
ARM® Developer Suite
Version 1.2

AXD and armsd Debuggers Guide
Copyright © 1999-2001 ARM Limited. All rights reserved.
ARM DUI 0066D

ARM Developer Suite
AXD and armsd Debuggers Guide

Copyright © 1999-2001 ARM Limited. All rights reserved.

Release Information

The following changes have been made to this document.

Proprietary Notice

Words and logos marked with ® or ™ are registered trademarks or trademarks owned by ARM Limited. Other
brands and names mentioned herein may be the trademarks of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this document
may be adapted or reproduced in any material form except with the prior written permission of the copyright
holder.

The product described in this document is subject to continuous developments and improvements. All
particulars of the product and its use contained in this document are given by ARM in good faith. However,
all warranties implied or expressed, including but not limited to implied warranties of merchantability, or
fitness for purpose, are excluded.

This document is intended only to assist the reader in the use of the product. ARM Limited shall not be liable
for any loss or damage arising from the use of any information in this document, or any error or omission in
such information, or any incorrect use of the product.

Change History

Date Issue Change

October 1999 ARM DUI 0066A ADS 1.0 Release

March 2000 ARM DUI 0066B ADS 1.0.1 Release

November 2000 ARM DUI 0066C ADS 1.1 Release

November 2001 ARM DUI 0066D ADS 1.2 Release
ii Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

Contents
ARM Developer Suite AXD and armsd
Debuggers Guide

Preface
About this book .. viii
Feedback .. xii

Part A AXD

Chapter 1 About AXD
1.1 Debugger concepts ... 1-2
1.2 Interfacing with targets .. 1-5
1.3 Debugging systems .. 1-8
1.4 Availability and compatibility ... 1-11
1.5 Online help .. 1-12

Chapter 2 Getting Started in AXD
2.1 License-managed software ... 2-2
2.2 Starting and closing AXD .. 2-3
2.3 Debugger target .. 2-6
2.4 AXD displays ... 2-9
2.5 AXD menus ... 2-12
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. iii

Contents
2.6 Tool icons, status bar, keys, and commands ... 2-14

Chapter 3 Working with AXD
3.1 Running a demonstration program ... 3-2
3.2 Setting a breakpoint .. 3-4
3.3 Setting a watchpoint ... 3-6
3.4 Examining the contents of variables ... 3-8
3.5 Examining the contents of registers ... 3-12
3.6 Examining the contents of memory .. 3-14
3.7 Locating and changing values and verifying changes 3-16
3.8 Creating a revised version of the program ... 3-18

Chapter 4 AXD Facilities
4.1 Stopping and stepping .. 4-2
4.2 Expressions .. 4-4
4.3 Viewing and editing .. 4-6
4.4 Entering addresses ... 4-12
4.5 Persistence ... 4-13
4.6 RealMonitor support ... 4-14
4.7 Data formatting ... 4-16
4.8 Profiling ... 4-27

Chapter 5 AXD Desktop
5.1 Menus, toolbars, and status bar ... 5-2
5.2 File menu .. 5-6
5.3 Search menu .. 5-16
5.4 Processor Views menu ... 5-18
5.5 System Views menu ... 5-48
5.6 Execute menu ... 5-76
5.7 Options menu ... 5-80
5.8 Window menu ... 5-99
5.9 Help menu .. 5-102

Chapter 6 AXD Command-line Interface
6.1 Command Line Window ... 6-2
6.2 Parameters and prefixes .. 6-4
6.3 Commands with list support ... 6-5
6.4 Predefined command parameters .. 6-6
6.5 Definitions ... 6-9
6.6 Commands ... 6-13

Part B armsd

Chapter 7 About armsd
7.1 About armsd ... 7-2
iv Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

Contents
7.2 Command syntax .. 7-3

Chapter 8 Getting Started in armsd
8.1 Specifying source-level objects ... 8-2
8.2 armsd variables ... 8-7
8.3 Low-level debugging ... 8-13

Chapter 9 Working with armsd
9.1 Groups of armsd commands ... 9-2
9.2 Alphabetical list of armsd commands .. 9-7
9.3 Accessing the debug communications channel .. 9-46
9.4 armsd commands for EmbeddedICE .. 9-47

Appendix A AXD and armsd Commands
A.1 Comparison of commands .. A-2
A.2 Useful internal variables .. A-8

Appendix B Coprocessor Registers
B.1 ARM710T processor ... B-2
B.2 ARM720T processor ... B-3
B.3 ARM740T processor ... B-4
B.4 ARM920T Rev 0 processor ... B-5
B.5 ARM920T Rev 1 processor ... B-7
B.6 ARM940T Rev 0 processor ... B-9
B.7 ARM940T Rev 1 processor ... B-11
B.8 ARM946E-S processor ... B-13
B.9 ARM966E-S processor ... B-15
B.10 ARM10200E processor ... B-16
B.11 ARM1020E processor ... B-20
B.12 ARM10E processor ... B-22
B.13 XScale processor .. B-24

Appendix C Supplementary Display Module Formats
C.1 Predefined formats ... C-2
C.2 User-defined formats ... C-5

Appendix D Using the Flash Downloader
D.1 About the Flash downloader .. D-2
D.2 Using the Flash downloader from AXD .. D-4
D.3 Using the Flash downloader from armsd ... D-5
D.4 Setting the IP address of a PID board ... D-6

Glossary
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. v

Contents
vi Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

Preface

This preface introduces the ARM debuggers and their documentation. It contains the
following sections:

• About this book on page viii

• Feedback on page xii.
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. vii

Preface
About this book

This book has two parts that describe the currently supported ARM debuggers:

• Part A describes the graphical user interface components of ARM eXtended
Debugger (AXD). This is the most recent ARM debugger and is part of the ARM
Developer Suite (ADS). Tutorial information is included to demonstrate the main
features of AXD. If AXD is the only debugger you use, you can safely ignore Part
B, but you might have to refer to the Appendixes, Glossary, and Index at the end
of the book.

• Part B describes the ARM Symbolic Debugger (armsd).

Intended audience

This book is written for developers who are using either of the currently supported
ARM debuggers under MS Windows NT, 95, 98, 2000, or UNIX. It assumes that you
are an experienced software developer, and that you are familiar with the ARM
development tools as described in Getting Started (see ARM publications on page x).

Using this book

This book is organized into the following parts and chapters:

PART A Part A covers the use of AXD.

Chapter 1 About AXD

Chapter 1 explains some of the concepts of debugging and the
terminology used. It also describes the ARM debuggers, AXD and armsd,
and how this book is complemented by online help.

Chapter 2 Getting Started in AXD

Chapter 2 reminds you that you use ARM software under a license
agreement, and how software licensing is managed. It then explains how
to set up a debugger target, and gives an overview of the AXD desktop.

Chapter 3 Working with AXD

Chapter 3 provides some examples with step-by-step instructions to
demonstrate typical debugging sessions.

Chapter 4 AXD Facilities

Chapter 4 starts with an overview of the debugging facilities that you
must have, and how they are provided by AXD. This is followed by
information about expressions, viewing and editing data, and profiling.
viii Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

Preface
Chapter 5 AXD Desktop

Chapter 5 describes the menus, views, dialogs, and tool and status bars
provided by the AXD desktop.

Chapter 6 AXD Command-line Interface

Chapter 6 describes command-line operation of AXD.

PART B Part B covers the use of armsd.

Chapter 7 About armsd

Chapter 11 introduces armsd. This is an interactive, command-line,
debugger that provides source-level debugging for C and C++, and
low-level support for ARM assembly language.

Chapter 8 Getting Started in armsd

Chapter 12 explains how to set up and start using armsd, and describes
some necessary debugging concepts.

Chapter 9 Working with armsd

Chapter 13 provides detailed descriptions of the features of armsd, and
instructions for their use.

Appendix A AXD and armsd Commands

Appendix A lists and compares all the commands available in both the
armsd and AXD debugger.

Appendix B Coprocessor Registers

Appendix B describes the various available coprocessor registers.

Appendix C Supplementary Display Module Formats

Appendix C describes how supplementary display formats can be defined
in files that can be read by AXD.

Appendix D Using the Flash Downloader

Appendix D describes how the Flash downloader can be used to write a
binary file to the Flash memory on an ARM Integrator™ board, or an
ARM Development (PID) board.

Glossary An alphabetically arranged glossary defines the special terms used.
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. ix

Preface
Typographical conventions

The following typographical conventions are used in this book:

italic Highlights important notes, introduces special terminology,
denotes internal cross-references, and citations.

bold Highlights interface elements, such as menu names. Denotes
ARM processor signal names. Also used for terms in descriptive
lists, where appropriate.

monospace Denotes text that can be entered at the keyboard, such as
commands, file and program names, and source code.

monospace Denotes a permitted abbreviation for a command or option. The
underlined text can be entered instead of the full command or
option name.

monospace italic Denotes arguments to commands and functions where the
argument is to be replaced by a specific value.

monospace bold Denotes language keywords when used outside example code.

Further reading

This section lists publications from ARM Limited that provide additional information
on developing code for the ARM family of processors.

ARM periodically provides updates and corrections to its documentation. See
http://www.arm.com for current information.

See also the ARM Frequently Asked Questions list at http://www.arm.com.

ARM publications

This book contains information specific to the ARM debuggers supplied with ADS. The
ADS document suite describes other components of ADS in the following books:

• ADS Installation and License Management Guide (ARM DUI 0139)

• Getting Started (ARM DUI 0064)

• ADS Assembler Guide (ARM DUI 0068)

• ADS Compilers and Libraries Guide (ARM DUI 0067)

• ADS Linker and Utilities Guide (ARM DUI 0151)
x Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

Preface
• CodeWarrior IDE Guide (ARM DUI 0065)

• ADS Debug Target Guide (ARM DUI 0058)

• ADS Developer Guide (ARM DUI 0056)

• ARM Applications Library Programmer’s Guide (ARM DUI 0081).

The following additional documentation is provided with the ARM Developer Suite:

• ARM Architecture Reference Manual (ARM DDI 0100). This is supplied both in
DynaText format, and in PDF format in
install_directory\PDF\DDI0100E_ARM_ARM.pdf

• ARM ELF specification (SWS ESPC 0003). This is supplied in PDF format in
install_directory\PDF\specs\ARMELF.pdf.

• TIS DWARF 2 specification. This is supplied in PDF format in
install_directory\PDF\specs\TIS-DWARF2.pdf.

• ARM/Thumb® Procedure Call Standard (ATPCS) Specification (SWS ESPC
0002). This is supplied in PDF format in
install_directory\PDF\specs\ATPCS.pdf.

In addition, refer to the following for specific information relating to ARM products:

• ARM Reference Peripherals Specification (ARM DDI 0062)

• ARM Trace Debug Tools User Guide (ARM DUI 0118)

• ARM Agilent Debug Interface Version 1.0 User Guide

• the ARM datasheet or technical reference manual for your hardware device.

Third party products

Further information on Agilent emulators and similar products is available from Agilent
at http://www.agilent.com.
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. xi

Preface
Feedback

ARM Limited welcomes feedback on both the ARM Developer Suite, and its
documentation.

Feedback on the ARM Developer Suite

If you have any problems with the ARM Developer Suite, please contact your supplier.
To help us provide a rapid and useful response, please give:

• details of the release you are using

• details of the platform you are running on, such as the hardware platform,
operating system type, and version

• a small stand-alone sample of code that reproduces the problem

• a clear explanation of what you expected to happen, and what actually happened

• the commands you used, including any command-line options

• sample output illustrating the problem

• the version string of the tool, including the version number and date.

Feedback on this book

If you have any problems with this book, please send email to errata@arm.com giving:

• the document title

• the document number

• the page number(s) to which your comments apply

• a concise explanation of your comments.

General suggestions for additions and improvements are also welcome.
xii Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

Part A
AXD

Chapter 1
About AXD

This chapter explains some of the concepts of debugging and the terminology used. It
also describes the two ARM debuggers, and how this book is complemented by online
help. It contains the following sections:

• Debugger concepts on page 1-2

• Interfacing with targets on page 1-5

• Online help on page 1-12.
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 1-1

About AXD
1.1 Debugger concepts

This section introduces some of the concepts involved in debugging program images.

1.1.1 Debugger

A debugger is software that enables you to make use of a debug agent in order to
examine and control the execution of software running on a debug target. This part of
the book covers AXD, the ARM eXtended Debugger. The second part of this book
covers armsd, the ARM Symbolic Debugger.

1.1.2 Debug target

At an early stage of product development there might be no hardware. The expected
behavior of the product is simulated by software. Even though you might run this
software on the same computer as the debugger, it is useful to think of the target as a
separate piece of hardware.

Alternatively, you can build a prototype product on a printed circuit board, including
one or more processors on which you run and debug software.

You build the finished product only when you are satisfied with the performance, proved
by hardware or software simulation.

The debugger issues instructions that can:

• load software into memory on the target

• start and stop execution of that software

• display the contents of memory, registers, and variables

• enable you to change stored values.

The form of the target is immaterial to the debugger as long as the target obeys these
instructions in exactly the same way as the final product.

1.1.3 Debug agent

A debug agent performs the actions requested by the debugger, for example:

• setting breakpoints

• reading from memory

• writing to memory.

The debug agent is not the program being debugged, or the debugger itself.

Examples of debug agents include:

• Multi-ICE®
1-2 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

About AXD
• ARMulator™

• Angel™.

Multi-ICE is a separate product. It is not supplied with ADS.

1.1.4 Remote debug interface

The Remote Debug Interface (RDI) is an ARM standard procedural interface between
a debugger and the debug agent (see Figure 1-1 on page 1-6).

RDI gives the debugger a uniform way to communicate with:

• a debug agent running on the host (for example, ARMulator)

• a debug monitor running on ARM-based hardware accessed through a
communication link (for example, Angel)

• a debug agent controlling an ARM processor through hardware debug support
(for example, Multi-ICE).

For more details on using this interface please contact ARM at http://www.arm.com.

1.1.5 Single-processor hardware

In many cases, the target has only a single processor. All ARM debuggers can operate
successfully on single-processor targets.

1.1.6 Multi-processor hardware

There is a growing requirement for multi-processor hardware:

• certain processors might be dedicated to particular tasks

• parallel processing might be appropriate and beneficial.

In these cases the debugger must allow you to examine and control the processes
happening simultaneously in a number of processors.

1.1.7 Contexts

Each processor in the target can have a process currently in execution. Each process
uses values stored in variables, registers, and other memory locations. These values can
change during the execution of the process.

The context of a process describes its current state, as defined principally by the call
stack that lists all the currently active calls. When a function is called, and again when
control is returned, the context changes.
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 1-3

About AXD
Because variables can have class, local, or global scope, the context determines which
variables are currently accessible.

Every process has its own context. When execution of a process stops, you can examine
and change values in its current context.

1.1.8 Scope

The scope of a variable is determined by the point within a program at which it is
defined. Variables can have values that are relevant within:

• a specific class only (class)

• a specific function only (local)

• a specific file only (static global)

• the entire process (global).
1-4 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

About AXD
1.2 Interfacing with targets

AXD enables you to run and debug your ARM-targeted image using any of the
debugging systems described in Debugging systems on page 1-8.

Refer to the documentation supplied with your target board for specific information on
setting up your system to work with the ARM Developer Suite, and Multi-ICE, Angel,
and so on.

Most of this part of the book applies to both the Windows and the UNIX version of
AXD. The term AXD refers to either version. If a section applies to one version only,
this is indicated in the text or in the section heading.
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 1-5

About AXD
1.2.1 Debugging an ARM application

AXD works in conjunction with either a hardware or a software target system, as shown
in Figure 1-1.

Figure 1-1 Debugger-target interface

An ARM development board, communicating through Multi-ICE, or Angel, is an
example of a hardware target system. ARMulator is an example of a software target
system.

You debug your application using a number of windows giving you various views on
the application you are debugging.

To debug your application you must choose:

• a debugging system, that can be either:

— hardware-based on an ARM core

— software that simulates an ARM core.

• a debugger, such as AXD, or armsd.

Figure 1-2 on page 1-7 shows a typical debugging arrangement of hardware and
software.

�������	
��������������	��������

���
���������

���
�����

���
���������

��������

���
������ ����

!����

���
������ ����

!����

������
������������
��������

������!�����

�"�
���

���������!����������#��	���
1-6 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

About AXD
Figure 1-2 A typical debugging set-up

�������	

������������

�������
�����

��������

��� ��������

�����
����

�����������

�������	

�������������

� ����
!�"#������

!�"#������
�$	�����

���� ����

!�"#
��������

�������
��������
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 1-7

About AXD
1.3 Debugging systems

The following are debugging systems for applications developed to run on ARM cores:

• ARMulator

• Multi-ICE® and EmbeddedICE®

• Angel debug monitor on page 1-9

• ARM Agilent Debug Interface on page 1-9.

See Configure Target... on page 5-87 for information about the configuration of
debugger target systems.

1.3.1 ARMulator

ARMulator is a collection of programs that simulate the instruction sets and architecture
of various ARM processors. ARMulator:

• provides an environment for the development of ARM-targeted software on the
supported host systems

• enables benchmarking of ARM-targeted software.

ARMulator is instruction-accurate, meaning that it models the instruction set without
regard to the precise timing characteristics of the processor. It can report the number of
cycles the hardware would take. See the ADS Debug Target Guide for more information.

1.3.2 Multi-ICE® and EmbeddedICE®

Multi-ICE and EmbeddedICE are JTAG-based debugging systems for ARM
processors. They provide the interface between a debugger and an ARM core embedded
within an Application Specific Integrated Circuit (ASIC).

Note
 The EmbeddedICE product is no longer sold. It has been replaced by Multi-ICE.

These systems provide:

• real-time address-dependent and data-dependent breakpoints

• single stepping

• full access to, and control of the ARM core

• full access to the ASIC system

• full memory access (read and write)

• full I/O system access (read and write).
1-8 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

About AXD
Multi-ICE can debug applications running in either ARM state or Thumb state on target
hardware. Refer to Multi-ICE documentation for detailed information.

Multi-ICE and EmbeddedICE also enable the embedded microprocessor to access
services of the host system, such as screen display, keyboard input, and disk drive
storage, using semihosting.

1.3.3 Angel debug monitor

Angel is a debug monitor that allows rapid development and debugging of applications
running on ARM-based hardware. Angel can debug applications running in either ARM
state or Thumb state on target hardware. It runs alongside the application being
debugged on the target platform.

Angel also enables the embedded microprocessor to access services of the host system,
such as screen display, keyboard input, and disk drive storage, using semihosting.

You can use Angel to debug an application on an ARM Development Board or on your
own custom hardware. See the ADS Debug Target Guide for more information.

1.3.4 ARM Agilent Debug Interface

ARM Agilent Debug Interface (ARM ADI) can be purchased as an extension to ADS
and enables AXD to communicate with an Agilent emulation probe or emulation
module for debugging applications running on ARM cores.

The Agilent emulation probe is a standalone emulator whereas the emulation module is
installed as part of an Agilent logic analyzer such as one of the 16700 series. However,
both probe and module connect to a JTAG debug port on the target system through a
Target Interface Module (TIM).

The emulator provides a variety of debug facilities such as run control and access to
both memory and to CPU and coprocessor registers. AXD accesses these facilities
across an Ethernet connection. For further information on Agilent emulators and similar
products see Third party products on page xi.

Note
 For the ARM7 and ARM9 cores, you must use the Agilent E3459A emulation probe (or
16610A emulation module) and Agilent E3459-66501 TIM.

For technical information and support of the emulator, contact Agilent or one of its
authorized agents.
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 1-9

About AXD
Note
 ARM Agilent Debug Interface is a separate product. It is not supplied with ADS.

ARM Agilent Debug Interface handles all aspects of setting up and maintaining the
Ethernet connection with the emulator. For further information on configuring this
connection, refer to the documentation accompanying the product, for example, the
ARM Agilent Debug Interface Version 1.0 User Guide.
1-10 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

About AXD
1.4 Availability and compatibility

ARM products undergo continual development and improvement, and two debuggers
are currently available and fully supported.

The ADS CD-ROM includes the ARM debuggers:

• AXD (both Windows and UNIX versions)

• armsd (ARM Symbolic Debugger).

AXD is the recommended debugger. It provides additional functionality that is not
available in armsd.

The main improvements in AXD are:

• a completely redesigned graphical user interface offering multiple views

• a new command-line interface.
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 1-11

About AXD
1.5 Online help

Online help complements the information contained in this guide.

Information about the ARM debuggers appears in this book and online with the
following differences:

• this book concentrates on overall concepts, tutorial material, and descriptions of
facilities

• online help complements the information provided in this book, and provides
finer details relating to such topics as individual data entry fields, check boxes,
and buttons.

When you are running AXD, use online help to obtain information about your current
situation. You can also navigate your way to any other pages of available online help.

1.5.1 Displaying online help

You can display online help in any of the following ways:

F1 key Press the F1 key on your keyboard to display online help on the currently
active window.

Help button Many windows contain a Help button that you can click to display help
relevant to that window.

Help menu The Help menu is shown in Figure 1-3.

Figure 1-3 Help menu

Select Contents to display the first page of AXD online help. You can
navigate from there to any available topic.

Select Using Help to display a guide to the use of online help.

Select Online Books to start running browser software that enables you
to display online copies of the printed manuals that you received with
AXD. This is equivalent to selecting Start → Programs → ARM
Developer Suite v1.2 → Online Books.

Select About AXD... to display details of the version of AXD that you
are running.
1-12 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

About AXD
If you are licensed to use the Trace Debug Tools (TDT) and your target
processor supports trace, the option TDT Help is also shown on the
online Help menu.

Query tools Click on the Query tool in the Help toolbar as an alternative to selecting
Contents from the Help menu.

Click on the Query and arrow tool in the Help toolbar to change the
mouse pointer into a query and arrow, then click again on any item on the
screen for which you want help.

Dialog help

Dialogs within AXD include a Query tool that you can use to display
field level help. Clicking on this button changes the mouse pointer into a
Query and arrow pointer which you can then click on any item for
which you want help. You can also display a help pop-up box by placing
the mouse pointer over an item and pressing F1.

Hypertext links

Most pages of online help include highlighted text that you click on to
display related online help:

• highlighted plain text displays a pop-up box

• highlighted underscored text causes a jump to another page of help.

Related topics button

Many pages of online help include a Related topics button that you can
click to display a new window containing links to related online help.

Browse buttons

Most pages of online help include a pair of browse buttons allowing you
to display a sequence of related help pages.
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 1-13

About AXD
1-14 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

Chapter 2
Getting Started in AXD

This chapter describes how to start running AXD, set up your debugger target, and
operate the AXD desktop. It contains the following sections:

• License-managed software on page 2-2

• Starting and closing AXD on page 2-3

• Debugger target on page 2-6

• AXD displays on page 2-9

• AXD menus on page 2-12

• Tool icons, status bar, keys, and commands on page 2-14.
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 2-1

Getting Started in AXD
2.1 License-managed software

Some software is locked, preventing you from running it, until you have been granted a
license to use it. If you require a license you can obtain it quickly by applying for it by
email.

You can use some license-managed software with a temporary license which places a
time limit on your use of the software.

Details of license-managed software, how licensing works, and how to apply for a
license are explained in the ADS Installation and License Management Guide.
2-2 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

Getting Started in AXD
2.2 Starting and closing AXD

This section describes:

• Starting AXD

• AXD arguments

• Closing AXD on page 2-5.

2.2.1 Starting AXD

Start AXD in any of the following ways:

• If you are running Windows, double-click on the AXD Debugger icon or select
Start → Programs → ARM Developer Suite v1.2 → AXD Debugger.

• If you are working in the CodeWarrior IDE, refer to the CodeWarrior IDE Guide
for more information on starting AXD.

• If you are running under UNIX, launch AXD from a shell, optionally with
arguments (see AXD arguments). Either:

— from any directory type the full path and name of the debugger, for
example, /opt/arm/axd

— change to the directory containing the debugger and type its name, for
example, ./axd

• launch AXD from MS-DOS or from a Command Prompt window, optionally with
arguments (see AXD arguments)

• create a shortcut, optionally with arguments.

2.2.2 AXD arguments

The syntax for the command-line method of starting AXD is as follows (any arguments
must be in lowercase):

axd [-logo|-nologo] [-session session_file_name]
[-debug|-exec|-script script_name] [-halt|-nohalt|-attach] [-restore_default]
[-clear_registry] [-help] [image_name [parm1 [parm2 [...]]]]

where:

-logo Displays the splash screen and is the default setting.

-nologo Suppresses the display of the splash screen.

-session session_file_name

Specifies a file in which an earlier debug session was saved. You must
give the full pathname to the required file and, if the filename includes
spaces, you must enclose it in quotes. The earlier session is restored to the
state it was in when it was saved. Any images in the session file are
loaded, and connection to the target is established.
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 2-3

Getting Started in AXD
-debug Loads the image and sets a breakpoint on main(). It does not take an
argument. Use this after one or more of the following:

• default session loaded

• session explicitly loaded from command line using -session

• image explicitly loaded from command line.

-exec Starts execution of the loaded image with the entry point. It does not take
an argument. Use this after one or more of the following:

• default session loaded

• session explicitly loaded from command line using -session

• image explicitly loaded from command line.

-script script_name

Obeys the commands in file script_name. This is the equivalent of typing
obey script_name in the CLI system view as soon as the debugger starts
up. Use this after one or more of the following:

• default session loaded

• session explicitly loaded from command line using -session

• image explicitly loaded from command line.

-halt Connects AXD to the target and stops execution of the target.

-nohalt Connects AXD to the target without stopping execution of the target. This
is possible only with targets that support RealMonitor. If connection of
AXD might stop execution of the target, then the attempt to connect is
abandoned.

-attach Connects AXD to the target. Execution of the target is not stopped if the
target supports RealMonitor. Execution of other targets stops when the
connection is made.

-restore_default

Starts AXD without reference to the default session file. AXD starts with
default windows displayed in a default layout.

-clear_registry

Starts AXD without reference to the default session file. AXD starts with
default windows displayed in a default layout. In addition, all existing
target configuration information is deleted.

-help Displays text describing how to use the AXD command.

image_name Specifies a file containing an image to be loaded. You must place this
name, followed by any required parameters, at the end of the command,
because the remainder of the command passes to the image, not to AXD.

parm1, parm2, ...

Any parameters required by image_name.
2-4 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

Getting Started in AXD
Examples

To restore a debug session saved in file friday.ses, type:

axd -session friday.ses

To launch AXD and load img01.axf with arguments 10, 3.14159, and ABC, type:

axd img01.axf 10 3.14159 ‘ABC’

2.2.3 Closing AXD

Close down AXD in any of the following ways:

• Select Exit from the File menu.

• Click the X button at the far right of the AXD title bar (not available in UNIX).

• Press ALT-F4.

• Double-click on the icon in the top left corner of the main window.
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 2-5

Getting Started in AXD
2.3 Debugger target

This section explains how to set up the target hardware, or simulator, which runs the
software to be debugged, using:

• ARMulator

• Multi-ICE unit and target board on page 2-7

• Angel or EmbeddedICE on page 2-7.

The first time you run AXD, ARMulator is selected by default as the target, with default
settings taken from a configuration file (install_directory\bin\ARMulate.cnf).
Subsequently, AXD starts up with the last used target configuration by default. You can
modify this behavior by starting AXD with arguments (see AXD arguments on
page 2-3).

Note
 In some of these procedures you use a browse dialog to locate and select a required file
such as armulate.dll. Some files, including DLLs, are not listed by default. Select
Windows Explorer → View → Options... → Show all files to display system files.

2.3.1 ARMulator

If you install ADS and run AXD, an ARMulator debugging session starts by default,
with ARMulator configured by settings held in a default configuration file.

To reconfigure ARMulator, or to return to ARMulator after using another debug agent:

1. Select Configure Target... from the AXD Options menu. You are prompted to
choose a target, in a dialog similar to that shown in Figure 2-1.

Figure 2-1 Selecting a target
2-6 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

Getting Started in AXD
2. Select the ARMUL target. If ARMUL is not in the list of available target
environments, click Add, locate and select armulate.dll, click Open, and
ARMUL is added to the list and selected.

3. Click the Configure button to examine or change the ARMulator configuration
settings. The resulting dialog is described in Configure Target... on page 5-87.

4. Click OK when you have selected ARMUL as the target, and configured it if
necessary. You can now load an image onto the target and control its execution.

2.3.2 Multi-ICE unit and target board

To set up a hardware target of this kind for the first time, refer to the ARM Multi-ICE
User Guide. When the hardware is correctly connected and configured, start a
debugging session as follows:

1. Connect Multi-ICE to your target board with the JTAG connector. Switch on the
power supply to your target board (for example, an ARM Integrator board).
Multi-ICE is usually configured to get its power from the target board.

2. Run the Multi-ICE server software on the computer that has the Multi-ICE
hardware unit connected to its parallel port.

3. Select Auto-configure from the File menu, and check that the software detects
the processors that you expect to find on the target board.

4. Select Configure Target... from the Options menu. You are prompted to choose
a target, in a dialog similar to that shown in Figure 2-1 on page 2-6.

5. In the Choose Target dialog select Multi-ICE. If Multi-ICE is not yet in the list
of available target environments, click Add, locate and select Multi-ICE.dll, click
Open, and Multi-ICE is added to the list and selected.

6. If this is the first time you have used this target, or the target configuration has
changed since your last debugging session, click the Configure button. The
resulting dialog is described in Configure Target... on page 5-87.

7. When you have selected Multi-ICE as the target, and configured it if necessary,
click OK. You can now load an image onto the target and control its execution.

The debugger internal variable $top_of_memory has a default value of 0x80000. This is
the required value when you are using an ARM Development (PID) board as the target.
An ARM Integrator target requires $top_of_memory to have a value of 0x40000. Other
targets might require different values. To change the value of $top_of_memory, see
Debugger Internals system view on page 5-69.

2.3.3 Angel or EmbeddedICE

To start an Angel or EmbeddedICE debugging session:

1. Ensure your target board (for example, an ARM Integrator board) is correctly
configured and connected to your computer, then switch on its power supply.
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 2-7

Getting Started in AXD
2. Select Configure Target... from the Options menu in AXD. You are prompted to
choose a target, in a dialog similar to that shown in Figure 2-1 on page 2-6.

3. Select the Angel Debug Protocol (ADP) target. If ADP is not yet in the list of
available target environments, click Add, locate and select remote_a.dll click
Open, and ADP is added to the list and selected.

4. Click the Configure button if this is the first time you have used this target, or the
target configuration has changed since your last debugging session. The resulting
dialog is described in Configure Target... on page 5-87.

5. Click OK when you have selected ADP as the target, and configured it if
necessary. You can now load an image onto the target and control its execution.
2-8 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

Getting Started in AXD
2.4 AXD displays

This section describes the various kinds of displays that you see when using AXD:

• Views

• Viewing structured data

• Multiple Document Interface on page 2-10

• Docked and floating windows on page 2-10

• Tabbed pages on page 2-10

• Dialogs on page 2-11.

2.4.1 Views

Various views allow you to examine and control the processes you are debugging.

In the main menu bar, two menus contain items that display views:

• The items in the Processor Views menu display views that apply to the current
processor only, and are described in Processor Views menu on page 5-18.

• The items in the System Views menu display views that apply to the entire,
possibly multiprocessor, target system and are described in System Views menu on
page 5-48.

2.4.2 Viewing structured data

In Registers, Variables, and Watch views, you often see data displayed in a tree structure
that you can expand or collapse. Generally, values that have changed since the previous
break in execution are colored red, but that is not possible in the following situations:

• You might collapse a branch of displayed data in a Registers view, continue
execution for one or more steps, and then expand the branch again. In this case
the values displayed in red are those that have changed since the last time they
were displayed, not since the previous break in execution. Also any value that
changed and returned to its original value is not colored red.

• You might collapse a branch of displayed data in a Variables or Watch view,
continue execution for one or more steps, and then expand the branch again. The
old values are discarded if execution takes place with a collapsed branch, and
recalculated when you later expand the display. In this case, therefore, it is
impossible to know which values have changed, so no red coloring is possible.

If you try to expand a branch that has no elements, the string (Empty) is displayed.
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 2-9

Getting Started in AXD
The expansion dialog imposes limits. Any single expansion is restricted to a maximum
of 4000 elements, and you normally request far fewer than that. The total number of
elements supported in a single view is 32,000.

2.4.3 Multiple Document Interface

AXD uses the Windows Multiple Document Interface (MDI) so that you can display
several windows at the same time. This enables you to view a wide range of information
at the same time, such as registers, variables, and execution context. You can arrange
the debugger windows in different ways so that, for example, some are docked, some
are free-floating, and the remainder are cascaded or tiled.

2.4.4 Docked and floating windows

Source and disassembly views appear as floating windows, but most views that you
display appear first as docked windows. Right-click anywhere within a window to
display its pop-up menu. The pop-up menu of every view that you can dock has an
Allow docking item. This is initially checked showing that it is selected.

A docked window is attached to one edge of the main window, with a width and height
dependent upon any other docked windows that are sharing the same screen edge.

If you click the Allow docking item of the pop-up menu so that it is unchecked, the
window floats. Another pop-up menu item, Float within main window, allows you to
specify whether a floating window is restricted to the main window or can float
anywhere on the screen.

Windows that are floating within the main window are the only ones that you can
reposition and resize by selecting Cascade or Tile from the Window menu.

2.4.5 Tabbed pages

Several AXD dialogs and property sheets use tabbed pages. These allow displays that
contain a large number of data entry fields, control buttons, check boxes, and radio
buttons to be presented in parts.

Although you view only one page at a time, the tabs of all the pages are visible. Click
on any tab to bring its page to the front of the display. You can switch between tabbed
pages as often as you like while making settings or entering data.

You can consider all the tabbed pages in a display to be parts of a single large display.

Any changes you make become effective only when you click the OK button or the
Apply button. Click the Cancel button (or its equivalent) to abandon any changes made
on all tabbed pages in the display.
2-10 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

Getting Started in AXD
2.4.6 Dialogs

AXD uses dialogs frequently. A dialog is a convenient way of grouping together a
number of fields, lists, check boxes, and buttons, allowing you to make changes to
several related fields or values at the same time.

When you select a menu item that operates in this way, a suitable dialog appears. Enter
values, select from lists, select and deselect check boxes until you are satisfied with all
the settings. The new settings become effective only when you click the OK button or
the Apply button. You can click the Cancel button (or its equivalent) to abandon any
changes you have made and leave all settings unchanged. The dialog disappears
automatically when you finish using it.

The AXD dialogs are shown and described in Chapter 5 AXD Desktop.
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 2-11

Getting Started in AXD
2.5 AXD menus

To invoke the main features of AXD, you select menu items in one of the following
ways:

• use the mouse to pull down a menu from the main menu bar near the top of the
screen and highlight the required item, then click to select the item

• press the Alt key, use the arrow keys to select the required menu and highlight the
required item, then press the Return or Enter key to select the item

• hold down the Alt key while you press the key of the underlined character in the
required menu name, then press the key of the underlined character of the
required item to select it.

Other menus are the pop-up menus associated with each view, as described in Pop-up
menus on page 2-13.

2.5.1 Menu bar menus

The menus available from the menu bar are:

File Enables you to transfer data between the target system and disk files, or
to exit from AXD.

Search Enables you to search for a specified character string, either in the
memory of a process or in a specified disk file.

Processor Views
Enables you to select a view to open on the currently selected processor.

System Views
Enables you to select a system-wide view to open.

Execute Enables you to control execution of a program image, or to set or toggle
watchpoints, or to toggle or delete all breakpoints.

Options Enables you to:

• set the disassembly mode

• configure the debugger user interface, target system, and processor
properties

• maintain a list of directories that are searched to find source files

• enable or disable the display of the status bar

• enable or disable the collection of profiling information.

Window Enables you to control how MDI windows and icons are displayed, and
to set refresh options.

Help Enables you to display online help on the use of AXD, or identify the
version of AXD that you are running.
2-12 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

Getting Started in AXD
Each of these main menus is described in detail in Chapter 5 AXD Desktop.

2.5.2 Pop-up menus

In addition to the menus listed in the main menu bar, each view has one or more pop-up
context menus offering additional items.

You generally display pop-up menus by right-clicking anywhere within a view.
However, the pop-up menu items that are enabled can depend on the window item
currently selected, if any, or on the position of the mouse pointer when you right-click.

Each pop-up menu is described and shown in Chapter 5 AXD Desktop as part of the
description of each view. Online help gives further information.
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 2-13

Getting Started in AXD
2.6 Tool icons, status bar, keys, and commands

This section introduces:

• Toolbars

• Tooltips

• Status bar

• Keyboard shortcuts

• In-place editing on page 2-15

• Command-line interface on page 2-16.

2.6.1 Toolbars

Most of the main menus have corresponding toolbars with icons representing most of
their items. To choose which menus are duplicated as toolbars, or to hide toolbars:

1. Select Configure Interface from the Options menu.

2. Click the check boxes under Toolbars so that the toolbars you want are checked.

3. Click the OK button.

To alter the order in which the toolbars are displayed, or reposition them on the screen,
place the mouse pointer in a toolbar but not on an icon, then drag it to its new position.

When a toolbar is docked at one of the edges of the screen, it is only one icon high (or
wide), but when it is floating and you change its shape, its icons automatically regroup.

2.6.2 Tooltips

If you leave the mouse pointer positioned on a toolbar icon for a few seconds without
clicking, a tooltip appears informing you of the purpose of the icon. In addition, in
disassembly and source views, you can leave the mouse pointer positioned over a
variable or register to display the value of the variable or register as a tooltip.

2.6.3 Status bar

The status bar is a single line in which AXD can display several items of relevant
information at the bottom of the debugger screen when appropriate (see Status bar
contents on page 5-5).

You can display or hide the status bar (see Status Bar display control on page 5-98).

2.6.4 Keyboard shortcuts

Several kinds of keyboard shortcuts are described in AXD menus on page 2-12.
2-14 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

Getting Started in AXD
In addition, most items in three main menus (Processor Views, System Views, and
Execute), and many items in pop-up menus, also show keys or key combinations that
allow you to select that item directly, without first pulling down the menu. For example,
pressing:

• Ctrl+R displays a Registers processor view

• Alt+O displays an Output system view

• F9 toggles a breakpoint on or off.

You can expand list views with the + and - keys. Look at the menus to see all the
available keyboard shortcuts.

2.6.5 In-place editing

In-place editing allows you to see most clearly what you are doing when you change a
stored value. It is used whenever possible. For example, when you are displaying the
contents of memory or registers, and want to change a stored value:

1. Double-click on the value you want to change, or press Enter if the item is already
selected. The value is enclosed in a box with the characters highlighted to show
they are selected.

2. Either enter data to overwrite the highlighted data, or press the left or right arrow
keys to deselect the existing data and position the insertion point where you want
to amend the existing data.

3. Press Enter or Return to store the new value in the selected location.

If you press Escape or move the focus elsewhere instead of pressing Enter or Return,
then any changes you made in the highlighted field are ignored.

In-place editing is not appropriate for:

• editing complex data where some prompting is helpful

• editing groups of related items

• selecting values from predefined lists.

In these cases an appropriate dialog is displayed.

See Data formatting on page 4-16 for details on editing data formats.

In-place editing under UNIX

AXD can appear to hang when using in-place editing under Solaris. This might happen
if the focus is changed, for example, if you double-click on a register to change its
contents and then double-click on a different register.

To correct this, you should modify the X-Windows configuration file located in your
$HOME directory. The file needs to contain the following line:
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 2-15

Getting Started in AXD
Dtwm*secondariesOnTop: True

The case is important so enter the line exactly as shown. If the .Xdefaults file does not
exist then you should create it.

2.6.6 Command-line interface

The Command Line Interface (CLI) window is an alternative to the graphical user
interface. In the CLI window you can:

• enter commands in response to prompts

• view data that you have requested

• submit a file in which you have set up a sequence of commands.

See Chapter 6 AXD Command-line Interface for details.
2-16 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

Chapter 3
Working with AXD

This chapter gives step-by-step instructions to perform a variety of debugging tasks.
You might find it useful to follow all the instructions, as a tutorial. Chapter 5 AXD
Desktop gives further details of specific features.

This chapter contains the following sections:

• Running a demonstration program on page 3-2

• Setting a breakpoint on page 3-4

• Setting a watchpoint on page 3-6

• Examining the contents of variables on page 3-8

• Examining the contents of registers on page 3-12

• Examining the contents of memory on page 3-14

• Locating and changing values and verifying changes on page 3-16

• Creating a revised version of the program on page 3-18.
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 3-1

Working with AXD
3.1 Running a demonstration program

Various demonstration projects are supplied, with programs in the form of ARM
assembly language, C, or C++ source code files. These projects are stored in
subdirectories of Examples in the ADSv1_2 installation directory.

The examples given in this chapter have all been tested and shown to work as described.
Your hardware and software might not be the same as those used for testing these
examples, so it is possible that certain addresses or values might vary slightly from those
shown, and some of the examples might not apply to you. In these cases you might need
to modify the instructions to suit your own circumstances.

You are likely to be using software such as ARMulator to simulate a debugger target.
Alternatively, your target might consist of a Multi-ICE unit and an ARM Integrator
board. If so, you should have set up the hardware and the software as described in
Multi-ICE unit and target board on page 2-7. In all cases, you must have selected the
target you intend to use and configured it, as described in Configure Target... on
page 5-87.

The following instructions show you how to build, load, and execute a demonstration
program that runs the Dhrystone test software:

1. Create an executable image by compiling the source code files in the Dhry
subdirectory and linking the resulting objects with the libraries that they use. If
you are running under Windows you can use the CodeWarrior IDE project file
dhry.mcp supplied. This organizes your work into projects and largely automates
the tasks of creating and maintaining different versions of a program.

2. Run AXD, by selecting Debug from the Project menu of the CodeWarrior IDE
if that is how you built the image file dhry.axf. This invokes the AXD debugger
with the image loaded.

Alternatively, run AXD separately, select Load Image... from the File menu to
display the Load Image dialog, navigate to the directory of the dhry.axf image
file, select the file, and click Open. The image loads into memory on the target,
so the selected processor can execute it.

A Disassembly processor view of the image is displayed as shown in Figure 3-1
on page 3-3.

A blue arrow indicates the current execution point.
3-2 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

Working with AXD
Figure 3-1 AXD with Disassembly processor view

3. Select Go from the Execute menu (or press F5) to begin execution on the target
processor. Execution stops at the beginning of function main(), where a
breakpoint is set by default. A red disc and a marker indicate the line where a
breakpoint is set.

4. Also, a Source processor view of the relevant few lines of the relevant file is
displayed. If it is not, right-click in the Disassembly view and select Source from
the pop-up menu. Again, a red disc and marker indicate the line where a
breakpoint is set, and a blue arrow indicates the current execution point.

5. Select Go from the Execute menu (or press F5) again to continue execution. You
are prompted, in the Console processor view, for the number of runs through the
benchmark that you want performed. Enter 8000. The program runs for a few
seconds, displays some diagnostic messages, and shows the test results.

6. To repeat the execution of the program, select Reload Current Image from the
File menu, then repeat Steps 3, 4, and 5. You do not have to open the Source
process view again. Once opened, it remains displayed.

If you are running AXD on a very fast machine, you might have to increase the
number of runs through the benchmark (to 25000 or more, perhaps), to make the
process last long enough to time accurately.

For details of the program, refer to the readme.txt file and the various source files in the
Dhry subdirectory.
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 3-3

Working with AXD
3.2 Setting a breakpoint

This example runs the same program again, this time with a breakpoint that stops
execution a few times. You can examine values when execution stops.

1. Select Reload Current Image from the File menu.

2. Select Go from the Execute menu (or press F5) to reach the first breakpoint, set
by default at the beginning of function main() and indicated by a red disc. You can
see the source file dhry_1.c with a breakpoint and the current position indicated
by a red marker at line number 78.

3. Scroll down through the source file until line number 150 is visible. This is a call
to Proc_4(), and is inside the loop to be executed the number of times you specify.

4. Right-click on line 150 to position the cursor there and display the pop-up menu,
and select Toggle Breakpoint (or left-click on the line and press F9, or
double-click in the margin next to the line). Another red disc and marker indicate
that you have set a second breakpoint, as shown in Figure 3-2.

Figure 3-2 Breakpoint set inside loop

5. Select Breakpoints from the System Views menu to edit the details of the new
breakpoint. The breakpoints pane is displayed.

Double-click on the line in the breakpoints pane that describes the new
breakpoint, or right-click on it and select Properties, to display a Breakpoint
Properties dialog.

Enter 750 in the out of... field in the Condition group, as shown in Figure 3-3 on
page 3-5. This is the number of times execution has to arrive at the breakpoint to
trigger it.
3-4 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

Working with AXD
Click OK.

Figure 3-3 Setting breakpoint details

6. Press F5 to resume execution, and enter the smaller number of 5000 this time for
the number of runs required. Execution stops the 750th time your new breakpoint
is reached.

7. Select Variables from the Processor Views menu to check progress. Reposition
or resize the window if necessary. Click the Local tab and look for the Run_Index
variable. Its value is shown as 2EE (hexadecimal). Right-click on the variable so
that it is selected and a pop-up menu appears. Select Format → Decimal and the
value is now displayed as 750 (decimal).

8. Press F5 to resume execution, and the value of the Run_Index local variable
changes to 1500. It is now colored to show that its value has changed since the
previous display.

9. Press F5 repeatedly until the value of Run_Index reaches the highest multiple of
750 before exceeding your specified number of runs, then once more to allow the
program to complete execution. (This time the Dhrystone test results are
meaningless, because of the interruptions to the timing measurements, but the use
of a breakpoint has been demonstrated.)

10. Close down the Breakpoints system view, either by right-clicking and selecting
Close or by clicking on the Close button in the title bar if the view is not docked.
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 3-5

Working with AXD
3.3 Setting a watchpoint

This example runs the same program again, this time with a watchpoint that stops
execution a few times. You can examine values when execution stops.

1. Select Reload Current Image from the File menu.

2. Select Go from the Execute menu (or press F5) to reach the first breakpoint, set
by default at the beginning of function main() and indicated by a red disc and
marker. You can see the source file dhry_1.c with a breakpoint and the current
position indicated at line number 78.

3. Select Go from the Execute menu (or press F5) to continue execution.

4. Enter 770 when you are prompted for the number of runs to execute. Execution
continues until it reaches the breakpoint at line 150 for the 750th time. This is the
breakpoint you defined in Setting a breakpoint on page 3-4.

5. Select Watchpoints from the System Views menu, right-click in the Watchpoints
system view, and select Add to display the Watchpoint Properties dialog (see
Figure 3-4). For this example you specify that execution stops every sixth time the
value of Run_Index changes.

Figure 3-4 Setting a watchpoint

Enter Run_Index in the Item field in the Watch group.
3-6 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

Working with AXD
Set the out of... field in the Condition group to a value of 6. This is the number of
times the watched value has to change to trigger the watchpoint action.

Click the OK button.

6. Select Variables from the Processor Views menu if the Variables processor view
is not already displayed. Reposition or resize the window if necessary. Click the
Local tab and look for the Run_Index variable.

The value of Run_Index is currently 750. If it is displayed in hexadecimal notation,
right-click on the value and select Format → Decimal to change the display
format to decimal.

7. Press F5 to resume execution. Soon the value of the Run_Index local variable
changes to 756. It is now displayed in red to show that its value has changed since
the previous display. Execution stops.

8. Examine any displayed values, then press F5 again to resume execution and
perform six more runs. When the value of Run_Index becomes greater than the
number of runs you specified, the test results are displayed and execution
terminates. (Again, the Dhrystone test results are meaningless, because of the
interruptions to the timing measurements, but the use of a watchpoint has been
demonstrated.)

9. Delete the watchpoint you set up for this example, by right-clicking on its line in
the Watchpoints window and selecting Delete from the pop-up menu, then close
down the Watchpoints system view.
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 3-7

Working with AXD
3.4 Examining the contents of variables

Two methods of examining the contents of variables are described:

• Contents of variables.

This method is simpler and shows only the contents of the specified variables.

• Addresses and contents of variables on page 3-9.

This method shows the addresses of the variables as well as their contents.

3.4.1 Contents of variables

To examine the contents of variables as simply as possible, use the Variables processor
view. In this example you start by reloading and starting the current program, then
stopping it:

1. Select Reload Current Image from the File menu.

2. Select Go from the Execute menu (or press F5) to reach the first breakpoint, set
by default at the beginning of function main().

3. Select Go from the Execute menu (or press F5) to continue execution.

4. Enter 760 when you are prompted for the number of runs to execute. Execution
continues until it reaches the breakpoint at line 150 for the 750th time. This is the
breakpoint you defined in Setting a breakpoint on page 3-4.

5. Select Variables from the Processor Views menu if the Variables processor view
is not already displayed. Reposition or resize the window if necessary. On the
Local tab look for the Run_Index variable. Other variables that you can see include
Enum_Loc, Int_1_Loc, Int_2_Loc, and Int_3_Loc.

Right-click in the window, select Properties... → Dec and click OK. The display
is now similar to that shown in Figure 3-5.

Figure 3-5 Examining the contents of variables
3-8 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

Working with AXD
6. Press F10. This is equivalent to selecting Step from the Execute menu. The
program executes a single instruction and stops. Any values that have changed in
the Variables processor view are displayed in red.

7. Press F10 repeatedly. As you execute the program, one instruction at a time, the
values of several of the variables change. After you have allowed approximately
30 program instructions to execute, the value of Run_Index increases by 1. The
program has now completed one further execution of the Dhrystone test.

8. Explore the various display options available from the pop-up menu. Try settings
in both the Format submenu and the Default Display Options dialog displayed
when you select Properties....

Any settings you change from Properties... can apply to some or all of the
displayed items, depending on what is currently selected.

For a description of the display formats available, see Data formatting on
page 4-16.

9. Press F5 to allow the program to complete its execution, then close down the
Variables processor view.

Note
 In the Variables processor view, sub-function results are shown in the form test_func{1}
where 1 is the result returned by calling test_func for the first time in this function.

3.4.2 Addresses and contents of variables

An alternative method of examining a variable is to use a Watch processor view. This
enables you to see the memory address of the variable as well as its value. In this
example you start by reloading and starting the current program, then stopping it:

1. Select Reload Current Image from the File menu.

2. Select Go from the Execute menu (or press F5) to reach the first breakpoint, set
by default at the beginning of function main().

3. Select Go from the Execute menu (or press F5) to continue execution.

4. Enter 760 when you are prompted for the number of runs to execute. Execution
continues until it reaches the breakpoint at line 150 for the 750th time. This is the
breakpoint you defined in Setting a breakpoint on page 3-4.

5. Select Watch from the Processor Views menu and reposition or resize the
window if necessary. You can specify items to watch on several tabbed pages. In
this example you examine a few variables using the first tab only.
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 3-9

Working with AXD
6. Right-click in the window, and select Add Watch from the pop-up menu. A
Watch dialog appears, prompting you to enter an expression. For this example you
enter some valid variable names, most of them preceded by an ampersand (&).
See Figure 3-6.

Enter the first expression in the Expression field by typing:

&Enum_Loc

Enum_Loc is a global variable, so it is stored in RAM at the address &Enum_Loc (these
names are case-sensitive).

Note
 You can also add a variable to the Watch processor view by selecting it in the

source view and using the Add Watch pop-up menu command.

7. Press the Return key or click on the Evaluate button.

The expression you entered appears in the Expression column, and its value,
being the address of the variable, appears in the Value column.

Click on the + symbol to expand the display, and another line appears showing the
contents of the variable in the Value column.

Figure 3-6 Specifying variables to watch

Enter, in a similar way:

&Int_1_Loc

&Int_3_Loc

Run_Index

Expand these lines also.
3-10 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

Working with AXD
The Run_Index variable name is not preceded by an ampersand because, in this
program, the variable is stored in a processor register. Having no memory address,
it is inappropriate to ask for it to be displayed. Specifying the variable name
without the ampersand shows its contents but not its address.

8. Select all the lines you have entered, as shown in Figure 3-6 on page 3-10, ensure
that Proc is the selected View and Tab1 the selected Tab, then click the Add To
View button and the Close button.

9. The variables you have specified are now displayed in the Watch processor view,
and if you expand the lines you can see both the addresses and the contents of the
variables.

Move the mouse pointer to the value displayed for the Run_Index variable and
right-click to display the pop-up menu. Select Format → Decimal so that the
value of Run_Index is displayed as a decimal number.

10. Press F10. This is equivalent to selecting Step from the Execute menu. The
program executes a single instruction and stops. Any values that have changed in
the Watch processor view are displayed in color.

11. Press F10 repeatedly. As you execute the program, one instruction at a time, the
values of several of the variables change. After you have allowed approximately
30 program instructions to execute, the value of Run_Index increases by 1. The
program has now completed one further execution of the Dhrystone test.

12. Explore the various display options available from the pop-up menu. Try settings
in both the Format submenu and the Default Display Options dialog displayed
when you select Properties....

Any settings you change from Properties... can apply to some or all of the
displayed items, depending on what is currently selected.

For a description of the display formats available, see Data formatting on
page 4-16.

13. Press F5 to allow the program to complete its execution, then close down the
Watch processor view.
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 3-11

Working with AXD
3.5 Examining the contents of registers

To examine the contents of registers used by the currently loaded program:

1. Select Reload Current Image from the File menu.

2. Select Go from the Execute menu (or press F5) to reach the first breakpoint, set
by default at the beginning of function main().

3. Select Registers from the Processor Views menu and reposition or resize the
window if necessary.

The registers are arranged in groups, with only the group names visible at first.
Click on the + symbol of any group name to see the registers of that group
displayed, as shown in Figure 3-7.

Figure 3-7 Examining contents of registers

4. Press F10. This is equivalent to selecting Step from the Execute menu. The
program executes a single instruction and stops. Any values that have changed in
the Registers processor view are displayed in red.

5. Press F10 a few more times. As you execute the program, one instruction at a
time, you can see the values of several of the registers change.
3-12 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

Working with AXD
You soon reach the point when you are prompted, in the Console processor view,
for the number of runs to perform. A very small number is sufficient this time.

6. Explore the format options available from the Registers processor view pop-up
menu.

If you position the mouse pointer on a selectable line when you right-click, the
line is selected. You can change the display format of selected lines only.

You can select multiple lines by holding down the Shift or Ctrl keys while you
click on the relevant lines, in the usual way.

For a description of the display formats available, see Data formatting on
page 4-16.

If you select Add to System from the pop-up menu, the currently selected register
is added to those that are displayed in the Registers system view. This is
particularly useful when your target has multiple processors and you want to
examine the contents of some registers of each processor. Collecting the registers
of interest into a single Registers system view avoids having to display many
separate processor views.

You can also select Add Register from the pop-up menu of the Registers system
view. This enables you to select registers from any processor to add to those being
displayed in the Registers system view.

7. Press F5 to allow the program to complete its execution, then close down the
Registers processor view.
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 3-13

Working with AXD
3.6 Examining the contents of memory

To examine the contents of memory used by the currently loaded program:

1. Select Reload Current Image from the File menu.

2. Select Go from the Execute menu (or press F5) to reach the first breakpoint, set
by default at the beginning of function main().

3. Select Go from the Execute menu (or press F5) to continue execution.

4. Enter 760 when you are prompted for the number of runs to execute. Execution
continues until it reaches the breakpoint at line 150 for the 750th time. This is the
breakpoint you defined in Setting a breakpoint on page 3-4.

5. Select Memory from the Processor Views menu and move or resize the window
if necessary. Figure 3-8 shows a typical memory processor view.

Figure 3-8 Examining contents of memory

Addresses and contents of variables on page 3-9 shows that addresses of interest
are in the region of 0x07FFFFD0, so set the Start address value to, say, 0x07FFFF00.

6. Press F10. This is equivalent to selecting Step from the Execute menu. The
program executes a single instruction and stops. Any values that have changed in
the Memory processor view are displayed in red.

7. Press F10 a few more times. As you execute the program, one instruction at a
time, you can see the values stored in several of the memory addresses change.
3-14 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

Working with AXD
8. Explore the format options available in the Memory processor view pop-up menu.
Size settings appear both on the pop-up menu and in the dialog displayed when
you select Properties... from the pop-up menu. For more information about these
options see Chapter 5 AXD Desktop.
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 3-15

Working with AXD
3.7 Locating and changing values and verifying changes

To locate a value (of a variable or string, for example) in memory and change it:

1. Select Reload Current Image from the File menu.

2. Select Go from the Execute menu (or press F5) to reach the first breakpoint, set
by default at the beginning of function main().

3. Select Memory from the Search menu to display the Search Memory dialog.

4. Enter 2’ND in the Search for field, set the In range and to addresses to 0x0 and
0xFFFF, and select ASCII for the Search string type, as shown in Figure 3-9.

Figure 3-9 Searching for a string in memory

5. Click the Find button.

6. Click the Cancel button to close the Search Memory dialog.

A Memory processor view opens if necessary, and shows the contents of an area
of memory, with the string you specified highlighted. Reposition and resize the
window if necessary, to see a display similar to that in Figure 3-10.

Figure 3-10 Changing contents of memory

You might have to right-click in the window to display the pop-up menu and set
Size to 8 bit and Format to Hex - No prefix.

7. The four hexadecimal values highlighted are 32 27 4E 44.
3-16 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

Working with AXD
Double-click on the value 32 and, as an example of entering a hexadecimal value,
type 0x4E and press Return.

Double-click on the value 27 and, as an example of entering an ASCII value, type
"o (a double quote followed by a lowercase letter o) and press Return.

Double-click on the value 4E and, as an example of entering a decimal value, type
46 and press Return.

Double-click on the value 44 and, as an example of entering an octal value, type
o62 and press Return.

8. Press F5 to continue execution, and enter a value of, say, 100 when you are
prompted in the Console processor view for the number of runs to perform.

When the program displays its messages after completing its tests you can see that one
of the lines that in earlier examples included the text 2’ND STRING now has No.2 STRING
instead because of the change you made.

In this example, the change you made was not permanent, because you did not alter the
source code or the executable image stored in a disk file. You altered only the temporary
copy of the image in the target memory.
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 3-17

Working with AXD
3.8 Creating a revised version of the program

In Locating and changing values and verifying changes on page 3-16, you tested a
temporary change to your program. When developing a program you might make the
same kind of temporary change and find that it is successful so must be included
permanently. Showing you how to do this is beyond the scope of this book. It usually
involves changes to the source code of your program, followed by recompiling and
relinking. It might involve changes, not to your program, but to data received by your
program.

In the simple case of the previous example, the change required to the source code is
obvious. If, however, you corrected an error in execution by, say, altering the value of a
variable, then the changes required in the source code might be far from obvious.

The CodeWarrior IDE enables you to make changes to source code, automate the
compiling and linking processes, maintain various versions of files, and so on.

To test a new version of your program in AXD, select Debug from the Project menu of
the CodeWarrior IDE.

For more information about the CodeWarrior IDE, refer to its online help or to the
CodeWarrior IDE Guide.
3-18 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

Chapter 4
AXD Facilities

This chapter gives a brief overview of the debugging facilities that AXD provides and
contains references to sources of further information. It contains the following sections:

• Stopping and stepping on page 4-2

• Expressions on page 4-4

• Viewing and editing on page 4-6

• Entering addresses on page 4-12

• Persistence on page 4-13

• RealMonitor support on page 4-14

• Data formatting on page 4-16

• Profiling on page 4-27.
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 4-1

AXD Facilities
4.1 Stopping and stepping

Ease of debugging depends on your ability to stop execution of a program at a specified
point, or when specific conditions are encountered. You must then be able to examine
the contents of memory, registers, or variables, possibly continue execution one
instruction at a time, or specify other actions.

This section contains an overview of:

• Breakpoints

• Watchpoints

• Stepping through a program on page 4-3.

Detailed descriptions of how to use these facilities are given in Execute menu on
page 5-76, and in the online help.

4.1.1 Breakpoints

Setting a breakpoint is the simplest way to interrupt normal execution of a program at a
specific point. A breakpoint is always related to a particular memory address, regardless
of what might be stored there. You set a breakpoint by specifying:

• a memory address

• a line in a listing of the executable image

• a line in the program source code that generated a program instruction

• a statement in a multi-statement line of source code

• an object, such as a low-level symbol, that indirectly specifies an address.

When execution reaches the breakpoint, normal execution stops before any instruction
stored there is performed. You can then choose to examine the contents of memory,
registers, or variables, or you might have specified other actions to be taken before
execution resumes. In addition, any existing displays are updated to reflect the current
state of the processor.

Breakpoint setting is described in Breakpoints system view on page 5-58, and toggling
(switching on and off) in Toggle Breakpoint on page 5-78. You can also set breakpoints
in some processor views (see Source... processor view on page 5-44, Disassembly
processor view on page 5-40, and Memory processor view on page 5-31).

4.1.2 Watchpoints

A watchpoint is similar to a breakpoint, but it is the content of a watchpoint that is
tested, not its address. You specify a register or a memory address to identify a location
that is to have its contents tested. Watchpoints are sometimes known as data
breakpoints, emphasizing that they are data dependent.
4-2 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

AXD Facilities
Normal execution stops if the value stored in a watchpoint changes. You might then
choose to examine the contents of memory, registers, or variables, or you can specify
other actions to be taken before execution resumes. In addition, any existing displays
are updated to reflect the current state of the processor.

Watchpoint setting is described in Watchpoints system view on page 5-61.

4.1.3 Stepping through a program

When execution has stopped at a breakpoint or watchpoint, and you have completed
your examination, you can:

• continue to the next breakpoint or watchpoint

• continue to a specific address indicated by the position of the cursor in a listing of
the program image

• execute a single instruction.

If you are continuing from a call to a function, you can stop next at one of the following:

• the first executable instruction of that function

• the instruction in the calling program at which control returns from the function.

The various stepping options are described in Execute menu on page 5-76.

If you want to step though assembly language code you must ensure that you use frame
directives in your assembly language code to describe stack usage. See the ADS
Assembler Guide for more information.
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 4-3

AXD Facilities
4.2 Expressions

This section describes:

• Using expressions

• Expression rules

• Expression examples on page 4-5.

4.2.1 Using expressions

You use expressions when you define watches in a Watch processor view or a Watch
system view. An expression might be simply the name of a variable, but can, for
example, involve the calculation of a memory address from the contents of various
registers or variables.

Expressions are also accepted in commands you enter in the Command Line Interface
view.

4.2.2 Expression rules

Expressions are combinations of symbols, values, unary and binary operators, and
parentheses. There is a strict order of precedence in their evaluation:

1. Expressions in parentheses are evaluated first.

2. Operators are applied in precedence order.

3. Adjacent unary operators are evaluated from right to left.

4. Binary operators of equal precedence are evaluated from left to right.

AXD includes an extensive set of operators for use in expressions. Many of the
operators resemble their counterparts in high-level languages such as C. There are,
however, some restrictions, described in Expression guidelines.

Expression guidelines

The following rules apply to expression evaluation in AXD:

• You cannot use functions in expressions.

• You can only use C operators in constructing expressions. Any operators defined
in a C++ class that also have a meaning in C (such as []) do not work correctly
because AXD uses the C operator instead. Specific C++ operators, such as the
scope operator ::, are not recognized.

• You cannot access base classes in standard C++ notation, for example:
4-4 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

AXD Facilities
class Base
{

char *name;
char *A;

};
class Derived : public class Base
{

char *name;
char *B;
void do_sth();

};

If you are in method do_sth() you can access the member variables A, name, and B
through the this pointer. For example, this->name returns the name defined in
class Derived.

To access name in class Base, the standard C++ notation is:

void Derived::do_sth()
{

Base::name="value"; // sets name in the base class
// to "value"

}

However, expression evaluation does not accept this->Base::name because AXD
does not understand the scope operator. You can access this value with:

this->::Base.name

• You cannot call member functions in the form Class::Member(...). This displays
an error message showing that this is not a variable.

• private, public, and protected attributes are not recognized in AXD expression
evaluation. This means that you can use private and protected member variables
during expression evaluation because AXD treats them as public.

4.2.3 Expression examples

Examples of expressions that are valid in a Watch view are:

• r3

• Run_Index

• r3 + 2 * Ch_Index

• Run_Index - 3 * r4
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 4-5

AXD Facilities
4.3 Viewing and editing

When execution stops, typically at a breakpoint or watchpoint, you can view, and in
some cases edit, the following types of data:

• Control

• Source files

• Disassembled code on page 4-7

• Registers on page 4-7

• Watch on page 4-7

• Variables on page 4-8

• Memory on page 4-8

• Remote debug information on page 4-10

• High-level and low-level symbols on page 4-10

• Debugger internals on page 4-10

• Backtrace on page 4-10

• Debug Communications Channel on page 4-11

• Semihosting on page 4-11.

The data values to be displayed are compared with the corresponding values displayed
at the previous interruption of execution. Any values that have changed are displayed in
color.

4.3.1 Control

The main Control system view provides you with information about all the objects in
the current debugging session and how they interrelate. You have access to all these
objects. There are four tabbed pages:

• Target

• Image

• Files

• Class.

For further information, see Control system view on page 5-49.

4.3.2 Source files

To display the source code that generated the executable code in a program image:

1. Select the Files tab of the Control view.

2. Expand the display of the executable image details to see the names of the source
files.

3. Right-click on the file that you want to view, to display the pop-up menu.
4-6 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

AXD Facilities
4. Select Source.

5. Right-click in the resulting view of the source file to display another pop-up menu
that includes the ability to interleave disassembled code in the listing of the source
file.

For further details see Source... processor view on page 5-44.

4.3.3 Disassembled code

To display disassembled code that represents a part of an executable image:

1. Select either the Target or the Image tab of the Control view.

2. Expand the display (because an image can be loaded on multiple processors), and
right-click on the processor you want to examine.

3. Select Disassembly from the Views submenu of the pop-up menu.

4. Scroll to the area of code you want to examine if it is close, otherwise right-click
in the Disassembly view, select Goto... from the pop-up menu, and specify an
address in the required area.

For further details see Disassembly processor view on page 5-40.

4.3.4 Registers

To examine the registers of the current processor, select Registers from the Processor
Views menu on the main menu bar.

To examine the registers in any of the target processors:

1. Select the Target tab of the Control view.

2. Right-click on the processor that you want to view, to display the pop-up menu.

3. Select Registers from the Views submenu.

To display a separate Registers view for each target processor, see Registers processor
view on page 5-19. To select registers from various Registers processor views to display
together in a single Registers system view, see Registers system view on page 5-54.

To change the value stored in any register that is displayed, double-click on its current
value. In-place editing allows you to update the value.

4.3.5 Watch

To examine the values of specific variables or expressions related to the current
processor, select Watch from the Processor Views menu on the main menu bar.

To examine specific variables or expressions related to any of the target processors:

1. Select the Target tab of the Control view.
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 4-7

AXD Facilities
2. Right-click on the processor that you want to view, to display the pop-up menu.

3. Select Watch from the Views submenu.

You can display a separate Watch view for each available processor.

A Watch view enables you to specify expressions based on variables (from a single
process) that you want to examine whenever program execution stops. This differs from
a Variables view, in which only the context variables of a process are displayed.

Each Watch view has four tabbed pages for you to display expressions and their values.

Because a Watch view displays only what you have specified, the first time you open a
Watch view it is empty. Right-click to display the pop-up menu. Select Add Watch. In
the resulting Watch dialog, shown in both Watch processor view on page 5-23 and
Watch system view on page 5-56, you choose which tabbed page to use and whether you
are adding the new watch to a Watch processor view or a Watch system view.

You can specify expressions to be watched, but a variable name alone is often sufficient.

4.3.6 Variables

To examine the context variables of the current processor, select Variables from the
Processor Views menu on the main menu bar.

To examine the variables in any of the available target processors:

1. Select the Target tab of the Control view.

2. Right-click on the processor that you want to view, to display the pop-up menu.

3. Select Variables from the Views submenu.

You can display a separate Variables view for each available processor.

Variables are defined in the executable image that you load into the memory of a target
so that it can be executed by a processor. You must load an image, specifying a
processor, before you can examine variables.

To change the value stored in any variable that is being displayed, double-click on its
current value. In-place editing enables you to update the value.

For further details, see Variables processor view on page 5-26.

4.3.7 Memory

To examine the memory of the current processor, select Memory from the Processor
Views menu on the main menu bar.
4-8 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

AXD Facilities
To examine the memory in any of the available target processors:

1. Select the Target tab of the Control view.

2. Right-click on the processor that you want to view, to display the pop-up menu.

3. Select Memory from the Views submenu.

You can display multiple Memory views.

The four tabbed screens allow you to specify up to four areas of memory in each view.
Click on a tab to bring its area of memory to the front of the display.

To change the value stored in a memory address that is being displayed, double-click on
its current value. In-place editing enables you to update the value.

For further details, see Memory processor view on page 5-31.

Locate using value

This provides another way for you to specify an area of memory to display. The Locate
Using Value item is available in the pop-up menu of the following:

• registers views

• watch views

• variables views

• memory views.

In any of these views, if you select a data item that contains a memory address, then
select Locate Using Value from the pop-up menu, a Memory view displays an area of
memory that includes the specified address. For further details, see Watch processor
view on page 5-23.

Locate using address

This provides another way for you to specify an area of memory to display. The Locate
Using Address item is available in the pop-up menu of the following:

• watch views

• variables views

• backtrace views

• low level symbols views.

In any of these views, if you select a data item that can be interpreted as a memory
address, then select Locate Using Address from the pop-up menu, a Memory view
displays an area of memory that includes the specified address. For further details, see
Watch processor view on page 5-23.
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 4-9

AXD Facilities
4.3.8 Remote debug information

To view low-level communication messages between the debugger and the target
processor, use the RDI Log tab of the Output system view.

For further information, see Output system view on page 5-63.

4.3.9 High-level and low-level symbols

A high-level symbol for a procedure refers to the address of the first instruction that has
been generated within the procedure, and is denoted by a function name. To see all the
function names contained in an executable image, select the Class tab in the Control
view, and expand the Globals list under the required image. Functions are marked with
a colored square, and variables with a colored disc.

A low-level symbol for a procedure refers to the address that is the target for a branch
instruction when execution of the procedure is required. The low-level and high-level
symbols often refer to the same address.

To display a list of the low-level symbols in your program, use the Low Level Symbols
processor view.

To use a low-level symbol as an expression when you define a watch, precede the
symbol with @.

For further information, see Entering addresses on page 4-12 and Low Level Symbols
processor view on page 5-35.

4.3.10 Debugger internals

Various internal variables contain information relevant to the current debugging session.
Also, when you use ARMulator to simulate a target, statistics are accumulated during
execution of the program being debugged. You can examine these statistics and
information in the Debugger Internals system view which has two tabbed pages:

• Internal Variables

• Statistics (available when using a simulated target only).

For further information, see Debugger Internals system view on page 5-69.

4.3.11 Backtrace

A call stack is maintained for each processor in the target, and the Backtrace processor
view enables you to examine the current state of any call stack. This shows you the path
that leads from the main entry point to the currently executing function.
4-10 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

AXD Facilities
All called functions are added to the stack, but those that complete execution and return
control normally are removed. The stack therefore contains details of all functions that
have been called but have not yet completed execution.

For further information, see Backtrace processor view on page 5-29.

4.3.12 Debug Communications Channel

The Comms Channel processor view enables you to communicate with a processor
through its Debug Communications Channel (DCC). DCC is implemented in ARM
cores containing EmbeddedICE logic. This allows low-level input and output of 32-bit
words to the target. There are also facilities in the debugger to read input from a file and
log output to a file.

You cannot use the Comms Channel view if DCC semihosting is being used.

For further information, see Comms Channel processor view on page 5-37.

4.3.13 Semihosting

The Console view enables you to enter data from your keyboard to the program being
debugged, when it might normally receive data from some other device. You can also
display on your screen output that might normally be sent elsewhere.

For further information, see Console processor view on page 5-39 and Configure
Processor... on page 5-96.

If you are using Multi-ICE to connect the debugger to a target, you can select either
Standard Semihosting or DCC Semihosting. You do this by setting the variable
semihosting_enabled to a suitable value (see Definitions on page 6-9).

If you select DCC Semihosting, the DCC semihosting SWI handler is installed in target
memory at the address specified by the semihosting_dcchandler_address variable. It is
essential that a region of memory starting at this address is available in target memory
and is unused. The default address stored in this variable is 0x70000. You might have to
change this to a lower value to suit the target memory.

Note
 The AXD debug architecture does not currently support attaching and re-attaching
while using either Standard Semihosting or DCC Semihosting.
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 4-11

AXD Facilities
4.4 Entering addresses

When you are prompted to enter an address in a field you can use:

• any of the following forms of low-level address:

— hexadecimal, for example:

0x8248 or 0x008248

— decimal, for example:

32768

— address low-level symbol such as a function name, for example:
@Func_2

— hexadecimal address or low-level symbol, plus or minus an offset, for
example:
@Func_2 + 0x20

• the predefined low-level debugging symbols available in AXD, for example:

#pc

• one of the following forms of high-level address:

— Function name, for example:
%Func_2

— Function name and line number, for example:
%Func_2:164

— Function name and the special symbol $END to signify the address one
beyond the end of the function:
%Func_2:$END

The address of the last instruction in %Func_2 can be calculated as:
%Func_2:$END - instructionsize

Where instructionsize is 2 for Thumb code and 4 for ARM code.

— A global variable, for example:
Int_Glob

— A member of a global array, for example:
Arr_1_Glob[10]
4-12 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

AXD Facilities
4.5 Persistence

You have considerable control over settings that persist from one debug session to
another. By default, each debug session starts up in a state as close as possible to the
final state of the previous debug session. The settings that can persist include the:

• target that was in use

• processor that was selected

• image that was loaded

• views that were open, including the size, shape, and position of each on the screen

• list of most recently used files

• list of most recently used session files

• list of most recently used images

• default display font

• tab size, specifying how tabs characters are expanded in source views

• printf formatting strings for several display formats

• array expansion threshold

• toolbar layout.

For a complete list of all the settings than can persist, see Configure Interface... on
page 5-80.

You can also choose to restart any previous session that was saved in a session file (see
Load Session... on page 5-12 or the -session argument in AXD arguments on page 2-3).

The current session settings are stored in the registry of your computer. The settings are
also written to a file that you specify if you choose to save the current session so that
you can restart it at any later time. AXD session files have the filename extension .ses.
See Save Session... on page 5-13. You can create any number of session files. To restart
an earlier session, see Load Session... on page 5-12.

If you start a debug session from the command line, specifying a session file (see AXD
arguments on page 2-3), then that session is restarted.

If you start up AXD without specifying a session file, then the setting of the Save and
load session files check box determines what happens. This check box is on the
General tab of the Configure Interface dialog (see Configure Interface... on page 5-80).
If checked, the previous session is restarted. If unchecked, system default settings are
used and no earlier session is restarted.
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 4-13

AXD Facilities
4.6 RealMonitor support

RealMonitor is a software solution developed by ARM that enables you to debug a
target application without stopping the processor, and without interrupting time-critical
parts of the application, such as interrupt handlers.

Targets that do not incorporate RealMonitor support must stop execution when a
debugger is connected, and restart when instructed to do so. The displayed views are
updated each time the target execution stops. All views therefore show consistent data.

You can trace and query a RealMonitor target without interrupting its execution. This
means that values of variable data displayed in AXD views might not be current. When
debugging a RealMonitor target, AXD places a timestamp in the title bar of a view
indicating when the contents of the view were last updated. The following restrictions
apply to the timestamp value:

• The value of the timestamp is the time when the debugger makes the request to
update data and does not accurately reflect (in terms of milliseconds) the time
when the data are evaluated. The timestamp does indicate the order in which the
views were updated.

• Views that display variable data, such as the watch, variable, and debugger
internals views, often contain hierarchical data. Because these views allow
unrestricted in-place expansion, they do not evaluate the child items of a structure
when the structure is added to the view. This means that when a hierarchical item
is expanded the child items are evaluated at the time of expansion. The values of
child items might not be consistent with the timestamp.

• Evaluation of dereferenced pointers is performed when the pointer is
dereferenced, not when it is added to the view. This means that the value of the
dereferenced data might not be consistent with the timestamp, or with the current
value of the pointer.

• Views that support dynamic addition of entries, such as the register and watch
views, evaluate new entries when they are added. The existing entries and the
timestamp are not updated when new entries are added. This means that the values
of new entries are not consistent with the timestamp.

See Configure Interface... on page 5-80 for information on how to connect AXD to a
RealMonitor target.

Where required, AXD views provide a Refresh item in their context menus that enables
you to refresh the view manually. Right-click in the view to display its context menu,
and select Refresh to update and recalculate displayed values.
4-14 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

AXD Facilities
If you select Properties... from the Memory or Backtrace processor view, you can select
or deselect an Automatic refresh check box. Selecting this causes the view to be
refreshed automatically whenever required. This avoids you having to refresh the view
manually but can impose a significant processing overhead.

Note
 In the Variables processor view, only the currently selected tab is refreshed by the
Refresh command. In addition, changing tabs causes the new tab to be automatically
refreshed. When a tab is updated, it is marked as clean until the next step.
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 4-15

AXD Facilities
4.7 Data formatting

You can enter and edit data in a variety of formats, and the debugger can display data in
a variety of formats. When you enter or edit data, or view displayed data, the correct
recognition of the format is vital to the interpretation of a value. It is important either to
prefix a value with an indicator of the format or to be sure that the correct format is
otherwise assumed.

You can select any format for displaying selected data in many places, including:

• registers views

• watch views

• variables views

• debugger internals views

• memory views.

Values are displayed in a default format for the data type unless you specify otherwise.

The Format item that appears on many pop-up menus leads to a number of submenus.
Figure 4-1 shows a few examples.

Figure 4-1 Example format submenus
4-16 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

AXD Facilities
The first format listed in a format submenu is the default format for the currently
selected data item. The checked format is the current format and normally appears
second in the list. If the current format is the default format, then the first format is
checked and is not repeated.

The format submenus allow you to select any valid data storage size and format for
displaying a selected item. You might replace it with a value that you enter in yet
another format.

When you enter or change data, you are offered in-place editing whenever possible,
otherwise a suitable dialog is displayed. When you use in-place data editing, the whole
string that you enter is interpreted and checked for validity when you press Return. If
you attempt to move the focus away from the field without pressing Return, the edit is
discarded and no validation occurs. Individual characters are not checked as you enter
them. You can enter data in any appropriate format, not necessarily the current display
format. You can enter addresses in a variety of formats, as described in Entering
addresses on page 4-12.

If you enter a value that is larger than the available field size, the least significant bits of
your value are stored and the most significant bits are ignored.

Note
 The format of a value is often indicated by a prefix, such as 0x meaning hexadecimal.
So, to change a displayed value from 0x21 to 0x20, for example, you must update the
entry to read 0x20. An entry of 20 is interpreted as decimal and the wrong value of 0x14
is stored.

Formats supported include:

• Hex on page 4-18

• Decimal on page 4-18

• Octal on page 4-18

• Binary on page 4-19

• ASCII on page 4-19

• Printf... on page 4-19

• Floating point on page 4-20

• Registers on page 4-21

• Q-format on page 4-24

• Other on page 4-25.
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 4-17

AXD Facilities
4.7.1 Hex

A 2-character prefix of a figure 0 and an uppercase or lowercase letter x indicates a hex
(hexadecimal) format. Hexadecimal digits (0-9, A-F) specify the value. The letters can
be uppercase or lowercase. Examples are:

0xffff
0X000369CF
0x0

4.7.2 Decimal

A value in decimal format has no prefix. The digits 0 to 9 are allowed, and the first
character can be a minus sign (-) or a plus sign (+). This format is intended for the
display or entry of integer values only.

Two types of decimal format are supported:

U Decimal In U Decimal (unsigned decimal) format the numerical value can range
from zero up to the highest value that can be stored in the number of bits
available. For example, an 8-bit byte can hold values from 0 to 255.

Decimal In Decimal (signed decimal) format the numerical value can be negative
or positive, with the maximum absolute value being half the maximum
unsigned decimal value. For example, an 8-bit byte can hold values from
-128 to +127 and a 16-bit halfword can hold values from -32768 to
+32767.

Note
 If you enter the value -1 this sets all the bits of the displayed, or available, format.

4.7.3 Octal

Octal format is generally denoted by a leading lowercase letter o. In this format each
group of three bits in the stored value is represented by a digit in the range 0-7. The
grouping of bits into three starts from the least significant bit, so if the data item does
not contain an exact multiple of three bits it is the most significant group that takes one
or two leading zero bits for the purpose of evaluating its octal digit.

For example, you can enter or display a 16-bit halfword in octal format as, say, o170761.
That same value is represented in binary format as b1111000111110001 or in hexadecimal
format as 0xF1F1.
4-18 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

AXD Facilities
4.7.4 Binary

Binary format uses one digit, either 0 or 1, to represent each bit of a value. When you
display a value in binary format, there is no leading-character indicator of the format,
but the format is generally easy to recognize because it contains 0s and 1s only and is
typically 8, 16, or 32 binary digits long. You can display a binary value with a space
after each 4-bit nibble (see Printf...).

To enter a value in binary format, enter a letter b, in uppercase or lowercase, as the first
character. You do not need to enter leading binary 0s. They are added automatically if
necessary. Any spaces you enter are ignored. You can enter, for example, a space after
every 4 bits to see the value of each nibble entered more clearly.

4.7.5 ASCII

ASCII format displays the selected data item as a fixed length string of characters. Each
character represents 8 bits of storage, starting from the least significant bit. Any residual
bits are padded with zeros to create a full 8 bits. The ASCII format is useful if, for
example, you are examining the copying of strings and character arrays by transfer in
and out of registers.

Characters displayed in ASCII format have no introductory character to indicate the
format. Any non-printable value is represented by a full stop (.).

If you edit an ASCII character string that contains a non-printable value, the string is
presented for editing in hexadecimal format.

To enter an ASCII value, prefix it with a single quotation mark (') or double quotation
mark ("). This quotation mark is not stored, it only indicates that what follows is a string
of ASCII characters. Each character you enter is stored in the least significant 8 bits of
the data item. Any previously entered characters shift by 8 bits to accommodate the new
character. If you enter more characters than the data item can hold, the earliest
characters are lost and the latest ones are stored.

4.7.6 Printf...

This displays a dialog allowing you to use an extended set of C formats to specify the
format used for displaying the currently selected data. Examples are:

%d
%g
%b
%B
%f
“Hello %d world”
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 4-19

AXD Facilities
If you specify a binary display format using a lowercase b, the displayed value has all
its binary digits in one continuous string. Using an uppercase B in the format
specification results in a display with a space after each nibble.

The last example displays a value of, say, 6 as Hello 6 world. If you double-click on the
value to edit it, you can change just the numeric value. Changing the value from 6 to,
say, 345 leads to a display of Hello 345 world.

For a simply-formatted value, the default printf format shown in the dialog is the format
currently used to display that value.

4.7.7 Floating point

Most floating point formats allow you to display or enter very small and very large
numerical values without having to use long strings of zeros.

You can enter very precise values by using sufficient significant digits, but the precision
that can be stored depends on the number of bits allocated. Generally, if you enter too
many significant digits the value is rounded to the nearest value that can be stored.

Four kinds of floating point format are supported:

Floating point

The first character can be a minus sign (-) or a plus sign (+). Remaining
characters are decimal digits (0-9) and one decimal point that can be
placed at any position among the digits.

A precision of up to about 6 significant figures can be stored. A value
stored in this format occupies 32 bits.

Scientific (single precision)

A dialog helps you enter or edit data in this format. You are prompted for
the sign and value of the mantissa and the exponent.

A value displayed in this format always has its decimal point after the first
significant figure.

This format offers a precision of up to about 6 significant figures. The
exponent value must be in the range -38 to +38. This format occupies 32
bits of storage.

Scientific (double precision)

A dialog helps you enter or edit data in this format. You are prompted for
the sign and value of the mantissa and the exponent.

A value displayed in this format always has its decimal point after the first
significant figure.
4-20 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

AXD Facilities
This format offers a precision of up to about 15 significant figures. The
exponent value must be in the range -308 to +308. This format occupies
64 bits of storage.

Raw floating point

This format enables you to view values in the 80-bit format used in a
Floating Point Accelerator (FPA) coprocessor.

4.7.8 Registers

Certain registers contain collections of settings that can be represented by very few bits,
often a single bit. Formats appropriate to these registers display the contents in
meaningful ways. For example, a flag that might be on or off is displayed as a letter. The
letter indicates which flag, uppercase meaning set and lowercase meaning cleared.

A dialog helps you to change the contents of this kind of register.

When you display the contents of a register, the required register format is used
automatically. The following register formats are supported:

PSR (Program Status Register)

A typical display of a Program Status Register might show nZCvIFtSVC,
giving information about:

• 4 condition code flags (NZCV)

• 2 interrupt enable flags (IF)

• 1 state indicator (T)

• 1 processor mode name (SVC).

E-PSR (Enhanced Program Status Register)

This format applies to processors, such as the ARM 9E, that support the
enhanced DSP instructions in E variants of ARM Architecture version 5
and above. See Registers processor view on page 5-19 for more
information.

A typical display of an Enhanced Program Status Register might show
nZCvqIFtSVC, giving information about:

• 5 condition code flags (NZCVQ)

• 2 interrupt enable flags (IF)

• 1 state indicator (T)

• 1 processor mode name (SVC).
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 4-21

AXD Facilities
JPSR (Jazelle Program Status Register)

This format applies to processors, such as the ARM926EJ-S, that support
ARM’s Jazelle™ technology for Java applications. See Registers
processor view on page 5-19 for more information.

A typical display of a Jazelle Program Status Register might show
nZCvqIFtJSVC, giving information about:

• 5 condition code flags (NZCVQ)

• 2 interrupt enable flags (IF)

• 2 state indicators (TJ)

• 1 processor mode name (SVC).

FPSR (Floating Point Status Register)

This format applies if you are using a Floating Point Accelerator (FPA)
coprocessor, or the Floating Point Emulator (FPE). A typical display of a
Floating Point Status Register might show xuOZI_xuozi.

Five letters are displayed twice. Each letter represents a floating point
exception, as follows:

X Inexact

U Underflow

O Overflow

Z Divide by zero

I Invalid operation.

The first set of letters represent the current settings of the five Exception
Trap Enables, also known as the Exception Mask. These settings define
which of the exceptions, if they occur, are intercepted by the debugger.

The second set of letters represent the Cumulative Exception Flags and
show the exceptions that have occurred.

Bits 20:16 of the 32-bit FPSR are the Exception Trap Enables, and bits
4:0 are the Cumulative Exception Flags.

FPSCR (Floating Point Status and Control Register)

This format applies to 32-bit registers containing bits that have the
following meanings:

31:28 Condition Flags. These bits represent the condition flags that
contain the results of the most recent floating point
comparison, as follows:

N the comparison produced a less than result

Z the comparison produced an equal result
4-22 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

AXD Facilities
C the comparison produced an equal, greater than or
unordered result

V the comparison produced an unordered result.

27:25 Reserved. Do not use.

24 Mode. This bit represents the flush-to-zero mode. If the bit is
unset (=0) flush-to-zero is disabled.

23:22 Rounding mode:

RN Round to Nearest

RP Round towards Plus Infinity

RM Round towards Minus Infinity

RZ Round towards Zero.

21:20 Stride part of the current vector length/stride control. The
allowed combinations are given in the drop-down list.

19 Reserved. Do not use.

18:16 Length part of the current vector length/stride control. The
allowed combinations are given in the drop-down list.

15:13 Reserved. Do not use.

12:8 Exception Mask. Each bit corresponds to one type of floating
point exception, as defined for Cumulative Flags.

7:5 Reserved. Do not use.

4:0 Cumulative Flags. Each bit corresponds to one type of floating
point exception. If a bit is set (=1), the exception flag has been
set as a result of executing a floating point instruction.

The flags are defined as follows:

X Inexact result, that is, non-zero rounding

U Underflow has occurred

O Overflow has occurred

Z Divide by zero has been attempted

I Invalid operation.

In views, set bits are represented by uppercase identifiers, unset bits are
represented by lowercase identifiers.

Other register formats

Other register formats might be available, depending on your target
system.
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 4-23

AXD Facilities
4.7.9 Q-format

Q-formats are bit-level formats for storing numeric values. A Q-format allows you to
specify:

• the number of bits used to represent values

• the numeric range within which all values fall.

Precision

The total number of bits you allow for storing a value determines the maximum
precision with which a value can be defined. You can also regard it as determining the
resolution, or smallest difference that can be distinguished between values.

Numeric range

In a Q-format you specify how many bits represent an integer value, and how many
further bits represent subdivisions within each integer value. You can in effect specify
ranges. For example:

• -1024 to (almost) +1024, where the most significant 11 bits represent a signed
integer value

• 0 to (almost) +64, where the most significant 6 bits represent an unsigned integer
value

• -1 to (almost) +1, where the most significant bit represents the sign.

In each case, all the remaining bits represent fractions between each integer value, and
(almost) means a value just one least-significant-bit less than the value given.

Notation

The form of a Q-format is Qn.m, where n is the number of bits before a notional binary
point, and m is the number of bits that follow it. You can choose signed Q-format for
ranges of values divided equally either side of zero, or unsigned Q-format for values that
range upwards from zero.

For example, a 16-bit halfword can hold values in a signed Q4.12 format. This covers
the range -8 to (almost) +8, with 65,536 unique values available in that range.

U Q15 is shorthand for unsigned Q1.15. This is a format for 16-bit values that gives
65,536 unique values in the range 0 to (almost) +2.

Q31 is shorthand for signed Q1.31. This is a format for 32-bit values that gives
4,294,967,296 unique values in the range -1 to (almost) +1.
4-24 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

AXD Facilities
4.7.10 Other

This submenu includes all the remaining available formats that do not appear on other
submenus. It also enables you to specify the number of bits of storage space you want
allocated to a data item. The items on this submenu are:

U Decimal See Decimal on page 4-18.

String This format treats the value as an array of characters.

If you attempt to edit a character array formatted as a string, a String
dialog is displayed, as shown in Figure 4-2.

Figure 4-2 String dialog

You can choose whether to edit the string as ASCII or ASCIIZ. If you
select ASCII, all characters up to the size of the array are replaced by the
input characters. If you select ASCIIZ, a trailing character zero is always
added as the final character of the array.

The dialog always opens with ASCIIZ set by default.

Type your character string in the edit box. If you enclose the string in
quotes, AXD interprets it as a C++ escape string and the read-only box
below the edit box shows how the string would be displayed. For
example, if your input contains a null character, only the characters
before the null are displayed. If you omit the quotes, all characters are
treated as part of the string and it is passed directly to the display.

The current value of the string is displayed, together with its hexadecimal
representation.
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 4-25

AXD Facilities
Hex - no prefix

Select this format to display a value in hexadecimal format without the
usual leading 0x characters. If you replace the displayed value your entry
must still begin with 0x to avoid being mistaken for a decimal value.

Octal - no prefix

Select this format to display a value in an octal format without the usual
leading o character. If you replace the displayed value your entry must
still begin with o to avoid being mistaken for a decimal value.

In addition there are size menus for other sized values. These menus do not indicate the
current size of the data item. This part of the submenu shows:

Size 8 Select this to display a further submenu containing all the formats that
you can use with 8-bit data items.

Size 16 Select this to display a further submenu containing all the formats that
you can use with 16-bit data items.

Size 32 Select this to display a further submenu containing all the formats that
you can use with 32-bit data items.

Size 40 Select this to display a further submenu containing all the formats that
you can use with 40-bit data items.

Size 64 Select this to display a further submenu containing all the formats that
you can use with 64-bit data items.

Size 80 Select this to display a further submenu containing all the formats that
you can use with 80-bit data items.
4-26 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

AXD Facilities
4.8 Profiling

Profiling involves sampling the program counter at specific time intervals. The resulting
information is used to build up a picture of the percentage of time spent in each
procedure. By using the armprof command-line tool on the data generated by AXD, you
can see how to make the program more efficient.

Note
 Profiling is supported by ARMulator, RealMonitor, and Angel, but not by
EmbeddedICE or Multi-ICE.

To collect profiling information when executing an image, you must specify profiling
settings when you first load the image (see Load Image... on page 5-7) or before
reloading the image (see Image pop-up menu on page 5-51):

Flat profiling

Flat profiling accumulates limited information without altering the
image.

Call graph profiling

Call graph profiling accumulates more detailed information but has to
add extra code to the image.

To collect profiling information:

1. Load your image file, having made the appropriate profiling settings.

2. Select Options → Profiling → Toggle Profiling if necessary to ensure that
Toggle Profiling is checked in the Profiling submenu of the Options menu.

3. Execute your program.

4. Select Options → Profiling → Write to File when the image terminates.

5. A Save dialog appears. Enter a file name and a directory as necessary.

6. Click the Save button.

Note
 You cannot display profiling information in AXD. Use the Profiling functions on the
Options menu to capture profiling information, then use the armprof command-line
tool, described in the ADS Compilers and Libraries Guide, to analyze it.

To collect information on a specific part of the execution:

1. Load (or reload) the program with profiling enabled.

2. Set a breakpoint at the beginning of the region of interest, and another at the end.

3. Execute the program as far as the beginning of the region of interest.
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 4-27

AXD Facilities
4. Clear any profiling information already collected by selecting Options →
Profiling → Clear Collected, and ensure that Toggle Profiling is checked.

5. Execute the program as far as the breakpoint at the end of the region of interest.

6. Select Options → Profiling → Write to File and specify the name of a file in
which to save the profiling information.

You can profile both C and assembler language functions. To profile assembler
language functions you must mark the functions with FUNCTION and ENDFUNC directives.
See ADS Assembler Guide for details.
4-28 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

Chapter 5
AXD Desktop

This chapter describes the menus, views, dialogs, tool and status bars that the AXD
desktop provides. Chapter 2 Getting Started in AXD gives an overview of some of these
facilities. This chapter systematically describes all the available facilities. It contains the
following sections:

• Menus, toolbars, and status bar on page 5-2

• File menu on page 5-6

• Search menu on page 5-16

• Processor Views menu on page 5-18

• System Views menu on page 5-48

• Execute menu on page 5-76

• Options menu on page 5-80

• Window menu on page 5-99

• Help menu on page 5-102.
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 5-1

AXD Desktop
5.1 Menus, toolbars, and status bar

This section introduces the AXD menus, and describes the available toolbars and the
status bar.

The first screen that AXD displays is similar to that shown in Figure 5-1. Subsequent
debug sessions might start up differently (see Persistence on page 4-13).

Figure 5-1 AXD opening screen

The main AXD features are described in this chapter under the headings:

• Menus

• Toolbars on page 5-3

• Status bar contents on page 5-5.

5.1.1 Menus

You can pull down the main menus from the menu bar near the top of the screen. Each
menu in the menu bar is described in a separate section of this chapter.

Other menus, called pop-up menus, are also available when you have views displayed.
Some items are duplicated in menu bar menus and pop-up menus. Some pop-up menus
offer additional items. The descriptions of views in Processor Views menu on page 5-18
and System Views menu on page 5-48 include details of pop-up menus.
5-2 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

AXD Desktop
5.1.2 Toolbars

Toolbars are available that correspond to most menus in the menu bar. You can display
none, any, or all of these toolbars (see Configure Interface... on page 5-80). Clicking on
an icon in a toolbar is equivalent to selecting a menu item.

File toolbar

File toolbar icons correspond to most File menu items, as shown in Figure 5-2.

Figure 5-2 File toolbar

These tools are described as menu items in File menu on page 5-6.

Search toolbar

Search toolbar icons correspond to most Search menu items, as shown in Figure 5-3.

Figure 5-3 Search toolbar

These tools are described as menu items in Search menu on page 5-16.

Processor Views toolbar

Processor Views toolbar icons correspond to most Processor Views menu items, as
shown in Figure 5-4.

Figure 5-4 Processor Views toolbar

These tools are described as menu items in Processor Views menu on page 5-18.

System Views toolbar

System Views toolbar icons correspond to most System Views menu items, as shown
in Figure 5-5 on page 5-4.
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 5-3

AXD Desktop
Figure 5-5 System Views toolbar

These tools are described as menu items in System Views menu on page 5-48.

Execute toolbar

Execute toolbar icons correspond to most Execute menu items, as shown in Figure 5-6.

Figure 5-6 Execute toolbar

These tools, with the exception of the timed refresh tool, are described as menu items
in Execute menu on page 5-76. For details of the timed refresh tool refer to Window
menu on page 5-99 and Configure Interface... on page 5-80.

Help toolbar

Help toolbar icons provide two ways of accessing AXD online help items, as shown in
Figure 5-7.

Figure 5-7 Help toolbar

These tools are described in Help menu on page 5-102.
5-4 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

AXD Desktop
5.1.3 Status bar contents

If you choose to display the status bar (see Status Bar display control on page 5-98) it
appears at the bottom of the AXD screen, as shown in Figure 5-8.

Figure 5-8 Status bar

Help text is displayed at the left of the status bar. This either reminds you how to display
information relevant to your current situation or, when you pull down a menu from the
menu bar and point to an item on it, explains the purpose of that menu item.

At the right, the current debug agent, processor, and image are shown (these are not
always the same as the selected debug agent, processor, and image). Also, when a
source or disassembly view has the focus, the current cursor line and column are shown.

A progress indicator shows the current operation being performed by the debugger.
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 5-5

AXD Desktop
5.2 File menu

File menu items allow you to transfer data between the debugger and various disk files,
and to close down the debugger. Figure 5-9 shows the File menu.

Figure 5-9 File menu

The File menu items are described under the following headings:

• Load Image... on page 5-7

• Load Debug Symbols... on page 5-8

• Reload Current Image on page 5-9

• Open File... on page 5-9

• Load Memory From File... on page 5-9

• Save Memory To File... on page 5-10

• Flash Download... on page 5-11

• Load Session... on page 5-12

• Save Session... on page 5-13

• Recent Files on page 5-13

• Recent Images on page 5-13

• Recent Symbols on page 5-14

• Recent Sessions on page 5-14

• Unload Current Image on page 5-14

• Import Formats... on page 5-14

• Exit on page 5-15.
5-6 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

AXD Desktop
5.2.1 Load Image...

To select a file containing an image to load into the target memory, select Load Image...
from the File menu. The resulting dialog is shown in Figure 5-10.

Figure 5-10 Selecting an image file to load

Navigate to the directory where the file is stored. You can specify that only files with a
particular filename extension are offered for selection. The directory that you specify in
this dialog becomes the current directory.

Your target might have more than one processor. The Processors list in the dialog
identifies them and enables you to select those onto which you want to load the image.

Leave the Profile check box unchecked if you do not intend to collect any profiling
information from this image. If you do want to perform profiling, then you must check
the Profile check box and set the other profiling details in this dialog before loading the
image:

Call graph profiling

Call graph profiling accumulates more detailed information than flat
profiling but has to add extra code to the image.

Flat profiling

Flat profiling accumulates limited information without altering the
image.
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 5-7

AXD Desktop
When you enable profiling at load time, you are then able to start and stop the collection
of profiling information during execution of the image (see Profiling on page 4-27).

Note
 Profiling is supported by ARMulator, RealMonitor, and Angel, but not by
EmbeddedICE or Multi-ICE.

An image loaded from the Load Image dialog or by a CLI command has a breakpoint
set by default at main().

If the image you are loading uses floating point data, the $target_fpu debugger internal
variable must match the image. See Debugger Internals system view on page 5-69.

5.2.2 Load Debug Symbols...

To load only the symbols of an image onto one or more processors, select Load Debug
Symbols... from the File menu. The resulting dialog is shown in Figure 5-11.

Figure 5-11 Load Debug Symbols dialog

Use this if the debug information is separate from the image, for example after using
Load Image From File to load an image or if you are debugging an image in ROM.
5-8 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

AXD Desktop
Leave the Enable flat profiling check box unchecked if you do not intend to collect any
profiling information from this image. When you enable profiling at load time, you are
then able to start and stop the collection of profiling information during execution of the
image (see Profiling on page 4-27).

5.2.3 Reload Current Image

Having finished executing an image, the simplest way of preparing it for re-execution
is to reload it.

To reload the current image file, select Reload Current Image from the File menu.

You can change the profiling settings for the next execution from the Image Properties
dialog (see Figure 5-65 on page 5-52).

5.2.4 Open File...

To examine the contents of a source file, select Open File... from the File menu. The
resulting dialog is shown in Figure 5-12.

Figure 5-12 Selecting a source file to open

Navigate to the directory where the file is stored. You can specify that only files with a
particular filename extension are offered for selection.

You can examine any source file by this means, but it does not form part of the current
debugging context. Access permission is read-only, so you cannot change the contents
of a source file.

5.2.5 Load Memory From File...

To load the contents of a file into memory, select Load Memory From File... from the
File menu. The resulting dialog is similar to the one shown in Figure 5-13 on page 5-10.
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 5-9

AXD Desktop
Figure 5-13 Loading memory from file

Specify in the Address field the memory address at which to start loading the contents
of the selected file. You can enter addresses in a variety of formats, as described in
Entering addresses on page 4-12.

5.2.6 Save Memory To File...

To save the contents of an area of memory to a disk file, select Save Memory To File...
from the File menu. The resulting dialog is shown in Figure 5-14 on page 5-11. This
dialog enables you to specify the:

• starting address of the area of memory to save

• number of bytes of memory to save

• name of a file in which to save it.

You can enter addresses in a variety of formats, as described in Entering addresses on
page 4-12.

If more than one processor is available the Processors list identifies them and enables
you to select which one is to have part of its memory saved.

Select the directory where you want to store the file containing the saved data. You can
either select an existing filename or specify a new one. You also select a file type, which
determines the filename extension given to any new file. If you select an existing file,
the data you save overwrites the current contents of the file.
5-10 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

AXD Desktop
Figure 5-14 Saving memory contents in a file

No data conversion or formatting takes place. The file contains an exact copy of the
contents of the specified memory range.

There is a limit of 16MB on the amount of memory you can specify for saving in a
single file. An error message appears if the Length value you enter is too great, and you
can enter a smaller value.

5.2.7 Flash Download...

To write an image to the Flash memory chip on an ARM Development Board or other
suitably equipped hardware:

1. Select Flash Download from the File menu. The resulting dialog is shown in
Figure 5-15.

Figure 5-15 Flash Download dialog

2. In the Processor field, select the processor that has the Flash memory into which
you want to load an image.
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 5-11

AXD Desktop
3. In the Action group you choose either to set an Ethernet address or to download
an image. Select Download to make a copy in Flash memory of an image stored
in a file.

4. Specify in the Image To Load data entry field the file that holds the image. You
can use the Browse button to select an image file.

5. In the Loader Options field, you can specify command-line options for the loader
program.

6. When you are satisfied with all the settings, click OK to start the download.

If you are using Angel with Ethernet support, you can also set its Ethernet address. After
writing an image to Flash memory, select Set Ethernet Address, click OK, and you are
prompted for the IP address and netmask, for example 193.145.156.78. You do not have
to do this if you have built your own Angel port with a fixed Ethernet address.

Refer to Appendix D Using the Flash Downloader for more information on Flash
downloading.

5.2.8 Load Session...

Select Load Session... from the File menu to load a previously saved session file. The
session file contains information about the state of the debugger at the time it was saved.
The resulting dialog is shown in Figure 5-16.

Figure 5-16 Load Session dialog

Locate the directory that holds the required .ses file, select it, and click the Open
button.

If the session you want to resume was a recent session, the session file you require might
still be in the most recently used list. See Recent Sessions on page 5-14.
5-12 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

AXD Desktop
5.2.9 Save Session...

To save the current debug session so that you can reuse it at a later time, select Save
Session... from the File menu. The resulting dialog is shown in Figure 5-17.

Figure 5-17 Save Session dialog

Change to the directory where you want to store the session file, and specify the name
of the file to be written. It is usual for session files to have a .ses filename extension. If
the file you specify already exists, you are given the choice of overwriting it or
specifying another file.

5.2.10 Recent Files

If you have opened any files by selecting Open File... from the File menu and using the
resulting browse dialog, you can reopen any of the few most recently opened more
easily by selecting Recent Files.

A submenu lists the files you have already opened and you can click on any filename in
the list to open that file again.

To change the number of files that can appear in the list, select Options → Configure
Interface → General, set a new value for Recent File List size, and click OK.

5.2.11 Recent Images

If you have loaded any images from disk files, using the Load Image dialog, then the
filenames most recently used are available to you.

To display a list of recently loaded image files, select Recent Images. A submenu lists
the filenames and you can click on any filename in the list to load that image again.

If your target has multiple processors, a dialog is displayed allowing you to select one
or more processors on which you want to load the image.
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 5-13

AXD Desktop
To change the number of files that can appear in the list, select Options → Configure
Interface → General, set a new value for Recent Image List size, and click OK.

5.2.12 Recent Symbols

If you have opened any symbols files by selecting Load Debug Symbols... from the
File menu and using the resulting browse dialog, you can reopen any of the few most
recently opened more easily by selecting Recent Symbols.

A submenu lists the files you have already opened and you can click on any filename in
the list to open that file again.

To change the number of files that can appear in the list, select Options → Configure
Interface → General, set a new value for Recent Symbols List size, and click OK.

5.2.13 Recent Sessions

If you have saved any earlier sessions, using the Save Session dialog, then the session
files most recently used are available to you.

To display a list of recently loaded session files, select Recent Sessions. A submenu
lists the filenames and you can click on any filename in the list to restore that session to
the state it was in when it was saved.

To change the number of files that can appear in the list, select Options → Configure
Interface → General, set a new value for Recent Session List size, and click OK.

5.2.14 Unload Current Image

To remove the current image from the target, select Unload Current Image from the
File menu.

As an example, when you are debugging an image loaded in one area of memory you
might want to load another image into a disjoint area of memory. The second load does
not unload the first image because they can both coexist. You have to unload the first
image manually.

5.2.15 Import Formats...

To import your own format definitions, select Import Formats from the File menu. The
resulting Import Formats browse dialog enables you to locate and select a .sdm file. This
is a supplementary display module that can include format definitions. Supplementary
display modules are usually supplied by ARM Limited if required.
5-14 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

AXD Desktop
5.2.16 Exit

To close all files and stop execution of AXD, select Exit from the File menu.
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 5-15

AXD Desktop
5.3 Search menu

The Search menu, shown in Figure 5-18, enables you to search for specific contents,
either in a source file related to a current process or in memory.

Figure 5-18 Search menu

The Search menu items are described under the following headings:

• Source...

• Memory....

5.3.1 Source...

To search for a given character string in a source file, select Source... from the Search
menu. A dialog, shown in Figure 5-19, enables you to specify the target character string,
and the file to be searched.

Figure 5-19 Searching for a string in a source file

You can search upwards or downwards, and specify case sensitivity, whether whole
words only must be considered, and whether after reaching one end of the file the search
continues from the other end.

When you start the search, a listing of the source file shows the lines surrounding the
first occurrence of the target string, with the characters highlighted. The Find Next
button enables you to search for the next occurrence.

5.3.2 Memory...

To search for a given value in memory, select Memory... from the Search menu. A
dialog, shown in Figure 5-20 on page 5-17, enables you to specify what to search for
and where to search.
5-16 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

AXD Desktop
Figure 5-20 Searching for a value in memory

Specify the processor associated with the memory you want to search in the Processor
field. The drop-down list identifies all the processors on the target and you select the
one you want. Specify the first and last addresses of the area of memory you want to
search in the In range and to fields. You can enter addresses in a variety of formats, as
described in Entering addresses on page 4-12.

Specify the target value you are searching for in the Search for field. You can search for
any string of up to 200 characters, using either ASCII or hexadecimal notation. Make
sure you select the correct Search string type radio button to indicate which format you
are using. The drop-down selection list contains recent search strings, making it easy
for you to search again for a string you have already specified.

When you start the search, a display of the contents of memory shows the area
surrounding the first occurrence of the target string, with that string highlighted. The
Find Next button enables you to search for the next occurrence.

The value searched for is the string of bytes that you specify, in either ASCII or
hexadecimal notation, and can be of any number of bytes in length. The contents of
consecutive bytes of memory are compared with the target string.

Note
 The byte order that you set (by selecting Properties... from the Memory pop-up menu)
can affect the order in which bytes are displayed. This means that bytes can be displayed
in a different order from that in which they are stored.
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 5-17

AXD Desktop
5.4 Processor Views menu

The Processor Views menu, shown in Figure 5-21, enables you to examine and change
information relating to specific processors.

Figure 5-21 Processor Views menu

If you are licensed to use the Trace Debug Tools (TDT) and your target processor
supports trace, the Processor Views menu also shows the Trace option (see Trace
processor view on page 5-47).

All data you display and any changes you make are on the processor currently selected
in the Control system view (see Control system view on page 5-49). The title bar of each
processor view identifies the processor being viewed.

When you select a Processor Views menu item, a new processor view opens on the
currently selected processor. If you select a processor view that is already open and
displayed, it does not change. If you select a processor view that is already open and
hidden, it is displayed.

You can examine one processor with any number of the available processor views. You
can open a particular processor view as many times as necessary to examine all
available processors. A separate viewing window appears on the screen for each view
of each processor.

If you are displaying a number of processor views of the same type, with each one
related to a different processor, consider using a corresponding system view instead (see
System Views menu on page 5-48).

You can display a pop-up menu by right-clicking when the mouse pointer is inside any
processor view. If the mouse pointer is on a selectable item in the view when you
right-click, then that item is selected. Certain pop-up menu items are enabled only when
a view item is selected, and apply to that item only.

The description of each processor view includes a reproduction of its pop-up menu.
Online help gives further details.
5-18 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

AXD Desktop
The Processor Views menu items are described under the following headings:

• Registers processor view

• Watch processor view on page 5-23

• Variables processor view on page 5-26

• Backtrace processor view on page 5-29

• Memory processor view on page 5-31

• Low Level Symbols processor view on page 5-35

• Comms Channel processor view on page 5-37

• Console processor view on page 5-39

• Disassembly processor view on page 5-40

• Source... processor view on page 5-44

• Trace processor view on page 5-47.

5.4.1 Registers processor view

The Registers processor view enables you to examine the value of any of the registers
in a specific processor. It also enables you to change any of these values, unless you are
debugging an Angel target when you can change the registers of the current mode only.

Ensure that the required processor is selected in the Control processor view before you
display a Registers processor view. Each Registers processor view shows its processor
name near the top left corner.

A typical Registers processor view is shown in Figure 5-22.

Figure 5-22 Registers processor view
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 5-19

AXD Desktop
The registers are shown in named groups, to reflect the typical grouping of registers into
banks. Click on the + or – boxes to expand or collapse each level of the displayed tree
structure, but see Viewing structured data on page 2-9.

The crossed-out eye symbol is not usually present. It is displayed if you try to refresh
the display of register values while the program is running, with timed refresh enabled
for example, and reminds you that this is not possible. Only the Memory processor view
can show values changing while the program is running.

Double-click on the value of any register that you want to change. In-place editing is
invoked whenever possible, otherwise a dialog is displayed. Double-clicking on the
value of a Program Status Register (PSR), for example, displays the dialog shown in
Figure 5-23.

Figure 5-23 Program Status Register dialog

ARM processors that have an extra bit (Q, signifying saturation) in the program status
register require an Enhanced PSR (EPSR) format. This displays the extra bit in the
Registers processor view, and editing the value of that register displays the dialog shown
in Figure 5-24.

Figure 5-24 Enhanced Program Status Register dialog

ARM processors that are Jazelle-capable have an extra bit (J, signifying Jazelle state) in
the program status register and require a Jazelle PSR (JPSR) format. This displays the
extra bit in the Registers processor view, and editing the value of that register displays
the dialog shown in Figure 5-25 on page 5-21.
5-20 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

AXD Desktop
Figure 5-25 Jazelle Program Status Register dialog

Whenever AXD can determine the most suitable format for displaying a program status
register, it does so automatically. If AXD is unable to determine the most suitable
format, EPSR is used by default. To change the display format for a program status
register, select one from the Registers submenu of the Format menu item in the
Registers processor view pop-up menu.

For more information about data display formats and data entry formats, see Data
formatting on page 4-16.

To add one of the registers displayed in a Registers processor view to the Registers
system view (see Registers system view on page 5-54), right-click on the required
register to select it and display the pop-up menu, then select Add to System (see
Registers processor view pop-up menu).

Registers processor view pop-up menu

To display the Registers pop-up menu, shown in Figure 5-26, right-click within the
Registers processor view.

Figure 5-26 Registers processor view pop-up menu
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 5-21

AXD Desktop
The Add To System, Format, and Locate Using Value menu items are enabled only
when you right-click on a selectable item in the processor view, and then they apply to
the selected item only.

Format Select Format to see a list of all the available formats in which you can
display the item currently selected in the Registers processor view, as
shown in Figure 5-27.

Figure 5-27 Formats available for displaying registers

Refer to Data formatting on page 4-16 for details of the formats
available.

Locate Using Value

The Locate Using Value menu item functions as described in Watch
processor view pop-up menu on page 5-24.

Refresh Select Refresh to update and recalculate the displayed data values. A
Registers processor view cannot be refreshed while an image is
executing. This item is useful if the target supports RealMonitor. See also
Refresh All on page 5-100.

Properties... Select Properties... to display the Default Display Options dialog shown
in Figure 5-28 on page 5-23.
5-22 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

AXD Desktop
Figure 5-28 Default Display Options dialog

With this dialog you control the default display format, and choose
whether any change you make applies to all the displayed data items or
to only those that currently use the default format. Click the Help button
in the dialog to display more information.

If you hide a Registers processor view then later select it again, it reappears in the state
it was in when you hid it.

If you close a Registers processor view then later select it again, it is displayed as though
you are selecting it for the first time.

5.4.2 Watch processor view

The Watch processor view enables you to examine the value of variables, or of
expressions dependent on variables, in an image being executed by a specific processor.

Select the required processor in the Control system view before you display a Watch
processor view. Each Watch processor view shows its processor name near the top left
corner.

A Watch processor view is initially empty. You choose what is to be listed and have its
value shown. One way to add lines to a Watch processor view is to select one or more
items in a Variables processor view, then right-click and select Add to Processor
Watch from the resulting pop-up menu.

Another way to add a line is to select Add Watch from the pop-up menu (see
Figure 5-30 on page 5-24). Your specification of what is to be watched is shown in the
first column, and its value is evaluated and shown in the second column each time
program execution in the relevant processor stops. (When using certain processors,
execution does not have to stop. See RealMonitor support on page 4-14.)
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 5-23

AXD Desktop
To define what is to be watched, you enter an expression. An expression can be simply
the name of a variable, and that is often all you require. More complex expressions are
allowed, however, and might include logical and arithmetic operators, in addition to the
names of variables and constants.

If the displayed data has a tree structure, click on the + or – boxes to expand or collapse
each level of the structure, but see Viewing structured data on page 2-9.

A typical Watch processor view is shown in Figure 5-29. For more information about
data display formats and data entry formats, see Data formatting on page 4-16.

Figure 5-29 Watch processor view

The four tabbed pages allow you to define up to four lists of expressions to watch in any
one processor. Click on the tab of the page you want to view.

Watch processor view pop-up menu

To display the Watch pop-up menu, shown in Figure 5-30, right-click within the Watch
processor view.

Figure 5-30 Watch processor view pop-up menu

If you have selected an item in the Watch processor view, you can click on Add to
System Watch to add that item to those displayed in a Watch system view (see Watch
system view on page 5-56).
5-24 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

AXD Desktop
One way of defining a new watch for the Watch processor view is to select Add Watch
from the pop-up menu. The resulting dialog is shown in Figure 5-31.

Figure 5-31 Add Watch dialog

Enter a new expression to watch. Specify the processor, whether the new watch must be
added to the Watch processor view or system view (see Watch system view on
page 5-56), and on which tabbed page it must appear. Figure 5-31 shows Tab 1 of the
Watch processor view as the chosen destination. By default, the Tab radio button
selected reflects the current tabbed page in the Watch processor view.

Click the Evaluate button to evaluate the expression. Either the result of the evaluation
or an error message appears in the main pane of the dialog. You can build up a list of
expressions and their values. Select any one of the displayed expressions and click the
Add To View button to add that expression to the specified view (Watch processor view
or Watch system view). To see the address of a variable in addition to its value, enter &
in front of its name.

From the Watch processor view (as shown in Figure 5-29 on page 5-24) you can select
a data item and use the Watch processor view pop-up menu to examine it in more detail.

Locate Using Value

Select Locate Using Value or Locate Using Address if you want to
examine an area of memory. Selecting this option means that only the 32
least significant bits of the value of the selected item are used as the
required memory address. A Memory Locate view is displayed, very
similar in appearance to the view described in Memory processor view on
page 5-31, with the selected memory address in view. If an existing
tabbed page in a Memory processor view already includes the required
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 5-25

AXD Desktop
address (and is not the page from which the request originates), that page
is displayed. If no existing tabbed page is suitable, the least recently
selected tabbed page is used to display the required region of memory.

Locate Using Address

Selecting this option is similar to Locate Using Value and enables you to
examine an area of memory in a Memory Locate view. Selecting this
option, however, uses the address of the selected item as the required
memory address.

Array Expansion...

Select Array Expansion... to display an Array Expansion dialog, either
when you are about to expand an array or when you want to display a
different range of elements in an array that is already expanded. This
dialog enables you to choose either to display all elements or to specify
the first and last element numbers to display. Array elements are
numbered from zero. A 50-element array, for example, contains elements
numbered 0 to 49. By default, elements 0 to 15 (the first 16 elements)
only are displayed when you expand any array with more than 16
elements.

Refresh Select Refresh to update and recalculate the displayed data values. This
item is useful if the target supports RealMonitor. See also Refresh All on
page 5-100.

Properties...

Select Properties... to display the Default Display Options dialog shown
in Figure 5-28 on page 5-23. With this dialog you control the default
display format, and choose whether any change you make applies to all
the displayed data items or to only those that currently use the default
format. Click the Help button in the dialog to display more information.

If you hide a Watch processor view then later select it again, it reappears in the state it
was in when you hid it.

If you close a Watch processor view then later select it again, it is displayed empty, as
though you are selecting it for the first time.

5.4.3 Variables processor view

The Variables processor view enables you to examine and change the value of any of
the listed variables.
5-26 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

AXD Desktop
Click on the appropriate tab to display:

• Local variables, those with scope within the current function

• Global variables, those with scope over all parts of the program

• Class variables, those with scope within the current class only.

A Variables processor view is shown in Figure 5-32, with its Local tab selected.

Figure 5-32 Variables processor view

Click on the + or – boxes to expand or collapse each level of the displayed tree structure,
see Viewing structured data on page 2-9.

Double-click on the value of any variable that you want to change. In-place editing is
invoked whenever possible, otherwise a dialog is displayed. For more information about
data display formats and data entry formats, see Data formatting on page 4-16.

Variables processor view pop-up menu

To display the Variables pop-up menu, shown in Figure 5-33 on page 5-28, right-click
within the Variables processor view.
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 5-27

AXD Desktop
Figure 5-33 Variables processor view pop-up menu

If the mouse pointer is on a selectable line when you right-click, then that line is
selected. The items in the top group of the pop-up menu apply to the selected line only.
If no line is selected, those items are disabled.

You can select more than one displayed item by left-clicking while holding down the
Shift or Ctrl key. A right-click on one of the selected items then displays the pop-up
menu and any resulting actions apply to all the selected items.

The Locate Using Value, Locate Using Address, and Array Expansion... menu items
function as described in Watch processor view pop-up menu on page 5-24.

Add To Processor Watch

Select Add To Processor Watch to add the selected variable(s) to a
Watch processor view (see Watch processor view on page 5-23).

Add To System Watch

Select Add To System Watch to add the selected variable(s) to a Watch
system view (see Watch system view on page 5-56).

Refresh Select Refresh to update and recalculate the displayed data values. This
item is useful if the target supports RealMonitor. See also Refresh All on
page 5-100.

Properties... Select Properties... to display the Default Display Options dialog shown
in Figure 5-28 on page 5-23. With this dialog you control the default
display format, and choose whether any change you make applies to all
the displayed data items or to only those that currently use the default
format. Click the Help button in the dialog to display more information.

If you hide a Variables processor view then later select it again, it reappears if possible
with the same tab selected and the same levels expanded as when you hid it. The content
depends on the current execution context (the address stored in the program counter).
5-28 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

AXD Desktop
If you close a Variables processor view then later select it again, it is displayed as though
you are selecting it for the first time.

5.4.4 Backtrace processor view

The Backtrace processor view enables you to examine the call stack of the current
image in a specific processor.

Select the required processor in the Control system view before you display a Backtrace
processor view. Each Backtrace processor view shows its processor name near the top
left corner.

A typical Backtrace processor view is shown in Figure 5-34.

Figure 5-34 Backtrace processor view

Each entry in the displayed list shows the function context of a single stack frame. The
entries are ordered with the current stack frame at the top. An entry contains the address
or the name of a function, and the types of the parameters with which it was called. An
address is displayed instead of a name if the address is not in a range described by a
symbol table or image.

It is possible for an application program to overwrite and damage the call stack. A line
showing ----------//----------//---------- indicates that an inconsistency has been
detected and the call stack is considered broken. This might be due, for example, to the
use of inline calls.

A stack discontinuity can also result from a call to another image if the debug symbol
table of the called image is not available to the debugger. A call to an operating system
function is an example. You can display a complete call stack if you first load the debug
symbol tables of all the images your program calls. See Load Debug Symbols... on
page 5-8.

When the selected processor is in Jazelle state, the Backtrace processor view contains
only a single entry, shown in Figure 5-35 on page 5-30. This entry is given as an offset
from the nearest previous low-level symbol.
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 5-29

AXD Desktop
Figure 5-35 Backtrace processor view in Jazelle state

Backtrace processor view pop-up menu

To display the Backtrace pop-up menu, shown in Figure 5-36, right-click within the
Backtrace processor view.

Figure 5-36 Backtrace processor view pop-up menu

If the mouse pointer is on a selectable line when you right-click, then the line is selected.
The items in the top group of the pop-up menu apply to the selected line only. If no line
is selected, those items are disabled.

The Locate Using Address menu item functions as described in Watch processor view
pop-up menu on page 5-24.

Select Refresh to refresh the call stack. This is necessary only when Automatic
Refresh is unselected in the Backtrace Properties dialog. If Automatic Refresh is
selected, the call stack is refreshed automatically but this can impose a significant
processing overhead.

To display the dialog shown in Figure 5-37 on page 5-31, select Properties... from the
pop-up menu.
5-30 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

AXD Desktop
Figure 5-37 Backtrace Properties dialog

Refer to AXD online help for details of the other pop-up menu items.

5.4.5 Memory processor view

The Memory processor view enables you to examine and change the contents of specific
memory addresses.

Memory is made available to you in pages. The default size of a page is 1024 bytes, but
you can change this value by selecting Properties... from the Memory pop-up menu.

The area of memory visible depends on the size that you make the processor view
window. If less than one page of memory is visible, scroll bars allow you to view other
parts of the current page. A typical view of an area of memory is shown in Figure 5-38.

Figure 5-38 Memory processor view

You can specify the Start address in a variety of formats, as described in Entering
addresses on page 4-12.

Generally, each line represents 16 bytes of memory. The address of the first byte is
shown at the left. Using Properties... from the Memory pop-up menu, you can set this
to be either the absolute address or the zero-based offset from the beginning of the
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 5-31

AXD Desktop
current page. The contents of the 16 bytes of memory occupy most of each line. You can
display these as four 32-bit words, eight 16-bit half-words, or sixteen 8-bit bytes. In the
last case, the ASCII characters corresponding to the 16 bytes are shown at the right of
the line.

The four tabbed pages allow you to define up to four memory areas of interest and to
switch easily from one to another. The memory area covered by each tabbed page is one
page long, and starts at the address you specify in the Start Address field near the top of
the view. The areas you define can overlap, or be contiguous, or be separate.

The size of the displayed words and their display format are among the settings you can
change using the Memory processor view pop-up menu. You can use different settings
on each of the four tabbed pages of the view. The column widths change automatically
to suit the format you select. If you specify a printf format without specifying a width
parameter, then the display uses a column width of 10 characters plus any decoration
characters you specify.

A breakpoint is highlighted in red, or in gray-red if it is disabled. A watchpoint is
highlighted in green, or gray-green if it is disabled.

The Memory processor view also enables you to examine memory on a processor
running in Jazelle state, shown in Figure 5-39 on page 5-33. You can set the display
format for the first tabbed page to ByteCode using the Memory pop-up menu.

You can open multiple memory views, even on a single processor, if you want more than
four tabbed pages. For more information about data display formats and data entry
formats, see Data formatting on page 4-16.
5-32 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

AXD Desktop
Figure 5-39 Memory processor view in Jazelle state

Memory processor view pop-up menu

To display the Memory pop-up menu, shown in Figure 5-40, right-click within the
Memory processor view.

Figure 5-40 Memory processor view pop-up menu
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 5-33

AXD Desktop
The Locate Using Value menu item functions as described in Watch processor view
pop-up menu on page 5-24.

Format Select Format from the Memory processor view pop-up menu to display
the submenu, shown in Figure 5-41, to set the display format. You can use
different settings on each of the four tabbed pages of the view.

Figure 5-41 Memory processor view formats

Toggle Breakpoint

Select Toggle Breakpoint to toggle a breakpoint at the address defined
by the current cursor position. If a breakpoint already exists at this
address it is deleted. If no breakpoint exists at this address a default
breakpoint is created here.

Toggle Watchpoint

Select Toggle Watchpoint to toggle a watchpoint at the address defined
by the current cursor position. If a watchpoint already exists at this
address it is deleted. If no watchpoint exists at this address a default
watchpoint is created here.

A new watchpoint set in this way from the Memory processor view can
watch for changes in the value stored in one or more bytes of memory. If
the tabbed page of the Memory processor view is configured to display
8-bit, 16-bit, or 32-bit values, then 1, 2, or 4 bytes respectively are
watched. If a block of memory locations is selected when you create a
new watchpoint with Toggle Watchpoint, then all the highlighted
locations are watched.

Refresh Select Refresh to update and recalculate the displayed data values. This
item is useful if the target supports RealMonitor. See also Refresh All on
page 5-100.

Refer to AXD online help for details of the other Memory pop-up menu items, including
the Memory Properties dialog, shown in Figure 5-42 on page 5-35.
5-34 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

AXD Desktop
Figure 5-42 Memory Properties dialog

Data width for memory reads and writes

The Target Access group of radio buttons in the Memory Properties dialog enables you
to specify the width of data read from or written to memory. Unless you have a
particular requirement, use the Def setting to indicate that you want the debugger to
decide.

5.4.6 Low Level Symbols processor view

The Low Level Symbols processor view enables you to examine the low-level symbols
of the current image in a specific processor.

Select the required processor in the Control system view before you display a Low
Level Symbols processor view. Each Low Level Symbols processor view shows its
processor name near the top left corner.

A typical Low Level Symbols processor view is shown in Figure 5-43 on page 5-36.
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 5-35

AXD Desktop
Figure 5-43 Low Level Symbols processor view

The left column shows addresses and the right column shows symbol strings. Use the
pop-up menu, or click on the column heading, to sort the list by address order or by
symbol name order.

If you hide a Low Level Symbols processor view then later select it again, it reappears
in the state it was in when you hid it.

If you close a Low Level Symbols processor view then later select it again, it is
displayed as though you are selecting it for the first time.

Low Level symbols processor view pop-up menu

To display the Low Level Symbols pop-up menu, shown in Figure 5-44, right-click
within the Low Level Symbols processor view.

Figure 5-44 Low Level Symbols processor view pop-up menu

If the mouse pointer is on a selectable line when you right-click, then that line is
selected. The items in the top group of the pop-up menu apply to the selected line only.
If no line is selected, those items are disabled.

The Locate Using Address menu item functions as described in Watch processor view
pop-up menu on page 5-24.
5-36 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

AXD Desktop
Refer to AXD online help for more details of these menu items.

5.4.7 Comms Channel processor view

The Comms Channel processor view enables you to examine data that passes to and
from the debugger target along the Debug Communications Channel (DCC), and to
send data of your own. AXD has its own built-in DCC viewer. If your target offers, for
example, the file ThumbCV.dll as a DCC viewer, do not select it.

The Comms Channel Viewer processor view is shown in Figure 5-45. You can enable
or disable the debug communications channel by checking or clearing a check box on
the Comms Channel Properties dialog available from the Comms Channel Viewer
pop-up menu (see Comms Channel Viewer pop-up menu on page 5-38) or on the
Processor Properties dialog (see Configure Processor... on page 5-96 or Control system
view pop-up menus on page 5-50).

Figure 5-45 Comms Channel Viewer processor view

Use the Send group of this window to send information down the channel. Type
information in the edit box and click the Send button to store the information in a buffer.
The information is sent when requested by the target, in ASCII character codes. The
Left to send counter displays the number of bytes that are left in the buffer.

By default, the information received by the Comms Channel Viewer is displayed using
the Auto-Toggle format. This converts the information into ASCII character codes and
displays it in the Receive pane, if the channel viewer is active.

However, if 0xFFFFFFFF is received, the Auto-Toggle format displays the following
words as a hexadecimal number. On the next occurrence of 0xFFFFFFFF the Auto-Toggle
format switches and information is again converted into ASCII character codes. In this
way, 0xFFFFFFFF is used to toggle between the different formats.
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 5-37

AXD Desktop
You can display received information in other formats, as described in Comms Channel
Viewer pop-up menu.

Comms Channel Viewer pop-up menu

To display the Comms Channel Viewer pop-up menu (see Figure 5-46), right-click
anywhere in the Comms Channel processor view except in the Send edit area or the
Receive pane.

Figure 5-46 Comms Channel Viewer pop-up menu

Receive log file...

Select this option to specify a file where data received from the target is
stored.

Send from file...

Select this option to specify a text file where data is stored ready to be
sent to the target.

Clear Send Buffer

Select this option to flush the send buffer and to close an input file if used.

Format Select this option to display the submenu shown in Figure 5-47.

Figure 5-47 Comms Channel Viewer formats
5-38 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

AXD Desktop
When you select any format except Auto-Toggle (the default),
information received is shown in columns. Your choice of format
determines the initial column width, but you can change the column
widths by using the mouse to drag the column header dividers to the left
or right.

Properties... Select Properties... from the Comms Channel Viewer pop-up menu to
display the dialog shown in Figure 5-48.

Figure 5-48 Comms Channel Properties dialog

The Comms Channel Properties dialog is used to enable the Comms
Channel Viewer and to specify how information from the Comms
Channel is displayed.

AXD online help describes this and all the Comms Channel Viewer pop-up menu items.

5.4.8 Console processor view

You might want to debug an image that is intended to receive input from, or write output
to, devices that are not yet available. The Console processor view provides the
semihosting facility that enables you to do so.

Output from an executing image is displayed, and you can respond by entering data
from your keyboard or from a file to provide input for the image.

A typical Console processor view is shown in Figure 5-49.

Figure 5-49 Console processor view
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 5-39

AXD Desktop
Console processor view pop-up menu

To display the Console processor view pop-up menu, shown in Figure 5-50, right-click
within the Console processor view.

Figure 5-50 Console processor view pop-up menu

Refer to AXD online help for more details of these menu items.

5.4.9 Disassembly processor view

The Disassembly processor view displays not only the contents of regions of memory
but also the assembler code instructions that correspond to those contents.

A typical Disassembly processor view is shown in Figure 5-51. This is the display
format you see if you have both Show margin and Show addresses selected on the
Properties dialog obtained from the pop-up menu (see Figure 5-55 on page 5-43).

Figure 5-51 Disassembly processor view

You can see the low-level symbols in the margin and a blue arrow shows the current
execution point. Any breakpoints are marked with a red disc.
5-40 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

AXD Desktop
A Disassembly processor view for a Jazelle-capable processor is shown in Figure 5-52.
This is the display format you see if you select ByteCode from the Disassembly Mode
option on the pop-up menu (see Figure 5-54 on page 5-43).

Figure 5-52 Disassembly processor view in Jazelle state

When running your image on a Jazelle-capable processor, there are circumstances that
might result in erroneous disassembly. This is because, unlike ARM or Thumb code,
bytecodes are of variable length and so disassembly can become unsynchronized. In this
case low-level symbols might not be displayed correctly where the disassembly is out
of synch.

Note
 If an area of erroneous disassembly includes the execution address then the blue arrow
indicator is not shown in the Disassembly processor view.

Disassembly processor view pop-up menu

To display the Disassembly pop-up menu, shown in Figure 5-53 on page 5-42,
right-click within the Disassembly processor view.
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 5-41

AXD Desktop
Figure 5-53 Disassembly processor view pop-up menu

To display a submenu duplicating the items you are most likely to want from the
Execute main menu, select Execute on the pop-up menu. See Execute menu on
page 5-76 for details of all but one of these items.

Set Next Statement is the item that appears on the Execute submenu and not in the
Execute main menu. To resume execution at a specific statement, without executing any
intervening statements, right-click on the required statement in the Disassembly
processor view, select Execute in the pop-up menu, and select Set Next Statement.

To display a submenu allowing you to change the setting of the stepping mode, select
Stepping Mode on the pop-up menu. The stepping modes available are:

Disassembly This steps always in disassembly instructions.

Strong Source This steps always in source code statements.

Weak Source This steps in source code statements if possible. This is the default
setting.

If the image contains no debug information, stepping is by
disassembly instructions.

If the image contains debug information, but the source files are
not accessible, stepping is by instructions corresponding to source
lines.

To display a submenu allowing you to change the setting of the code used for
disassembly, select Disassembly Mode on the pop-up menu, shown in Figure 5-54 on
page 5-43. This enables you to display the disassembled code in ARM/Thumb, or
ARM, or Thumb, or ByteCode format. If you choose ARM/Thumb then AXD displays
the code depending on what the image contains.
5-42 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

AXD Desktop
Figure 5-54 Disassembly Mode formats submenu

Toggle Breakpoint

Select this option to set or delete a breakpoint at the current cursor
position.

Toggle Watchpoint

Select this option to set or delete a watchpoint at the current cursor
position.

Set PC Select this option to reset the program counter so that the instruction at
the current cursor position is the next instruction to be executed.

Refresh Select Refresh to update and recalculate the displayed data values. This
item is useful if the target supports RealMonitor. See also Refresh All on
page 5-100.

Properties... Select this option to display the View Properties dialog shown in
Figure 5-55.

Refer to AXD online help for more details of all the items on the pop-up menu.

Figure 5-55 Disassembly View Properties dialog
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 5-43

AXD Desktop
5.4.10 Source... processor view

The Source... processor view first displays a file selection dialog, similar to that shown
in Figure 5-56.

Figure 5-56 Source file selection

This lists all source files that have contributed debug information to the current image
(not necessarily all source files used to build the image). Select a filename and click the
OK button to display the file. If the file is not in the expected place, another dialog
enables you to specify where it is or browse to find it.

The Source... processor view displays the source file as specified. To display the
Source... processor view pop-up menu, shown in Figure 5-58 on page 5-45, right-click
within the view.

Figure 5-57 on page 5-45 shows the kind of source file listing you see if you select
Interleave disassembly from the pop-up menu.

You can set a breakpoint by double-clicking on a line number or address at the left side
of the display, or by right-clicking in a line and selecting Toggle Breakpoint from the
pop-up menu. You can set a breakpoint on a procedure exit by double-clicking on the
line number of the line containing the closing bracket of the procedure.
5-44 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

AXD Desktop
Figure 5-57 Source... processor view

Interleaved disassembly code sometimes includes lines containing just six dots (......).
These lines indicate breaks in the sequence of execution due to inline code expansion
and compiler optimization settings. The memory address displayed at the beginning of
each line helps you to see how your source code is compiled.

Source... processor view pop-up menu

To display the pop-up menu shown in Figure 5-58, right-click within the Source...
processor view.

Figure 5-58 Source... processor view pop-up menu
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 5-45

AXD Desktop
To display a submenu duplicating the items you are most likely to require from the
Execute main menu, select Execute on the pop-up menu. See Execute menu on
page 5-76 for details of all items except Set Next Statement.

Set Next Statement is the item that appears on the Execute submenu and not in the
Execute main menu. To resume execution at a specific statement, without executing any
intervening statements, right-click on the required statement in the Source... processor
view, select Execute in the pop-up menu, and select Set Next Statement.

To display a submenu allowing you to change the setting of the stepping mode, select
Stepping Mode on the pop-up menu. The stepping modes available are:

Disassembly This steps always in disassembly instructions.

Strong Source This steps always in source code statements.

Weak Source This steps in source code statements if possible. This is the default
setting.

If the image contains no debug information, stepping is by
disassembly instructions.

If the image contains debug information, but the source files are
not accessible, stepping is by instructions corresponding to source
lines.

To activate or deactivate a breakpoint at the current cursor position, select Toggle
Breakpoint from the pop-up menu. To set or replace a watchpoint on a currently
selected item, select Set Watchpoint from the pop-up menu.

To display the dialog shown in Figure 5-59, select Properties... from the pop-up menu.

Figure 5-59 Source View Properties dialog

Refer to AXD online help for more details of all the items on this pop-up menu.
5-46 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

AXD Desktop
5.4.11 Trace processor view

The Trace Debug Tools (TDT) is part of the ARM RealTime Trace solution for
debugging and can be purchased as an extension to ADS. If you are licensed to use this
product, and your target processor supports trace, the Trace option is also available on
the Processor Views menu.

For further information see the documentation accompanying the product, for example,
the Trace Debug Tools User Guide.
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 5-47

AXD Desktop
5.5 System Views menu

System views are not specific to any processor. Some show information about the whole
system. Others help you reduce the number of views you need to display.

A Registers system view, for example, can show registers that are associated with
several processors. You can examine in a single system view registers that otherwise
require multiple processor views. In a system view, the processor to which each line is
related is identified in the display.

Selecting a System Views menu item generally toggles that view. That is, the selected
system view is opened if it is currently closed or hidden, or hidden if it is currently open.
System views that are open are checked on the menu. Figure 5-60 shows an example of
a System Views menu.

Figure 5-60 System Views menu

Each system view has a pop-up menu you can display by right-clicking when the mouse
pointer is inside the system view. If the mouse pointer is on a selectable line in the
system view when you right-click, then that line is selected. Certain pop-up menu items
are enabled only when a line is selected, and apply to that line only.

The description of each system view includes a reproduction of its pop-up menu. Online
help gives further details.

The System Views menu items are described under the following headings:

• Control system view on page 5-49

• Registers system view on page 5-54

• Watch system view on page 5-56

• Breakpoints system view on page 5-58

• Watchpoints system view on page 5-61

• Output system view on page 5-63

• Command Line Interface system view on page 5-65

• Debugger Internals system view on page 5-69.
5-48 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

AXD Desktop
5.5.1 Control system view

The Control system view shows details of all current processors, and enables you to
examine this information in several ways. Tabbed pages available are:

• Target

• Image

• Files

• Class.

Figure 5-61 shows a Control system view with its Files tab selected.

Figure 5-61 Control system view

Expand or collapse each level of the displayed tree structure by clicking on the + or –
boxes.

The tabbed pages contain the following information:

Target Lists the processors on the target. Where a processor has an associated
module, such as a coprocessor or ETM, the processor entry is expanded
and the module is shown as a child. You cannot expand a child entry any
further.

One processor can be designated the current processor. If so, it is
indicated by a green arrow in the display. Commands you issue apply by
default to the current processor. For example, when you select an item
from a menu in the main menu bar it applies to the current processor.

One processor can be designated the selected processor. If so it is
indicated by being highlighted in blue in the display. You select a
processor by clicking on its name. When you select a menu item from a
pop-up menu it applies to the selected processor.

Whenever possible, the current processor is the selected processor.

Image Lists the images loaded in the memory of the target. Expand an image
node to show the processor with which the image is associated.
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 5-49

AXD Desktop
One image can be designated the current image. If so, it is indicated by a
green arrow in the display. Commands you issue apply by default to the
current image. For example, when you select an item from a menu in the
main menu bar it applies to the current image.

One processor can be designated the selected image. If so it is indicated
by being highlighted in blue in the display. You select an image by
clicking on its name. When you select a menu item from a pop-up menu
it applies to the selected image.

Files Lists the files associated with all the images on the target. Expand an
image node to show the files associated with that image.

Class Lists the classes associated with all the images on the target. Expand an
image node to show a globals node, and a class node if the image contains
any class information. Expand the globals node to show a list of global
functions and global variables. Expand a class node to show a list of
classes contained in the image. Expand a class to show a list of member
functions and member variables.

Control system view pop-up menus

When you right-click in a Control system view, the pop-up menu that appears depends
on which tabbed page is currently selected and which item on that page is currently
selected.

The items you can select on each tabbed page are as follows:

• on the Target tab, you can select a processor

• on the Image tab, you can select an image or a processor

• on the Files tab, you can select an image or a file

• on the Class tab, you can select an image, a function, or a variable.

If the mouse pointer is on a selectable line when you right-click, then that line is
selected. Any pop-up menu items that do not apply to the selected line are disabled.
Some of the pop-up menu items are equivalent to menu items from the menu bar.

Brief details follow of the Control pop-up menus. AXD online help gives more details.

Processor pop-up menu

With a processor selected, the pop-up menu is as shown in Figure 5-62 on page 5-51.
5-50 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

AXD Desktop
Figure 5-62 Pop-up menu when a processor is selected

Select Properties... from this pop-up menu to display the dialog shown in Figure 5-63.

Figure 5-63 Processor Properties dialog

For a description of this dialog, see Configure Processor... on page 5-96.

Image pop-up menu

With an image selected, the pop-up menu is as shown in Figure 5-64 on page 5-52.
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 5-51

AXD Desktop
Figure 5-64 Pop-up menu when an image is selected

If you select Properties... from this pop-up menu, the dialog shown in Figure 5-65 is
displayed.

Figure 5-65 Image Properties dialog

The Image Properties dialog enables you to specify Command-line arguments. These
are the arguments you supply if you start execution of the image by entering a command
at a command-line prompt. They are supplied to the program when you load, or reload,
and execute it in AXD.

The Image Properties dialog also shows the Profiling settings that become effective the
next time you load or reload an image. You can change these settings to be those you
want when the next image execution begins. The settings shown are not necessarily
those currently in force, because you might have changed them since the last load or
reload operation.

File pop-up menu

With a file selected, the pop-up menu is as shown in Figure 5-66.

Figure 5-66 Pop-up menu when a file is selected

Select Source from this pop-up menu to display a Source processor view, showing the
source code associated with the selected file.
5-52 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

AXD Desktop
Function pop-up menu

With a function selected, the pop-up menu is as shown in Figure 5-67.

Figure 5-67 Pop-up menu when a function is selected

Select Properties... from this pop-up menu to display the dialog shown in Figure 5-68.

Figure 5-68 Function Properties dialog

The Function Properties dialog shows the name and type of the function, and the
parameters that it takes.

Variable pop-up menu

With a variable selected, the pop-up menu is as shown in Figure 5-69.

Figure 5-69 Pop-up menu when a variable is selected

If you select Properties... from this pop-up menu, the dialog shown in Figure 5-70 on
page 5-54 is displayed.
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 5-53

AXD Desktop
Figure 5-70 Variable Properties dialog

The Variable Properties dialog shows the name and type of the variable.

5.5.2 Registers system view

The Registers system view can display registers from more than one processor. It also
enables you to change any of these values, unless you are debugging an Angel target
when you can change the registers of the current mode only.

If you want to see the values of a few registers in various processors change as your
program executes, you can display the registers in a single Registers system view. This
can avoid displaying a number of Registers processor views.

The registers are displayed in groups, under processor names and register bank names.
Click on the + or – boxes to expand or collapse each level of the displayed tree structure,
but see Viewing structured data on page 2-9.

Figure 5-71 shows a typical Registers system view.

Figure 5-71 Registers system view

Double-click on the value of any register that you want to change. In-place editing is
invoked whenever possible, otherwise a dialog is displayed.

The crossed-out eye symbol is not usually present. It is displayed if you try to refresh
the display of register values while the program is running, with timed refresh enabled
for example, and reminds you that this is not possible. Only the Memory processor view
can show values changing while the program is running.
5-54 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

AXD Desktop
Registers system view pop-up menu

To display the Registers pop-up menu, shown in Figure 5-72, right-click within the
Registers system view.

Figure 5-72 Registers system view pop-up menu

Add Register

To add a register from any processor to those displayed in a Registers
system view, select Add Register from the pop-up menu.

Format If you right-click on a register line, it is selected. The Format menu item
is enabled when a register line is selected, and applies to the selected line
only.

Refer to Data formatting on page 4-16 for details of the formats
available, and to AXD online help for other details of the Registers
pop-up menu items.

Locate Using Value

The Locate Using Value menu item functions as described in Watch
processor view pop-up menu on page 5-24.

Refresh Select Refresh to update and recalculate the displayed data values. This
item is useful if the target supports RealMonitor. See also Refresh All on
page 5-100.

If you hide a Registers system view then select it, it reappears in the state it was in when
you hid it.

If you close a Registers system view then select it, it is displayed empty, as though you
are selecting it for the first time.
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 5-55

AXD Desktop
5.5.3 Watch system view

The Watch system view enables you to examine the value of variables, or of expressions
depending on variables, in the images associated with various processors. You might
require several processor views to see what you can display in a single system view.

A Watch system view is initially empty. You specify expressions. These expressions are
evaluated each time program execution stops, and the values displayed. One way to add
lines to this view is to select one or more items in a Variables processor view, then
right-click and select Add to System View from the resulting pop-up menu.

Another way to add a line to the Watch system view is to select Add Watch from its
pop-up menu to display an Add Watch dialog (see Figure 5-75 on page 5-57).

An expression can be simply the name of a variable. Expressions can also include
logical and arithmetic operators in addition to the names of variables and constants. If
the displayed data has a tree structure, click on the + or – boxes to expand or collapse
each level of the structure, but see Viewing structured data on page 2-9.

A typical Watch system view is shown in Figure 5-73.

Figure 5-73 Watch system view

You can define lists of expressions to watch on up to four tabbed pages. Click the tab of
a page to display it.

If you hide a Watch system view then select it, the view reappears in the state it was in
when you hid it.

If you close a Watch system view then select it, the view is displayed empty, as though
you are selecting it for the first time.

Watch system view pop-up menu

When you right-click in a Watch system view, the pop-up menu that appears depends
on which item on that page is currently selected.
5-56 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

AXD Desktop
If the mouse pointer is on a selectable line when you right-click, then that line is
selected. Any pop-up menu items that do not apply to the selected line are disabled.

To display the Watch pop-up menu, shown in Figure 5-74, right-click within the Watch
system view.

Figure 5-74 Watch system view pop-up menu

To display the dialog shown in Figure 5-75, select Add Watch from the pop-up menu.

Figure 5-75 Add Watch dialog

Enter a new expression to watch. Specify the processor, whether the new watch must be
added to the Watch processor view or system view, and on which tabbed page it must
appear. Figure 5-75 shows Tab 1 of the Watch system view as the chosen destination.
By default, the Tab radio button selected reflects the current tabbed page in the Watch
system view. Select an expression and click the Evaluate button to see the result of its
evaluation.

To add the selected expression to the chosen view, click the Add To View button.
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 5-57

AXD Desktop
The Locate Using Value, Locate Using Address, and Array Expansion... menu items
function as described in Watch processor view pop-up menu on page 5-24.

Select Refresh to update and recalculate the displayed data values. This item is useful
if the target supports RealMonitor. See also Refresh All on page 5-100.

To display the dialog shown in Figure 5-76, select Properties... from the pop-up menu.

Figure 5-76 Default Display Options dialog

Refer to AXD online help for full details.

5.5.4 Breakpoints system view

The Breakpoints system view, shown in Figure 5-77, enables you to set, modify, or
remove breakpoints. You can change the column widths by dragging the dividing lines
between the column headings to the left or right.

Figure 5-77 Breakpoints system view

You can see details of any breakpoints that are currently set. To disable an existing
breakpoint, click the red disc at the left of its line. The center of the disc becomes gray.
Click the disc again to restore normal operation.

To add a new breakpoint, right-click anywhere within the Breakpoints system view to
display the pop-up menu shown in Figure 5-78 on page 5-59 and select Add.
5-58 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

AXD Desktop
To modify a breakpoint, do either of the following:

• double-click on its line

• right-click on its line to display the pop-up menu and select Properties.

Figure 5-78 Breakpoints system view pop-up menu

The Locate Using Address menu item functions as described in Watch processor view
pop-up menu on page 5-24.

Select Refresh to update and recalculate the displayed data values. This item is useful
if the target supports RealMonitor. See also Refresh All on page 5-100.

Whether you are adding a new breakpoint or modifying an existing breakpoint, you use
the Breakpoint Properties dialog shown in Figure 5-79 on page 5-60.
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 5-59

AXD Desktop
Figure 5-79 Breakpoint Properties dialog

The fields in the Break At group specify the location of the breakpoint. Select one
processor if your target has multiple processors. You can specify a line number in a
selected source file that contributes to a selected image, or you can select the Address
radio button and specify a memory address.

The fields in the Condition group enable you to specify when arrival at the breakpoint
must be ignored and when it must trigger the breakpoint. You can specify in the out of
field the number of times execution must arrive at the specified location to trigger the
breakpoint. Also, if you specify an expression in the when field, the count of arrivals at
the breakpoint increments only if the expression evaluates to True.

Note
 If you specify an expression that cannot be evaluated, a result of True is assumed.

Under Status, you can see whether the breakpoint is currently enabled, and change this
setting if required. You can also see whether it is a software or hardware breakpoint. A
hardware breakpoint can have a hardware resource identifier.

You are recommended to leave the Size set to Automatic, but you can change this to
ARM (32-bit) or Thumb (16-bit) if necessary. For example, the debugger might not be
able to determine whether it is debugging ARM code or Thumb code if:

• the project was built without debugging information (-g- switches off debugging)
5-60 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

AXD Desktop
• you are debugging a ROM image.

Note
 In the current version of ADS it is not possible to set a bytecode-based breakpoint. If
you specify a breakpoint on Jazelle instructions this creates an invalid breakpoint and
might display an error message.

The setting in the Action group is normally Break, to stop execution when the specified
conditions are met. The alternative, Log, adds a record in a log of events. If you select
Log, whatever you enter in the Text field is output each time the conditions are met. To
examine the log of events, select Output from the System Views menu (see Output
system view on page 5-63). The pop-up menu of the Output system view enables you to
save subsequent records in a disk file and to clear the current entries from the log.

5.5.5 Watchpoints system view

The Watchpoints system view, shown in Figure 5-80, enables you to set, modify, or
remove watchpoints. You can change the column widths by dragging the dividing lines
between the column headings to the left or right.

Figure 5-80 Watchpoints system view

You can see details of any watchpoints that are currently set. To disable an existing
watchpoint, click the green disc at the left of its line. The center of the disc becomes
gray. Click the disc again to restore normal operation. A disc has a red cross through it
if the watchpoint is currently out of scope.

To add a new watchpoint, right-click anywhere within the Watchpoints system view to
display the pop-up menu shown in Figure 5-81 on page 5-62 and select Add.

To modify a watchpoint, do either of the following:

• double-click on its line

• right-click on its line to display the pop-up menu and select Properties.
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 5-61

AXD Desktop
Figure 5-81 Watchpoints system view pop-up menu

The Locate Using Address menu item functions as described in Watch processor view
pop-up menu on page 5-24.

Select Refresh to update and recalculate the displayed data values. This item is useful
if the target supports RealMonitor. See also Refresh All on page 5-100.

Whether you are adding a new watchpoint or modifying an existing watchpoint, you use
the Watchpoint Properties dialog shown in Figure 5-82.

Figure 5-82 Watchpoint Properties dialog
5-62 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

AXD Desktop
The fields in the Watch group specify the location of the watched value. The Processor
field enables you to select one processor if your target has multiple processors. Specify
in the Item field what to watch by giving the name of a variable or register, or an
expression that evaluates to an address. The Watching field is read-only.

Note
 In the current version of ADS it is not possible to set a bytecode-based watchpoint. If
you specify a watchpoint on Jazelle instructions this creates an invalid watchpoint and
might display an error message.

The fields in the Condition group enable you to specify when a change in the watched
value must be ignored and when it must trigger the watchpoint. You can specify in the
Value field a numeric constant, in which case the watchpoint is triggered only if the
watched value changes to the specified value. You can specify in the out of field the
number of times the watched value must change to trigger the watchpoint. Also, if you
specify an expression in the when field, changes in value are counted only if the
expression evaluates to True. You can concatenate conditions by using the C language
&& and || syntax.

Note
 If you specify an expression that cannot be evaluated, a result of True is assumed.

Under Status, you can see whether the watchpoint is currently enabled, and change this
setting if required. You can also see whether it is a software or hardware watchpoint. A
hardware watchpoint can have a hardware resource identifier.

Under Size, you are recommended to leave Force Size unchecked. The area of memory
watched is then the size of the variable if you are watching a variable, or a 4-byte word
if you are watching a memory location. If you force the size of the watched area of
memory you can select 8, 16, or 32 bits.

The setting in the Action group is normally Break, to stop execution when the specified
conditions are met. The alternative, Log, adds a record in a log of events. If you select
Log, whatever you enter in the Text field is output each time the conditions are met. To
examine the log of events, select Output from the System Views menu (see Output
system view). The pop-up menu of the Output system view enables you to save
subsequent records in a disk file and to clear the current entries from the log.

5.5.6 Output system view

The Output system view enables you to examine both a list of function calls made to the
Remote Debug Interface (RDI) and a list of log messages. These can help you determine
which program statements have and have not been executed.
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 5-63

AXD Desktop
Select Output from the System Views menu to display a window, shown in
Figure 5-83, containing two tabbed pages, labeled RDI Log and Debug Log.

Figure 5-83 Output system view

Click on the RDI Log tab to see the page that contains a list of function calls made to
the RDI. This requires the $rdi_log debugger internal variable to be set to 1.

Click on the Debug Log tab to see a list of messages recorded when execution passed
through any trace points in the program (execution does not stop at an action point if
you specify a trace message to be logged). The messages displayed are those specified
when you defined each trace point (see Breakpoints system view on page 5-58). The
debug log also contains any other general debugger output such as error messages.

Output system view pop-up menu

To display the Output pop-up menu, shown in Figure 5-84, right-click on either the RDI
Log tab or the Debug Log tab.

Figure 5-84 Output system view pop-up menu

To specify a file in which to store the lines that appear in the Output view, select Log to
file…. You can select an existing file, or specify a new file. If you do save this
information in a file, the name of the file is shown in the Output system view.

Select Clear to remove any lines currently displayed in the Output view.
5-64 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

AXD Desktop
5.5.7 Command Line Interface system view

The Command Line Interface (CLI) system view provides you with an alternative
method of issuing commands and viewing data. You enter commands in response to
CLI prompts, as shown in Figure 5-85. Any data that you request is displayed in the CLI
system view.

Figure 5-85 Command Line Interface system view

Details of all the commands you can issue and data you can display are given in
Chapter 6 AXD Command-line Interface.

Command Line Interface system view pop-up menu

To display the CLI system view pop-up menu, shown in Figure 5-86 on page 5-66,
right-click within the Command Line Interface system view.
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 5-65

AXD Desktop
Figure 5-86 CLI system view pop-up menu

Log to file… enables you to start or stop recording in a disk file everything that appears
in the CLI system view.

Record Input… enables you to start or stop recording in a disk file every command that
you enter in the CLI system view.

Clear enables you to clear the current contents of the CLI system view.

Refer to AXD online help for details of all the pop-up menu items.

Select Properties... from the pop-up menu to change the CLI system view properties.
This displays the CLI Properties dialog which contains three tabbed pages entitled:

• General, shown in Figure 5-87 on page 5-67

• Format, shown in Figure 5-88 on page 5-68

• Files, shown in Figure 5-89 on page 5-68.

When you have made changes on any of the tabbed pages, click:

OK To accept all the current settings on all the tabbed pages, and close the
dialog.

Cancel To ignore any changes made since the dialog was opened or since the
Apply button was last clicked, and close the dialog.

Apply To accept all the current settings on all the tabbed pages, and leave the
dialog open for further changes.

Help To display relevant online help.

Figure 5-87 on page 5-67 shows the CLI Properties dialog with the default General tab
selected.
5-66 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

AXD Desktop
Figure 5-87 Command Line Interface Properties dialog, General tab

Leave Parse checked. Your CLI commands are then validated when you enter them and
translated into internal commands.

The Echo setting specifies whether commands read from a file by an Obey command
are displayed in the CLI system view. This also determines whether they are logged.

The Update views during obey setting enables you to control whether or not screen
updates take place while commands are being executed from an Obey file. If you have
several open views, they are all normally updated every time the script causes a break
in execution, slowing down AXD significantly. Clear this check box to allow the script
to run and update the screen just once, when it terminates. The setting persists, with
other CLI properties. If a script modifies this CLI property, it is reset to its original state
when the script terminates.

The number in the History list size field sets the number of CLI commands that you can
recall using the up and down arrow keys or the Ctrl+PageUp key combination. To
examine recent commands, or to use a recent command as the basis for a new command,
see Command history on page 6-3.

Click on the Format tab to display the dialog shown in Figure 5-88 on page 5-68.
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 5-67

AXD Desktop
Figure 5-88 Command Line Interface Properties dialog, Format tab

Use this dialog to set the default format for displaying data. This defines the appearance
of values displayed in response to such commands as Memory.

Click on the + sign of the data size you want to be displayed. A further list shows you
all the formats valid for that size and enables you to choose one.

Click on the Files tab to display the dialog shown in Figure 5-89.

Figure 5-89 Command Line Interface Properties dialog, Files tab

AXD online help gives details of all the fields in the tabbed pages of the CLI Properties
dialog.
5-68 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

AXD Desktop
5.5.8 Debugger Internals system view

The Debugger Internals system view has two tabbed pages:

• Internal Variables

• Statistics on page 5-72.

Internal Variables

The first tabbed page of the Debugger Internals system view shows Internal Variables,
as shown in Figure 5-90.

Figure 5-90 Debugger Internals, Internal Variables

The debugger, like most programs, uses variables. The internal variables used by the
debugger depend on the target in use. If you are using Multi-ICE to debug a hardware
target, for example, you will see different internal variables from those described here.
If you are using ARMulator, the variables displayed depend on the processor you are
simulating. They generally include the following:

$statistics This is a group of internal variables that you can examine more clearly on
the Statistics tab (see Statistics on page 5-72) or by using a CLI
command (see statistics on page 6-54).

$rdi_log This variable controls how target information is logged in the RDI Log
tab of the Output system view, shown in Figure 5-83 on page 5-64. If it is
unset (the default) then no logging occurs. The two least significant bits
have the following meanings:

Bit 0 RDI (0 = off, 1 = on).
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 5-69

AXD Desktop
Bit 1 Device Driver Logging (0 = off, 1 = on).

This variable is used for diagnostic purposes to track communication
between the debugger and the target and so is not normally required.

$target_fpu This is an enumeration that controls the way that floating point numbers
are displayed by the debugger. It is important to ensure the correct display
of float and double values in memory that this variable is set to a value
that is appropriate for the target in use.

If you attempt to change this value, a validity test checks that the new
settings are compatible with the representation of floating point values in
the current image. Valid settings and their meanings are:

1 Selects pure-endian doubles (softVFP). This is the default
setting for images built with ADS tools. Values are read from
ordinary registers.

2 Selects mixed-endian doubles (softFPA). Values are read from
ordinary registers.

3 Selects hardware Vector Floating Point unit (VFP). Values are
read from registers CP10 and CP11.

4 Selects hardware Floating Point Accelerator (FPA). Values are
read from registers CP1 and CP2.

5 Reserved.

Incompatible settings are accepted by the debugger but a warning is
given.

SoftVFP and SoftFPA images run correctly on a target whether or not
hardware floating point is present. FPA images can also run correctly
without hardware floating point, but only if the Floating Point Emulator
in ARMulator is active. VFP images require appropriate hardware, or an
ARMulator that simulates it.

For further details, and details of the software to install appropriate
support code, see the ADS Compilers and Libraries Guide.

$image_cache_enable
This variable holds internal debugging information when using Trace
Debug Tools (TDT) on a target that must not stop execution. Such
information would otherwise be lost and so is held locally in the host
computer memory. This information is useful only to the debugger and
cannot be accessed directly.

$clock This variable applies to ARMulator only and is based on the ARMulator
clock speed setting. This variable is unavailable where the ARMulator
clock speed is set to real time. Where the ARMulator clock speed is set
to simulated, this variable contains the number of simulated
5-70 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

AXD Desktop
microseconds that have elapsed since the application program began
execution (see Configure Target... on page 5-87). This variable is
read-only.

In addition to these variables, some debug targets can create their own variables. These
are named $<proc_name>$<var_name>, where:

<proc_name> is the name of the processor, as shown in the Target tab of the Control
system view (for example, ARM720T).

<var_name> is the name of the variable, and can include:

irq (For example, $ARM720T$irq.) A target can export this variable
to provide a means of asserting the interrupt request pin. To
trigger an interrupt manually, set the value to 1. To clear the
interrupt, set the value to 0. To take the interrupt exception a
processor must have IRQ enabled in the CPSR.

fiq (For example, $ARM720T$fiq.) A target can export this variable
to provide a means of asserting the fast interrupt request pin.
To trigger a fast interrupt manually, set the value to 1. To clear
the fast interrupt, set it to 0. To take the interrupt exception a
processor must have FIQ enabled in the CPSR.

cputime (For example, $ARM720T$cputime.) This variable applies to
ARMulator only and contains the best estimate of the time the
processor has been running, measured in clock units. A clock
unit is the reciprocal of the ARMulator clock speed setting.
This variable is unavailable where the ARMulator clock speed
is set to real time (see Configure Target... on page 5-87). This
variable is read only.

Your debug target might create other variables. See the target documentation for details.

You can examine the contents of all these variables, and change the values stored in
some of them. For more information about data display formats and data entry formats,
see Data formatting on page 4-16.

Debugger Internal Variables pop-up menu

Right-click inside the Debugger Internals system view with the Internal Variables tab
selected to display the pop-up menu shown in Figure 5-91 on page 5-72.
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 5-71

AXD Desktop
Figure 5-91 Internal Variables pop-up menu

Use this pop-up menu to set properties and to select a display format. Refer to AXD
online help for details.

Select Refresh to update and recalculate the displayed data values. This item is useful
if the target supports RealMonitor. See also Refresh All on page 5-100.

Statistics

The second tabbed page of the Debugger Internals system view is available only when
you use a target simulated by software. The page shows statistics, as in Figure 5-92.

Figure 5-92 Debugger Internals, von Neumann core statistics

A group of debugger internal variables contains statistics relating to your current
debugging session. These variables are displayed more clearly on the Statistics tab than
on the Internal Variables tab. Drag the column divider lines to the left or right to
change the column widths if necessary.

The first line of statistics shows values accumulated from the beginning of execution of
the program you are debugging, and is labeled $statistics (see also the CLI command
statistics on page 6-54).

You can add more lines of statistics, accumulated from later interruptions of program
execution. When execution has stopped, to start accumulating a new line of statistics,
right-click in the Statistics tab of the Debugger Internals system view, and select Add
New Reference Point.
5-72 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

AXD Desktop
Your debug target might display other statistics. See the ADS Debug Target Guide for
full information on the different cycle types that might be displayed and their meaning.
Two examples are shown here:

• Statistics for von Neumann debug targets

• Statistics for Harvard debug targets on page 5-74.

Statistics for von Neumann debug targets

When simulating von Neumann architecture cores such as the ARM7TDMI core,
shown in Figure 5-92 on page 5-72, the following information is displayed:

Reference Points

The name you specify to identify each line of statistics that you add.

Instructions The number of program instructions executed.

Core_Cycles

Internal core cycles indicating the time an instruction spends in the
execute stage of the pipeline.

S_Cycles The number of sequential cycles performed. The CPU requests transfer
to or from the same address, or an address that is a word or halfword after
the preceding address.

N_Cycles The number of nonsequential cycles performed. The CPU requests
transfer to or from an address that is unrelated to the address used in the
preceding cycle.

I_Cycles The number of internal cycles performed. The CPU does not require a
transfer because it is performing an internal function (or running from
cache).

C_Cycles The number of coprocessor cycles performed.

Total The sum of the S_Cycles, N_Cycles, I_Cycles, and C_Cycles.

If you use a map file (see ARMulator configuration on page 5-88) the display shows
additional information, including:

Wait_States The number of wait-states added by the Mapfile component.

True_Idle_Cycles

The number of I_Cycles less the number that are part of an I-S pair. It is
only displayed if you set SpotISCyles to True
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 5-73

AXD Desktop
Statistics for Harvard debug targets

When simulating Harvard architecture cores such as the ARM9 core and StrongARM®,
different statistics are accumulated, shown in Figure 5-93.

Figure 5-93 Debugger Internals, Harvard core statistics

In these cases, the meanings are:

Reference Points

The name you specify to identify each line of statistics that you add.

Instructions The number of program instructions executed.

Core_Cycles

The total number of core clock ticks, including stalls due to interlocks
and instructions that take more than one cycle.

ID_Cycles Cycles in which both the instruction bus and the data bus were active.

I_Cycles Cycles in which the instruction bus was active and the data bus was idle.

Idle_Cycles Cycles in which both the instruction bus and the data bus were idle.

D_Cycles Cycles in which the data bus was active and the instruction bus was idle.

Total The sum of cycles on the memory bus.

Statistics pop-up menu

Right-click inside the Debugger Internals system view with the Statistics tab selected
to display the pop-up menu shown in Figure 5-94 on page 5-75.
5-74 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

AXD Desktop
Figure 5-94 Statistics pop-up menu

Use this pop-up menu to add a new line of statistics to the displayed table, or to delete
the currently selected line. Refer to AXD online help for details.

Select Refresh to update and recalculate the displayed data values. This item is useful
if the target supports RealMonitor. See also Refresh All on page 5-100.
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 5-75

AXD Desktop
5.6 Execute menu

The Execute menu (see Figure 5-95), lets you control how execution continues from the
current point.

Figure 5-95 Execute menu

The Execute menu items are described under the following headings:

• Go

• Stop on page 5-77

• Step In on page 5-77

• Step on page 5-77

• Step Out on page 5-78

• Run To Cursor on page 5-78

• Show Execution Context on page 5-78

• Toggle Breakpoint on page 5-78

• Toggle Watchpoint on page 5-79

• Set Watchpoint on page 5-79

• Delete All Breakpoints on page 5-79.

5.6.1 Go

This begins execution. If you have loaded an image but not yet run it, execution starts
from the first executable instruction. If execution is currently stopped, at a breakpoint
for example, then it resumes from the point at which it stopped.

When you start executing an image, AXD tries to locate the relevant source files. If they
are not found, you are asked to specify their location in the dialog shown in Figure 5-96
on page 5-77.
5-76 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

AXD Desktop
Figure 5-96 Find Source dialog

If you select the check box Remember location for future source file searches, AXD
finds these files without your help in subsequent sessions.

If you select the check box Project source unavailable for current image, AXD
continues the session without access to any source files.

5.6.2 Stop

This menu item is enabled only when the program is executing. It stops execution as
soon as the program can be interrupted.

5.6.3 Step In

This executes the current instruction and stops. If the current instruction is a call to a
function, then it stops at the first executable instruction in that function.

This menu item is not enabled when executing Jazelle instructions as stepping options
are not available for these instructions.

In addition, if the current instruction is a BXJ instruction this menu item is not enabled.

5.6.4 Step

This executes the current instruction and stops. If the current instruction is a call to a
function, then it executes the function and stops when control returns to the caller.
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 5-77

AXD Desktop
A C++ program might contain many calls to library functions that the compiler replaces
with inline code if you choose to compile for high speed rather than small size. This
prevents the Step command from behaving as expected. A C++ compiler option is
available to force calls to library functions to be compiled as calls in such cases. For
further information refer to the ADS Compilers and Libraries Guide.

This menu item is not enabled when executing Jazelle instructions as stepping options
are not available for these instructions.

In addition, if the current instruction is a BXJ instruction this menu item is not enabled.

5.6.5 Step Out

This completes execution of the current function and stops when control returns to the
caller.

This menu item is not enabled when executing Jazelle instructions as stepping options
are not available for these instructions.

5.6.6 Run To Cursor

This continues execution but stops when the next instruction to be executed is the one
where you have positioned the cursor.

Note
 As Run to Cursor is dependent on setting a breakpoint, it is not possible to select this
option for Jazelle instructions where breakpoints are currently not supported.

5.6.7 Show Execution Context

This selects Show Execution Context when you are viewing either the source code or
the disassembled code related to a halted process. The area of code displayed changes
so that the visible lines of code are replaced by the lines surrounding the current
execution position.

5.6.8 Toggle Breakpoint

When you are viewing a source file or a disassembly, you can set or remove a breakpoint
at the current cursor position by selecting Toggle Breakpoint from the Execute menu.

You can also set or remove a breakpoint by double-clicking in the margin of the required
line in a source or disassembly view, or by right-clicking on the line and selecting
Toggle Breakpoint from the pop-up menu.
5-78 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

AXD Desktop
Note
 In the current version of ADS it is not possible to set a bytecode-based breakpoint. If
you specify a breakpoint on Jazelle instructions this creates an invalid breakpoint and
might display an error message.

5.6.9 Toggle Watchpoint

When you are viewing a disassembly, you can set or remove a watchpoint on the
currently selected item by selecting Toggle Watchpoint from the Execute menu.

Note
 In the current version of ADS it is not possible to set a bytecode-based watchpoint. If
you specify a watchpoint on Jazelle instructions this creates an invalid watchpoint and
might display an error message.

5.6.10 Set Watchpoint

When you are viewing a source file, you can set or replace a watchpoint on the currently
selected item by selecting Set Watchpoint from the Execute menu.

Note
 In the current version of ADS it is not possible to set a bytecode-based watchpoint. If
you specify a watchpoint on Jazelle instructions this creates an invalid watchpoint and
might display an error message.

5.6.11 Delete All Breakpoints

To delete all currently set breakpoints, select Delete All Breakpoints from the Execute
menu.
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 5-79

AXD Desktop
5.7 Options menu

The Options menu, shown in Figure 5-97, enables you to examine and change a variety
of settings, including some that affect the appearance of the debugger screen. This menu
also enables you to start and stop profiling.

Figure 5-97 Options menu

The Options menu items are described under the following headings:

• Disassembly Mode

• Configure Interface...

• Configure Target... on page 5-87

• Configure Processor... on page 5-96

• Source Path... on page 5-98

• Status Bar display control on page 5-98

• Profiling on page 5-98.

5.7.1 Disassembly Mode

This applies only when you have a Disassembly processor view selected. To specify the
type of disassembly you require, select Disassembly Mode from the Options menu. A
submenu appears, enabling you to select ARM/Thumb Mixed, ARM, Thumb or
ByteCode. One of these is checked, indicating the current disassembly mode.

In ARM/Thumb Mixed mode, the debugger uses information read while loading the
image to set the appropriate mode. This is possible only when debugging information
is present, so cannot be done if, for example, the image is in ROM. The default setting
then used might not always be correct.

5.7.2 Configure Interface...

To configure the AXD user interface, select Configure Interface... from the Options
menu. The resulting dialog has tabbed pages entitled:

• General

• Views
5-80 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

AXD Desktop
• Formatting

• Session File

• Toolbars

• Timed Refresh.

To display detailed information about the features of the currently displayed tabbed
page, click Help.

When you have made changes on one or more of these tabbed pages, you can apply or
abandon the changes as follows:

OK Apply outstanding changes on all tabbed pages and close the dialog.

Cancel Ignore any outstanding changes and close the dialog.

Apply Apply outstanding changes on all tabbed pages and keep the dialog open.

General

Figure 5-98 shows the General tab of the Configure Interface dialog.

Figure 5-98 Configure Interface, General tab

The General tab of the Configure Interface dialog enables you to control the behavior
of the target processor when you connect the debugger to it, and the actions to be taken
when you restart or close a debugging session. It also enables you to make some other
general settings applicable to the whole debugging session.

Most targets stop execution when a debugger is connected and restart when instructed
to do so. Also, the displayed views are all updated each time the target execution stops.
All views therefore show consistent data at all times.
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 5-81

AXD Desktop
Targets that support RealMonitor can be traced and queried without interrupting
execution. The Target connection drop-down list enables you to select an appropriate
way of connecting the debugger to the target, depending on whether you are using
RealMonitor. See RealMonitor support on page 4-14 for more information.

Halt The debugger is allowed to, and does, stop execution of the target when
the connection is made. If connection to a new target is requested during
program execution a warning message is displayed so that execution on
the current target can continue, or stop, as required. This is the default
setting.

NoHalt The target is assumed to be executing and must not be interrupted. If the
target supports RealMonitor and a non-intrusive connection can be made,
then the connection is made. Otherwise the debugger redisplays the
configuration dialog.

Attach If the target supports RealMonitor and a non-intrusive connection can be
made, then the connection is made without stopping target execution. If
the target does not support RealMonitor then the connection is still made
even though doing so stops the target execution.

Note
 The AXD debug architecture does not currently support attaching and re-attaching
while using any kind of semihosting.

Under Action on close/restart you can select a Save and load session file check box. If
this is checked, details of your debug session are saved in a session file when you end
the session, and next time you run AXD the new session starts in the same state. If the
Save and load session file check box is cleared, details are not saved at the end of the
current session, and the next session begins in the usual default state.

The check boxes in the General group control the types of messages recorded in the
Debug Log tabbed page of the Output system view (see Output system view on
page 5-63), and the List size fields allow you to control the amount of recent history that
is maintained.

Views

Figure 5-99 on page 5-83 shows the Views tab of the Configure Interface dialog.
5-82 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

AXD Desktop
Figure 5-99 Configure Interface, Views tab

These Default view properties are used as default settings in all displayed views.

The General Font you select applies to the following views:

• Backtrace

• Breakpoints

• Control Monitor

• Low Level Symbols

• Output

• Watchpoints.

The Fixed Font you select applies to the following views:

• Command Line Interface

• Comms Channel

• Console

• Debugger Internals

• Disassembly

• Memory

• Registers

• Source

• Variables.
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 5-83

AXD Desktop
The Default Initial View State you select applies to the starting state of all views except
Source and Disassembly views which always float within the main window. You can set
a view window as:

• Docked

• Undocked

• Floating.

Docked and floating windows are described in Docked and floating windows on
page 2-10. See also Window menu on page 5-99.

To display detailed information on all the fields and check boxes on this tabbed page,
click Help.

Formatting

Figure 5-100 shows the Formatting tab of the Configure Interface dialog.

Figure 5-100 Configure Interface, Formatting tab

The Formatting tab of the Configure Interface dialog enables you to define the
formatting strings used for the default formatting options decimal, hex, floating point
single, floating point double, Q15, and Q31. To change the default formatting string for
a format option, select User.

The value you set for the Array expansion threshold limits the number of child items
that you can display without first displaying the array expansion pop-up.
5-84 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

AXD Desktop
Session File

Figure 5-101 shows the Session File tab of the Configure Interface dialog. This tabbed
page enables you to make settings that apply to all session files that you might create,
including the default session file created automatically at the end of each debug session.

Figure 5-101 Configure Interface, Session File tab

Under Session file options, you can choose whether or not to Reselect Target. If this is
checked, target details are saved at the end of a session and a new session connects to
the same target as the previous session. If unchecked, the new session starts with the
same settings and displayed views as the previous session but with no target selected.

If you do reselect the previous target, you can use Reload Images to choose whether or
not to reload the previous image onto the target. If this is checked, image details are
saved at the end of a session and a new session loads the previous image. If unchecked,
the new session starts with the same settings and displayed views as the previous session
but with no image loaded.

If you use the Browse button to locate and select a script file, and check the Run
Configuration Script check box, then the commands in the specified script file are
executed after loading the session file and connecting to the target, but before loading
any images.

Toolbars

Figure 5-102 on page 5-86 shows the Toolbars tab of the Configure Interface dialog.
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 5-85

AXD Desktop
Figure 5-102 Configure Interface, Toolbars tab

The check boxes in the Toolbars group control the display of the named toolbars. When
a toolbar name is checked in this dialog, that toolbar is displayed on the main AXD
screen. These toolbars are shown in Toolbars on page 5-3.

Timed Refresh

Figure 5-103 shows the Timed Refresh tab of the Configure Interface dialog.

Figure 5-103 Configure Interface, Timed Refresh tab
5-86 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

AXD Desktop
The Timed Refresh tab of the Configure Interface dialog is particularly useful when
you are debugging a target that supports RealMonitor (see RealMonitor support on
page 4-14).

When you debug a target that does not support RealMonitor, all displayed views are
refreshed each time execution on the target stops. This means that all the information
you can see is consistent.

Execution on a target that supports RealMonitor, however, can be continuous, with each
displayed view showing information that was relevant at one time but not necessarily at
the time that the information in any other view was captured.

The pop-up menu available in most views includes a Refresh item, but that refreshes
the information in that view only. The Window menu includes a Refresh All item, to
refresh all the displayed views at the same time.

If you select the Enable Timed Refresh check box on the Timed Refresh tab of the
Configure Interface dialog so that it is checked, then all displayed views are refreshed
automatically and regularly.

Timed refresh is automatically suspended when dialogs are displayed. You can check
the Disable Timer if user prompted by error dialog check box on the Timed Refresh
tab of the Configure Interface dialog so that refreshes are disabled if an error dialog is
displayed. When you have cleared the error dialog, you can enable timed refresh by
clicking on the Timed Refresh tool.

You can also check or clear the Enable Timed Refresh check box by selecting the
Timed Refresh item on the Window menu or by clicking on the Timed Refresh tool.

5.7.3 Configure Target...

You can select and configure a debug target when you start up AXD (see Starting and
closing AXD on page 2-3). The Configure Target... item on the Options menu enables
you to change the debug target and its configuration during a debug session.

First, a Choose Target dialog displays a list of available targets, as shown in
Figure 5-104 on page 5-88.
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 5-87

AXD Desktop
Figure 5-104 Choose Target dialog

If the target you want is not in the list, click the Add button to locate and select the
required .dll file. The selection list shows all available.dll files including, for example
etm.dll which is only fully functional if you are licensed to use the Trace Debug Tools
(TDT) add-on product.

When you can see the target you want in the list, select that line as shown in
Figure 5-104, and click the Configure button.

The appearance of the configuration dialog depends on the target you selected.
Examples follow showing:

• ARMulator configuration

• Multi-ICE configuration on page 5-93

• Remote_A configuration on page 5-94

Note
 In some of these procedures you need to locate and select a required file. A browse
dialog helps you do this. However, files of the type you require might not be listed
unless you select Windows Explorer → View → Options... → Show all files.

ARMulator configuration

If you need to add ARMulator to the list of available targets in the Choose Target dialog,
click Add and in the resulting browse dialog locate and select the armulate.dll file.

Select the ARMulator target line and click the Configure button to display the dialog
shown in Figure 5-105 on page 5-89.
5-88 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

AXD Desktop
Figure 5-105 ARMulator Configuration dialog

The ARMulator Configuration dialog enables you to examine and change the following
settings:

Processor Use the drop-down list to specify which ARM processor you want
ARMulator to simulate.

The list of processors includes all available variants including, for
example ARM7TDMI-ETM or ARM920T-ETM. ARMulator can simulate these
Embedded Trace Macrocells but full trace functionality is only available
if you are licensed to use the Trace Debug Tools (TDT) add-on product.

Clock Choose between simulating a processor clock running at a speed that you
can specify, or executing instructions in real time. Entering a speed
without specifying units assumes Hz, for example 50 assumes 50Hz.
Speeds given in kHz and GHz are also acceptable.
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 5-89

AXD Desktop
Options The Floating Point Emulator (FPE) emulates the Floating Point
Accelerator (FPA) coprocessor and enables the execution of floating
point instructions not supported by the main processor. Check this option
to enable FPE.

Debug Endian

Select the byte order of the target system. This setting:

• Sets the debugger to work with the appropriate byte order.

• Sets the byte order of ARMulator models that do not have a CP15
coprocessor.

• Sets the byte order of ARMulator models that do have a CP15
coprocessor if the Start target Endian option is set to Debug
Endian.

For further information see the summary of Endian settings in Table 5-1
on page 5-91.

Start target Endian

Select the way in which the byte order of ARMulator models that have a
CP15 coprocessor is determined:

• Select the Debug Endian radio button to instruct the model to use
the byte order set in the Debug Endian group.

• Select the Hardware Endian radio button to instruct the model to
simulate the behavior of real hardware. On reset, the core model
starts in little-endian mode. If the rest of the system is big-endian,
you must set the big-endian bit in CP15 in your initialization code
to change the core model to big-endian mode.
5-90 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

AXD Desktop
You can set various combinations of the radio buttons in the Debug
Endian and Start target Endian groups. Use the possible combinations as
shown in Table 5-1.

Memory Map File

Specify a memory map file, or that you want to use default settings.

Floating Point Coprocessor

Where you are using a floating point coprocessor (FPA), use the
drop-down list to specify the variant supported by ARMulator, for
example ARM926EJ-S with Vector Floating Point (VFP). The default is
No_FPU.

MMU/PU Initialization

Specify the initialization of the Memory Management Unit (MMU) or
Protection Unit (PU) for your target processor. If you are using the
ARMulator to simulate a processor with an MMU, DEFAULT_PAGETABLES is
the required setting. For PU processors, or processors where the MMU is
disabled, select NO_PAGETABLES.

When developing your own pagetable initialization software in the
ARMulator you might want to disable the MMU by selecting
NO_PAGETABLES. This means that settings in the peripherals.ami
configuration file are ignored.

Table 5-1 Endian settings

Debug
Endian

Start target
Endian

Usage

Little Debug Endian Use this for a core or system that is always little-endian
only (for example, BigEnd pin = 0). This is the default.

Big Debug Endian Use this for a core or system that is always big-endian only
(for example, BigEnd pin=1).

Big Hardware
Endian

Use this for a big-endian system, where the core starts up
in little-endian mode, but which is switched to big-endian
by writing to CP15 in the initialization code. (The
initialization code must be written in an
endianness-independent way, that is word accesses only.)

Little Hardware
Endian

This combination is not required at present.
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 5-91

AXD Desktop
See ARM Architecture Reference Manual for full information on
MMU/PU operation.

See ADS Debug Target Guide for full information on pagetables.

When you are changing settings in the ARMulator Configuration dialog you should
remember the following:

• If you are using the software floating point C libraries, ensure that the Floating
Point Emulation option is off (blank), its default setting. Turn the option on
(checked) only if you want Floating Point Emulation (FPE) software to be loaded
into ARMulator so that you can execute code that uses the Floating Point
Accelerator (FPA) instruction set.

• Changes to the ARMulator Configuration dialog do not affect the $target_fpu
debugger internal.

• If, in the Memory Map File group, you select No Map File, the memory model
declared as default in the default.ami file is used. This typically represents a flat
4GB bank of ideal 32-bit memory having no wait states. To use a memory map
file, select Map File. Specify the filename (for example, armsd.map) by entering
it, or click the Browse button, locate and select the file, and click Open. You must
specify an existing memory map file. For more information about ARMulator and
memory map files, see the ADS Debug Target Guide.

When you are setting options in the Clock group you should remember the following:

• If you set a nonzero simulated Clock Speed, then the clock speed used is the value
that you enter. Clock speeds can be entered in units of Hz, kHz or GHz. If you do
not specify the units then Hz is assumed. Values stored in the debugger internal
variable $clock depend on this setting, and are unavailable if you select
Real-time. For information about debugger internal variables, see Debugger
Internals system view on page 5-69.

• The AXD clock speed defaults to real time for compatibility with the defaults of
armsd. Selecting Real-time in AXD is equivalent to omitting the -clock armsd
option on the command line. In other words, the clock frequency is unspecified,
and the default clock frequency specified in the configuration file default.ami is
used (DEFAULT_CPUSPEED=20MHz).

• For ARMulator, you do not have to specify a clock frequency because ARMulator
does not use it to simulate the execution of instructions and count cycles (for
$statistics). However, your application program might sometimes need to
5-92 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

AXD Desktop
access a clock, so ARMulator must always be able to give clock information.
ARMulator uses the clock frequency from the configuration file if you do not
specify a simulated clock speed.

— In either case, ARMulator uses the clock information to calculate the
elapsed time since execution of the application program began. This
elapsed time can be read by the application program using the C function
clock() or the semihosting SYS_CLOCK, and is also visible to the user from the
debugger as $clock. It is also used internally by ARMulator in the
calculation of $memstats. The clock speed (whether specified or
unspecified) has no effect on actual (real time) speed of execution under
ARMulator. It affects the simulated elapsed time only.

— $memstats is handled slightly differently because it does require a defined
clock frequency so that ARMulator can calculate how many wait states are
required for the memory speed defined in an armsd.map file. If you specify
a clock speed and an armsd.map file is present, then $memstats gives useful
information about memory accesses and times. Otherwise, for calculating
the wait states, a default core:memory clock ratio specified in the
configuration file is used, so that $memstats can still give useful memory
timings.

See the ADS Debug Target Guide for full information on ARMulator configuration
settings and configuration files.

Multi-ICE configuration

If you need to add Multi-ICE to the list of available targets, click Add and use the
resulting browse dialog to locate and select the Multi-ICE.dll file.

Select the Multi-ICE target line and click the Configure button to display the Multi-ICE
configuration dialog.

The settings available in this dialog include:

• the network address of the computer running the Multi-ICE Server software

• the selection of a processor driver

• a connection name (required only when access to the Multi-ICE Server software
is across a network).

Some versions of Multi-ICE might also allow you to select a .dll file to use as a Debug
Communications Channel (DCC) viewer. Do not enable any DCC viewer from this
dialog. Instead, use the AXD built-in viewer available from the Processor Views menu
and enabled from the Processor Properties dialog. For more details see Comms Channel
processor view on page 5-37 and Configure Processor... on page 5-96.
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 5-93

AXD Desktop
Full descriptions of Multi-ICE configuration are given in the Multi-ICE documentation
and in the online help available when the dialog is displayed.

Remote_A configuration

To allow AXD to communicate with an Angel or EmbeddedICE target, you must
configure the Remote_A connection appropriately. To configure the Remote_A
connection, select the ADP target. If this is not listed, click Add and use the resulting
browse dialog to locate and select the remote_a.dll file.

Select the ADP target line and click the Configure button to display the dialog shown
in Figure 5-106.

Figure 5-106 Configuration of Remote_A connection

The Remote_A connection dialog enables you to examine and, if necessary, change the
following settings:

Remote connection driver

Click Select... to see a list of available drivers. This includes Serial, Serial
/Parallel, and Ethernet drivers. Select one if you want to use it instead of
the current driver. To change the settings of the currently selected driver,
click Configure.... A dialog appears, similar to those in Figure 5-107 on
page 5-95, Figure 5-108 on page 5-95, or Figure 5-109 on page 5-95.
5-94 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

AXD Desktop
Figure 5-107 Serial connection configuration

Figure 5-108 Serial/parallel connection configuration

Figure 5-109 Ethernet connection configuration

Heartbeat Ensures reliable transmission by sending heartbeat messages. Any errors
are more easily detected when known messages are expected regularly.

Endian These buttons inform the debugger that the target is operating in
little-endian or big-endian mode.

• If you are using the ARMulator to simulate a processor with an
MMU and you have semihosting enabled in the .ami configuration
file, the ARMulator sets the big-endian bit in CP15. If semihosting
is not enabled, the big-endian bit is not set and the processor
executes in little-endian mode. In that case you must write
initialization code to set the big-endian bit, or set it manually
through the debugger.

• If you are using ARMulator to simulate a processor without an
MMU, such as the ARM7TDMI® core, the Endian button sets the
endianness of the target processor.
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 5-95

AXD Desktop
For hardware targets such as Multi-ICE, the Endian button only sets the
endianness expected by the debugger. You must initialize your hardware
to run in the appropriate mode.

Angel automatically corrects a wrong endian target setting.

Channel Viewers

Channel viewers are not supported if you are running AXD under UNIX.

When you run AXD under Windows, checking Enabled enables you to
access a displayed list of .dll files. Do not enable any DCC viewer from
this dialog. Instead, use the AXD built-in viewer available from the
Processor Views menu and enabled from the Processor Properties
dialog. For more details see Comms Channel processor view on
page 5-37 and Configure Processor....

For information on how to configure other targets, for example ARM Agilent Debug
Interface, see the documentation accompanying the product.

5.7.4 Configure Processor...

This menu item provides a quick way for you to display the Processor Properties dialog
for the current processor. Selecting Configure Processor... from the Options menu is
equivalent to right-clicking on a processor name on the Target tab of the Control system
view and selecting Properties from the resulting pop-up menu. A typical Processor
Properties dialog is shown in Figure 5-110.

Figure 5-110 Processor Properties dialog
5-96 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

AXD Desktop
The Vector Catch group enables you to select the exceptions that are intercepted,
causing control to pass back to the debugger. The default settings of vector_catch are
RUsPDif. An uppercase letter indicates an exception is intercepted. The exceptions
controlled in this way are:

R Reset

U Undefined Instruction

S SWI

P Prefetch Abort

D Data Abort

I normal interrupt request (IRQ)

F fast interrupt request (FIQ)

Each check box in the Vector Catch group indicates whether a particular exception is
intercepted (checked) or ignored (blank) for the specified processor. Any changes you
make become effective when you click the OK button. For further information see
setprocprop on page 6-47.

The Enable Comms Channel and Semihosting selections, the Semihosting mode
settings, and the Semihosting SWIs settings can interact with one another. These are
governed, to some extent, by the target configuration.

Settings are disabled when it is inappropriate for you to change them. You can, however,
view the current settings.

You can switch semihosting on or off using the Semihosting check box. When it is
switched on, you can set the semihosting mode to Standard or DCC (Debug
Communications Channel). If you select the DCC semihosting mode, then:

• the Comms Channel check box becomes disabled because the options are
mutually exclusive

• you might have to change the address stored in the variable to suit the size of the
target memory (see Semihosting on page 4-11).

The Vector field sets the value of the $semihosting_vector variable. See the Semihosting
chapter of the ADS Debug Target Guide for an explanation of this variable, and for more
general information on semihosting issues.

Caution
 The Semihosting SWIs fields specify an integer number identifying the ARM and
Thumb SWI numbers that are used for semihosting. You are strongly advised not to
change these.
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 5-97

AXD Desktop
5.7.5 Source Path...

Select Source Path... from the Options menu to display the Set Source Path dialog
shown in Figure 5-111. This specifies the paths that are searched, and the order in which
they are searched, when a source file is required.

Figure 5-111 Set Source Path dialog

To insert a path in the list, click the Insert button. Either browse for the required path
name or enter the full path name, then press Return. For example, you might specify
C:\Program Files\ARM\ADS\Temp as a source path.

You can select and delete a single path name, or delete all path names. You can also
select and move a path name up or down the list.

Source paths are persistent. They are saved and used in subsequent debugging sessions.

You can also set and view source paths using the command-line interface. See sourcedir
on page 6-53, and setsourcedir on page 6-49.

5.7.6 Status Bar display control

If you click on the Status Bar menu item so that it is checked the status bar is displayed
at the bottom of the AXD screen (see Status bar contents on page 5-5).

If you click the Status Bar menu item so that it is cleared the status bar is not displayed.

5.7.7 Profiling

Select Profiling to display a submenu, shown in Figure 5-112. This enables you to
control profiling, provided you made suitable settings when you loaded the image. See
Profiling on page 4-27 for details.

Figure 5-112 Profiling submenu
5-98 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

AXD Desktop
5.8 Window menu

The Window menu, shown in Figure 5-113, enables you to control the display of
windows and icons on your screen.

Figure 5-113 Window menu

Source and Disassembly views always float within the main window. All other views
can be displayed in any one of three types of window:

• docked at one edge of the main window

• floating anywhere on the screen

• floating within the main window.

The Window menu items operate on views that are floating within the main window
only. Windows that can float to any position on the screen and windows that are docked
are not affected or listed.

Any cascaded or tiled windows are arranged within the screen area that remains
unoccupied by any docked windows. Docked and floating windows are described in
Docked and floating windows on page 2-10.

The Window menu items are described under the following headings:

• Cascade on page 5-100

• Tile Horizontally on page 5-100

• Tile Vertically on page 5-100

• Arrange Icons on page 5-100

• Refresh All on page 5-100

• Timed Refresh on page 5-100

• List of relevant windows on page 5-101.
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 5-99

AXD Desktop
5.8.1 Cascade

Cascade operates on any windows set to float within the main window. They are
repositioned, resized, and overlapped, to be as large as possible while still showing
enough of each one to identify it and to allow you to select it. They fill most of the area
of the main window that remains unoccupied by any docked windows.

5.8.2 Tile Horizontally

Tile Horizontally operates on any windows set to float within the main window. They
are repositioned and resized to avoid any overlapping and to fill the area of the main
window that remains unoccupied by any docked windows. The windows are made as
wide as is reasonably possible within the space available, with their height restricted if
necessary.

5.8.3 Tile Vertically

Tile Vertically operates on any windows set to float within the main window. They are
repositioned and resized to avoid any overlapping and to fill the area of the main
window that remains unoccupied by any docked windows. The windows are made as
high as is reasonably possible within the space available, with their width restricted if
necessary.

5.8.4 Arrange Icons

Arrange Icons arranges any windows minimized to icons along the bottom edge of the
area of the main window that remains unoccupied by any docked windows.

5.8.5 Refresh All

The Refresh All menu item is useful when you are debugging a target that supports
RealMonitor (see RealMonitor support on page 4-14). If you are debugging such a
target and have several views displayed, the information shown might have been
captured at various times during the debug session so can appear inconsistent.

Select Refresh All from the Window menu to update and recalculate the information
in all currently displayed views.

5.8.6 Timed Refresh

Selecting the Timed Refresh menu item or clicking on the Timed Refresh tool is
equivalent to selecting Options → Configure Interface → Timed Refresh → Enable
Timed Refresh, and toggles on or off the automatic updating and recalculation of all
displayed information at regular intervals.
5-100 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

AXD Desktop
To change the refresh interval, select Options → Configure Interface → Timed
Refresh and set Refresh Interval (tenths of seconds) to a new value.

Timed Refresh is useful when you are debugging a target that supports RealMonitor
(see RealMonitor support on page 4-14). With other targets, all displayed views are
refreshed each time target execution stops.

5.8.7 List of relevant windows

All windows that are currently floating within the main window are listed in the lower
part of the Window menu, each window identified by the text that appears in its title
bar. Refer to this list if some windows have become obscured. Select any window from
the list to bring it to the front of the display.
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 5-101

AXD Desktop
5.9 Help menu

The Help menu provides you with access to AXD online help and to details of the
version of AXD that you are running. If you are licensed to use the Trace Debug Tools
(TDT) add-on product, and your target processor supports trace, the option TDT Help
is also available on the Help menu, shown in Figure 5-114.

Figure 5-114 Help menu

The Help menu items and relevant toolbar icons are described under the following
headings:

• Contents

• Using Help

• Online Books

• About AXD on page 5-103

• Toolbar icons on page 5-103.

5.9.1 Contents

Contents displays the first page of AXD online help. You can navigate from there to
any other available topic.

5.9.2 Using Help

Using Help displays instructions for various ways to obtain online help while you are
using the debugger.

5.9.3 Online Books

Online Books allows you to view the ARM manuals that are published in both printed
and online forms, and are complementary to online help. This is equivalent to selecting
Start → Programs → ARM Developer Suite v1.2 → Online Books.

During ADS installation, you can choose not to install online books and PDF files. You
can view online books only if they are installed. If the PDF files are not installed you
can view them by reading them from the ADS installation CD-ROM.
5-102 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

AXD Desktop
5.9.4 About AXD

About AXD displays the name, version number, and build number of the AXD software
you are running.

When you have seen the details, close the dialog by clicking on either the Close button
or the OK button.

5.9.5 Toolbar icons

Clicking on the Query icon is equivalent to selecting Contents from the Help menu.

Clicking on the Query and arrow icon changes the mouse pointer into a similar icon.
Click again on any part of the display for which you want help.
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 5-103

AXD Desktop
5-104 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

Chapter 6
AXD Command-line Interface

This chapter describes the use of the Command Line Interface (CLI) window. It contains
the following sections:

• Command Line Window on page 6-2

• Parameters and prefixes on page 6-4

• Commands with list support on page 6-5

• Predefined command parameters on page 6-6

• Definitions on page 6-9

• Commands on page 6-13.
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 6-1

AXD Command-line Interface
6.1 Command Line Window

Select Command Line Interface from the System Views menu to display the
Command Line Interface (CLI) window. In the CLI window you can enter commands
that are equivalent to many of the debugger menu items, or submit a file of such
commands. This provides a reliable and consistent way for you to execute sequences of
commands repeatedly.

You might use the CLI window for the following reasons:

• As an alternative to the GUI

• To automate repetitive tasks.

To display the CLI window pop-up menu, right-click in the CLI window.

You can paste text into the CLI window instead of typing it, but you must ensure that
every line ends with a CR-LF pair. The final line, for example, is not executed if it does
not end with CR-LF.

All commands entered, either by typing or by pasting, are added to the CLI history list.

6.1.1 As an alternative to the GUI

Using the GUI involves selecting items from menus. Many of these menu items
correspond to commands you can enter in the CLI window.

One advantage of working in the CLI window is the ability to log all your actions in a
disk file.

If any of your commands result in data being displayed by the debugger, these appear
in the CLI window. You can choose whether a log file includes everything displayed in
the CLI window, or your commands only.

You can use both the CLI and the GUI in a debug session. If, for example, a GUI
command changes the current processor, then any CLI command that by default refers
to the current processor will refer to the newly-defined processor.

6.1.2 To automate repetitive tasks

You can record the commands you issue in a log file (see Command Line Interface
system view pop-up menu on page 5-65 or record on page 6-38). You can then easily
repeat the same commands by submitting the file to the CLI using the obey command
(see obey on page 6-36).
6-2 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

AXD Command-line Interface
6.1.3 CLI pop-up menu

Right-click in the CLI window to display the CLI window pop-up menu. For details
refer to AXD online help or to Command Line Interface system view pop-up menu on
page 5-65.

To display the CLI Properties dialog, shown in Figure 5-87 on page 5-67, Figure 5-88
on page 5-68, and Figure 5-89 on page 5-68, select Properties... from the pop-up menu.

The CLI Properties dialog enables you to set various default values so that you do not
have to specify them on commands you intend to issue. It also provides an alternative
method of issuing certain commands, such as toggling on or off logging or recording,
or selecting files to use for those purposes.

In a few cases, this dialog provides the only method of setting values. Such values
include the number of lines of disassembly or source code to display, and the number
of history records visible in a view.

Click Help or refer to Command Line Interface system view pop-up menu on page 5-65
for more information about this dialog.

6.1.4 Command history

Your most recent commands are stored and are available for reuse. Press the up arrow
and down arrow keys to move backwards and forwards through the list of recent
commands. When any earlier command is displayed you can press Return to issue the
command for execution.

To issue a new command similar to one you issued earlier, use the up arrow and down
arrow keys to display the earlier command, then the left arrow and right arrow keys to
position the cursor. Change the earlier command as required, then press Return to issue
the new command.

To see the stored list of commands, press the Ctrl+Page Up key combination. If there
are too many commands to display in the window, you can scroll the list. Select any
displayed command and press Return to use that command as the basis for a new
command.

To change the number of recent commands stored, see Command Line Interface system
view pop-up menu on page 5-65.
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 6-3

AXD Command-line Interface
6.2 Parameters and prefixes

When entering commands, you might have to supply parameters of various types. To
specify the type of a parameter, prefix its value with one of the symbols #, |, @, or +.

6.2.1 # parameters

After a # symbol the remaining character(s) must be numeric, and identify an object by
its position in a list.

Before specifying an object by using a # parameter you must issue a command that
displays the relevant indexed list. For commands that display indexed lists, see
Commands with list support on page 6-5.

6.2.2 | parameters

Type a | symbol to separate a parent and a child item in a parameter that includes
hierarchical levels.

You might need to include a | symbol when you supply a position parameter, for
example, even though the symbol is not shown in the syntax description of the
command.

A | symbol in a syntax description denotes alternatives, and you do not type it when you
enter the command.

6.2.3 @ parameters

After an @ symbol the remaining characters must form an expression that evaluates to
an address. Usually, this kind of parameter takes one of the following forms:

• A hexadecimal value, @0x82E0 for example.

• The name of a low-level symbol, @Proc_4 for example.

6.2.4 + parameters

The + symbol prefixes the second parameter of a range when it is to be used as a size
rather than an upper value.

6.2.5 Other parameters

You might need to supply other names as parameters (a file, a directory, or a debugger
internal variable, for example). They do not begin with one of the symbols #, |, @, or +.
For example, to display the value of the internal variable $target_fpu, type:

print $target_fpu
6-4 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

AXD Command-line Interface
6.3 Commands with list support

Several commands display lists with entries identified by an index number (starting
from 1 for the first entry). You can use these index numbers to refer to specific entries.

The following indexed lists are available:

• files

• classes

• functions

• variables

• watchpoints

• breakpoints

• regbanks

• registers

• stack entries

• low-level symbols

• processors

• images.

Commands that display these indexed lists and commands that accept indexed entries
from these lists are described in Commands on page 6-13.
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 6-5

AXD Command-line Interface
6.4 Predefined command parameters

Several commands take parameters in the form of text strings, but a very few predefined
values are the only ones you are allowed to supply. For example, where toggle is
specified as a parameter, you can enter either the string on or the string off. Any other
value for this parameter is invalid.

In the alphabetical list of Commands on page 6-13, the parameters printed in italics
are those that you replace with the value you require when you issue the command.

These parameters are not case-sensitive. You can freely mix uppercase and lowercase
characters. The parameters for which you must specify certain values only are described
in the following sections:

• format

• asm

• instr on page 6-7

• step on page 6-7

• memory on page 6-7

• scope on page 6-7

• toggle on page 6-8.

6.4.1 format

The format parameter must be set to the name or index number of an existing format.
To display a list of all currently available formats, refer to listformat on page 6-32.

Use this parameter to specify how values are displayed. For example, each line in a
memory listing shows the contents of 16 bytes of memory, grouped into 4, 8, or 16
values (see memory on page 6-7). The setting of the format parameter in the memory
command determines whether each value is displayed in hexadecimal, decimal, octal,
binary, or any other available format.

You can also use the format parameter to specify the default display format for registers,
memory, or watchpoints. The default setting of format is shown on the Format tab of
the CLI Properties dialog or by the format command.

For more information about formats, see Data formatting on page 4-16.

6.4.2 asm

The asm parameter must be set to ARM, Thumb, ByteCode or auto.
6-6 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

AXD Command-line Interface
ARM instructions occupy 32 bits and Thumb instructions occupy 16 bits. ARM C and
C++ compilers can generate either ARM or Thumb code. Use the asm parameter to
specify that the code being debugged contains ARM code or Thumb code, or Jazelle
code, or that the debugger must make the setting itself (auto). You usually have to
specify the instruction type only when the code was built without debug information.

The setting of asm is shown in the Instruction Size field of the CLI Properties dialog.

6.4.3 instr

The instr parameter must be set to line or instr.

This parameter determines whether a step consists of a line of source code (line) or an
assembler instruction (instr).

You can examine or change the setting of instr in the Step size field of the CLI
Properties dialog General tab, or with the stepsize CLI command.

6.4.4 step

The step parameter, if specified, must be set to in or out.

This affects the way an instruction calling a function is processed. If you specify in, the
step proceeds only to the first executable instruction in the called function. If you
specify out, the step includes execution of the called function and proceeds to the
instruction at which execution returns to the calling program. If you omit the step
parameter, execution steps over a line or instruction.

6.4.5 memory

The memory parameter must be set to 8, 16, or 32.

8 Displays memory in 8-bit bytes.

16 Displays memory in 16-bit halfwords.

32 Displays memory in 32-bit words.

The setting of memory is shown in the Size field of the CLI Properties dialog.

To specify the format for displaying values, see format on page 6-6.

6.4.6 scope

The scope parameter must be set to class, global, or local.

This parameter specifies that any context variables displayed by the associated
command are those scoped to class, global, or local, respectively.
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 6-7

AXD Command-line Interface
6.4.7 toggle

The toggle parameter must be set to on or off.

This parameter switches the associated command on or off.
6-8 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

AXD Command-line Interface
6.5 Definitions

With most commands you have to specify parameters that define, for example, a
processor, file, position, address, or format. This section lists these definitions and
explains how to use them as command parameters:

asm Denotes that assembler instructions are ARM (32-bit), Thumb (16-bit) or
Jazelle (8-bit). You must specify ARM, Thumb, ByteCode or auto. If you
specify auto, the debugger determines the correct setting itself when
possible.

breakpoint You specify a breakpoint as its index in the breakpoint list, in the form of
a value prefixed by #.

class You can identify a class by:

• the class name which can include the name of an image, separated
from the class name by a vertical bar, in the form image|class

• the index of the class in the current class list, in the form of a value
prefixed with #.

context You can specify a context by specifying a stack entry, in the form of a
value prefixed by #.

expr An expression is either a numerical value or an expression that evaluates
to a numerical value.

file You can identify a file by:

• its filename

• the index of the file in the current file list, in the form of a value
prefixed with #

• the globally unique identifier of the file as shown in the output of a
files command

• null, the current file is used.

format Denotes the format in which the contents of memory, registers, or
variables are displayed. You must specify the name or index number of
an available format.

image You can identify an image by:

• the name of the image

• the index of the image in the current image list, in the form of a
value prefixed with #

• the globally unique identifier of the image as shown in the output
of an images command
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 6-9

AXD Command-line Interface
• null (defaults to the image associated with the current processor).

index You can refer to items in a list by specifying their position in the list. For
example, this gives you a convenient way of referring to a watchpoint in
commands such as clearwatch.

instr You must specify either instr to define a step as one instruction or line
to define a step as one line of source code.

ipvariable Denotes any one of a group of variables that define image-related
properties. The variables currently supported are:

cmdline This variable holds the parameter passed to the image when
execution starts. If the image requires multiple parameters,
enclose the whole string in quotes (“...”).

memory Denotes that memory is to be displayed in bytes, halfwords, or words.
You must specify 8, 16, or 32.

position To specify a position in a source file, use vertical bar separators as in
image|file|line. If you omit the image name, the image associated with
the current processor is assumed.

A position might also be a location within an executable image. In this
case you can specify it in the form image|@address.

A position can also be inferred from many debug objects, such as
breakpoints or low-level symbols. You can therefore specify a position as
an index of a position-based object in the last displayed list of these
objects. Specify the index as a value prefixed by #.

ppvariable Denotes any one of a group of variables that define processor-related
properties. The variables currently supported are:

vector_catch
Defines which exceptions in the processor are intercepted by
the debugger. For details see Processor pop-up menu on
page 5-50 and setprocprop on page 6-47.

comms_channel
Enables or disables the communications channel.

semihosting_enabled
Enables or disables semihosting, as follows:

0 semihosting disabled

1 standard semihosting enabled

2 DCC semihosting enabled (applies only to
Multi-ICE or ARM Agilent Debug Interface, the
add-on product to ADS).
6-10 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

AXD Command-line Interface
semihosting_vector
Defines handler address. Applies to Multi-ICE only.

semihosting_dcchandler_address
Defines handler address. Applies to Multi-ICE only.

arm_semihosting_swi
Defines ARM software interrupt number reserved for
semihosting.

thumb_semihosting_swi
Defines Thumb software interrupt number reserved for
semihosting.

processor You can identify a processor by:

• the name of the processor

• the index of the processor in the current processor list, in the form
of a value prefixed with #

• the globally unique identifier of the processor as shown in the
output of a processors command

• null (defaults to the current processor).

regbank You can identify a register bank by:

• The name of the register bank. This is processor-dependent. Use
the regbanks command to generate a register bank list. Examples of
register banks are:

— Current

— User or System or User/System

— IRQ

— FIQ

— SVC

— Abort

— Undef

— EICE

— EICE Watch 0

— EICE Watch 1

For example, to write to the Address register of Watchpoint Unit 0
use:
sreg "EICE Watch 0|Address Value" 0x00008098

• The index of the register bank in the register bank list, in the form
of a value prefixed with #.

• The globally unique identifier of the register bank shown in the
register bank list.
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 6-11

AXD Command-line Interface
register You can use the registers command to list the registers in a register bank.
You can identify a register by:

• the name of the register

• the index of the register in a register list generated by the registers
command, in the form of a value prefixed with #.

scope Denotes which context variables to display, based on their scope. You
must specify class, local, or global.

step This controls the amount of processing that takes place following an
instruction that calls a function. You must specify this as in or out, or omit
it. If omitted, the step is interpreted as step over line or instruction.

string You specify a text string enclosed in quotes (“...”).

toggle Where this parameter is allowed, you can use it to switch on or off certain
properties. You must specify either on or off.

value You specify a numeric value.

watchpoint You specify a watchpoint as its index in the watchpoint list, in the form
of a value prefixed by #.
6-12 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

AXD Command-line Interface
6.6 Commands

This section lists in alphabetical order all the commands that you can issue using the
command-line interface. Refer to Definitions on page 6-9 for descriptions of parameters
used with many of these commands.

In the syntax definition of each command, square brackets ([...]) enclose optional
parameters and a vertical bar (|) separates alternatives from which you choose one. Do
not type the square brackets or the vertical bar.

You might need to type vertical bars when entering hierarchical values, for example
imagename|@address. for a position parameter.

Replace parameters printed in italics with the value you require.

When you supply more than one parameter, use a comma or a space as a separator. The
syntax definitions and examples in this chapter use a space.

If a parameter is a name that includes spaces, enclose it in quotation marks.

If you want to enter a command that is similar to one you have previously entered, use
the up and down arrow keys to retrieve the earlier command, then use the left and right
arrow keys to position the cursor where you want to change the command. The number
of commands is defined in the history list.

Ctrl+Page Up shows a complete history list of commands.

Where lines of output are described, <tab> indicates that the items are displayed in
columns.

A few command descriptions include an alias for the command. You can use either the
command or its alias. Aliases are supported because you might be familiar with their
use in armsd, or use these forms of the commands in existing script files.

6.6.1 addsourcedir

No longer a valid command. See setsourcedir on page 6-49 and sourcedir on page 6-53.

6.6.2 backtrace

See stackentries on page 6-53.
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 6-13

AXD Command-line Interface
6.6.3 break

If you supply no parameters, the break command lists all the breakpoints that are
currently set. Each breakpoint is shown on a separate line, after a first line containing
the headings for the following columns:

Index The position in the list. This gives you a convenient way of referring to a
breakpoint in commands such as clearbreak.

State Displays an X if the breakpoint is currently disabled.

Position This shows the fully-qualified source code filename in brackets, a colon,
and the source code line number at which the breakpoint is set. It also
shows, in square brackets, the corresponding memory address.

Count Two numbers are shown as X/Y. X is the number of times execution has
arrived at the breakpoint since the last time the breakpoint was triggered.
Y is the number of times execution has to arrive at the breakpoint to trigger
it.

Size This shows whether the breakpoint is ARM-sized (32 bits) or
Thumb-sized (16 bits). The breakpoint size can usually be detected
automatically, in which case AUTO is shown.

Condition Any condition that you have specified that must also be satisfied before
the breakpoint can be triggered is shown here. This must be a boolean
expression.

Additional The final column displays additional information. This can include one
or more of the following:

Processor Identifies the processor in which the breakpoint is set.

S/HW Shows whether the breakpoint is implemented in hardware or
software.

(ID) A hardware breakpoint can have a hardware resource
identifier. These identifiers are shown here.

Action This shows whether the action taken when the breakpoint is
triggered is to stop execution of the target (Break) or to log the
event (Log).

If you supply parameters, the command creates and sets a new breakpoint so that
execution continues until the specified address is visited for the nth time. If you do not
specify a value for n, a default value of 1 is assumed, so execution stops every time the
address is visited.

The shorthand form of the break command is br.
6-14 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

AXD Command-line Interface
Syntax

br[expr|posn [n]]

where:

expr|posn Is either an expression or a position that defines where a new breakpoint
is to be created.

n Specifies the number of times execution must arrive at the breakpoint in
order to trigger it. The default value is 1.

Examples

br 0x8000 Sets a breakpoint at address 0x8000

br @main Sets a breakpoint on main.

br c:\test\main.c|130 100

Sets a breakpoint on line 130 of file main.c, requiring 100 arrivals to
trigger it.

br #5|150 Sets a breakpoint at line 150 of file number 5. The index #5 must have
been obtained using the files command.

When you have created a new breakpoint, you can change its properties with the
SetBreakProps command. See setbreakprops on page 6-44.

A sample listing is shown in Example 6-1.

Example 6-1 Break listing

Debug >br
Index Position Count Size Condition Additional
#1 [0x000084EC]{dhry_1.c:149} 0/1 AUTO N/A ARM7T_1 HW(-1) Log: Point A hit
 Position: [0x000084EC]{C:\Program Files\ARM\ARM Developer Suite\Examples\dhry\dhry_1.c:149}
#2 [0x000084F0]{dhry_1.c:150} 0/750 AUTO N/A ARM7T_1 HW(-1) Break
 Position: [0x000084F0]{C:\Program Files\ARM\ARM Developer Suite\Examples\dhry\dhry_1.c:150}
#3 [0x00008290]{dhry_1.c:91} 0/1 AUTO N/A ARM7T_1 HW(-1) Break
 Position: [0x00008290]{C:\Program Files\ARM\ARM Developer Suite\Examples\dhry\dhry_1.c:91}
Debug >

Note
 To set complex breakpoints, use the setbreakprops command (see setbreakprops on
page 6-44) or select Breakpoints... from the System Views menu.
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 6-15

AXD Command-line Interface
6.6.4 cclasses

The cclasses command lists all the classes in the specified class in the currently loaded
image. Each class is shown on a separate line, in the following format:

index<tab>classname

The position in this list, index, gives you a convenient way of referring to a class of
classes.

The shorthand form of the cclasses command is ccl.

Syntax

ccl class

Example

ccl testclassDisplays subclasses of testclass.

6.6.5 cfunctions

The cfunctions command lists all the functions in the specified class. Each variable is
shown on a separate line, in the following format:

index<tab>functionname (parameterlist)

The position in this list, index, gives you a convenient way of referring to a class
function.

The shorthand form of the cfunctions command is cfu.

Syntax

cfu class

Example

cfu #2 Displays functions in the class identified by index number 2. The index
must have been obtained using the classes command.

6.6.6 classes

The classes command lists all the classes in the specified image, or in the current image
if you do not specify an image. Each class is shown on a separate line, in the following
format:
6-16 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

AXD Command-line Interface
index<tab>classname

The position in this list, index, gives you a convenient way of referring to a class.

The shorthand form of the classes command is cl.

Syntax

cl[image]

6.6.7 clear

The clear command clears the command-line window.

The shorthand form of the clear command is clr.

Syntax

clr

6.6.8 clearbreak

The clearbreak command unsets and deletes a specified breakpoint or all current
breakpoints. See break on page 6-14 for a description of how to refer to a breakpoint.

The shorthand form of the clearbreak command is cbr.

Alias

unbreak is an alias for clearbreak.

Syntax

cbr breakpoint|all

Examples

cbr #2 Clears breakpoint number 2. The index #2 must have been obtained using
the break command.

unbreak all Clears all current breakpoints. The parameter all is case-sensitive.
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 6-17

AXD Command-line Interface
6.6.9 clearstat

The clearstat command deletes the set of accumulated statistics at the specified
reference point.

The shorthand form of the clearstat command is cstat.

Syntax

cstat referencepoint

where:

referencepoint

Specifies the set of statistics you want to delete. You must specify a
reference point name. This name is case-sensitive. If the name contains
spaces, enclose it in double quotes.

Examples

cstat rp001 Deletes the set of statistics at reference point rp001.

cstat "Ref Point 2"

Deletes the set of statistics at reference point Ref Point 2.

You cannot delete the line of statistics that has the reference point name $statistics.

If you specify a reference point that does not exist, an error message is displayed.

See also statistics on page 6-54 for a description of how to add a new reference point or
display all reference points.
6-18 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

AXD Command-line Interface
6.6.10 clearwatch

The clearwatch command unsets and deletes a specified watchpoint or all current
watchpoints. See watchpt on page 6-59 for a description of how to refer to a watchpoint.

The shorthand form of the clearwatch command is cwpt.

Alias

unwatch is an alias for clearwatch.

Syntax

cwpt watchpoint|all

Examples

cwpt #2 Clears watchpoint number 2. The index #2 must have been obtained using
the watchpt command.

unwatch all Clears all current watchpoints. The parameter all is case-sensitive.

6.6.11 comment

The comment command sends the specified character string to the current log file. If
logging is not taking place this command has no effect.

The shorthand form of the comment command is com.

Syntax

com string
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 6-19

AXD Command-line Interface
6.6.12 context

If you do not supply a parameter, the context command displays details of the current
context, as follows:

Image: imagename|@address File: sourcefilename|linenumber

If you specify a stack entry, the context command sets the current context to that of the
stack entry you specify. See stackentries on page 6-53 for further information on stack
entries.

This command does not change the execution context. It enables you to browse through
all the available contexts of the current debug session and examine context-related
variables.

The shorthand form of the context command is con.

Syntax

con[context]

Example

con #2 Sets the current context to that of stack entry number 2. The index #2
must be obtained using the stackentries command.
6-20 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

AXD Command-line Interface
6.6.13 convariables

The convariables command displays the name, type, and value of all variables valid in
the current or specified context and in the specified scope. If you do not specify a scope,
then class, global, and local variables are listed.

The shorthand form of the convariables command is convar.

Syntax

convar[context][scope][format]

where:

context Specifies the context of the variables you want to list, the default being
the current context (see stackentries on page 6-53).

scope Can be set to class, global, or local (see scope on page 6-7).

format Specifies the format in which the contents of the variables are listed, if
this is different from the default format (see format on page 6-6).

Examples

convar #1 dec

Displays the global, class, and local variables in the context of stack entry
number 1, in decimal format. Index #1 must be obtained with the
stackentries command.

convar local Displays the local variables in the current context, in hexadecimal format.
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 6-21

AXD Command-line Interface
6.6.14 cvariables

The cvariables command lists all the variables in the specified class in the currently
loaded image. Each variable is shown on a separate line, in the following format:

index<tab>variablename<tab>type

The position in this list, index, gives you a convenient way of referring to a class
variable.

The shorthand form of the cvariables command is cva.

Syntax

cva class

Examples

cva testclass

Displays the class variables of testclass.

cva #1 Displays the class variables of the class identified by index number 1. The
index must be obtained using the classes command.

6.6.15 dbginternals

The dbginternals command displays the debugger internal variables of the current
target. These are the same variables as those displayed when you select Debugger
Internals from the System Views menu. Each variable is shown on a separate line, in
the following format:

variablename<tab>value

The shorthand form of the dbginternals command is di.

Syntax

di
6-22 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

AXD Command-line Interface
6.6.16 disassemble

The disassemble command disassembles and displays lines of assembler code that
correspond to the contents of the specified area of memory.

The shorthand form of the disassemble command is dis.

Alias

list is an alias for disassemble.

Syntax

dis expr1[[+]expr2[asm]]

where:

expr1 Is an expression that evaluates to the starting address of the area of
memory you want to see disassembled.

expr2 Is an expression that either evaluates to the end address of the area of
memory you want to see disassembled or, if preceded by +, evaluates to
the number of bytes you want disassembled. If a value is not supplied on
the command line, the value from the Bytes to display property box is
used.

asm Can be set to ARM, Thumb, ByteCode or auto (see asm on page 6-6). If not
specified, the current value of the Instruction Size field of the CLI
properties dialog is used.

Example

dis 0x8200 +64 ARM

Displays disassembled instructions that represent the ARM code
currently stored in the 64 bytes of memory starting at address 0x8200.

dis 0x8000 +10 ByteCode

Displays disassembled instructions that represent the Jazelle code
currently stored in the 10 bytes of memory starting at address 0x8000.
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 6-23

AXD Command-line Interface
6.6.17 echo

The echo command enables you to choose whether CLI commands read from an Obey
file are displayed in the CLI system view. Because you can log whatever is displayed in
the CLI system view, this command also determines whether CLI commands read from
an Obey file are logged.

If an Obey file includes an echo command, the new setting is effective only while
commands from that Obey file are being executed. The echo setting then reverts to the
state it was in when the Obey process began.

Using the echo command is equivalent to checking or unchecking the Echo check box
in the CLI Properties dialog.

There is no shorthand form of the echo command.

Syntax

echo on|off

where:

on Means that CLI commands subsequently read from an Obey file appear
in the CLI system view. This is the default setting.

off Means that CLI commands subsequently read from an Obey file do not
appear in the CLI system view.

6.6.18 examine

See memory on page 6-35.
6-24 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

AXD Command-line Interface
6.6.19 files

The files command lists all the source files that have contributed debug information to
the specified image, or to the current image if you do not specify an image. Each source
file is shown on a separate line, in the following format:

index<tab>ID<tab>filename

This means that you can refer to a source file in any one of three ways:

index The position in this list.

ID The identifier of the source file.

filename The name of the source file.

The shorthand form of the files command is fi.

Syntax

fi[image]

6.6.20 fillmem

The fillmem command fills the specified area of memory with the specified value
repeated sufficient times. If the size of the area to be filled is not an exact multiple of
the size of the value being written, some bytes remain unchanged at the end of the area.
The value written (repeatedly) to memory is the value you specify, padded with leading
zeros or truncated if necessary to achieve the size you specify with the memory parameter.

The shorthand form of the fillmem command is fmem.

Syntax

fmem expr1 [+]expr2 value[memory]

where:

expr1 Specifies the starting address of the area of memory to be filled.

expr2 Specifies either the end address or, if preceded by +, the number of bytes
of memory to be filled.

value Specifies what is to be written to memory.

memory Can be set to 8, 16, or 32, and determines whether value should be
evaluated to an 8-bit, a 16-bit, or a 32-bit value (see memory on page 6-7).
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 6-25

AXD Command-line Interface
Example

fmem 0x83A4 +20 0x61626364 32

Overwrites the 20 bytes of memory starting at address 0x83A4 with the
4-byte value 0x61626364 repeated five times. To see the effect of this and
other commands, load an image, open a Memory processor view big
enough to see about 16 lines and set its starting address to 0x8300. Then
in the CLI system view perform the examples given for the commands
fillmem, savebinary, reload, and loadbinary.

6.6.21 findstring

The findstring command searches for the specified string in the specified area of
memory or, by default, in the whole available memory range. The command displays
messages giving the starting address of every occurrence found of the specified value.

If you view the contents of memory with size set to more than 8 bits, it is possible for
bytes to be displayed in an order different from that in which they are stored (as a result
of the endian setting). The findstring command always tests consecutive memory
locations, regardless of how the contents of those locations might be displayed.

The shorthand form of the findstring command is fds.

Syntax

fds string[[low-expr][[+]high-expr]]

where:

string Specifies the string you are seeking.

low-expr Is an expression that evaluates to the memory address where the search is
to begin.

high-expr Is an expression that evaluates to the memory address where the search is
to end or, if preceded by +, the number of bytes of memory to search.

Example

fds "cb" 0x8300 0x8400

Reports finding the specified string at five addresses within the specified
range if you have performed the fillmem example. The order in which the
bytes you entered in the fillmem example are stored depends on the
endian setting of the target. This fds example assumes they were stored
in the order 0x64 0x63 0x62 0x61 ("dcba").
6-26 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

AXD Command-line Interface
6.6.22 findvalue

The findvalue command searches for the specified value in the specified area of
memory or, by default, in the whole available memory range. The command displays
messages giving the starting address of every occurrence found of the specified value.

If you view the contents of memory with size set to more than 8 bits, it is possible for
bytes to be displayed in an order different from that in which they are stored (as a result
of the endian setting). The findvalue command always tests consecutive memory
locations, regardless of how the contents of those locations might be displayed.

The shorthand form of the findvalue command is fdv.

Syntax

fdv valexpr[[low-expr][[+]high-expr]]

where:

valexpr Is an expression that evaluates to the value you are seeking.

low-expr Is an expression that evaluates to the memory address where the search is
to begin.

high-expr Is an expression that evaluates to the memory address where the search is
to end or, if preceded by +, the number of bytes of memory to search.

Example

fdv 0x6362 0x8300 0x8400

Reports finding the specified value at five addresses within the specified
range if you have performed the fillmem example. The order in which the
bytes you entered in the fillmem example are stored depends on the
endian setting of the target. This fdv example assumes they were stored
in the order 0x64 0x63 0x62 0x61 ("dcba").
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 6-27

AXD Command-line Interface
6.6.23 format

The format command sets the default format to be used for displaying data in the CLI
system view or, if issued with no parameters, reports the current display format.

The shorthand form of the format command is fmt. See also, importformat on page 6-31
and listformat on page 6-32.

Syntax

fmt [format_name[control_string]]

where:

format_name Defines the format to be used, in any of the following forms:

#n Where n is the index number of the format as shown in the last
displayed format list (see listformat on page 6-32).

RDIName As shown in the last displayed format list.

ShortName As shown in the last displayed format list, or on the Format
tab of the CLI Properties dialog.

control_string

Defines any associated control string required by the specified format.
For example, with a Q-format as the first parameter, a printf control string
as the second parameter defines how values are displayed. (Q-format is
currently the only supplied format that can take a further control string.)

Examples

fmt #3 Sets format number 3 as the default for displays in the CLI system view.

fmt Q3.29 %12.6f

Interprets data in Q3.29 format and displays the values in 12.6f format.

fmt 0x%4x Uses printf with 0x%4x as its control string.
6-28 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

AXD Command-line Interface
6.6.24 functions

The functions command lists all the functions in the specified image, or of the current
image if you do not specify an image. Each function is shown on a separate line, in the
following format:

index<tab>functiontype functionname (ParameterList)

The position in this list, Index, gives you a convenient way of referring to a function.

The shorthand form of the functions command is fu.

Syntax

fu[image]

6.6.25 getfile

See loadbinary on page 6-33.

6.6.26 go

See run on page 6-40.

6.6.27 help

The help command invokes AXD online help.

The shorthand form of the help command is hlp.

Syntax

hlp
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 6-29

AXD Command-line Interface
6.6.28 images

The images command lists all the images currently loaded on the target. Each image is
shown on a separate line, in the following format:

index<tab>ID<tab>imagename

This means that you can refer to an image in any one of three ways:

index The position in this list.

ID The identifier of the image.

imagename The name of the image.

For an example of a command that can refer to an image see reload on page 6-40.

The shorthand form of the images command is im.

Syntax

im

6.6.29 imgproperties

The imgproperties command displays internal variables related to the specified image,
or to the currently loaded image if you do not specify an image. See Definitions on
page 6-9 for a list of image-related internal variables that you can set, and setimgprop
on page 6-45 for details of a command you can use to set them.

Each variable is shown on a separate line, in the following format:

ipvariable:<tab>value

The shorthand form of the imgproperties command is ip.

Syntax

ip[image]
6-30 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

AXD Command-line Interface
6.6.30 importformat

The importformat command searches a specified file for any valid format descriptions.
Any valid formats found, that do not conflict with internal formats listed under
RDINames (see listformat on page 6-32), are added to the list of available formats. A
parameter enables you to specify what happens in the event of a conflict of format
names.

Files most likely to contain format descriptions are supplementary display modules,
having a .sdm filename extension, see Appendix C Supplementary Display Module
Formats.

The shorthand form of the importformat command is impfmt.

See also format on page 6-28.

Syntax

impfmt sdm_file[fail_action]

where:

sdm_file Specifies a supplementary display module (a .sdm file) that contains
format descriptions.

fail_action Specifies the action to take if an imported format description conflicts
with an existing debugger internal format. You can specify any of the
following actions:

fail This is the default action, and returns an error message
reporting the conflict.

msgbox A message box prompts you to select the fail, ignore, or
replace option.

replace The new format definition replaces the existing one of the
same name.

ignore The new definition is ignored, and the existing definition
remains unchanged.

6.6.31 let

See setwatch on page 6-50.

6.6.32 list

See disassemble on page 6-23.
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 6-31

AXD Command-line Interface
6.6.33 listformat

The listformat command displays a list of available formats, each on a separate line in
the following format:

Index<tab>ShortName<tab>RDIName

The position in this list, Index, gives you a convenient way of referring to a format.

The format name shown under ShortName is the name that appears in the various
format submenus. Since you can name and define more formats this name cannot be
guaranteed to be unique. The format name shown under RDIName is the system-wide
unique name of each available format.

The shorthand form of the listformat command is lsfmt.

See also format on page 6-28.

Syntax

lsfmt[n]

where:

n Is an optional number specifying a number of bits. If you specify 16, for
example, then the command lists only those formats that are appropriate
for displaying 16-bit values. If you do not supply a data item size, then
the command lists all available formats.

6.6.34 load

The load command loads the contents of the specified image file onto the specified
processor. If you do not specify a processor, the command loads the image onto the
current processor.

The shorthand form of the load command is ld.

Syntax

ld file[processor]

where:

file Specifies the file containing the image you want to load.

processor Specifies the processor onto which you want to load the image.

An image loaded by the load command has a default breakpoint set at the first
executable instruction in main().
6-32 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

AXD Command-line Interface
6.6.35 loadbinary

The loadbinary command reads the specified file and loads its contents into target
memory, starting at the specified address.

The shorthand form of the loadbinary command is lb.

Alias

getfile is an alias for loadbinary.

Syntax

lb file addrexpr

where:

file Specifies the file containing the data to be loaded.

addrexpr Is an expression that evaluates to a memory address.

Example

lb sbtest.bin 0x8300

Copies the contents of a file called sbtest.bin into an area of memory
starting at address 0x8300. To see the effect of this command, load an
image, open a Memory processor view and set its starting address to
0x8300. Then in the CLI system view perform the examples given for the
commands fillmem, savebinary, reload, and loadbinary.
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 6-33

AXD Command-line Interface
6.6.36 loadsession

The loadsession command loads any earlier debug session that was saved in a session
file that is still available. (To save a debug session, see savesession on page 6-43.)

The shorthand form of the loadsession command is lss.

Syntax

lss file

where:

file Specifies the session file to load.

6.6.37 loadsymbols

The loadsymbols command loads debug information from the specified file onto the
specified processor, or onto the current processor if you do not specify a processor.

The shorthand form of the loadsymbols command is lds.

Alias

readsyms is an alias for loadsymbols.

Syntax

lds file[processor]

where:

file Specifies the file containing the symbols you want to load.

processor Specifies the processor onto which you want to load the symbols.

6.6.38 log

The log command starts or stops logging the contents of the CLI window to a disk file.
If you supply no parameter, logging stops. If you supply a filename, logging starts in the
specified file and any existing log file is closed. See also record on page 6-38.

There is no shorthand form of the log command.

Syntax

log[file]
6-34 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

AXD Command-line Interface
6.6.39 lowlevel

The lowlevel command lists all the low-level symbols associated with the specified
image, or with the current image if you do not supply a parameter. Each low-level
symbol is shown on a separate line, in the following format:

index<tab>address<tab>symbolname

The position in this list, index, gives you a convenient way of referring to a low-level
symbol in other commands.

The shorthand form of the lowlevel command is lsym.

Syntax

lsym[image]

6.6.40 memory

The memory command displays the specified area of memory according to the specified
size and format parameters, or using default size and format settings if you do not
supply them (to set default values, use either the format command or the CLI Properties
dialog). Each line displayed shows the contents of 16 bytes of memory, as follows:

address<tab>formattedvalues<tab>ASCIIequivalents

The shorthand form of the memory command is mem. The ASCII equivalent is based on
the 8-bit value.

Alias

examine is an alias for memory.

Syntax

mem expr1[[+]expr2[memory[format]]]

where:

expr1 Is an expression that evaluates to the starting address of the area of
memory that you want to examine.

expr2 Is an expression that either evaluates to the end address of the area of
memory that you want to examine or, if preceded by a +, evaluates to the
number of bytes that you want to examine. If expr2 is not present, the
number of bytes displayed uses the value in the Bytes to display dialog
box.

memory Can be set to 8, 16, or 32 (see memory on page 6-7).
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 6-35

AXD Command-line Interface
format Can be set to the RDI name as shown in the last displayed format list or
to the index number of any available format (see format on page 6-6).

Example

mem 0x8300 +256 8 hex

Displays 16 lines, each showing the address of the first byte, the contents
of 16 bytes, and their ASCII equivalents.

6.6.41 obey

The obey command executes the list of CLI commands contained in the specified file.

There is no shorthand form of the obey command.

Syntax

obey file

where:

file Identifies a file containing valid CLI commands, each separated by a
carriage return, with the end of file at the beginning of a new line.

6.6.42 parse

The parse command sets the parsing state on or off according to the supplied parameter.
You must normally leave parse set to its default value of on so that commands are
checked for valid syntax before being translated into internal commands.

The shorthand form of the parse command is par.

Syntax

par toggle

where:

toggle Must be set to on or off.

6.6.43 print

See watch on page 6-59.
6-36 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

AXD Command-line Interface
6.6.44 processors

The processors command lists all the processors available on the current target. Each
processor is shown on a separate line, in the following format:

index<tab>ID<tab>procname

This means you can refer to a processor in any one of three ways:

index The position in this list.

ID The identifier of the processor.

procname The name of the processor.

For examples of commands in which you might need to refer to a processor see stop on
page 6-56 and run on page 6-40.

The shorthand form of the processors command is proc.

Syntax

proc

6.6.45 procproperties

The procproperties command displays internal variables related to the debug target of
the specified processor, or to the current processor if you do not specify a processor. The
command displays variables such as the vector catch settings, semihosting status, and
the status of the debug communications channel. Each variable is shown on a separate
line, in the following format:

ppvariable<tab>value

The shorthand form of the procproperties command is pp.

Syntax

pp[image]

6.6.46 putfile

See savebinary on page 6-42.
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 6-37

AXD Command-line Interface
6.6.47 quitdebugger

The quitdebugger command ends execution of AXD.

The shorthand form of the quitdebugger command is quitd.

Syntax

quitd

6.6.48 readsyms

See loadsymbols on page 6-34.

6.6.49 record

The record command starts or stops the logging of commands (only) to a disk file. If
you supply no parameter, logging stops. If you supply a filename, logging starts in the
specified file and any existing log file is closed. See also log on page 6-34.

The shorthand form of the record command is rec.

Syntax

rec[file]

6.6.50 regbanks

The regbanks command lists all the register banks associated with the specified
processor, or with the current processor if you do not supply a parameter. Each register
bank is shown on a separate line, in the following format:

index<tab>ID<tab>regbankname

The position in this list, index, gives you a convenient way of referring to a register bank
in other commands. For this command, ID is given without a leading # character.

The shorthand form of the regbanks command is regbk.

Syntax

regbk[processor]
6-38 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

AXD Command-line Interface
6.6.51 registers

The registers command lists all the registers and their values in the specified register
bank. The register bank name is displayed on the first output line, and column headings
on the second. Each register is then shown on a separate line, in the following format:

index<tab>regname<tab>regvalue

The index value given in this list enables you to specify individual registers in other
commands. See setreg on page 6-48, for example.

The value of each register is shown in its default format unless you specify a format.

The shorthand form of the registers command is reg.

Syntax

reg[regbank[format]]

where:

regbank Specifies the register bank to be listed. If you do not specify a register
bank, the one named Current is listed. See regbanks on page 6-38 for
details of how to specify a register bank.

format Specifies the format to be used in the list if you do not want the default
format (see format on page 6-6).

Example

reg user Displays the number, name, and contents of each of the registers in the
user register bank. You can issue a regbk command to see a list of the
current register banks.
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 6-39

AXD Command-line Interface
6.6.52 reload

The reload command reloads the specified image. If you do not specify an image, the
command reloads the current image. See images on page 6-30 for information on
referring to images.

The shorthand form of the reload command is rld.

Syntax

rld[image]

where:

image Specifies the image you want to reload.

Example

rld Reloads the current image. This can be useful if you have made changes
to the image in memory and want to restore the image to its original state.
To see the effect of this command, load an image, open a Memory
processor view, and set its starting address to 0x8300. Then in the CLI
system view perform the examples given for the commands fillmem,
savebinary, reload, and loadbinary.

6.6.53 run

The run command starts or restarts execution in the specified processor, or in the current
processor if you do not specify a processor.

The shorthand form of the run command is r.

Alias

go is an alias for run.

Syntax

r[processor]

where:

processor Specifies the processor (the current processor is the default).
6-40 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

AXD Command-line Interface
6.6.54 runmode

No longer a valid command. See stepsize on page 6-56.

6.6.55 runtopos

The runtopos command causes execution to proceed until the specified position is
reached. The command applies to execution in the specified processor, or in the current
processor if you do not specify one.

The shorthand form of the runtopos command is rto.

Syntax

rto position[processor]

where:

position Is an expression that evaluates to a memory address or line number.

processor Identifies the processor.

Example

rto #1 | 130 Causes execution to run to position 130 in the file specified by index 1 in
the file list.
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 6-41

AXD Command-line Interface
6.6.56 savebinary

The savebinary command copies the contents of the specified area of memory to the
specified disk file.

The shorthand form of the savebinary command is sb.

Alias

putfile is an alias for savebinary.

Syntax

sb file expr1 [+]expr2

where:

file Specifies the file in which you want to save the contents of the specified
area of memory.

expr1 Is an expression that evaluates to the starting address of the area of
memory to save.

expr2 Is an expression that evaluates either to the end address of the area of
memory to save or, if preceded by +, to the number of bytes to save.

Example

sb sbtest.bin 0x8300 +256

Saves in a file called sbtest.bin the contents of the 256-byte area of
memory starting at address 0x8300. To see the effect of this command,
load an image, open a Memory processor view, and set its starting address
to 0x8300, then in the CLI system view perform the examples given for
the commands fillmem, savebinary, reload, and loadbinary.
6-42 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

AXD Command-line Interface
6.6.57 savesession

The savesession command saves details of the current debug session in a specified file.
This allows the debug session to be restored to its current state at any future time. (To
restore a debug session, see loadsession on page 6-34.)

The shorthand form of the savesession command is ss.

Syntax

ss file

where:

file Specifies the session file to be created.

6.6.58 setaci

The setaci command enables you to set the debugger internal $aci_command to a
specified string. If the debugger internal $aci_command is not present then this command
generates an error. There is no CLI interface to view the current setting of this property.

The shorthand form of the setaci command is aci.

Syntax

aci string
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 6-43

AXD Command-line Interface
6.6.59 setbreakprops

The setbreakprops command enables you to set various properties of a breakpoint.

The breakpoint must already exist. Issue the command once for each breakpoint
property to be set.

The shorthand form of the setbreakprops command is sbp.

Syntax

sbp breakpoint propid value

where:

breakpoint Identifies the breakpoint that is to have a property set.

propid Identifies the name of the property to be set as shown in Table 6-1.

Specify the name exactly as shown in the table, using lowercase
characters.

value Specifies the setting you want the property to have. Each property takes
its own type of setting as shown in the table.

Examples

sbp #3 state enable

Enables breakpoint number 3.

sbp #2 processor #1

Sets breakpoint number 2 to act on processor number 1.

Table 6-1 Breakpoint properties

Property name Type

state Flag (enable or disable)

processor Processor

condition String or value

log_text String

break_size ASM

count Integer
6-44 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

AXD Command-line Interface
6.6.60 setimgprop

The setimgprop command sets an image-related internal variable to the specified value
(see imgproperties on page 6-30). You need to supply either a string or an expression,
depending on the type of the variable.

The shorthand form of the setimgprop command is sip.

Syntax

sip image ipvar value

where:

image Specifies the image that is to have an internal variable reset.

ipvar Specifies the ipvariable to be reset. See Definitions on page 6-9 for a list
of valid ipvariables.

value Specifies the new value to be assigned to the specified variable.

Example

sip myimage cmdline "-a -o -z"

Specifies that whenever you load (or reload) the image myimage, it is
supplied with the string "-a -o -z" as though you had entered that string
after the image name on a command line. If the string consists of a single
parameter, it does not need to be enclosed in quotes.

6.6.61 setmem

The setmem command sets the contents of memory at the specified address to the
specified value.

The shorthand form of the setmem command is smem.

Syntax

smem addrexpr valexpr[memory]

where:

addrexpr Evaluates to the memory address at which you want to insert the new
value.
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 6-45

AXD Command-line Interface
valexpr Evaluates to the value that you want to insert at the specified memory
address. This evaluation results in an 8-bit, a 16-bit, or a 32-bit value
depending on the setting of the memory parameter, or of the current
global variable value if you do not specify the memory parameter.

memory If used must be set to 8, 16, or 32 (see memory on page 6-7).

Example

smem 0x83A8 0x41424344 32

Overwrites the 4 bytes of memory starting at address 0x83A8 with the
4-byte value 0x41424344.

6.6.62 setpc

The setpc command sets the program counter to the specified value. The value you enter
is evaluated according to the current setting of the input base variable.

The shorthand form of the setpc command is pc.

Syntax

pc expr

6.6.63 setproc

The setproc command makes the specified processor the current one. If other
commands are issued with no processor specified, they apply to the current processor.

The shorthand form of the setproc command is sproc.

Syntax

sproc processor
6-46 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

AXD Command-line Interface
6.6.64 setprocprop

The setprocprop command sets a processor-related internal variable to the specified
value (see procproperties on page 6-37). You have to supply a value of the type required
for the variable you are setting.

The shorthand form of the setprocprop command is spp.

Syntax

spp ppvariable value [processor]

where:

ppvariable Specifies the ppvariable to be reset. See Definitions on page 6-9 for a list
of valid ppvariables.

value Specifies the new value to be assigned to the specified variable.

In the case of the vector_catch variable, you can supply a hexadecimal
value, a decimal value, a string of characters, or a single character (see
Table 6-2).

You are recommended to enclose a string of characters or a single
character in quotes. If the string contains the character D or F, you must
use quotes to avoid any attempt to interpret it as a hexadecimal value.

processor Specifies the ID number for the processor.

Examples

spp vector_catch 0x00DF

Is equivalent to using Processor Properties to check all the vector catch
check boxes giving a setting of RUSPDIF instead of the default setting of
RUsPDif. See Configure Processor... on page 5-96.

spp vector_catch IuS

Sets the I and S bits on, and the U bit off, leaving the other bits
unchanged.

Table 6-2 Allocation of bits in vector_catch variable

Bit 8 7 6 5 4 3 2 1 0

Sets Not
used

F I Not
used

D P S U R
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 6-47

AXD Command-line Interface
spp vector_catch "D"

Sets the D bit on, and all the other bits unchanged.

spp vector_catch 0

Sets all the vector catch bits off. If you are debugging an embedded
application with a JTAG-based debug agent like Multi-ICE, you can use
this to free a watchpoint unit in the EmbeddedICE logic of the processor.

spp semihosting_enabled 0

Disables semihosting by not placing a breakpoint on the SWI vector. This
also frees a watchpoint unit in the EmbeddedICE logic of the processor,
for debugging an embedded application. For further information refer to
the ADS Debug Target Guide.

6.6.65 setreg

The setreg command sets the specified register in the specified register bank to the
value obtained by evaluating the specified expression (see registers on page 6-39). If
you do not specify a register bank, the register bank named Current is used.

The expression can include a register bank name and register name.

If you are debugging an Angel target, you can set the registers of the current mode only.

The shorthand form of the setreg command is sreg.

Syntax

sreg [regbank|]register expr

Examples

sreg r12 100 Sets register r12 in register bank current to the value 100.

sreg FIQ|r12 IRQ|r13

Sets register r12 in register bank FIQ to the value of register r13 in register
bank IRQ.
6-48 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

AXD Command-line Interface
6.6.66 setsourcedir

The setsourcedir command sets the list of paths to be searched.

The paths in this list, and the order in which they are listed, specify the paths searched
when a source file is required. To display the current list, see sourcedir on page 6-53.

The shorthand form of the setsourcedir command is ssd.

Syntax

ssd dir_list[index]

where:

dir_list Specifies one or more fully-qualified directories, or is a null string.

index Specifies a position within the current list of directories.

The list is of fully qualified directory names. Enclose the list in quotation marks if it
contains any spaces. If you are specifying multiple directories, separate them with ; for
Windows or : for UNIX.

To clear the current list, issue the ssd command with an empty string.

If you supply an index position, your directory list is inserted before the directory
currently listed at the index number you specify.

If you do not supply an index position, your directory list overwrites any existing list of
directories.

Examples

ssd "c:\my srcs\proj A;d:\proj B;c:\srclib"

Replaces any existing list.

ssd "" Clears the current list

ssd c:\mydir2 #2

Inserts the specified directory as the second in the list.
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 6-49

AXD Command-line Interface
6.6.67 setwatch

The setwatch command sets the specified expression to the specified value. This is of
most use when the expression is one that is being watched (see watch on page 6-59).

The shorthand form of the setwatch command is swat.

Alias

let is an alias for setwatch.

Syntax

swat expr1 expr2

where:

expr1 Specifies an expression to which you want to assign a value.

expr2 Specifies a new value to be assigned to the expression.

Examples

swat a1 100 Sets variable a1 to the value 100.

swat a b Sets variable a to the value of variable b.
6-50 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

AXD Command-line Interface
6.6.68 setwatchprops

The setwatchprops command enables you to set watchpoint properties. The watchpoint
must already exist. Issue the command once for each watchpoint property to be set.

The shorthand form of the setwatchprops command is swp.

Syntax

swp watchpoint propid value

where:

watchpoint Identifies the watchpoint that is to have a property set.

propid Identifies the property to be set. You can identify a watchpoint property
by its name, as shown in Table 6-3.

Specify the name exactly as shown in the table, using lowercase
characters.

value Specifies the setting you want the property to have. Each property takes
its own type of setting as shown in the table.

Examples

swp #3 state enable

Enables watchpoint number 3.

Table 6-3 Watchpoint properties

Property name Type

state Flag (enable or disable)

processor Processor

condition String or value

log_text String

value Value

break_size ASM

watch_size Integer

count Integer
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 6-51

AXD Command-line Interface
swp #2 value 17

Set the value that is watched for by watchpoint number 2 to 17.

swp #2 watch_size 32

Force the size of watchpoint number 2 to 32 bits.

6.6.69 source

The source command displays the specified lines of the specified source file, in the
following format:

linenumber<tab>sourcecode

The file must be associated with a loaded image.

The shorthand form of the source command is src.

Alias

type is an alias for source.

Syntax

src value1 [+]value2[file]

where:

value1 Specifies the line number in the source file at which you want the listing
to begin.

value2 Specifies either the last line number to be listed or, if preceded by +, the
number of lines you want listed.

file Specifies the source file you want to list (by default the command lists the
file associated with the current context).

Example

src 111 +10 Displays lines 111 to 120 of source file dhry_1.c if you have the
Dhrystone example program loaded and halted at the default breakpoint.
6-52 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

AXD Command-line Interface
6.6.70 sourcedir

The sourcedir command displays the list of paths searched when a source file is
required, in the following format:

index<tab>fully qualified directory name

The paths, on local or remote machines, are searched in the listed order.

To change the list of paths, see setsourcedir on page 6-49.

The shorthand form of the sourcedir command is sdir.

Syntax

sdir

6.6.71 stackentries

The stackentries command lists the current backtrace information stored in the
debugger describing the current execution context. Each stack entry is listed on a
separate line, in the following format:

index<tab>stackentry

The index value given in this list enables you to specify individual stack entries in other
commands. See convariables on page 6-21 and context on page 6-20, for example.

The shorthand form of the stackentries command is stk.

Alias

backtrace is an alias for stackentries.

Syntax

stk[count]

where:

count Specifies the number of lines you want listed if you do not want the whole
stack displayed.
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 6-53

AXD Command-line Interface
6.6.72 stackin

The stackin command sets the current context to that of the called procedure or method.

The shorthand form of the stackin command is in.

Syntax

in

6.6.73 stackout

The stackout command sets the current context to that of the calling procedure or
method.

The shorthand form of the stackout command is out.

Syntax

out

6.6.74 statistics

The statistics command adds a new reference point with a specified name or displays
all the current reference points, in the following format:

reference point name<tab>value

The shorthand form of the statistics command is stat.

Syntax

stat[ref_pt_name]

where:

ref_pt_name Specifies the name of a new reference point that you want to add. If the
name already exists, an error message is displayed.

If you do not supply a reference point name, the statistics at all reference
points are displayed.

See also clearstat on page 6-18 for a description of how to delete the statistics at a
specified reference point.
6-54 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

AXD Command-line Interface
6.6.75 step

The step command causes execution to proceed by one step.

The step command is not available when executing Jazelle instructions. Submitting the
command when the processor is in Jazelle state produces an error.

The step and step in commands are not available where the current instruction is a BXJ
instruction.

The shorthand form of the step command is st.

Syntax

st[step][instr]

where:

step Can be set to in or out (see step on page 6-7).

instr Can be set to line or instr (see instr on page 6-7).

Examples

step in line Steps one source line. If the line contains a subroutine call, steps into the
subroutine.

step out instr

Steps out of the current stack. If no stack frame information is available,
steps one instruction.

step Steps, without forcing a step in or out, one instruction or source line
depending on the setting of instr (see stepsize on page 6-56). If a
subroutine call is encountered, this command steps over it.
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 6-55

AXD Command-line Interface
6.6.76 stepsize

The stepsize command enables you to examine or set the step size. To see the current
setting, issue the command with no parameter.

The shorthand form of the stepsize command is ssize.

Syntax

ssize[instr]

where:

instr Can be set to instr or line (see instr on page 6-7), but is overridden if no
source is available.

6.6.77 stop

The stop command stops execution of the specified processor, or of the current
processor if you supply no parameter.

There is no shorthand form of the stop command.

Syntax

stop[processor]

6.6.78 trace

The trace command toggles the trace status on or off. This command is effective only
when the add-on product Trace Debug Tools (TDT) is licensed for use and the target
supports trace.

There is no shorthand form of the trace command.

Syntax

trace on|off

The command displays no output if it succeeds. If unsuccessful, it displays one of the
following error messages:

• not a valid trace target

• fail to start/stop trace
6-56 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

AXD Command-line Interface
6.6.79 traceload

The traceload command loads a Trace configuration file. This command is effective
only when the add-on product Trace Debug Tools (TDT) is licensed for use and the
target supports trace.

The shorthand form of the traceload command is trload.

Syntax

trload tcfile

where:

tcfile Specifies the Trace configuration file to be read.

6.6.80 type

See source on page 6-52.

6.6.81 unbreak

See clearbreak on page 6-17.

6.6.82 update

The update command enables you to specify whether or not screen updates take place
while commands from an Obey file are being executed.

The shorthand form of the update command is upd.

Syntax

upd toggle

where:

toggle Can be set to either on or off.

For further information see Command Line Interface Properties dialog, General tab on
page 5-67.

6.6.83 unwatch

See clearwatch on page 6-19.
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 6-57

AXD Command-line Interface
6.6.84 variables

The variables command lists all the global variables of the specified image, or of the
current image if you do not specify an image. Each variable is listed on a separate line,
in the following format:

index<tab>varname

The position in this list, index, gives you a convenient way of referring to a variable.

The shorthand form of the variables command is va.

Syntax

va[image]
6-58 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

AXD Command-line Interface
6.6.85 watch

The watch command displays the name, type, and value of the specified expression, in
the following format:

name<tab>type<tab>value

The command displays a simple expression according to the specified format, or the
default format if you do not specify one (see also format on page 6-6). It displays a
complex expression after suitably expanding it. See also setwatch on page 6-50.

The shorthand form of the watch command is wat.

Alias

print is an alias for watch.

Syntax

wat expr[format]

Example

wat 5*Int_1_Loc-Int_2_Loc==10 dec

Displays the value 1 (true) if 5*Int_1_Loc-Int_2_Loc evaluates to 10, or 0
(false) otherwise.

6.6.86 watchpt

If you supply parameters, the watchpt command creates and sets a new watchpoint so
that execution continues normally until the value stored at the specified location
changes for the nth time. If you do not specify n it takes a default value of 1.

If you supply no parameters, the watchpt command lists all the watchpoints that are
currently set. Each watchpoint is shown on a separate line, after a first line containing
the headings for the following columns:

Index The position in the list. This gives you a convenient way of referring to a
watchpoint in commands such as clearwatch.

An X is displayed if the watchpoint is currently disabled.

Item This shows the fully-qualified source code filename in brackets, a colon,
and the source code line number at which the watchpoint is set. It also
shows, in square brackets, the corresponding memory address, and, if set,
the value being watched for.
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 6-59

AXD Command-line Interface
Watching This describes what you are watching.

Size This shows whether the watchpoint is ARM-sized (4bytes), Thumb-sized
(2bytes), or a single byte (1byte).

Count Two numbers are shown. The first is the number of times the value stored
at the watchpoint has changed since the last time the watchpoint was
triggered. The second shows the number of times the value has to change
to trigger the watchpoint.

Condition Any condition that you have specified that must also be satisfied before
the watchpoint can be triggered is shown here.

Additional The final column displays additional information. This can include one
or more of the following:

S/HW Shows whether the watchpoint is implemented in hardware or
software.

(ID) A hardware watchpoint can have a hardware resource
identifier. Any such identifier is shown here.

Processor Identifies the processor in which the watchpoint is set.

Action This shows whether the action taken when the watchpoint is
triggered is to stop execution of the target (Break) or to log the
event (Log).

The shorthand form of the watchpt command is wpt.

Syntax

wpt[expr[n]]

Example

wpt 0x83A8 5 Sets a watchpoint at address 0x83A8, requiring 5 changes of content to
trigger it.

When you have created a new watchpoint, you can change its properties with the
setwatchprops command. See setwatchprops on page 6-51.

Bitfields are not watchable.

If you are debugging through JTAG or EmbeddedICE logic, ensure that watchpoints on
global or static variables use hardware watchpoints to avoid any performance penalty.

You can also use the wpt command to set an AXD watchpoint on a range of addresses.
For example:
6-60 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

AXD Command-line Interface
wpt (char[16])*0xF200

traps all data changes that take place in the 16 bytes of memory starting at 0xF200.

For this to work efficiently when you are debugging with, for example, Multi-ICE,
ensure that the size of the watchpoint in bytes is a power of 2, and that the address of
the watchpoint is aligned on a size-byte boundary. Accesses to the area you specify are
trapped only if they change any value stored there. A replacement of a value with the
same value, for example, is not trapped.

6.6.87 where

The where command displays information about the specified context, or about the
current context if you do not supply a parameter. The command displays the source file
name, line number, and source line if the source is available. Otherwise the command
displays the disassembled instruction (see stackentries on page 6-53).

There is no shorthand form of the where command.

Syntax

where[context]
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 6-61

AXD Command-line Interface
6-62 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

Part B
 armsd

Chapter 7
About armsd

The ARM Symbolic Debugger (armsd) is an interactive source-level debugger that
provides debugging support for languages such as C, and low-level support for ARM
assembly language. It is a command-line debugger that runs on all supported platforms.
This chapter contains the following sections:

• About armsd on page 7-2

• Command syntax on page 7-3.
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 7-1

About armsd
7.1 About armsd

The ARM symbolic debugger (armsd) can be used to debug programs built using the
ARM tools.

7.1.1 Selecting a debugger

armsd supports:

• debugging using ARMulator

• remote debugging using ADP.

7.1.2 Automatic command execution on startup

You normally enter armsd commands from the keyboard, or by specifying a script file
containing commands, but before armsd accepts any of this input it obeys commands
from an initialization file, if one exists.

The initialization file is called armsd.ini. The current directory is searched first for this
file, then the directory specified by the environment variable ARMHOME.
7-2 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

About armsd
7.2 Command syntax

You invoke armsd using the command given below. Underlining shows the permitted
abbreviations.

The full list of commands available when armsd is running is given in Alphabetical list
of armsd commands on page 9-7.

7.2.1 Command-line options

armsd [-help] [-vsn] [[-little]|[-big]] [-cpu name] [-fpe|[-nofpe]] [-symbols]
[-o name] [-script name] [-exec] [-i name] [-clock n] [-target dllname]
[[-remote]|[-armul]|[-adp options]] image_name args

where:

-help Gives a summary of the armsd command-line options.

-vsn Displays information on the armsd version.

-little Specifies that memory is to be little-endian (the default setting).

-big Specifies that memory is to be big-endian.

-cpu name Specifies the CPU type that is to be simulated. With this option
you must not specify -rem or -adp as the target. Specify -armul as
the target to invoke ARMulator. If you do not specify a target,
ARMulator is invoked if it can simulate the specified processor. If
the specified processor cannot be simulated, armsd exits. Instead of
name you can specify list, to display a list of processors available
on the target. For example:

armsd -cpu list

lists available processors of standard targets
(ARMulator and Remote_A)

armsd -armul -cpu list

lists available processors of ARMulator

armsd -target dllname -cpu list

lists available processors of the specified target.

ARMulator is the only ARM supplied target that has a list of
available processors.

Instead of -cpu you can still use -proc, but this is now obsolete.

-fpe Instructs ARMulator to load the FPE on startup.
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 7-3

About armsd
-nofpe Instructs ARMulator not to load the FPE on startup (this is the
default setting).

-symbols Reads debug information from the specified image file but does
not download the image.

-o name Writes output from the debuggee to the named file.

-script name Takes commands from the named file (reverts to stdin on reaching
EOF).

-exec Instructs the debugger to load and execute the named file
immediately, and quit when execution stops.

-i name Adds name to the set of paths to be searched to find source files.

-clock n Specifies the clock speed in Hz (suffixed with K or M) for
ARMulator. This is intended for use with an armsd.map file.

-target dllname Specifies a .dll file that is a third-party RDI target simulator to be
used instead of ARMulator.

-remote Selects remote debugging. By default this is ADP.

-armul Selects ARMulator. This is assumed by default if you do not
specify a target but do specify a processor type that ARMulator
can simulate.

-adp options Selects remote debugging using ADP, further defined by one or
more of the following options:

-port expr

specifies the ADP port to use, where expr selects serial,
serial-and-parallel, or ethernet communications and
can be one of:

s=n Selects serial port communications. n can be
1, 2 or a device name.

s=n,p=m Selects serial-and-parallel port
communication. n and m can be 1, 2, or a
device name. There must be no space
between the arguments.

e=id Selects ethernet communication. id is the
ethernet address of the target board.
7-4 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

About armsd
For serial and serial-and-parallel communications, you
can add ,h=0 to the port expression to switch off the
heartbeat feature of ADP. For example, -port s=1,h=0
selects serial port 1 and turns off the ADP heartbeat.

-linespeed n

Sets the line speed to n.

-loadconfig name

Specifies a file containing required configuration data,
when using a Remote_A connection to EmbeddedICE.
See loadconfig on page 9-47 for more information.

-selectconfig name version

Specifies the target for which configuration data is
required, when using a Remote_A connection to
EmbeddedICE. See selectconfig on page 9-48 for more
information.

image_name Gives the name of the file to debug. You can also specify this
information using the load command. See load on page 9-28 for
more information.

args Gives program arguments. You can also specify this information
using the load command. See load on page 9-28 for more
information.

Note
 Where given, the debug file, and any associated arguments, must be the last entry on the
command line. This ensures that all specified command-line options are correctly
interpreted.
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 7-5

About armsd
7-6 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

Chapter 8
Getting Started in armsd

This chapter includes further information about the use of the ARM Symbolic Debugger
(armsd). It contains the following sections:

• Specifying source-level objects on page 8-2

• armsd variables on page 8-7

• Low-level debugging on page 8-13.
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 8-1

Getting Started in armsd
8.1 Specifying source-level objects

This section gives information on syntax conventions, variables, program locations,
expressions, and constants. It contains the following subsections:

• Command syntax conventions

• Variable names and context

• Program locations on page 8-4

• Expressions on page 8-5

• Constants on page 8-6.

8.1.1 Command syntax conventions

The following conventions are used in descriptions of armsd commands:

monospace Shows command elements that you should type at the keyboard.

monospace Many command names can be abbreviated. Underlined text shows the
permitted abbreviation of a command.

monospace Represents an item such as a filename or variable name. Replace this with
the name of your file, variable, and so on.

{} Items in braces are optional. The braces are for clarity. Do not type them.
In the one case where braces are required by the debugger, these are
enclosed in quotation marks in the syntax pattern.

* A star (*) following a set of braces means that the items in those braces
can be repeated as many times as required.

8.1.2 Variable names and context

You can usually just refer to variables by their names in the original source code. To
print the value of a variable, type:

print variable

High-level languages

With structured high-level languages, you can access variables defined in the current
context by giving their names. Other variables must be preceded by the context (for
example, the name of the function) in which they are defined. This also gives access to
variables that are not visible to the executing program at the point at which they are
being examined. The syntax is:

procedure:variable
8-2 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

Getting Started in armsd
Global variables

You can access global variables by qualifying them with themodule name or filename
if there is any ambiguity. For example, because the module name is the same as a
procedure name, you must prefix the filename or module name with #. The syntax is:

#module:variable

Ambiguous declarations

If a variable is declared more than once within the same procedure,resolve the
ambiguity by qualifying the reference with the line number in which the variable is
declared as well as, or instead of, the function name:

#module:procedure:line-no:variable

Variables within activations of a function

To pick out a particular activation of a repeated or recursive function call, prefix the
variable name with a backslash (\) followed by an integer. Use 1 for the first activation,
2 for the second, and so on. A negative number looks backwards through activations of
the function, starting with \-1 for the previous one. If no number is specified and
multiple activations of a function are present, the debugger always looks at the most
recent activation.

To refer to a variable within a particular activation of a function, use:

procedure\{-}activation-number:variable

Expressing context

The complete syntax for the various ways of expressing contextis:

{#}module{{:procedure}*
{\{-}activation-number}}
{#}procedure{{:procedure}*
{\{-}activation-number}}#

Specifying variable names

The complete syntax for specifying a variable name is:

{context:.{line-number:::}}variable

The various syntax extensions required to differentiate between objects rarely have to
be used together.
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 8-3

Getting Started in armsd
8.1.3 Program locations

Some commands require arguments that refer to locations in the program. You can refer
to a location in the program by:

• procedure name

• program line number

• statement within a line.

In addition to the high-level program locations described here, you can also specify
low-level locations. See Entering addresses on page 4-12 and Low-level symbols on
page 8-13 for further details.

Procedure name

Using a procedure name alone sets a breakpoint (see break on page 9-12) at the entry
point of that procedure.

Program line number

Program line numbers can be qualified in the same way as variable names, for example:

#module:123procedure:3

Line numbers can sometimes be ambiguous, for example when a file is included within
a function. To resolve any ambiguities, add the name of the file or module in which the
line occurs in parentheses. The syntax is:

number(filename)

Statement within a line

To refer to a statement within a line, use the line number followed by the number of the
statement within the line, in the form:

line-number.statement-number

So, for example, 100.3 refers to the thirdstatement in line 100.
8-4 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

Getting Started in armsd
8.1.4 Expressions

Some debugger commands require expressions as arguments. Their syntax is based on
C. A full set of operators is available. Lower-numbered operators have higher
precedence. These are shown in Table 8-1, in descending order of precedence.

Table 8-1 Precedence of operators

Precedence Operator Purpose Syntax

1 () Grouping a * (b + c)

[] Subscript isprime[n]

. Record selection rec.field,a.b.c

rec->next -> Indirect selection rec->next is identical to

(*rec).next

2 ! Logical NOT !finished

~ Bitwise NOT ~mask

- Unary minus -a

* Indirection *ptr

& Address &var

3 * Multiplication a * b

/ Division a / b

% Integer remainder a % b

4 + Addition a + b

- Subtraction a - b

5 >> Right shift a >> 2

<< Left shift a >> 2

6 < Less than a < b

> Greater than a > b

<= Less than or equal a <= b

>= Greater than or equal a >= b

7 == Equal a == 0
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 8-5

Getting Started in armsd
You can only apply subscripting to pointers and array names. The symbolic debugger
checks both the number of subscripts and their bounds, in languages that support this
checking. You are advised not to use out-of-bound array accesses. As in C, you can use
the name of an array without subscripting to yield the address of the first element.

Use the prefix indirection operator * to dereference pointer values. If ptr is a pointer,
*ptr yields the object to which it points.

If the left-hand operand of a right shift is a signed variable, the shift is an arithmetic one
and the sign bit is preserved. If the operand is unsigned, the shift is a logical one and
zero is shifted into the most significant bit.

Note
 Expressions must not contain function calls that return nonprimitive values.

8.1.5 Constants

Constants can be decimal integers, floating-point numbers, octal integers, or
hexadecimal integers. The constant 1 is an integer whereas 1. is a floating-point number.

Character constants are also allowed. For example, A yields 65, the ASCII code for the
character A.

You can specify address constants by the address preceded with an @ symbol. For
commands that accept low-level symbols by default, you can omit the @.

!= Not equal a != 0

8 & Bitwise AND a & b

9 ^ Bitwise EOR a ^ b

10 | Bitwise OR a | b

11 && Logical AND a && b

12 || Logical OR a || b

Table 8-1 Precedence of operators (continued)

Precedence Operator Purpose Syntax
8-6 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

Getting Started in armsd
8.2 armsd variables

This section lists the variables available in armsd, and gives information on
manipulating them. It contains the following subsections:

• Summary of armsd variables

• Accessing variables on page 8-10

• Formatting printed results on page 8-11

• Specifying the base for input of integer constants on page 8-12.

8.2.1 Summary of armsd variables

You can modify many debugger defaults by setting variables. Table 8-2 lists the
variables. Most of these are described elsewhere in this chapter in more detail.

Table 8-2 armsd variables

Variable Description

$clock (ARMulator only) Number of microseconds since simulation started. This
read-only variable is available only if a processor clock speed is
specified. See ARMulator configuration on page 5-88 for
information on specifying the simulated processor clock speed.

$cmdline Argument string for the debuggee.

$echo Nonzero to echo commands from obeyed files (initially 1).

$examine_lines Default number of lines for examine command (initially 8).

$int_format Default format for printing integer values (initially “0x%.8lx”).

$float_format Default format for printing floating-point values (initially
“%g”).

$uint_format Default format for printing unsigned integer values (initially
“0x%.8lx”).

$sbyte_format Default format for printing signed byte values (initially “%c”).

$ubyte_format Default format for printing unsigned byte values (initially
“%c”).

$string_format Default format for printing string values (initially “%s”).

$complex_format Default format for printing complex values (initially
“(%g,%g)”).

$pointer_format Default format for printing pointer values (initially “0x%.8lx”).
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 8-7

Getting Started in armsd
$inputbase Base for input of integer constants (initially 10).

$list_lines Default number of lines for list command (initially 16).

$fpresult Floating-point value returned by last called function (junk if
none, or if a floating-point value was not returned). A read-only
variable. $fpresult returns a result only if the image has been
built for hardware floating-point. If the image is built for
software floating-point, it returns zero.

$type_lines Default number of lines for the type command.

$memory_statistics
(ARMulator only)

Outputs any memory map statistics that ARMulator has been
keeping. A read-only variable. See ARMulator configuration on
page 5-88 for further details.

$statistics (ARMulator
only)

Outputs any statistics which ARMulator has been keeping. A
read-only variable.

$statistics_inc

(ARMulator only)
Similar to $statistics, but outputs the difference between the
current statistics and those when $statistics was last read. A
read-only variable.

$vector_catch Indicates whether or not execution is interrupted when various
exceptions occur. The default value is %RUsPDAifE. Capital
letters indicate that the exception is to be intercepted:

R Reset

U Undefined Instruction

S SWI

P Prefetch Abort

D Data Abort

A Reserved (do not use)

I IRQ

F FIQ

E Reserved (do not use)

$rdi_log RDI logging is enabled if nonzero, and serial line logging is
enabled if bit 1 is set (initially 0).

Table 8-2 armsd variables (continued)

Variable Description
8-8 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

Getting Started in armsd
$top_of_memory This variable informs the debugger where the top of RAM is on
your target.

This is used to enable Multi-ICE, EmbeddedICE, and Angel to
return sensible values when a HEAP_INFO SWI call is made to
determine where to place the heap and stack in memory. The
default is 0x80000 (512KB). Modify this before executing a
program on the target if the memory available differs from this.

$target_fpu This variable controls the way that floating-point values are
interpreted by the debugger. It is important for correct display
of float and double values in memory that this variable is set to
a value that is appropriate for the target in use. If you attempt to
change this value, a validity test ensures that the only settings
allowed are those that are compatible with the representation of
floating-point values in the current image. Valid settings and
their meanings are:

1 Selects pure-endian doubles (softVFP). This is the default
setting for images built with ADS tools. Values are read from
ordinary registers.

2 Selects mixed-endian doubles (softFPA). Values are read from
ordinary registers.

3 Selects hardware Vector Floating-Point unit (VFP). Values are
read from registers CP10 and CP11.

4 Selects hardware Floating-Point Accelerator (FPA). Values are
read from registers CP1 and CP2.

5 Reserved.

Incompatible settings are accepted but a warning is given.

SoftVFP and SoftFPA images run correctly on a target whether
or not hardware floating point is present. FPA images can also
run correctly without hardware floating point, but only if the
Floating Point Emulator in ARMulator is active. VFP images
require appropriate hardware. For further information, see the
ADS Compilers and Libraries Guide.

Table 8-2 armsd variables (continued)

Variable Description
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 8-9

Getting Started in armsd
armsd internal variables

The variables in Table 8-3 are included to support EmbeddedICE.

8.2.2 Accessing variables

The following commands are available for accessing variables.

$sourcedir This variable contains a list of the paths to be searched when a
source file is required. It defaults to NULL if no value is
specified. When you specify search paths:

• Enclose the full pathname in double quotes.

• In armsd under Windows DOS, escape the backslash
directory separator with another backslash character. For
example:
$sourcedir="c:\\mysource\\src1"

• Separate multiple pathnames with a semicolon, not with
a space character. For example:
$sourcedir="c:\\my src\\src1;c:\\my src\\src2"

$result Integer result returned by last called function (junk if none, or if
an integer result was not returned). A read-only variable.

$semihosting_enabled Enables or disables semihosting (see Definitions on page 6-9).

Table 8-3 armsd variables for Multi-ICE and EmbeddedICE

Variable Description

$icebreaker_lockedpoints Shows or sets locked EmbeddedICE logic points.

$semihosting_vector Sets up semihosting SWI vector (described in the ADS Debug
Target Guide).

$semihosting_arm_swi Defines which ARM SWIs are interpreted as semihosting
requests by the debug agent. The default is 0x123456. Do not
change this.

$semihosting_thumb_swi Defines which Thumb SWIs are interpreted as semihosting
requests by the debug agent. The default is 0xAB. Do not change
this.

Table 8-2 armsd variables (continued)

Variable Description
8-10 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

Getting Started in armsd
print

This command examines the contents of variables in the debugged program, or displays
the result of arbitrary calculations involving variables and constants. Its syntax is:

p{rint}{/format} expression

For example:

print/%x listp->next

prints field next of structure listp.

If no format string is entered, integer values default to the format described by the
variable $int_format. The default format string for floating-point values is %g. By
default, pointer values are printed in hexadecimal notation using the format string
0x%.8lx, for example, 0x000100E4.

let

The let command enables you to change the value of a variable or contents of a memory
location. Its syntax is:

{let} variable = expression{{,} expression}*
{let} memory-location = expression{{,} expression}*

You can use an equals sign (=) or a colon (:) to separate the variable or location from
the expression. If you specify multiple expressions, separate them by commas or spaces.

You can change variables to compatible types of expression only. However, the
debugger performs conversions between integer and floating-point values if necessary,
rounding to zero. You can change the value of an array, but not its address, because array
names are constants. If you omit the subscript, it defaults to zero. If you specify multiple
expressions, each expression is assigned to variable[n-1], where n is the nth expression.

The let command is used in low-level debugging to change memory. If the left-hand
expression is a constant or a true expression (and not a variable) it is treated as a word
address, and memory at that location (and if necessary the following locations) is
changed to the values in the following expression(s).

8.2.3 Formatting printed results

You can set the default format strings used by the print command for the output of
results of various types of data by using let with the following variable names:

• $int_format

• $uint_format

• $float_format
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 8-11

Getting Started in armsd
• $sbyte_format

• $ubyte_format

• $string_format

• $complex_format

• $pointer_format.

For example, you can change the value of the root-level variable $int_format from its
initial setting of "0x%.81x" to another value with a command of the form:

{let} $int_format = string

The initial value of each of these format variables is given in Summary of armsd
variables on page 8-7.

8.2.4 Specifying the base for input of integer constants

You use the $inputbase variable to set the base used for the input of integer constants.

{let} $inputbase = expression

If the input base is set to 0, numbers are interpreted as octal if they begin with 0.
Regardless of the setting of $inputbase, hexadecimal constants are recognized if they
begin with 0x.

Note
 $inputbase only specifies the base for the input of numbers. For information on output
formats see Formatting printed results on page 8-11.
8-12 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

Getting Started in armsd
8.3 Low-level debugging

Low-level debugging tables are generated automatically during linking (unless linked
with -nodebug).

There is no need to enable debugging at the compilation stage for low-level debugging
only.

8.3.1 Low-level symbols

Low-level symbols are differentiated from high-level ones by preceding them with @.

The differences between high and low-level symbols are:

• a low-level symbol for a procedure refers to its call address, often the first
instruction of the stack frame initialization

• the corresponding high-level symbol refers to the address of the code generated
by the first statement in the procedure.

You can use low-level symbols with most debugger commands. For example, when
used with the watch command they stop execution if the word at the location named by
the symbol changes. You can also use low-level symbols where a command expects an
address expression.

Certain commands (list, find, examine, putfile, and getfile) accept low-level symbols
by default. To specify a high-level symbol, precede it by ^.

You can also use memory addresses with commands. These must also be preceded by @.
For further details see Entering addresses on page 4-12.

Note
 Low-level symbols do not have a context and so they are always available.
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 8-13

Getting Started in armsd
8.3.2 Predefined symbols

There are several predefined symbols, as shown in Table 8-4. To differentiate these from
any high-level or low level symbols in the debugging tables, precede them with #.

Table 8-4 High-level symbols for low-level entities

Symbol Description

r0 to r14 The general-purpose ARM registers 0 to 14.

r15 The address of the instruction that is about to execute. This can include the
condition code flags, interrupt enable flags, and processor mode bits,
depending on the target ARM architecture. This value can be different
from the real value of register 15 due to the effect of pipelining.

pc The address of the instruction that is about to execute.

sp The stack pointer (r13).

lr The link register (r14)

fp The frame pointer (r11).

psr and cpsr psr and cpsr are synonyms for the program status register for the current
mode. The values displayed for the condition code flags, interrupt enable
flags, and processor mode bits, are an alphabetic letter for each condition
code and interrupt enable flag, and a mode name (preceded by an
underscore) for the mode bits. The mode name is one of USER, IRQ, FIQ,
SVC, UNDEF, ABORT, and SYSTEM. Mode values out of normal ranges
are labeled Reserved_nn. 26-bit mode is no longer supported by the ARM
tool chain.

spsr spsr is the saved program status register for the current mode. The values
displayed are listed above in psr and cpsr.

f0 to f7 The FPA floating-point registers 0 to 7.

fpsr The FPA floating-point status register.

fpcr The FPA floating-point control register.

a1 to a4 These are ATPCS register names. They refer to arguments 1 to 4 in a
procedure call (stored in r0 to r3).

v1 to v7 These are ATPCS register names. They refer to the 5, 6, or 7
general-purpose register variables that the compiler allocates (stored in r4
to r10).

sb This is the ATPCS static base in RWPI variants of the ATPCS (r9/v6).
8-14 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

Getting Started in armsd
Printing register information

You can examine all these registers with the print command and change them with the
let command. For example, the following form displays the Program Status Register
(PSR):

print/%x #psr

Setting the PSR

The let command can also set the PSR, using the usual syntax for PSR flags.

For example, you can set the N and F flags, clear the V flag, and leave the I, Z, and C flags
untouched and the processor set to 32-bit supervisor mode, by typing:

let #psr = %NvF_SVC

The following example changes to User mode:

psr = %_User

Note
 The percentage sign must precede the condition flags and the underscore which in turn
must precede the processor mode description.

Using # with low-level symbols

Normally, you do not have to use # to access a low-level symbol. You can use # to force
a reference to a root context if you see the error message:

Error: Name not found

sl This is the ATPCS stack limit register, used in variants of the ATPCS that
implement software stack limit checking (r10/v7).

ip This is the ATPCS intra-procedure scratch register, used in procedure
entry and exit and as a scratch register (r12).

s0 to s31 VFP single-precision data registers. Applicable only to targets with a VFP
coprocessor.

d0 to d15 VFP double-precision data registers. Applicable only to targets with a
VFP coprocessor.

Table 8-4 High-level symbols for low-level entities (continued)

Symbol Description
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 8-15

Getting Started in armsd
For example, use #pc=0 instead of pc=0.
8-16 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

Chapter 9
Working with armsd

This chapter lists and explains every command supported by the ARM Symbolic
Debugger (armsd). It contains the following sections:

• Groups of armsd commands on page 9-2

• Alphabetical list of armsd commands on page 9-7

• Accessing the debug communications channel on page 9-46

• armsd commands for EmbeddedICE on page 9-47.
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 9-1

Working with armsd
9.1 Groups of armsd commands

This section lists all armsd commands in functional groups. The commands are
explained individually in Alphabetical list of armsd commands on page 9-7.

The functional groups are:

• Symbols

• Controlling execution

• Reading and writing memory on page 9-3

• Program context on page 9-3

• Low-level debugging on page 9-3

• Coprocessor support on page 9-4

• Profiling commands on page 9-5

• Miscellaneous commands on page 9-5.

The semicolon character (;) separates two commands on a single line.

Note
 The debugger queues commands in the order it receives them, so that any commands
attached to a breakpoint are not executed until all previously queued commands have
been executed.

9.1.1 Symbols

These commands allow you to view information on armsd symbols:

symbols Lists all symbols, such as variables and function names, defined in the
given or current context, along with their type information.

variable Provides type and context information on the specified variable (or
structure field).

arguments Shows the arguments that were passed to the current procedure, or
another active procedure.

9.1.2 Controlling execution

These commands allow you to control execution of programs by setting and clearing
watchpoints and breakpoints, and by stepping through instructions and statements:

break Adds breakpoints.

call Calls a procedure.
9-2 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

Working with armsd
go Starts execution of a program.

istep Steps through one or more instructions.

load Loads an image for debugging.

reload Reloads the object file specified on the armsd command line, or with the
last load command.

step Steps execution through one or more statements.

unbreak Removes a breakpoint.

unwatch Clears a watchpoint.

watch Adds a watchpoint.

9.1.3 Reading and writing memory

These commands allow you to set and examine program context:

getfile Reads from a file and writes the content to memory.

putfile Writes the contents of an area of memory to a file.

9.1.4 Program context

These commands allow you to set and examine program context:

where Prints the current context as a procedure name, line number in the file,
filename and the line of code.

backtrace Prints information about all currently active procedures.

context Sets the context in which the variable lookup occurs.

out Sets the context to be the same as that of the caller of the current context.

in Sets the context to that called from the current level.

9.1.5 Low-level debugging

These commands allow you to select low-level debugging and to display the contents of
memory, registers, and low-level symbols:

language Sets up low-level debugging if you are already using high-level
debugging.
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 9-3

Working with armsd
registers Displays the contents of ARM registers 0 to 14, the PC and the status
flags contained in the PSR.

fpregisters Displays the contents of the eight floating-point registers f0 to f7 and the
floating-point program status register FPSR.

examine Allows you to examine the contents of the memory between a pair of
addresses, displaying it in both hexadecimal and ASCII formats, with 16
bytes per line.

list Displays the contents of the memory between a specified pair of
addresses in hexadecimal, ASCII and instruction format, with four bytes
(one instruction) per line.

find Finds all occurrences in memory of a given integer value or character
string.

lsym Displays low-level symbols and their values.

9.1.6 Coprocessor support

The symbolic debugger includes coprocessor support that enables access to registers of
a coprocessor through a debug monitor that is ignorant of the coprocessor. This is only
possible if the registers of the coprocessor are read (if readable) and written (if writable)
by a single MRC, MCR, LDC or STC instruction in a non-User mode. For coprocessors with
more unusual registers, there must be support code in a debug monitor. The following
commands are available:

coproc Describes the register set of a coprocessor and specifies how the contents
of the registers are formatted for display.

cregdef Describes how the contents of a coprocessor register are formatted for
display.

cregisters Displays the contents of all readable registers of a coprocessor, in the
format specified by an earlier coproc command.

cwrite Writes to a coprocessor register.
9-4 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

Working with armsd
9.1.7 Profiling commands

The following commands allow you to start, stop, and reset the profiler, and to write
profiling data to a file:

pause Prompts you to press a key to continue.

profclear Resets profiling counts.

profon Starts collecting profiling data.

profoff Stops collecting profiling data.

profwrite Writes profiling information to a file.

9.1.8 Miscellaneous commands

These are general commands:

! Passes the following command to the host operating system.

| Introduces a comment line.

alias Defines, undefines, or lists aliases. It enables you to define your own
symbolic debugger commands.

comment Writes a message to stderr.

help Displays a list of available commands, or help on a particular command.

log Sends the output of subsequent commands to a file as well as the screen.

obey Executes a set of debugger commands which have previously been stored
in a file, as if they were being typed at the keyboard.

print Examines the contents of variables in the program being debugged.

type Types the contents of a source file, or any text file, between a specified
pair of line numbers.

while Is part of a multi-statement line.

quit Terminates the current symbolic debugger session and closes any open
log or obey files.
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 9-5

Working with armsd
9.1.9 Commands to access the debug communications channel

ccin Selects a file to read.

ccout Selects a file to write.

For details of these commands see Accessing the debug communications channel on
page 9-46.

9.1.10 Commands for EmbeddedICE

The following commands support EmbeddedICE. These are deprecated and will not be
supported in future versions of the toolkit.

listconfig Lists configurations known to the debug agent.

loadagent Downloads an EmbeddedICE ROM image.

loadconfig Loads an EmbeddedICE configuration data file.

selectconfig Selects an EmbeddedICE configuration block.

For details of these commands see armsd commands for EmbeddedICE on page 9-47.
9-6 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

Working with armsd
9.2 Alphabetical list of armsd commands

This section explains how the armsd command syntax is annotated, and lists the
terminology used. Every armsd command is then listed and explained, starting with the
! command on page 9-9.

9.2.1 Names used in syntax descriptions

These terms are used in the following sections for the command syntax descriptions:

Context The activation state of the program. See Variable names and context on
page 8-2.

Expression An arbitrary expression using the constants, variables, and operators
described in Expressions on page 8-5. It is either a low-level or a
high-level expression, depending on the command.

Low-level Low-level expressions are arbitrary expressions using constants,
low-level symbols, and operators. You can include high-level variables in
low-level expressions if their specification starts with # or $, or if they are
preceded by ^.

High-level High-level expressions are arbitrary expressions using constants,
variables, and operators. You can include low-level symbols in high-level
expressions by preceding them with @.

 The list, find, examine, putfile, and getfile commands require
low-level expressions as arguments. All other commands require
high-level expressions.

Location A location within the program (see Program locations on page 8-4).

Variable A reference to a variable in the program. Use the simple variable name to
look at a variable in the current context, or add more information as
described in Variable names and context on page 8-2 to see a variable
elsewhere in the program.

Format This is one of:

• hex.

• ascii.

• string.

This is a sequence of characters enclosed in double quotes ("). A
backslash (\) can be used as an escape character within a string.
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 9-7

Working with armsd
• A C printf() function format descriptor. Table 9-1 shows some
common descriptors.

Table 9-1 Format descriptors

Type Format Description

int

%d

%u

%x

Use this only if the expression being printed yields an integer:

signed decimal integer (default for integers)

unsigned integer

hexadecimal (lowercase letters) (same as hex format).

char

%c

Use this only if the expression being printed yields an integer:

character (same as ascii format).

char *

%s

Use this only for expressions which yield a pointer to a
zero-terminated string:

pointer to character (same as string format).

void *

%p

Use this with any kind of pointer:

pointer (same as %.8x), for example, 00018abc.

float

%e

%f

%g

Use this only for floating-point results:

exponent notation, for example, 9.999999e+00

fixed point notation, for example, 9.999999

general floating-point notation, for example, 1.1, 1.2e+06.
9-8 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

Working with armsd
9.2.2 ! command

The ! command gives access to the command line of the host system without quitting
the debugger.

Syntax

The syntax of ! is:

!command

where:

command Is the operating system command to execute.

Usage

Any command whose first character is ! is passed to the host operating system for
execution. For example, !dir (DOS) or !ls (UNIX) lists the contents of the current
directory.

9.2.3 | command

The | command introduces a comment line.

Syntax

The syntax of | is:

|comment

where:

comment Is a text string.

Usage

This command enables you to annotate your armsd script file.
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 9-9

Working with armsd
9.2.4 alias

The alias command defines, undefines, or lists aliases. It enables you to define
symbolic debugger commands.

Syntax

The syntax of alias is:

alias {name{expansion}}

where:

name Is the name of the alias.

expansion Is the expansion for the alias.

Usage

If you supply no argument, all currently defined aliases are displayed. If expansion is
not specified, the alias named is deleted. Otherwise expansion is assigned to the alias
name.

The expansion can be enclosed in double quotes (") to allow the inclusion of characters
not normally permitted or with special meanings, such as the alias expansion character
(‘) and the statement separator (;).

Aliases are expanded whenever a command line or the command list in a do clause is
about to be executed.

Words consisting of alphanumeric characters enclosed in backquotes (‘) are expanded.
If no corresponding alias is found they are replaced by null strings. If the character
following the closing backquote is non-alphanumeric, the closing backquote can be
omitted. If the word is the first word of a command, the opening backquote can be
omitted. To use a backquote in a command, precede it with another backquote.

Example

alias restart “reload;break @main;go”
9-10 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

Working with armsd
9.2.5 arguments

The arguments command shows the arguments that were passed to the current, or other
active procedure.

Syntax

The syntax of arguments is:

arguments {context}

where:

context Specifies the program context to display. If context is not specified, the
current context is used (normally the procedure active when the program
was suspended).

Usage

You use the arguments command to display the name and context of each argument
within the specified context.

9.2.6 backtrace

The backtrace command prints information about all currently active procedures,
starting with the most recent, or for a given number of levels.

Syntax

The syntax of backtrace is:

backtrace {count}

where:

count Specifies the number of levels to trace. This is an optional argument. If
you do not specify count, the currently active procedures are traced.

Usage

When your program has stopped running, because of a breakpoint or watchpoint, you
use backtrace to extract information on currently active procedures. You can access
information like the current function, the line of source code calling the function and so
on.
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 9-11

Working with armsd
9.2.7 break

The break command enables you to specify breakpoints.

Syntax

The syntax of the break command is:

break{/size} {loc {count} {do '{'command{;command}'}'} {if expr}}

where:

/size Specifies which code type to break:

/16 Specifies the instruction size as Thumb.

/32 Specifies the instruction size as ARM.

If you do not specify size, break determines the breakpoint size by
extracting information from the nearest symbol at or below the address to
be broken. This is usually correct, if debug information is available. You
must specify size when, for example, you set a breakpoint on ROM.

loc Specifies where to break the code. See Program locations on page 8-4.

count Specifies the number of times the statement must be executed before the
program is suspended. It defaults to 1, so if count is not specified, the
program will be suspended the first time the breakpoint is encountered.

do Specifies commands to be executed when the breakpoint is reached. Note
that these commands must be enclosed in braces, represented above by
braces within quotes. Commands must be separated by semicolons. If
you not specify a do clause, break displays the program and source line at
the breakpoint. If you want the source line displayed in conjunction with
the do clause, use where as the first command in the do clause.

expr Makes the breakpoint conditional upon the value of expr.

Usage

The break command specifies breakpoints at:

• procedure names

• lines

• statements within a line.

Each breakpoint is given a number prefixed by #. A list of current breakpoints and their
numbers is displayed if break is used without any arguments.

Note
 Use unbreak to delete any unwanted breakpoints. See unbreak on page 9-42.
9-12 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

Working with armsd
9.2.8 call

The call command calls a procedure.

Syntax

The syntax of the call command is:

call {/size} loc {(expression-list)}

where:

/size Specifies whether the procedure is entered in ARM state or Thumb state:

/16 specifies Thumb code

/32 specifies ARM code.

With no size specifier, call tries to determine the instruction set of the
destination code by extracting information from the nearest symbol at or
below the address to call. This usually chooses the correct size, but you
can set the size explicitly. The command correctly sets the PSR T-bit to
switch to ARM or Thumb state before the call, and restores it on exit.

loc Is a function or low-level address.

expression_list

Is a list of arguments to the procedure. String literals are not permitted as
arguments. If you specify more than one expression, separate the
expressions with commas.

Usage

If the procedure (or function) returns a value, examine it using:

print $result For integer variables.

print $fpresult For floating-point variables.

9.2.9 coproc

The coproc command describes the register set of a coprocessor and specifies how the
contents of the registers are formatted for display.

Syntax

The syntax of the coproc command is:

coproc cpnum {rno{:rno1} size access values {displaydesc}*}*
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 9-13

Working with armsd
where:

cpnum Identifies the coprocessor.

rno{:rno1} Identifies the register set.

size Is the register size in bytes.

access Can comprise the letters:

R The register is readable.

W The register is writable.

D The register is accessed through LDC or STC instructions
(if not present, the register is accessed through MRC or
MCR instructions).

values The format depends on whether the register is to be accessed
through MRC/MCR instructions or through LDC/STC instructions. If
access is through MRC/MCR instructions, it comprises four integer
values separated by a space or comma. These values form bits 0 to
7 and 16 to 23 of an MRC instruction to read the register, and bits 0
to 7 and 16 to 23 of an MCR instruction to write the register:

r0_7, r16_23, w0_7, w16_23

If access is through LDC/STC instructions, it comprises two integer
values to form bits 12 to 15 and bit 22 of LDC or STC instructions to
read and write the register:

b22, b12_15

displaydesc Describes how the contents of the registers are to be formatted for
display, and takes one of the forms listed in Table 9-2 on
page 9-15.

Usage

Each command can describe one register, or a range of registers, that are accessed and
formatted uniformly.

Example

For example, the floating-point coprocessor might be described by the command:
9-14 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

Working with armsd
coproc 1 0:7 16 RWD 1,8
8 4 RW 0x10,0x30,0x10,0x20 w0[16:20] 'izoux' "_" w0[0:4] 'izoux'
9 4 RW 0x10,0x50,0x10,0x40

Table 9-2 Values for displaydesc argument

Item Definition

string Printed as is.

field string strin

g

Used as a printf format string to display the
value of field.

field One of the forms:

wn The whole of the nth word of the
register value.

wn[bit] Bit bit of the nth word of the
register value.

wn[bit1:bit

2]

Bits bit1 to bit2 inclusive of the
nth word of the register value.
You can specify the bits in either
order.

field '{' string {string}* '}' field One of the forms wn[bit] or wn[bit1:bit2].

There must be one string for each possible value
of field.

The string in the appropriate position for the
value of field is displayed (the first string for
value 0, and so on).

field 'letters' field One of the forms wn[bit] or wn[bit1:bit2]
above.

There must be one character in letters for each
bit of field.

The letters are displayed in uppercase if the
corresponding bit of the field is set, and in
lowercase if it is clear.

The first letter represents the lowest bit if bit1 <
bit2, otherwise it represents the highest bit.
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 9-15

Working with armsd
9.2.10 context

The context command sets the context in which the variable lookup occurs.

Syntax

The syntax of the context command is:

context context

where:

context Specifies the program context. If context is not specified, the context is
reset to the active procedure.

Usage

The context command affects the default context used by commands that take a context
as an argument. When program execution is suspended, the search context is set to the
active procedure.

9.2.11 cregisters

The cregisters command displays the contents of all readable registers of a
coprocessor.

Syntax

The syntax of the cregisters command is:

cregisters cpnum

where

cpnum Selects the coprocessor.

Usage

The contents of the registers is displayed in the format specified by an earlier coproc
command. The formatting options are described in Table 9-2 on page 9-15.

9.2.12 cregdef

The cregdef command describes how the contents of a coprocessor register are
formatted for display.
9-16 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

Working with armsd
Syntax

The syntax of the cregdef command is:

cregdef cpnum rno displaydesc

where:

cpnum Selects the coprocessor.

rno Selects the register number in the selected coprocessor.

displaydesc Describes how the processor contents are formatted for display.

Usage

The contents of the registers is displayed according to the formatting options described
in Table 9-2 on page 9-15.

9.2.13 cwrite

The cwrite command writes to a coprocessor register.

Syntax

The syntax of the cwrite command is:

cwrite cpnum rno val{val...}*

where:

cpnum Selects the coprocessor.

rno Selects the register number in the named coprocessor.

val Each val is an integer value and there must be one val item for each word
of the coprocessor register.

Usage

Before you write to a coprocessor register, you must define that register as writable.
This is described in coproc on page 9-13.

9.2.14 examine

The examine command enables you to examine the contents of memory.
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 9-17

Working with armsd
Syntax

The syntax of the examine command is:

examine {expression1} {, {+}expression2 }

where:

expression1 Gives the start address. The default address used is either:

• the address associated with the current context, minus 64, if
the context has changed since the last examine command was
issued

• the address following the last address displayed by the last
examine command, if the context has not changed since the
last examine command was issued.

expression2 Specifies the end address, which can take three forms:

• if omitted, the end address is the value of the start address
+128

• if expression2 is preceded by +, the end address is given by
the value of the start line + expression2

• if there is no +, the end line is the value of expression2.

You can use the $examine_lines variable to alter the default
number of lines displayed from its initial value of 8 (128 bytes).

Usage

This command enables you to examine the contents of the memory between a pair of
addresses, displaying it in both hexadecimal and ASCII formats, with 16 bytes per line.
Low-level symbols are accepted by default.

9.2.15 find

The find command finds all occurrences in a specified area of memory of a given
integer value or character string.

Syntax

The syntax of the find command is either of the following:

find expression1,expression2,expression3

find string,expression2,expression3
9-18 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

Working with armsd
where:

expression1 Gives the words in memory to search for.

expression2 Specifies the lower boundary for the search.

expression3 Specifies the upper boundary for the search.

string Specifies the string to search for.

Usage

If the first form is used, the search is for words in memory whose contents match the
value of expression1.

If the second form is used, the search is for a sequence of bytes in memory (starting at
any byte boundary) whose contents match those of string.

Low-level symbols are accepted by default.

9.2.16 fpregisters

The fpregisters command displays the contents of the eight FPA floating-point
registers f0 to f7 and the Floating Point Status Register (FPSR).

Syntax

The syntax of the fpregisters command is:

fpregisters[/full]

where:

/full Includes more information on the floating-point numbers in the registers.

Usage

There are two formats for the display of floating-point registers.

fpregisters Displays the registers and FPSR, in the following form:

f0 = 0 f1 = 3.1415926535
f2 = Inf f3 = 0
f4 = 3.1415926535 f5 = 1
f6 = 0 f7 = 0
fpsr = %IZOux_izoux
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 9-19

Working with armsd
fpregisters/full

Produces a more detailed display:

f0 = I + 0x3FFF 1 0x0000000000000000
f1 = I + 0x4000 1 0x490FDAA208BA2000
f2 = I +u0x43FF 1 0x0000000000000000
f3 = I - 0x0000 0 0x0000000000000000
f4 = I + 0x4000 1 0x490FDAA208BA2000
f5 = I + 0x3FFF 1 0x0000000000000000
f6 = I + 0x0000 0 0x0000000000000000
f7 = I + 0x0000 1 0x0000000000000000
fpsr = 0x01070000

(fpregisters/full does not output both sets of values.)

The format of this display is (for example):

F S Exp J MantissaI +u0x43FF 1 0x0000000000000000

where:

F Specifies precision and format:

F Single precision

D Double precision

E Extended precision

I Internal format

P Packed decimal.

S Is the sign.

Exp Is the exponent.

J Is the bit to the left of the binary point.

Mantissa Are the digits to the right of the binary point.

u The u between the sign and the exponent
indicates that the number is flagged as
uncommon, in this example infinity. This
applies only to internal format numbers.

In the FPSR description, the first set of letters represent the current
settings of the five Exception Trap Enables, also called the
Exception Mask. The second set of letters are the Cumulative
Exception Flags and represent the exceptions that have occurred.
The status of the mask and flag bits is indicated by their case.
Uppercase means the flag is set and lowercase means it is cleared.

The exceptions represented are:

I Invalid operation

Z Divide by zero

O Overflow
9-20 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

Working with armsd
U Underflow

X Inexact.

Bits 16 to 20 of the 32-bit FPSR are the Exception Trap Enables,
and bits 0 to 4 are the Cumulative Exception Flags.

9.2.17 go

The go command starts execution of the program.

Syntax

The syntax of the go command is:

go {while expression}

where:

while If while is used, expression is evaluated when a breakpoint is
reached. If expression evaluates to true (that is, nonzero), the
breakpoint is not reported and execution continues.

expression Specifies the expression to evaluate.

Usage

The first time go is executed, the program starts from its normal entry point. Subsequent
go commands resume execution from the point at which it was suspended.

9.2.18 getfile

The getfile command reads from a file and writes the content to memory.

Syntax

The syntax of the getfile command is:

getfile filename expression

where:

filename Names the file to read from.

expression Defines the memory location to write to.
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 9-21

Working with armsd
Usage

The contents of the file are read as a sequence of bytes, starting at the address which is
the value of expression. Low-level symbols are accepted by default.

Example

getfile image.bin 0x0

9.2.19 help

The help command displays a list of available commands, or help on commands.

Syntax

The syntax of the help command is:

help {command}

where:

command Is the name of the command you want help on.

Usage

The display includes syntax and a brief description of the purpose of each command. If
you need information about all commands, as well as their names, type help *.

9.2.20 in

The in command changes the current context by one activation level.

Syntax

The syntax of the in command is:

in

Usage

The in command sets the context to that called from the current level. It is an error to
issue an in command when no further movement in that direction is possible.

9.2.21 istep

The istep command steps execution through one or more instructions.
9-22 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

Working with armsd
Syntax

The syntax of the istep command is:

istep {in} {count|w{hile} expression}istep out

Usage

This command is analogous to the step command except that it steps through one
instruction at a time, rather than one high-level language statement at a time.

The use of the istep command is not supported in Jazelle state. Submitting this
command generates an error message.

9.2.22 language

The language command sets the high-level language.

Syntax

The syntax of the language command is:

language {language}

where:

language Specifies the language to use. Enter one of the following:

• none

• C

• F77

• PASCAL

• ASM.

Usage

The symbolic debugger uses any high-level debugging tables generated by a compiler
to set the default language to the appropriate one for that compiler, whether it is Pascal,
Fortran, or C. If it does not find high-level tables, it sets the default language to none,
and modifies the behavior of where and step so that:

where Reports the current program counter and instruction.

step Steps by one instruction.
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 9-23

Working with armsd
9.2.23 let

The let command enables you to change the value of a variable or contents of a memory
location.

Syntax

The syntax of the let command is:

{let} {variable | location} = expression{{,} expression}*

where:

variable Names the variable to change.

location Names the memory location to change.

expression Contains the expression or expressions.

Usage

You use the let command in low-level debugging to change memory. If the left-side
expression is a constant or a true expression (and not a variable), it is treated as a word
address, and memory at that location (and if necessary the following locations) is
changed to the values in the following expression(s).

An equals sign (=) or a colon (:) can separate the variable or location from the
expression. If you specify multiple expressions, separate them by commas or spaces.

Variables can only be changed to compatible types of expression. However, the
debugger converts integers to floating-point and vice versa, rounding to zero. The value
of an array can be changed, but not its address, because array names are constants. If the
subscript is omitted, it defaults to zero.

If you specify multiple expressions, each expression is assigned to variable[n-1],
where n is the nth expression.

See also let on page 8-11 for more information on the let command.

Specifying the source directory

You can use the variable $sourcedir to specify alternative search paths for source files
for the image currently loaded. This variable defaults to NULL if no alternative
directories are specified. You can set the value of $sourcedir using the command:

{let} $sourcedir = string
9-24 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

Working with armsd
where string must be a valid pathname, or pathnames. The string must be enclosed in
double quotes. If you are using armsd in a Windows DOS environment you must escape
the backslash directory separator with another backslash character.

For example:

let $sourcedir="c:\\myhome"

Multiple paths must be separated by a semicolon. For example:

ARMSD: let $sourcedir = "/home/usr/me/src;/home/usr/me/src2"

ARMSD: p $sourcedir
"/home/usr/me/src;/home/usr/me/src2"

ARMSD: let $sourcedir = "/home/usr 2/her name/proj B files"

Note
 No warning is displayed if you enter an invalid pathname.

Command-line arguments

You can specify command-line arguments for the debuggee using the let command
with the root-level variable $cmdline. The syntax is:

{let} $cmdline = string

The program name is automatically passed as the first argument, so you must not
include it in the string. You can examine the setting of $cmdline using print. Commands
that use the program name are:

go Starts execution of the program.

getfile Reads the contents of an area of memory from a file.

load Loads an image for debugging.

putfile Writes the contents of an area of memory to a file.

reload Reloads the object file specified on the armsd command line, or the last
load command.

type Types the contents of a source file, or any text file, between a specified
pair of line numbers.

Reading and writing bytes and halfwords (shorts)

When you specify a write to memory in armsd, a word value is used. For example:
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 9-25

Working with armsd
let 0x8000 = 0x01

makes armsd transfer a word (4 bytes) to memory starting at the address 0x8000. The
bytes at 0x8001, 0x8002, and 0x8003 are zeroed.

To write only a single byte, you must indicate that a byte transfer is required. You can
do this with:

let *(char *)0xaddress = value

Similarly, to read from an address use:

print *(char *)0xaddress

You can also read and write halfwords (shorts) in a similar way:

let *(short *)0x8000 = valueprint /%x *(short *)0x8000

where /%x displays in hex.

Editing long long variables

If you are changing the value of a long long or unsigned long long variable, your new
value might be of such a length that it appears to be invalid. In this case, enter LL or ULL
as appropriate at the end of the new value to force its acceptance.
9-26 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

Working with armsd
9.2.24 list

The list command displays the contents of the memory between a specified pair of
addresses in hexadecimal, ASCII, and instruction format, with four bytes (one
instruction) per line.

Syntax

The syntax of the list command is:

list{/size} {expression1}{, {+}expression2 }

where:

size Distinguishes between ARM and Thumb code:

/16 Lists as Thumb code

/32 Lists as ARM code.

With no size specifier, list tries to determine the instruction set
of the destination code by extracting information from the nearest
symbol at or below the address to start the listing.

expression1 Gives the start address. If unspecified, this defaults to either:

• the address associated with the current context minus 32, if
the context has changed since the last list command was
issued

• the address following the last address displayed by the last
list command, if the context has not changed since the last
list command was issued.

expression2 Gives the end address. It can take three forms:

• if expression2 is omitted, the end address is the value of the
start address + 64

• if it is preceded by +, the end address is the start line +
expression2

• if there is no +, the end line is the value of expression2.

Usage

The $list_lines variable can alter the default number of lines displayed from its initial
value of 16 (64 bytes).

Low-level symbols are accepted by default.
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 9-27

Working with armsd
9.2.25 load

The load command loads an image for debugging.

Syntax

The syntax of the load command is:

load{/profile-option} image-file {arguments}

where:

profile-option Specifies which profiling option to use:

/callgraph Directs the debugger to provide the image
being loaded with counts which enable the
dynamic call-graph profile to be
constructed.

/profile Directs the debugger to prepare the image
being loaded for flat profiling.

image-file Is the name of the file to be debugged.

arguments Are the command-line arguments the program normally takes.

Usage

You can also specify image-file and any necessary arguments on the command line
when the debugger is invoked. See Command-line options on page 7-3 for more
information.

If no arguments are supplied, the arguments used in the most recent load or reload,
setting of $cmdline, or command-line invocation are used again.

The load command clears all breakpoints and watchpoints, and does not set a breakpoint
at main() by default.

If the image you are loading uses floating point data, the $target_fpu debugger internal
variable must match the image. See Table 8-2 on page 8-7.

9.2.26 localvar

The localvar command creates a debugger variable of the specified type in the symbol
table maintained by the debugger (so access to the variable requires a $ prefix).
9-28 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

Working with armsd
Syntax

The syntax of the localvar command is:

localvar vartype varname

where:

vartype Specifies the type of the variable you are creating

varname Is the name of the variable you are creating.

Usage

Use localvar to create a local variable, as in the following example that sets the contents
of memory from address 0x8000 to address 0x8FFF to all zeros:

localvar int fred
$fred = 0x8000
*$fred = 0; $fred = $fred + 4; while $fred < 0x9000
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 9-29

Working with armsd
9.2.27 log

The log command sends the output of subsequent commands to a file and to the screen.

Syntax

The syntax of the log command is:

log filename

where:

filename Is the name of the file where the record of activity is being stored.

Usage

To stop logging, type log with no argument. View the file with type or a text editor.

Note
 The debugger prompt and the debug program input/output is not logged.
9-30 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

Working with armsd
9.2.28 lsym

The lsym command displays low-level symbols and their values.

Syntax

The syntax of the lsym command is:

lsym pattern

where:

pattern Is a symbol name or part of a symbol name.

Usage

The wildcard (*) matches any number of characters. You can use it at the start of the
pattern, at the end, or both:

lsym *fred Displays information about fred, alfred.

lsym fred* Displays information about fred, frederick.

lsym *fred* Displays information about alfred, alfreda, fred, frederick.

The wildcard ? matches one character:

lsym ??fred Matches Alfred.

lsym Jo? Matches Joe, Joy, and Jon.

9.2.29 obey

The obey command executes a set of debugger commands that have previously been
stored in a file, as if they were being typed at the keyboard.

Syntax

The syntax of the obey command is:

obey command-file

where:

command-file Is the file containing the list of commands for execution.
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 9-31

Working with armsd
Usage

You can store frequently-used command sequences in files, and call them using obey.

9.2.30 out

The out command changes the current context by one activation level and sets the
context to that of the caller of the current context.

Syntax

The syntax of the out command is:

out

Usage

If you issue an out command when no further movement in that direction is possible an
error message is generated.

If you want to step though assembly language code you must ensure that you use frame
directives in your assembly language code to describe stack usage. See the ADS
Assembler Guide for more information.

9.2.31 pause

The pause command prompts you to press a key to continue.

Syntax

The syntax of the pause command is:

pause prompt-string

where:

prompt-string Is a character string written to stderr.

Usage

Execution continues only after you press a key. If you press ESC while commands are
being read from a file, the file is closed before execution continues.
9-32 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

Working with armsd
9.2.32 print

The print command examines the contents of the variables in the debugged program,
or displays the result of arbitrary calculations involving variables and constants.

Syntax

The syntax of the print command is:

print{/format} expression

where:

/format Selects a display format, as described in Table 9-1 on page 9-8. If
no /format string is entered, integer values default to the format
described by the variable $int_format. Floating-point values use
the default format string %g. Pointer values are treated as integers,
using a default fixed format %.8x, for example, 000100e4.

expression Enters the expression for evaluation.

Usage

See also print on page 8-11 for more information on the print command.

9.2.33 profclear

The profclear command clears profiling counts.

Syntax

The syntax of the profclear command is:

profclear

Usage

For more information on the ARM profiler, refer to the ADS Linker and Utilities Guide.

9.2.34 profoff

The profoff command stops the collection of profiling data.

Syntax

The syntax of the profoff command is:
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 9-33

Working with armsd
profoff

Usage

For more information on the ARM profiler, refer to the ADS Linker and Utilities Guide.

9.2.35 profon

The profon command starts the collection of profiling data.

Syntax

The syntax of the profon command is:

profon {interval}

where:

interval Is the time between PC-sampling in microseconds.

Usage

Lower values have a higher performance overhead, and slow down execution, but higher
values are not as accurate.

This defaults to flat profiling unless a profile option was specified when the image was
loaded. See also load on page 9-28.

For more information, see the ADS Debug Target Guide.

9.2.36 profwrite

The profwrite command writes profiling information to a file.

Syntax

The syntax of the profwrite command is:

profwrite {filename}

where:

filename Is the name of the file to contain the profiling data.
9-34 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

Working with armsd
Usage

The generated information can be viewed using the armprof utility. This is described in
the ADS Linker and Utilities Guide.

9.2.37 putfile

The putfile command writes the contents of an area of memory to a file. The data is
written as a sequence of bytes.

Syntax

The syntax of the putfile command is:

putfile filename expression1, {+}expression2

where:

filename Specifies the name of the file to write the data into.

expression1 Specifies the lower boundary of the area of memory to be written.

expression2 Specifies the upper boundary of the area of memory to be written.

Usage

The upper boundary of the memory area is defined as follows:

• if expression2 is not preceded by a + character, the upper boundary of the memory
area is the value of:

expression2 - 1

• if expression2 ispreceded by a + character, the upper boundary of the memory area
is the value of:

expression1 + expression2 - 1.

Low-level symbols are accepted by default.

Example

putfile image.bin 0x0,+0x8000

9.2.38 quit

The quit command terminates the current armsd session.
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 9-35

Working with armsd
Syntax

The syntax of the quit command is:

quit

Usage

This command also closes any open log or obey files.

9.2.39 readsyms

The readsyms command (like the -symbols command-line option) reads debug
information from the specified image file but does not load the image.

Syntax

The syntax of the readsyms command is:

readsyms filename

Usage

This command gathers required debugging information from the specified executable
image file but does not load the image into memory. The corresponding code must be
made available in another way (for example, through a getfile, or by being in ROM).

9.2.40 registers

The registers command displays the contents of ARM registers 0 to 14, the program
counter, and the program status registers.

Syntax

The syntax of the registers command is:

registers {mode}

where:

mode Selects the registers to display. For a list of mode names, refer to
Predefined symbols on page 8-14.

This option can also take the value all, where the contents of all registers
of the current mode are displayed, together with all banked registers for
other modes with the same address width.
9-36 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

Working with armsd
Usage

If used with no arguments, or if mode is the current mode, the contents of all registers of
the current mode are displayed. If the mode argument is specified, but is not the current
mode, the contents of the banked registers for that mode are displayed.

A sample display produced by registers might look like this:

Example 9-1

r0 = 0x00000000 r1 = 0x00000001 r2 = 0x00000002 r3 = 0x00000003
r4 = 0x00000004 r5 = 0x00000005 r6 = 0x00000006 r7 = 0x00000007
r8 = 0x00000008 r9 = 0x00000009 r10 = 0x0000000A r11 = 0x0000000B
r12 = 0x0000000C r13 = 0x0000000D r14 = 0x0000000E
pc = 0x00000000 cpsr = %nzcvqIFt_SVC spsr = %nzcvqift_Reserved_00

9.2.41 reload

The reload command reloads the object file specified on the armsd command line, or
with the last load command.

Syntax

The syntax of the reload command is:

reload{/profile-option} {arguments}

where

profile-option Specifies which profiling option to use:

/callgraph Tells the debugger to provide the image
being loaded with counts to enable the
dynamic call-graph profile to be
constructed.

/profile Directs the debugger to prepare the image
being loaded for flat profiling.

arguments Are the command-line arguments the program normally takes. If
no arguments are specified, the arguments used in the most recent
load or reload setting of $cmdline or command-line invocation are
used again.
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 9-37

Working with armsd
Usage

Breakpoints (but not watchpoints) remain set after a reload command.
9-38 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

Working with armsd
9.2.42 step

The step command steps execution through one or more program statements.

Syntax

The syntax of the step command is:

step {in} {out} {count|w{hile} expression}

where:

in Continues single-stepping into procedure calls, so that each
statement within a called procedure is single-stepped. If in is
absent, each procedure call counts as a single statement and is
executed without single stepping.

out Steps out of a function to the line of originating code that
immediately follows that function.

count Specifies the number of statements to be stepped through. If you
omit it only one statement is executed.

while Continues single-stepped execution until its expression evaluates
as false (zero).

expression Is evaluated after every step.

Usage

To step by instructions rather than statements:

• use the istep command

• or enter language none.

If you want to step though assembly language code you must ensure that you use frame
directives in your assembly language code to describe stack usage. See the ADS
Assembler Guide for more information.

The use of the step command is not supported in Jazelle state. Submitting this command
generates an error message.
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 9-39

Working with armsd
9.2.43 symbols

The symbols command lists all symbols defined in the given or current context, with
their type information.

Syntax

The syntax of the symbols command is:

symbols {context}

where:

context Defines the program context:

• to see global variables, define context as the filename with no path
or extension

• to see internal variables, use symbols $.

Usage

The information produced is listed in the form:

name type[, storage-class], location

storage-class applies to sourceobject only, not to debugger internal variables, and is
one of auto, static, or external.

location is one of the following:

• register r%d (variable stored in register r%d)

• memory 0x%x (variable stored at memory location 0x%x)

• constant (variable is actually a constant)

• debugger variable

• filtered

• split location (variable stored in several locations, possibly complex)

• moving, location (variable moves, actual location shown)

• unknown (location does not exist or an error occurred).
9-40 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

Working with armsd
9.2.44 type

The type command types the contents of a source file, or any text file, between a
specified pair of line numbers.

Syntax

The syntax of the type command is:

type {expression1} {, {{+}expression2} {,filename} }

where:

expression1 Gives the start line. If expression1 is omitted, it defaults to:

• the source line associated with the current context minus 5,
if the context has changed since the last type command was
issued

• the line following the last line displayed with the type
command, if the context has not changed.

expression2 Gives the end line, in one of three ways:

• if expression2 is omitted, the end line is the start line +10

• if expression2 is preceded by +, the end line is given by the
value of the start line + expression2

• if there is no +, the end line is simply the value of
expression2.

Usage

To look at a file other than that of the current context, specify the filename required and
the locations within it.

To change the number of lines displayed from the default setting of 10, use the
$type_lines variable.
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 9-41

Working with armsd
9.2.45 unbreak

The unbreak command removes a breakpoint.

Syntax

The syntax of the unbreak command is:

unbreak {location | #breakpoint_num}

where:

location Is a source code location.

breakpoint_num Is the number of the breakpoint

Usage

If there is only one breakpoint, delete it using unbreak without any arguments.

Note
 A breakpoint always keeps its assigned number. Breakpoints are not renumbered when
another breakpoint is deleted, unless the deleted breakpoint was the last one set.

9.2.46 unwatch

The unwatch command clears a watchpoint.

unwatch

Syntax

The syntax of the unwatch command is:

unwatch {variable |#watchpoint_number}

where:

variable Is a variable name.

variable Is the number of a watchpoint (preceded by #) set using the watch
command.

Usage

If only one watchpoint has been set, delete it using unwatch without any arguments.
9-42 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

Working with armsd
9.2.47 variable

The variable command provides type and context information on the specified variable
(or structure field).

Syntax

The syntax of the variable command is:

variable variable

where:

variable Specifies the variable to examine.

Usage

The variable command can also return the type of an expression.

Information about the specified variable is displayed as described in symbols on
page 9-40.

9.2.48 watch

The watch command sets a watchpoint on a variable.

Syntax

The syntax of the watch command is:

watch {variable}

where:

variable Names the variable to watch.

Usage

If you do not specify variable, a list of current watchpoints is displayed along with their
numbers. When the variable is altered, program execution is suspended. As with break
and unbreak, these numbers can subsequently be used to remove watchpoints.

Bitfields are not watchable.

If you are debugging through JTAG or EmbeddedICE logic, ensure that watchpoints on
global or static variables use hardware watchpoints to avoid any performance penalty.
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 9-43

Working with armsd
It is possible to set a watchpoint on a range of addresses. For example:

watch (char[16])*0xF200

traps all data changes that take place in the 16 bytes of memory starting at 0xF200.

For this to work efficiently when you are debugging with, for example, Multi-ICE,
ensure that the size of the watchpoint in bytes is a power of 2, and that the address of
the watchpoint is aligned on a size-byte boundary. Accesses to the area you specify are
trapped only if they change any value stored there. A replacement of a value with the
same value, for example, is not trapped.

Note
 Adding software watchpoints can make programs execute very slowly, because the
value of variables has to be checked every time they might have been altered. It is more
practical to set a breakpoint in the area of suspicion and set watchpoints when execution
has stopped.

9.2.49 where

The where command prints the current context and shows the procedure name, line
number in the file, filename, and the line of code.

Syntax

The syntax of the where command is:

where {context}

where:

context Specifies the program context to examine.

Usage

If a context is specified after the where command, the debugger displays the location of
that context.
9-44 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

Working with armsd
9.2.50 while

The while command is only useful at the end of a line containing one or more existing
statements. Enter multi-statement lines by separating the statements with ; characters.

Syntax

The syntax of the while command is:

statement; {statement;} while expression

where:

statement; {statement;}

Represents one or more statements to be executed while the
expression is true.

expression Defines the expression to be evaluated.

Usage

After execution of the statements, expression is evaluated. If true, execution of the line
is repeated. This continues until expression evaluates to false (zero).
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 9-45

Working with armsd
9.3 Accessing the debug communications channel

The debugger accesses the debug communications channel using the commands
described in this section.

For more information, see the ADS Developer Guide.

9.3.1 ccin

The ccin command selects a file containing data for reading into the target.

Syntax

The syntax of the ccin command is:

ccin filename

where:

filename Names the file containing the data for reading.

9.3.2 ccout

The ccout command selects a file where data from the target is written.

Syntax

The syntax of the ccout command is:

ccout filename

where:

filename Names the file where the data is written.
9-46 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

Working with armsd
9.4 armsd commands for EmbeddedICE

The armsd commands described in this section are included for compatibility with
EmbeddedICE. These are deprecated, and might be removed from future tool kits.

9.4.1 listconfig

The listconfig command lists the configurations known to the debug agent.

Syntax

The syntax of the listconfig command is:

listconfig file

where:

file Specifies the file where the list of configurations is written.

9.4.2 loadagent

The loadagent command downloads a replacement EmbeddedICE ROM image, and
starts it (in RAM).

Syntax

The syntax of the loadagent command is:

loadagent file

where:

file Names the EmbeddedICE ROM image file to load.

9.4.3 loadconfig

The loadconfig command loads an EmbeddedICE configuration data file. Such files
contain data required by EmbeddedICE related to various versions of various
processors. See also selectconfig on page 9-48.

Syntax

The syntax of the loadconfig command is:

loadconfig file
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. 9-47

Working with armsd
where:

file Names the EmbeddedICE configuration data file to load.

9.4.4 selectconfig

An EmbeddedICE configuration data file contains data blocks, each identified by a
processor name and version. The selectconfig command selects the required block of
EmbeddedICE configuration data from those available in the specified configuration
file (see loadconfig on page 9-47).

Syntax

The syntax of the selectconfig command is:

selectconfig name version

where:

name Is the name of the processor for which configuration data is required.

version Indicates the version to be used:

any Accepts any version number. This is the default.

n Uses version n.

n+ Uses version n or later.
9-48 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

Appendix A
AXD and armsd Commands

This appendix compares the commands supported by the command-line interface of
AXD with those supported by armsd. It also lists variables with values that you might
want to examine or change, showing the AXD commands that enable you to do so. This
appendix contains the following sections:

• Comparison of commands on page A-2

• Useful internal variables on page A-8.
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. A-1

AXD and armsd Commands
A.1 Comparison of commands

The ARM debugger armsd is driven by commands only. The ARM debugger AXD is
generally driven through its graphical user interface, but it also offers a command-line
interface window.

See:

• Chapter 6 AXD Command-line Interface for a full description of the commands
available in the AXD debugger

• Chapter 9 Working with armsd for a full description of the commands available in
armsd.

Some commands operate in exactly the same way in both debuggers. Others have close
equivalents. Some commands are available in one debugger and not the other. Table A-1
contains all the commands available in both debuggers, arranged alphabetically, and
shows equivalences where they exist.

Table A-1 armsd and AXD commands

armsd commands AXD commands
Shor
t
form

!command - -

|comment comment string com

alias [name[expansion]] - -

arguments [context] - -

backtrace [count] backtrace[count]

backtrace is an alias of stackentries stk

break[/size][loc[count]
[do {command[; command]}]
[if expr]]

break[expr|position [nth_time]] br

call[/size] loc[expr-list] - -

- cclasses class ccl

- cfunctions class cfu

- classes[image] cl

- clear clr
A-2 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

AXD and armsd Commands
- clearbreak breakpoint|all

clearbreak has the alias unbreak

cbr

- clearstat referencepoint cstat

- clearwatch watchpoint|all

clearwatch has the alias unwatch

cwpt

coproc cpnum[rno[:rno1] size access

values [displaydesc]*]*

- -

context context context[context] con

- convariables[context]

[scope][format]

convar

cregisters cpnum registers “cpnum” reg

cregdef cpnum rno displaydesc - -

- cvariables class cva

cwrite cpnum rno val [val ...]* - -

- dbginternals di

- disassemble expr1 [+]expr2[asm]

disassemble has the alias list

dis

let $echo 0|1 echo toggle -

examine[expr1] [, [+]expr2] examine expr1, [+]expr2

[memory[format]]

examine is an alias of memory

mem

- files[image] fi

- fillmem expr1 [+]expr2 value[memory] fmem

find expr1, expr2, expr3 findvalue valexpr[[expr1] [expr2]] fdv

find string, expr2, expr3 findstring string[[expr1] [expr2]] fds

- format[fmt_name[ctrl_string]] fmt

Table A-1 armsd and AXD commands (continued)

armsd commands AXD commands
Shor
t
form
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. A-3

AXD and armsd Commands
fpregisters[/full] - -

- functions[image] fu

getfile filename expression getfile file addrexpr

getfile is an alias of loadbinary

 lb

go[while expression] go[processor]

go is an alias of run

 r

help[command] help hlp

- images im

- imgproperties[image] ip

- importformat sdm_file[fail_action] -

in stackin in

istep[in][count|w[hile] expr] istep

out

- -

language[language] - -

[let] [variable|location]

= expression [[,] expression]*

let expr1, expr2

let is an alias of setwatch swat

list[/size][expr1] [, [+]expr2] list expr1 [+]expr2[asm]

list is an alias of disassemble

 dis

- listformat[nbits] lsfmt

load[/profile-opt] image-file[args] load file[processor] ld

- loadbinary file addrexpr

loadbinary has the alias getfile

lb

- loadsession sesfile lss

- loadsymbols file[processor]

loadsymbols has the alias readsyms lds

localvar vartype varname - -

Table A-1 armsd and AXD commands (continued)

armsd commands AXD commands
Shor
t
form
A-4 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

AXD and armsd Commands
log filename log[file] -

lsym pattern lowlevel[image] lsym

- memory expr1 [+]expr2

[memory[format]]

memory has the alias examine

mem

obey command-file obey file -

out stackout out

- parse toggle par

pause prompt-string - -

print[/format] expression print expr[format]

print is an alias of watch wat

- processors proc

- procproperties[image] pp

profclear - -

profoff - -

profon[interval] - -

profwrite[filename] - -

putfile filename expr1, [+]expr2 putfile file expr1 [+]expr2

putfile is an alias of savebinary sb

quit quitdebugger quitd

readsyms filename readsyms file[processor]

readsyms is an alias of loadsymbols lds

- record[file] rec

- regbanks[processor] regbk

- registers[regbank[format]] reg

Table A-1 armsd and AXD commands (continued)

armsd commands AXD commands
Shor
t
form
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. A-5

AXD and armsd Commands
reload[/profile-option] [arguments] reload[image] rld

- run[processor]

run has the alias go

r

- runtopos position[processor] rto

- savebinary file expr1 [+]expr2

savebinary has the alias putfile

sb

- savesession sesfile ss

- setaci string aci

- setbreakprops breakpoint

propid value

-

- setimgprop image ipvar value sip

- setmem addrexpr valexpr [memory] smem

pc=xx setpc expr pc

- setproc processor sproc

- setprocprop ppvar value spp

- setreg [regbank|]register expr sreg

- setsourcedir directory_list ssd

- setwatch expr1, expr2

setwatch has the alias let

swat

- setwatchprops watchpoint

propid value

swp

- source value1 [+]value2 [file]

source has the alias type

src

- sourcedir[path[index]] sdir

backtrace [count] stackentries[count]

stackentries has the alias backtrace

stk

Table A-1 armsd and AXD commands (continued)

armsd commands AXD commands
Shor
t
form
A-6 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

AXD and armsd Commands
in stackin in

out stackout out

p $statistics statistics[ref_pt_name] stat

step [in|out] [count|w[hile] expr] step[step][instr] st

- stepsize[instr] ssize

- stop[processor] -

symbols[context] - -

- trace on|off trace

- traceload tcfile trload

type[expr1][, [[+]expr2] [, fname]] type value1 [+]value2[file]

type is an alias of source src

unbreak [location|#breakpoint_num] unbreak breakpoint

unbreak is an alias of clearbreak

 cbr

unwatch [variable|#watchpoint_num] unwatch watchpoint

unwatch is an alias of clearwatch

cwpt

variable variable variables[image] va

print expr watch expr[format]

watch has the alias print

wat

watch[variable] watchpt[expr[nth_time]] wpt

where[context] where[context] -

statement;[statement;] while expr - -

Table A-1 armsd and AXD commands (continued)

armsd commands AXD commands
Shor
t
form
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. A-7

AXD and armsd Commands
A.2 Useful internal variables

Table A-2 lists some variables with values that you might want to examine or change.

In armsd you examine these as debugger internal variables and can change their values
with a let command. In AXD more CLI commands are available. These are described
in full in Chapter 6 AXD Command-line Interface.

Table A-2 Internal variables

armsd variable AXD command

$vector_catch pp to examine, spp to change

$cmdline setimgprop image cmdline params

$rdi_log pr to examine, let to change

$target_fpu pr to examine, let to change

$semihosting_enabled pp to examine, spp to change

$semihosting_vector pp to examine, spp to change

$semihosting_arm_swi pp to examine, spp to change

$semihosting_thumb_swi pp to examine, spp to change

$arm_swi setprocprop arm_semihosting_swi value

$thumb_swi setprocprop thumb_semihosting_swi value

$semihosting_dcchandler_ address pp to examine, spp to change

$icebreaker_lockedpoints pr to examine, let to change

$safe_non_vector_address pr to examine, let to change

$top_of_memory pr to examine, let to change

$system_reset pr to examine, let to change

$cp_access_code_address pr to examine, let to change. Multi-ICE only.

$user_input_bit1 Hardware input to Multi-ICE only. Not writable.

$user_input_bit2 Hardware input to Multi-ICE only. Not writable.

$user_output_bit1 pr to examine, let to change

$user_outout_bit2 pr to examine, let to change
A-8 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

AXD and armsd Commands
$arm9_restart_code_address pr to examine, let to change. Multi-ICE 1.3 and 1.4

$cache_clean_code_address pr to examine, let to change. Multi-ICE 2.0.

$sw_breakpoints_preferred pr to examine, let to change. Multi-ICE only.

$sourcedir sdir to examine, ssd to change

$echo echo on|off

Table A-2 Internal variables (continued)

armsd variable AXD command
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. A-9

AXD and armsd Commands
A-10 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

Appendix B
Coprocessor Registers

This appendix describes coprocessor registers for various ARM processors. It contains
the following sections:

• ARM710T processor on page B-2

• ARM720T processor on page B-3

• ARM740T processor on page B-4

• ARM920T Rev 0 processor on page B-5

• ARM920T Rev 1 processor on page B-7

• ARM940T Rev 0 processor on page B-9

• ARM940T Rev 1 processor on page B-11

• ARM946E-S processor on page B-13

• ARM966E-S processor on page B-15

• ARM10200E processor on page B-16

• ARM1020E processor on page B-20

• ARM10E processor on page B-22

• XScale processor on page B-24.
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. B-1

Coprocessor Registers
B.1 ARM710T processor

Table B-1 describes the coprocessor registers of the ARM710T processor.

Table B-1 ARM710T

Name Description Register

CP15: ID Chip ID CP = 15: CRn = 0, CRm = 0, op_1 = 0, op_2 = 0

CP15: Control Control CP = 15: CRn = 1, CRm = 0, op_1 = 0, op_2 = 0

CP15: TTBR Translation table base register CP = 15: CRn = 2, CRm = 0, op_1 = 0, op_2 = 0

CP15: DACR Domain access control register CP = 15: CRn = 3, CRm = 0, op_1 = 0, op_2 = 0

CP15: FSR Fault status register CP = 15: CRn = 5, CRm = 0, op_1 = 0, op_2 = 0

CP15: FAR Fault address register CP = 15: CRn = 6, CRm = 0, op_1 = 0, op_2 = 0

CP15: Cache operations: Invalidate Invalidate cache CP = 15: CRn = 7, CRm = 7, op_1 = 0, op_2 = 0

CP15: TLB operations: Invalidate Invalidate TLB CP = 15: CRn = 8, CRm = 7, op_1 = 0, op_2 = 0

CP15: TLB operations:
Invalidate_Address

Invalidate TLB single entry
(by address)

CP = 15: CRn = 8, CRm = 7, op_1 = 0, op_2 = 1
B-2 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

Coprocessor Registers
B.2 ARM720T processor

Table B-2 describes the coprocessor registers of the ARM720T processor.

Table B-2 ARM720T

Name Description Register

CP15: ID Chip ID CP = 15: CRn = 0, CRm = 0, op_1 = 0, op_2 = 0

CP15: Control Control CP = 15: CRn = 1, CRm = 0, op_1 = 0, op_2 = 0

CP15: TTBR Translation table base register CP = 15: CRn = 2, CRm = 0, op_1 = 0, op_2 = 0

CP15: DACR Domain access control register CP = 15: CRn = 3, CRm = 0, op_1 = 0, op_2 = 0

CP15: FSR Fault status register CP = 15: CRn = 5, CRm = 0, op_1 = 0, op_2 = 0

CP15: FAR Fault address register CP = 15: CRn = 6, CRm = 0, op_1 = 0, op_2 = 0

CP15: Cache operations: Invalidate Invalidate cache CP = 15: CRn = 7, CRm = 7, op_1 = 0, op_2 = 0

CP15: TLB operations: Invalidate Invalidate TLB CP = 15: CRn = 8, CRm = 7, op_1 = 0, op_2 = 0

CP15: TLB operations:
Invalidate_Address

Invalidate TLB single entry
(by address)

CP = 15: CRn = 8, CRm = 7, op_1 = 0, op_2 = 1

CP15: PID Process ID register CP = 15: CRn = 13, CRm = 0, op_1 = 0, op_2
= 0
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. B-3

Coprocessor Registers
B.3 ARM740T processor

Table B-3 describes the coprocessor registers of the ARM740T processor.

Table B-3 ARM740T

Name Description Register

CP15: ID Chip ID CP = 15: CRn = 0, CRm = 0, op_1 = 0, op_2 = 0

CP15: Control Control CP = 15: CRn = 1, CRm = 0, op_1 = 0, op_2 = 0

CP15: Cacheable Cacheable CP = 15: CRn = 2, CRm = 0, op_1 = 0, op_2 = 0

CP15: Bufferable Bufferable CP = 15: CRn = 3, CRm = 0, op_1 = 0, op_2 = 0

CP15: Protection Protection CP = 15: CRn = 5, CRm = 0, op_1 = 0, op_2 = 0

CP15: Protection Regions: Region0 Memory area 0 definition CP = 15: CRn = 6, CRm = 0, op_1 = 0, op_2 = 0

CP15: Protection Regions: Region1 Memory area 1 definition CP = 15: CRn = 6, CRm = 1, op_1 = 0, op_2 = 0

CP15: Protection Regions: Region2 Memory area 2 definition CP = 15: CRn = 6, CRm = 2, op_1 = 0, op_2 = 0

CP15: Protection Regions: Region3 Memory area 3 definition CP = 15: CRn = 6, CRm = 3, op_1 = 0, op_2 = 0

CP15: Protection Regions: Region4 Memory area 4 definition CP = 15: CRn = 6, CRm = 4, op_1 = 0, op_2 = 0

CP15: Protection Regions: Region5 Memory area 5 definition CP = 15: CRn = 6, CRm = 5, op_1 = 0, op_2 = 0

CP15: Protection Regions: Region6 Memory area 6 definition CP = 15: CRn = 6, CRm = 6, op_1 = 0, op_2 = 0

CP15: Protection Regions: Region7 Memory area 7 definition CP = 15: CRn = 6, CRm = 7, op_1 = 0, op_2 = 0

CP15: Cache operations: Invalidate Invalidate cache CP = 15: CRn = 7, CRm = 0, op_1 = 0, op_2 = 0
B-4 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

Coprocessor Registers
B.4 ARM920T Rev 0 processor

Table B-4 describes the coprocessor registers of the ARM920T Rev 0 processor.

Table B-4 ARM920T Rev 0

Name Description Register

CP15: ID Chip ID CP = 15: CRn = 0, CRm = 0, op_1 = 0, op_2 = 0

CP15: Type Cache type CP = 15: CRn = 0, CRm = 0, op_1 = 0, op_2 = 1

CP15: Control Control CP = 15: CRn = 1, CRm = 0, op_1 = 0, op_2 = 0

CP15: TTBR Translation table base register CP = 15: CRn = 2, CRm = 0, op_1 = 0, op_2 = 0

CP15: DACR Domain access control register CP = 15: CRn = 3, CRm = 0, op_1 = 0, op_2 = 0

CP15: FSR Fault status register CP = 15: CRn = 5, CRm = 0, op_1 = 0, op_2 = 0

CP15: FAR Fault address register CP = 15: CRn = 6, CRm = 0, op_1 = 0, op_2 = 0

CP15: DLOCK Data cache lockdown CP = 15: CRn = 9, CRm = 0, op_1 = 0, op_2 = 0

CP15: ILOCK Instruction cache lockdown CP = 15: CRn = 9, CRm = 0, op_1 = 0, op_2 = 1

CP15: TLBDLOCK Data TLB lockdown CP = 15: CRn = 10, CRm = 0, op_1 = 0, op_2
= 0

CP15: TLBILOCK Instruction TLB lockdown CP = 15: CRn = 10, CRm = 0, op_1 = 0, op_2
= 1

CP15: Cache operations: Invalidate Invalidate both caches CP = 15: CRn = 7, CRm = 7, op_1 = 0, op_2 = 0

CP15: Cache operations:
Invalidate_I

Invalidate entire I cache CP = 15: CRn = 7, CRm = 5, op_1 = 0, op_2 = 0

CP15: Cache operations:
Invalidate_I_Address

Invalidate I cache single entry
(by address)

CP = 15: CRn = 7, CRm = 5, op_1 = 0, op_2 = 1

CP15: Cache operations: Prefetch_I Prefetch I cache line CP = 15: CRn = 7, CRm = 13, op_1 = 0, op_2
= 1

CP15: Cache operations:
Invalidate_D

Invalidate entire D cache CP = 15: CRn = 7, CRm = 6, op_1 = 0, op_2 = 0

CP15: Cache operations:
Invalidate_D_Address

Invalidate D cache single entry
(by address)

CP = 15: CRn = 7, CRm = 6, op_1 = 0, op_2 = 1

CP15: Cache operations:
Clean_D_Address

Clean D cache single entry
(by address)

CP = 15: CRn = 7, CRm = 10, op_1 = 0, op_2
= 1
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. B-5

Coprocessor Registers
CP15: Cache operations:
CleanInvalidate_D_Address

Clean and invalidate D cache
single entry (by address)

CP = 15: CRn = 7, CRm = 14, op_1 = 0, op_2
= 1

CP15: Cache operations:
Clean_D_Index

Clean D cache single index CP = 15: CRn = 7, CRm = 10, op_1 = 0, op_2
= 2

CP15: Cache operations:
CleanInvalidate_D_Index

Clean and invalidate D cache
single index

CP = 15: CRn = 7, CRm = 14, op_1 = 0, op_2
= 2

CP15: Cache operations: Drain Drain write buffer CP = 15: CRn = 7, CRm = 10, op_1 = 0, op_2
= 4

CP15: Cache operations: Wait Wait for interrupt CP = 15: CRn = 7, CRm = 0, op_1 = 0, op_2 = 4

CP15: TLB operations: Invalidate Invalidate I+D TLB CP = 15: CRn = 8, CRm = 7, op_1 = 0, op_2 = 0

CP15: TLB operations: Invalidate_I Invalidate I TLB CP = 15: CRn = 8, CRm = 5, op_1 = 0, op_2 = 0

CP15: TLB operations:
Invalidate_I_Address

Invalidate I TLB entry
(by address)

CP = 15: CRn = 8, CRm = 5, op_1 = 0, op_2 = 1

CP15: TLB operations:
Invalidate_D

Invalidate D TLB CP = 15: CRn = 8, CRm = 6, op_1 = 0, op_2 = 0

CP15: TLB operations:
Invalidate_D_Address

Invalidate D TLB entry
(by address)

CP = 15: CRn = 8, CRm = 6, op_1 = 0, op_2 = 1

CP15: PID Process ID register CP = 15: CRn = 13, CRm = 0, op_1 = 0, op_2
= 0

Table B-4 ARM920T Rev 0 (continued)

Name Description Register
B-6 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

Coprocessor Registers
B.5 ARM920T Rev 1 processor

Table B-5 describes the coprocessor registers of the ARM920T Rev 1 processor.

Table B-5 ARM920T Rev 1

Name Description Register

CP15: ID Chip ID CP = 15: CRn = 0, CRm = 0, op_1 = 0, op_2 = 0

CP15: Type Cache type CP = 15: CRn = 0, CRm = 0, op_1 = 0, op_2 = 1

CP15: Control Control CP = 15: CRn = 1, CRm = 0, op_1 = 0, op_2 = 0

CP15: TTBR Translation table base register CP = 15: CRn = 2, CRm = 0, op_1 = 0, op_2 = 0

CP15: DACR Domain access control register CP = 15: CRn = 3, CRm = 0, op_1 = 0, op_2 = 0

CP15: FSR Fault status register CP = 15: CRn = 5, CRm = 0, op_1 = 0, op_2 = 0

CP15: PFSR Prefetch fault status register CP = 15: CRn = 5, CRm = 0, op_1 = 0, op_2 = 1

CP15: FAR Fault address register CP = 15: CRn = 6, CRm = 0, op_1 = 0, op_2 = 0

CP15: DLOCK Data cache lockdown CP = 15: CRn = 9, CRm = 0, op_1 = 0, op_2 = 0

CP15: ILOCK Instruction cache lockdown CP = 15: CRn = 9, CRm = 0, op_1 = 0, op_2 = 1

CP15: TLBDLOCK Data TLB lockdown CP = 15: CRn = 10, CRm = 0, op_1 = 0, op_2
= 0

CP15: TLBILOCK Instruction TLB lockdown CP = 15: CRn = 10, CRm = 0, op_1 = 0, op_2
= 1

CP15: Cache operations: Invalidate Invalidate both caches CP = 15: CRn = 7, CRm = 7, op_1 = 0, op_2 = 0

CP15: Cache operations:
Invalidate_I

Invalidate entire I cache CP = 15: CRn = 7, CRm = 5, op_1 = 0, op_2 = 0

CP15: Cache operations:
Invalidate_I_Address

Invalidate I cache single entry
(by address)

CP = 15: CRn = 7, CRm = 5, op_1 = 0, op_2 = 1

CP15: Cache operations: Prefetch_I Prefetch I cache line CP = 15: CRn = 7, CRm = 13, op_1 = 0, op_2
= 1

CP15: Cache operations:
Invalidate_D

Invalidate entire D cache CP = 15: CRn = 7, CRm = 6, op_1 = 0, op_2 = 0

CP15: Cache operations:
Invalidate_D_Address

Invalidate D cache single entry
(by address)

CP = 15: CRn = 7, CRm = 6, op_1 = 0, op_2 = 1
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. B-7

Coprocessor Registers
CP15: Cache operations:
Clean_D_Address

Clean D cache single entry
(by address)

CP = 15: CRn = 7, CRm = 10, op_1 = 0, op_2
= 1

CP15: Cache operations:
CleanInvalidate_D_Address

Clean and invalidate D cache
single entry (by address)

CP = 15: CRn = 7, CRm = 14, op_1 = 0, op_2
= 1

CP15: Cache operations:
Clean_D_Index

Clean D cache single index CP = 15: CRn = 7, CRm = 10, op_1 = 0, op_2
= 2

CP15: Cache operations:
CleanInvalidate_D_Index

Clean and invalidate D cache
single index

CP = 15: CRn = 7, CRm = 14, op_1 = 0, op_2
= 2

CP15: Cache operations: Drain Drain write buffer CP = 15: CRn = 7, CRm = 10, op_1 = 0, op_2
= 4

CP15: Cache operations: Wait Wait for interrupt CP = 15: CRn = 7, CRm = 0, op_1 = 0, op_2 = 4

CP15: TLB operations: Invalidate Invalidate I+D TLB CP = 15: CRn = 8, CRm = 7, op_1 = 0, op_2 = 0

CP15: TLB operations: Invalidate_I Invalidate I TLB CP = 15: CRn = 8, CRm = 5, op_1 = 0, op_2 = 0

CP15: TLB operations:
Invalidate_I_Address

Invalidate I TLB entry
(by address)

CP = 15: CRn = 8, CRm = 5, op_1 = 0, op_2 = 1

CP15: TLB operations:
Invalidate_D

Invalidate D TLB CP = 15: CRn = 8, CRm = 6, op_1 = 0, op_2 = 0

CP15: TLB operations:
Invalidate_D_Address

Invalidate D TLB entry
(by address)

CP = 15: CRn = 8, CRm = 6, op_1 = 0, op_2 = 1

CP15: PID Process ID register CP = 15: CRn = 13, CRm = 0, op_1 = 0, op_2
= 0

Table B-5 ARM920T Rev 1 (continued)

Name Description Register
B-8 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

Coprocessor Registers
B.6 ARM940T Rev 0 processor

Table B-6 describes the coprocessor registers of the ARM940T Rev 0 processor.

Table B-6 ARM940T Rev 0

Name Description Register

CP15: ID Chip ID CP = 15: CRn = 0, CRm = 0, op_1 = 0, op_2 = 0

CP15: Control Control CP = 15: CRn = 1, CRm = 0, op_1 = 0, op_2 = 0

CP15: DCacheable Data cacheable CP = 15: CRn = 2, CRm = 0, op_1 = 0, op_2 = 0

CP15: ICacheable Instruction cacheable CP = 15: CRn = 2, CRm = 0, op_1 = 0, op_2 = 1

CP15: Bufferable Bufferable CP = 15: CRn = 3, CRm = 0, op_1 = 0, op_2 = 0

CP15: DProtection Data protection CP = 15: CRn = 5, CRm = 0, op_1 = 0, op_2 = 0

CP15: IProtection Instruction protection CP = 15: CRn = 5, CRm = 0, op_1 = 0, op_2 = 1

CP15: Data Regions: DRegion0 Data memory area 0 definition CP = 15: CRn = 6, CRm = 0, op_1 = 0, op_2 = 0

CP15: Data Regions: DRegion1 Data memory area 1 definition CP = 15: CRn = 6, CRm = 1, op_1 = 0, op_2 = 0

CP15: Data Regions: DRegion2 Data memory area 2 definition CP = 15: CRn = 6, CRm = 2, op_1 = 0, op_2 = 0

CP15: Data Regions: DRegion3 Data memory area 3 definition CP = 15: CRn = 6, CRm = 3, op_1 = 0, op_2 = 0

CP15: Data Regions: DRegion4 Data memory area 4 definition CP = 15: CRn = 6, CRm = 4, op_1 = 0, op_2 = 0

CP15: Data Regions: DRegion5 Data memory area 5 definition CP = 15: CRn = 6, CRm = 5, op_1 = 0, op_2 = 0

CP15: Data Regions: DRegion6 Data memory area 6 definition CP = 15: CRn = 6, CRm = 6, op_1 = 0, op_2 = 0

CP15: Data Regions: DRegion7 Data memory area 7 definition CP = 15: CRn = 6, CRm = 7, op_1 = 0, op_2 = 0

CP15: Instruction Regions:
IRegion0

Instruction memory area 0
definition

CP = 15: CRn = 6, CRm = 0, op_1 = 0, op_2 = 0

CP15: Instruction Regions:
IRegion1

Instruction memory area 1
definition

CP = 15: CRn = 6, CRm = 1, op_1 = 0, op_2 = 0

CP15: Instruction Regions:
IRegion2

Instruction memory area 2
definition

CP = 15: CRn = 6, CRm = 2, op_1 = 0, op_2 = 0

CP15: Instruction Regions:
IRegion3

Instruction memory area 3
definition

CP = 15: CRn = 6, CRm = 3, op_1 = 0, op_2 = 0

CP15: Instruction Regions:
IRegion4

Instruction memory area 4
definition

CP = 15: CRn = 6, CRm = 4, op_1 = 0, op_2 = 0
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. B-9

Coprocessor Registers
CP15: Instruction Regions:
IRegion5

Instruction memory area 5
definition

CP = 15: CRn = 6, CRm = 5, op_1 = 0, op_2 = 0

CP15: Instruction Regions:
IRegion6

Instruction memory area 6
definition

CP = 15: CRn = 6, CRm = 6, op_1 = 0, op_2 = 0

CP15: Instruction Regions:
IRegion7

Instruction memory area 7
definition

CP = 15: CRn = 6, CRm = 7, op_1 = 0, op_2 = 0

CP15: Cache operations:
Invalidate_I

Invalidate entire I cache CP = 15: CRn = 7, CRm = 5, op_1 = 0, op_2 = 0

CP15: Cache operations:
Invalidate_I_Address

Invalidate I cache single entry
(by address)

CP = 15: CRn = 7, CRm = 5, op_1 = 0, op_2 = 2

CP15: Cache operations:
Invalidate_D

Invalidate entire D cache CP = 15: CRn = 7, CRm = 6, op_1 = 0, op_2 = 0

CP15: Cache operations:
Invalidate_D_Address

Invalidate D cache single entry
(by address)

CP = 15: CRn = 7, CRm = 6, op_1 = 0, op_2 = 2

CP15: Cache operations:
Clean_D_Address

Clean D cache single entry
(by address)

CP = 15: CRn = 7, CRm = 10, op_1 = 0, op_2
= 0

CP15: Cache operations: Prefetch_I Prefetch I cache line CP = 15: CRn = 7, CRm = 13, op_1 = 0, op_2
= 1

CP15: Cache operations:
CleanInvalidate_D_Address

Clean and invalidate D cache
single entry (by address)

CP = 15: CRn = 7, CRm = 14, op_1 = 0, op_2
= 2

CP15: Cache operations: Wait Wait for interrupt CP = 15: CRn = 7, CRm = 8, op_1 = 0, op_2 = 2

CP15: Cache lockdown:
D_Lockdown

Data lockdown control CP = 15: CRn = 9, CRm = 0, op_1 = 0, op_2 = 0

CP15: Cache lockdown:
I_Lockdown

Instruction lockdown control CP = 15: CRn = 9, CRm = 0, op_1 = 0, op_2 = 1

Table B-6 ARM940T Rev 0 (continued)

Name Description Register
B-10 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

Coprocessor Registers
B.7 ARM940T Rev 1 processor

Table B-7 describes the coprocessor registers of the ARM940T Rev 1 processor.

Table B-7 ARM940T Rev 1

Name Description Register

CP15: ID Chip ID CP = 15: CRn = 0, CRm = 0, op_1 = 0, op_2 = 0

CP15: Type Cache type CP = 15: CRn = 0, CRm = 0, op_1 = 0, op_2 = 1

CP15: Control Control CP = 15: CRn = 1, CRm = 0, op_1 = 0, op_2 = 0

CP15: DCacheable Data cacheable CP = 15: CRn = 2, CRm = 0, op_1 = 0, op_2 = 0

CP15: ICacheable Instruction cacheable CP = 15: CRn = 2, CRm = 0, op_1 = 0, op_2 = 1

CP15: Bufferable Bufferable CP = 15: CRn = 3, CRm = 0, op_1 = 0, op_2 = 0

CP15: DProtection Data protection CP = 15: CRn = 5, CRm = 0, op_1 = 0, op_2 = 0

CP15: IProtection Instruction protection CP = 15: CRn = 5, CRm = 0, op_1 = 0, op_2 = 1

CP15: Data Regions: DRegion0 Data memory area 0 definition CP = 15: CRn = 6, CRm = 0, op_1 = 0, op_2 = 0

CP15: Data Regions: DRegion1 Data memory area 1 definition CP = 15: CRn = 6, CRm = 1, op_1 = 0, op_2 = 0

CP15: Data Regions: DRegion2 Data memory area 2 definition CP = 15: CRn = 6, CRm = 2, op_1 = 0, op_2 = 0

CP15: Data Regions: DRegion3 Data memory area 3 definition CP = 15: CRn = 6, CRm = 3, op_1 = 0, op_2 = 0

CP15: Data Regions: DRegion4 Data memory area 4 definition CP = 15: CRn = 6, CRm = 4, op_1 = 0, op_2 = 0

CP15: Data Regions: DRegion5 Data memory area 5 definition CP = 15: CRn = 6, CRm = 5, op_1 = 0, op_2 = 0

CP15: Data Regions: DRegion6 Data memory area 6 definition CP = 15: CRn = 6, CRm = 6, op_1 = 0, op_2 = 0

CP15: Data Regions: DRegion7 Data memory area 7 definition CP = 15: CRn = 6, CRm = 7, op_1 = 0, op_2 = 0

CP15: Instruction Regions:
IRegion0

Instruction memory area 0
definition

CP = 15: CRn = 6, CRm = 0, op_1 = 0, op_2 = 0

CP15: Instruction Regions:
IRegion1

Instruction memory area 1
definition

CP = 15: CRn = 6, CRm = 1, op_1 = 0, op_2 = 0

CP15: Instruction Regions:
IRegion2

Instruction memory area 2
definition

CP = 15: CRn = 6, CRm = 2, op_1 = 0, op_2 = 0

CP15: Instruction Regions:
IRegion3

Instruction memory area 3
definition

CP = 15: CRn = 6, CRm = 3, op_1 = 0, op_2 = 0
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. B-11

Coprocessor Registers
CP15: Instruction Regions:
IRegion4

Instruction memory area 4
definition

CP = 15: CRn = 6, CRm = 4, op_1 = 0, op_2 = 0

CP15: Instruction Regions:
IRegion5

Instruction memory area 5
definition

CP = 15: CRn = 6, CRm = 5, op_1 = 0, op_2 = 0

CP15: Instruction Regions:
IRegion6

Instruction memory area 6
definition

CP = 15: CRn = 6, CRm = 6, op_1 = 0, op_2 = 0

CP15: Instruction Regions:
IRegion7

Instruction memory area 7
definition

CP = 15: CRn = 6, CRm = 7, op_1 = 0, op_2 = 0

CP15: Cache operations:
Invalidate_I

Invalidate entire I cache CP = 15: CRn = 7, CRm = 5, op_1 = 0, op_2 = 0

CP15: Cache operations:
Invalidate_I_Address

Invalidate I cache single entry
(by address)

CP = 15: CRn = 7, CRm = 5, op_1 = 0, op_2 = 2

CP15: Cache operations:
Invalidate_D

Invalidate entire D cache CP = 15: CRn = 7, CRm = 6, op_1 = 0, op_2 = 0

CP15: Cache operations:
Invalidate_D_Address

Invalidate D cache single entry
(by address)

CP = 15: CRn = 7, CRm = 6, op_1 = 0, op_2 = 2

CP15: Cache operations:
Clean_D_Address

Clean D cache single entry
(by address)

CP = 15: CRn = 7, CRm = 10, op_1 = 0, op_2
= 0

CP15: Cache operations: Prefetch_I Prefetch I cache line CP = 15: CRn = 7, CRm = 13, op_1 = 0, op_2
= 1

CP15: Cache operations:
CleanInvalidate_D_Address

Clean and invalidate D cache
single entry (by address)

CP = 15: CRn = 7, CRm = 14, op_1 = 0, op_2
= 2

CP15: Cache operations: Wait Wait for interrupt CP = 15: CRn = 7, CRm = 8, op_1 = 0, op_2 = 2

CP15: Cache operations: Drain Drain write buffer CP = 15: CRn = 7, CRm = 10, op_1 = 0, op_2
= 4

CP15: Cache lockdown:
D_Lockdown

Data lockdown control CP = 15: CRn = 9, CRm = 0, op_1 = 0, op_2 = 0

CP15: Cache lockdown:
I_Lockdown

Instruction lockdown control CP = 15: CRn = 9, CRm = 0, op_1 = 0, op_2 = 1

Table B-7 ARM940T Rev 1 (continued)

Name Description Register
B-12 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

Coprocessor Registers
B.8 ARM946E-S processor

Table B-8 describes the coprocessor registers of the ARM946E-S processor.

Table B-8 ARM946E-S

Name Description Register

CP15: ID Chip ID CP = 15: CRn = 0, CRm = 0, op_1 = 0, op_2 = 0

CP15: Type Cache type CP = 15: CRn = 0, CRm = 0, op_1 = 0, op_2 = 1

CP15: TCMS Tightly coupled memory size CP = 15: CRn = 0, CRm = 0, op_1 = 0, op_2 = 2

CP15: Control Control CP = 15: CRn = 1, CRm = 0, op_1 = 0, op_2 = 0

CP15: DCacheable Data cacheable CP = 15: CRn = 2, CRm = 0, op_1 = 0, op_2 = 0

CP15: ICacheable Instruction cacheable CP = 15: CRn = 2, CRm = 0, op_1 = 0, op_2 = 1

CP15: Bufferable Bufferable CP = 15: CRn = 3, CRm = 0, op_1 = 0, op_2 = 0

CP15: DProtection Data protection CP = 15: CRn = 5, CRm = 0, op_1 = 0, op_2 = 2

CP15: IProtection Instruction protection CP = 15: CRn = 5, CRm = 0, op_1 = 0, op_2 = 3

CP15: Protection Regions: Region0 Memory area 0 definition CP = 15: CRn = 6, CRm = 0, op_1 = 0, op_2 = 0

CP15: Protection Regions: Region1 Memory area 1 definition CP = 15: CRn = 6, CRm = 1, op_1 = 0, op_2 = 0

CP15: Protection Regions: Region2 Memory area 2 definition CP = 15: CRn = 6, CRm = 2, op_1 = 0, op_2 = 0

CP15: Protection Regions: Region3 Memory area 3 definition CP = 15: CRn = 6, CRm = 3, op_1 = 0, op_2 = 0

CP15: Protection Regions: Region4 Memory area 4 definition CP = 15: CRn = 6, CRm = 4, op_1 = 0, op_2 = 0

CP15: Protection Regions: Region5 Memory area 5 definition CP = 15: CRn = 6, CRm = 5, op_1 = 0, op_2 = 0

CP15: Protection Regions: Region6 Memory area 6 definition CP = 15: CRn = 6, CRm = 6, op_1 = 0, op_2 = 0

CP15: Protection Regions: Region7 Memory area 7 definition CP = 15: CRn = 6, CRm = 7, op_1 = 0, op_2 = 0

CP15: Cache operations:
Invalidate_I

Invalidate entire I cache CP = 15: CRn = 7, CRm = 5, op_1 = 0, op_2 = 0

CP15: Cache operations:
Invalidate_I_Address

Invalidate I cache single entry
(by address)

CP = 15: CRn = 7, CRm = 5, op_1 = 0, op_2 = 1

CP15: Cache operations:
Invalidate_D

Invalidate entire D cache CP = 15: CRn = 7, CRm = 6, op_1 = 0, op_2 = 0
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. B-13

Coprocessor Registers
CP15: Cache operations:
Invalidate_D_Address

Invalidate D cache single entry
(by address)

CP = 15: CRn = 7, CRm = 6, op_1 = 0, op_2 = 1

CP15: Cache operations:
Clean_D_Address

Clean D cache single entry
(by address)

CP = 15: CRn = 7, CRm = 10, op_1 = 0, op_2
= 1

CP15: Cache operations:
Clean_D_Index

Clean D cache single index CP = 15: CRn = 7, CRm = 10, op_1 = 0, op_2
= 2

CP15: Cache operations: Prefetch_I Prefetch I cache line CP = 15: CRn = 7, CRm = 13, op_1 = 0, op_2
= 1

CP15: Cache operations:
CleanInvalidate_D_Address

Clean and invalidate D cache
single entry (by address)

CP = 15: CRn = 7, CRm = 14, op_1 = 0, op_2
= 1

CP15: Cache operations:
CleanInvalidate_D_Index

Clean and invalidate D cache
single index

CP = 15: CRn = 7, CRm = 14, op_1 = 0, op_2
= 2

CP15: Cache operations: Wait Wait for interrupt CP = 15: CRn = 7, CRm = 0, op_1 = 0, op_2 = 4

CP15: Cache operations: Drain Drain write buffer CP = 15: CRn = 7, CRm = 10, op_1 = 0, op_2
= 4

CP15: Cache lockdown:
D_Lockdown

Data lockdown control CP = 15: CRn = 9, CRm = 0, op_1 = 0, op_2 = 0

CP15: Cache lockdown:
I_Lockdown

Instruction lockdown control CP = 15: CRn = 9, CRm = 0, op_1 = 0, op_2 = 1

CP15: Tightly coupled regions:
DTCMR

Data tightly coupled memory
region

CP = 15: CRn = 9, CRm = 1, op_1 = 0, op_2 = 0

CP15: Tightly coupled regions:
ITCMR

Instruction tightly coupled
memory region

CP = 15: CRn = 9, CRm = 1, op_1 = 0, op_2 = 1

CP15: PID Process ID register CP = 15: CRn = 13, CRm = 0, op_1 = 0, op_2
= 0

Table B-8 ARM946E-S (continued)

Name Description Register
B-14 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

Coprocessor Registers
B.9 ARM966E-S processor

Table B-9 describes the coprocessor registers of the ARM966E-S processor.

Table B-9 ARM966E-S

Name Description Register

CP15: ID Chip ID CP = 15: CRn = 0, CRm = 0, op_1 = 0, op_2 = 0

CP15: Control Control CP = 15: CRn = 1, CRm = 0, op_1 = 0, op_2 = 0

CP15: Operations: Wait Wait for interrupt CP = 15: CRn = 7, CRm = 0, op_1 = 0, op_2 = 4

CP15: Operations: Drain Drain write buffer CP = 15: CRn = 7, CRm = 10, op_1 = 0, op_2
= 4
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. B-15

Coprocessor Registers
B.10 ARM10200E processor

Table B-10 describes the coprocessor registers of the ARM10200E processor.

Table B-10 ARM10200E

Name Description Register

CP15: ID Chip ID CP = 15: CRn = 0, CRm = 0, op_1 = 0, op_2 = 0

CP15: Type Cache type CP = 15: CRn = 0, CRm = 0, op_1 = 0, op_2 = 1

CP15: Control Control CP = 15: CRn = 1, CRm = 0, op_1 = 0, op_2 = 0

CP15: TTBR Translation table base register CP = 15: CRn = 2, CRm = 0, op_1 = 0, op_2 = 0

CP15: DACR Domain access control register CP = 15: CRn = 3, CRm = 0, op_1 = 0, op_2 = 0

CP15: FSR Fault status register CP = 15: CRn = 5, CRm = 0, op_1 = 0, op_2 = 0

CP15: DFAR Fault address register CP = 15: CRn = 6, CRm = 0, op_1 = 0, op_2 = 0

CP15: IFAR Fault address register CP = 15: CRn = 6, CRm = 0, op_1 = 0, op_2 = 1

CP15: DLOCK Data cache lockdown CP = 15: CRn = 9, CRm = 0, op_1 = 0, op_2 = 0

CP15: ILOCK Instruction cache lockdown CP = 15: CRn = 9, CRm = 0, op_1 = 0, op_2 = 1

CP15: TLBDLOCK Data TLB lockdown CP = 15: CRn = 10, CRm = 0, op_1 = 0, op_2
= 0

CP15: TLBILOCK Instruction TLB lockdown CP = 15: CRn = 10, CRm = 0, op_1 = 0, op_2
= 1

CP15: PID Process ID register CP = 15: CRn = 13, CRm = 0, op_1 = 0, op_2
= 0

CP15: Cache operations: Invalidate Invalidate both caches CP = 15: CRn = 7, CRm = 7, op_1 = 0, op_2 = 0

CP15: Cache operations:
Invalidate_I

Invalidate entire I cache CP = 15: CRn = 7, CRm = 5, op_1 = 0, op_2 = 0

CP15: Cache operations:
Invalidate_I_Address

Invalidate I cache single entry
(by address)

CP = 15: CRn = 7, CRm = 5, op_1 = 0, op_2 = 1

CP15: Cache operations: Prefetch_I Prefetch I cache line CP = 15: CRn = 7, CRm = 13, op_1 = 0, op_2
= 1

CP15: Cache operations:
Invalidate_D

Invalidate entire D cache CP = 15: CRn = 7, CRm = 6, op_1 = 0, op_2 = 0
B-16 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

Coprocessor Registers
CP15: Cache operations:
Invalidate_D_Address

Invalidate D cache single entry
(by address)

CP = 15: CRn = 7, CRm = 6, op_1 = 0, op_2 = 1

CP15: Cache operations:
Clean_D_Address

Clean D cache single entry
(by address)

CP = 15: CRn = 7, CRm = 10, op_1 = 0, op_2
= 1

CP15: Cache operations:
CleanInvalidate_D_Address

Clean and invalidate D cache
single entry (by address)

CP = 15: CRn = 7, CRm = 14, op_1 = 0, op_2
= 1

CP15: Cache operations:
Clean_D_Index

Clean D cache single index CP = 15: CRn = 7, CRm = 10, op_1 = 0, op_2
= 2

CP15: Cache operations:
CleanInvalidate_D_Index

Clean and invalidate D cache
single index

CP = 15: CRn = 7, CRm = 14, op_1 = 0, op_2
= 2

CP15: Cache operations: Drain Drain write buffer CP = 15: CRn = 7, CRm = 10, op_1 = 0, op_2
= 4

CP15: Cache operations: Wait Wait for interrupt CP = 15: CRn = 7, CRm = 0, op_1 = 0, op_2 = 4

VFP: VFP (Single): S0 CP = 11: CRn = 0, CRm = 0, op_1 = 0, op_2 = 0

VFP: VFP (Single): S1 CP = 11: CRn = 0, CRm = 0, op_1 = 0, op_2 = 4

VFP: VFP (Single): S2 CP = 11: CRn = 1, CRm = 0, op_1 = 0, op_2 = 0

VFP: VFP (Single): S3 CP = 11: CRn = 1, CRm = 0, op_1 = 0, op_2 = 4

VFP: VFP (Single): S4 CP = 11: CRn = 2, CRm = 0, op_1 = 0, op_2 = 0

VFP: VFP (Single): S5 CP = 11: CRn = 2, CRm = 0, op_1 = 0, op_2 = 4

VFP: VFP (Single): S6 CP = 11: CRn = 3, CRm = 0, op_1 = 0, op_2 = 0

VFP: VFP (Single): S7 CP = 11: CRn = 3, CRm = 0, op_1 = 0, op_2 = 4

VFP: VFP (Single): S8 CP = 11: CRn = 4, CRm = 0, op_1 = 0, op_2 = 0

VFP: VFP (Single): S9 CP = 11: CRn = 4, CRm = 0, op_1 = 0, op_2 = 4

VFP: VFP (Single): S10 CP = 11: CRn = 5, CRm = 0, op_1 = 0, op_2 = 0

VFP: VFP (Single): S11 CP = 11: CRn = 5, CRm = 0, op_1 = 0, op_2 = 4

VFP: VFP (Single): S12 CP = 11: CRn = 6, CRm = 0, op_1 = 0, op_2 = 0

VFP: VFP (Single): S13 CP = 11: CRn = 6, CRm = 0, op_1 = 0, op_2 = 4

VFP: VFP (Single): S14 CP = 11: CRn = 7, CRm = 0, op_1 = 0, op_2 = 0

Table B-10 ARM10200E (continued)

Name Description Register
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. B-17

Coprocessor Registers
VFP: VFP (Single): S15 CP = 11: CRn = 7, CRm = 0, op_1 = 0, op_2 = 4

VFP: VFP (Single): S16 CP = 11: CRn = 8, CRm = 0, op_1 = 0, op_2 = 0

VFP: VFP (Single): S17 CP = 11: CRn = 8, CRm = 0, op_1 = 0, op_2 = 4

VFP: VFP (Single): S18 CP = 11: CRn = 9, CRm = 0, op_1 = 0, op_2 = 0

VFP: VFP (Single): S19 CP = 11: CRn = 9, CRm = 0, op_1 = 0, op_2 = 4

VFP: VFP (Single): S20 CP = 11: CRn = 10, CRm = 0, op_1 = 0, op_2
= 0

VFP: VFP (Single): S21 CP = 11: CRn = 10, CRm = 0, op_1 = 0, op_2
= 4

VFP: VFP (Single): S22 CP = 11: CRn = 11, CRm = 0, op_1 = 0, op_2
= 0

VFP: VFP (Single): S23 CP = 11: CRn = 11, CRm = 0, op_1 = 0, op_2
= 4

VFP: VFP (Single): S24 CP = 11: CRn = 12, CRm = 0, op_1 = 0, op_2
= 0

VFP: VFP (Single): S25 CP = 11: CRn = 12, CRm = 0, op_1 = 0, op_2
= 4

VFP: VFP (Single): S26 CP = 11: CRn = 13, CRm = 0, op_1 = 0, op_2
= 0

VFP: VFP (Single): S27 CP = 11: CRn = 13, CRm = 0, op_1 = 0, op_2
= 4

VFP: VFP (Single): S28 CP = 11: CRn = 14, CRm = 0, op_1 = 0, op_2
= 0

VFP: VFP (Single): S29 CP = 11: CRn = 14, CRm = 0, op_1 = 0, op_2
= 4

VFP: VFP (Single): S30 CP = 11: CRn = 15, CRm = 0, op_1 = 0, op_2
= 0

VFP: VFP (Single): S31 CP = 11: CRn = 15, CRm = 0, op_1 = 0, op_2
= 4

VFP: VFP (Double): D0 CP = 11: CRn = 0, CRm = 0, op_1 = 0, op_2 = 0

Table B-10 ARM10200E (continued)

Name Description Register
B-18 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

Coprocessor Registers
VFP: VFP (Double): D1 CP = 11: CRn = 1, CRm = 0, op_1 = 0, op_2 = 0

VFP: VFP (Double): D2 CP = 11: CRn = 2, CRm = 0, op_1 = 0, op_2 = 0

VFP: VFP (Double): D3 CP = 11: CRn = 3, CRm = 0, op_1 = 0, op_2 = 0

VFP: VFP (Double): D4 CP = 11: CRn = 4, CRm = 0, op_1 = 0, op_2 = 0

VFP: VFP (Double): D5 CP = 11: CRn = 5, CRm = 0, op_1 = 0, op_2 = 0

VFP: VFP (Double): D6 CP = 11: CRn = 6, CRm = 0, op_1 = 0, op_2 = 0

VFP: VFP (Double): D7 CP = 11: CRn = 7, CRm = 0, op_1 = 0, op_2 = 0

VFP: VFP (Double): D8 CP = 11: CRn = 8, CRm = 0, op_1 = 0, op_2 = 0

VFP: VFP (Double): D9 CP = 11: CRn = 9, CRm = 0, op_1 = 0, op_2 = 0

VFP: VFP (Double): D10 CP = 11: CRn = 10, CRm = 0, op_1 = 0, op_2
= 0

VFP: VFP (Double): D11 CP = 11: CRn = 11, CRm = 0, op_1 = 0, op_2
= 0

VFP: VFP (Double): D12 CP = 11: CRn = 12, CRm = 0, op_1 = 0, op_2
= 0

VFP: VFP (Double): D13 CP = 11: CRn = 13, CRm = 0, op_1 = 0, op_2
= 0

VFP: VFP (Double): D14 CP = 11: CRn = 14, CRm = 0, op_1 = 0, op_2
= 0

VFP: VFP (Double): D15 CP = 11: CRn = 15, CRm = 0, op_1 = 0, op_2
= 0

Table B-10 ARM10200E (continued)

Name Description Register
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. B-19

Coprocessor Registers
B.11 ARM1020E processor

Table B-11 describes the coprocessor registers of the ARM1020E processor.

Table B-11 ARM1020E

Name Description Register

CP15: ID Chip ID CP = 15: CRn = 0, CRm = 0, op_1 = 0, op_2 = 0

CP15: Type Cache type CP = 15: CRn = 0, CRm = 0, op_1 = 0, op_2 = 1

CP15: Control Control CP = 15: CRn = 1, CRm = 0, op_1 = 0, op_2 = 0

CP15: TTBR Translation table base register CP = 15: CRn = 2, CRm = 0, op_1 = 0, op_2 = 0

CP15: DACR Domain access control register CP = 15: CRn = 3, CRm = 0, op_1 = 0, op_2 = 0

CP15: FSR Fault status register CP = 15: CRn = 5, CRm = 0, op_1 = 0, op_2 = 0

CP15: DFAR Fault address register CP = 15: CRn = 6, CRm = 0, op_1 = 0, op_2 = 0

CP15: IFAR Fault address register CP = 15: CRn = 6, CRm = 0, op_1 = 0, op_2 = 1

CP15: DLOCK Data cache lockdown CP = 15: CRn = 9, CRm = 0, op_1 = 0, op_2 = 0

CP15: ILOCK Instruction cache lockdown CP = 15: CRn = 9, CRm = 0, op_1 = 0, op_2 = 1

CP15: TLBDLOCK Data TLB lockdown CP = 15: CRn = 10, CRm = 0, op_1 = 0, op_2
= 0

CP15: TLBILOCK Instruction TLB lockdown CP = 15: CRn = 10, CRm = 0, op_1 = 0, op_2
= 1

CP15: PID Process ID register CP = 15: CRn = 13, CRm = 0, op_1 = 0, op_2
= 0

CP15: Cache operations: Invalidate Invalidate both caches CP = 15: CRn = 7, CRm = 7, op_1 = 0, op_2 = 0

CP15: Cache operations:
Invalidate_I

Invalidate entire I cache CP = 15: CRn = 7, CRm = 5, op_1 = 0, op_2 = 0

CP15: Cache operations:
Invalidate_I_Address

Invalidate I cache single entry
(by address)

CP = 15: CRn = 7, CRm = 5, op_1 = 0, op_2 = 1

CP15: Cache operations: Prefetch_I Prefetch I cache line CP = 15: CRn = 7, CRm = 13, op_1 = 0, op_2
= 1

CP15: Cache operations:
Invalidate_D

Invalidate entire D cache CP = 15: CRn = 7, CRm = 6, op_1 = 0, op_2 = 0
B-20 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

Coprocessor Registers
CP15: Cache operations:
Invalidate_D_Address

Invalidate D cache single entry
(by address)

CP = 15: CRn = 7, CRm = 6, op_1 = 0, op_2 = 1

CP15: Cache operations:
Clean_D_Address

Clean D cache single entry
(by address)

CP = 15: CRn = 7, CRm = 10, op_1 = 0, op_2
= 1

CP15: Cache operations:
CleanInvalidate_D_Address

Clean and invalidate D cache
single entry (by address)

CP = 15: CRn = 7, CRm = 14, op_1 = 0, op_2
= 1

CP15: Cache operations:
Clean_D_Index

Clean D cache single index CP = 15: CRn = 7, CRm = 10, op_1 = 0, op_2
= 2

CP15: Cache operations:
CleanInvalidate_D_Index

Clean and invalidate D cache
single index

CP = 15: CRn = 7, CRm = 14, op_1 = 0, op_2
= 2

CP15: Cache operations: Drain Drain write buffer CP = 15: CRn = 7, CRm = 10, op_1 = 0, op_2
= 4

CP15: Cache operations: Wait Wait for interrupt CP = 15: CRn = 7, CRm = 0, op_1 = 0, op_2 = 4

Table B-11 ARM1020E (continued)

Name Description Register
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. B-21

Coprocessor Registers
B.12 ARM10E processor

Table B-12 describes the coprocessor registers of the ARM10E processor.

Table B-12 ARM10E

Name Description Register

CP15: ID Chip ID CP = 15: CRn = 0, CRm = 0, op_1 = 0, op_2 = 0

CP15: Type Cache type CP = 15: CRn = 0, CRm = 0, op_1 = 0, op_2 = 1

CP15: Control Control CP = 15: CRn = 1, CRm = 0, op_1 = 0, op_2 = 0

CP15: TTBR Translation table base register CP = 15: CRn = 2, CRm = 0, op_1 = 0, op_2 = 0

CP15: DACR Domain access control register CP = 15: CRn = 3, CRm = 0, op_1 = 0, op_2 = 0

CP15: FSR Fault status register CP = 15: CRn = 5, CRm = 0, op_1 = 0, op_2 = 0

CP15: DFAR Fault address register CP = 15: CRn = 6, CRm = 0, op_1 = 0, op_2 = 0

CP15: IFAR Fault address register CP = 15: CRn = 6, CRm = 0, op_1 = 0, op_2 = 1

CP15: DLOCK Data cache lockdown CP = 15: CRn = 9, CRm = 0, op_1 = 0, op_2 = 0

CP15: ILOCK Instruction cache lockdown CP = 15: CRn = 9, CRm = 0, op_1 = 0, op_2 = 1

CP15: TLBDLOCK Data TLB lockdown CP = 15: CRn = 10, CRm = 0, op_1 = 0, op_2
= 0

CP15: TLBILOCK Instruction TLB lockdown CP = 15: CRn = 10, CRm = 0, op_1 = 0, op_2
= 1

CP15: PID Process ID register CP = 15: CRn = 13, CRm = 0, op_1 = 0, op_2
= 0

CP15: Cache operations:Invalidate Invalidate both caches CP = 15: CRn = 7, CRm = 7, op_1 = 0, op_2 = 0

CP15: Cache operations:
Invalidate_I

Invalidate entire I cache CP = 15: CRn = 7, CRm = 5, op_1 = 0, op_2 = 0

CP15: Cache operations:
Invalidate_I_Address

Invalidate I cache single entry
(by address)

CP = 15: CRn = 7, CRm = 5, op_1 = 0, op_2 = 1

CP15: Cache operations: Prefetch_I Prefetch I cache line CP = 15: CRn = 7, CRm = 13, op_1 = 0, op_2
= 1

CP15: Cache operations:
Invalidate_D

Invalidate entire D cache CP = 15: CRn = 7, CRm = 6, op_1 = 0, op_2 = 0
B-22 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

Coprocessor Registers
CP15: Cache operations:
Invalidate_D_Address

Invalidate D cache single entry
(by address)

CP = 15: CRn = 7, CRm = 6, op_1 = 0, op_2 = 1

CP15: Cache operations:
Clean_D_Address

Clean D cache single entry
(by address)

CP = 15: CRn = 7, CRm = 10, op_1 = 0, op_2
= 1

CP15: Cache operations:
CleanInvalidate_D_Address

Clean and invalidate D cache
single entry (by address)

CP = 15: CRn = 7, CRm = 14, op_1 = 0, op_2
= 1

CP15: Cache operations:
Clean_D_Index

Clean D cache single index CP = 15: CRn = 7, CRm = 10, op_1 = 0, op_2
= 2

CP15: Cache operations:
CleanInvalidate_D_Index

Clean and invalidate D cache
single index

CP = 15: CRn = 7, CRm = 14, op_1 = 0, op_2
= 2

CP15: Cache operations: Drain Drain write buffer CP = 15: CRn = 7, CRm = 10, op_1 = 0, op_2
= 4

CP15: Cache operations: Wait Wait for interrupt CP = 15: CRn = 7, CRm = 0, op_1 = 0, op_2 = 4

Table B-12 ARM10E (continued)

Name Description Register
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. B-23

Coprocessor Registers
B.13 XScale processor

Table B-13 describes the coprocessor registers of the XScale processor.

Table B-13 XScale

Name Description Register

Accumulators: ACC0 Accumulator 0 CP = 15: CRn = 15, CRm = 1, op_1 = 0, op_2
= 0

Interrupt Controller: INTCTL Interrupt control register CP = 15: CRn = 15, CRm = 1, op_1 = 0, op_2
= 0

Interrupt Controller: INTSRC Interrupt source register CP = 15: CRn = 15, CRm = 1, op_1 = 0, op_2
= 0

Interrupt Controller: INTSTR Interrupt steer register CP = 15: CRn = 15, CRm = 1, op_1 = 0, op_2
= 0

Performance Monitors: PMNC Performance monitor control
register

CP = 14: CRn = 0, CRm = 0, op_1 = 0, op_2 = 0

Performance Monitors: CCNT Clock count register CP = 14: CRn = 1, CRm = 0, op_1 = 0, op_2 = 0

Performance Monitors: PMN0 Performance count register 0 CP = 14: CRn = 2, CRm = 0, op_1 = 0, op_2 = 0

Performance Monitors: PMN1 Performance count register 1 CP = 14: CRn = 3, CRm = 0, op_1 = 0, op_2 = 0

Software Debug: IBCR0 Instruction breakpoint and
control register 0

CP = 15: CRn = 14, CRm = 8, op_1 = 0, op_2
= 0

Software Debug: IBCR1 Instruction breakpoint and
control register 1

CP = 15: CRn = 14, CRm = 9, op_1 = 0, op_2
= 0

Software Debug: DBR0 Data breakpoint register 0 CP = 15: CRn = 14, CRm = 0, op_1 = 0, op_2
= 0

Software Debug: DBR1 Data breakpoint register 1 CP = 15: CRn = 14, CRm = 3, op_1 = 0, op_2
= 0

Software Debug: DBCON Data breakpoint controls
register

CP = 15: CRn = 14, CRm = 4, op_1 = 0, op_2
= 0

Software Debug: TX Transmit register CP = 14: CRn = 8, CRm = 0, op_1 = 0, op_2 = 0

Software Debug: RX Receive register CP = 14: CRn = 9, CRm = 0, op_1 = 0, op_2 = 0

Software Debug: DCSR Debug control and status
register

CP = 14: CRn = 10, CRm = 0, op_1 = 0, op_2
= 0
B-24 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

Coprocessor Registers
Software Debug: CHKPT0 Checkpoint register 0 CP = 14: CRn = 12, CRm = 0, op_1 = 0, op_2
= 0

Software Debug: CHKPT1 Checkpoint register 1 CP = 14: CRn = 13, CRm = 0, op_1 = 0, op_2
= 0

Software Debug: TXRXCTRL TX RX control register CP = 14: CRn = 14, CRm = 0, op_1 = 0, op_2
= 0

Clock and Power: CCLKCFG Core clock configuration
register

CP = 14: CRn = 6, CRm = 0, op_1 = 0, op_2 = 0

Clock and Power: PWRMODE Power mode register CP = 14: CRn = 7, CRm = 0, op_1 = 0, op_2 = 0

System Control: ID Chip ID CP = 15: CRn = 0, CRm = 0, op_1 = 0, op_2 = 0

System Control: Cache type Cache type CP = 15: CRn = 0, CRm = 0, op_1 = 0, op_2 = 1

System Control: Control Control CP = 15: CRn = 1, CRm = 0, op_1 = 0, op_2 = 0

System Control: Aux Control Auxiliary control CP = 15: CRn = 1, CRm = 0, op_1 = 0, op_2 = 1

System Control: TTBR Translation table base register CP = 15: CRn = 2, CRm = 0, op_1 = 0, op_2 = 0

System Control: DAC Domain access control register CP = 15: CRn = 3, CRm = 0, op_1 = 0, op_2 = 0

System Control: FSR Fault status register CP = 15: CRn = 5, CRm = 0, op_1 = 0, op_2 = 0

System Control: FAR Fault address register CP = 15: CRn = 6, CRm = 0, op_1 = 0, op_2 = 0

System Control: PID Process ID register CP = 15: CRn = 13, CRm = 0, op_1 = 0, op_2
= 0

System Control: CP_Access Coprocessor access register CP = 15: CRn = 15, CRm = 1, op_1 = 0, op_2
= 0

System Control: Cache operations:
Invalidate

Invalidate I+D cache and BTB CP = 15: CRn = 7, CRm = 7, op_1 = 0, op_2 = 0

System Control: Cache operations:
Invalidate_I

Invalidate I cache and BTB CP = 15: CRn = 7, CRm = 5, op_1 = 0, op_2 = 0

System Control: Cache operations:
Invalidate_I_Address

Invalidate I cache line (by
address)

CP = 15: CRn = 7, CRm = 5, op_1 = 0, op_2 = 1

System Control: Cache operations:
Invalidate_D

Invalidate D cache CP = 15: CRn = 7, CRm = 6, op_1 = 0, op_2 = 0

Table B-13 XScale (continued)

Name Description Register
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. B-25

Coprocessor Registers
System Control: Cache operations:
Invalidate_D_Address

Invalidate D cache line CP = 15: CRn = 7, CRm = 6, op_1 = 0, op_2 = 1

System Control: Cache operations:
Clean_D

Clean D cache line CP = 15: CRn = 7, CRm = 10, op_1 = 0, op_2
= 1

System Control: Cache operations:
Drain

Drain write (and fill) buffer CP = 15: CRn = 7, CRm = 10, op_1 = 0, op_2
= 4

System Control: Cache operations:
Invalidate_BTB

Invalidate branch target buffer CP = 15: CRn = 7, CRm = 5, op_1 = 0, op_2 = 6

System Control: Cache operations:
Allocate_D_Address

Allocate line in the D cache CP = 15: CRn = 7, CRm = 2, op_1 = 0, op_2 = 5

System Control: TLB operations:
Invalidate

Invalidate I+D TLB CP = 15: CRn = 8, CRm = 7, op_1 = 0, op_2 = 0

System Control: TLB operations:
Invalidate_I

Invalidate I TLB CP = 15: CRn = 8, CRm = 5, op_1 = 0, op_2 = 0

System Control: TLB operations:
Invalidate_I_Address

Invalidate I TLB entry
(by address)

CP = 15: CRn = 8, CRm = 5, op_1 = 0, op_2 = 1

System Control: TLB operations:
Invalidate_D

Invalidate D TLB CP = 15: CRn = 8, CRm = 6, op_1 = 0, op_2 = 0

System Control: TLB operations:
Invalidate_D_Address

Invalidate D TLB entry
(by address)

CP = 15: CRn = 8, CRm = 6, op_1 = 0, op_2 = 1

System Control: Cache lockdown:
FetchLock_I

Fetch and lock I cache line CP = 15: CRn = 9, CRm = 1, op_1 = 0, op_2 = 0

System Control: Cache lockdown:
Unlock_I

Unlock I cache CP = 15: CRn = 9, CRm = 1, op_1 = 0, op_2 = 1

System Control: Cache lockdown:
Lock_D

D cache lock register CP = 15: CRn = 9, CRm = 2, op_1 = 0, op_2 = 0

System Control: Cache lockdown:
Unlock_D

Unlock data cache CP = 15: CRn = 9, CRm = 2, op_1 = 0, op_2 = 1

System Control: TLB lockdown:
TranslateLock_I_Address

Translate and lock I TLB entry
(by address)

CP = 15: CRn = 10, CRm = 4, op_1 = 0, op_2
= 0

Table B-13 XScale (continued)

Name Description Register
B-26 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

Coprocessor Registers
System Control: TLB lockdown:
Unlock_I

Unlock I TLB CP = 15: CRn = 10, CRm = 4, op_1 = 0, op_2
= 1

System Control: TLB lockdown:
TranslateLock_D_Address

Translate and lock D TLB entry
(by address)

CP = 15: CRn = 10, CRm = 8, op_1 = 0, op_2
= 0

System Control: TLB lockdown:
Unlock_D

Unlock D TLB CP = 15: CRn = 10, CRm = 8, op_1 = 0, op_2
= 1

Table B-13 XScale (continued)

Name Description Register
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. B-27

Coprocessor Registers
B-28 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

Appendix C
Supplementary Display Module Formats

This appendix describes the structure and content of Supplementary Display Module
(SDM) files that contain display format definitions. You can read SDM files in AXD
with the importformat command. The file armperip.xml, described in the ADS Debug
Target Guide, can also contain these display format definitions. This appendix contains
the following sections:

• Predefined formats on page C-2

• User-defined formats on page C-5.
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. C-1

Supplementary Display Module Formats
C.1 Predefined formats

Some CLI commands in AXD take a display format name as an argument. Table C-1 to
Table C-6 on page C-4 list the predefined display format names that are always valid in
AXD.

Table C-1 8-bit data display formats

Format description Format name

Hexadecimal hex_8

Decimal dec_8

Unsigned decimal udec_8

Octal oct_8

Binary bin_8

ASCII ascii_8

Hex, no prefix hex_noprefix_8

Octal, no prefix oct_noprefix_8

Table C-2 16-bit data display formats

Format description Format name

Hexadecimal hex_16

Decimal dec_16

Unsigned decimal udec_16

Octal oct_16

Binary bin_16

ASCII ascii_16

Hex, no prefix hex_noprefix_16

Octal, no prefix oct_noprefix_16
C-2 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

Supplementary Display Module Formats
Table C-3 32-bit data display formats

Format description Format name

Hexadecimal hex_32

Decimal dec_32

Single fp_32

Scientific single fp_sci_32

PSR psr

JPSR jpsr

EPSR epsr

FPSR fpsr

Unsigned decimal udec_32

Octal oct_32

Binary bin_32

ASCII ascii_32

Hex, no prefix hex_noprefix_32

Octal, no prefix oct_noprefix_32

Table C-4 40-bit data display formats

Format description Format name

Hexadecimal hex_40

Decimal dec_40

Unsigned decimal udec_40

Octal oct_40

Binary bin_40

ASCII ascii_40

Hex, no prefix hex_noprefix_40

Octal, no prefix oct_noprefix_40
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. C-3

Supplementary Display Module Formats
Table C-5 64-bit data display formats

Format description Format name

Hexadecimal hex_64

Decimal dec_64

Double fp_64

Scientific double fp_sci_64

Unsigned decimal udec_64

Octal oct_64

Binary bin_64

ASCII ascii_64

Hex, no prefix hex_noprefix_64

Octal, no prefix oct_noprefix_64

Table C-6 80-bit data display formats

Format description Format name

Raw floating point fp_sci_80
C-4 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

Supplementary Display Module Formats
C.2 User-defined formats

Some CLI commands in AXD take a display format name as an argument. As well as
predefined formats, you can define your own formats in a .sdm (Supplementary Display
Module) file. This is a text file, constructed as described in the following sections:

• SDM format guide

• SDM format reference on page C-8.

C.2.1 SDM format guide

Types are defined based on fundamental types, or composites of types.

Types can be parameterized, with the parameters acting as type-modifiers. All
parameters are optional. All parameters are named, and parameters are passed in a
named list of (PARAMETER=VALUE, ...).

Types that can be user-visible have:

• a user-visible name

• an optional classification, a user-visible text string that assists the debug
controller when organising a number of types. If a classification is specified, a
name must be specified.

C++ style // comments are allowed, indicating that the rest of the line is a comment.

Two commands are defined, INCLUDE and TYPEDEF. These commands must appear at the
beginning of a line, with no white space in front of them.

Except in definitions contained within an RDI register description file, such as
armperip.xml, you can include other register type defintion files, using a #include
structure:

INCLUDE “filename” // This is a comment.

The TYPEDEF command creates new types. It takes optional parameters of CLASS and NAME.
If a type has a name, then it is user-visible. If it does not have a name, then it is visible
only in other type definitions. Examples of types are NUMERIC, FLAG, ENUM, COMPOSITE, and
IEEE_FLOAT. See SDM format reference on page C-8 for the definitive list.

For example,

TYPEDEF tZFLAG FLAG (SET="Z", UNSET="z") // This is a comment.
TYPEDEF tFIQ FLAG (SET="F", UNSET="f") // So is this.

Type definitions of ENUM and COMPOSITE types require more information than only the
type parameter list:
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. C-5

Supplementary Display Module Formats
TYPEDEF tMODE ENUM (WIDTH=5, DEFAULT=”Reserved”)
{
 "User"=0x10,
 "FIQ"=0x11,
 "IRQ"=0x12,
 "SVC"=0x13,
 "Abort"=0x17,
 "Undef"=0x1b,
 "System"=0x1f}

Duplicate definitions are allowed in enums, to account for partially decoded enums. For
example, a type given a user-visible name:

TYPEDEF tARMID (NAME=”Chip ID”, CLASS=”ARM”) ENUM (WIDTH=32)
{
 “ARM720T” = 0x41807200,
 “ARM740T” = 0x41807400,
 ...
}

In the case of composites, each atom is a FIELD or a SEPARATOR. A FIELD is defined as
groups of bits:

 FIELD [hi:lo] {,[hi:lo] {...}} (NAME=”<name>”,
 TYPE=<type>{(<params>, ...)},
 ACCESS=”<access>”)
 SEPARATOR (NAME=“String”)

Atoms combine as follows, optionally grouped using braces to provide grouping as
appropriate:

TYPEDEF tPACKEDFLOAT(NAME="2x32bit float", CLASS="Floating Point")
COMPOSITE (WIDTH=64)
{
 FIELD [63:32] (NAME="High", TYPE=IEEE_FLOAT (WIDTH=32)),
 FIELD [31:0] (NAME="Low", TYPE=IEEE_FLOAT (WIDTH=32))
}
TYPEDEF tPACKEDQ15 (NAME="2xQ-15-format", CLASS="DSP") COMPOSITE (WIDTH=32)
{
 FIELD [31:16] (NAME="High", TYPE=QFORMAT (N=1,M=15)),
 FIELD [15:0] (NAME="Low", TYPE=QFORMAT (N=1,M=15))
}
TYPEDEF tPSR (NAME=”PSR”, CLASS=”ARM”) COMPOSITE (WIDTH=32)
{
 GROUP (NAME=”Flag bits”)
 {
 FIELD [31] (NAME="Zero Flag", TYPE=tZFLAG, ACCESS=”RW”),
 FIELD [30] (NAME="Negative Flag", TYPE=tNFLAG, ACCESS=”RW”),
 FIELD [29] (NAME="Carry Flag", TYPE=tCFLAG, ACCESS=”RW”),
 FIELD [28] (NAME="Overflow Flag", TYPE=tVFLAG, ACCESS=”RW”)
C-6 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

Supplementary Display Module Formats
 },
 FIELD [27:8] (TYPE=RESERVED (WIDTH=30), ACCESS=”0”),
 GROUP (NAME=”Mode bits”)
 {
 FIELD [7] (NAME="Thumb bit", TYPE=tTHUMB, ACCESS=”RW”),
 FIELD [6] (NAME="IRQ bit", TYPE=tIRQ, ACCESS=”RW”),
 FIELD [5] (NAME="FIQ bit", TYPE=tFIQ, ACCESS=”RW”),
 SEPARATOR (TEXTNAME=”_”)
 FIELD [4:0] (NAME="Mode", TYPE=tMODE, ACCESS=”RW”)
 }
}

The access parameter is interpreted as follows:

Table C-7 Interpretation of access parameter

Value Meaning

R Readable

W Writable

V Reserved (write as read)

Z Write as zero (read undefined)

0 Always 0

1 Always 1

U Undefined

X Not readable, but cacheing any written values is permitted and useful

N Not cacheable (otherwise treated as cacheable)
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. C-7

Supplementary Display Module Formats
C.2.2 SDM format reference

Typedefs are constructed using the TYPEDEF type, described in Table C-8.

Fields are constructed using the FIELD type, described in Table C-9.

Table C-8 Typedef type

Type (param, param,
...)

Name
Classificatio
n

Notes

TYPEDEF RDIName (NAME,

CLASS)

- - RDIName = a unique name to
define the type.

NAME = “context name”.

CLASS = “context group”.

Table C-9 Field type

Type (param, param,
...)

Name
Classificatio
n

Notes

FIELD [hi:lo] {,[hi:lo]
{...}} (NAME, TYPE,
ACCESS)

- - NAME = “text name”, for dialog
and tooltip.

TYPE = any predefined
TYPEDEF or TYPEDEF
already seen in current SDM
text.

ACCESS = “access modifier”
(default = “RW”).
C-8 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

Supplementary Display Module Formats
The fundamental types are described in Table C-10.

Table C-10 Fundamental types, with parameters and classifications

Type (param, param,
...)

Name
Classificatio
n

Notes

NUMERIC (WIDTH, MIN, MAX,
DEFAULT, PREFIX, PREPAD,
PRINTF, TOOLTIP)

Numeric General WIDTH is in bits (in any type
where it is used). Required.

DEFAULT = “HEX”, “DEC”,
“UDEC”, “OCT”, or “BIN”
(default = “HEX”).

PREFIX = “Y” or “N” (default
dependent on DEFAULT).

PREPAD = “Y” or “N” (default
dependent on DEFAULT).

PRINTF = any valid printf string
for a numeric, for example
“0x%08X” (default dependent
on DEFAULT). If used, PREFIX and
PREPAD are ignored.

TOOLTIP = “A useful hint to the
user”.

FLAG (SET, UNSET,

TOOLTIP)

- - Implied WIDTH = 1, always.

SET and UNSET are usually single
character strings.

TOOLTIP = “A useful hint to the
user”.

ENUM (WIDTH, DEFAULT,

TOOLTIP)

- - WIDTH = number of bits this enum
represents.

DEFAULT = “String to show when
value not included in
enumeration (not Selectable)”.

TOOLTIP = “A useful hint to the
user”.
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. C-9

Supplementary Display Module Formats
CHARACTER (WIDTH, PRINTF,

TOOLTIP)

Characte
r

General Represents a WIDTH in bits,
accepted values 7,8, N*8.
Represents byte host-endian
array of individual characters
(not a nul-terminated string).

PRINTF = any valid printf string
for a character, for example
“\”% 4s\”” (default dependent
on WIDTH).

TOOLTIP = “A useful hint to the
user”.

IEEE_FLOAT (WIDTH,

PRINTF, TOOLTIP)

IEEE
Float

Floating point WIDTH = 32 or 64, for now.

PRINTF = any valid printf string
for a float, for example “%f”
(default dependent on WIDTH).

TOOLTIP = “A useful hint to the
user”.

FPA_SINGLE (PRINTF,

TOOLTIP)

FPA
Single

Floating point WIDTH = 32, always.

PRINTF = any valid printf string
for a float, for example “%f”
(default dependent on WIDTH).

TOOLTIP = “A useful hint to the
user”.

FPA_DOUBLE (PRINTF,

TOOLTIP)

FPA
Double

Floating point WIDTH = 64, always.

PRINTF = any valid printf string
for a float, for example “%f”
(default dependent on WIDTH).

TOOLTIP = “A useful hint to the
user”.

Table C-10 Fundamental types, with parameters and classifications (continued)

Type (param, param,
...)

Name
Classificatio
n

Notes
C-10 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

Supplementary Display Module Formats
Composite types are constructed using the composite type, described in Table C-11.

FPA_EXTENDED (PRINTF,

TOOLTIP)

FPA
Extende
d

Floating point WIDTH = 80, always.

PRINTF = any valid printf string
for a float, for example “%f”
(default dependent on WIDTH).

TOOLTIP = “A useful hint to the
user”.

FPA_INTERNAL (PRINTF,

TOOLTIP)

FP
Internal

Floating point To be confirmed.

QFORMAT (N, M, PRINTF,

TOOLTIP, DEFAULT)

Q-forma
t

DSP N = numeric.

M = numeric.

PRINTF = any valid printf string
for a float, for example “%f”
(default dependent on WIDTH).

DEFAULT = “UNSIGNED” (only
for unsigned Q-format).

TOOLTIP = “A useful hint to the
user”.

Table C-11 Composite type

Type (param, param,
...)

Name
Classificatio
n

Notes

COMPOSITE (WIDTH) - - WIDTH = number of bits expected
in data.

Table C-10 Fundamental types, with parameters and classifications (continued)

Type (param, param,
...)

Name
Classificatio
n

Notes
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. C-11

Supplementary Display Module Formats
Group types are constructed using the group type, described in Table C-12 and only
visible in a dialog.

Reserved types are constructed using the Reserved type, described in Table C-13.

Separators contain no data and are constructed using the Separator type, described in
Table C-14.

Table C-12 Group type

Type (param, param,
...)

Name
Classificatio
n

Notes

GROUP (NAME) - - NAME = “Group box name”.

Table C-13 Reserved type

Type (param, param,
...)

Name
Classificatio
n

Notes

RESERVED (WIDTH, NAME,

GUINAME, TEXTNAME)
- - WIDTH = number of bits expected

in data.

NAME = “Text to appear”.

GUINAME = “Text to appear in
GUI”. Overrides NAME.

TEXTNAME = “Text to appear in
monitor”. Overrides NAME.

Table C-14 Separator type

Type (param, param,
...)

Name
Classificatio
n

Notes

SEPARATOR (NAME, GUINAME,

TEXTNAME)

- - NAME = “Text to appear”.

If NAME = “NEWLINE” the
dialog box forces a new line of
controls from this point.

GUINAME = “Text to appear in
GUI”. Overrides NAME.

TEXTNAME = “Text to appear in
monitor”. Overrides NAME.
C-12 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

Appendix D
Using the Flash Downloader

This appendix describes the Flash downloader utility provided with ADS. It contains
the following sections:

• About the Flash downloader on page D-2

• Using the Flash downloader from AXD on page D-4

• Using the Flash downloader from armsd on page D-5

• Setting the IP address of a PID board on page D-6.
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. D-1

Using the Flash Downloader
D.1 About the Flash downloader

The Flash downloader is a simple Flash utility that you can use to write a binary file to
the Flash memory on an ARM Integrator board, or an ARM Development (PID) board.
You can use the Flash downloader from the ADS debuggers, AXD and armsd.

The Flash downloader executes on the target board. When you invoke the Flash
downloader from within a debugger, the debugger downloads the Flash downloader into
RAM on the target board. The Flash downloader executes, and uses semihosting to fetch
the code to program into Flash. The downloaded file must be in plain binary format.
Refer to ADS Linker and Utilities Guide for information on converting an ELF format
file to plain binary.

The Flash downloader requires either:

• Multi-ICE

• Angel, running from RAM.

D.1.1 Integrator board version

The default Integrator version of the Flash downloader is supplied as a binary in
install_directory\bin\flash.li. This can be used to program standard CFI-type Flash
devices, for example the Intel DT28F320 and similar, as fitted to the ARM Integrator
board.

Note
 The Integrator version of the Flash downloader works only with the ARM Integrator
board.

The ARM Integrator board cannot work in big-endian mode. A dummy flash.bi file is
installed that issues a warning if you attempt to use it.

Setting the Integrator board configuration switches

The switch settings on the Integrator board select whether the default image, the boot
monitor, or a user image is run on reset.

The sequence below works for downloading to most Integrator boards:

1. Set switch 1 to on.

Refer to the manuals provided with the Integrator board for more details on
settings.

2. Turn the board power off then back on.
D-2 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

Using the Flash Downloader
3. Start AXD and use the Flash downloader.

4. Set switch 1 to off.

5. Turn the board power off then back on to run the downloaded image.

If you load and run an image that does not do ROM/RAM remapping, subsequent
attempts to load or run any other image fail with an undefined instruction error. Use the
boot monitor in ROM on the Integrator board and a terminal emulator to clear the Flash.

D.1.2 PID board version

Big-endian and little-endian versions of the Flash downloader for the ARM
Development (PID) board are supplied in:

• install_directory\bin\flashpid.li

• install_directory\bin\flashpid.bi.

To use the PID version of the little-endian Flash downloader from AXD, rename
flash.li to flash_Integrator.li (or similar), and rename flashpid.li to flash.li.

To use the PID version of the big-endian Flash downloader from AXD, rename flash.bi
to flash_dummy.bi (or similar), and rename flashpid.bi to flash.bi.

Note
 The PID versions of the Flash downloader fail if they do not recognize the Flash
memory being used. The PID versions of the Flash downloader recognize the two Flash
devices supported by the ARM Development (PID) board, the ATMEL AT29C040A (4
Mbit, 8-bit) and AT29C1024 (1 Mbit, 16-bit) Flash devices.
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. D-3

Using the Flash Downloader
D.2 Using the Flash downloader from AXD

Follow these steps to use the Flash downloader from AXD:

1. Select Flash Download… from the File menu. The Flash DownLoad dialog is
displayed (Figure D-1).

Figure D-1 Flash DownLoad dialog

2. Specify the input information or click Browse to select a binary file to download.
You can either use the default block, image, and address values or enter new
values:

• If you do not enter any loader information, the downloader uses the default
values:

Image number 128

Block number 0

Image base 0x24000000

• If you require different values than the defaults, enter the input information
in the format:
[a<address> |or| b<block_no>] i<image_no> pathname

For example:
b5 i5 my_image

Note
 If the pathname to the binary file contains spaces you must enclose the pathname

in quotes.

3. Click OK. The Flash downloader reads the binary file and displays the download
settings in the Console processor view. You can edit the settings if required.

4. Edit the settings, if required, or press Enter. The Console view displays a message
when the Flash is written.
D-4 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

Using the Flash Downloader
D.3 Using the Flash downloader from armsd

Note
 This section applies only if you are targeting Angel or EmbeddedICE. armsd does not
support Multi-ICE.

To use the Flash downloader from the command line (assuming that you have a
serial/parallel connection) write a batch file containing this command:

armsd -adp -port s=1,p=1 -line 38400 -exec flash ROMname

where:

flash Is the name of the Flash downloader. By default this is:
install_directory\bin\flash.li for the ARM Integrator board.

Note
 If you want to use the Flash downloader for the ARM Development (PID)

board, you must specify the actual file name as a parameter to armsd
using, for example:

armsd -adp -port s=1,p=1 -line 38400 -exec flashpid.li ROMname

ROMname Is the name of the binary file that you want to be programmed into Flash
memory.

Note
 If the pathname to the binary file contains spaces you must enclose the

pathname in quotes.

Execute the batch file to download to Flash. Enter the address to start writing from when
prompted to do so.
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. D-5

Using the Flash Downloader
D.4 Setting the IP address of a PID board

If you are using the Angel Ethernet Kit with an ARM Development (PID) board, you
can use the Flash downloader program to override the default IP address and net mask
used by Angel for Ethernet communication:

• From AXD, select the Set ethernet address button in the Flash DownLoad dialog
(see Figure D-1 on page D-4).

• From armsd, pass the Flash download program the argument -e. The program
prompts for the IP address and net mask.

Note
 The Ethernet option is not applicable to the ARM Integrator board, and is ignored.
D-6 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

Glossary

The items in this glossary are listed in alphabetical order, with any symbols and
numerics appearing at the end.

Action Point A breakpoint or watchpoint (see Breakpoint and Watchpoint), at which a specified
debugging action occurs. The default action is to stop execution. Another typical action
you can specify is to record a diagnostic message in a log file and continue execution.

ADP See Angel Debug Protocol.

ADS See ARM Developer Suite.

Angel Angel is a debug monitor that enables you to develop and debug applications running
on ARM-based hardware. Angel can debug applications running in either ARM state or
Thumb state.

Angel Debug Protocol
Angel uses a debugging protocol called the Angel Debug Protocol (ADP) to
communicate between the host system and the target system. ADP supports multiple
channels and provides an error-correcting communications protocol.

ARM Developer Suite
A suite of applications, together with supporting documentation and examples, that
enable you to write and debug applications for the ARM family of RISC processors.
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. Glossary-1

Glossary
ARM eXtended Debugger
The ARM eXtended Debugger (AXD) is the latest debugger software from ARM that
enables you to make use of a debug agent in order to examine and control the execution
of software running on a debug target. AXD is supplied in both Windows and UNIX
versions.

ARM state A processor that is executing ARM (32-bit) instructions is operating in ARM state (see
also Jazelle state and Thumb state).

ARM symbolic debugger
ARM Symbolic Debugger (armsd) is an interactive source-level debugger providing
high-level debugging support for languages such as C, and low-level support for
assembly language. It is a command-line debugger that runs on all supported platforms.

armsd See ARM Symbolic Debugger.

ARMulator ARMulator is an instruction set simulator. It is a collection of modules that simulate the
instruction sets and architecture of various ARM processors.

ATPCS ARM/Thumb Procedure Call Standard.

AXD See ARM eXtended Debugger.

Big-endian Memory organization where the least significant byte of a word is at a higher address
than the most significant byte. See also Little-endian.

Breakpoint A location in the image. If execution reaches this location, the debugger halts execution
of the image. See also Watchpoint.

ByteCode ByteCode format specifies the use of Jazelle bytecodes which are platform-independent
instructions, generated by a compiler, and run on the Java Virtual Machine (JVM).

Class A C++ class involved in the image.

Class variables/functions
Variables or functions with scope limited to the current class. (See also Local
variables/functions and Global variables/functions.)

CLI See Command-line Interface.

Command-line Interface
You can operate any ARM debugger by issuing commands in response to command-line
prompts. This is the only way of operating armsd, but AXD offers a graphical user
interface in addition. A command-line interface is particularly useful when you need to
run the same sequence of commands repeatedly. You can store the commands in a file
and submit that file to the command-line interface of the debugger.

Context The information stored in a block of registers on entry to a subroutine, and held there
until needed for restoring the information on exit from the subroutine.
Glossary-2 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

Glossary
Context menu See Pop-up menu.

Control Bars A control bar is a special window which is usually aligned along one side of a frame
window. Control bars can be considered containers for other windows and controls or
as a drawing area for the application.

Coprocessor An additional processor used for certain operations. Usually used for floating-point
calculations, signal processing, or memory management.

CPSR Current Program Status Register. See Program Status Register.

DCC See Debug Communications Channel.

Debug Communications Channel
A debug communications channel allows data to be passed between the target and the
host debugger using the JTAG port and an EmbeddedICE interface, without stopping
the program flow or entering debug state.

Debugger An application that monitors and controls the execution of a second application. Usually
used to find errors in the application program flow.

Deprecated A deprecated option or feature is one that you are strongly discouraged from using.
Deprecated options and features will not be supported in future versions of the product.

DLL See Dynamic Linked Library.

Dockable Windows A dockable window is positioned and sized automatically when you open it or dock it,
with any other docked windows already on the screen being resized if necessary. You
can change the size of a docked window, or undock it and allow it to float free on the
desktop.

Double word A 64-bit unit of information. Contents are taken as being an unsigned integer unless
otherwise stated.

DWARF Debug With Arbitrary Record Format.

Dynamic Linked Library
A collection of programs, any of which can be called when needed by an executing
program. A small program that helps a larger program communicate with a device such
as a printer or keyboard is often packaged as a DLL.

ELF Executable and Linking Format.

Enhanced Program Status Register
See Program Status Register.

EPSR Enhanced Program Status Register. See Program Status Register.

Executable image See Image.
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. Glossary-3

Glossary
File A disk file somehow involved in the debuggee or debugger. This will most likely be a
source file compiled/assembled into an image. However it might also be an image file
or a session file.

Flash downloader The Flash downloader is used to download binary images to the Flash memory of
supported ARM development boards.

Floating point Convention used to represent real (as opposed to integer) numeric values. Several such
conventions exist, trading storage space required against numerical precision.

Floating point emulator
Software that emulates the action of a hardware unit dedicated to performing arithmetic
operations on floating-point values.

FP See Floating point.

FPE See Floating Point Emulator.

Function A C++ method or free function.

Global variables/functions
Variables or functions with global scope within the image. (See also Class
variables/functions and Local variables/functions.)

Harvard
architecture

A processor architecture incorporating physically separate memories and associated
buses for holding instructions and data.

Halfword A 16-bit unit of information. Contents are taken as being an unsigned integer unless
otherwise stated.

Host A computer which provides data and other services to another computer, or a computer
that has applications programs installed and available for use.

ICE In-Circuit Emulator.

IDE See Integrated Development Environment.

Image A file of executable code which can be loaded into memory on a target and executed by
a processor there.

Integrated development environment
An IDE provides facilities for automating image-building and file-management
processes, for example the CodeWarrior IDE in ADS.

Jazelle ARM’s technology for Java applications that enables Jazelle-capable processors, such
as the ARM926EJ-S, to execute Java bytecode directly.

Jazelle state A processor that is executing Jazelle bytecode (8-bit) instructions is operating in Jazelle
state (see also ARM state and Thumb state).
Glossary-4 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

Glossary
Joint Test Action Group
Many debug and programming tools use a Joint Test Action Group (JTAG) interface port
to communicate with processors. For further information refer to IEEE Standard, Test
Access Port and Boundary-Scan Architecture specification 1149.1 (JTAG).

JPSR Jazelle Program Status Register. See Program Status Register.

JTAG See Joint Test Action Group.

Little-endian Memory organization where the least significant byte of a word is at a lower address
than the most significant byte. See also Big-endian.

Local variables/functions
Variables or functions with local scope. (See also Class variables/functions and Global
variables/functions.)

MDI See Multiple Document Interface.

Memory management unit
Hardware that controls caches and access permissions to blocks of memory, and
translates virtual to physical addresses.

MMU See Memory Management Unit.

Multi-ICE Multi-processor based JTAG debug tool for embedded systems. ARM registered
trademark.

Multiple Document Interface
A feature of MS Windows allowing the simultaneous display of a number of windows.

von Neumann
architecture

A processor architecture that does not distinguish between memory that holds
instructions and memory that holds data.

PID A platform-independent development board designed and supplied by ARM Ltd.

Pop-up menu Also known as Context menu. A menu that is displayed temporarily, offering items
relevant to your current situation. Obtainable in most ADS windows by right-clicking
with the mouse pointer inside the window. In some windows the pop-up menu can vary
according to the line the mouse pointer is on and the tabbed page that is currently
selected.

Processor An actual processor, real or simulated running on the target. A processor always has at
least one context of execution.

Processor Status Register
See Program Status Register.

Profiling Accumulation of statistics during execution of a program being debugged, to measure
performance or to determine critical areas of code.
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. Glossary-5

Glossary
Call-graph profiling provides great detail but slows execution significantly. Flat
profiling provides simpler statistics with less impact on execution speed.

For both types of profiling you can specify the time interval between
statistics-collecting operations.

Program image See Image.

Program Status Register
Program Status Register (PSR), containing some information about the current program
and some information about the current processor.

Is also referred to as Current PSR (CPSR), to emphasize the distinction between it and
the Saved PSR (SPSR). The SPSR holds the value the PSR had when the current
function was called, and which will be restored when control is returned.

An Enhanced Program Status Register (EPSR) contains an additional bit (the Q bit,
signifying saturation) used by some ARM processors, including the ARM9E.

A Jazelle Program Status Register (JPSR) contains an additional bit (the J bit,
signifying Jazelle state) used by some ARM processors, including the ARM9EJ-S.

PSR See Program Status Register.

RDI See Remote Debug Interface.

Register A processor register.

Remote_A A communications protocol used, for example, between debugger software such as
ARM eXtended Debugger (AXD) and a debug agent such as Angel.

Remote Debug Interface
The Remote Debug Interface (RDI) is an ARM standard procedural interface between
a debugger and the debug agent. RDI gives the debugger a uniform way to communicate
with:

• a debug agent running on the host (for example, ARMulator)

• a debug monitor running on ARM-based hardware accessed through a
communication link (for example, Angel)

• a debug agent controlling an ARM processor through hardware debug support
(for example, Multi-ICE).

Saved Program Status Register
See Program Status Register.

Scope The range within which it is valid to access such items as a variable or a function. See
also Class, Global and Local variables/functions.
Glossary-6 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

Glossary
Script A file specifying a sequence of debugger commands that you can submit to the
command-line interface using the obey command. This saves you from having to enter
the commands individually, and is particularly helpful when you need to issue a
sequence of commands repeatedly.

SDT See Software Development Toolkit.

Semihosting A mechanism whereby the target communicates I/O requests made in the application
code to the host system, rather than attempting to support the I/O itself.

Software Development Toolkit
Software Development Toolkit (SDT) is an ARM product still supported but superseded
by ARM Developer Suite (ADS).

Source File A file which is processed as part of the image building process. Source files are
associated with images.

SPSR Saved Program Status Register. See Program Status Register.

Stack backtracing Examining the list of currently active subroutines in a halted executing program to help
establish how current settings have arisen.

Tabbed A GUI mechanism to overlay several pages in a single window, allowing page selection
by clicking on a named tab.

Target The target processor (real or simulated), on which the target application is running.

The fundamental object in any debugging session. The basis of the debugging system.
The environment in which the target software will run. It is essentially a collection of
real or simulated processors.

Thumb state A processor that is executing Thumb (16-bit) instructions is operating in Thumb state
(see also ARM state and Jazelle state).

Tracing Recording diagnostic messages in a log file, to show the frequency and order of
execution of parts of the image. The text strings recorded are those that you specify
when defining a breakpoint or watchpoint. See Breakpoint and Watchpoint. See also
Stack backtracing.

Vector Floating Point
A standard for floating-point coprocessors where several data values can be processed
by a single instruction.

VFP See Vector Floating Point.

Views Windows showing the data associated with a particular debugger/target object. These
might consist of a single, simple GUI control such as an edit field or a more complex
multi-control dialog implemented as an ActiveX.
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. Glossary-7

Glossary
The Processor Views menu allows you to select views associated with a specific
processor, while the System Views menu allows you to select system-wide views.

Watchpoint A location in the image that is monitored. If the value stored there changes, the debugger
halts execution of the image. See also Breakpoint.

Word A 32-bit unit of information. Contents are taken as being an unsigned integer unless
otherwise stated.
Glossary-8 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

Index
A
About this book viii
Accelerator keys 2-14
Access protection, in

AXD expressions 4-5
Accessing

host peripherals 1-9
online help 1-12, 9-22

Address of DCC semihosting SWI
handler 4-11

Addresses, entering 4-12
Agent, debug 1-2
Alias armsd command 9-10
Analysis of processor time 4-27
Angel 1-9

configuring 5-94
Debug Protocol (ADP) 2-8, 7-4

Applying for a software license 2-2
Arguments armsd command 9-11
Arguments, command-line 2-3, 5-52,

7-3
ARM

disassembly mode 5-80
ARM ADI 1-9
ARM Agilent Debug Interface 1-9
ARM core 1-8
ARM debuggers 1-11

armsd 7-2
AXD 2-1

armsd 7-1
address constants 8-6
armsd.ini file 7-2
ARMulator 7-4
backtrace 9-3
big-endian memory 7-3
breakpoints 8-4, 9-2
character constants 8-6
clock speed 7-4
command-line arguments for

debugee 9-25
command-line options 7-3
communications channel 9-46
configuring 7-2
constants 8-6
context of variables 8-2

coprocessor register display 9-4
displaydesc argument 9-15
duration of simulation 8-7
echoing commands 8-7
EmbeddedICE commands 9-47
EmbeddedICE variables 8-10
execution options 7-4
expressions as arguments 8-5
flash downloader D-5
floating point emulator 7-3
formatting output 8-11
getting started 8-1
help on 7-3
high-level language variables 8-2
high-level languages 9-23
initialization file 7-2
input from named file 7-4
internal variables 8-10
invoking 7-3
let command 8-11
list of variables 8-7
little-endian memory 7-3
loading debug information 7-4
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. Index-1

Index
low-level debugging 8-13, 9-3
low-level symbols 8-13, 8-15
Multi-ICE variables 8-10
multi-statement lines 9-45
names of variables 8-2
operating system commands 9-5
output to file 7-4
overview 7-2
predefined symbols 8-14
print command 8-11
procedure names 8-4
processor type 7-3
profiling data 9-5
program line numbers 8-4
program locations 8-4
prompts 9-5, 9-6
remote debugging using ADP 7-4
search paths 7-4
setting the psr 8-15
source-level objects 8-2
starting debugee 9-3
starting debugger 7-3
statements withina line 8-4
stopping debugee 9-2
stopping debugger 9-5, 9-35
subscripts, pointers and arrays 8-6
symbols 7-4
syntax overview 7-3
variables 8-7
watchpoints 9-3

armsd commands 9-7, A-2
alias 9-5, 9-10
arguments 9-2, 9-11
backtrace 9-3, 9-11
break 9-2, 9-12
call 9-2, 9-13
ccin 9-46
ccout 9-46
comment 9-5, 9-9
compared with AXD A-2
context 9-3, 9-16
coproc 9-4, 9-13
cregdef 9-4, 9-16
cregisters 9-4, 9-16
cwrite 9-4, 9-17
examine 9-4, 9-17
find 9-4, 9-18
fpregisters 9-4, 9-19
getfile 9-3, 9-21

go 9-3, 9-21
help 9-5, 9-22
in 9-3, 9-22
istep 9-3, 9-22
language 9-3, 9-23
let 8-15, 9-24
list 9-4, 9-27
listconfig 9-47
load 9-3, 9-28
loadagent 9-47
loadconfig 9-47
localvar 9-28
log 9-5, 9-30
lsym 9-4, 9-31
obey 9-5, 9-31
out 9-3, 9-32
pause 9-5, 9-6, 9-32
print 9-5, 9-33
profclear 9-5, 9-6, 9-33
profoff 9-5, 9-6, 9-33
profon 9-5, 9-6, 9-34
profwrite 9-5, 9-34
putfile 9-3, 9-35
quit 9-5, 9-35
readsyms 9-36
registers 9-4, 9-36
reload 9-3, 9-37
selectconfig 9-48
step 9-3, 9-39
symbols 9-40
type 9-5, 9-41
unbreak 9-3, 9-42
unwatch 9-3, 9-42
variable 9-2, 9-43
watch 9-3, 9-43
where 9-3, 9-44
while 9-45
! 9-5, 9-9
| 9-5, 9-9

ARMulate.cnf file 2-6
ARMulator 1-8

configuring 2-6, 5-88
floating point emulator 5-90

Array expansion 2-10, 5-84
ASCII

format 4-19
search string 5-17

ASIC 1-8
Asm, specifying in CLI 6-9

Assembly code interleaved with C++
5-44

Audience, intended viii
AXD

CLI window 6-2
closing down 2-5, 5-15
command-line operation 5-65, 6-2
commands 6-13
configuring 5-80
desktop 5-2
displays 2-9
execute menu 5-76
file menu 5-6
flash download 5-11
help menu 5-102
menu bar 5-2
menus 2-12, 5-2
options menu 5-80
processor views menu 5-18
search menu 5-16
starting 2-3
status bar 5-5, 5-98
system views menu 5-48
toolbars 5-3
tools 2-14
window menu 5-99

AXD CLI commands 6-13, A-2
backtrace 6-13
break 6-14
cclasses 6-16
cfunctions 6-16
classes 6-16
clear 6-17
clearbreak 6-17
clearstat 6-18
clearwatch 6-19
comment 6-19
compared with armsd A-2
context 6-20
convariables 6-21
cvariables 6-22
dbginternals 6-22
disassemble 6-23
echo 6-24
examine 6-24
files 6-25
fillmem 6-25
findstring 6-26
findvalue 6-27
Index-2 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

Index
format 6-28
functions 6-29
getfile 6-29
go 6-29
help 6-29
images 6-30
imgproperties 6-30
importformat 6-31
let 6-31
list 6-31
listformat 6-32
load 6-32
loadbinary 6-33
loadsession 6-34
loadsymbols 6-34
log 6-34
lowlevel 6-35
memory 6-35
obey 6-36
parse 6-36
print 6-36
processors 6-37
procproperties 6-37
putfile 6-37
quitdebugger 6-38
readsyms 6-38
record 6-38
regbanks 6-38
registers 6-39
reload 6-40
run 6-40
runtopos 6-41
savebinary 6-42
savesession 6-43
setaci 6-43
setbreakprops 6-44
setimgprop 6-45
setmem 6-45
setpc 6-46
setproc 6-46
setprocprop 6-47
setreg 6-48
setsourcedir 6-49
setwatch 6-50
setwatchprops 6-51
source 6-52
sourcedir 6-53
stackentries 6-53
stackin 6-54

stackout 6-54
statistics 6-54
step 6-55
stepsize 6-56
stop 6-56
trace 6-56
traceload 6-57
type 6-57
unbreak 6-57
unwatch 6-57
update 6-57
variables 6-58
watch 6-59
watchpt 6-59
where 6-61

AXD processor views 5-18
backtrace 5-29
console 5-39
debug comms channel 5-37
disassembly 5-40
low-level symbols 5-35
memory 5-31
registers 5-19
source... 5-44
variables 5-26
watch 5-23

AXD system views 5-48
command-line interface 5-65
control 5-49
debugger internals 5-69
output 5-63
registers 5-54
watch 5-56

B
Backtrace

AXD view 5-29
Backtrace armsd command 9-11
Backtrace AXD command 6-13
Base classes

in AXD 4-4
Binary format 4-19
Books, related x
Book, about this viii
Break armsd command 9-12
Break AXD command 6-14
Breakpoints

deleting 5-79
identifying in CLI 6-9
in armsd 8-4, 9-2
in AXD 3-4, 5-58, 5-78

C
Call armsd command 9-13
Cclasses AXD command 6-16
C-cycles 5-73
Cfunctions AXD command 6-16
Changing values of variables

in AXD 5-26
Class

page in Control view 5-50
Classes AXD command 6-16
Class, identifying in CLI 6-9
Clear AXD command 6-17
Clearbreak AXD command 6-17, 6-18
Clearwatch AXD command 6-19
Closing

armsd 9-35
AXD 2-5

Code, ARM/Thumb/Jazelle 5-80, 6-6
Command-line arguments for debugee

in armsd 7-3
in AXD 5-52

Command-line arguments for debugger
armsd 7-3
AXD 2-3

Command-line operation
definitions 6-9
of armsd 9-7, A-2
of AXD 5-65, 6-2, A-2
predefined parameters 6-6

Commands
AXD and armsd compared A-2
echoing 8-7
in armsd 9-1
in AXD 6-13
that use lists 6-5

Comment AXD command 6-19
Comments

in script files 9-9
on ADS xii
on documentation xii

Comms channel 4-11, 5-37, 5-93, 5-96,
5-97, 6-10, 9-46
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. Index-3

Index
AXD view 5-37
Concepts 1-2
Configuring

armsd debugger 7-2
ARMulator 2-6, 5-88
AXD debugger 5-80
debugger target 5-87
Multi-ICE 5-93
Remote_A 5-94

Console
AXD view 5-39

Constants 8-6
Context armsd command 9-16
Context AXD command 6-20
Context of execution 5-78
Context of program 1-3, 6-54, 9-22,

9-32
Context, identifying in CLI 6-9
Control AXD view 5-49
Convariables AXD command 6-21
Coproc armsd command 9-13
Coprocessor register

changing contents 9-17
descriptions B-1
displaying contents 9-16

Cregdef armsd command 9-16
Cregisters armsd command 9-16
Cvariables AXD command 6-22
Cwrite armsd command 9-17
Cycle counts 5-73
C++

interleaved with assembly code
5-44

D
Data entry formats 4-12, 4-16
Dbginternals AXD command 6-22
Debug

agent 1-2
comms channel SWI handler 4-11
comms channel viewing 4-11, 5-37,

5-93, 5-96, 5-97, 6-10, 9-46
log 5-63
monitor 1-9
protocol (ADP) 2-8, 7-4
session, restoring 5-12
symbols 5-8, 5-29

typical setup 1-6
Debugger internals

AXD view 5-69
Debuggers

closing down 2-5, 9-35
currently supported 1-11
starting program execution 5-76,

9-21
starting up 2-3, 7-3

Decimal 4-12
Decimal format 4-18
Deleting breakpoints

in armsd 9-42
in AXD 5-58, 5-79

Demonstration programs 3-2
Desktop

AXD 5-2
Development board 1-6
Disassemble AXD command 6-23
Disassembly

AXD view 5-40
mode 5-42, 5-80
sequence break 5-45

Display formats 4-16
Displaying interleaved code 5-44
Documentation feedback xii
Download

flash D-2

E
Echo AXD command 6-24
Editing breakpoints

in AXD 5-58
EmbeddedICE 1-8
Enquiries xii
Entering addresses 4-12
E-PSR, setting, in AXD 5-20
Examine armsd command 9-17
Examine AXD command 6-24
Examining

memory 5-31
source files 5-9, 5-16, 5-44
variables 5-26

Examples 3-2
breakpoint setting 3-4
changing memory contents 3-16
examining memory 3-14

examining registers 3-12
examining variables 3-8
updating a program 3-18
watchpoint setting 3-6

Exceptions intercepted 5-97
Execute AXD menu 5-76
Execution

context 5-78
starting 5-76, 9-21
stopping 5-77
stopping and stepping 4-2

Exiting debugger 2-5, 5-15, 9-35
Expansion of arrays 2-10, 5-84
Expressions

as arguments 8-5
guidelines for using 4-4
sample 4-5
specifying 4-4
watching, in AXD 5-57

F
Feedback

on ADS xii
on documentation xii

File AXD menu 5-6
Files

armsd.ini 7-2
ARMulate.cnf 2-6
AXD command 6-25
identifying, in CLI 6-9
page in Control view 5-50
recently-opened 5-13

Fillmem AXD command 6-25
Find armsd command 9-18
Findstring AXD command 6-26
Findvalue AXD command 6-27
Flash download

override IP address and net mask
D-6

Flash downloader D-2
Floating point

emulator, in armsd 7-3
emulator, in ARMulator 5-90
formats 4-20

Floating-point
returning values from armsd 8-8
vector 5-70, 8-9
Index-4 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

Index
Format
ASCII 4-19
AXD command 6-28
binary 4-19
decimal 4-18
display 4-16, 5-27, 5-80
floating point 4-20
for data entry 4-16
hexadecimal 4-18, 4-26
octal 4-18, 4-26
of armsd output 8-11
printf 4-19
Q-format 4-24
registers 4-21
scientific 4-20
specifying in CLI 6-9
string 4-25
submenus 4-16
U decimal 4-25

Fpregisters armsd command 9-19
Function calls to RDI 5-63
Functions

AXD command 6-29
stepping into/out of 5-77, 6-7

G
Getfile armsd command 9-21
Getfile AXD command 6-29
Glossary Glossary-1
Go armsd command 9-21
Go AXD command 6-29

H
Halfwords, reading/writing

in armsd 9-25
Help armsd command 9-22
Help AXD command 6-29
Help, online 1-12, 5-102, 9-22
Hexadecimal 4-12

format 4-18, 4-26
search string 5-17

High-level languages and armsd 8-2
High-level symbols 4-10, 4-12
Host peripherals, accessing 1-9

I
I-cycles 5-73
Image

loading 5-7, 6-32, 9-28
page in Control view 5-49
reloading 5-9, 6-40, 9-37
stepping through 5-77, 6-55, 9-39
stopping execution of 5-77

Images AXD command 6-30
Images, recently-opened 5-13
Image, identifying in CLI 6-9
Imgproperties AXD command 6-30
Importformat AXD command 6-31
In armsd command 9-22
Indicators

6-4, 8-14, 9-7
$ 9-7
+ 6-4
@ 4-10, 6-4, 9-7
^ 8-13, 9-7
| 6-4

Instr, specifying in CLI 6-10
Intended audience viii
Intercepted exceptions 5-97
Interfacing with targets 1-5
Interleaving C++ and assembly code

5-44
Internal variables 5-69, 8-7
IPvariable, specifying in CLI 6-10
Istep armsd command 9-22

J
Jazelle

disassembly mode 5-80
J-PSR, setting, in AXD 5-20
JTAG 1-8

K
Keyboard shortcuts 2-14

L
Language armsd command 9-23

Languages
high-level and armsd 8-2

Launching AXD from DOS 2-3
Let

armsd command 8-11
AXD command 6-31

Let armsd command 9-24
License application 2-2
License-managed software 2-2
Line number 4-12
Line numbers

in programs 8-4
Line, stepping to next 5-77, 6-55
List armsd command 9-27
List AXD command 6-31
Listformat AXD command 6-32
Lists in AXD commands 6-5
Load armsd command 9-28
Load AXD command 6-32
Load session 5-12
Loadbinary AXD command 6-33
Loading

an image 5-7, 6-32, 9-28
debug symbols 5-8
memory from file 5-9

Loadsession AXD command 6-34
Loadsymbols AXD command 6-34
Localvar armsd command 9-28
Log armsd command 9-30
Log AXD command 6-34
Log messages 5-63
Logging CLI input and output 5-66
Lowlevel AXD command 6-35
Low-level debugging in armsd 8-13
Low-level symbols 4-10, 4-12

AXD view 5-35
Lsym armsd command 9-31

M
Member functions, in

AXD expressions 4-5
Memory

AXD command 6-35
AXD view 5-31
loading from file 5-9
modifying 3-16
reading/writing, in armsd 9-25
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. Index-5

Index
reading/writing, in AXD 5-35
saving to file 5-10
viewing 3-14
word size for display in CLI 6-10

Menu bar
AXD 5-2

Menus
AXD 2-12, 5-2
AXD view-specific 2-13, 5-2
pop-up 2-13

Mode
disassembly 5-42, 5-80
stepping 5-42, 5-46

Modifying variables 5-26
Monitor, debug 1-9
Multi-ICE 1-8, 5-93

N
N-cycles 5-73

O
Obey armsd command 9-31
Obey AXD command 6-36
Octal format 4-18, 4-26
Online help 1-12, 9-22
Opening a source file 5-9
Operating system

accessing from armsd 9-9
Operators, in

AXD expressions 4-4
Options AXD menu 5-80
Out armsd command 9-32
Output AXD view 5-63

P
Parameters, predefined, for CLI 6-6
Parse AXD command 6-36
Paths, search 5-98
Pause armsd command 9-32
Peripherals, accessing 1-9
Persistence 4-13
Pop-up menus 2-13
Position, identifying in CLI 6-10

PPvariable, specifying in CLI 6-10
Print armsd command 8-11, 9-33
Print AXD command 6-36
Printf format 4-19
Problem solving xii
Procedure names 8-4
Procedures, tutorial 3-2
Processor time analysis 4-27
Processor Views AXD menu 5-18
Processors AXD command 6-37
Processors, identifying in CLI 6-11
Processors, simulated 1-8
Procproperties AXD command 6-37
Product feedback xii
Profclear armsd command 9-33
Profiling 4-27, 5-98, 9-34

interval 5-7, 5-52, 9-34
Profoff armsd command 9-33
Profon armsd command 9-34
Profwrite armsd command 9-34
Program

context 6-54, 9-22, 9-32
demonstration 3-2
executing in armsd 9-21
line numbers 8-4
locations 8-4
reloading 5-9
stopping and stepping 4-2
updating 3-18

Protocol, Angel Debug (ADP) 2-8, 7-4
PSR, setting

in armsd 8-15
in AXD 5-20

Publications, related x
Putfile armsd command 9-35
Putfile AXD command 6-37

Q
Q-format 4-24
Queries xii
Quitarmsd command 9-35
Quitdebugger AXD command 6-38
Quitting

armsd 9-35
AXD 2-5, 5-15

R
RDI function calls 5-63
RDI (Remote Debug Interface) 1-3
Readsyms armsd command 9-36
Readsyms AXD command 6-38
Recent sessions 5-14
Recently-opened

files 5-13
images 5-13
symbols files 5-14

Record AXD command 6-38
Regbanks AXD command 6-38
Regbank, identifying in CLI 6-11
Registers

adding to system view 5-21, 5-55
AXD command 6-39
AXD processor view 5-19
AXD system view 5-54
changing values of 5-20
coprocessor B-1
demonstration of viewing 3-12
formats 4-21
halt if changed 5-61
specifying in CLI 6-12

Registers armsd command 9-36
Related publications x
Reload armsd command 9-37
Reload AXD command 6-40
Reloading an image 5-9, 6-40, 9-37
Remote Debug Interface 1-3
Remote_A 1-9

configuring 5-94
Restoring a debug session 5-12
Run AXD command 6-40
Run to cursor 5-78
Running a demonstration program 3-2
Runtopos AXD command 6-41

S
Save session 5-13
Savebinary AXD command 6-42
Savesession AXD command 6-43,

6-51
Saving a debug session

Debug
session, saving 5-13
Index-6 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

Index
Saving memory to file 5-10
Scope

of variables 1-4
specifying in CLI 6-12

S-cycles 5-73
Search AXD menu 5-16
Semihosting mode 4-11, 5-97
Session

loading 5-12
saving 5-13

Sessions, recent 5-14
Set watchpoint 5-79
Setaci AXD command 6-43
Setbreakprops AXD command 6-44
Setimgprop AXD command 6-45
Setmem AXD command 6-45
Setpc AXD command 6-46
Setproc AXD command 6-46
Setprocprop AXD command 6-47
Setreg AXD command 6-48
Setsourcedir AXD command 6-49
Setting up targets 2-6
Setup, typical 1-6
Setwatch AXD command 6-50
Shortcut keys 2-14
Simulation

duration of 8-7
of processors 1-8

Software, license-managed 2-2
Source AXD command 6-52
Source files

examining 5-9
Source path, specifying 5-98
Sourcedir AXD command 6-53
Source... AXD view 5-44
stack

broken 5-29
Stackentries AXD command 6-53
Stackin AXD command 6-54
Stackout AXD command 6-54
Starting

armsd 7-3
AXD 2-3

Statements within a line 8-4
Statistics 5-72
Statistics AXD command 6-54
Status bar

in AXD 5-5, 5-98
Step armsd command 9-39

Step AXD command 6-55
Stepping

mode 5-42, 5-46
through an image 4-2, 6-55, 9-39
through assembler code 4-3, 9-32,

9-39
Stepsize AXD command 6-56
Step, specifying in CLI 6-12
Stop AXD command 6-56
Stopping

armsd 9-35
AXD 2-5, 5-15
execution of image 5-77

String
format 4-25

Strings
specifying in CLI 6-12

Structure of this book viii
Subscripts, pointers and arrays 8-6
Symbolic debugger (armsd) 7-1
Symbols

debug 5-8, 5-29
files, recently-opened 5-14
high- and low-level 4-10, 4-12
out-of-sequence symbol 5-45

Symbols armsd command 9-40
System Views AXD menu 5-48

T
Target

configuring 5-87
interfacing with 1-5
page in Control view 5-49
setting up 2-6
variables 5-71

Terminology 1-2, Glossary-1
Thumb

breakpoint setting 5-60
channel viewer 5-37
disassembly mode 5-80

Time analysis 4-27
Toggle breakpoint 5-78
Toggle parameter, in CLI 6-12
Toggle watchpoint 5-79
Toolbar

AXD 5-3
Tools, AXD 2-14

Trace AXD command 6-56
Traceload AXD command 6-57
Tutorial examples 3-2
Type armsd command 9-41
Type AXD command 6-57

U
Unbreak armsd command 9-42
Unbreak AXD command 6-57
Unwatch armsd command 9-42
Unwatch AXD command 6-57
Update AXD command 6-57

V
Values, specifying in CLI 6-12
Variable armsd command 9-43
Variables

AXD command 6-58
AXD view 5-26
changing contents of, in AXD 5-26
demonstration of viewing 3-8
halt if changed 5-61
in armsd 8-7
in specificfunction activation 8-3
referenced from armsd 8-2
scope of 1-4
target-specific 5-71
watching, in AXD 5-23

Vector catch variable in AXD 5-97
Vector floating point (VFP) 5-70, 8-9

W
Watch

AXD command 6-59
AXD processor view 5-23
AXD system view 5-56

Watch armsd command 9-43
Watchpoints

clearing in armsd 9-42
identifying in CLI 6-12
in AXD 3-6, 5-61, 5-79
setting 9-43

Watchpt AXD command 6-59
ARM DUI 0066D Copyright © 1999-2001 ARM Limited. All rights reserved. Index-7

Index
Where armsd command 9-44
Where AXD command 6-61
While armsd command 9-45
Who should read this book viii
Width, memory access 5-35
Window menu in AXD 5-99

Symbols
! armsd command 9-9
indicator 6-4, 8-14, 9-7
$ indicator 9-7
$clock internal variable 5-70
$image_cache_enable internal variable

5-70
$rdi_log internal variable 5-69
$statistics internal variable 5-69
$target_fpu internal variable 5-8, 5-70,

8-9, 9-28
+ indicator 6-4
...... symbol 5-45
@ 4-12
@ indicator 4-10, 6-4, 9-7
^ indicator 8-13, 9-7
| armsd command 9-9
| indicator 6-4
Index-8 Copyright © 1999-2001 ARM Limited. All rights reserved. ARM DUI 0066D

	ARM Developer Suite AXD and armsd Debuggers Guide
	Contents
	Preface
	About this book
	Intended audience
	Using this book
	Further reading

	Feedback
	Feedback on the ARM Developer Suite
	Feedback on this book

	AXD
	About AXD
	1.1 Debugger concepts
	1.1.1 Debugger
	1.1.2 Debug target
	1.1.3 Debug agent
	1.1.4 Remote debug interface
	1.1.5 Single-processor hardware
	1.1.6 Multi-processor hardware
	1.1.7 Contexts
	1.1.8 Scope

	1.2 Interfacing with targets
	1.2.1 Debugging an ARM application

	1.3 Debugging systems
	1.3.1 ARMulator
	1.3.2 Multi-ICE and EmbeddedICE
	1.3.3 Angel debug monitor
	1.3.4 ARM Agilent Debug Interface

	1.4 Availability and compatibility
	1.5 Online help
	1.5.1 Displaying online help

	Getting Started in AXD
	2.1 License-managed software
	2.2 Starting and closing AXD
	2.2.1 Starting AXD
	2.2.2 AXD arguments
	2.2.3 Closing AXD

	2.3 Debugger target
	2.3.1 ARMulator
	2.3.2 Multi-ICE unit and target board
	2.3.3 Angel or EmbeddedICE

	2.4 AXD displays
	2.4.1 Views
	2.4.2 Viewing structured data
	2.4.3 Multiple Document Interface
	2.4.4 Docked and floating windows
	2.4.5 Tabbed pages
	2.4.6 Dialogs

	2.5 AXD menus
	2.5.1 Menu bar menus
	2.5.2 Pop-up menus

	2.6 Tool icons, status bar, keys, and commands
	2.6.1 Toolbars
	2.6.2 Tooltips
	2.6.3 Status bar
	2.6.4 Keyboard shortcuts
	2.6.5 In-place editing
	2.6.6 Command-line interface

	Working with AXD
	3.1 Running a demonstration program
	3.2 Setting a breakpoint
	3.3 Setting a watchpoint
	3.4 Examining the contents of variables
	3.4.1 Contents of variables
	3.4.2 Addresses and contents of variables

	3.5 Examining the contents of registers
	3.6 Examining the contents of memory
	3.7 Locating and changing values and verifying changes
	3.8 Creating a revised version of the program

	AXD Facilities
	4.1 Stopping and stepping
	4.1.1 Breakpoints
	4.1.2 Watchpoints
	4.1.3 Stepping through a program

	4.2 Expressions
	4.2.1 Using expressions
	4.2.2 Expression rules
	4.2.3 Expression examples

	4.3 Viewing and editing
	4.3.1 Control
	4.3.2 Source files
	4.3.3 Disassembled code
	4.3.4 Registers
	4.3.5 Watch
	4.3.6 Variables
	4.3.7 Memory
	4.3.8 Remote debug information
	4.3.9 High-level and low-level symbols
	4.3.10 Debugger internals
	4.3.11 Backtrace
	4.3.12 Debug Communications Channel
	4.3.13 Semihosting

	4.4 Entering addresses
	4.5 Persistence
	4.6 RealMonitor support
	4.7 Data formatting
	4.7.1 Hex
	4.7.2 Decimal
	4.7.3 Octal
	4.7.4 Binary
	4.7.5 ASCII
	4.7.6 Printf...
	4.7.7 Floating point
	4.7.8 Registers
	4.7.9 Q-format
	4.7.10 Other

	4.8 Profiling

	AXD Desktop
	5.1 Menus, toolbars, and status bar
	5.1.1 Menus
	5.1.2 Toolbars
	5.1.3 Status bar contents

	5.2 File menu
	5.2.1 Load Image...
	5.2.2 Load Debug Symbols...
	5.2.3 Reload Current Image
	5.2.4 Open File...
	5.2.5 Load Memory From File...
	5.2.6 Save Memory To File...
	5.2.7 Flash Download...
	5.2.8 Load Session...
	5.2.9 Save Session...
	5.2.10 Recent Files
	5.2.11 Recent Images
	5.2.12 Recent Symbols
	5.2.13 Recent Sessions
	5.2.14 Unload Current Image
	5.2.15 Import Formats...
	5.2.16 Exit

	5.3 Search menu
	5.3.1 Source...
	5.3.2 Memory...

	5.4 Processor Views menu
	5.4.1 Registers processor view
	5.4.2 Watch processor view
	5.4.3 Variables processor view
	5.4.4 Backtrace processor view
	5.4.5 Memory processor view
	5.4.6 Low Level Symbols processor view
	5.4.7 Comms Channel processor view
	5.4.8 Console processor view
	5.4.9 Disassembly processor view
	5.4.10 Source... processor view
	5.4.11 Trace processor view

	5.5 System Views menu
	5.5.1 Control system view
	5.5.2 Registers system view
	5.5.3 Watch system view
	5.5.4 Breakpoints system view
	5.5.5 Watchpoints system view
	5.5.6 Output system view
	5.5.7 Command Line Interface system view
	5.5.8 Debugger Internals system view

	5.6 Execute menu
	5.6.1 Go
	5.6.2 Stop
	5.6.3 Step In
	5.6.4 Step
	5.6.5 Step Out
	5.6.6 Run To Cursor
	5.6.7 Show Execution Context
	5.6.8 Toggle Breakpoint
	5.6.9 Toggle Watchpoint
	5.6.10 Set Watchpoint
	5.6.11 Delete All Breakpoints

	5.7 Options menu
	5.7.1 Disassembly Mode
	5.7.2 Configure Interface...
	5.7.3 Configure Target...
	5.7.4 Configure Processor...
	5.7.5 Source Path...
	5.7.6 Status Bar display control
	5.7.7 Profiling

	5.8 Window menu
	5.8.1 Cascade
	5.8.2 Tile Horizontally
	5.8.3 Tile Vertically
	5.8.4 Arrange Icons
	5.8.5 Refresh All
	5.8.6 Timed Refresh
	5.8.7 List of relevant windows

	5.9 Help menu
	5.9.1 Contents
	5.9.2 Using Help
	5.9.3 Online Books
	5.9.4 About AXD
	5.9.5 Toolbar icons

	AXD Command-line Interface
	6.1 Command Line Window
	6.1.1 As an alternative to the GUI
	6.1.2 To automate repetitive tasks
	6.1.3 CLI pop-up menu
	6.1.4 Command history

	6.2 Parameters and prefixes
	6.2.1 # parameters
	6.2.2 | parameters
	6.2.3 @ parameters
	6.2.4 + parameters
	6.2.5 Other parameters

	6.3 Commands with list support
	6.4 Predefined command parameters
	6.4.1 format
	6.4.2 asm
	6.4.3 instr
	6.4.4 step
	6.4.5 memory
	6.4.6 scope
	6.4.7 toggle

	6.5 Definitions
	6.6 Commands
	6.6.1 addsourcedir
	6.6.2 backtrace
	6.6.3 break
	6.6.4 cclasses
	6.6.5 cfunctions
	6.6.6 classes
	6.6.7 clear
	6.6.8 clearbreak
	6.6.9 clearstat
	6.6.10 clearwatch
	6.6.11 comment
	6.6.12 context
	6.6.13 convariables
	6.6.14 cvariables
	6.6.15 dbginternals
	6.6.16 disassemble
	6.6.17 echo
	6.6.18 examine
	6.6.19 files
	6.6.20 fillmem
	6.6.21 findstring
	6.6.22 findvalue
	6.6.23 format
	6.6.24 functions
	6.6.25 getfile
	6.6.26 go
	6.6.27 help
	6.6.28 images
	6.6.29 imgproperties
	6.6.30 importformat
	6.6.31 let
	6.6.32 list
	6.6.33 listformat
	6.6.34 load
	6.6.35 loadbinary
	6.6.36 loadsession
	6.6.37 loadsymbols
	6.6.38 log
	6.6.39 lowlevel
	6.6.40 memory
	6.6.41 obey
	6.6.42 parse
	6.6.43 print
	6.6.44 processors
	6.6.45 procproperties
	6.6.46 putfile
	6.6.47 quitdebugger
	6.6.48 readsyms
	6.6.49 record
	6.6.50 regbanks
	6.6.51 registers
	6.6.52 reload
	6.6.53 run
	6.6.54 runmode
	6.6.55 runtopos
	6.6.56 savebinary
	6.6.57 savesession
	6.6.58 setaci
	6.6.59 setbreakprops
	6.6.60 setimgprop
	6.6.61 setmem
	6.6.62 setpc
	6.6.63 setproc
	6.6.64 setprocprop
	6.6.65 setreg
	6.6.66 setsourcedir
	6.6.67 setwatch
	6.6.68 setwatchprops
	6.6.69 source
	6.6.70 sourcedir
	6.6.71 stackentries
	6.6.72 stackin
	6.6.73 stackout
	6.6.74 statistics
	6.6.75 step
	6.6.76 stepsize
	6.6.77 stop
	6.6.78 trace
	6.6.79 traceload
	6.6.80 type
	6.6.81 unbreak
	6.6.82 update
	6.6.83 unwatch
	6.6.84 variables
	6.6.85 watch
	6.6.86 watchpt
	6.6.87 where

	armsd
	About armsd
	7.1 About armsd
	7.1.1 Selecting a debugger
	7.1.2 Automatic command execution on startup

	7.2 Command syntax
	7.2.1 Command-line options

	Getting Started in armsd
	8.1 Specifying source-level objects
	8.1.1 Command syntax conventions
	8.1.2 Variable names and context
	8.1.3 Program locations
	8.1.4 Expressions
	8.1.5 Constants

	8.2 armsd variables
	8.2.1 Summary of armsd variables
	8.2.2 Accessing variables
	8.2.3 Formatting printed results
	8.2.4 Specifying the base for input of integer constants

	8.3 Low-level debugging
	8.3.1 Low-level symbols
	8.3.2 Predefined symbols

	Working with armsd
	9.1 Groups of armsd commands
	9.1.1 Symbols
	9.1.2 Controlling execution
	9.1.3 Reading and writing memory
	9.1.4 Program context
	9.1.5 Low-level debugging
	9.1.6 Coprocessor support
	9.1.7 Profiling commands
	9.1.8 Miscellaneous commands
	9.1.9 Commands to access the debug communications channel
	9.1.10 Commands for EmbeddedICE

	9.2 Alphabetical list of armsd commands
	9.2.1 Names used in syntax descriptions
	9.2.2 ! command
	9.2.3 | command
	9.2.4 alias
	9.2.5 arguments
	9.2.6 backtrace
	9.2.7 break
	9.2.8 call
	9.2.9 coproc
	9.2.10 context
	9.2.11 cregisters
	9.2.12 cregdef
	9.2.13 cwrite
	9.2.14 examine
	9.2.15 find
	9.2.16 fpregisters
	9.2.17 go
	9.2.18 getfile
	9.2.19 help
	9.2.20 in
	9.2.21 istep
	9.2.22 language
	9.2.23 let
	9.2.24 list
	9.2.25 load
	9.2.26 localvar
	9.2.27 log
	9.2.28 lsym
	9.2.29 obey
	9.2.30 out
	9.2.31 pause
	9.2.32 print
	9.2.33 profclear
	9.2.34 profoff
	9.2.35 profon
	9.2.36 profwrite
	9.2.37 putfile
	9.2.38 quit
	9.2.39 readsyms
	9.2.40 registers
	9.2.41 reload
	9.2.42 step
	9.2.43 symbols
	9.2.44 type
	9.2.45 unbreak
	9.2.46 unwatch
	9.2.47 variable
	9.2.48 watch
	9.2.49 where
	9.2.50 while

	9.3 Accessing the debug communications channel
	9.3.1 ccin
	9.3.2 ccout

	9.4 armsd commands for EmbeddedICE
	9.4.1 listconfig
	9.4.2 loadagent
	9.4.3 loadconfig
	9.4.4 selectconfig

	AXD and armsd Commands
	A.1 Comparison of commands
	A.2 Useful internal variables

	Coprocessor Registers
	B.1 ARM710T processor
	B.2 ARM720T processor
	B.3 ARM740T processor
	B.4 ARM920T Rev 0 processor
	B.5 ARM920T Rev 1 processor
	B.6 ARM940T Rev 0 processor
	B.7 ARM940T Rev 1 processor
	B.8 ARM946E-S processor
	B.9 ARM966E-S processor
	B.10 ARM10200E processor
	B.11 ARM1020E processor
	B.12 ARM10E processor
	B.13 XScale processor

	Supplementary Display Module Formats
	C.1 Predefined formats
	C.2 User-defined formats
	C.2.1 SDM format guide
	C.2.2 SDM format reference

	Using the Flash Downloader
	D.1 About the Flash downloader
	D.1.1 Integrator board version
	D.1.2 PID board version

	D.2 Using the Flash downloader from AXD
	D.3 Using the Flash downloader from armsd
	D.4 Setting the IP address of a PID board

	Glossary
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Symbols

