
AHB Example AMBA SYstem – ARM DUI 0092C
Addendum 01

This addendum document details the implementation of AHB BusMatrix, which is an
additional component in Chapter 5 AHB Synthesis in the Example AMBA SYstem
(EASY) User Guide.

Table 1 Text additions

Page Insert location Inserted text

5-9 Insert after Section 5.3 Synthesizing new AHB modules See attached text
ARM DUI 0092C Copyright © 2001 ARM Limited. All rights reserved. 1
June 2001

Addendum 01 AHB Example AMBA SYstem – ARM DUI 0092C
1 AHB BusMatrix

The bus matrix allows a number of AHB layers to communicate with a number of AHB
shared slaves. The advantage of using the BusMatrix is that it provides parallel access
paths between the various AHB layers and the shared slaves, giving improved overall
system bandwidth.

1.1 Configuration

Different systems require different sizes of AHB BusMatrix and therefore the RTL
design allows for this. The base design allows for the maximum size configuration,
which is eight layer input ports and eight shared slave output ports. To allow for smaller
sizes of BusMatrix, pragmas are included throughout the RTL to allow for the automatic
generation of any configuration, within the following parameters:

• from two to eight layer input ports

• from one to eight shared slave output ports.

1.2 Structure

Figure 1 on page 3 shows the overall structure of the BusMatrix.
2 Copyright © 2001 ARM Limited. All rights reserved. ARM DUI 0092C
June 2001

Addendum 01 AHB Example AMBA SYstem – ARM DUI 0092C
Figure 1 Top level block diagram

Input

stage
Decoder

Output

arbiter

Output

stage
Layer

input port

Input

stage
Decoder

Layer

input port

Shared slave

output port

Output

arbiter

Output

stage Shared slave

output port
ARM DUI 0092C Copyright © 2001 ARM Limited. All rights reserved. 3
June 2001

Addendum 01 AHB Example AMBA SYstem – ARM DUI 0092C
The design is made up of the following blocks:

Input stage There is one input stage for each layer input port. The input stage
is responsible for holding the address and control information
when the transfer to a shared slave is not able to commence
immediately.

Decode stage Each layer input port also has a decoder associated with it. The
decoder determines which shared slave a transfer is destined for.

Output stage Each shared slave has an output stage which is used to select
which of the various input layers is routed to the slave.

Output arbiter Each output stage contains an output arbiter. The arbiter looks at
which of the input stages has to perform a transfer to the shared
slave and decides which is currently the highest priority.

Top level The top level of the BusMatrix connects each input stage or
decoder to all the output stages.

1.3 Directory structure

The multi-layer AHB BusMatrix is supplied in the directory structure shown in
Figure 2.

Figure 2 BusMatrix directory structure
4 Copyright © 2001 ARM Limited. All rights reserved. ARM DUI 0092C
June 2001

Addendum 01 AHB Example AMBA SYstem – ARM DUI 0092C
The following directories are supplied:

• The vhdl and vlog directories contain the RTL for VHDL and Verilog
respectively. In each of these areas, the full source for an 8-input, 8-output
BusMatrix is in the src directory and a configuration script is supplied to allow
any version of the BusMatrix to be generated in the built directory.

• The synopsys area contains all the Synopsys synthesis scripts that are required to
synthesize the design. To perform synthesis on a version of the BusMatrix, use the
run_BusMatrix.csh script.

• The docs directory contains the documentation that accompanies the BusMatrix.

1.4 Configuration

The BusMatrix is designed to allow for all configurations of input and output ports, up
to a maximum of eight:

• from two to eight input ports

• from one to eight output ports

• round-robin or fixed arbitration.

This gives a total of 112 different configurations (7 × 8 × 2). A script called
configmatrix.pl is supplied to allow the construction of any version that is required.

The script is located in both the vhdl and vlog directories. To obtain information on the
usage of the script, run the script with the help switch:

 > configmatix.pl --help

This prints the following information:

Purpose: Builds particular configurations of the BusMatrix
component.

Usage:
Builds a BusMatrix component with a given number of input
ports <inports>, a given number of output ports <outports>
and a particular arbitration scheme.

Options:
--inports=NUM Number of input ports (2,3..8)
--outports=NUM Number of output ports (1,2..8)
--arb=SCHEME Arbitration scheme (f - fixed,

r - round-robin)
--all Builds all possible configurations
--verbose Prints progress information
--help Prints this help

To run the script and build all possible variants use the following command:
ARM DUI 0092C Copyright © 2001 ARM Limited. All rights reserved. 5
June 2001

Addendum 01 AHB Example AMBA SYstem – ARM DUI 0092C
 > configmatrix.pl --all --verbose

When run, the script generates the RTL for the required BusMatrix in the built
directory. The name of the directory has the maximum number of the input and outputs
as found in the RTL and this is one less than might be expected, because the ports are
numbered from zero up to the maximum number. For example, a BusMatrix with three
input ports and five output ports is found in the directory named
input2_by_output4_fixed.

If only a single configuration of the BusMatrix is required, the script can be run to only
build that option. Three parameters are required:

• number of input ports

• number of output ports

• arbitration scheme, which can be either fixed priority or round-robin

To build a BusMatrix with three input ports, five output ports, and a fixed priority
arbitration scheme, use the following command:

 > configmatrix.pl --inports=3 --outports=5 --arb==fixed

Source code pragmas

The different configurations are generated from a source design that is constructed for
the maximum configuration of eight input ports and eight output ports. Throughout this
design pragmas are used to indicate the portions of code that can be removed for smaller
BusMatrix configurations.

For example, the code required for just one output port (port number 0) is followed by
the pragma

-- busswitch output0

the code required for two output ports (up to port number 1) is followed by the pragma

-- busswitch output1

and so on, until finally the code required for all output ports (up to port number 7) is
followed by the pragma

-- busswitch output7

Therefore, to generate the code required for a two output port configuration the script is
used to remove all the RTL code between the -- busswitch output1 and -- busswitch
output7 pragmas.
6 Copyright © 2001 ARM Limited. All rights reserved. ARM DUI 0092C
June 2001

Addendum 01 AHB Example AMBA SYstem – ARM DUI 0092C
1.5 Design description

This section describes each of the design modules in detail.

Input stage

Figure 3 shows the input stage. All of the ports on the left side of the diagram are
connected to the input layer and all the ports on the right of the diagram are connected
to either the decoder or output stages within the BusMatrix.

Figure 3 Input stage

The main function of the input stage is to hold the address and control information from
the input layer if the transfer cannot be passed immediately to the appropriate shared
slave. This is required because in the AHB protocol the duration of the address phase is
controlled by the slave. The slave was accessed by the previous transfer and therefore
the BusMatrix cannot extend the address phase of the transfer if the required shared
slave is not available.

LoadReg

Sel

Addr

Size

Write

Prot

Mastlock

Trans

Burst

D Q

EN

ReadyOut

Resp

HeldTran

D Q

HREADYOUT

HRESP

HSEL

HTRANS

HADDR

HWRITE

HSIZE

HBUSRT

HPROT

HMASTLOCK

Address/control

holding register

Active

HREADY

HTRANS

HSEL
ARM DUI 0092C Copyright © 2001 ARM Limited. All rights reserved. 7
June 2001

Addendum 01 AHB Example AMBA SYstem – ARM DUI 0092C
The loading of the holding register is controlled by the Active signal. Each output stage
generates a set of Active signals, one per input stage, which indicates that the
address/control signals from a given input stage are currently being driven on to the
required shared slave.

Whenever a transfer arrives at the input stage it is either passed directly to the output
stage, if Active is HIGH, or it is loaded in to the holding register if Active is LOW. The
multiplexor in the address/control signal path simply selects the holding register when
it is loaded or the straight-through path when it is empty.

The HeldTran signal is generated within the input stage and indicates if the holding
register is full or empty. To be more precise, the HeldTran signal indicates if the
holding register is full or empty in the following cycle. This signal is not only used
within this block, but is also routed to the output arbitration block, because it shows that
the input stage has a transfer that is ready to start.

The second main function of the input stage is to generate the HREADYOUT and
HRESP signals for the input layer and this is done as follows:

• When a transfer has been routed to the appropriate output stage the
HREADYOUT and HRESP are generated from the equivalent signals at the
output stage.

• When a transfer is stored in the holding register HREADYOUT is driven LOW
to stall the transfer and HRESP indicates OKAY.

• When the input stage is not being accessed or for an IDLE or BUSY transfer,
HREADYOUT is driven HIGH and HRESP indicates OKAY, as required by the
AHB protocol.

The final function provided by the input stage is shown in Figure 3 on page 7 by the two
logic bubbles on the HTRANS and HBURST paths as they leave the input stage. These
two patches of logic are used to override the transfer type information and the burst
information if a fixed length burst to a shared slave is interrupted before it reaches
completion. If this happens, the burst information is changed to indicate an INCR
undefined length burst. The transfer type signals are only overridden to NONSEQ, if a
wrapping burst has been changed to an INCR burst and has crossed the wrap boundary.

Decoder

Each input stage has a decoder associated with it, which is used to determine the output
stage that is required to complete an access. Because the address map of every system
can be different, the main address decode function of the decoder can be changed if
required. Within the RTL this section of code, which converts from the incoming
address bus to an output port number AddrOutPort, is located at the top of the file.
Figure 4 on page 9 shows the decoder.
8 Copyright © 2001 ARM Limited. All rights reserved. ARM DUI 0092C
June 2001

Addendum 01 AHB Example AMBA SYstem – ARM DUI 0092C
By default, the decoder is supplied with each of the output ports occupying 16MB of
address space, that is, HADDR[26:24] is used to determine the output port required.

Figure 4 Decoder

ReadyOut0

D Q
Address

decode

Sel

ReadyOut1

ReadyOutX

Resp0

Resp1

RespX

Rdata0

Rdata1

RdataX

DataOutPort

AddrOutPort
Addr

Active0

Active1

ActiveX

Sel0

Sel1

SelX

Active

ReadyOut

Resp

Rdata
ARM DUI 0092C Copyright © 2001 ARM Limited. All rights reserved. 9
June 2001

Addendum 01 AHB Example AMBA SYstem – ARM DUI 0092C
Within the decoder, AddrOutPort is used to show which output port the current
address and control information is destined for. DataOutPort is used to show which
output port is being used for the data phase of the previous transfer.

AddrOutPort is used for two routing functions. Firstly, assuming that the input Sel
signal is HIGH, AddrOutPort is used to determine which output stage select signal
must be asserted. Only one output Sel signal can be asserted at a time. Each output stage
has a Sel signal from each input layer and the output stage arbitration can use this to
determine which input stages has to perform a transfer.

The second use of AddrOutPort is to route the appropriate Active signal back to the
input stage. The Active signal indicates that the address of the input port is being
actively driven to the shared slave, so the transfer does not have to be held in the input
stage.

Each time an address phase completes, as indicated by HREADY being HIGH, the data
phase of the transfer commences. Whenever HREADY is HIGH, the output port
number in AddrOutPort is moved to DataOutPort to indicate the output port required
to complete the transfer.

Within the decoder DataOutPort is then used to select the HREADYOUT, HRESP,
and HRDATA from the appropriate output stage and route these back to the input stage.

If an input layer accesses one shared slave and then immediately follows this with an
access to a different shared slave, the output port indicated by AddrOutPort is different
from the output port indicated by DataOutPort.

Output stage

Each output stage gives access to a shared slave. In reality there can be more than one
shared slave connected to an output stage, but from the perspective of the BusMatrix
this is not important and it can treat multiple shared slaves on the same port as just one
slave (see Address decoding strategies on page 14 for more information on connecting
multiple shared slaves to one output stage).

Each output stage has two main functions:

• it contains an output arbitration block to decide which input stage is given access
to the shared slave

• it contains a set of routing multiplexors.

Figure 5 on page 11 shows the output stage.
10 Copyright © 2001 ARM Limited. All rights reserved. ARM DUI 0092C
June 2001

Addendum 01 AHB Example AMBA SYstem – ARM DUI 0092C
Figure 5 Output stage

Addr0/Control0

Addr1/Control1

AddrX/ControlX

Wdata0

Wdata1

WdataX

0

1

DataInPortAddrInPort
D Q

Active0

Active1

ActiveX
HSELM

HTRANSM

HADDRM

HWRITEM

HSIZEM

HBURSTM

HPROTM

HMASTLOCKM

Sel0

HeldTran0

Sel1

HeldTran1

SelX

HeldTranX

Arbitration

NoPort

HWDATAM

HREADYM

HREADYOUTMReadyOut

Selected

1

ARM DUI 0092C Copyright © 2001 ARM Limited. All rights reserved. 11
June 2001

Addendum 01 AHB Example AMBA SYstem – ARM DUI 0092C
The main routing multiplexors in the output stage are the address/control signals
multiplexor, which is controlled directly using AddrInPort. The write data multiplexor
is controlled using the data phase signal, DataInPort.

The address/control signals multiplexor is followed by another multiplexor, which
drives all the address/control output signals to inactive levels when no input stages are
selected, as indicated by the NoPort signal.

The two other functions contained within the output stage are the generation of the
Active signals and the generation of the HREADY signal for the shared slave:

• The Active signals indicate back to the various input stages which one is currently
driving out to the shared slave. Only one Active signal is asserted at any time.

• The HREADY signal for the shared slave is generated from the HREADYOUT
signal of the slave when it is selected and at all other times it is driven HIGH.

Output arbitration

The Request signals for the output arbitration are generated within the output stage by
ANDing the HeldTran signal with the Select signal from each input stage. The
HeldTran signal shows that there is a transfer ready to commence and the Select signal
shows that it is destined for this particular output stage.

It is important that the arbitration process uses the HeldTran signal, rather than just
using HTRANS(1), because the HeldTran signal also includes the fact that the
HREADY signal on the input layer is HIGH. This is important because otherwise a
transfer can be routed to the shared slave before it is has actually started on the input
layer.

Within the output arbitration block all of the Request signals are combined to work out
which input stage must be used for the next transfer. The arbitration process follows
four steps:

1. If HMASTLOCK is asserted, the same input stage remains selected.

2. If HMASTLOCK is not asserted, all the different requests are examined and the
highest priority input stage is selected. The algorithm that is used to choose
between the input stages can be user-modified and two different schemes, fixed
priority and round-robin, are supplied.

3. If no input stage is requesting access and the currently selected input stage is
performing Idle transfers to the shared slave, that is, the Sel signal is still asserted,
then the same input stage is selected.
12 Copyright © 2001 ARM Limited. All rights reserved. ARM DUI 0092C
June 2001

Addendum 01 AHB Example AMBA SYstem – ARM DUI 0092C
4. If none of the above apply, the NoPort signal is asserted, which indicates that
none of the input stages must be selected and the address/control signals to the
shared slave must be driven to an inactive state.

Figure 6 shows the output arbitration.

Figure 6 Output arbitration

The output arbitration registers the result of the arbitration process before passing this
to the output stage multiplexors. This is done to avoid the critical path of attempting to:

• work out which input stages requires a transfer

• arbitrate between them

• switch the output multiplexors and still provide the address and control signals to
the shared slave with adequate setup time.

However, this registering of the arbitration result can lead to a single cycle delay when
an input layer first attempts access to a shared slave. The single cycle delay becomes
hidden if the shared slave is already being accessed by another input layer.

The cycle delay only occurs on the first access to a shared slave. If an input layer
performs a sequence of bursts to the shared slave, all of which are in the same address
decode region then the single cycle penalty is only observed for the first access in the
sequence.

It is possible in low clock frequency systems to remove the register stage. This removes
the cycle delay that occurs to give an input stage access to the shared slave. However,
this must only be done in circumstances where it is known that the critical arbitration
timing path can be satisfied.

D Q

D Q AddrInPort

NoPort

Req0

Req1

ReqX

HTRANSM

HMASTLOCKM

HSELM

Arbitration
ARM DUI 0092C Copyright © 2001 ARM Limited. All rights reserved. 13
June 2001

Addendum 01 AHB Example AMBA SYstem – ARM DUI 0092C
1.6 Address decoding strategies

Using a simple Multi-layer bus architecture with just one AHB master on each input
layer and just one AHB slave on each output from the BusMatrix means that the entire
system address decoding can be done within the decoder section of the BusMatrix.

However, typically more complex architectures are used to optimize the interconnect
solution for a particular application and, in this case, an appropriate address decoding
strategy has to be adopted.

Figure 7 shows the principle by showing an architecture that includes both local slaves
on an input layer and multiple slaves on a single output port. The recommended
approach is to use a simple decode at each stage, as shown.

Figure 7 Address decode

Master

#3
Slave

#6

Interconnect

matrix

Slave

#7

Decode
Decode

Slave

#3

Slave

#4

Slave

#5

Decode

Master

#2

Master

#1

Slave

#2

Slave

#1
14 Copyright © 2001 ARM Limited. All rights reserved. ARM DUI 0092C
June 2001

Addendum 01 AHB Example AMBA SYstem – ARM DUI 0092C
1.7 Gate count optimization options

The BusMatrix can be configured for any number of input and output ports, up to a
maximum of eight. This ensures that the size and complexity of the BusMatrix is well
matched to that required for the target application. However, it is possible to make
further small optimizations to the total size of the BusMatrix:

• If access to an output stage is not required from all input stages, it is possible to
modify the top-level of the design so that the instantiation of the output stage has
all of the signal connections to unrequired input stages tied off to appropriate
levels. This should result in a gate count reduction during synthesis.

• If certain control signals are not used by any of the shared slaves, such as
HPROT, HBURST, or possibly some of the address lines, it is possible that these
signals can be tied-off at the top-level, again resulting in a gate count reduction
during synthesis.

1.8 Additional arbitration schemes

Arbitration

The arbitration within the BusMatrix determines which input port has access to the
shared slave and each shared slave has its own arbitration. Different arbitration schemes
provide different system characteristics in terms of access latency and overall system
performance.

The following arbitration schemes are supported by the slave switch:

• one port always has highest priority

• switch on every transfer if other port waiting.

The following arbitration schemes can also be considered for a particular application.
However, these schemes are not supported and might require significant modification
to the arbitration section of the switch:

• switch after n transfers if other port waiting

• switch if other port waiting for n transfers

• switch after n cycles if other port waiting

• switch at the end of fixed length bursts.

Locked transfers

The arbitration section of the BusMatrix ensures that when a master performs a
sequence of locked transfer to a slave, no other master is allowed access to that slave
until the master has completed the sequence.
ARM DUI 0092C Copyright © 2001 ARM Limited. All rights reserved. 15
June 2001

Addendum 01 AHB Example AMBA SYstem – ARM DUI 0092C
Using a multi-layer AHB system requires certain restrictions to be placed on the use of
locked transfers to prevent a deadlock situation. It is required that a sequence of locked
transfers are all performed to the same slave within the system. A bus master can ensure
this restriction is met by ensuring that a locked sequence of transfers remains within a
1KB address region.
16 Copyright © 2001 ARM Limited. All rights reserved. ARM DUI 0092C
June 2001

Addendum 01 AHB Example AMBA SYstem – ARM DUI 0092C
1.9 Example timing diagrams

This section gives some example transfer sequences for the BusMatrix. For clarity, all
transfer sequences shown are read operations, but the same cycle behavior occurs for
writes.

Figure 8 shows simultaneous access from both ports with switching occurring every
transfer. In this example, the shared slave inserts a wait state on the first transfer from
each port, but all subsequent transfers are zero wait state.

Figure 8 Parallel access timing diagram
ARM DUI 0092C Copyright © 2001 ARM Limited. All rights reserved. 17
June 2001

Addendum 01 AHB Example AMBA SYstem – ARM DUI 0092C
Figure 9 shows a port accessing the shared slave when the other input port is idle. At the
start of the sequence, a single wait state is inserted by the BusMatrix. This example
shows the shared slave inserting one wait state for each of the first two accesses.

Figure 9 Single port access timing diagram
18 Copyright © 2001 ARM Limited. All rights reserved. ARM DUI 0092C
June 2001

Addendum 01 AHB Example AMBA SYstem – ARM DUI 0092C
1.10 Interface diagram and signal list

Figure 10 shows the signal interface for the BusMatrix.

Figure 10 Signal interface diagram

HSELS1

HADDRS1[31:0]

HTRANS1[1:0]

HWRITES1

HSIZES1[2:0]

HBURSTS1[2:0]

HPROTS1[3:0]

HWDATAS1[31:0]

HMASTLOCKS1

HREADYS1

HRDATAS1[31:0]

HREADYOUTS1

HRESPS1[1:0]

HRESETn

HCLK

HSELS2

HADDRS2[31:0]

HTRANSS2[1:0]

HWRITES2

HSIZES2[2:0]

HBURSTS2[2:0]

HPROTS2[3:0]

HWDATAS2[31:0]

HMASTLOCKS2

HREADYS2

HRDATAS2[31:0]

HREADYOUTS2

HRESPS2[1:0]

HSELM1

HADDRM1[31:0]

HTRANSM1[1:0]

HWRITEM1

HSIZEM1[2:0]

HBURSTM1[2:0]

HPROTM1[3:0]

HWDATAM1[31:0]

HMASTLOCKM1

HREADYM1

HRDATAM1[31:0]

HREADYOUTM1

HRESPM1[1:0]

Input

port 1

Input

port 2

Output

port 1

HSELM2

HADDRM2[31:0]

HTRANSM2[1:0]

HWRITEM2

HSIZEM2[2:0]

HBURSTM2[2:0]

HPROTM2[3:0]

HMASTLOCKM2

HREADYM2

HRDATAM2[31:0]

HREADYOUTM2

HRESPM2[1:0]

Output

port 2HWDATAM2[31:0]
ARM DUI 0092C Copyright © 2001 ARM Limited. All rights reserved. 19
June 2001

Addendum 01 AHB Example AMBA SYstem – ARM DUI 0092C
Table 2 shows a list of the interface signals used by the BusMatrix. An identical set of
signals can be found on each of the input ports and each of the slave output ports.

Table 2 BusMatrix interface signals

Name Direction Description

AMBA signals

HCLK Input Bus clock

HRESETn Input Reset

Input port signals

HSELSx Input Input port x select signal

HADDRSx[31:0] Input Input port x address

HTRANSSx[1:0] Input Input port x transfer type

HWRITESx Input Input port x transfer direction

HSIZESx[2:0] Input Input port x transfer size

HBURSTSx[2:0] Input Input port x burst type

HPROTSx[3:0] Input Input port x protection control

HWDATASx[31:0] Input Input port x write data

HMASTLOCKSx Input Input port x locked transfer

HREADYSx Input Input port x ready signal

HRDATASx[31:0] Output Input port x read data

HREADYOUTSx Output Input port x ready output

HRESPSx[1:0] Output Input port x response

Output port signals

HSELMx Output Output port x select signal

HADDRMx[31:0] Output Output port x address

HTRANSMx[1:0] Output Output port x transfer type

HWRITEMx Output Output port x transfer direction

HSIZEMx[2:0] Output Output port x transfer size

HBURSTMx[2:0] Output Output port x burst type
20 Copyright © 2001 ARM Limited. All rights reserved. ARM DUI 0092C
June 2001

Addendum 01 AHB Example AMBA SYstem – ARM DUI 0092C
1.11 AC characteristics

The BusMatrix conforms to the following AMBA timing parameters:

• combinatorial input to output paths less than 20% of HCLK cycle

• all outputs valid 60% of cycle after rising HCLK
• registered inputs setup 60% of cycle before rising HCLK.

The timing characteristics are confirmed by performing synthesis on the slave switch
using the slow/slow process point of the Avanti cb25 cell library at a target speed of
100MHz.

1.12 Gate count

The gate count estimate depends on the configuration of the BusMatrix. Table 3 shows
some examples of the boundaries.

HPROTMx[3:0] Output Output port x protection control

HWDATAMx[31:0] Output Output port x write data

HMASTLOCKMx Output Output port x locked transfer

HREADYMx Output Output port x ready signal

HRDATAMx[31:0] Input Output port x read data

HREADYOUTMx Input Output port x ready output

HRESPMx[1:0] Input Output port x response

Table 2 BusMatrix interface signals (continued)

Name Direction Description

Table 3 BusMatrix gate count

Matrix Cell area Interconnect area Total area

2 input ports, 1 output port 1,300 600 1,900

2 input ports, 2 output pors 1,900 900 2,800

3 input ports, 3 output ports 3,200 1,700 4,900

8 input ports, 8 output ports 15,000 10,000 25,000
ARM DUI 0092C Copyright © 2001 ARM Limited. All rights reserved. 21
June 2001

Addendum 01 AHB Example AMBA SYstem – ARM DUI 0092C
1.13 Test methodology

The AHB BusMatrix is designed for full scan test insertion. No dedicated test features
are included.
22 Copyright © 2001 ARM Limited. All rights reserved. ARM DUI 0092C
June 2001

	1 AHB BusMatrix
	1.1 Configuration
	1.2 Structure
	1.3 Directory structure
	1.4 Configuration
	Source code pragmas

	1.5 Design description
	Input stage
	Decoder
	Output stage
	Output arbitration

	1.6 Address decoding strategies
	1.7 Gate count optimization options
	1.8 Additional arbitration schemes
	Arbitration
	Locked transfers

	1.9 Example timing diagrams
	1.10 Interface diagram and signal list
	1.11 AC characteristics
	1.12 Gate count
	1.13 Test methodology

