the ARMulator, refer to the ARM Software Development
Toolkit User Guide.
12-2 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

ARMulator
12.2 Modeling an ARM-based system

A minimal ARMulator environment consists of:

Remote Debug Interface (RDI)

This is the interface between the ARMulator and its host
debugger.

ARM Core model This is the model of an ARM processor such as the ARM6,
ARM710, or StrongARM.

Memory interface This is the interface between the ARM core and the memory
model. Refer to The memory interface on page 12-13 for more
information.

Memory model This is the model of the memory system for a specific ARM core
model. Map files can support simple memory only, other memory
models can support memory mapped I/O. Refer to Memory model
interface on page 12-16 for more information on memory model
interface functions.

Additional ARMulator models are used to model coprocessors, interface to host
operating systems, and extend ARMulator functionality. These models include:

Basic These can be used to add functionality to the ARMulator. There
are two types of basic model, early and late. Refer to Basic model
interface on page 12-7 for detailed information.

Veneer memory Additional memory models, called veneer memory models, can
be installed between the ARM Core model and the default
memory model. Refer to Installing a veneer memory model on
page 12-7 for more information.

Coprocessor These model ARM coprocessors. Refer to Coprocessor model
interface on page 12-24 for information on coprocessor model
interface functions.

Operating System These provide a virtual interface between the host and the ARM
model. Refer to Operating system or debug monitor interface on
page 12-36 for more information on O/S model interface
functions.

The Remote Debug Interface and ARM Core models are built into the ARMulator. You
can add your own basic, memory, veneer memory, coprocessor, and operating system
models.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 12-3

ARMulator
12.2.1 Model stubs

Basic models, memory models, coprocessor models, and operating system models
attach to the ARMulator through a stub. This stub consists of an initialization function
and a textual name for the model, which the ARMulator uses to locate it. Some samples
are provided in the rebuild kit to help you implement new models.

You can attach any number of models to an ARMulator without modifying existing
models. You select the model to use when you run the ARMulator, and you do not need
to recompile.

At startup, the ARMulator locates the model, then calls the initialization function,
passing in a pointer to a structure containing a list of pointers that the model should fill
in with implementation functions. The model should also register an ExitUpcall() (see
ExitUpcall on page 12-59) during initialization, to free any state it sets up.

Model initialization sequence

The model initialization functions are called in the following order:

1. ARMulator Core model.

2. Early basic models (see Basic model interface on page 12-7).

3. Memory models, including veneer memory models installed by an early basic
model (see Basic model interface on page 12-7)

4. Coprocessor models.

5. Operating system models.

6. Late basic models (see Basic model interface on page 12-7).

12.2.2 The ARMul_State state pointer

ARMul_State is an opaque data type that is a handle to the internal state of the
ARMulator. All the models are passed a state variable of type ARMul_State. The
ARMulator exports a number of functions to enable you to access ARMulator state
struct members. See Accessing ARMulator state on page 12-42 for more information.

12.2.3 Handling armsd map files

The ARMulator does not directly support armsd.map files. However, a memory model
can intercept the RDIMemory_Access, RDIMemory_Map, and RDIInfo_Memory_Stats RDI
messages, and implement this functionality directly.
12-4 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

ARMulator
The sample model armmap.c does this, and implements a basic memory system that
inserts wait states according to the memory speeds specified in the armsd.map file. Refer
to the ARMulator chapter in the ARM Software Development Toolkit User Guide for
more information on map files.

12.2.4 Configuring models through ToolConf

ARMulator models are configured through the ToolConf. The ToolConf is a database of
tags and values that the ARMulator reads from a configuration file (armul.cnf) during
initialization. The configuration file is documented in Application Note 52, The
ARMulator Configuration File (ARM DAI 0052).

A number of functions are provided for looking up values from this database. The full
set of functions is defined in toolconf.h. All the functions take an opaque handle called
a toolconf.

The most frequently used functions are described below.

12.2.5 ToolConf_Lookup

This function performs a lookup on a specified tag in the armul.cnf database. If the tag
is found, its associated value is returned. Otherwise, NULL is returned.

Syntax

const char *ToolConf_Lookup(toolconf hashv, const char *tag)

where:

hashv is the armul.cnf database toperform the lookup on.

tag is the tag to search for in the database. The tag is case-dependent.

Return

The function returns:

• a const pointer to the tag value, if the search is successful

• NULL, if the search is not successful.

Example

const char *option = ToolConf_Lookup(db, ARMulCnf_Size);
/* ARMulCnf_Size is defined in armcnf.h */
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 12-5

ARMulator
12.2.6 ToolConf_Cmp

This function performs a case-insensitive comparison of two ToolConf database tag
values.

Syntax

int ToolConf_Cmp(const char *s1, const char *s2)

where:

s1 is a pointer to the first string value to compare.

s2 is a pointer to the second string value to compare.

Return

The function returns:

• 1, if thestrings are identical

• 0, if the strings are different.

Example

if (ToolConf_Cmp(option, "8192"))
12-6 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

ARMulator
12.3 Basic model interface

The simplest model interface is the Basic model. This provides a mechanism for calling
a user-supplied function during initialization (see Basic model initialization function on
page 12-10). The function can then install upcalls, for example, to add functionality.

Basic models can be initialized either before or after memory models are initialized.
This means that there are two distinct types of basic model:

• Early models

• Late models.

Whether a basic model is early or late is controlled by the location of its configuration
in the ARMulator configuration file. See Application Note 52, The ARMulator
Configuration File (ARM DAI 0052) for more information.

12.3.1 Late basic models

Late basic models are initialized after the memory models. They can call the memory
system, and can, for example, initialize the memory contents. The pagetable.c model is
an example of a late basic model. It writes an MMU pagetable to memory, after the
memory system and MMU have been initialized.

12.3.2 Early basic models

Early basic models are initialized before memory models and can change the way the
memory interface is initialized, primarily through calling
ARMul_InstallMemoryInterface() (see ARMul_InstallMemoryInterface on page 12-11).
In particular, early basic models can be used to install additional, veneer memory
models.

Early models must not call the memory system (for example, ARMul_WriteWord()),
because it is not initialized when the early model is called.

The watchpnt.c and tracer.c models are examples of early basic models. These models
install watchpoint and trace veneer memory models. The following sections give more
information on installing a veneer memory model.

Installing a veneer memory model

By default, the ARMulator initialization sequence installs the default memory model
for a specific processor core. For example, Figure 12-1 on page 12-8 shows the model
hierarchy for an ARM7 after the memory model initialization function has completed.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 12-7

ARMulator
Figure 12-1 Minimal ARMulator model

You can use an early basic model to install any number of veneer memory models. The
sequence of events is:

1. Define the early model in armul.cnf. The ARMulator calls the initialization
function for the early model (see Basic model initialization function on
page 12-10).

2. The early model initialization function must call ARMul_InstallMemoryInterface()
to install the memory interface for the veneer memory model. This is required
only if you are installing veneer memory models (see
ARMul_InstallMemoryInterface on page 12-11).

3. When the initialization function for the early model returns, the ARMulator calls
the memory model initialization function for the veneer memory model (see
Memory model initialization function on page 12-17).

The initialization function must call the initialization function for the model
underneath it, either another veneer model or the standard memory model if there
are no more veneer memory models installed.

4. When all veneer models are installed, the initialization function for the standard
memory model for the processor model is called (Memory model initialization
function on page 12-17).

Figure 12-2 on page 12-9 shows an example of a model hierarchy with the watchpoint
veneer installed.

����'���

$�(����������
��!��

�����������(���
12-8 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

ARMulator
Figure 12-2 Veneer model hierarchy

����'���

���)�����
*��������!��

�����������(���

$�(����������
��!��

�����������(���
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 12-9

ARMulator
12.3.3 Basic model initialization function

A basic model exports a function that is called during initialization. You must provide
the model initialization function. If the model and the function are registered, and an
armul.cnf entry is found, then the model initialization function is called.

The name of the function is defined by you. In the description below, the name
ModelInit is used.

Syntax

static ARMul_Error ModelInit(ARMul_State *state,
 toolconf config)

where:

state is the ARMulator state pointer.

config is the configuration database.

Return

This function returns either:

• ARMulErr_NoError, if there is no error during initialization.

• An ARMul_Error value.

See armerrs.h and errors.h for a full list of error codes. The error should be passed
through ARMul_RaiseError() for formatting (see ARMul_RaiseError on page 12-75).

Example

The following example is from watchpnt.c.

#define ModelName (tag_t)"WatchPoints"
static ARMul_Error ModelInit(ARMul_State *state,

 toolconf config)
{

return ARMul_InstallMemoryInterface(state, TRUE, ModelName);
}
ARMul_ModelStub ARMul_WatchPointsInit = {

ModelInit,
ModelName

};
12-10 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

ARMulator
12.3.4 ARMul_InstallMemoryInterface

This function must be called from an early basic model that is installing a veneer
memory model. It installs the memory interface for the veneer memory model.

Syntax

ARMul_Error ARMul_InstallMemoryInterface(ARMul_State *state,
unsigned at_core,
tag_t new_model)

where:

state is a pointer to the ARMulator state.

at_core indicates where to place the model:

0 places the model immediately above the lowest
memory model in the memory hierarchy.

non-zero places the model immediately below the processor.

new_model names the veneer memory model.

Return

This function returns either:

• ARMulErr_NoError, if there is no error during installation.

• An ARMul_Error value.

See armerrs.h and errors.h for a full list of error codes. The error should be passed
through ARMul_RaiseError() for formatting (see ARMul_RaiseError on page 12-75).

Usage

This function must be called before the memory models are initialized, for example,
from an early model (see Early basic models on page 12-7).

For a simple processor and memory system, at_core has no effect, because the lowest
memory model is the one immediately below the processor. However, for a cached
processor, a cache model sits between the processor and the lowest memory model, as
shown in Figure 12-3 on page 12-12.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 12-11

ARMulator
Figure 12-3 Inserting into a cache hierarchy

#��������

'��)�

������

#��������

'��)�

������

#��������

'��)�

������

*�����

��(!� #)#�

��(!� #)#�

��(!� #)#� ��(!� #)#�

*�����

������

�����
12-12 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

ARMulator
12.4 The memory interface

The memory interface is the interface between the ARMulator core and the memory
model.

Because there are many core processor types, there are many memory type variants. The
memory initialization function is told which type it should provide (see Memory model
initialization function on page 12-17). A model must refuse to initialize in the case of
an unrecognized memory type variant.

If you install a veneer memory model between the default memory model and the ARM
core, you must explicitly install the memory interface for the veneer model by calling
ARMul_InstallMemoryInterface(). See ARMul_InstallMemoryInterface on page 12-11
and Installing a veneer memory model on page 12-7 for more information.

Note
 The nTRANS signal from the processor is not passed to the memory interface. Because
this signal changes infrequently and might not be used by a memory model, a model
should use TransChangeUpcall() to track nTRANS (see TransChangeUpcall on
page 12-61).

12.4.1 Memory type variants

The memory type variants are defined in the ARMul_MemInterface structure in armmem.h.
They are described in the following sections.

Basic memory types

There are three basic variants of memory type. All three use the same function interface
to the core. The types are defined as follows:

ARMul_MemType_Basic

supports byte and word loads and stores.

ARMul_MemType_16Bit

is the same as ARMul_MemType_Basic but with the addition of halfword
loads and stores.

ARMul_MemType_Thumb

is the same as ARMul_MemType_16Bit but with halfword instruction fetches
(that can be sequential). This can indicate to a memory model that most
accesses will be halfword-instruction-sequential rather than the usual
word-instruction-sequential.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 12-13

ARMulator
Note
 Memory models that do not support halfword accesses should refuse to initialize for
ARMul_MemType_16Bit and ARMul_MemType_Thumb.

For all three types, the model should fill in the interf->x.basic function pointers.

The file armflat.c contains an example function that implements a basic model. In
bytelane.c, there is an example of a model of an ASIC that converts the basic memory
types into the byte-lane version.

Cached versions of basic memory types

There are three variants of the basic memory types for cached processors such as the
ARM710 and ARM740T. These variants are defined as follows:

• ARMul_MemType_BasicCached

• ARMul_MemType_16BitCached

• ARMul_MemType_ThumbCached

:These differ from the basic equivalents in that there are only two types of cycle:

• Memory cycle, where acc_MREQ(acc) is TRUE

• Idle cycle, where acc_MREQ(acc) is FALSE.

A non-sequential access consists of an Idle cycle followed by a Memory cycle, with the
same address supplied for both.

A sequential access is a Memory cycle, with address incremented from the previous
access.

Byte-lane memory for StrongARM

StrongARM variants are defined as follows:

• ARMul_MemType_StrongARM

• ARMul_MemType_ByteLanes

Externally, StrongARM can use a byte-lane memory interface. There is a StrongARM
variant of the basic memory type that handles this. All the function types are the same,
and the model must still fill in the basic part of the ARMul_MemInterface structure, but the
meaning of the ARMul_acc word passed to the access() function is different.

The StrongARM variant replaces acc_WIDTH (see armul_MemAccess on page 12-21)
with acc_BYTELANE(acc). This returns a four-bit mask of the bytes in the word passed to
the access() function that are valid.
12-14 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

ARMulator
There is no endianness problem with this method of access. The model can ignore
endianness. Bit 0 of this word corresponds to bits 0-7 of the data, bit 1 to bits 8-15, bit 2
to bits 16-23, and bit 4 to bits 24-31.

ARM8 memory type

The ARM8 memory type is defined as follows:

• ARMul_MemType_ARM8

This is a double bandwidth interface. The ARM8 core can request two sequential
accesses per cycle.

ARM9 memory type

The ARM9 memory type is defined as follows:

• ARMul_MemType_ARM9

The ARM9, 920, and 940 memory type has the same memory type for cached and
non-cached cores. This is a Harvard architecture memory system.

Note
 The data and instruction address space is common.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 12-15

ARMulator
12.5 Memory model interface

The memory model interface is defined in the file armmem.h (which is #included from
armdefs.h). All memory accesses are performed through a single function pointer that
is passed a flags word. The flags word consists of a bitfield in which the bits correspond
to the signals on the outside of the ARM processor. This determines the type of memory
access that is being performed.

At initialization time, the initialization function registers a number of functions in the
memory interface structure, ARMul_MemInterface in armmem.h. The basic entries are:

typedef struct armul_meminterface ARMulMemInterface;
struct armul_meminterface {

void *handle;
armul_ReadClock *read_clock;
armul_ReadCycles *read_cycles;
union {
 struct {
 armul_MemAccess *access;
 armul_GetCycleLength *get_cycle_length;
 } basic;

 // ... other processor specific entries follow

The following sections describe the initialization function and the basic function
entries:

• Memory model initialization function on page 12-17

• armul_ReadClock on page 12-19

• armul_GetCycleLength on page 12-19

• armul_ReadCycles on page 12-20

• armul_MemAccess on page 12-21.

There are two functions that allow you to set and return the address of the top of
memory. These are described in:

• ARMul_SetMemSize on page 12-22

• ARMul_GetMemSize on page 12-23.
12-16 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

ARMulator
12.5.1 Memory model initialization function

The memory model exports a function that is called during initialization. You must
provide the memory model initialization function. If the model and the function are
registered, and an armul.cnf entry is found, then the memory model initialization
function is called.

The name of the function is defined by you. In the description below, the name MemInit
is used.

Syntax

static ARMul_Error MemInit(ARMul_State *state,
ARMul_MemInterface *interf,
 ARMul_MemType variant,
 toolconf config)

where:

state is a pointer to the ARMulator state.

interf is a pointer to the memory interface structure. See the ARMul_MemInterface
structure in armmem.h for an example.

variant is the memory interface variant. See the ARMul_MemType enumeration in
armmem.h. Refer to Memory type variants on page 12-13 for a description
of the variants.

config is the configuration database.

Return

This function returns either:

• ARMulErr_NoError, if there is no error during initialization.

• An ARMul_Error value.

See armerrs.h and errors.h for a full list of error codes. The error should be passed
through ARMul_RaiseError() for formatting (see ARMul_RaiseError on page 12-75).

Usage

The initialization should set the handle for the model by assigning to interf->handle.
The handle is usually a pointer to the state representing this instantiation of the model.
It is passed to all the access functions called by the ARMulator. See also
ARMul_AddCounterDesc on page 12-79 and ARMul_AddCounterValue on page 12-80.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 12-17

ARMulator
This function should also be used to:

• register any upcalls

• announce itself to the user using ARMul_PrettyPrint().

• attach any associated coprocessor models (CP15, for example) and set up its state.

Example

Refer to the definition of MemInit in armflat.c for an example. MemInit installs
ReadClock(), ReadCycles(), MemAccess(), and GetCycleLength() functions. Refer to the
following sections for more information on implementing these functions:

• armul_ReadClock on page 12-19

• armul_GetCycleLength on page 12-19

• armul_ReadCycles on page 12-20

• armul_MemAccess on page 12-21.
12-18 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

ARMulator
12.5.2 armul_ReadClock

This function should return the elapsed time in µ-seconds since the emulation model
reset.

The read_clock entry in the ARMul_MemInterface structure is a pointer to an
armul_ReadClock() function.

Syntax

unsigned long armul_ReadClock(void *handle)

where:

handle is a pointer to the ARMulator state.

Return

The function returns an unsigned long value representing theelapsed time in µ-seconds
since the model reset.

Usage

A model can supply NULL if it does not support this functionality.

12.5.3 armul_GetCycleLength

The get_cycle_length entry in the ARMul_MemInterface structure is a pointer to an
armul_GetCycleLength() function. This function should return the length of a single
cycle in units of one tenth of a nanosecond.

You should implement this function, even if the implementation is very simple. The
function name is defined by you.

Syntax

unsigned long armul_GetCycleLength(void *handle)

where:

handle is a pointer to the ARMulator state.

Return

The function returns an unsigned long representing the lengthof a single cycle in units
of one tenth of a nanosecond. For example, it returns 300 for a 33.3MHz clock.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 12-19

ARMulator
12.5.4 armul_ReadCycles

The read_cycles entry in the ARMul_MemInterface structure is a pointer to an
armul_ReadCycles() function. This function should calculate the total cycle count since
the emulation model reset. You should implement this function, even if the
implementation is very simple. The function name is defined by you.

Syntax

const ARMul_Cycles *armul_ReadCycles(void *handle)

where:

handle is a pointer to the ARMulator state.

Return

The function is called each time the counters are read bythe debugger. The function
calculates the total cycle count and returns a pointer to the ARMul_Cycles structure that
contains the cycle counts. The ARMul_Cycles structure is defined as:

typedef struct {unsigned long Total; unsigned long NumNcycles, NumScycles,
 NumCcycles, NumIcycles, NumFcycles;

 unsigned long CoreCycles;
} ARMul_Cycles;

Usage

A model can keep count of the accesses made to it by the ARMulator by providing this
function. The value of the CoreCycles field in ARMul_Cycles, is provided by the
ARMulator, not the memory model. When you write this function you must calculate
the Total field, because this is the value returned when ARMul_Time() is called. See Event
scheduling functions on page 12-70 for a description of ARMul_Time().

These counters are also used to provide the $statistics variable inside the ARM
debuggers, if the memory model does not use ARMul_AddCycleDesc() and
ARMul_AddCounterDesc(). See Upcalls on page 12-57 and ARMulator specific functions
on page 12-75.

Example

ARMul_Cycles *cycles;
cycles = interf->read_cycles(handle);
// where interf is a pointer to the memory interface structure.
// and handle is a void * pointer to the ARMul_State structure.
12-20 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

ARMulator
12.5.5 armul_MemAccess

The access entry in the ARMul_MemInterface structure is a pointer to an
armul_MemAccess() function. This function is called on each ARM core cycle.You must
implement this function, even if the implementation is very simple. The function name
is defined by you.

Syntax

int armul_MemAccess(void *handle, ARMword address, ARMword
*data, ARMul_acc access_type)

where:

handle is the value assigned to interf->handle in the initialization function.

address is the value on the address bus.

data is a pointer to the data for the memory access. Refer to the Usage section
below for details.

access_type

encodes the type of cycle. On some processors (for example, cached
processors) some of the signals will not be valid. The macros for
determining access type are:

acc_MREQ(acc)

chooses between memory request and non-memory request
accesses.

acc_WRITE(acc) or acc_READ(acc)

for memory cycles, determines whether this is a read or write
cycle (NOT acc_READ implies acc_WRITE, and NOT acc_WRITE
implies acc_READ).

acc_SEQ(acc)

for a memory cycle, this is TRUE if the address is the same as,
or sequentially follows from the address of the preceding
cycle. For a non-memory cycle it distinguishes between
coprocessor (acc_SEQ) and idle (not acc_SEQ) cycles.

acc_OPC(acc)

for memory cycles, this is TRUE if the data being read is an
instruction. (It is never TRUE for writes.)

acc_LOCK(acc)

distinguishes a read-lock-write memory cycle.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 12-21

ARMulator
acc_ACCOUNT(acc)

is TRUE if the cycle is coming from the ARM core, rather than
the remote debug interface.

acc_WIDTH(acc)

returns BITS_8, BITS_16, or BITS_32 depending on whether a
byte, halfword, or word is being fetched/written on a data
access.

Return

The function returns:

• 1, to indicate successful completion of the cycle.

• 0, to indicate that the processor should busy-wait and try the access again next
cycle.

• –1, to signal an abort.

Usage

Reads For reads, the memory model function should write the value to be read
by the core to the word pointed to by data. For example, with a byte load
it should write the byte value, with a halfword load it should write the
halfword value.

The model can ignore the alignment of the address passed to it because
this is handled by the ARMulator. However, it must present the bytes of
the word in the correct order for the endianness of the processor. This can
be determined by using either a ConfigChangeUpcall() upcall or
ARMul_SetConfig() (see Accessing ARMulator state on page 12-42).

armdefs.h provides a flag variable/macro named HostEndian, which is
TRUE if the ARMulator is running on a big-endian machine. See the
armflat.c sample file for an example of how to handle endianness.

Writes For writes, data points to the datum to be stored. However, this value may
need to be shortened for a byte or halfword store.

As with reads, endianness must be handled correctly.

12.5.6 ARMul_SetMemSize

This function should be called during memory initialization. It specifies the size, and
therefore the top of memory.
12-22 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

ARMulator
Syntax

ARMword ARMul_SetMemSize(ARMul_State *state, ARMword size)

where:

state is a pointer to the ARMulator state.

size is the size of memory in bytes (word aligned).

Return

The function returns the previous MemSize value.

Usage

The value of size should not exceed 0x80000000.

12.5.7 ARMul_GetMemSize

This function returns the address of the top of memory.

Syntax

ARMword ARMul_GetMemSize(ARMul_State *state)

where:

state is a pointer to the ARMulator state.

Return

The function returns the highest available address in memory.

Usage

This function can be used, for example, by a debug monitor model to tell an application
where the top of usable memory is, so it can set up application memory.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 12-23

ARMulator
12.6 Coprocessor model interface

The coprocessor model interface is defined in armdefs.h. The basic coprocessor
functions are:

• init on page 12-27

• ldc on page 12-29

• stc on page 12-29

• mrc on page 12-30

• mcr on page 12-31

• cdp on page 12-32.

In addition, two functions are provided that enable a debugger to read and write
coprocessor registers through the Remote Debug Interface. They are:

• read on page 12-34

• write on page 12-35.

If a coprocessor does not handle one or more of these functions, it should leave their
entries in the ARMul_CPInterface structure unchanged.

12.6.1 The ARMul_CPInterface structure

The coprocessor initialization structure contains a set of function pointers for each
supported operation. You must use the coprocessor initialization function to install your
functions in the structure at initialization. Refer to init on page 12-27 for more
information.

This structure also contains a pointer to a reg_bytes array that contains:

• the number of coprocessor registers, in the first element

• the number of bytes available to each register, in the remaining elements.

For example, dummymmu.c defines an array of eight registers, each of four bytes:

static const unsigned int MMURegBytes[] = {8, 4,4,4,4,4,4,4,4};

Definition

The ARMul_CPInterface structure is defined as:

typedef struct ARMul_cop_interface_str ARMul_CPInterface;
struct ARMul_cop_interface_str {

void *handle; /* A model private handle */
armul_LDC *ldc; /* LDC instruction */
armul_STC *stc; /* STC instruction */
armul_MRC *mrc; /* MRC instruction */
armul_MCR *mcr; /* MCR instruction */
12-24 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

ARMulator
armul_CDP *cdp; /* CDP instruction */
armul_CPRead *read; /* Read CP register */
armul_CPWrite *write; /* Write CP register */
const unsigned int *reg_bytes; /* map of CP reg sizes */

}

Example

In Example 12-1, if the core has a memory management unit (MMU), a predefined
mmu->RegBytes is used. If the core has a protection unit (PU), the size of RegBytes[7] and
RegBytes[8] is modified. RegBytes[7] corresponds to CP register 6 and RegBytes[8]
corresponds to CP register 7.CP register 6 is the protection region base/size register and
has eight indexable registers, so it is set to size sizeof(ARMword)*8.

Refer to the ARM Architectural Reference Manual for more information on the MMU
and PU.

Example 12-1

{
if (mem->prop & Cache_ProtectionUnit_Prop)

{
/* Use the PU */
mmu->RegBytes[0]=8; // has 8 registers
mmu->RegBytes[7]=sizeof(ARMword)*8; // register 7 is 8 words long
mmu->RegBytes[8]=sizeof(ARMword); // register 8 is a single word
interf->mrc=PU_MRC;
interf->mcr=PU_MCR;
interf->read=PU_CPRead;
interf->write=PU_CPWrite;
interf->reg_bytes=mmu->RegBytes;
ARMul_PrettyPrint(state,", PU");

/* Initialise PU Area registers to 0 */
for (i=0; i<=7; i++)

{
mmu->PU_Areas[i].PU_Register=0;
}

}
else /* Use the MMU */

{
interf->mrc=MRC;
interf->mcr=MCR;
interf->read=CPRead;
interf->write=CPWrite;
interf->reg_bytes=mmu->RegBytes;
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 12-25

ARMulator
ARMul_PrettyPrint(state,", MMU");
}

}

12-26 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

ARMulator
12.6.2 ARMul_CoProAttach

Coprocessors are either initialized directly by the ARMulator as appropriate, or can be
attached directly by another model by calling ARMul_CoProAttach(). As with memory
models, the coprocessor initialization function is used to fill in the interface structure.
ARMul_CoProAttach() registers the coprocessor initialization function for a specified
processor. You must implement this function.

Syntax

ARMul_Error ARMul_CoProAttach(ARMul_State *state,
 unsigned number,
 const ARMul_CPInit *init,
 toolconf config,
 void *sibling)

where:

state is a pointer to the ARMulator state.

number is the coprocessor number to attach.

init is a pointer to a coprocessor initialization function.

config is the configuration database.

sibling is a pointer to the state to be shared with the coprocessor.

Return

This function returns either:

• ARMulErr_NoError, if there is no error during initialization.

• An ARMul_Error value.

See armerrs.h and errors.h for a full list of error codes. The error should be passed
through ARMul_RaiseError() for formatting (see ARMul_RaiseError on page 12-75).

Example

error = ARMul_CoProAttach(state, 4, init, config, handle);

12.6.3 init

This is the coprocessor initialization function. This function fills in the
ARMul_CPInterface structure for the coprocessor model (see The ARMul_CPInterface
structure on page 12-24).
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 12-27

ARMulator
Syntax

ARMul_Error init(ARMul_State *state, unsigned num,
 ARMul_CPInterface *interf, toolconf config,
void *sibling)

where:

state is a pointer to the ARMulator state.

num is the coprocessor number.

interf is a pointer to the ARMul_CPInterface structure to be filled in.

config is the configuration database.

sibling identifies associations between the coprocessor and other emulated
components, such as sibling coprocessors. For example, a system may
have a pair of coprocessors that must be aware of each other. This is the
value passed to ARMul_CoProAttach().

Return

This function returns either:

• ARMulErr_NoError, if there is no error.

• An ARMul_Error value.

See armerrs.h and errors.h for a full list of error codes. The error should be passed
through ARMul_RaiseError() for formatting (see ARMul_RaiseError on page 12-75).
12-28 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

ARMulator
12.6.4 ldc

This function is called when an LDC instruction is recognized for a coprocessor. If the
requested coprocessor register does not exist or cannot be written to, the function should
return ARMul_CANT. You should implement this function.

Syntax

unsigned ldc(void *handle, unsigned type, ARMword instr, ARMword
data)

where:

handle is a pointer to the ARMulator state.

type is the type of coprocessor access. This can be one of:

ARMul_FIRST indicates that this is the first time the coprocessor
model has been called for this instruction.

ARMul_TRANSFER requests transfer.

ARMul_INTERRUPT warns the coprocessor that the ARM is about to
service an interrupt, so the coprocessor should
discard the current instruction. Usually, the
instruction will be retried later, in which case the
type will be reset to ARMul_FIRST.

ARMul_DATA indicates that valid data is included in data.

instr the current opcode.

data is the data being transferred to the coprocessor.

Return

The function should return one of:

• ARMul_INC, to request more data from the core.

• ARMul_DONE, to indicate that the coprocessor operation is complete.

• ARMul_BUSY, to indicate that the coprocessor is busy.

• ARMul_CANT, to indicate that the instruction is not supported.

12.6.5 stc

This function is called when an STC instruction is recognized for a coprocessor. If the
requested coprocessor register does not exist or cannot be written to, the function should
return ARMul_CANT. You should implement this function.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 12-29

ARMulator
Syntax

unsigned stc(void *handle, unsigned type, ARMword instr, ARMword
*data)

where:

handle is a pointer to the ARMulator state.

type is the type of the coprocessor access. This can be one of:

ARMul_FIRST indicates that this is the first time the coprocessor
model has been called for this instruction.

ARMul_TRANSFER requests transfer.

ARMul_INTERRUPT warns the coprocessor that the ARM is about to
service an interrupt, so the coprocessor should
discard the current instruction. Usually, the
instruction will be retried later, in which case the
type will be reset to ARMul_FIRST.

ARMul_DATA indicates that valid data is included in data.

instr is the current opcode.

data is a pointer to the location of the data being transferred from the
coprocessor to the core.

Return

The function should return one of:

• ARMul_INC, to indicate that there is more data to transfer to the core.

• ARMul_DONE, to indicate that the coprocessor operation is complete.

• ARMul_BUSY, to indicate that the coprocessor is busy.

• ARMul_CANT, to indicate that the instruction is not supported.

12.6.6 mrc

This function is called when an MRC instruction is recognized for a coprocessor. If the
requested coprocessor register does not exist or cannot be written to, the function should
return ARMul_CANT. You should implement this function.

Syntax

unsigned mrc(void *handle, unsigned type, ARMword instr, ARMword
*data)
12-30 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

ARMulator
where:

handle is a pointer to the ARMulator state.

type is the type of the coprocessor access. This can be one of:

ARMul_FIRST indicates that this is the first time the coprocessor
model has been called for this instruction.

ARMul_TRANSFER requests transfer.

ARMul_INTERRUPT warns the coprocessor that the ARM is about to
service an interrupt, so the coprocessor should
discard the current instruction. Usually, the
instruction will be retried later, in which case the
type will be reset to ARMul_FIRST.

ARMul_DATA indicates that valid data is included in data.

instr is the current opcode.

data is a pointer to the location of the data being transferred from the
coprocessor to the core.

Return

The function should return one of:

• ARMul_INC, to indicate that there is more data to transfer.

• ARMul_DONE, to indicate that the coprocessor operation is complete.

• ARMul_BUSY, to indicate that the coprocessor is busy.

• ARMul_CANT, to indicate that the instruction is not supported.

12.6.7 mcr

This function is called when an MCR instruction is recognized for a coprocessor. If the
requested coprocessor register does not exist or cannot be written to, the function should
return ARMul_CANT. You should implement this function.

Syntax

unsigned mcr(void *handle, unsigned type, ARMword instr, ARMword
data)

where:

handle is a pointer to the ARMulator state.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 12-31

ARMulator
type is the type of the coprocessor access. This can be one of:

ARMul_FIRST indicates that this is the first time the coprocessor
model has been called for this instruction.

ARMul_TRANSFER requests transfer.

ARMul_INTERRUPT warns the coprocessor that the ARM is about to
service an interrupt, so the coprocessor should
discard the current instruction. Usually, the
instruction will be retried later, in which case the
type will be reset to ARMul_FIRST.

ARMul_DATA indicates valid data is included in data.

instr is the current opcode.

data is the data being transferred to the coprocessor.

Return

The function should return one of:

• ARMul_INC, to indicate that there is more data to transfer.

• ARMul_DONE, to indicate that the coprocessor operation is complete.

• ARMul_BUSY, to indicate that the coprocessor is busy.

• ARMul_CANT, to indicate that the instruction is not supported.

12.6.8 cdp

This function is called when a CDP instruction is recognized for a coprocessor. If the
requested coprocessor operation is not supported, the function should return ARMul_CANT.
You should implement this function.

Syntax

unsigned cdp(void *handle, unsigned type, ARMword instr)

where:

handle is a pointer to the ARMulator state.

type is the type of the coprocessor access. This canbe one of:

ARMul_FIRST indicates that this is the first time the coprocessor
model has been called for this instruction.
12-32 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

ARMulator
ARMul_INTERRUPT warns the coprocessor that the ARM is about to
service an interrupt, so the coprocessor should
discard the current instruction. Usually, the
instruction will be retried later, in which case the
type will be reset to ARMul_FIRST.

instr is the current opcode.

Return

The function should return one of:

• ARMul_DONE, to indicate that the coprocessor operation is complete.

• ARMul_BUSY, to indicate that the coprocessor is busy.

• ARMul_CANT, to indicate that the instruction is not supported.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 12-33

ARMulator
12.6.9 read

This function enables a debugger to read a coprocessor register through the RDI. The
function reads the coprocessor register numbered reg and transfers its value to the
location addressed by value.

If the requested coprocessor register does not exist, or the register cannot be read, the
function should return ARMul_CANT. You should implement this function.

Syntax

unsigned read(void *handle, unsigned reg, ARMword const *value)

where:

handle is a pointer to the ARMulator state.

reg is the register number of the coprocessor registerto be read.

value is a pointer to the location of the data to be read from the coprocessor by
RDI.

Return

The function should return one of:

• ARMul_DONE, to indicate that the coprocessor operation is complete.

• ARMul_CANT, to indicate that the register is not supported.

Usage

This function can be useful for debugging purposes.
12-34 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

ARMulator
12.6.10 write

This function enables a debugger to write a coprocessor register through the RDI. The
function writes the coprocessor register numbered reg with the value at the location
addressed by value.

If the requested coprocessor does not exist or the register cannot be written, the function
should return ARMul_CANT. You should implement this function.

Syntax

unsigned write(void *handle, unsigned reg, ARMword const *value)

where:

handle is a pointer to the ARMulator state.

reg is the register number of the coprocessor registerthat is to be written.

value is a pointer to the location of the data that is to be written to the
coprocessor.

Return

The function should return one of:

• ARMul_DONE, to indicate that the coprocessor operation is complete.

• ARMul_CANT, to indicate that the register is not supported.

Usage

This function can be useful for debugging purposes.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 12-35

ARMulator
12.7 Operating system or debug monitor interface

The ARMulator supports rapid prototyping of low level operating system code through
an interface that enables a model to intercept SWIs and exceptions, and model them on
the host. This model can communicate with the emulated application by reading and
writing the emulated ARM state using the routines described in Accessing ARMulator
state on page 12-42.

The interface functions are:

• init on page 12-37

• handle_swi on page 12-38

• exception on page 12-39.

These functions are described in more detail in the following sections.

12.7.1 The ARMul_OSInterface structure

The ARMul_OSInterface structure is defined as:

typedef struct armul_os_interface ARMul_OSInterface;
typedef ARMul_Error armul_OSInit(ARMul_State *state,
 ARMul_OSInterface *interf,
 toolconf config);
typedef unsigned armul_OSHandleSWI(void *handle,ARMword number);
typedef unsigned armul_OSException(void *handle, ARMword vector,
 ARMword pc);
struct armul_os_interface {
 void *handle; /* A model private handle */
 armul_OSHandleSWI *handle_swi; /* SWI handler */
 armul_OSException *exception; /* Exception handler */
};
typedef struct {
 armul_OSInit *init; /* O/S initializer */
 tag_t name; /* O/S name */
} ARMul_OSStub;
12-36 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

ARMulator
12.7.2 init

This is the OS initialization function. It is passed a vector of functions to fill in. As with
other models, the operating system model is called through an initialization function
exported in a stub. You must implement this function.

The memory system is guaranteed to be operating at this time, so the operating system
can read and write to the emulated memory using the routines described in Memory
access functions on page 12-68.

Syntax

typedef ARMul_Error init(ARMul_State *state,
ARMul_OSInterface *interf,
 toolconf config)

where:

state is a pointer to the ARMulator state.

interf is a pointer to the OS interface structure.

config is the configuration database.

Return

This function returns either:

• ARMulErr_NoError, if there is no error.

• An ARMul_Error value.

See armerrs.h and errors.h for a full list of error codes. The error should be passed
through ARMul_RaiseError() for formatting (see ARMul_RaiseError on page 12-75).

Usage

This function can also run initialization code.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 12-37

ARMulator
12.7.3 handle_swi

This is the OS model SWI handling function. It is called whenever a SWI instruction is
executed. This enables support code to simulate operating system operations. This code
can model as much of your operating system as you choose. You should implement this
function.

Syntax

typedef unsigned handle_swi(void *handle, ARMword number)

where:

handle is a pointer to the ARMulator state.

number is the SWI number.

Return

The function can refuse to handle the SWI byreturning FALSE, or the model may choose
not to handle SWI instructions by setting NULL as the handle_swi function. In either
case, the SWI exception vector is taken by ARMulator. If the function returns TRUE the
ARMulator continues from the next instruction after the SWI.
12-38 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

ARMulator
12.7.4 exception

This is the OS model exception handling function. It is called whenever an exception
occurs. You should implement this function.

Syntax

typedef unsigned exception(void *handle, ARMword vector,
ARMword pc)

where:

handle is a pointer to the ARMulator state.

vector contains the address of the vector about to be executed, for example:

0x00 Reset

0x04 Undefined Instruction

0x1C Fast Interrupt (FIQ).

pc contains the program counter (including the effect of pipelining) at the
time the exception occurred.

Return

If the function returns TRUE, the ARMulator continues from the instruction following the
instruction that was being executed when the exception occurred.

Note
 If the exception is an interrupt, or a prefetch or data abort, the user function should make
the ARMulator retry the instruction, rather than continuing from the following
instruction. The user function can set up the pc by calling ARMul_SetPC to ensure this,
before returning TRUE.

A return value of FALSE causes the ARMulator to handle the exception normally.

Usage

The CPU state is frozen immediately after the exception has occurred, but before the
CPU has switched processor state or taken the appropriate exception vector.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 12-39

ARMulator
12.8 Using the floating-point emulator (FPE)

The ARMulator is supplied with the floating-point emulator (FPE) in object form. The
debug monitor model (angel.c) loads and starts executing the FPE on initialization.

The FPE requires the following SWIs to be supported by the debug monitor. Angel does
not support these SWIs, however they are implemented by angel.c to support FPE:

• SWI_Exit (0x11)

• SWI_GenerateError (0x71)

To load and initialize the FPE, call the following functions:

• ARMul_FPEInstall()

• ARMul_FPEVersion()

• ARMul_FPEAddressInEmulator().

These are described in more detail in the following sections.

12.8.1 ARMul_FPEInstall

This function writes the FPE into memory (below 0x8000), and executes it.

Syntax

int ARMul_FPEInstall(ARMul_State *state)

where:

state is a pointer to the ARMulator state.

Usage

Note
 Because this involves running code, it must be done only afterthe ARMulator is fully
initialized. Before calling ARMul_FPEInstall(), Angel completely initializes itself.

Return

The function returns:

• TRUE, if the installation is successful

• FALSE, if the installation fails.
12-40 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

ARMulator
12.8.2 ARMul_FPEVersion

This function returns the FPE version number. Angel uses this for unwinding aborts
inside the emulator (see the angel.c source code for details).

Syntax

int ARMul_FPEVersion(ARMul_State *state)

where:

state is a pointer to the ARMulator state.

Return

The function returns either:

• the FPE version code, if available

• –1 if there is no FPE.

12.8.3 ARMul_FPEAddressInEmulator

This function returns TRUE if the specified address lies inside the emulator.

Syntax

int ARMul_FPEAddressInEmulator(ARMul_State *state, ARMword addr)

where:

state is a pointer to the ARMulator state.

address is the address to check.

Return

The function returns:

• FALSE, if there is no FPE, or the addressis not in the FPE.

• TRUE, if the address is in the FPE.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 12-41

ARMulator
12.9 Accessing ARMulator state

All the models are passed a state variable of type ARMul_State. This is an opaque handle
to the internal state of the ARMulator. The ARMulator exports the following functions
to enable models to access the ARMulator state through this handle:

Functions to access ARM registers

The following functions provide read and write access to ARM registers:

• ARMul_GetMode on page 12-44

• ARMul_GetReg on page 12-45

• ARMul_SetReg on page 12-46

• ARMul_GetR15 and ARMul_GetPC on page 12-47

• ARMul_SetR15 and ARMul_SetPC on page 12-48

• ARMul_GetCPSR on page 12-49

• ARMul_SetCPSR on page 12-50

• ARMul_GetSPSR on page 12-50

• ARMul_SetSPSR on page 12-51.

Functions to access coprocessor registers

The following functions call the read and write methods for a
coprocessor:

• ARMul_CPRead on page 12-52

• ARMul_CPWrite on page 12-53.

Changing the model processor configuration

The following function enables you to change the configuration of your
modeled processor:

• ARMul_SetConfig on page 12-54.

Note
 It is not appropriate to access some parts of the state from certain parts of a model. For
example, you should not set the contents of an ARM register from a memory access
function, because the memory access function may be called during emulation of an
instruction. In contrast, it is necessary to set the contents of ARM registers from a SWI
handler function.

A number of the following functions take an unsigned mode parameter to specify the
processor mode. The mode numbers are defined in armdefs.h, and are listed in
Table 12-1 on page 12-43.
12-42 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

ARMulator
In addition, the special value CURRENTMODE is defined. This enables ARMul_GetMode() to
return the current mode number.

Note
 26-bit mode is included here for backward compatibility only, and will not be supported
in future releases.

For more information about 26-bit modes, see the ARM Architectural Reference
Manual, and also refer to Application Note 11 Differences Between ARM6 and Earlier
ARM Processors, and Application Note 37 Startup configuration of ARM Processors
with MMUs.

Table 12-1 Defined processor modes

USER26MODE USER32MODE ABORT32MODE

FIQ26MODE FIQ32MODE UNDEF32MODE

IRQ26MODE IRQ32MODE SYSTEM32MODE

SVC26MODE SCV32MODE
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 12-43

ARMulator
12.9.1 ARMul_GetMode

This function returns the current processor mode.

Syntax

ARMword ARMul_GetMode(ARMul_State *state)

where:

state is a pointer to the ARMulator state.

Returns

This function returns the current mode.

See Table 12-1 on page 12-43 for a list of defined processor modes.

Usage

If this is to be done frequently, a model should install a ModeChange() upcall instead (see
ModeChangeUpcall on page 12-60).
12-44 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

ARMulator
12.9.2 ARMul_GetReg

This function reads a register for a specified processor mode.

Syntax

ARMword ARMul_GetReg(ARMul_State *state, unsigned mode,
 unsigned reg)

where:

state is a pointer to the ARMulator state.

mode is the current processor mode. Values for mode are defined in armdefs.h
(see Table 12-1 on page 12-43)

reg is the register number of the register to read.

Return

The function returns the value in the given register for the specified mode.

Usage

Note
 Register r15 should not be accessed with this function. Use ARMul_GetPC() or
ARMul_GetR15() as described in ARMul_GetR15 and ARMul_GetPC on page 12-47.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 12-45

ARMulator
12.9.3 ARMul_SetReg

This function writes a register for a specified processor mode.

Syntax

void ARMul_SetReg(ARMul_State *state, unsigned mode, unsigned
reg, ARMword value)

where:

state is a pointer to the ARMulator state.

mode is the processor mode. Mode numbers are defined in armdefs.h (see
Table 12-1 on page 12-43).

reg is the register number of the register to write.

value is the value to be written to register reg for the specified processor mode.

Usage

Note
 Register r15 should not be accessed with this function. Use ARMul_SetPC(), or
ARMul_SetR15() as in ARMul_SetR15 and ARMul_SetPC on page 12-48.
12-46 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

ARMulator
12.9.4 ARMul_GetR15 and ARMul_GetPC

The following functions read register r15.

Syntax

ARMword ARMul_GetR15(ARMul_State *state)
ARMword ARMul_GetPC(ARMul_State *state)

where:

state is a pointer to the ARMulator state.

Return

The functions return the value of register r15. If the processor is in a 32-bit mode the
effect of either variant is the same.

If the processor is in a 26-bit mode:

• The ARMul_GetPC variant returns only the pc part of r15. It does not return the
condition code and mode bits from register r15.

• The ARMul_GetR15 variant returns the whole value of r15, including the condition
code and mode bits.

Usage

Note
 26-bit mode is included here for backward compatibility only, and will not be supported
in future releases.

For more information about 26-bit modes, see the ARM Architectural Reference
Manual, and also refer to Application Note 11 Differences Between ARM6 and Earlier
ARM Processors, and Application Note 37 Startup configuration of ARM Processors
with MMUs.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 12-47

ARMulator
12.9.5 ARMul_SetR15 and ARMul_SetPC

The following functions write register r15.

Syntax

void ARMul_SetR15(ARMul_State *state, ARMword value)void ARMul_SetPC(ARMul_State
*state, ARMword value)

where:

state is a pointer to the ARMulator state.

value the new value of r15 (pc) to be written.

Return

The functions write a value into register r15. If the processoris in a 32-bit mode the
effect of either variant is the same.

If the processor is in a 26-bit mode:

• The ARMul_SetPC variant sets only the pc part of r15. It leaves the condition code
and mode bits unaltered.

• The ARMul_SetR15 variant sets the whole of r15, including the condition code and
mode bits.

Usage

Note
 26-bit mode is included here for backward compatibility only, and will not be supported
in future releases.

For more information about 26-bit modes, see the ARM Architectural Reference
Manual, and also refer to Application Note 11 Differences Between ARM6 and Earlier
ARM Processors, and Application Note 37 Startup configuration of ARM Processors
with MMUs.
12-48 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

ARMulator
12.9.6 ARMul_GetCPSR

This function reads the CPSR. A valid value is faked if the processor is in a 26-bit mode,
so this function can still be used.

Syntax

ARMword ARMul_GetCPSR(ARMul_State *state)

where:

state is a pointer to the ARMulator state.

Return

The function returns the value of the CPSR for the current mode.

Usage

Note
 26-bit mode is included for backward compatibility only and will not be supported in
future releases.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 12-49

ARMulator
12.9.7 ARMul_SetCPSR

This function writes a value to the CPSR for the current processor mode. A valid value
is faked if the processor is in a 26-bit mode, so this function can still be used.

Syntax

void ARMul_SetCPSR(ARMul_State *state, ARMword value)

where:

state is a pointer to the ARMulator state.

mode is the processor mode. Values for mode are definedin armdefs.h (see
Table 12-1 on page 12-43).

value is the value to be written to the CPSR for the current mode.

Usage

Note
 26-bit mode is included for backward compatibility only and will not be supported in
future releases.

12.9.8 ARMul_GetSPSR

This function reads the SPSR for a specified processor mode.

Syntax

ARMword ARMul_GetSPSR(ARMul_State *state, ARMword mode)

where:

state is a pointer to the ARMulator state.

mode is the processor mode for the SPSR to be read.

Return

The function returns the value of the SPSR for the specified mode.
12-50 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

ARMulator
12.9.9 ARMul_SetSPSR

This function writes the SPSR for a specified processor mode.

Syntax

void ARMul_SetSPSR(ARMul_State *state, ARMword mode, ARMword
value)

where:

state is a pointer to the ARMulator state.

mode is the processor mode for the SPSR to be read. Values for mode are
defined in armdefs.h (see Table 12-1 on page 12-43).

value is the new value to be written to the SPSR for the specified mode.

12.9.10 ARMul_CPRegBytes

This function returns the reg_bytes[] array for the specified coprocessor (see The
ARMul_CPInterface structure on page 12-24 for details).

Syntax

unsigned int const *ARMul_CPRegBytes(ARMul_State *state, unsigned CPnum)

where:

state is a pointer to the ARMulator state.

CPnum is the coprocessor number to return the reg_bytes[] array for.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 12-51

ARMulator
12.9.11 ARMul_CPRead

This function calls the read method for a coprocessor. It also intercepts calls to read the
FPE emulated registers. (See Using the floating-point emulator (FPE) on page 12-40.)

Syntax

unsigned ARMul_CPRead(void *handle, unsigned reg, ARMword
*value)

where:

handle is a pointer to the ARMulator state.

reg is the number of the coprocessor register to read from.

value is the address to write the register value to.

Return

The function should return:

• ARMul_DONE, if the register can be read

• ARMul_CANT, if the register cannot be read.
12-52 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

ARMulator
12.9.12 ARMul_CPWrite

This function calls the write method for a coprocessor. It also intercepts calls to write
the FPE emulated registers. (See Using the floating-point emulator (FPE) on
page 12-40.)

Syntax

unsigned ARMul_CPWrite(void *handle, unsigned reg ARMword const
*value)

where:

handle is a pointer to the ARMulator state.

reg is the number of the coprocessor register to write to.

value is the address of the data to write to the coprocessor register.

Return

The function should return:

• ARMul_DONE, if the register can be written

• ARMul_CANT, if the register cannot be written.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 12-53

ARMulator
12.9.13 ARMul_SetConfig

This function changes the config value of the modeled processor. The config value
represents the state of the configuration pins on the ARM core. Refer to Configuration
bits and signals on page 12-62 for details of bit to signal assignments.

Syntax

ARMword ARMul_SetConfig(ARMul_State *state, ARMword changed,
ARMword config)

where:

state is a pointer to the ARMulator state.

changed is a bitmask of the config bits to change.

config contains the new values of the bits to change.

Return

The function returns the previous config value.

Usage

Note
 If a bit is cleared in changed it must not be set in config. For example, to set bit 1 and
clear bit 0:

changed 0x03 (00000011 binary)

config 0x02 (00000010 binary)

ConfigChangeUpcall() is called. See ConfigChangeUpcall on page 12-62 for more
information on this upcall.

Example

oldConfig = ARMul_SetConfig(state, 0x00000001, 0x00000001);
// This sets bit 0 to value 1
oldConfig = ARMul_SetConfig(state, 0x00000002, 0x00000001);
// This sets bit 1 to value 0 - note that bit 0 is unaffected.

The following call can be used to obtain the current settings of the configuration pins,
without modifying them:

currentConfig = ARMul_SetConfig(state, 0, 0);
12-54 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

ARMulator
12.10 Exceptions

The following functions enable a model to set or clear interrupts and resets, or branch
to a SWI handler:

• ARMul_SetNirq and ARMul_SetNfiq

• ARMul_SetNreset on page 12-56

• ARMul_SWIHandler on page 12-56.

12.10.1 ARMul_SetNirq and ARMul_SetNfiq

The following functions are used to set and clear IRQ and FIQ interrupts.

Syntax

unsigned ARMul_SetNirq(ARMul_State *state, unsigned value)unsigned
ARMul_SetNfiq(ARMul_State *state, unsigned value)

where:

state is a pointer to the ARMulator state.

value is the new Nirq or Nfiq signalvalue.

Note
 The signals are active LOW:

• 0 = interrupt

• 1 = no interrupt.

Return

The functions return the old signal value.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 12-55

ARMulator
12.10.2 ARMul_SetNreset

This function sets and clears RESET exceptions.

Syntax

unsigned ARMul_SetNreset(ARMul_State *state, unsigned value)

where:

state is a pointer to the ARMulator state.

value is the new Nreset signal value.

Note
 The signal is active LOW:

• 0 = reset

• 1 = no reset.

Return

The function returns the old signal value.

12.10.3 ARMul_SWIHandler

This function can be called from a handle_swi() function to enter a SWI handler at a
given address. It causes the processor to act as if it had taken the SWI vector, decoded
the SWI number, and then branched to this address.

Syntax

void ARMul_SWIHandler(ARMul_State *state, ARMword address)

where:

state is a pointer to the ARMulator state.

address is the address of the instruction to return to.

Usage

See the code for handling SWI_GenerateError in angel.c.for an example of how to use
this function.
12-56 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

ARMulator
12.11 Upcalls

The ARMulator can be made to call back your model when some state values change.
You do this by installing the relevant upcall. In the context of the ARMulator, the term
upcall is synonymous with callback.

You must provide implementations of the upcalls if you want to use them in your own
models. See the implementations in the ARM supplied models for examples.

You can use upcalls to avoid having to check state values on every access. For example,
a memory model is expected to present the ARM core with data in the correct
endianness for the value of the ARM processor bigend signal. A memory model can
attach to the ConfigChangeUpcall() upcall to be informed when this signal changes.

Every upcall is called when the ARMulator resets and after ARMulator initialization is
complete, regardless of whether the signals have changed, with the exception of
UnkRDIInfoUpcall().

The upcalls are defined in armdefs.h. The following upcalls are described in the sections
below:

• ExitUpcall on page 12-59

• ModeChangeUpcall on page 12-60

• TransChangeUpcall on page 12-61

• ConfigChangeUpcall on page 12-62

• InterruptUpcall on page 12-64

• ExceptionUpcall on page 12-64

• UnkRDIInfoUpcall on page 12-66.

Refer to Installing and removing upcalls on page 12-58 for information on how to
install and remove the upcalls.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 12-57

ARMulator
12.11.1 Installing and removing upcalls

Each upcall has its own installation and removal functions. These functions follow a
standard format, as described below.

Installing an upcall

Each upcall in installed using a function of the form:

void *ARMul_Install<UpcallName>(ARMul_State *state,
typename *fn,
 void *handle)

where:

<UpcallName>

is the name of the upcall. For example, the ExitUpcall() is installed with
ARMul_InstallExitHandler. The upcalls are:

• ExitUpcall()

• ModeChangeUpcall()

• TransChangeUpcall()

• ConfigChangeUpcall()

• InterruptUpcall()

• ExceptionUpcall()

• UnkRDIInfoUpcall().

state is a pointer to the ARMulator state.

typename is the type of the function, as defined by typedef in the upcall prototype.

fn is a pointer to the function to be installed.

handle is the handle to be passed to the corresponding Remove upcall function.

The function returns a void * handle to the upcall handler. This should be kept because
it is required by the corresponding Remove upcall function.

Removing an upcall

Each upcall is removed using a function of the form:

int *ARMul_Remove<UpcallName>(ARMulState *state, void *node)
12-58 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

ARMulator
where:

<UpcallName>

is the name of the upcall to be removed. For example,the ExitUpcall() is
removed with ARMul_RemoveExitHandler. See the description of the Install
upcall function for a list of upcall names.

state is the state pointer.

node is the handle returned from the corresponding Install upcall function.

The remove upcall functions return:

• TRUE if the upcall is removed

• FALSE if the upcall remove failed.

12.11.2 ExitUpcall

The exit upcall is called when the ARMulator exits. It should be used to release any
memory used.

Syntax

typedef void armul_ExitUpcall(void *handle)

where:

handle is a pointer to the ARMulator state.

Usage

Note
 The ANSI free() function is a valid ExitUpcall().If no exit upcall is registered and a
model uses some memory, that memory will be lost.

Install the upcall using:

void *ARMul_InstallExitHandler(ARMul_State *state,
armul_ExitUpcall *fn,
 void *handle)

Remove the upcall using:

int ARMul_RemoveExitHandler(ARMul_State *state, void *node)

Refer to Installing and removing upcalls on page 12-58 formore information.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 12-59

ARMulator
12.11.3 ModeChangeUpcall

The mode change upcall is called whenever the ARMulator changes mode. The upcall
is passed both the old and new modes.

Syntax

typedef void armul_ModeChangeUpcall(void *handle, ARMword old, ARMword new)

where:

handle is a pointer to the ARMulator state.

old is the old processor mode. Values for mode are defined in armdefs.h (see
Table 12-1 on page 12-43).

new is the new processor mode. Values for mode are defined in armdefs.h (see
Table 12-1 on page 12-43).

Usage

Install the mode change upcall using:

void *ARMul_InstallModeChangeHandler(ARMul_State *state,
armul_ModeChangeUpcall *fn,

void *handle)

Remove the mode change upcall using:

int ARMul_RemoveModeChangeHandler(ARMul_State *state,
void *node)

Refer to Installing and removing upcalls on page 12-58 for more information.
12-60 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

ARMulator
12.11.4 TransChangeUpcall

This upcall is called when the nTRANS signal on the ARM core changes.

The nTRANS signal is the Not Memory Translate signal. When LOW, it indicates that
the processor is in user mode, or that the processor is executing an LDRT/STRT instruction
from a non-user mode. It can be used to tell memory management models when
translation of the addresses should be turned on, or as an indicator of non-user mode
activity (for example, to provide different levels of access in non-user modes).

Refer to the ARM Architectural Reference Manual for details of the LDRT/STRT
instructions.

Syntax

typedef void armul_TransChangeUpcall(void *handle, unsigned old, unsigned
new)

where:

handle is a pointer to the ARMulator state.

old is the old nTRANS signal value.

new is the new nTRANS signal value.

Usage

Install the upcall using:

void *ARMul_InstallTransChangeHandler(ARMul_State *state,
armul_TransChangeUpcall *fn,
 void *handle)

Remove the upcall using:

int ARMul_RemoveTransChangeHandler(ARMul_State *state, void *node)

Refer to Installing and removing upcalls on page 12-58 for more information.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 12-61

ARMulator
12.11.5 ConfigChangeUpcall

This upcall is made when the ARMulator model configuration is changed (for example,
from big-endian to little-endian). You can call ARMul_SetConfig() to change the
configuration yourself (see ARMul_SetConfig on page 12-54).

Configuration is specified as a bitfield of config bits. The config bits represent signals
to the configuration pins on the ARM core. Table 12-2 lists the bits that correspond to
each signal.

Refer to the ARM Architectural Reference Manual for more information on
configuration signals.

If you have a CP15 then the control register bits corresponding to the signals listed in
Table 12-2 will be set in the same way.

Syntax

typedef void armul_ConfigChangeUpcall(void *handle, ARMword old,
ARMword new)

where:

handle is a pointer to the ARMulator state.

old is a bitfield representing the old configuration.

new is a bitfield representing the new configuration.

Usage

Install the upcall using:

Table 12-2 Configuration bits and signals

Signal Bit Notes

ARMul_Prog32 bit 4 Always high on ARM7TDMI, ARM9TDMI

ARMul_Data32 bit 5 Always high on ARM7TDMI, ARM9TDMI

ARMul_LateAbt bit 6 Not on ARM7, ARM9, or StrongARM

ARMul_BigEnd bit 7

ARMul_BranchPredict bit 11 ARM8 only
12-62 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

ARMulator
void *ARMul_InstallConfigChangeHandler(ARMul_State *state,
armul_ConfigChangeUpcall *fn,
 void *handle)

Remove the upcall using:

int ARMul_RemoveConfigChangeHandler(ARMul_State *state,
void *node)

Refer to Installing and removing upcalls on page 12-58 for more information.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 12-63

ARMulator
12.11.6 InterruptUpcall

This upcall is called whenever the ARM core notices an interrupt (not when it takes an
interrupt) or reset. It is called even if interrupts are disabled.

Syntax

typedef unsigned int armul_InterruptUpcall(void *handle, unsigned int which)

where:

handle is a pointer to the ARMulator state.

which is a bitfield that encodes which interrupt(s) have been noticed:

bit 0 Fast interrupt (FIQ).

bit 1 Interrupt request (IRQ).

bit 2 Reset.

Usage

This upcall can be used by a memory model to reset its state or implement a wake-up,
for example. It is called at the start of the instruction or cycle (depending on the core
being emulated) when the interrupt is noticed.

The interrupt responsible can be removed using ARMul_SetNirq() or ARMul_SetNfiq(), in
which case the ARM will not notice the interrupt. See ARMul_SetNirq and
ARMul_SetNfiq on page 12-55 for more information.

Note
 You can use ARMul_SetNirq() and ARMul_SetNfiq() to clear the interrupt signal, but they
will not necessarily clear the interrupt source itself.

Install the interrupt upcall using:

void *ARMul_InstallInterruptHandler(ARMul_State *state,
armul_InterruptUpcall *fn, void *handle)

Remove the interrupt upcall using:

int ARMul_RemoveInterruptHandler(ARMul_State *state, void *node)

Refer to Installing and removing upcalls on page 12-58 formore information.

12.11.7 ExceptionUpcall

This upcall is called whenever the ARM processor takes an exception.
12-64 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

ARMulator
Syntax

typedef unsigned int armul_ExceptionUpcall(void *handle, ARMword vector,
ARMword pc,
ARMword instr)

where:

handle is a pointer to the ARMulator state.

vector is the address of the appropriate hardware vector to be taken for the
exception.

pc is the value of pc at the time the exception occurs.

instr is the instruction that caused the exception.

Usage

As an example, this can be used by an operating system model to intercept and emulate
SWIs. If an installed upcall returns non-zero, the ARM does not take the exception (the
exception is essentially ignored).

Note
 In this release of the ARMulator, this occurs in addition to the calling of the installed
operating system model's handle_swi() function. Future releases may not support the
operating system interface, and you should use this upcall in preference. The model can
be installed as a basic model (see Basic model interface on page 12-7). The sample
models, such as angel.c and validate.c, shipped with this release of the ARMulator can
be built either as a Basic model or as an Operating System model.

Note
 If the processor is in Thumb state, the equivalent ARM instruction will be supplied.

Install the exception upcall using:

void *ARMul_InstallExceptionHandler(ARMul_State *state,
armul_ExceptionUpcall *fn,
 void *handle)

Remove the exception upcall using:

int ARMul_RemoveExceptionHandler(ARMul_State *state, void *node)

Refer to Installing and removing upcalls on page 12-58 formore information.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 12-65

ARMulator
12.11.8 UnkRDIInfoUpcall

UnkRDIInfoUpcall() functions are called if the ARMulator cannot handle an RDIInfo
request itself. They return an RDIError value. The UnkRDIInfoUpcall() function can be
used by a model extending the ARMulator's RDI interface with the debugger. For
example, the profiler module (in profiler.c) provides the RDIProfile Info calls.

Syntax

typedef int armul_UnkRDIInfoUpcall(void *handle, unsigned type
ARMword *arg1,
 ARMword *arg2)

where:

handle is a pointer to the ARMulator state.

type is the RDI_Info subcode. These are defined in rdi_info.h. See the usage
section below for some examples.

arg1/arg2 are arguments passed to the upcall from the calling function.

Usage

The ARMulator stops calling UnkRDIInfoUpcall() functions when one returns a value
other than RDIError_UnimplementedMessage.

The following codes are examples of the RDI_Info subcodes that can be specified as
type:

RDIInfo_Target

This enables models to declare how to extend the functionality of the
target. For example, profiler.c intercepts this call to set the
RDITarget_CanProfile flag.

RDIInfo_Points

watchpnt.c intercepts RDIInfo_Points to tell the debugger that the
ARMulator supports watchpoints. This is similar to the use of
RDIInfo_Target in profiler.c.

RDIInfo_SetLog

This is passed around so that models can switch logging information on
and off. For example, tracer.c uses this call to switch tracing on and off
from bit 4 of the rdi_log value.
12-66 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

ARMulator
RDIRequestCyclesDesc

This enables models to extend the list of counters provided by the
debugger in $statistics. Models call ARMul_AddCounterDesc() (see
ARMulator specific functions on page 12-75) to declare each counter in
turn. It is essential that the model also trap the RDICycles RDI info call.

RDICycles Models that have declared a statistics counter by trapping
RDIRequestCyclesDesc (above) must also respond to RDICycles by calling
ARMul_AddCounterValue() (see ARMulator specific functions on
page 12-75) for each counter in turn, in the same order as they were
declared.

The above RDI Info calls have already been dealt with by the ARMulator, and are
passed for information only, or so that models can add information to the reply. Models
should always respond with RDIError_UnimplementedMessage, so that the message is
passed on even if the model has responded.

Install the upcalls using:

void *ARMul_InstallUnkRDIInfoHandler(ARMul_State *state,armul_UnkRDIInfoUpcall
*proc, void *handle)

Remove the upcalls using:

int ARMul_RemoveUnkRDIInfoHandler(ARMul_State *state,
void *node)

Refer to Installing and removing upcalls on page 12-58 for more information.

Example

The angel.c model supplied with the ARMulator uses the UnkRDIInfoUpcall() to
interact with the debugger:

RDIErrorP returns errors raised by the program running under the ARMulator
to the debugger.

RDISet_Cmdline finds the command line set for the program by the debugger.

RDIVector_Catch intercepts the hardware vectors.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 12-67

ARMulator
12.12 Memory access functions

The memory model can be probed by another model using a set of functions for reading
and writing memory. These functions access memory without inserting cycles on the
bus. If your model needs to insert cycles on the bus, it should install itself as a memory
model, possibly between the core and the real memory model.

12.12.1 Reading from a given address

The following functions return the word, halfword, or byte at the specified address.
Each function accesses the memory without inserting cycles on the bus.

Syntax

ARMword ARMul_ReadWord(ARMul_State *state, ARMword address)
ARMword ARMul_ReadHalfWord(ARMul_State *state, ARMword address)
ARMword ARMul_ReadByte(ARMul_State *state, ARMword address)

where:

state is a pointer to the ARMulator state.

address is the address in emulated memory from which the word, halfword, or
byte is to be read.

Return

The functions return the word, halfword, or byte, as appropriate.
12-68 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

ARMulator
12.12.2 Writing to a specified address

The following functions write the specified word, halfword, or byte at the specified
address. Each function accesses memory without inserting cycles on the bus.

Syntax

void ARMul_WriteWord(ARMul_State *state, ARMword address, ARMword data)

void ARMul_WriteHalfWord(ARMul_State *state, ARMword address, ARMword data)

void ARMul_WriteByte(ARMul_State *state, ARMword address, ARMword data)

where:

state is a pointer to the ARMulator state.

address is the address in emulated memory to write to.

data is the word, halfword, or byte to write.

Note
 It is not possible to tell if these calls resulted in a data abort.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 12-69

ARMulator
12.13 Event scheduling functions

The event scheduling functions enable you to schedule a call to a function based on:

• the number of instructions executed (instruction events)

• the number of memory system cycles (cycle events).

This section describes the event scheduling functions:

Instruction events The following functions enable you to schedule instruction
events:

• armul_Hourglass on page 12-71

• ARMul_HourglassSetRate on page 12-72.

Cycle events The following functions enable you to schedule cycle events:

• ARMul_ScheduleEvent on page 12-73

• ARMul_ScheduleCoreEvent on page 12-74.

For details on ARMulator events see Events on page 12-87.
12-70 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

ARMulator
12.13.1 armul_Hourglass

The armul_Hourglass() function provides a mechanism for calling a function at every
instruction, or at every n instructions for a value of n that is set by the
ARMul_HourglassSetRate() function.

Syntax

typedef void armul_Hourglass(void *handle, ARMword pc,
ARMword instr)

where:

handle is a pointer to the ARMulator state.

pc is the program counter.

instr is the instruction about to be executed.

Usage

Install the function in the same way as upcalls:

void *ARMul_InstallHourglass(ARMul_State *state,
armul_Hourglass *fn,
 void *handle)

Remove function with:

int ARMul_RemoveHourglass(ARMul_State *state, void *node)

The remove function returns:

• TRUE, if the hourglass functionis removed successfully

• FALSE, if the hourglass function is not removed successfully.

You can use the ARMul_HourglassSetRate() function to change the default rate at which
armul_Hourglass() is called. See below for details.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 12-71

ARMulator
12.13.2 ARMul_HourglassSetRate

This function sets the rate at which the armul_HourGlass() function is called. By default,
the armul_HourGlass() function is called every instruction.

Syntax

unsigned long ARMul_HourglassSetRate(ARMul_State *state,
void *node,

unsigned long rate)

where:

state is a pointer to the ARMulator state.

rate defines the rate at which the function should be called. For example, a
value of 1 calls the function every instruction. A value of 100 calls it
every 100 instructions.

node is the handle returned from ARMul_InstallHourglass() when the upcall
was installed.

Return

The function returns the old hourglass rate.
12-72 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

ARMulator
12.13.3 ARMul_ScheduleEvent

This function schedules events using memory system cycles. It enables a function to be
called at a specified number of cycles in the future.

Syntax

void ARMul_ScheduleEvent(ARMul_State *state, unsigned
long delay,
 armul_EventProc *func,

void *handle)

where:

state is a pointer to the ARMulator state.

func is a pointer to the event function to call of type:

typedef unsigned armul_EventProc(void *handle)

delay specifies the number of cycles to delay before theevent function is called.

handle is the void * handle to call the event function with.

Note
 The function can be called only on the first instruction boundary following the specified
cycle.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 12-73

ARMulator
12.13.4 ARMul_ScheduleCoreEvent

ARMmul_ScheduleCoreEvent() function schedules events using the absolute core cycle
count at which the event will occur. It enables a function to be called at a specified point
in the future.

Syntax

void ARMul_ScheduleEventCore(ARMul_State *state,
armul_EventProc *func,
 void *handle,
 unsigned long coreCycleCount)

where:

state is a pointer to the ARMulator state.

func is a pointer to the event function to call, of type:

typedef unsigned armul_EventProc(void *handle)

handle is the void *handle to call the event function with.

coreCycleCount the absolute core cycle count at which the eventfunction is to be
called.

Note
 This function is supported only by ARM9-based models.
12-74 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

ARMulator
12.14 ARMulator specific functions

The following are general purpose ARMulator functions. They include functions to
access processor properties, add counter descriptions and values, stop the ARMulator
and execute code:

• ARMul_RaiseError

• ARMul_Time on page 12-77

• ARMul_Properties on page 12-77

• ARMul_CondCheckInstr on page 12-78

• ARMul_AddCounterDesc on page 12-79

• ARMul_AddCounterValue on page 12-80

• ARMul_HaltEmulation on page 12-81

• ARMul_EndCondition on page 12-81

• ARMul_DoProg on page 12-82

• ARMul_DoInstr on page 12-82.

12.14.1 ARMul_RaiseError

Errors of type ARMul_Error are returned from a number of initialization and installation
functions. These errors should be passed through ARMul_RaiseError(). This is a
printf-like function that formats the error message associated with an ARMul_Error error
code.

Syntax

ARMul_Error ARMul_RaiseError(ARMul_State *state,
ARMul_Error errcode, ...)

where:

state is a pointer to the ARMulator state.

errcode is the error code for the error message to be formatted.

... are printf-style format specifiers of variadic type.

Return

The function returns the error code it was passed, after formatting the error message.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 12-75

ARMulator
Example

This function is a printf-style variadic function, and the textual form can be a
printf-style format string. For example:

interf->handle = (model_state *)malloc(sizeof(model_state));
if (interf->handle == NULL)

return ARMul_RaiseError(state, ARMulErr_OutOfMemory);

For example, the ARMulErr_MemTypeUnhandled error message, used by memory models to
reject an unrecognized interface type, is declared:

ERROR(ARMulErr_MemTypeUnhandled,
"Memory model '%s' incompatible with bus interface.")

and called:

return ARMul_RaiseError(state,
ARMulErr_MemTypeUnhandled,
ModelName);

In this case, the debugger displays an error message such as:

Memory model 'Flat' incompatible with bus interface.

Extending the error file

The file errors.h can be extended by adding more errors. However, new errors can only
be added at the end of the file.

Entries are of the form:

ERROR(ARMulErr_OutOfMemory, "Out of memory.")

This declares an error message, ARMulErr_OutOfMemory, with the textual form:

"Out of memory"
12-76 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

ARMulator
12.14.2 ARMul_Time

This function returns the number of memory cycles executed since system reset.

Syntax

unsigned long ARMul_Time(ARMul_State *state)

where:

state is a pointer to the ARMulator state.

Return

The function returns the total number of cycles executed sincesystem reset.

12.14.3 ARMul_Properties

This function returns the properties word associated with the processor being emulated.

This is a bitfield of properties, defined in armdefs.h.

Syntax

ARMword ARMul_Properties(ARMul_State *state)

where:

state is a pointer to the ARMulator state.

Return

The function returns the properties word. This is a bitfield of properties, defined in
armdefs.h.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 12-77

ARMulator
12.14.4 ARMul_CondCheckInstr

Given an instruction, the ARMul_CondCheckInstr() function returns TRUE if it would
execute given the current state of the PSR flags.

Syntax

unsigned ARMul_CondCheckInstr(ARMul_State *state, ARMword instr)

where:

state is a pointer to the ARMulator state.

instr is the instruction opcode to check.

Return

The function returns:

• TRUE if the instruction would execute

• FALSE if the instruction wouldnot execute.
12-78 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

ARMulator
12.14.5 ARMul_AddCounterDesc

The ARMul_AddCounterDesc() function adds new counters to $statistics.

Syntax

int ARMul_AddCounterDesc(ARMul_State *state, ARMword *arg1,
ARMword *arg2,
const char *name)

where:

state is a pointer to the ARMulator state.

arg1/arg2 are the arguments passed to the UnkRDIInfoUpcall() .

name is a string that names the statistic counter. The string must be less than 32
characters long.

Return

The function returns one of:

• RDIError_BufferFull

• RDIError_UnimplementedMessage.

Usage

When the ARMulator receives an RDIRequestCycleDesc() call from the Debugger, it uses
the UnkRDIInfoUpcall() (see Upcalls on page 12-57) to ask each module in turn if it
wishes to provide any statistics counters. Each module responds by calling
ARMul_AddCounterDesc() with the arguments passed to the UnkRDIInfoUpcall().

All statistics counters must be either a 32-bit or 64-bit word, and be monotonically
increasing. That is, the statistic value must go up over time. This is a requirement
because of the way the Debugger calculates $statistics_inc.

See the implementation in armflat.c for an example.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 12-79

ARMulator
12.14.6 ARMul_AddCounterValue

This function is called when the debugger requests the current statistics values.

Syntax

int ARMul_AddCounterValue(ARMul_State *state, ARMword *arg1,
ARMword *arg2,
bool is64,
const ARMword *counter)

where:

state is a pointer to the ARMulator state. .

arg1/arg2 are the arguments passed to the UnkRDIInfoUpcall().

is64 denotes whether the counter is a pair of 32-bit words making a 64-bit
counter (least significant word first), or a single 32-bit value. This enables
modules to provide a full 64-bit counter.

counter is the current value of the counter.

Return

The function must always return RDIError_UnimplementedMessage.

Usage

When the ARMulator receives an RDICycles() call from the debugger, it uses the
UnkRDIInfoUpcall() to ask each module in turn to provide the counter values. Each
module responds by calling ARMul_AddCounterValue().

Note
 It is essential that a module that calls ARMul_AddCounterDesc() when
RDIRequestCycleDesc() is called also calls ARMul_AddCounterValue() when RDICycles()
is called. It must also call both functions the same number of times and in the same
order.
12-80 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

ARMulator
12.14.7 ARMul_HaltEmulation

This function stops emulator execution at the end of the current instruction, giving a
reason code.

Syntax

void ARMul_HaltEmulation(ARMul_State *state, unsigned
end_condition)

where:

state is a pointer to the ARMulator state.

end_condition

is one of the RDIError error values defined in rdi_err.h. Not all of these
errors are valid. The debugger interprets end_condition and issues a
suitable message.

12.14.8 ARMul_EndCondition

This function returns the end_condition passed to ARMul_HaltEmulation().

Syntax

unsigned ARMul_EndCondition(ARMul_State *state)

where:

state is a pointer to the ARMulator state.

Return

The end condition passed to ARMul_HaltEmulation().
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 12-81

ARMulator
12.14.9 ARMul_DoProg

This function starts running the emulator at the current pc value. It is called from the
ARMulator RDI interface.

Syntax

ARMword ARMul_DoProg(ARMul_State *state)

where:

state is a pointer to the ARMulator state.

Return

The function returns the value of pc on halting emulation.

12.14.10ARMul_DoInstr

This function executes a single instruction. It is called from the ARMulator RDI
interface.

Syntax

ARMword ARMul_DoInstr(ARMul_State *state)

where:

state is a pointer to the ARMulator state.

Return

The function returns the value of pc on halting emulation.
12-82 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

ARMulator
12.15 Accessing the debugger

This section describes the input, output, and RDI functions that you can use to access
the debugger. There are two groups of debugger functions:

Input/output functions

Several functions are provided to display messages in the host debugger.
Under armsd these functions print messages to the console. Under
ADW/ADU they display messages to the relevant window:

• ARMul_DebugPrint displays a message on the RDI console
window

• ARMul_ConsolePrint on page 12-84 displays a message on the
debugger console window

• ARMul_PrettyPrint on page 12-84 displays a formatted message.

• ARMul_DebugPause on page 12-85 waits for user input before
continuing the message display.

RDI functions

These are:

• ARMul_RDILog on page 12-85

• ARMul_HostIf on page 12-86.

12.15.1 ARMul_DebugPrint

This function displays a message in the RDI logging window under ADW/ADU, or to
the console under armsd.

Syntax

void ARMul_DebugPrint(ARMul_State *state, const char *format,
...)

where:

state is a pointer to the ARMulator state.

format is a printf-style formatted output string.

... are a variable number of parameters associated with format.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 12-83

ARMulator
12.15.2 ARMul_ConsolePrint

This function prints the text specified in the format string to the ARMulator console.
Under ADW/ADU, the text appears in the console window.

Syntax

void ARMul_ConsolePrint(ARMul_State *state, const char *format,
...)

where:

state is a pointer to the ARMulator state.

format is a printf-style formatted output string.

... are a variable number of parameters associated with format.

Note
 Use ARMul_PrettyPrint() to display startup messages.

12.15.3 ARMul_PrettyPrint

This function prints a string in the same way as ARMul_ConsolePrint(), but in addition
performs line break checks so that word wrap is avoided. It should be used for
displaying startup messages.

Syntax

void ARMul_PrettyPrint(ARMul_State *state, const char *format, ...)

where:

state is a pointer to the ARMulator state.

format is a printf-style formatted output string.

... are a variable number of parameters associated with format.
12-84 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

ARMulator
12.15.4 ARMul_DebugPause

This function waits for the user to press any key.

Syntax

void ARMul_DebugPause(ARMul_State *state)

where:

state is a pointer to the ARMulator state.

12.15.5 ARMul_RDILog

This function returns the value of the RDI logging level.

Syntax

ARMword ARMul_RDILog(ARMul_State *state)

where:

state is a pointer to the ARMulator state.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 12-85

ARMulator
12.15.6 ARMul_HostIf

This function returns a pointer to a RDI_HostosInterface structure, defined in rdi_hif.h.
The structure includes pointers to RDI functions that enable a debug target to send and
received textual information to and from a host.

Syntax

const RDI_HostosInterface *ARMul_HostIf(ARMul_State *state)

where:

state is a pointer to the ARMulator state.

Return

The function returns a pointer to the RDI_HostosInterface structure.Refer to rdi_hif.h
for the RDI_HostosInterface structure definition.

Usage

An operating system model can make use of this to:

• efficiently access the console window (under ADW/ADU) or the console (under
armsd) without going through ARMul_ConsolePrint()

• receive user input.

The following input/output functions are included in RDI_HostosInterface:

void writec(RDI_Hif_HostosArg *arg, int c)

Writes a single character to the console window under ADW/ADU, or to
the console under armsd. This is used by ARMul_ConsolePrint(), and by
the emulation of SYS_WriteC in angel.c.

int readc(RDI_Hif_HostosArg *arg, char const *buffer, int len)

Reads a single character of input from the host debugger.

int write(RDI_Hif_HostosArg *arg, char const *buffer, int len)

Writes a stream of data to the console window under ADW/ADU, or to
the console under armsd.

char *gets(RDI_Hif_HostosArg *arg, char *buffer, int len)

Reads a string from the host debugger.
12-86 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

ARMulator
12.16 Events

The ARMulator has a mechanism for broadcasting and handling events. These events
consist of an event number and a pair of words. The number identifies the event. The
semantics of the words depends on the event.

The core ARMulator generates some example events, defined in armdefs.h. They are
divided into three groups:

• events from ARM processor core in Table 12-3

• events from MMU and cache (not on StrongARM-110) in Table 12-4 on
page 12-88

• events from prefetch unit (ARM8-based processors only) in Table 12-5 on
page 12-88.

These events can be logged in the trace file if tracing is enabled, and trace events is
turned on. Additional modules can provide new event types that will be handled in the
same way.

You can catch events by installing an event upcall (see armul_EventUpcall on
page 12-89). You can raise an event by calling ARMul_RaiseEvent() (see
ARMul_RaiseEvent on page 12-90).

Refer to Chapter 12 ARMulator in the ARM Software Development Toolkit User Guide
for more information and examples.

Table 12-3 Events from ARM processor core

Event name Word 1 Word 2 Event number

CoreEvent_Reset - - 0x1

CoreEvent_UndefinedInstr pc value instruction 0x2

CoreEvent_SWI pc value SWI number 0x3

CoreEvent_PrefetchAbort pc value - 0x4

CoreEvent_DataAbort pc value aborting address 0x5

CoreEvent_AddrExceptn pc value aborting address 0x6

CoreEvent_IRQ pc value - 0x7

CoreEvent_FIQ pc value - 0x8

CoreEvent_Breakpoint pc value RDI_PointHandle 0x9

CoreEvent_Watchpoint pc value Watch address 0xa
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 12-87

ARMulator
CoreEvent_IRQSpotted pc value - 0x17

CoreEvent_FIQSpotted pc value - 0x18

CoreEvent_ModeChange pc value new mode 0x19

CoreEvent_Dependency pc value interlock register
bitmask

0x20

Table 12-4 Events from MMU and cache (not on StrongARM-110)

Event name Word 1 Word 2 Event number

MMUEvent_DLineFetch miss address victim address 0x10001

MMUEvent_ILineFetch miss address victim address 0x10002

MMUEvent_WBStall physical address
of write

number of words
in write buffer

0x10003

MMUEvent_DTLBWalk miss address victim address 0x10004

MMUEvent_ITLBWalk miss address victim address 0x10005

MMUEvent_LineWB miss address victim address 0x10006

MMUEvent_DCacheStall address causing
stall

address fetching 0x10007

MMUEvent_ICacheStall address causing
stall

address fetching 0x10008

Table 12-5 Events from prefetch unit (ARM810 only)

Event name Word 1 Word 2 Event number

PUEvent_Full next pc value - 0x20001

PUEvent_Mispredict address of branch - 0x20002

PUEvent_Empty next pc value - 0x20003

Table 12-3 Events from ARM processor core (continued)

Event name Word 1 Word 2 Event number
12-88 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

ARMulator
12.16.1 armul_EventUpcall

This upcall catches ARMulator events.

Syntax

typedef void armul_EventUpcall(void *handle, unsigned int event, ARMword
addr1, ARMword addr2)

where:

handle is a pointer to the ARMulator state.

event is one of the event numbers defined in Table 12-3 on page 12-87,
Table 12-3 on page 12-87, and Table 12-3 on page 12-87.

addr1 is the first word of the event (see the Tables above).

addr2 is the second word of the event (see the Tables above).

Usage

Install the upcall using:

void *ARMul_InstallEventUpcall(ARMul_State *state,
armul_EventUpcall *fn,
 void *handle)

Remove the upcall using:

int ARMul_RemoveEventUpcall(ARMul_State *state, void *node)
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 12-89

ARMulator
12.16.2 ARMul_RaiseEvent

This function invokes events. The events are passed to the user-supplied event upcalls.

Syntax

void ARMul_RaiseEvent(ARMul_State *state, unsigned int event, ARMword word1,
ARMword word2)

where:

handle is a pointer to the ARMulator state.

event is one of the event numbers defined in Table 12-3 on page 12-87,
Table 12-3 on page 12-87, and Table 12-3 on page 12-87.

addr1 is the first word of the event (see the Tables above).

addr2 is the second word of the event (see the Tables above).
12-90 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

Chapter 13
ARM Image Format

This chapter describes the ARM Image Format (AIF). It contains the following
sections:

• Overview of the ARM Image Format on page 13-2

• AIF variants on page 13-3

• The layout of AIF on page 13-4.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 13-1

ARM Image Format
13.1 Overview of the ARM Image Format

ARM Image Format (AIF) is a simple format for ARM executable images, consisting
of:

• a 128-byte header

• the image code

• the image initialized static data.

An AIF image is capable of self-relocation if it is created with the appropriate linker
options. The image can be loaded anywhere and it will execute where it is loaded. After
an AIF image has been relocated, it can create its own zero-initialized area. Finally, the
image is entered at the unique entry point.
13-2 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

ARM Image Format
13.2 AIF variants

There are three variants of AIF:

Executable AIF

Executable AIF can be loaded at its load address and entered at the same
point (at the first word of the AIF header). It prepares itself for execution
by relocating itself if required and setting to zero its own zero-initialized
data.

The header is part of the image itself. Code in the header ensures that the
image is properly prepared for execution before being entered at its entry
address.

The fourth word of an executable AIF header is:

BL entrypoint

The most significant byte of this word (in the target byte order) is 0xeb.

The base address of an executable AIF image is the address at which its
header should be loaded. Its code starts at base + 0x80.

Non-executable AIF

Non-executable AIF must be processed by an image loader that loads the
image at its load address and prepares it for execution as detailed in the
AIF header. The header is then discarded. The header is not part of the
image, it only describes the image.

The fourth word of a non-executable AIF image is the offset of its entry
point from its base address. The most significant nibble of this word (in
the target byte order) is 0x0.

The base address of a non-executable AIF image is the address at which
its code should be loaded.

Extended AIF

Extended AIF is a special type of non-executable AIF. It contains a
scatter-loaded image. It has an AIF header that points to a chain of load
region descriptors within the file. The image loader should place each
region at the location in memory specified by the load region descriptor.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 13-3

ARM Image Format
13.3 The layout of AIF

This section describes the layout of AIF images.

13.3.1 AIF image layout

An AIF image has the following layout:

• Header

• Read-only area

• Read-write area

• Debugging data (optional)

• Self-relocation code (position-independent)

• Relocation list. This is a list of byte offsets from the beginning of the AIF header,
of words to be relocated, followed by a word containing -1. The relocation of
non-word values is not supported.

Note
 An AIF image is restartable if, and only if, the program it contains is restartable (an AIF
image is not reentrant). Following self-relocation, the second word of the header must
be reset to NOP. This causes no additional problems with the read-only nature of the code
section.

On systems with memory protection, the self-relocation code must be bracketed by
system calls to change the access status of the read-only section (first to writable, then
back to read-only).

13.3.2 Debugging data

After the execution of the self-relocation code, or if the image is not self-relocating, the
image has the following layout:

• Header

• Read-only area

• Read-write area

• Debugging data (optional).

AIF images support being debugged by an ARM debugger. Low-level and source-level
support are orthogonal. An AIF image can have both, either, or neither kind of
debugging support.

References from debugging tables to code and data are in the form of relocatable
addresses. After loading an image at its load address these values are effectively
absolute.
13-4 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

ARM Image Format
References between debugger table entries are in the form of offsets from the beginning
of the debugging data area. Following relocation of a whole image, the debugging data
area itself is position-independent and may be copied or moved by the debugger.

13.3.3 AIF header

Table 13-1 shows the layout of the AIF header.

Table 13-1 AIF header layout

00: NOPa

04: BL SelfRelocCode NOP if the image is not self-relocating

08: BL ZeroInit NOP if the image has none.

0C: BL ImageEntryPoint or
EntryPoint Offset

BL to make the header addressable via r14 ...but the
application will not return... Non-executable AIF uses an
offset, not BL.

BL is used to make the header addressable via r14 in a
position-independent manner, and to ensure that the
header will be position-independent.

10: Program Exit Instruction … last attempt in case of return. The Program Exit
Instruction is usually a SWI causing program termination.
On systems that do not implement a SWI for this purpose,
a branch-to-self is recommended. Applications are
expected to exit directly and not to return to the AIF
header, so this instruction should never be executed. The
ARM linker sets this field to SWI 0x11 by default, but it
may be set to any desired value by providing a template
for the AIF header in an area called AIF_HDR in the first
object file in the input list to armlink.

14: Image ReadOnly size Image ReadOnly Size includes the size of the AIF header
only if the AIF type is executable (that is, if the header
itself is part of the image).

18: Image ReadWrite size Exact size (a multiple of 4 bytes).

1C: Image Debug size Exact size (a multiple of 4 bytes). Includes high-level and
low-level debug size. Bits 0-3 hold the type. Bits 4-31
hold the low level debug size.

20: Image zero-init size Exact size (a multiple of 4 bytes).
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 13-5

ARM Image Format
24: Image debug type Valid values for Image debug type are:

0 No debugging data present.

1 Low-level debugging data present.

2 Source level debugging data present.

3 1 and 2 are present together.

All other values of image debug type are reserved.

28: Image base Address where the image (code) was linked.

2C: Work space Obsolete.

30: Address mode: 26/32 + 3
flag bytes

The word at offset 0x30 is 0, or contains in its least
significant byte (using the byte order appropriate to the
target):

26 Indicates that the image was linked for a
26-bit ARM mode, and may not execute
correctly in a 32-bit mode. This is
obsolete.

32 Indicates that the image was linked for a
32-bit ARM mode, and may not execute
correctly in a 26-bit mode.

A value of 0 indicates an old-style 26-bit AIF header.

If the Address mode word has bit 8 set, the image was
linked with separate code and data bases (usually the data
is placed immediately after the code). The word at offset
0x34 contains the base address of the image's data.

34: Data base Address where the image data was linked.

38: Two reserved words
(initially 0)

In Extended AIF images, the word at 0x38 is non-zero. It
contains the byte offset within the file of the header for the
first non-root load region. This header has a size of 44
bytes, and the following format:

word 0 file offset of header of next region (0 is
none)

word 1 load address

word 2 size in bytes (a multiple of 4)

char[32] the region name padded out with zeros.

The initializing data for the region follows the header.

40: NOP

44: Zero-init code 15 words
as below

Header is 32 words long.

Table 13-1 AIF header layout (continued)
13-6 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

ARM Image Format
a. In all cases, NOP is encoded as MOV r0,r0
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 13-7

ARM Image Format
13-8 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

Chapter 14
ARM Object Library Format

This chapter describes the ARM Object Library Format (ALF). It contains the following
sections:

• Overview of ARM Object Library Format on page 14-2

• Endianness and alignment on page 14-3

• Library file format on page 14-4

• Time stamps on page 14-7

• Object code libraries on page 14-8.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 14-1

ARM Object Library Format
14.1 Overview of ARM Object Library Format

This section defines a file format called ARM Object Library Format (ALF), that is used
by the ARM linker and the ARM object librarian.

A library file contains a number of separate but related pieces of data. In order to
simplify access to these data, and to provide for a degree of extensibility, the library file
format is itself layered on another format called Chunk File Format. This provides a
simple and efficient means of accessing and updating distinct chunks of data within a
single file. Refer to Chunk file format on page 15-4 for a description of the Chunk File
Format.

The Library format defines four chunk classes:

• Directory

• Time stamp

• Version

• Data.

There may be many Data chunks in a library.

The Object Library Format defines two additional chunks:

• Symbol table

• Symbol table time stamp.
14-2 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

ARM Object Library Format
14.2 Endianness and alignment

For data in a file, address means offset from the start of the file.

There is no guarantee that the endianness of an ALF file will be the same as the
endianness of the system used to process it (the endianness of the file is always the same
as the endianness of the target ARM system).

The two sorts of ALF cannot meaningfully be mixed (the target system cannot have
mixed endianness, it must have one or the other). The ARM linker accepts inputs of
either sex and produces an output of the same sex, but rejects inputs of mixed
endianness.

14.2.1 Alignment

Strings and bytes may be aligned on any byte boundary.

ALF fields defined in this document do not use halfwords, and align words on 4-byte
boundaries.

Within the contents of an ALF file (within the data contained in OBJ_AREA chunks, see
below), the alignment of words and halfwords is defined by the use to which ALF is
being put. For all current ARM-based systems, alignment is strict.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 14-3

ARM Object Library Format
14.3 Library file format

For library files, the first part of each chunk name is LIB_. For object libraries, the names
of the additional two chunks begin with OFL_.

Each piece of a library file is stored in a separate, identifiable chunk. Table 14-1 shows
the chunk names.

There may be many LIB_DATA chunks in a library, one for each library member. In all
chunks, word values are stored with the same byte order as the target system. Strings
are stored in ascending address order, which is independent of target byte order.

14.3.1 Earlier versions of ARM object library format

These notes ensure maximum robustness with respect to earlier, now obsolete, versions
of the ARM object library format:

• Applications which create libraries or library members should ensure that the
LIB_DIRY entries they create contain valid time stamps.

• Applications which read LIB_DIRY entries should not rely on any data beyond the
end of the name string being present, unless the difference between the
DataLength field and the name-string length allows for it. Even then, the contents
of a time stamp should be treated cautiously.

• Applications which write LIB_DIRY or OFL_SYMT entries should ensure that padding
is done with NULL (0) bytes. Applications that read LIB_DIRY or OFL_SYMT entries
should make no assumptions about the values of padding bytes beyond the first,
string-terminating NULL byte.

Table 14-1 Library File Chunks

Chunk Chunk name

Directory LIB_DIRY

Time stamp LIB_TIME

Version LIB_VRSN

Data LIB_DATA

Symbol table OFL_SYMT object code

Time stamp OFL_TIME object code
14-4 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

ARM Object Library Format
14.3.2 LIB_DIRY

The LIB_DIRY chunk contains a directory of the modules in the library, each of which is
stored in a LIB_DATA chunk. The directory size is fixed when the library is created. The
directory consists of a sequence of variable length entries, each an integral number of
words long. The number of directory entries is determined by the size of the LIB_DIRY
chunk. Table 14-2 shows the layout.

where:

ChunkIndex is a word containing the zero-origin index within the chunk file
header of the corresponding LIB_DATA chunk. Conventionally, the
first three chunks of an OFL file are LIB_DIRY, LIB_TIME and
LIB_VRSN, so ChunkIndex is at least 3. A ChunkIndex of 0 means the
directory entry is unused.

The corresponding LIB_DATA chunk entry gives the offset and size
of the library module in the library file.

EntryLength is a word containing the number of bytes in this LIB_DIRY entry,
always a multiple of 4.

DataLength is a word containing the number of bytes used in the data section
of this LIB_DIRY entry, also a multiple of 4.

Data consists of, in order:

• a zero-terminated string (the name of the library member).
Strings should contain only ISO-8859 non-control
characters (codes [0-31], 127 and 128+[0-31] are excluded).
The string field is the name used to identify this library
module. Typically it is the name of the file from which the
library member was created.

• any other information relevant to the library module (often
empty).

Table 14-2 The LIB_DIRY chunk

ChunkIndex

EntryLength The size of this LIB_DIRY chunk (an integral number of words).

DataLength The size of the Data (an integral number of words).

Data
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 14-5

ARM Object Library Format
• a two-word, word-aligned time stamp. The format of the
time stamp is described in Time stamps on page 14-7. Its
value is an encoded version of the last-modified time of the
file from which the library member was created.

14.3.3 LIB_VRSN

The version chunk contains a single word whose value is 1.

14.3.4 LIB_DATA

A LIB_DATA chunk contains one of the library members indexed by the LIB_DIRY chunk.
The endianness or byte order of this data is, by assumption, the same as the byte order
of the containing library/chunk file.

No other interpretation is placed on the contents of a member by the library
management tools. A member could itself be a file in chunk file format or even another
library.
14-6 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

ARM Object Library Format
14.4 Time stamps

A library time stamp is a pair of words that encode:

• a six byte count of centiseconds since 00:00:00 1st January 1900

• a two byte count of microseconds since the last centisecond.

First (most significant) word

Contains the most significant 4 bytes of the 6 byte centisecond count.

Second (least significant) word

Contains the least significant two bytes of the six byte centisecond count
in the most significant half of the word and the two byte count of
microseconds since the last centisecond in the least significant half of the
word. This is usually 0.

Time stamp words are stored in target system byte order. They must have the same
endianness as the containing chunk file.

14.4.1 LIB_TIME

The LIB_TIME chunk contains a two-word (eight-byte) time stamp recording when the
library was last modified.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 14-7

ARM Object Library Format
14.5 Object code libraries

An object code library is a library file whose members are files in ARM Object Format.
An object code library contains two additional chunks:

• an external symbol table chunk named OFL_SYMT

• a time stamp chunk named OFL_TIME.

14.5.1 OFL_SYMT

The external symbol table contains an entry for each external symbol defined by
members of the library, together with the index of the chunk containing the member
defining that symbol.

The OFL_SYMT chunk has exactly the same format as the LIB_DIRY chunk except that the
Data section of each entry contains only a string, the name of an external symbol, and
between one and four bytes of NULL padding, as follows:

OFL_SYMT entries do not contain time stamps.

14.5.2 OFL_TIME

The OFL_TIME chunk records when the OFL_SYMT chunk was last modified and has the
same format as the LIB_TIME chunk (see Time stamps on page 14-7).

Table 14-3 OFL_SYMT chunk layout

ChunkIndex

EntryLength The size of this OFL_SYMT chunk (an integral number of words).

DataLength The size of the External Symbol Name and Padding (an integral
number of words).

External Symbol Name

Padding
14-8 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

Chapter 15
ARM Object Format

This chapter describes the ARM Object Format. It contains the following sections:

• ARM Object Format on page 15-2

• Overall structure of an AOF file on page 15-4

• The AOF header chunk (OBJ_HEAD) on page 15-7

• The AREAS chunk (OBJ_AREA) on page 15-12

• Relocation directives on page 15-13

• Symbol Table Chunk Format (OBJ_SYMT) on page 15-16

• The String Table Chunk (OBJ_STRT) on page 15-20

• The Identification Chunk (OBJ_IDFN) on page 15-21.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 15-1

ARM Object Format
15.1 ARM Object Format

This section describes the ARM Object Format (AOF).

The following terms apply throughout this section:

object file refers to a file in ARM Object Format.

address for data in a file, this means offset from the start of the file.

15.1.1 Areas

An object file written in AOF consists of any number of named, attributed areas.
Attributes include:

• read-only

• reentrant

• code

• data

• position-independent.

For details see Attributes and alignment on page 15-9.

Typically, a compiled AOF file contains a read-only code area, and a read-write data
area (a zero-initialized data area is also common, and reentrant code uses a separate
based area for address constants).

15.1.2 Relocation directives

Associated with each area is a (possibly empty) list of relocation directives which
describe locations that the linker will have to update when:

• a non-zero base address is assigned to the area

• a symbolic reference is resolved.

Each relocation directive may be given relative to the (not yet assigned) base address of
an area in the same AOF file, or relative to a symbol in the symbol table. Each symbol
may:

• have a definition within its containing object file which is local to the object file

• have a definition within the object file which is visible globally (to all object files
in the link step)

• be a reference to a symbol defined in some other object file.
15-2 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

ARM Object Format
15.1.3 Byte sex or endianness

An AOF file can be produced in either little-endian or big-endian format.

There is no guarantee that the endianness of an AOF file will be the same as the
endianness of the system used to process it (the endianness of the file is always the same
as the endianness of the target ARM system).

15.1.4 Alignment

Strings and bytes may be aligned on any byte boundary. AOF fields defined in this
document make no use of halfwords and align words on 4-byte boundaries.

Within the contents of an AOF file, the alignment of words and halfwords is defined by
the use to which AOF is being put. For all current ARM-based systems, words are
aligned on 4-byte boundaries and halfwords on 2-byte boundaries.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 15-3

ARM Object Format
15.2 Overall structure of an AOF file

An AOF file contains a number of separate pieces of data. To simplify access to the data,
and to give a degree of extensibility to tools which process AOF, the object file format
is itself layered on another format called Chunk File Format, which provides a simple
and efficient means of accessing and updating distinct chunks of data within a single
file.

15.2.1 Chunk file format

A file written in chunk file format consists of a header, and one or more chunks. The
header is always positioned at the beginning of the file. A chunk is accessed through the
header. The header contains the number, size, location, and identity of each chunk in the
file.

The size of the header may vary between different chunk files, but it is fixed for each
file. Not all entries in a header need be used, thus limited expansion of the number of
chunks is permitted without a wholesale copy. A chunk file can be copied without
knowledge of the contents of its chunks.

Chunk file header

The chunk file header consists of two parts:

• the first part is a fixed length part of three words

• the second part contains a four word entry for each chunk in the file.

The first part of the header contains the following three word sized fields:

ChunkFileId Marks the file as a chunk file. Its value is 0xC3CBC6C5. The
endianness of the chunk file can be determined from this value (if
it appears to be 0xC5C6CBC3 when read as a word, each word
value must be byte-reversed before use).

max_chunks Defines the number of the entries in the header, fixed when the file
is created.

num_chunks Defines how many chunks are currently used in the file, which can
vary from 0 to max_chunks. It is redundant in that it can be found
by scanning the entries.
15-4 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

ARM Object Format
The second part of the header contains a four word entry for each chunk in the file. The
number of entries is given by the num_chunks field in the first part of the header.

chunkId Is an 8-byte field identifying what data the chunk contains. Note
that this is an 8-byte field, not a 2-word field, so it has the same
byte order independent of endianness.

file_offset Is a one-word field defining the byte offset within the file of the
start of the chunk. All chunks are word-aligned, so it must be
divisible by four. A value of zero indicates that the chunk entry is
unused.

size Is a one-word field defining the exact byte size of the chunk's
contents (which need not be a multiple of four).

Identifying data types

The chunkId field provides a conventional way of identifying what type of data a chunk
contains. It has eight characters, and is split into two parts:

• the first four characters contain a unique name allocated by a central authority

• the remaining four characters can be used to identify component chunks within
this domain.

The eight characters are stored in ascending address order, as if they formed part of a
NULL-terminated string, independent of endianness.

For AOF files, the first part of each chunk name is OBJ_. The second components are
defined in the following section.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 15-5

ARM Object Format
15.2.2 ARM object format

Each piece of an object file is stored in a separate, identifiable chunk. AOF defines five
chunks as shown in Table 15-1.

Only the AOF Header and AREAS chunks must be present, but a typical object file contains
all five of the above chunks.

Each name in an object file is encoded as an offset into the string table, stored in the
OBJ_STRT chunk The String Table Chunk (OBJ_STRT) on page 15-20. This allows the
variable-length nature of names to be factored out from primary data formats.

A feature of ARM Object Format is that chunks may appear in any order in the file (for
example, the ARM C compiler and the ARM assembler produce their AOF chunks in
different orders).

A language translator or other utility may add additional chunks to an object file, for
example, a language-specific symbol table or language-specific debugging data.
Therefore it is conventional to allow space in the chunk header for additional chunks.
Space for eight chunks is conventional when the AOF file is produced by a language
processor which generates all five chunks described here.

Note
 The AOF header chunk should not be confused with the chunk file header.

Table 15-1 AOF chunks

Chunk Chunk name

AOF Header OBJ_HEAD

Areas OBJ_AREA

Identification OBJ_IDFN

Symbol Table OBJ_SYMT

String Table OBJ_STRT
15-6 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

ARM Object Format
15.3 The AOF header chunk (OBJ_HEAD)

The AOF header consists of two contiguous parts:

• the first part is a fixed size part of six words that describes the contents and nature
of the object file.

• the second part has a variable length (specified in the first part of the header), and
consists of a sequence of area headers describing the areas within the OBJ_AREA
chunk.

Part one contains the following word sized fields:

Object File Type

The value 0xC5E2D080 marks the file as being in relocatable object
format (the usual output of compilers and assemblers and the usual input
to the linker). The endianness of the object code can be deduced from this
value and must be identical to the endianness of the containing chunk file.

Version Id

Encodes the AOF version number. The current version number is 310
(0x136).

Number of Areas

The code and data of an object file are encapsulated in a number of
separate areas in the OBJ_AREA chunk, each with a name and some
attributes (see Attributes and alignment on page 15-9).

Each area is described in the variable-length part of the AOF header
which immediately follows the fixed part. Number_of_Areas gives the
number of areas in the file and, equivalently, the number of AREA
declarations that follow the fixed part of the AOF header.

Number of Symbols

If the object file contains a symbol table chunk (named OBJ_SYMT), Number
of Symbols records the number of symbols in the symbol table.

One of the areas in an object file may be designated as containing the start
address of any program which is linked to include the file. If this is the
case, the entry address is specified as an Entry Area Index, Entry Offset
pair.

Entry Area Index

Entry Area Index, in the range 1 to Number of Areas, gives the 1-origin
index in the following array of area headers of the area containing the
entry point.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 15-7

ARM Object Format
A value of 0 for Entry Area Index signifies that no program entry address
is defined by this AOF file.

Entry Offset

The entry address is defined to be the base address of the entry area plus
Entry Offset.

Part two of the AOF header consists of a sequence of area headers. Each area header is
five words long, and contains the following word length fields:

Area Name Gives the offset of that name in the string table (stored in the OBJ_STRT
chunk. Each area within an object file must be given a unique name. See
The String Table Chunk (OBJ_STRT) on page 15-20.

Attributes and Alignment

This word contains bit flags that specify the attributes and alignment of
the area. The details are given in Alignment on page 15-3.

Area Size Gives the size of the area in bytes. This value must be a multiple of 4.
Unless the Not Initialised bit (bit 12) is set in the area attributes (see
Attributes and alignment on page 15-9), there must be this number of
bytes for this area in the OBJ_AREA chunk. If the Not Initialised bit is set,
there must be no initializing bytes for this area in the OBJ_AREA chunk.

Number of Relocations

Specifies the number of relocation directives that apply to this area
(which is equivalent to the number of relocation records following the
contents of the area in the OBJ_AREA chunk. See The AREAS chunk
(OBJ_AREA) on page 15-12).

Base Address

Is unused unless the area has the absolute attribute. In this case, the field
records the base address of the area. In general, giving an area a base
address prior to linking will cause problems for the linker and may
prevent linking altogether, unless only a single object file is involved.

An unused Base Address is denoted by the value 0.
15-8 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

ARM Object Format
15.3.1 Attributes and alignment

Each area has a set of attributes encoded in the most significant 24 bits of the Attributes
+ Alignment word. The least significant eight bits of this word encode the alignment of
the start of the area as a power of 2 and must have a value between 2 and 32 (this value
denotes that the area should start at an address divisible by 2alignment). Table 15-2 gives
a summary of the attributes.

Some combinations of attributes are meaningless, for example, read-only and
zero-initialized.

The linker orders areas in a generated image in the following order:

• by attributes

• by the (case-significant) lexicographic order of area names

• by position of the containing object module in the link list.

The position in the link list of an object module loaded from a library is not predictable.
The precise significance to the linker of area attributes depends on the output being
generated.

Bit 8 Encodes the absolute attribute and denotes that the area must be placed
at its Base Address. This bit is not usually set by language processors.

Bit 9 Encodes the code attribute:

1 Indicates code in the area.

Table 15-2 Area attributes summary

Bit Mask Attribute Description

8 9 10 11 12
13 14 15

0x00000100
0x00000200
0x00000400
0x00000800
0x00001000
0x00002000
0x00004000
0x00008000

Absolute attribute Code attribute Common block
definition Common block reference Uninitialized
(zero-initialized) Read-only Position independent
Debugging tables

 16 17 18 19
20 21 22

 0x00010000
0x00020000
0x00040000
0x00080000
0x00100000
0x00200000
0x00400000

Code areas only Complies with the 32-bit APCS reentrant
code Uses extended FP instruction set No software stack
checking All relocations are of Thumb code Area may
contain ARM halfword instructions Area suitable for
ARM/Thumb interworking
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 15-9

ARM Object Format
0 Indicates data in the area.

Bit 10 Specifies that the area is a common definition.

Common areas with the same name are overlaid on each other by the
linker. The Area Size field of a common definition area defines the size
of a common block. All other references to this common block must
specify a size which is smaller than or equal to the definition size.

If, in a link step, there is more than one definition of an area with the
common definition attribute (area of the given name with bit 10 set), each
of these areas must have exactly the same contents. If there is no
definition of a common area, its size will be the size of the largest
common reference to it.

Although common areas conventionally hold data, you can use bit 10 in
conjunction with bit 9 to define a common block containing code. This is
useful for defining a code area which must be generated in several
compilation units, but which should be included in the final image only
once.

Bit 11 Defines the area to be a reference to a common block, and precludes the
area having initializing data (see Bit 12). In effect, bit 11 implies bit 12.
If both bits 10 and 11 are set, bit 11 is ignored.

Bit 12 Encodes the zero-initialized attribute, specifying that the area has no
initializing data in this object file, and that the area contents are missing
from the OBJ_AREA chunk.

Typically, this attribute is given to large municipalized data areas. When
a municipalized area is included in an image, the linker either includes a
read-write area of binary zeros of appropriate size, or maps a read-write
area of appropriate size that will be zeroed at image startup time. This
attribute is incompatible with the read-only attribute (see Bit 13, below).

Whether or not a zero-initialized area is re-zeroed if the image is
re-entered is a property of the relevant image format and/or the system on
which it will be executed. The definition of AOF neither requires nor
precludes re-zeroing.

A combination of bit 10 (common definition) and bit 12 (zero-initialized)
has exactly the same meaning as bit 11 (reference to common).

Bit 13 Encodes the read only attribute and denotes that the area will not be
modified following relocation by the linker. The linker groups read-only
areas together so that they may be write-protected at runtime, hardware
permitting. Code areas and debugging tables must have this bit set. The
setting of this bit is incompatible with the setting of bit 12.
15-10 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

ARM Object Format
Bit 14 Encodes the position independent (PI) attribute, usually only of
significance for code areas. Any reference to a memory address from a PI
area must be in the form of a link-time-fixed offset from a base register
(for example, a pc-relative branch offset).

Bit 15 Encodes the debugging table attribute and denotes that the area contains
symbolic debugging tables. The linker groups these areas together so they
can be accessed as a single continuous chunk at or before runtime
(usually, a debugger extracts its debugging tables from the image file
prior to starting the debuggee). Usually, debugging tables are read-only
and, therefore, have bit 13 set also. In debugging table areas, bit 9 (the
code attribute) is ignored.

Bits 16-22 encode additional attributes of code areas and must be non-zero only if the
area has the code attribute (bit 9) set. Bits 20-22 can be non-zero for data areas.

Bit 16 Encodes the 32-bit PC attribute, and denotes that code in this area
complies with a 32-bit variant of the APCS.

Bit 17 Encodes the reentrant attribute, and denotes that code in this area
complies with a reentrant variant of the APCS.

Bit 18 When set, denotes that code in this area uses the ARM floating-point
instruction set. Specifically, function entry and exit use the LFM and SFM
floating-point save and restore instructions rather than multiple LDFEs and
STFEs. Code with this attribute may not execute on older ARM-based
systems.

Bit 19 Encodes the No Software Stack Check attribute, denoting that code in this
area complies with a variant of the APCS without software stack-limit
checking.

Bit 20 Indicates that this area is a Thumb code area.

Bit 21 Indicates that this area may contain ARM halfword instructions. This bit
is set by armcc when compiling code for a processor with halfword
instructions such as the ARM7TDMI.

Bit 22 Indicates that this area has been compiled to be suitable for ARM/Thumb
interworking. See the ARM Software Development Toolkit User Guide.

Bits 23 to 31 Are reserved and are set to 0.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 15-11

ARM Object Format
15.4 The AREAS chunk (OBJ_AREA)

The AREAs chunk contains the actual area contents, such as code, data, debugging data,
together with their associated relocation data. An area is simply a sequence of bytes.
The endianness of the words and halfwords within it must agree with that of the
containing AOF file. An area layout is:

Area 1
Area 1 Relocation
...
Area n
Area n Relocation

An area is followed by its associated table of relocation directives (if any). An area is
either completely initialized by the values from the file or is initialized to zero, as
specified by bit 12 of its area attributes. Both area contents and table of relocation
directives are aligned to 4-byte boundaries.
15-12 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

ARM Object Format
15.5 Relocation directives

A relocation directive describes a value which is computed at link time or load time, but
which cannot be fixed when the object module is created.

In the absence of applicable relocation directives, the value of a byte, halfword, word or
instruction from the preceding area is exactly the value that will appear in the final
image.

A field may be subject to more than one relocation.

Figure 15-1 shows a relocation directive.

Figure 15-1 Relocation directive

Offset is the byte offset in the preceding area of the subject field to be relocated by a
value calculated as described below.

The interpretation of the 24-bit SID field depends on the value of the A bit (bit 27):

A=1 The subject field is relocated (as further described below) by the value of
the symbol of which SID is the zero-origin index in the symbol table
chunk.

A=0 The subject field is relocated (as further described below) by the base of
the area of which SID is the zero-origin index in the array of areas, (or,
equivalently, in the array of area headers).

The two-bit field type FT (bits 25, 24) describes the subject field:

00 the field to be relocated is a byte.

01 the field to be relocated is a halfword (two bytes).

10 the field to be relocated is a word (four bytes).

11 the field to be relocated is an instruction or instruction sequence.

If bit 0 of the relocation offset is set, this identifies a Thumb instruction
sequence, otherwise it is taken to be an ARM instruction sequence.

Bytes, halfwords and instructions may only be relocated by values of small size.
Overflow is faulted by the linker.

An ARM branch or branch-with-link instruction is always a suitable subject for a
relocation directive of field type instruction. For details of other relocatable instruction
sequences, refer to 3.6 Handling Relocation Directives on page 3-16.

�����

�*+���#�	,� 		 � � � �-
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 15-13

ARM Object Format
If the subject field is an instruction sequence, the address in Offset points to the first
instruction of the sequence, and the II field (bits 29 and 30) constrains how many
instructions may be modified by this directive:

00 no constraint (the linker may modify as many contiguous instructions as
it needs to).

01 the linker will modify at most 1 instruction.

10 the linker will modify at most 2 instructions.

11 the linker will modify at most 3 instructions.

The R (pc-relative) bit, modified by the B (based) bit, determines how the relocation
value is used to modify the subject field:

R (bit 26) = 0 and B (bit 28) = 0

This specifies plain additive relocation. The relocation value is added to
the subject field. In pseudo code:

subject_field = subject_field + relocation_value

R (bit 26) = 1 and B (bit 28) = 0

This specifies pc-relative relocation. To the subject field is added the
difference between the relocation value and the base of the area
containing the subject field. In pseudo code:

subject_field =
subject_field +
(relocation_value-base_of_area_containing(subject_field))

As a special case, if A is 0, and the relocation value is specified as the base
of the area containing the subject field, it is not added and:

subject_field =
subject_field - base_of_area_containing(subject_field)

This caters for relocatable pc-relative branches to fixed target addresses.

If R is 1, B is usually 0. A B value of 1 is used to denote that the
inter-link-unit value of a branch destination is to be used, rather than the
more usual intra-link-unit value.

R (bit 26) = 0 and B (bit 28) = 1

This specifies based area relocation. The relocation value must be an
address within a based data area. The subject field is incremented by the
difference between this value and the base address of the consolidated
based area group (the linker consolidates all areas based on the same base
register into a single, contiguous region of the output image).

In pseudo code:
15-14 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

ARM Object Format
subject_field =
subject_field +
(relocation_value -
base_of_area_group_containing(relocation_value))

For example, when generating reentrant code, the C compiler places
address constants in an address constant area based on register sb, and
loads them using sb-relative LDR instructions. At link time, separate
address constant areas will be merged and sb will no longer point where
presumed at compile time. B type relocation of the LDR instructions
corrects for this.

Bits 29 and 30 of the relocation flags word must be 0. Bit 31 must be 1.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 15-15

ARM Object Format
15.6 Symbol Table Chunk Format (OBJ_SYMT)

The Number of Symbols field in the fixed part of the AOF header (OBJ_HEAD chunk)
defines how many entries there are in the symbol table. Each symbol table entry is four
words long and contains the following word length fields:

Name Is the offset in the string table (in chunk OBJ_STRT) of the character string
name of the symbol.

Attributes

Are summarized in Table 15-2 on page 15-9. Refer to Symbol attributes
on page 15-17 for a full description of the attributes.

Value Is meaningful only if the symbol is a defining occurrence (bit 0 of
Attributes set), or a common symbol (bit 6 of Attributes set):

• if the symbol is absolute (bits 0-2 of Attributes set), this field
contains the value of the symbol

• if the symbol is a common symbol (bit 6 of Attributes set), this
contains the byte length of the referenced common area.

• otherwise, Value is interpreted as an offset from the base address of
the area named by Area Name, which must be an area defined in this
object file.

Area Name Is meaningful only if the symbol is a non-absolute defining occurrence
(bit 0 of Attributes set, bit 2 unset). In this case it gives the index into the
string table for the name of the area in which the symbol is defined
(which must be an area in this object file).
15-16 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

ARM Object Format
15.6.1 Symbol attributes

Table 15-3 summarizes the symbol attributes.

The Symbol Attributes word is interpreted as follows:

Bit 0 Denotes that the symbol is defined in this object file.

Bit 1 Denotes that the symbol has global scope and can be matched by the
linker to a similarly named symbol from another object file.

01 Bit 1 unset, bit 0 set. Denotes that the symbol is defined in this
object file and has scope limited to this object file (when
resolving symbol references, the linker will only match this
symbol to references from within the same object file).

10 Bit 1 set, bit 0 unset. Denotes that the symbol is a reference to
a symbol defined in another object file. If no defining instance
of the symbol is found, the linker attempts to match the name
of the symbol to the names of common blocks. If a match is
found, it is as if an identically-named symbol of global scope
were defined, taking its value from the base address of the
common area.

11 Denotes that the symbol is defined in this object file with
global scope (when attempting to resolve unresolved
references, the linker will match this definition to a reference
from another object file).

00 Is reserved.

Table 15-3 Symbol attributes

Bit Mask Attribute description

0 1 2 3 4 6 0x00000001
0x00000002
0x00000004
0x00000008
0x00000010
0x00000040

Symbol is defined in this file Symbol has a global scope
Absolute attribute Case-insensitive attribute Weak
attribute Common attribute

 8 9 12 0x00000100
0x00000200
0x00001000

Code symbols only: Code area datum attribute FP args in
FP regs attribute Thumb symbol
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 15-17

ARM Object Format
Bit 2 Encodes the absolute attribute which is meaningful only if the symbol is
a defining occurrence (bit 0 set). If set, it denotes that the symbol has an
absolute value, for example, a constant. If unset, the symbol value is
relative to the base address of the area defined by the Area Name field of
the symbol.

Bit 3 Encodes the case insensitive reference attribute which is meaningful only
if the symbol is an external reference (bits 1, 0 = 10). If set, the linker will
ignore the case of the symbol names it tries to match when attempting to
resolve this reference.

Bit 4 Encodes the weak attribute which is meaningful only if the symbol is an
external reference (bits 1, 0 = 10). It denotes that it is acceptable for the
reference to remain unsatisfied and for any fields relocated via it to
remain unrelocated. The linker ignores weak references when deciding
which members to load from an object library.

Bit 5 Is reserved and must be set to 0.

Bit 6 Encodes the common attribute, which is meaningful only if the symbol
is an external reference (bits 1, 0 = 10). If set, the symbol is a reference
to a common area with the symbol's name. The length of the common
area is given by the symbol's Value field (see above). The linker treats
common symbols much as it treats areas having the Common Reference
attribute. All symbols with the same name are assigned the same base
address, and the length allocated is the maximum of all specified lengths.

If the name of a common symbol matches the name of a common area,
these are merged and the symbol identifies the base of the area.

All common symbols for which there is no matching common area
(reference or definition) are collected into an anonymous, linker-created,
pseudo-area.

Bit 7 Is reserved and must be set to 0.

Bits 8-11 encode additional attributes of symbols defined in code areas.

Bit 8 Encodes the code datum attribute which is meaningful only if this
symbol defines a location within an area having the Code attribute. It
denotes that the symbol identifies a (usually read-only) datum, rather
than an executable instruction.

Bit 9 Encodes the floating-point arguments in floating-point registers attribute.
This is meaningful only if the symbol identifies a function entry point. A
symbolic reference with this attribute cannot be matched by the linker to
a symbol definition which lacks the attribute.
15-18 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

ARM Object Format
Bit 10 Is reserved and must be set to 0.

Bit 11 Is reserved and must be set to 0.

Bit 12 The Thumb attribute. This is set if the symbol is a Thumb symbol.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 15-19

ARM Object Format
15.7 The String Table Chunk (OBJ_STRT)

The string table chunk contains all the print names referred to from the header and
symbol table chunks. This separation is made to factor out the variable length
characteristic of print names from the key data structures.

A print name is stored in the string table as a sequence of non-control characters (codes
32-126 and 160-255) terminated by a NULL (0) byte, and is identified by an offset from
the start of the table. The first four bytes of the string table contain its length (including
the length of its length word), so no valid offset into the table is less than four, and no
table has length less than four.

The endianness of the length word must be identical to the endianness of the AOF and
chunk files containing it.
15-20 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

ARM Object Format
15.8 The Identification Chunk (OBJ_IDFN)

This chunk should contain a string of printable characters (codes 10-13 and 32-126)
terminated by a NULL (0) byte, which gives information about the name and version of
the tool which generated the object file.

Use of codes in the range 128-255 is discouraged, as the interpretation of these values
is host-dependent.
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. 15-21

ARM Object Format
15-22 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

Index
A
Absolute addresses 5-28
Absolute attribute

AOF areas 15-8, 15-9
AOF symbols 15-17, 15-18

Access control error 2-33
AddCounterDesc, ARMulator function

12-79
AddCounterValue, ARMulator function

12-80
Addition operators, assembly 5-92
Additive relocation, AOF 15-14
ADR

ARM pseudo-instruction 5-12
Thumb pseudo-instruction 5-20

ADRL pseudo-instruction 5-13
AIF 13-1

base address 13-3
debugging 13-4
entry point 13-3
executable 13-3
extended 13-3

header layout 13-5
image layout 13-4
image loader 13-3
memory protection 13-4
non-executable 13-3
relocation list 13-4
restartable 13-4
scatter loading 13-3
self-relocation 13-4

ALF 14-1
alignment 14-3
chunkindex 14-5
chunks, see Chunks, ALF
datalength 14-5
directory 14-2
endianness 14-3
entrylength 14-5
external symbol table 14-8
time stamps 14-7

Aliases, debugger 7-12
ALIGN directive 5-20, 5-32, 5-36,

5-38, 5-46, 5-48, 5-53, 5-54
Alignment

ALF 14-3
AOF 15-3, 15-9
bitfields, C and C++ 3-24
data types, C and C++ 3-16
field alignment, C and C++ 3-20
structures, C and C++ 3-20

Alignment, ALF 14-3
:AND: operator 5-92
Angel semihosting SWIs

and ANSI C 4-2
ANSI C 8-12

and long long 3-38
compiler mode 2-3
header files 2-7, 2-9, 2-30
header files with PCC 2-16
language extensions 3-37
mode, compilers 2-3
suppressing warnings 2-29

ANSI C library 4-1, 4-2, 4-5
and Angel 4-2
Angel breakpoints 4-8
Angel definitions 4-8
Angel environment 4-8
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. Index-1

Index
Angel semihosting 4-7
Angel semihosting SWIs 4-2, 4-8
ARM variants 4-6
armmake

all 4-9
clean 4-9
via 4-9

binary, location of 4-15
building 4-3, 4-5, 4-6
building from DOS 4-9
conditional assembly and

compilation 4-7
copying sources 4-7
editing options file 4-8
embedded system 4-18
EmbeddedICE 4-2
FILEHANDLE 4-29
heap support 4-40, 4-41
hostsys.h 4-29
see I/O support functions
see Kernel functions
libraryfunctions 4-26
linking 4-5
makefile 4-3, 4-8
see makefile options
miscellaneous functions 4-40
modifying sources 4-7
Multi-ICE 4-2
NONHANDLE 4-29
object files 4-9
operating system functions 4-40
options file, editing 4-8
porting 4-8
precompiled variants 4-4, 4-5
read-only timer 4-27
remove 4-27
rename 4-28
retargeting 4-2, 4-3, 4-6, 4-7, 4-8
signal string 4-42
source organization 4-6
subdirectories 4-7
system functions 4-8
target specific 4-9
target-independent code 4-7
Thumb variants 4-5
traphandlers 4-40
use by C++ 4-3, 4-14
variant names 4-4
variants 4-5

via files 4-9
Windows DOS command line 4-9

ANSIC library
_clock_init 4-27

ANSI C library
clock_t 4-26

ANSIC library
getenv 4-27
getenv_init 4-27
heap support 4-40
system 4-28
time 4-28
traphandlers 4-40

AOF
additive relocation 15-14
alignment 15-3, 15-9
area attributes, see Attributes, AOF

areas
area declarations 15-7
area header format 15-8
based area relocation 15-14
byte sex 15-3
chunks, see Chunks, AOF 15-6
endianness 15-3, 15-4, 15-7
object file type 15-7
pc-relative relocation 15-14
relocatable object format 15-7
relocation directives 15-8, 15-12,

15-13
structure of 15-4
symbol attributes, see Attributes,

AOF symbols
APCS 9-1

argument list marshalling 9-16
argument passing 9-14
ARM-Thumb interworking 2-14,

9-3
binary compatibility 9-2, 9-4
C language calling conventions

9-16
callee-saved registers 9-7
caller-saved registers 9-7
chunked stacks 9-4
compiler options 2-13
conforming 9-6, 9-10
control arrival 9-12
control return 9-15
data representation 9-14
dedicated registers 9-7

floating-point
hardware 9-3, 9-4
registers 9-8, 9-21
software 9-4

FPA coprocessor 9-6
frame pointers 9-3, 9-5
function entry 9-18
function exit 9-12, 9-24
multiple threads 9-4
narrow parameters 2-14, 9-3
non-simple types 9-17
reentrant 9-3, 9-4, 9-13
registers 9-7
save code pointer 9-11
specifying variants 2-13, 5-3
stack

backtrace 9-11, 9-20
checking 9-4
chunk limit 9-9
limit 9-4
overflow 9-22

stacks
chunked 9-9
contiguous 9-9

strictly conforming 9-6, 9-10
tail calls 9-18
variadic functions 9-20
wide parameters 9-3
26-bit 9-3
32-bit 9-3

APCS variants 9-2
/fp 2-13, 5-4
/fpregargs 2-14
/hardfp 2-3, 2-14, 3-10
/interwork 2-14, 5-3
/narrow 2-14
/nofp 2-13, 5-4
/nofpregargs 2-14
/nointerwork 2-14, 5-3
/nonreentrant 2-15, 5-4
/noswstackcheck 2-13
/reentrant 2-15, 5-4
/softfp 2-13
/swstackcheck 2-13, 5-3
/wide 2-15

APM
generating source dependencies

2-17, 5-6
via files 2-12
Index-2 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

Index
Area attributes, see Attributes, AOF
areas

Area declarations, AOF 15-7
AREA directive 5-28, 5-37, 5-38, 5-72
Area header format, AOF 15-8
Areas

aligning 6-32
base and size 6-10
cross-references between 6-10
multiple matches in scatterloading

6-29
overview 6-12
placement of 6-8, 6-9, 6-24, 6-28,

6-31
by attribute 6-31
FIRST and LAST 6-32

sorting rules 6-31
unused 6-8, 6-9

Argument list marshalling
APCS 9-16
TPCS 10-7

Arguments
debugger 7-5

Arithmetic conversions, C and C++
3-19

ARM code
interworking with Thumb 2-14

ARM image format
binary 6-7
executable 6-7
non-executable 6-7

ARM image format, see AIF
ARM Object Format 6-7
ARM object library format, see ALF
armcpp 2-2, 2-20, 2-31, 3-40
armcpplib 3-35, 4-3, 4-16
ARMINC environment variable 2-7,

2-9
armlib 8-8

and C++ 4-3
ARMLIB variable 6-37
armlink command 6-4

-aif 6-7
-aif -bin 6-7
-aof 6-7
-base 6-5
-bin 6-7
-case 6-10
-data 6-5

-debug 6-7
-dupok 6-8
-elf 6-6
-entry 6-8
-errors 6-10
-first 6-8
-help 6-6
-info 6-9
-last 6-9
-libpath 6-9, 6-37
-list 6-10
-map 6-10
-match 6-10
-nocase 6-10
-nodebug 6-8
-noremove 6-8
-noscanlib 6-9
-nozeropad 6-8
-output 6-6
-remove 6-8
-ro-base 6-7
-rw-base 6-7
-scanlib 6-9
-scatter 6-7, 6-21
-symbols 6-10
syntax 6-6
-u 6-11
-unresolved 6-11
-verbose 6-10
-via 6-10
-vsn 6-6
-workspace 6-5
-xref 6-10

armprof 8-6
armsd command-line options, see

armsd, invoking
armsd commands

alias 7-8, 7-12
arguments 7-5, 7-13
backtrace 7-6, 7-13
break 7-5, 7-14
call 7-5, 7-15
ccin 7-63
ccout 7-63
comment 7-8, 7-11
context 7-6, 7-18
coproc 7-7, 7-16
cregdef 7-7, 7-19
cregisters 7-7, 7-18

cwrite 7-7, 7-19
examine 7-7, 7-20
find 7-7, 7-21
for EmbeddedICE 7-61
fpregisters 7-7, 7-22
getfile 7-6, 7-24
go 7-5, 7-24
help 7-8, 7-24
in 7-6, 7-25
istep 7-6, 7-26
language 7-6, 7-26
let 7-27, 7-56, 7-60
list 7-7, 7-30
listconfig 7-61
load 7-6, 7-31
loadagent 7-61
loadconfig 7-61
log 7-8, 7-32
lsym 7-7, 7-33
obey 7-8, 7-33
out 7-6, 7-34
pause 7-8, 7-34
print 7-8, 7-35, 7-55, 7-60
profclear 7-8, 7-35
profoff 7-8, 7-36
profon 7-8, 7-36
profwrite 7-8, 7-36
putfile 7-6, 7-37
quit 7-8, 7-38
readsyms 7-38, 7-62
registers 7-7, 7-39
reload 7-6, 7-40
return 7-6, 7-40
selectconfig 7-62
step 7-6, 7-41
symbols 7-5, 7-42
type 7-8, 7-43
unbreak 7-6, 7-44
unwatch 7-6, 7-44
variable 7-5, 7-45
watch 7-6, 7-45
where 7-6, 7-46
while 7-47
! 7-8, 7-11
| 7-8, 7-11

armsd, invoking
syntax overview 7-3
-adp 7-4
-armul 7-3
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. Index-3

Index
-big 7-3
-clock 7-4
-exec 7-3
-fpe 7-3
-help 7-3
-i 7-3
-linespeed 7-4
-little 7-3
-loadconfig 7-4
-nofpe 7-3
-o 7-3
-port 7-4
-proc 7-3
-rem 7-3
-reset 7-4
-script 7-3
-selectconfig 7-4
-symbols 7-3

armsd.ini file 7-2
ARMulator

accuracy 12-2
and the ANSI C libraries 4-2
ARMul_State 12-4
basic model 12-7
benchmarking 12-2
byte-lane memory 12-14
callback 12-57
configuration 12-62
coprocessor initialization 12-24,

12-27
counters 12-67
cycle

count 12-20
length 12-19

data abort 12-69
early models 12-7
elapsed time 12-19
endianness 12-15
events 12-87

scheduling 12-70
exceptions 12-36, 12-39, 12-55,

12-64
floating-point 12-40
functions, see Functions, ARMulator
halfword support 12-13
initialization sequence 12-4, 12-7
intercepting SWIs 12-36
interrupts 12-64
late models 12-7

logging 12-66
map files 12-4
memory

access 12-68
interface 12-13
memory map statistics 7-53

memory model
initialization 12-17
interface 12-16

memory models 12-7
memory type variants 12-13
minimal environment 12-3
models, see Models, ARMulator
nTRANS signal 12-13, 12-61
operating system 12-38
processor signals 12-16
profiling 12-66
and remote debug interface 12-2,

12-3, 12-22, 12-24, 12-66, 12-83
return codes, see Return codes
sibling coprocessors 12-28
state 12-42
StrongARM 12-14
tags 12-5
ToolConf 12-5
tracing 12-66
upcalls 12-7, 12-18

see also Upcalls, ARMulator
user functions 12-7
watchpoints 12-66
$statistics 7-54
$statistics_inc 7-54

armul.cnf 12-5
ARMul_CPInterface 12-24
ARMul_MemType_

ARM8 12-15
ARM9 12-15
Basic 12-13
BasicCached 12-14
ByteLane 12-14
StrongARM 12-14
Thumb 12-13
ThumbCached 12-14
16Bit 12-13
16BitCached 12-14

ARM9 3-5
Arrays

new, delete, C++ 3-49
ASD compiler option 2-23

Assembler command syntax 5-3
Assembly language

absolute addresses 5-28
addition operators 5-92
binary operators 5-91
built-in variables 5-10
compiler output 2-19
coprocessor names 5-9
defining macros 5-73
directives, see Directives, assembly
entry point 5-56
expressions 5-88
format of source lines 5-8
global variables 5-60, 5-61, 5-62,

5-82, 5-83, 5-84
labels 5-27
local labels 5-28
logical

expressions 5-89
operators 5-92
variables 5-26

multiplicative operators 5-91
numeric constants 5-29
numeric expressions 5-89
numeric variables 5-26
operator precedence 5-88, 5-91
operators 5-88
pc 5-10, 5-27, 5-36, 5-89
program counter 5-10, 5-27, 5-36,

5-89
program-relative 5-27

expressions 5-89
pseudo-instructions, see

Pseudo-instructions, assembly
register names 5-9
register-relative

expressions 5-89
labels 5-28

relational operators 5-92
shift operators 5-92
string

expressions 5-88
literals 5-88
manipulation 5-91
variables 5-26, 5-27

symbol naming rules 5-25
unary operators 5-90
variable substitution 5-27
variables 5-26
Index-4 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

Index
built-in 5-10
global 5-60, 5-61, 5-62, 5-82,
5-83, 5-84
local 5-69, 5-70, 5-71, 5-82,
5-83, 5-84

|$$$$$$$| 5-39
Assemblylanguage

symbols 5-25
ASSERT directive 5-40
Assignment operator warning 2-29
Attributes, AOF areas

absolute 15-8, 15-9
code 15-9, 15-11
debugging table 15-11
no software stack check 15-11
position-independent 15-11
read-only 15-10
re-entrant 15-11
zero-initialised 15-10
32-bit PC 15-11

Attributes, AOF symbols
absolute 15-17, 15-18
case-insensitive reference 15-18
code 15-18
code datum 15-18
common 15-18
weak 15-17, 15-18

B
Base address, AIF 13-3
Base classes 3-20
:BASE: operator 5-90
Based area relocation, AOF 15-14
Basic model, ARMulator 12-7
BCD (packed) 11-7
Binary images 6-7, 6-13

zero-initialized areas in 6-8
Binary operators, assembly 5-91
Bitfield type warning 2-29
Bitfields 3-24

overlapping, C and C++ 3-22
bool, C++ 3-49
Breakpoints

ARM or Thumb code 7-14
debugger 7-5, 7-14
removing 7-44
setting 7-49

BX instruction 5-42, 5-45
Byte sex, AOF 15-3
Byte-lane memory 12-14
Bytes, reading and writing in armsd

7-29

C
C and C++

bitfields, overlapping 3-22
character sets 3-14
data types, see Data types, C and

C++
expression evaluation 3-19
field alignment 3-20
floating-point operations 3-18
global variables, alignment 3-16
identifiers 3-14
integral conversion 3-35
integral types, operations on 3-18
keywords, see Keywords, C and C++
language extensions 3-37
limits, floating-point 3-47
limits, integral numbers 3-46
natural alignment 3-16
overlapping of bitfields 3-22
pointers, casting to integers 3-17
pointers, subtraction 3-19
structures, see Structures, C and C++
virtual functions 3-20

C language calling conventions
APCS 9-16
TPCS 10-7

C libraries
see ANSI C library
see C++ library
see Embedded C library
see I/O support functions
see Kernel functions
see makefile options
see Rogue Wave C++ library

Call graph, profiling 8-6
Callback, ARMulator 12-57
Callee narrowing 2-15
Case-insensitive reference attribute,

AOF 15-18
Casts, new style, C++ 3-49
:CC: operator 5-91

cdp, ARMulator function 12-32
__CFRONT_LIKE, C and C++ macro

3-40
Cfront mode 2-3

__CFRONT_LIKE macro 3-40
compiler option 2-15

Character
sets in C and C++ 3-14
universal names, C++ 3-50

Characters after preprocessor directive
error 2-33

char, changing sign of 2-26
Checking arguments for

printf/scanf-like functions 3-3
:CHR: operator 5-88, 5-90
Chunk file format, AOF 15-4
Chunked stacks, APCS 9-9
Chunkindex, ALF 14-5
Chunks, ALF

LIB_DATA 14-4, 14-6
LIB_DIRY 14-4, 14-5
LIB_TIME 14-4, 14-7
LIB_VRSN 14-4, 14-6
OBJ_AREA 14-3
OFL_SYMT 14-4, 14-8
OFL_TIME 14-4, 14-8

Chunks, AOF
file format 15-4
header 15-7
identification 15-21
OBJ_AREA 15-12
OBJ_HEAD 15-7
OBJ_SYMT 15-16
string table 15-20
symbol table 15-7, 15-13, 15-16,

15-20
Class templates, C++

partial specialization 3-50
CMF floating-point instruction 11-10
CN directive 5-41
CNF floating-point instruction 11-10
Code

controlling generation with pragmas
3-6

size 4-11
Code areas

compiler controls 2-25
Code attribute

AOF areas 15-9, 15-11
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. Index-5

Index
AOF symbols 15-18
Code datum attribute, AOF 15-18
CODE16 directive 5-7, 5-42
CODE32 directive 5-43
Command syntax

ANSI to PCC C translator 8-12
assembler 5-3
compilers 2-10
decaof 8-10
decaxf 8-11
fromelf 8-3
librarian 8-8
profiler 8-6
topcc 8-12

Commands
see armlink commands
see armsd commands

Comments
character set, C and C++ 3-14
debugger 7-11
in inline assembler 3-39
retaining in preprocessor output

2-17
Common attribute, AOF 15-18
Common sub-expression elimination

3-5, 3-7
Common tail optimization 3-5
Compatibility, ARM and Thumb

compilers 2-4
Compilation errors, continuing after

3-3
Compiler options

-ansi 2-15
-apcs 2-13

see also APCS variants
-architecture 2-20
-asd 2-23
-bigend 2-27
-C 2-17
-c 2-18
-cfront 2-15
combining 2-11
-cpu 2-20
-D 2-17
-dwarf 2-23
-dwarf1 2-23
-dwarf2 2-23
-E 2-12, 2-17
-Ea 2-33

-Ec 2-33
-Ef 2-33
-Ei 2-33
-El 2-33
-Ep 2-33
-errors 2-12
-Ez 2-33
-fa 2-31
-fd 2-7, 2-9
-fh 2-31
-fi 2-18
-fj 2-18
-fk 2-7, 2-8, 2-9, 2-16
-fp 2-32
-fpu 2-21
-fu 2-18
-fussy 2-15
-fv 2-32
-fw 2-25
-fx 2-32
-fy 2-25, 3-20
-fz 2-27
-g 2-22
-gt 2-22
-gx 2-23
-help 2-12
-I 2-7, 2-9, 2-16
-j 2-7, 2-9, 2-16
-list 2-18
-littleend 2-27
-M 2-17
-MD 2-17
-MD- 2-17
memory speed 2-25
-O 2-24
-o 2-19
-Ospace 2-24
-Otime 2-24
-pcc 2-16
-pedantic 2-16
-processor 2-21
reading from a file 2-12
-S 2-19
specifying 2-11
-strict 2-16
syntax 2-10
-U 2-18
-W 2-28
-Wa 2-29

-Wb 2-29
-Wd 2-29
-Wf 2-29
-Wg 2-29
-Wi 2-29
-Wl 2-30
-Wn 2-30
-Wp 2-30
-Wr 2-30
-Ws 2-30
-Wt 2-31
-Wu 2-31
-Wv 2-31
-za 2-27
-zap 2-28
-zas 2-27, 3-24
-zat 2-28, 3-16
-zc 2-26
-zi 2-25
-zo 2-26
-zp 2-34
-zr 2-27
-zt 2-26
-zz 2-26

Compilers
architecture, specifying 2-19
assembly language output 2-19
code generation 2-23
debug tables 2-22
defining symbols 2-17
errors, redirecting 2-12
excluding the link step 2-18
header files 2-7
instruction scheduling 3-5
invoking 2-10
keyboard input 2-12
language, setting source 2-15
library support 2-5
listing files 2-7, 2-18
load, store options 2-27
macros, __CFRONT_LIKE 2-4
modes, see Source language modes
object files 2-7
output files 2-7, 2-17
output format, specifying 2-18
pragmas, see Pragmas
see Source language modes
specifying output format 2-18
standards 2-2, 2-3
Index-6 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

Index
string literals, writeable 2-25
supported filenames 2-6
suppressing error messages 2-32
target processor 2-19
Thumb code 2-20
undefining symbols 2-18
see Warning messages, compilers

Compiling
ANSI standard C 2-15
ARM and Thumb interworking

2-14
ARM code 2-2
big-endian code 2-27
Cfront 2-15
C++ 2-1
little-endian code 2-27
Thumb code 2-2

concatenate operator 5-91
CondCheckInstr, ARMulator function

12-78
ConfigChangeUpcall, ARMulator

12-62
Configuration, ARMulator 12-62
Configuring, the linker 6-11
Conforming, APCS 9-6, 9-10
ConsolePrint, ARMulator function

12-84
Containers, for bitfields, C and C++

3-24
Contiguous stacks, APCS 9-9
Control arrival, APCS 9-12
Control arrival, TPCS 10-5
Control return, APCS 9-15
Control return, TPCS 10-6
CoProAttach, ARMulator function

12-27
Coprocessor

ARMulator model 12-24
Coprocessor names, assembly 5-9
Coprocessors

register content 7-18, 7-19
register set 7-16
writing to 7-19

Counters, ARMulator 12-67
Covariant return types, C++ 3-50
CP directive 5-44
__cplusplus, C and C++ macro 3-40
CPRead, ARMulator function 12-52

CPRegBytes, ARMulator function
12-51

CPWrite, ARMulator function 12-53
Current place, the 2-8

excluding 2-16
Cycle

count, ARMulator 12-20
length, ARMulator 12-19

C++
arrays, new, delete 3-49
bool 3-49
Casts, new style 3-49
covariant return types 3-50
delete array 3-49
exceptions 3-49
header files 3-35
implementation definition 3-35
keywords 3-35
keywords, see Keywords, C++
language feature support 3-49
linkage specification 3-50
member functions, pointers to 3-17
member templates 3-50
namespaces 3-49
new array 3-49
new style casts 3-49
nothrow, new 3-49
runtime type identification 3-49
standard library 3-35
static member constants 3-50
templates 3-49
wchar_t 3-50
wide characters 3-50

C++ compilers
using 2-1
variants 2-2

C++ library 4-1, 4-2, 4-14
additional functions 4-15
binary 4-2
compiler helper functions 4-15
C++ draft standard 4-3
helper functions 4-14
iostream.h 4-15
location of 4-3
naming conventions 4-4
new.h 4-15
precompiled variants 4-4
rebuilding 4-16
Rogue Wave 4-2

Rogue Wave C++ 4-3
Rogue Wave sublibraries 4-2
source 4-2, 4-15
sublibraries 4-15, 4-16
subsections 4-16
typeinfo 4-15
use of ANSI C 4-3
using 4-14, 4-15
variants 4-14

C++ mode 2-3
with -fussy 2-15

D
Data areas

compiler controls 2-25
zero initialized 2-26

DATA directive 5-32, 5-45, 5-46, 5-47,
5-48, 5-53, 5-54

Data types, C and C++
alignment 3-16
long double 3-37
long long 3-37
operations on 3-18
size 3-16
structured 3-20

Datalength, ALF 14-5
DCB directive 5-36, 5-45, 5-46
DCD directive 5-45, 5-47
DCDU directive 5-36, 5-48
DCFD directive 5-49
DCFDU directive 5-50
DCFS directive 5-51
DCFSU directive 5-52
DCW directive 5-36, 5-45, 5-53
DCWU directive 5-36, 5-54
Debug table formats

ASD 2-23
DWARF 2-23

Debug tables 2-22
and optimization 1-7, 2-25
generating 2-22, 5-5
limiting size 2-22

Debugger
see also armsd command
accessing the operating system 7-11
active procedures 7-6, 7-13
address constants 7-52
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. Index-7

Index
ADP
clock speed 7-4
configuration data 7-4
linespeed 7-4
port 7-4
target configuration 7-4
target processor reset 7-4

aliases 7-8, 7-12
arguments 7-5
armsd.ini 7-2
ARMulator 7-3
backtrace 7-6, 7-13
big-endian memory 7-3
breakpoints 7-5, 7-14, 7-49

removing 7-6, 7-44
bytes, reading and writing 7-29
calling a procedure 7-15
changing

memory 7-27, 7-56
variables 7-27, 7-56

character constants 7-52
command files 7-8, 7-33
command-line arguments 7-28
comment lines 7-8, 7-11
communications channel 7-63
conditional execution 7-54
constants 7-52
context setting 7-25
controlling execution 7-5
coprocessor register content 7-7,

7-16, 7-18, 7-19
coprocessor register display 7-7
coprocessor register set 7-7, 7-16
coprocessor writes 7-7, 7-19
displaydesc argument 7-17
echoing commands 7-53
EmbeddedICE

commands 7-61
variables 7-54, 7-55

execution conditions 7-54
execution options 7-3
expressions as arguments 7-50
finding values in memory 7-7
floating-point

emulator 7-3
library 7-3
registers 7-7, 7-22
values 7-53

globalvariables 7-48

halfwords, reading and writing 7-29
help on 7-3, 7-8, 7-24
high-level languages 7-26, 7-48
initialization file 7-2
input from named file 7-3
instructions, stepping through 7-26
integer

constants 7-53, 7-57
display 7-56
values 7-53

internal
symbols 7-42
variables 7-55

lines in display 7-30
little-endian memory 7-3
loading

an image 7-6, 7-31
debug information only 7-3
information from file 7-38

logging output 7-32
low-level

debugging 7-6, 7-58
symbols 7-7, 7-33, 7-58, 7-60

memory
content 7-7, 7-20, 7-21, 7-30
size of target 7-54
writes 7-24

messages 7-8
Multi-ICE variables 7-55
multi-statement lines 7-47
operating system commands 7-8
output to file 7-3, 7-8
overview 7-2
pausing 7-34
predefined symbols 7-59
procedure

calls 7-5, 7-15
names 7-49

processor type 7-3
profiling

counts 7-8, 7-35
data 7-8, 7-36
options 7-31

profiling data 7-8, 7-36
program

arguments 7-13
context 7-6, 7-18, 7-34, 7-46
linenumbers 7-50
locations 7-49

variables 7-8
program context 7-6
prompts 7-8
quittingfrom 7-38
RDI logging 7-53
reading from memory 7-6
registers 7-7, 7-39, 7-60
reloading

an image 7-6
files 7-40

remote debugging using ADP 7-4
returning from a procedure call 7-6,

7-40
search paths 7-3
setting the psr 7-60
shorts, reading and writing 7-29
simulation, duration of 7-53
source directory 7-27
source-level objects 7-48
starting program execution 7-5,

7-24
statementswithin a line 7-50
stepping through

instructions 7-6
statements 7-6, 7-41

stopping 7-8
subscripting of pointers and arrays

7-51
symbols 7-3, 7-5, 7-42
target memory size 7-54
typing content of a file 7-8
typing contentof a file 7-43
user input 7-8
variable lookup 7-6, 7-18
variables 7-5, 7-48

content of 7-35
context of 7-48
formatting 7-56
in functions 7-48
information on 7-45
list of 7-53
names of 7-48

watchpoints 7-6
clearing 7-44
removing 7-6
setting 7-45

writing memory to file 7-37
writing to memory 7-6

Debugging
Index-8 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

Index
compiler options 2-23
optimization options 2-24
table formats 2-23

Debugging table attribute 15-11
DebugPause, ARMulator function

12-85
DebugPrint, ARMulator function

12-83
decaof 8-10
decaxf 8-11
Declaration lacks type/storage-class

error 2-33
:DEF: operator 5-90
Default template arguments, C++ 3-50
Defining symbols

C and C++ 2-17
Delete array, C++ 3-49
Demon 1-6
Directives

pc-relative relocation 6-10
relocation 6-40

Directives, assembly language
ALIGN 5-20, 5-32, 5-36, 5-38,

5-46, 5-48, 5-53, 5-54
AREA 5-28, 5-37, 5-38, 5-72, 6-31
ASSERT 5-40
CN 5-41
CODE16 5-7, 5-42
CODE32 5-43
CP 5-44
DATA 5-32, 5-45, 5-46, 5-47, 5-48,

5-53, 5-54
DCB 5-36, 5-45, 5-46
DCD 5-45, 5-47
DCDU 5-36, 5-48
DCFD 5-49
DCFDU 5-50
DCFS 5-51
DCFSU 5-52
DCW 5-36, 5-45, 5-53
DCWU 5-36, 5-54
ELSE 5-33, 5-34
END 5-55
ENDIF 5-33, 5-34
ENTRY 5-56
EQU 5-29, 5-57, 5-63
EXPORT 5-58
EXTERN 5-64
FN 5-59

GBLA 5-7, 5-26, 5-60, 5-77
GBLL 5-7, 5-26, 5-61, 5-77
GBLS 5-7, 5-26, 5-62, 5-77
GET 5-30, 5-55, 5-63
GLOBAL 5-58
IF 5-30, 5-33, 5-75, 5-87
IMPORT 5-64
INCBIN 5-66
INCLUDE 5-5, 5-30, 5-63
INFO 5-67
KEEP 5-68
LCLA 5-26, 5-69, 5-77, 5-82
LCLL 5-26, 5-70, 5-77, 5-83
LCLS 5-26, 5-71, 5-77, 5-84
LTORG 5-72
MACRO 5-30, 5-72
MAP 5-35
MEND 5-72, 5-77, 5-78
MEXIT 5-75
nesting 5-30
NOFP 5-76
OPT 5-10, 5-77, 5-78
RLIST 5-4, 5-5, 5-79
RN 5-80
ROUT 5-28, 5-29, 5-39, 5-81
SETA 5-7, 5-10, 5-26, 5-60, 5-69,

5-77, 5-82
SETL 5-7, 5-10, 5-26, 5-61, 5-70,

5-77, 5-83
SETS 5-7, 5-10, 5-26, 5-62, 5-71,

5-77, 5-84
SUBT 5-85
TTL 5-86
WEND 5-87
WHILE 5-30, 5-75, 5-87
! 5-67
5-31, 5-35
% 5-32, 5-36
& 5-47
* 5-57
= 5-46
[5-33
] 5-34
^ 5-31, 5-35
| 5-34
table of 5-2

Directives,assembly language
GBLA 5-82
GBLL 5-83

GBLS 5-84
Directory, ALF 14-2
Disassembly 8-4, 8-10, 8-11
DoInstr, ARMulator function 12-82
DoProg,ARMulator function 12-82
Double precision 11-6
Downloader, flash 8-15, 8-16
Draft Standard C++

and error messages 2-32
and inline assembler 3-38
language feature support 3-49
library 3-35
limits 3-43
support for 3-49

Duplicate symbols in linker 6-8
DWARF 1-6, 1-9, 2-22, 2-23, 2-25,

3-4, 5-5

E
Early models, ARMulator 12-7
Elapsed time, ARMulator 12-19
ELF file format 1-6, 6-6, 6-13
ELSE directive 5-33, 5-34
Embedded C library 4-1, 4-2, 4-18

Angel SWIs 4-18
ANSI C subset 4-18
binary 4-2
callouts 4-21
code size 4-19
dependencies 4-4, 4-19
division 4-18
_dmul 4-18
errno variable 4-23
error codes 4-22
exception trap 4-22
floating-point 4-18
floating-point status 4-24
functions 4-18
heap descriptor 4-25
heap manager 4-24
memory configuration 4-18
memory overhead 4-18
operating system dependence 4-19
precompiled variants 4-4
reentrancy 4-18
__rt_embeddedalloc_init 4-24
__rt_errno_addr 4-23
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. Index-9

Index
__rt_fp_status_addr 4-24
__rt_heapdescriptor 4-25
__rt_trap 4-22
runtime support 4-18
source 4-2
standalone functions 4-19
static data 4-4, 4-19
supported functions 4-19
system 4-4
target 4-4
variant names 4-4
variants 4-20

EmbeddedICE
configurations available 7-61
loading a data file 7-61
loading an image 7-61
loading debug data only 7-62
selecting a configuration 7-62
variables 7-55

END directive 5-55
EndCondition, ARMulator function

12-81
Endianness 2-27

ALF 14-3
AOF 15-3, 15-4, 15-7
ARMulator 12-15
ARMulator configuration 12-62
assembler variable 5-10
bigend signal 12-57
C library 4-12
C library naming 6-38
Flash downloader 8-15

ENDIF directive 5-34
ENDIFdirective 5-33
ENTRY directive 5-56
Entry point

AIF 13-2, 13-3
AOF 15-7
assembly 5-56
reentrant functions 9-13
specifying to the linker 6-8
__main 4-35

Entrylength, ALF 14-5
Enumerations

as signed integers 2-25
enum, C and C++ keyword 3-20
Environment variables

ARMINC 2-7, 2-9
:EOR: operator 5-92

EQU directive 5-29, 5-57, 5-63
Errno variable

embedded C 4-23
Error

codes, embedded C 4-22
Error messages

assembler
ASSERT directive 5-40
changing to warnings 5-7
ENTRYdirective 5-56
INFO directive 5-67
listing 5-5
missing AREA directive 5-39

compilers
access control 2-33
characters after preprocessor
directive 2-33
continuing after 3-3
controlling 2-32
declaration lacks
type/storage-class 2-33
fussy 2-15
implicit casts 2-33
linkage disagreements 2-33
listing 2-18
perror() 3-33
redirecting 2-12
severity 3-25
tentative declarations 2-26
unclean casts 2-33
zero length array 2-33

linker
preventing missing symbol errors
5-64
redirecting 6-10

Ethernet, override IP address and net
mask 8-15

Evaluating expressions, C and C++
3-19

Event scheduling, ARMulator 12-70
Events, ARMulator 12-87
EventUpcall, ARMulator 12-89
Exception trap (floating-point) 11-15
Exceptions

inexact 11-3
underflow 11-3

Exceptions, ARMulator 12-55, 12-64
Exceptions, C++ 3-49
ExceptionUpcall, ARMulator 12-64

exception, ARMulator function 12-39
Executable AIF 13-3
Execution

profile 8-6
regions 6-23
speed 2-23, 4-11

ExitUpcall, ARMulator 12-59
explicit, C++ keyword 3-50
EXPORT directive 5-58
Expression evaluation in C and C++

3-19
Expressions, assembly 5-88
Extended AIF 13-3
Extended precision 11-7
extern

C and C++ keyword 3-21
inline C++ keyword 3-50

EXTERN directive 5-64
External symbol table, ALF 14-8

F
Field alignment, C and C++ 3-20
File formats

AIF 6-7
AOF 6-7
binary 6-7
ELF 6-6, 6-13

Files
armsd.ini 7-2
debugger commands 7-33
debugger output 7-32
memory content in 7-24
naming conventions 2-6
profiling data 7-36
reloading into debugger 7-40
saving memory into 7-37
via 6-10

FIX floating-point instruction 11-8
Flash memory 8-15, 8-16
Floating-point 11-2

APCS 9-21
block data transfer 11-9
compatibility 2-13
cumulative exception flags 11-15,

11-16
double precision 11-4, 11-6
exception flags 11-16
Index-10 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

Index
exception trap 11-15
exceptions 11-14, 11-15
extended precision 11-7
global register variables 3-10
hardware 11-3
inexact 11-3
instruction set 11-7
instructions, see Instructions,

floating-point
internal format 11-9
library 11-3
library functions 11-4
limits in C and C++ 3-47
NaN exception 11-10, 11-16
operations in C and C++ 3-18
precision 11-7
printing values in debugger 7-53
read control register 11-9
read status 11-9
register content 7-22
returning values from debugger

7-53
rounding 11-7
single precision 11-4, 11-6
stacks 11-10
status register 11-14
support code 11-2
system control byte 11-16
Thumb 11-2
TPCS 10-2
underflow 11-3
write control register 11-9
write status 11-9

FLT floating-point instruction 11-8
FN directive 5-59
for loop

in Cfront mode 2-4
for loop, C++

variable scope change 3-50
FPA 11-3
FPASC 11-2, 11-13
FPEAddressInEmulator,ARMulator

function 12-41
FPEInstall, ARMulator function 12-40
FPEVersion, ARMulator function

12-41
Frame pointers 2-13
fromelf 8-3
Function call count, profiling 8-6

Function declaration keywords 3-6
Function entry

APCS 9-18
TPCS 10-9

Function exit
APCS 9-24
TPCS 10-12

Function templates, C++
partial ordering of 3-50

Functions
embedded C library 4-18

Functions, ARMulator
ARMul_AddCounterDesc 12-79
ARMul_AddCounterValue 12-80
ARMul_CondCheckInstr 12-78
ARMul_ConsolePrint 12-84
ARMul_CoProAttach 12-27
ARMul_CPRead 12-52
ARMul_CPRegBytes 12-51
ARMul_CPWrite 12-53
ARMul_DebugPause 12-85
ARMul_DebugPrint 12-83
ARMul_DoInstr 12-82
ARMul_DoProg 12-82
ARMul_EndCondition 12-81
ARMul_FPEAddressInEmulator

12-41
ARMul_FPEInstall 12-40
ARMul_FPEVersion 12-41
ARMul_GetCPSR 12-49
armul_GetCycleLength 12-19
armul_GetMemSize 12-23
ARMul_GetMode 12-44
ARMul_GetPC 12-47
ARMul_GetReg 12-45
ARMul_GetR15 12-47
ARMul_GetSPSR 12-50
ARMul_HaltEmulation 12-81
ARMul_HostIf 12-86
ARMul_Hourglass 12-71
ARMul_HourglassSetRate 12-72
ARMul_InstallMemoryInterface

12-11
armul_MemAccess 12-21
ARMul_PrettyPrint 12-84
ARMul_Properties 12-77
ARMul_RaiseError 12-75
ARMul_RaiseEvent 12-90
ARMul_RDILog 12-85

ARMul_ReadByte 12-68
armul_ReadClock 12-19
armul_ReadCycles 12-20
ARMul_ReadHalfWord 12-68
ARMul_ReadWord 12-68
ARMul_ScheduleCoreEvent 12-74
ARMul_ScheduleEvent 12-73
ARMul_SetConfig 12-54
ARMul_SetCPSR 12-50
armul_SetMemSize 12-22
ARMul_SetNfiq 12-55
ARMul_SetNirq 12-55
ARMul_SetNreset 12-56
ARMul_SetPC 12-48
ARMul_SetReg 12-46
ARMul_SetR15 12-48
ARMul_SetSPSR 12-51
ARMul_SWIHandler 12-56
ARMul_Time 12-77
ARMul_WriteByte 12-69
ARMul_WriteHalfWord 12-69
ARMul_WriteWord 12-69
cdp 12-32
exception 12-39
handle_swi 12-38
init 12-27, 12-37
ldc 12-29
mcr 12-31
mrc 12-30
read 12-34
stc 12-29
ToolConf_Cmp 12-6
ToolConf_Lookup 12-5
write 12-35

Functions, C library
clock 4-26
getenv 4-27
remove 4-27
system 4-28
time 4-28
_clock_init 4-27
_getenv_init 4-27
_hostos_error_string 4-42
_hostos_signal_string 4-42
_sys_close 4-30
_sys_ensure 4-32
_sys_flen 4-33
_sys_iserror 4-33
_sys_istty 4-33
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. Index-11

Index
_sys_open 4-30
_sys_read 4-31
_sys_tmpnam 4-34
_sys_ttywrch 4-34
_sys_write 4-32
__main 4-35
__osdep_heapsupport_extend 4-41
__osdep_heapsupport_finalise 4-40
__osdep_heapsupport_init 4-40
__osdep_traphandlers_finalise 4-40
__osdep_traphandlers_init 4-40
__rt_alloc 4-38
__rt_command_string 4-36
__rt_exit 4-36
__rt_free 4-39
__rt_malloc 4-38
__rt_trap 4-37

Functions,C library
rename 4-28

Future compatibility warning 2-31

G
GBLA directive 5-7, 5-26, 5-60, 5-77,

5-82
GBLL directive 5-7, 5-26, 5-61, 5-77,

5-83
GBLS directive 5-7, 5-26, 5-62, 5-77,

5-84
GET directive 5-30, 5-55, 5-63
GetCPSR, ARMulator function 12-49
GetCycleLength, ARMulator function

12-19
GetMemSize, ARMulator function

12-23
GetMode, ARMulator function 12-44
GetPC, ARMulator function 12-47
GetReg, ARMulator function 12-45
GetR15, ARMulator function 12-47
GetSPSR, ARMulator function 12-50
GLOBAL directive 5-58
Global register variables 3-10

recommendations 3-10
Global variables, C and C++

alignment 3-16

H
Halfword load and store 2-20
Halfword support, ARMulator 12-13
Halfwords

reading and writing 7-29
HaltEmulation, ARMulator function

12-81
handle_swi, ARMulator function

12-38
hardfp 11-3
Header chunk, AOF 15-7
Header files 2-7

C++ 3-35
including 2-7
including at the top level 3-3
iostream.h 4-15
location of 4-3
new.h 4-15
search path 2-9
typeinfo 4-15
unguarded 2-29

Header layout, AIF 13-5
Heap descriptor, embedded C 4-25
Heap manager, embedded C 4-24
Heap support, ANSI C 4-40, 4-41
HEAP_INFO SWI 7-54
Help

debugger 7-24
Help compiler option 2-12
High registers, TPCS 10-3
High-level languages 7-48
HostIf, ARMulator function 12-86
hostsys.h 4-29
HourglassSetRate, ARMulator function

12-72
Hourglass, ARMulator function 12-71
HTML Rogue Wave documentation

3-35

I
Identification chunk, AOF 15-21
Identifiers

in C and C++ 3-14
IEEE

double precision 11-4, 11-6
single precision 11-6

754–1985 11-2
IEEE format 3-17
IF directive 5-30, 5-33, 5-75, 5-87
Image layout, AIF 13-4
Image loader, AIF 13-3
Image size 2-23
Images

complex 6-21, 6-22
examples

one execution region 6-18
scatter loaded 6-22
two execution regions 6-19

loading into debugger 7-31
page alignment 6-31
regions

overview 6-12
sections 6-24

overview 6-12
simple 6-17
specifying a memory map 6-17
structure of 6-15

Image$$ symbols 6-21
Implementation

standards, C and C++ 3-43
Implicit

cast error 2-33
constructor warning 2-29
narrowing warning 2-30
return warning 2-31
virtual warning 2-30

IMPORT directive 5-64
INCBIN directive 5-66
INCLUDE directive 5-5, 5-30, 5-63
:INDEX: operator 5-90
Inexact 11-3
INFO directive 5-67
Initialization

libraries 4-9
init, ARMulator function 12-27, 12-37
inline, C and C++ keyword 3-6
In-memory filing system 2-16

mem directory 2-7, 2-16
InstallMemoryInterface ARMulator

function 12-11
Instruction scheduling 3-5
Instruction set

emulation by ARMulator 12-2
floating-point 11-7

Instructions, assembly language
Index-12 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

Index
BX 5-42, 5-45
LDM 5-4, 5-79
STM 5-4, 5-79

Instructions, floating-point
binary operations 11-11
CMF 11-10
CNF 11-10
comparisons 11-10
fast operations 11-11
FIX 11-8
FLT 11-8
LDF 11-8
LFM 11-9
load multiple 11-9
RFC 11-9
RFS 11-9
SFM 11-9
STF 11-8
store multiple 11-9
trigonometric operations 11-12
unary operations 11-12
WFC 11-9
WFS 11-9

Integer
casting to pointers 3-17
generating integer literal inline 2-25

Integral
conversion, C and C++ 3-35
limits in C and C++ 3-46

Internal limits, compilers 3-45
Interrupt latency 2-27, 4-13
Interrupt requests

and C or C++ 3-7
Interrupts, ARMulator 12-64
InterruptUpcall, ARMulator 12-64
Interworking

lists of calls 6-9
scatter load description file 6-28

Interworking ARM and Thumb 2-14
Invoking the compiler 2-10
Invoking the inline assembler 3-39
iostream, C++ keyword 3-35
iostream.h 4-15
IP address, override 8-15
IRQ 3-7
I/O support functions, ANSI C

_sys_close 4-30
_sys_ensure 4-32
_sys_flen 4-33

_sys_iserror 4-33
_sys_istty 4-33
_sys_open 4-30
_sys_read 4-31
_sys_tmpnam 4-34
_sys_ttywrch 4-34
_sys_write 4-32

K
KEEP directive 5-68
Kernel functions, ANSI C

__main 4-35
__rt_alloc 4-38
__rt_command_string 4-36
__rt_exit 4-36
__rt_free 4-39
__rt_malloc 4-38
__rt_trap 4-37

Kernighan and Ritchie search paths
2-16

Keywords, C and C++
extern 3-21
function declaration 3-6
inline 3-6
__inline 3-6
__packed 3-11, 3-24
__pure 3-5, 3-7
register 3-9
register (global) 3-10
signed 3-17
static 3-21
struct 3-20
__swi 3-7
__swi_indirect 3-8
union 3-20
__value_in_regs 3-8
variable declaration 3-9
volatile 3-5, 3-13

Keywords, C++ 3-35
explicit 3-50
extern inline 3-50
typeid 3-49
typename 3-50

L
Labels, assembly 5-27
Labels, local, assembly 5-28
:LAND: operator 5-93
Language

C++ feature support 3-49
default compiler mode 2-3
extensions, C and C++ 3-37
setting in debugger 7-26
see Source language modes

Late models, ARMulator 12-7
Latency, interrupt 2-27
LCLA directive 5-26, 5-69, 5-77, 5-82
LCLL directive 5-26, 5-70, 5-77, 5-83
LCLS directive 5-26, 5-71, 5-77, 5-84
ldc, ARMulator function 12-29
LDF floating-point instruction 11-8
LDFD pseudo-instruction 5-14, 5-72
LDFS pseudo-instruction 5-15, 5-72
LDM instruction 2-27, 3-5, 5-4, 5-79
LDR

and integer literals 2-25
optimizing 3-5
pseudo-instruction 5-16, 5-72
Thumb pseudo-instruction 5-21,

5-72
:LEFT: operator 5-91
:LEN: operator 5-90
:LEOR: operator 5-93
LFM floating-point instruction 11-9
Librarian 8-8
Libraries

automatic inclusion in link step
6-38

C++ Standard 3-35
including during link step 6-36
linker defaults 6-9
linker search path 6-9
scanning 6-9
see ANSI C library
see C++ library
see Embedded C library
see I/O support functions
see Kernel functions
see makefile options
see Rogue Wave C++ library

Library functions
floating point 11-4
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. Index-13

Index
LIB_DATA chunk, ALF 14-4, 14-6
LIB_DIRY chunk, ALF 14-4, 14-5
LIB_TIME chunk, ALF 14-7
LIB_VRSN chunk, ALF 14-4, 14-6
Limits

compilers internal 3-45
floating-point, in C and C++ 3-47
implementation, C and C++ 3-43
integral numbers in C and C++ 3-46

Link register, overwriting 2-27
Linkage disagreement error 2-33
Linkage specification, C++ 3-50
Linker

areas. See Areas
binary files 6-13
case-sensitive symbol matching

6-10
code and data sizes 6-9
configuring 6-11
cross-references between areas 6-10
-debug 7-58
debug information

turning on and off 6-8
default addresses 6-7
diagnostics 6-10
duplicate symbols 6-8
entering commands via a file 6-10
execution information 6-15
help on 6-4, 6-9
image

construction 6-5
entry point 6-8
load and execution views 6-15,
6-18
overview 6-12
structure 6-15

image-related information 6-5
information 6-10
input file list 6-36
interworking calls 6-9
libraries in 6-36
library inclusion, automatic 6-38
library search path 6-9
load information 6-15
memory map information 6-7, 6-15
messages 6-10
obsolete command-line options 6-5
output file 6-4, 6-6
output formats 6-4, 6-13

overview of 6-2
regions 6-12
RO section base address 6-7, 6-17
RW section base address 6-7, 6-17
scatter loading

command-line option 6-4, 6-7
See also Scatter loading and
Scatter load description file

sections 6-12
software version 6-6
sorting input areas 6-31
standard output stream 6-10
symbol-matching options 6-10
symbols 6-21, 6-33

used in link step 6-10
undefined symbols 6-11
unused areas 6-8, 6-9
via files 6-10
zero-initialized areas 6-8, 6-14
$$ symbols 6-33

:LNOT: operator 5-90
Load regions 6-23
Local

labels, assembly 5-28
variables, assembly 5-69, 5-70,

5-71, 5-82, 5-83, 5-84
variables, C and C++ alignment

3-16
locale, C++ keyword 3-35
Logging, ARMulator 12-66
Logical

expressions, assembly 5-89
operators, assembly 5-92
variable, assembly 5-26

long long 3-37
:LOR: operator 5-93
Lower precision warning 2-30
Low-level debugging 7-58
LTORG directive 5-72

M
MACRO directive 5-30, 5-72
Macros

preprocessor 2-17
Macros, C and C++

predefined 3-40
__main 4-35

Makefile options
interrupt latency 4-13
LDMLIMIT 4-13

makefile options
address space, 26 or 32-bit 4-12
APCSA 4-13
APCSC 4-13
ASFLAGS 4-13
assembler 4-13
backtracing 4-11
CCFLAGS 4-13
compiler 4-13
divide=small 4-11
divide=unrolled 4-11
ENDIAN=b or l 4-12
floating-point APCS options 4-12
floating-point instruction set 4-12
FPIS=2 or 3 4-12
FPREGARGS 4-12
fp_type=fplib 4-12
fp_type=hardfp 4-12
INTERWORK 4-13
LIBNAME 4-9, 4-10
LIBTYPE=angel 4-10
LIBTYPE=embedded 4-10
memcpy=fast 4-11
memcpy=small 4-11
passing fp arguments 4-12
PCZS=26 or 32 4-12
stack backtracing 4-11
stack=chunked 4-12
stack=contiguous 4-12
stdfile_redirection 4-11
TARGET=ARM 4-10
TARGET=Thumb 4-10

Makefiles
generating 2-17

makefile, ANSI C library 4-8
MAP directive 5-35
Map files, ARMulator 12-4
mcr, ARMulator function 12-31
mem directory 2-7, 2-16
MemAccess, ARMulator function

12-21
Member templates, C++ 3-50
memcmp() 3-21
memcpy makefile options 4-11
Memory

ARM or Thumb code display 7-30
Index-14 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

Index
changing content of 7-27
examining 7-20, 7-30
finding values in 7-21
reading from 7-29
writing to 7-24, 7-29
writing to file 7-37

Memory map
describing to linker 6-23
specifying 6-7
statistics variable 7-53

Memory models, ARMulator 12-7
Memory protection, AIF 13-4
Memory speed 2-25
MEND directive 5-72, 5-77, 5-78
MEXIT directive 5-75
ModeChangeUpcall, ARMulator

12-60
Model stubs, ARMulator 12-4
Models, ARMulator

basic 12-7
basic model initialization 12-10
bus cycle insertion 12-68
coprocessor 12-24
early 12-7
hierarchy 12-7
late 12-7
memory 12-7, 12-68
memory initialization 12-17
memory interface 12-16
stubs 12-4
tracer 12-7
veneer memory 12-7, 12-11
watchpoint 12-7

Modes, compiler, see Source language
modes

MOV Thumb pseudo-instruction 5-23
mrc, ARMulator function 12-30
MS-DOS

need for via files 4-9
Multi-ICE

variables 7-55
Multiple instantiation, TPCS 10-2
Multiplicative operators, assembly

5-91

N
Namespaces, C++ 3-49

Naming conventions 2-6
Natural alignment, C and C++ 3-16
Nesting directives 5-30
Net mask, Ethernet, override 8-15
New array, C++ 3-49
New style casts, C++ 3-49
new.h 4-15
NOFP directive 5-76
Non-ANSI include warning 2-30
Non-executable AIF 13-3
Non-simple types, APCS 9-17
Non-simple types, TPCS 10-8
NOP pseudo-instruction 5-18
NOP Thumb pseudo-instruction 5-24
:NOT: operator 5-90
Nothrow new, C++ 3-49
nTRANS signal 12-13, 12-61
Numeric constants, assembly 5-29
Numeric expressions, assembly 5-89
Numeric variable, assembly 5-26

O
Object alignment, specifying 2-28
Object file type, AOF 15-7
OBJ_AREA chunk, ALF 14-3
OBJ_AREA chunk, AOF 15-12
OBJ_HEAD chunk, AOF 15-7
OBJ_SYMT chunk, AOF 15-16
OFL_SYMT chunk, ALF 14-4, 14-8
OFL_TIME chunk, ALF 14-4, 14-8
Operating system

accessing from debugger 7-11
Operator precedence, assembly 5-88,

5-91
OPT directive 5-10, 5-77, 5-78
Optimization

and debug tables 2-23
and pure functions 3-7
common sub-expression elimination

3-5, 3-7
common tail 3-5
compiler options 2-24
controlling 2-23
controlling with pragmas 3-5
crossjumping 3-5
multiple loads 3-5
no optimize scheduling pragma 3-5

no side effects pragma 3-5
packed keyword 3-12
structure packing 3-11
volatile keyword 3-13

:OR: operator 5-92
Output

debugger logs 7-32
Overlapping, of bitfields, C and C++

3-22
Overloaded functions, C and C++

argument limits 3-43

P
Packed BCD 11-7
Packed structures, C and C++ 3-11,

3-24
packed, C and C++ keyword 3-24
Padding

of C and C++ structures 3-21
Padding inserted in structure warning

2-30
Page alignment

images 6-31
PCC C 8-12
PCC mode 2-3, 2-16

and ANSI header files 2-16
pc-relative relocation directives 6-10,

6-40
pc-relative relocation, AOF 15-14
pc, assembly 5-10, 5-27, 5-36, 5-89
Pointers, in C and C++

casting to integers 3-17
subtraction 3-19

Portability
filenames 2-6

Position-independent attribute, AOF
15-11

Pragmas 3-2
check_printf_formats 3-3, 3-4
continue_after_hash_error 3-3
debug_inlines 3-4
emulating on command-line 2-34
force_top_level 3-3
include_only_once 3-3
no_check_stack 3-6
no_side_effects 3-5
optimise_crossjump 3-4, 3-5
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. Index-15

Index
optimise_cse 3-5
optimise_multiple_loads 3-5
preprocessor control 3-3

Precision, floating point 11-7
Predefined macros, C and C++ 3-40
Preprocessor

controlling with pragmas 3-3
Preprocessor macros 2-17, 2-18
Preprocessor options 2-17

-C 2-17
-D 2-17
-E 2-17
-M 2-17
-MD- 2-17
-U 2-18

Preprocessoroptions
-MD 2-17

PrettyPrint, ARMulator function 12-84
printf argument checking 3-3
Procedure calls

debugger 7-15
in debugger 7-5
returning from 7-40

Processor signals, ARMulator 12-16
Profiler 8-6
profiler.c 12-66
Profiling

clearing counts 7-35
debugger options 7-31
end ing data collection 7-36
starting data collection 7-36
writing data to file 7-36

Program context 7-25, 7-34
Program counter, assembly 5-10, 5-27,

5-36, 5-89
Program-relative

expressions 5-89
labels 5-27

Programs
executing in debugger 7-24

Properties, ARMulator function 12-77
Pseudo-instructions, assembly language

ADR 5-12
ADR (Thumb) 5-20
ADRL 5-13
LDFD 5-14, 5-72
LDFS 5-15, 5-72
LDR 5-16, 5-72
LDR (Thumb) 5-21, 5-72

MOV (Thumb) 5-23
NOP 5-18
NOP (Thumb) 5-24
table of 5-2

PSR
setting under armsd 7-60

ptrdiff_t 3-17
Pure functions 3-7

Q
Qualifiers

__packed 3-11
type 3-11
volatile 3-5, 3-13

R
RaiseError, ARMulator function 12-75
RaiseEvent,ARMulator function 12-90
RDILog,ARMulator function 12-85
ReadByte, ARMulator function 12-68
ReadClock, ARMulator function 12-19
ReadCycles, ARMulator function

12-20
ReadHalfWord, ARMulator function

12-68
Read-only attribute, AOF 15-10
ReadWord, ARMulator function 12-68
read, ARMulator function 12-34
Redirection 4-11
Reentrancy, TPCS 10-2
Reentrant attribute, AOF 15-11
Reentrant functions, APCS 9-13
Register

displaying in debugger 7-39
keyword 3-9
names, assembly 5-9
pairs 11-4
returning a structure in 3-8
variables 3-9
variables (global) 3-10

Register-relative
expressions 5-89

Register-relative labels 5-28
Relational operators, assembly 5-92
Relocatable object format, AOF 15-7

Relocating code
additive 6-41
based area 6-41
branch instructions 6-41
pc-relative 6-10, 6-40

Relocation directives
AOF areas 15-8, 15-12
in linker 6-40
overview 15-13

Relocation list, AIF 13-4
Relocations, number, AOF header 15-8
Remote debug interface

and ARMulator 12-2, 12-3, 12-22,
12-24, 12-66, 12-83

Restartable AIF 13-4
Retargetting, ANSI C library 4-8
Return codes, ARMulator functions

ARMul_BUSY 12-29, 12-30,
12-31, 12-32, 12-33

ARMul_CANT 12-29, 12-30,
12-31, 12-32, 12-33, 12-34,
12-35

ARMul_DONE 12-29, 12-30,
12-31, 12-32, 12-33, 12-34,
12-35

RFC floating-point instruction 11-9
RFS floating-point instruction 11-9
:RIGHT: operator 5-91
RLIST directive 5-4, 5-5, 5-79
RN directive 5-80
Rogue Wave C++ library 3-35, 4-2,

4-3, 4-14, 4-15
HTML documentation 3-35, 3-36
licence 4-16
rebuilding 4-16
sublibraries 4-15, 4-16

:ROL: operator 5-92
:ROR: operator 5-92
Rounding 11-7
ROUT directive 5-28, 5-29, 5-39, 5-81
__rt_alloc 4-38
__rt_command_string 4-36
__rt_embeddedalloc_init 4-24
__rt_errno_addr 4-23
__rt_exit 4-36
__rt_fp_status_addr 4-24
__rt_free 4-39
__rt_heapdescriptor 4-25
__rt_malloc 4-38
Index-16 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

Index
__rt_trap 4-22, 4-37
RTTI 3-49
Runtime libraries

initializing 4-9
Runtime type identification, C++ 3-49

S
Save code pointer, APCS 9-11
scanf argument checking 3-3
Scatter load description file 6-23

area syntax 6-26
content of 6-24
execution region syntax 6-25
execution regions 6-23
FIRST 6-28
interworking veneers 6-28
LAST 6-28
load regions 6-23

syntax 6-25
obsolete features 6-30
OVERLAY 6-30
pseudo-attributes 6-28
ROOT 6-30
ROOT-DATA 6-30
sections 6-24
structure of 6-25
synonyms in 6-28
wildcards 6-27
+ character 6-27

Scatter loading 13-3
area matching 6-29
area placement 6-9
binary images 6-14
linker command-line option 6-21
overview 6-21
section-related symbols 6-34
symbols defined by linker 6-21
+FIRST 6-9
+LAST 6-9

ScheduleCoreEvent, ARMulator
function 12-74

ScheduleEvent, ARMulator function
12-73

Search paths 2-16
ARMINC 2-9
Berkely UNIX 2-8
default 2-10

Kernighan and Ritchie 2-16
rules 2-8
specifying 2-16

Self-relocation, AIF 13-4
Semihosting

and ANSI C 4-2
ANSI C library 4-7
disabling 7-55
enabling 7-55
SWI vector 7-55
SWIs for 7-55

SETA directive 5-7, 5-10, 5-26, 5-60,
5-69, 5-77, 5-82

SetConfig, ARMulator function 12-54
SetCPSR, ARMulator function 12-50
SETL directive 5-7, 5-10, 5-26, 5-61,

5-70, 5-77, 5-83
SetMemSize, ARMulator function

12-22
SetNfiq, ARMulator function 12-55
SetNirq, ARMulator function 12-55
SetNreset, ARMulator function 12-56
SetPC, ARMulator function 12-48
SetReg, ARMulator function 12-46
SetR15, ARMulator function 12-48
SETS directive 5-7, 5-10, 5-26, 5-62,

5-71, 5-77, 5-84
SetSPSR, ARMulator function 12-51
SFM floating-point instruction 11-9
Shift operators, assembly 5-92
:SHL: operator 5-92
Shorts

reading and writing 7-29
:SHR: operator 5-92
Sibling coprocessors 12-28
Side effects 3-5
Signal string, ANSI C 4-42
signed, C and C++ keyword 3-17
SIGSTAK 3-6
Single precision 11-6
Size of code and data areas 2-25
size_t 3-17
softfp 11-3
Software interrupts 2-27, 3-7, 3-8
Source language modes

ANSI C 2-3, 2-15
Cfront 2-15
C++ 2-3
fussy 2-15

PCC 2-3, 2-16
Specifying

additional checks 2-31
compiler options 2-11
function declaration keywords 3-6
object alignment 2-28
preprocessor options 2-17
search paths 2-16
structure alignment 2-27
warning messages 2-28

Speed
and structure packing 3-11
of memory 2-25

Stack
overflow

and no_check_stack 3-6
Stack checking 3-6

C and C++ 2-13
Stacks

backtrace, APCS 9-11, 9-20
backtrace, TPCS 10-4
chunk limit, APCS 9-9
chunked, TPCS 10-2
floating-point 11-10
limit, TPCS 10-4
overflow

APCS 9-22
TPCS 10-4, 10-10

TPCS 10-4, 10-7
Standard C++ library 3-35
Standards

C and C++ 2-2
Cfront 2-15
C++ implementation 3-35
C++ language support 3-49
C++ library implementation 3-35
Draft Standard C++ 3-43
Draft Standard C++ support 3-49
integral conversion, C and C++

3-35
variation from 2-3

State pointer, ARMulator 12-4
Static member constants, C++ 3-50
static, C and C++ keyword 3-21
$Statistics variable 12-67
$statistics variable 12-20
stc, ARMulator function 12-29
__STDC__, C and C++ macro 3-40
STF floating-point instruction 11-8
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. Index-17

Index
STM instruction 2-27, 5-4, 5-79
:STR: operator 5-90
Strict mode, see Fussy
Strictly conforming, APCS 9-6, 9-10
String

character sets 3-14
expressions, assembly 5-88
literals, assembly 5-88
literals, compilers 2-25
manipulation, assembly 5-91
size limits 3-43
string.h 4-20
table chunk, AOF 15-20
variable, assembly 5-26, 5-27

StrongARM1 3-5, 12-14
Structure alignment

pointers 2-28
specifying 2-27

Structures, C and C++
alignment 3-20
bitfields 3-24
implementation 3-20
packed 3-24
packing 3-11
padding 3-21

struct, C and C++ keyword 3-20
Stubs, ARMulator 12-4
SUBT directive 5-85
SWI 2-27, 3-7, 3-8

HEAP_INFO 7-54
semihosting requests 7-55

SWIHandler,ARMulator function
12-56

Symbol attributes
see Attributes, AOF symbols

Symbol table chunk, AOF 15-7, 15-13,
15-16, 15-20

Symbolic debugger, see Debugger and
armsd commands

Symbols
area-related 6-35
assembly language 5-25
assembly language, Naming rules

5-25
case-sensitive matching 6-10
debugger 7-5
defining, C and C++ 2-17
displaying in debugger 7-33
high-level 7-58

Image$$ 6-21
linker 6-10, 6-33
low-level 7-58
matching 6-10
region-related 6-33
scatter loading 6-21
section-related 6-34
undefined 6-11
ZI 6-33
$$ 6-33

_sys_close 4-30
_sys_ensure 4-32
_sys_flen 4-33
_sys_iserror 4-33
_sys_istty 4-33
_sys_open 4-30
_sys_read 4-31
_sys_tmpnam 4-34
_sys_ttywrch 4-34
_sys_write 4-32
System ID byte 11-15

T
Tail calls

APCS 9-18
optimization 3-5
TPCS 10-9

Target specific ANSI C library 4-9
tcpp 2-2, 2-4, 2-17, 2-31, 3-7, 3-40
Templates, C++ 3-49

class template partial specialization
3-50

class templates 3-50
default template arguments 3-50
function templates 3-50
instantiation directive 3-50
member templates 3-50
specialization directive 3-50

Tentative declarations 2-26
These 12-14
Thumb code

interworking with ARM 2-14
Time stamps, ALF 14-7
Time,ARMulator function 12-77
ToolConf 12-5
ToolConf_Cmp, ARMulator function

12-6

ToolConf_Lookup, ARMulator
function 12-5

topcc 8-12
TPCS 10-1

argument list marshalling 10-7
argument passing 10-5
C language calling conventions

10-7
control arrival 10-5
control return 10-6
data representation 10-5
floating-point 10-2
function entry 10-9
function exit 10-12
high registers 10-3
multiple instantiation 10-2
non-simple types 10-8
reentrancy 10-2
registers 10-3
stack backtrace 10-4
stack limit 10-4, 10-10
stack overflow 10-4, 10-10
stacks 10-4, 10-7
stacks, chunked 10-2
tail calls 10-9

tracer.c 12-7, 12-66
Tracing, ARMulator 12-66
TransChangeUpcall, ARMulator

12-61
Translator 8-12
Traphandlers, ANSI C 4-40
TTL directive 5-86
Type qualifiers 3-11
typeid, C++ keyword 3-49
typeinfo 4-15
typeinfo, C++ keyword 3-35
typename, C++ keyword 3-50

U
Unary operators, assembly 5-90
Unclean cast error 2-33
Undefining symbols, C and C++ 2-18
Underflow 11-3
union, C and C++ keyword 3-20
Universal character names, C++ 3-50
UnkRDIInfoUpcall, ARMulator 12-66
Unused this warning 2-31
Index-18 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

Index
Upcalls, ARMulator 12-7, 12-18,
12-57

armul_EventUpcall 12-89
ConfigChangeUpcall 12-62
ExceptionUpcall 12-64
ExitUpcall 12-59
handles 12-58
installing 12-58
InterruptUpcall 12-64
ModeChangeUpcall 12-60
removing 12-58
TransChangeUpcall 12-61
UnkRDIInfoUpcall 12-66

User functions, ARMulator 12-7
Using

C++ compilers 2-1

V
valarray, C++ keyword 3-35
Variable declaration keywords 3-9

__global_freg(n) 3-10
__global_reg(n) 3-10
register 3-9

Variables
ARMLIB 6-37
changing value of 7-27
context information 7-45
context of 7-48
debugger 7-5, 7-35
EmbeddedICE 7-54
formatting 7-56
global 7-48
high-level languages 7-48
multipledeclarations of 7-48
names of 7-48
source directory 7-27
specifyingthe activation of 7-48
$statistics 12-20
type information 7-45
$clock 7-53
$cmdline 7-28, 7-53
$echo 7-53
$examine_lines 7-20, 7-53
$float_format 7-53
$format 7-35
$fpresult 7-53
$icebreaker_lockedpoints 7-55

$inputbase 7-53, 7-57
$int_format 7-53
$list_lines 7-30, 7-53
$memory_statistics 7-53
$rdi_log 7-53
$result 7-54
$semihosting_arm_swi 7-55
$semihosting_enabled 7-55
$semihosting_thumb_swi 7-55
$semihosting_vector 7-55
$sourcedir 7-27, 7-54
$Statistics 12-67
$statistics 7-54
$statistics_inc 7-54
$top_of_memory 7-54
$type_lines 7-43, 7-54
$vector_catch 7-54

Variables, assembly 5-26
built-in 5-10
global 5-60, 5-61, 5-62, 5-82, 5-83,

5-84
local 5-69, 5-70, 5-71, 5-82, 5-83,

5-84
substitution 5-27

Variadic functions, APCS 9-20
Variants

compilers 2-2
Veneer memory models 12-7, 12-11
Via files 2-12, 4-9, 5-7, 6-10

and ANSI C rebuild 4-9
Virtual functions (C and C++) 3-20
volatile, C and C++ keyword 3-5, 3-11,

3-13

W
Warning messages

specifying 2-28
Warning messages, compilers

assignment operator 2-29
bitfield typer 2-29
deprecated declaration 2-29
enabling warnings off by default

2-32
future compatibility 2-31
implicit constructor 2-29
implicit narrowing cast 2-30
implicit return 2-31

implicit virtual 2-30
inventing extern 2-29
lower precision 2-30
non-ANSI include 2-30
padding inserted in structure 2-30
specifying additional checks 2-31
suppressing all 2-28
unguarded header 2-29
unused this 2-31

watchpnt.c 12-7, 12-66
Watchpoints

clearing 7-44
setting 7-45

Watchpoints, ARMulator 12-66
wchar_t, C++ 3-50
Weak attribute, AOF 15-18
WEAK symbol 5-64
WEND directive 5-87
WFC floating-point instruction 11-9
WFS floating-point instruction 11-9
WHILE directive 5-30, 5-75, 5-87
Wide characters, C++ 3-50
Wildcards

debugger low-level symbols 7-33
scatter load description file 6-27

WriteByte, ARMulator function 12-69
WriteHalfWord, ARMulator function

12-69
WriteWord, ARMulator function

12-69
write, ARMulator function 12-35

Z
Zero length array errors 2-33
Zero-initialised attribute 15-10
Zero-initialized areas

binary image 6-8, 6-14
Zero-initialized data 2-26
ZI symbols 6-33

Numerics
32-bit PC attribute, AOF 15-11
ARM DUI 0041C Copyright © 1997, 1998 ARM Limited. All rights reserved. Index-19

Index
Symbols
! directive 5-67
directive 5-31, 5-35
$clock variable 7-53
$cmdline variable 7-28, 7-53
$echo variable 7-53
$examine_lines variable 7-20, 7-53
$float_format variable 7-53
$format variable 7-35
$fpresult variable 7-53
$icebreaker_lockedpoints variable

7-55
$inputbase variable 7-53, 7-57
$int_format variable 7-53
$list_lines variable 7-30, 7-53
$memory_statistics variable 7-53
$rdi_log variable 7-53
$result variable 7-54
$semihosting_arm_swi variable 7-55
$semihosting_enabled variable 7-55
$semihosting_thumb_swi variable

7-55
$semihosting_vector variable 7-55
$sourcedir variable 7-27, 7-54
$Statistics variable 12-67
$statistics variable 7-54, 12-20
$statistics_inc variable 7-54
$top_of_memory variable 7-54
$type_lines variable 7-43, 7-54
$vector_catch variable 7-54
$$ symbols 6-33
% directive 5-32, 5-36
& directive 5-47
* directive 5-57
+

in scatter load description file 6-27
= directive 5-46
[directive 5-33
]directive 5-34
^ directive 5-31
^directive 5-35
| directive 5-34
|$$$$$$$|, language 5-39
Index-20 Copyright © 1997, 1998 ARM Limited. All rights reserved. ARM DUI 0041C

	ARM Software Development Toolkit Reference Guide
	Contents
	Preface
	About this book
	Organization

	Further reading
	ARM publications
	Other publications

	Typographical conventions
	Feedback
	Feedback on this book
	Feedback on the ARM Software Development Toolkit

	Introduction
	1.1 About the ARM Software Development Toolkit
	1.1.1 Components of the SDT
	1.1.2 Components of C++ version 1.10

	1.2 Supported platforms
	1.3 What is new?
	1.3.1 Functionality enhancements and new functionality
	1.3.2 Changes in default behavior
	1.3.3 Obsolete and deprecated features

	The ARM Compilers
	2.1 About the ARM compilers
	2.1.1 Compiler variants
	2.1.2 Source language modes
	2.1.3 Compatibility between compilers
	2.1.4 Library support

	2.2 File usage
	2.2.1 Naming conventions
	2.2.2 Included files

	2.3 Command syntax
	2.3.1 Invoking the compiler
	2.3.2 Procedure Call Standard options
	2.3.3 Setting the source language
	2.3.4 Specifying search paths
	2.3.5 Setting preprocessor options
	2.3.6 Specifying output format
	2.3.7 Specifying the target processor and architecture
	2.3.8 Generating debug information
	2.3.9 Controlling code generation
	2.3.10 Controlling warning messages
	2.3.11 Specifying additional checks
	2.3.12 Controlling error messages
	2.3.13 Pragma emulation

	ARM Compiler Reference
	3.1 Compiler-specific features
	3.1.1 Pragmas
	3.1.2 Function declaration keywords
	3.1.3 Variable declaration keywords
	3.1.4 Type qualifiers

	3.2 C and C++ implementation details
	3.2.1 Character sets and identifiers
	3.2.2 Basic data types
	3.2.3 Operations on basic data types
	3.2.4 Structured data types

	3.3 Standard C implementation definition
	3.3.1 Translation
	3.3.2 Environment
	3.3.3 Identifiers
	3.3.4 Characters
	3.3.5 Integers
	3.3.6 Floating-point
	3.3.7 Arrays and pointers
	3.3.8 Registers
	3.3.9 Structures, unions, enumerations, and bitfields
	3.3.10 Qualifiers
	3.3.11 Declarators
	3.3.12 Statements
	3.3.13 Preprocessing directives
	3.3.14 Library functions

	3.4 Standard C++ implementation definition
	3.4.1 Integral conversion (section 4.7 of the Draft Standard)
	3.4.2 Standard C++ library implementation definition

	3.5 C and C++ language extensions
	3.5.1 C Language Extensions
	3.5.2 C and C++ language extensions

	3.6 Predefined macros
	3.7 Implementation limits
	3.7.1 Draft Standard Limits
	3.7.2 Internal limits

	3.8 Limits for integral numbers
	3.9 Limits for floating-point numbers
	3.10 C++ language feature support
	3.10.1 Major language feature support
	3.10.2 Minor language feature support

	The C and C++ Libraries
	4.1 About the runtime libraries
	4.1.1 The ANSI C library
	4.1.2 The C++ library
	4.1.3 The embedded C library
	4.1.4 Library naming conventions

	4.2 The ANSI C library
	4.2.1 Using the ANSI C library
	4.2.2 Retargeting the ANSI C library

	4.3 The ARM C++ libraries
	4.3.1 Using the libraries
	4.3.2 Rebuilding the ARM C++ library

	4.4 The embedded C library
	4.4.1 Embedded C library functions
	4.4.2 Embedded C library variants
	4.4.3 Callouts from the embedded C library
	4.4.4 __rt_trap
	4.4.5 __rt_errno_addr
	4.4.6 __rt_fp_status_addr
	4.4.7 __rt_embeddedalloc_init
	4.4.8 __rt_heapdescriptor

	4.5 Target-dependent ANSI C library functions
	4.5.1 clock
	4.5.2 _clock_init
	4.5.3 getenv
	4.5.4 _getenv_init
	4.5.5 remove
	4.5.6 rename
	4.5.7 system
	4.5.8 time

	4.6 Target-dependent I/O support functions
	4.6.1 _sys_open
	4.6.2 _sys_close
	4.6.3 _sys_read
	4.6.4 _sys_write
	4.6.5 _sys_ensure
	4.6.6 _sys_flen
	4.6.7 _sys_iserror
	4.6.8 _sys_istty
	4.6.9 _sys_tmpnam
	4.6.10 _ttywrch

	4.7 Target-dependent kernel functions
	4.7.1 __main
	4.7.2 __rt_exit
	4.7.3 __rt_command_string
	4.7.4 __rt_trap
	4.7.5 __rt_alloc
	4.7.6 __rt_malloc
	4.7.7 __rt_free

	4.8 Target-dependent operating system functions
	4.8.1 __osdep_traphandlers_init
	4.8.2 __osdep_traphandlers_finalise
	4.8.3 __osdep_heapsupport_init
	4.8.4 __osdep_heapsupport_finalise
	4.8.5 __osdep_heapsupport_extend
	4.8.6 _hostos_error_string
	4.8.7 _hostos_signal_string

	Assembler
	5.1 Command syntax
	5.2 Format of source lines
	5.3 Predefined register and coprocessor names
	5.3.1 Predeclared register names
	5.3.2 Predeclared program status register names
	5.3.3 Predeclared floating-point register names
	5.3.4 Predeclared coprocessor names

	5.4 Built-in variables
	5.5 ARM pseudo-instructions
	5.5.1 ADR ARM pseudo-instruction
	5.5.2 ADRL ARM pseudo-instruction
	5.5.3 LDFD ARM pseudo-instruction
	5.5.4 LDFS ARM pseudo-instruction
	5.5.5 LDR ARM pseudo-instruction
	5.5.6 NOP ARM pseudo-instruction

	5.6 Thumb pseudo-instructions
	5.6.1 ADR Thumb pseudo-instruction
	5.6.2 LDR Thumb pseudo-instruction
	5.6.3 MOV Thumb pseudo-instruction
	5.6.4 NOP Thumb pseudo-instruction

	5.7 Symbols
	5.7.1 Symbol naming rules
	5.7.2 Variables
	5.7.3 Assembly time substitution of variables
	5.7.4 Labels
	5.7.5 Local labels
	5.7.6 Numeric constants

	5.8 Directives
	5.8.1 Nesting directives
	5.8.2 ! directive
	5.8.3 # directive
	5.8.4 % directive
	5.8.5 & directive
	5.8.6 * directive
	5.8.7 = directive
	5.8.8 [or IF directive
	5.8.9 | or ELSE directive
	5.8.10] or ENDIF directive
	5.8.11 ^ or MAP directive
	5.8.12 ALIGN directive
	5.8.13 AREA directive
	5.8.14 ASSERT directive
	5.8.15 CN directive
	5.8.16 CODE16 directive
	5.8.17 CODE32 directive
	5.8.18 CP directive
	5.8.19 DATA directive
	5.8.20 DCB or = directive
	5.8.21 DCD or & directive
	5.8.22 DCDU directive
	5.8.23 DCFD directive
	5.8.24 DCFDU directive
	5.8.25 DCFS directive
	5.8.26 DCFSU directive
	5.8.27 DCW directive
	5.8.28 DCWU directive
	5.8.29 ELSE directive
	5.8.30 END directive
	5.8.31 ENDIF directive
	5.8.32 ENTRY directive
	5.8.33 EQU or * directive
	5.8.34 EXPORT or GLOBAL directive
	5.8.35 EXTERN directive
	5.8.36 FN directive
	5.8.37 GBLA directive
	5.8.38 GBLL directive
	5.8.39 GBLS directive
	5.8.40 GET or INCLUDE directive
	5.8.41 GLOBAL directive
	5.8.42 IF directive
	5.8.43 IMPORT or EXTERN directive
	5.8.44 INCBIN directive
	5.8.45 INCLUDE directive
	5.8.46 INFO or ! directive
	5.8.47 KEEP directive
	5.8.48 LCLA directive
	5.8.49 LCLL directive
	5.8.50 LCLS directive
	5.8.51 LTORG directive
	5.8.52 MACRO directive
	5.8.53 MAP directive
	5.8.54 MEND directive
	5.8.55 MEXIT directive
	5.8.56 NOFP directive
	5.8.57 OPT directive
	5.8.58 RLIST directive
	5.8.59 RN directive
	5.8.60 ROUT directive
	5.8.61 SETA directive
	5.8.62 SETL directive
	5.8.63 SETS directive
	5.8.64 SUBT directive
	5.8.65 TTL directive
	5.8.66 WEND directive
	5.8.67 WHILE directive

	5.9 Expressions and operators
	5.9.1 String expressions
	5.9.2 Numeric expressions
	5.9.3 Register-relative and program-relative expressions
	5.9.4 Logical expressions
	5.9.5 Unary operators
	5.9.6 Binary operators

	Linker
	6.1 About the linker
	6.1.1 Input to armlink
	6.1.2 Output from armlink

	6.2 Command syntax
	6.2.1 Summary of armlink options
	6.2.2 armlink syntax

	6.3 Building blocks for objects and images
	6.4 Image file formats
	6.4.1 ELF format
	6.4.2 AIF format
	6.4.3 Plain binary format

	6.5 Image structure
	6.5.1 Load and execution memory maps of an Image

	6.6 Specifying an image memory map
	6.6.1 Simple images

	6.7 About scatter loading
	6.7.1 Symbols defined for scatter loading
	6.7.2 Command-line option

	6.8 The scatter load description file
	6.8.1 Describing the memory map to the linker
	6.8.2 Structure of the description file
	6.8.3 Resolving multiple matches
	6.8.4 Obsolete features

	6.9 Area placement and sorting rules
	6.9.1 Ordering areas by attribute
	6.9.2 Using FIRST and LAST to place areas
	6.9.3 Aligning areas

	6.10 Linker-defined symbols
	6.10.1 Region-related symbols
	6.10.2 Section-related symbols
	6.10.3 Area-related symbols

	6.11 Including library members
	6.11.1 Processing the input file list
	6.11.2 Including library members

	6.12 Automatic inclusion of libraries
	6.12.1 For ARM libraries
	6.12.2 For Thumb libraries

	6.13 Handling relocation directives
	6.13.1 The subject field
	6.13.2 The relocation value
	6.13.3 PC-relative relocation
	6.13.4 Additive relocation
	6.13.5 Based area relocation
	6.13.6 The relocation of instruction sequences

	ARM Symbolic Debugger
	7.1 About armsd
	7.1.1 Selecting a debugger
	7.1.2 Automatic command execution on startup

	7.2 Command syntax
	7.2.1 Command-line options

	7.3 Running armsd
	7.3.1 Symbols
	7.3.2 Controlling execution
	7.3.3 Reading and writing memory
	7.3.4 Program context
	7.3.5 Low-level debugging
	7.3.6 Coprocessor support
	7.3.7 Profiling commands
	7.3.8 Miscellaneous commands

	7.4 Alphabetical list of armsd commands
	7.4.1 Annotating the command syntax
	7.4.2 Names used in syntax descriptions
	7.4.3 ! command
	7.4.4 | command
	7.4.5 alias
	7.4.6 arguments
	7.4.7 backtrace
	7.4.8 break
	7.4.9 call
	7.4.10 coproc
	7.4.11 context
	7.4.12 cregisters
	7.4.13 cregdef
	7.4.14 cwrite
	7.4.15 examine
	7.4.16 find
	7.4.17 fpregisters
	7.4.18 go
	7.4.19 getfile
	7.4.20 help
	7.4.21 in
	7.4.22 istep
	7.4.23 language
	7.4.24 let
	7.4.25 list
	7.4.26 load
	7.4.27 log
	7.4.28 lsym
	7.4.29 obey
	7.4.30 out
	7.4.31 pause
	7.4.32 print
	7.4.33 profclear
	7.4.34 profoff
	7.4.35 profon
	7.4.36 profwrite
	7.4.37 putfile
	7.4.38 quit
	7.4.39 readsyms
	7.4.40 registers
	7.4.41 reload
	7.4.42 return
	7.4.43 step
	7.4.44 symbols
	7.4.45 type
	7.4.46 unbreak
	7.4.47 unwatch
	7.4.48 variable
	7.4.49 watch
	7.4.50 where
	7.4.51 while

	7.5 Specifying source-level objects
	7.5.1 Variable names and context
	7.5.2 Program locations
	7.5.3 Expressions
	7.5.4 Constants

	7.6 Armsd variables
	7.6.1 Summary of armsd variables
	7.6.2 Accessing variables
	7.6.3 Formatting integer results
	7.6.4 Specifying the base for input of integer constants

	7.7 Low-level debugging
	7.7.1 Low-level symbols
	7.7.2 Predefined symbols

	7.8 armsd commands for EmbeddedICE
	7.8.1 listconfig
	7.8.2 loadagent
	7.8.3 loadconfig
	7.8.4 readsyms
	7.8.5 selectconfig

	7.9 Accessing the Debug Communications Channel
	7.9.1 ccin
	7.9.2 ccout

	Toolkit Utilities
	8.1 Functions of the toolkit utilities
	8.2 The fromELF utility
	8.2.1 fromELF command-line options
	8.2.2 Multiple output formats
	8.2.3 Image structure

	8.3 ARM profiler
	8.3.1 Profiler command-line options
	8.3.2 Sample output

	8.4 ARM librarian
	8.4.1 Librarian command-line options
	8.4.2 Examples

	8.5 ARM object file decoder
	8.5.1 Object file decoder command-line options
	8.5.2 Example

	8.6 ARM executable format decoder
	8.6.1 Executable file decoder command-line options
	8.6.2 Examples

	8.7 ANSI to PCC C Translator
	8.7.1 ANSI to PCC C command-line options
	8.7.2 Translation details
	8.7.3 Issues with topcc

	8.8 The Flash downloader
	8.8.1 The Flash downloader

	ARM Procedure Call Standard
	9.1 About the ARM Procedure Call Standard
	9.1.1 APCS variants

	9.2 APCS definition
	9.2.1 APCS conformance
	9.2.2 APCS register names and roles
	9.2.3 The stack
	9.2.4 The stack backtrace data structure
	9.2.5 Function invocations and stack backtrace structures
	9.2.6 Control arrival
	9.2.7 Data representation and argument passing
	9.2.8 Control return

	9.3 C language calling conventions
	9.3.1 Argument representation
	9.3.2 Argument list marshalling
	9.3.3 Non-simple value return

	9.4 Function entry examples
	9.4.1 Definitions
	9.4.2 Establishing the static base
	9.4.3 Creating the stack backtrace structure
	9.4.4 Saving and restoring floating-point registers
	9.4.5 Checking for stack limit violations

	9.5 Function exit

	Thumb Procedure Call Standard
	10.1 About the Thumb Procedure Call Standard
	10.2 TPCS definition
	10.2.1 TPCS register names
	10.2.2 The Stack
	10.2.3 Control arrival
	10.2.4 Data representation and argument passing
	10.2.5 Control return

	10.3 C language calling conventions
	10.3.1 Argument representation
	10.3.2 Argument list marshalling
	10.3.3 Non-simple value return

	10.4 Function entry examples
	10.4.1 Definitions
	10.4.2 Simple function entry
	10.4.3 Checking for stack limit violations

	10.5 Function exit

	Floating-point Support
	11.1 About floating-point support
	11.1.1 Thumb

	11.2 The ARM floating-point library
	11.2.1 Usage
	11.2.2 Combining hardfp and softfp systems
	11.2.3 Floating-point library register usage
	11.2.4 Type formats

	11.3 Floating-point instructions
	11.3.1 Floating-point data transfer: LDF and STF
	11.3.2 Floating-point register transfer: FLT and FIX
	11.3.3 Floating-point register transfer: status and control
	11.3.4 Floating-point multiple data transfer: LFM and SFM
	11.3.5 Floating-point comparisons: CMF and CNF
	11.3.6 Floating-point binary operations
	11.3.7 Floating-point unary operations

	11.4 Configuring the FPA support code for a new environment
	11.5 Controlling floating-point exceptions
	11.5.1 Return value
	11.5.2 Example

	ARMulator
	12.1 About the ARMulator
	12.2 Modeling an ARM-based system
	12.2.1 Model stubs
	12.2.2 The ARMul_State state pointer
	12.2.3 Handling armsd map files
	12.2.4 Configuring models through ToolConf
	12.2.5 ToolConf_Lookup
	12.2.6 ToolConf_Cmp

	12.3 Basic model interface
	12.3.1 Late basic models
	12.3.2 Early basic models
	12.3.3 Basic model initialization function
	12.3.4 ARMul_InstallMemoryInterface

	12.4 The memory interface
	12.4.1 Memory type variants

	12.5 Memory model interface
	12.5.1 Memory model initialization function
	12.5.2 armul_ReadClock
	12.5.3 armul_GetCycleLength
	12.5.4 armul_ReadCycles
	12.5.5 armul_MemAccess
	12.5.6 ARMul_SetMemSize
	12.5.7 ARMul_GetMemSize

	12.6 Coprocessor model interface
	12.6.1 The ARMul_CPInterface structure
	12.6.2 ARMul_CoProAttach
	12.6.3 init
	12.6.4 ldc
	12.6.5 stc
	12.6.6 mrc
	12.6.7 mcr
	12.6.8 cdp
	12.6.9 read
	12.6.10 write

	12.7 Operating system or debug monitor interface
	12.7.1 The ARMul_OSInterface structure
	12.7.2 init
	12.7.3 handle_swi
	12.7.4 exception

	12.8 Using the floating-point emulator (FPE)
	12.8.1 ARMul_FPEInstall
	12.8.2 ARMul_FPEVersion
	12.8.3 ARMul_FPEAddressInEmulator

	12.9 Accessing ARMulator state
	12.9.1 ARMul_GetMode
	12.9.2 ARMul_GetReg
	12.9.3 ARMul_SetReg
	12.9.4 ARMul_GetR15 and ARMul_GetPC
	12.9.5 ARMul_SetR15 and ARMul_SetPC
	12.9.6 ARMul_GetCPSR
	12.9.7 ARMul_SetCPSR
	12.9.8 ARMul_GetSPSR
	12.9.9 ARMul_SetSPSR
	12.9.10 ARMul_CPRegBytes
	12.9.11 ARMul_CPRead
	12.9.12 ARMul_CPWrite
	12.9.13 ARMul_SetConfig

	12.10 Exceptions
	12.10.1 ARMul_SetNirq and ARMul_SetNfiq
	12.10.2 ARMul_SetNreset
	12.10.3 ARMul_SWIHandler

	12.11 Upcalls
	12.11.1 Installing and removing upcalls
	12.11.2 ExitUpcall
	12.11.3 ModeChangeUpcall
	12.11.4 TransChangeUpcall
	12.11.5 ConfigChangeUpcall
	12.11.6 InterruptUpcall
	12.11.7 ExceptionUpcall
	12.11.8 UnkRDIInfoUpcall

	12.12 Memory access functions
	12.12.1 Reading from a given address
	12.12.2 Writing to a specified address

	12.13 Event scheduling functions
	12.13.1 armul_Hourglass
	12.13.2 ARMul_HourglassSetRate
	12.13.3 ARMul_ScheduleEvent
	12.13.4 ARMul_ScheduleCoreEvent

	12.14 ARMulator specific functions
	12.14.1 ARMul_RaiseError
	12.14.2 ARMul_Time
	12.14.3 ARMul_Properties
	12.14.4 ARMul_CondCheckInstr
	12.14.5 ARMul_AddCounterDesc
	12.14.6 ARMul_AddCounterValue
	12.14.7 ARMul_HaltEmulation
	12.14.8 ARMul_EndCondition
	12.14.9 ARMul_DoProg
	12.14.10 ARMul_DoInstr

	12.15 Accessing the debugger
	12.15.1 ARMul_DebugPrint
	12.15.2 ARMul_ConsolePrint
	12.15.3 ARMul_PrettyPrint
	12.15.4 ARMul_DebugPause
	12.15.5 ARMul_RDILog
	12.15.6 ARMul_HostIf

	12.16 Events
	12.16.1 armul_EventUpcall
	12.16.2 ARMul_RaiseEvent

	ARM Image Format
	13.1 Overview of the ARM Image Format
	13.2 AIF variants
	13.3 The layout of AIF
	13.3.1 AIF image layout
	13.3.2 Debugging data
	13.3.3 AIF header

	ARM Object Library Format
	14.1 Overview of ARM Object Library Format
	14.2 Endianness and alignment
	14.2.1 Alignment

	14.3 Library file format
	14.3.1 Earlier versions of ARM object library format
	14.3.2 LIB_DIRY
	14.3.3 LIB_VRSN
	14.3.4 LIB_DATA

	14.4 Time stamps
	14.4.1 LIB_TIME

	14.5 Object code libraries
	14.5.1 OFL_SYMT
	14.5.2 OFL_TIME

	ARM Object Format
	15.1 ARM Object Format
	15.1.1 Areas
	15.1.2 Relocation directives
	15.1.3 Byte sex or endianness
	15.1.4 Alignment

	15.2 Overall structure of an AOF file
	15.2.1 Chunk file format
	15.2.2 ARM object format

	15.3 The AOF header chunk (OBJ_HEAD)
	15.3.1 Attributes and alignment

	15.4 The AREAS chunk (OBJ_AREA)
	15.5 Relocation directives
	15.6 Symbol Table Chunk Format (OBJ_SYMT)
	15.6.1 Symbol attributes

	15.7 The String Table Chunk (OBJ_STRT)
	15.8 The Identification Chunk (OBJ_IDFN)

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z
	Numerics
	Symbols

