
Arm® Compiler
Version 6.16

User Guide

Copyright © 2016–2021 Arm Limited or its affiliates. All rights reserved.
100748_0616_01_en

Arm® Compiler
User Guide
Copyright © 2016–2021 Arm Limited or its affiliates. All rights reserved.

Release Information

Document History

Issue Date Confidentiality Change

0606-00 04 November 2016 Non-Confidential Arm Compiler v6.6 Release

0607-00 05 April 2017 Non-Confidential Arm Compiler v6.7 Release

0608-00 30 July 2017 Non-Confidential Arm Compiler v6.8 Release.

0609-00 25 October 2017 Non-Confidential Arm Compiler v6.9 Release.

0610-00 14 March 2018 Non-Confidential Arm Compiler v6.10 Release.

0611-00 25 October 2018 Non-Confidential Arm Compiler v6.11 Release.

0612-00 27 February 2019 Non-Confidential Arm Compiler v6.12 Release.

0613-00 09 October 2019 Non-Confidential Arm Compiler v6.13 Release.

0614-00 26 February 2020 Non-Confidential Arm Compiler v6.14 Release.

0615-00 07 October 2020 Non-Confidential Arm Compiler v6.15 Release.

0615-01 14 December 2020 Non-Confidential Documentation update 1 for Arm Compiler v6.15 Release.

0616-00 03 March 2021 Non-Confidential Arm Compiler v6.16 Release.

0616-01 12 March 2021 Non-Confidential Documentation update 1 for Arm Compiler v6.16 Release.

Non-Confidential Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information contained in
this document may be protected by one or more patents or pending patent applications. No part of this document may be
reproduced in any form by any means without the express prior written permission of Arm. No license, express or implied, by
estoppel or otherwise to any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use
the information for the purposes of determining whether implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE
WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, and has
undertaken no analysis to identify or understand the scope and content of, third party patents, copyrights, trade secrets, or other
rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING
OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure of
this document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof is
not exported, directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s customers is
not intended to create or refer to any partnership relationship with any other company. Arm may make changes to this document at
any time and without notice.

 Arm® Compiler

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

2

Non-Confidential

If any of the provisions contained in these terms conflict with any of the provisions of any click through or signed written
agreement covering this document with Arm, then the click through or signed written agreement prevails over and supersedes the
conflicting provisions of these terms. This document may be translated into other languages for convenience, and you agree that if
there is any conflict between the English version of this document and any translation, the terms of the English version of the
Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited (or its
subsidiaries) in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this document may be the
trademarks of their respective owners. Please follow Arm’s trademark usage guidelines at http://www.arm.com/company/policies/
trademarks.

Copyright © 2016–2021 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

(LES-PRE-20349)

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license restrictions in
accordance with the terms of the agreement entered into by Arm and the party that Arm delivered this document to.

Unrestricted Access is an Arm internal classification.

Product Status

The information in this document is Final, that is for a developed product.

Web Address

developer.arm.com

Progressive terminology commitment

Arm values inclusive communities. Arm recognizes that we and our industry have used terms that can be offensive. Arm strives to
lead the industry and create change.

We believe that this document contains no offensive terms. If you find offensive terms in this document, please contact
terms@arm.com.

 Arm® Compiler

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

3

Non-Confidential

http://www.arm.com/company/policies/trademarks
http://www.arm.com/company/policies/trademarks
https://developer.arm.com
mailto:terms@arm.com

Contents
Arm® Compiler User Guide

Preface
About this book 12

Chapter 1 Getting Started
1.1 Introduction to Arm® Compiler 6 1-16
1.2 About the Arm® Compiler toolchain assemblers .. 1-19
1.3 Installing Arm® Compiler .. 1-20
1.4 Accessing Arm® Compiler from Arm® Development Studio 1-21
1.5 Accessing Arm® Compiler from the Arm® Keil® µVision® IDE 1-22
1.6 Compiling a Hello World example 1-23
1.7 Using the integrated assembler 1-25
1.8 Running bare-metal images 1-28
1.9 Architectures supported by Arm® Compiler 1-29
1.10 Using Arm® Compiler securely in a shared environment 1-30

Chapter 2 Getting Started with the SVE features in Arm® Compiler
2.1 Introducing SVE 2-32
2.2 Assembling SVE code 2-33
2.3 Disassembling SVE object files 2-35
2.4 Running a binary in an AEMv8-A Base Fixed Virtual Platform (FVP) 2-36

Chapter 3 Using Common Compiler Options
3.1 Mandatory armclang options 3-40
3.2 Common Arm® Compiler toolchain options .. 3-42

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

4

Non-Confidential

3.3 Selecting source language options .. 3-45
3.4 Selecting optimization options 3-49
3.5 Building to aid debugging 3-53
3.6 Linking object files to produce an executable .. 3-54
3.7 Linker options for mapping code and data to target memory 3-55
3.8 Passing options from the compiler to the linker 3-56
3.9 Controlling diagnostic messages 3-57
3.10 Selecting floating-point options .. 3-62
3.11 Compilation tools command-line option rules .. 3-65

Chapter 4 Writing Optimized Code
4.1 Effect of the volatile keyword on compiler optimization 4-67
4.2 Optimizing loops .. 4-70
4.3 Inlining functions .. 4-75
4.4 Stack use in C and C++ 4-77
4.5 Packing data structures 4-80
4.6 Optimizing for code size or performance 4-84
4.7 Methods of minimizing function parameter passing overhead 4-86
4.8 Optimizing across modules with Link-Time Optimization 4-87
4.9 Scatter file section or object placement with Link-Time Optimization 4-92
4.10 How optimization affects the debug experience .. 4-97

Chapter 5 Assembling Assembly Code
5.1 Assembling armasm and GNU syntax assembly code .. 5-99
5.2 Preprocessing assembly code 5-101

Chapter 6 Using Assembly and Intrinsics in C or C++ Code
6.1 Using intrinsics 6-104
6.2 Custom Datapath Extension support 6-105
6.3 Writing inline assembly code 6-107
6.4 Calling assembly functions from C and C++ .. 6-110

Chapter 7 SVE Coding Considerations with Arm® Compiler
7.1 Embedding SVE assembly code directly into C and C++ code 7-113
7.2 Using SVE and SVE2 intrinsics directly in your C code 7-118

Chapter 8 Mapping Code and Data to the Target
8.1 What the linker does to create an image 8-125
8.2 Placing data items for target peripherals with a scatter file 8-127
8.3 Placing the stack and heap with a scatter file .. 8-128
8.4 Root region .. 8-129
8.5 Placing functions and data in a named section 8-132
8.6 Loading armlink-generated ELF files that have complex scatter-files 8-134
8.7 Placement of functions and data at specific addresses 8-136
8.8 Bare-metal Position Independent Executables .. 8-144
8.9 Placement of Arm® C and C++ library code 8-146
8.10 Manual placement of unassigned sections .. 8-148
8.11 Placing veneers with a scatter file 8-158
8.12 Preprocessing a scatter file 8-159
8.13 Reserving an empty block of memory 8-161
8.14 Alignment of regions to page boundaries .. 8-163

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

5

Non-Confidential

8.15 Alignment of execution regions and input sections 8-164

Chapter 9 Overlays
9.1 Overlay support in Arm® Compiler 9-166
9.2 Automatic overlay support 9-167
9.3 Manual overlay support 9-172

Chapter 10 Embedded Software Development
10.1 About embedded software development 10-181
10.2 Default compilation tool behavior 10-182
10.3 C library structure 10-183
10.4 Default memory map 10-184
10.5 Application startup 10-186
10.6 Tailoring the C library to your target hardware 10-187
10.7 Reimplementing C library functions 10-189
10.8 Tailoring the image memory map to your target hardware 10-191
10.9 About the scatter-loading description syntax 10-192
10.10 Root regions 10-193
10.11 Placing the stack and heap 10-194
10.12 Run-time memory models 10-195
10.13 Reset and initialization 10-197
10.14 The vector table 10-198
10.15 ROM and RAM remapping 10-199
10.16 Local memory setup considerations .. 10-200
10.17 Stack pointer initialization .. 10-201
10.18 Hardware initialization 10-202
10.19 Execution mode considerations 10-203
10.20 Target hardware and the memory map .. 10-204
10.21 Execute-only memory .. 10-205
10.22 Building applications for execute-only memory 10-206
10.23 Vector table for ARMv6 and earlier, ARMv7-A and ARMv7-R profiles 10-207
10.24 Vector table for M-profile architectures .. 10-208
10.25 Vector Table Offset Register .. 10-209
10.26 Integer division-by-zero errors in C code 10-210

Chapter 11 Building Secure and Non-secure Images Using Arm®v8-M Security
Extensions
11.1 Overview of building Secure and Non-secure images 11-213
11.2 Building a Secure image using the Arm®v8-M Security Extensions 11-216
11.3 Building a Non-secure image that can call a Secure image 11-220
11.4 Building a Secure image using a previously generated import library 11-222

Chapter 12 Overview of the Linker
12.1 About the linker .. 12-227
12.2 armlink command-line syntax .. 12-230
12.3 What the linker does when constructing an executable image 12-231

Chapter 13 Getting Image Details
13.1 Options for getting information about linker-generated files 13-233
13.2 Identifying the source of some link errors .. 13-234

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

6

Non-Confidential

13.3 Example of using the --info linker option 13-235
13.4 How to find where a symbol is placed when linking 13-238

Chapter 14 SysV Dynamic Linking
14.1 Build a SysV shared object .. 14-240
14.2 Build a SysV executable .. 14-241

Chapter 15 Overview of the fromelf Image Converter
15.1 About the fromelf image converter 15-243
15.2 fromelf execution modes 15-244
15.3 Getting help on the fromelf command 15-245
15.4 fromelf command-line syntax 15-246

Chapter 16 Using fromelf
16.1 General considerations when using fromelf 16-248
16.2 Examples of processing ELF files in an archive .. 16-249
16.3 Options to protect code in image files with fromelf .. 16-250
16.4 Options to protect code in object files with fromelf 16-251
16.5 Option to print specific details of ELF files 16-253
16.6 Using fromelf to find where a symbol is placed in an executable ELF image 16-254

Chapter 17 Overview of the Arm® Librarian
17.1 About the Arm® Librarian 17-257
17.2 Considerations when working with library files .. 17-258
17.3 armar command-line syntax 17-259
17.4 Option to get help on the armar command .. 17-260

Chapter 18 Overview of the armasm Legacy Assembler
18.1 Key features of the armasm assembler 18-262
18.2 How the assembler works 18-263

Appendix A Supporting reference information
A.1 Support level definitions Appx-A-266
A.2 Standards compliance in Arm® Compiler Appx-A-270
A.3 Compliance with the ABI for the Arm® Architecture (Base Standard) Appx-A-271
A.4 GCC compatibility provided by Arm® Compiler 6 Appx-A-273
A.5 Locale support in Arm® Compiler Appx-A-274
A.6 Toolchain environment variables Appx-A-275
A.7 Clang and LLVM documentation .. Appx-A-277
A.8 Further reading Appx-A-278

Appendix B Arm® Compiler User Guide Changes
B.1 Changes for the Arm® Compiler User Guide .. Appx-B-281

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

7

Non-Confidential

List of Figures
Arm® Compiler User Guide

Figure 1-1 A typical tool usage flow diagram .. 1-17
Figure 4-1 Structure without packing attribute or pragma ... 4-81
Figure 4-2 Structure with attribute packed .. 4-81
Figure 4-3 Structure with pragma pack with 1 byte alignment .. 4-81
Figure 4-4 Structure with pragma pack with 2 byte alignment .. 4-82
Figure 4-5 Structure with pragma pack with 4 byte alignment .. 4-82
Figure 4-6 Structure with attribute packed on individual member ... 4-82
Figure 4-7 Link-Time Optimization .. 4-87
Figure 8-1 Memory map for fixed execution regions ... 8-130
Figure 8-2 .ANY contingency .. 8-155
Figure 8-3 Reserving a region for the stack .. 8-162
Figure 10-1 C library structure .. 10-183
Figure 10-2 Default memory map ... 10-184
Figure 10-3 Linker placement rules .. 10-184
Figure 10-4 Default initialization sequence ... 10-186
Figure 10-5 Retargeting the C library .. 10-187
Figure 10-6 Scatter-loading description syntax ... 10-192
Figure 10-7 One-region model .. 10-195
Figure 10-8 Two-region model .. 10-196
Figure 10-9 Initialization sequence ... 10-197
Figure A-1 Integration boundaries in Arm Compiler 6. .. Appx-A-268

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

8

Non-Confidential

List of Tables
Arm® Compiler User Guide

Table 3-1 armclang common options .. 3-42
Table 3-2 armlink common options .. 3-43
Table 3-3 armar common options .. 3-44
Table 3-4 fromelf common options .. 3-44
Table 3-5 armasm common options .. 3-44
Table 3-6 Source language variants .. 3-45
Table 3-7 Exceptions to the support for the language standards .. 3-46
Table 3-8 Optimization goals ... 3-49
Table 3-9 Example code generation with -O0 ... 3-51
Table 3-10 Example code generation with -O1 ... 3-52
Table 3-11 armclang linker control options .. 3-56
Table 3-12 Common diagnostic options .. 3-57
Table 3-13 Options for floating-point selection .. 3-62
Table 3-14 Floating-point linkage for AArch32 .. 3-64
Table 4-1 C code for nonvolatile and volatile buffer loops ... 4-68
Table 4-2 Disassembly for nonvolatile and volatile buffer loop .. 4-68
Table 4-3 Loop unrolling pragmas ... 4-70
Table 4-4 Loop optimizing example ... 4-70
Table 4-5 Loop examples .. 4-71
Table 4-6 Example loops ... 4-71
Table 4-7 Assembly code from vectorizable and non-vectorizable loops .. 4-72
Table 4-8 C code for incrementing and decrementing loops ... 4-73
Table 4-9 C disassembly for incrementing and decrementing loops ... 4-73

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

9

Non-Confidential

Table 4-10 Function inlining ... 4-75
Table 4-11 Effect of -fno-inline-functions ... 4-76
Table 4-12 Packing members in a structure or union .. 4-80
Table 4-13 Packing structures ... 4-81
Table 4-14 Packing individual members .. 4-82
Table 7-1 Element selection by predicate type svbool_t .. 7-118
Table 7-2 Common addressing mode disambiguators .. 7-120
Table 8-1 Input section properties for placement of .ANY sections ... 8-151
Table 8-2 Input section properties for placement of sections with next_fit .. 8-152
Table 8-3 Input section properties and ordering for sections_a.o and sections_b.o 8-154
Table 8-4 Sort order for descending_size algorithm .. 8-154
Table 8-5 Sort order for cmdline algorithm .. 8-154
Table 9-1 Using relative offset in overlays ... 9-173
Table A-1 Environment variables used by the toolchain .. Appx-A-275
Table B-1 Changes between 6.16 and 6.15 ... Appx-B-281
Table B-2 Changes between 6.15 and 6.14 ... Appx-B-281

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

10

Non-Confidential

Preface

This preface introduces the Arm® Compiler User Guide.

It contains the following:
• About this book on page 12.

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

11

Non-Confidential

 About this book
The Arm® Compiler User Guide provides information for users new to Arm Compiler 6.

 Using this book

This book is organized into the following chapters:

Chapter 1 Getting Started
This chapter introduces Arm Compiler 6 and helps you to start working with Arm Compiler 6
quickly. You can use Arm Compiler 6 from Arm Development Studio, Arm DS-5 Development
Studio, Arm Keil® MDK, or as a standalone product.

Chapter 2 Getting Started with the SVE features in Arm® Compiler
Describes how to generate an executable binary that makes use of the instructions provided by the
SVE architectural extension to the Armv8‑A architecture.

Chapter 3 Using Common Compiler Options
There are many options that you can use to control how Arm Compiler generates code for your
application. This section lists the mandatory and commonly used optional command-line
arguments, such as to control target selection, optimization, and debug view.

Chapter 4 Writing Optimized Code
To make best use of the optimization capabilities of Arm Compiler, there are various options,
pragmas, attributes, and coding techniques that you can use.

Chapter 5 Assembling Assembly Code
Describes how to assemble assembly source code with armclang and armasm.

Chapter 6 Using Assembly and Intrinsics in C or C++ Code
All code for a single application can be written in the same source language. This source language
is usually a high-level language such as C or C++ that is compiled to instructions for Arm
architectures. However, in some situations you might need lower-level control than that provided
by C or C++.

Chapter 7 SVE Coding Considerations with Arm® Compiler
Describes best practices for writing code that uses the SVE and SVE2 features of Arm Compiler.

Chapter 8 Mapping Code and Data to the Target
There are various options in Arm Compiler to control how code, data and other sections of the
image are mapped to specific locations on the target.

Chapter 9 Overlays
Describes the Arm Compiler support for overlays to enable you to have multiple load regions at
the same address.

Chapter 10 Embedded Software Development
Describes how to develop embedded applications with Arm Compiler, with or without a target
system present.

Chapter 11 Building Secure and Non-secure Images Using Arm®v8-M Security
Extensions

Describes how to use the Armv8‑M Security Extensions to build a secure image, and how to
allow a non-secure image to call a secure image.

Chapter 12 Overview of the Linker
Gives an overview of the Arm linker, armlink.

Chapter 13 Getting Image Details
Describes how to get image details from the Arm linker, armlink.

 Preface
 About this book

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

12

Non-Confidential

Chapter 14 SysV Dynamic Linking
Arm Compiler 6 supports the System V (SysV) linking model and can produce SysV shared
objects and executables. The feature allows building programs for SysV-like platforms.

Chapter 15 Overview of the fromelf Image Converter
Gives an overview of the fromelf image converter provided with Arm Compiler.

Chapter 16 Using fromelf
Describes how to use the fromelf image converter provided with Arm Compiler.

Chapter 17 Overview of the Arm® Librarian
Gives an overview of the Arm Librarian, armar, provided with Arm Compiler.

Chapter 18 Overview of the armasm Legacy Assembler
Gives an overview of the armasm legacy assembler provided with Arm Compiler toolchain.

Appendix A Supporting reference information
The various features in Arm Compiler might have different levels of support, ranging from fully
supported product features to community features.

Appendix B Arm® Compiler User Guide Changes
Describes the technical changes that have been made to the Arm Compiler User Guide.

 Glossary

The Arm® Glossary is a list of terms used in Arm documentation, together with definitions for those
terms. The Arm Glossary does not contain terms that are industry standard unless the Arm meaning
differs from the generally accepted meaning.

See the Arm® Glossary for more information.

 Typographic conventions

italic
Introduces special terminology, denotes cross-references, and citations.

bold
Highlights interface elements, such as menu names. Denotes signal names. Also used for terms
in descriptive lists, where appropriate.

monospace
Denotes text that you can enter at the keyboard, such as commands, file and program names,
and source code.

monospace
Denotes a permitted abbreviation for a command or option. You can enter the underlined text
instead of the full command or option name.

monospace italic
Denotes arguments to monospace text where the argument is to be replaced by a specific value.

monospace bold
Denotes language keywords when used outside example code.

<and>

Encloses replaceable terms for assembler syntax where they appear in code or code fragments.
For example:

MRC p15, 0, <Rd>, <CRn>, <CRm>, <Opcode_2>

SMALL CAPITALS

Used in body text for a few terms that have specific technical meanings, that are defined in the
Arm® Glossary. For example, IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN, and
UNPREDICTABLE.

 Preface
 About this book

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

13

Non-Confidential

https://developer.arm.com/support/arm-glossary

 Feedback

Feedback on this product

If you have any comments or suggestions about this product, contact your supplier and give:
• The product name.
• The product revision or version.
• An explanation with as much information as you can provide. Include symptoms and diagnostic

procedures if appropriate.

Feedback on content

If you have comments on content then send an e-mail to errata@arm.com. Give:

• The title Arm Compiler User Guide.
• The number 100748_0616_01_en.
• If applicable, the page number(s) to which your comments refer.
• A concise explanation of your comments.

Arm also welcomes general suggestions for additions and improvements.
 Note

Arm tests the PDF only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the quality of the
represented document when used with any other PDF reader.

 Other information

• Arm® Developer.
• Arm® Documentation.
• Technical Support.
• Arm® Glossary.

 Preface
 About this book

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

14

Non-Confidential

mailto:errata@arm.com
https://developer.arm.com/
https://developer.arm.com/documentation
http://www.arm.com/support/technical-support
https://developer.arm.com/support/arm-glossary

Chapter 1
Getting Started

This chapter introduces Arm Compiler 6 and helps you to start working with Arm Compiler 6 quickly.
You can use Arm Compiler 6 from Arm Development Studio, Arm DS-5 Development Studio, Arm
Keil® MDK, or as a standalone product.

It contains the following sections:
• 1.1 Introduction to Arm® Compiler 6 on page 1-16.
• 1.2 About the Arm® Compiler toolchain assemblers on page 1-19.
• 1.3 Installing Arm® Compiler on page 1-20.
• 1.4 Accessing Arm® Compiler from Arm® Development Studio on page 1-21.
• 1.5 Accessing Arm® Compiler from the Arm® Keil® µVision® IDE on page 1-22.
• 1.6 Compiling a Hello World example on page 1-23.
• 1.7 Using the integrated assembler on page 1-25.
• 1.8 Running bare-metal images on page 1-28.
• 1.9 Architectures supported by Arm® Compiler on page 1-29.
• 1.10 Using Arm® Compiler securely in a shared environment on page 1-30.

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

1-15

Non-Confidential

1.1 Introduction to Arm® Compiler 6
Arm Compiler 6 is the most advanced C and C++ compilation toolchain from Arm for Arm Cortex® and
Arm Neoverse™ processors. Arm Compiler 6 is developed alongside the Arm architecture. Therefore,
Arm Compiler 6 is tuned to generate highly efficient code for embedded bare-metal applications ranging
from small sensors to 64-bit devices.

Arm Compiler 6 is a component of Arm® Development Studio, Arm® DS-5 Development Studio, and Arm®

Keil® MDK. Alternatively, you can use Arm Compiler 6 as a standalone product. The features and
processors that Arm Compiler 6 supports depend on the product edition. See Compare Editions for Arm
Development Studio and Arm® DS-5 Development Studio editions for the specification of the different
standard products.

Arm Compiler 6 combines the optimized tools and libraries from Arm with a modern LLVM-based
compiler framework. The components in Arm Compiler 6 are:

armclang

The compiler and integrated assembler that compiles C, C++, and GNU assembly language
sources.

The compiler is based on LLVM and Clang technology.

Clang is a compiler front end for LLVM that supports the C and C++ programming languages.

armasm
The legacy assembler. Only use armasm for legacy Arm-syntax assembly code. Use the
armclang assembler and GNU syntax for all new assembly files.

armlink
The linker combines the contents of one or more object files with selected parts of one or more
object libraries to produce an executable program.

armar
The archiver enables sets of ELF object files to be collected together and maintained in archives
or libraries. If you do not change the files often, these collections reduce compilation time as
you do not have to recompile from source every time you use them. You can pass such a library
or archive to the linker in place of several ELF files. You can also use the archive for
distribution to a third-party application developer as you can share the archive without giving
away the source code.

fromelf
The image conversion utility can convert Arm ELF images to binary formats. It can also
generate textual information about the input image, such as its disassembly, code size, and data
size.

Arm C++ libraries
The Arm C++ libraries are based on the LLVM libc++ project:
• The libc++abi library is a runtime library providing implementations of low-level language

features.
• The libc++ library provides an implementation of the ISO C++ library standard. It depends

on the functions that are provided by libc++abi.

 Note

Arm does not guarantee the compatibility of C++ compilation units compiled with different
major or minor versions of Arm Compiler and linked into a single image. Therefore, Arm
recommends that you always build your C++ code from source with a single version of the
toolchain.

You can mix C++ with C code or C libraries.

1 Getting Started
1.1 Introduction to Arm® Compiler 6

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

1-16

Non-Confidential

https://developer.arm.com/products/software-development-tools/arm-development-studio
https://developer.arm.com/products/software-development-tools/ds-5-development-studio
http://www2.keil.com/mdk5
http://www2.keil.com/mdk5
https://developer.arm.com/products/software-development-tools/compilers/arm-compiler-6/downloads
https://developer.arm.com/products/software-development-tools/arm-development-studio/editions
https://developer.arm.com/products/software-development-tools/arm-development-studio/editions

Arm C libraries
The Arm C libraries provide:
• An implementation of the library features as defined in the C standards.
• Nonstandard extensions common to many C libraries.
• POSIX extended functionality.
• Functions standardized by POSIX.

 Note

Comments inside source files and header files that are provided by Arm might not be accurate and must
not be treated as documentation about the product.

Application development

A typical application development flow might involve the following:

• Developing C/C++ source code for the main application (armclang).
• Developing assembly source code for near-hardware components, such as interrupt service routines

(armclang, or armasm for legacy assembly code).
• Linking all objects together to generate an image (armlink).
• Converting an image to flash format in plain binary, Intel Hex, and Motorola-S formats (fromelf).

The following figure shows how the compilation tools are used for the development of a typical
application.

Flash format

.s

armclang

armasm
or

armclang

C/C++ A32
and T32

Assembly
code

armlink fromelf

ImageObject codeSource code

code

data

debug

Plain binary
Intel Hex

Motorola-S

.o data

.o data

.c
code

debug

code

debug

Figure 1-1 A typical tool usage flow diagram

Arm Compiler 6 has more functionality than the set of product features that is described in the
documentation. The various features in Arm Compiler 6 can have different levels of support and
guarantees. For more information, see Support level definitions on page Appx-A-266.

 Note

• If you are migrating your toolchain from Arm Compiler 5 to Arm Compiler 6, see the Arm® Compiler
Migration and Compatibility Guide. It contains information on how to migrate your source code and
toolchain build options.

• For a list of Arm® Compiler 6 documents, see the documentation on Arm Developer.

 Note

Be aware of the following:
• Generated code might be different between two Arm Compiler releases.
• For a feature release, there might be significant code generation differences.

1 Getting Started
1.1 Introduction to Arm® Compiler 6

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

1-17

Non-Confidential

https://developer.arm.com/documentation/100068/0616
https://developer.arm.com/documentation/100068/0616
https://developer.arm.com/tools-and-software/embedded/arm-compiler/documentation/version-6-16

Related concepts
1.6 Compiling a Hello World example on page 1-23
Related references
3.2 Common Arm® Compiler toolchain options on page 3-42
Related information
-S (armclang)

1 Getting Started
1.1 Introduction to Arm® Compiler 6

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

1-18

Non-Confidential

https://developer.arm.com/documentation/101754/0616/armclang-Reference/armclang-Command-line-Options/-S--armclang-

1.2 About the Arm® Compiler toolchain assemblers
The Arm Compiler toolchain provides different assemblers.

They are:
• The armclang integrated assembler. Use this to assemble assembly language code written in GNU

syntax.
• An optimizing inline assembler built into armclang. Use this to assemble assembly language code

written in GNU syntax that is used inline in C or C++ source code.
• The freestanding legacy assembler, armasm. Use armasm to assemble existing A64, A32, and T32

assembly language code written in armasm syntax.

 Note

The command-line option descriptions and related information in the Arm® Compiler Reference Guide
describe all the features that Arm Compiler supports. Any features not documented are not supported and
are used at your own risk. You are responsible for making sure that any generated code using community
features on page Appx-A-266 is operating correctly.

Related concepts
5.1 Assembling armasm and GNU syntax assembly code on page 5-99
Related references
Chapter 6 Using Assembly and Intrinsics in C or C++ Code on page 6-102
Related information
Arm Compiler Reference Guide

1 Getting Started
1.2 About the Arm® Compiler toolchain assemblers

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

1-19

Non-Confidential

https://developer.arm.com/documentation/101754/0616

1.3 Installing Arm® Compiler
This topic lists the system requirements for running Arm Compiler and guides you through the
installation process.

System Requirements
Arm Compiler 6 is available for the following operating systems:
• Windows 64-bit.
• Windows 32-bit.
• Linux 64-bit.

For more information on system requirements see the Arm® Compiler release note.

Installing Arm® Compiler

You can install Arm Compiler as a standalone product on supported Windows and Linux platforms. If
you use Arm Compiler as part of a development suite such as Arm Development Studio, Arm DS-5
Development Studio, or Arm Keil MDK, installing the development suite also installs Arm Compiler.
The following instructions are for installing Arm Compiler as a standalone product.

Prerequisites:
1. Download Arm® Compiler 6.
2. Obtain a license. Contact your Arm sales representative or request a license.

Installing a standalone Arm® Compiler on Windows platforms
To install Arm Compiler as a standalone product on Windows, you need the setup.exe installer on your
machine. This is in the Arm® Compiler 6 download:
1. On 64-bit platforms, run win-x86_64\setup.exe. On 32-bit platforms, run win-x86_32\setup.exe.
2. Follow the on-screen installation instructions.
3. Some license types require you to complete further configuration steps. To check if your license

requires further configuration, and to learn how to configure that license, see Arm® Compiler
Licensing Configuration.

If you have an older version of Arm Compiler 6 and you want to upgrade, Arm recommends that you
uninstall the older version of Arm Compiler 6 before installing the new version of Arm Compiler 6.

Installing a standalone Arm® Compiler on Linux platforms
To install Arm Compiler as a standalone product on Linux platforms, you need the install_x86_64.sh
installer on your machine. This is in the Arm® Compiler 6 download:
1. Run install_x86_64.sh normally, without using the source Linux command.
2. Follow the on-screen installation instructions.
3. Some license types require you to complete further configuration steps. To check if your license

requires further configuration, and to learn how to configure that license, see Arm® Compiler
Licensing Configuration.

Uninstalling a standalone Arm® Compiler
To uninstall Arm Compiler on Windows, use the Control Panel:
1. Select Control Panel > Programs and Features.
2. Select the version that you want to uninstall, for example Arm Compiler 6.10.
3. Click the Uninstall button.

To uninstall Arm Compiler 6 installation directory for the compiler version you want to delete.

For more information on installation, see the Arm® Compiler release note.

Related concepts
1.4 Accessing Arm® Compiler from Arm® Development Studio on page 1-21
1.5 Accessing Arm® Compiler from the Arm® Keil® µVision® IDE on page 1-22

1 Getting Started
1.3 Installing Arm® Compiler

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

1-20

Non-Confidential

https://developer.arm.com/products/software-development-tools/compilers/arm-compiler-6/downloads
https://developer.arm.com/products/software-development-tools/compilers/arm-compiler-6/downloads
https://developer.arm.com/products/buy-arm-products
https://developer.arm.com/products/software-development-tools/compilers/arm-compiler-6/downloads
https://developer.arm.com/tools-and-software/software-development-tools/license-management/resources/product-and-toolkit-configuration
https://developer.arm.com/tools-and-software/software-development-tools/license-management/resources/product-and-toolkit-configuration
https://developer.arm.com/products/software-development-tools/compilers/arm-compiler-6/downloads
https://developer.arm.com/tools-and-software/software-development-tools/license-management/resources/product-and-toolkit-configuration
https://developer.arm.com/tools-and-software/software-development-tools/license-management/resources/product-and-toolkit-configuration
https://developer.arm.com/products/software-development-tools/compilers/arm-compiler-6/downloads

1.4 Accessing Arm® Compiler from Arm® Development Studio
Arm Development Studio is a development suite that provides Arm Compiler as a built-in toolchain.

For more information, see Create a new C or C++ project in the Arm® Development Studio User Guide.

Related references
1.3 Installing Arm® Compiler on page 1-20

1 Getting Started
1.4 Accessing Arm® Compiler from Arm® Development Studio

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

1-21

Non-Confidential

https://developer.arm.com/documentation/101470/latest/working-with-projects/create-a-new-c-or-c-project

1.5 Accessing Arm® Compiler from the Arm® Keil® µVision® IDE
MDK is a microprocessor development suite that provides the µVision® IDE, and Arm Compiler as a
built-in toolchain.

For more information, see Manage Arm® Compiler Versions in the µVision® User's Guide.

Related references
1.3 Installing Arm® Compiler on page 1-20

1 Getting Started
1.5 Accessing Arm® Compiler from the Arm® Keil® µVision® IDE

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

1-22

Non-Confidential

http://www.keil.com/support/man/documentation/uv4/uv4_armcompilers.htm

1.6 Compiling a Hello World example
These examples show how to use the Arm Compiler toolchain to build and inspect an executable image
from C/C++ source files.

A simple example

The source code that is used in the examples is a single C source file, hello.c, to display a greeting
message:

#include <stdio.h>

int main() {
 printf("Hello World\n");
 return 0;
}

Building an executable in a single step

For simple programs, you can use a single command to compile the source code file to an executable
image.

You must first decide which target the executable is to run on. An Armv8‑A target can run in different
states:
• AArch64 state targets execute A64 instructions using 64-bit and 32-bit general-purpose registers.
• AArch32 state targets execute A32 or T32 instructions using 32-bit general-purpose registers.

The --target option determines which target state to compile for. This option is a mandatory option.

Compiling for an AArch64 target

To create an executable for an AArch64 target in a single step:

armclang --target=aarch64-arm-none-eabi hello.c

This command creates an executable file with the default name a.out. You can use the -o
option to specify a different name for the executable file.

This example compiles for an AArch64 state target. Because only --target is specified, the
compiler defaults to generating code that runs on any Armv8‑A target. You can also use -mcpu
to target a specific processor.

Compiling for an AArch32 target

To create an executable for an AArch32 target in a single step:

armclang --target=arm-arm-none-eabi -mcpu=cortex-a53 hello.c

There is no default target for AArch32 state. You must specify either -march to target an
architecture or -mcpu to target a processor. This example uses -mcpu to target the Cortex‑A53
processor. The compiler generates code that is optimized specifically for the Cortex‑A53, but
might not run on other processors.

Use -mcpu=list or -march=list to see all available processor or architecture options.

Beyond the defaults

Compiler options let you specify precisely how the compiler behaves when generating code.

The Arm Compiler Reference Guide describes all the supported options. Some of the most common
options are listed in 3.2 Common Arm® Compiler toolchain options on page 3-42.

Examining the executable

The fromelf tool lets you examine a compiled binary, extract information about it, or convert it.

1 Getting Started
1.6 Compiling a Hello World example

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

1-23

Non-Confidential

https://developer.arm.com/documentation/101754/0616

For example, you can:
• Disassemble the code that is contained in the executable:

fromelf --text -c a.out

 ...
 main
 0x000081a0: e92d4800 .H-. PUSH {r11,lr}
 0x000081a4: e1a0b00d MOV r11,sp
 0x000081a8: e24dd010 ..M. SUB sp,sp,#0x10
 0x000081ac: e3a00000 MOV r0,#0
 0x000081b0: e50b0004 STR r0,[r11,#-4]
 0x000081b4: e30a19cc MOV r1,#0xa9cc
 ...

• Examine the size of code and data in the executable:

fromelf --text -z a.out

 Code (inc. data) RO Data RW Data ZI Data Debug Object Name
 10436 492 596 16 348 3468 a.out
 10436 492 596 16 0 0 ROM Totals for a.out

• Convert the ELF executable image to another format, for example a plain binary file:

fromelf --bin --output=outfile.bin a.out

See fromelf Command-line Options for the options from the fromelf tool.

Compiling and linking as separate steps

For simple projects with small numbers of source files, compiling to an executable image in a single step
might be the simplest option. You can compile multiple source files into an executable with a command
such as the following:

armclang --target=aarch64-arm-none-eabi file1.c file2.c -o image.axf

This command compiles the two source files file1.c and file2.c into an executable file for an
AArch64 state target. The -o option specifies that the filename of the generated executable file is
image.axf.

However, more complex projects might have a large number of source files. It is not efficient to compile
every source file at every compilation, because many of the source files are unlikely to change. To avoid
compiling unchanged source files, you can compile and link as separate steps. In this way, you can then
use a build system (such as make) to compile only those source files that have changed, then link the
object code together. The armclang -c option tells the compiler to compile to object code and stop
before calling the linker:

armclang -c --target=aarch64-arm-none-eabi file1.c
armclang -c --target=aarch64-arm-none-eabi file2.c
armlink file1.o file2.o -o image.axf

These commands do the following:
• Compile file1.c to object code, and save using the default name file1.o.
• Compile file2.c to object code, and save using the default name file2.o.
• Link the object files file1.o and file2.o to produce an executable that is called image.axf.

In future, if you modify file2.c, you can rebuild the executable by recompiling only file2.c then
linking the new file2.o with the existing file1.o to produce a new executable:

armclang -c --target=aarch64-arm-none-eabi file2.c
armlink file1.o file2.o -o image.axf

Related information
--target (armclang)
-march (armclang)
-mcpu (armclang)
Summary of armclang command-line options

1 Getting Started
1.6 Compiling a Hello World example

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

1-24

Non-Confidential

https://developer.arm.com/documentation/101754/0616/fromelf-Reference/fromelf-Command-line-Options
https://developer.arm.com/documentation/101754/0616/armclang-Reference/armclang-Command-line-Options/--target
https://developer.arm.com/documentation/101754/0616/armclang-Reference/armclang-Command-line-Options/-march
https://developer.arm.com/documentation/101754/0616/armclang-Reference/armclang-Command-line-Options/-mcpu
https://developer.arm.com/documentation/101754/0616/armclang-Reference/armclang-Command-line-Options/Summary-of-armclang-command-line-options

1.7 Using the integrated assembler
These examples show how to use the armclang integrated assembler to build an object from assembly
source files, and how to call functions in this object from C/C++ source files.

 Note

The integrated assembler sets a minimum alignment of 4 bytes for a .text section. However, if you
define your own sections with the integrated assembler, then you must include the .balign directive to
set the correct alignment. For a section containing T32 instructions, set the alignment to 2 bytes. For a
section containing A32 instructions, set the alignment to 4 bytes.

The assembly source code

The assembly example is a single assembly source file, mystrcopy.s, containing a function to perform a
simple string copy operation:

 .section StringCopy, "ax"
 .balign 4

 .global mystrcopy
 .type mystrcopy, "function"
mystrcopy:
 ldrb r2, [r1], #1
 strb r2, [r0], #1
 cmp r2, #0
 bne mystrcopy
 bx lr

The .section directive creates a new section in the object file named StringCopy. The characters in the
string following the section name are the flags for this section. The a flag marks this section as
allocatable. The x flag marks this section as executable.

The .balign directive aligns the subsequent code to a 4-byte boundary. The alignment is required for
compliance with the Arm® Application Procedure Call Standard (AAPCS).

The .global directive marks the symbol mystrcopy as a global symbol. This enables the symbol to be
referenced by external files.

The .type directive sets the type of the symbol mystrcopy to function. This helps the linker use the
proper linkage when the symbol is branched to from A32 or T32 code.

Assembling a source file

When assembling code, you must first decide which target the executable is to run on. The --target
option determines which target state to compile for. This option is a mandatory option.

To assemble the above source file for an Armv8‑M Mainline target:

armclang --target=arm-arm-none-eabi -c -march=armv8-m.main mystrcopy.s

This command creates an object file, mystrcopy.o.

The --target option selects the target that you want to assemble for. In this example, there is no default
target for A32 state, so you must specify either -march to target an architecture or -mcpu to target a
processor. This example uses -march to target the Armv8‑M Mainline architecture. The integrated
assembler accepts the same options for --target, -march, -mcpu, and -mfpu as the compiler.

Use -mcpu=list or -march=list to see all available options.

Examining the executable

You can use the fromelf tool to:

1 Getting Started
1.7 Using the integrated assembler

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

1-25

Non-Confidential

• examine an assembled binary.
• extract information about an assembled binary.
• convert an assembled binary to another format.

For example, you can disassemble the code that is contained in the object file:

fromelf --text -c mystrcopy.o

 ...
 ** Section #3 'StringCopy' (SHT_PROGBITS) [SHF_ALLOC + SHF_EXECINSTR]
 Size : 14 bytes (alignment 4)
 Address: 0x00000000

 $t.0
 mystrcopy
 0x00000000: f8112b01 ...+ LDRB r2,[r1],#1
 0x00000004: f8002b01 ...+ STRB r2,[r0],#1
 0x00000008: 2a00 .* CMP r2,#0
 0x0000000a: d1f9 .. BNE mystrcopy ; 0x0
 0x0000000c: 4770 pG BX lr
 ...

The example shows the disassembly for the section StringCopy as created in the source file.
 Note

The code is marked as T32 by default because Armv8‑M Mainline does not support A32 code. For
processors that support A32 and T32 code, you can explicitly mark the code as A32 or T32 by adding the
GNU assembly .arm or .thumb directive, respectively, at the start of the source file.

Calling an assembly function from C/C++ code

It can be useful to write optimized functions in an assembly file and call them from C/C++ code. When
doing so, ensure that the assembly function uses registers in compliance with the AAPCS.

The C example is a single C source file main.c, containing a call to the mystrcopy function to copy a
string from one location to another:

const char *source = "String to copy.";
char *dest;

extern void mystrcopy(char *dest, const char *source);

int main(void) {
 mystrcopy(dest, source);
 return 0;
}

An extern function declaration has been added for the mystrcopy function. The return type and function
parameters must be checked manually.

If you want to call the assembly function from a C++ source file, you must disable C++ name mangling
by using extern "C" instead of extern. For the above example, use:

extern "C" void mystrcopy(char *dest, const char *source);

Compiling and linking the C source file

To compile the above source file for an Armv8‑M Mainline target:

armclang --target=arm-arm-none-eabi -c -march=armv8-m.main main.c

This command creates an object file, main.o.

To link the two object files main.o and mystrcopy.o and generate an executable image:

armlink main.o mystrcopy.o -o image.axf

This command creates an executable image file image.axf.

1 Getting Started
1.7 Using the integrated assembler

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

1-26

Non-Confidential

Related concepts
3.1 Mandatory armclang options on page 3-40
Related information
Summary of armclang command-line options
Sections

1 Getting Started
1.7 Using the integrated assembler

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

1-27

Non-Confidential

https://developer.arm.com/documentation/101754/0616/armclang-Reference/armclang-Command-line-Options/Summary-of-armclang-command-line-options
https://developer.arm.com/documentation/100068/0616/Migrating-from-armasm-to-the-armclang-Integrated-Assembler/Sections

1.8 Running bare-metal images
By default, Arm Compiler produces bare-metal images. Bare-metal images can run without an operating
system. The images can run on a hardware target or on a software application that simulates the target,
such as Fast Models or Fixed Virtual Platforms.

See your Arm Integrated Development Environment (IDE) documentation for more information on
configuring and running images:

• For Arm Development Studio, see the Arm® Development Studio User Guide.
• For Arm DS-5, see the Arm® DS-5 Debugger User Guide.

By default, the C library in Arm Compiler uses special functions to access the input and output interfaces
on the host computer. These functions implement a feature called semihosting. Semihosting is useful
when the input and output on the hardware is not available during the early stages of application
development.

When you want your application to use the input and output interfaces on the hardware, you must
retarget the required semihosting functions in the C library.

See your Arm IDE documentation for more information on configuring debugger settings:
• For Arm Debugger settings, see Configuring a connection to a bare-metal hardware target in the

Arm® Development Studio User Guide.
• For Arm DS-5 Debugger settings, see Configuring a connection to a bare-metal hardware target in

the Arm® DS-5 Debugger User Guide.

Outputting debug messages from your application

The semihosting feature enables your bare-metal application, running on an Arm processor, to use the
input and output interface on a host computer. This feature requires the use of a debugger that supports
semihosting, for example Arm Debugger or Arm DS-5 Debugger, on the host computer.

A bare-metal application that uses semihosting does not use the input and output interface of the
development platform. When the input and output interfaces on the development platform are available,
you must reimplement the necessary semihosting functions to use them.

For more information, see how to use the libraries in semihosting and nonsemihosting environments.

Related information
Arm Development Studio User Guide
Arm DS-5 Debugger User Guide
Semihosting for AArch32 and AArch64

1 Getting Started
1.8 Running bare-metal images

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

1-28

Non-Confidential

https://developer.arm.com/documentation/101470/latest
https://developer.arm.com/documentation/100953/latest
https://developer.arm.com/documentation/101470/latest/configuring-debug-connections-in-arm-debugger/configuring-a-connection-to-a-bare-metal-hardware-target
https://developer.arm.com/documentation/100953/latest/configuring-debug-connections-in-ds-5-debugger/configuring-a-connection-to-a-bare-metal-hardware-target
https://developer.arm.com/documentation/100073/0616/The-Arm-C-and-C---Libraries/Support-for-building-an-application-with-the-C-library/Using-the-C-and-C---libraries-with-an-application-in-a-semihosting-environment
https://developer.arm.com/documentation/100073/0616/The-Arm-C-and-C---Libraries/Support-for-building-an-application-with-the-C-library/Using-the-libraries-in-a-nonsemihosting-environment
https://developer.arm.com/documentation/101470/latest
https://developer.arm.com/documentation/100953/latest
https://developer.arm.com/documentation/100863/latest

1.9 Architectures supported by Arm® Compiler
Arm Compiler supports a number of different architecture profiles.

Arm Compiler supports the following architectures:

• Armv8‑A and all update releases, for bare-metal targets.
• Armv8‑R.
• Armv8‑M.
• Armv7‑A for bare-metal targets.
• Armv7‑R.
• Armv7‑M.
• Armv6‑M.

When compiling code, the compiler needs to know which architecture to target in order to take advantage
of features specific to that architecture.

To specify a target, you must supply the target execution state (AArch32 or AArch64), together with
either a target architecture (for example Armv8‑A) or a target processor (for example, the Cortex‑A53
processor).

To specify a target execution state (AArch64 or AArch32) with armclang, use the mandatory --target
command-line option:

--target=arch-vendor-os-abi

Supported targets include:

aarch64-arm-none-eabi
Generates A64 instructions for AArch64 state. Implies -march=armv8-a unless -march or -
mcpu is specified.

arm-arm-none-eabi
Generates A32 and T32 instructions for AArch32 state. Must be used in conjunction with -
march (to target an architecture) or -mcpu (to target a processor).

To generate generic code that runs on any processor with a particular architecture, use the -march option.
Use the -march=list option to see all supported architectures.

To optimize your code for a particular processor, use the -mcpu option. Use the -mcpu=list option to see
all supported processors.

 Note

The --target, -march, and -mcpu options are armclang options. For all of the other tools, such as
armasm and armlink, use the --cpu option to specify target processors and architectures.

Related information
--target (armclang)
-march (armclang)
-mcpu (armclang)
--cpu (armlink)
Arm Glossary

1 Getting Started
1.9 Architectures supported by Arm® Compiler

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

1-29

Non-Confidential

https://developer.arm.com/documentation/101754/0616/armclang-Reference/armclang-Command-line-Options/--target
https://developer.arm.com/documentation/101754/0616/armclang-Reference/armclang-Command-line-Options/-march
https://developer.arm.com/documentation/101754/0616/armclang-Reference/armclang-Command-line-Options/-mcpu
https://developer.arm.com/documentation/101754/0616/armlink-Reference/armlink-Command-line-Options/--cpu-name--armlink-
http://infocenter.arm.com/help/topic/com.arm.doc.aeg0014-/index.html

1.10 Using Arm® Compiler securely in a shared environment
Arm Compiler provides features and language support in common with other toolchains. Misuse of these
common features and language support can provide access to arbitrary files, execute system commands,
and reveal the contents of environment variables.

If deploying Arm Compiler into environments where security is a concern, then Arm strongly
recommends that you do all of the following:
• Sandbox the tools to limit their access to only necessary files.
• Remove all non-essential environment variables.
• Prevent execution of other binaries.
• Segregate different users from each other.
• Limit execution time.

1 Getting Started
1.10 Using Arm® Compiler securely in a shared environment

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

1-30

Non-Confidential

Chapter 2
Getting Started with the SVE features in Arm®

Compiler

Describes how to generate an executable binary that makes use of the instructions provided by the SVE
architectural extension to the Armv8‑A architecture.

It contains the following sections:
• 2.1 Introducing SVE on page 2-32.
• 2.2 Assembling SVE code on page 2-33.
• 2.3 Disassembling SVE object files on page 2-35.
• 2.4 Running a binary in an AEMv8-A Base Fixed Virtual Platform (FVP) on page 2-36.

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

2-31

Non-Confidential

2.1 Introducing SVE
The Arm Compiler toolchain supports targets that implement the Scalable Vector Extension (SVE) for
Armv8‑A AArch64.

SVE is a SIMD instruction set for AArch64, that introduces the following architectural features for High
Performance Computing (HPC):

• Scalable vector length.
• Per-lane predication.
• Gather-load and scatter-store.
• Fault-tolerant speculative vectorization.
• Horizontal and serialized vector operations.

This release of the Arm Compiler toolchain lets you:
• Assemble source code containing SVE instructions.
• Disassemble ELF object files containing SVE instructions.
• Compile C and C++ code for SVE-enabled targets.
• Use intrinsics to write SVE instructions directly from C code.

 Note

The Arm Compiler toolchain only supports bare-metal applications. For SVE compilation for Linux, use
Arm Compiler for Linux, that is part of Arm Allinea Studio.

 Note

Arm Compiler does not support auto-vectorization for SVE. If you require auto-vectorization for SVE,
then you must use Arm Compiler for Linux. For more information, see Arm Allinea Studio.

Related information
Arm Compiler 6 documentation

2 Getting Started with the SVE features in Arm® Compiler
2.1 Introducing SVE

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

2-32

Non-Confidential

https://developer.arm.com/tools-and-software/server-and-hpc/arm-architecture-tools/arm-allinea-studio/download
https://developer.arm.com/tools-and-software/server-and-hpc/arm-allinea-studio
https://developer.arm.com/tools-and-software/embedded/arm-compiler/documentation/version-6-16

2.2 Assembling SVE code
Use armclang with a suitable SVE-enabled target to assemble code containing SVE instructions.

The SVE architectural extension to the Armv8‑A architecture (armv8-a+sve) provides SVE instructions.
Many of these SVE instructions make use of the p and z register classes.

The following example shows a simple assembly program that includes SVE instructions.

// example1.s
 .global main
main:
 mov x0, 0x90000000
 mov x8, xzr
 ptrue p0.s //SVE instruction
 fcpy z0.s, p0/m, #5.00000000 //SVE instruction
 orr w10, wzr, #0x400
loop:
 st1w z0.s, p0, [x0, x8, lsl #2] //SVE instruction
 incw x8 //SVE instruction
 whilelt p0.s, x8, x10 //SVE instruction
 b.any loop //SVE instruction
 mov w0, wzr
 ret

To assemble this source file into a binary object file, use armclang with an SVE-enabled target:

armclang -c --target=aarch64-arm-none-eabi -march=armv8-a+sve example1.s -o
example1.o

The command-line options in this example are:

-c
Instructs the compiler to perform the compilation step, but not the link step.

--target=aarch64-arm-none-eabi
Instructs the compiler to generate A64 instructions for AArch64 state.

 Note

SVE is not supported with AArch32 state, so the --target=aarch64-arm-none-eabi option is
mandatory.

-march=armv8-a+sve

Specifies that the compiler targets the Armv8‑A architecture profile with the SVE target feature
enabled.

The default for AArch64 is -march=armv8-a, that is the Armv8‑A architecture profile without
the SVE extension. You must explicitly specify +sve to assemble SVE instructions.

Armv8‑A and later architectures support the SVE extension. For example, -march=armv8.1-a
+sve.

example1.s
Input assembly language file.

-o example1.o
Output ELF object file.

Related tasks
2.3 Disassembling SVE object files on page 2-35
Related information
Arm Compiler Reference Guide
armclang -c option
armclang -o option

2 Getting Started with the SVE features in Arm® Compiler
2.2 Assembling SVE code

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

2-33

Non-Confidential

https://developer.arm.com/documentation/101754/0616/armclang-Reference/armclang-Command-line-Options
https://developer.arm.com/documentation/101754/0616/armclang-Reference/armclang-Command-line-Options/-c--armclang-
https://developer.arm.com/documentation/101754/0616/armclang-Reference/armclang-Command-line-Options/-o--armclang-

armclang -march option
armclang --target option

2 Getting Started with the SVE features in Arm® Compiler
2.2 Assembling SVE code

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

2-34

Non-Confidential

https://developer.arm.com/documentation/101754/0616/armclang-Reference/armclang-Command-line-Options/-march
https://developer.arm.com/documentation/101754/0616/armclang-Reference/armclang-Command-line-Options/--target

2.3 Disassembling SVE object files
Use the fromelf tool without specifying --cpu to display the details and contents of an ELF-format
binary file. This includes disassembly of the code sections of an object containing SVE instructions.

To disassemble an ELF-format object file containing SVE instructions, use fromelf with the -c option.

Procedure
1. Create the C file daxpy.c containing the following code:

#ifdef __ARM_FEATURE_SVE
#include <arm_sve.h>
#endif /* __ARM_FEATURE_SVE */

void daxpy_1_1(int64_t n, double da, double *dx, double *dy)
{
 int64_t i = 0;
 svbool_t pg = svwhilelt_b64(i, n);
 do {
 svfloat64_t dx_vec = svld1(pg, &dx[i]);
 svfloat64_t dy_vec = svld1(pg, &dy[i]);
 svst1(pg, &dy[i], svmla_x(pg, dy_vec, dx_vec, da));
 i += svcntd();
 pg = svwhilelt_b64(i, n);
 }
 while (svptest_any(svptrue_b64(), pg));
}

2. Compile and use fromelf to view the disassembly:

armclang -c -O3 --target=aarch64-arm-none-eabi -march=armv8-a+sve -o daxpy.o daxpy.c
fromelf -c daxpy.o

Results:

The disassembly is as follows:

...
** Section #3 '.text.daxpy_1_1' (SHT_PROGBITS) [SHF_ALLOC + SHF_EXECINSTR]
 Size : 76 bytes (alignment 4)
 Address: 0x00000000

 $x.0
 daxpy_1_1
 0x00000000: 04e0e3e9 CNTD x9
 0x00000004: aa1f03e8 MOV x8,xzr
 0x00000008: 25e017e0 ...% WHILELT p0.D,xzr,x0
 0x0000000c: 05282000 . (. MOV z0.D,d0
 0x00000010: 25d8e3e1 ...% PTRUE p1.D
 0x00000014: 04e7e3ea CNTD x10,ALL,MUL #8
 0x00000018: aa0903eb MOV x11,x9
 0x0000001c: 8b08002c ,... ADD x12,x1,x8
 0x00000020: 8b08004d M... ADD x13,x2,x8
 0x00000024: a5e0a181 LD1D {z1.D},p0/Z,[x12]
 0x00000028: a5e0a1a2 LD1D {z2.D},p0/Z,[x13]
 0x0000002c: 8b0a0108 ADD x8,x8,x10
 0x00000030: 65e00022 "..e FMLA z2.D,p0/M,z1.D,z0.D
 0x00000034: e5e0e1a2 ST1D {z2.D},p0,[x13]
 0x00000038: 25e01560 `..% WHILELT p0.D,x11,x0
 0x0000003c: 2550c400 ..P% PTEST p1,p0.B
 0x00000040: 8b09016b k... ADD x11,x11,x9
 0x00000044: 54fffec1 ...T B.NE {pc}-0x28 ; 0x1c
 0x00000048: d65f03c0 .._. RET
...

Related concepts
2.2 Assembling SVE code on page 2-33

2 Getting Started with the SVE features in Arm® Compiler
2.3 Disassembling SVE object files

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

2-35

Non-Confidential

2.4 Running a binary in an AEMv8-A Base Fixed Virtual Platform (FVP)
Describes how to compile a program with Arm Compiler and then run the resulting binary using the
AEMv8-A Base Fixed Virtual Platform (FVP). The examples use various SVE intrinsics.

Running the FVP

The command to execute a compiled binary through the FVP is fairly complex, but there are only a few
elements that can be edited.

The following example shows a complete command-line invocation of the FVP. Most of the lines are
required for correct program execution and do not need to be modified. The italic elements indicate
parameters that can be edited.

$FVP_BASE/FVP_Base_AEMv8A-AEMv8A \
 --plugin $FVP_BASE/ScalableVectorExtension.so \
 -C SVE.ScalableVectorExtension.veclen=$VECLEN \
 --quiet \
 --stat \
 -C cluster0.NUM_CORES=1 \
 -C bp.secure_memory=0 \
 -C bp.refcounter.non_arch_start_at_default=1 \
 -C cluster0.cpu0.semihosting-use_stderr=1 \
 -C bp.vis.disable_visualisation=1 \
 -C cluster0.cpu0.semihosting-cmd_line="$CMDLINE" \
 -a cluster0.cpu0=$BINARY

Where:

$FVP_BASE

Specifies the path to the FVP.

$VECLEN

Defines the SVE vector width, in units of 64-bit (8 byte) blocks. The maximum value is 32,
which corresponds to the architectural maximum SVE vector width of 2048 bits (256 bytes).

The SVE architecture only supports vector lengths in 128-bit (16 byte increments), so all values
of $VECLEN must be even. For example, a value of 8 signifies a 512-bit vector width.

--quiet

Specifies that the FVP emits reduced output. For example, if --quiet is omitted, Simulation
is started and Simulation is terminating messages are output to signify the start and end
of program execution.

--stat

Specifies that the FVP writes a short summary of program execution to standard output
following termination (even if --quiet is specified).

This output is of the form:

Total instructions executed: 10344
User time: 0.01 sec
Kernel time: 0.00 sec
CPU time: 0.01 sec
Elapsed clock: 0.00 sec

$CMDLINE

Specifies the command line to pass to your program. This command line is typically of the form
"./binary_name arg1 arg2".

$BINARY

Specifies the path to the compiled binary that the FVP is to load and execute.

2 Getting Started with the SVE features in Arm® Compiler
2.4 Running a binary in an AEMv8-A Base Fixed Virtual Platform (FVP)

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

2-36

Non-Confidential

A sample application

The following sample application uses the svld1, svst1, svcntd, svmla_x, and svwhilelt_b64
intrinsics:

// daxpy_acle.c
#include <stdio.h>
#ifdef __ARM_FEATURE_SVE
#include <arm_sve.h>
#endif /* __ARM_FEATURE_SVE */

void daxpy_1_1(int64_t n, double da, double *dx, double *dy)
{
 int64_t i = 0;
 svbool_t pg = svwhilelt_b64(i, n);
 do {
 svfloat64_t dx_vec = svld1(pg, &dx[i]);
 svfloat64_t dy_vec = svld1(pg, &dy[i]);
 svst1(pg, &dy[i], svmla_x(pg, dy_vec, dx_vec, da));
 i += svcntd();
 pg = svwhilelt_b64(i, n);
 }
 while (svptest_any(svptrue_b64(), pg));
}

int main(int argc, char* argv[]) {
 double da = 1.5;
 double *dx;
 double *dy;

 *dx = 1.5;
 *dy = 1.5;
 daxpy_1_1(10, da, dx, dy);
 return 0;
}

To compile this application and create an executable binary:

armclang -O3 -Xlinker "--ro_base=0x80000000" --target=aarch64-arm-none-eabi -march=armv8-a
+sve -o daxpy_acle.axf daxpy_acle.c

Running the sample application on an FVP

To execute an application using an FVP, it is useful to construct a shell script as follows:

#!/bin/bash
fvp-run.sh
Usage: fvp-run.sh [veclen] [binary]
Executes the specified binary in the FVP, with no command-line
arguments. The SVE register width will be [veclen] x 64 bits. Only
even values of veclen are valid.
#
#
Set the FVP_BASE environment variable to point to the FVP directory.
#
Set the ARMLMD_LICENSE_FILE environment variable to reference a license
file or license server with entitlement for the FVP.

VECLEN=$1
CMDLINE=$2

$FVP_BASE/FVP_Base_AEMv8A-AEMv8A \
 --plugin $FVP_BASE/ScalableVectorExtension.so \
 -C SVE.ScalableVectorExtension.veclen=$VECLEN \
 --quiet \
 --stat \
 -C cluster0.NUM_CORES=1 \
 -C bp.secure_memory=0 \
 -C bp.refcounter.non_arch_start_at_default=1 \
 -C cluster0.cpu0.semihosting-use_stderr=1 \
 -C bp.vis.disable_visualisation=1 \
 -C cluster0.cpu0.semihosting-cmd_line="$CMDLINE" \
 -a cluster0.cpu0=$CMDLINE

This script loads and executes the compiled binary with the FVP.

Related information
Arm Compiler Reference Guide

2 Getting Started with the SVE features in Arm® Compiler
2.4 Running a binary in an AEMv8-A Base Fixed Virtual Platform (FVP)

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

2-37

Non-Confidential

https://developer.arm.com/documentation/101754/0616/armclang-Reference/armclang-Command-line-Options

armclang -o option
armclang -Xlinker option
armclang -O option
armclang -march option
armclang --target option

2 Getting Started with the SVE features in Arm® Compiler
2.4 Running a binary in an AEMv8-A Base Fixed Virtual Platform (FVP)

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

2-38

Non-Confidential

https://developer.arm.com/documentation/101754/0616/armclang-Reference/armclang-Command-line-Options/-o--armclang-
https://developer.arm.com/documentation/101754/0616/armclang-Reference/armclang-Command-line-Options/-Xlinker
https://developer.arm.com/documentation/101754/0616/armclang-Reference/armclang-Command-line-Options/-O--armclang-
https://developer.arm.com/documentation/101754/0616/armclang-Reference/armclang-Command-line-Options/-march
https://developer.arm.com/documentation/101754/0616/armclang-Reference/armclang-Command-line-Options/--target

Chapter 3
Using Common Compiler Options

There are many options that you can use to control how Arm Compiler generates code for your
application. This section lists the mandatory and commonly used optional command-line arguments,
such as to control target selection, optimization, and debug view.

It contains the following sections:
• 3.1 Mandatory armclang options on page 3-40.
• 3.2 Common Arm® Compiler toolchain options on page 3-42.
• 3.3 Selecting source language options on page 3-45.
• 3.4 Selecting optimization options on page 3-49.
• 3.5 Building to aid debugging on page 3-53.
• 3.6 Linking object files to produce an executable on page 3-54.
• 3.7 Linker options for mapping code and data to target memory on page 3-55.
• 3.8 Passing options from the compiler to the linker on page 3-56.
• 3.9 Controlling diagnostic messages on page 3-57.
• 3.10 Selecting floating-point options on page 3-62.
• 3.11 Compilation tools command-line option rules on page 3-65.

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

3-39

Non-Confidential

3.1 Mandatory armclang options
When using armclang, you must specify a target on the command-line. Depending on the target you use,
you might also have to specify an architecture or processor.

Specifying a target
To specify a target, use the --target option. The following targets are available:
• To generate A64 instructions for AArch64 state, specify --target=aarch64-arm-none-eabi.

 Note

For AArch64, the default architecture is Armv8‑A.

• To generate A32 and T32 instructions for AArch32 state, specify --target=arm-arm-none-eabi. To
specify generation of either A32 or T32 instructions, use -marm or -mthumb respectively.

 Note

AArch32 has no defaults. You must always specify an architecture or processor.

Specifying an architecture

To generate code for a specific architecture, use the -march option. The supported architectures vary
according to the selected target.

To see a list of all the supported architectures for the selected target, use -march=list.

Specifying a processor

To generate code for a specific processor, use the -mcpu option. The supported processors vary according
to the selected target.

To see a list of all the supported processors for the selected target, use -mcpu=list.

It is also possible to enable or disable optional architecture features, by using the +[no]feature notation.
For a list of the architecture features that your processor supports, see the processor product
documentation. See the Arm Compiler Reference Guide for a list of architecture features that Arm
Compiler supports.

Use +feature or +nofeature to explicitly enable or disable an optional architecture feature.
 Note

Avoid specifying both the architecture (-march) and the processor (-mcpu) because specifying both has
the potential to cause a conflict. The compiler infers the correct architecture from the processor.
• If you want to run code on one particular processor, specify the processor using -mcpu. Performance

is optimized, but code is only guaranteed to run on that processor. If you specify a value for -mcpu,
do not also specify a value for -march.

• If you want your code to run on a range of processors from a particular architecture, specify the
architecture using -march. The code runs on any processor implementation of the target architecture,
but performance might be impacted. If you specify a value for -march, do not also specify a value for
-mcpu.

Specifying an optimization level

The default optimization level is -O0, which does not apply any optimizations. Arm recommends that
you always specify a suitable optimization level. For more information, see Selecting optimization
options in the Arm® Compiler User Guide, and see the -O option in the Arm® Compiler Reference Guide.

3 Using Common Compiler Options
3.1 Mandatory armclang options

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

3-40

Non-Confidential

https://developer.arm.com/documentation/101754/0616/armclang-Reference/armclang-Command-line-Options/--target
https://developer.arm.com/documentation/101754/0616/armclang-Reference/armclang-Command-line-Options/-marm
https://developer.arm.com/documentation/101754/0616/armclang-Reference/armclang-Command-line-Options/-mthumb
https://developer.arm.com/documentation/101754/0616/armclang-Reference/armclang-Command-line-Options/-march
https://developer.arm.com/documentation/101754/0616/armclang-Reference/armclang-Command-line-Options/-mcpu
https://developer.arm.com/documentation/101754/0616/armclang-Reference/armclang-Command-line-Options/-mcpu
https://developer.arm.com/documentation/100748/0616/Using-common-compiler-options/Selecting-optimization-options
https://developer.arm.com/documentation/100748/0616/Using-common-compiler-options/Selecting-optimization-options
https://developer.arm.com/documentation/101754/0616/armclang-Reference/armclang-Command-line-Options/-O--armclang-

Examples
These examples compile and link the input file helloworld.c:
• To compile for the Armv8‑A architecture in AArch64 state, use:

armclang --target=aarch64-arm-none-eabi -march=armv8-a helloworld.c

• To compile for the Armv8‑R architecture in AArch32 state, use:

armclang --target=arm-arm-none-eabi -march=armv8-r helloworld.c

• To compile for the Armv8‑M architecture mainline profile, use:

armclang --target=arm-arm-none-eabi -march=armv8-m.main helloworld.c

• To compile for a Cortex‑A53 processor in AArch64 state, use:

armclang --target=aarch64-arm-none-eabi -mcpu=cortex-a53 helloworld.c

• To compile for a Cortex‑A53 processor in AArch32 state, use:

armclang --target=arm-arm-none-eabi -mcpu=cortex-a53 helloworld.c

• To compile for a Cortex-M4 processor, use:

armclang --target=arm-arm-none-eabi -mcpu=cortex-m4 helloworld.c

• To compile for a Cortex-M33 processor, with DSP disabled, use:

armclang --target=arm-arm-none-eabi -mcpu=cortex-m33+nodsp helloworld.c

• To target the AArch32 state of an Arm Neoverse N1 processor, use:

armclang --target=arm-arm-none-eabi -mcpu=neoverse-n1 helloworld.c

• To target the AArch64 state of an Arm Neoverse E1 processor, use:

armclang --target=aarch64-arm-none-eabi -mcpu=neoverse-e1 helloworld.c

Related information
--target (armclang)
-march (armclang)
-mcpu (armclang)
-marm (armclang)
-mthumb (armclang)
Summary of armclang command-line options

3 Using Common Compiler Options
3.1 Mandatory armclang options

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

3-41

Non-Confidential

https://developer.arm.com/documentation/101754/0616/armclang-Reference/armclang-Command-line-Options/--target
https://developer.arm.com/documentation/101754/0616/armclang-Reference/armclang-Command-line-Options/-march
https://developer.arm.com/documentation/101754/0616/armclang-Reference/armclang-Command-line-Options/-mcpu
https://developer.arm.com/documentation/101754/0616/armclang-Reference/armclang-Command-line-Options/-marm
https://developer.arm.com/documentation/101754/0616/armclang-Reference/armclang-Command-line-Options/-mthumb
https://developer.arm.com/documentation/101754/0616/armclang-Reference/armclang-Command-line-Options/Summary-of-armclang-command-line-options

3.2 Common Arm® Compiler toolchain options
Lists the most commonly used command-line options for each of the tools in the Arm Compiler
toolchain.

armclang common options

See the Arm Compiler Reference Guide for more information about armclang command-line options.

Common armclang options include the following:

Table 3-1 armclang common options

Option Description

-c Performs the compilation step, but not the link step.

-x Specifies the language of the subsequent source files, -xc inputfile.s or -xc++
inputfile.s for example.

-std Specifies the language standard to compile for, -std=c90 for example.

--target=arch-
vendor-os-abi

Generates code for the selected Execution state (AArch32 or AArch64), for example
--target=aarch64-arm-none-eabi or --target=arm-arm-none-eabi.

-march=name Generates code for the specified architecture, for example -march=armv8-a or
-march=armv7-a.

-march=list Displays a list of all the supported architectures for the selected execution state.

-mcpu=name Generates code for the specified processor, for example -mcpu=cortex-a53,
-mcpu=cortex-a57, or -mcpu=cortex-a15.

-mcpu=list Displays a list of all the supported processors for the selected execution state.

-marm Requests that the compiler targets the A32 instruction set, which consists of 32-bit
wide instructions only. For example,
--target=arm-arm-none-eabi -march=armv7-a -marm. This option
emphasizes performance.

The -marm option is not valid with M-profile or AArch64 targets:
• If you use the -marm option with an M-profile target architecture, the compiler

generates an error and stops, and does not output any code.
• For AArch64 targets, the compiler ignores the -marm option and generates a

warning.

-mthumb Requests that the compiler targets the T32 instruction set, which consists of both 16-
bit wide and 32-bit wide instructions. For example,
--target=arm-arm-none-eabi -march=armv8-a -mthumb. This option
emphasizes code density.

The -mthumb option is not valid with AArch64 targets. The compiler ignores the
-mthumb option and generates a warning if used with AArch64 targets.

-mfloat-abi Specifies whether to use hardware instructions or software library functions for
floating-point operations.

-mfpu Specifies the target FPU architecture.

-g Generates DWARF debug tables compatible with the DWARF 4 standard.

3 Using Common Compiler Options
3.2 Common Arm® Compiler toolchain options

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

3-42

Non-Confidential

https://developer.arm.com/documentation/101754/0616/armclang-Reference/armclang-Command-line-Options/-c--armclang-
https://developer.arm.com/documentation/101754/0616/armclang-Reference/armclang-Command-line-Options/-x--armclang-
https://developer.arm.com/documentation/101754/0616/armclang-Reference/armclang-Command-line-Options/-std
https://developer.arm.com/documentation/101754/0616/armclang-Reference/armclang-Command-line-Options/--target
https://developer.arm.com/documentation/101754/0616/armclang-Reference/armclang-Command-line-Options/--target
https://developer.arm.com/documentation/101754/0616/armclang-Reference/armclang-Command-line-Options/-march
https://developer.arm.com/documentation/101754/0616/armclang-Reference/armclang-Command-line-Options/-march
https://developer.arm.com/documentation/101754/0616/armclang-Reference/armclang-Command-line-Options/-mcpu
https://developer.arm.com/documentation/101754/0616/armclang-Reference/armclang-Command-line-Options/-mcpu
https://developer.arm.com/documentation/101754/0616/armclang-Reference/armclang-Command-line-Options/-marm
https://developer.arm.com/documentation/101754/0616/armclang-Reference/armclang-Command-line-Options/-mthumb
https://developer.arm.com/documentation/101754/0616/armclang-Reference/armclang-Command-line-Options/-mfloat-abi
https://developer.arm.com/documentation/101754/0616/armclang-Reference/armclang-Command-line-Options/-mfpu
https://developer.arm.com/documentation/101754/0616/armclang-Reference/armclang-Command-line-Options/-g---gdwarf-2---gdwarf-3---gdwarf-4--armclang-

Table 3-1 armclang common options (continued)

Option Description

-E Executes only the preprocessor step.

-I Adds the specified directories to the list of places that are searched to find included
files.

-o Specifies the name of the output file.

-Onum Specifies the level of performance optimization to use when compiling source files.

-Os Balances code size against code speed.

-Oz Optimizes for code size.

-S Outputs the disassembly of the machine code that the compiler generates.

-### Displays diagnostic output showing the options that would be used to invoke the
compiler and linker. The compilation and link steps are not performed.

armlink common options

See the Arm Compiler Reference Guide for more information about armlink command-line options.

Common armlink options include the following:

Table 3-2 armlink common options

Option Description

--scatter=filename Creates an image memory map using the scatter-loading description that the specified
file contains.

--entry Specifies the unique initial entry point of the image.

--info Displays information about linker operation. For example, --
info=sizes,unused,unusedsymbols displays information about all of the
following:
• Code and data sizes for each input object and library member in the image.
• Unused sections that --remove has removed from the code.
• Symbols that were removed with the unused sections.

--list=filename Redirects diagnostics output from options including --info and --map to the
specified file.

--map Displays a memory map containing the address and the size of each load region,
execution region, and input section in the image, including linker-generated input
sections.

--symbols Lists each local and global symbol that is used in the link step, and their values.

-o filename, --
output=filename

Specifies the name of the output file.

--keep=section_id Specifies input sections that unused section elimination must not remove.

--load_addr_map_info Includes the load addresses for execution regions and the input sections within them
in the map file.

armar common options

See the Arm Compiler Reference Guide for more information about armar command-line options.

Common armar options include the following:

3 Using Common Compiler Options
3.2 Common Arm® Compiler toolchain options

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

3-43

Non-Confidential

https://developer.arm.com/documentation/101754/0616/armclang-Reference/armclang-Command-line-Options/-e
https://developer.arm.com/documentation/101754/0616/armclang-Reference/armclang-Command-line-Options/-I
https://developer.arm.com/documentation/101754/0616/armclang-Reference/armclang-Command-line-Options/-o--armclang-
https://developer.arm.com/documentation/101754/0616/armclang-Reference/armclang-Command-line-Options/-O--armclang-
https://developer.arm.com/documentation/101754/0616/armclang-Reference/armclang-Command-line-Options/-O--armclang-
https://developer.arm.com/documentation/101754/0616/armclang-Reference/armclang-Command-line-Options/-O--armclang-
https://developer.arm.com/documentation/101754/0616/armclang-Reference/armclang-Command-line-Options/-S--armclang-
https://developer.arm.com/documentation/101754/0616/armclang-Reference/armclang-Command-line-Options/----
https://developer.arm.com/documentation/101754/0616/armlink-Reference/armlink-Command-line-Options/--scatter-filename
https://developer.arm.com/documentation/101754/0616/armlink-Reference/armlink-Command-line-Options/--entry-location
https://developer.arm.com/documentation/101754/0616/armlink-Reference/armlink-Command-line-Options/--info-topic--topic----armlink-
https://developer.arm.com/documentation/101754/0616/armlink-Reference/armlink-Command-line-Options/--list-filename
https://developer.arm.com/documentation/101754/0616/armlink-Reference/armlink-Command-line-Options/--map----no-map
https://developer.arm.com/documentation/101754/0616/armlink-Reference/armlink-Command-line-Options/--symbols----no-symbols
https://developer.arm.com/documentation/101754/0616/armlink-Reference/armlink-Command-line-Options/-o-filename----output-filename--armlink-
https://developer.arm.com/documentation/101754/0616/armlink-Reference/armlink-Command-line-Options/-o-filename----output-filename--armlink-
https://developer.arm.com/documentation/101754/0616/armlink-Reference/armlink-Command-line-Options/--keep-section-id--armlink-
https://developer.arm.com/documentation/101754/0616/armlink-Reference/armlink-Command-line-Options/--load-addr-map-info----no-load-addr-map-info

Table 3-3 armar common options

Option Description

--debug_symbols Includes debug symbols in the library.

-a pos_name Places new files in the library after the file pos_name.

-b pos_name Places new files in the library before the file pos_name.

-d file_list Deletes the specified files from the library.

--sizes Lists the Code, RO Data, RW Data, ZI Data, and Debug sizes of each member in
the library.

-t Prints a table of contents for the library.

fromelf common options

See the Arm Compiler Reference Guide for more information about fromelf command-line options.

Common fromelf options include the following:

Table 3-4 fromelf common options

Option Description

--elf Selects ELF output mode.

--text [options] Displays image information in text format.

The optional options specify additional information to include in the image
information. Valid options include -c to disassemble code, and -s to print the
symbol and versioning tables.

--info Displays information about specific topics, for example --info=totals lists the
Code, RO Data, RW Data, ZI Data, and Debug sizes for each input object and
library member in the image.

armasm common options
See the Arm Compiler Reference Guide for more information about armasm command-line options.

 Note

Only use armasm to assemble legacy assembly code syntax. Use GNU syntax for new assembly files, and
assemble with the armclang integrated assembler.

Common armasm options include the following:

Table 3-5 armasm common options

Option Description

--cpu=name Sets the target processor.

-g Generates DWARF debug tables compatible with the DWARF 3 standard.

--fpu=name Selects the target floating-point unit (FPU) architecture.

-o Specifies the name of the output file.

3 Using Common Compiler Options
3.2 Common Arm® Compiler toolchain options

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

3-44

Non-Confidential

https://developer.arm.com/documentation/101754/0616/armar-Reference/armar-Command-line-Options/--debug-symbols
https://developer.arm.com/documentation/101754/0616/armar-Reference/armar-Command-line-Options/-a-pos-name
https://developer.arm.com/documentation/101754/0616/armar-Reference/armar-Command-line-Options/-b-pos-name
https://developer.arm.com/documentation/101754/0616/armar-Reference/armar-Command-line-Options/-d--armar-
https://developer.arm.com/documentation/101754/0616/armar-Reference/armar-Command-line-Options/--sizes
https://developer.arm.com/documentation/101754/0616/armar-Reference/armar-Command-line-Options/-t
https://developer.arm.com/documentation/101754/0616/fromelf-Reference/fromelf-Command-line-Options/--elf
https://developer.arm.com/documentation/101754/0616/fromelf-Reference/fromelf-Command-line-Options/--text
https://developer.arm.com/documentation/101754/0616/fromelf-Reference/fromelf-Command-line-Options/--info-topic--topic-----fromelf-
https://developer.arm.com/documentation/101754/0616/armasm-Legacy-Assembler-Reference/armasm-command-line-options/--cpu-name--armasm-
https://developer.arm.com/documentation/101754/0616/armasm-Legacy-Assembler-Reference/armasm-command-line-options/--g--armasm-
https://developer.arm.com/documentation/101754/0616/armasm-Legacy-Assembler-Reference/armasm-command-line-options/--fpu-ame--armasm-
https://developer.arm.com/documentation/101754/0616/armasm-Legacy-Assembler-Reference/armasm-command-line-options/--o-filename--armasm-

3.3 Selecting source language options
armclang provides different levels of support for different source language standards. Arm Compiler
infers the source language, for example C or C++, from the filename extension. You can use the -x and -
std options to force Arm Compiler to compile for a specific source language and source language
standard.

 Note

This topic includes descriptions of [ALPHA] and [COMMUNITY] features. See Support level
definitions on page Appx-A-266.

Source language

By default Arm Compiler treats files with .c extension as C source files. If you want to compile a .c
file, for example file.c, as a C++ source file, use the -xc++ option:

armclang --target=aarch64-arm-none-eabi -march=armv8-a -xc++ file.c

By default Arm Compiler treats files with .cpp extension as C++ source files. If you want to compile
a .cpp file, for example file.cpp, as a C source file, use the -xc option:

armclang --target=aarch64-arm-none-eabi -march=armv8-a -xc file.cpp

The -x option only applies to input files that follow it on the command line.

Source language standard

Arm Compiler supports Standard and GNU variants of source languages as shown in the following table.

Table 3-6 Source language variants

Standard C GNU C Standard C++ GNU C++

c90 gnu90 c++98 gnu++98

c99 gnu99 c++03 gnu++03

c11 [COMMUNITY] gnu11 [COMMUNITY] c++11 gnu++11

- - c++14 gnu++14

- - c++17 [COMMUNITY] gnu++17 [COMMUNITY]

The default language standard for C code is gnu11 [COMMUNITY]. The default language standard for
C++ code is gnu++14. To specify a different source language standard, use the -std=name option.

 Note

Arm does not guarantee the compatibility of C++ compilation units compiled with different major or
minor versions of Arm Compiler and linked into a single image. Therefore, Arm recommends that you
always build your C++ code from source with a single version of the toolchain.

You can mix C++ with C code or C libraries.

Arm Compiler supports various language extensions, including GCC extensions, which you can use in
your source code. The GCC extensions are only available when you specify one of the GCC C or C++
language variants. For more information on language extensions, see the Arm® C Language Extensions in
Arm Compiler.

3 Using Common Compiler Options
3.3 Selecting source language options

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

3-45

Non-Confidential

https://developer.arm.com/documentation/101754/0616/armclang-Reference/other-compiler-specific-features/acle-support

Because Arm Compiler uses the available language extensions by default, it does not adhere to the strict
ISO standard. To compile to strict ISO standard for the source language, use the -Wpedantic option. This
option generates warnings where the source code violates the ISO standard. Arm Compiler does not
support strict adherence to C++98 or C++03.

If you do not use -Wpedantic, Arm Compiler uses the available language extensions without warning.
However, where language variants produce different behavior, the behavior is that of the language
variant that -std specifies.

 Note

Certain compiler optimizations can violate strict adherence to the ISO standard for the language. To
identify when these violations happen, use the -Wpedantic option.

The following example shows the use of a variable length array, which is a C99 feature. In this example,
the function declares an array i, with variable length n.

#include <stdlib.h>

void function(int n) {
 int i[n];
}

Arm Compiler does not warn when compiling the example for C99 with -Wpedantic:

armclang --target=aarch64-arm-none-eabi -march=armv8-a -c -std=c99 -Wpedantic file.c

Arm Compiler does warn about variable length arrays when compiling the example for C90 with -
Wpedantic:

armclang --target=aarch64-arm-none-eabi -march=armv8-a -c -std=c90 -Wpedantic file.c

In this case, armclang gives the following warning:

file.c:4:8: warning: variable length arrays are a C99 feature [-Wvla-extension]
int i[n];
^
1 warning generated.

Exceptions to language standard support

Arm Compiler 6 with libc++ provides varying levels of support for different source language standards.
The following table lists the exceptions to the support Arm Compiler provides for each language
standard:

Table 3-7 Exceptions to the support for the language standards

Language standard Exceptions to the support for the language standard

All supported standard versions For all supported standards, the libc++ library deviates from the standard library as
follows:
• For std::vector<bool>::const_reference, the standards require the

const_reference type to be bool. However, in libc++ the const_reference
type is an IMPLEMENTATION DEFINED, read-only bit reference class.

• For std::bitset<N>, the standards require bool operator[](size_t pos)
const; to return bool. However, in libc++ bool operator[](size_t pos)
const; returns an IMPLEMENTATION DEFINED, read-only bit reference object.

C90 None. C90 is fully supported.

C99 Complex numbers are not supported.

3 Using Common Compiler Options
3.3 Selecting source language options

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

3-46

Non-Confidential

Table 3-7 Exceptions to the support for the language standards (continued)

Language standard Exceptions to the support for the language standard

C11 [COMMUNITY] The base Clang component provides C11 language functionality. However, Arm has
performed no independent testing of these features and therefore these features are
[COMMUNITY] features. Use of C11 library features is unsupported.

C11 is the default language standard for C code. However, use of the new C11 language
features is a community feature. Use the -std option to restrict the language standard if
necessary. Use the -Wc11-extensions option to warn about any use of C11-specific
features.

C++98 • The C++98 standard is supported except:
— Where the C++11 standard deviates from the C++98 standard. For example,

where std::deque<T>::insert() returns an iterator, as required by the
C++11 standard, but the C++98 standard requires it to return void. Information
about how the C++11 standard deviates from the C++98 standard is available in
Annex "C Compatibility" of the C++11 standard definition.

— Where the libc++ library deviates from the C++98 standard library:
◦ For std::raw_storage_iterator, the C++98 standard requires the

raw_storage_iterator class template to be inherited from
std::iterator<std::output_iterator_tag,void,void,void,vo
id>. However, in libc++ the raw_storage_iterator class template is
inherited from an instantiation of std::iterator with a different list of
template arguments.

• Support for -fno-exceptions is limited.

C++03 • The C++03 standard is supported except:
— Where the C++11 standard deviates from the C++03 standard. For example,

where std::deque<T>::insert() returns an iterator, as required by the
C++11 standard, but the C++03 standard requires it to return void. Information
about how the C++11 standard deviates from the C++03 standard is available in
Annex "C Compatibility" of the C++11 standard definition.

— Where the libc++ library deviates from the C++03 standard library:
◦ For std::raw_storage_iterator, the C++03 standard requires the

raw_storage_iterator class template to be inherited from
std::iterator<std::output_iterator_tag,void,void,void,vo
id>. However, in libc++ the raw_storage_iterator class template is
inherited from an instantiation of std::iterator with a different list of
template arguments.

• Support for -fno-exceptions is limited.

C++11 • Concurrency constructs or other constructs that are enabled through the following
standard library headers are [ALPHA] supported:
— <thread>
— <mutex>
— <shared_mutex>
— <condition_variable>
— <future>
— <chrono>
— <atomic>
— For more details, contact the Arm Support team.

• The thread_local keyword is not supported.

3 Using Common Compiler Options
3.3 Selecting source language options

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

3-47

Non-Confidential

Table 3-7 Exceptions to the support for the language standards (continued)

Language standard Exceptions to the support for the language standard

C++14 • Concurrency constructs or other constructs that are enabled through the following
standard library headers are [ALPHA] supported:
— <thread>
— <mutex>
— <shared_mutex>
— <condition_variable>
— <future>
— <chrono>
— <atomic>
— For more details, contact the Arm Support team.

• The thread_local keyword is not supported.

 Note

gnu++14 is the default language standard for C++ code.

C++17 [COMMUNITY] The base Clang and libc++ components provide C++17 language functionality.
However, Arm has performed no independent testing of these features and therefore
these features are [COMMUNITY] features.

Additional information

See the Arm® Compiler Reference Guide for information about Arm-specific language extensions.

For more information about libc++ support, see Standard C++ library implementation definition, in the
Arm® C and C++ Libraries and Floating-Point Support User Guide.

The Clang documentation provides additional information about language compatibility:
• Language compatibility:

http://clang.llvm.org/compatibility.html
• Language extensions:

http://clang.llvm.org/docs/LanguageExtensions.html
• C++ status:

http://clang.llvm.org/cxx_status.html

Arm® Compiler and undefined behavior

The C and C++ standards consider any code that uses non-portable, erroneous program or data constructs
as undefined behavior. Arm provides no information or guarantees about the behavior of Arm Compiler
when presented with a program that exhibits undefined behavior. That includes whether the compiler
attempts to diagnose the undefined behavior.

 Note

The -fsanitize=undefined command-line option is a [COMMUNITY] feature.

Related information
Standard C++ library implementation definition
Arm Compiler Reference Guide

3 Using Common Compiler Options
3.3 Selecting source language options

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

3-48

Non-Confidential

https://developer.arm.com/documentation/100073/0616/The-Arm-C-and-C---Libraries/ISO-C-library-implementation-definition/Standard-C---library-implementation-definition
http://clang.llvm.org/compatibility.html
http://clang.llvm.org/docs/LanguageExtensions.html
http://clang.llvm.org/cxx_status.html
https://developer.arm.com/documentation/100073/0616/The-Arm-C-and-C---Libraries/ISO-C-library-implementation-definition/Standard-C---library-implementation-definition
https://developer.arm.com/documentation/101754/0616

3.4 Selecting optimization options
Arm Compiler performs several optimizations to reduce the code size and improve the performance of
your application. There are different optimization levels which have different optimization goals.
Therefore optimizing for a certain goal has an impact on the other goals. Optimization levels are always
a trade-off between these different goals.

Arm Compiler provides various optimization levels to control the different optimization goals. The best
optimization level for your application depends on your application and optimization goal.

Table 3-8 Optimization goals

Optimization goal Useful optimization levels

Smaller code size -Oz, -Omin

Faster performance -O2, -O3, -Ofast, -Omax

Good debug experience without code bloat -O1

Better correlation between source code and generated code -O0 (no optimization)

Faster compile and build time -O0 (no optimization)

Balanced code size reduction and fast performance -Os

If you use a higher optimization level for performance, it has a higher impact on the other goals such as
degraded debug experience, increased code size, and increased build time.

If your optimization goal is code size reduction, it has an impact on the other goals such as degraded
debug experience, slower performance, and increased build time.

armclang provides a range of options to help you find a suitable approach for your requirements.
Consider whether code size reduction or faster performance is the goal which matters most for your
application, and then choose an option which matches your goal.

Optimization level -O0

-O0 disables all optimizations. This optimization level is the default. Using -O0 results in a faster
compilation and build time, but produces slower code than the other optimization levels. Code size and
stack usage are significantly higher at -O0 than at other optimization levels. The generated code closely
correlates to the source code, but significantly more code is generated, including dead code.

Optimization level -O1

-O1 enables the core optimizations in the compiler. This optimization level provides a good debug
experience with better code quality than -O0. Also the stack usage is improved over -O0. Arm
recommends this option for a good debug experience.

The differences when using -O1, as compared to -O0 are:
• Optimizations are enabled, which might reduce the fidelity of debug information.
• Inlining and tail calls are enabled, meaning backtraces might not give the stack of open function

activations which might be expected from reading the source.
• If the result is not needed, a function with no side-effects might not be called in the expected place, or

might be omitted.
• Values of variables might not be available within their scope after they are no longer used. For

example, their stack location might have been reused.

Optimization level -O2

-O2 is a higher optimization for performance compared to -O1. It adds few new optimizations, and
changes the heuristics for optimizations compared to -O1. This level is the first optimization level at

3 Using Common Compiler Options
3.4 Selecting optimization options

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

3-49

Non-Confidential

which the compiler might automatically generate vector instructions. It also degrades the debug
experience, and might result in an increased code size compared to -O1.

The differences when using -O2 as compared to -O1 are:
• The threshold at which the compiler believes that it is profitable to inline a call site might increase.
• The amount of loop unrolling that is performed might increase.
• Vector instructions might be generated for simple loops and for correlated sequences of independent

scalar operations.

The creation of vector instructions can be inhibited with the armclang command-line option
-fno-vectorize.

Optimization level -O3

-O3 is a higher optimization for performance compared to -O2. This optimization level enables
optimizations that require significant compile-time analysis and resources, and changes the heuristics for
optimizations compared to -O2. -O3 instructs the compiler to optimize for the performance of generated
code and disregard the size of the generated code, which might result in an increased code size. It also
degrades the debug experience compared to -O2.

The differences when using -O3 as compared to -O2 are:
• The threshold at which the compiler believes that it is profitable to inline a call site increases.
• The amount of loop unrolling that is performed is increased.
• More aggressive instruction optimizations are enabled late in the compiler pipeline.

Optimization level -Os

-Os aims to provide high performance without a significant increase in code size. Depending on your
application, the performance provided by -Os might be similar to -O2 or -O3.

-Os provides code size reduction compared to -O3. It also degrades the debug experience compared to -
O1.

The differences when using -Os as compared to -O3 are:
• The threshold at which the compiler believes it is profitable to inline a call site is lowered.
• The amount of loop unrolling that is performed is significantly lowered.

Optimization level -Oz

-Oz aims to provide reduced code size without using Link-Time Optimization (LTO). Arm recommends
this option for best code size if LTO is not appropriate for your application. This optimization level
degrades the debug experience compared to -O1.

The differences when using -Oz as compared to -Os are:
• Instructs the compiler to optimize for code size only and disregard the performance optimizations,

which might result in slower code.
• Function inlining is not disabled. There are instances where inlining might reduce code size overall,

for example if a function is called only once. The inlining heuristics are tuned to inline only when
code size is expected to decrease as a result.

• Optimizations that might increase code size, such as Loop unrolling and loop vectorization are
disabled.

• Loops are generated as while loops instead of do-while loops.

Optimization level -Omin

-Omin aims to provide the smallest possible code size. Arm recommends this option for best code size.
This optimization level degrades the debug experience compared to -O1.

3 Using Common Compiler Options
3.4 Selecting optimization options

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

3-50

Non-Confidential

The differences when using -Omin as compared to -Oz are:
• -Omin enables a basic set of Link-Time Optimizations (LTO) aimed at removing unused code and

data, while also trying to optimize global memory accesses.
• -Omin enables virtual function elimination, which is a particular benefit to C++ users.

If you want to compile at -Omin and use separate compile and link steps, then you must also include -
Omin on your armlink command line.

Optimization level -Ofast

-Ofast performs optimizations from level -O3, including those optimizations performed with the -
ffast-math armclang option.

This level also performs other aggressive optimizations that might violate strict compliance with
language standards.

This level degrades the debug experience, and might result in increased code size compared to -O3.

Optimization level -Omax

-Omax performs maximum optimization, and specifically targets performance optimization. It enables all
the optimizations from level -Ofast, together with Link-Time Optimization (LTO).

At this optimization level, Arm Compiler might violate strict compliance with language standards. Use
this optimization level for the fastest performance.

This level degrades the debug experience, and might result in increased code size compared to -Ofast.

If you want to compile at -Omax and have separate compile and link steps, then you must also include -
Omax on your armlink command line.

Examples

The example shows the code generation when using the -O0 optimization option. To perform this
optimization, compile your source file using:

armclang --target=arm-arm-none-eabi -march=armv7-a -O0 -S file.c

Table 3-9 Example code generation with -O0

Source code in file.c Unoptimized output from armclang

int dummy()
{
 int x=10, y=20;
 int z;
 z=x+y;
 return 0;
}

dummy:
 .fnstart
 .pad #12
 sub sp, sp, #12
 mov r0, #10
 str r0, [sp, #8]
 mov r0, #20
 str r0, [sp, #4]
 ldr r0, [sp, #8]
 add r0, r0, #20
 str r0, [sp]
 mov r0, #0
 add sp, sp, #12
 bx lr

The example shows the code generation when using the -O1 optimization option. To perform this
optimization, compile your source file using:

armclang --target=arm-arm-none-eabi -march=armv7-a -O1 -S file.c

3 Using Common Compiler Options
3.4 Selecting optimization options

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

3-51

Non-Confidential

Table 3-10 Example code generation with -O1

Source code in file.c Optimized output from armclang

int dummy()
{
 int x=10, y=20;
 int z;
 z=x+y;
 return 0;
}

dummy:
 .fnstart
 movs r0, #0
 bx lr

The source file contains mostly dead code, such as int x=10 and z=x+y. At optimization level -O0, the
compiler performs no optimization, and therefore generates code for the dead code in the source file.
However, at optimization level -O1, the compiler does not generate code for the dead code in the source
file.

Related information
Semihosting for AArch32 and AArch64

3 Using Common Compiler Options
3.4 Selecting optimization options

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

3-52

Non-Confidential

https://developer.arm.com/documentation/100863/latest

3.5 Building to aid debugging
During application development, you must debug the image that you build. The Arm Compiler tools
have various features that provide good debug view and enable source-level debugging, such as setting
breakpoints in C and C++ code. There are also some features you must avoid when building an image for
debugging.

Available command-line options

To build an image for debugging, you must compile with the -g option. This option allows you to specify
the DWARF format to use. The -g option is a synonym for -gdwarf-4. You can specify DWARF 2 or
DWARF 3 if necessary, for example:

armclang -gdwarf-3

When linking, there are several armlink options available to help improve the debug view:
• --debug. This option is the default.
• --no_remove to retain all input sections in the final image even if they are unused.
• --bestdebug. When different input objects are compiled with different optimization levels, this

option enables linking for the best debug illusion.

Effect of optimizations on the debug view

To build an application that gives the best debug view, it is better to use options that give the fewest
optimizations. Arm recommends using optimization level -O1 for debugging. This option gives good
code density with a satisfactory debug view.

Higher optimization levels perform progressively more optimizations with correspondingly poorer debug
views.

The compiler attempts to automatically inline functions at optimization levels -O2 and -O3. If you must
use these optimization levels, disable the automatic inlining with the armclang option -fno-inline-
functions. The linker inlining is disabled by default.

Support for debugging overlaid programs
The linker provides various options to support overlay-aware debuggers:
• --emit_debug_overlay_section
• --emit_debug_overlay_relocs

These options permit an overlay-aware debugger to track which overlay is active.

Features to avoid when building an image for debugging

Avoid using the following in your source code:

• The __attribute__((always_inline)) function attribute. Qualifying a function with this attribute
forces the compiler to inline the function. If you also use the -fno-inline-functions option, the
function is inlined.

• The __declspec(noreturn) attribute and the __attribute__((noreturn)) function attribute.
These attributes limit the ability of a debugger to display the call stack.

Avoid using the following features when building an image for debugging:
• Link time optimization. This feature performs aggressive optimizations and can remove large chunks

of code.
• The armlink --no_debug option.
• The armlink --inline option. This option changes the image in such a way that the debug

information might not correspond to the source code.

3 Using Common Compiler Options
3.5 Building to aid debugging

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

3-53

Non-Confidential

3.6 Linking object files to produce an executable
The linker combines the contents of one or more object files with selected parts of any required object
libraries to produce executable images, partially linked object files, or shared object files.

The command for invoking the linker is:

armlink options input-file-list

where:

options
are linker command-line options.

input-file-list
is a space-separated list of objects, libraries, or symbol definitions (symdefs) files.

For example, to link the object file hello_world.o into an executable image hello_world.axf:

armlink -o hello_world.axf hello_world.o

Compatibility of object files

Arm does not guarantee the compatibility of C++ compilation units compiled with different major or
minor versions of Arm Compiler and linked into a single image. Therefore, Arm recommends that you
always build your C++ code from source with a single version of the toolchain.

3 Using Common Compiler Options
3.6 Linking object files to produce an executable

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

3-54

Non-Confidential

3.7 Linker options for mapping code and data to target memory
For an image to run correctly on a target, you must place the various parts of the image at the correct
locations in memory. Linker command-line options are available to map the various parts of an image to
target memory.

The options implement the scatter-loading mechanism that describes the memory layout for the image.
The options that you use depend on the complexity of your image:
• For simple images, use the following memory map related options:

— --ro_base to specify the address of both the load and execution region containing the RO output
section.

— --rw_base to specify the address of the execution region containing the RW output section.
— --zi_base to specify the address of the execution region containing the ZI output section.

 Note

For objects that include execute-only (XO) sections, the linker provides the --xo_base option to
locate the XO sections. These sections are objects that are targeted at Armv7‑M or Armv8‑M
architectures, or objects that are built with the armclang -mthumb option,

• For complex images, use a text format scatter-loading description file. This file is known as a scatter
file, and you specify it with the --scatter option.

 Note

You cannot use the memory map related options with the --scatter option.

Examples
The following example shows how to place code and data using the memory map related options:

armlink --ro_base=0x0 --rw_base=0x400000 --zi_base=0x405000 --first="init.o(init)" init.o
main.o

 Note

In this example, --first is also included to make sure that the initialization routine is executed first.

The following example shows a scatter file, scatter.scat, that defines an equivalent memory map:

LR1 0x0000 0x20000
{
 ER_RO 0x0
 {
 init.o (INIT, +FIRST)
 *(+RO)
 }

 ER_RW 0x400000
 {
 *(+RW)
 }

 ER_ZI 0x405000
 {
 *(+ZI)
 }
}

To link with this scatter file, use the following command:

armlink --scatter=scatter.scat init.o main.o

3 Using Common Compiler Options
3.7 Linker options for mapping code and data to target memory

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

3-55

Non-Confidential

3.8 Passing options from the compiler to the linker
By default, when you run armclang the compiler automatically invokes the linker, armlink.

A number of armclang options control the behavior of the linker. These options are translated to
equivalent armlink options.

Table 3-11 armclang linker control options

armclang Option armlink Option Description

-e --entry Specifies the unique initial entry point of the image.

-L --userlibpath Specifies a list of paths that the linker searches for user libraries.

-l --library Add the specified library to the list of searched libraries.

-u --undefined Prevents the removal of a specified symbol if it is undefined.

In addition, the -Xlinker and -Wl options let you pass options directly to the linker from the compiler
command line. These options perform the same function, but use different syntaxes:

• The -Xlinker option specifies a single option, a single argument, or a single option=argument pair.
If you want to pass multiple options, use multiple -Xlinker options.

• The -Wl, option specifies a comma-separated list of options and arguments or option=argument
pairs.

For example, the following are all equivalent because armlink treats the single option --list=diag.txt
and the two options --list diag.txt equivalently:

-Xlinker --list -Xlinker diag.txt -Xlinker --split

-Xlinker --list=diag.txt -Xlinker --split

-Wl,--list,diag.txt,--split

-Wl,--list=diag.txt,--split
 Note

The -### compiler option produces diagnostic output showing exactly how the compiler and linker are
invoked, displaying the options for each tool. With the -### option, armclang only displays this
diagnostic output. It does not compile source files or invoke armlink.

The following example shows how to use the -Xlinker option to pass the --split option to the linker,
splitting the default load region containing the RO and RW output sections into separate regions:

armclang hello.c --target=aarch64-arm-none-eabi -Xlinker --split

You can use fromelf --text to compare the differences in image content:

armclang hello.c --target=aarch64-arm-none-eabi -o hello_DEFAULT.axf
armclang hello.c --target=aarch64-arm-none-eabi -o hello_SPLIT.axf -Xlinker --split

fromelf --text hello_DEFAULT.axf > hello_DEFAULT.txt
fromelf --text hello_SPLIT.axf > hello_SPLIT.txt

3 Using Common Compiler Options
3.8 Passing options from the compiler to the linker

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

3-56

Non-Confidential

3.9 Controlling diagnostic messages
Arm Compiler provides diagnostic messages in the form of warnings and errors. You can use options to
suppress these messages or enable them as either warnings or errors.

Arm Compiler lists all the warnings and errors it encounters during the compiling and linking process.
However, if you specify multiple source files, Arm Compiler only reports diagnostic information for the
first source file that it encounters an error in.

Message format for armclang

armclang produces messages in the following format:

file:line:col: type: message

file

The filename that contains the error or warning.

line

The line number that contains the error or warning.

col

The column number that generated the message.

type

The type of the message, for example error or warning.

message

The message text. This text might end with a diagnostic flag of the form -Wflag, for example -
Wvla-extension, to identify the error or warning. Only the messages that you can suppress
have an associated flag. Errors that you cannot suppress do not have an associated flag.

An example warning diagnostic message is:

file.c:8:7: warning: variable length arrays are a C99 feature [-Wvla-extension]
 int i[n];
 ^

This warning message tells you:
• The file that contains the problem is called file.c.
• The problem is on line 8 of file.c, and starts at character 7.
• The warning is about the use of a variable length array i[n].
• The flag to identify, enable, or disable this diagnostic message is vla-extension.

The following are common options that control diagnostic output from armclang.

Table 3-12 Common diagnostic options

Option Description

-Werror Turn all warnings into errors.

-Werror=foo Turn warning flag foo into an error.

-Wno-error=foo Leave warning flag foo as a warning even if -Werror is
specified.

-Wfoo Enable warning flag foo.

-Wno-foo Suppress warning flag foo.

-w Suppress all warnings. Note that this option is a lowercase w.

3 Using Common Compiler Options
3.9 Controlling diagnostic messages

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

3-57

Non-Confidential

Table 3-12 Common diagnostic options (continued)

Option Description

-Weverything Enable all warnings.

-Wpedantic Generate warnings if code violates strict ISO C and ISO C++.

-pedantic Generate warnings if code violates strict ISO C and ISO C++.

-pedantic-errors Generate errors if code violates strict ISO C and ISO C++.

See Controlling Errors and Warnings in the Clang Compiler User's Manual for full details about
controlling diagnostics with armclang.

Examples of controlling diagnostic messages with armclang

Copy the following code example to file.c and compile it with Arm Compiler to see example
diagnostic messages.

#include <stdlib.h>
#include <stdio.h>

void function (int x) {
 int i;
 int y=i+x;

 printf("Result of %d plus %d is %d\n", i, x); /* Missing an input argument for the third
%d */
 call(); /* This function has not been declared and is therefore an implicit declaration
*/

 return;
}

Compile file.c using:

armclang --target=aarch64-arm-none-eabi -march=armv8 -c file.c

By default, armclang checks the format of printf() statements to ensure that the number of % format
specifiers matches the number of data arguments. Therefore armclang generates this diagnostic message:

file.c:9:36: warning: more '%' conversions than data arguments [-Wformat]
 printf("Result of %d plus %d is %d\n", i, x);
 ^

By default, armclang compiles for the gnu11 standard for .c files. This language standard does not
allow implicit function declarations. Therefore armclang generates this diagnostic message:

file.c:11:3: warning: implicit declaration of function 'call' is invalid C99 [-Wimplicit-
function-declaration]
 call();
 ^

To suppress all warnings, use -w:

armclang --target=aarch64-arm-none-eabi -march=armv8-a -c file.c -w

To suppress only the -Wformat warning, use -Wno-format:

armclang --target=aarch64-arm-none-eabi -march=armv8-a -c file.c -Wno-format

To enable the -Wformat message as an error, use -Werror=format:

armclang --target=aarch64-arm-none-eabi -march=armv8-a -c file.c -Werror=format

Some diagnostic messages are suppressed by default. To see all diagnostic messages, use -Weverything:

armclang --target=aarch64-arm-none-eabi -march=armv8-a -c file.c -Weverything

3 Using Common Compiler Options
3.9 Controlling diagnostic messages

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

3-58

Non-Confidential

http://clang.llvm.org/docs/UsersManual.html#options-to-control-error-and-warning-messages
http://clang.llvm.org/docs/UsersManual.html

Pragmas for controlling diagnostics with armclang

Pragmas within your source code can control the output of diagnostics from the armclang compiler.

See Controlling Errors and Warnings in the Clang Compiler User's Manual for full details about
controlling diagnostics with armclang.

The following are some of the common options that control diagnostics:

#pragma clang diagnostic ignored "-Wname"

Ignores the diagnostic message specified by name.

#pragma clang diagnostic warning "-Wname"

Sets the diagnostic message specified by name to warning severity.

#pragma clang diagnostic error "-Wname"

Sets the diagnostic message specified by name to error severity.

#pragma clang diagnostic fatal "-Wname"

Sets the diagnostic message specified by name to fatal error severity.

#pragma clang diagnostic push

Saves the diagnostic state so that it can be restored.

#pragma clang diagnostic pop

Restores the last saved diagnostic state.

The compiler provides appropriate diagnostic names in the diagnostic output.
 Note

Alternatively, you can use the command-line option, -Wname, to suppress or change the severity of
messages, but the change applies for the entire compilation.

Example of using pragmas to selectively override a command-line option
foo.c:

#if foo
#endif foo /* no warning when compiling with -Wextra-tokens */

#pragma clang diagnostic push
#pragma clang diagnostic warning "-Wextra-tokens"

#if foo
#endif foo /* warning: extra tokens at end of #endif directive */

#pragma clang diagnostic pop

If you build this example with:

armclang --target=arm-arm-none-eabi -march=armv7-a -c foo.c -o foo.o -Wno-extra-tokens

The compiler only generates a warning for the second instance of #endif foo:

foo.c:8:8: warning: extra tokens at end of #endif directive [-Wextra-tokens]
#endif foo /* warning: extra tokens at end of #endif directive */
 ^
 //
1 warning generated.

3 Using Common Compiler Options
3.9 Controlling diagnostic messages

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

3-59

Non-Confidential

http://clang.llvm.org/docs/UsersManual.html#controlling-diagnostics-via-pragmas
http://clang.llvm.org/docs/UsersManual.html

Message format for other tools

The other tools in the toolchain (such as armasm and armlink) produce messages in the following
format:

type: prefix id suffix: message_text

type

One of the following types:

Internal fault

Internal faults indicate an internal problem with the tool. Contact your supplier with
feedback.

Error

Errors indicate problems that cause the tool to stop.

Warning

Warnings indicate unusual conditions that might indicate a problem, but the tool
continues.

Remark

Remarks indicate common, but sometimes unconventional, tool usage. These
diagnostics are not displayed by default. The tool continues.

prefix
The tool that generated the message, one of:
• A - armasm
• L - armlink or armar
• Q - fromelf

id

A unique numeric message identifier.

suffix
The type of message, one of:
• E - Error
• W - Warning
• R - Remark

message_text

The text of the message.

For example, the following armlink error message:

Error: L6449E: While processing /home/scratch/a.out: I/O error writing file '/home/scratch/
a.out': Permission denied

All the diagnostic messages that are in this format, and any additional information, are in the Arm®

Compiler Errors and Warnings Reference Guide.

Options for controlling diagnostics with the other tools

Several different options control diagnostics with the armasm, armlink, armar, and fromelf tools:

--brief_diagnostics

armasm only. Uses a shorter form of the diagnostic output. The original source line is not
displayed and the error message text is not wrapped when it is too long to fit on a single line.

3 Using Common Compiler Options
3.9 Controlling diagnostic messages

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

3-60

Non-Confidential

https://developer.arm.com/documentation/100074/0616
https://developer.arm.com/documentation/100074/0616

--diag_error=tag[,tag]...

Sets the specified diagnostic messages to Error severity. Use --diag_error=warning to treat all
warnings as errors.

--diag_remark=tag[,tag]...

Sets the specified diagnostic messages to Remark severity.

--diag_style=arm|ide|gnu

Specifies the display style for diagnostic messages.

--diag_suppress=tag[,tag]...

Suppresses the specified diagnostic messages. Use --diag_suppress=error to suppress all
errors that can be downgraded, or --diag_suppress=warning to suppress all warnings.

--diag_warning=tag[,tag]...

Sets the specified diagnostic messages to Warning severity. Use --diag_warning=error to set
all errors that can be downgraded to warnings.

--errors=filename

Redirects the output of diagnostic messages to the specified file.

--remarks

armlink only. Enables the display of remark messages (including any messages redesignated to
remark severity using --diag_remark).

tag is the four-digit diagnostic number, nnnn, with the tool letter prefix, but without the letter suffix
indicating the severity. A full list of tags with the associated suffixes is in the Arm® Compiler Errors and
Warnings Reference Guide.

For example, to downgrade a warning message to Remark severity:

$ armasm test.s --cpu=8-A.32
"test.s", line 55: Warning: A1313W: Missing END directive at end of file
0 Errors, 1 Warning

$ armasm test.s --cpu=8-A.32 --diag_remark=A1313
"test.s", line 55: Missing END directive at end of file

Related information
-W (armclang)
The LLVM Compiler Infrastructure Project
Clang Compiler User's Manual

3 Using Common Compiler Options
3.9 Controlling diagnostic messages

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

3-61

Non-Confidential

https://developer.arm.com/documentation/100074/0616
https://developer.arm.com/documentation/100074/0616
https://developer.arm.com/documentation/101754/0616/armclang-Reference/armclang-Command-line-Options/-W--armclang-
http://llvm.org
http://clang.llvm.org/docs/UsersManual.html

3.10 Selecting floating-point options
Arm Compiler supports floating-point arithmetic and floating-point data types in your source code or
application.

Arm Compiler supports floating-point arithmetic by using one of the following:

• Libraries that implement floating-point arithmetic in software.
• Hardware floating-point registers and instructions that are available on most Arm-based processors.

You can use various options that determine how Arm Compiler generates code for floating-point
arithmetic. Depending on your target, you might need to specify one or more of these options to generate
floating-point code that correctly uses floating-point hardware or software libraries.

Table 3-13 Options for floating-point selection

Option Description

armclang -mfpu Specify the floating-point architecture to the compiler (ignored with AArch64 targets).

armclang -mfloat-abi Specify the floating-point linkage to the compiler.

armclang -march Specify the target architecture to the compiler. This option automatically selects the default
floating-point architecture.

armclang -mcpu Specify the target processor to the compiler. This option automatically selects the default
floating-point architecture.

armlink --fpu Specify the floating-point architecture to the linker.

To improve performance, the compiler can use floating-point registers instead of the stack. You can
disable this feature with the [COMMUNITY] option -mno-implicit-float.

 Note

Avoid specifying both the architecture (-march) and the processor (-mcpu) because specifying both has
the potential to cause a conflict. The compiler infers the correct architecture from the processor.
• If you want to run code on one particular processor, specify the processor using -mcpu. Performance

is optimized, but code is only guaranteed to run on that processor. If you specify a value for -mcpu,
do not also specify a value for -march.

• If you want your code to run on a range of processors from a particular architecture, specify the
architecture using -march. The code runs on any processor implementation of the target architecture,
but performance might be impacted. If you specify a value for -march, do not also specify a value for
-mcpu.

 Note

The -mfpu option is ignored with AArch64 targets, for example aarch64-arm-none-eabi. Use the -mcpu
option to override the default FPU for aarch64-arm-none-eabi targets. For example, to prevent the use of
floating-point instructions or floating-point registers for the aarch64-arm-none-eabi target use the -
mcpu=name+nofp+nosimd option. Subsequent use of floating-point data types in this mode is
unsupported.

Benefits of using floating-point hardware versus software floating-point libraries

Code that uses floating-point hardware is more compact and faster than code that uses software libraries
for floating-point arithmetic. But code that uses the floating-point hardware can only be run on
processors that have the floating-point hardware. Code that uses software floating-point libraries can run
on Arm-based processors that do not have floating-point hardware, for example the Cortex‑M0
processor. Therefore, using software floating-point libraries makes the code more portable. You might
also disable floating-point hardware to reduce power consumption.

3 Using Common Compiler Options
3.10 Selecting floating-point options

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

3-62

Non-Confidential

Enabling and disabling the use of floating-point hardware

By default, Arm Compiler uses the available floating-point hardware that is based on the target you
specify for -mcpu or -march. However, you can force Arm Compiler to disable the floating-point
hardware. Disabling floating-point hardware forces Arm Compiler to use software floating-point
libraries, if available, to perform the floating-point arithmetic in your source code.

When compiling for AArch64:
• By default, Arm Compiler uses floating-point hardware that is available on the target.
• To disable the use of floating-point arithmetic, use the +nofp extension on the -mcpu or -march

options.

armclang --target=aarch64-arm-none-eabi -march=armv8-a+nofp

• Software floating-point library for AArch64 is not currently available. Therefore, if you disable
floating-point hardware when compiling for AArch64 targets, Arm Compiler does not support
floating-point arithmetic in your source code.

• Disabling floating-point arithmetic does not disable all the floating-point hardware because the
floating-point hardware is also used for Advanced SIMD arithmetic. To disable all Advanced SIMD
and floating-point hardware, use the +nofp+nosimd extension on the -mcpu or -march options:

armclang --target=aarch64-arm-none-eabi -march=armv8-a+nofp+nosimd

See -march and -mcpu in the Arm Compiler Reference Guide for more information.

When compiling for AArch32:
• By default, Arm Compiler uses floating-point hardware that is available on the target, except for

Armv6‑M, which does not have any floating-point hardware.
• To disable the use of floating-point hardware instructions, use the -mfpu=none option.

armclang --target=arm-arm-none-eabi -march=armv8-a -mfpu=none

• On AArch32 targets, using -mfpu=none disables the hardware for both Advanced SIMD and floating-
point arithmetic. You can use -mfpu to selectively enable certain hardware features. For example, if
you want to use the hardware for Advanced SIMD operations on an Armv7 architecture-based
processor, but not for floating-point arithmetic, then use -mfpu=neon.

armclang --target=arm-arm-none-eabi -march=armv7-a -mfpu=neon

• The Armv8.1-M architecture profile has optional support for the M-profile Vector Extension (MVE).
-march and -mcpu support certain MVE floating-point combinations.

armclang --target=arm-arm-none-eabi -march=armv8.1-m.main+mve.fp

See -march, -mcpu, and -mfpu in the Arm Compiler Reference Guide for more information.

Floating-point linkage

Floating-point linkage refers to how the floating-point arguments are passed to and returned from
function calls.

For AArch64, Arm Compiler always uses hardware linkage. When using hardware linkage, Arm
Compiler passes and returns floating-point values in hardware floating-point registers.

For AArch32, Arm Compiler can use hardware linkage or software linkage. When using software
linkage, Arm Compiler passes and returns floating-point values in general-purpose registers. By default,
Arm Compiler uses software linkage. You can use the -mfloat-abi option to force hardware linkage or
software linkage.

3 Using Common Compiler Options
3.10 Selecting floating-point options

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

3-63

Non-Confidential

https://developer.arm.com/documentation/101754/0616/armclang-Reference/armclang-Command-line-Options/-march
https://developer.arm.com/documentation/101754/0616/armclang-Reference/armclang-Command-line-Options/-mcpu
https://developer.arm.com/documentation/101754/0616/armclang-Reference/armclang-Command-line-Options/-march
https://developer.arm.com/documentation/101754/0616/armclang-Reference/armclang-Command-line-Options/-mcpu
https://developer.arm.com/documentation/101754/0616/armclang-Reference/armclang-Command-line-Options/-mfpu

Table 3-14 Floating-point linkage for AArch32

-mfloat-abi value Linkage Floating-point operations

hard Hardware linkage. Use floating-point
registers. But if -mfpu=none is specified
for AArch32, then use general-purpose
registers.

Use hardware floating-point instructions.
But if -mfpu=none is specified for
AArch32, then use software libraries.

soft Software linkage. Use general-purpose
registers.

Use software libraries without floating-
point hardware.

softfp (This value is the default) Software linkage. Use general-purpose
registers.

Use hardware floating-point instructions.
But if -mfpu=none is specified for
AArch32, then use software libraries.

Code with hardware linkage can be faster than the same code with software linkage. However, code with
software linkage can be more portable because it does not require the hardware floating-point registers.
Hardware floating-point is not available on some architectures such as Armv6‑M, or on processors where
the floating-point hardware might be powered down for energy efficiency reasons.

 Note

In AArch32 state, if you specify -mfloat-abi=soft, then specifying the -mfpu option does not have an
effect.

See the Arm Compiler Reference Guide for more information on the -mfloat-abi option.
 Note

All objects to be linked together must have the same type of linkage. If you link object files that have
hardware linkage with object files that have software linkage, then the image might have unpredictable
behavior. When linking objects, specify the armlink option --fpu=name where name specifies the
correct linkage type and floating-point hardware. This option enables the linker to provide diagnostic
information if it detects different linkage types.

See the Arm Compiler Reference Guide for more information on how the --fpu option specifies the
linkage type and floating-point hardware.

Related information
-mcpu (armclang)
-mfloat-abi (armclang)
-mfpu (armclang)
About floating-point support

3 Using Common Compiler Options
3.10 Selecting floating-point options

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

3-64

Non-Confidential

https://developer.arm.com/documentation/101754/0616/armclang-Reference/armclang-Command-line-Options/-mfloat-abi
https://developer.arm.com/documentation/101754/0616/armlink-Reference/armlink-Command-line-Options/--fpu-name--armlink-
https://developer.arm.com/documentation/101754/0616/armclang-Reference/armclang-Command-line-Options/-mcpu
https://developer.arm.com/documentation/101754/0616/armclang-Reference/armclang-Command-line-Options/-mfloat-abi
https://developer.arm.com/documentation/101754/0616/armclang-Reference/armclang-Command-line-Options/-mfpu
https://developer.arm.com/documentation/100073/0616/Floating-point-Support/About-floating-point-support

3.11 Compilation tools command-line option rules
You can use command-line options to control many aspects of the compilation tools' operation. There are
rules that apply to each tool.

armclang option rules

armclang follows the same syntax rules as GCC. Some options are preceded by a single dash -, others
by a double dash --. Some options require an = character between the option and the argument, others
require a space character.

armasm, armar, armlink, and fromelf command-line syntax rules

The following rules apply, depending on the type of option:

Single-letter options

All single-letter options, including single-letter options with arguments, are preceded by a single
dash -. You can use a space between the option and the argument, or the argument can
immediately follow the option. For example:

armar -r -a obj1.o mylib.a obj2.o

armar -r -aobj1.o mylib.a obj2.o

Keyword options

All keyword options, including keyword options with arguments, are preceded by a double dash
--. An = or space character is required between the option and the argument. For example:

armlink myfile.o --cpu=list

armlink myfile.o --cpu list

Command-line syntax rules common to all tools

To compile files with names starting with a dash, use the POSIX option -- to specify that all subsequent
arguments are treated as filenames, not as command switches. For example, to link a file named
-ifile_1, use:

armlink -- -ifile_1

In some Unix shells, you might have to include quotes when using arguments to some command-line
options, for example:

armlink obj1.o --keep='s.o(vect)'

3 Using Common Compiler Options
3.11 Compilation tools command-line option rules

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

3-65

Non-Confidential

Chapter 4
Writing Optimized Code

To make best use of the optimization capabilities of Arm Compiler, there are various options, pragmas,
attributes, and coding techniques that you can use.

It contains the following sections:
• 4.1 Effect of the volatile keyword on compiler optimization on page 4-67.
• 4.2 Optimizing loops on page 4-70.
• 4.3 Inlining functions on page 4-75.
• 4.4 Stack use in C and C++ on page 4-77.
• 4.5 Packing data structures on page 4-80.
• 4.6 Optimizing for code size or performance on page 4-84.
• 4.7 Methods of minimizing function parameter passing overhead on page 4-86.
• 4.8 Optimizing across modules with Link-Time Optimization on page 4-87.
• 4.9 Scatter file section or object placement with Link-Time Optimization on page 4-92.
• 4.10 How optimization affects the debug experience on page 4-97.

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

4-66

Non-Confidential

4.1 Effect of the volatile keyword on compiler optimization
Use the volatile keyword when declaring variables that the compiler must not optimize. If you do not
use the volatile keyword where it is needed, then the compiler might optimize accesses to the variable
and generate unintended code or remove intended functionality.

What volatile means

The declaration of a variable as volatile tells the compiler that the variable can be modified at any time
externally to the implementation, for example:

• By the operating system.
• By another thread of execution such as an interrupt routine or signal handler.
• By hardware.

This declaration ensures that the compiler does not optimize any use of the variable on the assumption
that this variable is unused or unmodified.

You can also use volatile to tell the compiler that a block containing inline assembly code has side-
effects that the output, input, and clobber lists do not represent.

 Note

Arm Compiler does not guarantee that a single-copy atomic instruction is used to access a volatile
variable when one is available for the target processor, but not guaranteed to be single-copy atomic by
the architecture.

When to use volatile

Use the volatile keyword for variables that might be modified from outside the scope that they are
defined in.

For example, an external process might update a variable in a function. But if the variable appears
unmodified, then the compiler might use the value of the older variable that is saved in a register rather
than accessing it from memory. Declaring the variable as volatile makes the compiler access this
variable from memory whenever the variable is referenced in code. This declaration ensures that the code
always uses the updated variable value from memory.

Another example is that a variable might be used to implement a sleep or timer delay. If the variable
appears unused, the compiler might remove the timer delay code, unless the variable is declared as
volatile.

In practice, you must declare a variable as volatile when:
• Accessing memory-mapped peripherals.
• Sharing global variables between multiple threads.
• Accessing global variables in an interrupt routine or signal handler.

You should also consider using volatile before any inline assembly code.

Potential problems when not using volatile
When a volatile variable is not declared as volatile, the compiler assumes that its value cannot be
modified from outside the scope that it is defined in. Therefore, the compiler might perform unwanted
optimizations. This problem can manifest itself in various ways:
• Code might become stuck in a loop while polling hardware.
• Multi-threaded code might exhibit strange behavior.
• Optimization might result in the removal of code that implements deliberate timing delays.

Forcing the use of a specific instruction to access memory

Specifying a variable as volatile does not guarantee that any particular machine instruction is used to
access it. For example, the AXI peripheral port on Cortex‑R7 and Cortex‑R8 is a 64-bit peripheral

4 Writing Optimized Code
4.1 Effect of the volatile keyword on compiler optimization

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

4-67

Non-Confidential

register. This register must be written to using a two-register STM instruction, and not by either an STRD
instruction or a pair of STR instructions. There is no guarantee that the compiler selects the access method
required by that register in response to a volatile modifier on the associated variable or pointer type.

If you are writing code that must access the AXI port, or any other memory-mapped location that
requires a particular access strategy, then declaring the location as a volatile variable is not enough.
You must also perform your accesses to the register using an __asm__ statement containing the load or
store instructions you need. For example:

__asm__ volatile("stm %1,{%Q0,%R0}" : : "r"(val), "r"(ptr));
__asm__ volatile("ldm %1,{%Q0,%R0}" : "=r"(val) : "r"(ptr));

Example of infinite loop when not using the volatile keyword

The use of the volatile keyword is illustrated in the two example routines in the following table.

Table 4-1 C code for nonvolatile and volatile buffer loops

Nonvolatile version of buffer loop Volatile version of buffer loop

int buffer_full;
int read_stream(void)
{
 int count = 0;
 while (!buffer_full)
 {
 count++;
 }
 return count;
}

volatile int buffer_full;
int read_stream(void)
{
 int count = 0;
 while (!buffer_full)
 {
 count++;
 }
 return count;
}

Both of these routines increment a counter in a loop until a status flag buffer_full is set to true. The
state of buffer_full can change asynchronously with program flow.

The example on the left does not declare the variable buffer_full as volatile and is therefore wrong.
The example on the right does declare the variable buffer_full as volatile.

The following table shows the corresponding disassembly of the machine code that the compiler
produces for each of the examples in Table 4-1 C code for nonvolatile and volatile buffer loops
on page 4-68. The C code for each example is compiled using
armclang --target=arm-arm-none-eabi -march=armv8-a -Os -S.

Table 4-2 Disassembly for nonvolatile and volatile buffer loop

Nonvolatile version of buffer loop Volatile version of buffer loop

read_stream:
 movw r0, :lower16:buffer_full
 movt r0, :upper16:buffer_full
 ldr r1, [r0]
 mvn r0, #0
.LBB0_1:
 add r0, r0, #1
 cmp r1, #0
 beq .LBB0_1 ; infinite loop
 bx lr

read_stream:
 movw r1, :lower16:buffer_full
 mvn r0, #0
 movt r1, :upper16:buffer_full
.LBB1_1:
 ldr r2, [r1] ; buffer_full
 add r0, r0, #1
 cmp r2, #0
 beq .LBB1_1
 bx lr

In the disassembly of the nonvolatile example, the statement LDR r1, [r0] loads the value of
buffer_full into register r1 outside the loop labeled .LBB0_1. Because buffer_full is not declared as
volatile, the compiler assumes that its value cannot be modified outside the program. Having already
read the value of buffer_full into r0, the compiler omits reloading the variable when optimizations are
enabled, because its value cannot change. The result is the infinite loop labeled .LBB0_1.

In the disassembly of the volatile example, the compiler assumes that the value of buffer_full can
change outside the program and performs no optimization. Therefore, the value of buffer_full is

4 Writing Optimized Code
4.1 Effect of the volatile keyword on compiler optimization

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

4-68

Non-Confidential

loaded into register r2 inside the loop labeled .LBB1_1. As a result, the assembly code that is generated
for loop .LBB1_1 is correct.

Related information
Volatile variables
armclang Inline Assembler
Arm Cortex-R7 MPCore Technical Reference Manual
Arm Cortex-R8 MPCore Processor Technical Reference Manual

4 Writing Optimized Code
4.1 Effect of the volatile keyword on compiler optimization

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

4-69

Non-Confidential

https://developer.arm.com/documentation/101754/0616/armclang-Reference/other-compiler-specific-features/volatile-variables
https://developer.arm.com/documentation/101754/0616/armclang-Reference/armclang-inline-assembler
https://developer.arm.com/documentation/ddi0458/latest
https://developer.arm.com/documentation/100400/latest

4.2 Optimizing loops
Loops can take a significant amount of time to complete depending on the number of iterations in the
loop. The overhead of checking a condition for each iteration of the loop can degrade the performance of
the loop.

Loop unrolling
You can reduce the impact of this overhead by unrolling some of the iterations, which in turn reduces the
number of iterations for checking the condition. Use #pragma unroll (n) to unroll time-critical loops
in your source code. However, unrolling loops has the disadvantage of increasing the code size. These
pragmas are only effective at optimization -O2, -O3, -Ofast, and -Omax.

Table 4-3 Loop unrolling pragmas

Pragma Description

#pragma unroll (n) Unroll n iterations of the loop.

#pragma unroll_completely Unroll all the iterations of the loop.

 Note

Manually unrolling loops in source code might hinder the automatic rerolling of loops and other loop
optimizations by the compiler. Arm recommends that you use #pragma unroll instead of manually
unrolling loops. See #pragma unroll[(n)], #pragma unroll_completely in the Arm® Compiler Reference
Guide for more information.

The following examples show code with loop unrolling and code without loop unrolling.

Table 4-4 Loop optimizing example

Bit counting loop without unrolling Bit counting loop with unrolling

int countSetBits1(unsigned int n)
{
 int bits = 0;

 while (n != 0)
 {
 if (n & 1) bits++;
 n >>= 1;
 }
 return bits;
}

int countSetBits2(unsigned int n)
{
 int bits = 0;
 #pragma unroll (4)
 while (n != 0)
 {
 if (n & 1) bits++;
 n >>= 1;
 }
 return bits;
}

The following code is the code that Arm Compiler generates for the preceding examples. Copy the
examples into file.c and compile using:

armclang --target=arm-arm-none-eabi -march=armv8-a file.c -O2 -S -o file.s

For the function with loop unrolling, countSetBits2, the generated code is faster but larger in size.

4 Writing Optimized Code
4.2 Optimizing loops

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

4-70

Non-Confidential

https://developer.arm.com/documentation/101754/0616/armclang-Reference/compiler-specific-pragmas/pragma-unrolln-pragma-unroll_completely

Table 4-5 Loop examples

Bit counting loop without unrolling Bit counting loop with unrolling

countSetBits1:
 mov r1, r0
 mov r0, #0
 cmp r1, #0
 bxeq lr
 mov r2, #0
 mov r0, #0
.LBB0_1:
 and r3, r1, #1
 cmp r2, r1, asr #1
 add r0, r0, r3
 lsr r3, r1, #1
 mov r1, r3
 bne .LBB0_1
 bx lr

countSetBits2:
 mov r1, r0
 mov r0, #0
 cmp r1, #0
 bxeq lr
 mov r2, #0
 mov r0, #0
LBB0_1:
 and r3, r1, #1
 cmp r2, r1, asr #1
 add r0, r0, r3
 beq .LBB0_4
@ BB#2:
 asr r3, r1, #1
 cmp r2, r1, asr #2
 and r3, r3, #1
 add r0, r0, r3
 asrne r3, r1, #2
 andne r3, r3, #1
 addne r0, r0, r3
 cmpne r2, r1, asr #3
 beq .LBB0_4
@ BB#3:
 asr r3, r1, #3
 cmp r2, r1, asr #4
 and r3, r3, #1
 add r0, r0, r3
 asr r3, r1, #4
 mov r1, r3
 bne .LBB0_1
.LBB0_4:
 bx lr

Arm Compiler can unroll loops completely only if the number of iterations is known at compile time.

Loop vectorization

If your target has the Advanced SIMD unit, then Arm Compiler can use the vectorizing engine to
optimize vectorizable sections of the code. At optimization level -O1, you can enable vectorization using
-fvectorize. At higher optimizations, -fvectorize is enabled by default and you can disable it using
-fno-vectorize. See -fvectorize in the Arm® Compiler Reference Guide for more information. When
using -fvectorize with -O1, vectorization might be inhibited in the absence of other optimizations
which might be present at -O2 or higher.

For example, loops that access structures can be vectorized if all parts of the structure are accessed
within the same loop rather than in separate loops. The following examples show a loop that Advanced
SIMD can vectorize, and a loop that cannot be vectorized easily.

Table 4-6 Example loops

Vectorizable by Advanced SIMD Not vectorizable by Advanced SIMD

typedef struct tBuffer {
 int a;
 int b;
 int c;
} tBuffer;
tBuffer buffer[8];

void DoubleBuffer1 (void)
{
 int i;
 for (i=0; i<8; i++)
 {
 buffer[i].a *= 2;
 buffer[i].b *= 2;
 buffer[i].c *= 2;
 }
}

typedef struct tBuffer {
 int a;
 int b;
 int c;
} tBuffer;
tBuffer buffer[8];

void DoubleBuffer2 (void)
{
 int i;
 for (i=0; i<8; i++)
 buffer[i].a *= 2;
 for (i=0; i<8; i++)
 buffer[i].b *= 2;
 for (i=0; i<8; i++)
 buffer[i].c *= 2;
}

4 Writing Optimized Code
4.2 Optimizing loops

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

4-71

Non-Confidential

https://developer.arm.com/documentation/101754/0616/armclang-Reference/armclang-Command-line-Options/-fvectorize---fno-vectorize

For each example, copy the code into file.c and compile at optimization level O2 to enable auto-
vectorization:

armclang --target=arm-arm-none-eabi -march=armv8-a -O2 file.c -S -o file.s

The vectorized assembly code contains the Advanced SIMD instructions, for example vld1, vshl, and
vst1. These Advanced SIMD instructions are not generated when compiling the example with the non-
vectorizable loop.

Table 4-7 Assembly code from vectorizable and non-vectorizable loops

Vectorized assembly code Non-vectorized assembly code

DoubleBuffer1:
.fnstart
@ BB#0:
 movw r0, :lower16:buffer
 movt r0, :upper16:buffer
 vld1.64 {d16, d17}, [r0:128]
 mov r1, r0
 vshl.i32 q8, q8, #1
 vst1.32 {d16, d17}, [r1:128]!
 vld1.64 {d16, d17}, [r1:128]
 vshl.i32 q8, q8, #1
 vst1.64 {d16, d17}, [r1:128]
 add r1, r0, #32
 vld1.64 {d16, d17}, [r1:128]
 vshl.i32 q8, q8, #1
 vst1.64 {d16, d17}, [r1:128]
 add r1, r0, #48
 vld1.64 {d16, d17}, [r1:128]
 vshl.i32 q8, q8, #1
 vst1.64 {d16, d17}, [r1:128]
 add r1, r0, #64
 add r0, r0, #80
 vld1.64 {d16, d17}, [r1:128]
 vshl.i32 q8, q8, #1
 vst1.64 {d16, d17}, [r1:128]
 vld1.64 {d16, d17}, [r0:128]
 vshl.i32 q8, q8, #1
 vst1.64 {d16, d17}, [r0:128]
 bxlr

DoubleBuffer2:
 .fnstart
@ BB#0:
 movw r0, :lower16:buffer
 movt r0, :upper16:buffer
 ldr r1, [r0]
 lsl r1, r1, #1
 str r1, [r0]
 ldr r1, [r0, #12]
 lsl r1, r1, #1
 str r1, [r0, #12]
 ldr r1, [r0, #24]
 lsl r1, r1, #1
 str r1, [r0, #24]
 ldr r1, [r0, #36]
 lsl r1, r1, #1
 str r1, [r0, #36]
 ldr r1, [r0, #48]
 lsl r1, r1, #1
 str r1, [r0, #48]
 ldr r1, [r0, #60]
 lsl r1, r1, #1
 str r1, [r0, #60]
 ldr r1, [r0, #72]
 lsl r1, r1, #1
 str r1, [r0, #72]
 ldr r1, [r0, #84]
 lsl r1, r1, #1
 str r1, [r0, #84]
 ldr r1, [r0, #4]
 lsl r1, r1, #1
 str r1, [r0, #4]
 ldr r1, [r0, #16]
 lsl r1, r1, #1
 ...
 bx lr

 Note

Advanced SIMD (Single Instruction Multiple Data), also known as Arm Neon™ technology, is a powerful
vectorizing unit on Armv7‑A and later Application profile architectures. It enables you to write highly
optimized code. You can use intrinsics to directly use the Advanced SIMD capabilities from C or C++
code. The intrinsics and their data types are defined in arm_neon.h. For more information on Advanced
SIMD, see the Arm® C Language Extensions ACLE Q1 2019, Cortex®‑A Series Programmer's Guide, and
Arm® Neon™ Programmer's Guide.

Using -fno-vectorize does not necessarily prevent the compiler from emitting Advanced SIMD
instructions. The compiler or linker might still introduce Advanced SIMD instructions, such as when
linking libraries that contain these instructions.

To prevent the compiler from emitting Advanced SIMD instructions for AArch64 targets, specify
+nosimd using -march or -mcpu:

armclang --target=aarch64-arm-none-eabi -march=armv8-a+nosimd -O2 file.c -S -o file.s

4 Writing Optimized Code
4.2 Optimizing loops

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

4-72

Non-Confidential

https://developer.arm.com/documentation/101028/0007/3-c-language-extensions
https://developer.arm.com/documentation/den0024/latest
https://developer.arm.com/documentation/den0018/latest

To prevent the compiler from emitting Advanced SIMD instructions for AArch32 targets, set the option -
mfpu to the correct value that does not include Advanced SIMD. For example, set -mfpu=fp-armv8.

armclang --target=aarch32-arm-none-eabi -march=armv8-a -mfpu=fp-armv8 -O2 file.c -S -o file.s

Loop termination in C code
If written without caution, the loop termination condition can cause significant overhead. Where
possible:
• Use simple termination conditions.
• Write count-down-to-zero loops and test for equality against zero.
• Use counters of type unsigned int.

Following any or all of these guidelines, separately or in combination, is likely to result in better code.

The following table shows two sample implementations of a routine to calculate n! that together
illustrate loop termination overhead. The first implementation calculates n! using an incrementing loop,
while the second routine calculates n! using a decrementing loop.

Table 4-8 C code for incrementing and decrementing loops

Incrementing loop Decrementing loop

int fact1(int n)
{
 int i, fact = 1;
 for (i = 1; i <= n; i++)
 fact *= i;
 return (fact);
}

int fact2(int n)
{
 unsigned int i, fact = 1;
 for (i = n; i != 0; i--)
 fact *= i;
 return (fact);
}

The following table shows the corresponding disassembly for each of the preceding sample
implementations. Generate the disassembly using:

armclang -Os -S --target=arm-arm-none-eabi -march=armv8-a

Table 4-9 C disassembly for incrementing and decrementing loops

Incrementing loop Decrementing loop

fact1:
 mov r1, r0
 mov r0, #1
 cmp r1, #1
 bxlt lr
 mov r2, #0
.LBB0_1:
 add r2, r2, #1
 mul r0, r0, r2
 cmp r1, r2
 bne .LBB0_1
 bx lr

fact2:
 mov r1, r0
 mov r0, #1
 cmp r1, #0
 bxeq lr
.LBB1_1:
 mul r0, r0, r1
 subs r1, r1, #1
 bne .LBB1_1
 bx lr

Comparing the disassemblies shows that the ADD and CMP instruction pair in the incrementing loop
disassembly has been replaced with a single SUBS instruction in the decrementing loop disassembly.
Because the SUBS instruction updates the status flags, including the Z flag, there is no requirement for an
explicit CMP r1,r2 instruction.

Also, the variable n does not have to be available for the lifetime of the loop, reducing the number of
registers that have to be maintained. Having fewer registers to maintain eases register allocation. If the
original termination condition involves a function call, each iteration of the loop might call the function,
even if the value it returns remains constant. In this case, counting down to zero is even more important.
For example:

for (...; i < get_limit(); ...);

4 Writing Optimized Code
4.2 Optimizing loops

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

4-73

Non-Confidential

The technique of initializing the loop counter to the number of iterations that are required, and then
decrementing down to zero, also applies to while and do statements.

Infinite loops

armclang considers infinite loops with no side-effects to be undefined behavior, as stated in the C11 and
C++11 standards. In certain situations armclang deletes or moves infinite loops, resulting in a program
that eventually terminates, or does not behave as expected.

To ensure that a loop executes for an infinite length of time, Arm recommends writing infinite loops in
the following way:

void infinite_loop(void) {
 while (1)
 asm volatile(""); // this line is considered to have side-effects
}

armclang does not delete or move the loop, because it has side-effects.

Related information
-O (armclang)
pragma unroll
-fvectorize (armclang)

4 Writing Optimized Code
4.2 Optimizing loops

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

4-74

Non-Confidential

https://developer.arm.com/documentation/101754/0616/armclang-Reference/armclang-Command-line-Options/-O--armclang-
https://developer.arm.com/documentation/101754/0616/armclang-Reference/compiler-specific-pragmas/pragma-unrolln-pragma-unroll_completely
https://developer.arm.com/documentation/101754/0616/armclang-Reference/armclang-Command-line-Options/-fvectorize---fno-vectorize

4.3 Inlining functions
Arm Compiler automatically inlines functions if it decides that inlining the function gives better
performance. This inlining does not significantly increase the code size. However, you can use compiler
hints and options to influence or control whether a function is inlined or not.

Table 4-10 Function inlining

Inlining options, keywords, or
attributes

Description

__inline__ Specify this keyword on a function definition or declaration as a hint to the compiler to
favor inlining of the function. However, for each function call, the compiler still decides
whether to inline the function. This is equivalent to __inline.

__attribute__((always_inline)) Specify this function attribute on a function definition or declaration to tell the compiler
to always inline this function, with certain exceptions such as for recursive functions.
This overrides the -fno-inline-functions option.

__attribute__((noinline)) Specify this function attribute on a function definition or declaration to tell the compiler
to not inline the function. This is equivalent to __declspec(noinline).

-fno-inline-functions This is a compiler command-line option. Specify this option to the compiler to disable
inlining. This option overrides the __inline__ hint.

 Note

• Arm Compiler only inlines functions within the same compilation unit, unless you use Link Time
Optimization. For more information, see Optimizing across modules with link time optimization
on page 4-87 in the Software Development Guide.

• C++ and C99 provide the inline language keyword. The effect of this inline language keyword is
identical to the effect of using the __inline__ compiler keyword. However, the effect in C99 mode
is different from the effect in C++ or other C that does not adhere to the C99 standard. For more
information, see Inline functions in the Arm Compiler Reference Guide.

• Function inlining normally happens at higher optimization levels, such as -O2, except when you
specify __attribute__((always_inline)).

Examples of function inlining

This example shows the effect of __attribute__((always_inline)) and -fno-inline-functions in C99
mode, which is the default behavior for C files. Copy the following code to file.c.

int bar(int a)
{
 a=a*(a+1);
 return a;
}

__attribute__((always_inline)) static int row(int a)
{
 a=a*(a+1);
 return a;
}

int foo (int i)
{
 i=bar(i);
 i=i-2;
 i=bar(i);
 i++;
 i=row(i);
 i++;
 return i;
}

4 Writing Optimized Code
4.3 Inlining functions

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

4-75

Non-Confidential

https://developer.arm.com/documentation/101754/0616/armclang-Reference/other-compiler-specific-features/inline-functions

In the example code, functions bar and row are identical but function row is always inlined. Use the
following compiler commands to compile for -O2 with -fno-inline-functions and without -fno-
inline-functions:

armclang --target=arm-arm-none-eabi -march=armv8-a -S file.c -O2 -o file_no_inline.s -fno-
inline-functions

armclang --target=arm-arm-none-eabi -march=armv8-a -S file.c -O2 -o file_with_inline.s

The generated code shows inlining:

Table 4-11 Effect of -fno-inline-functions

Compiling with -fno-inline-functions Compiling without -fno-inline-functions

foo: @ @foo
 .fnstart
@ BB#0:
 .save {r11, lr}
 push {r11, lr}
 bl bar
 sub r0, r0, #2
 bl bar
 add r1, r0, #1
 add r0, r0, #2
 mul r0, r0, r1
 add r0, r0, #1
 pop {r11, pc}
.Lfunc_end0:
 .size foo, .Lfunc_end0-foo
 .cantunwind
 .fnend

foo: @ @foo
 .fnstart
@ BB#0:
 add r1, r0, #1
 mul r0, r1, r0
 sub r1, r0, #2
 sub r0, r0, #1
 mul r0, r0, r1
 add r1, r0, #1
 add r0, r0, #2
 mul r0, r0, r1
 add r0, r0, #1
 bx lr
.Lfunc_end0:
 .size foo, .Lfunc_end0-foo
 .cantunwind
 .fnend

When compiling with -fno-inline-functions, the compiler does not inline the function bar. When
compiling without -fno-inline-functions, the compiler inlines the function bar. However, the
compiler always inlines the function row even though it is identical to function bar.

Related information
-fno-inline-functions (armclang)
__inline keyword
__attribute__((always_inline)) function attribute
__attribute__((no_inline)) function attribute

4 Writing Optimized Code
4.3 Inlining functions

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

4-76

Non-Confidential

https://developer.arm.com/documentation/101754/0616/armclang-Reference/armclang-Command-line-Options/-fno-inline-functions
https://developer.arm.com/documentation/101754/0616/armclang-Reference/compiler-specific-keywords-and-operators/__inline
https://developer.arm.com/documentation/101754/0616/armclang-Reference/compiler-specific-function-variable-and-type-attributes/__attribute__always_inline-function-attribute
https://developer.arm.com/documentation/101754/0616/armclang-Reference/compiler-specific-function-variable-and-type-attributes/__attribute__noinline-function-attribute

4.4 Stack use in C and C++
C and C++ both use the stack intensively.

For example, the stack holds:

• The return address of functions.
• Registers that must be preserved, as determined by the Arm® Architecture Procedure Call Standard

(AAPCS) or the Arm® Architecture Procedure Call Standard for the Arm® 64-bit Architecture
(AAPCS64). For example, when register contents are saved on entry into subroutines.

• Local variables, including local arrays, structures, and unions.
• Classes in C++.

Some stack usage is not obvious, such as:
• If local integer or floating-point variables are spilled (that is, not allocated to a register), they are

allocated stack memory.
• Structures are normally allocated to the stack. A space equivalent to sizeof(struct) padded to a

multiple of n bytes is reserved on the stack, where n is 16 for AArch64 state, or 8 for AArch32 state.
However, the compiler might try to allocate structures to registers instead.

• If the size of an array is known at compile time, the compiler allocates memory on the stack. Again, a
space equivalent to sizeof(array) padded to a multiple of n bytes is reserved on the stack, where n
is 16 for AArch64 state, or 8 for AArch32 state.

 Note

Memory for variable length arrays is allocated at runtime, on the heap.

• Several optimizations can introduce new temporary variables to hold intermediate results. The
optimizations include: CSE elimination, live range splitting, and structure splitting. The compiler
tries to allocate these temporary variables to registers. If not, it spills them to the stack. For more
information about what these optimizations do, see Overview of optimizations.

• Generally, code that is compiled for processors that only support 16-bit encoded T32 instructions
makes more use of the stack than A64 code, A32 code, and code that is compiled for processors that
support 32-bit encoded T32 instructions. This is because 16-bit encoded T32 instructions have only
eight registers available for allocation, compared to fourteen for A32 code and 32-bit encoded T32
instructions.

• The AAPCS64 requires that some function arguments are passed through the stack instead of the
registers, depending on their type, size, and order.

Processors for embedded applications have limited memory and therefore the amount of space available
on the stack is also limited. You can use Arm Compiler to determine how much stack space is used by
the functions in your application code. The amount of stack that a function uses depends on factors such
as the number and type of arguments to the function, local variables in the function, and the
optimizations that the compiler performs.

Methods of estimating stack usage
Stack use is difficult to estimate because it is code dependent, and can vary between runs depending on
the code path that the program takes on execution. However, it is possible to manually estimate the
extent of stack utilization using the following methods:
• Compile with -g and link with --callgraph to produce a static callgraph. This callgraph shows

information on all functions, including stack usage.
• Link with --info=stack or --info=summarystack to list the stack usage of all global symbols.
• Use a debugger to set a watchpoint on the last available location in the stack and see if the watchpoint

is ever hit. Compile with the -g option to generate the necessary DWARF information.
• Use a debugger, and:

1. Allocate space in memory for the stack that is much larger than you expect to require.
2. Fill the stack space with copies of a known value, for example, 0xDEADDEAD.

4 Writing Optimized Code
4.4 Stack use in C and C++

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

4-77

Non-Confidential

https://developer.arm.com/products/software-development-tools/ds-5-development-studio/resources/tutorials/arm-compiler-optimization#14094c00-47b7-4d15-bda1-582aca26e7b6

3. Run your application, or a fixed portion of it. Aim to use as much of the stack space as possible in
the test run. For example, try to execute the most deeply nested function calls and the worst case
path that the static analysis finds. Try to generate interrupts where appropriate, so that they are
included in the stack trace.

4. After your application has finished executing, examine the stack space of memory to see how
many of the known values have been overwritten. The space has garbage in the used part and the
known values in the remainder.

5. Count the number of garbage values and multiply by sizeof(value), to give their size, in bytes.

The result of the calculation shows how the size of the stack has grown, in bytes.
• Use a Fixed Virtual Platform (FVP) that corresponds to the target processor or architecture. With a

map file, define a region of memory directly below your stack where access is forbidden. If the stack
overflows into the forbidden region, a data abort occurs, which a debugger can trap.

Examining stack usage

It is good practice to examine the amount of stack that the functions in your application use. You can
then consider rewriting your code to reduce stack usage.

To examine the stack usage in your application, use the linker option --info=stack. The following
example code shows functions with different numbers of arguments:

__attribute__((noinline)) int fact(int n)
{
 int f = 1;
 while (n>0)
 f *= n--;
 return f;
}

int foo (int n)
{
 return fact(n);
}

int foo_mor (int a, int b, int c, int d)
{
 return fact(a);
}

int main (void)
{
 return foo(10) + foo_mor(10,11,12,13);
}

Copy the code example to file.c and compile it using the following command:

armclang --target=arm-arm-none-eabi -march=armv8-a -c -g file.c -o file.o

Compiling with the -g option generates the DWARF frame information that armlink requires for
estimating the stack use. Run armlink on the object file using --info=stack:

armlink file.o --info=stack

For the example code, armlink shows the amount of stack that the various functions use. Function
foo_mor has more arguments than function foo, and therefore uses more stack.

Stack Usage for fact 0xc bytes.
Stack Usage for foo 0x8 bytes.
Stack Usage for foo_mor 0x10 bytes.
Stack Usage for main 0x8 bytes.

You can also examine stack usage using the linker option --callgraph:

armlink file.o --callgraph -o FileImage.axf

This outputs a file called FileImage.htm which contains the stack usage information for the various
functions in the application.

fact (ARM, 84 bytes, Stack size 12 bytes, file.o(.text))

4 Writing Optimized Code
4.4 Stack use in C and C++

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

4-78

Non-Confidential

[Stack]

Max Depth = 12
Call Chain = fact

[Called By]
>> foo_mor
>> foo
foo (ARM, 36 bytes, Stack size 8 bytes, file.o(.text))

[Stack]

Max Depth = 20
Call Chain = foo >> fact

[Calls]
>> fact

[Called By]
>> main
foo_mor (ARM, 76 bytes, Stack size 16 bytes, file.o(.text))

[Stack]

Max Depth = 28
Call Chain = foo_mor >> fact

[Calls]
>> fact

[Called By]
>> main
main (ARM, 76 bytes, Stack size 8 bytes, file.o(.text))

[Stack]

Max Depth = 36
Call Chain = main >> foo_mor >> fact

[Calls]
>> foo_mor
>> foo

[Called By]
>> __rt_entry_main (via BLX)

See --info and --callgraph for more information on these options.

Methods of reducing stack usage
In general, you can lower the stack requirements of your program by:
• Writing small functions that only require a few variables.
• Avoiding the use of large local structures or arrays.
• Avoiding recursion.
• Minimizing the number of variables that are in use at any given time at each point in a function.
• Using C block scope syntax and declaring variables only where they are required, so that distinct

scopes can use the same memory.

4 Writing Optimized Code
4.4 Stack use in C and C++

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

4-79

Non-Confidential

https://developer.arm.com/documentation/101754/0616/armlink-Reference/armlink-Command-line-Options/--info-topic--topic----armlink-
https://developer.arm.com/documentation/101754/0616/armlink-Reference/armlink-Command-line-Options/--callgraph----no-callgraph

4.5 Packing data structures
You can reduce the amount of memory that your application requires by packing data into structures.
This is especially important if you need to store and access large arrays of data in embedded systems.

If individual data members in a structure are not packed, the compiler can add padding within the
structure for faster access to individual members, based on the natural alignment of each member. Arm
Compiler provides a pragma and attribute to pack the members in a structure or union without any
padding.

Table 4-12 Packing members in a structure or union

Pragma or attribute Description

#pragma pack (n) For each member, if n bytes is less than the natural alignment of
the member, then set the alignment to n bytes, otherwise the
alignment is the natural alignment of the member. For more
information see #pragma pack (n) and __alignof__.

__attribute__((packed)) This is equivalent to #pragma pack (1). However, the attribute
can also be used on individual members in a structure or union.

Packing the entire structure

To pack the entire structure or union, use __attribute__((packed)) or #pragma pack(n) to the
declaration of the structure as shown in the code examples. The attribute and pragma apply to all the
members of the structure or union. If the member is a structure, then the structure has an alignment of 1-
byte, but the members of that structure continue to have their natural alignment.

When using #pragma pack(n), the alignment of the structure is the alignment of the largest member
after applying #pragma pack(n) to the structure.

Each example declares two objects c and d. Copy each example into file.c and compile:

armclang --target=arm-arm-none-eabi -march=armv8-a -c file.c -o file.o

For each example use linker option --info=sizes to examine the memory used in file.o.

armlink file.o --info=sizes

The linker output shows the total memory used by the two objects c and d. For example:

Code (inc. data) RO Data RW Data ZI Data Debug Object Name
 36 0 0 0 24 0 str.o

 36 0 16 0 24 0 Object Totals

4 Writing Optimized Code
4.5 Packing data structures

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

4-80

Non-Confidential

https://developer.arm.com/documentation/101754/0616/armclang-Reference/compiler-specific-pragmas/pragma-pack
https://developer.arm.com/documentation/101754/0616/armclang-Reference/compiler-specific-keywords-and-operators/__alignof__

Table 4-13 Packing structures

Code Packing Size of structure

struct stc
{
 char one;
 short two;
 char three;
 int four;
} c,d;

int main (void)
{
 c.one=1;
 return 0;
}

Char

ShortChar

Padding

Padding

Int

Figure 4-1 Structure without
packing attribute or pragma

12. The alignment of the structure is the
natural alignment of the largest member. In
this example, the largest member is an int.

struct __attribute__((packed))
stc
{
 char one;
 short two;
 char three;
 int four;
} c,d;

int main (void)
{
 c.one=1;
 return 0;
}

CharShortChar

Int

Figure 4-2 Structure with attribute
packed

8. The alignment of the structure is 1 byte.

#pragma pack (1)
struct stc
{
 char one;
 short two;
 char three;
 int four;
} c,d;

int main (void)
{
 c.one=1;
 return 0;
}

CharShortChar

Int

Figure 4-3 Structure with pragma
pack with 1 byte alignment

8. The alignment of the structure is 1 byte.

4 Writing Optimized Code
4.5 Packing data structures

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

4-81

Non-Confidential

Table 4-13 Packing structures (continued)

Code Packing Size of structure

#pragma pack (2)
struct stc
{
 char one;
 short two;
 char three;
 int four;
} c,d;

int main (void)
{
 c.one=1;
 return 0;
}

Int

Char

ShortChar

Padding

Padding

Int

Figure 4-4 Structure with pragma
pack with 2 byte alignment

10. The alignment of the structure is 2
bytes.

#pragma pack (4)
struct stc
{
 char one;
 short two;
 char three;
 int four;
} c,d;

int main (void)
{
 c.one=1;
 return 0;
}

Int

Char

ShortChar

Padding

Padding

Figure 4-5 Structure with pragma
pack with 4 byte alignment

12. The alignment of the structure is 4
bytes.

Packing individual members in a structure

To pack individual members of a structure, use __attribute__((packed)) on the member. This aligns
the member to a byte boundary and therefore reduces the amount of memory required by the structure as
a whole. It does not affect the alignment of the other members. Therefore the alignment of the whole
structure is equal to the alignment of the largest member without the __attribute__((packed)).

Table 4-14 Packing individual members

Code Packing Size

struct stc
{
 char one;
 short two;
 char three;
 int __attribute__((packed))
four;
} c,d;

int main (void)
{
 c.one=1;
 return 0;
}

IntChar

ShortChar

Int Padding

Padding

Figure 4-6 Structure with attribute
packed on individual member

10. The alignment of the structure is 2
bytes because the largest member without
__attribute__((packed)) is short.

Accessing packed members from a structure
If a member of a structure or union is packed and therefore does not have its natural alignment, then to
access this member, you must use the structure or union that contains this member. You must not take the
address of such a packed member to use as a pointer, because the pointer might be unaligned.

4 Writing Optimized Code
4.5 Packing data structures

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

4-82

Non-Confidential

Dereferencing such a pointer can be unsafe even when unaligned accesses are supported by the target,
because certain instructions always require word-aligned addresses.

 Note

If you take the address of a packed member, in most cases, the compiler generates a warning.

struct __attribute__((packed)) foobar
{
 char x;
 short y;
};

short get_y(struct foobar *s)
{
 // Correct usage: the compiler will not use unaligned accesses
 // unless they are allowed.
 return s->y;
}

short get2_y(struct foobar *s)
{
 short *p = &s->y; // Incorrect usage: 'p' might be an unaligned pointer.
 return *p; // This might cause an unaligned access.
}

Related information
pragma pack
__attribute__((packed)) type attribute
__attribute__((packed)) variable attribute

4 Writing Optimized Code
4.5 Packing data structures

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

4-83

Non-Confidential

https://developer.arm.com/documentation/101754/0616/armclang-Reference/compiler-specific-pragmas/pragma-pack
https://developer.arm.com/documentation/101754/0616/armclang-Reference/compiler-specific-function-variable-and-type-attributes/__attribute__packed-type-attribute
https://developer.arm.com/documentation/101754/0616/armclang-Reference/compiler-specific-function-variable-and-type-attributes/__attribute__packed-variable-attribute

4.6 Optimizing for code size or performance
The compiler and associated tools use many techniques for optimizing your code. Some of these
techniques improve the performance of your code, while other techniques reduce the size of your code.

 Note

This topic includes descriptions of [ALPHA] features. See Support level definitions
on page Appx-A-266.

Different optimizations often work against each other. That is, techniques for improving code
performance might result in increased code size, and techniques for reducing code size might reduce
performance. For example, the compiler can unroll small loops for higher performance, with the
disadvantage of increased code size.

The default optimization level is -O0. At -O0, armclang does not perform optimization.

The following armclang options help you optimize for code performance:

-O1 | -O2 | -O3
Specify the level of optimization to be used when compiling source files. A higher number
implies a higher level of optimization for performance.

-Ofast
Enables all the optimizations from -O3 along with other aggressive optimizations that might
violate strict compliance with language standards.

-Omax
Enables all the optimizations from -Ofast along with Link-Time Optimization (LTO).

The following armclang options help you optimize for code size:

-Os
Performs optimizations to reduce the code size at the expense of a possible increase in execution
time. This option aims for a balanced code size reduction and fast performance.

-Oz
Optimizes for smaller code size.

-Omin
Minimum image size. Specifically targets minimizing code size. Enables all the optimizations
from level -Oz, together with:
• Link-Time Optimization aimed at removing unused code and data, while also trying to

optimize global memory accesses.
• Virtual function elimination, which is a particular benefit to C++ users.

For more information on optimization levels, see Selecting optimization levels.

 Note

You can also set the optimization level for the linker with the armlink option --lto_level. The
optimization levels available for armlink are the same as the armclang optimization levels.

-fshort-enums
Allows the compiler to set the size of an enumeration type to the smallest data type that can hold
all enumerator values.

-fshort-wchar
Sets the size of wchar_t to 2 bytes.

-fno-exceptions
C++ only. Disables the generation of code that is required to support C++ exceptions.

-fno-rtti [ALPHA]
C++ only. Disables the generation of code that is required to support Run Time Type
Information (RTTI) features.

4 Writing Optimized Code
4.6 Optimizing for code size or performance

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

4-84

Non-Confidential

https://developer.arm.com/documentation/100748/0616/Using-common-compiler-options/Selecting-optimization-options

The following armclang option helps you optimize for both code size and code performance:

-flto
Enables Link-Time Optimization (LTO), which enables the linker to make additional
optimizations across multiple source files. See 4.8 Optimizing across modules with Link-Time
Optimization on page 4-87 for more information.

 Note

If you want to use LTO when invoking armlink separately, you can use the armlink option --
lto_level to select the LTO optimization level that matches your optimization goal.

In addition, choices you make during coding can affect optimization. For example:
• Optimizing loop termination conditions can improve both code size and performance. In particular,

loops with counters that decrement to zero usually produce smaller, faster code than loops with
incrementing counters.

• Manually unrolling loops by reducing the number of loop iterations, but increasing the amount of
work that is done in each iteration, can improve performance at the expense of code size.

• Reducing debug information in objects and libraries reduces the size of your image.
• Using inline functions offers a trade-off between code size and performance.
• Using intrinsics can improve performance.

4 Writing Optimized Code
4.6 Optimizing for code size or performance

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

4-85

Non-Confidential

4.7 Methods of minimizing function parameter passing overhead
There are several ways in which you can minimize the overhead of passing parameters to functions.

For example:
• In AArch64 state, 8 integer and 8 floating-point arguments (16 in total) can be passed efficiently. In

AArch32 state, ensure that functions take four or fewer arguments if each argument is a word or less
in size.

• In C++, ensure that nonstatic member functions take fewer arguments than the efficient limit, because
in AArch32 state the implicit this pointer argument is usually passed in R0.

• Ensure that a function does a significant amount of work if it requires more than the efficient limit of
arguments. The work that the function does then outweighs the cost of passing the stacked arguments.

• Put related arguments in a structure, and pass a pointer to the structure in any function call. Pointing
to a structure reduces the number of parameters and increases readability.

• For AArch32 state, minimize the number of long long parameters, because these use two argument
registers that have to be aligned on an even register index.

• For AArch32 state, minimize the number of double parameters when using software floating-point.

4 Writing Optimized Code
4.7 Methods of minimizing function parameter passing overhead

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

4-86

Non-Confidential

4.8 Optimizing across modules with Link-Time Optimization
At link time, more optimization opportunities are available because source code from different modules
can be optimized together.

By default, the compiler optimizes each source module independently, translating C or C++ source code
into an ELF file containing object code. At link time, the linker combines all the ELF object files into an
executable by resolving symbol references and relocations. Compiling each source file separately means
that the compiler might miss some optimization opportunities, such as cross-module inlining.

When Link-Time Optimization (LTO) is enabled, the compiler translates source code into an intermediate
form called LLVM bitcode. At link time, the linker collects all files containing bitcode together and
sends them to the link-time optimizer (libLTO). Collecting modules together means that the link-time
optimizer can perform more optimizations because it has more information about the dependencies
between modules. The link-time optimizer then sends a single ELF object file back to the linker. Finally,
the linker combines all object and library code to create an executable.

C/C++ Source
.c

ELF Object
containing

Bitcode
.o

C/C++ Source
.c

ELF Object
.o

armclang -flto

armclang

Libraries

armlink --lto

Link-time optimizer
libLTO

ELF
Executable

ELF Object
.o

ELF Object
containing

Bitcode
.o

Figure 4-7 Link-Time Optimization

 Note

In this figure, ELF Object containing Bitcode is an ELF file that does not contain normal code and data.
Instead, it contains a section that is called .llvmbc that holds LLVM bitcode.

Section .llvmbc is reserved. You must not create an .llvmbc section with, for example
__attribute__((section(".llvmbc"))).

 Caution

LTO performs aggressive optimizations by analyzing the dependencies between bitcode format objects.
Such aggressive optimizations can result in the removal of unused variables and functions in the source
code.

This section contains the following subsections:
• 4.8.1 Enabling Link-Time Optimization on page 4-87.
• 4.8.2 Restrictions with Link-Time Optimization on page 4-89.
• 4.8.3 Removing unused code across multiple object files on page 4-89.

4.8.1 Enabling Link-Time Optimization

You must enable Link-Time Optimization (LTO) in both armclang and armlink.

4 Writing Optimized Code
4.8 Optimizing across modules with Link-Time Optimization

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

4-87

Non-Confidential

To enable LTO:
1. At compilation time, use the armclang option -flto to produce ELF files suitable for LTO. These

ELF files contain bitcode in a .llvmbc section.
 Note

The armclang option -Omax automatically enables the -flto option.

2. At link time, use the armlink option --lto to enable LTO for the specified bitcode files.
 Note

If you use the -flto option without the -c option, armclang automatically passes the --lto option to
armlink.

Example 1: Optimizing all source files

The following example performs LTO across all source files:

armclang --target=arm-arm-none-eabi -march=armv8-a -flto src1.c src2.c src3.c -o output.axf

This example does the following:
1. armclang compiles the C source files src1.c, src2.c, and src3.c to the ELF files src1.o, src2.o,

and src3.o. These ELF files contain bitcode, and therefore fromelf cannot disassemble them.
2. armclang automatically invokes armlink with the --lto option.
3. armlink passes the bitcode files src1.o, src2.o, and src3.o to the link-time optimizer to produce a

single optimized ELF object file.
4. armlink creates the executable output.axf from the ELF object file.

 Note

In this example, as armclang automatically calls armlink, the link-time optimizer has the same
optimization level as armclang. As no optimization level is specified for armclang, it is the default
optimization level -O0, and --lto_level=O0.

Example 2: Optimizing a subset of source files

The following example performs LTO for a subset of source files.

armclang --target=arm-arm-none-eabi -march=armv8-a -c src1.c -o src1.o
armclang --target=arm-arm-none-eabi -march=armv8-a -c -flto src2.c -o src2.o
armclang --target=arm-arm-none-eabi -march=armv8-a -c -flto src3.c -o src3.o
armlink --lto src1.o src2.o src3.o -o output.axf

This example does the following:
1. armclang compiles the C source file src1.c to the ELF object file src1.o.
2. armclang compiles the C source files src2.c and src3.c to the ELF files src2.o and src3.o. These

ELF files contain bitcode.
3. armlink passes the bitcode files src2.o and src3.o to the link-time optimizer to produce a single

optimized ELF object file.
4. armlink combines the ELF object file src1.o with the object file that the link-time optimizer

produces to create the executable output.axf.
 Note

In this example, because armclang and armlink are called separately, they have independent
optimization levels. As no optimization level is specified for armclang or armlink, armclang has the
default optimization level -O0 and the link-time optimizer has the default optimization level --
lto_level=O2. You can call armclang and armlink with any combination of optimization levels.

4 Writing Optimized Code
4.8 Optimizing across modules with Link-Time Optimization

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

4-88

Non-Confidential

4.8.2 Restrictions with Link-Time Optimization

Link-Time Optimization (LTO) has a few restrictions in Arm Compiler 6. Future releases might have
fewer restrictions and more features. The user interface to LTO might change in future releases.

No bitcode libraries

armlink only supports bitcode objects on the command line. It does not support bitcode objects
coming from libraries. armlink gives an error message if it encounters a file containing bitcode
while loading from a library.

Although armar silently accepts ELF files that are produced with armclang -flto, these files
currently do not have a proper symbol table. Therefore, the generated archive has incorrect
index information and armlink cannot find any symbols in this archive.

Partial linking
The armlink option --partial only works with ELF files. If the linker detects a file containing
bitcode, it gives an error message.

Scatter-loading

The output of the link-time optimizer is a single ELF object file that by default is given a
temporary filename. This ELF object file contains sections and symbols just like any other ELF
object file, and Input section selectors match the sections and symbols as normal.

Use the armlink option --lto_intermediate_filename to name the ELF object file output.
You can reference this ELF file name in the scatter file.

Arm recommends that LTO is only performed on code and data that does not require precise
placement in the scatter file, with general Input section selectors such as *(+RO) and .ANY(+RO)
used to select sections that LTO generates.

It is not possible to match bitcode in .llvmbc sections by name in a scatter file.
 Note

The scatter-loading interface is subject to change in future versions of Arm Compiler 6.

Executable and library compatibility
The armclang executable and the libLTO library must come from the same Arm Compiler 6
installation. Any use of libLTO other than the library supplied with Arm Compiler 6 is
unsupported.

Other restrictions
• You cannot currently use LTO for building ROPI/RWPI images.
• Object files that LTO produces contain build attributes that are the default for the target

architecture. If you use the armlink options --cpu or --fpu when LTO is enabled, armlink
can incorrectly report that the attributes in the file that the link-time optimizer produces are
incompatible with the provided attributes.

• LTO does not honor armclang options -ffunction-sections and -fdata-sections.
• LTO does not honor the armclang -mexecute-only option. If you use the armclang -flto

or -Omax options, then the compiler cannot generate execute-only code.
• LTO does not work correctly when two bitcode files are compiled for different targets.

4.8.3 Removing unused code across multiple object files

Link-time optimization (LTO) can remove unused code across multiple object files, particularly when the
code contains conditional calls to functions that are otherwise unused.

4 Writing Optimized Code
4.8 Optimizing across modules with Link-Time Optimization

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

4-89

Non-Confidential

In this example:
• The function main() calls an externally defined function foo(), and returns the value that foo()

returns. Because this function is externally defined, the compiler cannot inline or otherwise optimize
it when compiling main.c, without using LTO.

• The file foo.c contains the following functions:

foo()
If the parameter a is nonzero, foo() conditionally calls a function bar().

bar()
This function prints a message.

In this case, foo() is called with the parameter a == 0, so bar() is not called at run time.

Example code that is used in the following procedure:

// main.c
extern int foo(int a);

int main(void)
{
 return foo(0);
}

// foo.c
#include <stdio.h>

int foo(int a);
void bar(void);

/* `foo()` conditionally calls `bar()`
 depending on the value of `a`
 */
int foo(int a)
{
 if (a == 0)
 {
 return 0;
 }
 else
 {
 bar();

 return 0;
 }
}

void bar(void)
{
 printf("a is non-zero.\n");
}

Procedure
1. Build the example code with LTO disabled:

armclang --target=arm-arm-none-eabi -march=armv7-a -O2 -c main.c -o main.o
armclang --target=arm-arm-none-eabi -march=armv7-a -O2 -c foo.c -o foo.o
armlink main.o foo.o -o image_without_lto.axf
fromelf --text -c -z image_without_lto.axf

Results:

The compiler cannot inline the call to foo() because it is in a different object from main().
Therefore, the compiler must keep the conditional call to bar() within foo(), because the compiler
does not have any information about the value of the parameter a while foo.c is being compiled:

$a.0
foo
 0x00008bd8: e3500000 ..P. CMP r0,#0
 0x00008bdc: 0a000004 BEQ 0x8bf4 ; foo + 28
 0x00008be0: e92d4800 .H-. PUSH {r11,lr}
 0x00008be4: e3080c44 D... MOV r0,#0x8c44
 0x00008be8: e3400000 ..@. MOVT r0,#0
 0x00008bec: fafffd28 (... BLX puts ; 0x8094
 0x00008bf0: e8bd4800 .H.. POP {r11,lr}

4 Writing Optimized Code
4.8 Optimizing across modules with Link-Time Optimization

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

4-90

Non-Confidential

 0x00008bf4: e3a00000 MOV r0,#0
 0x00008bf8: e12fff1e ../. BX lr
main
 0x00008bfc: e3a00000 MOV r0,#0
 0x00008c00: eafffff4 B foo ; 0x8bd8

Also, bar() uses the Arm C library function printf(). In this example, printf() is optimized to
puts() and inlined into foo(). Therefore, the linker must include the relevant C library code to allow
the puts() function to be used. Including the C library code results in a large amount of uncalled
code being included in the image. The output from the fromelf utility shows the resulting overall
image size:

** Object/Image Component Sizes

 Code (inc. data) RO Data RW Data ZI Data Debug Object Name

 3128 200 44 16 348 1740 image_without_lto.axf

2. Build the example code with LTO enabled:

armclang --target=arm-arm-none-eabi -march=armv7-a -O2 -flto -c main.c -o main.o
armclang --target=arm-arm-none-eabi -march=armv7-a -O2 -flto -c foo.c -o foo.o
armlink --lto main.o foo.o -o image_with_lto.axf
fromelf --text -c -z image_with_lto.axf

Results:

Although the compiler does not have any information about the call to foo() from main() when
compiling foo.c, at link time, it is known that:

• foo() is only ever called once, with the parameter a == 0.
• bar() is never called.
• The Arm C library function puts() is never called.

Because LTO is enabled, this extra information is used to make the following optimizations:
• Inlining the call to foo() into main().
• Removing the code to conditionally call bar() from foo() entirely.
• Removing the C library code that allows use of the puts() function.

$a.0
main
 0x00008128: e3a00000 MOV r0,#0
 0x0000812c: e12fff1e ../. BX lr

Also, this optimization means that the overall image size is much lower. The output from the fromelf
utility shows the reduced image size:

** Object/Image Component Sizes

 Code (inc. data) RO Data RW Data ZI Data Debug Object Name

 332 24 16 0 96 504 image_with_lto.axf

Related references
4.6 Optimizing for code size or performance on page 4-84
4.8 Optimizing across modules with Link-Time Optimization on page 4-87
4.10 How optimization affects the debug experience on page 4-97
Related information
-O (armclang)

4 Writing Optimized Code
4.8 Optimizing across modules with Link-Time Optimization

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

4-91

Non-Confidential

https://developer.arm.com/documentation/101754/0616/armclang-Reference/armclang-Command-line-Options/-O--armclang-

4.9 Scatter file section or object placement with Link-Time Optimization
Turning on Link-Time Optimization (LTO) using either -Omax or -flto means that at link time, all object
files are merged into one. If a project is using a scatter file that places sections or objects in specific
regions, both the scatter file and the project source code must be modified to ensure the placement works
with LTO.

In general:

• Scatter files with object names that are used in input selection patterns, such as foo.o(+RO) do not
work with LTO.

• Scatter files with section names that are used in input selection patterns, where the section name
corresponds to an inlined function, do not work.

In such circumstances, the linker might report a warning such as:

L6314W: No section matches pattern <module>(<section>).

To use scatter file section or object placement with LTO, the following changes must be made to a
project:
• Compile all source files that are built with LTO enabled with -fno-inline-functions.
• Modify each source file that is built with LTO enabled to use #pragma clang section to place all

functions in that source file into sections with a name unique to that source file.
• Modify the scatter file to use section names instead of object file names.

Example code

The following example code is used in the example sections, unless specified otherwise. In this code, all
functions in foo.c must be placed in an execution region EXEC_FOO, and all functions in bar.c must be
placed in an execution region EXEC_BAR:

foo.c:

#include <stdio.h>

const char foo_string1[] = "Hello from foo_A!()\n";
const char foo_string2[] = "Hello from foo_B!()\n";

void foo_A(void)
{
 printf("%s", foo_string1);
}

void foo_B(void)
{
 printf("%s", foo_string2);
}

bar.c:

#include <stdio.h>

const char bar_string1[] = "Hello from bar_A!()\n";
const char bar_string2[] = "Hello from bar_B!()\n";

void bar_A(void)
{
 printf("%s", bar_string1);
}

void bar_B(void)
{
 printf("%s", bar_string2);
}

main.c:

extern void foo_A(void);
extern void foo_B(void);
extern void bar_A(void);
extern void bar_B(void);

4 Writing Optimized Code
4.9 Scatter file section or object placement with Link-Time Optimization

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

4-92

Non-Confidential

int main(void)
{
 foo_A();
 foo_B();
 bar_A();
 bar_B();

 return 0;
}

scatter.sct:

LOAD 0x0
{
 EXEC_ANY +0x0
 {
 .ANY(+RO, +RW, +ZI)
 }

 EXEC_FOO +0x0 ALIGN 1024
 {
 foo.o(+RO)
 }

 EXEC_BAR +0x0 ALIGN 1024
 {
 bar.o(+RO)
 }

 ARM_LIB_STACKHEAP +0x0 ALIGN 8 EMPTY 4096 {}
}

Example: Building without LTO enabled

Build the example code with:

armclang --target=arm-arm-none-eabi -march=armv7-a -O2 -c foo.c -o foo.o
armclang --target=arm-arm-none-eabi -march=armv7-a -O2 -c bar.c -o bar.o
armclang --target=arm-arm-none-eabi -march=armv7-a -O2 -c main.c -o main.o
armlink --scatter=scatter.sct foo.o bar.o main.o -o image.axf --map --list=image.lst

The memory map from the listing file image.lst shows that EXEC_FOO and EXEC_BAR contain code from
foo.c and bar.c respectively, as intended:

Execution Region EXEC_FOO (Base: 0x00001000, Size: 0x00000038, Max: 0xffffffff, ABSOLUTE)

Base Addr Size Type Attr Idx E Section Name Object

0x00001000 0x0000001c Code RO 3 .text.foo_A foo.o
0x0000101c 0x0000001c Code RO 5 .text.foo_B foo.o

Execution Region EXEC_BAR (Base: 0x00001400, Size: 0x00000038, Max: 0xffffffff, ABSOLUTE)

Base Addr Size Type Attr Idx E Section Name Object

0x00001400 0x0000001c Code RO 8 .text.bar_A bar.o
0x0000141c 0x0000001c Code RO 10 .text.bar_B bar.o

Example: Building with LTO enabled

Build the example code with LTO enabled:

armclang --target=arm-arm-none-eabi -march=armv7-a -O2 -flto -c foo.c -o foo.o
armclang --target=arm-arm-none-eabi -march=armv7-a -O2 -flto -c bar.c -o bar.o
armclang --target=arm-arm-none-eabi -march=armv7-a -O2 -flto -c main.c -o main.o
armlink --scatter=scatter.sct foo.o bar.o main.o -o image.axf --lto --map --list=image.lst

The linker reports:

"scatter.sct", line 10 (column 16): Warning: L6314W: No section matches pattern foo.o(RO).
"scatter.sct", line 15 (column 16): Warning: L6314W: No section matches pattern bar.o(RO).
Finished: 0 information, 2 warning and 0 error messages

4 Writing Optimized Code
4.9 Scatter file section or object placement with Link-Time Optimization

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

4-93

Non-Confidential

Also, the memory map from the listing file image.lst shows that EXEC_FOO and EXEC_BAR are empty:

Execution Region EXEC_FOO (Base: 0x00001000, Size: 0x00000000, Max: 0xffffffff, ABSOLUTE)

**** No section assigned to this execution region ****

Execution Region EXEC_BAR (Base: 0x00001000, Size: 0x00000000, Max: 0xffffffff, ABSOLUTE)

**** No section assigned to this execution region ****

These execution regions are empty because LTO has inlined all functions within foo.c and bar.c.
Therefore, the functions are no longer available for placement with a scatter-file.

Example: Building with LTO enabled and function inlining disabled

Next, try disabling function inlining using -fno-inline-functions. Build the example code with:

armclang --target=arm-arm-none-eabi -march=armv7-a -O2 -flto -fno-inline-functions -c foo.c -
o foo.o
armclang --target=arm-arm-none-eabi -march=armv7-a -O2 -flto -fno-inline-functions -c bar.c -
o bar.o
armclang --target=arm-arm-none-eabi -march=armv7-a -O2 -flto -fno-inline-functions -c main.c
-o main.o
armlink --scatter=scatter.sct foo.o bar.o main.o -o image.axf --lto --map --list=image.lst

The linker still reports:

"scatter.sct", line 10 (column 16): Warning: L6314W: No section matches pattern foo.o(RO).
"scatter.sct", line 15 (column 16): Warning: L6314W: No section matches pattern bar.o(RO).
Finished: 0 information, 2 warning and 0 error messages.

The reason is that, even though function inlining is disabled, all code from main.c, foo.c, and bar.c is
part of the same object file. Therefore, at the final link stage within the LTO process, foo.o and bar.o
do not exist as separate object files.

The memory map in the listing file image.lst shows that the code from foo.c and bar.c is now placed
in the EXEC_ANY execution region instead:

Execution Region EXEC_ANY (Base: 0x00000000, Size: 0x00000da8, Max: 0xffffffff, ABSOLUTE)

Base Addr Size Type Attr Idx E Section Name Object
...
0x00000b60 0x0000001c Code RO 397 .text.bar_A lto-llvm-3d77ff.o
0x00000b7c 0x0000001c Code RO 399 .text.bar_B lto-llvm-3d77ff.o
0x00000b98 0x0000001c Code RO 393 .text.foo_A lto-llvm-3d77ff.o
0x00000bb4 0x0000001c Code RO 395 .text.foo_B lto-llvm-3d77ff.o

lto_llvm_3d77ff.o is the LTO intermediate filename that the linker generates. You can change this
name using the armlink --lto_intermediate_filename command-line option, though that does not
help in this use case. Instead, section names must be used.

Example: Using section names for all functions within a C language source file

The easiest way to specify section names for all functions within a C language source file is to use
#pragma clang section. For this example, rewrite the example code foo.c and bar.c as follows:

foo.c:

#include <stdio.h>

#pragma clang section text="foo_rotext" rodata="foo_rodata"

const char foo_string1[] = "Hello from foo_A!()\n";
const char foo_string2[] = "Hello from foo_B!()\n";

void foo_A(void)
{
 printf("%s", foo_string1);
}

void foo_B(void)
{

4 Writing Optimized Code
4.9 Scatter file section or object placement with Link-Time Optimization

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

4-94

Non-Confidential

 printf("%s", foo_string2);
}

bar.c:

#include <stdio.h>

#pragma clang section text="bar_rotext" rodata="bar_rodata"

const char bar_string1[] = "Hello from bar_A!()\n";
const char bar_string2[] = "Hello from bar_B!()\n";

void bar_A(void)
{
 printf("%s", bar_string1);
}

void bar_B(void)
{
 printf("%s", bar_string2);
}

#pragma clang section text="foo_rotext" rodata="foo_rodata" specifies that code and read-
only data (such as the string constants used within the calls to printf() in foo.c) are placed in named
sections:
• foo_rotext for the code that is generated.
• foo_rodata for the read-only data that is generated.

Similar names are specified in bar.c for the code and data generated by that file. You can rewrite
scatter.sct to use these section names as follows:

scatter.sct:

LOAD 0x0
{
 EXEC_ANY +0x0
 {
 .ANY(+RO, +RW, +ZI)
 }

 EXEC_FOO +0x0 ALIGN 1024
 {
 *(foo_rotext)
 *(foo_rodata)
 }

 EXEC_BAR +0x0 ALIGN 1024
 {
 *(bar_rotext)
 *(bar_rodata)
}

 ARM_LIB_STACKHEAP +0x0 ALIGN 8 EMPTY 4096 {}
}

Example: Building with LTO enabled, function inlining disabled, and using section
names instead of object file names

Build the modified example with:

armclang --target=arm-arm-none-eabi -march=armv7-a -O2 -flto -fno-inline-functions -c foo.c -
o foo.o
armclang --target=arm-arm-none-eabi -march=armv7-a -O2 -flto -fno-inline-functions -c bar.c -
o bar.o
armclang --target=arm-arm-none-eabi -march=armv7-a -O2 -flto -fno-inline-functions -c main.c
-o main.o
armlink --scatter=scatter.sct foo.o bar.o main.o -o image.axf --lto --map --list=image.lst

The linker does not report any warnings. Also, the memory map from the listing file image.lst shows
that EXEC_FOO and EXEC_BAR contain the code from the expected sections:

Execution Region EXEC_FOO (Base: 0x00001000, Size: 0x00000038, Max: 0xffffffff, ABSOLUTE)

Base Addr Size Type Attr Idx E Section Name Object

0x00001000 0x00000028 Code RO 435 foo_rotext lto-llvm-4392b4.o

4 Writing Optimized Code
4.9 Scatter file section or object placement with Link-Time Optimization

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

4-95

Non-Confidential

0x00001028 0x0000002a Data RO 441 foo_rodata lto-llvm-4392b4.o

Execution Region EXEC_BAR (Base: 0x00001400, Size: 0x00000038, Max: 0xffffffff, ABSOLUTE)

Base Addr Size Type Attr Idx E Section Name Object

0x00001400 0x00000028 Code RO 437 bar_rotext lto-llvm-4392b4.o
0x00001428 0x0000002a Data RO 442 bar_rodata lto-llvm-4392b4.o

The key difference between this LTO approach and the non-LTO approach with object file names is that
in this approach, the function names are not visible in the listing file. To verify that the sections foo_RO
and bar_RO contain the functions from foo.c and bar.c respectively, examine the symbol table from the
fromelf --text -s output:

fromelf --text -s image.axf -o image.txt
...
** Section #8 '.symtab' (SHT_SYMTAB)
 Size : 7296 bytes (alignment 4)
 String table #9 '.strtab'
 Last local symbol no. 309

 Symbol table .symtab (455 symbols, 309 local)

 # Symbol Name Value Bind Sec Type Vis Size
 ==
 ...
 297 foo_A 0x00001000 Lc 4 Code De 0x14
 298 foo_B 0x00001014 Lc 4 Code De 0x14
 299 bar_A 0x00001400 Lc 5 Code De 0x14
 300 bar_B 0x00001414 Lc 5 Code De 0x14
 301 foo_string1 0x00001028 Lc 4 Data De 0x15
 302 foo_string2 0x0000103d Lc 4 Data De 0x15
 303 bar_string1 0x00001428 Lc 5 Data De 0x15
 304 bar_string2 0x0000143d Lc 5 Data De 0x15

The addresses for these functions in the output from the fromelf utility correspond to the execution
region addresses in the memory map from the listing file image.lst. The symbol table also confirms the
location of the char[] constants.

Other considerations
Consider the following approaches:
• If you plan to build a project with LTO eventually, it might be better to use section names instead of

object file names within scatter-files using the method shown this example. This approach is
compatible both with and without LTO.

• If you disable LTO, it is better to also remove -fno-inline-functions, because doing so allows the
compiler to perform inlining optimizations.

• If disabling function inlining entirely is not required, then the attribute __attribute__((noinline))
must be used on a per-function basis. This approach can help achieve a better balance between
explicit code placement and cross-file function inlining optimizations.

Related references
4.8 Optimizing across modules with Link-Time Optimization on page 4-87
Related information
-fno-inline-functions (armclang)
-flto (armclang)
-O (armclang)
__attribute__((noinline)) function attribute
#pragma clang section
--lto (armlink)
--lto_intermediate_filename (armlink)
Scatter-loading Features
Scatter File Syntax

4 Writing Optimized Code
4.9 Scatter file section or object placement with Link-Time Optimization

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

4-96

Non-Confidential

https://developer.arm.com/documentation/101754/0616/armclang-Reference/armclang-Command-line-Options/-fno-inline-functions
https://developer.arm.com/documentation/101754/0616/armclang-Reference/armclang-Command-line-Options/-flto---fno-lto
https://developer.arm.com/documentation/101754/0616/armclang-Reference/armclang-Command-line-Options/-O--armclang-
https://developer.arm.com/documentation/101754/0616/armclang-Reference/compiler-specific-function-variable-and-type-attributes/__attribute__noinline-function-attribute
https://developer.arm.com/documentation/101754/0616/armclang-Reference/compiler-specific-pragmas/pragma-clang-section
https://developer.arm.com/documentation/101754/0616/armlink-Reference/armlink-Command-line-Options/--lto----no-lto
https://developer.arm.com/documentation/101754/0616/armlink-Reference/armlink-Command-line-Options/--lto-intermediate-filename
https://developer.arm.com/documentation/101754/0616/armlink-Reference/Scatter-loading-Features
https://developer.arm.com/documentation/101754/0616/armlink-Reference/Scatter-File-Syntax

4.10 How optimization affects the debug experience
Higher optimization levels result in an increasingly degraded debug view because the mapping of object
code to source code is not always clear. The compiler might perform optimizations that debug
information cannot describe.

Therefore, there is a trade-off between optimizing code and the debug experience.

For good debug experience, Arm recommends -O1 rather than -O0. When using -O1, the compiler
performs certain optimizations, but the structure of the generated code is still close to the source code.

For more information, see Selecting optimization options.

4 Writing Optimized Code
4.10 How optimization affects the debug experience

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

4-97

Non-Confidential

https://developer.arm.com/documentation/100748/0616/Using-common-compiler-options/Selecting-optimization-options

Chapter 5
Assembling Assembly Code

Describes how to assemble assembly source code with armclang and armasm.

It contains the following sections:
• 5.1 Assembling armasm and GNU syntax assembly code on page 5-99.
• 5.2 Preprocessing assembly code on page 5-101.

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

5-98

Non-Confidential

5.1 Assembling armasm and GNU syntax assembly code
The Arm Compiler toolchain can assemble both armasm and GNU syntax assembly language source
code.

armasm and GNU are two different syntaxes for assembly language source code. They are similar, but
have a number of differences. For example, armasm syntax identifies labels by their position at the start
of a line, while GNU syntax identifies them by the presence of a colon.

 Note

The GNU Binutils - Using as documentation provides complete information about GNU syntax assembly
code.

The Migration and Compatibility Guide contains detailed information about the differences between
armasm syntax and GNU syntax assembly to help you migrate legacy assembly code.

The following examples show equivalent armasm and GNU syntax assembly code for incrementing a
register in a loop.

armasm assembler syntax:

; Simple armasm syntax example
;
; Iterate round a loop 10 times, adding 1 to a register each time.

 AREA ||.text||, CODE, READONLY, ALIGN=2

main PROC
 MOV w5,#0x64 ; W5 = 100
 MOV w4,#0 ; W4 = 0
 B test_loop ; branch to test_loop
loop
 ADD w5,w5,#1 ; Add 1 to W5
 ADD w4,w4,#1 ; Add 1 to W4
test_loop
 CMP w4,#0xa ; if W4 < 10, branch back to loop
 BLT loop
 ENDP

 END

You might have legacy assembly source files that use the armasm syntax. Use armasm to assemble legacy
armasm syntax assembly code. Typically, you invoke the armasm assembler as follows:

armasm --cpu=8-A.64 -o file.o file.s

GNU assembler syntax:

// Simple GNU syntax example
//
// Iterate round a loop 10 times, adding 1 to a register each time.

 .section .text,"ax"
 .balign 4

main:
 MOV w5,#0x64 // W5 = 100
 MOV w4,#0 // W4 = 0
 B test_loop // branch to test_loop
loop:
 ADD w5,w5,#1 // Add 1 to W5
 ADD w4,w4,#1 // Add 1 to W4
test_loop:
 CMP w4,#0xa // if W4 < 10, branch back to loop
 BLT loop
 .end

Use GNU syntax for newly created assembly files. Use the armclang integrated assembler to assemble
GNU assembly language source code. Typically, you invoke the armclang assembler as follows:

armclang --target=aarch64-arm-none-eabi -c -o file.o file.S

5 Assembling Assembly Code
5.1 Assembling armasm and GNU syntax assembly code

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

5-99

Non-Confidential

Related information
GNU Binutils - Using as
Migrating armasm syntax assembly code to GNU syntax

5 Assembling Assembly Code
5.1 Assembling armasm and GNU syntax assembly code

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

5-100

Non-Confidential

https://sourceware.org/binutils/docs-2.24/as/index.html
https://developer.arm.com/documentation/100068/0616/Migrating-from-armasm-to-the-armclang-Integrated-Assembler

5.2 Preprocessing assembly code
The C preprocessor must resolve assembly code that contains C preprocessor directives, for example
#include or #define, before assembling.

By default, armclang uses the assembly code source file suffix to determine whether to run the C
preprocessor:

• The .s (lowercase) suffix indicates assembly code that does not require preprocessing.
• The .S (uppercase) suffix indicates assembly code that requires preprocessing.

The -x option lets you override the default by specifying the language of the subsequent source files,
rather than inferring the language from the file suffix. Specifically, -x assembler-with-cpp indicates
that the assembly code contains C preprocessor directives and armclang must run the C preprocessor.
The -x option only applies to input files that follow it on the command line.

 Note

Do not confuse the .ifdef assembler directive with the preprocessor #ifdef directive:
• The preprocessor #ifdef directive checks for the presence of preprocessor macros, These macros are

defined using the #define preprocessor directive or the armclang -D command-line option.
• The armclang integrated assembler .ifdef directive checks for code symbols. These symbols are

defined using labels or the .set directive.

The preprocessor runs first and performs textual substitutions on the source code. This stage is when the
#ifdef directive is processed. The source code is then passed onto the assembler, when the .ifdef
directive is processed.

To preprocess an assembly code source file, do one of the following:
• Ensure that the assembly code filename has a .S suffix.

For example:

armclang --target=arm-arm-none-eabi -march=armv8-a test.S

• Use the -x assembler-with-cpp option to tell armclang that the assembly source file requires
preprocessing. This option is useful when you have existing source files with the lowercase
extension .s.

For example:

armclang --target=arm-arm-none-eabi -march=armv8-a -x assembler-with-cpp test.s

 Note

If you want to preprocess assembly files that contain legacy armasm-syntax assembly code, then you
must either:
• Use the .S filename suffix.
• Use separate steps for preprocessing and assembling.

For more information, see Command-line options for preprocessing assembly source code in the
Migration and Compatibility Guide.

Related information
Command-line options for preprocessing assembly source code
-E (armclang)
-x (armclang)

5 Assembling Assembly Code
5.2 Preprocessing assembly code

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

5-101

Non-Confidential

https://developer.arm.com/documentation/100068/0616/Migrating-from-armcc-to-armclang/command-line-options-for-preprocessing-assembly-source-code
https://developer.arm.com/documentation/100068/0616/Migrating-from-armcc-to-armclang/command-line-options-for-preprocessing-assembly-source-code
https://developer.arm.com/documentation/101754/0616/armclang-Reference/armclang-Command-line-Options/-e
https://developer.arm.com/documentation/101754/0616/armclang-Reference/armclang-Command-line-Options/-x--armclang-

Chapter 6
Using Assembly and Intrinsics in C or C++ Code

All code for a single application can be written in the same source language. This source language is
usually a high-level language such as C or C++ that is compiled to instructions for Arm architectures.
However, in some situations you might need lower-level control than that provided by C or C++.

For example:

• To access features that are not available from C or C++, such as interfacing directly with device
hardware.

• To generate highly optimized code by using intrinsics or inline assembly to write sections of your
code.

There are several ways to have low-level control over the generated code:
• Intrinsics are functions that the compiler provides. An intrinsic function has the appearance of a

function call in C or C++, but compilation replaces the intrinsic by a specific sequence of low-level
instructions.

 Note

Arm compilers recognize Arm intrinsics, but are not guaranteed to work with any third-party
compiler toolchains.

• Inline assembly lets you write assembly instructions directly in your C/C++ code, without the
overhead of a function call.

• Calling assembly functions from C/C++ lets you write standalone assembly code in a separate source
file. This code is assembled separately to the C/C++ code, and then integrated at link time.

It contains the following sections:
• 6.1 Using intrinsics on page 6-104.
• 6.2 Custom Datapath Extension support on page 6-105.

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

6-102

Non-Confidential

• 6.3 Writing inline assembly code on page 6-107.
• 6.4 Calling assembly functions from C and C++ on page 6-110.

6 Using Assembly and Intrinsics in C or C++ Code

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

6-103

Non-Confidential

6.1 Using intrinsics
Compiler intrinsics are special functions whose implementations are known to the compiler. They enable
you to easily incorporate domain-specific operations in C and C++ source code without resorting to
complex implementations in assembly language.

The C and C++ languages are suited to a wide variety of tasks but they do not provide built-in support
for specific areas of application, for example Digital Signal Processing (DSP).

Within a given application domain, there is usually a range of domain-specific operations that have to be
performed frequently. However, if specific hardware support is available, then these operations can often
be implemented more efficiently using the hardware support than in C or C++. A typical example is the
saturated add of two 32-bit signed two’s complement integers, commonly used in DSP programming.
The following example shows a C implementation of a saturated add operation:

#include <limits.h>
int L_add(const int a, const int b)
{
 int c;
 c = a + b;
 if (((a ^ b) & INT_MIN) == 0)
 {
 if ((c ^ a) & INT_MIN)
 {
 c = (a < 0) ? INT_MIN : INT_MAX;
 }
 }
 return c;
}

Using compiler intrinsics, you can achieve more complete coverage of target architecture instructions
than you would from the instruction selection of the compiler.

An intrinsic function has the appearance of a function call in C or C++, but is replaced during
compilation by a specific sequence of low-level instructions. The following example shows how to
access the __qadd saturated add intrinsic:

#include <arm_acle.h> /* Include ACLE intrinsics */

int foo(int a, int b)
{
 return __qadd(a, b); /* Saturated add of a and b */
}

Using compiler intrinsics offers a number of performance benefits:
• The low-level instructions substituted for an intrinsic are either as efficient or more efficient than

corresponding implementations in C or C++. This results in both reduced instruction and cycle
counts. To implement the intrinsic, the compiler automatically generates the best sequence of
instructions for the specified target architecture. For example, the __qadd intrinsic maps directly to
the A32 assembly language instruction qadd:

QADD r0, r0, r1 /* Assuming r0 = a, r1 = b on entry */

• More information is given to the compiler than the underlying C and C++ language is able to convey.
This enables the compiler to perform optimizations and to generate instruction sequences that it
cannot otherwise perform.

These performance benefits can be significant for real-time processing applications. However, care is
required because the use of intrinsics can decrease code portability.

Related information
Compiler-specific intrinsics
ACLE support
NEON Programmer’s Guide

6 Using Assembly and Intrinsics in C or C++ Code
6.1 Using intrinsics

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

6-104

Non-Confidential

https://developer.arm.com/documentation/101754/0616/armclang-Reference/compiler-specific-intrinsics
https://developer.arm.com/documentation/101754/0616/armclang-Reference/other-compiler-specific-features/acle-support
https://developer.arm.com/documentation/den0018/latest

6.2 Custom Datapath Extension support
Arm C Language Extensions (ACLE) intrinsics for Custom Datapath Extension (CDE) are defined in the
arm_cde.h system header.

These intrinsics are documented in the Custom Datapath Extension section of the Arm C Language
Extensions document.

Example
The following example shows how to use the ACLE intrinsics for CDE:
1. Create the foo.c file containing the following code:

#include <arm_cde.h>

uint32_t foo(uint32_t source_register)
{
 return __arm_cx2(0, source_register, 4);
}

In this file, the function foo() uses the __arm_cx2() ACLE intrinsic for CDE. This intrinsic
generates a CX2 instruction.

A CX2 instruction is a Custom class 2 instruction that computes a value based on a source register, an
immediate, optionally the original value of the destination register, and also writes the result to the
destination register.

For example, the instruction CX2 p0, r0, r1, #2 sends the immediate 2 and the register R1 to the
CDE coprocessor p0, and writes the result returned by p0 to the register R0.

The intrinsic is defined as follows:

uint32_t __arm_cx2(int coproc, uint32_t n, uint32_t imm);

Where:
• coproc is the CDE coprocessor number to use.
• n is the variable to send to the CDE coprocessor via the general-purpose source register operand.
• imm is the compile-time constant immediate value to use.

This intrinsic generates a variant of the CX2 instruction that does not use the destination register value
to compute the result.

2. Compile foo.c with the command:

armclang --target=arm-arm-none-eabi -march=armv8.1-m.main+cdecp0 -O1 -c foo.c -o
foo.o

The compiler generates a CX2 instruction with the expected operands, and returns the result of the
instruction in register R0.

3. Run the following fromelf command to examine the output:

fromelf --cpu=8.1-M.Main --coproc0=cde --text -c foo.o

...
** Section #3 '.text.foo' (SHT_PROGBITS) [SHF_ALLOC + SHF_EXECINSTR]
 Size : 6 bytes (alignment 4)
 Address: 0x00000000

 $t.0
 [Anonymous symbol #3]
 foo
 0x00000000: ee400004 @... CX2 p0,r0,r0,#4
 0x00000004: 4770 pG BX lr
...

Related information
-march
-mcpu
--coprocN=value (fromelf)

6 Using Assembly and Intrinsics in C or C++ Code
6.2 Custom Datapath Extension support

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

6-105

Non-Confidential

https://developer.arm.com/documentation/101028/latest
https://developer.arm.com/documentation/101028/latest
https://developer.arm.com/documentation/101754/0616/armclang-Reference/armclang-Command-line-Options/-march
https://developer.arm.com/documentation/101754/0616/armclang-Reference/armclang-Command-line-Options/-mcpu
https://developer.arm.com/documentation/101754/0616/fromelf-Reference/fromelf-Command-line-Options/--coprocN-value--fromelf-

ARM v8-M Supplement - CDE Reference Manual

6 Using Assembly and Intrinsics in C or C++ Code
6.2 Custom Datapath Extension support

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

6-106

Non-Confidential

https://developer.arm.com/documentation/ddi0607/ab/

6.3 Writing inline assembly code
The compiler provides an inline assembler that enables you to write assembly code in your C or C++
source code, for example to access features of the target processor that are not available from C or C++.

The __asm keyword can incorporate inline assembly code into a function using the GNU inline assembly
syntax. For example:

#include <stdio.h>

int add(int i, int j)
{
 int res = 0;
 __asm ("ADD %[result], %[input_i], %[input_j]"
 : [result] "=r" (res)
 : [input_i] "r" (i), [input_j] "r" (j)
);
 return res;
}

int main(void)
{
 int a = 1;
 int b = 2;
 int c = 0;

 c = add(a,b);

 printf("Result of %d + %d = %d\n", a, b, c);
}

 Note

The inline assembler does not support legacy assembly code written in armasm assembler syntax. See the
Migration and Compatibility Guide for more information about migrating armasm syntax assembly code
to GNU syntax.

The general form of an __asm inline assembly statement is:

__asm [volatile] (code); /* Basic inline assembly syntax */

/* Extended inline assembly syntax */
__asm [volatile] (code_template
 : output_operand_list
 [: input_operand_list
 [: clobbered_register_list]]
);

Use the volatile qualifier for assembler instructions that have processor side-effects, which the
compiler might be unaware of. The volatile qualifier disables certain compiler optimizations, which
may otherwise lead to the compiler removing the code block. The volatile qualifier is optional, but you
should consider using it around your assembly code blocks to ensure the compiler does not remove them
when compiling with -O1 or above.

code is the assembly instruction, for example "ADD R0, R1, R2". code_template is a template for an
assembly instruction, for example "ADD %[result], %[input_i], %[input_j]".

If you specify a code_template rather than code then you must specify the output_operand_list
before specifying the optional input_operand_list and clobbered_register_list.

output_operand_list is a list of output operands, separated by commas. Each operand consists of a
symbolic name in square brackets, a constraint string, and a C expression in parentheses. In this example,
there is a single output operand: [result] "=r" (res). The list can be empty. For example:

__asm ("ADD R0, %[input_i], %[input_j]"
 : /* This is an empty output operand list */
 : [input_i] "r" (i), [input_j] "r" (j)
);

6 Using Assembly and Intrinsics in C or C++ Code
6.3 Writing inline assembly code

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

6-107

Non-Confidential

https://developer.arm.com/documentation/100068/0616

input_operand_list is an optional list of input operands, separated by commas. Input operands use the
same syntax as output operands. In this example, there are two input operands: [input_i] "r" (i),
[input_j] "r" (j). The list can be empty.

clobbered_register_list is a comma-separated list of strings. Each string is the name of a register
that the assembly code potentially modifies, but for which the final value is not important. To prevent the
compiler from using a register for a template string in an inline assembly string, add the register to the
clobber list.

For example, if a register holds a temporary value, include it in the clobber list. The compiler avoids
using a register in this list as an input or output operand, or using it to store another value when the
assembly code is executed.

The list can be empty. In addition to registers, the list can also contain special arguments:

"cc"
The instruction affects the condition code flags.

"memory"
The instruction accesses unknown memory addresses.

The registers in clobbered_register_list must use lowercase letters rather than uppercase letters. An
example instruction with a clobbered_register_list is:

__asm ("ADD R0, %[input_i], %[input_j]"
 : /* This is an empty output operand list */
 : [input_i] "r" (i), [input_j] "r" (j)
 : "r5","r6","cc","memory" /*Use "r5" instead of "R5" */
);

Defining symbols and labels

You can use inline assembly to define symbols. For example:

__asm (".global __use_no_semihosting\n\t");

To define labels, use : after the label name. For example:

__asm ("my_label:\n\t");

Multiple instructions

You can write multiple instructions within the same __asm statement. This example shows an interrupt
handler written in one __asm statement for an Armv8‑M mainline architecture.

void HardFault_Handler(void)
{
 asm (
 "TST LR, #0x40\n\t"
 "BEQ from_nonsecure\n\t"
 "from_secure:\n\t"
 "TST LR, #0x04\n\t"
 "ITE EQ\n\t"
 "MRSEQ R0, MSP\n\t"
 "MRSNE R0, PSP\n\t"
 "B hard_fault_handler_c\n\t"
 "from_nonsecure:\n\t"
 "MRS R0, CONTROL_NS\n\t"
 "TST R0, #2\n\t"
 "ITE EQ\n\t"
 "MRSEQ R0, MSP_NS\n\t"
 "MRSNE R0, PSP_NS\n\t"
 "B hard_fault_handler_c\n\t"
);
}

Copy the above handler code to file.c and then you can compile it using:

armclang --target=arm-arm-none-eabi -march=armv8-m.main -S file.c -o file.s

6 Using Assembly and Intrinsics in C or C++ Code
6.3 Writing inline assembly code

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

6-108

Non-Confidential

Embedded assembly

You can write embedded assembly using __attribute__((naked)). For more information, see
__attribute__((naked)) in the Arm Compiler Reference Guide.

Related information
armclang Inline Assembler
Migrating armasm syntax assembly code to GNU syntax
Semihosting for AArch32 and AArch64

6 Using Assembly and Intrinsics in C or C++ Code
6.3 Writing inline assembly code

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

6-109

Non-Confidential

https://developer.arm.com/documentation/101754/0616/armclang-Reference/compiler-specific-function-variable-and-type-attributes/__attribute__naked-function-attribute
https://developer.arm.com/documentation/101754/0616/armclang-Reference/armclang-inline-assembler
https://developer.arm.com/documentation/100068/0616/Migrating-from-armasm-to-the-armclang-Integrated-Assembler
https://developer.arm.com/documentation/100863/latest

6.4 Calling assembly functions from C and C++
Often, all the code for a single application is written in the same source language. This is usually a high-
level language such as C or C++. That code is then compiled to Arm assembly code.

However, in some situations you might want to make function calls from C/C++ code to assembly code.
For example:

• If you want to make use of existing assembly code, but the rest of your project is in C or C++.
• If you want to manually write critical functions directly in assembly code that can produce better

optimized code than compiling C or C++ code.
• If you want to interface directly with device hardware and if this is easier in low-level assembly code

than high-level C or C++.

 Note

For code portability, it is better to use intrinsics or inline assembly rather than writing and calling
assembly functions.

To call an assembly function from C or C++:
1. In the assembly source, declare the code as a global function using .globl and .type:

 .globl myadd
 .p2align 2
 .type myadd,%function

myadd: // Function "myadd" entry point.
 .fnstart
 add r0, r0, r1 // Function arguments are in R0 and R1. Add together and put
the result in R0.
 bx lr // Return by branching to the address in the link register.
 .fnend

 Note

armclang requires that you explicitly specify the types of exported symbols using the .type
directive. If the .type directive is not specified in the above example, the linker outputs warnings of
the form:

Warning: L6437W: Relocation #RELA:1 in test.o(.text) with respect to myadd...

Warning: L6318W: test.o(.text) contains branch to a non-code symbol myadd.

2. In C code, declare the external function using extern:

#include <stdio.h>

extern int myadd(int a, int b);

int main()
{
 int a = 4;
 int b = 5;
 printf("Adding %d and %d results in %d\n", a, b, myadd(a, b));
 return (0);
}

In C++ code, use extern "C":

extern "C" int myadd(int a, int b);

3. Ensure that your assembly code complies with the Procedure Call Standard for the Arm® Architecture
(AAPCS).

6 Using Assembly and Intrinsics in C or C++ Code
6.4 Calling assembly functions from C and C++

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

6-110

Non-Confidential

The AAPCS describes a contract between caller functions and callee functions. For example, for
integer or pointer types, it specifies that:
• Registers R0-R3 pass argument values to the callee function, with subsequent arguments passed

on the stack.
• Register R0 passes the result value back to the caller function.
• Caller functions must preserve R0-R3 and R12, because these registers are allowed to be

corrupted by the callee function.
• Callee functions must preserve R4-R11 and LR, because these registers are not allowed to be

corrupted by the callee function.

For more information, see the Procedure Call Standard for the Arm® Architecture (AAPCS).
4. Compile both source files:

armclang --target=arm-arm-none-eabi -march=armv8-a main.c myadd.s

Related information
Procedure Call Standard for the Arm Architecture
Procedure Call Standard for the Arm 64-bit Architecture

6 Using Assembly and Intrinsics in C or C++ Code
6.4 Calling assembly functions from C and C++

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

6-111

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.subset.swdev.abi/index.html
https://developer.arm.com/documentation/ihi0042/latest
https://developer.arm.com/documentation/ihi0055/latest

Chapter 7
SVE Coding Considerations with Arm® Compiler

Describes best practices for writing code that uses the SVE and SVE2 features of Arm Compiler.

It contains the following sections:
• 7.1 Embedding SVE assembly code directly into C and C++ code on page 7-113.
• 7.2 Using SVE and SVE2 intrinsics directly in your C code on page 7-118.

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

7-112

Non-Confidential

7.1 Embedding SVE assembly code directly into C and C++ code
Inline assembly (or inline asm) provides a mechanism for inserting hand-written assembly instructions
into C and C++ code. This lets you vectorize parts of a function by hand without having to write the
entire function in assembly code.

 Note

This information assumes that you are familiar with details of the SVE Architecture, including vector-
width agnostic registers, predication, and WHILE operations.

Using inline assembly rather than writing a separate .s file has the following advantages:
• Shifts the burden of handling the procedure call standard (PCS) from the programmer to the compiler.

This includes allocating the stack frame and preserving all necessary callee-saved registers.
• Inline assembly code gives the compiler more information about what the assembly code does.
• The compiler can inline the function that contains the assembly code into its callers.
• Inline assembly code can take immediate operands that depend on C-level constructs, such as the size

of a structure or the byte offset of a particular structure field.

Structure of an inline assembly statement

The compiler supports the GNU form of inline assembly. Note that it does not support the Microsoft
form of inline assembly.

More detailed documentation of the asm construct is available at the GCC website.

Inline assembly statements have the following form:

asm ("instructions" : outputs : inputs : side-effects);

Where:

instructions
is a text string that contains AArch64 assembly instructions, with at least one newline sequence
\n between consecutive instructions.

outputs
is a comma-separated list of outputs from the assembly instructions.

inputs
is a comma-separated list of inputs to the assembly instructions.

side-effects
is a comma-separated list of effects that the assembly instructions have, besides reading from
inputs and writing to outputs.

Additionally, the asm keyword might need to be followed by the volatile keyword.

Outputs

Each entry in outputs has one of the following forms:

[name] "=®ister-class" (destination)
[name] "=register-class" (destination)

The first form has the register class preceded by =&. This specifies that the assembly instructions might
read from one of the inputs (specified in the asm statement's inputs section) after writing to the output.

The second form has the register class preceded by =. This specifies that the assembly instructions never
read from inputs in this way. Using the second form is an optimization. It allows the compiler to allocate
the same register to the output as it allocates to one of the inputs.

7 SVE Coding Considerations with Arm® Compiler
7.1 Embedding SVE assembly code directly into C and C++ code

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

7-113

Non-Confidential

https://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html

Both forms specify that the assembly instructions produce an output that is stored in the C object
specified by destination. This can be any scalar value that is valid for the left-hand side of a C
assignment. The register-class field specifies the type of register that the assembly instructions require. It
can be one of:

r
if the register for this output when used within the assembly instructions is a general-purpose
register (x0-x30)

w
if the register for this output when used within the assembly instructions is a SIMD and floating-
point register (v0-v31).

It is not possible at present for outputs to contain an SVE vector or predicate value. All uses of SVE
registers must be internal to the inline assembly block.

It is the responsibility of the compiler to allocate a suitable output register and to copy that register into
the destination after the asm statement is executed. The assembly instructions within the instructions
section of the asm statement can use one of the following forms to refer to the output value:

%[name]
to refer to an r-class output as xN or a w-class output as vN

%w[name]
to refer to an r-class output as wN

%s[name]
to refer to a w-class output as sN

%d[name]
to refer to a w-class output as dN

In all cases N represents the number of the register that the compiler has allocated to the output. The use
of these forms means that it is not necessary for the programmer to anticipate precisely which register is
selected by the compiler. The following example creates a function that returns the value 10. It shows
how the programmer is able to use the %w[res] form to describe the movement of a constant into the
output register without knowing which register is used.

int f()
{
 int result;
 asm("movz %w[res], #10" : [res] "=r" (result));
 return result;
}

In optimized output the compiler picks the return register (0) for res, resulting in the following assembly
code:

movz w0, #10
ret

Inputs

Within an asm statement, each entry in the inputs section has the form:

[name] "operand-type" (value)

This construct specifies that the asm statement uses the scalar C expression value as an input, referred to
within the assembly instructions as name. The operand-type field specifies how the input value is handled
within the assembly instructions. It can be one of the following:

r
if the input is to be placed in a general-purpose register (x0-x30)

w
if the input is to be placed in a SIMD and floating-point register (v0-v31).

7 SVE Coding Considerations with Arm® Compiler
7.1 Embedding SVE assembly code directly into C and C++ code

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

7-114

Non-Confidential

[output-name]
if the input is to be placed in the same register as output output-name. In this case the [name]
part of the input specification is redundant and can be omitted. The assembly instructions can
use the forms described in the Outputs section above (%[name], %w[name], %s[name],
%d[name]) to refer to both the input and the output.

i
if the input is an integer constant and is used as an immediate operand. The assembly
instructions use %[name] in place of immediate operand #N, where N is the numerical value of
value.

In the first two cases, it is the responsibility of the compiler to allocate a suitable register and to ensure
that it contains value on entry to the assembly instructions. The assembly instructions must refer to these
registers using the same syntax as for the outputs (%[name], %w[name], %s[name], %d[name]).

It is not possible at present for inputs to contain an SVE vector or predicate value. All uses of SVE
registers must be internal to instructions.

This example shows an asm directive with the same effect as the previous example, except that an i-form
input is used to specify the constant to be assigned to the result.

int f()
{
 int result;
 asm("movz %w[res], %[value]" : [res] "=r" (result) : [value] "i" (10));
 return result;
}

Side effects

Many asm statements have effects other than reading from inputs and writing to outputs. This is
particularly true of asm statements that implement vectorized loops, since most such loops read from or
write to memory. The side-effects section of an asm statement tells the compiler what these additional
effects are. Each entry must be one of the following:

"memory"
if the asm statement reads from or writes to memory. This is necessary even if inputs contain
pointers to the affected memory.

"cc"
if the asm statement modifies the condition-code flags.

"xN"
if the asm statement modifies general-purpose register N.

"vN"
if the asm statement modifies SIMD and floating-point register N.

"zN"
if the asm statement modifies SVE vector register N. Since SVE vector registers extend the
SIMD and floating-point registers, this is equivalent to writing "vN".

"pN"
if the asm statement modifies SVE predicate register N.

Use of volatile

Sometimes an asm statement might have dependencies and side effects that cannot be captured by the
asm statement syntax. For example, suppose there are three separate asm statements (not three lines
within a single asm statement), that do the following:

• The first sets the floating-point rounding mode.
• The second executes on the assumption that the rounding mode set by the first statement is in effect.
• The third statement restores the original floating-point rounding mode.

7 SVE Coding Considerations with Arm® Compiler
7.1 Embedding SVE assembly code directly into C and C++ code

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

7-115

Non-Confidential

It is important that these statements are executed in order, but the asm statement syntax provides no direct
method for representing the dependency between them. Instead, each statement must add the keyword
volatile after asm. This prevents the compiler from removing the asm statement as dead code, even if
the asm statement does not modify memory and if its results appear to be unused. The compiler always
executes asm volatile statements in their original order.

For example:

asm volatile ("msr fpcr, %[flags]" :: [flags] "r" (new_fpcr_value));

 Note

An asm volatile statement must still have a valid side effects list. For example, an asm volatile
statement that modifies memory must still include "memory" in the side-effects section.

Labels

The compiler might output a given asm statement more than once, either as a result of optimizing the
function that contains the asm statement or as a result of inlining that function into some of its callers.
Therefore, asm statements must not define named labels like .loop, since if the asm statement is written
more than once, the output contains more than one definition of label .loop. Instead, the assembler
provides a concept of relative labels. Each relative label is simply a number and is defined in the same
way as a normal label. For example, relative label 1 is defined by:

1:

The assembly code can contain many definitions of the same relative label. Code that refers to a relative
label must add the letter f to refer the next definition (f is for forward) or the letter b (backward) to refer
to the previous definition. A typical assembly loop with a pre-loop test would therefore have the
following structure. This allows the compiler output to contain many copies of this code without creating
any ambiguity.

 ...pre-loop test...
 b.none 2f
1:
 ...loop...
 b.any 1b
2:

Example

The following example shows a simple function that performs a fused multiply-add operation (x=a∙b+c)
across four passed-in arrays of a size specified by n:

void f(double *restrict x, double *restrict a, double *restrict b, double *restrict c,
 unsigned long n)
{
 for (unsigned long i = 0; i < n; ++i)
 {
 x[i] = fma(a[i], b[i], c[i]);
 }
}

An asm statement that exploits SVE instructions to achieve equivalent behavior might look like the
following:

void f(double *x, double *a, double *b, double *c, unsigned long n)
{
 unsigned long i;
 asm ("whilelo p0.d, %[i], %[n] \n\
 1: \n\
 ld1d z0.d, p0/z, [%[a], %[i], lsl #3] \n\
 ld1d z1.d, p0/z, [%[b], %[i], lsl #3] \n\
 ld1d z2.d, p0/z, [%[c], %[i], lsl #3] \n\
 fmla z2.d, p0/m, z0.d, z1.d \n\
 st1d z2.d, p0, [%[x], %[i], lsl #3] \n\
 uqincd %[i] \n\
 whilelo p0.d, %[i], %[n] \n\
 b.any 1b"

7 SVE Coding Considerations with Arm® Compiler
7.1 Embedding SVE assembly code directly into C and C++ code

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

7-116

Non-Confidential

 : [i] "=&r" (i)
 : "[i]" (0),
 [x] "r" (x),
 [a] "r" (a),
 [b] "r" (b),
 [c] "r" (c),
 [n] "r" (n)
 : "memory", "cc", "p0", "z0", "z1", "z2");
}

 Note

Keeping the restrict qualifiers would be valid but would have no effect.

The input specifier "[i]" (0) indicates that the assembly statements take an input 0 in the same register
as output [i]. In other words, the initial value of [i] must be zero. The use of =& in the specification of
[i] indicates that [i] cannot be allocated to the same register as [x], [a], [b], [c], or [n] (because the
assembly instructions use those inputs after writing to [i]).

In this example, the C variable i is not used after the asm statement. In effect the asm statement is simply
reserving a register that it can use as scratch space. Including "memory" in the side effects list indicates
that the asm statement reads from and writes to memory. The compiler must therefore keep the asm
statement even though i is not used.

7 SVE Coding Considerations with Arm® Compiler
7.1 Embedding SVE assembly code directly into C and C++ code

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

7-117

Non-Confidential

7.2 Using SVE and SVE2 intrinsics directly in your C code
Intrinsics are C or C++ pseudo-function calls that the compiler replaces with the appropriate SIMD
instructions. These intrinsics let you use the data types and operations available in the SIMD
implementation, while allowing the compiler to handle instruction scheduling and register allocation.

These intrinsics are defined in the Arm® C Language Extensions for SVE specification.

Introduction

The Arm C Language Extensions (ACLE) for SVE provide a set of types and accessors for SVE vectors
and predicates, and a function interface for all relevant SVE and SVE2 instructions.

The function interface is more general than the underlying architecture, so not every function maps
directly to an architectural instruction. The intention is to provide a regular interface and leave the
compiler to pick the best mapping to SVE or SVE2 instructions.

The Arm® C Language Extensions for SVE specification has a detailed description of this interface, and
must be used as the primary reference. This section introduces a selection of features to help you get
started with the Arm C Language Extensions for SVE.

Header file inclusion

Translation units that use the ACLE must first include arm_sve.h, guarded by __ARM_FEATURE_SVE:

#ifdef __ARM_FEATURE_SVE
#include <arm_sve.h>
#endif /* __ARM_FEATURE_SVE */

All functions and types that are defined in the header file have the prefix sv, to reduce the chance of
collisions with other extensions.

SVE vector types

arm_sve.h defines the following C types to represent values in SVE vector registers. Each type describes
the type of the elements within the vector:

svint8_t svuint8_t

svint16_t svuint16_t svfloat16_t

svint32_t svuint32_t svfloat32_t

svint64_t svuint64_t svfloat64_t

For example, svint64_t represents a vector of 64-bit signed integers, and svfloat16_t represents a
vector of half-precision floating-point numbers.

SVE predicate type

The extension also defines a single sizeless predicate type svbool_t, which has enough bits to control an
operation on a vector of bytes.

The main use of predicates is to select elements in a vector. When the elements in the vector have N
bytes, only the low bit in each sequence of N predicate bits is significant, as shown in the following
table:

Table 7-1 Element selection by predicate type svbool_t

Vector type Element selected by each svbool_t bit

svint8_t 0 1 2 3 4 5 6 7 8 ...

svint16_t 0 1 2 3 4 ...

7 SVE Coding Considerations with Arm® Compiler
7.2 Using SVE and SVE2 intrinsics directly in your C code

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

7-118

Non-Confidential

https://developer.arm.com/docs/100987/latest/arm-c-language-extensions-for-sve
https://developer.arm.com/docs/100987/latest/arm-c-language-extensions-for-sve

Table 7-1 Element selection by predicate type svbool_t (continued)

Vector type Element selected by each svbool_t bit

svint32_t 0 1 2 ...

svint64_t 0 1 ...

Limitations on how SVE ACLE types can be used

SVE is a vector-length agnostic architecture, allowing an implementation to choose a vector length of
any multiple of 128 bits, up to a maximum of 2048 bits. Therefore, the size of SVE ACLE types is
unknown at compile time, which limits how these types can be used.

Common situations where SVE types might be used include:

• As the type of an object with automatic storage duration.
• As a function parameter or return type.
• As the type in a (type) {value} compound literal.
• As the target of a pointer or reference type.
• As a template type argument.

Because of their unknown size at compile time, SVE types must not be used:
• To declare or define a static or thread-local storage variable.
• As the type of an array element.
• As the operand to a new expression.
• As the type of object that is deleted by a delete expression.
• As the argument to sizeof and _Alignof.
• With pointer arithmetic on pointers to SVE objects (this affects the +, -, ++, and -- operators).
• As members of unions, structures and classes.
• In standard library containers like std::vector.

For a comprehensive list of valid usage, refer to the Arm® C Language Extensions for SVE specification.

Calling SVE ACLE functions

SVE ACLE functions have the form:

sv<base>[_<disambiguator>][_<type0>][_<type1>]...[_<predication>]

Where the function is built using the following:

<base>

For most functions, this name is the lowercase name of the SVE instruction. Sometimes, letters
indicating the type or size of data being operated on are omitted, where it can be implied from
the argument types.

Unsigned extending loads add a u to indicate that the data is zero extended, to more explicitly
differentiate them from their signed equivalent.

<disambiguator>
This field distinguishes between different forms of a function, for example:
• To distinguish between addressing modes
• To distinguish forms that take a scalar rather than a vector as the final argument.

7 SVE Coding Considerations with Arm® Compiler
7.2 Using SVE and SVE2 intrinsics directly in your C code

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

7-119

Non-Confidential

https://developer.arm.com/docs/100987/latest/arm-c-language-extensions-for-sve

<type0> <type1> ...

A list of types for vectors and predicates, starting with the return type then with each argument
type. For example, _s8, _u32, and _f32, which represent signed 8-bit integer, an unsigned 32-bit
integer and single-precision 32-bit float types, respectively.

Predicate types are represented by, for example, _b8 and _b16, for predicates suitable for 8-bit
and 16-bit types respectively. A predicate type suitable for all element types is represented by
_b. Where a type is not needed to disambiguate between variants of a base function, it is
omitted.

<predication>
This suffix describes the inactive elements in the result of a predicated operation. It can be one
of the following:
• z – Zero predication: Set all inactive elements of the result to zero.
• m – Merge predication: copy all inactive elements from the first vector argument.
• x – ‘Don’t care’ predication. Use this form when you do not care about the inactive

elements. The compiler is then free to choose between zeroing, merging, or unpredicated
forms to give the best code quality, but gives no guarantee of what data is left in inactive
elements.

Addressing modes

Load, store, prefetch, and ADR functions have arguments that describe the memory area being addressed.
The first addressing argument is the base – either a single pointer to an element type, or a 32-bit or 64-bit
vector of addresses. The second argument, when present, offsets the base (or bases) by some number of
bytes, elements, or vectors. This offset argument can be an immediate constant value, a scalar argument,
or a vector of offsets.

Not every combination of the addressing modes exists. The following table gives examples of some
common addressing mode disambiguators, and describes how to interpret the address arguments:

Table 7-2 Common addressing mode disambiguators

Disambiguator Interpretation

_u32base The base argument is a vector of unsigned 32-bit addresses.

_u64base The base argument is a vector of unsigned 64-bit addresses.

_s32offset

_s64offset

_u32offset

_u64offset

The offset argument is a vector of byte offsets. These offsets are signed or unsigned 32-bit or 64-bit numbers.

_s32index

_s64index

_u32index

_u64index

The offset argument is a vector of element-sized indices. These indices are signed or unsigned 32-bit or 64-bit
numbers.

_offset The offset argument is a scalar, and must be treated as a byte offset.

_index The offset argument is a scalar, and must be treated as an index into an array of elements.

_vnum The offset argument is a scalar, and must be treated an index into an array of SVE vectors.

In the following example, the address of element i is &base[indices[i]].

svuint32_t svld1_gather_[s32]index[_u32]
 (svbool_t pg, const uint32_t *base, svint32_t indices)

7 SVE Coding Considerations with Arm® Compiler
7.2 Using SVE and SVE2 intrinsics directly in your C code

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

7-120

Non-Confidential

Operations involving vectors and scalars

All arithmetic functions that take two vector inputs have an alternative form that takes a vector and a
scalar. Conceptually, this scalar is duplicated across a vector, and that vector is used as the second vector
argument.

Similarly, arithmetic functions that take three vector inputs have an alternative form that takes two
vectors and one scalar.

To differentiate these forms, the disambiguator _n is added to the form that takes a scalar.

Short forms

Sometimes, it is possible to omit part of the full name, and still uniquely identify the correct form of a
function, by inspecting the argument types. Where omitting part of the full name is possible, these
simplified forms are provided as aliases to their fully named equivalents, and are used for preference in
the rest of this document.

In the Arm® C Language Extensions for SVE specification, the portion that can be removed is enclosed in
square brackets. For example svclz[_s16]_m has the full name svclz_s16_m, and an overloaded alias,
svclz_m.

SVE2 intrinsics
SVE2 builds on SVE to add data-processing instructions that bring the benefits of scalable long vectors
to a wider class of applications. To enable only the base SVE2 instructions, use the +sve2 option with the
armclang -march or -mcpu options. To enable additional optional SVE2 instructions, use the following
armclang options:
• +sve2-aes to enable scalable vector forms of AESD, AESE, AESIMC, AESMC, PMULLB, and PMULLT

instructions.
• +sve2-bitperm to enable the BDEP, BEXT, and BGRP instructions.
• +sve2-sha3 to enable scalable vector forms of the RAX1 instruction.
• +sve2-sm4 to enable scalable vector forms of SM4E and SM4EKEY instructions.

You can use one or more of these options. Each option also implies +sve2. For example, +sve2-aes
+sve2-bitperm+sve2-sha3+sve2-sm4 enables all base and optional instructions. For clarity, you can
include +sve2 if necessary.

See -march and -mcpu in the Arm® Compiler Reference Guide for more information.

Example – Naïve step-1 daxpy

daxpy is a BLAS (Basic Linear Algebra Subroutines) subroutine that operates on two arrays of double-
precision floating-point numbers. A slice is taken of each of these arrays. For each element in these
slices, an element (x) in the first array is multiplied by a constant (a), then added to the element (y) from
the second array. The result is stored back to the second array at the same index.

This example presents a step-1 daxpy implementation, where the indices of x and y start at 0 and
increment by 1 each iteration. A C code implementation might look like the following:

void daxpy_1_1(int64_t n, double da, double *dx, double *dy)
{
 for (int64_t i = 0; i < n; ++i) {
 dy[i] = dx[i] * da + dy[i];
 }
}

Here is an ACLE equivalent:

void daxpy_1_1(int64_t n, double da, double *dx, double *dy)
{
 int64_t i = 0;
 svbool_t pg = svwhilelt_b64(i, n); // [1]
 do {
 svfloat64_t dx_vec = svld1(pg, &dx[i]); // [2]
 svfloat64_t dy_vec = svld1(pg, &dy[i]); // [2]
 svst1(pg, &dy[i], svmla_x(pg, dy_vec, dx_vec, da)); // [3]
 i += svcntd(); // [4]

7 SVE Coding Considerations with Arm® Compiler
7.2 Using SVE and SVE2 intrinsics directly in your C code

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

7-121

Non-Confidential

https://developer.arm.com/docs/100987/latest/arm-c-language-extensions-for-sve
https://developer.arm.com/documentation/101754/0616/armclang-Reference/armclang-Command-line-Options/-march
https://developer.arm.com/documentation/101754/0616/armclang-Reference/armclang-Command-line-Options/-mcpu

 pg = svwhilelt_b64(i, n); // [1]
 }
 while (svptest_any(svptrue_b64(), pg)); // [5]
}

The following steps explain this example:

[1] - Initialize a predicate register to control the loop. _b64 specifies a predicate for 64-bit elements.
Conceptually, this operation creates an integer vector starting at i and incrementing by 1 in each
subsequent lane. The predicate lane is active if this value is less than n. Therefore, this loop is safe, if
inefficient, even if n ≤ 0. The same operation is used at the bottom of the loop, to update the predicate for
the next iteration.

[2] - Load some values into an SVE vector, which is guarded by the loop predicate. Lanes where this
predicate is false do not perform any load (and so do not generate a fault), and set the result value to 0.0.
The number of lanes that are loaded depends on the vector width, which is only known at runtime.

[3] - Perform a floating-point multiply-add operation, and pass the result to a store. The _x on the MLA
indicates we do not care about the result for inactive lanes. This gives the compiler maximum flexibility
in choosing the most efficient instruction. The result of this operation is stored at address &dy[i],
guarded by the loop predicate. Lanes where the predicate is false are not stored, and the value in memory
retains its prior value.

[4] - Increment i by the number of double-precision lanes in the vector.

[5] - ptest returns true if any lane of the (newly updated) predicate is active, which causes control to
return to the start of the while loop if there is any work left to do.

“Ideal” assembler output:

daxpy_1_1:
 MOV Z2.D, D0 // da
 MOV X3, #0 // i
 WHILELT P0.D, X3, X0 // i, n
loop:
 LD1D Z1.D, P0/Z, [X1, X3, LSL #3]
 LD1D Z0.D, P0/Z, [X2, X3, LSL #3]
 FMLA Z0.D, P0/M, Z1.D, Z2.D
 ST1D Z0.D, P0, [X2, X3, LSL #3]
 INCD X3 // i
 WHILELT P0.D, X3, X0 // i, n
 B.ANY loop
 RET

Example – Naïve general daxpy

This example presents a general daxpy implementation, where the indices of x and y start at 0 and are
then incremented by unknown (but loop-invariant) strides each iteration.

void daxpy(int64_t n, double da, double *dx, int64_t incx,
 double *dy, int64_t incy)
{
 svint64_t incx_vec = svindex_s64(0, incx); // [1]
 svint64_t incy_vec = svindex_s64(0, incy); // [1]
 int64_t i = 0;
 svbool_t pg = svwhilelt_b64(i, n); // [2]
 do {
 svfloat64_t dx_vec = svld1_gather_index(pg, dx, incx_vec); // [3]
 svfloat64_t dy_vec = svld1_gather_index(pg, dy, incy_vec); // [3]
 svst1_scatter_index(pg, dy, incy_vec, svmla_x(pg, dy_vec, dx_vec, da)); // [4]
 dx += incx * svcntd(); // [5]
 dy += incy * svcntd(); // [5]
 i += svcntd(); // [6]
 pg = svwhilelt_b64(i, n); // [2]
 }
 while (svptest_any(svptrue_b64(), pg)); // [7]
}

The following steps explain this example:

[1] - For each of x and y, initialize a vector of indices, starting at 0 for the first lane and incrementing by
incx and incy respectively in each subsequent lane.

7 SVE Coding Considerations with Arm® Compiler
7.2 Using SVE and SVE2 intrinsics directly in your C code

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

7-122

Non-Confidential

[2] - Initialize or update the loop predicate.

[3] - Load a vector’s worth of values, which are guarded by the loop predicate. Lanes where this
predicate is false do not perform any load (and so do not generate a fault), and set the result value to 0.0.
This time, a base + vector-of-indices gather load, is used to load the required non-consecutive values.

[4] - Perform a floating-point multiply-add operation, and pass the result to a store. This time, the base +
vector-of-indices scatter store is used to store each result in the correct index of the dy[] array.

[5] - Instead of using i to calculate the load address, increment the base pointer, by multiplying the
vector length by the stride.

[6] - Increment i by the number of double-precision lanes in the vector.

[7] - Test the loop predicate to work out whether there is any more work to do, and loop back if
appropriate.

7 SVE Coding Considerations with Arm® Compiler
7.2 Using SVE and SVE2 intrinsics directly in your C code

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

7-123

Non-Confidential

Chapter 8
Mapping Code and Data to the Target

There are various options in Arm Compiler to control how code, data and other sections of the image are
mapped to specific locations on the target.

It contains the following sections:
• 8.1 What the linker does to create an image on page 8-125.
• 8.2 Placing data items for target peripherals with a scatter file on page 8-127.
• 8.3 Placing the stack and heap with a scatter file on page 8-128.
• 8.4 Root region on page 8-129.
• 8.5 Placing functions and data in a named section on page 8-132.
• 8.6 Loading armlink-generated ELF files that have complex scatter-files on page 8-134.
• 8.7 Placement of functions and data at specific addresses on page 8-136.
• 8.8 Bare-metal Position Independent Executables on page 8-144.
• 8.9 Placement of Arm® C and C++ library code on page 8-146.
• 8.10 Manual placement of unassigned sections on page 8-148.
• 8.11 Placing veneers with a scatter file on page 8-158.
• 8.12 Preprocessing a scatter file on page 8-159.
• 8.13 Reserving an empty block of memory on page 8-161.
• 8.14 Alignment of regions to page boundaries on page 8-163.
• 8.15 Alignment of execution regions and input sections on page 8-164.

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

8-124

Non-Confidential

8.1 What the linker does to create an image
The linker takes object files that a compiler or assembler produces and combines them into an executable
image. The linker also uses a memory description to assign the input code and data from the object files
to the required addresses in the image.

You can specify object files directly on the command line or specify a user library containing object files.
The linker:

• Resolves symbolic references between the input object files.
• Extracts object modules from libraries to resolve otherwise unresolved symbolic references.
• Removes unused sections.
• Eliminates duplicate common groups and common code, data, and debug sections.
• Sorts input sections according to their attributes and names, and merges sections with similar

attributes and names into contiguous chunks.
• Organizes object fragments into memory regions according to the grouping and placement

information that is provided in a memory description.
• Assigns addresses to relocatable values.
• Generates either a partial object if requested, for input to another link step, or an executable image.

The linker has a built-in memory description that it uses by default. However, you can override this
default memory description with command-line options or with a scatter file. The method that you use
depends how much you want to control the placement of the various output sections in the image:
• Allow the linker to automatically place the output sections using the default memory map for the

specified linking model. armlink uses default locations for the RO, RW, execute-only (XO), and ZI
output sections.

• Use the memory map related command-line options to specify the locations of the RO, RW, XO, and
ZI output sections.

• Use a scatter file if you want to have the most control over where the linker places various parts of
your image. For example, you can place individual functions at specific addresses or certain data
structures at peripheral addresses.

 Note

XO sections are supported only for images that are targeted at Armv7‑M or Armv8‑M architectures.

This section contains the following subsections:
• 8.1.1 What you can control with a scatter file on page 8-125.
• 8.1.2 Interaction of OVERLAY and PROTECTED attributes with armlink merge options

on page 8-126.

8.1.1 What you can control with a scatter file

A scatter file gives you the ability to control where the linker places different parts of your image for
your particular target.

You can control:

• The location and size of various memory regions that are mapped to ROM, RAM, and FLASH.
• The location of individual functions and variables, and code from the Arm standard C and C++

libraries.
• The placement of sections that contain individual functions or variables, or code from the Arm

standard C and C++ libraries.
• The priority ordering of memory areas for placing unassigned sections, to ensure that they get filled

in a particular order.
• The location and size of empty regions of memory, such as memory to use for stack and heap.

8 Mapping Code and Data to the Target
8.1 What the linker does to create an image

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

8-125

Non-Confidential

If the location of some code or data lies outside all the regions that are specified in your scatter file, the
linker attempts to create a load and execution region to contain that code or data.

 Note

Multiple code and data sections cannot occupy the same area of memory, unless you place them in
separate overlay regions.

8.1.2 Interaction of OVERLAY and PROTECTED attributes with armlink merge options

The OVERLAY and PROTECTED scatter-loading attributes modify the behavior of the armlink options --
merge and --merge_litpools.

The following table describes how the OVERLAY and PROTECTED scatter-loading attributes affect the
armlink options --merge and --merge_litpools. The terms const string and const value have the
following meanings:

const string
A string literal from an ELF section with the SHF_MERGE and SHF_STRINGS flags.

const value

A constant defined in a constant pool where the constant pool is in the same section as the code
that uses it.

armlink command
option

No attribute OVERLAY attribute PROTECTED attribute

--merge Merges all const
strings.

Prevents merging across regions marked
OVERLAY with other regions.

const strings within a region are merged.

Prevents merging across regions
marked PROTECTED with other
regions.

const strings within a region are
merged.

--no_merge Disables the merging
of all const strings.

Disables the merging of all const strings. Disables the merging of all const
strings.

--merge_litpools Merges all const
values.

Prevents merging across regions marked
OVERLAY. A const in an OVERLAY can be
merged into a region that is not marked
with either OVERLAY or PROTECTED.

const values within a region are merged.

Prevents merging across regions
marked PROTECTED with other
regions.

const values within a region are
merged.

--no_merge_litpools Disables the merging
of all const values.

Disables the merging of all const values. Disables the merging of all const
values.

Related information
--merge, --no_merge
--merge_litpools, --no_merge_litpools
Merging identical constants
Load region attributes
Execution region attributes

8 Mapping Code and Data to the Target
8.1 What the linker does to create an image

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

8-126

Non-Confidential

https://developer.arm.com/documentation/101754/0616/armlink-Reference/armlink-Command-line-Options/--merge----no-merge
https://developer.arm.com/documentation/101754/0616/armlink-Reference/armlink-Command-line-Options/--merge-litpools----no-merge-litpools
https://developer.arm.com/documentation/101754/0616/armlink-Reference/Linker-Optimization-Features/Merging-identical-constants
https://developer.arm.com/documentation/101754/0616/armlink-Reference/Scatter-File-Syntax/Load-region-descriptions/Load-region-attributes
https://developer.arm.com/documentation/101754/0616/armlink-Reference/Scatter-File-Syntax/Execution-region-descriptions/Execution-region-attributes

8.2 Placing data items for target peripherals with a scatter file
To access the peripherals on your target, you must locate the data items that access them at the addresses
of those peripherals.

To make sure that the data items are placed at the correct address for the peripherals, use the
__attribute__((section(".ARM.__at_address"))) variable attribute together with a scatter file.

Procedure
1. Create peripheral.c to place the my_peripheral variable at address 0x10000000.

#include "stdio.h"

int my_peripheral __attribute__((section(".ARM.__at_0x10000000"))) = 0;

int main(void)
{
 printf("%d\n",my_peripheral);
 return 0;
}

2. Create the scatter file scatter.scat.

LR_1 0x040000 ; load region starts at 0x40000
{ ; start of execution region descriptions
 ER_RO 0x040000 ; load address = execution address
 {
 *(+RO +RW) ; all RO sections (must include section with
 ; initial entry point)
 }
 ; rest of scatter-loading description

 ARM_LIB_STACK 0x40000 EMPTY -0x20000 ; Stack region growing down
 { }
 ARM_LIB_HEAP 0x28000000 EMPTY 0x80000 ; Heap region growing up
 { }
}

LR_2 0x01000000
{
 ER_ZI +0 UNINIT
 {
 *(.bss)
 }
}

LR_3 0x10000000
{
 ER_PERIPHERAL 0x10000000 UNINIT
 {
 *(.ARM.__at_0x10000000)
 }
}

3. Build the image.

armclang --target=arm-arm-eabi-none -mcpu=cortex-a9 peripheral.c -g -c -o peripheral.o
armlink --cpu=cortex-a9 --scatter=scatter.scat --map --symbols peripheral.o --
output=peripheral.axf > map.txt

Results:

The memory map for load region LR_3 is:

 Load Region LR_3 (Base: 0x10000000, Size: 0x00000004, Max: 0xffffffff, ABSOLUTE)

 Execution Region ER_PERIPHERAL (Base: 0x10000000, Size: 0x00000004, Max: 0xffffffff,
ABSOLUTE, UNINIT)

 Base Addr Size Type Attr Idx E Section Name Object

 0x10000000 0x00000004 Data RW 5 .ARM.__at_0x10000000 peripheral.o

8 Mapping Code and Data to the Target
8.2 Placing data items for target peripherals with a scatter file

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

8-127

Non-Confidential

8.3 Placing the stack and heap with a scatter file
The Arm C library provides multiple implementations of the function __user_setup_stackheap(), and
can select the correct one for you automatically from information that is given in a scatter file.

 Note

• If you re-implement __user_setup_stackheap(), your version does not get invoked when stack and
heap are defined in a scatter file.

• You might have to update your startup code to use the correct initial stack pointer. Some processors,
such as the Cortex-M3 processor, require that you place the initial stack pointer in the vector table.
See Stack and heap configuration in AN179 - Cortex®-M3 Embedded Software Development for more
details.

• You must ensure correct alignment of the stack and heap:
— In AArch32 state, the stack and heap must be 8-byte aligned.
— In AArch64 state, the stack and heap must be 16-byte aligned.

Procedure
1. Define two special execution regions in your scatter file that are named ARM_LIB_HEAP and

ARM_LIB_STACK.
2. Assign the EMPTY attribute to both regions.

Because the stack and heap are in separate regions, the library selects the non-default implementation
of __user_setup_stackheap() that uses the value of the symbols:
• Image$$ARM_LIB_STACK$$ZI$$Base.
• Image$$ARM_LIB_STACK$$ZI$$Limit.
• Image$$ARM_LIB_HEAP$$ZI$$Base.
• Image$$ARM_LIB_HEAP$$ZI$$Limit.

You can specify only one ARM_LIB_STACK or ARM_LIB_HEAP region, and you must allocate a size.

Example:

LOAD_FLASH …
{
 …
 ARM_LIB_STACK 0x40000 EMPTY -0x20000 ; Stack region growing down
 { }
 ARM_LIB_HEAP 0x28000000 EMPTY 0x80000 ; Heap region growing up
 { }
 …
}

3. Alternatively, define a single execution region that is named ARM_LIB_STACKHEAP to use a combined
stack and heap region. Assign the EMPTY attribute to the region.
Because the stack and heap are in the same region, __user_setup_stackheap() uses the value of the
symbols Image$$ARM_LIB_STACKHEAP$$ZI$$Base and Image$$ARM_LIB_STACKHEAP$$ZI$$Limit.

8 Mapping Code and Data to the Target
8.3 Placing the stack and heap with a scatter file

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

8-128

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dai0179-/CHDEGGBA.html

8.4 Root region
A root region is a region with the same load and execution address. The initial entry point of an image
must be in a root region.

If the initial entry point is not in a root region, the link fails and the linker gives an error message.
 Note

All eXecute In Place (XIP) code must be stored in root regions.

Example

Root region with the same load and execution address.

LR_1 0x040000 ; load region starts at 0x40000
{ ; start of execution region descriptions
 ER_RO 0x040000 ; load address = execution address
 {
 * (+RO) ; all RO sections (must include section with
 ; initial entry point)
 }
 … ; rest of scatter-loading description
}

This section contains the following subsections:
• 8.4.1 Effect of the ABSOLUTE attribute on a root region on page 8-129.
• 8.4.2 Effect of the FIXED attribute on a root region on page 8-130.

8.4.1 Effect of the ABSOLUTE attribute on a root region

You can use the ABSOLUTE attribute to specify a root region. This attribute is the default for an execution
region.

To specify a root region, use ABSOLUTE as the attribute for the execution region. You can either specify
the attribute explicitly or permit it to default, and use the same address for the first execution region and
the enclosing load region.

To make the execution region address the same as the load region address, either:
• Specify the same numeric value for both the base address for the execution region and the base

address for the load region.
• Specify a +0 offset for the first execution region in the load region.

If you specify an offset of zero (+0) for all subsequent execution regions in the load region, then all
execution regions not following an execution region containing ZI are also root regions.

Example

The following example shows an implicitly defined root region:

LR_1 0x040000 ; load region starts at 0x40000
{ ; start of execution region descriptions
 ER_RO 0x040000 ABSOLUTE ; load address = execution address
 {
 * (+RO) ; all RO sections (must include the section
 ; containing the initial entry point)
 }
 … ; rest of scatter-loading description
}

8 Mapping Code and Data to the Target
8.4 Root region

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

8-129

Non-Confidential

8.4.2 Effect of the FIXED attribute on a root region

You can use the FIXED attribute for an execution region in a scatter file to create root regions that load
and execute at fixed addresses.

Use the FIXED execution region attribute to ensure that the load address and execution address of a
specific region are the same.

You can use the FIXED attribute to place any execution region at a specific address in ROM.

For example, the following memory map shows fixed execution regions:

*(RO)

Execution viewLoad view

init.o

0x4000

0x80000
init.o

*(RO)

Empty

Single
load
region

Filled with zeroes or the value defined using
the --pad option

(FIXED)

(movable)

Figure 8-1 Memory map for fixed execution regions

The following example shows the corresponding scatter-loading description:

LR_1 0x040000 ; load region starts at 0x40000
{ ; start of execution region descriptions
 ER_RO 0x040000 ; load address = execution address
 {
 * (+RO) ; RO sections other than those in init.o
 }
 ER_INIT 0x080000 FIXED ; load address and execution address of this
 ; execution region are fixed at 0x80000
 {
 init.o(+RO) ; all RO sections from init.o
 }
 … ; rest of scatter-loading description
}

You can use this attribute to place a function or a block of data, for example a constant table or a
checksum, at a fixed address in ROM. This makes it easier to access the function or block of data
through pointers.

If you place two separate blocks of code or data at the start and end of ROM, some of the memory
contents might be unused. For example, you might place some initialization code at the start of ROM and
a checksum at the end of ROM. Use the * or .ANY module selector to flood fill the region between the
end of the initialization block and the start of the data block.

8 Mapping Code and Data to the Target
8.4 Root region

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

8-130

Non-Confidential

To make your code easier to maintain and debug, use the minimum number of placement specifications
in scatter files. Leave the detailed placement of functions and data to the linker.

 Note

There are some situations where using FIXED and a single load region are not appropriate. Other
techniques for specifying fixed locations are:
• If your loader can handle multiple load regions, place the RO code or data in its own load region.
• If you do not require the function or data to be at a fixed location in ROM, use ABSOLUTE instead of

FIXED. The loader then copies the data from the load region to the specified address in RAM.
ABSOLUTE is the default attribute.

• To place a data structure at the location of memory-mapped I/O, use two load regions and specify
UNINIT. UNINIT ensures that the memory locations are not initialized to zero.

Example showing the misuse of the FIXED attribute

The following example shows common cases where the FIXED execution region attribute is misused:

LR1 0x8000
{
 ER_LOW +0 0x1000
 {
 *(+RO)
 }
; At this point the next available Load and Execution address is 0x8000 + size of
; contents of ER_LOW. The maximum size is limited to 0x1000 so the next available Load
; and Execution address is at most 0x9000
 ER_HIGH 0xF0000000 FIXED
 {
 *(+RW,+ZI)
 }
; The required execution address and load address is 0xF0000000. The linker inserts
; 0xF0000000 - (0x8000 + size of(ER_LOW)) bytes of padding so that load address matches
; execution address
}
; The other common misuse of FIXED is to give a lower execution address than the next
; available load address.
LR_HIGH 0x100000000
{
 ER_LOW 0x1000 FIXED
 {
 *(+RO)
 }
; The next available load address in LR_HIGH is 0x10000000. The required Execution
; address is 0x1000. Because the next available load address in LR_HIGH must increase
; monotonically the linker cannot give ER_LOW a Load Address lower than 0x10000000
}

8 Mapping Code and Data to the Target
8.4 Root region

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

8-131

Non-Confidential

8.5 Placing functions and data in a named section
You can place functions and data by separating them into their own objects without having to use
toolchain-specific pragmas or attributes. Alternatively, you can specify a name of a section using the
function or variable attribute, __attribute__((section("name"))).

You can use __attribute__((section("name"))) to place a function or variable in a separate ELF
section, where name is a name of your choice. You can then use a scatter file to place the named sections
at specific locations.

You can place ZI data in a named section with __attribute__((section(".bss.name"))).

Use the following procedure to modify your source code to place functions and data in a specific section
using a scatter file.

Procedure
1. Create a C source file file.c to specify a section name foo for a variable and a section

name .bss.mybss for a zero-initialized variable z, for example:

#include "stdio.h"

int variable __attribute__((section("foo"))) = 10;
__attribute__((section(".bss.mybss"))) int z;

int main(void)
{
 int x = 4;
 int y = 7;
 z = x + y;
 printf("%d\n",variable);
 printf("%d\n",z);
 return 0;
}

2. Create a scatter file to place the named section, scatter.scat, for example:

LR_1 0x0
{
 ER_RO 0x0 0x4000
 {
 *(+RO)
 }
 ER_RW 0x4000 0x2000
 {
 *(+RW)
 }
 ER_ZI 0x6000 0x2000
 {
 *(+ZI)
 }
 ER_MYBSS 0x8000 0x2000
 {
 *(.bss.mybss)
 }

 ARM_LIB_STACK 0x40000 EMPTY -0x20000 ; Stack region growing down
 { }
 ARM_LIB_HEAP 0x28000000 EMPTY 0x80000 ; Heap region growing up
 { }
}

FLASH 0x24000000 0x4000000
{
 ; rest of code

 ADDER 0x08000000
 {
 file.o (foo) ; select section foo from file.o
 }

}

8 Mapping Code and Data to the Target
8.5 Placing functions and data in a named section

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

8-132

Non-Confidential

The ARM_LIB_STACK and ARM_LIB_HEAP regions are required because the program is being linked
with the semihosting libraries.

 Note

If you omit file.o (foo) from the scatter file, the linker places the section in the region of the same
type. That is, ER_RW in this example.

3. Compile and link the C source:

armclang --target=arm-arm-eabi-none -march=armv8-a file.c -g -c -O1 -o file.o
armlink --cpu=8-A.32 --scatter=scatter.scat --map file.o --output=file.axf

The --map option displays the memory map of the image.

Example:
In this example:
• __attribute__((section("foo"))) specifies that the linker is to place the global variable

variable in a section called foo.
• __attribute__((section(".bss.mybss"))) specifies that the linker is to place the global

variable z in a section called .bss.mybss.
• The scatter file specifies that the linker is to place the section foo in the ADDER execution region of

the FLASH execution region.

The following example shows the output from --map:

…
 Execution Region ER_MYBSS (Base: 0x00008000, Size: 0x00000004, Max: 0x00002000,
ABSOLUTE)

 Base Addr Size Type Attr Idx E Section Name Object

 0x00008000 0x00000004 Zero RW 7 .bss.mybss file.o
…
 Load Region FLASH (Base: 0x24000000, Size: 0x00000004, Max: 0x04000000, ABSOLUTE)

 Execution Region ADDER (Base: 0x08000000, Size: 0x00000004, Max: 0xffffffff, ABSOLUTE)

 Base Addr Size Type Attr Idx E Section Name Object

 0x08000000 0x00000004 Data RW 5 foo file.o
…

 Note

• If scatter-loading is not used, the linker places the section foo in the default ER_RW execution
region of the LR_1 load region. It also places the section .bss.mybss in the default execution
region ER_ZI.

• If you have a scatter file that does not include the foo selector, then the linker places the section in
the defined RW execution region.

You can also place a function at a specific address using .ARM.__at_address as the section name.
For example, to place the function sqr at 0x20000, specify:

int sqr(int n1) __attribute__((section(".ARM.__at_0x20000")));

int sqr(int n1)
{
 return n1*n1;
}

For more information, see 8.7 Placement of functions and data at specific addresses on page 8-136.
Related information
Semihosting for AArch32 and AArch64

8 Mapping Code and Data to the Target
8.5 Placing functions and data in a named section

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

8-133

Non-Confidential

https://developer.arm.com/documentation/100863/latest

8.6 Loading armlink-generated ELF files that have complex scatter-files
The information in program headers of type PT_LOAD is not always sufficient to load ELF files
produced by armlink.

In the ELF specification, a PT_LOAD program header can be loaded by examining the fields:

• p_offset
• p_vaddr
• p_paddr. The value of this field is always the same as p_vaddr for armlink.
• p_filesz
• p_memsz

The ELF loader copies p_filesz bytes from the file at offset p_offset to the address specified by
p_vaddr. The loader then creates p_memsz - p_filesz bytes of zero-initialized (ZI) data at address
p_vaddr + p_filesz.

The final result is:

p_vaddr

p_filesz

p_memsz
- p_filesz

p_vaddr
 +
p_filesz

p_vaddr
 +
p_memsz

Copied from file
starting at
p_offset

Zero initialized

The scatter-loading notation permits ZI data to be created at a virtual address that is not at p_vaddr +
p_filesz. Therefore, an ELF loader that creates ZI data by examining the fields of the program header
alone creates the ZI data in the wrong place. To avoid this issue, do one of the following:

• Do not use the program headers to derive the execution view when loading the image onto the target
device. Instead, use the fromelf utility to generate a binary file for the image, then load that binary
file. The binary file contains a table containing the correct location of execution regions. The Arm C-
library uses this table to create the ZI data before program startup.

• Ensure that all execution regions are root regions with all the execution regions containing ZI data at
end of the load region. You can check this situation by manually inspecting:
— The output from armlink --map.
— The section headers in the output from fromelf -v.

The following example shows the behavior:
1. Create the file foo.c containing the following code:

int foo[0x10000];
int main(void)
{
 return foo[0];
}

2. Create the file scatter.scat containing the following load and execution regions:

LR 0x8000
{
 CODE +0

8 Mapping Code and Data to the Target
8.6 Loading armlink-generated ELF files that have complex scatter-files

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

8-134

Non-Confidential

 {
 *(+RO)
 }
 RW_DATA +0
 {
 *(+RW)
 }
 /* ZI_DATA is not a root region */
 ZI_DATA 0x10000000
 {
 *(+ZI)
 }
}
LR_STACKHEAP 0x20000000
{
 ARM_LIB_STACKHEAP +0 EMPTY 0x2000 {}
}

3. Compile and link the example using the following commands:

armclang --target=arm-arm-none-eabi -march=armv7-a -c foo.c -o foo.o
armlink --scatter=scatter.scat foo.o -o foo.axf

4. To examine the program headers, enter the following fromelf command:

fromelf -s -v foo.axf
...
==

** Program header #0

 Type : PT_LOAD (1)
 File Offset : 52 (0x34)
 Virtual Addr : 0x00008000
 Physical Addr : 0x00008000
 Size in file : 720 bytes (0x2d0)
 Size in memory: 262864 bytes (0x402d0)
 Flags : PF_X + PF_W + PF_R + PF_ARM_ENTRY (0x80000007)
 Alignment : 4
...
====================================

** Section #5
...
 179 foo 0x10000000 Gb 2 Data Hi 0x40000
...

In the output, Program Header #0 describes the load region LR:
• p_vaddr field is the Virtual Addr
• p_filesz is the Size in file
• p_memsz is the Size in memory.

If you use an ELF loader to create the memory based on the program header, then 0x402d0 - 0x2d0
bytes of ZI data are created at address 0x8000 + 0x2d0. This address does not match the expected
execution address of 0x10000000 as shown by the address of symbol foo.

8 Mapping Code and Data to the Target
8.6 Loading armlink-generated ELF files that have complex scatter-files

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

8-135

Non-Confidential

8.7 Placement of functions and data at specific addresses
You can place a single function or data item at a fixed address. You must enable the linker to process the
function or data separately from the other input files.

Where they are required, the compiler normally produces RO, RW, and ZI sections from a single source
file. These sections contain all the code and data from the source file.

 Note

For images targeted at Armv7‑M or Armv8‑M, the compiler might generate execute-only (XO) sections.

Typically, you create a scatter file that defines an execution region at the required address with a section
description that selects only one section.

To place a function or variable at a specific address, it must be placed in its own section. There are
several ways to place a function or variable in its own section:
• By default, the compiler places each function and variable in individual ELF sections. To override

this default placement, use the -fno-function-sections or -fno-data-sections compiler options.
• Place the function or data item in its own source file.
• Use __attribute__((section("name"))) to place functions and variables in a specially named

section, .ARM.__at_address, where address is the address to place the function or variable. For
example, __attribute__((section(".ARM.__at_0x4000"))).

To place ZI data at a specific address, use the variable attribute
__attribute__((section("name"))) with the special name .bss.ARM.__at_address

These specially named sections are called __at sections.
• Use the .section directive from assembly language. In assembly code, the smallest locatable unit is

a .section.

This section contains the following subsections:
• 8.7.1 Placement of __at sections at a specific address on page 8-136.
• 8.7.2 Restrictions on placing __at sections on page 8-137.
• 8.7.3 Automatic placement of __at sections on page 8-137.
• 8.7.4 Manual placement of __at sections on page 8-138.
• 8.7.5 Place a key in flash memory with an __at section on page 8-139.
• 8.7.6 Placing constants at fixed locations on page 8-139.
• 8.7.7 Placing jump tables in ROM on page 8-140.
• 8.7.8 Placing a variable at a specific address without scatter-loading on page 8-141.
• 8.7.9 Placing a variable at a specific address with scatter-loading on page 8-142.

8.7.1 Placement of __at sections at a specific address

You can give a section a special name that encodes the address where it must be placed.

To place a section at a specific address, use the function or variable attribute
__attribute__((section("name"))) with the special name .ARM.__at_address.

To place ZI data at a specific address, use the variable attribute __attribute__((section("name")))
with the special name .bss.ARM.__at_address

address is the required address of the section. The compiler normalizes this address to eight
hexadecimal digits. You can specify the address in hexadecimal or decimal. Sections in the form
of .ARM.__at_address are referred to by the abbreviation __at.

The following example shows how to assign a variable to a specific address in C or C++ code:

// place variable1 in a section called .ARM.__at_0x8000
int variable1 __attribute__((section(".ARM.__at_0x8000"))) = 10;

8 Mapping Code and Data to the Target
8.7 Placement of functions and data at specific addresses

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

8-136

Non-Confidential

 Note

The name of the section is only significant if you are trying to match the section by name in a scatter file.
Without overlays, the linker automatically assigns __at sections when you use the --autoat command-
line option. This option is the default. If you are using overlays, then you cannot use --autoat to place
__at sections.

8.7.2 Restrictions on placing __at sections

There are restrictions when placing __at sections at specific addresses.

The following restrictions apply:
• __at section address ranges must not overlap, unless the overlapping sections are placed in different

overlay regions.
• __at sections are not permitted in position independent execution regions.
• You must not reference the linker-defined symbols $$Base, $$Limit and $$Length of an __at

section.
• __at sections must not be used in Base Platform Application Binary Interface (BPABI) executables

and BPABI dynamically linked libraries (DLLs).
• __at sections must have an address that is a multiple of their alignment.
• __at sections ignore any +FIRST or +LAST ordering constraints.

8.7.3 Automatic placement of __at sections

The automatic placement of __at sections is enabled by default. Use the linker command-line option,
--no_autoat to disable this feature.

 Note

You cannot use __at section placement with position-independent execution regions.

When linking with the --autoat option, the linker does not place __at sections with scatter-loading
selectors. Instead, the linker places the __at section in a compatible region. If no compatible region is
found, the linker creates a load and execution region for the __at section.

All linker execution regions created by --autoat have the UNINIT scatter-loading attribute. If you
require a Zero-Initialized (ZI) __at section to be zero-initialized, then it must be placed within a
compatible region. A linker execution region created by --autoat must have a base address that is at
least 4 byte-aligned. If any region is incorrectly aligned, the linker produces an error message.

A compatible region is one where:
• The __at address lies within the execution region base and limit, where limit is the base address +

maximum size of execution region. If no maximum size is set, the linker sets the limit for placing
__at sections as the current size of the execution region without __at sections plus a constant. The
default value of this constant is 10240 bytes, but you can change the value using the
--max_er_extension command-line option.

• The execution region meets at least one of the following conditions:
— It has a selector that matches the __at section by the standard scatter-loading rules.
— It has at least one section of the same type (RO or RW) as the __at section.
— It does not have the EMPTY attribute.

 Note

The linker considers an __at section with type RW compatible with RO.

8 Mapping Code and Data to the Target
8.7 Placement of functions and data at specific addresses

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

8-137

Non-Confidential

The following example shows the sections .ARM.__at_0x0000 type RO, .ARM.__at_0x4000 type RW,
and .ARM.__at_0x8000 type RW:

// place the RO variable in a section called .ARM.__at_0x0000
const int foo __attribute__((section(".ARM.__at_0x0000"))) = 10;

// place the RW variable in a section called .ARM.__at_0x4000
int bar __attribute__((section(".ARM.__at_0x4000"))) = 100;

// place "variable" in a section called .ARM.__at_0x00008000
int variable __attribute__((section(".ARM.__at_0x00008000")));

The following scatter file shows how automatically to place these __at sections:

LR1 0x0
{
 ER_RO 0x0 0x4000
 {
 *(+RO) ; .ARM.__at_0x0000 lies within the bounds of ER_RO
 }
 ER_RW 0x4000 0x2000
 {
 *(+RW) ; .ARM.__at_0x4000 lies within the bounds of ER_RW
 }
 ER_ZI 0x6000 0x2000
 {
 *(+ZI)
 }
}
; The linker creates a load and execution region for the __at section
; .ARM.__at_0x8000 because it lies outside all candidate regions.

8.7.4 Manual placement of __at sections

You can have direct control over the placement of __at sections, if required.

You can use the standard section-placement rules to place __at sections when using the --no_autoat
command-line option.

 Note

You cannot use __at section placement with position-independent execution regions.

The following example shows the placement of read-only sections .ARM.__at_0x2000 and the read-
write section .ARM.__at_0x4000. Load and execution regions are not created automatically in manual
mode. An error is produced if an __at section cannot be placed in an execution region.

The following example shows the placement of the variables in C or C++ code:

// place the RO variable in a section called .ARM.__at_0x2000
const int foo __attribute__((section(".ARM.__at_0x2000"))) = 100;
// place the RW variable in a section called .ARM.__at_0x4000
int bar __attribute__((section(".ARM.__at_0x4000")));

The following scatter file shows how to place __at sections manually:

LR1 0x0
{
 ER_RO 0x0 0x2000
 {
 *(+RO) ; .ARM.__at_0x0000 is selected by +RO
 }
 ER_RO2 0x2000
 {
 *(.ARM.__at_0x02000) ; .ARM.__at_0x2000 is selected by the section named
 ; .ARM.__at_0x2000
 }
 ER2 0x4000
 {
 *(+RW, +ZI) ; .ARM.__at_0x4000 is selected by +RW
 }
}

8 Mapping Code and Data to the Target
8.7 Placement of functions and data at specific addresses

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

8-138

Non-Confidential

8.7.5 Place a key in flash memory with an __at section

Some flash devices require a key to be written to an address to activate certain features. An __at section
provides a simple method of writing a value to a specific address.

Placing the flash key variable in C or C++ code

Assume that a device has flash memory from 0x8000 to 0x10000 and a key is required in
address 0x8000. To do this with an __at section, you must declare a variable so that the
compiler can generate a section called .ARM.__at_0x8000.

// place flash_key in a section called .ARM.__at_0x8000
long flash_key __attribute__((section(".ARM.__at_0x8000")));

Manually placing a flash execution region

The following example shows how to manually place a flash execution region with a scatter file:

ER_FLASH 0x8000 0x2000
{
 *(+RW)
 *(.ARM.__at_0x8000) ; key
}

Use the linker command-line option --no_autoat to enable manual placement.

Automatically placing a flash execution region

The following example shows how to automatically place a flash execution region with a scatter
file. Use the linker command-line option --autoat to enable automatic placement.

LR1 0x0
{
 ER_FLASH 0x8000 0x2000
 {
 *(+RO) ; other code and read-only data, the
 ; __at section is automatically selected
 }
 ER2 0x4000
 {
 *(+RW +ZI) ; Any other RW and ZI variables
 }
}

8.7.6 Placing constants at fixed locations

There are some situations when you want to place constants at fixed memory locations. For example, you
might want to write a value to FLASH to read-protect a SoC device.

Procedure
1. Create a C file abs_address.c to define an integer and a string constant.

unsigned int const number = 0x12345678;
char* const string = "Hello World";

2. Create a scatter file, scatter.scat, to place the constants in separate sections ER_RONUMBERS and
ER_ROSTRINGS.

LR_1 0x040000 ; load region starts at 0x40000
{ ; start of execution region descriptions
 ER_RO 0x040000 ; load address = execution address
 {
 *(+RO +RW) ; all RO sections (must include section with
 ; initial entry point)
 }
 ER_RONUMBERS +0
 {
 *(.rodata.number, +RO-DATA)
 }
 ER_ROSTRINGS +0
 {
 *(.rodata.string, .rodata.str1.1, +RO-DATA)
 }
 ; rest of scatter-loading description

8 Mapping Code and Data to the Target
8.7 Placement of functions and data at specific addresses

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

8-139

Non-Confidential

 ARM_LIB_STACK 0x80000 EMPTY -0x20000 ; Stack region growing down
 { }
 ARM_LIB_HEAP 0x28000000 EMPTY 0x80000 ; Heap region growing up
 { }
}

armclang puts string literals in a section called .rodata.str1.1
3. Compile and link the file.

armclang --target=arm-arm-eabi-none -mcpu=cortex-a9 abs_address.c -g -c -o abs_address.o
armlink --cpu=cortex-a9 --scatter=scatter.scat abs_address.o --output=abs_address.axf

4. Run fromelf on the image to view the contents of the output sections.

fromelf -c -d abs_address.axf

Results:

The output contains the following sections:

...
** Section #2 'ER_RONUMBERS' (SHT_PROGBITS) [SHF_ALLOC]
 Size : 4 bytes (alignment 4)
 Address: 0x00040000

 0x040000: 78 56 34 12 xV4.

** Section #3 'ER_ROSTRINGS' (SHT_PROGBITS) [SHF_ALLOC]
 Size : 16 bytes (alignment 4)
 Address: 0x00040004

 0x040004: 48 65 6c 6c 6f 20 57 6f 72 6c 64 00 04 00 04 00 Hello World.....
...

5. Replace the ER_RONUMBERS and ER_ROSTRINGS sections in the scatter file with the following
ER_RODATA section:

 ER_RODATA +0
 {
 abs_address.o(.rodata.number, .rodata.string, .rodata.str1.1, +RO-DATA)
 }

6. Repeat steps 3 and 4.
Results:

The integer and string constants are both placed in the ER_RODATA section, for example:

** Section #2 'ER_RODATA' (SHT_PROGBITS) [SHF_ALLOC]
 Size : 20 bytes (alignment 4)
 Address: 0x00040000

 0x040000: 78 56 34 12 48 65 6c 6c 6f 20 57 6f 72 6c 64 00 xV4.Hello World.
 0x040010: 04 00 04 00

8.7.7 Placing jump tables in ROM

You might find that jump tables are placed in RAM rather than in ROM.

A jump table might be placed in a RAM .data section when you define it as follows:

typedef void PFUNC(void);
const PFUNC *table[3] = {func0, func1, func2};

The compiler also issues the warning:

jump.c:19:1: warning: 'const' qualifier on function type 'PFUNC'
 (aka 'void (void)') has unspecified behavior
const PFUNC *table[3] = {func0, func1, func2};
^~~~~~

The following procedure describes how to place the jump table in a ROM .rodata section.

8 Mapping Code and Data to the Target
8.7 Placement of functions and data at specific addresses

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

8-140

Non-Confidential

Procedure
1. Create a C file jump.c.

Make the PFUNC type a pointer to a void function that has no parameters. You can then use PFUNC to
create an array of constant function pointers.

extern void func0(void);
extern void func1(void);
extern void func2(void);

typedef void (*PFUNC)(void);

const PFUNC table[] = {func0, func1, func2};

void jump(unsigned i)
{
 if (i<=2)
 table[i]();
}

2. Compile the file.

armclang --target=arm-arm-eabi-none -mcpu=cortex-a9 jump.c -g -c -o jump.o

3. Run fromelf on the image to view the contents of the output sections.

fromelf -c -d jump.o

Results:

The table is placed in the read-only section .rodata that you can place in ROM as required:

...
** Section #3 '.text.jump' (SHT_PROGBITS) [SHF_ALLOC + SHF_EXECINSTR]
 Size : 64 bytes (alignment 4)
 Address: 0x00000000

 $a.0
 [Anonymous symbol #24]
 jump
 0x00000000: e92d4800 .H-. PUSH {r11,lr}
 0x00000004: e24dd008 ..M. SUB sp,sp,#8
 0x00000008: e1a01000 MOV r1,r0
 0x0000000c: e58d0004 STR r0,[sp,#4]
 0x00000010: e3500002 ..P. CMP r0,#2
 0x00000014: e58d1000 STR r1,[sp,#0]
 0x00000018: 8a000006 BHI {pc}+0x20 ; 0x38
 0x0000001c: eaffffff B {pc}+0x4 ; 0x20
 0x00000020: e59d0004 LDR r0,[sp,#4]
 0x00000024: e3001000 MOVW r1,#:LOWER16: table
 0x00000028: e3401000 ..@. MOVT r1,#:UPPER16: table
 0x0000002c: e7910100 LDR r0,[r1,r0,LSL #2]
 0x00000030: e12fff30 0./. BLX r0
 0x00000034: eaffffff B {pc}+0x4 ; 0x38
 0x00000038: e28dd008 ADD sp,sp,#8
 0x0000003c: e8bd8800 POP {r11,pc}

...
** Section #7 '.rodata.table' (SHT_PROGBITS) [SHF_ALLOC]
 Size : 12 bytes (alignment 4)
 Address: 0x00000000

 0x000000: 00 00 00 00 00 00 00 00 00 00 00 00
...

8.7.8 Placing a variable at a specific address without scatter-loading

This example shows how to modify your source code to place code and data at specific addresses, and
does not require a scatter file.

To place code and data at specific addresses without a scatter file:
1. Create the source file main.c containing the following code:

#include <stdio.h>

extern int sqr(int n1);
const int gValue __attribute__((section(".ARM.__at_0x5000"))) = 3; // Place at 0x5000
int main(void)

8 Mapping Code and Data to the Target
8.7 Placement of functions and data at specific addresses

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

8-141

Non-Confidential

{
 int squared;
 squared=sqr(gValue);
 printf("Value squared is: %d\n", squared);
 return 0;
}

2. Create the source file function.c containing the following code:

int sqr(int n1)
{
 return n1*n1;
}

3. Compile and link the sources:

armclang --target=arm-arm-none-eabi -march=armv8-a -c function.c
armclang --target=arm-arm-none-eabi -march=armv8-a -c main.c
armlink --map function.o main.o -o squared.axf

The --map option displays the memory map of the image. Also, --autoat is the default.

In this example, __attribute__((section(".ARM.__AT_0x5000"))) specifies that the global variable
gValue is to be placed at the absolute address 0x5000. gValue is placed in the execution region
ER$$.ARM.__AT_0x5000 and load region LR$$.ARM.__AT_0x5000.

The memory map shows:

…
 Load Region LR$$.ARM.__AT_0x5000 (Base: 0x00005000, Size: 0x00000004, Max: 0x00000004,
ABSOLUTE)

 Execution Region ER$$.ARM.__AT_0x5000 (Base: 0x00005000, Size: 0x00000004, Max:
0x00000004, ABSOLUTE, UNINIT)

 Base Addr Size Type Attr Idx E Section Name Object

 0x00005000 0x00000004 Data RO 18 .ARM.__AT_0x5000 main.o

8.7.9 Placing a variable at a specific address with scatter-loading

This example shows how to modify your source code to place code and data at a specific address using a
scatter file.

To modify your source code to place code and data at a specific address using a scatter file:
1. Create the source file main.c containing the following code:

#include <stdio.h>
extern int sqr(int n1);
// Place at address 0x10000
const int gValue __attribute__((section(".ARM.__at_0x10000"))) = 3;
int main(void)
{
 int squared;
 squared=sqr(gValue);
 printf("Value squared is: %d\n", squared);
 return 0;
}

2. Create the source file function.c containing the following code:

int sqr(int n1)
{
 return n1*n1;
}

3. Create the scatter file scatter.scat containing the following load region:

LR1 0x0
{
 ER1 0x0
 {
 *(+RO) ; rest of code and read-only data
 }
 ER2 +0
 {
 function.o
 *(.ARM.__at_0x10000) ; Place gValue at 0x10000
 }

8 Mapping Code and Data to the Target
8.7 Placement of functions and data at specific addresses

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

8-142

Non-Confidential

 ; RW and ZI data to be placed at 0x200000
 RAM 0x200000 (0x1FF00-0x2000)
 {
 *(+RW, +ZI)
 }
 ARM_LIB_STACK 0x800000 EMPTY -0x10000
 {
 }
 ARM_LIB_HEAP +0 EMPTY 0x10000
 {
 }
}

The ARM_LIB_STACK and ARM_LIB_HEAP regions are required because the program is being linked
with the semihosting libraries.

4. Compile and link the sources:

armclang --target=arm-arm-none-eabi -march=armv8-a -c function.c
armclang --target=arm-arm-none-eabi -march=armv8-a -c main.c
armlink --no_autoat --scatter=scatter.scat --map function.o main.o -o squared.axf

The --map option displays the memory map of the image.

The memory map shows that the variable is placed in the ER2 execution region at address 0x10000:

…
 Execution Region ER2 (Base: 0x00002a54, Size: 0x0000d5b0, Max: 0xffffffff, ABSOLUTE)

 Base Addr Size Type Attr Idx E Section Name Object

 0x00002a54 0x0000001c Code RO 4 .text.sqr function.o
 0x00002a70 0x0000d590 PAD
 0x00010000 0x00000004 Data RO 9 .ARM.__at_0x10000 main.o

In this example, the size of ER1 is unknown. Therefore, gValue might be placed in ER1 or ER2. To make
sure that gValue is placed in ER2, you must include the corresponding selector in ER2 and link with the
--no_autoat command-line option. If you omit --no_autoat, gValue is placed in a separate load region
LR$$.ARM.__at_0x10000 that contains the execution region ER$$.ARM.__at_0x10000.

Related information
Semihosting for AArch32 and AArch64

8 Mapping Code and Data to the Target
8.7 Placement of functions and data at specific addresses

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

8-143

Non-Confidential

https://developer.arm.com/documentation/100863/latest

8.8 Bare-metal Position Independent Executables
A bare-metal Position Independent Executable (PIE) is an executable that does not need to be executed
at a specific address. It can be executed at any suitably aligned address.

 Note

• Bare-metal PIE support is deprecated.
• There is support for -fropi and -frwpi in armclang. You can use these options to create bare-metal

position independent executables.

Position independent code uses PC-relative addressing modes where possible and otherwise accesses
global data via the Global Offset Table (GOT). The address entries in the GOT and initialized pointers in
the data area are updated with the executable load address when the executable runs for the first time.

All objects and libraries that are linked into the image must be compiled to be position independent.

Compiling and linking a bare-metal PIE

Consider the following simple example code:

#include <stdio.h>

int main(void)
{
 printf(“Hello World!\n”);
 return 0;
}

To compile and automatically link this code for bare-metal PIE, use the -fbare-metal-pie option with
armclang:

armclang --target=arm-arm-none-eabi -march=armv8-a -fbare-metal-pie hello.c -o hello

Alternatively, you can compile with armclang -fbare-metal-pie and link with armlink --
bare_metal_pie as separate steps:

armclang --target=arm-arm-none-eabi -march=armv8-a -fbare-metal-pie -c hello.c
armlink --bare_metal_pie hello.o -o hello

The resulting executable hello is a bare-metal Position Independent Executable.
 Note

Legacy code that is compiled with armcc to be included in a bare-metal PIE must be compiled with
either the option --apcs=/fpic or, if it contains no references to global data, the option --apcs=/ropi.

If you are using link time optimization, use the armlink --lto_relocation_model=pic option to tell
the link time optimizer to produce position independent code:

armclang --target=arm-arm-none-eabi -march=armv8-a -flto -fbare-metal-pie -c hello.c -o
hello.bc
armlink --lto --lto_relocation_model=pic --bare_metal_pie hello.bc -o hello

Restrictions
A bare-metal PIE executable must conform to the following:
• AArch32 state only.
• The .got section must be placed in a writable region.
• All references to symbols must be resolved at link time.
• The image must be linked Position Independent with a base address of 0x0.
• The code and data must be linked at a fixed offset from each other.

8 Mapping Code and Data to the Target
8.8 Bare-metal Position Independent Executables

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

8-144

Non-Confidential

• The stack must be set up before the runtime relocation routine __arm_relocate_pie_ is called. This
means that the stack initialization code must only use PC-relative addressing if it is part of the image
code.

• It is the responsibility of the target platform that loads the PIE to ensure that the ZI region is zero-
initialized.

• When writing assembly code for position independence, some instructions (LDR, for example) let you
specify a PC-relative address in the form of a label. For example:

LDR r0,=__main

This causes the link step to fail when building with --bare-metal-pie, because the symbol is in a
read-only section. armlink returns an error message, for example:

Error: L6084E: Dynamic relocation from #REL:0 in unwritable section
foo-7cb47a.o(.text.main) of type R_ARM_RELATIVE to symbol main cannot be applied.

The workaround is to specify symbols indirectly in a writable section, for example:

 LDR r0, __main_addr
...
 AREA WRITE_TEST, DATA, READWRITE
__main_addr DCD __main
 END

Using a scatter file

An example scatter file is:

LR 0x0 PI
{
 er_ro +0 { *(+RO) }
 DYNAMIC_RELOCATION_TABLE +0 { *(DYNAMIC_RELOCATION_TABLE) }

 got +0 { *(.got) }
 er_rw +0 { *(+RW) }
 er_zi +0 { *(+ZI) }

 ; Add any stack and heap section required by the user supplied
 ; stack/heap initialization routine here
}

The linker generates the DYNAMIC_RELOCATION_TABLE section. This section must be placed in an
execution region called DYNAMIC_RELOCATION_TABLE. This allows the runtime relocation routine
__arm_relocate_pie_ that is provided in the C library to locate the start and end of the table using the
symbols Image$$DYNAMIC_RELOCATION_TABLE$$Base and Image$$DYNAMIC_RELOCATION_TABLE$
$Limit.

When using a scatter file and the default entry code that the C library supplies, the linker requires that
you provide your own routine for initializing the stack and heap. This user supplied stack and heap
routine is run before the routine __arm_relocate_pie_, so it is necessary to ensure that this routine only
uses PC relative addressing.

Related information
--fpic (armlink)
--pie (armlink)
--bare_metal_pie (armlink)
--ref_pre_init (armlink)
-fbare-metal-pie (armclang)
-fropi (armclang)
-frwpi (armclang)

8 Mapping Code and Data to the Target
8.8 Bare-metal Position Independent Executables

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

8-145

Non-Confidential

https://developer.arm.com/documentation/101754/0616/armlink-Reference/armlink-Command-line-Options/--fpic
https://developer.arm.com/documentation/101754/0616/armlink-Reference/armlink-Command-line-Options/--pie
https://developer.arm.com/documentation/101754/0616/armlink-Reference/armlink-Command-line-Options/--bare-metal-pie
https://developer.arm.com/documentation/101754/0616/armlink-Reference/armlink-Command-line-Options/--ref-pre-init----no-ref-pre-init
https://developer.arm.com/documentation/101754/0616/armclang-Reference/armclang-Command-line-Options/-fbare-metal-pie
https://developer.arm.com/documentation/101754/0616/armclang-Reference/armclang-Command-line-Options/-fropi---fno-ropi
https://developer.arm.com/documentation/101754/0616/armclang-Reference/armclang-Command-line-Options/-frwpi---fno-rwpi

8.9 Placement of Arm® C and C++ library code
You can place code from the Arm standard C and C++ libraries using a scatter file.

Use *armlib* or *libcxx* so that the linker can resolve library naming in your scatter file.

Some Arm C and C++ library sections must be placed in a root region, for example __main.o,
__scatter*.o, __dc*.o, and *Region$$Table. This list can change between releases. The linker can
place all these sections automatically in a future-proof way with InRoot$$Sections.

 Note

For AArch64, __rtentry*.o is moved to a root region.

This section contains the following subsections:
• 8.9.1 Placement of code in a root region on page 8-146.
• 8.9.2 Placement of Arm® C library code on page 8-146.
• 8.9.3 Placing Arm® C++ library code on page 8-147.

8.9.1 Placement of code in a root region

Some code must always be placed in a root region. You do this in a similar way to placing a named
section.

To place all sections that must be in a root region, use the section selector InRoot$$Sections. For
example :

ROM_LOAD 0x0000 0x4000
{
 ROM_EXEC 0x0000 0x4000 ; root region at 0x0
 {
 vectors.o (Vect, +FIRST) ; Vector table
 * (InRoot$$Sections) ; All library sections that must be in a
 ; root region, for example, __main.o,
 ; __scatter*.o, __dc*.o, and *Region$$Table
 }
 RAM 0x10000 0x8000
 {
 * (+RO, +RW, +ZI) ; all other sections
 }
}

8.9.2 Placement of Arm® C library code

You can place C library code using a scatter file.

To place C library code, specify the library path and library name as the module selector. You can use
wildcard characters if required. For example:

LR1 0x0
{
 ROM1 0
 {
 * (InRoot$$Sections)
 * (+RO)
 }
 ROM2 0x1000
 {
 armlib/c_ (+RO) ; all Arm-supplied C library functions
 }

 RAM1 0x3000
 {
 armlib (+RO) ; all other Arm-supplied library code
 ; for example, floating-point libraries
 }
 RAM2 0x4000
 {
 * (+RW, +ZI)
 }
}

8 Mapping Code and Data to the Target
8.9 Placement of Arm® C and C++ library code

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

8-146

Non-Confidential

The name armlib indicates the Arm C library files that are located in the directory
install_directory\lib\armlib.

8.9.3 Placing Arm® C++ library code

You can place C++ library code using a scatter file.

To place C++ library code, specify the library path and library name as the module selector. You can use
wildcard characters if required.

Procedure
1. Create the following C++ program, foo.cpp:

#include <iostream>

using namespace std;

extern "C" int foo ()
{
 cout << "Hello" << endl;
 return 1;
}

2. To place the C++ library code, define the following scatter file, scatter.scat:

LR 0x8000
{
 ER1 +0
 {
 armlib(+RO)
 }
 ER2 +0
 {
 libcxx(+RO)
 }
 ER3 +0
 {
 *(+RO)

 ; All .ARM.exidx* sections must be coalesced into a single contiguous
 ; .ARM.exidx section because the unwinder references linker-generated
 ; Base and Limit symbols for this section.
 *(0x70000001) ; SHT_ARM_EXIDX sections

 ; All .init_array sections must be coalesced into a single contiguous
 ; .init_array section because the initialization code references
 ; linker-generated Base and Limit for this section.
 *(.init_array)
 }
 ER4 +0
 {
 *(+RW,+ZI)
 }
}

The name *armlib* matches install_directory\lib\armlib, indicating the Arm C library files
that are located in the armlib directory.

The name *libcxx* matches install_directory\lib\libcxx, indicating the C++ library files that
are located in the libcxx directory.

3. Compile and link the sources:

armclang --target=arm-arm-none-eabi -march=armv8-a -c foo.cpp
armclang --target=arm-arm-none-eabi -march=armv8-a -c main.c
armlink --scatter=scatter.scat --map main.o foo.o -o foo.axf

The --map option displays the memory map of the image.

8 Mapping Code and Data to the Target
8.9 Placement of Arm® C and C++ library code

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

8-147

Non-Confidential

8.10 Manual placement of unassigned sections
The linker attempts to place Input sections into specific execution regions. For any Input sections that
cannot be resolved, and where the placement of those sections is not important, you can specify where
the linker is to place them.

To place sections that are not automatically assigned to specific execution regions, use the .ANY module
selector in a scatter file.

Usually, a single .ANY selector is equivalent to using the * module selector. However, unlike *, you can
specify .ANY in multiple execution regions.

The linker has default rules for placing unassigned sections when you specify multiple .ANY selectors.
You can override the default rules using the following command-line options:

• --any_contingency to permit extra space in any execution regions containing .ANY sections for
linker-generated content such as veneers and alignment padding.

• --any_placement to provide more control over the placement of unassigned sections.
• --any_sort_order to control the sort order of unassigned Input sections.

 Note

The placement of data can cause some data to be removed and shrink the size of the sections.

In a scatter file, you can also:

• Assign a priority to a .ANY selector to give you more control over how the unassigned sections are
divided between multiple execution regions. You can assign the same priority to more than one
execution region.

• Specify the maximum size for an execution region that the linker can fill with unassigned sections.

The following are relevant operations in the linking process and their order:

1. .ANY placement.
2. String merging.
3. Region table creation.
4. Late library load (scatter-load functions).
5. Veneer generation + literal pool merging.
String and literal pool merging can reduce execution size, while region table creation, late library load,
and veneer generation can increase it. Padding also affects the execution size of the region.

 Note

Extra, more-specific operations can also increase or decrease execution size after the .ANY placement,
such as the generation of PLT/GOT and exception-section optimizations.

This section contains the following subsections:
• 8.10.1 Default rules for placing unassigned sections on page 8-148.
• 8.10.2 Command-line options for controlling the placement of unassigned sections on page 8-149.
• 8.10.3 Prioritizing the placement of unassigned sections on page 8-149.
• 8.10.4 Specify the maximum region size permitted for placing unassigned sections on page 8-150.
• 8.10.5 Examples of using placement algorithms for .ANY sections on page 8-151.
• 8.10.6 Example of next_fit algorithm showing behavior of full regions, selectors, and priority

on page 8-152.
• 8.10.7 Examples of using sorting algorithms for .ANY sections on page 8-153.
• 8.10.8 Behavior when .ANY sections overflow because of linker-generated content on page 8-155.

8.10.1 Default rules for placing unassigned sections

The linker has default rules for placing sections when using multiple .ANY selectors.

8 Mapping Code and Data to the Target
8.10 Manual placement of unassigned sections

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

8-148

Non-Confidential

When more than one .ANY selector is present in a scatter file, the linker sorts sections in descending size
order. It then takes the unassigned section with the largest size and assigns the section to the most
specific .ANY execution region that has enough free space. For example, .ANY(.text) is judged to be
more specific than .ANY(+RO).

If several execution regions are equally specific, then the section is assigned to the execution region with
the most available remaining space.

For example:
• You might have two equally specific execution regions where one has a size limit of 0x2000 and the

other has no limit. In this case, all the sections are assigned to the second unbounded .ANY region.
• You might have two equally specific execution regions where one has a size limit of 0x2000 and the

other has a size limit of 0x3000. In this case, the first sections to be placed are assigned to the
second .ANY region of size limit 0x3000. This assignment continues until the remaining size of the
second .ANY region is reduced to 0x2000. From this point, sections are assigned alternately between
both .ANY execution regions.

You can specify a maximum amount of space to use for unassigned sections with the execution region
attribute ANY_SIZE.

8.10.2 Command-line options for controlling the placement of unassigned sections

You can modify how the linker places unassigned input sections when using multiple .ANY selectors by
using a different placement algorithm or a different sort order.

The following command-line options are available:
• --any_placement=algorithm, where algorithm is one of first_fit, worst_fit, best_fit, or

next_fit.
• --any_sort_order=order, where order is one of cmdline or descending_size.

Use first_fit when you want to fill regions in order.

Use best_fit when you want to fill regions to their maximum.

Use worst_fit when you want to fill regions evenly. With equal sized regions and sections worst_fit
fills regions cyclically.

Use next_fit when you need a more deterministic fill pattern.

If the linker attempts to fill a region to its limit, as it does with first_fit and best_fit, it might
overfill the region. This is because linker-generated content such as padding and veneers are not known
until sections have been assigned to .ANY selectors. If this occurs you might see the following error:

Error: L6220E: Execution region regionname size (size bytes) exceeds limit (limit
bytes).

The --any_contingency option prevents the linker from filling the region up to its maximum. It
reserves a portion of the region's size for linker-generated content and fills this contingency area only if
no other regions have space. It is enabled by default for the first_fit and best_fit algorithms,
because they are most likely to exhibit this behavior.

8.10.3 Prioritizing the placement of unassigned sections

You can give a priority ordering when placing unassigned sections with multiple .ANY module selectors.

Procedure
• To prioritize the order of multiple .ANY sections use the .ANYnum selector, where num is a positive

integer starting at zero.

The highest priority is given to the selector with the highest integer.

8 Mapping Code and Data to the Target
8.10 Manual placement of unassigned sections

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

8-149

Non-Confidential

The following example shows how to use .ANYnum:

lr1 0x8000 1024
{
 er1 +0 512
 {
 .ANY1(+RO) ; evenly distributed with er3
 }
 er2 +0 256
 {
 .ANY2(+RO) ; Highest priority, so filled first
 }
 er3 +0 256
 {
 .ANY1(+RO) ; evenly distributed with er1
 }
}

8.10.4 Specify the maximum region size permitted for placing unassigned sections

You can specify the maximum size in a region that armlink can fill with unassigned sections.

Use the execution region attribute ANY_SIZE max_size to specify the maximum size in a region that
armlink can fill with unassigned sections.

Be aware of the following restrictions when using this keyword:

• max_size must be less than or equal to the region size.
• If you use ANY_SIZE on a region without a .ANY selector, it is ignored by armlink.

When ANY_SIZE is present, armlink does not attempt to calculate contingency and strictly follows
the .ANY priorities.

When ANY_SIZE is not present for an execution region containing a .ANY selector, and you specify the
--any_contingency command-line option, then armlink attempts to adjust the contingency for that
execution region. The aims are to:
• Never overflow a .ANY region.
• Make sure there is a contingency reserved space left in the given execution region. This space is

reserved for veneers and section padding.

If you specify --any_contingency on the command line, it is ignored for regions that have ANY_SIZE
specified. It is used as normal for regions that do not have ANY_SIZE specified.

Example

The following example shows how to use ANY_SIZE:

LOAD_REGION 0x0 0x3000
{
 ER_1 0x0 ANY_SIZE 0xF00 0x1000
 {
 .ANY
 }
 ER_2 0x0 ANY_SIZE 0xFB0 0x1000
 {
 .ANY
 }
 ER_3 0x0 ANY_SIZE 0x1000 0x1000
 {
 .ANY
 }
}

In this example:
• ER_1 has 0x100 reserved for linker-generated content.
• ER_2 has 0x50 reserved for linker-generated content. That is about the same as the automatic

contingency of --any_contingency.
• ER_3 has no reserved space. Therefore, 100% of the region is filled, with no contingency for veneers.

Omitting the ANY_SIZE parameter causes 98% of the region to be filled, with a two percent
contingency for veneers.

8 Mapping Code and Data to the Target
8.10 Manual placement of unassigned sections

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

8-150

Non-Confidential

8.10.5 Examples of using placement algorithms for .ANY sections

These examples show the operation of the placement algorithms for RO-CODE sections in sections.o.

The input section properties and ordering are shown in the following table:

Table 8-1 Input section properties for placement of .ANY sections

Name Size

sec1 0x4

sec2 0x4

sec3 0x4

sec4 0x4

sec5 0x4

sec6 0x4

The scatter file that the examples use is:

LR 0x100
{
 ER_1 0x100 0x10
 {
 .ANY
 }
 ER_2 0x200 0x10
 {
 .ANY
 }
}

 Note

These examples have --any_contingency disabled.

Example for first_fit, next_fit, and best_fit

This example shows the image memory map where several sections of equal size are assigned to two
regions with one selector. The selectors are equally specific, equivalent to .ANY(+R0) and have no
priority.

 Execution Region ER_1 (Base: 0x00000100, Size: 0x00000010, Max: 0x00000010, ABSOLUTE)

 Base Addr Size Type Attr Idx E Section Name Object

 0x00000100 0x00000004 Code RO 1 sec1 sections.o
 0x00000104 0x00000004 Code RO 2 sec2 sections.o
 0x00000108 0x00000004 Code RO 3 sec3 sections.o
 0x0000010c 0x00000004 Code RO 4 sec4 sections.o

 Execution Region ER_2 (Base: 0x00000200, Size: 0x00000008, Max: 0x00000010, ABSOLUTE)

 Base Addr Size Type Attr Idx E Section Name Object

 0x00000200 0x00000004 Code RO 5 sec5 sections.o
 0x00000204 0x00000004 Code RO 6 sec6 sections.o

8 Mapping Code and Data to the Target
8.10 Manual placement of unassigned sections

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

8-151

Non-Confidential

In this example:
• For first_fit, the linker first assigns all the sections it can to ER_1, then moves on to ER_2 because

that is the next available region.
• For next_fit, the linker does the same as first_fit. However, when ER_1 is full it is marked as

FULL and is not considered again. In this example, ER_1 is full. ER_2 is then considered.
• For best_fit, the linker assigns sec1 to ER_1. It then has two regions of equal priority and

specificity, but ER_1 has less space remaining. Therefore, the linker assigns sec2 to ER_1, and
continues assigning sections until ER_1 is full.

Example for worst_fit

This example shows the image memory map when using the worst_fit algorithm.

 Execution Region ER_1 (Base: 0x00000100, Size: 0x0000000c, Max: 0x00000010, ABSOLUTE)

 Base Addr Size Type Attr Idx E Section Name Object

 0x00000100 0x00000004 Code RO 1 sec1 sections.o
 0x00000104 0x00000004 Code RO 3 sec3 sections.o
 0x00000108 0x00000004 Code RO 5 sec5 sections.o

 Execution Region ER_2 (Base: 0x00000200, Size: 0x0000000c, Max: 0x00000010, ABSOLUTE)

 Base Addr Size Type Attr Idx E Section Name Object

 0x00000200 0x00000004 Code RO 2 sec2 sections.o
 0x00000204 0x00000004 Code RO 4 sec4 sections.o
 0x00000208 0x00000004 Code RO 6 sec6 sections.o

The linker first assigns sec1 to ER_1. It then has two equally specific and priority regions. It assigns sec2
to the one with the most free space, ER_2 in this example. The regions now have the same amount of
space remaining, so the linker assigns sec3 to the first one that appears in the scatter file, that is ER_1.

 Note

The behavior of worst_fit is the default behavior in this version of the linker, and it is the only
algorithm available in earlier linker versions.

8.10.6 Example of next_fit algorithm showing behavior of full regions, selectors, and priority

This example shows the operation of the next_fit placement algorithm for RO-CODE sections in
sections.o.

The input section properties and ordering are shown in the following table:

Table 8-2 Input section properties for placement of sections with next_fit

Name Size

sec1 0x14

sec2 0x14

sec3 0x10

sec4 0x4

sec5 0x4

sec6 0x4

The scatter file used for the examples is:

LR 0x100
{
 ER_1 0x100 0x20
 {

8 Mapping Code and Data to the Target
8.10 Manual placement of unassigned sections

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

8-152

Non-Confidential

 .ANY1(+RO-CODE)
 }
 ER_2 0x200 0x20
 {
 .ANY2(+RO)
 }
 ER_3 0x300 0x20
 {
 .ANY3(+RO)
 }
}

 Note

This example has --any_contingency disabled.

The next_fit algorithm is different to the others in that it never revisits a region that is considered to be
full. This example also shows the interaction between priority and specificity of selectors. This is the
same for all the algorithms.

 Execution Region ER_1 (Base: 0x00000100, Size: 0x00000014, Max: 0x00000020, ABSOLUTE)

 Base Addr Size Type Attr Idx E Section Name Object

 0x00000100 0x00000014 Code RO 1 sec1 sections.o

 Execution Region ER_2 (Base: 0x00000200, Size: 0x0000001c, Max: 0x00000020, ABSOLUTE)

 Base Addr Size Type Attr Idx E Section Name Object

 0x00000200 0x00000010 Code RO 3 sec3 sections.o
 0x00000210 0x00000004 Code RO 4 sec4 sections.o
 0x00000214 0x00000004 Code RO 5 sec5 sections.o
 0x00000218 0x00000004 Code RO 6 sec6 sections.o

 Execution Region ER_3 (Base: 0x00000300, Size: 0x00000014, Max: 0x00000020, ABSOLUTE)

 Base Addr Size Type Attr Idx E Section Name Object

 0x00000300 0x00000014 Code RO 2 sec2 sections.o

In this example:
• The linker places sec1 in ER_1 because ER_1 has the most specific selector. ER_1 now has 0x6 bytes

remaining.
• The linker then tries to place sec2 in ER_1, because it has the most specific selector, but there is not

enough space. Therefore, ER_1 is marked as full and is not considered in subsequent placement steps.
The linker chooses ER_3 for sec2 because it has higher priority than ER_2.

• The linker then tries to place sec3 in ER_3. It does not fit, so ER_3 is marked as full and the linker
places sec3 in ER_2.

• The linker now processes sec4. This is 0x4 bytes so it can fit in either ER_1 or ER_3. Because both of
these sections have previously been marked as full, they are not considered. The linker places all
remaining sections in ER_2.

• If another section sec7 of size 0x8 exists, and is processed after sec6 the example fails to link. The
algorithm does not attempt to place the section in ER_1 or ER_3 because they have previously been
marked as full.

8.10.7 Examples of using sorting algorithms for .ANY sections

These examples show the operation of the sorting algorithms for RO-CODE sections in sections_a.o and
sections_b.o.

The input section properties and ordering are shown in the following table:

8 Mapping Code and Data to the Target
8.10 Manual placement of unassigned sections

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

8-153

Non-Confidential

Table 8-3 Input section properties and ordering for sections_a.o and sections_b.o

sections_a.o sections_b.o

Name Size Name Size

seca_1 0x4 secb_1 0x4

seca_2 0x4 secb_2 0x4

seca_3 0x10 secb_3 0x10

seca_4 0x14 secb_4 0x14

Descending size example

The following linker command-line options are used for this example:

--any_sort_order=descending_size sections_a.o sections_b.o --scatter scatter.txt

The following table shows the order that the sections are processed by the .ANY assignment algorithm.

Table 8-4 Sort order for descending_size algorithm

Name Size

seca_4 0x14

secb_4 0x14

seca_3 0x10

secb_3 0x10

seca_1 0x4

seca_2 0x4

secb_1 0x4

secb_2 0x4

With --any_sort_order=descending_size, sections of the same size use the creation index as a
tiebreaker.

Command-line example

The following linker command-line options are used for this example:

--any_sort_order=cmdline sections_a.o sections_b.o --scatter scatter.txt

The following table shows the order that the sections are processed by the .ANY assignment algorithm.

Table 8-5 Sort order for cmdline algorithm

Name Size

seca_1 0x4

seca_2 0x4

seca_3 0x10

seca_4 0x14

secb_1 0x4

secb_2 0x4

8 Mapping Code and Data to the Target
8.10 Manual placement of unassigned sections

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

8-154

Non-Confidential

Table 8-5 Sort order for cmdline algorithm (continued)

Name Size

secb_3 0x10

secb_4 0x14

That is, the input sections are sorted by command-line index.

8.10.8 Behavior when .ANY sections overflow because of linker-generated content

Because linker-generated content might cause .ANY sections to overflow, a contingency algorithm is
included in the linker.

The linker does not know the address of a section until it is assigned to a region. Therefore, when
filling .ANY regions, the linker cannot calculate the contingency space and cannot determine if calling
functions require veneers. The linker provides a contingency algorithm that gives a worst-case estimate
for padding and an extra two percent for veneers. To enable this algorithm, use the --any_contingency
command-line option.

The following diagram represents an example image layout during .ANY placement:

.ANY
sections

Prospective padding

Base

limit

98%

2%

Image
content

Free
space

Execution region

Figure 8-2 .ANY contingency

The downward arrows for prospective padding show that the prospective padding continues to grow as
more sections are added to the .ANY selector.

Prospective padding is dealt with before the two percent veneer contingency.

When the prospective padding is cleared, the priority is set to zero. When the two percent is cleared, the
priority is decremented again.

You can also use the ANY_SIZE keyword on an execution region to specify the maximum amount of
space in the region to set aside for .ANY section assignments.

8 Mapping Code and Data to the Target
8.10 Manual placement of unassigned sections

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

8-155

Non-Confidential

You can use the armlink command-line option --info=any to get extra information on where the linker
has placed sections. This information can be useful when trying to debug problems.

 Note

When there is only one .ANY selector, it might not behave identically to *. The algorithms that are used to
determine the size of the section and place data still run with .ANY and they try to estimate the impact of
changes that might affect the size of sections.These algorithms do not run if * is used instead. When it is
appropriate to use one or the other of .ANY or *, then you must not use a single .ANY selector that applies
to a kind of data, such as RO, RW, or ZI. For example, .ANY (+RO).

You might see error L6407E generated, for example:

Error: L6407E: Sections of aggregate size 0x128 bytes could not fit into .ANY selector(s).

However, increasing the section size by 0x128 bytes does not necessarily lead to a successful link. The
failure to link is because of the extra data, such as region table entries, that might end up in the region
after adding more sections.

Example
1. Create the following foo.c program:

#include "stdio.h"

int array[10] __attribute__ ((section ("ARRAY")));

struct S {
 char A[8];
 char B[4];
};
struct S s;

struct S* get()
{
 return &s;
}

int sqr(int n1);
int gSquared __attribute__((section(".ARM.__at_0x5000"))); // Place at 0x5000
int sqr(int n1)
{
 return n1*n1;
}

int main(void) {
 int i;
 for (i=0; i<10; i++) {
 array[i]=i*i;
 printf("%d\n", array[i]);
 }
 gSquared=sqr(i);
 printf("%d squared is: %d\n", i, gSquared);

 return sizeof(array);
}

2. Create the following scatter.scat file:

LOAD_REGION 0x0 0x3000
{
 ER_1 0x0 0x1000 {
 .ANY
 }
 ER_2 (ImageLimit(ER_1)) 0x1500 {
 .ANY
 }
 ER_3 (ImageLimit(ER_2)) 0x500
 {
 .ANY
 }
 ER_4 (ImageLimit(ER_3)) 0x1000
 {
 *(+RW,+ZI)
 }
 ARM_LIB_STACK 0x800000 EMPTY -0x10000
 {

8 Mapping Code and Data to the Target
8.10 Manual placement of unassigned sections

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

8-156

Non-Confidential

 }
 ARM_LIB_HEAP +0 EMPTY 0x10000
 {
 }
}

3. Compile and link the program as follows:

armclang -c --target=arm-arm-none-eabi -mcpu=cortex-m4 -o foo.o foo.c
armlink --cpu=cortex-m4 --any_contingency --scatter=scatter.scat --info=any -o foo.axf
foo.o

The following shows an example of the information generated:

==

Sorting unassigned sections by descending size for .ANY placement.
Using Worst Fit .ANY placement algorithm.
.ANY contingency enabled.

Exec Region Event Idx Size Section
Name Object
ER_2 Assignment: Worst fit 144
0x0000041a .text c_wu.l(_printf_fp_dec.o)
ER_2 Assignment: Worst fit 261 0x00000338 CL$
$btod_div_common c_wu.l(btod.o)
ER_1 Assignment: Worst fit 146
0x000002fc .text c_wu.l(_printf_fp_hex.o)
ER_2 Assignment: Worst fit 260 0x00000244 CL$
$btod_mult_common c_wu.l(btod.o)
...
ER_1 Assignment: Worst fit 3
0x00000090 .text foo.o
...
ER_3 Assignment: Worst fit 100
0x0000000a .ARM.Collect$$_printf_percent$$00000007 c_wu.l(_printf_ll.o)
ER_3 Info: .ANY limit reached - -
- -
ER_1 Assignment: Highest priority 423
0x0000000a .text c_wu.l(defsig_exit.o)
...
.ANY contingency summary
Exec Region Contingency Type
ER_1 161 Auto
ER_2 180 Auto
ER_3 73 Auto

==

Sorting unassigned sections by descending size for .ANY placement.
Using Worst Fit .ANY placement algorithm.
.ANY contingency enabled.

Exec Region Event Idx Size Section
Name Object
ER_2 Info: .ANY limit reached - -
- -
ER_1 Info: .ANY limit reached - -
- -
ER_3 Info: .ANY limit reached - -
- -
ER_2 Assignment: Worst fit 533 0x00000034 !!!
scatter c_wu.l(__scatter.o)
ER_2 Assignment: Worst fit 535 0x0000001c !!
handler_zi c_wu.l(__scatter_zi.o)

8 Mapping Code and Data to the Target
8.10 Manual placement of unassigned sections

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

8-157

Non-Confidential

8.11 Placing veneers with a scatter file
You can place veneers at a specific location with a linker-generated symbol.

Veneers allow switching between A32 and T32 code or allow a longer program jump than can be
specified in a single instruction.

Procedure
1. To place veneers at a specific location, include the linker-generated symbol Veneer$$Code in a

scatter file. At most, one execution region in the scatter file can have the *(Veneer$$Code) section
selector.
If it is safe to do so, the linker places veneer input sections into the region identified by the
*(Veneer$$Code) section selector. It might not be possible for a veneer input section to be assigned
to the region because of address range problems or execution region size limitations. If the veneer
cannot be added to the specified region, it is added to the execution region containing the relocated
input section that generated the veneer.

 Note

Instances of *(IWV$$Code) in scatter files from earlier versions of Arm tools are automatically
translated into *(Veneer$$Code). Use *(Veneer$$Code) in new descriptions.

*(Veneer$$Code) is ignored when the amount of code in an execution region exceeds 4MB of 16-bit
T32 code, 16MB of 32-bit T32 code, and 32MB of A32 code.

 Note

There are no state-change veneers in A64.

8 Mapping Code and Data to the Target
8.11 Placing veneers with a scatter file

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

8-158

Non-Confidential

8.12 Preprocessing a scatter file
You can pass a scatter file through a C preprocessor. This permits access to all the features of the C
preprocessor.

Use the first line in the scatter file to specify a preprocessor command that the linker invokes to process
the file. The command is of the form:

#! preprocessor [preprocessor_flags]

Most typically the command is of the form #! armclang --target=<target> -
march=<architecture> -E -x c. This passes the scatter file through the armclang preprocessor.

You can:

• Add preprocessing directives to the top of the scatter file.
• Use simple expression evaluation in the scatter file.

For example, a scatter file, file.scat, might contain:

#! armclang --target=arm-arm-none-eabi -march=armv8-a -E -x c
#define ADDRESS 0x20000000
#include "include_file_1.h"

LR1 ADDRESS
{
 …
}

The linker parses the preprocessed scatter file and treats the directives as comments.

You can also use the --predefine command-line option to assign values to constants. For this example:
1. Modify file.scat to delete the directive #define ADDRESS 0x20000000.
2. Specify the command:

armlink --predefine="-DADDRESS=0x20000000" --scatter=file.scat

This section contains the following subsections:
• 8.12.1 Default behavior for armclang -E in a scatter file on page 8-159.
• 8.12.2 Use of other preprocessors in a scatter file on page 8-159.

8.12.1 Default behavior for armclang -E in a scatter file

armlink behaves in the same way as armclang when invoking other Arm tools.

armlink searches for the armclang binary in the following order:
1. The same location as armlink.
2. The PATH locations.

armlink invokes armclang with the -Iscatter_file_path option so that any relative #includes work.
The linker only adds this option if the full name of the preprocessor tool given is armclang or
armclang.exe. This means that if an absolute path or a relative path is given, the linker does not give the
-Iscatter_file_path option to the preprocessor. This also happens with the --cpu option.

On Windows, .exe suffixes are handled, so armclang.exe is considered the same as armclang.
Executable names are case insensitive, so ARMCLANG is considered the same as armclang. The portable
way to write scatter file preprocessing lines is to use correct capitalization and omit the .exe suffix.

8.12.2 Use of other preprocessors in a scatter file

You must ensure that the preprocessing command line is appropriate for execution on the host system.

8 Mapping Code and Data to the Target
8.12 Preprocessing a scatter file

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

8-159

Non-Confidential

This means:
• The string must be correctly quoted for the host system. The portable way to do this is to use double-

quotes.
• Single quotes and escaped characters are not supported and might not function correctly.
• The use of a double-quote character in a path name is not supported and might not work.

These rules also apply to any strings passed with the --predefine option.

All preprocessor executables must accept the -o file option to mean output to file and accept the input
as a filename argument on the command line. These options are automatically added to the user
command line by armlink. Any options to redirect preprocessing output in the user-specified command
line are not supported.

8 Mapping Code and Data to the Target
8.12 Preprocessing a scatter file

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

8-160

Non-Confidential

8.13 Reserving an empty block of memory
You can reserve an empty block of memory with a scatter file, such as the area used for the stack.

To reserve an empty block of memory, add an execution region in the scatter file and assign the EMPTY
attribute to that region.

This section contains the following subsections:
• 8.13.1 Characteristics of a reserved empty block of memory on page 8-161.
• 8.13.2 Example of reserving an empty block of memory on page 8-161.

8.13.1 Characteristics of a reserved empty block of memory

An empty block of memory that is reserved with a scatter-loading description has certain characteristics.

The block of memory does not form part of the load region, but is assigned for use at execution time.
Because it is created as a dummy ZI region, the linker uses the following symbols to access it:
• Image$$region_name$$ZI$$Base.
• Image$$region_name$$ZI$$Limit.
• Image$$region_name$$ZI$$Length.

If the length is given as a negative value, the address is taken to be the end address of the region. This
address must be an absolute address and not a relative one.

8.13.2 Example of reserving an empty block of memory

This example shows how to reserve and empty block of memory for stack and heap using a scatter-
loading description. It also shows the related symbols that the linker generates.

In the following example, the execution region definition STACK 0x800000 EMPTY –0x10000 defines a
region that is called STACK. The region starts at address 0x7F0000 and ends at address 0x800000:

LR_1 0x80000 ; load region starts at 0x80000
{
 STACK 0x800000 EMPTY -0x10000 ; region ends at 0x800000 because of the
 ; negative length. The start of the region
 ; is calculated using the length.
 {
 ; Empty region for placing the stack
 }

 HEAP +0 EMPTY 0x10000 ; region starts at the end of previous
 ; region. End of region calculated using
 ; positive length
 {
 ; Empty region for placing the heap
 }
 … ; rest of scatter-loading description
}

 Note

The dummy ZI region that is created for an EMPTY execution region is not initialized to zero at runtime.

If the address is in relative (+offset) form and the length is negative, the linker generates an error.

The following figure shows a diagrammatic representation for this example.

8 Mapping Code and Data to the Target
8.13 Reserving an empty block of memory

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

8-161

Non-Confidential

Heap

Stack

0x810000

0x800000

0x7F0000

Base Limit

Base

Limit

Figure 8-3 Reserving a region for the stack

In this example, the linker generates the following symbols:

Image$$STACK$$ZI$$Base = 0x7f0000
Image$$STACK$$ZI$$Limit = 0x800000
Image$$STACK$$ZI$$Length = 0x10000
Image$$HEAP$$ZI$$Base = 0x800000
Image$$HEAP$$ZI$$Limit = 0x810000
Image$$HEAP$$ZI$$Length = 0x10000

 Note

The EMPTY attribute applies only to an execution region. The linker generates a warning and ignores an
EMPTY attribute that is used in a load region definition.

The linker checks that the address space used for the EMPTY region does not overlap any other execution
region.

8 Mapping Code and Data to the Target
8.13 Reserving an empty block of memory

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

8-162

Non-Confidential

8.14 Alignment of regions to page boundaries
You can produce an ELF file with each execution region starting at a page boundary.

The linker provides the following built-in functions to help create load and execution regions on page
boundaries:

• AlignExpr, to specify an address expression.
• GetPageSize, to obtain the page size for use in AlignExpr. If you use GetPageSize, you must also

use the --paged linker command-line option.
• SizeOfHeaders(), to return the size of the ELF header and Program Header table.

 Note

• Alignment on an execution region causes both the load address and execution address to be aligned.
• The default page size is 0x8000. To change the page size, specify the --pagesize linker command-

line option.

To produce an ELF file with each execution region starting on a new page, and with code starting on the
next page boundary after the header information:

LR1 0x0 + SizeOfHeaders()
{
 ER_RO +0
 {
 *(+RO)
 }
 ER_RW AlignExpr(+0, GetPageSize())
 {
 *(+RW)
 }
 ER_ZI AlignExpr(+0, GetPageSize())
 {
 *(+ZI)
 }
}

If you set up your ELF file in this way, then you can memory-map it onto an operating system in such a
way that:
• RO and RW data can be given different memory protections, because they are placed in separate

pages.
• The load address everything expects to run at is related to its offset in the ELF file by specifying

SizeOfHeaders() for the first load region.

8 Mapping Code and Data to the Target
8.14 Alignment of regions to page boundaries

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

8-163

Non-Confidential

8.15 Alignment of execution regions and input sections
There are situations when you want to align code and data sections. How you deal with them depends on
whether you have access to the source code.

Aligning when it is convenient for you to modify the source and recompile

When it is convenient for you to modify the original source code, you can align at compile time
with the __align(n) keyword, for example.

Aligning when it is not convenient for you to modify the source and recompile

It might not be convenient for you to modify the source code for various reasons. For example,
your build process might link the same object file into several images with different alignment
requirements.

When it is not convenient for you to modify the source code, then you must use the following
alignment specifiers in a scatter file:

ALIGNALL

Increases the section alignment of all the sections in an execution region, for example:

ER_DATA … ALIGNALL 8
{
 … ;selectors
}

OVERALIGN
Increases the alignment of a specific section, for example:

ER_DATA …
{
 *.o(.bar, OVERALIGN 8)
 … ;selectors
}

 Note

armlink does not OVERALIGN some sections where it might be unsafe to do so. For
more information, see Syntax of an input section description.

8 Mapping Code and Data to the Target
8.15 Alignment of execution regions and input sections

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

8-164

Non-Confidential

https://developer.arm.com/documentation/101754/0616/armlink-Reference/Scatter-File-Syntax/Input-section-descriptions/Syntax-of-an-input-section-description

Chapter 9
Overlays

Describes the Arm Compiler support for overlays to enable you to have multiple load regions at the same
address.

It contains the following sections:
• 9.1 Overlay support in Arm® Compiler on page 9-166.
• 9.2 Automatic overlay support on page 9-167.
• 9.3 Manual overlay support on page 9-172.

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

9-165

Non-Confidential

9.1 Overlay support in Arm® Compiler
There are situations when you might want to load some code in memory, then replace it with different
code. For example, your system might have memory constraints that mean you cannot load all code into
memory at the same time.

The solution is to create an overlay region where each piece of overlaid code is unloaded and loaded by
an overlay manager. Arm Compiler supports:
• An automatic overlay mechanism, where the linker decides how your code sections get allocated to

overlay regions.
• A manual overlay mechanism, where you manually arrange the allocation of the code sections.

Related concepts
9.2 Automatic overlay support on page 9-167
9.3 Manual overlay support on page 9-172
Related information
__attribute__((section("name"))) function attribute
AREA
Execution region attributes
--emit_debug_overlay_section linker option
--overlay_veneers linker option

9 Overlays
9.1 Overlay support in Arm® Compiler

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

9-166

Non-Confidential

https://developer.arm.com/documentation/101754/0616/armclang-Reference/compiler-specific-function-variable-and-type-attributes/__attribute__sectionname-function-attribute
https://developer.arm.com/documentation/101754/0616/armasm-Legacy-Assembler-Reference/armasm-directives-reference/area
https://developer.arm.com/documentation/101754/0616/armlink-Reference/Scatter-File-Syntax/Execution-region-descriptions/Execution-region-attributes
https://developer.arm.com/documentation/101754/0616/armlink-Reference/armlink-Command-line-Options/--emit-debug-overlay-section
https://developer.arm.com/documentation/101754/0616/armlink-Reference/armlink-Command-line-Options/--overlay-veneers

9.2 Automatic overlay support
For the linker to automatically allocate code sections to overlay regions, you must modify your C or
assembly code to identify the parts to be overlaid. You must also set up a scatter file to locate the
overlays.

The automatic overlay mechanism consists of:
• Special section names that you can use in your object files to mark code as overlaid.
• The AUTO_OVERLAY execution region attribute. Use this in a scatter file to indicate regions of memory

where the linker assigns the overlay sections for loading into at runtime.
• The command-line option --overlay-veneers to make the linker redirect calls between overlays to

a veneer that lets an overlay manager unload and load the correct overlays.
• A set of data tables and symbol names provided by the linker that you can use to write the overlay

manager.
• The armlink --emit_debug_overlay_section command-line options to add extra debug

information to the image. This option permits an overlay-aware debugger to track which overlay is
currently active.

This section contains the following subsections:
• 9.2.1 Automatically placing code sections in overlay regions on page 9-167.
• 9.2.2 Overlay veneer on page 9-168.
• 9.2.3 Overlay data tables on page 9-169.
• 9.2.4 Limitations of automatic overlay support on page 9-169.
• 9.2.5 Writing an overlay manager for automatically placed overlays on page 9-170.

9.2.1 Automatically placing code sections in overlay regions

Arm Compiler can automatically place code sections into overlay regions.

You identify the sections in your code that are to become overlays by giving them names of the
form .ARM.overlayN, where N is an integer identifier. You then use a scatter file to indicate those regions
of memory where armlink is to assign the overlays for loading at runtime.

Each overlay region corresponds to an execution region that has the attribute AUTO_OVERLAY assigned in
the scatter file. armlink allocates one set of integer identifiers to each of these overlay regions. It
allocates another set of integer identifiers to each overlaid section with the name .ARM.overlayN that is
defined in the object files.

 Note

The numbers that are assigned to the overlay sections in your object files do not match up to the numbers
that you put in the .ARM.overlayN section names.

Procedure
1. Declare the functions that you want the armlink automatic overlay mechanism to process.

• In C, use a function attribute, for example:

__attribute__((section(".ARM.overlay1"))) void foo(void) { ... }

__attribute__((section(".ARM.overlay2"))) void bar(void) { ... }

• In the armclang integrated assembler syntax, use the .section directive, for example:

 .section .ARM.overlay1,"ax",%progbits
 .globl foo
 .p2align 2
 .type foo,%function
foo: @ @foo
 ...
 .fnend

 .section .ARM.overlay2,"ax",%progbits
 .globl bar

9 Overlays
9.2 Automatic overlay support

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

9-167

Non-Confidential

 .p2align 2
 .type bar,%function
bar: @ @bar
 ...
 .fnend

• In armasm assembler syntax, use the AREA directive, for example:

 AREA |.ARM.overlay1|,CODE
foo PROC
 ...
 ENDP

 AREA |.ARM.overlay2|,CODE
bar PROC
 ...
 ENDP

 Note

You can only overlay code sections. Data sections must never be overlaid.

2. Specify the locations to load the code sections from and to in a scatter file. Use the AUTO_OVERLAY
keyword on one or more execution regions.

The execution regions must not have any section selectors. For example:

OVERLAY_LOAD_REGION 0x10000000
{
 OVERLAY_EXECUTE_REGION_A 0x20000000 AUTO_OVERLAY 0x10000 { }
 OVERLAY_EXECUTE_REGION_B 0x20010000 AUTO_OVERLAY 0x10000 { }
}

In this example, armlink emits a program header table entry that loads all the overlay data starting at
address 0x10000000. Also, each overlay is relocated so that it runs correctly if copied to address
0x20000000 or 0x20010000. armlink chooses one of these addresses for each overlay.

3. When linking, specify the --overlay_veneers command-line option. This option causes armlink to
arrange function calls between two overlays, or between non-overlaid code and an overlay, to be
diverted through the entry point of an overlay manager.
To permit an overlay-aware debugger to track the overlay that is active, specify the armlink --
emit_debug_overlay_section command-line option.

Related information
__attribute__((section("name"))) function attribute
AREA
Execution region attributes
--emit_debug_overlay_section linker option
--overlay_veneers linker option

9.2.2 Overlay veneer

armlink can generate an overlay veneer for each function call between two overlays, or between non-
overlaid code and an overlay.

A function call or return can transfer control between two overlays or between non-overlaid code and an
overlay. If the target function is not already present at its intended execution address, then the target
overlay has to be loaded.

To detect whether the target overlay is present, armlink can arrange for all such function calls to be
diverted through the overlay manager entry point, __ARM_overlay_entry. To enable this feature, use the
armlink command-line option --overlay_veneers. This option causes a veneer to be generated for
each affected function call, so that the call instruction, typically a BL instruction, points at the veneer
instead of the target function. The veneer in turn saves some registers on the stack, loads some

9 Overlays
9.2 Automatic overlay support

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

9-168

Non-Confidential

https://developer.arm.com/documentation/101754/0616/armclang-Reference/compiler-specific-function-variable-and-type-attributes/__attribute__sectionname-function-attribute
https://developer.arm.com/documentation/101754/0616/armasm-Legacy-Assembler-Reference/armasm-directives-reference/area
https://developer.arm.com/documentation/101754/0616/armlink-Reference/Scatter-File-Syntax/Execution-region-descriptions/Execution-region-attributes
https://developer.arm.com/documentation/101754/0616/armlink-Reference/armlink-Command-line-Options/--emit-debug-overlay-section
https://developer.arm.com/documentation/101754/0616/armlink-Reference/armlink-Command-line-Options/--overlay-veneers

information about the target function and the overlay that it is in, and transfers control to the overlay
manager entry point. The overlay manager must then:
• Ensure that the correct overlay is loaded and then transfer control to the target function.
• Restore the stack and registers to the state they were left in by the original BL instruction.
• If the function call originated inside an overlay, make sure that returning from the called function

reloads the overlay being returned to.

Related information
--overlay_veneers linker option

9.2.3 Overlay data tables

armlink provides various symbols that point to a piece of read-only data, mostly arrays. This data
describes the collection of overlays and overlay regions in the image.

The symbols are:

Region$$Table$$AutoOverlay
This symbol points to an array containing two 32-bit pointers per overlay region. For each
region, the two pointers give the start address and end address of the overlay region. The start
address is the first byte in the region. The end address is the first byte beyond the end of the
region. The overlay manager can use this symbol to identify when the return address of a calling
function is in an overlay region. In this case, a return thunk might be required.

 Note

The regions are always sorted in ascending order of start address.

Region$$Count$$AutoOverlay
This symbol points to a single 16-bit integer (an unsigned short) giving the total number of
overlay regions. That is, the number of entries in the arrays Region$$Table$$AutoOverlay and
CurrLoad$$Table$$AutoOverlay.

Overlay$$Map$$AutoOverlay
This symbol points to an array containing a 16-bit integer (an unsigned short) per overlay. For
each overlay, this table indicates which overlay region the overlay expects to be loaded into to
run correctly.

Size$$Table$$AutoOverlay
This symbol points to an array containing a 32-bit word per overlay. For each overlay, this table
gives the exact size of the data for the overlay. This size might be less than the size of its
containing overlay region, because overlays typically do not fill their regions exactly.

In addition to the read-only tables, armlink also provides one piece of read/write memory:

CurrLoad$$Table$$AutoOverlay
This symbol points to an array containing a 16-bit integer (an unsigned short) for each overlay
region. The array is intended for the overlay manager to store the identifier of the currently
loaded overlay in each region. The overlay manager can then avoid reloading an already-loaded
overlay.

All these data tables are optional. If your code does not refer to any particular table, then it is omitted
from the image.

Related concepts
9.2 Automatic overlay support on page 9-167

9.2.4 Limitations of automatic overlay support

There are some limitations when using the automatic overlay feature.

9 Overlays
9.2 Automatic overlay support

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

9-169

Non-Confidential

https://developer.arm.com/documentation/101754/0616/armlink-Reference/armlink-Command-line-Options/--overlay-veneers

The following limitations apply:
• The automatic overlay feature does not support C++.
• Even if you assign multiple functions to the same named section .ARM.overlayN, armlink still treats

them as different overlays. armlink assigns a different integer ID to each overlay.
• The armlink --any_placement command-line option is ignored for the automatic overlay sections.
• The overlay system automatically generates veneers for direct calls between overlays, and between

non-overlaid code and overlaid code. It automatically arranges that indirect calls through function
pointers to functions in overlays work. However, if you pass a pointer to a non-overlaid function into
an overlay that calls it, armlink has no way to insert a call to the overlay veneer. Therefore, the
overlay manager has no opportunity to arrange to reload the overlay on behalf of the calling function
on return.

In simple cases, this can still work. However, if the non-overlaid function calls something in a second
overlay that conflicts with the overlay of its calling function, then a runtime failure occurs. For
example:

__attribute__((section(".ARM.overlay1"))) void innermost(void)
{
 // do something
}

void non_overlaid(void)
{
 innermost();
}

typedef void (*function_pointer)(void);

__attribute__((section(“.ARM.overlay2”))) void call_via_ptr(function_pointer f)
{
 f();
}

int main(void)
{
 // Call the overlaid function call_via_ptr() and pass it a pointer
 // to non_overlaid(). non_overlaid() then calls the function
 // innermost() in another overlay. If call_via_ptr() and innermost()
 // are allocated to the same overlay region by the linker, then there
 // is no way for call_via_ptr to have been reloaded by the time control
 // has to return to it from non_overlaid().

 call_via_ptr(non_overlaid);
}

Related concepts
9.2 Automatic overlay support on page 9-167

9.2.5 Writing an overlay manager for automatically placed overlays

To write an overlay manager to handle loading and unloading of overlays, you must provide an
implementation of the overlay manager entry point.

The overlay manager entry point __ARM_overlay_entry is the location that the linker-generated veneers
expect to jump to. The linker also provides some tables of data to enable the overlay manager to find the
overlays and the overlay regions to load.

The entry point is called by the linker overlay veneers as follows:

• r0 contains the integer identifier of the overlay containing the target function.
• r1 contains the execution address of the target function. That is, the address that the function appears

at when its overlay is loaded.
• The overlay veneer pushes six 32-bit words onto the stack. These words comprise the values of the

r0, r1, r2, r3, r12, and lr registers of the calling function. If the call instruction is a BL, the value of lr
is the one written into lr by the BL instruction, not the one before the BL.

The overlay manager has to:

9 Overlays
9.2 Automatic overlay support

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

9-170

Non-Confidential

1. Load the target overlay.
2. Restore all six of the registers from the stack.
3. Transfer control to the address of the target function that is passed in r1.

The overlay manager might also have to modify the value it passes to the calling function in lr to point at
a return thunk routine. This routine would reload the overlay of the calling function and then return
control to the original value of the lr of the calling function.

There is no sensible place already available to store the original value of lr for the return thunk to use.
For example, there is nowhere on the stack that can contain the value. Therefore, the overlay manager
has to maintain its own stack-organized data structure. The data structure contains the saved lr value and
the corresponding overlay ID for each time the overlay manager substitutes a return thunk during a
function call, and keeps it synchronized with the main call stack.

 Note

Because this extra parallel stack has to be maintained, then you cannot use stack manipulations such as
cooperative or preemptive thread switching, coroutines, and setjmp/longjmp, unless it is customized to
keep the parallel stack of the overlay manager consistent.

The armlink --info=auto_overlay option causes the linker to write out a text summary of the
overlays in the image it outputs. The summary consists of the integer ID, start address, and size of each
overlay. You can use this information to extract the overlays from the image, for example from the
fromelf --bin output. You can then put them in a separate peripheral storage system. Therefore, you
still know which chunk of data goes with which overlay ID when you have to load one of them in the
overlay manager.

Related concepts
9.2 Automatic overlay support on page 9-167
Related information
--info linker option
Related information
__attribute__((section("name"))) function attribute
AREA
Execution region attributes
--emit_debug_overlay_section linker option
--overlay_veneers linker option

9 Overlays
9.2 Automatic overlay support

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

9-171

Non-Confidential

https://developer.arm.com/documentation/101754/0616/armlink-Reference/armlink-Command-line-Options/--info-topic--topic----armlink-
https://developer.arm.com/documentation/101754/0616/armclang-Reference/compiler-specific-function-variable-and-type-attributes/__attribute__sectionname-function-attribute
https://developer.arm.com/documentation/101754/0616/armasm-Legacy-Assembler-Reference/armasm-directives-reference/area
https://developer.arm.com/documentation/101754/0616/armlink-Reference/Scatter-File-Syntax/Execution-region-descriptions/Execution-region-attributes
https://developer.arm.com/documentation/101754/0616/armlink-Reference/armlink-Command-line-Options/--emit-debug-overlay-section
https://developer.arm.com/documentation/101754/0616/armlink-Reference/armlink-Command-line-Options/--overlay-veneers

9.3 Manual overlay support
To manually allocate code sections to overlay regions, you must set up a scatter file to locate the
overlays.

The manual overlay mechanism consists of:
• The OVERLAY attribute for load regions and execution regions. Use this attribute in a scatter file to

indicate regions of memory where the linker assigns the overlay sections for loading into at runtime.
• The following armlink command-line options to add extra debug information to the image:

— --emit_debug_overlay_relocs.
— --emit_debug_overlay_section.

This extra debug information permits an overlay-aware debugger to track which overlay is active.

This section contains the following subsections:
• 9.3.1 Manually placing code sections in overlay regions on page 9-172.
• 9.3.2 Writing an overlay manager for manually placed overlays on page 9-173.

9.3.1 Manually placing code sections in overlay regions

You can place multiple execution regions at the same address with overlays.

The OVERLAY attribute allows you to place multiple execution regions at the same address. An overlay
manager is required to make sure that only one execution region is instantiated at a time. Arm Compiler
does not provide an overlay manager.

The following example shows the definition of a static section in RAM followed by a series of overlays.
Here, only one of these sections is instantiated at a time.

EMB_APP 0x8000
{
 …
 STATIC_RAM 0x0 ; contains most of the RW and ZI code/data
 {
 * (+RW,+ZI)
 }
 OVERLAY_A_RAM 0x1000 OVERLAY ; start address of overlay…
 {
 module1.o (+RW,+ZI)
 }
 OVERLAY_B_RAM 0x1000 OVERLAY
 {
 module2.o (+RW,+ZI)
 }
 … ; rest of scatter-loading description
}

The C library at startup does not initialize a region that is marked as OVERLAY. The contents of the
memory that is used by the overlay region is the responsibility of an overlay manager. If the region
contains initialized data, use the NOCOMPRESS attribute to prevent RW data compression.

You can use the linker defined symbols to obtain the addresses that are required to copy the code and
data.

You can use the OVERLAY attribute on a single region that is not at the same address as a different region.
Therefore, you can use an overlay region as a method to prevent the initialization of particular regions by
the C library startup code. As with any overlay region, you must manually initialize them in your code.

An overlay region can have a relative base. The behavior of an overlay region with a +offset base
address depends on the regions that precede it and the value of +offset. If they have the same +offset
value, the linker places consecutive +offset regions at the same base address.

When a +offset execution region ER follows a contiguous overlapping block of overlay execution
regions the base address of ER is:

limit address of the overlapping block of overlay execution regions + offset

9 Overlays
9.3 Manual overlay support

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

9-172

Non-Confidential

The following table shows the effect of +offset when used with the OVERLAY attribute. REGION1 appears
immediately before REGION2 in the scatter file:

Table 9-1 Using relative offset in overlays

REGION1 is set with OVERLAY +offset REGION2 Base Address

NO <offset> REGION1 Limit + <offset>

YES +0 REGION1 Base Address

YES <non-zero offset> REGION1 Limit + <non-zero offset>

The following example shows the use of relative offsets with overlays and the effect on execution region
addresses:

EMB_APP 0x8000
{
 CODE 0x8000
 {
 *(+RO)
 }
 # REGION1 Base = CODE limit
 REGION1 +0 OVERLAY
 {
 module1.o(*)
 }
 # REGION2 Base = REGION1 Base
 REGION2 +0 OVERLAY
 {
 module2.o(*)
 }
 # REGION3 Base = REGION2 Base = REGION1 Base
 REGION3 +0 OVERLAY
 {
 module3.o(*)
 }
 # REGION4 Base = REGION3 Limit + 4
 Region4 +4 OVERLAY
 {
 module4.o(*)
 }
}

If the length of the non-overlay area is unknown, you can use a zero relative offset to specify the start
address of an overlay so that it is placed immediately after the end of the static section.

Related information
Load region descriptions
Load region attributes
Inheritance rules for load region address attributes
Considerations when using a relative address +offset for a load region
Considerations when using a relative address +offset for execution regions
--emit_debug_overlay_relocs linker option
--emit_debug_overlay_section linker option
ABI for the Arm Architecture: Support for Debugging Overlaid Programs

9.3.2 Writing an overlay manager for manually placed overlays

Overlays are not automatically copied to their runtime location when a function within the overlay is
called. Therefore, you must write an overlay manager to copy overlays.

The overlay manager copies the required overlay to its execution address, and records the overlay that is
in use at any one time. The overlay manager runs throughout the application, and is called whenever
overlay loading is required. For instance, the overlay manager can be called before every function call
that might require a different overlay segment to be loaded.

9 Overlays
9.3 Manual overlay support

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

9-173

Non-Confidential

https://developer.arm.com/documentation/101754/0616/armlink-Reference/Scatter-File-Syntax/Load-region-descriptions
https://developer.arm.com/documentation/101754/0616/armlink-Reference/Scatter-File-Syntax/Load-region-descriptions/Load-region-attributes
https://developer.arm.com/documentation/101754/0616/armlink-Reference/Scatter-File-Syntax/Load-region-descriptions/Inheritance-rules-for-load-region-address-attributes
https://developer.arm.com/documentation/101754/0616/armlink-Reference/Scatter-File-Syntax/Load-region-descriptions/Considerations-when-using-a-relative-address-offset-for-a-load-region
https://developer.arm.com/documentation/101754/0616/armlink-Reference/Scatter-File-Syntax/Execution-region-descriptions/Considerations-when-using-a-relative-address-offset-for-execution-regions
https://developer.arm.com/documentation/101754/0616/armlink-Reference/armlink-Command-line-Options/--emit-debug-overlay-relocs
https://developer.arm.com/documentation/101754/0616/armlink-Reference/armlink-Command-line-Options/--emit-debug-overlay-section
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0049-/index.html

The overlay manager must ensure that the correct overlay segment is loaded before calling any function
in that segment. If a function from one overlay is called while a different overlay is loaded, then some
kind of runtime failure occurs. If such a failure is a possibility, the linker and compiler do not warn you
because it is not statically determinable. The same is true for a data overlay.

The central component of this overlay manager is a routine to copy code and data from the load address
to the execution address. This routine is based around the following linker defined symbols:

• Load$$execution_region_name$$Base, the load address.
• Image$$execution_region_name$$Base, the execution address.
• Image$$execution_region_name$$Length, the length of the execution region.

The implementation of the overlay manager depends on the system requirements. This procedure shows
a simple method of implementing an overlay manager. The downloadable example contains a
Readme.txt file that describes details of each source file.

The copy routine that is called load_overlay() is implemented in overlay_manager.c. The routine
uses memcpy() and memset() functions to copy CODE and RW data overlays, and to clear ZI data
overlays.

 Note

For RW data overlays, it is necessary to disable RW data compression for the whole project. You can
disable compression with the linker command-line option --datacompressor off, or you can mark the
execution region with the attribute NOCOMPRESS.

The assembly file overlay_list.s lists all the required symbols. This file defines and exports two
common base addresses and a RAM space that is mapped to the overlay structure table:

code_base
data_base
overlay_regions

As specified in the scatter file, the two functions, func1() and func2(), and their corresponding data are
placed in CODE_ONE, CODE_TWO, DATA_ONE, DATA_TWO regions, respectively. armlink has a special
mechanism for replacing calls to functions with stubs. To use this mechanism, write a small stub for each
function in the overlay that might be called from outside the overlay.

In this example, two stub functions $Sub$$func1() and $Sub$$func2() are created for the two
functions func1() and func2() in overlay_stubs.c. These stubs call the overlay-loading function
load_overlay() to load the corresponding overlay. After the overlay manager finishes its overlay
loading task, the stub function can then call $Super$$func1 to call the loaded function func1() in the
overlay.

Procedure
1. Create the overlay_manager.c program to copy the correct overlay to the runtime addresses.

// overlay_manager.c
/* Basic overlay manager */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

/* Number of overlays present */
#define NUM_OVERLAYS 2

/* struct to hold addresses and lengths */
typedef struct overlay_region_t_struct
{
 void* load_ro_base;
 void* load_rw_base;
 void* exec_zi_base;
 unsigned int ro_length;
 unsigned int zi_length;
} overlay_region_t;

/* Record for current overlay */

9 Overlays
9.3 Manual overlay support

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

9-174

Non-Confidential

int current_overlay = 0;

/* Array describing the overlays */
extern const overlay_region_t overlay_regions[NUM_OVERLAYS];

/* execution bases of the overlay regions - defined in overlay_list.s */
extern void * const code_base;
extern void * const data_base;

void load_overlay(int n)
{
 const overlay_region_t * selected_region;

 if(n == current_overlay)
 {
 printf("Overlay %d already loaded.\n", n);
 return;
 }

 /* boundary check */
 if(n<1 || n>NUM_OVERLAYS)
 {
 printf("Error - invalid overlay number %d specified\n", n);
 exit(1);
 }

 /* Load the corresponding overlay */
 printf("Loading overlay %d...\n", n);

 /* set selected region */
 selected_region = &overlay_regions[n-1];

 /* load code overlay */
 memcpy(code_base, selected_region->load_ro_base, selected_region->ro_length);

 /* load data overlay */
 memcpy(data_base, selected_region->load_rw_base,
 (unsigned int)selected_region->exec_zi_base - (unsigned int)data_base);

 /* Comment out the next line if your overlays have any static ZI variables
 * and should not be reinitialized each time, and move them out of the
 * overlay region in your scatter file */
 memset(selected_region->exec_zi_base, 0, selected_region->zi_length);

 /* update record of current overlay */
 current_overlay=n;

 printf("...Done.\n");

}

2. Create a separate source file for each of the functions func1() and func2().

// func1.c
#include <stdio.h>
#include <stdlib.h>

extern void foo(int x);

// Some RW and ZI data
char* func1_string = "func1 called\n";
int func1_values[20];

void func1(void)
{
 unsigned int i;
 printf("%s\n", func1_string);
 for(i = 19; i; i--)
 {
 func1_values[i] = rand();
 foo(i);
 printf("%d ", func1_values[i]);
 }
 printf("\n");
}

// func2.c
#include <stdio.h>

extern void foo(int x);

// Some RW and ZI data
char* func2_string = "func2 called\n";
int func2_values[10];

9 Overlays
9.3 Manual overlay support

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

9-175

Non-Confidential

void func2(void)
{
 printf("%s\n", func2_string);
 foo(func2_values[9]);
}

3. Create the main.c program to demonstrate the overlay mechanism.

// main.c
#include <stdio.h>

/* Functions provided by the overlays */
extern void func1(void);
extern void func2(void);

int main(void)
{
 printf("Start of main()...\n");
 func1();
 func2();

 /*
 * Call func2() again to demonstrate that we don't need to
 * reload the overlay
 */
 func2();

 func1();
 printf("End of main()...\n");

 return 0;
}

void foo(int x)
{
 return;
}

4. Create overlay_stubs.c to provide two stub functions $Sub$$func1() and $Sub$$func2() for the
two functions func1() and func2().

// overlay_stub.c
extern void $Super$$func1(void);
extern void $Super$$func2(void);

extern void load_overlay(int n);

void $Sub$$func1(void)
{
 load_overlay(1);
 $Super$$func1();
}

void $Sub$$func2(void)
{
 load_overlay(2);
 $Super$$func2();
}

5. Create overlay_list.s that lists all the required symbols.

; overlay_list.s
 AREA overlay_list, DATA, READONLY

 ; Linker-defined symbols to use

 IMPORT ||Load$$CODE_ONE$$Base||
 IMPORT ||Load$$CODE_TWO$$Base||
 IMPORT ||Load$$DATA_ONE$$Base||
 IMPORT ||Load$$DATA_TWO$$Base||

 IMPORT ||Image$$CODE_ONE$$Base||
 IMPORT ||Image$$DATA_ONE$$Base||
 IMPORT ||Image$$DATA_ONE$$ZI$$Base||
 IMPORT ||Image$$DATA_TWO$$ZI$$Base||

 IMPORT ||Image$$CODE_ONE$$Length||
 IMPORT ||Image$$CODE_TWO$$Length||

 IMPORT ||Image$$DATA_ONE$$ZI$$Length||
 IMPORT ||Image$$DATA_TWO$$ZI$$Length||

9 Overlays
9.3 Manual overlay support

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

9-176

Non-Confidential

 ; Symbols to export

 EXPORT code_base
 EXPORT data_base
 EXPORT overlay_regions

; Common base execution addresses of the two OVERLAY regions

code_base DCD ||Image$$CODE_ONE$$Base||
data_base DCD ||Image$$DATA_ONE$$Base||

; Array of details for each region -
; see overlay_manager.c for structure layout

overlay_regions
; overlay 1
 DCD ||Load$$CODE_ONE$$Base||
 DCD ||Load$$DATA_ONE$$Base||
 DCD ||Image$$DATA_ONE$$ZI$$Base||
 DCD ||Image$$CODE_ONE$$Length||
 DCD ||Image$$DATA_ONE$$ZI$$Length||

; overlay 2
 DCD ||Load$$CODE_TWO$$Base||
 DCD ||Load$$DATA_TWO$$Base||
 DCD ||Image$$DATA_TWO$$ZI$$Base||
 DCD ||Image$$CODE_TWO$$Length||
 DCD ||Image$$DATA_TWO$$ZI$$Length||

 END

6. Create retarget.c to retarget the __user_initial_stackheap function.

// retarget.c
#include <rt_misc.h>

extern unsigned int Image$$HEAP$$ZI$$Base;
extern unsigned int Image$$STACKS$$ZI$$Limit;

__value_in_regs struct __initial_stackheap __user_initial_stackheap(
 unsigned R0, unsigned SP, unsigned R2, unsigned SL)
{
 struct __initial_stackheap config;

 config.heap_base = (unsigned int)&Image$$HEAP$$ZI$$Base;
 config.stack_base = (unsigned int)&Image$$STACKS$$ZI$$Limit;

 return config;
}

7. Create the scatter file, embedded_scat.scat.

; embedded_scat.scat
;;; Copyright Arm Limited 2002. All rights reserved.

;; Embedded scatter file

ROM_LOAD 0x24000000 0x04000000
{
 ROM_EXEC 0x24000000 0x04000000
 {
 * (InRoot$$Sections) ; All library sections that must be in a root region
 ; e.g. __main.o, __scatter*.o, * (Region$$Table)
 * (+RO) ; All other code
 }

 RAM_EXEC 0x10000
 {
 * (+RW, +ZI)
 }

 HEAP +0 EMPTY 0x3000
 {
 }

 STACKS 0x20000 EMPTY -0x3000
 {
 }

 CODE_ONE 0x08400000 OVERLAY 0x4000
 {
 overlay_one.o (+RO)
 }

9 Overlays
9.3 Manual overlay support

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

9-177

Non-Confidential

 CODE_TWO 0x08400000 OVERLAY 0x4000
 {
 overlay_two.o (+RO)
 }

 DATA_ONE 0x08700000 OVERLAY 0x4000
 {
 overlay_one.o (+RW,+ZI)
 }

 DATA_TWO 0x08700000 OVERLAY 0x4000
 {
 overlay_two.o (+RW,+ZI)
 }

}

8. Build the example application:

armclang -c -g -target arm-arm-none-eabi -mcpu=cortex-a9 -O0 main.c overlay_stubs.c
overlay_manager.c retarget.c
armclang -c -g -target arm-arm-none-eabi -mcpu=cortex-a9 -O0 func1.c -o overlay_one.o
armclang -c -g -target arm-arm-none-eabi -mcpu=cortex-a9 -O0 func2.c -o overlay_two.o
armasm --debug --cpu=cortex-a9 --keep overlay_list.s
armlink --cpu=cortex-a9 --datacompressor=off --scatter embedded_scat.scat main.o
overlay_one.o overlay_two.o overlay_stubs.o overlay_manager.o overlay_list.o retarget.o -
o image.axf

Related concepts
9.3 Manual overlay support on page 9-172
Related information
Use of $Super$$ and $Sub$$ to patch symbol definitions
Related concepts
9.1 Overlay support in Arm® Compiler on page 9-166
Related information
Execution region attributes
--emit_debug_overlay_relocs linker option
--emit_debug_overlay_section linker option

9 Overlays
9.3 Manual overlay support

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

9-178

Non-Confidential

https://developer.arm.com/documentation/101754/0616/armlink-Reference/Accessing-and-Managing-Symbols-with-armlink/Use-of--Super---and--Sub---to-patch-symbol-definitions
https://developer.arm.com/documentation/101754/0616/armlink-Reference/Scatter-File-Syntax/Execution-region-descriptions/Execution-region-attributes
https://developer.arm.com/documentation/101754/0616/armlink-Reference/armlink-Command-line-Options/--emit-debug-overlay-relocs
https://developer.arm.com/documentation/101754/0616/armlink-Reference/armlink-Command-line-Options/--emit-debug-overlay-section

Chapter 10
Embedded Software Development

Describes how to develop embedded applications with Arm Compiler, with or without a target system
present.

It contains the following sections:
• 10.1 About embedded software development on page 10-181.
• 10.2 Default compilation tool behavior on page 10-182.
• 10.3 C library structure on page 10-183.
• 10.4 Default memory map on page 10-184.
• 10.5 Application startup on page 10-186.
• 10.6 Tailoring the C library to your target hardware on page 10-187.
• 10.7 Reimplementing C library functions on page 10-189.
• 10.8 Tailoring the image memory map to your target hardware on page 10-191.
• 10.9 About the scatter-loading description syntax on page 10-192.
• 10.10 Root regions on page 10-193.
• 10.11 Placing the stack and heap on page 10-194.
• 10.12 Run-time memory models on page 10-195.
• 10.13 Reset and initialization on page 10-197.
• 10.14 The vector table on page 10-198.
• 10.15 ROM and RAM remapping on page 10-199.
• 10.16 Local memory setup considerations on page 10-200.
• 10.17 Stack pointer initialization on page 10-201.
• 10.18 Hardware initialization on page 10-202.
• 10.19 Execution mode considerations on page 10-203.
• 10.20 Target hardware and the memory map on page 10-204.
• 10.21 Execute-only memory on page 10-205.
• 10.22 Building applications for execute-only memory on page 10-206.

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

10-179

Non-Confidential

• 10.23 Vector table for ARMv6 and earlier, ARMv7-A and ARMv7-R profiles on page 10-207.
• 10.24 Vector table for M-profile architectures on page 10-208.
• 10.25 Vector Table Offset Register on page 10-209.
• 10.26 Integer division-by-zero errors in C code on page 10-210.

10 Embedded Software Development

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

10-180

Non-Confidential

10.1 About embedded software development
When developing embedded applications, the resources available in the development environment
normally differ from the resources on the target hardware.

It is important to consider the process for moving an embedded application from the development or
debugging environment to a system that runs standalone on target hardware.

When developing embedded software, you must consider the following:
• Understand the default compilation tool behavior and the target environment. You can then

understand the steps that are necessary to move from a debug or development build to a standalone
production version of the application.

• Some C library functionality executes by using debug environment resources. If used, you must re-
implement this functionality to use target hardware.

• The toolchain has no knowledge of the memory map of any given target. You must tailor the image
memory map to the memory layout of the target hardware.

• An embedded application must perform some initialization, such as stack and heap initialization,
before the main application can be run. A complete initialization sequence requires code that you
implement in addition to the Arm Compiler C library initialization routines.

10 Embedded Software Development
10.1 About embedded software development

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

10-181

Non-Confidential

10.2 Default compilation tool behavior
It is useful to be aware of the default behavior of the compilation tools if you do not yet know the full
technical specifications of the target hardware.

For example, when you start work on software for an embedded application, you might not know the
details of target peripheral devices, the memory map, or even the processor itself.

To enable you to proceed with software development before such details are known, the compilation
tools have a default behavior that enables you to start building and debugging application code
immediately.

In the Arm C library, support for some ISO C functionality, for example program I/O, can be provided by
the host debugging environment. The mechanism that provides this functionality is known as
semihosting. When semihosting is executed, the debug agent suspends program execution. The debug
agent then uses the debug capabilities of the host (for example printf output to the debugger console) to
service the semihosting operation before code execution is resumed on the target. The task performed by
the host is transparent to the program running on the target.

Related information
Semihosting for AArch32 and AArch64

10 Embedded Software Development
10.2 Default compilation tool behavior

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

10-182

Non-Confidential

https://developer.arm.com/documentation/100863/latest

10.3 C library structure
Conceptually, the C library can be divided into functions that are part of the ISO C standard, for example
printf(), and functions that provide support to the ISO C standard.

For example, the following figure shows the C library implementing the function printf() by writing to
the debugger console window. This implementation is provided by calling _sys_write(), a support
function that executes a semihosting call, resulting in the default behavior using the debugger instead of
target peripherals.

ISO C

input/
output

error
handling

stack and
heap
setup

other

Semihosting Support
Debug
Agent

C Library

Functions called by
your application,
for example, printf()

Device driver level.
Use semihosting,
for example,

Implemented by
the debugging
environment

_sys_write()

Figure 10-1 C library structure

Related information
The Arm C and C++ libraries
The C and C++ library functions
Semihosting for AArch32 and AArch64

10 Embedded Software Development
10.3 C library structure

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

10-183

Non-Confidential

https://developer.arm.com/documentation/100073/0616/The-Arm-C-and-C---Libraries
https://developer.arm.com/documentation/100073/0616/The-C-and-C---Library-Functions-Reference
https://developer.arm.com/documentation/100863/latest

10.4 Default memory map
In an image where you have not described the memory map, the linker places code and data according to
a default memory map.

ZI

RW

RO

STACK

HEAP

From
Semihosting

Calculated
by the linker

call

0x8000

Figure 10-2 Default memory map

 Note

Processors that are based on andArmv6‑M Armv7‑M architectures have fixed memory maps. Having
fixed memory maps makes porting software easier between different systems that are based on these
processors.

The default memory map is described as follows:
• The image is linked to load and run at address 0x8000. All read-only (RO) sections are placed first,

followed by read/write (RW) sections, then zero-initialized (ZI) sections.
• The heap follows directly on from the top of ZI, so the exact location is decided at link time.
• The stack base location is provided by a semihosting operation during application startup. The value

that this semihosting operation returns depends on the debug environment.

The linker observes a set of rules to decide where in memory code and data are located:

ZI

RW

RO

DATA

CODE

B

A

section A
from file2.o

Section A
from file1.o

Figure 10-3 Linker placement rules

10 Embedded Software Development
10.4 Default memory map

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

10-184

Non-Confidential

Generally, the linker sorts the Input sections by attribute (RO, RW, ZI), by name, and then by position in
the input list.

To fully control the placement of code and data, you must use the scatter-loading mechanism.

Related concepts
10.6 Tailoring the C library to your target hardware on page 10-187
Related information
The image structure
Section placement with the linker
About scatter-loading
Scatter file syntax
Cortex-M1 Technical Reference Manual
Cortex-M3 Technical Reference Manual
Semihosting for AArch32 and AArch64

10 Embedded Software Development
10.4 Default memory map

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

10-185

Non-Confidential

https://developer.arm.com/documentation/101754/0616/armlink-Reference/Image-Structure-and-Generation/The-structure-of-an-Arm-ELF-image
https://developer.arm.com/documentation/101754/0616/armlink-Reference/Image-Structure-and-Generation/Section-placement-with-the-linker
https://developer.arm.com/documentation/101754/0616/armlink-Reference/Scatter-loading-Features/The-scatter-loading-mechanism
https://developer.arm.com/documentation/101754/0616/armlink-Reference/Scatter-File-Syntax
https://developer.arm.com/documentation/ddi0413/latest
https://developer.arm.com/documentation/100165/latest
https://developer.arm.com/documentation/100863/latest

10.5 Application startup
In most embedded systems, an initialization sequence executes to set up the system before the main task
is executed.

The following figure shows the default initialization sequence.

C Library

__main
copy code and data

Initialize ZI data to
zeros

User Code

main()

causes the linker to link
in library initialization
code

__rt_entry

set up application stack
and heap
initialize library functions
call top-level
constructors (C++)

Exit from application

Image
entry point

.
copy or decompress RW
data

.

.

.

.

..

.

Figure 10-4 Default initialization sequence

__main is responsible for setting up the memory and __rt_entry is responsible for setting up the run-
time environment.

__main performs code and data copying, decompression, and zero initialization of the ZI data. It then
branches to __rt_entry to set up the stack and heap, initialize the library functions and static data, and
call any top level C++ constructors. __rt_entry then branches to main(), the entry to your application.
When the main application has finished executing, __rt_entry shuts down the library, then hands
control back to the debugger.

The function label main() has a special significance. The presence of a main() function forces the linker
to link in the initialization code in __main and __rt_entry. Without a function labeled main(), the
initialization sequence is not linked in, and as a result, some standard C library functionality is not
supported.

Related information
--startup=symbol, --no_startup (armlink)
Arm Compiler C Library Startup and Initialization

10 Embedded Software Development
10.5 Application startup

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

10-186

Non-Confidential

https://developer.arm.com/documentation/101754/0616/armlink-Reference/armlink-Command-line-Options/--startup-symbol----no-startup
https://developer.arm.com/documentation/dai0241/latest

10.6 Tailoring the C library to your target hardware
You can provide your own implementations of C library functions to override the default behavior.

By default, the C library uses semihosting to provide device driver level functionality, enabling a host
computer to act as an input and an output device. This functionality is useful because development
hardware often does not have all the input and output facilities of the final system.

You can provide your own implementation of target-dependent C library functions to use target
hardware. Your implementations are automatically linked in to your image instead of the C library
implementations. The following figure shows this process, which is known as retargeting the C library.

Target-
independent

Semihosting
Support

Retarget

Debug
Agent

C Library

User
Code

Target
Hardware

Target-
dependent

Target-
dependent

Target-
independent

Figure 10-5 Retargeting the C library

For example, you have a peripheral I/O device, such as an LCD screen, and want to override the library
implementation of fputc(), which writes to the debugger console, with one that prints to the LCD.
Because this implementation of fputc() is linked in to the final image, the entire printf() family of
functions prints to the LCD.

Example implementation of fputc()

In this example, fputc() redirects the input character parameter to a serial output function sendchar().
fputc() assumes that sendchar() is implemented in a separate source file. In this way, fputc() acts as
an abstraction layer between target-dependent output and the C library standard output functions.

extern void sendchar(char *ch);
int fputc(int ch, FILE *f)
{ /* e.g. write a character to an LCD screen */
 char tempch = ch;
 sendchar(&tempch);
 return ch;
}

In a standalone application, you are unlikely to support semihosting operations. Therefore, you must
remove all calls to target-dependent C library functions or re-implement them with non-semihosting
functions.

Related information
Using the libraries in a nonsemihosting environment

10 Embedded Software Development
10.6 Tailoring the C library to your target hardware

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

10-187

Non-Confidential

https://developer.arm.com/documentation/100073/0616/The-Arm-C-and-C---Libraries/Support-for-building-an-application-with-the-C-library/Using-the-libraries-in-a-nonsemihosting-environment

Semihosting for AArch32 and AArch64

10 Embedded Software Development
10.6 Tailoring the C library to your target hardware

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

10-188

Non-Confidential

https://developer.arm.com/documentation/100863/latest

10.7 Reimplementing C library functions
This provides information for building applications without the Arm standard C library.

To build applications without the Arm standard C library, you must provide an alternative library that
reimplements the ISO standard C library functions that your application might need, such as printf().
Your reimplemented library must be compliant with the ARM Embedded Application Binary Interface
(AEABI).

To instruct armclang to not use the Arm standard C library, you must use the armclang options -
nostdlib and -nostdlibinc. You must also use the --no_scanlib armlink option if you invoke the
linker separately.

You must also use the -fno-builtin armclang option to ensure that the compiler does not perform any
transformations of built-in functions. Without -fno-builtin, armclang might recognize calls to certain
standard C library functions, such as printf(), and replace them with calls to more efficient alternatives
in specific cases.

This example reimplements the printf() function to simply return 1 or 0.

//my_lib.c:
int printf(const char *c, ...)
{
 if(!c)
 {
 return 1;
 }
 else
 {
 return 0;
 }
}

Use armclang and armar to create a library from your reimplemented printf() function:

armclang --target=arm-arm-none-eabi -c -O2 -march=armv7-a -mfpu=none mylib.c -o mylib.o
armar --create mylib.a mylib.o

An example application source file foo.c contains:

//foo.c:
extern int printf(const char *c, ...);

void foo(void)
{
 printf("Hello, world!\n");
}

Use armclang to build the example application source file using the -nostdlib, -nostdlibinc and -
fno-builtin options. Then use armlink to link the example reimplemented library using the --
no_scanlib option.

armclang --target=arm-arm-none-eabi -c -O2 -march=armv7-a -mfpu=none -nostdlib -nostdlibinc -
fno-builtin foo.c -o foo.o
armlink foo.o mylib.a -o image.axf --no_scanlib

If you do not use the -fno-builtin option, then the compiler transforms the printf() function to the
puts() function, and the linker generates an error because it cannot find the puts() function in the
reimplemented library.

armclang --target=arm-arm-none-eabi -c -O2 -march=armv7-a -mfpu=none -nostdlib -nostdlibinc
foo.c -o foo.o
armlink foo.o mylib.a -o image.axf --no_scanlib

Error: L6218E: Undefined symbol puts (referred from foo.o).

 Note

If the linker sees a definition of main(), it automatically creates a reference to a startup symbol called
__main. The Arm standard C library defines __main to provide startup code. If you use your own library

10 Embedded Software Development
10.7 Reimplementing C library functions

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

10-189

Non-Confidential

instead of the Arm standard C library, then you must provide your implementation of __main or change
the startup symbol using the linker --startup option.

Related concepts
10.3 C library structure on page 10-183
Related information
--startup (armlink)
Run-time ABI for the Arm Architecture
C Library ABI for the Arm Architecture

10 Embedded Software Development
10.7 Reimplementing C library functions

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

10-190

Non-Confidential

https://developer.arm.com/documentation/101754/0616/armlink-Reference/armlink-Command-line-Options/--startup-symbol----no-startup
https://developer.arm.com/documentation/ihi0043/latest
https://developer.arm.com/documentation/ihi0039/latest

10.8 Tailoring the image memory map to your target hardware
You can use a scatter file to define a memory map, giving you control over the placement of data and
code in memory.

In your final embedded system, without semihosting functionality, you are unlikely to use the default
memory map. Your target hardware usually has several memory devices located at different address
ranges. To make the best use of these devices, you must have separate views of memory at load and run-
time.

Scatter-loading enables you to describe the load and run-time memory locations of code and data in a
textual description file known as a scatter file. This file is passed to the linker on the command line using
the --scatter option. For example:

armlink --scatter scatter.scat file1.o file2.o

Scatter-loading defines two types of memory regions:

• Load regions containing application code and data at reset and load-time.
• Execution regions containing code and data when the application is executing. One or more execution

regions are created from each load region during application startup.

A single code or data section can only be placed in a single execution region. It cannot be split.

During startup, the C library initialization code in __main carries out the necessary copying of code/data
and zeroing of data to move from the image load view to the execute view.

 Note

The overall layout of the memory maps of devices based around the Armv6‑M and Armv7‑M
architectures are fixed. This makes it easier to port software between different systems based on these
architectures.

Related information
Information about scatter files
--scatter=filename (armlink)
Armv7‑M Architecture Reference Manual
Armv6‑M Architecture Reference Manual
Semihosting for AArch32 and AArch64

10 Embedded Software Development
10.8 Tailoring the image memory map to your target hardware

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

10-191

Non-Confidential

https://developer.arm.com/documentation/101754/0616/armlink-Reference/Scatter-loading-Features
https://developer.arm.com/documentation/101754/0616/armlink-Reference/armlink-Command-line-Options/--scatter-filename
https://developer.arm.com/documentation/ddi0403/latest/armv7-m-architecture-reference-manual
https://developer.arm.com/documentation/ddi0419/latest/armv6-m-architecture-reference-manual
https://developer.arm.com/documentation/100863/latest

10.9 About the scatter-loading description syntax
In a scatter file, each region is defined by a header tag that contains, as a minimum, a name for the region
and a start address. Optionally, you can add a maximum length and various attributes.

The scatter-loading description syntax shown in the following figure reflects the functionality provided
by scatter-loading:

MY_REGION 0x0000 0x2000
{
 contents of region
}

name of region start address

optional length
parameter

Figure 10-6 Scatter-loading description syntax

The contents of the region depend on the type of region:
• Load regions must contain at least one execution region. In practice, there are usually several

execution regions for each load region.
• Execution regions must contain at least one code or data section, unless a region is declared with the

EMPTY attribute. Non-EMPTY regions usually contain object or library code. You can use the wildcard
(*) syntax to group all sections of a given attribute not specified elsewhere in the scatter file.

Related information
Information about scatter files
Scatter-loading images with a simple memory map

10 Embedded Software Development
10.9 About the scatter-loading description syntax

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

10-192

Non-Confidential

https://developer.arm.com/documentation/101754/0616/armlink-Reference/Scatter-loading-Features
https://developer.arm.com/documentation/101754/0616/armlink-Reference/Scatter-loading-Features/The-scatter-loading-mechanism/Scatter-loading-images-with-a-simple-memory-map

10.10 Root regions
A root region is an execution region with an execution address that is the same as its load address. A
scatter file must have at least one root region.

One restriction placed on scatter-loading is that the code and data responsible for creating execution
regions cannot be copied to another location. As a result, the following sections must be included in a
root region:

• __main.o and __scatter*.o containing the code that copies code and data
• __dc*.o that performs decompression
• Region$$Table section containing the addresses of the code and data to be copied or decompressed.

Because these sections are defined as read-only, they are grouped by the * (+RO) wildcard syntax. As a
result, if * (+RO) is specified in a non-root region, these sections must be explicitly declared in a root
region using InRoot$$Sections.

 Note

All eXecute In Place (XIP) code must be stored in root regions.

Related information
About placing Arm C and C++ library code

10 Embedded Software Development
10.10 Root regions

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

10-193

Non-Confidential

https://developer.arm.com/documentation/101754/0616/armlink-Reference/Scatter-loading-Features/Placement-of-Arm-C-and-C---library-code

10.11 Placing the stack and heap
The scatter-loading mechanism provides a method for specifying the placement of the stack and heap in
your image.

The application stack and heap are set up during C library initialization. You can tailor stack and heap
placement by using the specially named ARM_LIB_HEAP, ARM_LIB_STACK, or ARM_LIB_STACKHEAP
execution regions. Alternatively, if you are not using a scatter file, you can re-implement the
__user_setup_stackheap() function.

Related concepts
10.12 Run-time memory models on page 10-195
Related information
Tailoring the C library to a new execution environment
Specifying stack and heap using the scatter file

10 Embedded Software Development
10.11 Placing the stack and heap

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

10-194

Non-Confidential

https://developer.arm.com/documentation/100073/0616/The-Arm-C-and-C---Libraries/Tailoring-the-C-library-to-a-new-execution-environment
https://developer.arm.com/documentation/101754/0616/armlink-Reference/Scatter-loading-Features/The-scatter-loading-mechanism/Placing-the-stack-and-heap-with-a-scatter-file

10.12 Run-time memory models
Arm Compiler toolchain provides one- and two-region run-time memory models.

One-region model

The application stack and heap grow towards each other in the same region of memory, see the following
figure. In this run-time memory model, the heap is checked against the value of the stack pointer when
new heap space is allocated. For example, when malloc() is called.

STACK

HEAP

Stack Base

Heap Base

0x40000

0x20000

Figure 10-7 One-region model

One-region model routine
LOAD_FLASH ...
{
 ...
 ARM_LIB_STACKHEAP 0x20000 EMPTY 0x20000 ; Heap and stack growing towards
 { } ; each other in the same region
 ...
}

Two-region model

The stack and heap are placed in separate regions of memory, see the following figure. For example, you
might have a small block of fast RAM that you want to reserve for stack use only. For a two-region
model, you must import __use_two_region_memory.

In this run-time memory model, the heap is checked against the heap limit when new heap space is
allocated.

10 Embedded Software Development
10.12 Run-time memory models

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

10-195

Non-Confidential

STACK

HEAP

Heap
Limit

Heap
Base

Stack
Base

0x28080000

0x28000000

0x40000

Figure 10-8 Two-region model

Two-region model routine
LOAD_FLASH ...
{
 ...
 ARM_LIB_STACK 0x40000 EMPTY -0x20000 ; Stack region growing down
 { } ;
 ARM_LIB_HEAP 0x28000000 EMPTY 0x80000 ; Heap region growing up
 { }
 ...
}

In both run-time memory models, the stack grows unchecked.

Related information
Stack pointer initialization and heap bounds

10 Embedded Software Development
10.12 Run-time memory models

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

10-196

Non-Confidential

https://developer.arm.com/documentation/100073/0616/The-Arm-C-and-C---Libraries/Stack-and-heap-memory-allocation-and-the-Arm-C-and-C---libraries/Stack-pointer-initialization-and-heap-bounds

10.13 Reset and initialization
The entry point to the C library initialization routine is __main. However, an embedded application on
your target hardware performs some system-level initialization at startup.

Embedded system initialization sequence

The following figure shows a possible initialization sequence for an embedded system based on an Arm
architecture:

C Library User Code

__user_setup_stackheap()
set up application stack
and heap

main()
causes the linker to link
in library initialization
code

$Sub$$main()
enable caches and
interrupts

reset handler
initialize stack pointers
configure MMU/MPU
setup cache/enable TCM

1

2

3

4

5

6

__rt_entry

initialize library functions
call top-level
constructors (C++)

Exit from application

..

. .

.

.

...
__main

copy code and data
copy/decompress RW
data. initialize ZI data to zeros

..
Image
Entry
Point

Figure 10-9 Initialization sequence

If you use a scatter file to tailor stack and heap placement, the linker includes a version of the library
heap and stack setup code using the linker defined symbols, ARM_LIB_*, for these region names.
Alternatively you can create your own implementation.

The reset handler is normally a short module coded in assembler that executes immediately on system
startup. As a minimum, your reset handler initializes stack pointers for the modes that your application is
running in. For processors with local memory systems, such as caches, TCMs, MMUs, and MPUs, some
configuration must be done at this stage in the initialization process. After executing, the reset handler
typically branches to __main to begin the C library initialization sequence.

There are some components of system initialization, for example, the enabling of interrupts, that are
generally performed after the C library initialization code has finished executing. The block of code
labeled $Sub$$main() performs these tasks immediately before the main application begins executing.

Related information
About using $Super$$ and $Sub$$ to patch symbol definitions
Specifying stack and heap using the scatter file

10 Embedded Software Development
10.13 Reset and initialization

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

10-197

Non-Confidential

https://developer.arm.com/documentation/101754/0616/armlink-Reference/Accessing-and-Managing-Symbols-with-armlink/Use-of--Super---and--Sub---to-patch-symbol-definitions
https://developer.arm.com/documentation/101754/0616/armlink-Reference/Scatter-loading-Features/The-scatter-loading-mechanism/Placing-the-stack-and-heap-with-a-scatter-file

10.14 The vector table
All Arm systems have a vector table. It does not form part of the initialization sequence, but it must be
present for an exception to be serviced.

It must be placed at a specific address, usually 0x0. To do this you can use the scatter-loading +FIRST
directive, as shown in the following example.

Placing the vector table at a specific address
ROM_LOAD 0x0000 0x4000
{
 ROM_EXEC 0x0000 0x4000 ; root region
 {
 vectors.o (Vect, +FIRST) ; Vector table
 * (InRoot$$Sections) ; All library sections that must be in a
 ; root region, for example, __main.o,
 ; __scatter*.o, __dc*.o, and * Region$$Table
 }
 RAM 0x10000 0x8000
 {
 * (+RO, +RW, +ZI) ; all other sections
 }
}

The vector table for the microcontroller profiles is very different to most Arm architectures.

Related concepts
10.23 Vector table for ARMv6 and earlier, ARMv7-A and ARMv7-R profiles on page 10-207
10.24 Vector table for M-profile architectures on page 10-208
Related information
Information about scatter files
Scatter-loading images with a simple memory map

10 Embedded Software Development
10.14 The vector table

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

10-198

Non-Confidential

https://developer.arm.com/documentation/101754/0616/armlink-Reference/Scatter-loading-Features
https://developer.arm.com/documentation/101754/0616/armlink-Reference/Scatter-loading-Features/The-scatter-loading-mechanism/Scatter-loading-images-with-a-simple-memory-map

10.15 ROM and RAM remapping
You must consider what sort of memory your system has at address 0x0, the address of the first
instruction executed.

 Note

This information does not apply to Armv6‑M, Armv7‑M, and Armv8‑M profiles.

 Note

This information assumes that an Arm processor begins fetching instructions at 0x0. This is the standard
behavior for systems based on Arm processors. However, some Arm processors, for example the
processors based on the Armv7‑A architecture, can be configured to begin fetching instructions from
0xFFFF0000.

There has to be a valid instruction at 0x0 at startup, so you must have nonvolatile memory located at 0x0
at the moment of power-on reset. One way to achieve this is to have ROM located at 0x0. However, there
are some drawbacks to this configuration.

Example ROM/RAM remapping

This example shows a solution implementing ROM/RAM remapping after reset. The constants shown
are specific to the Versatile board, but the same method is applicable to any platform that implements
remapping in a similar way. Scatter files must describe the memory map after remapping.

; System memory locations
Versatile_ctl_reg EQU 0x101E0000 ; Address of control register
DEVCHIP_Remap_bit EQU 0x100 ; Bit 8 is remap bit of control register
 ENTRY
; Code execution starts here on reset
; On reset, an alias of ROM is at 0x0, so jump to 'real' ROM.
 LDR pc, =Instruct_2
Instruct_2
; Remap by setting remap bit of the control register
; Clear the DEVCHIP_Remap_bit by writing 1 to bit 8 of the control register
 LDR R1, =Versatile_ctl_reg
 LDR R0, [R1]
 ORR R0, R0, #DEVCHIP_Remap_bit
 STR R0, [R1]
; RAM is now at 0x0.
; The exception vectors must be copied from ROM to RAM
; The copying is done later by the C library code inside __main
; Reset_Handler follows on from here

10 Embedded Software Development
10.15 ROM and RAM remapping

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

10-199

Non-Confidential

10.16 Local memory setup considerations
Many Arm processors have on-chip memory management systems, such as Memory Management Units
(MMU) or Memory Protection Units (MPU). These devices are normally set up and enabled during
system startup.

Therefore, the initialization sequence of processors with local memory systems requires special
consideration.

The C library initialization code in __main is responsible for setting up the execution time memory map
of the image. Therefore, the run-time memory view of the processor must be set up before branching to
__main. This means that any MMU or MPU must be set up and enabled in the reset handler.

Tightly Coupled Memories (TCM) must also be enabled before branching to __main, normally before
MMU/MPU setup, because you generally want to scatter-load code and data into TCMs. You must be
careful that you do not have to access memory that is masked by the TCMs when they are enabled.

You might also encounter problems with cache coherency if caches are enabled before branching to
__main. Code in __main copies code regions from their load address to their execution address,
essentially treating instructions as data. As a result, some instructions can be cached in the data cache, in
which case they are not visible to the instruction path.

To avoid these coherency problems, enable caches after the C library initialization sequence finishes
executing.

Related information
Cortex-A Series Programmer's Guide for Armv8-A
Cortex-A Series Programmer's Guide for Armv7-A
Cortex-R Series Programmer's Guide for Armv7-R

10 Embedded Software Development
10.16 Local memory setup considerations

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

10-200

Non-Confidential

https://developer.arm.com/documentation/den0024/latest
https://developer.arm.com/documentation/den0013/latest
https://developer.arm.com/documentation/den0042/latest

10.17 Stack pointer initialization
As a minimum, your reset handler must assign initial values to the stack pointers of any execution modes
that are used by your application.

Example stack pointer initialization

In this example, the stacks are located at stack_base:

; ***
; This example does not apply to Armv6-M and Armv7-M profiles
; ***
Len_FIQ_Stack EQU 256
Len_IRQ_Stack EQU 256
stack_base DCD 0x18000
;
Reset_Handler
 ; stack_base could be defined above, or located in a scatter file
 LDR R0, stack_base ;
 ; Enter each mode in turn and set up the stack pointer
 MSR CPSR_c, #Mode_FIQ:OR:I_Bit:OR:F_Bit ; Interrupts disabled
 MOV sp, R0
 SUB R0, R0, #Len_FIQ_Stack
 MSR CPSR_c, #Mode_IRQ:OR:I_Bit:OR:F_Bit ; Interrupts disabled
 MOV sp, R0
 SUB R0, R0, #Len_IRQ_Stack
 MSR CPSR_c, #Mode_SVC:OR:I_Bit:OR:F_Bit ; Interrupts disabled
 MOV sp, R0
 ; Leave processor in SVC mode

The stack_base symbol can be a hard-coded address, or it can be defined in a separate assembler source
file and located by a scatter file.

The example allocates 256 bytes of stack for Fast Interrupt Request (FIQ) and Interrupt Request (IRQ)
mode, but you can do the same for any other execution mode. To set up the stack pointers, enter each
mode with interrupts disabled, and assign the appropriate value to the stack pointer.

The stack pointer value set up in the reset handler is automatically passed as a parameter to
__user_initial_stackheap() by C library initialization code. Therefore, this value must not be
modified by __user_initial_stackheap().

Related information
Specifying stack and heap using the scatter file
Cortex-M3 Embedded Software Development

10 Embedded Software Development
10.17 Stack pointer initialization

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

10-201

Non-Confidential

https://developer.arm.com/documentation/101754/0616/armlink-Reference/Scatter-loading-Features/The-scatter-loading-mechanism/Placing-the-stack-and-heap-with-a-scatter-file
https://developer.arm.com/documentation/dai0179/latest/cortex-m3-embedded-software-development

10.18 Hardware initialization
In general, it is beneficial to separate all system initialization code from the main application. However,
some components of system initialization, for example, enabling of caches and interrupts, must occur
after executing C library initialization code.

Use of $Sub and $Super

You can make use of the $Sub and $Super function wrapper symbols to insert a routine that is executed
immediately before entering the main application. This mechanism enables you to extend functions
without altering the source code.

This example shows how $Sub and $Super can be used in this way:

extern void $Super$$main(void);
void $Sub$$main(void)
{
 cache_enable(); // enables caches
 int_enable(); // enables interrupts
 $Super$$main(); // calls original main()
}

The linker replaces the function call to main() with a call to $Sub$$main(). From there you can call a
routine that enables caches and another to enable interrupts.

The code branches to the real main() by calling $Super$$main().

Related information
Use of $Super$$ and $Sub$$ to patch symbol definitions

10 Embedded Software Development
10.18 Hardware initialization

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

10-202

Non-Confidential

https://developer.arm.com/documentation/101754/0616/armlink-Reference/Accessing-and-Managing-Symbols-with-armlink/Use-of--Super---and--Sub---to-patch-symbol-definitions

10.19 Execution mode considerations
You must consider the mode in which the main application is to run. Your choice affects how you
implement system initialization.

 Note

This does not apply to Armv6‑M, Armv7‑M, and Armv8‑M profiles.

Much of the functionality that you are likely to implement at startup, both in the reset handler and Sub
$main, can only be done while executing in privileged modes, for example, on-chip memory
manipulation, and enabling interrupts.

If you want to run your application in a privileged mode, this is not an issue. Ensure that you change to
the appropriate mode before exiting your reset handler.

If you want to run your application in User mode, however, you can only change to User mode after
completing the necessary tasks in a privileged mode. The most likely place to do this is in Sub
$main().

 Note

The C library initialization code must use the same stack as the application. If you need to use a non-
User mode in $Sub$$main and User mode in the application, you must exit your reset handler in System
mode, which uses the User mode stack pointer.

10 Embedded Software Development
10.19 Execution mode considerations

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

10-203

Non-Confidential

10.20 Target hardware and the memory map
It is better to keep all information about the memory map of a target, including the location of target
hardware peripherals and the stack and heap limits, in your scatter file, rather than hard-coded in source
or header files.

Mapping to a peripheral register

Conventionally, addresses of peripheral registers are hard-coded in project source or header files. You
can also declare structures that map on to peripheral registers, and place these structures in the scatter
file.

For example, if a target has a timer peripheral with two memory mapped 32-bit registers, a C structure
that maps to these registers is:

struct
{
 volatile unsigned ctrl; /* timer control */
 volatile unsigned tmr; /* timer value */
} timer_regs;

 Note

You can also use __attribute__((section(".ARM.__at_address"))) to specify the absolute address
of a variable.

Placing the mapped structure

To place this structure at a specific address in the memory map, you can create an execution region
containing the module that defines the structure. The following example shows an execution region
called TIMER that locates the timer_regs structure at 0x40000000:

ROM_LOAD 0x24000000 0x04000000
{
; ...
 TIMER 0x40000000 UNINIT
 {
 timer_regs.o (+ZI)
 }
 ; ...
}

It is important that the contents of these registers are not zero-initialized during application startup,
because this is likely to change the state of your system. Marking an execution region with the UNINIT
attribute prevents ZI data in that region from being zero-initialized by __main.

Related concepts
8.7 Placement of functions and data at specific addresses on page 8-136
Related information
__attribute__((section("name"))) variable attribute

10 Embedded Software Development
10.20 Target hardware and the memory map

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

10-204

Non-Confidential

https://developer.arm.com/documentation/101754/0616/armclang-Reference/compiler-specific-function-variable-and-type-attributes/__attribute__sectionname-variable-attribute

10.21 Execute-only memory
Execute-only memory (XOM) allows only instruction fetches. Read and write accesses are not allowed.

Execute-only memory allows you to protect your intellectual property by preventing executable code
being read by users. For example, you can place firmware in execute-only memory and load user code
and drivers separately. Placing the firmware in execute-only memory prevents users from trivially
reading the code.

 Note

The Arm architecture does not directly support execute-only memory. Execute-only memory is supported
at the memory device level.

Related tasks
10.22 Building applications for execute-only memory on page 10-206

10 Embedded Software Development
10.21 Execute-only memory

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

10-205

Non-Confidential

10.22 Building applications for execute-only memory
Placing code in execute-only memory prevents users from trivially reading that code.

 Note

LTO does not honor the armclang -mexecute-only option. If you use the armclang -flto or -Omax
options, then the compiler cannot generate execute-only code.

To build an application with code in execute-only memory:

Procedure
1. Compile your C or C++ code using the -mexecute-only option.

Example: armclang --target=arm-arm-none-eabi -march=armv7-m -mexecute-only -c
test.c -o test.o

The -mexecute-only option prevents the compiler from generating any data accesses to the code
sections.

To keep code and data in separate sections, the compiler disables the placement of literal pools inline
with code.

Compiled execute-only code sections in the ELF object file are marked with the SHF_ARM_NOREAD
flag.

2. Specify the memory map to the linker using either of the following:
• The +XO selector in a scatter file.
• The armlink --xo-base option on the command-line.

Example: armlink --xo-base=0x8000 test.o -o test.axf
Results:
The XO execution region is placed in a separate load region from the RO, RW, and ZI execution
regions.

 Note

If you do not specify --xo-base, then by default:
• The XO execution region is placed immediately before the RO execution region, at address

0x8000.
• All execution regions are in the same load region.

Related concepts
10.21 Execute-only memory on page 10-205
Related information
-mexecute-only (armclang)
--execute_only (armasm)
--xo_base=address (armlink)
AREA directive

10 Embedded Software Development
10.22 Building applications for execute-only memory

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

10-206

Non-Confidential

https://developer.arm.com/documentation/101754/0616/armclang-Reference/armclang-Command-line-Options/-mexecute-only
https://developer.arm.com/documentation/101754/0616/armasm-Legacy-Assembler-Reference/armasm-command-line-options/--execute_only
https://developer.arm.com/documentation/101754/0616/armlink-Reference/armlink-Command-line-Options/--xo-base-address
https://developer.arm.com/documentation/101754/0616/armasm-Legacy-Assembler-Reference/armasm-directives-reference/area

10.23 Vector table for ARMv6 and earlier, ARMv7-A and ARMv7-R profiles
The vector table for Armv6 and earlier, Armv7‑A and Armv7‑R profiles consists of branch or load PC
instructions to the relevant handlers.

If required, you can include the FIQ handler at the end of the vector table to ensure it is handled as
efficiently as possible, see the following example. Using a literal pool means that addresses can easily be
modified later if necessary.

Typical vector table using a literal pool
 AREA vectors, CODE, READONLY
 ENTRY
Vector_Table
 LDR pc, Reset_Addr
 LDR pc, Undefined_Addr
 LDR pc, SVC_Addr
 LDR pc, Prefetch_Addr
 LDR pc, Abort_Addr
 NOP ;Reserved vector
 LDR pc, IRQ_Addr
FIQ_Handler
 ; FIQ handler code - max 4kB in size
Reset_Addr DCD Reset_Handler
Undefined_Addr DCD Undefined_Handler
SVC_Addr DCD SVC_Handler
Prefetch_Addr DCD Prefetch_Handler
Abort_Addr DCD Abort_Handler
IRQ_Addr DCD IRQ_Handler
 ...
 END

This example assumes that you have ROM at location 0x0 on reset. Alternatively, you can use the
scatter-loading mechanism to define the load and execution address of the vector table. In that case, the C
library copies the vector table for you.

 Note

The vector table for Armv6 and earlier architectures supports A32 instructions only. Armv6T2 and later
architectures support both T32 instructions and A32 instructions in the vector table. This does not apply
to the Armv6‑M, Armv7‑M, and Armv8‑M profiles.

10 Embedded Software Development
10.23 Vector table for ARMv6 and earlier, ARMv7-A and ARMv7-R profiles

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

10-207

Non-Confidential

10.24 Vector table for M-profile architectures
The vector table for the microcontroller profiles consists of addresses to the relevant handlers.

The handler for exception number n is held at (vectorbaseaddress + 4 * n).

In Armv7‑M and Armv8‑M processors, you can specify the vectorbaseaddress in the Vector Table
Offset Register (VTOR) to relocate the vector table. The default location on reset is 0x0 (CODE space).
For Armv6‑M, the vector table base address is fixed at 0x0. The word at vectorbaseaddress holds the
reset value of the main stack pointer.

 Note

The least significant bit, bit[0], of each address in the vector table must be set or a HardFault exception is
generated. If the table contains T32 symbol names, the Arm Compiler toolchain sets these bits for you.

10 Embedded Software Development
10.24 Vector table for M-profile architectures

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

10-208

Non-Confidential

10.25 Vector Table Offset Register
In Armv7‑M and Armv8‑M, the Vector Table Offset Register locates the vector table in CODE, RAM, or
SRAM space.

When setting a different location, the offset, in bytes, must be aligned to:

• a power of 2.
• a minimum of 128 bytes.
• a minimum of 4*N, where N is the number of exceptions supported.

The minimal alignment is 128 bytes, which allows for 32 exceptions. 16 registers are reserved for system
exceptions, and therefore, you can use for up to 16 interrupts.

To use more interrupts, you must adjust the alignment by rounding up to the next power of two. For
example, if you require 21 interrupts, then the total number of exceptions is 37 (21 plus 16 reserved
system exceptions). The alignment must be on a 64-word boundary because the next power of 2 after 37
is 64.

 Note

Implementations might restrict where the vector table can be located. For example, in Cortex-M3 r0p0 to
r2p0, the vector table cannot be in RAM space.

10 Embedded Software Development
10.25 Vector Table Offset Register

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

10-209

Non-Confidential

10.26 Integer division-by-zero errors in C code
For targets that do not support hardware division instructions (for example SDIV and UDIV), you can trap
and identify integer division-by-zero errors with the appropriate C library helper functions,
__aeabi_idiv0() and __rt_raise().

Trapping integer division-by-zero errors with __aeabi_idiv0()

You can trap integer division-by-zero errors with the C library helper function __aeabi_idiv0() so that
division by zero returns some standard result, for example zero.

Integer division is implemented in code through the C library helper functions __aeabi_idiv() and
__aeabi_uidiv(). Both functions check for division by zero.

When integer division by zero is detected, a branch to __aeabi_idiv0() is made. To trap the division by
zero, therefore, you only have to place a breakpoint on __aeabi_idiv0().

The library provides two implementations of __aeabi_idiv0(). The default one does nothing, so if
division by zero is detected, the division function returns zero. However, if you use signal handling, an
alternative implementation is selected that calls __rt_raise(SIGFPE, DIVBYZERO).

If you provide your own version of __aeabi_idiv0(), then the division functions call this function. The
function prototype for __aeabi_idiv0() is:

int __aeabi_idiv0(void);

If __aeabi_idiv0() returns a value, that value is used as the quotient returned by the division function.

On entry into __aeabi_idiv0(), the link register LR contains the address of the instruction after the call
to the __aeabi_uidiv() division routine in your application code.

The offending line in the source code can be identified by looking up the line of C code in the debugger
at the address given by LR.

If you want to examine parameters and save them for postmortem debugging when trapping
__aeabi_idiv0, you can use the $Super$$ and $Sub$$ mechanism:
1. Prefix __aeabi_idiv0() with $Super$$ to identify the original unpatched function

__aeabi_idiv0().
2. Use __aeabi_idiv0() prefixed with $Super$$ to call the original function directly.
3. Prefix __aeabi_idiv0() with $Sub$$ to identify the new function to be called in place of the

original version of __aeabi_idiv0().
4. Use __aeabi_idiv0() prefixed with $Sub$$ to add processing before or after the original function

__aeabi_idiv0().

The following example shows how to intercept __aeabi_div0 using the $Super$$ and $Sub$$
mechanism.

extern void $Super$$__aeabi_idiv0(void);
/* this function is called instead of the original __aeabi_idiv0() */
void $Sub$$__aeabi_idiv0()
{
 // insert code to process a divide by zero
 ...
 // call the original __aeabi_idiv0 function
 $Super$$__aeabi_idiv0();
}

Trapping integer division-by-zero errors with __rt_raise()

By default, integer division by zero returns zero. If you want to intercept division by zero, you can re-
implement the C library helper function __rt_raise().

The function prototype for __rt_raise() is:

void __rt_raise(int signal, int type);

10 Embedded Software Development
10.26 Integer division-by-zero errors in C code

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

10-210

Non-Confidential

If you re-implement __rt_raise(), then the library automatically provides the signal-handling library
version of __aeabi_idiv0(), which calls __rt_raise(), then that library version of __aeabi_idiv0()
is included in the final image.

In that case, when a divide-by-zero error occurs, __aeabi_idiv0() calls __rt_raise(SIGFPE,
DIVBYZERO). Therefore, if you re-implement __rt_raise(), you must check (signal == SIGFPE) &&
(type == DIVBYZERO) to determine if division by zero has occurred.

Related information
Use of $Super$$ and $Sub$$ to patch symbol definitions

10 Embedded Software Development
10.26 Integer division-by-zero errors in C code

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

10-211

Non-Confidential

https://developer.arm.com/documentation/101754/0616/armlink-Reference/Accessing-and-Managing-Symbols-with-armlink/Use-of--Super---and--Sub---to-patch-symbol-definitions

Chapter 11
Building Secure and Non-secure Images Using
Arm®v8-M Security Extensions

Describes how to use the Armv8‑M Security Extensions to build a secure image, and how to allow a
non-secure image to call a secure image.

It contains the following sections:
• 11.1 Overview of building Secure and Non-secure images on page 11-213.
• 11.2 Building a Secure image using the Arm®v8‑M Security Extensions on page 11-216.
• 11.3 Building a Non-secure image that can call a Secure image on page 11-220.
• 11.4 Building a Secure image using a previously generated import library on page 11-222.

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

11-212

Non-Confidential

11.1 Overview of building Secure and Non-secure images
Arm Compiler tools allow you to build images that run in the Secure state of the Armv8‑M Security
Extensions. You can also create an import library package that developers of Non-secure images must
have for those images to call the Secure image.

 Note

The Armv8‑M Security Extension is not supported when building Read-Only Position-Independent
(ROPI) and Read-Write Position-Independent (RWPI) images.

To build an image that runs in the Secure state you must include the <arm_cmse.h> header in your code,
and compile using the armclang -mcmse command-line option. Compiling in this way makes the
following features available:
• The Test Target, TT, instruction.
• TT instruction intrinsics.
• Non-secure function pointer intrinsics.
• The __attribute__((cmse_nonsecure_call)) and __attribute__((cmse_nonsecure_entry))

function attributes.

On startup, your Secure code must set up the Security Attribution Unit (SAU) and call the Non-secure
startup code.

Important considerations when compiling Secure and Non-secure code
Be aware of the following when compiling Secure and Non-secure code:
• You can compile your Secure and Non-secure code in C or C++, but the boundary between the two

must have C function call linkage.
• You cannot pass C++ objects, such as classes and references, across the security boundary.
• You must not throw C++ exceptions across the security boundary.
• The value of the __ARM_FEATURE_CMSE predefined macro indicates what Armv8‑M Security

Extension features are supported.
• Compile Secure code with the maximum capabilities for the target. For example, if you compile with

no FPU then the Secure functions do not clear floating-point registers when returning from functions
declared as __attribute__((cmse_nonsecure_entry)). Therefore, the functions could potentially
leak sensitive data.

• Structs with undefined bits caused by padding and half-precision floating-point members are
currently unsupported as arguments and return values for Secure functions. Using such structs might
leak sensitive information. Structs that are large enough to be passed by reference are also
unsupported and produce an error.

• The following cases are not supported when compiling with -mcmse and produce an error:
— Variadic entry functions.
— Entry functions with arguments that do not fit in registers, because there are either many

arguments or the arguments have large values.
— Non-secure function calls with arguments that do not fit in registers, because there are either

many arguments or the arguments have large values.
• You might have more arguments in entry functions or Non-secure function calls than can fit in

registers. In this situation, you can pass a pointer to a struct containing all the arguments. For
example:

typedef struct {
 int p1;
 int p2;
 int p3;
 int p4;
 int p5;
} Params;

void your_api(int p1, int p2, int p3, int p4, int p5) {
 Params p1 = { p1, p2, p3, p4, p5 };

11 Building Secure and Non-secure Images Using Arm®v8-M Security Extensions
11.1 Overview of building Secure and Non-secure images

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

11-213

Non-Confidential

 your_api_implementation(&p1);
}

Here, your_api_implementation(&p1) is the call to your existing function, with fewer than the
maximum of 4 arguments allowed.

How a Non-secure image calls a Secure image using veneers

Calling a Secure image from a Non-secure image requires a transition from Non-secure to Secure state.
A transition is initiated through Secure gateway veneers. Secure gateway veneers decouple the addresses
from the rest of the Secure code.

An entry point in the Secure image, entryname, is identified with:

__acle_se_entryname:
entryname:

The calling sequence is as follows:
1. The Non-secure image uses the branch BL instruction to call the Secure gateway veneer for the

required entry function in the Secure image:

bl entryname

2. The Secure gateway veneer consists of the SG instruction and a call to the entry function in the Secure
image using the B instruction:

entryname SG
 B.W __acle_se_entryname

3. The Secure image returns from the entry function using the BXNS instruction:

bxns lr

The following figure is a graphical representation of the calling sequence, but for clarity, the return from
the entry function is not shown:

Non-secure Region

Non-secure code

...
 bl entry1
…
 bl entry2
…
 bl entry3
..
 bl entry4

NSC Region

Vector of secure gateway
veneers

entry4
 SG
 B.W __acle_se_entry4

entry3
 SG
 B.W __acle_se_entry3

entry2
 SG
 B.W __acle_se_entry2

entry1
 SG
 B.W __acle_se_entry1

Secure Region

Secure
code

entry1 function

entry2 function

entry3 function

entry4 function

Internal
functions

Secure data

Stack Heap Global data

11 Building Secure and Non-secure Images Using Arm®v8-M Security Extensions
11.1 Overview of building Secure and Non-secure images

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

11-214

Non-Confidential

Import library package
An import library package identifies the entry functions available in a Secure image. The import library
package contains:
• An interface header file, for example myinterface.h. You manually create this file using any text

editor.
• An import library, for example importlib.o. armlink generates this library during the link stage for

a Secure image.
 Note

You must do separate compile and link stages:
— To create an import library when building a Secure image.
— To use an import library when building a Non-secure image.

Related tasks
11.2 Building a Secure image using the Arm®v8‑M Security Extensions on page 11-216
11.4 Building a Secure image using a previously generated import library on page 11-222
11.3 Building a Non-secure image that can call a Secure image on page 11-220
Related information
Whitepaper - Armv8‑M Architecture Technical Overview
-mcmse
__attribute__((cmse_nonsecure_call)) function attribute
__attribute__((cmse_nonsecure_entry)) function attribute
Predefined macros
TT instruction intrinsics
Non-secure function pointer intrinsics
B instruction
BL instruction
BXNS instruction
SG instruction
TT, TTT, TTA, TTAT instruction
Placement of CMSE veneer sections for a Secure image

11 Building Secure and Non-secure Images Using Arm®v8-M Security Extensions
11.1 Overview of building Secure and Non-secure images

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

11-215

Non-Confidential

https://community.arm.com/processors/b/blog/posts/whitepaper---armv8-m-architecture-technical-overview
https://developer.arm.com/documentation/101754/0616/armclang-Reference/armclang-Command-line-Options/-mcmse
https://developer.arm.com/documentation/101754/0616/armclang-Reference/compiler-specific-function-variable-and-type-attributes/__attribute__cmse_nonsecure_call-function-attribute
https://developer.arm.com/documentation/101754/0616/armclang-Reference/compiler-specific-function-variable-and-type-attributes/__attribute__cmse_nonsecure_entry-function-attribute
https://developer.arm.com/documentation/101754/0616/armclang-Reference/other-compiler-specific-features/predefined-macros
https://developer.arm.com/documentation/101754/0616/armclang-Reference/other-compiler-specific-features/tt-instruction-intrinsics
https://developer.arm.com/documentation/101754/0616/armclang-Reference/other-compiler-specific-features/non-secure-function-pointer-intrinsics
https://developer.arm.com/docs/ddi0597/latest/base-instructions-alphabetic-order/b-branch
https://developer.arm.com/documentation/100076/0200/a32-t32-instruction-set-reference/a32-and-t32-instructions/bl
https://developer.arm.com/documentation/100076/0200/a32-t32-instruction-set-reference/a32-and-t32-instructions/bx-bxns
https://developer.arm.com/documentation/100076/0200/a32-t32-instruction-set-reference/a32-and-t32-instructions/sg
https://developer.arm.com/documentation/100076/0200/a32-t32-instruction-set-reference/a32-and-t32-instructions/tt-ttt-tta-ttat
https://developer.arm.com/documentation/101754/0616/armlink-Reference/Scatter-loading-Features/Placement-of-CMSE-veneer-sections-for-a-Secure-image

11.2 Building a Secure image using the Arm®v8-M Security Extensions
When building a Secure image you must also generate an import library that specifies the entry points to
the Secure image. The import library is used when building a Non-secure image that needs to call the
Secure image.

Prerequisites

The following procedure is not a complete example, and assumes that your code sets up the Security
Attribution Unit (SAU) and calls the Non-secure startup code.

Procedure
1. Create an interface header file, myinterface_v1.h, to specify the C linkage for use by Non-secure

code:
Example:

#ifdef __cplusplus
extern "C" {
#endif

int entry1(int x);
int entry2(int x);

#ifdef __cplusplus
}
#endif

2. In the C program for your Secure code, secure.c, include the following:
Example:

#include <arm_cmse.h>
#include "myinterface_v1.h"

int func1(int x) { return x; }
int __attribute__((cmse_nonsecure_entry)) entry1(int x) { return func1(x); }
int __attribute__((cmse_nonsecure_entry)) entry2(int x) { return entry1(x); }

int main(void) { return 0; }

In addition to the implementation of the two entry functions, the code defines the function func1()
that is called only by Secure code.

 Note

If you are compiling the Secure code as C++, then you must add extern "C" to the functions
declared as __attribute__((cmse_nonsecure_entry)).

3. Create an object file using the armclang -mcmse command-line options:
Example:

$ armclang -c --target=arm-arm-none-eabi -march=armv8-m.main -mcmse secure.c -o secure.o

4. Enter the following command to see the disassembly of the machine code that armclang generates:
Example:

$ armclang -c --target=arm-arm-none-eabi -march=armv8-m.main -mcmse -S secure.c

The disassembly is stored in the file secure.s, for example:

 .text
 ...
 .code 16
 .thumb_func
 ...
func1:
 .fnstart
 ...
 bx lr
 ...
__acle_se_entry1:
entry1:

11 Building Secure and Non-secure Images Using Arm®v8-M Security Extensions
11.2 Building a Secure image using the Arm®v8-M Security Extensions

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

11-216

Non-Confidential

 .fnstart
@ BB#0:
 .save {r7, lr}
 push {r7, lr}
 ...
 bl func1
 ...
 pop.w {r7, lr}
 ...
 bxns lr
 ...
__acle_se_entry2:
entry2:
 .fnstart
@ BB#0:
 .save {r7, lr}
 push {r7, lr}
 ...
 bl entry1
 ...
 pop.w {r7, lr}
 bxns lr
 ...
main:
 .fnstart
@ BB#0:
 ...
 movs r0, #0
 ...
 bx lr
 ...

An entry function does not start with a Secure Gateway (SG) instruction. The two symbols
__acle_se_entry_name and entry_name indicate the start of an entry function to the linker.

5. Create a scatter file containing the Veneer$$CMSE selector to place the entry function veneers in a
Non-Secure Callable (NSC) memory region.
Example:

LOAD_REGION 0x0 0x3000
{
 EXEC_R 0x0
 {
 *(+RO,+RW,+ZI)
 }
 EXEC_NSCR 0x4000 0x1000
 {
 *(Veneer$$CMSE)
 }
 ARM_LIB_STACK 0x700000 EMPTY -0x10000
 {
 }
 ARM_LIB_HEAP +0 EMPTY 0x10000
 {
 }
}
...

6. Link the object file using the armlink --import-cmse-lib-out command-line option and the scatter
file to create the Secure image:
Example:

$ armlink secure.o -o secure.axf --cpu 8-M.Main --import-cmse-lib-out importlib_v1.o --
scatter secure.scf

In addition to the final image, the link in this example also produces the import library,
importlib_v1.o, for use when building a Non-secure image. Assuming that the section with veneers
is placed at address 0x4000, the import library consists of a relocatable file containing only a symbol
table with the following entries:

Symbol type Name Address

STB_GLOBAL, SHN_ABS, STT_FUNC entry1 0x4001

STB_GLOBAL, SHN_ABS, STT_FUNC entry2 0x4009

11 Building Secure and Non-secure Images Using Arm®v8-M Security Extensions
11.2 Building a Secure image using the Arm®v8-M Security Extensions

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

11-217

Non-Confidential

When you link the relocatable file corresponding to this assembly code into an image, the linker
creates veneers in a section containing only entry veneers.

 Note

If you have an import library from a previous build of the Secure image, you can ensure that the
addresses in the output import library do not change when producing a new version of the Secure
image. To ensure that the addresses do not change, specify the --import-cmse-lib-in command-
line option together with the --import-cmse-lib-out option. However, make sure the input and
output libraries have different names.

7. Enter the following command to see the entry veneers that the linker generates:
Example:

$ fromelf --text -s -c secure.axf

The following entry veneers are generated in the EXEC_NSCR execute-only (XO) region for this
example:

...

** Section #3 'EXEC_NSCR' (SHT_PROGBITS) [SHF_ALLOC + SHF_EXECINSTR + SHF_ARM_NOREAD]
 Size : 32 bytes (alignment 32)
 Address: 0x00004000

 $t
 entry1
 0x00004000: e97fe97f SG ; [0x3e08]
 0x00004004: f7fcb85e ..^. B __acle_se_entry1 ; 0xc4
 entry2
 0x00004008: e97fe97f SG ; [0x3e10]
 0x0000400c: f7fcb86c ..l. B __acle_se_entry2 ; 0xe8

...

The section with the veneers is aligned on a 32-byte boundary and padded to a 32-byte boundary.

If you do not use a scatter file, the entry veneers are placed in an ER_XO section as the first
execution region, for example:

...

** Section #1 'ER_XO' (SHT_PROGBITS) [SHF_ALLOC + SHF_EXECINSTR + SHF_ARM_NOREAD]
 Size : 32 bytes (alignment 32)
 Address: 0x00008000

 $t
 entry1
 0x00008000: e97fe97f SG ; [0x7e08]
 0x00008004: f000b85a ..Z. B.W __acle_se_entry1 ; 0x80bc
 entry2
 0x00008008: e97fe97f SG ; [0x7e10]
 0x0000800c: f000b868 ..h. B.W __acle_se_entry2 ; 0x80e0

...

Next Steps

After you have built your Secure image:
1. Pre-load the Secure image onto your device.
2. Deliver your device with the pre-loaded image, together with the import library package, to a party

who develops the Non-secure code for this device. The import library package contains:
• The interface header file, myinterface_v1.h.
• The import library, importlib_v1.o.

Related tasks
11.4 Building a Secure image using a previously generated import library on page 11-222
11.3 Building a Non-secure image that can call a Secure image on page 11-220

11 Building Secure and Non-secure Images Using Arm®v8-M Security Extensions
11.2 Building a Secure image using the Arm®v8-M Security Extensions

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

11-218

Non-Confidential

Related information
Whitepaper - Armv8‑M Architecture Technical Overview
-c armclang option
-march armclang option
-mcmse armclang option
-S armclang option
--target armclang option
__attribute__((cmse_nonsecure_entry)) function attribute
SG instruction
--cpu armlink option
--import_cmse_lib_in armlink option
--import_cmse_lib_out armlink option
--scatter armlink option
--text fromelf option

11 Building Secure and Non-secure Images Using Arm®v8-M Security Extensions
11.2 Building a Secure image using the Arm®v8-M Security Extensions

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

11-219

Non-Confidential

https://community.arm.com/processors/b/blog/posts/whitepaper---armv8-m-architecture-technical-overview
https://developer.arm.com/documentation/101754/0616/armclang-Reference/armclang-Command-line-Options/-c--armclang-
https://developer.arm.com/documentation/101754/0616/armclang-Reference/armclang-Command-line-Options/-march
https://developer.arm.com/documentation/101754/0616/armclang-Reference/armclang-Command-line-Options/-mcmse
https://developer.arm.com/documentation/101754/0616/armclang-Reference/armclang-Command-line-Options/-S--armclang-
https://developer.arm.com/documentation/101754/0616/armclang-Reference/armclang-Command-line-Options/--target
https://developer.arm.com/documentation/101754/0616/armclang-Reference/compiler-specific-function-variable-and-type-attributes/__attribute__cmse_nonsecure_entry-function-attribute
https://developer.arm.com/documentation/100076/0200/a32-t32-instruction-set-reference/a32-and-t32-instructions/sg
https://developer.arm.com/documentation/101754/0616/armlink-Reference/armlink-Command-line-Options/--cpu-name--armlink-
https://developer.arm.com/documentation/101754/0616/armlink-Reference/armlink-Command-line-Options/--import-cmse-lib-infilename
https://developer.arm.com/documentation/101754/0616/armlink-Reference/armlink-Command-line-Options/--import-cmse-lib-outfilename
https://developer.arm.com/documentation/101754/0616/armlink-Reference/armlink-Command-line-Options/--scatter-filename
https://developer.arm.com/documentation/101754/0616/fromelf-Reference/fromelf-Command-line-Options/--text

11.3 Building a Non-secure image that can call a Secure image
If you are building a Non-secure image that is to call a Secure image, the Non-secure code must be
written in C. You must also obtain the import library package that was created for that Secure image.

Prerequisites

The following procedure assumes that you have the import library package that is created in
11.2 Building a Secure image using the Arm®v8‑M Security Extensions on page 11-216. The package
provides the C linkage that allows you to compile your Non-secure code as C or C++.

The import library package identifies the entry points for the Secure image.

Procedure
1. Include the interface header file in the C program for your Non-secure code, nonsecure.c, and use

the entry functions as required.
Example:

#include <stdio.h>
#include "myinterface_v1.h"

int main(void) {
 int val1, val2, x;

 val1 = entry1(x);
 val2 = entry2(x);

 if (val1 == val2) {
 printf("val2 is equal to val1\n");
 } else {
 printf("val2 is different from val1\n");
 }

 return 0;
}

2. Create an object file, nonsecure.o.
Example:

$ armclang -c --target arm-arm-none-eabi -march=armv8-m.main nonsecure.c -o nonsecure.o

3. Create a scatter file for the Non-secure image, but without the Non-Secure Callable (NSC) memory
region.
Example:

LOAD_REGION 0x8000 0x3000
{
 ER 0x8000
 {
 *(+RO,+RW,+ZI)
 }
 ARM_LIB_STACK 0x800000 EMPTY -0x10000
 {
 }
 ARM_LIB_HEAP +0 EMPTY 0x10000
 {
 }
}
...

4. Link the object file using the import library, importlib_v1.o, and the scatter file to create the Non-
secure image.
Example:

$ armlink nonsecure.o importlib_v1.o -o nonsecure.axf --cpu=8-M.Main --scatter
nonsecure.scat

Related tasks
11.2 Building a Secure image using the Arm®v8‑M Security Extensions on page 11-216

11 Building Secure and Non-secure Images Using Arm®v8-M Security Extensions
11.3 Building a Non-secure image that can call a Secure image

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

11-220

Non-Confidential

Related information
Whitepaper - Armv8‑M Architecture Technical Overview
-march armclang option
--target armclang option
--cpu armlink option
--scatter armlink option

11 Building Secure and Non-secure Images Using Arm®v8-M Security Extensions
11.3 Building a Non-secure image that can call a Secure image

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

11-221

Non-Confidential

https://community.arm.com/processors/b/blog/posts/whitepaper---armv8-m-architecture-technical-overview
https://developer.arm.com/documentation/101754/0616/armclang-Reference/armclang-Command-line-Options/-march
https://developer.arm.com/documentation/101754/0616/armclang-Reference/armclang-Command-line-Options/--target
https://developer.arm.com/documentation/101754/0616/armlink-Reference/armlink-Command-line-Options/--cpu-name--armlink-
https://developer.arm.com/documentation/101754/0616/armlink-Reference/armlink-Command-line-Options/--scatter-filename

11.4 Building a Secure image using a previously generated import library
You can build a new version of a Secure image and use the same addresses for the entry points that were
present in the previous version. You specify the import library that is generated for the previous version
of the Secure image and generate another import library for the new Secure image.

Prerequisites

The following procedure is not a complete example, and assumes that your code sets up the Security
Attribution Unit (SAU) and calls the Non-secure startup code.

The following procedure assumes that you have the import library package that is created in
11.2 Building a Secure image using the Arm®v8‑M Security Extensions on page 11-216.

Procedure
1. Create an interface header file, myinterface_v2.h, to specify the C linkage for use by Non-secure

code:
Example:

#ifdef __cplusplus
extern "C" {
#endif

int entry1(int x);
int entry2(int x);
int entry3(int x);
int entry4(int x);

#ifdef __cplusplus
}
#endif

2. Include the following in the C program for your Secure code, secure.c:
Example:

#include <arm_cmse.h>
#include "myinterface_v2.h"

int func1(int x) { return x; }
int __attribute__((cmse_nonsecure_entry)) entry1(int x) { return func1(x); }
int __attribute__((cmse_nonsecure_entry)) entry2(int x) { return entry1(x); }
int __attribute__((cmse_nonsecure_entry)) entry3(int x) { return func1(x) + entry1(x); }
int __attribute__((cmse_nonsecure_entry)) entry4(int x) { return entry1(x) * entry2(x); }

int main(void) { return 0; }

In addition to the implementation of the two entry functions, the code defines the function func1()
that is called only by Secure code.

 Note

If you are compiling the Secure code as C++, then you must add extern "C" to the functions
declared as __attribute__((cmse_nonsecure_entry)).

3. Create an object file using the armclang -mcmse command-line options:
Example:

$ armclang -c --target arm-arm-none-eabi -march=armv8-m.main -mcmse secure.c -o secure.o

4. To see the disassembly of the machine code that is generated by armclang, enter:
Example:

$ armclang -c --target arm-arm-none-eabi -march=armv8-m.main -mcmse -S secure.c

The disassembly is stored in the file secure.s, for example:

 .text
 ...
 .code 16
 .thumb_func

11 Building Secure and Non-secure Images Using Arm®v8-M Security Extensions
11.4 Building a Secure image using a previously generated import library

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

11-222

Non-Confidential

 ...

func1:
 .fnstart
 ...
 bx lr

 ...

__acle_se_entry1:
entry1:
 .fnstart
@ BB#0:
 .save {r7, lr}
 push {r7, lr}
 ...
 bl func1
 pop.w {r7, lr}
 ...
 bxns lr

 ...

__acle_se_entry4:
entry4:
 .fnstart
@ BB#0:
 .save {r7, lr}
 push {r7, lr}
 ...
 bl entry1
 ...
 pop.w {r7, lr}
 bxns lr

 ...

main:
 .fnstart
@ BB#0:
 ...
 movs r0, #0
 ...
 bx lr

 ...

An entry function does not start with a Secure Gateway (SG) instruction. The two symbols
__acle_se_entry_name and entry_name indicate the start of an entry function to the linker.

5. Create a scatter file containing the Veneer$$CMSE selector to place the entry function veneers in a
Non-Secure Callable (NSC) memory region.
Example:

LOAD_REGION 0x0 0x3000
{
 EXEC_R 0x0
 {
 *(+RO,+RW,+ZI)
 }
 EXEC_NSCR 0x4000 0x1000
 {
 *(Veneer$$CMSE)
 }
 ARM_LIB_STACK 0x700000 EMPTY -0x10000
 {
 }
 ARM_LIB_HEAP +0 EMPTY 0x10000
 {
 }
}
...

6. Link the object file using the armlink --import-cmse-lib-out and --import-cmse-lib-in
command-line option, together with the preprocessed scatter file to create the Secure image:
Example:

$ armlink secure.o -o secure.axf --cpu 8-M.Main --import-cmse-lib-out importlib_v2.o --
import-cmse-lib-in importlib_v1.o --scatter secure.scf

11 Building Secure and Non-secure Images Using Arm®v8-M Security Extensions
11.4 Building a Secure image using a previously generated import library

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

11-223

Non-Confidential

In addition to the final image, the link in this example also produces the import library,
importlib_v2.o, for use when building a Non-secure image. Assuming that the section with veneers
is placed at address 0x4000, the import library consists of a relocatable file containing only a symbol
table with the following entries:

Symbol type Name Address

STB_GLOBAL, SHN_ABS, STT_FUNC entry1 0x4001

STB_GLOBAL, SHN_ABS, STT_FUNC entry2 0x4009

STB_GLOBAL, SHN_ABS, STT_FUNC entry3 0x4021

STB_GLOBAL, SHN_ABS, STT_FUNC entry4 0x4029

When you link the relocatable file corresponding to this assembly code into an image, the linker
creates veneers in a section containing only entry veneers.

7. Enter the following command to see the entry veneers that the linker generates:
Example:

$ fromelf --text -s -c secure.axf

The following entry veneers are generated in the EXEC_NSCR execute-only (XO) region for this
example:

...

** Section #3 'EXEC_NSCR' (SHT_PROGBITS) [SHF_ALLOC + SHF_EXECINSTR + SHF_ARM_NOREAD]
 Size : 64 bytes (alignment 32)
 Address: 0x00004000

 $t
 entry1
 0x00004000: e97fe97f SG ; [0x3e08]
 0x00004004: f7fcb85e ..^. B __acle_se_entry1 ; 0xc4
 entry2
 0x00004008: e97fe97f SG ; [0x3e10]
 0x0000400c: f7fcb86c ..l. B __acle_se_entry2 ; 0xe8

...

 entry3
 0x00004020: e97fe97f SG ; [0x3e28]
 0x00004024: f7fcb872 ..r. B __acle_se_entry3 ; 0x10c
 entry4
 0x00004028: e97fe97f SG ; [0x3e30]
 0x0000402c: f7fcb888 B __acle_se_entry4 ; 0x140

...

The section with the veneers is aligned on a 32-byte boundary and padded to a 32-byte boundary.

If you do not use a scatter file, the entry veneers are placed in an ER_XO section as the first
execution region. The entry veneers for the existing entry points are placed in a CMSE veneer
section. For example:

...

** Section #1 'ER_XO' (SHT_PROGBITS) [SHF_ALLOC + SHF_EXECINSTR + SHF_ARM_NOREAD]
 Size : 32 bytes (alignment 32)
 Address: 0x00008000

 $t
 entry3
 0x00008000: e97fe97f SG ; [0x7e08]
 0x00008004: f000b87e ..~. B.W __acle_se_entry3 ; 0x8104
 entry4
 0x00008008: e97fe97f SG ; [0x7e10]
 0x0000800c: f000b894 B.W __acle_se_entry4 ; 0x8138

...

** Section #4 'ER$$Veneer$$CMSE_AT_0x00004000' (SHT_PROGBITS) [SHF_ALLOC + SHF_EXECINSTR
+ SHF_ARM_NOREAD]
 Size : 32 bytes (alignment 32)

11 Building Secure and Non-secure Images Using Arm®v8-M Security Extensions
11.4 Building a Secure image using a previously generated import library

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

11-224

Non-Confidential

 Address: 0x00004000

 $t
 entry1
 0x00004000: e97fe97f SG ; [0x3e08]
 0x00004004: f004b85a ..Z. B.W __acle_se_entry1 ; 0x80bc
 entry2
 0x00004008: e97fe97f SG ; [0x3e10]
 0x0000400c: f004b868 ..h. B.W __acle_se_entry2 ; 0x80e0

...

Next Steps

After you have built your updated Secure image:
1. Pre-load the updated Secure image onto your device.
2. Deliver your device with the pre-loaded image, together with the new import library package, to a

party who develops the Non-secure code for this device. The import library package contains:
• The interface header file, myinterface_v2.h.
• The import library, importlib_v2.o.

Related tasks
11.2 Building a Secure image using the Arm®v8‑M Security Extensions on page 11-216
11.3 Building a Non-secure image that can call a Secure image on page 11-220
Related information
Whitepaper - Armv8‑M Architecture Technical Overview
-c armclang option
-march armclang option
-mcmse armclang option
-S armclang option
--target armclang option
__attribute__((cmse_nonsecure_entry)) function attribute
SG instruction
--cpu armlink option
--import_cmse_lib_in armlink option
--import_cmse_lib_out armlink option
--scatter armlink option
--text fromelf option

11 Building Secure and Non-secure Images Using Arm®v8-M Security Extensions
11.4 Building a Secure image using a previously generated import library

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

11-225

Non-Confidential

https://community.arm.com/processors/b/blog/posts/whitepaper---armv8-m-architecture-technical-overview
https://developer.arm.com/documentation/101754/0616/armclang-Reference/armclang-Command-line-Options/-c--armclang-
https://developer.arm.com/documentation/101754/0616/armclang-Reference/armclang-Command-line-Options/-march
https://developer.arm.com/documentation/101754/0616/armclang-Reference/armclang-Command-line-Options/-mcmse
https://developer.arm.com/documentation/101754/0616/armclang-Reference/armclang-Command-line-Options/-S--armclang-
https://developer.arm.com/documentation/101754/0616/armclang-Reference/armclang-Command-line-Options/--target
https://developer.arm.com/documentation/101754/0616/armclang-Reference/compiler-specific-function-variable-and-type-attributes/__attribute__cmse_nonsecure_entry-function-attribute
https://developer.arm.com/documentation/100076/0200/a32-t32-instruction-set-reference/a32-and-t32-instructions/sg
https://developer.arm.com/documentation/101754/0616/armlink-Reference/armlink-Command-line-Options/--cpu-name--armlink-
https://developer.arm.com/documentation/101754/0616/armlink-Reference/armlink-Command-line-Options/--import-cmse-lib-infilename
https://developer.arm.com/documentation/101754/0616/armlink-Reference/armlink-Command-line-Options/--import-cmse-lib-outfilename
https://developer.arm.com/documentation/101754/0616/armlink-Reference/armlink-Command-line-Options/--scatter-filename
https://developer.arm.com/documentation/101754/0616/fromelf-Reference/fromelf-Command-line-Options/--text

Chapter 12
Overview of the Linker

Gives an overview of the Arm linker, armlink.

It contains the following sections:
• 12.1 About the linker on page 12-227.
• 12.2 armlink command-line syntax on page 12-230.
• 12.3 What the linker does when constructing an executable image on page 12-231.

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

12-226

Non-Confidential

12.1 About the linker
The linker combines the contents of one or more object files with selected parts of one or more object
libraries to produce executable images, partially linked object files, or shared object files.

This section contains the following subsections:
• 12.1.1 Summary of the linker features on page 12-227.
• 12.1.2 What the linker can accept as input on page 12-228.
• 12.1.3 What the linker outputs on page 12-228.

12.1.1 Summary of the linker features

The linker has many features for linking input files to generate various types of output files.

The linker can:
• Link A32 and T32 code, or A64 code.
• Generate interworking veneers to switch between A32 and T32 states when required.
• Generate range extension veneers, where required, to extend the range of branch instructions.
• Automatically select the appropriate standard C or C++ library variants to link with, based on the

build attributes of the objects it is linking.
• Position code and data at specific locations within the system memory map, using either a command-

line option or a scatter file.
• Perform RW data compression to minimize ROM size.
• Eliminate unused sections to reduce the size of your output image.
• Control the generation of debug information in the output file.
• Generate a static callgraph and list the stack usage.
• Control the contents of the symbol table in output images.
• Show the sizes of code and data in the output.
• Build images suitable for all states of the Armv8‑M Security Extensions.

 Note

Be aware of the following:
• Generated code might be different between two Arm Compiler releases.
• For a feature release, there might be significant code generation differences.
• You cannot link A32 or T32 code with A64 code.

 Note

The command-line option descriptions and related information in the Arm® Compiler Reference Guide
describe all the features that Arm Compiler supports. Any features not documented are not supported and
are used at your own risk. You are responsible for making sure that any generated code using community
features on page Appx-A-266 is operating correctly.

Related references
Chapter 13 Getting Image Details on page 13-232
Related information
Linker support for creating demand-paged files
Linking Models Supported by armlink
Image Structure and Generation
Linker Optimization Features
Accessing and Managing Symbols with armlink
Scatter-loading Features
BPABI Shared Libraries and Executables
Features of the Base Platform Linking Model

12 Overview of the Linker
12.1 About the linker

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

12-227

Non-Confidential

https://developer.arm.com/documentation/101754/0616/armlink-Reference/Image-Structure-and-Generation/Linker-support-for-creating-demand-paged-files
https://developer.arm.com/documentation/101754/0616/armlink-Reference/Linking-Models-Supported-by-armlink
https://developer.arm.com/documentation/101754/0616/armlink-Reference/Image-Structure-and-Generation
https://developer.arm.com/documentation/101754/0616/armlink-Reference/Linker-Optimization-Features
https://developer.arm.com/documentation/101754/0616/armlink-Reference/Accessing-and-Managing-Symbols-with-armlink
https://developer.arm.com/documentation/101754/0616/armlink-Reference/Scatter-loading-Features
https://developer.arm.com/documentation/101754/0616/armlink-Reference/BPABI-and-SysV-Shared-Libraries-and-Executables
https://developer.arm.com/documentation/101754/0616/armlink-Reference/Features-of-the-Base-Platform-Linking-Model

Placement of CMSE veneer sections for a Secure image
Base Platform ABI for the Arm Architecture

12.1.2 What the linker can accept as input

armlink can accept one or more object files from toolchains that support Arm ELF.

Object files must be formatted as Arm ELF. This format is described in:
• ELF for the Arm® Architecture (IHI 0044).
• ELF for the Arm® 64-bit Architecture (AArch64) (IHI 0056).

Optionally, the following files can be used as input to armlink:
• One or more libraries created by the librarian, armar.
• A symbol definitions file.
• A scatter file.
• A steering file.
• A Secure code import library when building a Non-secure image that needs to call a Secure image.
• A Secure code import library when building a Secure image that has to use the entry addresses in a

previously generated import library.

Related concepts
17.1 About the Arm® Librarian on page 17-257
Related references
Chapter 11 Building Secure and Non-secure Images Using Arm®v8‑M Security Extensions
on page 11-212
Related information
--import_cmse_lib_in=filename
Access symbols in another image
Scatter-loading Features
Scatter File Syntax
Linker Steering File Command Reference
ELF for the Arm Architecture (IHI 0044)
ELF for the Arm 64-bit Architecture (AArch64) (IHI 0056)

12.1.3 What the linker outputs

armlink can create executable images and object files.

Output from armlink can be:
• An ELF executable image.
• A partially linked ELF object that can be used as input in a subsequent link step.
• A Secure code import library that is required by developers building a Non-secure image that needs

to call a Secure image.

 Note

You can also use fromelf to convert an ELF executable image to other file formats, or to display,
process, and protect the content of an ELF executable image.

Related references
Chapter 11 Building Secure and Non-secure Images Using Arm®v8‑M Security Extensions
on page 11-212
Chapter 15 Overview of the fromelf Image Converter on page 15-242
Related information
Partial linking model
Section placement with the linker

12 Overview of the Linker
12.1 About the linker

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

12-228

Non-Confidential

https://developer.arm.com/documentation/101754/0616/armlink-Reference/Scatter-loading-Features/Placement-of-CMSE-veneer-sections-for-a-Secure-image
https://developer.arm.com/documentation/ihi0037/latest
https://developer.arm.com/documentation/101754/0616/armlink-Reference/armlink-Command-line-Options/--import-cmse-lib-infilename
https://developer.arm.com/documentation/101754/0616/armlink-Reference/Accessing-and-Managing-Symbols-with-armlink/Access-symbols-in-another-image
https://developer.arm.com/documentation/101754/0616/armlink-Reference/Scatter-loading-Features
https://developer.arm.com/documentation/101754/0616/armlink-Reference/Scatter-File-Syntax
https://developer.arm.com/documentation/101754/0616/armlink-Reference/Linker-Steering-File-Command-Reference
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0044-/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0056-/index.html
https://developer.arm.com/documentation/101754/0616/armlink-Reference/Linking-Models-Supported-by-armlink/Partial-linking-model-overview
https://developer.arm.com/documentation/101754/0616/armlink-Reference/Image-Structure-and-Generation/Section-placement-with-the-linker

The structure of an Arm ELF image
--import_cmse_lib_out=filename

12 Overview of the Linker
12.1 About the linker

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

12-229

Non-Confidential

https://developer.arm.com/documentation/101754/0616/armlink-Reference/Image-Structure-and-Generation/The-structure-of-an-Arm-ELF-image
https://developer.arm.com/documentation/101754/0616/armlink-Reference/armlink-Command-line-Options/--import-cmse-lib-outfilename

12.2 armlink command-line syntax
The armlink command can accept many input files together with options that determine how to process
the files.

The command for invoking armlink is:

armlink options input-file-list

where:

options

armlink command-line options.

input-file-list

A space-separated list of objects, libraries, or symbol definitions (symdefs) files.

Related information
input-file-list linker option
Linker Command-line Options

12 Overview of the Linker
12.2 armlink command-line syntax

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

12-230

Non-Confidential

https://developer.arm.com/documentation/101754/0616/armlink-Reference/armlink-Command-line-Options/input-file-list--armlink-
https://developer.arm.com/documentation/101754/0616/armlink-Reference/armlink-Command-line-Options

12.3 What the linker does when constructing an executable image
armlink performs many operations, depending on the content of the input files and the command-line
options you specify.

When you use the linker to construct an executable image, it:
• Resolves symbolic references between the input object files.
• Extracts object modules from libraries to satisfy otherwise unsatisfied symbolic references.
• Removes unused sections.
• Eliminates duplicate common section groups.
• Sorts input sections according to their attributes and names, and merges sections with similar

attributes and names into contiguous chunks.
• Organizes object fragments into memory regions according to the grouping and placement

information provided.
• Assigns addresses to relocatable values.
• Generates an executable image.

Related information
Elimination of unused sections
The structure of an Arm ELF image

12 Overview of the Linker
12.3 What the linker does when constructing an executable image

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

12-231

Non-Confidential

https://developer.arm.com/documentation/101754/0616/armlink-Reference/Linker-Optimization-Features/Elimination-of-unused-sections
https://developer.arm.com/documentation/101754/0616/armlink-Reference/Image-Structure-and-Generation/The-structure-of-an-Arm-ELF-image

Chapter 13
Getting Image Details

Describes how to get image details from the Arm linker, armlink.

It contains the following sections:
• 13.1 Options for getting information about linker-generated files on page 13-233.
• 13.2 Identifying the source of some link errors on page 13-234.
• 13.3 Example of using the --info linker option on page 13-235.
• 13.4 How to find where a symbol is placed when linking on page 13-238.

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

13-232

Non-Confidential

13.1 Options for getting information about linker-generated files
The linker provides options for getting information about the files it generates.

You can use following options to get information about how your file is generated by the linker, and
about the properties of the files:

--info

Displays information about various topics.

--map

Displays the image memory map, and contains the address and the size of each load region,
execution region, and input section in the image, including linker-generated input sections. It
also shows how RW data compression is applied.

--show_cmdline

Outputs the command-line used by the linker.

--symbols

Displays a list of each local and global symbol used in the link step, and its value.

--verbose

Displays detailed information about the link operation, including the objects that are included
and the libraries that contain them.

--xref

Displays a list of all cross-references between input sections.

--xrefdbg

Displays a list of all cross-references between input debug sections.

The information can be written to a file using the --list=filename option.

Related tasks
13.2 Identifying the source of some link errors on page 13-234
Related references
13.3 Example of using the --info linker option on page 13-235
Related information
--info=topic[,topic,…]
Section alignment with the linker
Optimization with RW data compression
--list=filename (armlink)
--map, --no_map (armlink)
--show_cmdline (armlink)
--symbols, --no_symbols (armlink)
--verbose (armlink)
--xref, --no_xref (armlink)
--xrefdbg, --no_xrefdbg (armlink)

13 Getting Image Details
13.1 Options for getting information about linker-generated files

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

13-233

Non-Confidential

https://developer.arm.com/documentation/101754/0616/armlink-Reference/armlink-Command-line-Options/--info-topic--topic----armlink-
https://developer.arm.com/documentation/101754/0616/armlink-Reference/Image-Structure-and-Generation/Section-placement-with-the-linker/Section-alignment-with-the-linker
https://developer.arm.com/documentation/101754/0616/armlink-Reference/Linker-Optimization-Features/Optimization-with-RW-data-compression
https://developer.arm.com/documentation/101754/0616/armlink-Reference/armlink-Command-line-Options/--list-filename
https://developer.arm.com/documentation/101754/0616/armlink-Reference/armlink-Command-line-Options/--map----no-map
https://developer.arm.com/documentation/101754/0616/armlink-Reference/armlink-Command-line-Options/--show-cmdline--armlink-
https://developer.arm.com/documentation/101754/0616/armlink-Reference/armlink-Command-line-Options/--symbols----no-symbols
https://developer.arm.com/documentation/101754/0616/armlink-Reference/armlink-Command-line-Options/--verbose
https://developer.arm.com/documentation/101754/0616/armlink-Reference/armlink-Command-line-Options/--xref----no-xref
https://developer.arm.com/documentation/101754/0616/armlink-Reference/armlink-Command-line-Options/--xrefdbg----no-xrefdbg

13.2 Identifying the source of some link errors
The linker provides options to help you identify the source of some link errors.

To identify the source of some link errors, use --info inputs. For example, you can search the output
to locate undefined references from library objects or multiply defined symbols caused by retargeting
some library functions and not others. Search backwards from the end of this output to find and resolve
link errors.

You can also use the --verbose option to output similar text with additional information on the linker
operations.

Related references
13.1 Options for getting information about linker-generated files on page 13-233
Related information
--info=topic[,topic,…] (armlink)
--verbose (armlink)

13 Getting Image Details
13.2 Identifying the source of some link errors

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

13-234

Non-Confidential

https://developer.arm.com/documentation/101754/0616/armlink-Reference/armlink-Command-line-Options/--info-topic--topic----armlink-
https://developer.arm.com/documentation/101754/0616/armlink-Reference/armlink-Command-line-Options/--verbose

13.3 Example of using the --info linker option
An example of the --info output.

To display the component sizes when linking enter:

armlink --info sizes …

Here, sizes gives a list of the Code and data sizes for each input object and library member in the
image. Using this option implies --info sizes,totals.

The following example shows the output in tabular format with the totals separated out for easy reading:

Image component sizes

 Code (inc. data) RO Data RW Data ZI Data Debug Object Name

 30 16 0 0 0 0 foo.o
 56 10 960 0 1024 372 startup_ARMCM7.o

 --
 88 26 992 0 5120 372 Object Totals
 0 0 32 0 4096 0 (incl. Generated)
 2 0 0 0 0 0 (incl. Padding)

 --

 Code (inc. data) RO Data RW Data ZI Data Debug Library Member Name

 8 0 0 0 0 68 __main.o
 0 0 0 0 0 0 __rtentry.o
 12 0 0 0 0 0 __rtentry2.o
 8 4 0 0 0 0 __rtentry5.o
 52 8 0 0 0 0 __scatter.o
 26 0 0 0 0 0 __scatter_copy.o
 28 0 0 0 0 0 __scatter_zi.o
 10 0 0 0 0 68 defsig_exit.o
 50 0 0 0 0 88 defsig_general.o
 80 58 0 0 0 76 defsig_rtmem_inner.o
 14 0 0 0 0 80 defsig_rtmem_outer.o
 52 38 0 0 0 76 defsig_rtred_inner.o
 14 0 0 0 0 80 defsig_rtred_outer.o
 18 0 0 0 0 80 exit.o
 76 0 0 0 0 88 fclose.o
 470 0 0 0 0 88 flsbuf.o
 236 4 0 0 0 128 fopen.o
 26 0 0 0 0 68 fputc.o
 248 6 0 0 0 84 fseek.o
 66 0 0 0 0 76 ftell.o
 94 0 0 0 0 80 h1_alloc.o
 52 0 0 0 0 68 h1_extend.o
 78 0 0 0 0 80 h1_free.o
 14 0 0 0 0 84 h1_init.o
 80 6 0 4 0 96 heapauxa.o
 4 0 0 0 0 136 hguard.o
 0 0 0 0 0 0 indicate_semi.o
 138 0 0 0 0 168 init_alloc.o
 312 46 0 0 0 112 initio.o
 2 0 0 0 0 0 libinit.o
 6 0 0 0 0 0 libinit2.o
 16 8 0 0 0 0 libinit4.o
 2 0 0 0 0 0 libshutdown.o
 6 0 0 0 0 0 libshutdown2.o
 0 0 0 0 96 0 libspace.o
 0 0 0 0 0 0 maybetermalloc1.o
 44 4 0 0 0 84 puts.o
 8 4 0 0 0 68
rt_errno_addr_intlibspace.o
 8 4 0 0 0 68
rt_heap_descriptor_intlibspace.o
 78 0 0 0 0 80 rt_memclr_w.o
 2 0 0 0 0 0 rtexit.o
 10 0 0 0 0 0 rtexit2.o
 70 0 0 0 0 80 setvbuf.o
 240 6 0 0 0 156 stdio.o
 0 0 0 12 252 0 stdio_streams.o
 62 0 0 0 0 76 strlen.o
 12 4 0 0 0 68 sys_exit.o
 102 0 0 0 0 240 sys_io.o

13 Getting Image Details
13.3 Example of using the --info linker option

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

13-235

Non-Confidential

 0 0 12 0 0 0 sys_io_names.o
 14 0 0 0 0 76 sys_wrch.o
 2 0 0 0 0 68 use_no_semi.o

 --
 2962 200 14 16 352 3036 Library Totals
 12 0 2 0 4 0 (incl. Padding)

 --

 Code (inc. data) RO Data RW Data ZI Data Debug Library Name

 2950 200 12 16 348 3036 c_wu.l

 --
 2962 200 14 16 352 3036 Library Totals

 --

==

 Code (inc. data) RO Data RW Data ZI Data Debug

 3050 226 1006 16 5472 1948 Grand Totals
 3050 226 1006 16 5472 1948 ELF Image Totals
 3050 226 1006 16 0 0 ROM Totals

==

 Total RO Size (Code + RO Data) 4056 (3.96kB)
 Total RW Size (RW Data + ZI Data) 5488 (5.36kB)
 Total ROM Size (Code + RO Data + RW Data) 4072 (3.98kB)

==

In this example:

Code (inc. data)
The number of bytes occupied by the code. In this image, there are 3050 bytes of code. This
value includes 226 bytes of inline data (inc. data), for example, literal pools, and short strings.

RO Data
The number of bytes occupied by the RO data. This value is in addition to the inline data
included in the Code (inc. data) column.

RW Data
The number of bytes occupied by the RW data.

ZI Data
The number of bytes occupied by the ZI data.

Debug
The number of bytes occupied by the debug data, for example, debug Input sections and the
symbol and string table.

Object Totals
The number of bytes occupied by the objects when linked together to generate the image.

13 Getting Image Details
13.3 Example of using the --info linker option

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

13-236

Non-Confidential

(incl. Generated)

armlink might generate image contents, for example, interworking veneers, and Input sections
such as region tables. If the Object Totals row includes this type of data, it is shown in this
row.

Combined across all of the object files (foo.o and startup_ARMCM7.o), the example shows that
there are 992 bytes of RO data, of which 32 bytes are linker-generated RO data.

 Note

If the scatter file contains EMPTY regions, the linker might generate ZI data. In the example, the
4096 bytes of ZI data labeled (incl. Generated) correspond to an ARM_LIB_STACKHEAP
execution region used to set up the stack and heap in a scatter file as follows:

ARM_LIB_STACKHEAP +0x0 EMPTY 0x1000 {} ; 4KB stack + heap

Library Totals
The number of bytes occupied by the library members that have been extracted and added to the
image as individual objects.

(incl. Padding)

If necessary, armlink inserts padding to force section alignment. If the Object Totals row
includes this type of data, it is shown in the associated (incl. Padding) row. Similarly, if the
Library Totals row includes this type of data, it is shown in its associated row.

In the example, there are 992 bytes of RO data in the object total, of which 0 bytes is linker-
generated padding, and 14 bytes of RO data in the library total, with 2 bytes of padding.

Grand Totals
Shows the true size of the image. In the example, there are 5120 bytes of ZI data (in Object
Totals) and 352 of ZI data (in Library Totals) giving a total of 5472 bytes.

ELF Image Totals

If you are using RW data compression (the default) to optimize ROM size, the size of the final
image changes. This change is reflected in the output from --info. Compare the number of
bytes under Grand Totals and ELF Image Totals to see the effect of compression.

In the example, RW data compression is not enabled. If data is compressed, the RW value
changes.

 Note

Not supported for AArch64 state.

ROM Totals
Shows the minimum size of ROM required to contain the image. This size does not include ZI
data and debug information that is not stored in the ROM.

Related references
13.1 Options for getting information about linker-generated files on page 13-233
Related information
--info=topic[,topic,…] (armlink)

13 Getting Image Details
13.3 Example of using the --info linker option

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

13-237

Non-Confidential

https://developer.arm.com/documentation/101754/0616/armlink-Reference/armlink-Command-line-Options/--info-topic--topic----armlink-

13.4 How to find where a symbol is placed when linking
To find where a symbol is placed when linking you must find the section that defines the symbol, and
ensure that the linker has not removed the section.

You can do this with the --keep="section_id" and --symbols options. For example, if
object(section) is the section containing the symbol, enter:

armlink --cpu=8-A.32 --keep="object(section)" --symbols s.o --output=s.axf

 Note

You can also run fromelf -s on the resultant image.

As an example, do the following:

Procedure
1. Create the file s.c containing the following source code:

long long array[10] __attribute__ ((section ("ARRAY")));

int main(void)
{
 return sizeof(array);
}

2. Compile the source:

armclang --target=arm-arm-none-eabi -march=armv8-a -c s.c -o s.o

3. Link the object s.o, keeping the ARRAY symbol and displaying the symbols:

armlink --cpu=8-A.32 --keep="s.o(ARRAY)" --map --symbols s.o --output=s.axf

4. Locate the ARRAY symbol in the output, for example:

...
Execution Region ER_RW (Base: 0x000083a8, Size: 0x00000028, Max: 0xffffffff, ABSOLUTE)

Base Addr Size Type Attr Idx E Section Name Object

0x000083a8 0x00000028 Data RW 4 ARRAY s.o

...
Execution Region ER_RW (Base: 0x00008360, Size: 0x00000050, Max: 0xffffffff, ABSOLUTE)

Base Addr Size Type Attr Idx E Section Name Object

0x00008360 0x00000050 Data RW 3 ARRAY s.o

This shows that the array is placed in execution region ER_RW.
Related tasks
16.6 Using fromelf to find where a symbol is placed in an executable ELF image on page 16-254
Related information
--keep=section_id (armlink)
--map, --no_map (armlink)
-o filename, --output=filename (armlink)
-c compiler option
-march compiler option
-o compiler option
--target compiler option

13 Getting Image Details
13.4 How to find where a symbol is placed when linking

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

13-238

Non-Confidential

https://developer.arm.com/documentation/101754/0616/armlink-Reference/armlink-Command-line-Options/--keep-section-id--armlink-
https://developer.arm.com/documentation/101754/0616/armlink-Reference/armlink-Command-line-Options/--map----no-map
https://developer.arm.com/documentation/101754/0616/armlink-Reference/armlink-Command-line-Options/-o-filename----output-filename--armlink-
https://developer.arm.com/documentation/101754/0616/armclang-Reference/armclang-Command-line-Options/-c--armclang-
https://developer.arm.com/documentation/101754/0616/armclang-Reference/armclang-Command-line-Options/-march
https://developer.arm.com/documentation/101754/0616/armclang-Reference/armclang-Command-line-Options/-o--armclang-
https://developer.arm.com/documentation/101754/0616/armclang-Reference/armclang-Command-line-Options/--target

Chapter 14
SysV Dynamic Linking

Arm Compiler 6 supports the System V (SysV) linking model and can produce SysV shared objects and
executables. The feature allows building programs for SysV-like platforms.

 Note

Cortex‑M processors do not support dynamic linking.

It contains the following sections:
• 14.1 Build a SysV shared object on page 14-240.
• 14.2 Build a SysV executable on page 14-241.

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

14-239

Non-Confidential

14.1 Build a SysV shared object
To build SysV shared libraries, compile the code for position independence using the -fsysv and -fpic
options. Compiling for position independence is required because a shared library can load to any
suitable address in the memory map. The linker options that are required to build a SysV shared library
are --sysv, --shared, and --fpic.

Build the shared library and then run fromelf to examine the contents.

Procedure
1. Create the file lib.c containing the following code:

__attribute__((visibility("default")))
int lib_func(int a)
{
 return 5 * a;
}

2. Build the library:

armclang --target=arm-arm-none-eabi -march=armv8-a -c -fsysv -fpic lib.c
armlink --sysv --shared --fpic lib.o -o lib.so

3. Run fromelf with the --only option to see that the function lib_func() has the visibility set to
default and is present in the dynamic symbol table:

fromelf -s --only=.dynsym lib.so
...
** Section #2 '.dynsym' (SHT_DYNSYM) [SHF_ALLOC]
 Size : 32 bytes (alignment 4)
 Address: 0x00000110
 String table #3 '.dynstr'
 Last local symbol no. 0

 Symbol table .dynsym (1 symbols, 0 local)

 # Symbol Name Value Bind Sec Type Vis Size
 ==

 1 lib_func 0x00000144 Gb 4 Code De 0x1c
...

14 SysV Dynamic Linking
14.1 Build a SysV shared object

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

14-240

Non-Confidential

14.2 Build a SysV executable
To build a SysV executable with position independence compile with the -fsysv option. Compiling with
position independence is not required by some SysV systems. For example, Arm Linux executables
always execute from a fixed address of 0x8000. However, other operating systems that are based on the
SysV model might decide to have position-independent executables.

Build the image and then run fromelf to examine the contents.

Prerequisites

Build the lib.o shared library as described in 14.1 Build a SysV shared object on page 14-240.

Procedure
1. Create the file app.c containing the following code:

#include <stdio.h>

int lib_func(int a);

int main(void)
{
 printf("Result: %d.\n", lib_func(3));
 return 0;
}

2. Build the main executable:

armclang --target=arm-arm-none-eabi -march=armv8-a -c -fsysv app.c
armlink --sysv app.o lib.so -o app.axf

The reference to function lib_func() gets resolved by lib.so.
3. Run fromelf with the --only option to see that the resulting image contains a DT_NEEDED tag that

indicates library lib.so is needed by the executable:

fromelf -y --only=.dynamic app.axf
...
** Section #9 '.dynamic' (SHT_DYNAMIC) [SHF_ALLOC + SHF_WRITE]
 Size : 168 bytes (alignment 4)
 Address: 0x00012c9c
 String table #4 '.dynstr'

 # Tag Name Value
 ==

 0 DT_NEEDED 1 (lib.so)
 1 DT_HASH 33100 (0x0000814c)
 2 DT_STRTAB 33156 (0x00008184)
 3 DT_SYMTAB 33124 (0x00008164)
 4 DT_STRSZ 17
 5 DT_SYMENT 16
 6 DT_PLTRELSZ 8
 7 DT_PLTGOT 77124 (0x00012d44)
 8 DT_DEBUG 0 (0x00000000)
 9 DT_JMPREL 33176 (0x00008198)
 10 DT_PLTREL 17 (DT_REL)
 11 DT_NULL 0
...

When executed, a platform-specific dynamic loader processes information in the dynamic array, loads
lib.so, resolves relocations in all loaded files, and passes control to the main executable. The
program then outputs:

Result: 15.

14 SysV Dynamic Linking
14.2 Build a SysV executable

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

14-241

Non-Confidential

Chapter 15
Overview of the fromelf Image Converter

Gives an overview of the fromelf image converter provided with Arm Compiler.

It contains the following sections:
• 15.1 About the fromelf image converter on page 15-243.
• 15.2 fromelf execution modes on page 15-244.
• 15.3 Getting help on the fromelf command on page 15-245.
• 15.4 fromelf command-line syntax on page 15-246.

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

15-242

Non-Confidential

15.1 About the fromelf image converter
The fromelf image conversion utility allows you to modify ELF image and object files, and to display
information on those files.

fromelf allows you to:
• Process Arm ELF object and image files that the compiler, assembler, and linker generate.
• Process all ELF files in an archive that armar creates, and output the processed files into another

archive if necessary.
• Convert ELF images into other formats for use by ROM tools or for direct loading into memory. The

formats available are:
— Plain binary.
— Motorola 32-bit S-record. (AArch32 state only).
— Intel Hex-32. (AArch32 state only).
— Byte oriented (Verilog Memory Model) hexadecimal.

• Display information about the input file, for example, disassembly output or symbol listings, to either
stdout or a text file. Disassembly is generated in armasm assembler syntax and not GNU assembler
syntax. Therefore you cannot reassemble disassembled output with armclang.

 Note

armasm does not support features of Armv8.4-A and later architectures, even those back-ported to
Armv8.2-A and Armv8.3-A.

 Note

If your image is produced without debug information, fromelf cannot:
• Translate the image into other file formats.
• Produce a meaningful disassembly listing.

 Note

The command-line option descriptions and related information in the Arm® Compiler Reference Guide
describe all the features that Arm Compiler supports. Any features not documented are not supported and
are used at your own risk. You are responsible for making sure that any generated code using community
features on page Appx-A-266 is operating correctly.

Related concepts
16.3 Options to protect code in image files with fromelf on page 16-250
16.4 Options to protect code in object files with fromelf on page 16-251
Related references
15.2 fromelf execution modes on page 15-244
15.4 fromelf command-line syntax on page 15-246
Related information
fromelf Command-line Options

15 Overview of the fromelf Image Converter
15.1 About the fromelf image converter

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

15-243

Non-Confidential

https://developer.arm.com/documentation/101754/0616/fromelf-Reference/fromelf-Command-line-Options

15.2 fromelf execution modes
You can run fromelf in various execution modes.

The execution modes are:
• ELF mode (--elf), to resave a file as ELF.
• Text mode (--text, and others), to output information about an object or image file.
• Format conversion mode (--bin, --m32, --i32, --vhx).

Related information
--bin (fromelf)
--elf (fromelf)
--i32 (fromelf)
--m32 (fromelf)
--text (fromelf)
--vhx (fromelf)

15 Overview of the fromelf Image Converter
15.2 fromelf execution modes

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

15-244

Non-Confidential

https://developer.arm.com/documentation/101754/0616/fromelf-Reference/fromelf-Command-line-Options/--bin
https://developer.arm.com/documentation/101754/0616/fromelf-Reference/fromelf-Command-line-Options/--elf
https://developer.arm.com/documentation/101754/0616/fromelf-Reference/fromelf-Command-line-Options/--i32
https://developer.arm.com/documentation/101754/0616/fromelf-Reference/fromelf-Command-line-Options/--m32
https://developer.arm.com/documentation/101754/0616/fromelf-Reference/fromelf-Command-line-Options/--text
https://developer.arm.com/documentation/101754/0616/fromelf-Reference/fromelf-Command-line-Options/--vhx

15.3 Getting help on the fromelf command
Use the --help option to display a summary of the main command-line options.

This is the default if you do not specify any options or files.

To display the help information, enter:

fromelf --help

Related references
15.4 fromelf command-line syntax on page 15-246
Related information
--help (fromelf)

15 Overview of the fromelf Image Converter
15.3 Getting help on the fromelf command

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

15-245

Non-Confidential

https://developer.arm.com/documentation/101754/0616/fromelf-Reference/fromelf-Command-line-Options/--help--fromelf-

15.4 fromelf command-line syntax
You can specify an ELF file or library of ELF files on the fromelf command-line.

Syntax

fromelf options input_file
options

fromelf command-line options.

input_file

The ELF file or library file to be processed. When some options are used, multiple input files
can be specified.

Related information
fromelf Command-line Options
input_file (fromelf)

15 Overview of the fromelf Image Converter
15.4 fromelf command-line syntax

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

15-246

Non-Confidential

https://developer.arm.com/documentation/101754/0616/fromelf-Reference/fromelf-Command-line-Options
https://developer.arm.com/documentation/101754/0616/fromelf-Reference/fromelf-Command-line-Options/input-file--fromelf-

Chapter 16
Using fromelf

Describes how to use the fromelf image converter provided with Arm Compiler.

It contains the following sections:
• 16.1 General considerations when using fromelf on page 16-248.
• 16.2 Examples of processing ELF files in an archive on page 16-249.
• 16.3 Options to protect code in image files with fromelf on page 16-250.
• 16.4 Options to protect code in object files with fromelf on page 16-251.
• 16.5 Option to print specific details of ELF files on page 16-253.
• 16.6 Using fromelf to find where a symbol is placed in an executable ELF image on page 16-254.

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

16-247

Non-Confidential

16.1 General considerations when using fromelf
There are some changes that you cannot make to an image with fromelf.

When using fromelf you cannot:
• Change the image structure or addresses, other than altering the base address of Motorola S-record or

Intel Hex output with the --base option.
• Change a scatter-loaded ELF image into a non scatter-loaded image in another format. Any structural

or addressing information must be provided to the linker at link time.

Related information
--base [[object_file::]load_region_ID=]num (fromelf)
input_file (fromelf)

16 Using fromelf
16.1 General considerations when using fromelf

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

16-248

Non-Confidential

https://developer.arm.com/documentation/101754/0616/fromelf-Reference/fromelf-Command-line-Options/--base---object-file---load-region-ID--num
https://developer.arm.com/documentation/101754/0616/fromelf-Reference/fromelf-Command-line-Options/input-file--fromelf-

16.2 Examples of processing ELF files in an archive
Examples of how you can process all ELF files in an archive, or a subset of those files. The processed
files together with any unprocessed files are output to another archive.

Examples

Consider an archive, test.a, containing the following ELF files:

bmw.o
bmw1.o
call_c_code.o
newtst.o
shapes.o
strmtst.o

Example of processing all files in the archive

This example removes all debug, comments, notes and symbols from all the files in the archive:

fromelf --elf --strip=all test.a -o strip_all/

This creates an output archive with the name test.a in the subdirectory strip_all

Example of processing a subset of files in the archive

To remove all debug, comments, notes and symbols from only the shapes.o and the strmtst.o
files in the archive, enter:

fromelf --elf --strip=all test.a(s*.o) -o subset/

This creates an output archive with the name test.a in the subdirectory subset. The archive
contains the processed files together with the remaining files that are unprocessed.

To process the bmw.o, bmw1.o, and newtst.o files in the archive, enter:

fromelf --elf --strip=all test.a(??w*) -o subset/

Example of displaying a disassembled version of files in an archive

To display the disassembled version of call_c_code.o in the archive, enter:

fromelf --disassemble test.a(c*)

Related information
--disassemble (fromelf)
--elf (fromelf)
input_file (fromelf)
--output=destination (fromelf)
--strip=option[,option,…] (fromelf)

16 Using fromelf
16.2 Examples of processing ELF files in an archive

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

16-249

Non-Confidential

https://developer.arm.com/documentation/101754/0616/fromelf-Reference/fromelf-Command-line-Options/--disassemble
https://developer.arm.com/documentation/101754/0616/fromelf-Reference/fromelf-Command-line-Options/--elf
https://developer.arm.com/documentation/101754/0616/fromelf-Reference/fromelf-Command-line-Options/input-file--fromelf-
https://developer.arm.com/documentation/101754/0616/fromelf-Reference/fromelf-Command-line-Options/--output-destination
https://developer.arm.com/documentation/101754/0616/fromelf-Reference/fromelf-Command-line-Options/--strip-option--option---

16.3 Options to protect code in image files with fromelf
If you are delivering images to third parties, then you might want to protect the code they contain.

To help you to protect this code, fromelf provides the --strip option and the --privacy option. These
options remove or obscure the symbol names in the image. The option that you choose depends on how
much information you want to remove. The effect of these options is different for image files.

Restrictions

You must use --elf with these options. Because you have to use --elf, you must also use --output.

Effect of the --privacy and --strip options for protecting code in image files

Option Effect

fromelf --elf --privacy Removes the whole symbol table.

Removes the .comment section name. This section is marked as [Anonymous
Section] in the fromelf --text output.

Gives section names a default value. For example, changes code section names to
'.text'.

fromelf --elf --strip=symbols Removes the whole symbol table.

Section names remain the same.

fromelf --elf --strip=localsymbols Removes local and mapping symbols.

Retains section names and build attributes.

Example

To produce a new ELF executable image with the complete symbol table removed and with the various
section names changed, enter:

fromelf --elf --privacy --output=outfile.axf infile.axf

Related concepts
16.4 Options to protect code in object files with fromelf on page 16-251
Related references
15.4 fromelf command-line syntax on page 15-246
Related information
--elf (fromelf)
--output=destination (fromelf)
--privacy (fromelf)
--strip=option[,option,…] (fromelf)

16 Using fromelf
16.3 Options to protect code in image files with fromelf

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

16-250

Non-Confidential

https://developer.arm.com/documentation/101754/0616/fromelf-Reference/fromelf-Command-line-Options/--elf
https://developer.arm.com/documentation/101754/0616/fromelf-Reference/fromelf-Command-line-Options/--output-destination
https://developer.arm.com/documentation/101754/0616/fromelf-Reference/fromelf-Command-line-Options/--privacy--fromelf-
https://developer.arm.com/documentation/101754/0616/fromelf-Reference/fromelf-Command-line-Options/--strip-option--option---

16.4 Options to protect code in object files with fromelf
If you are delivering objects to third parties, then you might want to protect the code they contain.

To help you to protect this code, fromelf provides the --strip option and the --privacy option. These
options remove or obscure the symbol names in the object. The option you choose depends on how much
information you want to remove. The effect of these options is different for object files.

Restrictions

You must use --elf with these options. Because you have to use --elf, you must also use --output.

Effect of the --privacy and --strip options for protecting code in object files

Option Local symbols Section
names

Mapping
symbols

Build
attributes

fromelf --elf --privacy Removes those local symbols that can be removed
without loss of functionality.

Symbols that cannot be removed, such as the targets
for relocations, are kept. For these symbols, the
names are removed. These are marked as
[Anonymous Symbol] in the fromelf --text
output.

Gives section
names a default
value. For
example,
changes code
section names to
'.text'

Present Present

fromelf --elf
--strip=symbols

Removes those local symbols that can be removed
without loss of functionality.

Symbols that cannot be removed, such as the targets
for relocations, are kept. For these symbols, the
names are removed. These are marked as
[Anonymous Symbol] in the fromelf --text
output.

Section names
remain the same

Present Present

fromelf --elf
--strip=localsymbols

Removes those local symbols that can be removed
without loss of functionality.

Symbols that cannot be removed, such as the targets
for relocations, are kept. For these symbols, the
names are removed. These are marked as
[Anonymous Symbol] in the fromelf --text
output.

Section names
remain the same

Present Present

Example

To produce a new ELF object with the complete symbol table removed and various section names
changed, enter:

fromelf --elf --privacy --output=outfile.o infile.o

Related concepts
16.3 Options to protect code in image files with fromelf on page 16-250
Related references
15.4 fromelf command-line syntax on page 15-246
Related information
--elf (fromelf)
--output=destination (fromelf)
--privacy (fromelf)

16 Using fromelf
16.4 Options to protect code in object files with fromelf

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

16-251

Non-Confidential

https://developer.arm.com/documentation/101754/0616/fromelf-Reference/fromelf-Command-line-Options/--elf
https://developer.arm.com/documentation/101754/0616/fromelf-Reference/fromelf-Command-line-Options/--output-destination
https://developer.arm.com/documentation/101754/0616/fromelf-Reference/fromelf-Command-line-Options/--privacy--fromelf-

--strip=option[,option,…] (fromelf)

16 Using fromelf
16.4 Options to protect code in object files with fromelf

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

16-252

Non-Confidential

https://developer.arm.com/documentation/101754/0616/fromelf-Reference/fromelf-Command-line-Options/--strip-option--option---

16.5 Option to print specific details of ELF files
fromelf can extract information from ELF files. For example, ELF header and section information.
Specify the information to extract using the --emit command-line option.

 Note

You can specify some of the --emit options using the --text option.

Examples

To print the contents of the data sections of an ELF file, infile.axf, enter:

fromelf --emit=data infile.axf

To print relocation information and the dynamic section contents for the ELF file infile2.axf, enter:

fromelf --emit=relocation_tables,dynamic_segment infile2.axf

Related references
15.4 fromelf command-line syntax on page 15-246
Related information
--emit=option[,option,…] (fromelf)
--text (fromelf)

16 Using fromelf
16.5 Option to print specific details of ELF files

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

16-253

Non-Confidential

https://developer.arm.com/documentation/101754/0616/fromelf-Reference/fromelf-Command-line-Options/--emit-option--option---
https://developer.arm.com/documentation/101754/0616/fromelf-Reference/fromelf-Command-line-Options/--text

16.6 Using fromelf to find where a symbol is placed in an executable ELF image
You can find where a symbol is placed in an executable ELF image.

To find where a symbol is placed in an ELF image file, use the --text -s -v options to view the
symbol table and detailed information on each segment and section header, for example:

The symbol table identifies the section where the symbol is placed.

Procedure
1. Create the file s.c containing the following source code:

long long arr[10] __attribute__ ((section ("ARRAY")));
int main()
{
 return sizeof(arr);
}

2. Compile the source:

armclang --target=arm-arm-none-eabi -march=armv8-a -c s.c -o s.o

3. Link the object s.o and keep the ARRAY symbol:
armlink --cpu=8-A.32 --keep=s.o(ARRAY) s.o --output=s.axf

4. Run the fromelf command to display the symbol table and detailed information on each segment and
section header:
fromelf --text -s -v s.o

5. Locate the arr symbol in the fromelf output, for example:

 ...
 ** Section #24
 Name : .symtab
 Type : SHT_SYMTAB (0x00000002)
 Flags : None (0x00000000)
 Addr : 0x00000000
 File Offset : 868 (0x364)
 Size : 464 bytes (0x1d0)
 Link : Section 1 (.strtab)
 Info : Last local symbol no = 26
 Alignment : 4
 Entry Size : 16

 Symbol table .symtab (28 symbols, 26 local)

 # Symbol Name Value Bind Sec Type Vis Size
 ===
 ...
 27 arr 0x00000000 Gb 5 Data De 0x50
 ...

The Sec column shows the section where the stack is placed. In this example, section 5.
6. Locate the section identified for the symbol in the fromelf output, for example:

...
====================================
** Section #5
 Name : ARRAY
 Type : SHT_PROGBITS (0x00000001)
 Flags : SHF_ALLOC + SHF_WRITE (0x00000003)
 Addr : 0x00000000
 File Offset : 88 (0x58)
 Size : 80 bytes (0x50)
 Link : SHN_UNDEF
 Info : 0
 Alignment : 8
 Entry Size : 0
 ====================================
 ...

This shows that the symbols are placed in an ARRAY section.

16 Using fromelf
16.6 Using fromelf to find where a symbol is placed in an executable ELF image

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

16-254

Non-Confidential

Related information
--text (fromelf)

16 Using fromelf
16.6 Using fromelf to find where a symbol is placed in an executable ELF image

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

16-255

Non-Confidential

https://developer.arm.com/documentation/101754/0616/fromelf-Reference/fromelf-Command-line-Options/--text

Chapter 17
Overview of the Arm® Librarian

Gives an overview of the Arm Librarian, armar, provided with Arm Compiler.

It contains the following sections:
• 17.1 About the Arm® Librarian on page 17-257.
• 17.2 Considerations when working with library files on page 17-258.
• 17.3 armar command-line syntax on page 17-259.
• 17.4 Option to get help on the armar command on page 17-260.

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

17-256

Non-Confidential

17.1 About the Arm® Librarian
The Arm Librarian, armar, enables you to collect and maintain sets of ELF object files in standard
format ar libraries.

You can pass these libraries to the linker in place of several ELF object files.

With armar you can:

• Create new libraries.
• Add files to a library.
• Replace individual files in a library.
• Replace all files in a library with specified files in a single operation.
• Control the placement of files in a library.
• Display information about a specified library. For example, list all members in a library.

A timestamp is also associated with each file that is added or replaced in a library.
 Note

When you create, add, or replace object files in a library, armar creates a symbol table by default.
However, debug symbols are not included by default.

Related information
--debug_symbols (armar)
--library=name (armlink)
--libpath=pathlist (armlink)
--library_type=lib (armlink)
--userlibpath=pathlist (armlink)

17 Overview of the Arm® Librarian
17.1 About the Arm® Librarian

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

17-257

Non-Confidential

https://developer.arm.com/documentation/101754/0616/armar-Reference/armar-Command-line-Options/--debug-symbols
https://developer.arm.com/documentation/101754/0616/armlink-Reference/armlink-Command-line-Options/--library-name
https://developer.arm.com/documentation/101754/0616/armlink-Reference/armlink-Command-line-Options/--libpath-pathlist
https://developer.arm.com/documentation/101754/0616/armlink-Reference/armlink-Command-line-Options/--library-type-lib
https://developer.arm.com/documentation/101754/0616/armlink-Reference/armlink-Command-line-Options/--userlibpath-pathlist

17.2 Considerations when working with library files
There are some considerations you must be aware of when working with library files.

Be aware of the following:
• A library differs from a shared object or dynamically linked library (DLL) in that:

— Symbols are imported from a shared object or DLL.
— Code or data for symbols is extracted from an archive into the file being linked.

• Linking with an object library file might not produce the same results as linking with all the object
files collected into the object library file. This is because the linker processes the input list and
libraries differently:
— Each object file in the input list appears in the output unconditionally, although unused areas are

eliminated if the armlink --remove option is specified.
— A member of a library file is only included in the output if it is referred to by an object file or a

previously processed library file.

The linker recognizes a collection of ELF files stored in an ar format file as a library. The contents of
each ELF file form a single member in the library.

Related information
--remove, --no_remove (armlink)

17 Overview of the Arm® Librarian
17.2 Considerations when working with library files

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

17-258

Non-Confidential

https://developer.arm.com/documentation/101754/0616/armlink-Reference/armlink-Command-line-Options/--remove----no-remove

17.3 armar command-line syntax
The armar command has options to specify how to process files and libraries.

Syntax

armar options archive [file_list]
options

armar command-line options.
archive

The filename of the library. A library file must always be specified.
file_list

The list of files to be processed.

Related information
armar Command-line Options
archive (armar)
file_list (armar)

17 Overview of the Arm® Librarian
17.3 armar command-line syntax

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

17-259

Non-Confidential

https://developer.arm.com/documentation/101754/0616/armar-Reference/armar-Command-line-Options
https://developer.arm.com/documentation/101754/0616/armar-Reference/armar-Command-line-Options/archive
https://developer.arm.com/documentation/101754/0616/armar-Reference/armar-Command-line-Options/file-list

17.4 Option to get help on the armar command
Use the --help option to display a summary of the main command-line options.

This is the default if you do not specify any options or source files.

Example

To display the help information, enter:

armar --help

17 Overview of the Arm® Librarian
17.4 Option to get help on the armar command

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

17-260

Non-Confidential

Chapter 18
Overview of the armasm Legacy Assembler

Gives an overview of the armasm legacy assembler provided with Arm Compiler toolchain.

It contains the following sections:
• 18.1 Key features of the armasm assembler on page 18-262.
• 18.2 How the assembler works on page 18-263.

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

18-261

Non-Confidential

18.1 Key features of the armasm assembler
The armasm assembler supports instructions, directives, and user-defined macros.

It supports:

• Unified Assembly Language (UAL) for both A32 and T32 code.
• Assembly language for A64 code.
• Advanced SIMD instructions in A64, A32, and T32 code.
• Floating-point instructions in A64, A32, and T32 code.
• Directives in assembly source code.
• Processing of user-defined macros.
• SDOT and UDOT instructions that are an optional extension in Armv8.2-A and Armv8.3-A .

 Note

armasm does not support some architectural features, such as:
• Features of Armv8.4-A and later architectures, even those back-ported to Armv8.2-A and Armv8.3-

A.
• Half-precision floating-point multiply with add or multiply with subtract arithmetic operations. These

instructions are an optional extension in Armv8.2-A and Armv8.3-A, and a mandatory extension in
Armv8.4-A and later. See +fp16fml in the -mcpu command-line option in the Arm Compiler
Reference Guide.

• AArch64 Crypto instructions (for SHA512, SHA3, SM3, SM4). See +crypto in the -mcpu
command-line option in the Arm Compiler Reference Guide.

• AArch64 Scalable Vector Extension (SVE) instructions. See +sve in the -mcpu command-line option
in the Arm Compiler Reference Guide.

Related concepts
18.2 How the assembler works on page 18-263
Related information
About the Unified Assembler Language
Use of macros
armasm Directives Reference
--cpu=name (armasm)
-mcpu
Arm Compiler Instruction Set Reference Guide

18 Overview of the armasm Legacy Assembler
18.1 Key features of the armasm assembler

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

18-262

Non-Confidential

https://developer.arm.com/documentation/101754/0616/armclang-Reference/armclang-Command-line-Options/-mcpu
https://developer.arm.com/documentation/101754/0616/armclang-Reference/armclang-Command-line-Options/-mcpu
https://developer.arm.com/documentation/101754/0616/armclang-Reference/armclang-Command-line-Options/-mcpu
https://developer.arm.com/documentation/101754/0616/armasm-Legacy-Assembler-Reference/writing-a32t32-instructions-in-armasm-ayntax-assembly-language/about-the-unified-assembler-language
https://developer.arm.com/documentation/101754/0616/armasm-Legacy-Assembler-Reference/writing-a32t32-instructions-in-armasm-ayntax-assembly-language/use-of-macros
https://developer.arm.com/documentation/101754/0616/armasm-Legacy-Assembler-Reference/armasm-directives-reference
https://developer.arm.com/documentation/101754/0616/armasm-Legacy-Assembler-Reference/armasm-command-line-options/--cpu-name--armasm-
https://developer.arm.com/documentation/101754/0616/armclang-Reference/armclang-Command-line-Options/-mcpu
https://developer.arm.com/documentation/100076/0200

18.2 How the assembler works
armasm reads the assembly language source code twice before it outputs object code. Each read of the
source code is called a pass.

This is because assembly language source code often contains forward references. A forward reference
occurs when a label is used as an operand, for example as a branch target, earlier in the code than the
definition of the label. The assembler cannot know the address of the forward reference label until it
reads the definition of the label.

During each pass, the assembler performs different functions. In the first pass, the assembler:

• Checks the syntax of the instruction or directive. It faults if there is an error in the syntax, for
example if a label is specified on a directive that does not accept one.

• Determines the size of the instruction and data being assembled and reserves space.
• Determines offsets of labels within sections.
• Creates a symbol table containing label definitions and their memory addresses.

In the second pass, the assembler:
• Faults if an undefined reference is specified in an instruction operand or directive.
• Encodes the instructions using the label offsets from pass 1, where applicable.
• Generates relocations.
• Generates debug information if requested.
• Outputs the object file.

Memory addresses of labels are determined and finalized in the first pass. Therefore, the assembly code
must not change during the second pass. All instructions must be seen in both passes. Therefore you
must not define a symbol after a :DEF: test for the symbol. The assembler faults if it sees code in pass 2
that was not seen in pass 1.

Line not seen in pass 1

The following example shows that num EQU 42 is not seen in pass 1 but is seen in pass 2:

 AREA x,CODE
 [:DEF: foo
num EQU 42
]
foo DCD num
 END

Assembling this code generates the error:

A1903E: Line not seen in first pass; cannot be assembled.

Line not seen in pass 2

The following example shows that MOV r1,r2 is seen in pass 1 but not in pass 2:

 AREA x,CODE
 [:LNOT: :DEF: foo
 MOV r1, r2
]
foo MOV r3, r4
 END

Assembling this code generates the error:

A1909E: Line not seen in second pass; cannot be assembled.

Related information
Directives that can be omitted in pass 2 of the assembler
Two pass assembler diagnostics
Instruction and directive relocations
--diag_error=tag[,tag,…]

18 Overview of the armasm Legacy Assembler
18.2 How the assembler works

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

18-263

Non-Confidential

https://developer.arm.com/documentation/101754/0616/armasm-Legacy-Assembler-Reference/armasm-directives-reference/directives-that-can-be-omitted-in-pass-2-of-the-assembler
https://developer.arm.com/documentation/101754/0616/armasm-Legacy-Assembler-Reference/using-armasm/two-pass-assembler-diagnostics
https://developer.arm.com/documentation/101754/0616/armasm-Legacy-Assembler-Reference/writing-a32t32-instructions-in-armasm-ayntax-assembly-language/instruction-and-directive-relocations
https://developer.arm.com/documentation/101754/0616/armasm-Legacy-Assembler-Reference/armasm-command-line-options/--diag-error-tag-tag-----armasm-

--debug

18 Overview of the armasm Legacy Assembler
18.2 How the assembler works

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

18-264

Non-Confidential

https://developer.arm.com/documentation/101754/0616/armasm-Legacy-Assembler-Reference/armasm-command-line-options/--debug

Appendix A
Supporting reference information

The various features in Arm Compiler might have different levels of support, ranging from fully
supported product features to community features.

It contains the following sections:
• A.1 Support level definitions on page Appx-A-266.
• A.2 Standards compliance in Arm® Compiler on page Appx-A-270.
• A.3 Compliance with the ABI for the Arm® Architecture (Base Standard) on page Appx-A-271.
• A.4 GCC compatibility provided by Arm® Compiler 6 on page Appx-A-273.
• A.5 Locale support in Arm® Compiler on page Appx-A-274.
• A.6 Toolchain environment variables on page Appx-A-275.
• A.7 Clang and LLVM documentation on page Appx-A-277.
• A.8 Further reading on page Appx-A-278.

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

Appx-A-265

Non-Confidential

A.1 Support level definitions
This describes the levels of support for various Arm Compiler 6 features.

Arm Compiler 6 is built on Clang and LLVM technology. Therefore, it has more functionality than the
set of product features described in the documentation. The following definitions clarify the levels of
support and guarantees on functionality that are expected from these features.

Arm welcomes feedback regarding the use of all Arm Compiler 6 features, and intends to support users
to a level that is appropriate for that feature. You can contact support at https://developer.arm.com/
support.

Identification in the documentation

All features that are documented in the Arm Compiler 6 documentation are product features, except
where explicitly stated. The limitations of non-product features are explicitly stated.

Product features
Product features are suitable for use in a production environment. The functionality is well-tested, and is
expected to be stable across feature and update releases.
• Arm intends to give advance notice of significant functionality changes to product features.
• If you have a support and maintenance contract, Arm provides full support for use of all product

features.
• Arm welcomes feedback on product features.
• Any issues with product features that Arm encounters or is made aware of are considered for fixing in

future versions of Arm Compiler.

In addition to fully supported product features, some product features are only alpha or beta quality.

Beta product features

Beta product features are implementation complete, but have not been sufficiently tested to be
regarded as suitable for use in production environments.

Beta product features are indicated with [BETA].
• Arm endeavors to document known limitations on beta product features.
• Beta product features are expected to eventually become product features in a future release

of Arm Compiler 6.
• Arm encourages the use of beta product features, and welcomes feedback on them.
• Any issues with beta product features that Arm encounters or is made aware of are

considered for fixing in future versions of Arm Compiler.

Alpha product features

Alpha product features are not implementation complete, and are subject to change in future
releases, therefore the stability level is lower than in beta product features.

Alpha product features are indicated with [ALPHA].
• Arm endeavors to document known limitations of alpha product features.
• Arm encourages the use of alpha product features, and welcomes feedback on them.
• Any issues with alpha product features that Arm encounters or is made aware of are

considered for fixing in future versions of Arm Compiler.

Community features

Arm Compiler 6 is built on LLVM technology and preserves the functionality of that technology where
possible. This means that there are additional features available in Arm Compiler that are not listed in the
documentation. These additional features are known as community features. For information on these
community features, see the documentation for the Clang/LLVM project.

A Supporting reference information
A.1 Support level definitions

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

Appx-A-266

Non-Confidential

https://developer.arm.com/support
https://developer.arm.com/support
http://clang.llvm.org/docs/UsersManual.html

Where community features are referenced in the documentation, they are indicated with
[COMMUNITY].
• Arm makes no claims about the quality level or the degree of functionality of these features, except

when explicitly stated in this documentation.
• Functionality might change significantly between feature releases.
• Arm makes no guarantees that community features will remain functional across update releases,

although changes are expected to be unlikely.

Some community features might become product features in the future, but Arm provides no roadmap
for this. Arm is interested in understanding your use of these features, and welcomes feedback on them.
Arm supports customers using these features on a best-effort basis, unless the features are unsupported.
Arm accepts defect reports on these features, but does not guarantee that these issues will be fixed in
future releases.

Guidance on use of community features
There are several factors to consider when assessing the likelihood of a community feature being
functional:
• The following figure shows the structure of the Arm Compiler 6 toolchain:

A Supporting reference information
A.1 Support level definitions

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

Appx-A-267

Non-Confidential

armasm

armclang

Arm C library

Arm C++ library

armlink

LLVM Project
clang

armasm syntax
assembly

armasm syntax
assembly

C/C++
Source code

C/C++
Source code

GNU syntax
Assembly

GNU syntax
Assembly

Source code
headers

Source code
headers

ObjectsObjects ObjectsObjects ObjectsObjects

Scatter/Steering/
Symdefs file

Scatter/Steering/
Symdefs file

ImageImage

LLVM Project
libc++

Figure A-1 Integration boundaries in Arm Compiler 6.

The dashed boxes are toolchain components, and any interaction between these components is an
integration boundary. Community features that span an integration boundary might have significant
limitations in functionality. The exception to this is if the interaction is codified in one of the
standards supported by Arm Compiler 6. See Application Binary Interface (ABI) for the Arm®

Architecture. Community features that do not span integration boundaries are more likely to work as
expected.

• Features primarily used when targeting hosted environments such as Linux or BSD might have
significant limitations, or might not be applicable, when targeting bare-metal environments.

• The Clang implementations of compiler features, particularly those that have been present for a long
time in other toolchains, are likely to be mature. The functionality of new features, such as support

A Supporting reference information
A.1 Support level definitions

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

Appx-A-268

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.subset.swdev.abi/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.subset.swdev.abi/index.html

for new language features, is likely to be less mature and therefore more likely to have limited
functionality.

Deprecated features

A deprecated feature is one that Arm plans to remove from a future release of Arm Compiler. Arm does
not make any guarantee regarding the testing or maintenance of deprecated features. Therefore, Arm
does not recommend using a feature after it is deprecated.

For information on replacing deprecated features with supported features, refer to the Arm Compiler
documentation and Release Notes.

Unsupported features

With both the product and community feature categories, specific features and use-cases are known not
to function correctly, or are not intended for use with Arm Compiler 6.

Limitations of product features are stated in the documentation. Arm cannot provide an exhaustive list of
unsupported features or use-cases for community features. The known limitations on community features
are listed in Community features on page Appx-A-266.

List of known unsupported features
The following is an incomplete list of unsupported features, and might change over time:
• The Clang option -stdlib=libstdc++ is not supported.
• C++ static initialization of local variables is not thread-safe when linked against the standard C++

libraries. For thread-safety, you must provide your own implementation of thread-safe functions as
described in Standard C++ library implementation definition.

 Note

This restriction does not apply to the [ALPHA]-supported multithreaded C++ libraries.

• Use of C11 library features is unsupported.
• Any community feature that is exclusively related to non-Arm architectures is not supported.
• Compilation for targets that implement architectures older than Armv7 or Armv6‑M is not supported.
• The long double data type is not supported for AArch64 state because of limitations in the current

Arm C library.
• C complex arithmetic is not supported, because of limitations in the current Arm C library.
• C++ complex numbers are supported with float and double types, but not long double type

because of limitations in the current Arm C library.

A Supporting reference information
A.1 Support level definitions

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

Appx-A-269

Non-Confidential

https://developer.arm.com/documentation/100073/0616/The-Arm-C-and-C---Libraries/ISO-C-library-implementation-definition/Standard-C---library-implementation-definition

A.2 Standards compliance in Arm® Compiler
Arm Compiler conforms to the ISO C, ISO C++, ELF, and DWARF standards.

The level of compliance for each standard is:

ar
armar produces, and armlink consumes, UNIX-style object code archives. armar can list and
extract most ar-format object code archives, and armlink can use an ar-format archive created
by another archive utility providing it contains a symbol table member.

DWARF

The compiler generates DWARF 4 (DWARF Debugging Standard Version 4) debug tables with
the -g option. The compiler can also generate DWARF 3 or DWARF 2 for backwards
compatibility with legacy and third-party tools.

The linker and the fromelf utility can consume ELF format inputs containing DWARF 4,
DWARF 3, and DWARF 2 format debug tables.

The legacy assembler armasm generates DWARF 3 debug tables with the --debug option. When
assembling for AArch32, armasm can also generate DWARF 2 for backwards compatibility with
legacy and third-party tools.

ISO C
The compiler accepts ISO C90, C99, and C11 source as input.

ISO C++
The compiler accepts ISO C++98, C++11, and C++14 source as input.

ELF
The toolchain produces relocatable and executable files in ELF format. The fromelf utility can
translate ELF files into other formats.

Arm® Compiler and undefined behavior

The C and C++ standards consider any code that uses non-portable, erroneous program or data constructs
as undefined behavior. Arm provides no information or guarantees about the behavior of Arm Compiler
when presented with a program that exhibits undefined behavior. That includes whether the compiler
attempts to diagnose the undefined behavior.

 Note

The -fsanitize=undefined command-line option is a [COMMUNITY] feature.

Related information
C++ Status

A Supporting reference information
A.2 Standards compliance in Arm® Compiler

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

Appx-A-270

Non-Confidential

http://clang.llvm.org/cxx_status.html

A.3 Compliance with the ABI for the Arm® Architecture (Base Standard)
The ABI for the Arm Architecture (Base Standard) is a collection of standards. Some of these standards
are open. Some are specific to the Arm architecture.

The Application Binary Interface (ABI) for the Arm® Architecture (Base Standard) (BSABI) regulates the
inter-operation of binary code and development tools in Arm architecture-based execution environments,
ranging from bare metal to major operating systems such as Arm Linux.

By conforming to this standard, objects produced by the toolchain can work together with object libraries
from different producers.

The BSABI consists of a family of specifications including:

AADWARF64
DWARF for the Arm® 64-bit Architecture (AArch64). This ABI uses the DWARF 3 standard to
govern the exchange of debugging data between object producers and debuggers. It also gives
additional rules on how to use DWARF 3, and how it is extended in ways specific to the 64-bit
Arm architecture.

AADWARF
DWARF for the Arm® Architecture. This ABI uses the DWARF 3 standard to govern the
exchange of debugging data between object producers and debuggers.

AAELF64
ELF for the Arm® 64-bit Architecture (AArch64). This specification provides the processor-
specific definitions required by ELF for AArch64-based systems. It builds on the generic ELF
standard to govern the exchange of linkable and executable files between producers and
consumers.

AAELF
ELF for the Arm® Architecture. Builds on the generic ELF standard to govern the exchange of
linkable and executable files between producers and consumers.

AAPCS64

Procedure Call Standard for the Arm® 64-bit Architecture (AArch64). Governs the exchange of
control and data between functions at runtime. There is a variant of the AAPCS for each of the
major execution environment types supported by the toolchain.

AAPCS64 describes a number of different supported data models. Arm Compiler 6 implements
the LP64 data model for AArch64 state.

AAPCS
Procedure Call Standard for the Arm® Architecture. Governs the exchange of control and data
between functions at runtime. There is a variant of the AAPCS for each of the major execution
environment types supported by the toolchain.

BPABI
Base Platform ABI for the Arm® Architecture. Governs the format and content of executable and
shared object files generated by static linkers. Supports platform-specific executable files using
post linking. Provides a base standard for deriving a platform ABI.

CLIBABI
C Library ABI for the Arm® Architecture. Defines an ABI to the C library.

CPPABI64
C++ ABI for the Arm® Architecture. This specification builds on the generic C++ ABI
(originally developed for IA-64) to govern interworking between independent C++ compilers.

DBGOVL
Support for Debugging Overlaid Programs. Defines an extension to the ABI for the Arm
Architecture to support debugging overlaid programs.

A Supporting reference information
A.3 Compliance with the ABI for the Arm® Architecture (Base Standard)

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

Appx-A-271

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.ihi0057-/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0040-/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0056-/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0044-/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0055-/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0042-/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0037-/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0039-/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0059-/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0049-/index.html

EHABI
Exception Handling ABI for the Arm® Architecture. Defines both the language-independent and
C++-specific aspects of how exceptions are thrown and handled.

RTABI
Run-time ABI for the Arm® Architecture. Governs what independently produced objects can
assume of their execution environments by way of floating-point and compiler helper-function
support.

If you are upgrading from a previous toolchain release, ensure that you are using the most recent versions
of the Arm specifications.

A Supporting reference information
A.3 Compliance with the ABI for the Arm® Architecture (Base Standard)

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

Appx-A-272

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.ihi0038-/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0043-/index.html

A.4 GCC compatibility provided by Arm® Compiler 6
The compiler in Arm Compiler 6 is based on Clang and LLVM technology. As such, it provides a high
degree of compatibility with GCC.

Arm Compiler 6 can build most of the C code that is written to be built with GCC. However, Arm
Compiler is not 100% source compatible in all cases. Specifically, Arm Compiler does not aim to be bug-
compatible with GCC. That is, Arm Compiler does not replicate GCC bugs.

A Supporting reference information
A.4 GCC compatibility provided by Arm® Compiler 6

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

Appx-A-273

Non-Confidential

A.5 Locale support in Arm® Compiler
Summarizes the locales supported by Arm Compiler.

Arm Compiler provides full support only for the English locale.

Arm Compiler provides support for multibyte characters, for example Japanese characters, within
comments in UTF-8 encoded files. This includes:
• /* */ comments in C source files, C++ source files, and GNU-syntax assembly files.
• // comments in C source files, C++ source files, and GNU-syntax assembly files.
• @ comments in GNU-syntax assembly files, for Arm architectures.
• ; comments in armasm-syntax assembly source files and armlink scatter files.

 Note

There is no support for Shift-Japanese Industrial Standard (Shift-JIS) encoded files.

A Supporting reference information
A.5 Locale support in Arm® Compiler

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

Appx-A-274

Non-Confidential

A.6 Toolchain environment variables
Except for ARMLMD_LICENSE_FILE, Arm Compiler does not require any other environment variables to
be set. However, there are situations where you might want to set environment variables.

The environment variables that the toolchain uses are described in the following table.

Where an environment variable is identified as GCC compatible, the GCC documentation provides full
information about that environment variable. See Environment Variables Affecting GCC on the GCC web
site.

To set an environment variable on a Windows machine:
1. Open the System settings from the Control Panel.
2. Click Advanced system settings to display the System Properties dialog box, then click

Environment Variables....
3. Create a new user variable for the required environment variable.

To set an environment variable on a Linux machine, open a bash shell and use the export command. For
example:

export ARM_TOOL_VARIANT=ult

Table A-1 Environment variables used by the toolchain

Environment variable Setting

ARM_PRODUCT_PATH Required only if you have an Arm Development Studio or Arm DS-5 Development Studio toolkit
license and you are running the Arm Compiler tools outside of the that environment.

Use this environment variable to specify the location of the sw/mappings directory within an Arm
Compiler, Arm Development Studio, or DS-5 Development Studio installation.

ARM_TOOL_VARIANT Required only if you have an Arm Development Studio or DS-5 Development Studio toolkit license
and you are running the Arm Compiler tools outside of that environment.

If you have an ultimate license, set this environment variable to ult to enable the Ultimate features.
See Product and toolkit configuration for more information.

ARM_PRODUCT_DEF Required only if you have an Arm Development Studio toolkit license and you are running the Arm
Compiler tools outside of the Arm Development Studio environment.

Use this environment variable to specify the location of the product definition file. See Product and
toolkit configuration for more information.

ARMCOMPILER6_ASMOPT An optional environment variable to define additional assembler options that are to be used outside
your regular makefile.

The options listed appear before any options specified for the armasm command in the makefile.
Therefore, any options specified in the makefile might override the options listed in this environment
variable.

ARMCOMPILER6_CLANGOPT An optional environment variable to define additional armclang options that are to be used outside
your regular makefile.

The options listed appear before any options specified for the armclang command in the makefile.
Therefore, any options specified in the makefile might override the options listed in this environment
variable.

A Supporting reference information
A.6 Toolchain environment variables

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

Appx-A-275

Non-Confidential

https://gcc.gnu.org/onlinedocs/gcc/Environment-Variables.html
https://gcc.gnu.org
https://gcc.gnu.org
https://developer.arm.com/products/software-development-tools/license-management/resources/product-and-toolkit-configuration
https://developer.arm.com/products/software-development-tools/license-management/resources/product-and-toolkit-configuration
https://developer.arm.com/products/software-development-tools/license-management/resources/product-and-toolkit-configuration

Table A-1 Environment variables used by the toolchain (continued)

Environment variable Setting

ARMCOMPILER6_FROMELFOPT An optional environment variable to define additional fromelf image converter options that are to
be used outside your regular makefile.

The options listed appear before any options specified for the fromelf command in the makefile.
Therefore, any options specified in the makefile might override the options listed in this environment
variable.

ARMCOMPILER6_LINKOPT An optional environment variable to define additional linker options that are to be used outside your
regular makefile.

The options listed appear before any options specified for the armlink command in the makefile.
Therefore, any options specified in the makefile might override the options listed in this environment
variable.

ARMROOT Your installation directory root, install_directory.

ARMLMD_LICENSE_FILE This environment variable must be set, and specifies the location of your Arm license file. See
Product and toolkit configuration for more information.

 Note

On Windows, the length of ARMLMD_LICENSE_FILE must not exceed 260 characters.

C_INCLUDE_PATH GCC-compatible environment variable. Adds the specified directories to the list of places that are
searched to find included C files.

COMPILER_PATH GCC-compatible environment variable. Adds the specified directories to the list of places that are
searched to find subprograms.

CPATH GCC-compatible environment variable. Adds the specified directories to the list of places that are
searched to find included files regardless of the source language.

CPLUS_INCLUDE_PATH GCC-compatible environment variable. Adds the specified directories to the list of places that are
searched to find included C++ files.

TMP Used on Windows platforms to specify the directory to be used for temporary files.

TMPDIR Used on Red Hat Linux platforms to specify the directory to be used for temporary files.

Related information
Product and toolkit configuration

A Supporting reference information
A.6 Toolchain environment variables

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

Appx-A-276

Non-Confidential

https://developer.arm.com/products/software-development-tools/license-management/resources/product-and-toolkit-configuration
https://developer.arm.com/products/software-development-tools/license-management/resources/product-and-toolkit-configuration

A.7 Clang and LLVM documentation
Arm Compiler is based on Clang and LLVM compiler technology.

The Arm Compiler documentation describes features that are specific to, and supported by, Arm
Compiler. Any features specific to Arm Compiler that are not documented are not supported and are
used at your own risk. Although open-source Clang features that Arm does not document are available,
they are not supported by Arm and are used at your own risk. You are responsible for making sure that
any generated code using unsupported or community features on page Appx-A-266 is operating correctly.

The Clang Compiler User's Manual, available from the LLVM Compiler Infrastructure Project web site
http://clang.llvm.org, provides open-source documentation for Clang.

See the third_party_licenses.txt file in your installation for details of open source software projects
used.

 Note

Although Arm Compiler 6 is based on Clang and LLVM technology, it:
• Is not based on the same revision as any specific release of the open source version of Clang or

LLVM;
• Can contain changes introduced by Arm which are not included in the open source version.

The third_party_licenses.txt file includes GitHub links for the specific revisions in the open source
project which are relevant to the particular version of Arm Compiler.

A Supporting reference information
A.7 Clang and LLVM documentation

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

Appx-A-277

Non-Confidential

http://clang.llvm.org/docs/UsersManual.html
http://llvm.org

A.8 Further reading
Additional information on developing code for the Arm family of processors is available from both Arm
and third parties.

Arm® publications

Arm periodically provides updates and corrections to its documentation. See Arm® Infocenter for current
errata sheets and addenda, and the Arm Frequently Asked Questions (FAQs).

For full information about the base standard, software interfaces, and standards supported by Arm, see
Application Binary Interface (ABI) for the Arm® Architecture.

In addition, see the following documentation for specific information relating to Arm products:
• Arm® Architecture Reference Manuals.
• Cortex®‑A series processors.
• Cortex®‑R series processors.
• Cortex®‑M series processors.

Other publications

This Arm Compiler tools documentation is not intended to be an introduction to the C or C++
programming languages. It does not try to teach programming in C or C++, and it is not a reference
manual for the C or C++ standards. Other publications provide general information about programming.

The following publications describe the C++ language:

• ISO/IEC 14882:2014, C++ Standard.
• Stroustrup, B., The C++ Programming Language (4th edition, 2013). Addison-Wesley Publishing

Company, Reading, Massachusetts. ISBN 978-0321563842.

The following publications provide general C++ programming information:

• Stroustrup, B., The Design and Evolution of C++ (1994). Addison-Wesley Publishing Company,
Reading, Massachusetts. ISBN 0-201-54330-3.

This book explains how C++ evolved from its first design to the language in use today.
• Vandevoorde, D and Josuttis, N.M. C++ Templates: The Complete Guide (2003). Addison-Wesley

Publishing Company, Reading, Massachusetts. ISBN 0-201-73484-2.
• Meyers, S., Effective C++ (3rd edition, 2005). Addison-Wesley Publishing Company, Reading,

Massachusetts. ISBN 978-0321334879.

This provides short, specific guidelines for effective C++ development.
• Meyers, S., More Effective C++ (2nd edition, 1997). Addison-Wesley Publishing Company, Reading,

Massachusetts. ISBN 0-201-92488-9.

The following publications provide general C programming information:
• ISO/IEC 9899:2011, C Standard.

The standard is available from national standards bodies (for example, AFNOR in France, ANSI in
the USA).

• Kernighan, B.W. and Ritchie, D.M., The C Programming Language (2nd edition, 1988). Prentice-
Hall, Englewood Cliffs, NJ, USA. ISBN 0-13-110362-8.

This book is co-authored by the original designer and implementer of the C language, and is updated
to cover the essentials of ANSI C.

• Harbison, S.P. and Steele, G.L., A C Reference Manual (5th edition, 2002). Prentice-Hall, Englewood
Cliffs, NJ, USA. ISBN 0-13-089592-X.

This is a very thorough reference guide to C, including useful information on ANSI C.
• Plauger, P., The Standard C Library (1991). Prentice-Hall, Englewood Cliffs, NJ, USA. ISBN

0-13-131509-9.

A Supporting reference information
A.8 Further reading

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

Appx-A-278

Non-Confidential

http://infocenter.arm.com/help/index.jsp
http://infocenter.arm.com/help/topic/com.arm.doc.subset.swdev.abi/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.set.architecture/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.set.cortexa/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.set.cortexr/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.set.cortexm/index.html

This is a comprehensive treatment of ANSI and ISO standards for the C Library.
• Koenig, A., C Traps and Pitfalls, Addison-Wesley (1989), Reading, Mass. ISBN 0-201-17928-8.

This explains how to avoid the most common traps in C programming. It provides informative
reading at all levels of competence in C.

See The DWARF Debugging Standard web site for the latest information about the Debug With Arbitrary
Record Format (DWARF) debug table standards and ELF specifications.

A Supporting reference information
A.8 Further reading

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

Appx-A-279

Non-Confidential

http://www.dwarfstd.org

Appendix B
Arm® Compiler User Guide Changes

Describes the technical changes that have been made to the Arm Compiler User Guide.

It contains the following section:
• B.1 Changes for the Arm® Compiler User Guide on page Appx-B-281.

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

Appx-B-280

Non-Confidential

B.1 Changes for the Arm® Compiler User Guide
Changes that have been made to the Arm Compiler User Guide are listed with the latest version first.

Table B-1 Changes between 6.16 and 6.15

Change Topics affected

Changed std::vector<T>::const_reference to
std::vector<bool>::const_reference.

Added a row in the exceptions table for all standards and moved
the following list items from C++98 and C++03 rows to the new
row:
• std::vector<bool>::const_reference
• std::bitset<N>

• 3.3 Selecting source language options on page 3-45.

Added information about linking objects compiled with different
C or C++ standards.

• 3.3 Selecting source language options on page 3-45.
• 3.6 Linking object files to produce an executable

on page 3-54.

Added a topic that describes the interaction of OVERLAY and
PROTECTED attributes with armlink merge options.

• 8.1.2 Interaction of OVERLAY and PROTECTED attributes
with armlink merge options on page 8-126.

Added information about the effects of linking with a scatter file
having ZI data in an execution region.

• 8.7.3 Automatic placement of __at sections on page 8-137.

Added a note to include a .balign directive when defining your
own sections with the armclang integrated assembler.

• 1.7 Using the integrated assembler on page 1-25.

Minor improvements to the Getting Started section about compile
and link steps, and clarification of what the
clobbered_register_list means when building programs
with inline assembly code.

• 1.6 Compiling a Hello World example on page 1-23.
• 6.3 Writing inline assembly code on page 6-107.

Update description of -marm command line option to clarify that
it gives an error, not a warning, when used with an M-profile
architecture.

• 3.2 Common Arm® Compiler toolchain options on page 3-42.

Added a note for the workaround when entry functions or Non-
secure function calls have more than 4 arguments.

• 11.1 Overview of building Secure and Non-secure images
on page 11-213.

Table B-2 Changes between 6.15 and 6.14

Changes Topics affected

Added chapters about the Scalable Vector Extension (SVE)
compiler.

• Chapter 2 Getting Started with the SVE features in Arm®

Compiler on page 2-31.
• Chapter 7 SVE Coding Considerations with Arm® Compiler

on page 7-112.

Added note about Arm Compiler and undefined behavior. • 3.3 Selecting source language options on page 3-45.
• A.2 Standards compliance in Arm® Compiler

on page Appx-A-270.

Added a note about not specifying both the architecture (-march)
and the processor (-mcpu).

• 3.1 Mandatory armclang options on page 3-40.
• 3.10 Selecting floating-point options on page 3-62.

B Arm® Compiler User Guide Changes
B.1 Changes for the Arm® Compiler User Guide

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

Appx-B-281

Non-Confidential

Table B-2 Changes between 6.15 and 6.14 (continued)

Changes Topics affected

Added details about the SVE and SVE2 intrinsics support. • 7.2 Using SVE and SVE2 intrinsics directly in your C code
on page 7-118.

Reworded the note about dynamic linking not being supported for
Cortex‑M processors.

• Chapter 14 SysV Dynamic Linking on page 14-239.

Added note clarifying that Arm Compilerr 6 is not based on the
same revision as any specific release of the open source version of
LLVM and Clang, and may containArm-specific changes which
are not included in open source versions.

• A.7 Clang and LLVM documentation on page Appx-A-277.

Updated text and examples to clarify correct naming of sections
when using #pragma clang section.

• 4.9 Scatter file section or object placement with Link-Time
Optimization on page 4-92.

Added note that all eXecute In Place (XIP) code must be stored in
root regions.

• 8.4 Root region on page 8-129.
• 10.10 Root regions on page 10-193.

Improved explanation of when to use the volatile keyword to
prevent unwanted removal of inline assembler code when building
optimized output.

• B.1 Changes for the Arm® Compiler User Guide
on page Appx-B-281.

• 6.3 Writing inline assembly code on page 6-107.

Added details of the new -Omin compiler option which
minimizes code size.

• 3.4 Selecting optimization options on page 3-49.
• 4.6 Optimizing for code size or performance on page 4-84.

Removed outdated note about using __ARM_use_no_argv with
-O0 optimization level in Arm Compiler 6. The -O0 option now
supports argv/argc optimization.

• 3.4 Selecting optimization options on page 3-49.

Added a note for OVERALIGN. • 8.15 Alignment of execution regions and input sections
on page 8-164

Progressive terminology commitment added to Proprietary notices
section (all documents).

• Proprietary notices

B Arm® Compiler User Guide Changes
B.1 Changes for the Arm® Compiler User Guide

100748_0616_01_en Copyright © 2016–2021 Arm Limited or its affiliates. All rights
reserved.

Appx-B-282

Non-Confidential

	Arm® Compiler User Guide
	Table of Contents
	List of Figures
	List of Tables
	Preface
	About this book
	Using this book
	Glossary
	Typographic conventions
	Feedback
	Feedback on this product
	Feedback on content

	Other information

	1 : Getting Started
	1.1 : Introduction to Arm® Compiler 6
	1.2 : About the Arm® Compiler toolchain assemblers
	1.3 : Installing Arm® Compiler
	1.4 : Accessing Arm® Compiler from Arm® Development Studio
	1.5 : Accessing Arm® Compiler from the Arm® Keil® µVision® IDE
	1.6 : Compiling a Hello World example
	1.7 : Using the integrated assembler
	1.8 : Running bare-metal images
	1.9 : Architectures supported by Arm® Compiler
	1.10 : Using Arm® Compiler securely in a shared environment

	2 : Getting Started with the SVE features in Arm® Compiler
	2.1 : Introducing SVE
	2.2 : Assembling SVE code
	2.3 : Disassembling SVE object files
	2.4 : Running a binary in an AEMv8-A Base Fixed Virtual Platform (FVP)

	3 : Using Common Compiler Options
	3.1 : Mandatory armclang options
	3.2 : Common Arm® Compiler toolchain options
	3.3 : Selecting source language options
	3.4 : Selecting optimization options
	3.5 : Building to aid debugging
	3.6 : Linking object files to produce an executable
	3.7 : Linker options for mapping code and data to target memory
	3.8 : Passing options from the compiler to the linker
	3.9 : Controlling diagnostic messages
	3.10 : Selecting floating-point options
	3.11 : Compilation tools command-line option rules

	4 : Writing Optimized Code
	4.1 : Effect of the volatile keyword on compiler optimization
	4.2 : Optimizing loops
	4.3 : Inlining functions
	4.4 : Stack use in C and C++
	4.5 : Packing data structures
	4.6 : Optimizing for code size or performance
	4.7 : Methods of minimizing function parameter passing overhead
	4.8 : Optimizing across modules with Link-Time Optimization
	4.8.1 : Enabling Link-Time Optimization
	4.8.2 : Restrictions with Link-Time Optimization
	4.8.3 : Removing unused code across multiple object files

	4.9 : Scatter file section or object placement with Link-Time Optimization
	4.10 : How optimization affects the debug experience

	5 : Assembling Assembly Code
	5.1 : Assembling armasm and GNU syntax assembly code
	5.2 : Preprocessing assembly code

	6 : Using Assembly and Intrinsics in C or C++ Code
	6.1 : Using intrinsics
	6.2 : Custom Datapath Extension support
	6.3 : Writing inline assembly code
	6.4 : Calling assembly functions from C and C++

	7 : SVE Coding Considerations with Arm® Compiler
	7.1 : Embedding SVE assembly code directly into C and C++ code
	7.2 : Using SVE and SVE2 intrinsics directly in your C code

	8 : Mapping Code and Data to the Target
	8.1 : What the linker does to create an image
	8.1.1 : What you can control with a scatter file
	8.1.2 : Interaction of OVERLAY and PROTECTED attributes with armlink merge options

	8.2 : Placing data items for target peripherals with a scatter file
	8.3 : Placing the stack and heap with a scatter file
	8.4 : Root region
	8.4.1 : Effect of the ABSOLUTE attribute on a root region
	8.4.2 : Effect of the FIXED attribute on a root region

	8.5 : Placing functions and data in a named section
	8.6 : Loading armlink-generated ELF files that have complex scatter-files
	8.7 : Placement of functions and data at specific addresses
	8.7.1 : Placement of __at sections at a specific address
	8.7.2 : Restrictions on placing __at sections
	8.7.3 : Automatic placement of __at sections
	8.7.4 : Manual placement of __at sections
	8.7.5 : Place a key in flash memory with an __at section
	8.7.6 : Placing constants at fixed locations
	8.7.7 : Placing jump tables in ROM
	8.7.8 : Placing a variable at a specific address without scatter-loading
	8.7.9 : Placing a variable at a specific address with scatter-loading

	8.8 : Bare-metal Position Independent Executables
	8.9 : Placement of Arm® C and C++ library code
	8.9.1 : Placement of code in a root region
	8.9.2 : Placement of Arm® C library code
	8.9.3 : Placing Arm® C++ library code

	8.10 : Manual placement of unassigned sections
	8.10.1 : Default rules for placing unassigned sections
	8.10.2 : Command-line options for controlling the placement of unassigned sections
	8.10.3 : Prioritizing the placement of unassigned sections
	8.10.4 : Specify the maximum region size permitted for placing unassigned sections
	8.10.5 : Examples of using placement algorithms for .ANY sections
	8.10.6 : Example of next_fit algorithm showing behavior of full regions, selectors, and priority
	8.10.7 : Examples of using sorting algorithms for .ANY sections
	8.10.8 : Behavior when .ANY sections overflow because of linker-generated content

	8.11 : Placing veneers with a scatter file
	8.12 : Preprocessing a scatter file
	8.12.1 : Default behavior for armclang -E in a scatter file
	8.12.2 : Use of other preprocessors in a scatter file

	8.13 : Reserving an empty block of memory
	8.13.1 : Characteristics of a reserved empty block of memory
	8.13.2 : Example of reserving an empty block of memory

	8.14 : Alignment of regions to page boundaries
	8.15 : Alignment of execution regions and input sections

	9 : Overlays
	9.1 : Overlay support in Arm® Compiler
	9.2 : Automatic overlay support
	9.2.1 : Automatically placing code sections in overlay regions
	9.2.2 : Overlay veneer
	9.2.3 : Overlay data tables
	9.2.4 : Limitations of automatic overlay support
	9.2.5 : Writing an overlay manager for automatically placed overlays

	9.3 : Manual overlay support
	9.3.1 : Manually placing code sections in overlay regions
	9.3.2 : Writing an overlay manager for manually placed overlays

	10 : Embedded Software Development
	10.1 : About embedded software development
	10.2 : Default compilation tool behavior
	10.3 : C library structure
	10.4 : Default memory map
	10.5 : Application startup
	10.6 : Tailoring the C library to your target hardware
	10.7 : Reimplementing C library functions
	10.8 : Tailoring the image memory map to your target hardware
	10.9 : About the scatter-loading description syntax
	10.10 : Root regions
	10.11 : Placing the stack and heap
	10.12 : Run-time memory models
	10.13 : Reset and initialization
	10.14 : The vector table
	10.15 : ROM and RAM remapping
	10.16 : Local memory setup considerations
	10.17 : Stack pointer initialization
	10.18 : Hardware initialization
	10.19 : Execution mode considerations
	10.20 : Target hardware and the memory map
	10.21 : Execute-only memory
	10.22 : Building applications for execute-only memory
	10.23 : Vector table for ARMv6 and earlier, ARMv7-A and ARMv7-R profiles
	10.24 : Vector table for M-profile architectures
	10.25 : Vector Table Offset Register
	10.26 : Integer division-by-zero errors in C code

	11 : Building Secure and Non-secure Images Using Arm®v8‑M Security Extensions
	11.1 : Overview of building Secure and Non-secure images
	11.2 : Building a Secure image using the Arm®v8‑M Security Extensions
	11.3 : Building a Non-secure image that can call a Secure image
	11.4 : Building a Secure image using a previously generated import library

	12 : Overview of the Linker
	12.1 : About the linker
	12.1.1 : Summary of the linker features
	12.1.2 : What the linker can accept as input
	12.1.3 : What the linker outputs

	12.2 : armlink command-line syntax
	12.3 : What the linker does when constructing an executable image

	13 : Getting Image Details
	13.1 : Options for getting information about linker-generated files
	13.2 : Identifying the source of some link errors
	13.3 : Example of using the --info linker option
	13.4 : How to find where a symbol is placed when linking

	14 : SysV Dynamic Linking
	14.1 : Build a SysV shared object
	14.2 : Build a SysV executable

	15 : Overview of the fromelf Image Converter
	15.1 : About the fromelf image converter
	15.2 : fromelf execution modes
	15.3 : Getting help on the fromelf command
	15.4 : fromelf command-line syntax

	16 : Using fromelf
	16.1 : General considerations when using fromelf
	16.2 : Examples of processing ELF files in an archive
	16.3 : Options to protect code in image files with fromelf
	16.4 : Options to protect code in object files with fromelf
	16.5 : Option to print specific details of ELF files
	16.6 : Using fromelf to find where a symbol is placed in an executable ELF image

	17 : Overview of the Arm® Librarian
	17.1 : About the Arm® Librarian
	17.2 : Considerations when working with library files
	17.3 : armar command-line syntax
	17.4 : Option to get help on the armar command

	18 : Overview of the armasm Legacy Assembler
	18.1 : Key features of the armasm assembler
	18.2 : How the assembler works

	A : Supporting reference information
	A.1 : Support level definitions
	A.2 : Standards compliance in Arm® Compiler
	A.3 : Compliance with the ABI for the Arm® Architecture (Base Standard)
	A.4 : GCC compatibility provided by Arm® Compiler 6
	A.5 : Locale support in Arm® Compiler
	A.6 : Toolchain environment variables
	A.7 : Clang and LLVM documentation
	A.8 : Further reading

	B : Arm® Compiler User Guide Changes
	B.1 : Changes for the Arm® Compiler User Guide

