Arm A64 Instruction Set Architecture

Armv8, for Armv8-A architecture profile

arm

Copyright © 2010-2020 Arm Limited (or its affiliates). All rights reserved.
DDI 0596 (ID121520)

Arm A64 Instruction Set Architecture
Armv8, for Armv8-A architecture profile

Copyright © 2010-2020 Arm Limited (or its affiliates). All rights reserved.
Release Information

For information on the change history and known issues for this release, see the Release Notes in the A64 ISA XML for
Armv8.7 (2020-12).

Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information contained
in this document may be protected by one or more patents or pending patent applications. No part of this document may be
reproduced in any form by any means without the express prior written permission of Arm. No license, express or implied, by
estoppel or otherwise to any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use
the information for the purposes of determining whether implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR
PURPOSE WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to,
and has undertaken no analysis to identify or understand the scope and content of, patents, copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING
OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure
of this document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof
is not exported, directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s customers
is not intended to create or refer to any partnership relationship with any other company. Arm may make changes to this document
at any time and without notice.

This document may be translated into other languages for convenience, and you agree that if there is any conflict between the
English version of this document and any translation, the terms of the English version of the Agreement shall prevail.

The Arm corporate logo and words marked with ™ or © are registered trademarks or trademarks of Arm Limited (or its affiliates)
in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this document may be the trademarks of
their respective owners. You must follow the Arm’s trademark usage guidelines
http://www.arm.com/company/policies/trademarks.

Copyright © 2010-2020 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.
110 Fulbourn Road, Cambridge, England CB1 9NJ.

(LES-PRE-20349 version 21.0)
Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license restrictions in
accordance with the terms of the agreement entered into by Arm and the party that Arm delivered this document to.

Product Status

The information in this document covers multiple versions of the architecture. The content relating to different versions is given
different quality ratings.

The information in this document relating to v8.7 of the architecture and the features introduced in this release is at Alpha quality.
Alpha quality means that most major features of the specification are included, features and details might be missing.

The information in this document relating to versions of the architecture before v8.7 and features introduced in previous releases
is at Beta quality. Beta quality means that all major features of the specification are included, some details might be missing.

Copyright © 2010-2020 Arm Limited (or its affiliates). All rights reserved. DDI 0596
Non-Confidential ID121520

Web Address
http://www.arm.com
Progressive Terminology Commitment

Arm values inclusive communities. Arm recognizes that we and our industry have used terms that can be offensive. Arm strives
to lead the industry and create change.

Previous issues of this document included terms that can be offensive. We have replaced these terms. If you find offensive terms
in this document, please contact terms@arm.com.

DDI 0596 Copyright © 2010-2020 Arm Limited (or its affiliates). All rights reserved. iii
ID121520 Non-Confidential

Copyright © 2010-2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

DDI 0596
1D121520

A64 -- Base Instructions (alphabetic order)

A64 -- Base Instructions (alphabetic order)

ADC: Add with Carry.

ADCS: Add with Carry, setting flags.

ADD (extended register): Add (extended register).

ADD (immediate): Add (immediate).

ADD (shifted register): Add (shifted register).

ADDG: Add with Tag.

ADDS (extended register): Add (extended register), setting flags.

ADDS (immediate): Add (immediate), setting flags.

ADDS (shifted register): Add (shifted register), setting flags.
ADR: Form PC-relative address.

ADRP: Form PC-relative address to 4KB page.

AND (immediate): Bitwise AND (immediate).

AND (shifted register): Bitwise AND (shifted register).

ANDS (immediate): Bitwise AND (immediate), setting flags.

ANDS (shifted register): Bitwise AND (shifted register), setting flags.

ASR (immediate): Arithmetic Shift Right (immediate): an alias of SBFM.
ASR (register): Arithmetic Shift Right (register): an alias of ASRV.
ASRV: Arithmetic Shift Right Variable.

AT: Address Translate: an alias of SYS.

AUTDA, AUTDZA: Authenticate Data address, using key A.

AUTDB, AUTDZB: Authenticate Data address, using key B.

AUTIA, AUTIA1716, AUTIASP, AUTIAZ, AUTIZA: Authenticate Instruction address, using key A.

AUTIB, AUTIB1716, AUTIBSP, AUTIBZ, AUTIZB: Authenticate Instruction address, using key B.

AXFLAG: Convert floating-point condition flags from Arm to external format.
B: Branch.

B.cond: Branch conditionally.

BFC: Bitfield Clear: an alias of BFM.

BFI: Bitfield Insert: an alias of BFM.

BFM: Bitfield Move.

BFXIL.: Bitfield extract and insert at low end: an alias of BFM.

BIC (shifted register): Bitwise Bit Clear (shifted register).

BICS (shifted register): Bitwise Bit Clear (shifted register), setting flags.

BL: Branch with Link.

BLR: Branch with Link to Register.

Page 2

A64 -- Base Instructions (alphabetic order)

BLRAA, BLRAAZ, BIL.RAB, BLRABZ: Branch with Link to Register, with pointer authentication.

BR: Branch to Register.

BRAA, BRAAZ, BRAB, BRABZ: Branch to Register, with pointer authentication.

BRK: Breakpoint instruction.
BTI: Branch Target Identification.

CAS, CASA, CASAL, CASL: Compare and Swap word or doubleword in memory.

CASB, CASAB, CASALB, CASIB: Compare and Swap byte in memory.

CASH, CASAH, CASALH, CASLH: Compare and Swap halfword in memory.

CASP, CASPA, CASPAL, CASPL: Compare and Swap Pair of words or doublewords in memory.

CBNZ: Compare and Branch on Nonzero.

CBZ: Compare and Branch on Zero.

CCMN (immediate): Conditional Compare Negative (immediate).

CCMN (register): Conditional Compare Negative (register).

CCMP (immediate): Conditional Compare (immediate).

CCMP (register): Conditional Compare (register).

CFINV: Invert Carry Flag.

CFP: Control Flow Prediction Restriction by Context: an alias of SYS.

CINC: Conditional Increment: an alias of CSINC.

CINV: Conditional Invert: an alias of CSINV.

CLREX: Clear Exclusive.

CLS: Count Leading Sign bits.

CLZ: Count Leading Zeros.

CMN (extended register): Compare Negative (extended register): an alias of ADDS (extended register).
CMN (immediate): Compare Negative (immediate): an alias of ADDS (immediate).

CMN (shifted register): Compare Negative (shifted register): an alias of ADDS (shifted register).
CMP (extended register): Compare (extended register): an alias of SUBS (extended register).
CMP (immediate): Compare (immediate): an alias of SUBS (immediate).

CMP (shifted register): Compare (shifted register): an alias of SUBS (shifted register).
CMPP: Compare with Tag: an alias of SUBPS.

CNEG: Conditional Negate: an alias of CSNEG.

CPP: Cache Prefetch Prediction Restriction by Context: an alias of SYS.

CRC32B, CRC32H, CRC32W, CRC32X: CRC32 checksum.

CRC32CB, CRC32CH, CRC32CW, CRC32CX: CRC32C checksum.

CSDB: Consumption of Speculative Data Barrier.
CSEL: Conditional Select.

CSET: Conditional Set: an alias of CSINC.

Page 3

A64 -- Base Instructions (alphabetic order)

CSETM: Conditional Set Mask: an alias of CSINV.
CSINC: Conditional Select Increment.

CSINV: Conditional Select Invert.

CSNEG: Conditional Select Negation.

DC: Data Cache operation: an alias of SYS.
DCPS1: Debug Change PE State to EL1..

DCPS2: Debug Change PE State to EL2..

DCPS3: Debug Change PE State to EL3.

DGH: Data Gathering Hint.

)

B: Data Memory Barrier.

DRPS: Debug restore process state.

DSB: Data Synchronization Barrier.

DVP: Data Value Prediction Restriction by Context: an alias of SYS.
EON (shifted register): Bitwise Exclusive OR NOT (shifted register).
EOR (immediate): Bitwise Exclusive OR (immediate).

EOR (shifted register): Bitwise Exclusive OR (shifted register).

ERET: Exception Return.

ERETAA, ERETAB: Exception Return, with pointer authentication.
ESB: Error Synchronization Barrier.

EXTR: Extract register.

GMI: Tag Mask Insert.

HINT: Hint instruction.

HIT: Halt instruction.

HVC: Hypervisor Call.

IC: Instruction Cache operation: an alias of SYS.

H

G: Insert Random Tag.

(se]

SB: Instruction Synchronization Barrier.

LD64B: Single-copy Atomic 64-byte Load.

LDADD, LDADDA, .LDADDAL, I.LDADDIL.: Atomic add on word or doubleword in memory.

LDADDB, L.LDADDAB, LDADDALB, LDADDILB: Atomic add on byte in memory.

LDADDH, L.DADDAH, I.DADDALH, L.DADDLH: Atomic add on halfword in memory.

LDAPR: Load-Acquire RCpc Register.

LDAPRB: Load-Acquire RCpc Register Byte.
LDAPRH: Load-Acquire RCpc Register Halfword.
LDAPUR: Load-Acquire RCpc Register (unscaled).

LDAPURB: Load-Acquire RCpc Register Byte (unscaled).

Page 4

A64 -- Base Instructions (alphabetic order)

LDAPURH: Load-Acquire RCpc Register Halfword (unscaled).
LDAPURSB: Load-Acquire RCpc Register Signed Byte (unscaled).
LDAPURSH: Load-Acquire RCpc Register Signed Halfword (unscaled).
LDAPURSW: Load-Acquire RCpc Register Signed Word (unscaled).
LDAR: Load-Acquire Register.

LDARB: Load-Acquire Register Byte.

LDARH: Load-Acquire Register Halfword.

LDAXP: Load-Acquire Exclusive Pair of Registers.

LDAXR: Load-Acquire Exclusive Register.

LDAXRB: Load-Acquire Exclusive Register Byte.
LDAXRH: Load-Acquire Exclusive Register Halfword.

LDCLR, LDCLRA, LDCLRAIL, I.LDCLRL: Atomic bit clear on word or doubleword in memory.

LDCILRB, LDCLRAB, ILDCIL.RALB, I.LDCLRLB: Atomic bit clear on byte in memory.

LDCILRH, I.LDCLRAH, I.LDCIL.RALH, I.DCLRILH: Atomic bit clear on halfword in memory.

LDEOR, ILDEORA, L.LDEORAL, L.DEORL: Atomic exclusive OR on word or doubleword in memory.

LDEORB, LDEORAB, LDEORALB, LDEORLB: Atomic exclusive OR on byte in memory.

LDEORH, L.DEORAH, IL.DEORALH, LDEORLH: Atomic exclusive OR on halfword in memory.

LDG: Load Allocation Tag.
LDGM: Load Tag Multiple.

LDIAR: Load LOAcquire Register.

LDI.ARB: Load LOAcquire Register Byte.

LDIARH: Load LOAcquire Register Halfword.

LDNP: Load Pair of Registers, with non-temporal hint.
LDP: Load Pair of Registers.

LDPSW: Load Pair of Registers Signed Word.

LDR (immediate): Load Register (immediate).

LDR (literal): Load Register (literal).

LDR (register): Load Register (register).

LDRAA, LDRAB: Load Register, with pointer authentication.

LDRB (immediate): Load Register Byte (immediate).

LDRB (register): Load Register Byte (register).

LDRH (immediate): Load Register Halfword (immediate).
LDRH (register): Load Register Halfword (register).

LDRSB (immediate): Load Register Signed Byte (immediate).
LDRSB (register): Load Register Signed Byte (register).

LDRSH (immediate): Load Register Signed Halfword (immediate).

Page 5

A64 -- Base Instructions (alphabetic order)

LDRSH (register): Load Register Signed Halfword (register).
LDRSW (immediate): Load Register Signed Word (immediate).
LDRSW (literal): Load Register Signed Word (literal).

LDRSW (register): Load Register Signed Word (register).

LDSET, ILDSETA, LDSETAL, LDSETL.: Atomic bit set on word or doubleword in memory.

LDSETB, LDSETAB, LDSETALB, LLDSETLB: Atomic bit set on byte in memory.

LDSETH, I.LDSETAH, LDSETALH, IL.DSETLH: Atomic bit set on halfword in memory.

LDSMAX, LDSMAXA, LDSMAXAIL, LDSMAXI.: Atomic signed maximum on word or doubleword in memory.

LDSMAXB, LDSMAXAB, LDSMAXAIB, LDSMAXILB: Atomic signed maximum on byte in memory.

LDSMAXH, LDSMAXAH, IL.DSMAXALH, IDSMAXILH: Atomic signed maximum on halfword in memory.

LDSMIN, LDSMINA, LDSMINAL, LDSMINL.: Atomic signed minimum on word or doubleword in memory.

LDSMINB, LDSMINAB, LDSMINALB, LDSMINLB: Atomic signed minimum on byte in memory.

LDSMINH, I.LDSMINAH, LDSMINALH, IL.DSMINLH: Atomic signed minimum on halfword in memory.

LDTR: Load Register (unprivileged).

LDTRB: Load Register Byte (unprivileged).

LDTRH: Load Register Halfword (unprivileged).
LDTRSB: Load Register Signed Byte (unprivileged).
LDTRSH: Load Register Signed Halfword (unprivileged).

LDTRSW: Load Register Signed Word (unprivileged).

LDUMAX, IDUMAXA, LDUMAXAI, LDUMAXL.: Atomic unsigned maximum on word or doubleword in memory.

LDUMAXB, LDUMAXAB, LDUMAXAIB, LDUMAXIB: Atomic unsigned maximum on byte in memory.

LDUMAXH, LDUMAXAH, LDUMAXALH, L.DUMAXIH: Atomic unsigned maximum on halfword in memory.

LDUMIN, LDUMINA, LDUMINAL, ILDUMINL: Atomic unsigned minimum on word or doubleword in memory.

LDUMINB, LDUMINAB, LDUMINALB, LDUMINLB: Atomic unsigned minimum on byte in memory.

LDUMINH, ILDUMINAH, LDUMINALH, LDUMINLH: Atomic unsigned minimum on halfword in memory.

LDUR: Load Register (unscaled).

LDURB: Load Register Byte (unscaled).

LDURH: Load Register Halfword (unscaled).
LDURSB: Load Register Signed Byte (unscaled).
LDURSH: Load Register Signed Halfword (unscaled).
LDURSW: Load Register Signed Word (unscaled).
LDXP: Load Exclusive Pair of Registers.

LDXR: Load Exclusive Register.

LDXRB: Load Exclusive Register Byte.

LDXRH: Load Exclusive Register Halfword.

LSI. (immediate): Logical Shift Left (immediate): an alias of UBFM.

Page 6

A64 -- Base Instructions (alphabetic order)

LSI. (register): Logical Shift Left (register): an alias of LSLV.

LSIV: Logical Shift Left Variable.

LSR (immediate): Logical Shift Right (immediate): an alias of UBFM.
LSR (register): Logical Shift Right (register): an alias of LSRV.
LSRV: Logical Shift Right Variable.

MADD: Multiply-Add.

MNEG: Multiply-Negate: an alias of MSUB.

MOV (bitmask immediate): Move (bitmask immediate): an alias of ORR (immediate).
MOV (inverted wide immediate): Move (inverted wide immediate): an alias of MOVN.

MOV (register): Move (register): an alias of ORR (shifted register).

MOV (to/from SP): Move between register and stack pointer: an alias of ADD (immediate).

MOV (wide immediate): Move (wide immediate): an alias of MOVZ.
MOVK: Move wide with keep.

MOVN: Move wide with NOT.

MOVZ: Move wide with zero.

MRS: Move System Register.

MSR (immediate): Move immediate value to Special Register.

MSR (register): Move general-purpose register to System Register.
MSUB: Multiply-Subtract.

MUL: Multiply: an alias of MADD.

MVN: Bitwise NOT: an alias of ORN (shifted register).

NEG (shifted register): Negate (shifted register): an alias of SUB (shifted register).
NEGS: Negate, setting flags: an alias of SUBS (shifted register).
NGC: Negate with Carry: an alias of SBC.

NGCS: Negate with Carry, setting flags: an alias of SBCS.

NOP: No Operation.

ORN (shifted register): Bitwise OR NOT (shifted register).

ORR (immediate): Bitwise OR (immediate).

ORR (shifted register): Bitwise OR (shifted register).

PACDA, PACDZA: Pointer Authentication Code for Data address, using key A.

PACDB, PACDZB: Pointer Authentication Code for Data address, using key B.

PACGA: Pointer Authentication Code, using Generic key.

PACIA, PACIA1716, PACIASP, PACIAZ, PACIZA: Pointer Authentication Code for Instruction address, using key A.

PACIB, PACIB1716, PACIBSP. PACIBZ, PACIZB: Pointer Authentication Code for Instruction address, using key B.

PRFM (immediate): Prefetch Memory (immediate).

PRFM (literal): Prefetch Memory (literal).

Page 7

A64 -- Base Instructions (alphabetic order)

PRFM (register): Prefetch Memory (register).
PRFUM: Prefetch Memory (unscaled offset).

PSB CSYNC: Profiling Synchronization Barrier.
PSSBB: Physical Speculative Store Bypass Barrier.
RBIT: Reverse Bits.

RET: Return from subroutine.

RETAA, RETAB: Return from subroutine, with pointer authentication.

REV: Reverse Bytes.

REV16: Reverse bytes in 16-bit halfwords.

REV32: Reverse bytes in 32-bit words.

REVG64: Reverse Bytes: an alias of REV.

RMIF: Rotate, Mask Insert Flags.

ROR (immediate): Rotate right (immediate): an alias of EXTR.
ROR (register): Rotate Right (register): an alias of RORV.
RORV: Rotate Right Variable.

SB: Speculation Barrier.

SBC: Subtract with Carry.

SBCS: Subtract with Carry, setting flags.

SBFIZ: Signed Bitfield Insert in Zero: an alias of SBFM.

SBFM: Signed Bitfield Move.

SBFX: Signed Bitfield Extract: an alias of SBFM.
SDIV: Signed Divide.

SETFS8, SETF16: Evaluation of 8 or 16 bit flag values.

SEV: Send Event.

SEVL: Send Event Local.

SMADDL.: Signed Multiply-Add Long.

SMC: Secure Monitor Call.

SMNEGL: Signed Multiply-Negate Long: an alias of SMSUBL.
SMSUBL.: Signed Multiply-Subtract Long.

SMULH: Signed Multiply High.

SMULL: Signed Multiply Long: an alias of SMADDL.
SSBB: Speculative Store Bypass Barrier.

ST2G: Store Allocation Tags.

ST64B: Single-copy Atomic 64-byte Store without Return.
ST64BV: Single-copy Atomic 64-byte Store with Return.

ST64BVO0: Single-copy Atomic 64-byte ELO Store with Return.

Page 8

A64 -- Base Instructions (alphabetic order)

STADD, STADDL: Atomic add on word or doubleword in memory, without return: an alias of LDADD, LDADDA,
LDADDAL, LDADDL.

STADDB, STADDLB: Atomic add on byte in memory, without return: an alias of LDADDB, LDADDAB, LDADDALB,
LDADDLB.

STADDH, STADDLH: Atomic add on halfword in memory, without return: an alias of LDADDH, LDADDAH, LDADDALH,
LDADDLH.

STCLR, STCLRL: Atomic bit clear on word or doubleword in memory, without return: an alias of LDCLR, LDCLRA,
LDCLRAL, LDCLRL.

STCLRB, STCLRIB: Atomic bit clear on byte in memory, without return: an alias of LDCLRB, LDCLRAB, LDCLRALB,
LDCLRLB.

STCLRH, STCLRILH: Atomic bit clear on halfword in memory, without return: an alias of LDCLRH, LDCLRAH,
LDCLRALH, LDCLRLH.

STEOR, STEORL: Atomic exclusive OR on word or doubleword in memory, without return: an alias of LDEOR,
LDEORA, LDEORAL, LDEORL.

STEORB, STEORILB: Atomic exclusive OR on byte in memory, without return: an alias of LDEORB, LDEORAB,
LDEORALB, LDEORLB.

STEORH, STEORLH: Atomic exclusive OR on halfword in memory, without return: an alias of LDEORH, LDEORAH,
LDEORALH, LDEORLH.

STG: Store Allocation Tag.

STGM: Store Tag Multiple.

STGP: Store Allocation Tag and Pair of registers.
STLLR: Store LORelease Register.

STLLRB: Store LORelease Register Byte.

STLLRH: Store LORelease Register Halfword.

STLR: Store-Release Register.

STLRB: Store-Release Register Byte.

STLRH: Store-Release Register Halfword.

STLUR: Store-Release Register (unscaled).

STLURB: Store-Release Register Byte (unscaled).
STLURH: Store-Release Register Halfword (unscaled).
STLXP: Store-Release Exclusive Pair of registers.
STLXR: Store-Release Exclusive Register.

STLXRB: Store-Release Exclusive Register Byte.
STLXRH: Store-Release Exclusive Register Halfword.
STNP: Store Pair of Registers, with non-temporal hint.
STP: Store Pair of Registers.

STR (immediate): Store Register (immediate).

STR (register): Store Register (register).

STRB (immediate): Store Register Byte (immediate).
STRB (register): Store Register Byte (register).

STRH (immediate): Store Register Halfword (immediate).

Page 9

A64 -- Base Instructions (alphabetic order)

STRH (register): Store Register Halfword (register).

STSET, STSETL.: Atomic bit set on word or doubleword in memory, without return: an alias of LDSET, LDSETA,
LDSETAL, LDSETL.

STSETB, STSETLB: Atomic bit set on byte in memory, without return: an alias of LDSETB, LDSETAB, LDSETALB,
LDSETLB.

STSETH, STSETLH: Atomic bit set on halfword in memory, without return: an alias of LDSETH, LDSETAH, LDSETALH,
LDSETLH.

STSMAX, STSMAXL.: Atomic signed maximum on word or doubleword in memory, without return: an alias of LDSMAX,
LDSMAXA, LDSMAXAL, LDSMAXL.

STSMAXB, STSMAXIB: Atomic signed maximum on byte in memory, without return: an alias of LDSMAXB,
LDSMAXAB, LDSMAXALB, LDSMAXLB.

STSMAXH, STSMAXILH: Atomic signed maximum on halfword in memory, without return: an alias of LDSMAXH,
LDSMAXAH, LDSMAXALH, LDSMAXLH.

STSMIN, STSMINL.: Atomic signed minimum on word or doubleword in memory, without return: an alias of LDSMIN,
LDSMINA, LDSMINAL, LDSMINL.

STSMINB, STSMINLB: Atomic signed minimum on byte in memory, without return: an alias of LDSMINB, LDSMINAB,
LDSMINALB, LDSMINLB.

STSMINH, STSMINLH: Atomic signed minimum on halfword in memory, without return: an alias of LDSMINH,
LDSMINAH, LDSMINALH, LDSMINLH.

STTR: Store Register (unprivileged).
STTRB: Store Register Byte (unprivileged).
STTRH: Store Register Halfword (unprivileged).

STUMAX, STUMAXL.: Atomic unsigned maximum on word or doubleword in memory, without return: an alias of
LDUMAX, LDUMAXA, LDUMAXAL, LDUMAXL.

STUMAXB, STUMAXI.B: Atomic unsigned maximum on byte in memory, without return: an alias of LDUMAXB,
LDUMAXAB, LDUMAXALB, LDUMAXLB.

STUMAXH, STUMAXLH: Atomic unsigned maximum on halfword in memory, without return: an alias of LDUMAXH,
LDUMAXAH, LDUMAXALH, LDUMAXLH.

STUMIN, STUMINL: Atomic unsigned minimum on word or doubleword in memory, without return: an alias of
LDUMIN, LDUMINA, LDUMINAL, LDUMINL.

STUMINB, STUMINLB: Atomic unsigned minimum on byte in memory, without return: an alias of LDUMINB,
LDUMINAB, LDUMINALB, LDUMINLB.

STUMINH, STUMINLH: Atomic unsigned minimum on halfword in memory, without return: an alias of LDUMINH,
LDUMINAH, LDUMINALH, LDUMINLH.

STUR: Store Register (unscaled).

STURB: Store Register Byte (unscaled).
STURH: Store Register Halfword (unscaled).
STXP: Store Exclusive Pair of registers.
STXR: Store Exclusive Register.

STXRB: Store Exclusive Register Byte.
STXRH: Store Exclusive Register Halfword.

STZ2G: Store Allocation Tags, Zeroing.

STZG: Store Allocation Tag, Zeroing.

STZGM: Store Tag and Zero Multiple.

Page 10

A64 -- Base Instructions (alphabetic order)

SUB (extended register): Subtract (extended register).

SUB (immediate): Subtract (immediate).

SUB (shifted register): Subtract (shifted register).

SUBG: Subtract with Tag.

SUBP: Subtract Pointer.

SUBPS: Subtract Pointer, setting Flags.

SUBS (extended register): Subtract (extended register), setting flags.
SUBS (immediate): Subtract (immediate), setting flags.

SUBS (shifted register): Subtract (shifted register), setting flags.
SVC: Supervisor Call.

SWP,. SWPA, SWPAIL, SWPIL.: Swap word or doubleword in memory.

SWPB, SWPAB, SWPALB, SWPI.B: Swap byte in memory.

SWPH, SWPAH, SWPALH, SWPLH: Swap halfword in memory.

SXTB: Signed Extend Byte: an alias of SBFM.
SXTH: Sign Extend Halfword: an alias of SBFM.
SXTW: Sign Extend Word: an alias of SBFM.
SYS: System instruction.

SYSIL.: System instruction with result.

TBNZ: Test bit and Branch if Nonzero.

TBZ: Test bit and Branch if Zero.

TLBI: TLB Invalidate operation: an alias of SYS.
TSB CSYNC: Trace Synchronization Barrier.

TST (immediate): Test bits (immediate): an alias of ANDS (immediate).

TST (shifted register): Test (shifted register): an alias of ANDS (shifted register).

UBFIZ: Unsigned Bitfield Insert in Zero: an alias of UBFM.
UBFM: Unsigned Bitfield Move.

UBFX: Unsigned Bitfield Extract: an alias of UBFM.

UDF: Permanently Undefined.

UDIV: Unsigned Divide.

UMADDL: Unsigned Multiply-Add Long.

UMNEGL: Unsigned Multiply-Negate Long: an alias of UMSUBL.
UMSUBL: Unsigned Multiply-Subtract Long.

UMULH: Unsigned Multiply High.

UMULL: Unsigned Multiply Long: an alias of UMADDL.
UXTB: Unsigned Extend Byte: an alias of UBFM.

UXTH: Unsigned Extend Halfword: an alias of UBFM.

Page 11

A64 -- Base Instructions (alphabetic order)

=

FE: Wait For Event.

WFET: Wait For Event with Timeout.

WFI: Wait For Interrupt.

WFIT: Wait For Interrupt with Timeout.

XAFLAG: Convert floating-point condition flags from external format to Arm format.

XPACD, XPACI, XPACLRI: Strip Pointer Authentication Code.

YIELD: YIELD.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

Page 12

ADC

Add with Carry adds two register values and the Carry flag value, and writes the result to the destination register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Isflo[0[1 1 0 1 0 0 O O] Rm |0 0 0O O 0 O] Rn | Rd |
op S

32-bit (sf == 0)

ADC <Wd>, <Wn>, <Wm>

64-bit (sf == 1)

ADC <Xd>, <Xn>, <Xm>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer datasize = if sf == '1' then 64 else 32;

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.
<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.
<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.
<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.
Operation

bits(datasize) result;
bits(datasize) operandl
bits(datasize) operand2

X[nl;
X[m];

(result, -) = AddWithCarry(operandl, operand2, PSTATE.C);

X[d] = result;
Operational information

If PSTATE.DIT is 1:

¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
¢ The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ADC Page 13

ADCS

Add with Carry, setting flags, adds two register values and the Carry flag value, and writes the result to the destination
register. It updates the condition flags based on the result.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Isf[0[1]1 1 0 1 0 0 O O] Rm |0 0 0O O 0 O] Rn | Rd |
op S

32-bit (sf == 0)

ADCS <Wd>, <Wn>, <Wm>

64-bit (sf == 1)

ADCS <Xd>, <Xn>, <Xm>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer datasize = if sf == '1' then 64 else 32;

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.
<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.
<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.
<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.
Operation

bits(datasize) result;

bits(datasize) operandl = X[n];

bits(datasize) operand2 = X[m];

bits(4) nzcv;

(result, nzcv) = AddWithCarry(operandl, operand2, PSTATE.C);
PSTATE.<N,Z,C,V> = nzcv;

X[d] = result;
Operational information

If PSTATE.DIT is 1:

¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
¢ The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ADCS Page 14

ADD (extended register)

Add (extended register) adds a register value and a sign or zero-extended register value, followed by an optional left

shift amount,

and writes the result to the destination register. The argument that is extended from the <Rm> register

can be a byte, halfword, word, or doubleword.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

sflo[o0]oO

1 01 1]/0 0f1] Rm | option | imm3 | Rn | Rd |

op S

32-bit (sf == 0)

ADD <Wd|WSP>, <Wn|WSP>, <Wm>{, <extend> {#<amount>}}

64-bit (sf == 1)

ADD <Xd|SP>, <Xn|SP>, <R><m>{, <extend> {#<amount>}}
integer d = UInt(Rd);

integer n = UInt(Rn);

integer m = UInt(Rm);

integer datasize = if sf == '1' then 64 else 32;

ExtendType extend type = DecodeRegExtend(option);
integer shift = UInt(imm3);
if shift > 4 then UNDEFINED;

Assembler Symbols

<Wd|WSP>

<Wn|WSP>

<Wm>

<Xd|SP>

<Xn|SP>

<R>

<m>

<extend>

Is the 32-bit name of the destination general-purpose register or stack pointer, encoded in the "Rd"
field.

Is the 32-bit name of the first source general-purpose register or stack pointer, encoded in the "Rn"
field.

Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

Is the 64-bit name of the destination general-purpose register or stack pointer, encoded in the "Rd"
field.

Is the 64-bit name of the first source general-purpose register or stack pointer, encoded in the "Rn"
field.

Is a width specifier, encoded in “option”:

option <R>

00x W
010 W
x11 X
10x W
110 W

Is the number [0-30] of the second general-purpose source register or the name ZR (31), encoded in the
"Rm" field.

For the 32-bit variant: is the extension to be applied to the second source operand, encoded in “option”:

option <extend>

000 UXTB
001 UXTH
010 LSL | UXTW
011 UXTX
100 SXTB
101 SXTH
110 SXTW
111 SXTX

If "Rd" or "Rn" is '11111' (WSP) and "option" is '010' then LSL is preferred, but may be omitted when
"imm3" is '000'. In all other cases <extend> is required and must be UXTW when "option" is '010'.

ADD (extended register) Page 15

For the 64-bit variant: is the extension to be applied to the second source operand, encoded in “option”:

option <extend>

000 UXTB
001 UXTH
010 UXTW
011 LSL | UXTX
100 SXTB
101 SXTH
110 SXTW
111 SXTX

If "Rd" or "Rn" is '11111' (SP) and "option" is '011' then LSL is preferred, but may be omitted when
"imm3" is '000'. In all other cases <extend> is required and must be UXTX when "option" is '011".

<amount> Is the left shift amount to be applied after extension in the range 0 to 4, defaulting to 0, encoded in the
"imm3" field. It must be absent when <extend> is absent, is required when <extend> is LSL, and is
optional when <extend> is present but not LSL.

Operation

bits(datasize) result;
bits(datasize) operandl
bits(datasize) operand2

if n == 31 then SP[] else X[n];
ExtendReg(m, extend type, shift);

(result, -) = AddWithCarry(operandl, operand2, '0');

if d == 31 then
SP[] = result;
else
X[d] = result;

Operational information

If PSTATE.DIT is 1:

¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
* The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ADD (extended register) Page 16

ADD (immediate)

Add (immediate) adds a register value and an optionally-shifted immediate value, and writes the result to the
destination register.

This instruction is used by the alias MOV (to/from SP).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0
Isfl0J0]1 0 0 0 1 0]sh| imm12 | Rn | Rd |
op S

32-bit (sf == 0)
ADD <Wd|WSP>, <Wn|WSP>, #<imm>{, <shift>}
64-bit (sf == 1)

ADD <Xd|SP>, <Xn|SP>, #<imm>{, <shift>}

integer d = UInt(Rd);

integer n = UInt(Rn);

integer datasize = if sf == '1' then 64 else 32;
bits(datasize) imm;

case sh of
when '0' imm
when '1' imm

ZeroExtend(imml2, datasize);
ZeroExtend(imml2:Zeros(12), datasize);

Assembler Symbols

<Wd|WSP> Is the 32-bit name of the destination general-purpose register or stack pointer, encoded in the "Rd"

field.
<Wn|WSP> Is the 32-bit name of the source general-purpose register or stack pointer, encoded in the "Rn" field.
<Xd|SP> Is the 64-bit name of the destination general-purpose register or stack pointer, encoded in the "Rd"
field.
<Xn|SP> Is the 64-bit name of the source general-purpose register or stack pointer, encoded in the "Rn" field.
<imm> Is an unsigned immediate, in the range 0 to 4095, encoded in the "imm12" field.
<shift> Is the optional left shift to apply to the immediate, defaulting to LSL #0 and encoded in “sh”:
sh <shift>
0 LSL #0
1 LSL #12

Alias Conditions

Alias Is preferred when
MOV (to/from sh == '0' && imml2 == '000000000000' &S (Rd == '11111' || Rn == '11111"')
SP)

ADD (immediate) Page 17

Operation

bits(datasize) result;
bits(datasize) operandl = if n == 31 then SP[] else X[n];

(result, -) = AddWithCarry(operandl, imm, '0');

if d == 31 then
SP[] = result;

else
X[d]

result;
Operational information

If PSTATE.DIT is 1:
* The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
* The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ADD (immediate) Page 18

ADD (shifted register)

Add (shifted register) adds a register value and an optionally-shifted register value, and writes the result to the
destination register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
Isflo]0J0 1 0 1 1[shift|[0] Rm | imm6 | Rn | Rd |
op S

32-bit (sf == 0)

ADD <Wd>, <Wn>, <Wm>{, <shift> #<amount>}

64-bit (sf == 1)

ADD <Xd>, <Xn>, <Xm>{, <shift> #<amount>}

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer datasize = if sf == 'l' then 64 else 32;
if shift == '11' then UNDEFINED;
if sf == '0' && imm6<5> == '1' then UNDEFINED;
ShiftType shift type = DecodeShift(shift);
integer shift _amount = UInt(imm6);
Assembler Symbols
<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.
<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.
<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.
<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.
<shift> Is the optional shift type to be applied to the second source operand, defaulting to LSL and encoded in
“shift”:
shift <shift>

00 LSL

01 LSR

10 ASR

11 RESERVED

<amount> For the 32-bit variant: is the shift amount, in the range 0 to 31, defaulting to 0 and encoded in the
"imm6" field.

For the 64-bit variant: is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the
"iImm6" field.

Operation

bits(datasize) result;
bits(datasize) operandl
bits(datasize) operand2

X[n];
ShiftReg(m, shift type, shift amount);

(result, -) = AddWithCarry(operandl, operand2, '0');

X[d] = result;

ADD (shifted register) Page 19

Operational information

If PSTATE.DIT is 1:

¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
¢ The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ADD (shifted register) Page 20

ADDG

Add with Tag adds an immediate value scaled by the Tag granule to the address in the source register, modifies the
Logical Address Tag of the address using an immediate value, and writes the result to the destination register. Tags
specified in GCR_EL1.Exclude are excluded from the possible outputs when modifying the Logical Address Tag.

Integer
(FEAT_MTE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
[1]o]0o]1 0 0 0 1 1]0] uimm6 [(0)(0)] uimm4 | Xn | Xd |
op3

ADDG <Xd|SP>, <Xn|SP>, #<uimm6>, #<uimm4>

if 'HaveMTEExt() then UNDEFINED;
integer d = UInt(Xd);

integer n = UInt(Xn);
bits(64) offset = LSL(ZeroExtend(uimm6, 64), LOG2 TAG GRANULE);

Assembler Symbols

<Xd|SP> Is the 64-bit name of the destination general-purpose register or stack pointer, encoded in the "Xd"
field.
<Xn|SP> Is the 64-bit name of the source general-purpose register or stack pointer, encoded in the "Xn" field.

<uimm6> Is an unsigned immediate, a multiple of 16 in the range 0 to 1008, encoded in the "uimm6" field.

<uimm4> Is an unsigned immediate, in the range 0 to 15, encoded in the "uimm4" field.

Operation

bits(64) operandl = if n == 31 then SP[] else X[n];
bits(4) start tag = AArch64.AllocationTagFromAddress(operandl);

(
(
bits(16) exclude = GCR _EL1.Exclude;
(
(

bits(64) result;
bits(4) rtag;

if AArch64.AllocationTagAccessIsEnabled(AccType NORMAL) then
rtag = AArch64.ChooseNonExcludedTag(start tag, uimm4, exclude);
else
rtag

'0000';

(result, -) = AddWithCarry(operandl, offset, '0');
result = AArch64.AddressWithAllocationTag(result, AccType NORMAL, rtag);

if d == 31 then
SP[] = result;
else
X[d] = result;

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ADDG Page 21

ADDS (extended register)

Add (extended register), setting flags, adds a register value and a sign or zero-extended register value, followed by an
optional left shift amount, and writes the result to the destination register. The argument that is extended from the
<Rm> register can be a byte, halfword, word, or doubleword. It updates the condition flags based on the result.

This instruction is used by the alias CMN (extended register).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8

IsfloJ1]0 1 0 1 1[0 0f1] Rm | option | imm3 |

op S
32-bit (sf == 0)
ADDS <Wd>, <Wn|WSP>, <Wm>{, <extend> {#<amount>}}
64-bit (sf == 1)

ADDS <Xd>, <Xn|SP>, <R><m>{, <extend> {#<amount>}}

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer datasize = if sf == '1' then 64 else 32;

ExtendType extend type = DecodeRegExtend(option);
integer shift = UInt(imm3);
if shift > 4 then UNDEFINED;

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Wn|WSP> Is the 32-bit name of the first source general-purpose register or stack pointer, encoded in the "Rn"
field.
<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.
<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Xn|SP> Is the 64-bit name of the first source general-purpose register or stack pointer, encoded in the "Rn"
field.
<R> Is a width specifier, encoded in “option”:
option <R>
00x W
010 W
x11 X
10x W
110 W
<m> Is the number [0-30] of the second general-purpose source register or the name ZR (31), encoded in the
"Rm" field.

<extend> For the 32-bit variant: is the extension to be applied to the second source operand, encoded in “option”:

option <extend>

000 UXTB
001 UXTH
010 LSL | UXTW
011 UXTX
100 SXTB
101 SXTH
110 SXTW
111 SXTX

If "Rn"is '11111' (WSP) and "option" is '010' then LSL is preferred, but may be omitted when "imm3" is

'000'. In all other cases <extend> is required and must be UXTW when "option" is '010'.

ADDS (extended register)

Page 22

7

For the 64-bit variant: is the extension to be applied to the second source operand, encoded in “option”:

option <extend>

000 UXTB
001 UXTH
010 UXTW
011 LSL | UXTX
100 SXTB
101 SXTH
110 SXTW
111 SXTX

If "Rn"is '11111' (SP) and "option" is '011' then LSL is preferred, but may be omitted when "imm3" is
'000'. In all other cases <extend> is required and must be UXTX when "option" is '011".

<amount> Is the left shift amount to be applied after extension in the range 0 to 4, defaulting to 0, encoded in the
"imm3" field. It must be absent when <extend> is absent, is required when <extend> is LSL, and is
optional when <extend> is present but not LSL.

Alias Conditions

Alias Is preferred when
CMN (extended register) Rd == '11111'
Operation
bits(datasize) result;
bits(datasize) operandl = if n == 31 then SP[] else X[n];
bits(datasize) operand2 = ExtendReg(m, extend type, shift);
bits(4) nzcv;

(result, nzcv) = AddWithCarry(operandl, operand2, '0');
PSTATE.<N,Z,C,V> = nzcv;

X[d]l = result;
Operational information

If PSTATE.DIT is 1:

¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
* The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ADDS (extended register) Page 23

ADDS (immediate)

Add (immediate), setting flags, adds a register value and an optionally-shifted immediate value, and writes the result
to the destination register. It updates the condition flags based on the result.

This instruction is used by the alias CMN (immediate).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
Isfl0]1]1 0 0 0 1 0]sh| imm12 | Rn | Rd |
op S

32-bit (sf == 0)
ADDS <Wd>, <Wn|WSP>, #<imm>{, <shift>}
64-bit (sf == 1)

ADDS <Xd>, <Xn|SP>, #<imm>{, <shift>}

integer d = UInt(Rd);

integer n = UInt(Rn);

integer datasize = if sf == '1' then 64 else 32;
bits(datasize) imm;

case sh of
when '0' imm
when '1' imm

ZeroExtend(imml2, datasize);
ZeroExtend(imml2:Zeros(12), datasize);

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn|WSP> Is the 32-bit name of the source general-purpose register or stack pointer, encoded in the "Rn" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Xn|SP> Is the 64-bit name of the source general-purpose register or stack pointer, encoded in the "Rn" field.
<imm> Is an unsigned immediate, in the range 0 to 4095, encoded in the "imm12" field.
<shift> Is the optional left shift to apply to the immediate, defaulting to LSL #0 and encoded in “sh”:
sh <shift>
0 LSL #0
1 LSL #12

Alias Conditions

Alias Is preferred when
CMN (immediate) Rd == '11111"'
Operation

bits(datasize) result;

bits(datasize) operandl = if n == 31 then SP[] else X[n];
bits(4) nzcv;

(result, nzcv) = AddWithCarry(operandl, imm, '0');
PSTATE.<N,Z,C,V> = nzcv;

X[d] = result;

ADDS (immediate) Page 24

Operational information

If PSTATE.DIT is 1:

¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
¢ The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ADDS (immediate) Page 25

ADDS (shifted register)

Add (shifted register), setting flags, adds a register value and an optionally-shifted register value, and writes the result
to the destination register. It updates the condition flags based on the result.

This instruction is used by the alias CMN (shifted register).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
Isflo]1]0 1 0 1 1[shift[0] Rm | imm6 | Rn | Rd |
op S

32-bit (sf == 0)

ADDS <Wd>, <Wn>, <Wm>{, <shift> #<amount>}

64-bit (sf == 1)

ADDS <Xd>, <Xn>, <Xm>{, <shift> #<amount>}

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer datasize = if sf == '1l' then 64 else 32;
if shift == '11' then UNDEFINED;
if sf == '0' && imm6<5> == '1' then UNDEFINED;
ShiftType shift type = DecodeShift(shift);
integer shift _amount = UInt(imm6);
Assembler Symbols
<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.
<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.
<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.
<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.
<shift> Is the optional shift type to be applied to the second source operand, defaulting to LSL and encoded in
“shift”:
shift <shift>

00 LSL

01 LSR

10 ASR

11 RESERVED

<amount> For the 32-bit variant: is the shift amount, in the range 0 to 31, defaulting to 0 and encoded in the
"imm6" field.

For the 64-bit variant: is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the
"iImm6" field.

Alias Conditions

Alias Is preferred when
CMN (shifted register) Rd == '11111'

ADDS (shifted register) Page 26

Operation

bits(datasize) result;

bits(datasize) operandl = X[n];

bits(datasize) operand2 = ShiftReg(m, shift type, shift amount);
bits(4) nzcv;

(result, nzcv) = AddWithCarry(operandl, operand2, '0');
PSTATE.<N,Z,C,V> = nzcv;

X[d] = result;
Operational information

If PSTATE.DIT is 1:
* The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
* The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ADDS (shifted register) Page 27

ADR

Form PC-relative address adds an immediate value to the PC value to form a PC-relative address, and writes the result
to the destination register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3
|0 [immlo[1 0 0 0 0] immbhi |
op

2 1 0
Rd |

ADR <Xd>, <label>

integer d = UInt(Rd);
bits(64) imm;

imm = SignExtend(immhi:immlo, 64);

Assembler Symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<label> Is the program label whose address is to be calculated. Its offset from the address of this instruction, in
the range +/-1MB, is encoded in "immhi:immlo".

Operation

bits(64) base = PC[];

X[d] = base + imm;

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ADR Page 28

ADRP

Form PC-relative address to 4KB page adds an immediate value that is shifted left by 12 bits, to the PC value to form a
PC-relative address, with the bottom 12 bits masked out, and writes the result to the destination register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3
| 1]immlof1 0 0 0 0] immbhi |
op

2 1 0
Rd |

ADRP <Xd>, <label>

integer d = UInt(Rd);
bits(64) imm;

imm = SignExtend(immhi:immlo:Zeros(12), 64);

Assembler Symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<label> Is the program label whose 4KB page address is to be calculated. Its offset from the page address of
this instruction, in the range +/-4GB, is encoded as "immhi:immlo" times 4096.

Operation

bits(64) base = PC[];

base<11l:0> = Zeros(12);

X[d] = base + imm;

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ADRP Page 29

AND (immediate)

Bitwise AND (immediate) performs a bitwise AND of a register value and an immediate value, and writes the result to

the destination register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0
Isf[0 0]1 0 0 1 0 O[N] immr | imms | Rn | Rd |
opc

32-bit (sf == 0 && N == 0)
AND <Wd|WSP>, <Wn>, #<imm>
64-bit (sf == 1)

AND <Xd|SP>, <Xn>, #<imm>

integer d = UInt(Rd);
integer n = UInt(Rn);

integer datasize = if sf == 'l' then 64 else 32;
bits(datasize) imm;
if sf == '0' & N !'= '0' then UNDEFINED;

(imm, -) = DecodeBitMasks(N, imms, immr, TRUE);

Assembler Symbols

<Wd|WSP> Is the 32-bit name of the destination general-purpose register or stack pointer, encoded in the "Rd"

field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<Xd|SP> Is the 64-bit name of the destination general-purpose register or stack pointer, encoded in the "Rd"
field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<imm> For the 32-bit variant: is the bitmask immediate, encoded in "imms:immr".

For the 64-bit variant: is the bitmask immediate, encoded in "N:imms:immr".

Operation

bits(datasize) result;
bits(datasize) operandl = X[n];

result = operandl AND imm;
if d == 31 then

SP[] = result;
else

X[d] = result;

Operational information

If PSTATE.DIT is 1:
¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

* The response of this instruction to asynchronous exceptions does not vary based on:

o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AND (immediate)

Page 30

AND (shifted register)

Bitwise AND (shifted register) performs a bitwise AND of a register value and an optionally-shifted register value, and
writes the result to the destination register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
Isf][0 0]0 1 0 1 ofshift[0] Rm | imm6 | Rn | Rd |
opc N

32-bit (sf == 0)

AND <Wd>, <Wn>, <Wm>{, <shift> #<amount>}

64-bit (sf == 1)

AND <Xd>, <Xn>, <Xm>{, <shift> #<amount>}

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer datasize = if sf == 'l' then 64 else 32;
if sf == '0' && imm6<5> == '1' then UNDEFINED;
ShiftType shift type = DecodeShift(shift);
integer shift _amount = UInt(imm6);
Assembler Symbols
<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.
<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.
<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.
<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.
<shift> Is the optional shift to be applied to the final source, defaulting to LSL and encoded in “shift”:
shift <shift>
00 LSL
01 LSR
10 ASR
11 ROR
<amount> For the 32-bit variant: is the shift amount, in the range 0 to 31, defaulting to 0 and encoded in the
"imm6" field.
For the 64-bit variant: is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the
"imm6" field,

Operation

bits(datasize) operandl
bits(datasize) operand2

X[n];
ShiftReg(m, shift type, shift amount);

result = operandl AND operand2;
X[d] = result;

Operational information

If PSTATE.DIT is 1:
¢ The execution time of this instruction is independent of:

AND (shifted register) Page 31

o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AND (shifted register) Page 32

ANDS (immediate)

Bitwise AND (immediate), setting flags, performs a bitwise AND of a register value and an immediate value, and writes
the result to the destination register. It updates the condition flags based on the result.

This instruction is used by the alias TST (immediate).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 0
Isf[1 1]/1 0 0 1 0 O[N] immr | imms | Rn | |
opc
32-bit (sf == 0 && N == 0)
ANDS <Wd>, <Wn>, #<imm>
64-bit (sf == 1)
ANDS <Xd>, <Xn>, #<imm>
integer d = UInt(Rd);
integer n = UInt(Rn);
integer datasize = if sf == '1' then 64 else 32;
bits(datasize) imm;
if sf == '0' & N !'= '0' then UNDEFINED;
(imm, -) = DecodeBitMasks(N, imms, immr, TRUE);

Assembler Symbols

<Wd>
<Wn>
<Xd>
<Xn>

<imm>

Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

For the 32-bit variant: is the bitmask immediate, encoded in "imms:immr".

For the 64-bit variant: is the bitmask immediate, encoded in "N:imms:immr".

Alias Conditions

Alias

Is preferred when

TST (immediate) Rd == '11111"

Operation

bits(data
bits(data

result =
PSTATE.<N

X[d] = re

size) result;
size) operandl = X[n];

operandl AND imm;
,Z,C,V> = result<datasize-1>:IsZeroBit(result):'00"';

sult;

Operational information

If PSTATE.
e The

e The

DITis 1:

execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
response of this instruction to asynchronous exceptions does not vary based on:

ANDS (immediate)

Page 33

o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ANDS (immediate) Page 34

ANDS (shifted register)

Bitwise AND (shifted register), setting flags, performs a bitwise AND of a register value and an optionally-shifted
register value, and writes the result to the destination register. It updates the condition flags based on the result.

This instruction is used by the alias TST (shifted register).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
Isf[1 1]0 1 0 1 ofshift[0] Rm | imm6 | Rn | Rd |
opc N

32-bit (sf == 0)

ANDS <Wd>, <Wn>, <Wm>{, <shift> #<amount>}

64-bit (sf == 1)

ANDS <Xd>, <Xn>, <Xm>{, <shift> #<amount>}

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer datasize = if sf == '1l' then 64 else 32;
if sf == '0' && imm6<5> == '1' then UNDEFINED;
ShiftType shift type = DecodeShift(shift);
integer shift _amount = UInt(imm6);
Assembler Symbols
<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.
<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.
<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.
<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.
<shift> Is the optional shift to be applied to the final source, defaulting to LSL and encoded in “shift”:
shift <shift>
00 LSL
01 LSR
10 ASR
11 ROR
<amount> For the 32-bit variant: is the shift amount, in the range 0 to 31, defaulting to 0 and encoded in the
"imm6" field.
For the 64-bit variant: is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the
"imm6" field,

Alias Conditions

Alias Is preferred when
TST (shifted register) Rd == '11111"'

ANDS (shifted register) Page 35

Operation

X[nl;
ShiftReg(m, shift type, shift amount);

bits(datasize) operandl
bits(datasize) operand2

result = operandl AND operand2;
PSTATE.<N,Z,C,V> = result<datasize-1>:IsZeroBit(result):'00';

X[d] = result;
Operational information

If PSTATE.DIT is 1:
* The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
* The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ANDS (shifted register) Page 36

ASR (register)

Arithmetic Shift Right (register) shifts a register value right by a variable number of bits, shifting in copies of its sign
bit, and writes the result to the destination register. The remainder obtained by dividing the second source register by
the data size defines the number of bits by which the first source register is right-shifted.

This is an alias of ASRV. This means:

¢ The encodings in this description are named to match the encodings of ASRV.
¢ The description of ASRV gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
IsfloJ0]1 1 01 0 1 1 0] Rm |0 01 0]1 0] Rn | Rd |
op2

32-bit (sf == 0)

ASR <Wd>, <Wn>, <Wm>
is equivalent to
ASRV <Wd>, <Wn>, <Wm>

and is always the preferred disassembly.
64-bit (sf == 1)

ASR <Xd>, <Xn>, <Xm>
is equivalent to
ASRV <Xd>, <Xn>, <Xm>

and is always the preferred disassembly.

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register holding a shift amount from 0 to 31 in
its bottom 5 bits, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register holding a shift amount from 0 to 63 in

its bottom 6 bits, encoded in the "Rm" field.

Operation
The description of ASRV gives the operational pseudocode for this instruction.
Operational information

If PSTATE.DIT is 1:

¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
¢ The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

ASR (register) Page 37

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ASR (register) Page 38

ASR (immediate)

Arithmetic Shift Right (immediate) shifts a register value right by an immediate number of bits, shifting in copies of
the sign bit in the upper bits and zeros in the lower bits, and writes the result to the destination register.

This is an alias of SBFM. This means:

¢ The encodings in this description are named to match the encodings of SBFM.
e The description of SBFM gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Isfl0 0[1 0 0 1 1 O[N] immr [x 1 1 1 1 1] Rn | Rd |
opc imms

32-bit (sf == 0 && N == 0 && imms == 011111)

ASR <Wd>, <Wn>, #<shift>
is equivalent to
SBFM <Wd>, <Wn>, #<shift>, #31

and is always the preferred disassembly.
64-bit (sf == 1 && N == 1 && imms == 111111)

ASR <Xd>, <Xn>, #<shift>
is equivalent to
SBFM <Xd>, <Xn>, #<shift>, #63

and is always the preferred disassembly.

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.
<shift> For the 32-bit variant: is the shift amount, in the range 0 to 31, encoded in the "immr" field.

For the 64-bit variant: is the shift amount, in the range 0 to 63, encoded in the "immr" field.

Operation
The description of SBEM gives the operational pseudocode for this instruction.
Operational information

If PSTATE.DIT is 1:

¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
* The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ASR (immediate) Page 39

ASRV

Arithmetic Shift Right Variable shifts a register value right by a variable number of bits, shifting in copies of its sign
bit, and writes the result to the destination register. The remainder obtained by dividing the second source register by
the data size defines the number of bits by which the first source register is right-shifted.

This instruction is used by the alias ASR (register).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
IsfloJ0]1 1 0 1 0 1 1 0] Rm |0 01 0]1 0] Rn | Rd |
op2

32-bit (sf == 0)

ASRV <Wd>, <Wn>, <Wm>

64-bit (sf == 1)

ASRV <Xd>, <Xn>, <Xm>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer datasize = if sf == '1' then 64 else 32;

ShiftType shift type = DecodeShift(op2);

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register holding a shift amount from 0 to 31 in
its bottom 5 bits, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register holding a shift amount from 0 to 63 in

its bottom 6 bits, encoded in the "Rm" field.

Operation

bits(datasize) result;
bits(datasize) operand2 = X[m];

result = ShiftReg(n, shift type, UInt(operand2) MOD datasize);
X[d] = result;

Operational information

If PSTATE.DIT is 1:

¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
¢ The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ASRV Page 40

AT

Address Translate. For more information, see op0==0b01, cache maintenance, TLB maintenance, and address
translation instructions.

This is an alias of SYS. This means:

¢ The encodings in this description are named to match the encodings of SYS.
¢ The description of SYS gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

1 1 01 01010 0[0[0 1] opl [0 1 1 1[1 0 0 x| op2 | Rt |
L CRn CRm

AT <at_op>, <Xt>
is equivalent to
SYS #<opl>, C7, <Cm>, #<op2>, <Xt>

and is the preferred disassembly when SysOp(opl, '0111',CRm,op2) == Sys AT.
Assembler Symbols

<at op> Is an AT instruction name, as listed for the AT system instruction group, encoded in
“opl:CRm<0>:0p2”:

opl CRm<0> op2 <at_op> Architectural Feature

000 0 000 S1EIR -

000 0 001 S1E1W -

000 0 010 S1EGR -

000 0 011 S1EGOW -

000 1 000 S1E1RP FEAT PAN?2

000 1 001 S1E1WP FEAT PAN?2

100 0 000 S1E2R -

100 0 001 S1E2W -

100 0 100 S12E1R -

100 0 101 S12E1W -

100 0 110 S12EOGR -

100 0 111 S12EQOW -

110 0 000 S1E3R -

110 0 001 S1E3W -
<opl> Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "op1" field.
<Cm> Is a name 'Cm’', with 'm' in the range 0 to 15, encoded in the "CRm" field.
<op2> Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "op2" field.
<Xt> Is the 64-bit name of the general-purpose source register, encoded in the "Rt" field.

Operation

The description of SYS gives the operational pseudocode for this instruction.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AT Page 41

AUTDA, AUTDZA

Authenticate Data address, using key A. This instruction authenticates a data address, using a modifier and key A.
The address is in the general-purpose register that is specified by <Xd>.
The modifier is:

« In the general-purpose register or stack pointer that is specified by <Xn|SP> for AUTDA.
¢ The value zero, for AUTDZA.

If the authentication passes, the upper bits of the address are restored to enable subsequent use of the address. If the
authentication fails, the upper bits are corrupted and any subsequent use of the address results in a Translation fault.

Integer
(FEAT_PAuth)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
[1]1]0o]1 1 01 0 1 1 0/o 0 0 0 1][o0f0]Z[1 1 O] Rn | Rd |

AUTDA (Z == 0)
AUTDA <Xd>, <Xn|SP>
AUTDZA (Z == 1 && Rn == 11111)

AUTDZA <Xd>

boolean source is sp = FALSE;
integer d UInt(Rd);
integer n UInt(Rn);

if 'HavePACExt() then
UNDEFINED;

if Z == '0' then // AUTDA

if n == 31 then source is sp = TRUE;
else // AUTDZA

if n != 31 then UNDEFINED;

Assembler Symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Xn|SP> Is the 64-bit name of the general-purpose source register or stack pointer, encoded in the "Rn" field.
Operation

if HavePACExt() then
if source is sp then
X[d] = AuthDA(X[d], SP[], FALSE);
else
X[d] = AuthDA(X[d], X[n], FALSE);

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AUTDA, AUTDZA Page 42

AUTDB, AUTDZB

Authenticate Data address, using key B. This instruction authenticates a data address, using a modifier and key B.
The address is in the general-purpose register that is specified by <Xd>.
The modifier is:

« In the general-purpose register or stack pointer that is specified by <Xn|SP> for AUTDB.

¢ The value zero, for AUTDZB.

If the authentication passes, the upper bits of the address are restored to enable subsequent use of the address. If the
authentication fails, the upper bits are corrupted and any subsequent use of the address results in a Translation fault.

Integer
(FEAT_PAuth)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
[1]1]0o]1 1 01 0 1 1 0/o 0 0 0 1][o0f0]z[1 1 1] Rn | Rd |

AUTDB (Z == 0)
AUTDB <Xd>, <Xn|SP>
AUTDZB (Z == 1 && Rn == 11111)

AUTDZB <Xd>

boolean source is sp = FALSE;
integer d UInt(Rd);
integer n UInt(Rn);

if 'HavePACExt() then
UNDEFINED;

if Z == '0' then // AUTDB

if n == 31 then source is sp = TRUE;
else // AUTDZB

if n != 31 then UNDEFINED;

Assembler Symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Xn|SP> Is the 64-bit name of the general-purpose source register or stack pointer, encoded in the "Rn" field.
Operation

if HavePACExt() then
if source is sp then
X[d] = AuthDB(X[d], SP[], FALSE);
else
X[d] = AuthDB(X[d], X[n], FALSE);

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AUTDB, AUTDZB Page 43

AUTIA, AUTIA1716, AUTIASP, AUTIAZ, AUTIZA

Authenticate Instruction address, using key A. This instruction authenticates an instruction address, using a modifier

and key A.
The address is:

» In the general-purpose register that is specified by <Xd> for AUTIA and AUTIZA.

* InX17, for AUTIA1716.

* In X30, for AUTIASP and AUTIAZ.

The modifier is:

¢ In the general-purpose register or stack pointer that is specified by <Xn|SP> for AUTIA.
* The value zero, for AUTIZA and AUTIAZ.

In X16, for AUTIA1716.
* In SP for AUTIASP.

If the authentication passes, the upper bits of the address are restored to enable subsequent use of the address. If the
authentication fails, the upper bits are corrupted and any subsequent use of the address results in a Translation fault.

It has encodings from 2 classes: Integer and System

Integer
(FEAT_PAuth)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[1]1]0J1 1 01 0 1 1 0[0 0 00 1[0[0[Z]1 0 O] Rn | Rd |
AUTIA (Z == 0)
AUTIA <Xd>, <Xn|SP>
AUTIZA (Z == 1 && Rn == 11111)
AUTIZA <Xd>
boolean source is sp = FALSE;
integer d = UInt(Rd);
integer n = UInt(Rn);
if 'HavePACExt() then
UNDEFINED;
if Z == '0' then // AUTIA
if n == 31 then source_is sp = TRUE;
else // AUTIZA
if n != 31 then UNDEFINED;
System
(FEAT_PAuth)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[1 1 01 01010o0[0[0o0[01 1[0 0 1 0[0 0 x 1[1 0 x[1 1 1 1 1]
CRm op2
AUTIA, AUTIA1716, AUTIASP,
Page 44

AUTIAZ, AUTIZA

AUTIA1716 (CRm == 0001 && op2 == 100)
AUTIAl716

AUTIASP (CRm == 0011 && op2 == 101)
AUTIASP

AUTIAZ (CRm == 0011 && op2 == 100)

AUTIAZ

integer d;

integer n;

boolean source is sp = FALSE;

case CRm:op2 of

when '0011 100' // AUTIAZ
d = 30;
n = 31;
when '0011 101' // AUTIASP
d = 30;
source is sp = TRUE;
when '0001 100' // AUTIA1716
d =17;
n = 16;

when '0001 000' SEE "PACIA";
when '0001 010' SEE "PACIB";
when '0001 110' SEE "AUTIB";
when '0011 00x' SEE "PACIA";
when '0011 01x' SEE "PACIB";
when '0011 11x' SEE "AUTIB";
when '0000 111' SEE "XPACLRI";
otherwise SEE "HINT";

Assembler Symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Xn|SP> Is the 64-bit name of the general-purpose source register or stack pointer, encoded in the "Rn" field.
Operation

if HavePACExt() then
if source is sp then
X[d] = AuthIA(X[d], SP[], FALSE);
else
X[d] = AuthIA(X[d],

X[n], FALSE);

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AUTIA, AUTIA1716, AUTIASP

AUTIAZ, AUTIZA Page 45

AUTIB, AUTIB1716, AUTIBSP, AUTIBZ, AUTIZB

Authenticate Instruction address, using key B. This instruction authenticates an instruction address, using a modifier

and key B.
The address is:

» In the general-purpose register that is specified by <Xd> for AUTIB and AUTIZB.

* InX17, for AUTIB1716.

* In X30, for AUTIBSP and AUTIBZ.

The modifier is:

¢ In the general-purpose register or stack pointer that is specified by <Xn|SP> for AUTIB.
* The value zero, for AUTIZB and AUTIBZ.

In X16, for AUTIB1716.
* In SP for AUTIBSP.

If the authentication passes, the upper bits of the address are restored to enable subsequent use of the address. If the
authentication fails, the upper bits are corrupted and any subsequent use of the address results in a Translation fault.

It has encodings from 2 classes: Integer and System

Integer
(FEAT_PAuth)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[1]1]0J1 1 01 0 1 1 0[0 0 00 1[0f[0[Z]1 0 1] Rn Rd |
AUTIB (Z == 0)
AUTIB <Xd>, <Xn|SP>
AUTIZB (Z == 1 && Rn == 11111)
AUTIZB <Xd>
boolean source is sp = FALSE;
integer d = UInt(Rd);
integer n = UInt(Rn);
if 'HavePACExt() then
UNDEFINED;
if Z == '0"' then // AUTIB
if n == 31 then source is sp = TRUE;
else // AUTIZB
if n != 31 then UNDEFINED;
System
(FEAT_PAuth)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[1 1 01 01010o0[0[0o0[01 1[0 0 1 0[0 0 x 1[1 1 x[1 1 1 1 1]
CRm op2
AUTIB, AUTIB1716, AUTIBSP,
Page 46

AUTIBZ, AUTIZB

AUTIB1716 (CRm == 0001 && op2 == 110)
AUTIB1716

AUTIBSP (CRm == 0011 && op2 == 111)
AUTIBSP

AUTIBZ (CRm == 0011 && op2 == 110)

AUTIBZ

integer d;

integer n;

boolean source is sp = FALSE;

case CRm:op2 of

when '0011 110' // AUTIBZ
d = 30;
n = 31;
when '0011 111' // AUTIBSP
d = 30;
source is sp = TRUE;
when '0001 110' // AUTIB1716
d =17;
n = 16;

when '0001 000' SEE "PACIA";
when '0001 010' SEE "PACIB";
when '0001 100' SEE "AUTIA";
when '0011 00x' SEE "PACIA";
when '0011 01x' SEE "PACIB";
when '0011 10x' SEE "AUTIA";
when '0000 111' SEE "XPACLRI";
otherwise SEE "HINT";

Assembler Symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Xn|SP> Is the 64-bit name of the general-purpose source register or stack pointer, encoded in the "Rn" field.
Operation

if HavePACExt() then
if source is sp then
X[d] = AuthIB(X[d], SP[], FALSE);
else
X[d] = AuthIB(X[d],

X[n], FALSE);

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AUTIB, AUTIB1716, AUTIBSP,

AUTIBZ, AUTIZB Page 47

AXFLAG

Convert floating-point condition flags from Arm to external format. This instruction converts the state of the
PSTATE.{N,Z,C,V} flags from a form representing the result of an Arm floating-point scalar compare instruction to an
alternative representation required by some software.

System
(FEAT_FlagM2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4
[1 1 01 01010 o0[0[0 0[O0 0o0[0 10 0[0((MOM@0 1 01
CRm

—|w
SN}
[y
—|o

AXFLAG

if !'HaveFlagFormatExt() then UNDEFINED;

Operation

bit Z = PSTATE.Z OR PSTATE.V;

bit C = PSTATE.C AND NOT(PSTATE.V);
PSTATE.N = '0';

PSTATE.Z = Z;

PSTATE.C = C;

PSTATE.V = '0';

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AXFLAG Page 48

B.cond

Branch conditionally to a label at a PC-relative offset, with a hint that this is not a subroutine call or return.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0
01 01 01 0/[0] imm19 [0] cond |

B.<cond> <label>

bits(64) offset = SignExtend(imml9:'00', 64);

Assembler Symbols

<cond> Is one of the standard conditions, encoded in the "cond" field in the standard way.

<label> Is the program label to be conditionally branched to. Its offset from the address of this instruction, in
the range +/-1MB, is encoded as "imm19" times 4.

Operation

if ConditionHolds(cond) then
BranchTo(PC[] + offset, BranchType DIR);

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

B.cond Page 49

Branch causes an unconditional branch to a label at a PC-relative offset, with a hint that this is not a subroutine call or
return.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

l0J0o 0 1 0 1] imm26 |
op
B <label>

bits(64) offset = SignExtend(imm26:'00', 64);

Assembler Symbols

<label> Is the program label to be unconditionally branched to. Its offset from the address of this instruction, in
the range +/-128MB, is encoded as "imm?26" times 4.

Operation

BranchTo(PC[] + offset, BranchType DIR);

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

B Page 50

BFC

Bitfield Clear sets a bitfield of <width> bits at bit position <Isb> of the destination register to zero, leaving the other

destination bits unchanged.

This is an alias of BEM. This means:

¢ The encodings in this description are named to match the encodings of BFM.
¢ The description of BFM gives the operational pseudocode for this instruction.

Leaving other bits unchanged
(FEAT_ASMv8p2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 2 0
[sf[0 1[1 0 0 1 1 O[N] immr imms [1 1 1 1 1] Rd |
opc Rn
32-bit (sf == 0 && N == 0)
BFC <Wd>, #<lsb>, #<width>
is equivalent to
BFM <Wd>, WZR, #(-<lsb> MOD 32), #(<width>-1)
and is the preferred disassembly when UInt (imms) < UInt(immr).
64-bit (sf == 1 && N == 1)
BFC <Xd>, #<lsb>, #<width>
is equivalent to
BFM <Xd>, XZR, #(-<lsb> MOD 64), #(<width>-1)
and is the preferred disassembly when UInt(imms) < UInt(immr).
Assembler Symbols
<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
<lsb> For the 32-bit variant: is the bit number of the Isb of the destination bitfield, in the range 0 to 31.

For the 64-bit variant: is the bit number of the Isb of the destination bitfield, in the range 0 to 63.

<width> For the 32-bit variant: is the width of the bitfield, in the range 1 to 32-<Isb>.
For the 64-bit variant: is the width of the bitfield, in the range 1 to 64-<lsb>.

Operation

The description of BEM gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:

¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

¢ The response of this instruction to asynchronous exceptions does not vary based on:

o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

BFC

Page 51

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

BFC Page 52

BFI

Bitfield Insert copies a bitfield of <width> bits from the least significant bits of the source register to bit position
<lsb> of the destination register, leaving the other destination bits unchanged.

This is an alias of BEM. This means:

¢ The encodings in this description are named to match the encodings of BFM.
¢ The description of BFM gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
Isfl0 1]1 0 0 1 1 O[N] immr | imms | '=11111 | Rd |
opc Rn

32-bit (sf == 0 && N == 0)

BFI <Wd>, <Wn>, #<lsb>, #<width>
is equivalent to
BFM <Wd>, <Wn>, #(-<lsb> MOD 32), #(<width>-1)

and is the preferred disassembly when UInt(imms) < UInt(immr).
64-bit (sf ==1 && N ==1)

BFI <Xd>, <Xn>, #<lsb>, #<width>
is equivalent to
BFM <Xd>, <Xn>, #(-<lsb> MOD 64), #(<width>-1)

and is the preferred disassembly when UInt(imms) < UInt(immr).

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<lsh> For the 32-bit variant: is the bit number of the Isb of the destination bitfield, in the range 0 to 31.

For the 64-bit variant: is the bit number of the Isb of the destination bitfield, in the range 0 to 63.

<width> For the 32-bit variant: is the width of the bitfield, in the range 1 to 32-<Isb>.
For the 64-bit variant: is the width of the bitfield, in the range 1 to 64-<lsb>.

Operation
The description of BEM gives the operational pseudocode for this instruction.
Operational information

If PSTATE.DIT is 1:

¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
¢ The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

BFI Page 53

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

BFI Page 54

BFM

Bitfield Move is usually accessed via one of its aliases, which are always preferred for disassembly.
If <imms> is greater than or equal to <immr>, this copies a bitfield of (<imms>-<immr>+1) bits starting from bit
position <immr> in the source register to the least significant bits of the destination register.
If <imms> is less than <immr>, this copies a bitfield of (<imms=>+1) bits from the least significant bits of the source

register to bit position (regsize-<immr>) of the destination register, where regsize is the destination register size of 32

or 64 bits.

In both cases the other bits of the destination register remain unchanged.

This instruction is used by the aliases BFC, BFI, and BFXIL..

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0
[sf[0 1[1 0 0 1 1 O[N] immr | imms | Rn | Rd |
opc
32-bit (sf == 0 && N == 0)
BFM <Wd>, <Wn>, #<immr>, #<imms>
64-bit (sf == 1 && N == 1)
BFM <Xd>, <Xn>, #<immr>, #<imms>
integer d = UInt(Rd);
integer n = UInt(Rn);
integer datasize = if sf == 'l' then 64 else 32;
integer R;
bits(datasize) wmask;
bits(datasize) tmask;
if sf == '1' & N != '1' then UNDEFINED;
if sf == '0' & (N !'= '0' || immr<5> != '0' || imms<5> != '0') then UNDEFINED;
R = UInt(immr);
(wmask, tmask) = DecodeBitMasks(N, imms, immr, FALSE);
Assembler Symbols
<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.
<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.
<immr> For the 32-bit variant: is the right rotate amount, in the range 0 to 31, encoded in the "immr" field.

For the 64-bit variant: is the right rotate amount, in the range 0 to 63, encoded in the "immr" field.

<imms> For the 32-bit variant: is the leftmost bit number to be moved from the source, in the range 0 to 31,

encoded in the "imms" field.

For the 64-bit variant: is the leftmost bit number to be moved from the source, in the range 0 to 63,

encoded in the "imms" field.

Alias Conditions

Alias Is preferred when
BEC Rn == '11111' && UInt(imms) < UInt(immr)
BFI Rn !'= '"11111' && UInt(imms) < UInt(immr)
BFXIL UInt(imms) >= UInt(immr)

BFM

Page 55

Operation

X[d];
X[nl;

bits(datasize) dst
bits(datasize) src

// perform bitfield move on low bits
bits(datasize) bot = (dst AND NOT(wmask)) OR (ROR(src, R) AND wmask);

// combine extension bits and result bits
X[d] = (dst AND NOT(tmask)) OR (bot AND tmask);

Operational information

If PSTATE.DIT is 1:
* The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
* The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

BFM Page 56

BFXIL

Bitfield Extract and Insert Low copies a bitfield of <width> bits starting from bit position <Isb> in the source register
to the least significant bits of the destination register, leaving the other destination bits unchanged.

This is an alias of BEM. This means:

¢ The encodings in this description are named to match the encodings of BFM.
¢ The description of BFM gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
Isfl0 1]1 0 0 1 1 O[N] immr | imms | Rn | Rd |
opc

32-bit (sf == 0 && N == 0)

BFXIL <Wd>, <Wn>, #<lsb>, #<width>
is equivalent to
BFM <Wd>, <Wn>, #<lsb>, #(<lsb>+<width>-1)

and is the preferred disassembly when UInt(imms) >= UInt(immr).
64-bit (sf ==1 && N ==1)

BFXIL <Xd>, <Xn>, #<lsb>, #<width>
is equivalent to
BFM <Xd>, <Xn>, #<lsb>, #(<lsb>+<width>-1)

and is the preferred disassembly when UInt(imms) >= UInt(immr).

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<lsh> For the 32-bit variant: is the bit number of the Isb of the source bitfield, in the range 0 to 31.

For the 64-bit variant: is the bit number of the Isb of the source bitfield, in the range 0 to 63.

<width> For the 32-bit variant: is the width of the bitfield, in the range 1 to 32-<Isb>.
For the 64-bit variant: is the width of the bitfield, in the range 1 to 64-<lsb>.

Operation
The description of BEM gives the operational pseudocode for this instruction.
Operational information

If PSTATE.DIT is 1:

¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
¢ The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

BFXIL Page 57

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

BFXIL Page 58

BIC (shifted register)

Bitwise Bit Clear (shifted register) performs a bitwise AND of a register value and the complement of an optionally-
shifted register value, and writes the result to the destination register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

Isf]0 0J]0 1 0 1 ofshift[1] Rm | imm6 | Rn | Rd

opc

N

32-bit (sf == 0)

BIC <Wd>, <Wn>, <Wm>{, <shift> #<amount>}

64-bit (sf == 1)

BIC <Xd>, <Xn>, <Xm>{, <shift> #<amount>}
integer d = UInt(Rd);

integer n = UInt(Rn);

integer m = UInt(Rm);

integer datasize = if sf == 'l' then 64 else 32;
if sf == '0' && imm6<5> == '1' then UNDEFINED;
ShiftType shift type = DecodeShift(shift);
integer shift _amount = UInt(imm6);

Assembler Symbols

<Wd>

<Wn>

<Wm>

<Xd>
<Xn>

<Xm>

<shift>

<amount>

Operation

bits(datasize) operandl
bits(datasize) operand2

Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.
Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.
Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.
Is the optional shift to be applied to the final source, defaulting to LSL and encoded in “shift”:

shift <shift>

00 LSL
01 LSR
10 ASR
11 ROR

For the 32-bit variant: is the shift amount, in the range 0 to 31, defaulting to 0 and encoded in the
"imm6" field.

For the 64-bit variant: is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the
"imm6" field,

X[n];
ShiftReg(m, shift type, shift amount);

operand2 = NOT(operand2);

result = operandl AND operand2;

X[d]

result;

BIC (shifted register)

Page 59

Operational information

If PSTATE.DIT is 1:

¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
¢ The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

BIC (shifted register) Page 60

BICS (shifted register)

Bitwise Bit Clear (shifted register), setting flags, performs a bitwise AND of a register value and the complement of an
optionally-shifted register value, and writes the result to the destination register. It updates the condition flags based
on the result.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
Isf[1 1]0 1 0 1 ofshift[1] Rm | imm6 | Rn | Rd |
opc N

32-bit (sf == 0)

BICS <Wd>, <Wn>, <Wm>{, <shift> #<amount>}

64-bit (sf == 1)

BICS <Xd>, <Xn>, <Xm>{, <shift> #<amount>}

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer datasize = if sf == '1l' then 64 else 32;
if sf == '0' && imm6<5> == '1' then UNDEFINED;
ShiftType shift type = DecodeShift(shift);
integer shift _amount = UInt(imm6);
Assembler Symbols
<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.
<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.
<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.
<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.
<shift> Is the optional shift to be applied to the final source, defaulting to LSL and encoded in “shift”:
shift <shift>
00 LSL
01 LSR
10 ASR
11 ROR
<amount> For the 32-bit variant: is the shift amount, in the range 0 to 31, defaulting to 0 and encoded in the
"imm6" field.
For the 64-bit variant: is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the
"imm6" field,

Operation

X[n];
ShiftReg(m, shift type, shift amount);

bits(datasize) operandl
bits(datasize) operand2

operand2 = NOT(operand2);

result = operandl AND operand2;
PSTATE.<N,Z,C,V> = result<datasize-1>:IsZeroBit(result):'00';

X[d] = result;

BICS (shifted register) Page 61

Operational information

If PSTATE.DIT is 1:

¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
¢ The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

BICS (shifted register) Page 62

BL

Branch with Link branches to a PC-relative offset, setting the register X30 to PC+4. It provides a hint that this is a
subroutine call.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

[1/]0 0 1 0 1] imm26 |
op
BL <label>

bits(64) offset = SignExtend(imm26:'00', 64);

Assembler Symbols

<label> Is the program label to be unconditionally branched to. Its offset from the address of this instruction, in
the range +/-128MB, is encoded as "imm?26" times 4.

Operation

X[30] = PC[] + 4;

BranchTo(PC[] + offset, BranchType DIRCALL);

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

BL Page 63

BLR

Branch with Link to Register calls a subroutine at an address in a register, setting register X30 to PC+4.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

/1 1 01 01 1]/0of/0oJ0o 1f1 1 1 1 1[0 0 0 O0f[0]0] Rn [0 0 0 0 O]
Z op A M Rm

BLR <Xn>

integer n = UInt(Rn);

Assembler Symbols

<Xn> Is the 64-bit name of the general-purpose register holding the address to be branched to, encoded in
the "Rn" field.

Operation

bits(64) target = X[n];
X[30] = PC[] + 4;
// Value in BTypeNext will be used to set PSTATE.BTYPE

BTypeNext = '10';
BranchTo(target, BranchType INDCALL);

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

BLR Page 64

BLRAA, BLRAAZ, BLRAB, BLRABZ

Branch with Link to Register, with pointer authentication. This instruction authenticates the address in the general-
purpose register that is specified by <Xn>, using a modifier and the specified key, and calls a subroutine at the
authenticated address, setting register X30 to PC+4.
The modifier is:

¢ In the general-purpose register or stack pointer that is specified by <Xm|SP> for BLRAA and BLRAB.

* The value zero, for BLRAAZ and BLRABZ.

Key A is used for BLRAA and BLRAAZ, and key B is used for BLRAB and BLRABZ.

If the authentication passes, the PE continues execution at the target of the branch. If the authentication fails, a
Translation fault is generated.

The authenticated address is not written back to the general-purpose register.

Integer
(FEAT_PAuth)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
1 1 01 01 1]z]ofJo 1]1 1 1 1 1[0 0 0 0[1[M] Rn | Rm
op A

Key A, zero modifier (Z == 0 && M == 0 && Rm == 11111)
BLRAAZ <Xn>

Key A, register modifier (Z == 1 && M == 0)
BLRAA <Xn>, <Xm|SP>

Key B, zero modifier (Z == 0 & M == 1 && Rm == 11111)
BLRABZ <Xn>

Key B, register modifier (Z == 1 && M == 1)

BLRAB <Xn>, <Xm|SP>

integer n = UInt(Rn);

integer m = UInt(Rm);

boolean use key a = (M == '0');

boolean source is sp = ((Z == '1"') && (m == 31));

if 'HavePACExt() then
UNDEFINED;

if Z=="'0" & m != 31 then
UNDEFINED;

Assembler Symbols

<Xn> Is the 64-bit name of the general-purpose register holding the address to be branched to, encoded in
the "Rn" field.

<Xm|SP> Is the 64-bit name of the general-purpose source register or stack pointer holding the modifier, encoded
in the "Rm" field.

BLRAA, BLRAAZ, BLRAB,

BLRABZ Page 65

Operation

bits(64) target = X[nl];
bits(64) modifier = if source is sp then SP[] else X[m];

if use key a then

target = AuthIA(target, modifier, TRUE);
else

target = AuthIB(target, modifier, TRUE);

X[30] = PC[] + 4;
// Value in BTypeNext will be used to set PSTATE.BTYPE

BTypeNext = '10';
BranchTo(target, BranchType INDCALL);

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

BLRAA, BLRAAZ, BLRAB,

BLRABZ Page 66

BR

Branch to Register branches unconditionally to an address in a register, with a hint that this is not a subroutine return.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
|1 1 01 01 1]/of/0oJ0o 01 1 1 1 1[0 0 0 0f[0]0] Rn [0 0 0 0 O]
Z op A M Rm
BR <Xn>

integer n = UInt(Rn);
Assembler Symbols

<Xn> Is the 64-bit name of the general-purpose register holding the address to be branched to, encoded in
the "Rn" field.

Operation

bits(64) target = X[n];

// Value in BTypeNext will be used to set PSTATE.BTYPE
if InGuardedPage then
if n =16 || n == 17 then
BTypeNext = '01"';
else
BTypeNext

'11';
else

BTypeNext = '01';
BranchTo(target, BranchType INDIR);

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

BR Page 67

BRAA, BRAAZ, BRAB, BRABZ

Branch to Register, with pointer authentication. This instruction authenticates the address in the general-purpose
register that is specified by <Xn>, using a modifier and the specified key, and branches to the authenticated address.

The modifier is:

¢ In the general-purpose register or stack pointer that is specified by <Xm|SP> for BRAA and BRAB.
* The value zero, for BRAAZ and BRABZ.

Key A is used for BRAA and BRAAZ, and key B is used for BRAB and BRABZ.

If the authentication passes, the PE continues execution at the target of the branch. If the authentication fails, a
Translation fault is generated.

The authenticated address is not written back to the general-purpose register.

Integer
(FEAT_PAuth)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
1 1 01 01 1]z]oJo o1 111 1[0 0 0 0[1[M] Rn | Rm
op A

Key A, zero modifier (Z == 0 && M == 0 && Rm == 11111)
BRAAZ <Xn>

Key A, register modifier (Z == 1 && M == 0)
BRAA <Xn>, <Xm|SP>

Key B, zero modifier (Z == 0 & M == 1 && Rm == 11111)
BRABZ <Xn>

Key B, register modifier (Z == 1 && M == 1)

BRAB <Xn>, <Xm|SP>

integer n UInt(Rn);

integer m UInt(Rm);

boolean use key a = (M == '0');

boolean source is sp = ((Z == '1"') && (m == 31));

if 'HavePACExt() then
UNDEFINED;

if Z=="'0" & m != 31 then
UNDEFINED;

Assembler Symbols

<Xn> Is the 64-bit name of the general-purpose register holding the address to be branched to, encoded in
the "Rn" field.

<Xm|SP> Is the 64-bit name of the general-purpose source register or stack pointer holding the modifier, encoded
in the "Rm" field.

BRAA, BRAAZ, BRAB, BRABZ Page 68

Operation

bits(64) target = X[nl];
bits(64) modifier = if source is sp then SP[] else X[m];

if use key a then

target = AuthIA(target, modifier, TRUE);
else

target = AuthIB(target, modifier, TRUE);

// Value in BTypeNext will be used to set PSTATE.BTYPE
if InGuardedPage then
if n ==16 || n == 17 then
BTypeNext = '01°';
else

BTypeNext '11';

else
BTypeNext = '01';
BranchTo(target, BranchType INDIR);

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

BRAA, BRAAZ, BRAB, BRABZ

Page 69

BRK

Breakpoint instruction. A BRK instruction generates a Breakpoint Instruction exception. The PE records the exception
in ESR_ELx, using the EC value 0x3c, and captures the value of the immediate argument in ESR_ELXx.ISS.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
/1 1 01 010 0[00 1] imm16 |0 0 0/0 0]
BRK #<imm>

if HaveBTIExt() then
SetBTypeCompatible(TRUE) ;

Assembler Symbols
<imm> Is a 16-bit unsigned immediate, in the range 0 to 65535, encoded in the "imm16" field.

Operation

AArch64.SoftwareBreakpoint (imml6) ;

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

BRK Page 70

BTI

Branch Target Identification. A BTI instruction is used to guard against the execution of instructions which are not the
intended target of a branch.

Outside of a guarded memory region, a BTI instruction executes as a NOP. Within a guarded memory region while
PSTATE.BTYPE != 0b00, a BTI instruction compatible with the current value of PSTATE.BTYPE will not generate a
Branch Target Exception and will allow execution of subsequent instructions within the memory region.

The operand <targets> passed to a BTI instruction determines the values of PSTATE.BTYPE which the BTI instruction
is compatible with.

Within a guarded memory region, while PSTATE.BTYPE

1= 0b00, all instructions will generate a Branch Target

Exception, other than BRK, BTI, HLT, PACIASP,

and PACIBSP, which may not. See the individual instructions for details.

System
(FEAT_BTI)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3
[1 1 01 01 010o0[0[00[01 1]/0 01 0[0 1 0 0[x x 0[1 1
CRm op2

(YN}
[y
—|o

BTI {<targets>}

SystemHintOp op;

if CRm:op2 == '0100 xx0' then
op = SystemHintOp BTI;
// Check branch target compatibility between BTI instruction and PSTATE.BTYPE
SetBTypeCompatible (BTypeCompatible BTI(op2<2:1>));
else
EndOfInstruction();

Assembler Symbols

<targets> Is the type of indirection, encoded in “op2<2:1>":

op2<2:1> <targets>

00 (omitted)
01 C

10 j

11 jc

BTI Page 71

Operation

case op of
when SystemHintOp YIELD
Hint Yield();

when SystemHintOp DGH
Hint DGH();

when SystemHintOp WFE
Hint WFE(-1, WExType WFE);

when SystemHintOp WFI
Hint WFI(-1, WExType WFI);

when SystemHintOp SEV
SendEvent();

when SystemHintOp SEVL
SendEventlocal();

when SystemHintOp ESB
SynchronizeErrors();
AArch64.ESBOperation();
if PSTATE.EL IN {ELO, EL1} && EL2Enabled() then AArch64.vESBOperation();
TakeUnmaskedSErrorInterrupts();

when SystemHintOp PSB
ProfilingSynchronizationBarrier();

when SystemHintOp TSB
TraceSynchronizationBarrier();

when SystemHintOp CSDB
ConsumptionOfSpeculativeDataBarrier();

when SystemHintOp BTI
SetBTypeNext('00"');

otherwise // do nothing

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

BTI Page 72

CAS, CASA, CASAL, CASL

Compare and Swap word or doubleword in memory reads a 32-bit word or 64-bit doubleword from memory, and
compares it against the value held in a first register. If the comparison is equal, the value in a second register is
written to memory. If the write is performed, the read and write occur atomically such that no other modification of
the memory location can take place between the read and write.

¢ CASA and CASAL load from memory with acquire semantics.
¢ CASL and CASAL store to memory with release semantics.
¢ CAS has neither acquire nor release semantics.

For more information about memory ordering semantics see Load-Acquire, Store-Release.
For information about memory accesses see Load/Store addressing modes.

The architecture permits that the data read clears any exclusive monitors associated with that location, even if the
compare subsequently fails.

If the instruction generates a synchronous Data Abort, the register which is compared and loaded, that is <Ws>, or
<Xs>, is restored to the value held in the register before the instruction was executed.

No offset
(FEAT _LSE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
|1 x]0 01 0 0 o0of1[L[1] Rs lo0Of1 1 1 1 1] Rn Rt |
size

CAS, CASA, CASAL, CASL Page 73

32-bit CAS (size == 10 && L == 0 && 00 == 0)

CAS <Ws>, <Wt>, [<Xn|SP>{,#0}]

32-bit CASA (size == 10 && L == 1 && 00 == 0)

CASA <Ws>, <Wt>, [<Xn|SP>{,#0}]

32-bit CASAL (size == 10 && L == 1 && 00 == 1)

CASAL <Ws>, <Wt>, [<Xn|SP>{,#0}]

32-bit CASL (size == 10 && L == 0 && 00 == 1)

CASL <Ws>, <Wt>, [<Xn|SP>{,#0}]

64-bit CAS (size == 11 && L == 0 && 00 == 0)

CAS <Xs>, <Xt>, [<Xn|SP>{,#0}]

64-bit CASA (size == 11 && L == 1 && 00 == 0)

CASA <Xs>, <Xt>, [<Xn|SP>{,#0}]

64-bit CASAL (size == 11 && L == 1 && 00 == 1)

CASAL <Xs>, <Xt>, [<Xn|SP>{,#0}]

64-bit CASL (size == 11 && L == 0 && 00 == 1)

CASL <Xs>, <Xt>, [<Xn|SP>{,#0}]

if 'HaveAtomicExt() then UNDEFINED;

integer n
integer t
integer s

UInt(Rn);
UInt(Rt);
UInt(Rs);

integer datasize = 8 << Ulnt(size);

integer regsize = if datasize == 64 then 64 else 32;
AccType ldacctype = if L == '1' then AccType ORDEREDATOMICRW else AccType ATOMICRW;
AccType stacctype = if 00 == '1l' then AccType ORDEREDATOMICRW else AccType ATOMICRW;

boolean tag checked = n != 31;

Assembler Symbols

<Ws>
<Wt>
<Xs>
<Xt>
<Xn|SP>

Is the 32-bit name of the general-purpose register to be compared and loaded, encoded in the "Rs" field.
Is the 32-bit name of the general-purpose register to be conditionally stored, encoded in the "Rt" field.
Is the 64-bit name of the general-purpose register to be compared and loaded, encoded in the "Rs" field.
Is the 64-bit name of the general-purpose register to be conditionally stored, encoded in the "Rt" field.

Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

CAS, CASA, CASAL, CASL Page 74

Operation

bits
bits
bits
bits

64) address;

datasize) comparevalue;
datasize) newvalue;
datasize) data;

—_~ e~ o~ —~

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag checked);

comparevalue = X[s];
newvalue = X[t];

if n == 31 then
CheckSPAlignment () ;
address = SP[];
else
address = X[n];

data = MemAtomicCompareAndSwap (address, comparevalue, newvalue, ldacctype, stacctype);

X[s] ZeroExtend(data, regsize);

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CAS, CASA, CASAL, CASL Page 75

CASB, CASAB, CASALB, CASLB

Compare and Swap byte in memory reads an 8-bit byte from memory, and compares it against the value held in a first
register. If the comparison is equal, the value in a second register is written to memory. If the write is performed, the
read and write occur atomically such that no other modification of the memory location can take place between the
read and write.

¢ CASAB and CASALB load from memory with acquire semantics.

¢ CASLB and CASALB store to memory with release semantics.

¢ CASB has neither acquire nor release semantics.
For more information about memory ordering semantics see Load-Acquire, Store-Release.
For information about memory accesses see Load/Store addressing modes.
The architecture permits that the data read clears any exclusive monitors associated with that location, even if the
compare subsequently fails.
If the instruction generates a synchronous Data Abort, the register which is compared and loaded, that is <Ws>, is
restored to the values held in the register before the instruction was executed.

No offset
(FEAT _LSE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
|0 0J]0O 01 0 0 of1[L[1] Rs lo0Of1 1 1 1 1] Rn Rt |
size

CASAB (L == 1 && 00 == 0)

CASAB <Ws>, <Wt>, [<Xn|SP>{,#0}]
CASALB (L == 1 && 00 == 1)

CASALB <Ws>, <Wt>, [<Xn|SP>{,#0}]
CASB (L == 0 && 00 == 0)

CASB <Ws>, <Wt>, [<Xn|SP>{,#0}]
CASLB (L == 0 && 00 == 1)

CASLB <Ws>, <Wt>, [<Xn|SP>{,#0}]

if 'HaveAtomicExt() then UNDEFINED;

integer n = UInt(Rn);

integer t = UInt(Rt);

integer s = UInt(Rs);

AccType ldacctype = if L == '1' then AccType ORDEREDATOMICRW else AccType ATOMICRW;
AccType stacctype = if 00 == '1' then AccType ORDEREDATOMICRW else AccType ATOMICRW;
boolean tag checked = n != 31;

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register to be compared and loaded, encoded in the "Rs" field.
<Wt> Is the 32-bit name of the general-purpose register to be conditionally stored, encoded in the "Rt" field.
<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

CASB, CASAB, CASALB,

CASLB Page 76

Operation

bits(64) address;
bits(8) comparevalue;
bits(8) newvalue;
bits(8) data;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag checked);

comparevalue = X[s];
newvalue = X[t];

if n == 31 then
CheckSPAlignment () ;
address = SP[];
else
address = X[n];

data = MemAtomicCompareAndSwap (address, comparevalue, newvalue, ldacctype, stacctype);

X[s] ZeroExtend(data, 32);
Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CASB, CASAB, CASALB,

CASLB Page 77

CASH, CASAH, CASALH, CASLH

Compare and Swap halfword in memory reads a 16-bit halfword from memory, and compares it against the value held
in a first register. If the comparison is equal, the value in a second register is written to memory. If the write is
performed, the read and write occur atomically such that no other modification of the memory location can take place
between the read and write.

¢ CASAH and CASALH load from memory with acquire semantics.

¢ CASLH and CASALH store to memory with release semantics.

¢ CAS has neither acquire nor release semantics.
For more information about memory ordering semantics see Load-Acquire, Store-Release.
For information about memory accesses see Load/Store addressing modes.
The architecture permits that the data read clears any exclusive monitors associated with that location, even if the
compare subsequently fails.
If the instruction generates a synchronous Data Abort, the register which is compared and loaded, that is <Ws>, is
restored to the values held in the register before the instruction was executed.

No offset
(FEAT _LSE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
|0 1/]0 01 0 0 of1[L[1] Rs lo0Of1 1 1 1 1] Rn Rt |
size

CASAH (L == 1 && 00 == 0)

CASAH <Ws>, <Wt>, [<Xn|SP>{,#0}]
CASALH (L == 1 && 00 == 1)

CASALH <Ws>, <Wt>, [<Xn|SP>{,#0}]
CASH (L == 0 && 00 == 0)

CASH <Ws>, <Wt>, [<Xn|SP>{,#0}]
CASLH (L == 0 && 00 == 1)

CASLH <Ws>, <Wt>, [<Xn|SP>{,#0}]

if 'HaveAtomicExt() then UNDEFINED;

integer n = UInt(Rn);

integer t = UInt(Rt);

integer s = UInt(Rs);

AccType ldacctype = if L == '1' then AccType ORDEREDATOMICRW else AccType ATOMICRW;
AccType stacctype = if 00 == '1' then AccType ORDEREDATOMICRW else AccType ATOMICRW;
boolean tag checked = n != 31;

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register to be compared and loaded, encoded in the "Rs" field.
<Wt> Is the 32-bit name of the general-purpose register to be conditionally stored, encoded in the "Rt" field.
<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

CASH, CASAH, CASALH,

CASLH Page 78

Operation

bits
bits
bits
bits

64) address;

16) comparevalue;
16) newvalue;

16) data;

—_~ e~ o~ —~

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag checked);

comparevalue = X[s];
newvalue = X[t];

if n == 31 then
CheckSPAlignment () ;
address = SP[];
else
address = X[n];

data = MemAtomicCompareAndSwap (address, comparevalue, newvalue, ldacctype, stacctype);

X[s] ZeroExtend(data, 32);
Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CASH, CASAH, CASALH,

CASLH Page 79

CASP, CASPA, CASPAL, CASPL

Compare and Swap Pair of words or doublewords in memory reads a pair of 32-bit words or 64-bit doublewords from
memory, and compares them against the values held in the first pair of registers. If the comparison is equal, the values
in the second pair of registers are written to memory. If the writes are performed, the reads and writes occur
atomically such that no other modification of the memory location can take place between the reads and writes.

¢ CASPA and CASPAL load from memory with acquire semantics.
¢ CASPL and CASPAL store to memory with release semantics.
¢ CAS has neither acquire nor release semantics.

For more information about memory ordering semantics see Load-Acquire, Store-Release.
For information about memory accesses see Load/Store addressing modes.

The architecture permits that the data read clears any exclusive monitors associated with that location, even if the
compare subsequently fails.

If the instruction generates a synchronous Data Abort, the registers which are compared and loaded, that is <Ws>
and <W(s+1)>, or <Xs> and <X(s+1)>, are restored to the values held in the registers before the instruction was
executed.

No offset
(FEAT _LSE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
[0]sz|0 0 1 0 0 ofO|L[1] Rs lo0[1 1 1 1 1] Rn Rt |
Rt2

CASP, CASPA, CASPAL,

CASPL Page 80

32-bit CASP (sz == 0 && L == 0 && 00 == 0)

CASP <Ws>, <W(s+1)>, <Wt>, <W(t+l)>, [<Xn|SP>{,#0}]
32-bit CASPA (sz == 0 && L == 1 && 00 == 0)

CASPA <Ws>, <W(s+1l)>, <Wt>, <W(t+1l)>, [<Xn|SP>{,#0}]
32-bit CASPAL (sz == 0 && L == 1 && 00 == 1)

CASPAL <Ws>, <W(s+l)>, <Wt>, <W(t+1l)>, [<Xn|SP>{,#0}]
32-bit CASPL (sz2 == 0 && L == 0 && 00 == 1)

CASPL <Ws>, <W(s+1l)>, <Wt>, <W(t+1l)>, [<Xn|SP>{,#0}]
64-bit CASP (sz == 1 && L == 0 && 00 == 0)

CASP <Xs>, <X(s+1)>, <Xt>, <X(t+l)>, [<Xn|SP>{,#0}]
64-bit CASPA (sz == 1 && L == 1 && 00 == 0)

CASPA <Xs>, <X(s+1)>, <Xt>, <X(t+1l)>, [<Xn|SP>{,#0}]
64-bit CASPAL (sz==1 && L == 1 && 00 == 1)

CASPAL <Xs>, <X(s+l)>, <Xt>, <X(t+1)>, [<Xn|SP>{,#0}]

64-bit CASPL (sz == 1 && L == 0 && 00 == 1)

CASPL <Xs>,

<X(s+1l)>, <Xt>, <X(t+l)>, [<Xn|SP>{,#0}]

if 'HaveAtomicExt() then UNDEFINED;

if Rs<0> == '1' then UNDEFINED;
if Rt<0> == '1' then UNDEFINED;
integer n = UInt(Rn);
integer t = UInt(Rt);
integer s = UInt(Rs);

integer datasize = 32 << UInt(sz);

AccType ldacctype = if L == '1' then AccType ORDEREDATOMICRW else AccType ATOMICRW;
AccType stacctype = if 00 == '1l' then AccType ORDEREDATOMICRW else AccType ATOMICRW;

boolean tag checked = n != 31;

Assembler Symbols

<Ws>

<W(s+1)>
<Wt>

<W(t+1)>

<Xs>

<X(s+1)>
<Xt>

Is the 32-bit name of the first general-purpose register to be compared and loaded, encoded in the "Rs"
field. <Ws> must be an even-numbered register.

Is the 32-bit name of the second general-purpose register to be compared and loaded.

Is the 32-bit name of the first general-purpose register to be conditionally stored, encoded in the "Rt"
field. <Wt> must be an even-numbered register.

Is the 32-bit name of the second general-purpose register to be conditionally stored.

Is the 64-bit name of the first general-purpose register to be compared and loaded, encoded in the "Rs"
field. <Xs> must be an even-numbered register.

Is the 64-bit name of the second general-purpose register to be compared and loaded.

Is the 64-bit name of the first general-purpose register to be conditionally stored, encoded in the "Rt"
field. <Xt> must be an even-numbered register.

CASP, CASPA, CASPAL,

CASPL Page 81

<X(t+1)> Is the 64-bit name of the second general-purpose register to be conditionally stored.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

bits(64) address;
bits(2*datasize) comparevalue;
bits(2*datasize) newvalue;
bits(2*datasize) data;

bits(datasize) sl = X[s];
bits(datasize) s2 = X[s+1];
bits(datasize) tl = X[t];
bits(datasize) t2 = X[t+1];

comparevalue if BigEndian(ldacctype) then sl:s2 else s2:sl;
newvalue = if BigEndian(stacctype) then t1l:t2 else t2:t1;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag checked);

if n == 31 then
CheckSPAlignment();
address = SP[];
else
address = X[n];

data = MemAtomicCompareAndSwap(address, comparevalue, newvalue, ldacctype, stacctype);

if BigEndian(ldacctype) then
X[s] = data<2*datasize-1l:datasize>;
X[s+1] = data<datasize-1:0>;
else
X[s] = data<datasize-1:0>;
X[s+1] = data<2*datasize-1l:datasize>;

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CASP, CASPA, CASPAL,

CASPL Page 82

CBNZ

Compare and Branch on Nonzero compares the value in a register with zero, and conditionally branches to a label at a
PC-relative offset if the comparison is not equal. It provides a hint that this is not a subroutine call or return. This
instruction does not affect the condition flags.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
Isfl01 1 0 1 0[1] imm19 | Rt |
op

32-bit (sf == 0)
CBNZ <Wt>, <label>
64-bit (sf == 1)

CBNZ <Xt>, <label>
integer t = UInt(Rt);

integer datasize = if sf == 'l' then 64 else 32;
bits(64) offset = SignExtend(imml9:'00', 64);

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be tested, encoded in the "Rt" field.
<Xt> Is the 64-bit name of the general-purpose register to be tested, encoded in the "Rt" field.
<label> Is the program label to be conditionally branched to. Its offset from the address of this instruction, in

the range +/-1MB, is encoded as "imm19" times 4.

Operation

bits(datasize) operandl = X[t];

if IsZero(operandl) == FALSE then
BranchTo(PC[] + offset, BranchType DIR);

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CBNZz Page 83

CBZ

Compare and Branch on Zero compares the value in a register with zero, and conditionally branches to a label at a PC-
relative offset if the comparison is equal. It provides a hint that this is not a subroutine call or return. This instruction
does not affect condition flags.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Isfl0 1 1 0 1 0[0] imm19 | Rt |
op

32-bit (sf == 0)
CBZ <Wt>, <label>
64-bit (sf == 1)

CBZ <Xt>, <label>
integer t = UInt(Rt);

integer datasize = if sf == 'l' then 64 else 32;
bits(64) offset = SignExtend(imml9:'00', 64);

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be tested, encoded in the "Rt" field.
<Xt> Is the 64-bit name of the general-purpose register to be tested, encoded in the "Rt" field.
<label> Is the program label to be conditionally branched to. Its offset from the address of this instruction, in

the range +/-1MB, is encoded as "imm19" times 4.

Operation

bits(datasize) operandl = X[t];

if IsZero(operandl) == TRUE then
BranchTo(PC[] + offset, BranchType DIR);

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CBZ Page 84

CCMN (immediate)

Conditional Compare Negative (immediate) sets the value of the condition flags to the result of the comparison of a
register value and a negated immediate value if the condition is TRUE, and an immediate value otherwise.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
Isfl0J1]1 1 0 1 0 0 1 0] imm5 | cond J1]0] Rn 0] nzev |
op

32-bit (sf == 0)
CCMN <Wn>, #<imm>, #<nzcv>, <cond>
64-bit (sf == 1)

CCMN <Xn>, #<imm>, #<nzcv>, <cond>

integer n = UInt(Rn);
integer datasize = if sf == '1' then 64 else 32;
bits(4) flags = nzcv;
bits(datasize) imm = ZeroExtend(imm5, datasize);

Assembler Symbols

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<imm> Is a five bit unsigned (positive) immediate encoded in the "imm5" field.

<nzcv> Is the flag bit specifier, an immediate in the range 0 to 15, giving the alternative state for the 4-bit
NZCV condition flags, encoded in the "nzcv" field.

<cond> Is one of the standard conditions, encoded in the "cond" field in the standard way.

Operation

if ConditionHolds(cond) then

bits(datasize) operandl = X[n];

(-, flags) = AddwithCarry(operandl, imm, '0');
PSTATE.<N,Z,C,V> = flags;

Operational information

If PSTATE.DIT is 1:

¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
¢ The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CCMN (immediate) Page 85

CCMN (register)

Conditional Compare Negative (register) sets the value of the condition flags to the result of the comparison of a
register value and the inverse of another register value if the condition is TRUE, and an immediate value otherwise.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
Isfl0J1]1 1 0 1 0 0 1 0] Rm | cond JO]O] Rn 0] nzev |
op

32-bit (sf == 0)

CCMN <Wn>, <Wm>, #<nzcv>, <cond>

64-bit (sf == 1)

CCMN <Xn>, <Xm>, #<nzcv>, <cond>

integer n = UInt(Rn);
integer m = UInt(Rm);
integer datasize = if sf == '1' then 64 else 32;

bits(4) flags = nzcv;

Assembler Symbols

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

<nzcv> Is the flag bit specifier, an immediate in the range 0 to 15, giving the alternative state for the 4-bit
NZCV condition flags, encoded in the "nzcv" field.

<cond> Is one of the standard conditions, encoded in the "cond" field in the standard way.

Operation

if ConditionHolds(cond) then

bits(datasize) operandl = X[n];

bits(datasize) operand2 = X[m];

(-, flags) = AddWithCarry(operandl, operand2, '0');
PSTATE.<N,Z,C,V> = flags;

Operational information

If PSTATE.DIT is 1:

¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
¢ The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CCMN (register) Page 86

CCMP (immediate)

Conditional Compare (immediate) sets the value of the condition flags to the result of the comparison of a register
value and an immediate value if the condition is TRUE, and an immediate value otherwise.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
Isf[1]1]1 1 0 1 0 0 1 0] imm5 | cond J1]0] Rn 0] nzev |
op

32-bit (sf == 0)
CCMP <Wn>, #<imm>, #<nzcv>, <cond>
64-bit (sf == 1)

CCMP <Xn>, #<imm>, #<nzcv>, <cond>

integer n = UInt(Rn);
integer datasize = if sf == '1' then 64 else 32;
bits(4) flags = nzcv;
bits(datasize) imm = ZeroExtend(imm5, datasize);

Assembler Symbols

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<imm> Is a five bit unsigned (positive) immediate encoded in the "imm5" field.

<nzcv> Is the flag bit specifier, an immediate in the range 0 to 15, giving the alternative state for the 4-bit
NZCV condition flags, encoded in the "nzcv" field.

<cond> Is one of the standard conditions, encoded in the "cond" field in the standard way.

Operation

if ConditionHolds(cond) then

bits(datasize) operandl = X[n];

bits(datasize) operand2;

operand2 = NOT(imm);

(-, flags) = AddWithCarry(operandl, operand2, 'l');
PSTATE.<N,Z,C,V> = flags;

Operational information

If PSTATE.DIT is 1:

¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
¢ The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CCMP (immediate) Page 87

CCMP (register)

Conditional Compare (register) sets the value of the condition flags to the result of the comparison of two registers if
the condition is TRUE, and an immediate value otherwise.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
Isf[1]1]1 1 0 1 0 0 1 0] Rm | cond JO]O] Rn 0] nzev |
op

32-bit (sf == 0)

CCMP <Wn>, <Wm>, #<nzcv>, <cond>

64-bit (sf == 1)

CCMP <Xn>, <Xm>, #<nzcv>, <cond>

integer n = UInt(Rn);
integer m = UInt(Rm);
integer datasize = if sf == '1' then 64 else 32;

bits(4) flags = nzcv;

Assembler Symbols

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

<nzcv> Is the flag bit specifier, an immediate in the range 0 to 15, giving the alternative state for the 4-bit
NZCV condition flags, encoded in the "nzcv" field.

<cond> Is one of the standard conditions, encoded in the "cond" field in the standard way.

Operation

if ConditionHolds(cond) then
bits(datasize) operandl
bits(datasize) operand2
operand2 = NOT(operand2);
(-, flags) = AddWithCarry(operandl, operand2, '1');
PSTATE.<N,Z,C,V> = flags;

X[n];
X[m];

Operational information

If PSTATE.DIT is 1:

¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
¢ The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CCMP (register) Page 88

CFINV

Invert Carry Flag. This instruction inverts the value of the PSTATE.C flag.

System
(FEAT_FlagM)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4
[1 1 01 01010 o0[0f[0o][0][]0O 0 0[O0 1 0 0[(0)(0)((O]0 0 0]1
CRm

—|w
(YN}
[y
—|o

CFINV

if !'HaveFlagManipulateExt() then UNDEFINED;

Operation
PSTATE.C = NOT(PSTATE.C);
Operational information

If PSTATE.DIT is 1:

¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
¢ The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CFINV Page 89

CFP

Control Flow Prediction Restriction by Context prevents control flow predictions that predict execution addresses,
based on information gathered from earlier execution within a particular execution context, from allowing later
speculative execution within that context to be observable through side-channels.

For more information, see CFP RCTX, Control Flow Prediction Restriction by Context.
This is an alias of SYS. This means:

¢ The encodings in this description are named to match the encodings of SYS.
¢ The description of SYS gives the operational pseudocode for this instruction.

System
(FEAT_SPECRES)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
/11 01 010 100[0[0 1[0 1 1[0 1 1 1[0 01 1[1 0 O] Rt |
L opl CRn CRm op2

CFP RCTX, <Xt>
is equivalent to
SYS #3, C7, C3, #4, <Xt>

and is always the preferred disassembly.

Assembler Symbols

<Xt> Is the 64-bit name of the general-purpose source register, encoded in the "Rt" field.

Operation

The description of SYS gives the operational pseudocode for this instruction.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CFP Page 90

CINC

Conditional Increment returns, in the destination register, the value of the source register incremented by 1 if the
condition is TRUE, and otherwise returns the value of the source register.

This is an alias of CSINC. This means:

¢ The encodings in this description are named to match the encodings of CSINC.
e The description of CSINC gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
IsfloJo]1 1 01 0 1 0 O] !=11111 [!'=111x [O[1[!'=11111 | Rd |
op Rm cond 02 Rn

32-bit (sf == 0)

CINC <Wd>, <Wn>, <cond>
is equivalent to
CSINC <Wd>, <Wn>, <Wn>, invert(<cond>)

and is the preferred disassembly when Rn == Rm.
64-bit (sf == 1)

CINC <Xd>, <Xn>, <cond>
is equivalent to
CSINC <Xd>, <Xn>, <Xn>, invert(<cond>)

and is the preferred disassembly when Rn == Rm.

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" and "Rm" fields.
<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" and "Rm" fields.
<cond> Is one of the standard conditions, excluding AL and NV, encoded in the "cond" field with its least

significant bit inverted.

Operation
The description of CSINC gives the operational pseudocode for this instruction.
Operational information

If PSTATE.DIT is 1:

¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
¢ The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CINC Page 91

CINV

Conditional Invert returns, in the destination register, the bitwise inversion of the value of the source register if the
condition is TRUE, and otherwise returns the value of the source register.

This is an alias of CSINV. This means:

¢ The encodings in this description are named to match the encodings of CSINV.
e The description of CSINV gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
Isfl1]0]1 1 0 1 0 1 0 O] !=11111 [!'=111x [O0[O0[!=11111 | Rd |
op Rm cond 02 Rn

32-bit (sf == 0)

CINV <Wd>, <Wn>, <cond>
is equivalent to
CSINV <Wd>, <Wn>, <Wn>, invert(<cond>)

and is the preferred disassembly when Rn == Rm.
64-bit (sf == 1)

CINV <Xd>, <Xn>, <cond>
is equivalent to
CSINV <Xd>, <Xn>, <Xn>, invert(<cond>)

and is the preferred disassembly when Rn == Rm.

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" and "Rm" fields.
<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" and "Rm" fields.
<cond> Is one of the standard conditions, excluding AL and NV, encoded in the "cond" field with its least

significant bit inverted.

Operation
The description of CSINV gives the operational pseudocode for this instruction.
Operational information

If PSTATE.DIT is 1:

¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
¢ The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CINV Page 92

CLREX

Clear Exclusive clears the local monitor of the executing PE.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
/11 01 010100[0[00[011][001 1] CRm [0 1 0]1 1 1 1 1|
CLREX {#<imm>}
// CRm field is ignored
Assembler Symbols
<imm> Is an optional 4-bit unsigned immediate, in the range 0 to 15, defaulting to 15 and encoded in the

"CRm" field.

Operation

ClearExclusivelocal (ProcessorID());

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CLREX Page 93

CLS

Count Leading Sign bits counts the number of leading bits of the source register that have the same value as the most
significant bit of the register, and writes the result to the destination register. This count does not include the most
significant bit of the source register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Isf[1/0[1 1 0 1 0 1 1 0/0 0O O O O[O0 O 0 1 O0/1] Rn | Rd |
op

32-bit (sf == 0)
CLS <wWd>, <Wn>
64-bit (sf == 1)

CLS <Xd>, <Xn>
integer d = UInt(Rd);

integer n = UInt(Rn);
integer datasize = if sf == 'l' then 64 else 32;

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.
<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.
Operation

integer result;
bits(datasize) operandl = X[n];

result = CountleadingSignBits(operandl);

X[d] = result<datasize-1:0>;
Operational information

If PSTATE.DIT is 1:

¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
¢ The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CLS Page 94

CLZ

Count Leading Zeros counts the number of binary zero bits before the first binary one bit in the value of the source

register, and writes the result to the destination register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Isf[1/0[1 1 0 1 0 1 1 0/0 0 O O 0[O0 O O 1 0/[0] Rn | Rd |
op

32-bit (sf == 0)
CLZ <Wd>, <Wn>
64-bit (sf == 1)

CLZ <Xd>, <Xn>
integer d = UInt(Rd);

integer n = UInt(Rn);
integer datasize = if sf == 'l' then 64 else 32;

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.
<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.
Operation

integer result;
bits(datasize) operandl = X[n];

result = CountleadingZeroBits (operandl);
X[d] = result<datasize-1:0>;

Operational information

If PSTATE.DIT is 1:
¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
¢ The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CLZ

Page 95

CMN (extended register)

Compare Negative (extended register) adds a register value and a sign or zero-extended register value, followed by an
optional left shift amount. The argument that is extended from the <Rm> register can be a byte, halfword, word, or
doubleword. It updates the condition flags based on the result, and discards the result.

This is an alias of ADDS (extended register). This means:

¢ The encodings in this description are named to match the encodings of ADDS (extended register).
¢ The description of ADDS (extended register) gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
Isflo]J1]0 1 0 1 1[0 0[1] Rm | option | imm3 | Rn [1 1 1 1 1]
op S Rd

32-bit (sf == 0)

CMN <Wn|WSP>, <Wm>{, <extend> {#<amount>}}
is equivalent to
ADDS WZR, <Wn|WSP>, <Wm>{, <extend> {#<amount>}}

and is always the preferred disassembly.
64-bit (sf == 1)

CMN <Xn|SP>, <R><m>{, <extend> {#<amount>}}
is equivalent to
ADDS XZR, <Xn|SP>, <R><m>{, <extend> {#<amount>}}

and is always the preferred disassembly.

Assembler Symbols

<Wn|WSP> Is the 32-bit name of the first source general-purpose register or stack pointer, encoded in the "Rn"

field.
<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.
<Xn|SP> Is the 64-bit name of the first source general-purpose register or stack pointer, encoded in the "Rn"
field.
<R> Is a width specifier, encoded in “option”:
option <R>
00x W
010 W
x11 X
10x W
110 W
<m> Is the number [0-30] of the second general-purpose source register or the name ZR (31), encoded in the
"Rm" field.

<extend> For the 32-bit variant: is the extension to be applied to the second source operand, encoded in “option”:

CMN (extended register) Page 96

option <extend>

000 UXTB
001 UXTH
010 LSL | UXTW
011 UXTX
100 SXTB
101 SXTH
110 SXTW
111 SXTX

If "Rn"is '11111' (WSP) and "option" is '010' then LSL is preferred, but may be omitted when "imm3" is
'000'. In all other cases <extend> is required and must be UXTW when "option" is '010".

For the 64-bit variant: is the extension to be applied to the second source operand, encoded in “option”:

option <extend>

000 UXTB
001 UXTH
010 UXTW
011 LSL |UXTX
100 SXTB
101 SXTH
110 SXTW
111 SXTX

If "Rn"is '11111' (SP) and "option" is '011' then LSL is preferred, but may be omitted when "imm3" is
'000'. In all other cases <extend> is required and must be UXTX when "option" is '011".

<amount> Is the left shift amount to be applied after extension in the range 0 to 4, defaulting to 0, encoded in the
"imm3" field. It must be absent when <extend> is absent, is required when <extend> is LSL, and is
optional when <extend> is present but not LSL.

Operation

The description of ADDS (extended register) gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:

¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
¢ The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CMN (extended register) Page 97

CMN (immediate)

Compare Negative (immediate) adds a register value and an optionally-shifted immediate value. It updates the
condition flags based on the result, and discards the result.

This is an alias of ADDS (immediate). This means:

¢ The encodings in this description are named to match the encodings of ADDS (immediate).
¢ The description of ADDS (immediate) gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Isf[0[1]1 0 0 0 1 O]sh| imm12 | Rn [1 1 1 1 1]
op S Rd

32-bit (sf == 0)

CMN <Wn|WSP>, #<imm>{, <shift>}
is equivalent to
ADDS WZR, <Wn|WSP>, #<imm> {, <shift>}

and is always the preferred disassembly.
64-bit (sf == 1)

CMN <Xn|SP>, #<imm>{, <shift>}

is equivalent to

ADDS XZR, <Xn|SP>, #<imm> {, <shift>}

and is always the preferred disassembly.

Assembler Symbols

<Wn|WSP> Is the 32-bit name of the source general-purpose register or stack pointer, encoded in the "Rn" field.

<Xn|SP> Is the 64-bit name of the source general-purpose register or stack pointer, encoded in the "Rn" field.
<imm> Is an unsigned immediate, in the range 0 to 4095, encoded in the "imm12" field.
<shift> Is the optional left shift to apply to the immediate, defaulting to LSL #0 and encoded in “sh”:
sh <shift>
0 LSL #0
1 LSL #12
Operation

The description of ADDS (immediate) gives the operational pseudocode for this instruction.
Operational information

If PSTATE.DIT is 1:

¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

* The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CMN (immediate) Page 98

CMN (shifted register)

Compare Negative (shifted register) adds a register value and an optionally-shifted register value. It updates the
condition flags based on the result, and discards the result.

This is an alias of ADDS (shifted register). This means:

¢ The encodings in this description are named to match the encodings of ADDS (shifted register).
* The description of ADDS (shifted register) gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
Isflo]1]0 1 0 1 1[shift[0] Rm | imm6 | Rn [1 1 1 1 1]
op S Rd

32-bit (sf == 0)

CMN <Wn>, <Wm>{, <shift> #<amount>}
is equivalent to
ADDS WZR, <Wn>, <Wm> {, <shift> #<amount>}

and is always the preferred disassembly.
64-bit (sf == 1)

CMN <Xn>, <Xm>{, <shift> #<amount>}
is equivalent to
ADDS XZR, <Xn>, <Xm> {, <shift> #<amount>}

and is always the preferred disassembly.

Assembler Symbols

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.
<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.
<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.
<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.
<shift> Is the optional shift type to be applied to the second source operand, defaulting to LSL and encoded in
“shift”:
shift <shift>

00 LSL

01 LSR

10 ASR

11 RESERVED

<amount> For the 32-bit variant: is the shift amount, in the range 0 to 31, defaulting to 0 and encoded in the
"imm6" field.

For the 64-bit variant: is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the
"iImm6" field.

Operation

The description of ADDS (shifted register) gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:

CMN (shifted register) Page 99

¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
¢ The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CMN (shifted register) Page 100

CMP (extended register)

Compare (extended register) subtracts a sign or zero-extended register value, followed by an optional left shift
amount, from a register value. The argument that is extended from the <Rm> register can be a byte, halfword, word,
or doubleword. It updates the condition flags based on the result, and discards the result.

This is an alias of SUBS (extended register). This means:

¢ The encodings in this description are named to match the encodings of SUBS (extended register).
e The description of SUBS (extended register) gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
Isf][1]1]0 1 0 1 1[0 0f1] Rm | option | imm3 | Rn [1 1 1 1 1]
op S Rd

32-bit (sf == 0)

CMP <Wn|WSP>, <Wm>{, <extend> {#<amount>}}
is equivalent to
SUBS WZR, <Wn]|WSP>, <Wm>{, <extend> {#<amount>}}

and is always the preferred disassembly.
64-bit (sf == 1)

CMP <Xn|SP>, <R><m>{, <extend> {#<amount>}}
is equivalent to
SUBS XZR, <Xn|SP>, <R><m>{, <extend> {#<amount>}}

and is always the preferred disassembly.

Assembler Symbols

<Wn|WSP> Is the 32-bit name of the first source general-purpose register or stack pointer, encoded in the "Rn"

field.
<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.
<Xn|SP> Is the 64-bit name of the first source general-purpose register or stack pointer, encoded in the "Rn"
field.
<R> Is a width specifier, encoded in “option”:
option <R>
00x W
010 W
x11 X
10x W
110 W
<m> Is the number [0-30] of the second general-purpose source register or the name ZR (31), encoded in the
"Rm" field.

<extend> For the 32-bit variant: is the extension to be applied to the second source operand, encoded in “option”:

CMP (extended register) Page 101

option <extend>

000 UXTB
001 UXTH
010 LSL | UXTW
011 UXTX
100 SXTB
101 SXTH
110 SXTW
111 SXTX

If "Rn"is '11111' (WSP) and "option" is '010' then LSL is preferred, but may be omitted when "imm3" is
'000'. In all other cases <extend> is required and must be UXTW when "option" is '010".

For the 64-bit variant: is the extension to be applied to the second source operand, encoded in “option”:

option <extend>

000 UXTB
001 UXTH
010 UXTW
011 LSL |UXTX
100 SXTB
101 SXTH
110 SXTW
111 SXTX

If "Rn"is '11111' (SP) and "option" is '011' then LSL is preferred, but may be omitted when "imm3" is
'000'. In all other cases <extend> is required and must be UXTX when "option" is '011".

<amount> Is the left shift amount to be applied after extension in the range 0 to 4, defaulting to 0, encoded in the
"imm3" field. It must be absent when <extend> is absent, is required when <extend> is LSL, and is
optional when <extend> is present but not LSL.

Operation

The description of SUBS (extended register) gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:

¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
¢ The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CMP (extended register) Page 102

CMP (immediate)

Compare (immediate) subtracts an optionally-shifted immediate value from a register value. It updates the condition
flags based on the result, and discards the result.

This is an alias of SUBS (immediate). This means:

¢ The encodings in this description are named to match the encodings of SUBS (immediate).
¢ The description of SUBS (immediate) gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Isf[1[1]1 0 0 0 1 O]sh| imm12 | Rn [1 1 1 1 1]
op S Rd

32-bit (sf == 0)

CMP <Wn|WSP>, #<imm>{, <shift>}
is equivalent to
SUBS WZR, <Wn|WSP>, #<imm> {, <shift>}

and is always the preferred disassembly.
64-bit (sf == 1)

CMP <Xn|SP>, #<imm>{, <shift>}
is equivalent to
SUBS XZR, <Xn|SP>, #<imm> {, <shift>}

and is always the preferred disassembly.

Assembler Symbols

<Wn|WSP> Is the 32-bit name of the source general-purpose register or stack pointer, encoded in the "Rn" field.

<Xn|SP> Is the 64-bit name of the source general-purpose register or stack pointer, encoded in the "Rn" field.
<imm> Is an unsigned immediate, in the range 0 to 4095, encoded in the "imm12" field.
<shift> Is the optional left shift to apply to the immediate, defaulting to LSL #0 and encoded in “sh”:
sh <shift>
0 LSL #0
1 LSL #12
Operation

The description of SUBS (immediate) gives the operational pseudocode for this instruction.
Operational information

If PSTATE.DIT is 1:
¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
* The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CMP (immediate) Page 103

CMP (shifted register)

Compare (shifted register) subtracts an optionally-shifted register value from a register value. It updates the condition
flags based on the result, and discards the result.

This is an alias of SUBS (shifted register). This means:

¢ The encodings in this description are named to match the encodings of SUBS (shifted register).
* The description of SUBS (shifted register) gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
Isf][1]1]0 1 0 1 1[shift[0] Rm | imm6 | Rn [1 1 1 1 1]
op S Rd

32-bit (sf == 0)

CMP <Wn>, <Wm>{, <shift> #<amount>}
is equivalent to
SUBS WZR, <Wn>, <Wm> {, <shift> #<amount>}

and is always the preferred disassembly.
64-bit (sf == 1)

CMP <Xn>, <Xm>{, <shift> #<amount>}
is equivalent to
SUBS XZR, <Xn>, <Xm> {, <shift> #<amount>}

and is always the preferred disassembly.

Assembler Symbols

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.
<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.
<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.
<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.
<shift> Is the optional shift type to be applied to the second source operand, defaulting to LSL and encoded in
“shift”:
shift <shift>

00 LSL

01 LSR

10 ASR

11 RESERVED

<amount> For the 32-bit variant: is the shift amount, in the range 0 to 31, defaulting to 0 and encoded in the
"imm6" field.

For the 64-bit variant: is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the
"iImm6" field.

Operation

The description of SUBS (shifted register) gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:

CMP (shifted register) Page 104

¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
¢ The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CMP (shifted register) Page 105

CMPP

Compare with Tag subtracts the 56-bit address held in the second source register from the 56-bit address held in the
first source register, updates the condition flags based on the result of the subtraction, and discards the result.

This is an alias of SUBPS. This means:

¢ The encodings in this description are named to match the encodings of SUBPS.
e The description of SUBPS gives the operational pseudocode for this instruction.

Integer
(Armv8.5)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5

Y I
—|w
(1IN}
[y
~lo

[1]0]1]1 1 0 1 0 1 1 O] Xm [o[o]o]o]o]O] Xn |
Xd
CMPP <Xn|SP>, <Xm|SP>
is equivalent to
SUBPS XZR, <Xn|SP>, <Xm|SP>
and is always the preferred disassembly.
Assembler Symbols
<Xn|SP> Is the 64-bit name of the first source general-purpose register or stack pointer, encoded in the "Xn"
field.
<Xm|SP> Is the 64-bit name of the second general-purpose source register or stack pointer, encoded in the "Xm"
field.

Operation

The description of SUBPS gives the operational pseudocode for this instruction.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CMPP Page 106

CNEG

Conditional Negate returns, in the destination register, the negated value of the source register if the condition is
TRUE, and otherwise returns the value of the source register.

This is an alias of CSNEG. This means:

¢ The encodings in this description are named to match the encodings of CSNEG.
¢ The description of CSNEG gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
Isf][1]0]1 1 0 1 0 1 0 0] Rm | !'=111x Jo]1] Rn | Rd |
op cond 02

32-bit (sf == 0)

CNEG <Wd>, <Wn>, <cond>
is equivalent to
CSNEG <Wd>, <Wn>, <Wn>, invert(<cond>)

and is the preferred disassembly when Rn == Rm.
64-bit (sf == 1)

CNEG <Xd>, <Xn>, <cond>
is equivalent to
CSNEG <Xd>, <Xn>, <Xn>, invert(<cond>)

and is the preferred disassembly when Rn == Rm.

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" and "Rm" fields.
<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" and "Rm" fields.
<cond> Is one of the standard conditions, excluding AL and NV, encoded in the "cond" field with its least

significant bit inverted.

Operation
The description of CSNEG gives the operational pseudocode for this instruction.
Operational information

If PSTATE.DIT is 1:

¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
¢ The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNEG Page 107

CPP

Cache Prefetch Prediction Restriction by Context prevents cache allocation predictions, based on information
gathered from earlier execution within a particular execution context, from allowing later speculative execution within
that context to be observable through side-channels.

For more information, see CPP RCTX, Cache Prefetch Prediction Restriction by Context.
This is an alias of SYS. This means:

¢ The encodings in this description are named to match the encodings of SYS.
¢ The description of SYS gives the operational pseudocode for this instruction.

System
(FEAT_SPECRES)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
/11 01 010100[0[01[01 1[0 1 1 1[0 0 1 1]1 1 1] Rt |
L opl CRn CRm op2

CPP RCTX, <Xt>
is equivalent to
SYS #3, C7, C3, #7, <Xt>

and is always the preferred disassembly.

Assembler Symbols

<Xt> Is the 64-bit name of the general-purpose source register, encoded in the "Rt" field.

Operation

The description of SYS gives the operational pseudocode for this instruction.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CPP Page 108

CRC32B, CRC32H, CRC32W, CRC32X

CRC32 checksum performs a cyclic redundancy check (CRC) calculation on a value held in a general-purpose register.
It takes an input CRC value in the first source operand, performs a CRC on the input value in the second source
operand, and returns the output CRC value. The second source operand can be 8, 16, 32, or 64 bits. To align with
common usage, the bit order of the values is reversed as part of the operation, and the polynomial 0x04C11DB7 is
used for the CRC calculation.

In Armv8-A, this is an OPTIONAL instruction, and in Armv8.1 it is mandatory for all implementations to implement it.
ID AA64ISARO EL1.CRC32 indicates whether this instruction is supported.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
IsfloJ0]1 1 0 1 0 1 1 0] Rm |01 o]0 sz | Rn | Rd |
C

CRC32B (sf == 0 && sz == 00)

CRC32B <Wd>, <Wn>, <Wm>

CRC32H (sf == 0 && sz == 01)

CRC32H <Wd>, <Wn>, <Wm>

CRC32W (sf == 0 && sz == 10)

CRC32W <Wd>, <Wn>, <Wm>

CRC32X (sf == 1 && sz == 11)

CRC32X <Wd>, <Wn>, <Xm>

if !'HaveCRCExt() then UNDEFINED;

integer d = UInt(Rd);

integer n = UInt(Rn);

integer m = UInt(Rm);

if sf == '1' && sz !'= '11' then UNDEFINED;
if sf == '0' && sz == '11' then UNDEFINED;

integer size = 8 << Ulnt(sz);

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose accumulator output register, encoded in the "Rd" field.
<Wn> Is the 32-bit name of the general-purpose accumulator input register, encoded in the "Rn" field.
<Xm> Is the 64-bit name of the general-purpose data source register, encoded in the "Rm" field.
<Wm> Is the 32-bit name of the general-purpose data source register, encoded in the "Rm" field.
Operation

bits(32) acc = X[n]; // accumulator

bits(size) val = X[m]; // input value

bits(32) poly = 0x04C11DB7<31:0>;

bits(32+size) tempacc
bits(size+32) tempval

BitReverse(acc):Zeros(size);
BitReverse(val):Zeros(32);

// Poly32Mod2 on a bitstring does a polynomial Modulus over {0,1} operation
X[d] = BitReverse(Poly32Mod2(tempacc EOR tempval, poly));

CRC32B, CRC32H, CRC32W,

CRC32X Page 109

Operational information

If PSTATE.DIT is 1:

¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
¢ The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CRC32B, CRC32H, CRC32W,

CRC32X Page 110

CRC32CB, CRC32CH, CRC32CW, CRC32CX

CRC32 checksum performs a cyclic redundancy check (CRC) calculation on a value held in a general-purpose register.
It takes an input CRC value in the first source operand, performs a CRC on the input value in the second source
operand, and returns the output CRC value. The second source operand can be 8, 16, 32, or 64 bits. To align with
common usage, the bit order of the values is reversed as part of the operation, and the polynomial 0Ox1EDC6F41 is
used for the CRC calculation.

In Armv8-A, this is an OPTIONAL instruction, and in Armv8.1 it is mandatory for all implementations to implement it.

ID AA64ISARO EL1.CRC32 indicates whether this instruction is supported.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
IsfloJ0]1 1 0 1 0 1 1 0] Rm |01 0]1] sz | Rn | Rd |
C

CRC32CB (sf == 0 && sz == 00)

CRC32CB <Wd>, <Wn>, <Wm>

CRC32CH (sf == 0 && sz == 01)

CRC32CH <Wd>, <Wn>, <Wm>

CRC32CW (sf == 0 && sz == 10)

CRC32CW <Wd>, <Wn>, <Wm>

CRC32CX (sf == 1 && sz == 11)

CRC32CX <Wd>, <Wn>, <Xm>

if !'HaveCRCExt() then UNDEFINED;

integer d = UInt(Rd);

integer n = UInt(Rn);

integer m = UInt(Rm);

if sf == '1' && sz !'= '11' then UNDEFINED;
if sf == '0' && sz == '11' then UNDEFINED;

integer size = 8 << Ulnt(sz);

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose accumulator output register, encoded in the "Rd" field.
<Wn> Is the 32-bit name of the general-purpose accumulator input register, encoded in the "Rn" field.
<Xm> Is the 64-bit name of the general-purpose data source register, encoded in the "Rm" field.
<Wm> Is the 32-bit name of the general-purpose data source register, encoded in the "Rm" field.
Operation

bits(32) acc = X[n]; // accumulator

bits(size) val = X[m]; // input value

bits(32) poly = Ox1EDC6F41<31:0>;

BitReverse(acc):Zeros(size);
BitReverse(val):Zeros(32);

bits(32+size) tempacc
bits(size+32) tempval

// Poly32Mod2 on a bitstring does a polynomial Modulus over {0,1} operation
X[d] = BitReverse(Poly32Mod2(tempacc EOR tempval, poly));

CRC32CB, CRC32CH,

CRC32CW, CRC32CX Page 111

Operational information

If PSTATE.DIT is 1:

¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
¢ The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CRC32CB, CRC32CH,

CRC32CW, CRC32CX Page 112

CSDB

Consumption of Speculative Data Barrier is a memory barrier that controls speculative execution and data value
prediction.
No instruction other than branch instructions appearing in program order after the CSDB can be speculatively
executed using the results of any:
¢ Data value predictions of any instructions.
e PSTATE.{N,Z,C,V} predictions of any instructions other than conditional branch instructions appearing in
program order before the CSDB that have not been architecturally resolved.
¢ Predictions of SVE predication state for any SVE instructions.
For purposes of the definition of CSDB, PSTATE.{N,Z,C,V} is not considered a data value. This definition permits:
¢ Control flow speculation before and after the CSDB.
¢ Speculative execution of conditional data processing instructions after the CSDB, unless they use the results
of data value or PSTATE.{N,Z,C,V} predictions of instructions appearing in program order before the CSDB
that have not been architecturally resolved.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
/11 01 010100[0[0O0[011[/00 1000101 001 1 1 1 1]
CRm op2

CSDB

// Empty.
Operation

ConsumptionOfSpeculativeDataBarrier();

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CSDB Page 113

CSEL

If the condition is true, Conditional Select writes the value of the first source register to the destination register. If the

condition is false, it writes the value of the second source register to the destination register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0
Isf[o[0[1 1 0 1 0 1 0 O] Rm | cond [O0]O] Rn | Rd |
op 02

32-bit (sf == 0)

CSEL <Wd>, <Wn>, <Wm>, <cond>

64-bit (sf == 1)

CSEL <Xd>, <Xn>, <Xm>, <cond>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer datasize = if sf == '1' then 64 else 32;

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.
<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.
<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.
<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.
<cond> Is one of the standard conditions, encoded in the "cond" field in the standard way.
Operation

bits(datasize) result;

if ConditionHolds(cond) then
result = X[n];

else
result = X[m];

X[d] = result;
Operational information

If PSTATE.DIT is 1:
¢ The execution time of this instruction is independent of:

[}

[}

The values of the data supplied in any of its registers.
The values of the NZCV flags.

¢ The response of this instruction to asynchronous exceptions does not vary based on:

[}

[}

The values of the data supplied in any of its registers.
The values of the NZCV flags.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CSEL Page 114

CSET

Conditional Set sets the destination register to 1 if the condition is TRUE, and otherwise sets it to 0.

This is an alias of CSINC. This means:

¢ The encodings in this description are named to match the encodings of CSINC.
e The description of CSINC gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
IsfloJoJ1 1 01 01 0 0f]1 1 1 1 1] '=111x [O[1[1 1 1 1 1| Rd |
op Rm cond 02 Rn

32-bit (sf == 0)

CSET <Wd>, <cond>
is equivalent to
CSINC <Wd>, WZR, WZR, invert(<cond>)

and is always the preferred disassembly.
64-bit (sf == 1)

CSET <Xd>, <cond>
is equivalent to
CSINC <Xd>, XZR, XZR, invert(<cond>)

and is always the preferred disassembly.

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
<cond> Is one of the standard conditions, excluding AL and NV, encoded in the "cond" field with its least

significant bit inverted.

Operation

The description of CSINC gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:

¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
¢ The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CSET Page 115

CSETM

Conditional Set Mask sets all bits of the destination register to 1 if the condition is TRUE, and otherwise sets all bits to
0.

This is an alias of CSINV. This means:

¢ The encodings in this description are named to match the encodings of CSINV.
e The description of CSINV gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
Isfl1]/0]1 1 01 01 0 0f]1 1 1 1 1] '=111x [0o[0f1 1 1 1 1| Rd |
op Rm cond 02 Rn

32-bit (sf == 0)

CSETM <Wd>, <cond>
is equivalent to
CSINV <Wd>, WZR, WZR, invert(<cond>)

and is always the preferred disassembly.
64-bit (sf == 1)

CSETM <Xd>, <cond>
is equivalent to
CSINV <Xd>, XZR, XZR, invert(<cond>)

and is always the preferred disassembly.

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
<cond> Is one of the standard conditions, excluding AL and NV, encoded in the "cond" field with its least

significant bit inverted.

Operation

The description of CSINV gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:

¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
¢ The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CSETM Page 116

CSINC

Conditional Select Increment returns, in the destination register, the value of the first source register if the condition

is TRUE, and otherwise returns the value of the second source register incremented by 1.

This instruction is used by the aliases CINC, and CSET.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1110 9 8 7 6 5 4 3 2 0
Isf[o[0[1 1 0 1 0 1 0 O] Rm | cond [O[1] Rn | Rd |
op 02

32-bit (sf == 0)

CSINC <Wd>, <Wn>, <Wm>, <cond>

64-bit (sf == 1)

CSINC <Xd>, <Xn>, <Xm>, <cond>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer datasize = if sf == '1' then 64 else 32;

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.
<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.
<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.
<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.
<cond> Is one of the standard conditions, encoded in the "cond" field in the standard way.

Alias Conditions

Alias Is preferred when

CINC Rm I= '"11111' && cond != '11lx' && Rn != '11111"' && Rn == Rm
CSET Rm == '11111' && cond != '11llx' && Rn == '11111'
Operation

bits(datasize) result;

if ConditionHolds(cond) then
result = X[n];

else
result
result

X[m];
result + 1;

X[d] = result;
Operational information
If PSTATE.DIT is 1:
* The execution time of this instruction is independent of:

o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

CSINC

Page 117

The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CSINC Page 118

CSINV

Conditional Select Invert returns, in the destination register, the value of the first source register if the condition is

TRUE, and otherwise returns the bitwise inversion value of the second source register.

This instruction is used by the aliases CINV, and CSETM.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0
Isf[1/0[1 1 0 1 0 1 0 O] Rm | cond [O0]O] Rn | Rd |
op 02

32-bit (sf == 0)

CSINV <Wd>, <Wn>, <Wm>, <cond>

64-bit (sf == 1)

CSINV <Xd>, <Xn>, <Xm>, <cond>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer datasize = if sf == '1' then 64 else 32;

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.
<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.
<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.
<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.
<cond> Is one of the standard conditions, encoded in the "cond" field in the standard way.

Alias Conditions

Alias Is preferred when
CINV Rm != '"11111"' && cond !'= '111x' && Rn != '11111' && Rn == Rm
CSETM Rm == '11111"' && cond !'= '111x' && Rn == '11111'

Operation

bits(datasize) result;

if ConditionHolds(cond) then
result = X[n];

else
result
result

X[m];
NOT(result);

X[d] = result;
Operational information
If PSTATE.DIT is 1:
* The execution time of this instruction is independent of:

o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

CSINV

Page 119

The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CSINV Page 120

CSNEG

Conditional Select Negation returns, in the destination register, the value of the first source register if the condition is
TRUE, and otherwise returns the negated value of the second source register.

This instruction is used by the alias CNEG.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0
Isf[1]0]1 1 0 1 0 1 0 0] Rm cond [0[1] Rn | Rd |
op 02

32-bit (sf == 0)

CSNEG <Wd>, <Wn>, <Wm>, <cond>

64-bit (sf == 1)

CSNEG <Xd>, <Xn>, <Xm>, <cond>

integer d
integer n
integer m
integer da

Assembler

<Wd>
<Wn>
<Wm>
<Xd>
<Xn>
<Xm>

<cond>

Alias Condi

UInt(Rd);
UInt(Rn);
= UInt(Rm);
tasize = if sf == '1' then 64 else 32;

Symbols

Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

Is one of the standard conditions, encoded in the "cond" field in the standard way.

tions

Alias Is preferred when
CNEG cond !'= '111x' && Rn == Rm
Operation
bits(datasize) result;
if ConditionHolds(cond) then
result = X[n];
else
result = X[m];
result = NOT(result);
result = result + 1;
X[d] = result;

Operationa

I information

If PSTATE.DIT is 1:
¢ The execution time of this instruction is independent of:

o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

¢ The response of this instruction to asynchronous exceptions does not vary based on:

CSNEG

Page 121

o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CSNEG Page 122

DC

Data Cache operation. For more information, see op0==0b01, cache maintenance, TLB maintenance, and address
translation instructions.

This is an alias of SYS. This means:

¢ The encodings in this description are named to match the encodings of SYS.
¢ The description of SYS gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

11 01 01010 0[0[0 1] opl [0 1 1 1] CRm [op2 | Rt |
L CRn

DC <dc_op>, <Xt>
is equivalent to
SYS #<opl>, C7, <Cm>, #<op2>, <Xt>

and is the preferred disassembly when SysOp(opl, '0111',CRm,op2) == Sys DC.

Assembler Symbols

<dc_op> Is a DC instruction name, as listed for the DC system instruction group, encoded in “op1:CRm:op2”:
opl CRm op2 <dc_op> Architectural Feature
000 0110 001 IVAC -
000 0110 010 ISw -
000 0110 011 IGVAC FEAT MTE?2
000 0110 100 IGSW FEAT MTE?2
000 0110 101 IGDVAC FEAT MTE?2
000 0110 110 IGDSW FEAT MTE?2
000 1010 010 CSw -
000 1010 100 CGSW FEAT MTE?2
000 1010 110 CGDSW FEAT MTE?2
000 1110 010 CISwW -
000 1110 100 CIGSW FEAT MTE2
000 1110 110 CIGDSW FEAT MTE?2
011 0100 001 ZVA -
011 0100 011 GVA FEAT MTE
011 0100 100 GZVA FEAT MTE
011 1010 001 CVAC -
011 1010 011 CGVAC FEAT MTE
011 1010 101 CGDVAC FEAT MTE
011 1011 001 CVAU -
011 1100 001 CVAP FEAT DPB
011 1100 011 CGVAP FEAT MTE
011 1100 101 CGDVAP FEAT MTE
011 1101 001 CVADP FEAT DPB2
011 1101 011 CGVADP FEAT MTE
011 1101 101 CGDVADP FEAT MTE
011 1110 001 CIVAC -
011 1110 011 CIGVAC FEAT MTE
011 1110 101 CIGDVAC FEAT MTE

<opl> Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "op1" field.
<Cm> Is a name 'Cm’', with 'm' in the range 0 to 15, encoded in the "CRm" field.

<op2> Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "op2" field.

<Xt> Is the 64-bit name of the general-purpose source register, encoded in the "Rt" field.
Operation

The description of SYS gives the operational pseudocode for this instruction.

DC Page 123

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DC Page 124

DCPS1

Debug Change PE State to EL1, when executed in Debug state:

« If executed at ELO changes the current Exception level and SP to EL1 using SP_EL1.
* Otherwise, if executed at ELx, selects SP_ELx.

The target exception level of a DCPS1 instruction is:

¢ EL1 if the instruction is executed at ELO.
¢ Otherwise, the Exception level at which the instruction is executed.

When the target Exception level of a DCPS1 instruction is ELx, on executing this instruction:
* ELR ELx becomes UNKNOWN.
¢ SPSR ELx becomes UNKNOWN.
e ESR ELx becomes UNKNOWN.
* DLR ELO and DSPSR ELO become UNKNOWN.
¢ The endianness is set according to SCTLR ELx.EE.
This instruction is UNDEFINED at ELO in Non-secure state if EL2 is implemented and HCR EL2.TGE ==
This instruction is always UNDEFINED in Non-debug state.
For more information on the operation of the DCPSn instructions, see DCPS.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
/1 1 01 0100[1 0 1] imm16 |0 0 0J/0 1]
LL

DCPS1 {#<imm>}

if !'Halted() then UNDEFINED;
Assembler Symbols

<imm> Is an optional 16-bit unsigned immediate, in the range 0 to 65535, defaulting to 0 and encoded in the

"imm16" field.
Operation
DCPSInstruction(LL);

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DCPS1 Page 125

DCPS2

Debug Change PE State to EL2, when executed in Debug state:

e If executed at ELO or EL1 changes the current Exception level and SP to EL2 using SP_EL2.
* Otherwise, if executed at ELx, selects SP_ELx.

The target exception level of a DCPS2 instruction is:

¢ EL2 if the instruction is executed at an exception level that is not EL3.
¢ EL3 if the instruction is executed at EL3.

When the target Exception level of a DCPS2 instruction is ELx, on executing this instruction:
* ELR ELx becomes UNKNOWN.
¢ SPSR ELx becomes UNKNOWN.
e ESR ELx becomes UNKNOWN.
* DLR ELO and DSPSR ELO become UNKNOWN.
¢ The endianness is set according to SCTLR ELx.EE.
This instruction is UNDEFINED at the following exception levels:
¢ All exception levels if EL2 is not implemented.
¢« At ELO and EL1 if EL2 is disabled in the current Security state.
This instruction is always UNDEFINED in Non-debug state.
For more information on the operation of the DCPSn instructions, see DCPS.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[1 1 01 010 0[1 0 1] imm16 [0 0 0[1 O]
LL

DCPS2 {#<imm>}

if !'Halted() then UNDEFINED;
Assembler Symbols

<imm> Is an optional 16-bit unsigned immediate, in the range 0 to 65535, defaulting to 0 and encoded in the

"imm16" field.
Operation
DCPSInstruction(LL);

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DCPS2 Page 126

DCPS3

Debug Change PE State to EL3, when executed in Debug state:

e If executed at EL3 selects SP_EL3.
¢ Otherwise, changes the current Exception level and SP to EL3 using SP_EL3.
The target exception level of a DCPS3 instruction is EL3.
On executing a DCPS3 instruction:
e ELR EL3 becomes UNKNOWN.
SPSR _EL3 becomes UNKNOWN.
ESR EL3 becomes UNKNOWN.
DLR ELO and DSPSR _EL0O become UNKNOWN.
The endianness is set according to SCTLR_EL3.EE.

This instruction is UNDEFINED at all exception levels if either:

e EDSCR.SDD == 1.
¢ EL3 is not implemented.

This instruction is always UNDEFINED in Non-debug state.
For more information on the operation of the DCPSn instructions, see DCPS.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
/1 1 01 0100[1 0 1] imm16 |0 0 0]1 1]
LL
DCPS3 {#<imm>}
if !'Halted() then UNDEFINED;
Assembler Symbols
<imm> Is an optional 16-bit unsigned immediate, in the range 0 to 65535, defaulting to 0 and encoded in the
"imm16" field.
Operation
DCPSInstruction(LL);

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DCPS3 Page 127

DGH

DGH is a hint instruction. A DGH instruction is not expected to be performance optimal to merge memory accesses with
Normal Non-cacheable or Device-GRE attributes appearing in program order before the hint instruction with any
memory accesses appearing after the hint instruction into a single memory transaction on an interconnect.

System
(FEAT_DGH)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3
[1 1 01 01 010o0[0[0O0[01 1/0 0 1 0[0 00 0[]1 1 0[1 1
CRm op2

SN}
[y
—|o

DGH

if !'HaveDGHExt() then EndOfInstruction();

Operation

Hint DGH();

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DGH Page 128

DMB

Data Memory Barrier is a memory barrier that ensures the ordering of observations of memory accesses, see Data
Memory Barrier.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
/11 01 010100[0[00[01 1[0 01 1] CRm [1]0 1]1 1 1 1 1|
opc

DMB <option>|#<imm>

case CRm<3:2> of
when '00' domain
when '01' domain
when '10' domain
when '11' domain

case CRm<1:0> of
when '00' types
when '01' types
when '10' types
when '11' types

MBRegDomain QuterShareable;
MBRegDomain Nonshareable;
MBRegDomain InnerShareable;
MBRegDomain FullSystem;

MBRegqTypes All; domain = MBRegDomain FullSystem;
MBRegTypes Reads;

MBReqTypes Writes;

MBReqTypes All;

Assembler Symbols

<option> Specifies the limitation on the barrier operation. Values are:
SY
Full system is the required shareability domain, reads and writes are the required access types,
both before and after the barrier instruction. This option is referred to as the full system barrier.
Encoded as CRm = 0b1111.

ST
Full system is the required shareability domain, writes are the required access type, both before
and after the barrier instruction. Encoded as CRm = 0b1110.

LD
Full system is the required shareability domain, reads are the required access type before the
barrier instruction, and reads and writes are the required access types after the barrier
instruction. Encoded as CRm = 0b1101.

ISH
Inner Shareable is the required shareability domain, reads and writes are the required access
types, both before and after the barrier instruction. Encoded as CRm = 0b1011.

ISHST
Inner Shareable is the required shareability domain, writes are the required access type, both
before and after the barrier instruction. Encoded as CRm = 0b1010.

ISHLD
Inner Shareable is the required shareability domain, reads are the required access type before the
barrier instruction, and reads and writes are the required access types after the barrier
instruction. Encoded as CRm = 0b1001.

NSH
Non-shareable is the required shareability domain, reads and writes are the required access, both
before and after the barrier instruction. Encoded as CRm = 0b0111.

NSHST
Non-shareable is the required shareability domain, writes are the required access type, both
before and after the barrier instruction. Encoded as CRm = 0b0110.

NSHLD

Non-shareable is the required shareability domain, reads are the required access type before the
barrier instruction, and reads and writes are the required access types after the barrier
instruction. Encoded as CRm = 0b0101.

DMB Page 129

<imm>

Operation

OSH
Outer Shareable is the required shareability domain, reads and writes are the required access
types, both before and after the barrier instruction. Encoded as CRm = 0b0011.

OSHST
Outer Shareable is the required shareability domain, writes are the required access type, both
before and after the barrier instruction. Encoded as CRm = 0b0010.

OSHLD
Outer Shareable is the required shareability domain, reads are the required access type before the
barrier instruction, and reads and writes are the required access types after the barrier
instruction. Encoded as CRm = 0b0001.

All other encodings of CRm that are not listed above are reserved, and can be encoded using the
#<imm> syntax. All unsupported and reserved options must execute as a full system barrier operation,
but software must not rely on this behavior. For more information on whether an access is before or
after a barrier instruction, see Data Memory Barrier (DMB) or see Data Synchronization Barrier (DSB).

Is a 4-bit unsigned immediate, in the range 0 to 15, encoded in the "CRm" field.

DataMemoryBarrier(domain, types);

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DMB Page 130

DRPS

Debug restore process state.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7
/11 01 01 1]/0 10 11111 1[000000[1 11

o
=|n
o]
olw
oln
o~
ol|o

DRPS

if !Halted() || PSTATE.EL == ELO then UNDEFINED;
Operation

DRPSInstruction();

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DRPS Page 131

DSB

Data Synchronization Barrier is a memory barrier that ensures the completion of memory accesses, see Data
Synchronization Barrier.

A DSB instruction with the nXS qualifier is complete when the subset of these memory accesses with the XS attribute
set to 0 are complete. It does not require that memory accesses with the XS attribute set to 1 are complete.

It has encodings from 2 classes: Memory barrier and Memory nXS barrier

Memory barrier

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
/11 01 010 100[0[00[01 1[0 01 1] '=0x00 [1]/0 01 1 1 1 1|
CRm opc
DSB <option>|#<imm>
boolean nXS = FALSE;
case CRm<3:2> of
when '00' domain = MBRegDomain QuterShareable;
when '01' domain = MBRegDomain Nonshareable;
when '10' domain = MBRegDomain InnerShareable;
when '11' domain = MBRegDomain FullSystem;
case CRm<1:0> of
when '00' types = MBReqTypes All; domain = MBRegDomain FullSystem;
when '01' types = MBReqTypes Reads;
when '10' types = MBReqTypes Writes;
when '11' types = MBReqTypes All;
Memory nXS barrier
(FEAT_XS)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[1 1 01 010100000O0O0T1100 1 1[imm2[1 ofof[0 11 1 1 1 1]

DSB <option>nXS|#<imm>

if !'HaveFeatXS() then UNDEFINED;

MBReqTypes types = MBReqTypes All;
boolean nXS = TRUE;

case imm2 of
when '00' domain
when '01' domain
when '10' domain
when '11' domain

MBRegDomain OuterShareable;
MBRegDomain Nonshareable;
MBRegDomain InnerShareable;
MBRegDomain FullSystem;

Assembler Symbols

<option> For the memory barrier variant: specifies the limitation on the barrier operation. Values are:
SY
Full system is the required shareability domain, reads and writes are the required access types,
both before and after the barrier instruction. This option is referred to as the full system barrier.
Encoded as CRm = 0b1111.

ST

Full system is the required shareability domain, writes are the required access type, both before
and after the barrier instruction. Encoded as CRm = 0b1110.

DSB Page 132

LD
Full system is the required shareability domain, reads are the required access type before the
barrier instruction, and reads and writes are the required access types after the barrier
instruction. Encoded as CRm = 0b1101.

ISH
Inner Shareable is the required shareability domain, reads and writes are the required access
types, both before and after the barrier instruction. Encoded as CRm = 0b1011.

ISHST
Inner Shareable is the required shareability domain, writes are the required access type, both
before and after the barrier instruction. Encoded as CRm = 0b1010.

ISHLD
Inner Shareable is the required shareability domain, reads are the required access type before the
barrier instruction, and reads and writes are the required access types after the barrier
instruction. Encoded as CRm = 0b1001.

NSH
Non-shareable is the required shareability domain, reads and writes are the required access, both
before and after the barrier instruction. Encoded as CRm = 0b0111.

NSHST
Non-shareable is the required shareability domain, writes are the required access type, both
before and after the barrier instruction. Encoded as CRm = 0b0110.

NSHLD
Non-shareable is the required shareability domain, reads are the required access type before the
barrier instruction, and reads and writes are the required access types after the barrier
instruction. Encoded as CRm = 0b0101.

OSH
Outer Shareable is the required shareability domain, reads and writes are the required access
types, both before and after the barrier instruction. Encoded as CRm = 0b0011.

OSHST
Outer Shareable is the required shareability domain, writes are the required access type, both
before and after the barrier instruction. Encoded as CRm = 0b0010.

OSHLD
Outer Shareable is the required shareability domain, reads are the required access type before the
barrier instruction, and reads and writes are the required access types after the barrier
instruction. Encoded as CRm = 0b0001.

All other encodings of CRm, other than the values 0b0000 and 0b0100, that are not listed above are
reserved, and can be encoded using the #<imm> syntax. All unsupported and reserved options must
execute as a full system barrier operation, but software must not rely on this behavior. For more
information on whether an access is before or after a barrier instruction, see Data Memory Barrier
(DMB) or see Data Synchronization Barrier (DSB).

The value 0b0000 is used to encode SSBB and the value 0b0100 is used to encode PSSBB.

For the memory nXS barrier variant: specifies the limitation on the barrier operation. Values are:

SY
Full system is the required shareability domain, reads and writes are the required access types,
both before and after the barrier instruction. This option is referred to as the full system barrier.
Encoded as CRm<3:2> = Obl1.

ISH
Inner Shareable is the required shareability domain, reads and writes are the required access
types, both before and after the barrier instruction. Encoded as CRm<3:2> = 0b10.

NSH
Non-shareable is the required shareability domain, reads and writes are the required access, both
before and after the barrier instruction. Encoded as CRm<3:2> = 0b01.

OSH
Outer Shareable is the required shareability domain, reads and writes are the required access
types, both before and after the barrier instruction. Encoded as CRm<3:2> = 0b00.

<imm> For the memory barrier variant: is a 4-bit unsigned immediate, in the range 0 to 15, encoded in the

"CRm" field.
For the memory nXS barrier variant: is a 5-bit unsigned immediate, encoded in “imm2”:

DSB Page 133

00 16
01 20
10 24
11 28

Operation

if !'nXS && HaveFeatXS() && HaveFeatHCX() then

nXS = PSTATE.EL IN {ELOG, EL1} && ISHCRXEL2Enabled() && HCRX EL2.FnXS == '1';
DataSynchronizationBarrier(domain, types, nXS);

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DSB Page 134

DVP

Data Value Prediction Restriction by Context prevents data value predictions, based on information gathered from
earlier execution within an particular execution context, from allowing later speculative execution within that context
to be observable through side-channels.

For more information, see DVP RCTX, Data Value Prediction Restriction by Context.

This is an alias of SYS. This means:

¢ The encodings in this description are named to match the encodings of SYS.
¢ The description of SYS gives the operational pseudocode for this instruction.

System
(FEAT_SPECRES)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
/11 01 010100[0[0 1[0 1 1[0 1 1 1[0 01 1[1 0 1] Rt |
L opl CRn CRm op2

DVP RCTX, <Xt>
is equivalent to
SYS #3, C7, C3, #5, <Xt>

and is always the preferred disassembly.

Assembler Symbols

<Xt> Is the 64-bit name of the general-purpose source register, encoded in the "Rt" field.

Operation

The description of SYS gives the operational pseudocode for this instruction.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DVP Page 135

EON (shifted register)

Bitwise Exclusive OR NOT (shifted register) performs a bitwise Exclusive OR NOT of a register value and an
optionally-shifted register value, and writes the result to the destination register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
Isf][1 0]0 1 0 1 Ofshift[1] Rm | imm6 | Rn | Rd |
opc N

32-bit (sf == 0)

EON <Wd>, <Wn>, <Wm>{, <shift> #<amount>}

64-bit (sf == 1)

EON <Xd>, <Xn>, <Xm>{, <shift> #<amount>}

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer datasize = if sf == 'l' then 64 else 32;
if sf == '0' && imm6<5> == '1' then UNDEFINED;
ShiftType shift type = DecodeShift(shift);
integer shift _amount = UInt(imm6);
Assembler Symbols
<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.
<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.
<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.
<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.
<shift> Is the optional shift to be applied to the final source, defaulting to LSL and encoded in “shift”:
shift <shift>
00 LSL
01 LSR
10 ASR
11 ROR
<amount> For the 32-bit variant: is the shift amount, in the range 0 to 31, defaulting to 0 and encoded in the
"imm6" field.
For the 64-bit variant: is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the
"imm6" field,

Operation

X[n];
ShiftReg(m, shift type, shift amount);

bits(datasize) operandl
bits(datasize) operand2

operand2 = NOT(operand2);
result = operandl EOR operand2;

X[d] = result;

EON (shifted register) Page 136

Operational information

If PSTATE.DIT is 1:

¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
¢ The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

EON (shifted register) Page 137

EOR (immediate)

Bitwise Exclusive OR (immediate) performs a bitwise Exclusive OR of a register value and an immediate value, and

writes the result to the destination register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0
Isf[1 0]1 0 0 1 0 O[N] immr | imms | Rn | Rd |
opc

32-bit (sf == 0 && N == 0)
EOR <Wd|WSP>, <Wn>, #<imm>
64-bit (sf == 1)

EOR <Xd|SP>, <Xn>, #<imm>

integer d = UInt(Rd);
integer n = UInt(Rn);

integer datasize = if sf == 'l' then 64 else 32;
bits(datasize) imm;
if sf == '0' & N !'= '0' then UNDEFINED;

(imm, -) = DecodeBitMasks(N, imms, immr, TRUE);

Assembler Symbols

<Wd|WSP> Is the 32-bit name of the destination general-purpose register or stack pointer, encoded in the "Rd"

field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<Xd|SP> Is the 64-bit name of the destination general-purpose register or stack pointer, encoded in the "Rd"
field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<imm> For the 32-bit variant: is the bitmask immediate, encoded in "imms:immr".

For the 64-bit variant: is the bitmask immediate, encoded in "N:imms:immr".

Operation

bits(datasize) result;
bits(datasize) operandl = X[n];

result = operandl EOR imm;

if d == 31 then
SP[] = result;
else
X[d] = result;

Operational information

If PSTATE.DIT is 1:
¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

* The response of this instruction to asynchronous exceptions does not vary based on:

o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

EOR (immediate)

Page 138

EOR (shifted register)

Bitwise Exclusive OR (shifted register) performs a bitwise Exclusive OR of a register value and an optionally-shifted
register value, and writes the result to the destination register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
Isf[1 0]0 1 0 1 ofshift[0] Rm | imm6 | Rn | Rd |
opc N

32-bit (sf == 0)

EOR <Wd>, <Wn>, <Wm>{, <shift> #<amount>}

64-bit (sf == 1)

EOR <Xd>, <Xn>, <Xm>{, <shift> #<amount>}

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer datasize = if sf == 'l' then 64 else 32;
if sf == '0' && imm6<5> == '1' then UNDEFINED;
ShiftType shift type = DecodeShift(shift);
integer shift _amount = UInt(imm6);
Assembler Symbols
<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.
<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.
<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.
<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.
<shift> Is the optional shift to be applied to the final source, defaulting to LSL and encoded in “shift”:
shift <shift>
00 LSL
01 LSR
10 ASR
11 ROR
<amount> For the 32-bit variant: is the shift amount, in the range 0 to 31, defaulting to 0 and encoded in the
"imm6" field.
For the 64-bit variant: is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the
"imm6" field,

Operation

X[n];
ShiftReg(m, shift type, shift amount);

bits(datasize) operandl
bits(datasize) operand2

result = operandl EOR operand2;

X[d] = result;
Operational information

If PSTATE.DIT is 1:

EOR (shifted register) Page 139

¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
¢ The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

EOR (shifted register) Page 140

ERET

Exception Return using the ELR and SPSR for the current Exception level. When executed, the PE restores PSTATE

from the SPSR, and branches to the address held in the ELR.
The PE checks the SPSR for the current Exception level for an illegal return event. See Illegal return events from

AArch64 state.
ERET is UNDEFINED at ELO.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
/1 1 01 01 1]/0of1 0021111 1[00o0o0f[0[0[1 1 11 1]/0 000 O]

A M Rn op4

ERET
if PSTATE.EL == ELO then UNDEFINED;

Operation

AArch64.CheckForERetTrap (FALSE, TRUE);
bits(64) target = ELR[];

AArch64.ExceptionReturn(target, SPSR[]);

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19
Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential

ERET Page 141

ERETAA, ERETAB

Exception Return, with pointer authentication. This instruction authenticates the address in ELR, using SP as the
modifier and the specified key, the PE restores PSTATE from the SPSR for the current Exception level, and branches to
the authenticated address.

Key A is used for ERETAA, and key B is used for ERETAB.

If the authentication passes, the PE continues execution at the target of the branch. If the authentication fails, a
Translation fault is generated.

The authenticated address is not written back to ELR.

The PE checks the SPSR for the current Exception level for an illegal return event. See Illegal return events from
AArch64 state.

ERETAA and ERETAB are UNDEFINED at ELO.

Integer
(FEAT_PAuth)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
/11 0101 1]0o]f1 00[11111[0000f1[M[1 1 1 1 1]1 11 1 1|
A Rn op4

ERETAA (M == 0)
ERETAA
ERETAB (M == 1)

ERETAB

if PSTATE.EL == ELO then UNDEFINED;
boolean use key a = (M == '0');

if 'HavePACExt() then
UNDEFINED;

Operation

AArch64.CheckForERetTrap(TRUE, use key a);
bits(64) target;

if use key a then

target = AuthIA(ELR[], SP[], TRUE);
else

target = AuthIB(ELR[], SP[], TRUE);

AArch64.ExceptionReturn(target, SPSR[1);

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ERETAA, ERETAB Page 142

ESB

Error Synchronization Barrier is an error synchronization event that might also update DISR EL1 and VDISR EL2.
This instruction can be used at all Exception levels and in Debug state.

In Debug state, this instruction behaves as if SError interrupts are masked at all Exception levels. See Error
Synchronization Barrier in the Arm(R) Reliability, Availability, and Serviceability (RAS) Specification, Armv8, for
Armv8-A architecture profile.

If the RAS Extension is not implemented, this instruction executes as a NOP.

System
(FEAT_RAS)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3
/11 01 010100[0[0O0[01 1[0 0 10[/0010[0O0O0[1 1
CRm op2

=Y IN)
[y
= f)

ESB

if !'HaveRASExt() then EndOfInstruction();

Operation

SynchronizeErrors();

AArch64.ESBQOperation();

if PSTATE.EL IN {ELO, EL1} && EL2Enabled() then AArch64.vESBOperation();
TakeUnmaskedSErrorInterrupts();

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ESB Page 143

EXTR

Extract register extracts a register from a pair of registers.

This instruction is used by the alias ROR (immediate).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
Isf][0 0]1 0 0 1 1 1[N[O] Rm | imms | Rn | Rd |

32-bit (sf == 0 && N == 0 && imms == 0xXXXXX)

EXTR <Wd>, <Wn>, <Wm>, #<lsb>

64-bit (sf == 1 && N == 1)

EXTR <Xd>, <Xn>, <Xm>, #<lsb>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer datasize = if sf == '1' then 64 else 32;

integer 1lsb;
if N !'= sf then UNDEFINED;

if sf == '0' && imms<5> == '1' then UNDEFINED;
1sb = UInt(imms);

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

<lsh> For the 32-bit variant: is the least significant bit position from which to extract, in the range 0 to 31,

encoded in the "imms" field.

For the 64-bit variant: is the least significant bit position from which to extract, in the range 0 to 63,
encoded in the "imms" field.

Alias Conditions

Alias Is preferred when

ROR (immediate) Rn == Rm

Operation

bits
bits
bits
bits

datasize) result;
datasize) operandl
datasize) operand2
2*datasize) concat

X[n];
X[m];
operandl:operand2;

—_~ o~ o~ —~

result = concat<lsb+datasize-1:1sb>;

X[d] = result;

EXTR Page 144

Operational information

If PSTATE.DIT is 1:

¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
¢ The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

EXTR Page 145

GMI

Tag Mask Insert inserts the tag in the first source register into the excluded set specified in the second source
register, writing the new excluded set to the destination register.

Integer
(FEAT_MTE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
[1]o]0of1 1 0 1 0 1 1 O] Xm [o]ofo]1]0]1] Xn | Xd |

GMI <Xd>, <Xn|SP>, <Xm>

if 'HaveMTEExt() then UNDEFINED;

integer d = UInt(Xd);
integer n = UInt(Xn);
integer m = UInt(Xm);

Assembler Symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Xd" field.

<Xn|SP> Is the 64-bit name of the first source general-purpose register or stack pointer, encoded in the "Xn"
field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Xm" field.

Operation

bits(64) address = if n == 31 then SP[] else X[n];
bits(64) mask = X[m];
bits(4) tag = AArch64.AllocationTagFromAddress(address);

mask<UInt(tag)> = '1';
X[d] = mask;

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GMI Page 146

HINT

Hint instruction is for the instruction set space that is reserved for architectural hint instructions.

Some encodings described here are not allocated in this revision of the architecture, and behave as NOPs. These
encodings might be allocated to other hint functionality in future revisions of the architecture and therefore must not
be used by software.

31

30

29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5

[1

1

4 3 2 1 0
01 01010 o0[0o[0o0[01 1[0 01 0[] CRm [op2 [1 1 1 1 1|

HINT #<imm>

SystemHintOp op;

case CRm:op2 of

when '0000 000' op
when '0000 001' op
when '0000 010' op
when '0000 011' op
when '0000 100' op
when '0000 101' op
when '0000 110'
if 'HaveDGHExt() then EndOfInstruction(); // Instruction executes as NOP
op = SystemHintOp DGH;
when '0000 111' SEE "XPACLRI";
when '0001 xxx'
case op2 of
when '000' SEE "PACIAl716";
when '010' SEE "PACIB1716";
when '100' SEE "AUTIAl716";
when '110' SEE "AUTIB1716";
otherwise EndOfInstruction();
when '0010 000'
if 'HaveRASExt() then EndOfInstruction(); // Instruction executes as NOP
op = SystemHintOp ESB;
when '0010 001'
if !HaveStatisticalProfiling() then EndOfInstruction(); // Instruction executes as NOP
op = SystemHintOp PSB;
when '0010 010'
if !'HaveSelfHostedTrace() then EndOfInstruction(); // Instruction executes as NOP
op = SystemHintOp TSB;
when '0010 100'
op = SystemHintOp CSDB;
when '0011 xxx'
case op2 of
when '000' SEE "PACIAZ";
when '001' SEE "PACIASP";
when '010' SEE "PACIBZ";
when '011' SEE "PACIBSP";
when '100' SEE "AUTIAZ";
when '101' SEE "AUTHASP";
when '110' SEE "AUTIBZ";
when '111' SEE "AUTIBSP";
when '0100 xx0'
op = SystemHintOp BTI;
// Check branch target compatibility between BTI instruction and PSTATE.BTYPE

SetBTypeCompatible(BTypeCompatible BTI(op2<2:1>));
otherwise EndOfInstruction();

SystemHintOp NOP;
SystemHintOp YIELD;
SystemHintOp WFE;
SystemHintOp WFI;
SystemHintOp SEV;
SystemHintOp SEVL;

Assembler Symbols

<imm> Is a 7-bit unsigned immediate, in the range 0 to 127 encoded in the "CRm:op2" field.

The encodings that are allocated to architectural hint functionality are described in the "Hints" table in
the "Index by Encoding".

For allocated encodings of "CRm:op2":

HINT Page 147

* A disassembler will disassemble the allocated instruction, rather than the HINT instruction.
* An assembler may support assembly of allocated encodings using HINT with the
corresponding <imm> value, but it is not required to do so.

Operation

case op of
when SystemHintOp YIELD
Hint Yield();

when SystemHintOp DGH
Hint DGH();

when SystemHintOp WFE
Hint WFE(-1, WFxType WFE);

when SystemHintOp WFI
Hint WFI(-1, WFxType WFI);

when SystemHintOp SEV
SendEvent();

when SystemHintOp SEVL
SendEventlocal();

when SystemHintOp ESB
SynchronizeErrors();
AArch64.ESBOperation();
if PSTATE.EL IN {ELO, EL1} && EL2Enabled() then AArch64.vESBOperation();
TakeUnmaskedSErrorInterrupts();

when SystemHintOp PSB
ProfilingSynchronizationBarrier();

when SystemHintOp TSB
TraceSynchronizationBarrier();

when SystemHintOp CSDB
ConsumptionOfSpeculativeDataBarrier();

when SystemHintOp BTI
SetBTypeNext('00');

otherwise // do nothing

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

HINT Page 148

HLT

Halt instruction. An HLT instruction can generate a Halt Instruction debug event, which causes entry into Debug state.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
/1 1 01 010 0[01 0] imm16 |0 0 0/0 0]
HLT #<imm>
if EDSCR.HDE == '0' || !'HaltingAllowed() then UNDEFINED;

if HaveBTIExt() then
SetBTypeCompatible(TRUE) ;

Assembler Symbols
<imm> Is a 16-bit unsigned immediate, in the range 0 to 65535, encoded in the "imm16" field.

Operation

Halt (DebugHalt HaltInstruction);

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

HLT Page 149

HVC

Hypervisor Call causes an exception to EL2. Non-secure software executing at EL1 can use this instruction to call the
hypervisor to request a service.
The HVC instruction is UNDEFINED:

At ELO.
« At EL1if EL2 is not enabled in the current Security state.
e When SCR _EL3.HCE is set to 0.
On executing an HVC instruction, the PE records the exception as a Hypervisor Call exception in ESR_ELXx, using the

EC value 0x16, and the value of the immediate argument.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[1 1 01 010 0[0 0 O] imm16 [0 0 0[1 O]
HVC #<imm>

// Empty.

Assembler Symbols

<imm> Is a 16-bit unsigned immediate, in the range 0 to 65535, encoded in the "imm16" field.

Operation

if !'HaveEL (EL2) || PSTATE.EL == ELO || (PSTATE.EL == EL1 && (!IsSecureEl2Enabled() && IsSecure())) then
UNDEFINED;

hvc enable = if HaveEL(EL3) then SCR EL3.HCE else NOT(HCR EL2.HCD);

if hvc _enable == '0' then
UNDEFINED;

else
AArch64.CallHypervisor(imml6) ;

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

HVC Page 150

IC

Instruction Cache operation. For more information, see op0==0b01, cache maintenance, TLB maintenance, and
address translation instructions.

This is an alias of SYS. This means:

¢ The encodings in this description are named to match the encodings of SYS.
¢ The description of SYS gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
11 01 01010 0[0[0 1] opl [0 1 1 1] CRm [op2 | Rt |
L CRn

IC <ic_op>{, <Xt>}
is equivalent to
SYS #<opl>, C7, <Cm>, #<op2>{, <Xt>}

and is the preferred disassembly when SysOp(opl, '0111',CRm,op2) == Sys IC.
Assembler Symbols

<ic_op> Is an IC instruction name, as listed for the IC system instruction pages, encoded in “op1:CRm:op2”:

opl CRm op2 <ic_op>
000 0001 000 IALLUIS
000 0101 000 IALLU
011 0101 001 IVAU

<opl> Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "op1" field.

<Cm> Is a name 'Cm', with 'm' in the range 0 to 15, encoded in the "CRm" field.

<op2> Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "op2" field.

<Xt> Is the 64-bit name of the optional general-purpose source register, defaulting to ‘11111, encoded in the
"Rt" field.

Operation

The description of SYS gives the operational pseudocode for this instruction.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

IC Page 151

IRG

Insert Random Tag inserts a random Logical Address Tag into the address in the first source register, and writes the
result to the destination register. Any tags specified in the optional second source register or in GCR_EL1.Exclude are
excluded from the selection of the random Logical Address Tag.

Integer
(FEAT_MTE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
[1]o]0o]1 1 0 1 0 1 1 O] Xm [o]ofo]1]0]0] Xn | Xd |

IRG <Xd|SP>, <Xn|SP>{, <Xm>}

if 'HaveMTEExt() then UNDEFINED;

integer d = UInt(Xd);
integer n = UInt(Xn);
integer m = UInt(Xm);

Assembler Symbols

<Xd|SP> %s 11:(}:11e 64-bit name of the destination general-purpose register or stack pointer, encoded in the "Xd"
eld.
<Xn|SP> %s 113(}:116 64-bit name of the first source general-purpose register or stack pointer, encoded in the "Xn"
eld.
<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Xm" field. Defaults to
XZR if absent.
Operation

bits(64) operand = if n == 31 then SP[] else X[n];
bits(64) exclude reg = X[m];
bits(16) exclude = exclude reg<15:0> OR GCR EL1.Exclude;

if AArch64.AllocationTagAccessIsEnabled(AccType NORMAL) then
if GCR EL1.RRND == '1' then
RGSR EL1 = bits(64) UNKNOWN;
if IsOnes(exclude) then
rtag = '0000';
else
rtag = ChooseRandomNonExcludedTag(exclude);
else

bits(4) start = RGSR _EL1.TAG;
bits(4) offset = AArch64.RandomTag();

rtag = AArch64.ChooseNonExcludedTag(start, offset, exclude);

RGSR EL1.TAG = rtag;
else
rtag = '0000';

bits(64) result = AArch64.AddressWithAllocationTag(operand, AccType NORMAL, rtag);

if d == 31 then
SP[] = result;

else
X[d]

result;

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

IRG Page 152

ISB

Instruction Synchronization Barrier flushes the pipeline in the PE and is a context synchronization event. For more
information, see Instruction Synchronization Barrier (ISB).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
/11 01 010100[0[00[01 1[0 01 1] CRm [1]1 0]1 1 1 1 1|
opc

ISB {<option>|#<imm>}

// No additional decoding required

Assembler Symbols

<option> Specifies an optional limitation on the barrier operation. Values are:
SY
Full system barrier operation, encoded as CRm = 0b1111. Can be omitted.

All other encodings of CRm are reserved. The corresponding instructions execute as full system barrier
operations, but must not be relied upon by software.

<imm> Is an optional 4-bit unsigned immediate, in the range 0 to 15, defaulting to 15 and encoded in the
"CRm" field.

Operation

InstructionSynchronizationBarrier();

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ISB Page 153

LD64B

Single-copy Atomic 64-byte Load derives an address from a base register value, loads eight 64-bit doublewords from a
memory location, and writes them to consecutive registers, Xt to X(t+7). The data that is loaded is atomic and is
required to be 64-byte aligned.

Integer
(FEAT_LS64)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
[1 1]1 1 1]o]o ofJoJof1]1 1 1 1 1[]1]1 0 1[0 O] Rn Rt |

LD64B <Xt>, [<Xn|SP> {,#0}]

if 'HaveFeatlS64() then UNDEFINED;

if Rt<4:3> == '11' || Rt<0> == '1' then UNDEFINED;
integer n = UInt(Rn);

integer t = UInt(Rt);

boolean tag checked = n != 31;

Assembler Symbols

<Xt> Is the 64-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.
<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.
Operation

ChecklDST64BEnabled() ;

bits(512) data;

bits(64) address;

bits(64) value;

acctype = AccType ATOMICLS64;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag checked);

if n == 31 then
CheckSPAlignment();
address = SP[];
else
address = X[n];

data = MemLoad64B(address, acctype);

for i =0 to 7
value = data<63+64*1i:64*i>;
if BigEndian(acctype) then value = BigEndianReverse(value);
X[t+i] = value;

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LD64B Page 154

LDADD, LDADDA, LDADDAL, LDADDL

Atomic add on word or doubleword in memory atomically loads a 32-bit word or 64-bit doubleword from memory, adds
the value held in a register to it, and stores the result back to memory. The value initially loaded from memory is
returned in the destination register.

¢ If the destination register is not one of WZR or XZR, LDADDA and LDADDAL load from memory with acquire
semantics.

¢ LDADDL and LDADDAL store to memory with release semantics.
« LDADD has neither acquire nor release semantics.

For more information about memory ordering semantics see Load-Acquire, Store-Release.
For information about memory accesses see Load/Store addressing modes.

This instruction is used by the alias STADD, STADDL..

Integer
(FEAT_LSE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
|1 x]1 1 1]o]Jo of[A[R[1] Rs loJo 0 oo 0] Rn Rt |
size opc

LDADD, LDADDA, LDADDAL, Page 155
LDADDL g

32-bit LDADD (size == 10 && A == 0 && R == 0)
LDADD <Ws>, <Wt>, [<Xn|SP>]

32-bit LDADDA (size == 10 && A == 1 && R == 0)
LDADDA <Ws>, <Wt>, [<Xn|SP>]

32-bit LDADDAL (size == 10 && A == 1 & R ==1)
LDADDAL <Ws>, <Wt>, [<Xn|SP>]

32-bit LDADDL (size == 10 && A == 0 && R == 1)
LDADDL <Ws>, <Wt>, [<Xn|SP>]

64-bit LDADD (size == 11 && A == 0 && R == 0)
LDADD <Xs>, <Xt>, [<Xn|SP>]

64-bit LDADDA (size == 11 && A == 1 && R == 0)
LDADDA <Xs>, <Xt>, [<Xn|SP>]

64-bit LDADDAL (size == 11 && A ==1 && R == 1)
LDADDAL <Xs>, <Xt>, [<Xn|SP>]

64-bit LDADDL (size == 11 && A == 0 && R == 1)

LDADDL <Xs>, <Xt>, [<Xn|SP>]

if 'HaveAtomicExt() then UNDEFINED;

integer t = UInt(Rt);
integer n = UInt(Rn);
integer s = UInt(Rs);

integer datasize = 8 << Ulnt(size);

integer regsize = if datasize == 64 then 64 else 32;
AccType ldacctype = if A == '1' & Rt != '11111"' then AccType ORDEREDATOMICRW else AccType ATOMICRW;
AccType stacctype = if R == '1l' then AccType ORDEREDATOMICRW else AccType ATOMICRW;

boolean tag checked = n != 31;

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xt> Is the 64-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Alias Conditions

Alias Is preferred when
STADD, STADDL A=="'0"&& Rt == '11111"

LDADD, LDADDA, LDADDAL,

LDADDL Page 156

Operation

bits(64) address;
bits(datasize) value;
bits(datasize) data;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag checked);

value = X[s];

if n == 31 then
CheckSPAlignment () ;
address = SP[];

else
address = X[n];

data = MemAtomic(address, MemAtomicOp ADD, value, ldacctype, stacctype);

if t != 31 then
X[t] = ZeroExtend(data, regsize);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDADD, LDADDA, LDADDAL,

LDADDL Page 157

LDADDB, LDADDAB, LDADDALB, LDADDLB

Atomic add on byte in memory atomically loads an 8-bit byte from memory, adds the value held in a register to it, and
stores the result back to memory. The value initially loaded from memory is returned in the destination register.

¢ If the destination register is not WZR, LDADDAB and LDADDALB load from memory with acquire semantics.
« LDADDLB and LDADDALB store to memory with release semantics.
* LDADDB has neither acquire nor release semantics.

For more information about memory ordering semantics see Load-Acquire, Store-Release.
For information about memory accesses see Load/Store addressing modes.

This instruction is used by the alias STADDB, STADDLB.

Integer
(FEAT_LSE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[0 0[1 1 1/0[0 O[A|R[1] Rs lo/o 0 0[O0 O] Rn Rt |
size opc

LDADDAB (A == 1 && R == 0)
LDADDAB <Ws>, <Wt>, [<Xn|SP>]
LDADDALB (A ==1 && R ==1)
LDADDALB <Ws>, <Wt>, [<Xn|SP>]
LDADDB (A == 0 && R == 0)
LDADDB <Ws>, <Wt>, [<Xn|SP>]
LDADDLB (A == 0 && R == 1)

LDADDLB <Ws>, <Wt>, [<Xn|SP>]

if 'HaveAtomicExt() then UNDEFINED;

integer t = UInt(Rt);

integer n = UInt(Rn);

integer s = UInt(Rs);

AccType ldacctype = if A == '1' & Rt != '11111' then AccType ORDEREDATOMICRW else AccType ATOMICRW;
AccType stacctype = if R == '1' then AccType ORDEREDATOMICRW else AccType ATOMICRW;

boolean tag checked = n != 31;

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Alias Conditions

Alias Is preferred when
STADDB, STADDLB A=="'0" & Rt == '11111"

LDADDB, LDADDAB,

LDADDALB, LDADDLB Page 158

Operation

bits(64) address;
bits(8) value;
bits(8) data;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag checked);

value = X[s];

if n == 31 then
CheckSPAlignment () ;
address = SP[];

else
address = X[n];

data = MemAtomic(address, MemAtomicOp ADD, value, ldacctype, stacctype);

if t !'= 31 then
X[t] = ZeroExtend(data, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDADDB, LDADDAB,

LDADDALB, LDADDLB Page 159

LDADDH, LDADDAH, LDADDALH, LDADDLH

Atomic add on halfword in memory atomically loads a 16-bit halfword from memory, adds the value held in a register
to it, and stores the result back to memory. The value initially loaded from memory is returned in the destination
register.

¢ If the destination register is not WZR, LDADDAH and LDADDALH load from memory with acquire semantics.

e LDADDLH and LDADDALH store to memory with release semantics.

¢ LDADDH has neither acquire nor release semantics.
For more information about memory ordering semantics see Load-Acquire, Store-Release.
For information about memory accesses see Load/Store addressing modes.

This instruction is used by the alias STADDH, STADDLH.

Integer
(FEAT_LSE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
[0 1[1 1 1/0[0 O[A|R[1] Rs lo/o 0 0[O0 O] Rn Rt |
size opc

LDADDAH (A == 1 && R == 0)
LDADDAH <Ws>, <Wt>, [<Xn|SP>]
LDADDALH (A == 1 && R == 1)
LDADDALH <Ws>, <Wt>, [<Xn|SP>]
LDADDH (A == 0 && R == 0)
LDADDH <Ws>, <Wt>, [<Xn|SP>]
LDADDLH (A ==0 && R ==1)

LDADDLH <Ws>, <Wt>, [<Xn|SP>]

if 'HaveAtomicExt() then UNDEFINED;

integer t = UInt(Rt);

integer n = UInt(Rn);

integer s = UInt(Rs);

AccType ldacctype = if A == '1' & Rt != '11111' then AccType ORDEREDATOMICRW else AccType ATOMICRW;
AccType stacctype = if R == '1' then AccType ORDEREDATOMICRW else AccType ATOMICRW;

boolean tag checked = n != 31;

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Alias Conditions

Alias Is preferred when
STADDH, STADDLH A=="'0" & Rt == '11111"

LDADDH, LDADDAH,

LDADDALH, LDADDLH Page 160

Operation

bits(64) address;
bits(16) value;
bits(16) data;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag checked);

value = X[s];

if n == 31 then
CheckSPAlignment () ;
address = SP[];

else
address = X[n];

data = MemAtomic(address, MemAtomicOp ADD, value, ldacctype, stacctype);

if t !'= 31 then
X[t] = ZeroExtend(data, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDADDH, LDADDAH,

LDADDALH, LDADDLH Page 161

LDAPR

Load-Acquire RCpc Register derives an address from a base register value, loads a 32-bit word or 64-bit doubleword
from the derived address in memory, and writes it to a register.
The instruction has memory ordering semantics as described in Load-Acquire, Load-AcquirePC, and Store-Release,
except that:
¢ There is no ordering requirement, separate from the requirements of a Load-AcquirePC or a Store-Release,
created by having a Store-Release followed by a Load-AcquirePC instruction.
¢ The reading of a value written by a Store-Release by a Load-AcquirePC instruction by the same observer does
not make the write of the Store-Release globally observed.
This difference in memory ordering is not described in the pseudocode.
For information about memory accesses, see Load/Store addressing modes.

Integer
(FEAT_LRCPC)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
[1 x[1 1 1]ofo ofJ1]o1f@m@@m@@[1[1 0 of[o0 0] Rn Rt |
size Rs

32-bit (size == 10)
LDAPR <Wt>, [<Xn|SP> {,#0}]
64-bit (size == 11)

LDAPR <Xt>, [<Xn|SP> {,#0}]

UInt(Rn);
UInt(Rt);

integer n
integer t

integer elsize = 8 << Ulnt(size);
integer regsize = if elsize == 64 then 64 else 32;
boolean tag checked = n != 31;

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.
<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.
Operation

bits(64) address;
bits(elsize) data;
constant integer dbytes = elsize DIV 8;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag checked);

if n == 31 then
CheckSPAlignment () ;
address = SP[];
else
address = X[n];

data = Mem[address, dbytes, AccType ORDERED];
X[t] = ZeroExtend(data, regsize);

LDAPR Page 162

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDAPR Page 163

LDAPRB

Load-Acquire RCpc Register Byte derives an address from a base register value, loads a byte from the derived address
in memory, zero-extends it and writes it to a register.
The instruction has memory ordering semantics as described in Load-Acquire, Load-AcquirePC, and Store-Release,
except that:

¢ There is no ordering requirement, separate from the requirements of a Load-AcquirePC or a Store-Release,

created by having a Store-Release followed by a Load-AcquirePC instruction.
¢ The reading of a value written by a Store-Release by a Load-AcquirePC instruction by the same observer does

not make the write of the Store-Release globally observed.
This difference in memory ordering is not described in the pseudocode.
For information about memory accesses, see Load/Store addressing modes.

Integer
(FEAT_LRCPC)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
[0 0[1 1 1]ofo of1]o1lm@@Mm@@[1[1 0 o0 0] Rn Rt |
size Rs

LDAPRB <Wt>, [<Xn|SP> {,#0}]

UInt(Rn);
UInt(Rt);

integer n
integer t

boolean tag checked = n != 31;

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.
<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.
Operation

bits(64) address;
bits(8) data;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag checked);

if n == 31 then
CheckSPAlignment () ;
address = SP[];
else
address = X[n];

Mem[address, 1, AccType ORDERED];
ZeroExtend(data, 32);

data
X[t]

Operational information
If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDAPRB Page 164

LDAPRH

Load-Acquire RCpc Register Halfword derives an address from a base register value, loads a halfword from the
derived address in memory, zero-extends it and writes it to a register.
The instruction has memory ordering semantics as described in Load-Acquire, Load-AcquirePC, and Store-Release,
except that:

¢ There is no ordering requirement, separate from the requirements of a Load-AcquirePC or a Store-Release,

created by having a Store-Release followed by a Load-AcquirePC instruction.
¢ The reading of a value written by a Store-Release by a Load-AcquirePC instruction by the same observer does

not make the write of the Store-Release globally observed.
This difference in memory ordering is not described in the pseudocode.
For information about memory accesses, see Load/Store addressing modes.

Integer
(FEAT_LRCPC)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
[0 1]1 1 1]ofo of1]o1fm@@M@@[1[1 0 of[0 0] Rn Rt |
size Rs

LDAPRH <Wt>, [<Xn|SP> {,#0}]

UInt(Rn);
UInt(Rt);

integer n
integer t

boolean tag checked = n != 31;

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.
<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.
Operation

bits(64) address;
bits(16) data;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag checked);

if n == 31 then
CheckSPAlignment () ;
address = SP[];
else
address = X[n];

Mem[address, 2, AccType ORDERED];
ZeroExtend(data, 32);

data
X[t]

Operational information
If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDAPRH Page 165

LDAPUR

Load-Acquire RCpc Register (unscaled) calculates an address from a base register and an immediate offset, loads a
32-bit word or 64-bit doubleword from memory, zero-extends it, and writes it to a register.

The instruction has memory ordering semantics as described in Load-Acquire, Load-AcquirePC, and Store-Release,
except that:

¢ There is no ordering requirement, separate from the requirements of a Load-AcquirePC or a Store-Release,
created by having a Store-Release followed by a Load-AcquirePC instruction.

¢ The reading of a value written by a Store-Release by a Load-AcquirePC instruction by the same observer does
not make the write of the Store-Release globally observed.

This difference in memory ordering is not described in the pseudocode.
For information about memory accesses, see Load/Store addressing modes.

Unscaled offset
(FEAT_LRCPC2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
[1 x[0o0 1 1 0 0 1[0 1][0] imm9 [0 O] Rn Rt |
size opc

32-bit (size == 10)
LDAPUR <Wt>, [<Xn|SP>{, #<simm>}]
64-bit (size == 11)

LDAPUR <Xt>, [<Xn|SP>{, #<simm>}]

integer scale = Ulnt(size);
bits(64) offset = SignExtend(imm9, 64);

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.
<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.
<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded in

the "imm9" field.

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);
integer regsize;

regsize = if size == '11' then 64 else 32;

integer datasize = 8 << scale;
boolean tag checked = n != 31;

LDAPUR Page 166

Operation

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag checked);

bits(64) address;
bits(datasize) data;

if n == 31 then
CheckSPAlignment () ;
address = SP[];
else
address = X[n];

address = address + offset;

Mem[address, datasize DIV 8, AccType ORDERED];
ZeroExtend(data, regsize);

data
X[t]

Operational information
If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDAPUR Page 167

LDAPURB

Load-Acquire RCpc Register Byte (unscaled) calculates an address from a base register and an immediate offset, loads
a byte from memory, zero-extends it, and writes it to a register.
The instruction has memory ordering semantics as described in Load-Acquire, Load-AcquirePC, and Store-Release,
except that:
¢ There is no ordering requirement, separate from the requirements of a Load-AcquirePC or a Store-Release,
created by having a Store-Release followed by a Load-AcquirePC instruction.
¢ The reading of a value written by a Store-Release by a Load-AcquirePC instruction by the same observer does
not make the write of the Store-Release globally observed.
This difference in memory ordering is not described in the pseudocode.
For information about memory accesses, see Load/Store addressing modes.

Unscaled offset
(FEAT_LRCPC2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
[0 0[]0 1 1 0 0 1[0 1]0] imm9 [0 O] Rn Rt |
size opc

LDAPURB <Wt>, [<Xn|SP>{, #<simm>}]

bits(64) offset = SignExtend(imm9, 64);

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.
<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.
<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded in

the "imm9" field.

Shared Decode

UInt(Rn);
UInt(Rt);

integer n
integer t

boolean tag checked = n != 31;
Operation

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag checked);

bits(64) address;
bits(8) data;

if n == 31 then
CheckSPAlignment () ;
address = SP[];
else
address = X[n];

address = address + offset;

data
X[t]

Mem[address, 1, AccType ORDERED];
ZeroExtend(data, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

LDAPURB Page 168

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDAPURB Page 169

LDAPURH

Load-Acquire RCpc Register Halfword (unscaled) calculates an address from a base register and an immediate offset,
loads a halfword from memory, zero-extends it, and writes it to a register.
The instruction has memory ordering semantics as described in Load-Acquire, Load-AcquirePC, and Store-Release,
except that:
¢ There is no ordering requirement, separate from the requirements of a Load-AcquirePC or a Store-Release,
created by having a Store-Release followed by a Load-AcquirePC instruction.
¢ The reading of a value written by a Store-Release by a Load-AcquirePC instruction by the same observer does
not make the write of the Store-Release globally observed.
This difference in memory ordering is not described in the pseudocode.
For information about memory accesses, see Load/Store addressing modes.

Unscaled offset
(FEAT_LRCPC2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
[0 1]/]0 1 1 0 0 1[0 1]0] imm9 [0 O] Rn Rt |
size opc

LDAPURH <Wt>, [<Xn|SP>{, #<simm>}]

bits(64) offset = SignExtend(imm9, 64);

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.
<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.
<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded in

the "imm9" field.

Shared Decode

UInt(Rn);
UInt(Rt);

integer n
integer t

boolean tag checked = n != 31;
Operation

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag checked);

bits(64) address;
bits(16) data;

if n == 31 then
CheckSPAlignment () ;
address = SP[];
else
address = X[n];

address = address + offset;

data
X[t]

Mem[address, 2, AccType ORDERED];
ZeroExtend(data, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

LDAPURH Page 170

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDAPURH Page 171

LDAPURSB

Load-Acquire RCpc Register Signed Byte (unscaled) calculates an address from a base register and an immediate
offset, loads a signed byte from memory, sign-extends it, and writes it to a register.

The instruction has memory ordering semantics as described in Load-Acquire, Load-AcquirePC, and Store-Release,
except that:

¢ There is no ordering requirement, separate from the requirements of a Load-AcquirePC or a Store-Release,
created by having a Store-Release followed by a Load-AcquirePC instruction.

¢ The reading of a value written by a Store-Release by a Load-AcquirePC instruction by the same observer does
not make the write of the Store-Release globally observed.

This difference in memory ordering is not described in the pseudocode.
For information about memory accesses, see Load/Store addressing modes.

Unscaled offset
(FEAT_LRCPC2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
[0 0[]0 1 1 0 0 11 x][O] imm9 [0 O] Rn Rt |
size opc

32-bit (opc == 11)
LDAPURSB <Wt>, [<Xn|SP>{, #<simm>}]
64-bit (opc == 10)

LDAPURSB <Xt>, [<Xn|SP>{, #<simm>}]

bits(64) offset = SignExtend(imm9, 64);

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.
<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.
<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded in

the "imm9" field.

Shared Decode

integer n
integer t
MemQOp memop;

boolean signed;
integer regsize;

UInt(Rn);
UInt(Rt);

if opc<l> == '0Q' then
// store or zero-extending load
memop = if opc<@> == '1' then MemOp LOAD else MemOp STORE;

regsize = 32;
signed = FALSE;
else
// sign-extending load
memop = MemOp LOAD;
regsize = if opc<0> == '1' then 32 else 64;
signed = TRUE;

boolean tag checked = memop != MemOp PREFETCH && (n != 31);

LDAPURSB Page 172

Operation

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag checked);

bits(64) address;
bits(8) data;

if n == 31 then

if memop != MemOp PREFETCH then CheckSPAlignment();

address = SP[];
else
address = X[n];

address = address + offset;

case memop of
when MemOp STORE
data = X[t];
Mem[address, 1, AccType ORDERED] = data;

when MemOp LOAD
data = Mem[address, 1, AccType ORDERED];

if signed then

X[t] = SignExtend(data, regsize);
else

X[t] = ZeroExtend(data, regsize);

when MemOp PREFETCH
Prefetch(address, t<4:0>);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDAPURSB

Page 173

LDAPURSH

Load-Acquire RCpc Register Signed Halfword (unscaled) calculates an address from a base register and an immediate
offset, loads a signed halfword from memory, sign-extends it, and writes it to a register.

The instruction has memory ordering semantics as described in Load-Acquire, Load-AcquirePC, and Store-Release,
except that:

¢ There is no ordering requirement, separate from the requirements of a Load-AcquirePC or a Store-Release,
created by having a Store-Release followed by a Load-AcquirePC instruction.

¢ The reading of a value written by a Store-Release by a Load-AcquirePC instruction by the same observer does
not make the write of the Store-Release globally observed.

This difference in memory ordering is not described in the pseudocode.
For information about memory accesses, see Load/Store addressing modes.

Unscaled offset
(FEAT_LRCPC2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
[0 1]/]0 1 1 0 0 1[1 x[O] imm9 [0 O] Rn Rt |
size opc

32-bit (opc == 11)
LDAPURSH <Wt>, [<Xn|SP>{, #<simm>}]
64-bit (opc == 10)

LDAPURSH <Xt>, [<Xn|SP>{, #<simm>}]

bits(64) offset = SignExtend(imm9, 64);

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.
<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.
<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded in

the "imm9" field.

Shared Decode

integer n
integer t
MemQOp memop;

boolean signed;
integer regsize;

UInt(Rn);
UInt(Rt);

if opc<l> == '0Q' then
// store or zero-extending load
memop = if opc<@> == '1' then MemOp LOAD else MemOp STORE;

regsize = 32;
signed = FALSE;
else
// sign-extending load
memop = MemOp LOAD;
regsize = if opc<0> == '1' then 32 else 64;
signed = TRUE;

boolean tag checked = memop != MemOp PREFETCH && (n != 31);

LDAPURSH Page 174

Operation

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag checked);

bits(64) address;
bits(16) data;

if n == 31 then

if memop != MemOp PREFETCH then CheckSPAlignment();

address = SP[];
else
address = X[n];

address = address + offset;

case memop of
when MemOp STORE
data = X[t];
Mem[address, 2, AccType ORDERED] = data;

when MemOp LOAD
data = Mem[address, 2, AccType ORDERED];

if signed then

X[t] = SignExtend(data, regsize);
else

X[t] = ZeroExtend(data, regsize);

when MemOp PREFETCH
Prefetch(address, t<4:0>);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDAPURSH

Page 175

LDAPURSW

Load-Acquire RCpc Register Signed Word (unscaled) calculates an address from a base register and an immediate
offset, loads a signed word from memory, sign-extends it, and writes it to a register.
The instruction has memory ordering semantics as described in Load-Acquire, Load-AcquirePC, and Store-Release,
except that:
¢ There is no ordering requirement, separate from the requirements of a Load-AcquirePC or a Store-Release,
created by having a Store-Release followed by a Load-AcquirePC instruction.
¢ The reading of a value written by a Store-Release by a Load-AcquirePC instruction by the same observer does
not make the write of the Store-Release globally observed.
This difference in memory ordering is not described in the pseudocode.
For information about memory accesses, see Load/Store addressing modes.

Unscaled offset
(FEAT_LRCPC2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
[1 0]J]o 1 1 0 0 1[1 00 imm9 [0 O] Rn Rt |
size opc

LDAPURSW <Xt>, [<Xn|SP>{, #<simm>}]

bits(64) offset = SignExtend(imm9, 64);

Assembler Symbols

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.
<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.
<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded in

the "imm9" field.

Shared Decode

UInt(Rn);
UInt(Rt);

integer n
integer t

boolean tag checked = n != 31;
Operation

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag checked);

bits(64) address;
bits(32) data;

if n == 31 then
CheckSPAlignment () ;
address = SP[];
else
address = X[n];

address = address + offset;

data = Mem[address, 4, AccType ORDERED];
X[t] = SignExtend(data, 64);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

LDAPURSW Page 176

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDAPURSW Page 177

LDAR

Load-Acquire Register derives an address from a base register value, loads a 32-bit word or 64-bit doubleword from
memory, and writes it to a register. The instruction also has memory ordering semantics as described in Load-Acquire,
Store-Release. For information about memory accesses, see Load/Store addressing modes.

For this instruction, if the destination is WZR/XZR, it is impossible for software to observe the presence of the acquire
semantic other than its effect on the arrival at endpoints.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[1 x[o 0o 1 0 0 of1]1]0[()@@@M@[1][1)Q)(1)Q1)Q1D)] Rn | Rt |
size L Rs o0 Rt2

32-bit (size == 10)
LDAR <Wt>, [<Xn|SP>{,#0}]
64-bit (size == 11)

LDAR <Xt>, [<Xn|SP>{,#0}]

UInt(Rn);
UInt(Rt);

integer n
integer t

integer elsize = 8 << Ulnt(size);
integer regsize = if elsize == 64 then 64 else 32;
boolean tag checked = n != 31;

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.
<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.
<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.
Operation

bits(64) address;
bits(elsize) data;
constant integer dbytes = elsize DIV 8;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag checked);

if n == 31 then
CheckSPAlignment();
address = SP[];
else
address = X[n];

data
X[t]

Mem[address, dbytes, AccType ORDERED];
ZeroExtend(data, regsize);

Operational information
If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDAR Page 178

LDARB

Load-Acquire Register Byte derives an address from a base register value, loads a byte from memory, zero-extends it
and writes it to a register. The instruction also has memory ordering semantics as described in Load-Acquire, Store-
Release. For information about memory accesses, see Load/Store addressing modes.

For this instruction, if the destination is WZR/XZR, it is impossible for software to observe the presence of the acquire
semantic other than its effect on the arrival at endpoints.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[0 0[]0 0 1 0 0o of1]1]0[(M)@ @@ M[1][1)Q)(1)(Q1)Q1D)] Rn | Rt |
size L Rs o0 Rt2

LDARB <Wt>, [<Xn|SP>{,#0}]

UInt(Rn);
UInt(Rt);

integer n
integer t

boolean tag checked = n != 31;

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.
<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.
Operation

bits(64) address;
bits(8) data;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag checked);

if n == 31 then
CheckSPAlignment();
address = SP[];
else
address = X[n];

Mem[address, 1, AccType ORDERED];
ZeroExtend(data, 32);

data
X[t]

Operational information
If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDARB Page 179

LDARH

Load-Acquire Register Halfword derives an address from a base register value, loads a halfword from memory, zero-
extends it, and writes it to a register. The instruction also has memory ordering semantics as described in Load-
Acquire, Store-Release. For information about memory accesses, see Load/Store addressing modes.

For this instruction, if the destination is WZR/XZR, it is impossible for software to observe the presence of the acquire
semantic other than its effect on the arrival at endpoints.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[0 1]/]0o 01 0 0o of1]1]0[(M)(@ @@ M[1][1)Q)(1)(Q1)Q1D)] Rn | Rt |
size L Rs o0 Rt2

LDARH <Wt>, [<Xn|SP>{,#0}]

UInt(Rn);
UInt(Rt);

integer n
integer t

boolean tag checked = n != 31;

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.
<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.
Operation

bits(64) address;
bits(16) data;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag checked);

if n == 31 then
CheckSPAlignment();
address = SP[];
else
address = X[n];

Mem[address, 2, AccType ORDERED];
ZeroExtend(data, 32);

data
X[t]

Operational information
If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDARH Page 180

LDAXP

Load-Acquire Exclusive Pair of Registers derives an address from a base register value, loads two 32-bit words or two
64-bit doublewords from memory, and writes them to two registers. A 32-bit pair requires the address to be
doubleword aligned and is single-copy atomic at doubleword granularity. A 64-bit pair requires the address to be
quadword aligned and is single-copy atomic for each doubleword at doubleword granularity. The PE marks the
physical address being accessed as an exclusive access. This exclusive access mark is checked by Store Exclusive
instructions. See Synchronization and semaphores. The instruction also has memory ordering semantics as described
in Load-Acquire, Store-Release. For information about memory accesses see Load/Store addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[1]sz[0 0 1 0 0 ofof1[1[(1)()()()(1)]1] Rt2 | Rn | Rt |
L Rs o0

32-bit (sz == 0)
LDAXP <Wtl>, <Wt2>, [<Xn|SP>{,#0}]
64-bit (sz == 1)

LDAXP <Xtl>, <Xt2>, [<Xn|SP>{,#0}]

integer n = UInt(Rn);
integer t = UInt(Rt);
integer t2 = UInt(Rt2);

integer elsize = 32 << UInt(sz);
integer datasize = elsize * 2;
boolean tag checked = n != 31;

boolean rt _unknown = FALSE;

if t == t2 then
Constraint c¢ = ConstrainUnpredictable(Unpredictable LDPOVERLAP);
assert ¢ IN {Constraint UNKNOWN, Constraint UNDEF, Constraint NOP};

case c of
when Constraint UNKNOWN rt unknown = TRUE; // result is UNKNOWN
when Constraint UNDEF UNDEFINED;
when Constraint NOP EndOfInstruction();

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints on
UNPREDICTABLE behaviors, and particularly LDAXP.

Assembler Symbols

<Wtl> Is the 32-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.
<Wt2> Is the 32-bit name of the second general-purpose register to be transferred, encoded in the "Rt2" field.
<Xtl> Is the 64-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.
<Xt2> Is the 64-bit name of the second general-purpose register to be transferred, encoded in the "Rt2" field.
<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

LDAXP Page 181

Operation

bits(64) address;
bits(datasize) data;
constant integer dbytes = datasize DIV 8;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag checked);

if n == 31 then
CheckSPAlignment () ;
address = SP[];
else
address = X[n];

// Tell the Exclusives monitors to record a sequence of one or more atomic
// memory reads from virtual address range [address, address+dbytes-1].

// The Exclusives monitor will only be set if all the reads are from the
// same dbytes-aligned physical address, to allow for the possibility of
// an atomicity break if the translation is changed between reads.
AArch64.SetExclusiveMonitors(address, dbytes);

if rt _unknown then
// ConstrainedUNPREDICTABLE case
X[t] = bits(datasize) UNKNOWN; // In this case t = t2
elsif elsize == 32 then
// 32-bit load exclusive pair (atomic)
data = Mem[address, dbytes, AccType ORDEREDATOMIC];
if BigEndian(AccType ORDEREDATOMIC) then
X[t] = data<datasize-1l:elsize>;
X[t2] = data<elsize-1:0>;
else
X[t] = data<elsize-1:0>;
X[t2] = data<datasize-1l:elsize>;
else // elsize == 64
// 64-bit load exclusive pair (not atomic),
// but must be 128-bit aligned
if address != Align(address, dbytes) then

AArch64.Abort (address, AArch64.AlignmentFault(AccType ORDEREDATOMIC, FALSE, FALSE));

X[t] = Mem[address, 8, AccType ORDEREDATOMIC];
X[t2] = Mem[address+8, 8, AccType ORDEREDATOMIC];

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDAXP Page 182

LDAXR

Load-Acquire Exclusive Register derives an address from a base register value, loads a 32-bit word or 64-bit

doubleword from memory, and writes it to a register. The memory access is atomic. The PE marks the physical address
being accessed as an exclusive access. This exclusive access mark is checked by Store Exclusive instructions. See
Synchronization and semaphores. The instruction also has memory ordering semantics as described in Load-Acquire,

Store-Release. For information about memory accesses see Load/Store addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
|1 x[0 01 0 0 ofof1]0(1)(@) (@)D (M]1[1)(@)(1)(1) (1) Rn | Rt |
size L Rs o0 Rt2
32-bit (size == 10)
LDAXR <Wt>, [<Xn|SP>{,#0}]
64-bit (size == 11)
LDAXR <Xt>, [<Xn|SP>{,#0}]
integer n = UInt(Rn);
integer t = UInt(Rt);
integer elsize = 8 << Ulnt(size);
integer regsize = if elsize == 64 then 64 else 32;
boolean tag checked = n != 31;
Assembler Symbols
<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.
<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.
<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.
Operation

bits(64) address;
bits(elsize) data;
constant integer dbytes = elsize DIV 8;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag checked);

if n == 31 then
CheckSPAlignment();
address = SP[];
else
address = X[n];

// Tell the Exclusives monitors to record a sequence of one or more atomic
// memory reads from virtual address range [address, address+dbytes-1].

// The Exclusives monitor will only be set if all the reads are from the
// same dbytes-aligned physical address, to allow for the possibility of
// an atomicity break if the translation is changed between reads.
AArch64.SetExclusiveMonitors(address, dbytes);

data
X[t]

Mem[address, dbytes, AccType ORDEREDATOMIC];
ZeroExtend(data, regsize);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

LDAXR

Page 183

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDAXR Page 184

LDAXRB

Load-Acquire Exclusive Register Byte derives an address from a base register value, loads a byte from memory, zero-
extends it and writes it to a register. The memory access is atomic. The PE marks the physical address being accessed
as an exclusive access. This exclusive access mark is checked by Store Exclusive instructions. See Synchronization and
semaphores. The instruction also has memory ordering semantics as described in Load-Acquire, Store-Release. For
information about memory accesses see Load/Store addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
|0 0[O0 0 1 0 0 ofof1]0(1)) ()@ (D]1[1)(@)(1)(1) (1) Rn Rt |
size L Rs o0 Rt2

LDAXRB <Wt>, [<Xn|SP>{,#0}]

integer n
integer t

UInt(Rn);
UInt(Rt);

boolean tag checked = n != 31;

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.
<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.
Operation

bits(64) address;
bits(8) data;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag checked);

if n == 31 then
CheckSPAlignment () ;
address = SP[];
else
address = X[n];

// Tell the Exclusives monitors to record a sequence of one or more atomic
// memory reads from virtual address range [address, address+dbytes-1].

// The Exclusives monitor will only be set if all the reads are from the
// same dbytes-aligned physical address, to allow for the possibility of
// an atomicity break if the translation is changed between reads.
AArch64.SetExclusiveMonitors(address, 1);

data
X[t]

Mem[address, 1, AccType ORDEREDATOMIC];
ZeroExtend(data, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDAXRB Page 185

LDAXRH

Load-Acquire Exclusive Register Halfword derives an address from a base register value, loads a halfword from
memory, zero-extends it and writes it to a register. The memory access is atomic. The PE marks the physical address
being accessed as an exclusive access. This exclusive access mark is checked by Store Exclusive instructions. See
Synchronization and semaphores. The instruction also has memory ordering semantics as described in Load-Acquire,
Store-Release. For information about memory accesses see Load/Store addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1[0 0 1 0 0 ofof1]0(1)() ()M (M]1[1)(@)(1)(1) (1) Rn | Rt |
size L Rs o0 Rt2

LDAXRH <Wt>, [<Xn|SP>{,#0}]

integer n
integer t

UInt(Rn);
UInt(Rt);

boolean tag checked = n != 31;

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.
<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.
Operation

bits(64) address;
bits(16) data;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag checked);

if n == 31 then
CheckSPAlignment () ;
address = SP[];
else
address = X[n];

// Tell the Exclusives monitors to record a sequence of one or more atomic
// memory reads from virtual address range [address, address+dbytes-1].

// The Exclusives monitor will only be set if all the reads are from the
// same dbytes-aligned physical address, to allow for the possibility of
// an atomicity break if the translation is changed between reads.
AArch64.SetExclusiveMonitors(address, 2);

data
X[t]

Mem[address, 2, AccType ORDEREDATOMIC];
ZeroExtend(data, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDAXRH Page 186

LDCLR, LDCLRA, LDCLRAL, LDCLRL

Atomic bit clear on word or doubleword in memory atomically loads a 32-bit word or 64-bit doubleword from memory,
performs a bitwise AND with the complement of the value held in a register on it, and stores the result back to
memory. The value initially loaded from memory is returned in the destination register.

¢ If the destination register is not one of WZR or XZR, LDCLRA and LDCLRAL load from memory with acquire
semantics.

¢ LDCLRL and LDCLRAL store to memory with release semantics.
¢ LDCLR has neither acquire nor release semantics.

For more information about memory ordering semantics see Load-Acquire, Store-Release.
For information about memory accesses see Load/Store addressing modes.

This instruction is used by the alias STCLR, STCLRL.

Integer
(FEAT_LSE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
|1 x]1 1 1]o]Jo of[A[R[1] Rs loJo 0 1]0 0] Rn Rt |
size opc

LDCLR, LDCLRA, LDCLRAL, Page 187
LDCLRL J

32-bit LDCLR (size == 10 && A == 0 && R == 0)
LDCLR <Ws>, <Wt>, [<Xn|SP>]

32-bit LDCLRA (size == 10 && A == 1 && R == 0)
LDCLRA <Ws>, <Wt>, [<Xn|SP>]

32-bit LDCLRAL (size == 10 & A== 1 & R == 1)
LDCLRAL <Ws>, <Wt>, [<Xn|SP>]

32-bit LDCLRL (size == 10 && A == 0 && R == 1)
LDCLRL <Ws>, <Wt>, [<Xn|SP>]

64-bit LDCLR (size == 11 && A == 0 && R == 0)
LDCLR <Xs>, <Xt>, [<Xn|SP>]

64-bit LDCLRA (size == 11 && A == 1 && R == 0)
LDCLRA <Xs>, <Xt>, [<Xn|SP>]

64-bit LDCLRAL (size == 11 && A==1 && R == 1)
LDCLRAL <Xs>, <Xt>, [<Xn|SP>]

64-bit LDCLRL (size == 11 && A == 0 && R == 1)

LDCLRL <Xs>, <Xt>, [<Xn|SP>]

if 'HaveAtomicExt() then UNDEFINED;

integer t = UInt(Rt);
integer n = UInt(Rn);
integer s = UInt(Rs);

integer datasize = 8 << Ulnt(size);

integer regsize = if datasize == 64 then 64 else 32;
AccType ldacctype = if A == '1' & Rt != '11111"' then AccType ORDEREDATOMICRW else AccType ATOMICRW;
AccType stacctype = if R == '1l' then AccType ORDEREDATOMICRW else AccType ATOMICRW;

boolean tag checked = n != 31;

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xt> Is the 64-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Alias Conditions

Alias Is preferred when
STCLR, STCLRL A=="'0"&& Rt == '11111"

LDCLR, LDCLRA, LDCLRAL,

LDCLRL Page 188

Operation

bits(64) address;
bits(datasize) value;
bits(datasize) data;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag checked);

value = X[s];

if n == 31 then
CheckSPAlignment () ;
address = SP[];

else
address = X[n];

data = MemAtomic(address, MemAtomicOp BIC, value, ldacctype, stacctype);

if t != 31 then
X[t] = ZeroExtend(data, regsize);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDCLR, LDCLRA, LDCLRAL,

LDCLRL Page 189

LDCLRB, LDCLRAB, LDCLRALB, LDCLRLB

Atomic bit clear on byte in memory atomically loads an 8-bit byte from memory, performs a bitwise AND with the
complement of the value held in a register on it, and stores the result back to memory. The value initially loaded from

memory is returned in the destination register.

¢ If the destination register is not WZR, LDCLRAB and LDCLRALB load from memory with acquire semantics.
¢ LDCLRLB and LDCLRALB store to memory with release semantics.
¢ LDCLRB has neither acquire nor release semantics.

For more information about memory ordering semantics see Load-Acquire, Store-Release.
For information about memory accesses see Load/Store addressing modes.

This instruction is used by the alias STCLRB, STCLRLB.

Integer
(FEAT_LSE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8

7 6 5 4 3 2 1 0

|0 0]1 1 1]o]Jo of[A[R[1] Rs

[0]0 0 1[0 0]

Rn Rt |

size
LDCLRAB (A == 1 && R == 0)
LDCLRAB <Ws>, <Wt>, [<Xn|SP>]
LDCLRALB (A == 1 && R ==1)
LDCLRALB <Ws>, <Wt>, [<Xn|SP>]
LDCLRB (A == 0 && R == 0)
LDCLRB <Ws>, <Wt>, [<Xn|SP>]
LDCLRLB (A == 0 && R == 1)

LDCLRLB <Ws>, <Wt>, [<Xn|SP>]
if !'HaveAtomicExt() then UNDEFINED;
UInt(Rt);

UInt(Rn);
UInt(Rs);

integer t
integer n
integer s

AccType ldacctype
AccType stacctype

opc

if A== '1" & Rt != '11111"' then AccType ORDEREDATOMICRW else AccType ATOMICRW;

boolean tag checked = n != 31;

Assembler Symbols

if R == '1' then AccType ORDEREDATOMICRW else AccType ATOMICRW;

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Alias Conditions

Alias Is preferred when

STCLRB, STCLRLB A== "'0"&& Rt == '11111"

LDCLRB, LDCLRAB,

LDCLRALB, LDCLRLB

Page 190

Operation

bits(64) address;
bits(8) value;
bits(8) data;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag checked);

value = X[s];

if n == 31 then
CheckSPAlignment () ;
address = SP[];

else
address = X[n];

data = MemAtomic(address, MemAtomicOp BIC, value, ldacctype, stacctype);

if t !'= 31 then
X[t] = ZeroExtend(data, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDCLRB, LDCLRAB,

LDCLRALB, LDCLRLB Page 191

LDCLRH, LDCLRAH, LDCLRALH, LDCLRLH

Atomic bit clear on halfword in memory atomically loads a 16-bit halfword from memory, performs a bitwise AND with
the complement of the value held in a register on it, and stores the result back to memory. The value initially loaded
from memory is returned in the destination register.

¢ If the destination register is not WZR, LDCLRAH and LDCLRALH load from memory with acquire semantics.

¢ LDCLRLH and LDCLRALH store to memory with release semantics.

¢ LDCLRH has neither acquire nor release semantics.
For more information about memory ordering semantics see Load-Acquire, Store-Release.
For information about memory accesses see Load/Store addressing modes.

This instruction is used by the alias STCLRH, STCLRILH.

Integer
(FEAT_LSE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
[0 1[1 1 1/0[0 O[A|R[1] Rs lo/o 0 1]/0 O] Rn Rt |
size opc

LDCLRAH (A == 1 && R == 0)
LDCLRAH <Ws>, <Wt>, [<Xn|SP>]
LDCLRALH (A == 1 && R == 1)
LDCLRALH <Ws>, <Wt>, [<Xn|SP>]
LDCLRH (A == 0 && R == 0)
LDCLRH <Ws>, <Wt>, [<Xn|SP>]
LDCLRLH (A == 0 && R == 1)

LDCLRLH <Ws>, <Wt>, [<Xn|SP>]

if 'HaveAtomicExt() then UNDEFINED;

integer t = UInt(Rt);

integer n = UInt(Rn);

integer s = UInt(Rs);

AccType ldacctype = if A == '1' & Rt != '11111' then AccType ORDEREDATOMICRW else AccType ATOMICRW;
AccType stacctype = if R == '1' then AccType ORDEREDATOMICRW else AccType ATOMICRW;

boolean tag checked = n != 31;

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Alias Conditions

Alias Is preferred when
STCLRH, STCLRLH A=="'0"&& Rt == '11111"

LDCLRH, LDCLRAH,

LDCLRALH, LDCLRLH Page 192

Operation

bits(64) address;
bits(16) value;
bits(16) data;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag checked);

value = X[s];

if n == 31 then
CheckSPAlignment () ;
address = SP[];

else
address = X[n];

data = MemAtomic(address, MemAtomicOp BIC, value, ldacctype, stacctype);

if t !'= 31 then
X[t] = ZeroExtend(data, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDCLRH, LDCLRAH,

LDCLRALH, LDCLRLH Page 193

LDEOR, LDEORA, LDEORAL, LDEORL

Atomic exclusive OR on word or doubleword in memory atomically loads a 32-bit word or 64-bit doubleword from
memory, performs an exclusive OR with the value held in a register on it, and stores the result back to memory. The
value initially loaded from memory is returned in the destination register.

¢ If the destination register is not one of WZR or XZR, LDEORA and LDEORAL load from memory with acquire
semantics.

¢ LDEORL and LDEORAL store to memory with release semantics.
¢ LDEOR has neither acquire nor release semantics.

For more information about memory ordering semantics see Load-Acquire, Store-Release.
For information about memory accesses see Load/Store addressing modes.

This instruction is used by the alias STEOR, STEORL.

Integer
(FEAT_LSE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
|1 x]1 1 1]o]Jo of[A[R[1] Rs loJo 1 oo o] Rn Rt |
size opc

LDEOR, LDEORA, LDEORAL, Page 194
LDEORL J

32-bit LDEOR (size == 10 && A == 0 && R == 0)
LDEOR <Ws>, <Wt>, [<Xn|SP>]

32-bit LDEORA (size == 10 && A == 1 && R == 0)
LDEORA <Ws>, <Wt>, [<Xn|SP>]

32-bit LDEORAL (size == 10 && A == 1 && R == 1)
LDEORAL <Ws>, <Wt>, [<Xn|SP>]

32-bit LDEORL (size == 10 && A == 0 && R == 1)
LDEORL <Ws>, <Wt>, [<Xn|SP>]

64-bit LDEOR (size == 11 && A == 0 && R == 0)
LDEOR <Xs>, <Xt>, [<Xn|SP>]

64-bit LDEORA (size == 11 && A == 1 && R == 0)
LDEORA <Xs>, <Xt>, [<Xn|SP>]

64-bit LDEORAL (size == 11 && A == 1 && R == 1)
LDEORAL <Xs>, <Xt>, [<Xn|SP>]

64-bit LDEORL (size == 11 && A == 0 && R == 1)

LDEORL <Xs>, <Xt>, [<Xn|SP>]

if 'HaveAtomicExt() then UNDEFINED;

integer t = UInt(Rt);
integer n = UInt(Rn);
integer s = UInt(Rs);

integer datasize = 8 << Ulnt(size);

integer regsize = if datasize == 64 then 64 else 32;
AccType ldacctype = if A == '1' & Rt != '11111"' then AccType ORDEREDATOMICRW else AccType ATOMICRW;
AccType stacctype = if R == '1l' then AccType ORDEREDATOMICRW else AccType ATOMICRW;

boolean tag checked = n != 31;

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xt> Is the 64-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Alias Conditions

Alias Is preferred when
STEOR, STEORL A=="'0" &% Rt == '11111"

LDEOR, LDEORA, LDEORAL,

LDEORL Page 195

Operation

bits(64) address;
bits(datasize) value;
bits(datasize) data;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag checked);

value = X[s];

if n == 31 then
CheckSPAlignment () ;
address = SP[];

else
address = X[n];

data = MemAtomic(address, MemAtomicOp EOR, value, ldacctype, stacctype);

if t != 31 then
X[t] = ZeroExtend(data, regsize);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDEOR, LDEORA, LDEORAL,

LDEORL Page 196

LDEORB, LDEORAB, LDEORALB, LDEORLB

Atomic exclusive OR on byte in memory atomically loads an 8-bit byte from memory, performs an exclusive OR with
the value held in a register on it, and stores the result back to memory. The value initially loaded from memory is
returned in the destination register.

¢ If the destination register is not WZR, LDEORAB and LDEORALB load from memory with acquire semantics.

¢ LDEORLB and LDEORALB store to memory with release semantics.

¢ LDEORB has neither acquire nor release semantics.

For more information about memory ordering semantics see Load-Acquire, Store-Release.
For information about memory accesses see Load/Store addressing modes.

This instruction is used by the alias STEORB, STEORLB.

Integer
(FEAT_LSE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[0 0[1 1 1/0[0 O[A|R[1] Rs lo/o 1 0[O0 O] Rn Rt |
size opc

LDEORAB (A == 1 && R == 0)
LDEORAB <Ws>, <Wt>, [<Xn|SP>]
LDEORALB (A == 1 && R == 1)
LDEORALB <Ws>, <Wt>, [<Xn|SP>]
LDEORB (A == 0 && R == 0)
LDEORB <Ws>, <Wt>, [<Xn|SP>]
LDEORLB (A == 0 && R ==1)

LDEORLB <Ws>, <Wt>, [<Xn|SP>]

if 'HaveAtomicExt() then UNDEFINED;

integer t = UInt(Rt);

integer n = UInt(Rn);

integer s = UInt(Rs);

AccType ldacctype = if A == '1' & Rt != '11111' then AccType ORDEREDATOMICRW else AccType ATOMICRW;
AccType stacctype = if R == '1' then AccType ORDEREDATOMICRW else AccType ATOMICRW;

boolean tag checked = n != 31;

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Alias Conditions

Alias Is preferred when
STEORB, STEORLB A=="'0" & Rt == '11111"

LDEORB, LDEORAB,

LDEORALB, LDEORLB Page 197

Operation

bits(64) address;
bits(8) value;
bits(8) data;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag checked);

value = X[s];

if n == 31 then
CheckSPAlignment () ;
address = SP[];

else
address = X[n];

data = MemAtomic(address, MemAtomicOp EOR, value, ldacctype, stacctype);

if t !'= 31 then
X[t] = ZeroExtend(data, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDEORB, LDEORAB,

LDEORALB, LDEORLB Page 198

LDEORH, LDEORAH, LDEORALH, LDEORLH

Atomic exclusive OR on halfword in memory atomically loads a 16-bit halfword from memory, performs an exclusive
OR with the value held in a register on it, and stores the result back to memory. The value initially loaded from

memory is returned in the destination register.

¢ If the destination register is not WZR, LDEORAH and LDEORALH load from memory with acquire semantics.
¢ LDEORLH and LDEORALH store to memory with release semantics.
¢ LDEORH has neither acquire nor release semantics.

For more information about memory ordering semantics see Load-Acquire, Store-Release.
For information about memory accesses see Load/Store addressing modes.

This instruction is used by the alias STEORH, STEORLH.

Integer
(FEAT_LSE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

|0 1]1 1 1]o]Jo of[A[R[1] Rs

loJo 1 oo o] Rn Rt |

size
LDEORAH (A == 1 && R == 0)
LDEORAH <Ws>, <Wt>, [<Xn|SP>]
LDEORALH (A == 1 && R == 1)
LDEORALH <Ws>, <Wt>, [<Xn|SP>]
LDEORH (A == 0 && R == 0)
LDEORH <Ws>, <Wt>, [<Xn|SP>]
LDEORLH (A == 0 && R == 1)

LDEORLH <Ws>, <Wt>, [<Xn|SP>]

if 'HaveAtomicExt() then UNDEFINED;

opc

integer t = UInt(Rt);

integer n = UInt(Rn);

integer s = UInt(Rs);

AccType ldacctype = if A == '1' & Rt != '11111' then AccType ORDEREDATOMICRW else AccType ATOMICRW;
AccType stacctype = if R == '1' then AccType ORDEREDATOMICRW else AccType ATOMICRW;

boolean tag checked = n != 31;

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Alias Conditions

Alias Is preferred when

STEORH, STEORLH

LDEORALH, LDEORLH

A== "'0"&& Rt == '11111"

LDEORH, LDEORAH, Page 199

Operation

bits(64) address;
bits(16) value;
bits(16) data;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag checked);

value = X[s];

if n == 31 then
CheckSPAlignment () ;
address = SP[];

else
address = X[n];

data = MemAtomic(address, MemAtomicOp EOR, value, ldacctype, stacctype);

if t !'= 31 then
X[t] = ZeroExtend(data, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDEORH, LDEORAH,

LDEORALH, LDEORLH Page 200

LDG

Load Allocation Tag loads an Allocation Tag from a memory address, generates a Logical Address Tag from the
Allocation Tag and merges it into the destination register. The address used for the load is calculated from the base
register and an immediate signed offset scaled by the Tag granule.

Integer
(FEAT_MTE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
[1 1 01100 1[0]1]1] imm9 [0]0] Xn | Xt |

LDG <Xt>, [<Xn|SP>{, #<simm>}]

if 'HaveMTEExt()
integer t = UInt(
integer n = UInt(Xn);
bits(64) offset =

then UNDEFINED;

Assembler Symbols

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Xt" field.
<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Xn" field.
<simm> Is the optional signed immediate offset, a multiple of 16 in the range -4096 to 4080, defaulting to 0 and

encoded in the "imm9" field.

Operation

bits(64) address;
bits(4) tag;

if n == 31 then
CheckSPAlignment () ;
address = SP[];
else
address = X[n];

address = address + offset;
address = Align(address, TAG _GRANULE);

tag = AArch64.MemTag[address, AccType NORMAL];
X[t] = AArch64.AddressWithAllocationTag(X[t], AccType NORMAL, tag);

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDG Page 201

LDGM

Load Tag Multiple reads a naturally aligned block of N Allocation Tags, where the size of N is identified in
GMID EL1.BS, and writes the Allocation Tag read from address A to the destination register at
4*A<7:4>+3:4*A<7:4>. Bits of the destination register not written with an Allocation Tag are set to 0.

This instruction is UNDEFINED at ELO.
This instruction generates an Unchecked access.
If ID AA64PFR1 EL1.MTE != 0b0010, this instruction is UNDEFINED.

Integer
(FEAT_MTE2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
1 1 01100 1[1]1|1][ofo0]Jo|o|[o[0[0]O[0[0]0] Xn | Xt |

LDGM <Xt>, [<Xn|SP>]

if !'HaveMTE2Ext() then UNDEFINED;
integer t = UInt(Xt);
integer n = UInt(Xn);

Assembler Symbols

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Xt" field.
<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Xn" field.
Operation

if PSTATE.EL == ELQ then
UNDEFINED;

bits(64) data = Zeros(64);
bits(64) address;

if n == 31 then
CheckSPAlignment () ;
address = SP[];
else
address = X[n];

integer size = 4 * (2 ~ (UInt(GMID EL1.BS)));

address = Align(address, size);

integer count = size >> L0G2 TAG _GRANULE;

integer index = UInt(address<L0G2 TAG GRANULE+3:L0G2 TAG GRANULE>);

for i = 0 to count-1

bits(4) tag = AArch64.MemTag[address, AccType NORMAL];
data<(index*4)+3:index*4> = tag;

address = address + TAG_GRANULE;

index = index + 1;

X[t] = data;

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDGM Page 202

LDLAR

Load LOAcquire Register loads a 32-bit word or 64-bit doubleword from memory, and writes it to a register. The
instruction also has memory ordering semantics as described in Load LOAcquire, Store LORelease. For information
about memory accesses, see Load/Store addressing modes.

For this instruction, if the destination is WZR/XZR, it is impossible for software to observe the presence of the acquire
semantic other than its effect on the arrival at endpoints.

No offset
(FEAT _LOR)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
1 x[0o 01 0 0 of1]1]0[1)@ @)@ @M][o]1)(1)(1)(1) (1) Rn Rt |
size L Rs o0 Rt2

32-bit (size == 10)
LDLAR <Wt>, [<Xn|SP>{,#0}]
64-bit (size == 11)

LDLAR <Xt>, [<Xn|SP>{,#0}]

UInt(Rn);
UInt(Rt);

integer n
integer t

integer elsize = 8 << Ulnt(size);
integer regsize = if elsize == 64 then 64 else 32;
boolean tag checked = n != 31;

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.
<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.
<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.
Operation

bits(64) address;
bits(elsize) data;
constant integer dbytes = elsize DIV 8;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag checked);

if n == 31 then
CheckSPAlignment () ;
address = SP[];
else
address = X[n];

data
X[t]

Mem[address, dbytes, AccType LIMITEDORDERED];
ZeroExtend(data, regsize);

Operational information
If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDLAR Page 203

LDLARB

Load LOAcquire Register Byte loads a byte from memory, zero-extends it and writes it to a register. The instruction
also has memory ordering semantics as described in Load LOAcquire, Store LORelease. For information about memory
accesses, see Load/Store addressing modes.

For this instruction, if the destination is WZR/XZR, it is impossible for software to observe the presence of the acquire
semantic other than its effect on the arrival at endpoints.

No offset
(FEAT _LOR)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
[0 0[0 0 1 0 0 of1]1]0(1)@) (@)D M]o]1)(1)(1)(1) (1) Rn Rt |
size L Rs o0 Rt2

LDLARB <Wt>, [<Xn|SP>{,#0}]

UInt(Rn);
UInt(Rt);

integer n
integer t

boolean tag checked = n != 31;

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.
<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.
Operation

bits(64) address;
bits(8) data;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag checked);

if n == 31 then
CheckSPAlignment () ;
address = SP[];
else
address = X[n];

data = Mem[address, 1, AccType LIMITEDORDERED];
X[t] = ZeroExtend(data, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDLARB Page 204

LDLARH

Load LOAcquire Register Halfword loads a halfword from memory, zero-extends it, and writes it to a register. The
instruction also has memory ordering semantics as described in Load LOAcquire, Store LORelease. For information
about memory accesses, see Load/Store addressing modes.

For this instruction, if the destination is WZR/XZR, it is impossible for software to observe the presence of the acquire
semantic other than its effect on the arrival at endpoints.

No offset
(FEAT _LOR)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
[0 1[0 01 0 0 of1]1]0(1)@ (@)D M]o]1)()(1)(1) (1) RN Rt |
size L Rs 00 Rt2

LDLARH <Wt>, [<Xn|SP>{,#0}]

UInt(Rn);
UInt(Rt);

integer n
integer t

boolean tag checked = n != 31;

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.
<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.
Operation

bits(64) address;
bits(16) data;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag checked);

if n == 31 then
CheckSPAlignment () ;
address = SP[];
else
address = X[n];

data = Mem[address, 2, AccType LIMITEDORDERED];
X[t] = ZeroExtend(data, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDLARH Page 205

LDNP

Load Pair of Registers, with non-temporal hint, calculates an address from a base register value and an immediate
offset, loads two 32-bit words or two 64-bit doublewords from memory, and writes them to two registers.

For information about memory accesses, see Load/Store addressing modes. For information about Non-temporal pair
instructions, see Load/Store Non-temporal pair.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[x 0[]1 0 1]0[0 0 Of1] imm7 | Rt2 | Rn | Rt |
opc L

32-bit (opc == 00)
LDNP <Wtl>, <Wt2>, [<Xn|SP>{, #<imm>}]
64-bit (opc == 10)

LDNP <Xtl>, <Xt2>, [<Xn|SP>{, #<imm>}]
// Empty.

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints on
UNPREDICTABLE behaviors, and particularly LDNP.

Assembler Symbols

<Wt1> Is the 32-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.
<Wt2> Is the 32-bit name of the second general-purpose register to be transferred, encoded in the "Rt2" field.
<Xtl> Is the 64-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.
<Xt2> Is the 64-bit name of the second general-purpose register to be transferred, encoded in the "Rt2" field.
<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.
<imm> For the 32-bit variant: is the optional signed immediate byte offset, a multiple of 4 in the range -256 to

252, defaulting to 0 and encoded in the "imm7" field as <imm>/4.

For the 64-bit variant: is the optional signed immediate byte offset, a multiple of 8 in the range -512 to
504, defaulting to 0 and encoded in the "imm7" field as <imm>/8.

Shared Decode

integer n = UInt(Rn);

integer t = UInt(Rt);

integer t2 = UInt(Rt2);

if opc<0> == '1' then UNDEFINED;

integer scale = 2 + UInt(opc<l>);

integer datasize = 8 << scale;

bits(64) offset = LSL(SignExtend(imm7, 64), scale);
boolean tag checked = n != 31;

boolean rt_unknown = FALSE;
if t == t2 then

Constraint c = ConstrainUnpredictable(Unpredictable LDPOVERLAP);
assert ¢ IN {Constraint UNKNOWN, Constraint UNDEF, Constraint NOP};

case c of
when Constraint UNKNOWN rt unknown = TRUE; // result is UNKNOWN
when Constraint UNDEF UNDEFINED;
when Constraint NOP EndOfInstruction();

LDNP Page 206

Operation

bits(64) address;

bits(datasize) datal;

bits(datasize) data2;

constant integer dbytes = datasize DIV 8;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag checked);

if n == 31 then
CheckSPAlignment () ;
address = SP[];
else
address = X[n];

address = address + offset;

datal = Mem[address, dbytes, AccType STREAM];
data2 = Mem[address+dbytes, dbytes, AccType STREAM];
if rt _unknown then
datal = bits(datasize) UNKNOWN;
data2 = bits(datasize) UNKNOWN;
X[t] = datal;
X[t2] = data2;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDNP Page 207

LDP

Load Pair of Registers calculates an address from a base register value and an immediate offset, loads two 32-bit
words or two 64-bit doublewords from memory, and writes them to two registers. For information about memory
accesses, see Load/Store addressing modes.

It has encodings from 3 classes: Post-index , Pre-index and Signed offset

Post-index

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
[x 0[]1 0 1]0[0 0 1]1] imm7 | Rt2 | Rn Rt |
opc L

32-bit (opc == 00)
LDP <Wtl>, <Wt2>, [<Xn|SP>], #<imm>
64-bit (opc == 10)

LDP <Xtl>, <Xt2>, [<Xn|SP>], #<imm>

boolean wback = TRUE;
boolean postindex = TRUE;

Pre-index

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
Ix 0]1 0o 1]o]J0 1 1[1] imm?7 | Rt2 | Rn Rt |
opc L

32-bit (opc == 00)
LDP <Wtl>, <Wt2>, [<Xn|SP>, #<imm>]!
64-bit (opc == 10)

LDP <Xtl>, <Xt2>, [<Xn|SP>, #<imm>]!

boolean wback = TRUE;
boolean postindex = FALSE;

Signed offset
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0

Ix 0]1 0o 1]o]Jo0 1 of1] imm7 | Rt2 | Rn Rt |
opc L

32-bit (opc == 00)
LDP <Wtl>, <Wt2>, [<Xn|SP>{, #<imm>}]
64-bit (opc == 10)

LDP <Xtl>, <Xt2>, [<Xn|SP>{, #<imm>}]

boolean wback = FALSE;
boolean postindex = FALSE;

LDP Page 208

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints on
UNPREDICTABLE behaviors, and particularly LDP.

Assembler Symbols

<Wt1> Is the 32-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.
<Wt2> Is the 32-bit name of the second general-purpose register to be transferred, encoded in the "Rt2" field.
<Xtl> Is the 64-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.
<Xt2> Is the 64-bit name of the second general-purpose register to be transferred, encoded in the "Rt2" field.
<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.
<imm> For the 32-bit post-index and 32-bit pre-index variant: is the signed immediate byte offset, a multiple of

4 in the range -256 to 252, encoded in the "imm7" field as <imm>/4.

For the 32-bit signed offset variant: is the optional signed immediate byte offset, a multiple of 4 in the
range -256 to 252, defaulting to 0 and encoded in the "imm?7" field as <imm>/4.

For the 64-bit post-index and 64-bit pre-index variant: is the signed immediate byte offset, a multiple of
8 in the range -512 to 504, encoded in the "imm7" field as <imm>/8.

For the 64-bit signed offset variant: is the optional signed immediate byte offset, a multiple of 8 in the
range -512 to 504, defaulting to 0 and encoded in the "imm?7" field as <imm>/8.

Shared Decode

integer n = UInt(Rn);

integer t = UInt(Rt);

integer t2 = UInt(Rt2);

if L:opc<@> == '0O1' || opc == '11' then UNDEFINED;
boolean signed = (opc<0> != '0');

integer scale = 2 + UInt(opc<l>);

integer datasize = 8 << scale;

bits(64) offset = LSL(SignExtend(imm7, 64), scale);
boolean tag checked = wback || n != 31;

FALSE;
FALSE;

boolean rt unknown
boolean wb unknown

if wback & (t == n || t2 == n) & n != 31 then
Constraint ¢ = ConstrainUnpredictable(Unpredictable WBOVERLAPLD);
assert ¢ IN {Constraint WBSUPPRESS, Constraint UNKNOWN, Constraint UNDEF, Constraint NOP};

case c of
when Constraint WBSUPPRESS wback = FALSE; // writeback is suppressed
when Constraint UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
when Constraint UNDEF UNDEFINED;
when Constraint NOP EndOfInstruction();
if t == t2 then

Constraint ¢ = ConstrainUnpredictable(Unpredictable LDPOVERLAP);
assert ¢ IN {Constraint UNKNOWN, Constraint UNDEF, Constraint NOP};

case c of
when Constraint UNKNOWN rt unknown = TRUE; // result is UNKNOWN
when Constraint UNDEF UNDEFINED;
when Constraint NOP EndOfInstruction();

LDP Page 209

Operation

bits(64) address;

bits(datasize) datal;

bits(datasize) data2;

constant integer dbytes = datasize DIV 8;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag checked);

if n == 31 then
CheckSPAlignment () ;
address = SP[];
else
address = X[n];

if !postindex then
address = address + offset;

datal = Mem[address, dbytes, AccType NORMAL];
data2 = Mem[address+dbytes, dbytes, AccType NORMAL];
if rt _unknown then

datal = bits(datasize) UNKNOWN;

data2 = bits(datasize) UNKNOWN;
if signed then

X[t] = SignExtend(datal, 64);

X[t2] = SignExtend(data2, 64);
else

X[t] = datal;

X[t2] = data2;

if wback then
if wb_unknown then
address = bits(64) UNKNOWN;
elsif postindex then
address = address + offset;
if n == 31 then
SP[] = address;
else
X[n] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDP Page 210

LDPSW

Load Pair of Registers Signed Word calculates an address from a base register value and an immediate offset, loads

two 32-bit words from memory, sign-extends them, and writes them to two registers. For information about memory
accesses, see Load/Store addressing modes.

It has encodings from 3 classes: Post-index , Pre-index and Signed offset

Post-index

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
[0 1]1 0 1]0[0 0 1]1] imm7 | Rt2 | Rn Rt |
opc L

LDPSW <Xtl>, <Xt2>, [<Xn|SP>], #<imm>

boolean wback = TRUE;
boolean postindex = TRUE;

Pre-index
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1]1 o0 1]o0]J0 1 1[1] imm?7 | Rt2 | Rn Rt |
opc L

LDPSW <Xtl>, <Xt2>, [<Xn|SP>, #<imm>]!

boolean wback = TRUE;
boolean postindex = FALSE;

Signed offset
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0

|0 1|1 o0 1]o]J0 1 of1] imm7 | Rt2 | Rn Rt |
opc L

LDPSW <Xtl1l>, <Xt2>, [<Xn|SP>{, #<imm>}]

boolean wback = FALSE;
boolean postindex = FALSE;

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints on
UNPREDICTABLE behaviors, and particularly LDPSW.

Assembler Symbols

<Xtl> Is the 64-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.
<Xt2> Is the 64-bit name of the second general-purpose register to be transferred, encoded in the "Rt2" field.
<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.
<imm> For the post-index and pre-index variant: is the signed immediate byte offset, a multiple of 4 in the

range -256 to 252, encoded in the "imm7" field as <imm>/4.

For the signed offset variant: is the optional signed immediate byte offset, a multiple of 4 in the range
-256 to 252, defaulting to 0 and encoded in the "imm7" field as <imm>/4.

LDPSW Page 211

Shared Decode

integer n UInt(Rn);

integer t UInt(Rt);

integer t2 = UInt(Rt2);

bits(64) offset = LSL(SignExtend(imm7, 64), 2);

boolean tag checked = wback || n != 31;
boolean rt _unknown = FALSE;
boolean wb_unknown = FALSE;

if wback & (t == n || t2 == n) & n != 31 then
Constraint ¢ = ConstrainUnpredictable(Unpredictable WBOVERLAPLD);
assert ¢ IN {Constraint WBSUPPRESS, Constraint UNKNOWN, Constraint UNDEF, Constraint NOP};

case c of
when Constraint WBSUPPRESS wback = FALSE; // writeback is suppressed
when Constraint UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
when Constraint UNDEF UNDEFINED;
when Constraint NOP EndOfInstruction();

if t == t2 then
Constraint ¢ = ConstrainUnpredictable(Unpredictable LDPOVERLAP);
assert ¢ IN {Constraint UNKNOWN, Constraint UNDEF, Constraint NOP};

case c of
when Constraint UNKNOWN rt unknown = TRUE; // result is UNKNOWN
when Constraint UNDEF UNDEFINED;
when Constraint NOP EndOfInstruction();
Operation

bits(64) address;
bits(32) datal;
bits(32) data2;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag checked);

if n == 31 then
CheckSPAlignment();
address = SP[];
else
address = X[n];

if !postindex then
address = address + offset;

datal = Mem[address, 4, AccType NORMAL];
data2 = Mem[address+4, 4, AccType NORMAL];
if rt_unknown then
datal = bits(32) UNKNOWN;
data2 = bits(32) UNKNOWN;
X[t] = SignExtend(datal, 64);
X[t2] = SignExtend(data2, 64);
if wback then
if wb_unknown then
address = bits(64) UNKNOWN;
elsif postindex then
address = address + offset;
if n == 31 then
SP[] = address;
else
X[n] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

LDPSW Page 212

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDPSW Page 213

LDR (immediate)

Load Register (immediate) loads a word or doubleword from memory and writes it to a register. The address that is
used for the load is calculated from a base register and an immediate offset. For information about memory accesses,
see Load/Store addressing modes. The Unsigned offset variant scales the immediate offset value by the size of the
value accessed before adding it to the base register value.

It has encodings from 3 classes: Post-index , Pre-index and Unsigned offset

Post-index

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
[1 x[1 1 1]0[0 0[O0 1]0] imm9 [0 1] Rn Rt |
size opc

32-bit (size == 10)
LDR <Wt>, [<Xn|SP>], #<simm>
64-bit (size == 11)

LDR <Xt>, [<Xn|SP>], #<simm>

boolean wback = TRUE;

boolean postindex = TRUE;

integer scale = Ulnt(size);

bits(64) offset = SignExtend(imm9, 64);

Pre-index

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
|1 x]1 1 1]o]o0 o0 1[0] imm9 [1 1] Rn Rt |
size opc

32-bit (size == 10)
LDR <Wt>, [<Xn|SP>, #<simm>]!
64-bit (size == 11)

LDR <Xt>, [<Xn|SP>, #<simm>]!

boolean wback = TRUE;

boolean postindex = FALSE;

integer scale = Ulnt(size);

bits(64) offset = SignExtend(imm9, 64);

Unsigned offset
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0

|1 x]1 1 1]o]Jo 1]0 1] imm12 | Rn Rt |
size opc

LDR (immediate) Page 214

32-bit (size == 10)
LDR <Wt>, [<Xn|SP>{, #<pimm>}]
64-bit (size == 11)

LDR <Xt>, [<Xn|SP>{, #<pimm>}]

boolean wback = FALSE;

boolean postindex = FALSE;

integer scale = Ulnt(size);

bits(64) offset = LSL(ZeroExtend(imml2, 64), scale);

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints on
UNPREDICTABLE behaviors, and particularly LDR (immediate).

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.
<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.
<simm> Is the signed immediate byte offset, in the range -256 to 255, encoded in the "imm9" field.

<pimm> For the 32-bit variant: is the optional positive immediate byte offset, a multiple of 4 in the range 0 to

16380, defaulting to 0 and encoded in the "imm12" field as <pimm>/4.

For the 64-bit variant: is the optional positive immediate byte offset, a multiple of 8 in the range 0 to
32760, defaulting to 0 and encoded in the "imm12" field as <pimm>/8.

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);
integer regsize;

regsize = if size == '11' then 64 else 32;
integer datasize = 8 << scale;
boolean tag checked = wback || n != 31;

boolean wb unknown = FALSE;
if wback & n == t && n != 31 then

c = ConstrainUnpredictable(Unpredictable WBOVERLAPLD);
assert ¢ IN {Constraint WBSUPPRESS, Constraint UNKNOWN, Constraint UNDEF, Constraint NOP};

case c of
when Constraint WBSUPPRESS wback = FALSE; // writeback is suppressed
when Constraint UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
when Constraint UNDEF UNDEFINED;
when Constraint NOP EndOfInstruction();

LDR (immediate) Page 215

Operation

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag checked);

bits(64) address;
bits(datasize) data;

if n == 31 then
CheckSPAlignment () ;
address = SP[];
else
address = X[n];

if !postindex then
address = address + offset;

data
X[t]

Mem[address, datasize DIV 8, AccType NORMAL];
ZeroExtend(data, regsize);

if wback then
if wb_unknown then
address = bits(64) UNKNOWN;
elsif postindex then
address = address + offset;
if n == 31 then
SP[] = address;
else
X[n] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDR (immediate) Page 216

LDR (literal)

Load Register (literal) calculates an address from the PC value and an immediate offset, loads a word from memory,

and writes it to a register. For information about memory accesses, see Load/Store addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8

6 5 4 3

0

|0 x]0 1 1]0]0 0] imm19

opc
32-bit (opc == 00)
LDR <Wt>, <label>
64-bit (opc == 01)

LDR <Xt>, <label>

integer t = UInt(Rt);
MemOp memop = MemOp LOAD;
boolean signed = FALSE;
integer size;

bits(64) offset;

case opc of
when '00'
size
when '01'
size
when '10'
size = 4;
signed = TRUE;
when '11'
memop = MemOp PREFETCH;

4;

8;

offset = SignExtend(imml9:'00', 64);

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.
<Xt> Is the 64-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<label> Is the program label from which the data is to be loaded. Its offset from the address of this instruction,

in the range +/-1MB, is encoded as "imm19" times 4.

Operation

bits(64) address = PC[] + offset;
bits(size*8) data;

if HaveMTE2Ext() then
SetTagCheckedInstruction(FALSE);

case memop of
when MemOp_ LOAD
data = Mem[address, size, AccType NORMAL];
if signed then
X[t] = SignExtend(data, 64);
else
X[t] = data;

when MemOp PREFETCH
Prefetch(address, t<4:0>);

LDR (literal)

Page 217

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDR (literal) Page 218

LDR (register)

Load Register (register) calculates an address from a base register value and an offset register value, loads a word
from memory, and writes it to a register. The offset register value can optionally be shifted and extended. For
information about memory accesses, see Load/Store addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
|1 x]1 1 1]o]Jo o0 1[1] Rm | option [S]|1 0] Rn | Rt |
size opc

32-bit (size == 10)
LDR <Wt>, [<Xn|SP>, (<Wm>|<Xm>){, <extend> {<amount>}}]
64-bit (size == 11)

LDR <Xt>, [<Xn|SP>, (<Wm>|<Xm>){, <extend> {<amount>}}]

integer scale = Ulnt(size);

if option<l> == 'O' then UNDEFINED; // sub-word index
ExtendType extend type = DecodeRegExtend(option);
integer shift = if S == '1l' then scale else 0;

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Wm> When option<0> is set to 0, is the 32-bit name of the general-purpose index register, encoded in the
"Rm" field.

<Xm> V}f{hen ICi)pliaion<0> is set to 1, is the 64-bit name of the general-purpose index register, encoded in the
"Rm" field.

<extend> Is the index extend/shift specifier, defaulting to LSL, and which must be omitted for the LSL option
when <amount> is omitted. encoded in “option”:

option <extend>

010 UXTW
011 LSL

110 SXTW
111 SXTX

<amount> For the 32-bit variant: is the index shift amount, optional only when <extend> is not LSL. Where it is
permitted to be optional, it defaults to #0. It is encoded in “S”:

S <amount>
0 #0
1 #2

For the 64-bit variant: is the index shift amount, optional only when <extend> is not LSL. Where it is
permitted to be optional, it defaults to #0. It is encoded in “S”:

S <amount>
0 #0
1 #3

LDR (register) Page 219

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);
integer m = UInt(Rm);

integer regsize;

regsize = if size == '11' then 64 else 32;
integer datasize = 8 << scale;

Operation

bits(64) offset = ExtendReg(m, extend type, shift);
if HaveMTE2Ext() then

SetTagCheckedInstruction(TRUE);

bits(64) address;
bits(datasize) data;

if n == 31 then

CheckSPAlignment () ;

address = SP[];
else

address = X[n];

address = address + offset;

data
X[t]

Mem[address, datasize DIV 8, AccType NORMAL];
ZeroExtend(data, regsize);

Operational information
If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDR (register) Page 220

LDRAA, LDRAB

Load Register, with pointer authentication. This instruction authenticates an address from a base register using a
modifier of zero and the specified key, adds an immediate offset to the authenticated address, and loads a 64-bit
doubleword from memory at this resulting address into a register.

Key A is used for LDRAA, and key B is used for LDRAB.

If the authentication passes, the PE behaves the same as for an LDR instruction. If the authentication fails, a
Translation fault is generated.

The authenticated address is not written back to the base register, unless the pre-indexed variant of the instruction is
used. In this case, the address that is written back to the base register does not include the pointer authentication
code.

For information about memory accesses, see Load/Store addressing modes.

Unscaled offset
(FEAT_PAuth)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
[1 1]1 1 1]0o[0 o[M]|S[1] imm9 [wWl1] Rn Rt |
size

Key A, offset (M == 0 && W == 0)
LDRAA <Xt>, [<Xn|SP>{, #<simm>}]
Key A, pre-indexed (M == 0 && W == 1)
LDRAA <Xt>, [<Xn|SP>{, #<simm>}1]!
Key B, offset (M == 1 && W == 0)
LDRAB <Xt>, [<Xn|SP>{, #<simm>}]
Key B, pre-indexed (M == 1 && W == 1)

LDRAB <Xt>, [<Xn|SP>{, #<simm>}]!

if !'HavePACExt() then UNDEFINED;

integer t = UInt(Rt);

integer n = UInt(Rn);

boolean wback = (W == '1");

boolean use key a = (M == '0');

bits(10) S10 = S:imm9;

bits(64) offset = LSL(SignExtend(S10, 64), 3);
boolean tag checked = wback || n != 31;

Assembler Symbols

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.
<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.
<simm> Is the optional signed immediate byte offset, a multiple of 8 in the range -4096 to 4088, defaulting to 0

and encoded in the "S:imm9" field as <simm>/8.

LDRAA, LDRAB Page 221

Operation

bits(64) address;
bits(64) data;
boolean wb_unknown = FALSE;

if HaveMTE2Ext() then

SetTagCheckedInstruction(tag checked);

if wback & n == t & n != 31

c = ConstrainUnpredictable(Unpredictable WBOVERLAPLD);

then

assert ¢ IN {Constraint WBSUPPRESS, Constraint UNKNOWN, Constraint UNDEF, Constraint NOP};

case c of

when Constraint WBSUPPRESS wback = FALSE;

when Constraint UNKNOWN wb_unknown = TRUE;

when Constraint UNDEF

when Constraint NOP

if n == 31 then
address = SP[];
else
address = X[n];

if use key a then

address = AuthDA(address,
else

address = AuthDB(address,

if n == 31 then
CheckSPAlignment();

address = address + offset;
data

UNDEFINED;
EndOfInstruction();

X[31], TRUE);

X[31], TRUE);

Mem[address, 8, AccType NORMAL];

X[t] data;

if wback then
if wb_unknown then

address = bits(64) UNKNOWN;

if n == 31 then
SP[] = address;
else
X[n] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

// writeback is suppressed
// writeback is UNKNOWN

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDRAA, LDRAB

Page 222

LDRB (immediate)

Load Register Byte (immediate) loads a byte from memory, zero-extends it, and writes the result to a register. The
address that is used for the load is calculated from a base register and an immediate offset. For information about
memory accesses, see Load/Store addressing modes.

It has encodings from 3 classes: Post-index , Pre-index and Unsigned offset

Post-index

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
[0 0[]1 1 1]0[0 0[O0 1]0] imm9 [0 1] Rn Rt |
size opc

LDRB <Wt>, [<Xn|SP>], #<simm>

boolean wback = TRUE;
boolean postindex = TRUE;
bits(64) offset = SignExtend(imm9, 64);

Pre-index
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

|0 0]1 1 1]o]0 0[O0 1[0] imm9 [1 1] Rn Rt |
size opc

LDRB <Wt>, [<Xn|SP>, #<simm>]!

boolean wback = TRUE;
boolean postindex = FALSE;
bits(64) offset = SignExtend(imm9, 64);

Unsigned offset
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0

|0 0J]1 1 1]o]Jo 1]0 1] imm12 | Rn Rt |
size opc

LDRB <Wt>, [<Xn|SP>{, #<pimm>}]

boolean wback = FALSE;

boolean postindex = FALSE;

bits(64) offset = LSL(ZeroExtend(imml2, 64), 0);

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints on
UNPREDICTABLE behaviors, and particularly LDRH (immediate).

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the signed immediate byte offset, in the range -256 to 255, encoded in the "imm9" field.

<pimm> Is thelc;ptlilorllgl positive immediate byte offset, in the range 0 to 4095, defaulting to 0 and encoded in the
"imm12" field.

LDRB (immediate) Page 223

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);
boolean tag checked = wback || n != 31;

boolean wb_unknown = FALSE;

if wback & n == t && n != 31 then

c = ConstrainUnpredictable(Unpredictable WBOVERLAPLD);

assert ¢ IN {Constraint WBSUPPRESS, Constraint UNKNOWN, Constraint UNDEF, Constraint NOP};

case c of

when Constraint WBSUPPRESS wback = FALSE;
when Constraint UNKNOWN wb_unknown = TRUE;
UNDEFINED;
EndOfInstruction();

when Constraint UNDEF
when Constraint NOP

// writeback is suppressed
// writeback is UNKNOWN

Operation

if HaveMTE2Ext() then

SetTagCheckedInstruction(tag checked);

bits(64) address;
bits(8) data;

if n == 31 then
CheckSPAlignment () ;
address = SP[];
else
address = X[n];

if !postindex then
address = address + offset;

data = Mem[address, 1, AccType NORMAL];
X[t] = ZeroExtend(data, 32);

if wback then
if wb_unknown then
address = bits(64) UNKNOWN;
elsif postindex then
address = address + offset;
if n == 31 then
SP[] = address;
else
X[n] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDRB (immediate)

Page 224

LDRB (register)

Load Register Byte (register) calculates an address from a base register value and an offset register value, loads a
byte from memory, zero-extends it, and writes it to a register. For information about memory accesses, see Load/Store
addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0
|0 0]1 1 1]o]Jo o0 1[1] Rm | option [S]|1 0] Rn | Rt |
size opc

Extended register (option != 011)
LDRB <Wt>, [<Xn|SP>, (<Wm>|<Xm>), <extend> {<amount>}]
Shifted register (option == 011)

LDRB <Wt>, [<Xn|SP>, <Xm>{, LSL <amount>}]

if option<l> == '0' then UNDEFINED; // sub-word index
ExtendType extend type = DecodeRegExtend(option);

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Wm> When option<0> is set to 0, is the 32-bit name of the general-purpose index register, encoded in the
"Rm" field.

<Xm> V\Pf{hen f;)plfiion<0> is set to 1, is the 64-bit name of the general-purpose index register, encoded in the
"Rm" field.

<extend> Is the index extend specifier, encoded in “option”:

option <extend>

010 UXTW
110 SXTW
111 SXTX

<amount> Is the index shift amount, it must be #0, encoded in "S" as 0 if omitted, or as 1 if present.

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);
integer m = UInt(Rm);

LDRB (register) Page 225

Operation

bits(64) offset = ExtendReg(m, extend type, 0);
if HaveMTE2Ext() then
SetTagCheckedInstruction(TRUE);

bits(64) address;
bits(8) data;

if n == 31 then
CheckSPAlignment () ;
address = SP[];
else
address = X[n];

address = address + offset;

data
X[t]

Mem[address, 1, AccType NORMAL];
ZeroExtend(data, 32);

Operational information
If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDRB (register) Page 226

LDRH (immediate)

Load Register Halfword (immediate) loads a halfword from memory, zero-extends it, and writes the result to a register.
The address that is used for the load is calculated from a base register and an immediate offset. For information about
memory accesses, see Load/Store addressing modes.

It has encodings from 3 classes: Post-index , Pre-index and Unsigned offset

Post-index

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
[0 1[1 1 1]0[0 0[O0 1]0] imm9 [0 1] Rn Rt |
size opc

LDRH <Wt>, [<Xn|SP>], #<simm>

boolean wback = TRUE;
boolean postindex = TRUE;
bits(64) offset = SignExtend(imm9, 64);

Pre-index
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

|0 1]1 1 1]o]J0 o0 1[0] imm9 [1 1] Rn Rt |
size opc

LDRH <Wt>, [<Xn|SP>, #<simm>]!

boolean wback = TRUE;
boolean postindex = FALSE;
bits(64) offset = SignExtend(imm9, 64);

Unsigned offset
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0

0 1]1 1 1]o]Jo 1]0 1] imm12 | Rn Rt |
size opc

LDRH <Wt>, [<Xn|SP>{, #<pimm>}]

boolean wback = FALSE;

boolean postindex = FALSE;

bits(64) offset = LSL(ZeroExtend(imml2, 64), 1);

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints on
UNPREDICTABLE behaviors, and particularly LDRH (immediate).

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.
<simm> Is the signed immediate byte offset, in the range -256 to 255, encoded in the "imm9" field.

<pimm> Is the optional positive immediate byte offset, a multiple of 2 in the range 0 to 8190, defaulting to 0 and

encoded in the "imm12" field as <pimm>/2.

LDRH (immediate) Page 227

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);
boolean tag checked = wback || n != 31;

boolean wb_unknown = FALSE;

if wback & n == t && n != 31 then

c = ConstrainUnpredictable(Unpredictable WBOVERLAPLD);

assert ¢ IN {Constraint WBSUPPRESS, Constraint UNKNOWN, Constraint UNDEF, Constraint NOP};

case c of

when Constraint WBSUPPRESS wback = FALSE;
when Constraint UNKNOWN wb_unknown = TRUE;
UNDEFINED;
EndOfInstruction();

when Constraint UNDEF
when Constraint NOP

// writeback is suppressed
// writeback is UNKNOWN

Operation

if HaveMTE2Ext() then

SetTagCheckedInstruction(tag checked);

bits(64) address;
bits(16) data;

if n == 31 then
CheckSPAlignment () ;
address = SP[];
else
address = X[n];

if !postindex then
address = address + offset;

data = Mem[address, 2, AccType NORMAL];
X[t] = ZeroExtend(data, 32);

if wback then
if wb_unknown then
address = bits(64) UNKNOWN;
elsif postindex then
address = address + offset;
if n == 31 then
SP[] = address;
else
X[n] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDRH (immediate)

Page 228

LDRH (register)

Load Register Halfword (register) calculates an address from a base register value and an offset register value, loads a
halfword from memory, zero-extends it, and writes it to a register. For information about memory accesses, see Load/
Store addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
|0 1]1 1 1]o]Jo o0 1[1] Rm | option [S]|1 0] Rn | Rt |
size opc

LDRH <Wt>, [<Xn|SP>, (<Wm>|<Xm>){, <extend> {<amount>}}]

if option<l> == 'O' then UNDEFINED; // sub-word index
ExtendType extend type = DecodeRegExtend(option);
integer shift = if S == '1' then 1 else 0;

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints on
UNPREDICTABLE behaviors.

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Wm> When option<0> is set to 0, is the 32-bit name of the general-purpose index register, encoded in the
"Rm" field.

<Xm> V\Pf{hen f;)plfiion<0> is set to 1, is the 64-bit name of the general-purpose index register, encoded in the
"Rm" field.

<extend> Is the index extend/shift specifier, defaulting to LSL, and which must be omitted for the LSL option
when <amount> is omitted. encoded in “option”:

option <extend>

010 UXTW
011 LSL

110 SXTW
111 SXTX

<amount> Is the index shift amount, optional only when <extend> is not LSL. Where it is permitted to be optional,
it defaults to #0. It is encoded in “S”:

S <amount>
0 #0
1 #1

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);
integer m = UInt(Rm);

LDRH (register) Page 229

Operation

bits(64) offset = ExtendReg(m, extend type, shift);
if HaveMTE2Ext() then
SetTagCheckedInstruction(TRUE);

bits(64) address;
bits(16) data;

if n == 31 then
CheckSPAlignment () ;
address = SP[];
else
address = X[n];

address = address + offset;

data
X[t]

Mem[address, 2, AccType NORMAL];
ZeroExtend(data, 32);

Operational information
If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDRH (register) Page 230

LDRSB (immediate)

Load Register Signed Byte (immediate) loads a byte from memory, sign-extends it to either 32 bits or 64 bits, and
writes the result to a register. The address that is used for the load is calculated from a base register and an
immediate offset. For information about memory accesses, see Load/Store addressing modes.

It has encodings from 3 classes: Post-index , Pre-index and Unsigned offset

Post-index

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
[0 0[]1 1 1]0[0 01 x][O] imm9 [0 1] Rn Rt |
size opc

32-bit (opc == 11)
LDRSB <Wt>, [<Xn|SP>], #<simm>
64-bit (opc == 10)

LDRSB <Xt>, [<Xn|SP>], #<simm>

boolean wback = TRUE;
boolean postindex = TRUE;
bits(64) offset = SignExtend(imm9, 64);

Pre-index
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

|0 0]1 1 1]0]J0 01 x[0] imm9 [1 1] Rn Rt |
size opc

32-bit (opc == 11)
LDRSB <Wt>, [<Xn|SP>, #<simm>]!
64-bit (opc == 10)

LDRSB <Xt>, [<Xn|SP>, #<simm>]!

boolean wback = TRUE;
boolean postindex = FALSE;
bits(64) offset = SignExtend(imm9, 64);

Unsigned offset
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0

|0 0J]1 1 1]o]Jo 1]1 x| imm12 | Rn Rt |
size opc

LDRSB (immediate) Page 231

32-bit (opc == 11)
LDRSB <Wt>, [<Xn|SP>{, #<pimm>}]
64-bit (opc == 10)

LDRSB <Xt>, [<Xn|SP>{, #<pimm>}]

boolean wback = FALSE;

boolean postindex = FALSE;

bits(64) offset = LSL(ZeroExtend(imml2, 64), 0);

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints on
UNPREDICTABLE behaviors, and particularly LDRSB (immediate).

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the signed immediate byte offset, in the range -256 to 255, encoded in the "imm9" field.

<pimm> Is thelc;ptiiiorllgl positive immediate byte offset, in the range 0 to 4095, defaulting to 0 and encoded in the
"imm12" field.

LDRSB (immediate) Page 232

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);
MemOp memop;

boolean signed;
integer regsize;

if opc<l> == '0Q' then
// store or zero-extending load
memop = if opc<@> == '1' then MemOp LOAD else MemOp STORE;

regsize = 32;
signed = FALSE;
else
// sign-extending load
memop = MemOp LOAD;
regsize = if opc<0> == '1' then 32 else 64;
signed = TRUE;

boolean tag checked = memop != MemOp PREFETCH && (wback || n != 31);

boolean wb unknown
boolean rt unknown

FALSE;
FALSE;

if memop == MemOp LOAD && wback && n == t & n != 31 then
¢ = ConstrainUnpredictable(Unpredictable WBOVERLAPLD);
assert ¢ IN {Constraint WBSUPPRESS, Constraint UNKNOWN, Constraint UNDEF, Constraint NOP};

case c of
when Constraint WBSUPPRESS wback = FALSE; // writeback is suppressed
when Constraint UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
when Constraint UNDEF UNDEFINED;
when Constraint NOP EndOfInstruction();

if memop == MemOp STORE && wback & n == t & n != 31 then
c = ConstrainUnpredictable(Unpredictable WBOVERLAPST);
assert ¢ IN {Constraint NONE, Constraint UNKNOWN, Constraint UNDEF, Constraint NOP};

case c of
when Constraint NONE rt_unknown = FALSE; // value stored is original value
when Constraint UNKNOWN rt unknown = TRUE; // value stored is UNKNOWN
when Constraint UNDEF UNDEFINED;
when Constraint NOP EndOfInstruction();

LDRSB (immediate) Page 233

Operation

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag checked);

bits(64) address;
bits(8) data;

if n == 31 then

if memop != MemOp PREFETCH then CheckSPAlignment();

address = SP[];
else
address = X[n];

if !postindex then
address = address + offset;

case memop of
when MemOp STORE
if rt_unknown then
data = bits(8) UNKNOWN;
else
data = X[t];
Mem[address, 1, AccType NORMAL] = data;

when MemOp LOAD
data = Mem[address, 1, AccType NORMAL];
if signed then
X[t] = SignExtend(data, regsize);
else
X[t] = ZeroExtend(data, regsize);

when MemOp PREFETCH
Prefetch(address, t<4:0>);

if wback then
if wb_unknown then
address = bits(64) UNKNOWN;
elsif postindex then
address = address + offset;
if n == 31 then
SP[] = address;
else
X[n] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDRSB (immediate)

Page 234

LDRSB (register)

Load Register Signed Byte (register) calculates an address from a base register value and an offset register value,
loads a byte from memory, sign-extends it, and writes it to a register. For information about memory accesses, see
Load/Store addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0
|0 0]1 1 1]o]J0 of1 x[1] Rm | option [S]|1 0] Rn | Rt |
size opc

32-bit with extended register offset (opc == 11 && option != 011)
LDRSB <Wt>, [<Xn|SP>, (<Wm>|<Xm>), <extend> {<amount>}]

32-bit with shifted register offset (opc == 11 && option == 011)
LDRSB <Wt>, [<Xn|SP>, <Xm>{, LSL <amount>}]

64-bit with extended register offset (opc == 10 && option != 011)
LDRSB <Xt>, [<Xn|SP>, (<Wm>|<Xm>), <extend> {<amount>}]

64-bit with shifted register offset (opc == 10 && option == 011)

LDRSB <Xt>, [<Xn|SP>, <Xm>{, LSL <amount>}]

if option<l> == '0' then UNDEFINED; // sub-word index
ExtendType extend type = DecodeRegExtend(option);

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Wm> When option<0> is set to 0, is the 32-bit name of the general-purpose index register, encoded in the
"Rm" field.

<Xm> V\P/{hen 1c?plgion<0> is set to 1, is the 64-bit name of the general-purpose index register, encoded in the
"Rm" field.

<extend> Is the index extend specifier, encoded in “option”:

option <extend>

010 UXTW
110 SXTW
111 SXTX

<amount> Is the index shift amount, it must be #0, encoded in "S" as 0 if omitted, or as 1 if present.

LDRSB (register) Page 235

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);
integer m = UInt(Rm);

MemOp memop;
boolean signed;

integer regsize;

if opc<l> == '0Q' then
// store or zero-extending load
memop = if opc<@> == '1' then MemOp LOAD else MemOp STORE;

regsize = 32;
signed = FALSE;
else
// sign-extending load
memop = MemOp LOAD;
regsize = if opc<0> == '1' then 32 else 64;
signed = TRUE;

boolean tag checked = memop != MemOp PREFETCH;

Operation

bits(64) offset = ExtendReg(m, extend type, 0);
if HaveMTE2Ext() then

SetTagCheckedInstruction(tag checked);

bits(64) address;
bits(8) data;

if n == 31 then

if memop != MemOp PREFETCH then CheckSPAlignment();
address = SP[];

else
address = X[n];

address = address + offset;

case memop of

when MemOp STORE
data = X[t];
Mem[address, 1, AccType NORMAL] = data;

when MemOp_ LOAD
data = Mem[address, 1, AccType NORMAL];
if signed then
X[t] = SignExtend(data, regsize);
else
X[t] = ZeroExtend(data, regsize);

when MemOp PREFETCH
Prefetch(address, t<4:0>);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDRSB (register) Page 236

LDRSH (immediate)

Load Register Signed Halfword (immediate) loads a halfword from memory, sign-extends it to 32 bits or 64 bits, and
writes the result to a register. The address that is used for the load is calculated from a base register and an
immediate offset. For information about memory accesses, see Load/Store addressing modes.

It has encodings from 3 classes: Post-index , Pre-index and Unsigned offset

Post-index

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
[0 1]1 1 1]0[0 01 x][O] imm9 [0 1] Rn Rt |
size opc

32-bit (opc == 11)
LDRSH <Wt>, [<Xn|SP>], #<simm>
64-bit (opc == 10)

LDRSH <Xt>, [<Xn|SP>], #<simm>

boolean wback = TRUE;
boolean postindex = TRUE;
bits(64) offset = SignExtend(imm9, 64);

Pre-index
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

|0 1]1 1 1]0o]0 01 x[0] imm9 [1 1] Rn Rt |
size opc

32-bit (opc == 11)
LDRSH <Wt>, [<Xn|SP>, #<simm>]!
64-bit (opc == 10)

LDRSH <Xt>, [<Xn|SP>, #<simm>]!

boolean wback = TRUE;
boolean postindex = FALSE;
bits(64) offset = SignExtend(imm9, 64);

Unsigned offset
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0

0 1]1 1 1]o]Jo 1]1 x| imm12 | Rn Rt |
size opc

LDRSH (immediate) Page 237

32-bit (opc == 11)
LDRSH <Wt>, [<Xn|SP>{, #<pimm>}]
64-bit (opc == 10)

LDRSH <Xt>, [<Xn|SP>{, #<pimm>}]

boolean wback = FALSE;

boolean postindex = FALSE;

bits(64) offset = LSL(ZeroExtend(imml2, 64), 1);

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints on
UNPREDICTABLE behaviors, and particularly LDRSH (immediate).

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.
<simm> Is the signed immediate byte offset, in the range -256 to 255, encoded in the "imm9" field.

<pimm> Is the optional positive immediate byte offset, a multiple of 2 in the range 0 to 8190, defaulting to 0 and

encoded in the "imm12" field as <pimm>/2.

LDRSH (immediate) Page 238

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);
MemOp memop;

boolean signed;
integer regsize;

if opc<l> == '0Q' then
// store or zero-extending load
memop = if opc<@> == '1' then MemOp LOAD else MemOp STORE;

regsize = 32;
signed = FALSE;
else
// sign-extending load
memop = MemOp LOAD;
regsize = if opc<0> == '1' then 32 else 64;
signed = TRUE;

boolean tag checked = memop != MemOp PREFETCH && (wback || n != 31);

boolean wb unknown
boolean rt unknown

FALSE;
FALSE;

if memop == MemOp LOAD && wback && n == t & n != 31 then
¢ = ConstrainUnpredictable(Unpredictable WBOVERLAPLD);
assert ¢ IN {Constraint WBSUPPRESS, Constraint UNKNOWN, Constraint UNDEF, Constraint NOP};

case c of
when Constraint WBSUPPRESS wback = FALSE; // writeback is suppressed
when Constraint UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
when Constraint UNDEF UNDEFINED;
when Constraint NOP EndOfInstruction();

if memop == MemOp STORE && wback & n == t & n != 31 then
c = ConstrainUnpredictable(Unpredictable WBOVERLAPST);
assert ¢ IN {Constraint NONE, Constraint UNKNOWN, Constraint UNDEF, Constraint NOP};

case c of
when Constraint NONE rt_unknown = FALSE; // value stored is original value
when Constraint UNKNOWN rt unknown = TRUE; // value stored is UNKNOWN
when Constraint UNDEF UNDEFINED;
when Constraint NOP EndOfInstruction();

LDRSH (immediate) Page 239

Operation

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag checked);

bits(64) address;
bits(16) data;

if n == 31 then

if memop != MemOp PREFETCH then CheckSPAlignment();

address = SP[];
else
address = X[n];

if !postindex then
address = address + offset;

case memop of
when MemOp STORE
if rt_unknown then
data = bits(16) UNKNOWN;
else
data = X[t];
Mem[address, 2, AccType NORMAL] = data;

when MemOp LOAD
data = Mem[address, 2, AccType NORMAL];
if signed then
X[t] = SignExtend(data, regsize);
else
X[t] = ZeroExtend(data, regsize);

when MemOp PREFETCH
Prefetch(address, t<4:0>);

if wback then
if wb_unknown then
address = bits(64) UNKNOWN;
elsif postindex then
address = address + offset;
if n == 31 then
SP[] = address;
else
X[n] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDRSH (immediate)

Page 240

LDRSH (register)

Load Register Signed Halfword (register) calculates an address from a base register value and an offset register value,
loads a halfword from memory, sign-extends it, and writes it to a register. For information about memory accesses see
Load/Store addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
|0 1]1 1 1]o]Jo0 of1 x[1] Rm | option [S]|1 0] Rn | Rt |
size opc

32-bit (opc == 11)
LDRSH <Wt>, [<Xn|SP>, (<Wm>|<Xm>){, <extend> {<amount>}}]
64-bit (opc == 10)

LDRSH <Xt>, [<Xn|SP>, (<Wm>|<Xm>){, <extend> {<amount>}}]

if option<l> == '0' then UNDEFINED; // sub-word index
ExtendType extend type = DecodeRegExtend(option);
integer shift = if S == '1' then 1 else 0;

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Wm> When option<0> is set to 0, is the 32-bit name of the general-purpose index register, encoded in the
"Rm" field.

<Xm> V}f{hen ICi)pliaion<0> is set to 1, is the 64-bit name of the general-purpose index register, encoded in the
"Rm" field.

<extend> Is the index extend/shift specifier, defaulting to LSL, and which must be omitted for the LSL option
when <amount> is omitted. encoded in “option”:

option <extend>

010 UXTW
011 LSL

110 SXTW
111 SXTX

<amount> Is the index shift amount, optional only when <extend> is not LSL. Where it is permitted to be optional,
it defaults to #0. It is encoded in “S”:

S <amount>
0 #0
1 #1

LDRSH (register) Page 241

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);
integer m = UInt(Rm);

MemOp memop;
boolean signed;

integer regsize;

if opc<l> == '0Q' then
// store or zero-extending load
memop = if opc<@> == '1' then MemOp LOAD else MemOp STORE;

regsize = 32;
signed = FALSE;
else
// sign-extending load
memop = MemOp LOAD;
regsize = if opc<0> == '1' then 32 else 64;
signed = TRUE;

boolean tag checked = memop != MemOp PREFETCH;

Operation

bits(64) offset = ExtendReg(m, extend type, shift);
if HaveMTE2Ext() then

SetTagCheckedInstruction(tag checked);

bits(64) address;
bits(16) data;

if n == 31 then

if memop != MemOp PREFETCH then CheckSPAlignment();
address = SP[];

else
address = X[n];

address = address + offset;

case memop of

when MemOp STORE
data = X[t];
Mem[address, 2, AccType NORMAL] = data;

when MemOp_ LOAD
data = Mem[address, 2, AccType NORMAL];
if signed then
X[t] = SignExtend(data, regsize);
else
X[t] = ZeroExtend(data, regsize);

when MemOp PREFETCH
Prefetch(address, t<4:0>);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDRSH (register) Page 242

LDRSW (immediate)

Load Register Signed Word (immediate) loads a word from memory, sign-extends it to 64 bits, and writes the result to
a register. The address that is used for the load is calculated from a base register and an immediate offset. For
information about memory accesses, see Load/Store addressing modes.

It has encodings from 3 classes: Post-index , Pre-index and Unsigned offset

Post-index

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
[1 0[]1 1 1]/0[0 01 00O imm9 [0 1] Rn Rt |
size opc

LDRSW <Xt>, [<Xn|SP>], #<simm>

boolean wback = TRUE;
boolean postindex = TRUE;
bits(64) offset = SignExtend(imm9, 64);

Pre-index
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

|1 0]1 1 1]o]0 01 0[0] imm9 [1 1] Rn Rt |
size opc

LDRSW <Xt>, [<Xn|SP>, #<simm>]!

boolean wback = TRUE;
boolean postindex = FALSE;
bits(64) offset = SignExtend(imm9, 64);

Unsigned offset
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0

|1 0]1 1 1]o]Jo 1]1 o] imm12 | Rn Rt |
size opc

LDRSW <Xt>, [<Xn|SP>{, #<pimm>}]

boolean wback = FALSE;

boolean postindex = FALSE;

bits(64) offset = LSL(ZeroExtend(imml2, 64), 2);

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints on
UNPREDICTABLE behaviors, and particularly LDRSW (immediate).

Assembler Symbols

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.
<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.
<simm> Is the signed immediate byte offset, in the range -256 to 255, encoded in the "imm9" field.

<pimm> Is the optional positive immediate byte offset, a multiple of 4 in the range 0 to 16380, defaulting to 0

and encoded in the "imm12" field as <pimm>/4.

LDRSW (immediate) Page 243

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);
boolean tag checked = wback || n != 31;

boolean wb_unknown = FALSE;

if wback & n == t && n != 31 then
c = ConstrainUnpredictable(Unpredictable WBOVERLAPLD);
assert ¢ IN {Constraint WBSUPPRESS, Constraint UNKNOWN, Constraint UNDEF, Constraint NOP};

case c of
when Constraint WBSUPPRESS wback = FALSE; // writeback is suppressed
when Constraint UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
when Constraint UNDEF UNDEFINED;
when Constraint NOP EndOfInstruction();
Operation

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag checked);

bits(64) address;
bits(32) data;

if n == 31 then
CheckSPAlignment () ;
address = SP[];
else
address = X[n];

if !postindex then
address = address + offset;

data = Mem[address, 4, AccType NORMAL];
X[t] = SignExtend(data, 64);
if wback then
if wb_unknown then
address = bits(64) UNKNOWN;
elsif postindex then
address = address + offset;
if n == 31 then
SP[] = address;
else
X[n] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDRSW (immediate) Page 244

LDRSW (literal)

Load Register Signed Word (literal) calculates an address from the PC value and an immediate offset, loads a word
from memory, and writes it to a register. For information about memory accesses, see Load/Store addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
|1 0J]0 1 1]0f0 0] imm19 | Rt |
opc

LDRSW <Xt>, <label>

integer t = UInt(Rt);
bits(64) offset;

offset = SignExtend(imml9:'00', 64);

Assembler Symbols

<Xt> Is the 64-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<label> Is the program label from which the data is to be loaded. Its offset from the address of this instruction,
in the range +/-1MB, is encoded as "imm19" times 4.

Operation

bits(64) address = PC[] + offset;
bits(32) data;

if HaveMTE2Ext() then
SetTagCheckedInstruction(FALSE);

data = Mem[address, 4, AccType NORMAL];
X[t] = SignExtend(data, 64);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDRSW (literal) Page 245

LDRSW (register)

Load Register Signed Word (register) calculates an address from a base register value and an offset register value,
loads a word from memory, sign-extends it to form a 64-bit value, and writes it to a register. The offset register value
can be shifted left by 0 or 2 bits. For information about memory accesses, see Load/Store addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
|1 0]1 1 1]o]Jo0 of1 of1] Rm | option [S]|1 0] Rn | Rt |
size opc

LDRSW <Xt>, [<Xn|SP>, (<Wm>|<Xm>){, <extend> {<amount>}}]

if option<l> == 'O' then UNDEFINED; // sub-word index
ExtendType extend type = DecodeRegExtend(option);
integer shift = if S == '1' then 2 else 0;

Assembler Symbols

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Wm> When option<0> is set to 0, is the 32-bit name of the general-purpose index register, encoded in the
"Rm" field.

<Xm> V\Pf{hen f;)plfiion<0> is set to 1, is the 64-bit name of the general-purpose index register, encoded in the
"Rm" field.

<extend> Is the index extend/shift specifier, defaulting to LSL, and which must be omitted for the LSL option
when <amount> is omitted. encoded in “option”:

option <extend>

010 UXTW
011 LSL

110 SXTW
111 SXTX

<amount> Is the index shift amount, optional only when <extend> is not LSL. Where it is permitted to be optional,
it defaults to #0. It is encoded in “S”:

S <amount>
0 #0
1 #2

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);
integer m = UInt(Rm);

LDRSW (register) Page 246

Operation

bits(64) offset = ExtendReg(m, extend type, shift);
if HaveMTE2Ext() then
SetTagCheckedInstruction(TRUE);

bits(64) address;
bits(32) data;

if n == 31 then
CheckSPAlignment () ;
address = SP[];
else
address = X[n];

address = address + offset;

data = Mem[address, 4, AccType NORMAL];
X[t] = SignExtend(data, 64);

Operational information
If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDRSW (register) Page 247

LDSET, LDSETA, LDSETAL, LDSETL

Atomic bit set on word or doubleword in memory atomically loads a 32-bit word or 64-bit doubleword from memory,
performs a bitwise OR with the value held in a register on it, and stores the result back to memory. The value initially
loaded from memory is returned in the destination register.

¢ If the destination register is not one of WZR or XZR, LDSETA and LDSETAL load from memory with acquire

semantics.

¢ LDSETL and LDSETAL store to memory with release semantics.

¢ LDSET has neither acquire nor release semantics.
For more information about memory ordering semantics see Load-Acquire, Store-Release.
For information about memory accesses see Load/Store addressing modes.

This instruction is used by the alias STSET, STSETL..

Integer
(FEAT_LSE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
|1 x]1 1 1]o]Jo of[A[R[1] Rs loJo 1 1]0 0] Rn Rt |
size opc

LDSET, LDSETA, LDSETAL, Page 248
LDSETL g

32-bit LDSET (size == 10 && A == 0 && R == 0)
LDSET <Ws>, <Wt>, [<Xn|SP>]

32-bit LDSETA (size == 10 && A == 1 && R == 0)
LDSETA <Ws>, <Wt>, [<Xn|SP>]

32-bit LDSETAL (size == 10 && A == 1 && R == 1)
LDSETAL <Ws>, <Wt>, [<Xn|SP>]

32-bit LDSETL (size == 10 && A == 0 && R == 1)
LDSETL <Ws>, <Wt>, [<Xn|SP>]

64-bit LDSET (size == 11 && A == 0 && R == 0)
LDSET <Xs>, <Xt>, [<Xn|SP>]

64-bit LDSETA (size == 11 && A == 1 && R == 0)
LDSETA <Xs>, <Xt>, [<Xn|SP>]

64-bit LDSETAL (size == 11 && A == 1 && R == 1)
LDSETAL <Xs>, <Xt>, [<Xn|SP>]

64-bit LDSETL (size == 11 && A ==0 && R == 1)

LDSETL <Xs>, <Xt>, [<Xn|SP>]

if 'HaveAtomicExt() then UNDEFINED;

integer t = UInt(Rt);
integer n = UInt(Rn);
integer s = UInt(Rs);

integer datasize = 8 << Ulnt(size);

integer regsize = if datasize == 64 then 64 else 32;
AccType ldacctype = if A == '1' & Rt != '11111"' then AccType ORDEREDATOMICRW else AccType ATOMICRW;
AccType stacctype = if R == '1l' then AccType ORDEREDATOMICRW else AccType ATOMICRW;

boolean tag checked = n != 31;

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xt> Is the 64-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Alias Conditions

Alias Is preferred when
STSET, STSETL A=="'0" &% Rt == '11111"

LDSET, LDSETA, LDSETAL,

LDSETL Page 249

Operation

bits(64) address;
bits(datasize) value;
bits(datasize) data;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag checked);

value = X[s];

if n == 31 then
CheckSPAlignment () ;
address = SP[];

else
address = X[n];

data = MemAtomic(address, MemAtomicOp ORR, value, ldacctype, stacctype);

if t != 31 then
X[t] = ZeroExtend(data, regsize);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDSET, LDSETA, LDSETAL,

LDSETL Page 250

LDSETB, LDSETAB, LDSETALB, LDSETLB

Atomic bit set on byte in memory atomically loads an 8-bit byte from memory, performs a bitwise OR with the value
held in a register on it, and stores the result back to memory. The value initially loaded from memory is returned in the
destination register.

¢ If the destination register is not WZR, LDSETAB and LDSETALB load from memory with acquire semantics.

e LDSETLB and LDSETALB store to memory with release semantics.

¢ LDSETB has neither acquire nor release semantics.
For more information about memory ordering semantics see Load-Acquire, Store-Release.
For information about memory accesses see Load/Store addressing modes.

This instruction is used by the alias STSETB, STSETLB.

Integer
(FEAT_LSE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[0 0[1 1 1/0[0 O[A|R[1] Rs lo/o 1 1]/0 O] Rn Rt |
size opc

LDSETAB (A == 1 && R == 0)
LDSETAB <Ws>, <Wt>, [<Xn|SP>]
LDSETALB (A ==1 && R ==1)
LDSETALB <Ws>, <Wt>, [<Xn|SP>]
LDSETB (A == 0 && R == 0)
LDSETB <Ws>, <Wt>, [<Xn|SP>]
LDSETLB (A == 0 && R ==1)

LDSETLB <Ws>, <Wt>, [<Xn|SP>]

if 'HaveAtomicExt() then UNDEFINED;

integer t = UInt(Rt);

integer n = UInt(Rn);

integer s = UInt(Rs);

AccType ldacctype = if A == '1' & Rt != '11111' then AccType ORDEREDATOMICRW else AccType ATOMICRW;
AccType stacctype = if R == '1' then AccType ORDEREDATOMICRW else AccType ATOMICRW;

boolean tag checked = n != 31;

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Alias Conditions

Alias Is preferred when
STSETB, STSETLB A== "'0"&& Rt == '11111"

LDSETB, LDSETAB,

LDSETALB, LDSETLB Page 251

Operation

bits(64) address;
bits(8) value;
bits(8) data;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag checked);

value = X[s];

if n == 31 then
CheckSPAlignment () ;
address = SP[];

else
address = X[n];

data = MemAtomic(address, MemAtomicOp ORR, value, ldacctype, stacctype);

if t !'= 31 then
X[t] = ZeroExtend(data, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDSETB, LDSETAB,

LDSETALB, LDSETLB Page 252

LDSETH, LDSETAH, LDSETALH, LDSETLH

Atomic bit set on halfword in memory atomically loads a 16-bit halfword from memory, performs a bitwise OR with the
value held in a register on it, and stores the result back to memory. The value initially loaded from memory is returned

in the destination register.

¢ If the destination register is not WZR, LDSETAH and LDSETALH load from memory with acquire semantics.
e LDSETLH and LDSETALH store to memory with release semantics.
¢ LDSETH has neither acquire nor release semantics.

For more information about memory ordering semantics see Load-Acquire, Store-Release.
For information about memory accesses see Load/Store addressing modes.

This instruction is used by the alias STSETH, STSETLH.

Integer
(FEAT_LSE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

|0 1]1 1 1]o]Jo of[A[R[1] Rs

loJo 1 1]0 0] Rn Rt |

size
LDSETAH (A == 1 && R == 0)
LDSETAH <Ws>, <Wt>, [<Xn|SP>]
LDSETALH (A == 1 && R == 1)
LDSETALH <Ws>, <Wt>, [<Xn|SP>]
LDSETH (A == 0 && R == 0)
LDSETH <Ws>, <Wt>, [<Xn|SP>]
LDSETLH (A == 0 && R == 1)

LDSETLH <Ws>, <Wt>, [<Xn|SP>]

if 'HaveAtomicExt() then UNDEFINED;

opc

integer t = UInt(Rt);

integer n = UInt(Rn);

integer s = UInt(Rs);

AccType ldacctype = if A == '1' & Rt != '11111' then AccType ORDEREDATOMICRW else AccType ATOMICRW;
AccType stacctype = if R == '1' then AccType ORDEREDATOMICRW else AccType ATOMICRW;

boolean tag checked = n != 31;

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Alias Conditions

Alias Is preferred when

STSETH, STSETLH A== '0" && Rt == '11111"

LDSETALH, LDSETLH

LDSETH, LDSETAH, Page 253

Operation

bits(64) address;
bits(16) value;
bits(16) data;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag checked);

value = X[s];

if n == 31 then
CheckSPAlignment () ;
address = SP[];

else
address = X[n];

data = MemAtomic(address, MemAtomicOp ORR, value, ldacctype, stacctype);

if t !'= 31 then
X[t] = ZeroExtend(data, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDSETH, LDSETAH,

LDSETALH, LDSETLH Page 254

LDSMAX, LDSMAXA, LDSMAXAL, LDSMAXL

Atomic signed maximum on word or doubleword in memory atomically loads a 32-bit word or 64-bit doubleword from
memory, compares it against the value held in a register, and stores the larger value back to memory, treating the
values as signed numbers. The value initially loaded from memory is returned in the destination register.

¢ If the destination register is not one of WZR or XZR, LDSMAXA and LDSMAXAL load from memory with acquire
semantics.

¢ LDSMAXL and LDSMAXAL store to memory with release semantics.
¢ LDSMAX has neither acquire nor release semantics.

For more information about memory ordering semantics see Load-Acquire, Store-Release.
For information about memory accesses see Load/Store addressing modes.

This instruction is used by the alias STSMAX, STSMAXI..

Integer
(FEAT_LSE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
|1 x]1 1 1]o]Jo of[A[R[1] Rs lo]1 0 oo o] Rn Rt |
size opc

LDSMAX, LDSMAXA, Page 255
LDSMAXAL, LDSMAXL g

32-bit LDSMAX (size == 10 && A == 0 && R == 0)
LDSMAX <Ws>, <Wt>, [<Xn|SP>]

32-bit LDSMAXA (size == 10 && A == 1 && R == 0)
LDSMAXA <Ws>, <Wt>, [<Xn|SP>]

32-bit LDSMAXAL (size == 10 && A ==1 && R == 1)
LDSMAXAL <Ws>, <Wt>, [<Xn|SP>]

32-bit LDSMAXL (size == 10 && A == 0 && R == 1)
LDSMAXL <Ws>, <Wt>, [<Xn|SP>]

64-bit LDSMAX (size == 11 && A == 0 && R == 0)
LDSMAX <Xs>, <Xt>, [<Xn|SP>]

64-bit LDSMAXA (size == 11 && A == 1 && R == 0)
LDSMAXA <Xs>, <Xt>, [<Xn|SP>]

64-bit LDSMAXAL (size == 11 && A == 1 && R == 1)
LDSMAXAL <Xs>, <Xt>, [<Xn|SP>]

64-bit LDSMAXL (size == 11 && A == 0 && R == 1)

LDSMAXL <Xs>, <Xt>, [<Xn|SP>]

if 'HaveAtomicExt() then UNDEFINED;

integer t = UInt(Rt);
integer n = UInt(Rn);
integer s = UInt(Rs);

integer datasize = 8 << Ulnt(size);

integer regsize = if datasize == 64 then 64 else 32;
AccType ldacctype = if A == '1' & Rt != '11111"' then AccType ORDEREDATOMICRW else AccType ATOMICRW;
AccType stacctype = if R == '1l' then AccType ORDEREDATOMICRW else AccType ATOMICRW;

boolean tag checked = n != 31;

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xt> Is the 64-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Alias Conditions

Alias Is preferred when
STSMAX, STSMAXL A=="'0"'&& Rt == '11111"

LDSMAX, LDSMAXA,

LDSMAXAL, LDSMAXL Page 256

Operation

bits(64) address;
bits(datasize) value;
bits(datasize) data;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag checked);

value = X[s];

if n == 31 then
CheckSPAlignment () ;
address = SP[];

else
address = X[n];

data = MemAtomic(address, MemAtomicOp SMAX, value, ldacctype, stacctype);

if t != 31 then
X[t] = ZeroExtend(data, regsize);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDSMAX, LDSMAXA,

LDSMAXAL, LDSMAXL Page 257

LDSMAXB, LDSMAXAB, LDSMAXALB, LDSMAXLB

Atomic signed maximum on byte in memory atomically loads an 8-bit byte from memory, compares it against the value
held in a register, and stores the larger value back to memory, treating the values as signed numbers. The value
initially loaded from memory is returned in the destination register.

¢ If the destination register is not WZR, LDSMAXAB and LDSMAXALB load from memory with acquire semantics.
¢ LDSMAXLB and LDSMAXALB store to memory with release semantics.
¢ LDSMAXB has neither acquire nor release semantics.

For more information about memory ordering semantics see Load-Acquire, Store-Release.
For information about memory accesses see Load/Store addressing modes.

This instruction is used by the alias STSMAXB, STSMAXILB.

Integer
(FEAT_LSE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[0 0[1 1 1/0[0 O[A|R[1] Rs lo[1 0 0[O0 O] Rn Rt |
size opc

LDSMAXAB (A == 1 && R == 0)
LDSMAXAB <Ws>, <Wt>, [<Xn|SP>]
LDSMAXALB (A == 1 && R == 1)
LDSMAXALB <Ws>, <Wt>, [<Xn|SP>]
LDSMAXB (A == 0 && R == 0)
LDSMAXB <Ws>, <Wt>, [<Xn|SP>]
LDSMAXLB (A ==0 && R == 1)

LDSMAXLB <Ws>, <Wt>, [<Xn|SP>]

if 'HaveAtomicExt() then UNDEFINED;

integer t = UInt(Rt);

integer n = UInt(Rn);

integer s = UInt(Rs);

AccType ldacctype = if A == '1' & Rt != '11111' then AccType ORDEREDATOMICRW else AccType ATOMICRW;
AccType stacctype = if R == '1' then AccType ORDEREDATOMICRW else AccType ATOMICRW;

boolean tag checked = n != 31;

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Alias Conditions

Alias Is preferred when
STSMAXB, STSMAXLB A=="'0" & Rt == '11111"

LDSMAXB, LDSMAXAB,

LDSMAXALB, LDSMAXLB Page 258

Operation

bits(64) address;
bits(8) value;
bits(8) data;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag checked);

value = X[s];

if n == 31 then
CheckSPAlignment () ;
address = SP[];

else
address = X[n];

data = MemAtomic(address, MemAtomicOp SMAX, value, ldacctype, stacctype);

if t !'= 31 then
X[t] = ZeroExtend(data, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDSMAXB, LDSMAXAB,

LDSMAXALB, LDSMAXLB Page 259

LDSMAXH, LDSMAXAH, LDSMAXALH, LDSMAXLH

Atomic signed maximum on halfword in memory atomically loads a 16-bit halfword from memory, compares it against
the value held in a register, and stores the larger value back to memory, treating the values as signed numbers. The
value initially loaded from memory is returned in the destination register.

¢ If the destination register is not WZR, LDSMAXAH and LDSMAXALH load from memory with acquire semantics.

¢ LDSMAXLH and LDSMAXALH store to memory with release semantics.

¢ LDSMAXH has neither acquire nor release semantics.
For more information about memory ordering semantics see Load-Acquire, Store-Release.
For information about memory accesses see Load/Store addressing modes.

This instruction is used by the alias STSMAXH, STSMAXLH.

Integer
(FEAT_LSE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

|0 1]1 1 1]o]Jo of[A[R[1] Rs

lo]1 0 oo o] Rn Rt |

size
LDSMAXAH (A == 1 && R == 0)
LDSMAXAH <Ws>, <Wt>, [<Xn|SP>]
LDSMAXALH (A == 1 && R == 1)
LDSMAXALH <Ws>, <Wt>, [<Xn|SP>]
LDSMAXH (A == 0 && R == 0)
LDSMAXH <Ws>, <Wt>, [<Xn|SP>]
LDSMAXLH (A == 0 && R == 1)

LDSMAXLH <Ws>, <Wt>, [<Xn|SP>]
if 'HaveAtomicExt() then UNDEFINED;
UInt(Rt);

UInt(Rn);
UInt(Rs);

integer t
integer n
integer s

AccType ldacctype
AccType stacctype

opc

if A== '1" & Rt != '11111"' then AccType ORDEREDATOMICRW else AccType ATOMICRW;
if R == '1' then AccType ORDEREDATOMICRW else AccType ATOMICRW;

boolean tag checked = n != 31;

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Alias Conditions

Alias

Is preferred when

STSMAXH, STSMAXLH

LDSMAXH, LDSMAXAH,
LDSMAXALH, LDSMAXLH

A=="'0"&& Rt == '11111"

Page 260

Operation

bits(64) address;
bits(16) value;
bits(16) data;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag checked);

value = X[s];

if n == 31 then
CheckSPAlignment () ;
address = SP[];

else
address = X[n];

data = MemAtomic(address, MemAtomicOp SMAX, value, ldacctype, stacctype);

if t !'= 31 then
X[t] = ZeroExtend(data, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDSMAXH, LDSMAXAH,

LDSMAXALH, LDSMAXLH Page 261

LDSMIN, LDSMINA, LDSMINAL, LDSMINL

Atomic signed minimum on word or doubleword in memory atomically loads a 32-bit word or 64-bit doubleword from
memory, compares it against the value held in a register, and stores the smaller value back to memory, treating the
values as signed numbers. The value initially loaded from memory is returned in the destination register.

¢ If the destination register is not one of WZR or XZR, LDSMINA and LDSMINAL load from memory with acquire
semantics.

¢ LDSMINL and LDSMINAL store to memory with release semantics.
¢ LDSMIN has neither acquire nor release semantics.

For more information about memory ordering semantics see Load-Acquire, Store-Release.
For information about memory accesses see Load/Store addressing modes.

This instruction is used by the alias STSMIN, STSMINL.

Integer
(FEAT_LSE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
|1 x]1 1 1]o]Jo of[A[R[1] Rs o1 0 1]0 0] Rn Rt |
size opc

LDSMIN, LDSMINA, Page 262
LDSMINAL, LDSMINL g

32-bit LDSMIN (size == 10 && A == 0 && R == 0)
LDSMIN <Ws>, <Wt>, [<Xn|SP>]

32-bit LDSMINA (size == 10 && A == 1 && R == 0)
LDSMINA <Ws>, <Wt>, [<Xn|SP>]

32-bit LDSMINAL (size == 10 & A==1 && R == 1)
LDSMINAL <Ws>, <Wt>, [<Xn|SP>]

32-bit LDSMINL (size == 10 && A == 0 && R == 1)
LDSMINL <Ws>, <Wt>, [<Xn|SP>]

64-bit LDSMIN (size == 11 && A == 0 && R == 0)
LDSMIN <Xs>, <Xt>, [<Xn|SP>]

64-bit LDSMINA (size == 11 && A == 1 && R == 0)
LDSMINA <Xs>, <Xt>, [<Xn|SP>]

64-bit LDSMINAL (size == 11 && A == 1 && R == 1)
LDSMINAL <Xs>, <Xt>, [<Xn|SP>]

64-bit LDSMINL (size == 11 && A == 0 && R == 1)

LDSMINL <Xs>, <Xt>, [<Xn|SP>]

if 'HaveAtomicExt() then UNDEFINED;

integer t = UInt(Rt);
integer n = UInt(Rn);
integer s = UInt(Rs);

integer datasize = 8 << Ulnt(size);

integer regsize = if datasize == 64 then 64 else 32;
AccType ldacctype = if A == '1' & Rt != '11111"' then AccType ORDEREDATOMICRW else AccType ATOMICRW;
AccType stacctype = if R == '1l' then AccType ORDEREDATOMICRW else AccType ATOMICRW;

boolean tag checked = n != 31;

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xt> Is the 64-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Alias Conditions

Alias Is preferred when
STSMIN, STSMINL A=="'0" &% Rt == '11111"

LDSMIN, LDSMINA,

LDSMINAL, LDSMINL Page 263

Operation

bits(64) address;
bits(datasize) value;
bits(datasize) data;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag checked);

value = X[s];

if n == 31 then
CheckSPAlignment () ;
address = SP[];

else
address = X[n];

data = MemAtomic(address, MemAtomicOp SMIN, value, ldacctype, stacctype);

if t != 31 then
X[t] = ZeroExtend(data, regsize);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDSMIN, LDSMINA,

LDSMINAL, LDSMINL Page 264

LDSMINB, LDSMINAB, LDSMINALB, LDSMINLB

Atomic signed minimum on byte in memory atomically loads an 8-bit byte from memory, compares it against the value
held in a register, and stores the smaller value back to memory, treating the values as signed numbers. The value
initially loaded from memory is returned in the destination register.

¢ If the destination register is not WZR, LDSMINAB and LDSMINALB load from memory with acquire semantics.
¢ LDSMINLB and LDSMINALB store to memory with release semantics.
e LDSMINB has neither acquire nor release semantics.

For more information about memory ordering semantics see Load-Acquire, Store-Release.
For information about memory accesses see Load/Store addressing modes.

This instruction is used by the alias STSMINB, STSMINLB.

Integer
(FEAT_LSE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[0 0[1 1 1/0[0 O[A|R[1] Rs lo[1 0 1]/0 O] Rn Rt |
size opc

LDSMINAB (A == 1 && R == 0)
LDSMINAB <Ws>, <Wt>, [<Xn|SP>]
LDSMINALB (A == 1 && R ==1)
LDSMINALB <Ws>, <Wt>, [<Xn|SP>]
LDSMINB (A == 0 && R == 0)
LDSMINB <Ws>, <Wt>, [<Xn|SP>]
LDSMINLB (A ==0 & R ==1)

LDSMINLB <Ws>, <Wt>, [<Xn|SP>]

if 'HaveAtomicExt() then UNDEFINED;

integer t = UInt(Rt);

integer n = UInt(Rn);

integer s = UInt(Rs);

AccType ldacctype = if A == '1' & Rt != '11111' then AccType ORDEREDATOMICRW else AccType ATOMICRW;
AccType stacctype = if R == '1' then AccType ORDEREDATOMICRW else AccType ATOMICRW;

boolean tag checked = n != 31;

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Alias Conditions

Alias Is preferred when
STSMINB, STSMINLB A=="'0"&& Rt == '11111"

LDSMINB, LDSMINAB,

LDSMINALB, LDSMINLB Page 265

Operation

bits(64) address;
bits(8) value;
bits(8) data;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag checked);

value = X[s];

if n == 31 then
CheckSPAlignment () ;
address = SP[];

else
address = X[n];

data = MemAtomic(address, MemAtomicOp SMIN, value, ldacctype, stacctype);

if t !'= 31 then
X[t] = ZeroExtend(data, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDSMINB, LDSMINAB,

LDSMINALB, LDSMINLB Page 266

LDSMINH, LDSMINAH, LDSMINALH, LDSMINLH

Atomic signed minimum on halfword in memory atomically loads a 16-bit halfword from memory, compares it against
the value held in a register, and stores the smaller value back to memory, treating the values as signed numbers. The

value initially loaded from memory is returned in the destination register.
¢ If the destination register is not WZR, LDSMINAH and LDSMINALH load from memory with acquire semantics.
e LDSMINLH and LDSMINALH store to memory with release semantics.
¢ LDSMINH has neither acquire nor release semantics.

For more information about memory ordering semantics see Load-Acquire, Store-Release.
For information about memory accesses see Load/Store addressing modes.

This instruction is used by the alias STSMINH, STSMINLH.

Integer
(FEAT_LSE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

|0 1]1 1 1]o]Jo of[A[R[1] Rs

loJ1 0 1]0 0] Rn Rt |

size
LDSMINAH (A == 1 && R == 0)
LDSMINAH <Ws>, <Wt>, [<Xn|SP>]
LDSMINALH (A == 1 && R == 1)
LDSMINALH <Ws>, <Wt>, [<Xn|SP>]
LDSMINH (A == 0 && R == 0)
LDSMINH <Ws>, <Wt>, [<Xn|SP>]
LDSMINLH (A == 0 && R ==1)

LDSMINLH <Ws>, <Wt>, [<Xn|SP>]
if 'HaveAtomicExt() then UNDEFINED;
UInt(Rt);

UInt(Rn);
UInt(Rs);

integer t
integer n
integer s

AccType ldacctype
AccType stacctype

opc

if A== '1" & Rt != '11111"' then AccType ORDEREDATOMICRW else AccType ATOMICRW;
if R == '1' then AccType ORDEREDATOMICRW else AccType ATOMICRW;

boolean tag checked = n != 31;

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Alias Conditions

Alias

Is preferred when

STSMINH, STSMINLH

LDSMINH, LDSMINAH,
LDSMINALH, LDSMINLH

A=="'0" & Rt == '"11111"

Page 267

Operation

bits(64) address;
bits(16) value;
bits(16) data;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag checked);

value = X[s];

if n == 31 then
CheckSPAlignment () ;
address = SP[];

else
address = X[n];

data = MemAtomic(address, MemAtomicOp SMIN, value, ldacctype, stacctype);

if t !'= 31 then
X[t] = ZeroExtend(data, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDSMINH, LDSMINAH,

LDSMINALH, LDSMINLH Page 268

LDTR

Load Register (unprivileged) loads a word or doubleword from memory, and writes it to a register. The address that is
used for the load is calculated from a base register and an immediate offset.

Memory accesses made by the instruction behave as if the instruction was executed at ELO if the Effective value of
PSTATE.UAO is 0 and either:

¢ The instruction is executed at EL1.
¢ The instruction is executed at EL2 when the Effective value of HCR EL2.{E2H, TGE} is {1, 1}.

Otherwise, the memory access operates with the restrictions determined by the Exception level at which the
instruction is executed. For information about memory accesses, see Load/Store addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[1 x[1 1 1]/0[0 0[O0 1]0] imm9 [1 0] Rn | Rt |
size opc

32-bit (size == 10)
LDTR <Wt>, [<Xn|SP>{, #<simm>}]
64-bit (size == 11)

LDTR <Xt>, [<Xn|SP>{, #<simm>}]

integer scale = Ulnt(size);
bits(64) offset = SignExtend(imm9, 64);

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.
<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.
<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded in

the "imm9" field.

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);
unpriv_at ell = PSTATE.EL == EL1 && ! (EL2Enabled() && HaveNVExt() && HCR EL2.<NV,NV1> == '11');
unpriv_at el2 = PSTATE.EL == EL2 && HaveVirtHostExt() && HCR EL2.<E2H,TGE> == '11‘';
user_access_override = HaveUAOExt() && PSTATE.UAO == '1‘';
if luser _access override && (unpriv_at ell || unpriv_at el2) then
acctype = AccType UNPRIV;
else
acctype = AccType NORMAL;
integer regsize;
regsize = if size == '1l1l' then 64 else 32;

integer datasize = 8 << scale;
boolean tag checked = n != 31;

LDTR Page 269

Operation

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag checked);

bits(64) address;
bits(datasize) data;

if n == 31 then
CheckSPAlignment () ;
address = SP[];
else
address = X[n];

address = address + offset;

Mem[address, datasize DIV 8, acctypel;
ZeroExtend(data, regsize);

data
X[t]

Operational information
If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDTR Page 270

LDTRB

Load Register Byte (unprivileged) loads a byte from memory, zero-extends it, and writes the result to a register. The
address that is used for the load is calculated from a base register and an immediate offset.

Memory accesses made by the instruction behave as if the instruction was executed at ELO if the Effective value of
PSTATE.UAO is 0 and either:

¢ The instruction is executed at EL1.
¢ The instruction is executed at EL2 when the Effective value of HCR EL2.{E2H, TGE} is {1, 1}.

Otherwise, the memory access operates with the restrictions determined by the Exception level at which the
instruction is executed. For information about memory accesses, see Load/Store addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[0 0[]1 1 1]/0[0 0[O0 1]0] imm9 [1 0] Rn | Rt |
size opc

LDTRB <Wt>, [<Xn|SP>{, #<simm>}]

bits(64) offset = SignExtend(imm9, 64);

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.
<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.
<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded in

the "imm9" field.

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);
unpriv_at ell = PSTATE.EL == EL1 && !(EL2Enabled() && HaveNVExt() && HCR EL2.<NV,NV1> == '11');
unpriv_at el2 = PSTATE.EL == EL2 && HaveVirtHostExt() && HCR EL2.<E2H,TGE> == '11°';
user_access override = HaveUAOExt() && PSTATE.UAQO == '1';
if luser access override && (unpriv_at ell || unpriv_at el2) then
acctype = AccType UNPRIV;

else
acctype = AccType NORMAL;

boolean tag checked = n != 31;
Operation

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag checked);

bits(64) address;
bits(8) data;

if n == 31 then
CheckSPAlignment () ;
address = SP[];
else
address = X[n];

address = address + offset;

data
X[t]

Mem[address, 1, acctypel;
ZeroExtend(data, 32);

LDTRB Page 271

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDTRB Page 272

LDTRH

Load Register Halfword (unprivileged) loads a halfword from memory, zero-extends it, and writes the result to a
register. The address that is used for the load is calculated from a base register and an immediate offset.

Memory accesses made by the instruction behave as if the instruction was executed at ELO if the Effective value of
PSTATE.UAO is 0 and either:

¢ The instruction is executed at EL1.
¢ The instruction is executed at EL2 when the Effective value of HCR EL2.{E2H, TGE} is {1, 1}.

Otherwise, the memory access operates with the restrictions determined by the Exception level at which the
instruction is executed. For information about memory accesses, see Load/Store addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[0 1[1 1 1]/0[0 0[O0 1]0] imm9 [1 0] Rn | Rt |
size opc

LDTRH <Wt>, [<Xn|SP>{, #<simm>}]

bits(64) offset = SignExtend(imm9, 64);

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.
<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.
<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded in

the "imm9" field.

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);
unpriv_at ell = PSTATE.EL == EL1 && !(EL2Enabled() && HaveNVExt() && HCR EL2.<NV,NV1> == '11');
unpriv_at el2 = PSTATE.EL == EL2 && HaveVirtHostExt() && HCR EL2.<E2H,TGE> == '11°';
user_access override = HaveUAOExt() && PSTATE.UAQO == '1';
if luser access override && (unpriv_at ell || unpriv_at el2) then
acctype = AccType UNPRIV;

else
acctype = AccType NORMAL;

boolean tag checked = n != 31;
Operation

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag checked);

bits(64) address;
bits(16) data;

if n == 31 then
CheckSPAlignment () ;
address = SP[];
else
address = X[n];

address = address + offset;

data
X[t]

Mem[address, 2, acctypel;
ZeroExtend(data, 32);

LDTRH Page 273

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDTRH Page 274

LDTRSB

Load Register Signed Byte (unprivileged) loads a byte from memory, sign-extends it to 32 bits or 64 bits, and writes
the result to a register. The address that is used for the load is calculated from a base register and an immediate
offset.

Memory accesses made by the instruction behave as if the instruction was executed at ELO if the Effective value of
PSTATE.UAO is 0 and either:

¢ The instruction is executed at EL1.
¢ The instruction is executed at EL2 when the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}.

Otherwise, the memory access operates with the restrictions determined by the Exception level at which the
instruction is executed. For information about memory accesses, see Load/Store addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[0 0[]1 1 1]0[0 01 x][O] imm9 [1 0] Rn | Rt |
size opc

32-bit (opc == 11)
LDTRSB <Wt>, [<Xn|SP>{, #<simm>}]
64-bit (opc == 10)

LDTRSB <Xt>, [<Xn|SP>{, #<simm>}]

bits(64) offset = SignExtend(imm9, 64);

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.
<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.
<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded in

the "imm9" field.

LDTRSB Page 275

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);
unpriv_at ell = PSTATE.EL == EL1 && ! (EL2Enabled() && HaveNVExt() && HCR EL2.<NV,NV1> == '11');
unpriv_at el2 = PSTATE.EL == EL2 && HaveVirtHostExt() && HCR EL2.<E2H,TGE> == '11‘';
user_access _override = HaveUAOExt() && PSTATE.UAO == '1‘';
if luser _access override && (unpriv_at ell || unpriv_at el2) then
acctype = AccType UNPRIV;

else
acctype = AccType NORMAL;

MemOp memop;
boolean signed;

integer regsize;

if opc<l> == '0Q' then
// store or zero-extending load
memop = if opc<0@> == '1' then MemOp LOAD else MemOp STORE;

regsize = 32;
signed = FALSE;
else
// sign-extending load
memop = MemOp LOAD;
regsize = if opc<0> == '1' then 32 else 64;
signed = TRUE;

boolean tag checked = memop != MemOp PREFETCH && (n != 31);

Operation

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag checked);

bits(64) address;
bits(8) data;

if n == 31 then
if memop != MemOp PREFETCH then CheckSPAlignment();
address = SP[];

else
address = X[n];

address = address + offset;

case memop of

when MemOp STORE
data = X[t];
Mem[address, 1, acctype] = data;

when MemOp_ LOAD
data = Mem[address, 1, acctypel;

if signed then

X[t] = SignExtend(data, regsize);
else

X[t] = ZeroExtend(data, regsize);

when MemOp PREFETCH
Prefetch(address, t<4:0>);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDTRSB Page 276

LDTRSH

Load Register Signed Halfword (unprivileged) loads a halfword from memory, sign-extends it to 32 bits or 64 bits, and
writes the result to a register. The address that is used for the load is calculated from a base register and an
immediate offset.

Memory accesses made by the instruction behave as if the instruction was executed at ELO if the Effective value of
PSTATE.UAO is 0 and either:

¢ The instruction is executed at EL1.
¢ The instruction is executed at EL2 when the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}.

Otherwise, the memory access operates with the restrictions determined by the Exception level at which the
instruction is executed. For information about memory accesses, see Load/Store addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[0 1]1 1 1]/0[0 01 x][O] imm9 [1 0] Rn | Rt |
size opc

32-bit (opc == 11)
LDTRSH <Wt>, [<Xn|SP>{, #<simm>}]
64-bit (opc == 10)

LDTRSH <Xt>, [<Xn|SP>{, #<simm>}]

bits(64) offset = SignExtend(imm9, 64);

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.
<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.
<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded in

the "imm9" field.

LDTRSH Page 277

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);
unpriv_at ell = PSTATE.EL == EL1 && ! (EL2Enabled() && HaveNVExt() && HCR EL2.<NV,NV1> == '11');
unpriv_at el2 = PSTATE.EL == EL2 && HaveVirtHostExt() && HCR EL2.<E2H,TGE> == '11‘';
user_access _override = HaveUAOExt() && PSTATE.UAO == '1‘';
if luser _access override && (unpriv_at ell || unpriv_at el2) then
acctype = AccType UNPRIV;

else
acctype = AccType NORMAL;

MemOp memop;
boolean signed;

integer regsize;

if opc<l> == '0Q' then
// store or zero-extending load
memop = if opc<0@> == '1' then MemOp LOAD else MemOp STORE;

regsize = 32;
signed = FALSE;
else
// sign-extending load
memop = MemOp LOAD;
regsize = if opc<0> == '1' then 32 else 64;
signed = TRUE;

boolean tag checked = memop != MemOp PREFETCH && (n != 31);

Operation

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag checked);

bits(64) address;
bits(16) data;

if n == 31 then
if memop != MemOp PREFETCH then CheckSPAlignment();
address = SP[];

else
address = X[n];

address = address + offset;

case memop of

when MemOp STORE
data = X[t];
Mem[address, 2, acctype] = data;

when MemOp_ LOAD
data = Mem[address, 2, acctypel;

if signed then

X[t] = SignExtend(data, regsize);
else

X[t] = ZeroExtend(data, regsize);

when MemOp PREFETCH
Prefetch(address, t<4:0>);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDTRSH Page 278

LDTRSW

Load Register Signed Word (unprivileged) loads a word from memory, sign-extends it to 64 bits, and writes the result
to a register. The address that is used for the load is calculated from a base register and an immediate offset.
Memory accesses made by the instruction behave as if the instruction was executed at ELO if the Effective value of
PSTATE.UAO is 0 and either:

¢ The instruction is executed at EL1.
¢ The instruction is executed at EL2 when the Effective value of HCR EL2.{E2H, TGE} is {1, 1}.

Otherwise, the memory access operates with the restrictions determined by the Exception level at which the
instruction is executed. For information about memory accesses, see Load/Store addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[1 0[1 1 1]/0[0 01 00O imm9 [1 0] Rn | Rt |
size opc

LDTRSW <Xt>, [<Xn|SP>{, #<simm>}]

bits(64) offset = SignExtend(imm9, 64);

Assembler Symbols

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.
<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.
<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded in

the "imm9" field.

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);
unpriv_at ell = PSTATE.EL == EL1 && !(EL2Enabled() && HaveNVExt() && HCR EL2.<NV,NV1> == '11');
unpriv_at el2 = PSTATE.EL == EL2 && HaveVirtHostExt() && HCR EL2.<E2H,TGE> == '11°';
user_access override = HaveUAOExt() && PSTATE.UAQO == '1';
if luser access override && (unpriv_at ell || unpriv_at el2) then
acctype = AccType UNPRIV;

else
acctype = AccType NORMAL;

boolean tag checked = n != 31;
Operation

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag checked);

bits(64) address;
bits(32) data;

if n == 31 then
CheckSPAlignment () ;
address = SP[];
else
address = X[n];

address = address + offset;

data = Mem[address, 4, acctypel];
X[t] = SignExtend(data, 64);

LDTRSW Page 279

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDTRSW Page 280

LDUMAX, LDUMAXA, LDUMAXAL, LDUMAXL

Atomic unsigned maximum on word or doubleword in memory atomically loads a 32-bit word or 64-bit doubleword
from memory, compares it against the value held in a register, and stores the larger value back to memory, treating the
values as unsigned numbers. The value initially loaded from memory is returned in the destination register.

¢ If the destination register is not one of WZR or XZR, LDUMAXA and LDUMAXAL load from memory with acquire
semantics.

¢ LDUMAXL and LDUMAXAL store to memory with release semantics.
¢ LDUMAX has neither acquire nor release semantics.

For more information about memory ordering semantics see Load-Acquire, Store-Release.
For information about memory accesses see Load/Store addressing modes.

This instruction is used by the alias STUMAX, STUMAXL..

Integer
(FEAT_LSE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
|1 x]1 1 1]o]Jo of[A[R[1] Rs loJ1 1 oo o] Rn Rt |
size opc

LDUMAX, LDUMAXA, Page 281
LDUMAXAL, LDUMAXL g

32-bit LDUMAX (size == 10 && A == 0 && R == 0)
LDUMAX <Ws>, <Wt>, [<Xn|SP>]

32-bit LDUMAXA (size == 10 && A == 1 && R == 0)
LDUMAXA <Ws>, <Wt>, [<Xn|SP>]

32-bit LDUMAXAL (size == 10 & A==1 && R == 1)
LDUMAXAL <Ws>, <Wt>, [<Xn|SP>]

32-bit LDUMAXL (size == 10 && A == 0 && R == 1)
LDUMAXL <Ws>, <Wt>, [<Xn|SP>]

64-bit LDUMAX (size == 11 && A == 0 && R == 0)
LDUMAX <Xs>, <Xt>, [<Xn|SP>]

64-bit LDUMAXA (size == 11 && A == 1 && R == 0)
LDUMAXA <Xs>, <Xt>, [<Xn|SP>]

64-bit LDUMAXAL (size == 11 && A==1 && R ==1)
LDUMAXAL <Xs>, <Xt>, [<Xn]|SP>]

64-bit LDUMAXL (size == 11 && A==0 && R == 1)

LDUMAXL <Xs>, <Xt>, [<Xn|SP>]

if 'HaveAtomicExt() then UNDEFINED;

integer t = UInt(Rt);
integer n = UInt(Rn);
integer s = UInt(Rs);

integer datasize = 8 << Ulnt(size);

integer regsize = if datasize == 64 then 64 else 32;
AccType ldacctype = if A == '1' & Rt != '11111"' then AccType ORDEREDATOMICRW else AccType ATOMICRW;
AccType stacctype = if R == '1l' then AccType ORDEREDATOMICRW else AccType ATOMICRW;

boolean tag checked = n != 31;

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xt> Is the 64-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Alias Conditions

Alias Is preferred when

STUMAX, STUMAXL A== "'0"'" && Rt ==

LDUMAX, LDUMAXA,
LDUMAXAL, LDUMAXL

‘11111

Page 282

Operation

bits(64) address;
bits(datasize) value;
bits(datasize) data;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag checked);

value = X[s];

if n == 31 then
CheckSPAlignment () ;
address = SP[];

else
address = X[n];

data = MemAtomic(address, MemAtomicOp UMAX, value, ldacctype, stacctype);

if t != 31 then
X[t] = ZeroExtend(data, regsize);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDUMAX, LDUMAXA,

LDUMAXAL, LDUMAXL Page 283

LDUMAXB, LDUMAXAB, LDUMAXALB, LDUMAXLB

Atomic unsigned maximum on byte in memory atomically loads an 8-bit byte from memory, compares it against the
value held in a register, and stores the larger value back to memory, treating the values as unsigned numbers. The
value initially loaded from memory is returned in the destination register.

¢ If the destination register is not WZR, LDUMAXAB and LDUMAXALB load from memory with acquire semantics.

¢ LDUMAXLB and LDUMAXALB store to memory with release semantics.

¢ LDUMAXB has neither acquire nor release semantics.
For more information about memory ordering semantics see Load-Acquire, Store-Release.
For information about memory accesses see Load/Store addressing modes.

This instruction is used by the alias STUMAXB, STUMAXILB.

Integer
(FEAT_LSE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

|0 0]1 1 1]o]Jo of[A[R[1] Rs

loJ1 1 oo o] Rn Rt |

size
LDUMAXAB (A == 1 && R == 0)
LDUMAXAB <Ws>, <Wt>, [<Xn|SP>]
LDUMAXALB (A == 1 && R == 1)
LDUMAXALB <Ws>, <Wt>, [<Xn|SP>]
LDUMAXB (A == 0 && R == 0)
LDUMAXB <Ws>, <Wt>, [<Xn|SP>]
LDUMAXLB (A == 0 && R == 1)

LDUMAXLB <Ws>, <Wt>, [<Xn|SP>]
if 'HaveAtomicExt() then UNDEFINED;
UInt(Rt);

UInt(Rn);
UInt(Rs);

integer t
integer n
integer s

AccType ldacctype
AccType stacctype

opc

if A== '1" & Rt != '11111"' then AccType ORDEREDATOMICRW else AccType ATOMICRW;
if R == '1' then AccType ORDEREDATOMICRW else AccType ATOMICRW;

boolean tag checked = n != 31;

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Alias Conditions

Alias

Is preferred when

STUMAXB, STUMAXLB

LDUMAXB, LDUMAXAB,
LDUMAXALB, LDUMAXLB

A== "'0"&& Rt == '11111"

Page 284

Operation

bits(64) address;
bits(8) value;
bits(8) data;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag checked);

value = X[s];

if n == 31 then
CheckSPAlignment () ;
address = SP[];

else
address = X[n];

data = MemAtomic(address, MemAtomicOp UMAX, value, ldacctype, stacctype);

if t !'= 31 then
X[t] = ZeroExtend(data, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDUMAXB, LDUMAXAB,

LDUMAXALB, LDUMAXLB Page 285

LDUMAXH, LDUMAXAH, LDUMAXALH, LDUMAXLH

Atomic unsigned maximum on halfword in memory atomically loads a 16-bit halfword from memory, compares it
against the value held in a register, and stores the larger value back to memory, treating the values as unsigned
numbers. The value initially loaded from memory is returned in the destination register.

¢ If the destination register is not WZR, LDUMAXAH and LDUMAXALH load from memory with acquire semantics.

¢ LDUMAXLH and LDUMAXALH store to memory with release semantics.

¢ LDUMAXH has neither acquire nor release semantics.

For more information about memory ordering semantics see Load-Acquire, Store-Release.
For information about memory accesses see Load/Store addressing modes.

This instruction is used by the alias STUMAXH, STUMAXI.H.

Integer
(FEAT_LSE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
[0 1[1 1 1/0[0 O[A|R[1] Rs lo[1 1 0[O0 O] Rn Rt |
size opc

LDUMAXAH (A == 1 && R == 0)
LDUMAXAH <Ws>, <Wt>, [<Xn|SP>]
LDUMAXALH (A ==1 && R ==1)
LDUMAXALH <Ws>, <Wt>, [<Xn|SP>]
LDUMAXH (A == 0 && R == 0)
LDUMAXH <Ws>, <Wt>, [<Xn|SP>]
LDUMAXLH (A== 0 & R ==1)

LDUMAXLH <Ws>, <Wt>, [<Xn|SP>]

if 'HaveAtomicExt() then UNDEFINED;

integer t = UInt(Rt);

integer n = UInt(Rn);

integer s = UInt(Rs);

AccType ldacctype = if A == '1' & Rt != '11111' then AccType ORDEREDATOMICRW else AccType ATOMICRW;
AccType stacctype = if R == '1' then AccType ORDEREDATOMICRW else AccType ATOMICRW;

boolean tag checked = n != 31;

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Alias Conditions

Alias Is preferred when
STUMAXH, STUMAXLH A=="'0" & Rt == '11111"

LDUMAXH, LDUMAXAH,

LDUMAXALH, LDUMAXLH Page 286

Operation

bits(64) address;
bits(16) value;
bits(16) data;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag checked);

value = X[s];

if n == 31 then
CheckSPAlignment () ;
address = SP[];

else
address = X[n];

data = MemAtomic(address, MemAtomicOp UMAX, value, ldacctype, stacctype);

if t !'= 31 then
X[t] = ZeroExtend(data, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDUMAXH, LDUMAXAH,

LDUMAXALH, LDUMAXLH Page 287

LDUMIN, LDUMINA, LDUMINAL, LDUMINL

Atomic unsigned minimum on word or doubleword in memory atomically loads a 32-bit word or 64-bit doubleword
from memory, compares it against the value held in a register, and stores the smaller value back to memory, treating
the values as unsigned numbers. The value initially loaded from memory is returned in the destination register.

¢ If the destination register is not one of WZR or XZR, LDUMINA and LDUMINAL load from memory with acquire
semantics.

¢ LDUMINL and LDUMINAL store to memory with release semantics.
¢ LDUMIN has neither acquire nor release semantics.

For more information about memory ordering semantics see Load-Acquire, Store-Release.
For information about memory accesses see Load/Store addressing modes.

This instruction is used by the alias STUMIN, STUMINL.

Integer
(FEAT_LSE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
|1 x]1 1 1]o]Jo of[A[R[1] Rs o1 1 1]0 0] Rn Rt |
size opc

LDUMIN, LDUMINA, Page 288
LDUMINAL, LDUMINL g

32-bit LDUMIN (size == 10 && A == 0 && R == 0)
LDUMIN <Ws>, <Wt>, [<Xn|SP>]

32-bit LDUMINA (size == 10 && A == 1 && R == 0)
LDUMINA <Ws>, <Wt>, [<Xn|SP>]

32-bit LDUMINAL (size == 10 && A == 1 && R == 1)
LDUMINAL <Ws>, <Wt>, [<Xn]|SP>]

32-bit LDUMINL (size == 10 && A == 0 && R == 1)
LDUMINL <Ws>, <Wt>, [<Xn|SP>]

64-bit LDUMIN (size == 11 && A == 0 && R == 0)
LDUMIN <Xs>, <Xt>, [<Xn|SP>]

64-bit LDUMINA (size == 11 && A == 1 && R == 0)
LDUMINA <Xs>, <Xt>, [<Xn|SP>]

64-bit LDUMINAL (size == 11 && A == 1 && R == 1)
LDUMINAL <Xs>, <Xt>, [<Xn]|SP>]

64-bit LDUMINL (size == 11 && A == 0 && R == 1)

LDUMINL <Xs>, <Xt>, [<Xn|SP>]

if 'HaveAtomicExt() then UNDEFINED;

integer t = UInt(Rt);
integer n = UInt(Rn);
integer s = UInt(Rs);

integer datasize = 8 << Ulnt(size);

integer regsize = if datasize == 64 then 64 else 32;
AccType ldacctype = if A == '1' & Rt != '11111"' then AccType ORDEREDATOMICRW else AccType ATOMICRW;
AccType stacctype = if R == '1l' then AccType ORDEREDATOMICRW else AccType ATOMICRW;

boolean tag checked = n != 31;

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xt> Is the 64-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Alias Conditions

Alias Is preferred when
STUMIN, STUMINL A== "'0"&& Rt == '11111"

LDUMIN, LDUMINA,

LDUMINAL, LDUMINL Page 289

Operation

bits(64) address;
bits(datasize) value;
bits(datasize) data;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag checked);

value = X[s];

if n == 31 then
CheckSPAlignment () ;
address = SP[];

else
address = X[n];

data = MemAtomic(address, MemAtomicOp UMIN, value, ldacctype, stacctype);

if t != 31 then
X[t] = ZeroExtend(data, regsize);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDUMIN, LDUMINA,

LDUMINAL, LDUMINL Page 290

LDUMINB, LDUMINAB, LDUMINALB, LDUMINLB

Atomic unsigned minimum on byte in memory atomically loads an 8-bit byte from memory, compares it against the
value held in a register, and stores the smaller value back to memory, treating the values as unsigned numbers. The
value initially loaded from memory is returned in the destination register.

¢ If the destination register is not WZR, LDUMINAB and LDUMINALB load from memory with acquire semantics.

¢ LDUMINLB and LDUMINALB store to memory with release semantics.

¢ LDUMINB has neither acquire nor release semantics.
For more information about memory ordering semantics see Load-Acquire, Store-Release.
For information about memory accesses see Load/Store addressing modes.

This instruction is used by the alias STUMINB, STUMINLB.

Integer
(FEAT_LSE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

|0 0]1 1 1]o]Jo of[A[R[1] Rs

o1 1 1]0 0] Rn Rt |

size
LDUMINAB (A == 1 && R == 0)
LDUMINAB <Ws>, <Wt>, [<Xn|SP>]
LDUMINALB (A == 1 && R == 1)
LDUMINALB <Ws>, <Wt>, [<Xn|SP>]
LDUMINB (A == 0 && R == 0)
LDUMINB <Ws>, <Wt>, [<Xn|SP>]
LDUMINLB (A == 0 && R == 1)

LDUMINLB <Ws>, <Wt>, [<Xn|SP>]
if 'HaveAtomicExt() then UNDEFINED;
UInt(Rt);

UInt(Rn);
UInt(Rs);

integer t
integer n
integer s

AccType ldacctype
AccType stacctype

opc

if A== '1" & Rt != '11111"' then AccType ORDEREDATOMICRW else AccType ATOMICRW;
if R == '1' then AccType ORDEREDATOMICRW else AccType ATOMICRW;

boolean tag checked = n != 31;

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Alias Conditions

Alias

Is preferred when

STUMINB, STUMINLB

LDUMINB, LDUMINAB,
LDUMINALB, LDUMINLB

A=="'0"&& Rt == '11111"

Page 291

Operation

bits(64) address;
bits(8) value;
bits(8) data;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag checked);

value = X[s];

if n == 31 then
CheckSPAlignment () ;
address = SP[];

else
address = X[n];

data = MemAtomic(address, MemAtomicOp UMIN, value, ldacctype, stacctype);

if t !'= 31 then
X[t] = ZeroExtend(data, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDUMINB, LDUMINAB,

LDUMINALB, LDUMINLB Page 292

LDUMINH, LDUMINAH, LDUMINALH, LDUMINLH

Atomic unsigned minimum on halfword in memory atomically loads a 16-bit halfword from memory, compares it
against the value held in a register, and stores the smaller value back to memory, treating the values as unsigned

numbers. The value initially loaded from memory is returned in the destination register.
¢ If the destination register is not WZR, LDUMINAH and LDUMINALH load from memory with acquire semantics.
e LDUMINLH and LDUMINALH store to memory with release semantics.
¢ LDUMINH has neither acquire nor release semantics.

For more information about memory ordering semantics see Load-Acquire, Store-Release.
For information about memory accesses see Load/Store addressing modes.

This instruction is used by the alias STUMINH, STUMINLH.

Integer
(FEAT_LSE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

|0 1]1 1 1]o]Jo of[A[R[1] Rs

o1 1 1]0 0] Rn Rt |

size
LDUMINAH (A == 1 && R == 0)
LDUMINAH <Ws>, <Wt>, [<Xn|SP>]
LDUMINALH (A == 1 && R ==1)
LDUMINALH <Ws>, <Wt>, [<Xn|SP>]
LDUMINH (A == 0 && R == 0)
LDUMINH <Ws>, <Wt>, [<Xn|SP>]
LDUMINLH (A == 0 && R == 1)

LDUMINLH <Ws>, <Wt>, [<Xn]|SP>]
if 'HaveAtomicExt() then UNDEFINED;
UInt(Rt);

UInt(Rn);
UInt(Rs);

integer t
integer n
integer s

AccType ldacctype
AccType stacctype

opc

if A== '1" & Rt != '11111"' then AccType ORDEREDATOMICRW else AccType ATOMICRW;
if R == '1' then AccType ORDEREDATOMICRW else AccType ATOMICRW;

boolean tag checked = n != 31;

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Alias Conditions

Alias

Is preferred when

STUMINH, STUMINLH

LDUMINH, LDUMINAH,
LDUMINALH, LDUMINLH

A== "'0"&& Rt == '11111"

Page 293

Operation

bits(64) address;
bits(16) value;
bits(16) data;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag checked);

value = X[s];

if n == 31 then
CheckSPAlignment () ;
address = SP[];

else
address = X[n];

data = MemAtomic(address, MemAtomicOp UMIN, value, ldacctype, stacctype);

if t !'= 31 then
X[t] = ZeroExtend(data, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDUMINH, LDUMINAH,

LDUMINALH, LDUMINLH Page 294

LDUR

Load Register (unscaled) calculates an address from a base register and an immediate offset, loads a 32-bit word or
64-bit doubleword from memory, zero-extends it, and writes it to a register. For information about memory accesses,
see Load/Store addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
|1 x]1 1 1]o]Jo o0 1[0] imm9 [0 0] Rn | Rt |
size opc

32-bit (size == 10)
LDUR <Wt>, [<Xn|SP>{, #<simm>}]
64-bit (size == 11)

LDUR <Xt>, [<Xn|SP>{, #<simm>}]

integer scale = Ulnt(size);
bits(64) offset = SignExtend(imm9, 64);

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.
<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.
<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded in

the "imm9" field.

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);
integer regsize;

regsize = if size == '11' then 64 else 32;

integer datasize = 8 << scale;
boolean tag checked = n != 31;

Operation

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag checked);

bits(64) address;
bits(datasize) data;

if n == 31 then
CheckSPAlignment();
address = SP[];
else
address = X[n];

address = address + offset;

data
X[t]

Mem[address, datasize DIV 8, AccType NORMAL];
ZeroExtend(data, regsize);

LDUR Page 295

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDUR Page 296

LDURB

Load Register Byte (unscaled) calculates an address from a base register and an immediate offset, loads a byte from
memory, zero-extends it, and writes it to a register. For information about memory accesses, see Load/Store
addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
|0 0[1 1 1/0[0 0[O0 1]0] imm9 [0 O] Rn | Rt |
size opc

LDURB <Wt>, [<Xn|SP>{, #<simm>}]

bits(64) offset = SignExtend(imm9, 64);

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.
<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.
<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded in

the "imm9" field.

Shared Decode

UInt(Rn);
UInt(Rt);

integer n
integer t

boolean tag checked = n != 31;
Operation

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag checked);

bits(64) address;
bits(8) data;

if n == 31 then
CheckSPAlignment () ;
address = SP[];
else
address = X[n];

address = address + offset;

data = Mem[address, 1, AccType NORMAL];
X[t] = ZeroExtend(data, 32);

Operational information
If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDURB Page 297

LDURH

Load Register Halfword (unscaled) calculates an address from a base register and an immediate offset, loads a
halfword from memory, zero-extends it, and writes it to a register. For information about memory accesses, see Load/
Store addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[0 1[1 1 1/0[0 0[O0 1]0] imm9 [0 O] Rn | Rt |
size opc

LDURH <Wt>, [<Xn|SP>{, #<simm>}]

bits(64) offset = SignExtend(imm9, 64);

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.
<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.
<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded in

the "imm9" field.

Shared Decode

UInt(Rn);
UInt(Rt);

integer n
integer t

boolean tag checked = n != 31;
Operation

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag checked);

bits(64) address;
bits(16) data;

if n == 31 then
CheckSPAlignment () ;
address = SP[];
else
address = X[n];

address = address + offset;

data = Mem[address, 2, AccType NORMAL];
X[t] = ZeroExtend(data, 32);

Operational information
If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDURH Page 298

LDURSB

Load Register Signed Byte (unscaled) calculates an address from a base register and an immediate offset, loads a
signed byte from memory, sign-extends it, and writes it to a register. For information about memory accesses, see
Load/Store addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[0 0[1 1 1/0[0 01 x|O] imm9 [0 O] Rn | Rt |
size opc

32-bit (opc == 11)
LDURSB <Wt>, [<Xn|SP>{, #<simm>}]
64-bit (opc == 10)

LDURSB <Xt>, [<Xn|SP>{, #<simm>}]

bits(64) offset = SignExtend(imm9, 64);

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.
<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.
<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded in

the "imm9" field.

Shared Decode

integer n =
integer t =
MemQOp memop;
boolean signed;
integer regsize;

if opc<l> == '0' then
// store or zero-extending load
memop = if opc<@> == '1' then MemOp LOAD else MemOp STORE;
regsize = 32;
signed = FALSE;
else
// sign-extending load
memop = MemOp LOAD;
regsize = if opc<0> == '1l' then 32 else 64;
signed = TRUE;

boolean tag checked = memop '= MemOp PREFETCH && (n != 31);

LDURSB Page 299

Operation

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag checked);

bits(64) address;
bits(8) data;

if n == 31 then

if memop != MemOp PREFETCH then CheckSPAlignment();

address = SP[];
else
address = X[n];

address = address + offset;

case memop of
when MemOp STORE
data = X[t];
Mem[address, 1, AccType NORMAL] = data;

when MemOp LOAD
data = Mem[address, 1, AccType NORMAL];

if signed then

X[t] = SignExtend(data, regsize);
else

X[t] = ZeroExtend(data, regsize);

when MemOp PREFETCH
Prefetch(address, t<4:0>);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDURSB

Page 300

LDURSH

Load Register Signed Halfword (unscaled) calculates an address from a base register and an immediate offset, loads a
signed halfword from memory, sign-extends it, and writes it to a register. For information about memory accesses, see
Load/Store addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
|0 1]1 1 1]o]Jo0 o1 x[0] imm9 [0 0] Rn | Rt |
size opc

32-bit (opc == 11)
LDURSH <Wt>, [<Xn|SP>{, #<simm>}]
64-bit (opc == 10)

LDURSH <Xt>, [<Xn|SP>{, #<simm>}]

bits(64) offset = SignExtend(imm9, 64);

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.
<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.
<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded in

the "imm9" field.

Shared Decode

integer n =
integer t =
MemQOp memop;
boolean signed;
integer regsize;

if opc<l> == '0' then
// store or zero-extending load
memop = if opc<@> == '1' then MemOp LOAD else MemOp STORE;
regsize = 32;
signed = FALSE;
else
// sign-extending load
memop = MemOp LOAD;
regsize = if opc<0> == '1l' then 32 else 64;
signed = TRUE;

boolean tag checked = memop '= MemOp PREFETCH && (n != 31);

LDURSH Page 301

Operation

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag checked);

bits(64) address;
bits(16) data;

if n == 31 then

if memop != MemOp PREFETCH then CheckSPAlignment();

address = SP[];
else
address = X[n];

address = address + offset;

case memop of
when MemOp STORE
data = X[t];
Mem[address, 2, AccType NORMAL] = data;

when MemOp LOAD
data = Mem[address, 2, AccType NORMAL];

if signed then

X[t] = SignExtend(data, regsize);
else

X[t] = ZeroExtend(data, regsize);

when MemOp PREFETCH
Prefetch(address, t<4:0>);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDURSH

Page 302

LDURSW

Load Register Signed Word (unscaled) calculates an address from a base register and an immediate offset, loads a
signed word from memory, sign-extends it, and writes it to a register. For information about memory accesses, see
Load/Store addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
|1 0]1 1 1]o]0o o1 of0] imm9 [0 0] Rn | Rt |
size opc

LDURSW <Xt>, [<Xn|SP>{, #<simm>}]

bits(64) offset = SignExtend(imm9, 64);

Assembler Symbols

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.
<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.
<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded in

the "imm9" field.

Shared Decode

UInt(Rn);
UInt(Rt);

integer n
integer t

boolean tag checked = n != 31;
Operation

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag checked);

bits(64) address;
bits(32) data;

if n == 31 then
CheckSPAlignment () ;
address = SP[];
else
address = X[n];

address = address + offset;

data = Mem[address, 4, AccType NORMAL];
X[t] = SignExtend(data, 64);

Operational information
If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDURSW Page 303

LDXP

Load Exclusive Pair of Registers derives an address from a base register value, loads two 32-bit words or two 64-bit
doublewords from memory, and writes them to two registers. A 32-bit pair requires the address to be doubleword
aligned and is single-copy atomic at doubleword granularity. A 64-bit pair requires the address to be quadword aligned
and is single-copy atomic for each doubleword at doubleword granularity. The PE marks the physical address being
accessed as an exclusive access. This exclusive access mark is checked by Store Exclusive instructions. See
Synchronization and semaphores. For information about memory accesses see Load/Store addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[1]sz[0 0 1 0 0 ofO0f1]1[(1)(1)(1)(1)(1)]O] Rt2 | Rn | Rt |
L Rs o0

32-bit (sz == 0)
LDXP <Wtl>, <Wt2>, [<Xn|SP>{,#0}]
64-bit (sz == 1)

LDXP <Xtl>, <Xt2>, [<Xn|SP>{,#0}]

integer n = UInt(Rn);
integer t = UInt(Rt);
integer t2 = UInt(Rt2);

integer elsize = 32 << UInt(sz);
integer datasize = elsize * 2;
boolean tag checked = n != 31;

boolean rt _unknown = FALSE;

if t == t2 then
Constraint c¢ = ConstrainUnpredictable(Unpredictable LDPOVERLAP);
assert ¢ IN {Constraint UNKNOWN, Constraint UNDEF, Constraint NOP};

case c of
when Constraint UNKNOWN rt unknown = TRUE; // result is UNKNOWN
when Constraint UNDEF UNDEFINED;
when Constraint NOP EndOfInstruction();

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints on
UNPREDICTABLE behaviors, and particularly LDXP.

Assembler Symbols

<Wtl> Is the 32-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.
<Wt2> Is the 32-bit name of the second general-purpose register to be transferred, encoded in the "Rt2" field.
<Xtl> Is the 64-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.
<Xt2> Is the 64-bit name of the second general-purpose register to be transferred, encoded in the "Rt2" field.
<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

LDXP Page 304

Operation

bits(64) address;
bits(datasize) data;
constant integer dbytes = datasize DIV 8;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag checked);

if n == 31 then
CheckSPAlignment () ;
address = SP[];
else
address = X[n];

// Tell the Exclusives monitors to record a sequence of one or more atomic
// memory reads from virtual address range [address, address+dbytes-1].

// The Exclusives monitor will only be set if all the reads are from the
// same dbytes-aligned physical address, to allow for the possibility of
// an atomicity break if the translation is changed between reads.
AArch64.SetExclusiveMonitors(address, dbytes);

if rt _unknown then
// ConstrainedUNPREDICTABLE case
X[t] = bits(datasize) UNKNOWN; // In this case t = t2
elsif elsize == 32 then
// 32-bit load exclusive pair (atomic)
data = Mem[address, dbytes, AccType ATOMIC];
if BigEndian(AccType ATOMIC) then
X[t] = data<datasize-1l:elsize>;
X[t2] = data<elsize-1:0>;
else
X[t] = data<elsize-1:0>;
X[t2] = data<datasize-1l:elsize>;
else // elsize == 64
// 64-bit load exclusive pair (not atomic),
// but must be 128-bit aligned
if address != Align(address, dbytes) then

AArch64.Abort(address, AArch64.AlignmentFault(AccType ATOMIC, FALSE, FALSE));

X[t] = Mem[address, 8, AccType ATOMIC];
X[t2] = Mem[address+8, 8, AccType ATOMIC];

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDXP Page 305

LDXR

Load Exclusive Register derives an address from a base register value, loads a 32-bit word or a 64-bit doubleword
from memory, and writes it to a register. The memory access is atomic. The PE marks the physical address being
accessed as an exclusive access. This exclusive access mark is checked by Store Exclusive instructions. See
Synchronization and semaphores. For information about memory accesses see Load/Store addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
|1 x[0 01 0 0 ofof1]0((1)()()(D)(D]o]1)()(1)(1) (1) Rn | Rt |
size L Rs o0 Rt2

32-bit (size == 10)
LDXR <Wt>, [<Xn|SP>{,#0}]
64-bit (size == 11)

LDXR <Xt>, [<Xn|SP>{,#0}]

integer n
integer t

UInt(Rn);
UInt(Rt);

integer elsize = 8 << Ulnt(size);
integer regsize = if elsize == 64 then 64 else 32;
boolean tag checked = n != 31;

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.
<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.
<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.
Operation

bits(64) address;
bits(elsize) data;
constant integer dbytes = elsize DIV 8;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag checked);

if n == 31 then
CheckSPAlignment();
address = SP[];
else
address = X[n];

// Tell the Exclusives monitors to record a sequence of one or more atomic
// memory reads from virtual address range [address, address+dbytes-1].

// The Exclusives monitor will only be set if all the reads are from the
// same dbytes-aligned physical address, to allow for the possibility of
// an atomicity break if the translation is changed between reads.
AArch64.SetExclusiveMonitors(address, dbytes);

data
X[t]

Mem[address, dbytes, AccType ATOMIC];
ZeroExtend(data, regsize);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

LDXR Page 306

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDXR Page 307

LDXRB

Load Exclusive Register Byte derives an address from a base register value, loads a byte from memory, zero-extends it
and writes it to a register. The memory access is atomic. The PE marks the physical address being accessed as an
exclusive access. This exclusive access mark is checked by Store Exclusive instructions. See Synchronization and
semaphores. For information about memory accesses see Load/Store addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
|0 0[O0 0 1 0 0 ofof1]0((1)()()(D)(M]o]1)()(1) (1) (1) Rn | Rt |
size L Rs o0 Rt2

LDXRB <Wt>, [<Xn|SP>{,#0}]

UInt(Rn);
UInt(Rt);

integer n
integer t

boolean tag checked = n != 31;

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.
<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.
Operation

bits(64) address;
bits(8) data;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag checked);

if n == 31 then
CheckSPAlignment () ;
address = SP[];
else
address = X[n];

// Tell the Exclusives monitors to record a sequence of one or more atomic
// memory reads from virtual address range [address, address+dbytes-1].

// The Exclusives monitor will only be set if all the reads are from the
// same dbytes-aligned physical address, to allow for the possibility of
// an atomicity break if the translation is changed between reads.
AArch64.SetExclusiveMonitors(address, 1);

data
X[t]

Mem[address, 1, AccType ATOMIC];
ZeroExtend(data, 32);

Operational information
If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDXRB Page 308

LDXRH

Load Exclusive Register Halfword derives an address from a base register value, loads a halfword from memory, zero-
extends it and writes it to a register. The memory access is atomic. The PE marks the physical address being accessed
as an exclusive access. This exclusive access mark is checked by Store Exclusive instructions. See Synchronization and
semaphores. For information about memory accesses see Load/Store addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1[0 0 1 0 0 ofof1]0(1)()()(@)(D]o]1)()(1) (1) (1) Rn Rt |
size L Rs o0 Rt2

LDXRH <Wt>, [<Xn|SP>{,#0}]

UInt(Rn);
UInt(Rt);

integer n
integer t

boolean tag checked = n != 31;

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.
<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.
Operation

bits(64) address;
bits(16) data;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag checked);

if n == 31 then
CheckSPAlignment () ;
address = SP[];
else
address = X[n];

// Tell the Exclusives monitors to record a sequence of one or more atomic
// memory reads from virtual address range [address, address+dbytes-1].

// The Exclusives monitor will only be set if all the reads are from the
// same dbytes-aligned physical address, to allow for the possibility of
// an atomicity break if the translation is changed between reads.
AArch64.SetExclusiveMonitors(address, 2);

data
X[t]

Mem[address, 2, AccType ATOMIC];
ZeroExtend(data, 32);

Operational information
If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDXRH Page 309

LSL (register)

Logical Shift Left (register) shifts a register value left by a variable number of bits, shifting in zeros, and writes the
result to the destination register. The remainder obtained by dividing the second source register by the data size
defines the number of bits by which the first source register is left-shifted.

This is an alias of LSLV. This means:

e The encodings in this description are named to match the encodings of LSLV.
¢ The description of LSLV gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Isflof0[1 1 0 1 0 1 1 O] Rm |0 01 0/[0 O] Rn | Rd |
op2

32-bit (sf == 0)

LSL <Wd>, <Wn>, <Wm>
is equivalent to
LSLV <Wd>, <Wn>, <Wm>

and is always the preferred disassembly.
64-bit (sf == 1)

LSL <Xd>, <Xn>, <Xm>
is equivalent to
LSLV <Xd>, <Xn>, <Xm>

and is always the preferred disassembly.

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register holding a shift amount from 0 to 31 in
its bottom 5 bits, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register holding a shift amount from 0 to 63 in

its bottom 6 bits, encoded in the "Rm" field.

Operation
The description of LSIV gives the operational pseudocode for this instruction.
Operational information

If PSTATE.DIT is 1:
¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
¢ The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

LSL (register) Page 310

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LSL (register) Page 311

LSL (immediate)

Logical Shift Left (immediate) shifts a register value left by an immediate number of bits, shifting in zeros, and writes
the result to the destination register.

This is an alias of UBFM. This means:

¢ The encodings in this description are named to match the encodings of UBFM.
e The description of UBFM gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
Isf[1 0]1 0 0 1 1 O[N] immr | !=x11111 | Rn | Rd |
opc imms

32-bit (sf == 0 && N == 0 && imms != 011111)

LSL <Wd>, <Wn>, #<shift>
is equivalent to
UBFM <Wd>, <Wn>, #(-<shift> MOD 32), #(31-<shift>)

and is the preferred disassembly when imms + 1 == immr.
64-bit (sf == 1 && N == 1 && imms != 111111)

LSL <Xd>, <Xn>, #<shift>
is equivalent to
UBFM <Xd>, <Xn>, #(-<shift> MOD 64), #(63-<shift>)

and is the preferred disassembly when imms + 1 == immr.

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.
<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.
<shift> For the 32-bit variant: is the shift amount, in the range 0 to 31.

For the 64-bit variant: is the shift amount, in the range 0 to 63.

Operation
The description of UBFM gives the operational pseudocode for this instruction.
Operational information

If PSTATE.DIT is 1:

¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
* The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LSL (immediate) Page 312

LSLV

Logical Shift Left Variable shifts a register value left by a variable number of bits, shifting in zeros, and writes the
result to the destination register. The remainder obtained by dividing the second source register by the data size
defines the number of bits by which the first source register is left-shifted.

This instruction is used by the alias LSL (register).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Isflof0[1 1 0 1 0 1 1 O] Rm |0 01 0/0 O] Rn | Rd |
op2

32-bit (sf == 0)

LSLV <Wd>, <Wn>, <Wm>

64-bit (sf == 1)

LSLV <Xd>, <Xn>, <Xm>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer datasize = if sf == '1' then 64 else 32;

ShiftType shift type = DecodeShift(op2);

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register holding a shift amount from 0 to 31 in
its bottom 5 bits, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register holding a shift amount from 0 to 63 in

its bottom 6 bits, encoded in the "Rm" field.

Operation

bits(datasize) result;
bits(datasize) operand2 = X[m];

result = ShiftReg(n, shift type, UInt(operand2) MOD datasize);
X[d] = result;

Operational information

If PSTATE.DIT is 1:
¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
¢ The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LSLV Page 313

LSR (register)

Logical Shift Right (register) shifts a register value right by a variable number of bits, shifting in zeros, and writes the
result to the destination register. The remainder obtained by dividing the second source register by the data size
defines the number of bits by which the first source register is right-shifted.

This is an alias of LSRV. This means:

¢ The encodings in this description are named to match the encodings of LSRV.
e The description of LSRV gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
IsfloJ0]1 1 01 0 1 1 0] Rm |0 01 oJ]Oo 1] Rn | Rd |
op2

32-bit (sf == 0)

LSR <Wd>, <Wn>, <Wm>
is equivalent to
LSRV <Wd>, <Wn>, <Wm>

and is always the preferred disassembly.
64-bit (sf == 1)

LSR <Xd>, <Xn>, <Xm>
is equivalent to
LSRV <Xd>, <Xn>, <Xm>

and is always the preferred disassembly.

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register holding a shift amount from 0 to 31 in
its bottom 5 bits, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register holding a shift amount from 0 to 63 in

its bottom 6 bits, encoded in the "Rm" field.

Operation
The description of LSRV gives the operational pseudocode for this instruction.
Operational information

If PSTATE.DIT is 1:
¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
¢ The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

LSR (register) Page 314

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LSR (register) Page 315

LSR (immediate)

Logical Shift Right (immediate) shifts a register value right by an immediate number of bits, shifting in zeros, and
writes the result to the destination register.

This is an alias of UBFM. This means:

¢ The encodings in this description are named to match the encodings of UBFM.
e The description of UBFM gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
Isf[1 0]1 0 0 1 1 O[N] immr Ix 1 1 1 1 1] Rn | Rd |
opc imms

32-bit (sf == 0 && N == 0 && imms == 011111)

LSR <Wd>, <Wn>, #<shift>
is equivalent to
UBFM <Wd>, <Wn>, #<shift>, #31

and is always the preferred disassembly.
64-bit (sf == 1 && N == 1 && imms == 111111)

LSR <Xd>, <Xn>, #<shift>
is equivalent to
UBFM <Xd>, <Xn>, #<shift>, #63

and is always the preferred disassembly.

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.
<shift> For the 32-bit variant: is the shift amount, in the range 0 to 31, encoded in the "immr" field.

For the 64-bit variant: is the shift amount, in the range 0 to 63, encoded in the "immr" field.

Operation
The description of UBFM gives the operational pseudocode for this instruction.
Operational information

If PSTATE.DIT is 1:

¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
* The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LSR (immediate) Page 316

LSRV

Logical Shift Right Variable shifts a register value right by a variable number of bits, shifting in zeros, and writes the
result to the destination register. The remainder obtained by dividing the second source register by the data size
defines the number of bits by which the first source register is right-shifted.

This instruction is used by the alias LSR (register).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
IsfloJ0]1 1 0 1 0 1 1 0] Rm |0 01 oJ]Oo 1] Rn | Rd |
op2

32-bit (sf == 0)

LSRV <Wd>, <Wn>, <Wm>

64-bit (sf == 1)

LSRV <Xd>, <Xn>, <Xm>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer datasize = if sf == '1' then 64 else 32;

ShiftType shift type = DecodeShift(op2);

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register holding a shift amount from 0 to 31 in
its bottom 5 bits, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register holding a shift amount from 0 to 63 in

its bottom 6 bits, encoded in the "Rm" field.

Operation

bits(datasize) result;
bits(datasize) operand2 = X[m];

result = ShiftReg(n, shift type, UInt(operand2) MOD datasize);
X[d] = result;

Operational information

If PSTATE.DIT is 1:
¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
¢ The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LSRV Page 317

MADD

Multiply-Add multiplies two register values, adds a third register value, and writes the result to the destination

register.

This instruction is used by the alias MUL.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8

Isfl0 0[1 1 0 1 1[0 0 O]

[0]

32-bit (sf == 0)

MADD <Wd>, <Wn>, <Wm>, <Wa>

64-bit (sf == 1)

MADD <Xd>, <Xn>, <Xm>, <Xa>

integer d
integer n
integer m
integer a

integer destsize = if

Assembler Symbols

<Wd>

<Wn>

<Wm>

<Wa>

<Xd>

<Xn>

<Xm>

<Xa>

Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

o0

= '1l' then 64 else 32;

Is the 32-bit name of the first general-purpose source register holding the multiplicand, encoded in the

"Rn" field.

Is the 32-bit name of the second general-purpose source register holding the multiplier, encoded in the

"Rm" field.

Is the 32-bit name of the third general-purpose source register holding the addend, encoded in the "Ra"

field.

Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

Is the 64-bit name of the first general-purpose source register holding the multiplicand, encoded in the

"Rn" field.

Is the 64-bit name of the second general-purpose source register holding the multiplier, encoded in the

"Rm" field.

Is the 64-bit name of the third general-purpose source register holding the addend, encoded in the "Ra"

field.

Alias Conditions

Alias

Is preferred when

MUL

Operation

bits(destsize) operandl
bits(destsize) operand2
bits(destsize) operand3

integer result;

result = UInt(operand3) +

X[d] = result<destsize-1:0>;

(UInt(operandl) * UInt(operand2));

MADD

Page 318

Operational information

If PSTATE.DIT is 1:

¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
¢ The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MADD Page 319

MNEG

Multiply-Negate multiplies two register values, negates the product, and writes the result to the destination register.

This is an alias of MSUB. This means:

¢ The encodings in this description are named to match the encodings of MSUB.
e The description of MSUB gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
Isfl0 0]1 1 0 1 1[0 0 O] Rm [1]1 1 1 1 1] Rn | Rd |
o0 Ra

32-bit (sf == 0)

MNEG <Wd>, <Wn>, <Wm>
is equivalent to
MSUB <Wd>, <Wn>, <Wm>, WZR

and is always the preferred disassembly.
64-bit (sf == 1)

MNEG <Xd>, <Xn>, <Xm>
is equivalent to
MSUB <Xd>, <Xn>, <Xm>, XZR

and is always the preferred disassembly.

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register holding the multiplicand, encoded in the
"Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register holding the multiplier, encoded in the
"Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register holding the multiplicand, encoded in the
"Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register holding the multiplier, encoded in the
"Rm" field.

Operation

The description of MSUB gives the operational pseudocode for this instruction.
Operational information

If PSTATE.DIT is 1:

¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
¢ The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

MNEG Page 320

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MNEG Page 321

MOV (to/from SP)

Move between register and stack pointer

:Rd = Rn.

This is an alias of ADD (immediate). This means:

¢ The encodings in this description are named to match the encodings of ADD (immediate).
e The description of ADD (immediate) gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 1514 13 12 1110 9 8 7 6 5 4 3 2 1 0
Isflofo[1 0 0 0 1 0/0O/0O O O O O O O O OO O O] Rn | Rd |
op S sh imm12

32-bit (sf == 0)

MOV <Wd|WSP>, <Wn|WSP>
is equivalent to
ADD <Wd|WSP>, <Wn|WSP>, #0

and is the preferred disassembly when (Rd == '11111' || Rn == '11111"').
64-bit (sf == 1)

MOV <Xd|SP>, <Xn|SP>
is equivalent to
ADD <Xd|SP>, <Xn|SP>, #0

and is the preferred disassembly when (Rd == '11111' || Rn == '11111"').
Assembler Symbols

<Wd|WSP> Is the 32-bit name of the destination general-purpose register or stack pointer, encoded in the "Rd"
field.

<Wn|WSP> Is the 32-bit name of the source general-purpose register or stack pointer, encoded in the "Rn" field.

<Xd|SP> Is the 64-bit name of the destination general-purpose register or stack pointer, encoded in the "Rd"
field.

<Xn|SP> Is the 64-bit name of the source general-purpose register or stack pointer, encoded in the "Rn" field.

Operation

The description of ADD (immediate) gives the operational pseudocode for this instruction.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MOV (to/from SP) Page 322

MOV (inverted wide immediate)

Move (inverted wide immediate) moves an inverted 16-bit immediate value to a register.

This is an alias of MOVN. This means:

¢ The encodings in this description are named to match the encodings of MOVN.
e The description of MOVN gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
Isf][0 0]1 0 0 1 0 1] hw | imm16 | Rd |
opc

32-bit (sf == 0 && hw == 0x)

MOV <Wd>, #<imm>
is equivalent to
MOVN <Wd>, #<imml6>, LSL #<shift>

and is the preferred disassembly when ! (IsZero(imml6) && hw != '00') && ! IsOnes(imml6).
64-bit (sf == 1)

MOV <Xd>, #<imm>
is equivalent to
MOVN <Xd>, #<imml6>, LSL #<shift>

and is the preferred disassembly when ! (IsZero(imml6) && hw != '00').

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
<imm> For the 32-bit variant: is a 32-bit immediate, the bitwise inverse of which can be encoded in

"imm16:hw", but excluding 0xffff0000 and 0x000O0ffff

For the 64-bit variant: is a 64-bit immediate, the bitwise inverse of which can be encoded in
"imm16:hw".

<shift> For the 32-bit variant: is the amount by which to shift the immediate left, either 0 (the default) or 16,
encoded in the "hw" field as <shift>/16.

For the 64-bit variant: is the amount by which to shift the immediate left, either O (the default), 16, 32
or 48, encoded in the "hw" field as <shift>/16.

Operation
The description of MOVN gives the operational pseudocode for this instruction.
Operational information

If PSTATE.DIT is 1:

¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
¢ The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

MOV (inverted wide

immediate) Page 323

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MOV (inverted wide

immediate) Page 324

MOV (wide immediate)

Move (wide immediate) moves a 16-bit immediate value to a register.

This is an alias of MOVZ. This means:

¢ The encodings in this description are named to match the encodings of MOVZ.
¢ The description of MOVZ gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
Isf[1 0]1 0 0 1 0 1] hw | imm16 | Rd |
opc

32-bit (sf == 0 && hw == 0x)

MOV <Wd>, #<imm>
is equivalent to
MOVZ <Wd>, #<imml6>, LSL #<shift>

and is the preferred disassembly when ! (IsZero(imml6) && hw != '00').
64-bit (sf == 1)

MOV <Xd>, #<imm>
is equivalent to
MOVZ <Xd>, #<imml6>, LSL #<shift>

and is the preferred disassembly when ! (IsZero(imml6) && hw != '00').

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
<imm> For the 32-bit variant: is a 32-bit immediate which can be encoded in "imm16:hw".

For the 64-bit variant: is a 64-bit immediate which can be encoded in "imm16:hw".

<shift> For the 32-bit variant: is the amount by which to shift the immediate left, either 0 (the default) or 16,
encoded in the "hw" field as <shift>/16.

For the 64-bit variant: is the amount by which to shift the immediate left, either O (the default), 16, 32
or 48, encoded in the "hw" field as <shift>/16.

Operation
The description of MOVZ gives the operational pseudocode for this instruction.
Operational information

If PSTATE.DIT is 1:

¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
¢ The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MOV (wide immediate) Page 325

MOV (bitmask immediate)

Move (bitmask immediate) writes a bitmask immediate value to a register.
This is an alias of ORR (immediate). This means:

¢ The encodings in this description are named to match the encodings of ORR (immediate).
e The description of ORR (immediate) gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Isf[0 1[{1 0 0 1 0 O[N] immr | imms [1 1 1 1 1] Rd |
opc Rn

32-bit (sf == 0 && N == 0)

MOV <Wd|WSP>, #<imm>
is equivalent to
ORR <Wd|WSP>, WZR, #<imm>

and is the preferred disassembly when ! MoveWidePreferred(sf, N, imms, immr).
64-bit (sf == 1)

MOV <Xd|SP>, #<imm>
is equivalent to
ORR <Xd|SP>, XZR, #<imm>

and is the preferred disassembly when ! MoveWidePreferred(sf, N, imms, immr).

Assembler Symbols

<Wd|WSP> Is the 32-bit name of the destination general-purpose register or stack pointer, encoded in the "Rd"

field.

<Xd|SP> Is the 64-bit name of the destination general-purpose register or stack pointer, encoded in the "Rd"
field.

<imm> For the 32-bit variant: is the bitmask immediate, encoded in "imms:immr", but excluding values which

could be encoded by MOVZ or MOVN.

For the 64-bit variant: is the bitmask immediate, encoded in "N:imms:immr", but excluding values which
could be encoded by MOVZ or MOVN.

Operation
The description of ORR (immediate) gives the operational pseudocode for this instruction.
Operational information

If PSTATE.DIT is 1:

¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
* The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MOV (bitmask immediate) Page 326

MOV (register)

Move (register) copies the value in a source register to the destination register.

This is an alias of ORR (shifted register). This means:

¢ The encodings in this description are named to match the encodings of ORR (shifted register).
¢ The description of ORR (shifted register) gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Isflo0 1{0 1 0 1 0[O0 00| Rm |0 0 00O Of[1 1 1 1 1] Rd |
opc shift N imm6 Rn

32-bit (sf == 0)

MOV <Wd>, <Wm>
is equivalent to
ORR <Wd>, WZR, <Wm>

and is always the preferred disassembly.
64-bit (sf == 1)

MOV <Xd>, <Xm>
is equivalent to
ORR <Xd>, XZR, <Xm>

and is always the preferred disassembly.

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Wm> Is the 32-bit name of the general-purpose source register, encoded in the "Rm" field.
<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Xm> Is the 64-bit name of the general-purpose source register, encoded in the "Rm" field.
Operation

The description of ORR (shifted register) gives the operational pseudocode for this instruction.
Operational information

If PSTATE.DIT is 1:

¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
¢ The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MOV (register) Page 327

MOVK

Move wide with keep moves an optionally-shifted 16-bit immediate value into a register, keeping other bits unchanged.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
Isf[1 1]/1 0 0 1 0 1] hw | imm16 | Rd |
opc

32-bit (sf == 0 && hw == 0x)
MOVK <Wd>, #<imm>{, LSL #<shift>}
64-bit (sf == 1)

MOVK <Xd>, #<imm>{, LSL #<shift>}

integer d = UInt(Rd);

integer datasize = if sf == '1l' then 64 else 32;
integer pos;

if sf == '0' && hw<l> == '1' then UNDEFINED;
pos = UInt(hw:'0000');

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
<imm> Is the 16-bit unsigned immediate, in the range 0 to 65535, encoded in the "imm16" field.
<shift> For the 32-bit variant: is the amount by which to shift the immediate left, either 0 (the default) or 16,

encoded in the "hw" field as <shift>/16.

For the 64-bit variant: is the amount by which to shift the immediate left, either O (the default), 16, 32
or 48, encoded in the "hw" field as <shift>/16.

Operation

bits(datasize) result;

result = X[d];
result<pos+15:pos> = imml6;
X[d] = result;

Operational information

If PSTATE.DIT is 1:

¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
¢ The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MOVK Page 328

MOVN

Move wide with NOT moves the inverse of an optionally-shifted 16-bit immediate value to a register.

This instruction is used by the alias MOV (inverted wide immediate).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 6 5 4 3 0
Isf]0 0]1 0 0 1 0 1] hw | imm16 |
opc

32-bit (sf == 0 && hw == 0x)
MOVN <Wd>, #<imm>{, LSL #<shift>}
64-bit (sf == 1)

MOVN <Xd>, #<imm>{, LSL #<shift>}

integer d = UInt(Rd);

integer datasize = if sf == 'l' then 64 else 32;
integer pos;

if sf == '0' && hw<l> == '1' then UNDEFINED;
pos = UInt(hw:'0000');

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
<imm> Is the 16-bit unsigned immediate, in the range 0 to 65535, encoded in the "imm16" field.
<shift> For the 32-bit variant: is the amount by which to shift the immediate left, either 0 (the default) or 16,

encoded in the "hw" field as <shift>/16.
For the 64-bit variant: is the amount by which to shift the immediate left, either O (the default), 16, 32

or 48, encoded in the "hw" field as <shift>/16.

Alias Conditions

Alias of . Is preferred when
variant
MOV (inverted wide 64-bit ! (IsZero(imml6) && hw !=
immediate)
MOV (inverted wide 32-bit ! (IsZero(imml6) && hw != '00') && ! IsOnes(imml6)
immediate)
Operation

bits(datasize) result;
result = Zeros();
result<pos+15:pos> = imml6;

result = NOT(result);
X[d] = result;

Operational information

If PSTATE.DIT is 1:

¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.

MOVN

Page 329

o The values of the NZCV flags.
The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MOVN Page 330

MOVZ

Move wide with zero moves an optionally-shifted 16-bit immediate value to a register.

This instruction is used by the alias MOV (wide immediate).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Isf[1 0]1 0 0 1 0 1] hw | imm16 Rd |
opc
32-bit (sf == 0 && hw == 0x)
MOVZ <Wd>, #<imm>{, LSL #<shift>}
64-bit (sf == 1)
MOVZ <Xd>, #<imm>{, LSL #<shift>}
integer d = UInt(Rd);
integer datasize = if sf == 'l' then 64 else 32;
integer pos;
if sf == '0' && hw<l> == '1' then UNDEFINED;
pos = UInt(hw:'0000');
Assembler Symbols
<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
<imm> Is the 16-bit unsigned immediate, in the range 0 to 65535, encoded in the "imm16" field.
<shift> For the 32-bit variant: is the amount by which to shift the immediate left, either 0 (the default) or 16,

encoded in the "hw" field as <shift>/16.

For the 64-bit variant: is the amount by which to shift the immediate left, either O (the default), 16, 32

or 48, encoded in the "hw" field as <shift>/16.

Alias Conditions

Alias Is preferred when
MOV (wide immediate) I (IsZero(imml6) && hw != '00')
Operation

bits(datasize) result;
result = Zeros();

result<pos+15:pos> = imml6;
X[d] = result;

Operational information

If PSTATE.DIT is 1:

¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
¢ The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

MOVZ

Page 331

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MOVZ Page 332

MRS

Move System Register allows the PE to read an AArch64 System register into a general-purpose register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
1 1 01 01010 0[1[1[c0] opl | CRn [CRm [op2 | Rt |
L

MRS <Xt>, (<systemreg>|S<op0> <opl> <Cn> <Cm> <op2>)
AArch64.CheckSystemAccess('1':00, opl, CRn, CRm, op2, Rt, L);
integer t = UInt(Rt);

integer sys op0 2 + UInt(o0);

integer sys opl = UInt(opl);
integer sys op2 = UInt(op2);
integer sys crn = UInt(CRn);
integer sys crm = UInt(CRm);

Assembler Symbols

<Xt> Is the 64-bit name of the general-purpose destination register, encoded in the "Rt" field.

<systemreg> Is a System register name, encoded in the "00:0p1:CRn:CRm:op2".
The System register names are defined in 'AArch64 System Registers' in the System Register XML.

<op0> Is an unsigned immediate, encoded in “00”:

o0 <op0>

0 2

1 3
<opl> Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "opl" field.
<Cn> Is a name 'Cn', with 'n' in the range 0 to 15, encoded in the "CRn" field.
<Cm> Is a name 'Cm', with 'm' in the range 0 to 15, encoded in the "CRm" field.
<op2> Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "op2" field.
Operation

X[t] = AArch64.SysRegRead(sys opO, sys opl, sys crn, sys crm, Sys op2);

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MRS Page 333

MSR (immediate)

Move immediate value to Special Register moves an immediate value to selected bits of the PSTATE. For more
information, see Process state, PSTATE.

The bits that can be written by this instruction are:

PSTATE.D, PSTATE.A, PSTATE.I, PSTATE.F, and PSTATE.SP.
If FEAT SSBS is implemented, PSTATE.SSBS.

If FEAT PAN is implemented, PSTATE.PAN.

If FEAT UAO is implemented, PSTATE.UAO.

If FEAT DIT is implemented, PSTATE.DIT.

If FEAT MTE is implemented, PSTATE.TCO.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4
1 1 01 010 100[0[0 0] opl [0 1 0 0] CRm | op2 |1

—lw
53 IN)
[y
=)

MSR (immediate) Page 334

MSR <pstatefield>, #<imm>

if opl ==
if opl ==
if opl ==

‘000" && op2 == '000' then
‘000" && op2 == '001' then
‘000" && op2 == '010' then

AArch64.CheckSystemAccess('00', opl,
bits(2) min_ EL;

boolean need secure = FALSE;
case opl of
when '00x'
min EL = EL1;
when '010'
min EL = EL1;
when '011'
min EL = ELO;
when '100'
min EL = EL2;
when '101'
if 'HaveVirtHostExt() then
UNDEFINED;
min EL = EL2;
when '110'
min EL = EL3;
when '111'
min EL = EL1;

need secur

e

= TRUE;

if UInt(PSTATE.EL) < UInt(min EL) ||

UNDE

FINED;

PSTATEField field;

case opl
when

when

when

when

when

when
when
when

// Check that an AArch64 MSR/MRS access to the DAIF flags is permitted
if PSTATE.EL == ELO && field IN {PSTATEField DAIFSet, PSTATEField DAIFClr} then
|| SCTLR EL1.UMA == '0') ther

if !ELUsingAArch32(EL1) && ((EL2Enabled() && HCR EL2.<E2H,TGE> == '11')
if EL2Enabled() && 'ELUsingAArch32(EL2) && HCR _EL2.TGE == '1' then

:o0p2 of
'000 011'

if 'HaveUAOQOExt() then
UNDEFINED;
field = PSTATEField UAO;

‘000 100'

if 'HavePANExt() then

UNDEFINED;
field = PSTATEField PAN;
when '000 101' field = PSTATEField SP;

‘011 010°'

if 'HaveDITExt() then
UNDEFINED;
field = PSTATEField DIT;

‘011 011
UNDEFINED;
‘011 100'

if 'HaveMTEExt() then
UNDEFINED;
field = PSTATEField TCO;

‘011 110" field
‘011 111' field

‘011 001°'

if 'HaveSSBSExt() then

UNDEFINED;
field = PSTATEField SSBS;
otherwise UNDEFINED;

SEE "CFINV";

SEE "XAFLAG";
SEE "AXFLAG";

‘0100', CRm, op2, '11111°,

(need secure &&

PSTATEField DAIFSet;
PSTATEField DAIFClr;

AArch64.SystemAccessTrap(EL2, 0x18);

else

AArch64.SystemAccessTrap(EL1, 0x18);

IIsSecure()) then

MSR (immediate)

'0');

Page 335

Assembler Symbols

<pstatefield> Is a PSTATE field name, encoded in “opl:op2”:

opl op2 <pstatefield> Architectural Feature
000 00x SEE PSTATE -

000 010 SEE PSTATE -
000 011 UAO FEAT UAO
000 100 PAN FEAT PAN
000 101 SPSel -

000 11x RESERVED -

001 XXX RESERVED -

010 XXX RESERVED -

011 000 RESERVED -
011 001 SSBS FEAT SSBS

011 010 DIT FEAT DIT
011 011 RESERVED -
011 100 TCO FEAT MTE

011 101 RESERVED -
011 110 DAIFSet -
011 111 DAIFClr -
Ixx XXX RESERVED -

<imm> Is a 4-bit unsigned immediate, in the range 0 to 15, encoded in the "CRm" field.

Operation

case field of
when PSTATEField SSBS
PSTATE.SSBS = CRm<0>;
when PSTATEField SP
PSTATE.SP = CRm<0>;
when PSTATEField DAIFSet

PSTATE.D = PSTATE.D OR CRm<3>;
PSTATE.A = PSTATE.A OR CRm<2>;
PSTATE.I = PSTATE.I OR CRm<1>;
PSTATE.F = PSTATE.F OR CRm<0>;

when PSTATEField DAIFClr

PSTATE.D = PSTATE.D AND NOT(CRm<3>);
PSTATE.A = PSTATE.A AND NOT(CRm<2>);
PSTATE.I = PSTATE.I AND NOT(CRm<1>);
PSTATE.F = PSTATE.F AND NOT(CRm<0>);

when PSTATEField PAN
PSTATE.PAN = CRm<0>;
when PSTATEField UAO
PSTATE.UAO = CRm<0>;
when PSTATEField DIT
PSTATE.DIT = CRm<0>;
when PSTATEField TCO
PSTATE.TCO = CRm<0>;

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MSR (immediate) Page 336

MSR (register)
Move general-purpose register to System Register allows the PE to write an AArch64 System register from a general-

purpose register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
1 1 01 01010 0[0[1[c0] opl | CRn | CRm [op2 | Rt |
L

MSR (<systemreg>|S<op0> <opl> <Cn> <Cm> <op2>), <Xt>
AArch64.CheckSystemAccess('1':00, opl, CRn, CRm, op2, Rt, L);
integer t = UInt(Rt);

integer sys op0 2 + UInt(o0);

integer sys opl = UInt(opl);
integer sys op2 = UInt(op2);
integer sys crn = UInt(CRn);
integer sys crm = UInt(CRm);

Assembler Symbols

<systemreg> Is a System register name, encoded in the "00:0p1:CRn:CRm:op2".
The System register names are defined in 'AArch64 System Registers' in the System Register XML.

<op0> Is an unsigned immediate, encoded in “00”:

o0 <op0>

0 2

1 3
<opl> Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "op1" field.
<Cn> Is a name 'Cn', with 'n' in the range 0 to 15, encoded in the "CRn" field.
<Cm> Is a name 'Cm’', with 'm' in the range 0 to 15, encoded in the "CRm" field.
<op2> Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "op2" field.
<Xt> Is the 64-bit name of the general-purpose source register, encoded in the "Rt" field.
Operation

AArch64.SysRegWrite(sys op0O, sys opl, sys crn, sys crm, sys op2, X[t]);

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MSR (register) Page 337

MSUB

Multiply-Subtract multiplies two register values, subtracts the product from a third register value, and writes the
result to the destination register.

This instruction is used by the alias MNEG.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
Isfl0 0]1 1 0 1 1[0 0 O] Rm 1] Ra | Rn | Rd |
o0

32-bit (sf == 0)

MSUB <Wd>, <Wn>, <Wm>, <Wa>

64-bit (sf == 1)

MSUB <Xd>, <Xn>, <Xm>, <Xa>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer a = UInt(Ra);
integer destsize = if sf == '1' then 64 else 32;

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register holding the multiplicand, encoded in the
"Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register holding the multiplier, encoded in the
"Rm" field.

<Wa> Is the 32-bit name of the third general-purpose source register holding the minuend, encoded in the
"Ra" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register holding the multiplicand, encoded in the
"Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register holding the multiplier, encoded in the
"Rm" field.

<Xa> Is the 64-bit name of the third general-purpose source register holding the minuend, encoded in the
"Ra" field.

Alias Conditions

Alias Is preferred when
MNEG Ra == '11111"'
Operation

bits(destsize) operandl
bits(destsize) operand2
bits(destsize) operand3

nnnu
< X X
3

integer result;

result = UInt(operand3) (UInt(operandl) * UInt(operand2));
X[d] = result<destsize-1:0>;

MSUB Page 338

Operational information

If PSTATE.DIT is 1:

¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
¢ The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MSUB Page 339

MUL

Multiply

:Rd = Rn * Rm.

This is an alias of MADD. This means:

¢ The encodings in this description are named to match the encodings of MADD.
¢ The description of MADD gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
Isfl0 0]1 1 0 1 1[0 0 O] Rm loJ1 1 1 1 1] Rn | Rd |
o0 Ra

32-bit (sf == 0)

MUL <Wd>, <Wn>, <Wm>
is equivalent to
MADD <Wd>, <Wn>, <Wm>, WZR

and is always the preferred disassembly.
64-bit (sf == 1)

MUL <Xd>, <Xn>, <Xm>

is equivalent to

MADD <Xd>, <Xn>, <Xm>, XZR

and is always the preferred disassembly.

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register holding the multiplicand, encoded in the
"Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register holding the multiplier, encoded in the
"Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register holding the multiplicand, encoded in the
"Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register holding the multiplier, encoded in the
"Rm" field.

Operation

The description of MADD gives the operational pseudocode for this instruction.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MUL Page 340

MVN

Bitwise NOT writes the bitwise inverse of a register value to the destination register.

This is an alias of ORN (shifted register). This means:

¢ The encodings in this description are named to match the encodings of ORN (shifted register).
e The description of ORN (shifted register) gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
Isf]l0 1]0 1 0 1 ofshift[1] Rm | imm6 1 1 1 1 1] Rd |
opc N Rn

32-bit (sf == 0)

MVN <Wd>, <Wm>{, <shift> #<amount>}
is equivalent to
ORN <Wd>, WZR, <Wm>{, <shift> #<amount>}

and is always the preferred disassembly.
64-bit (sf == 1)

MVN <Xd>, <Xm>{, <shift> #<amount>}
is equivalent to
ORN <Xd>, XZR, <Xm>{, <shift> #<amount>}

and is always the preferred disassembly.

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Wm> Is the 32-bit name of the general-purpose source register, encoded in the "Rm" field.
<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xm> Is the 64-bit name of the general-purpose source register, encoded in the "Rm" field.
<shift> Is the optional shift to be applied to the final source, defaulting to LSL and encoded in “shift”:

shift <shift>
00 LSL
01 LSR
10 ASR
11 ROR

<amount> For the 32-bit variant: is the shift amount, in the range 0 to 31, defaulting to 0 and encoded in the
"imm6" field.

For the 64-bit variant: is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the
"imm6" field,

Operation

The description of ORN (shifted register) gives the operational pseudocode for this instruction.
Operational information

If PSTATE.DIT is 1:

¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.

MVN Page 341

o The values of the NZCV flags.
The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MVN Page 342

NEG (shifted register)

Negate (shifted register) negates an optionally-shifted register value, and writes the result to the destination register.

This is an alias of SUB (shifted register). This means:

e The encodings in this description are named to match the encodings of SUB (shifted register).
e The description of SUB (shifted register) gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
Isf][1]0]0 1 0 1 1[shift[0] Rm | imm6 1 1 1 1 1] Rd |
op S Rn

32-bit (sf == 0)

NEG <Wd>, <Wm>{, <shift> #<amount>}
is equivalent to
SUB <Wd>, WZR, <Wm> {, <shift> #<amount>}

and is always the preferred disassembly.
64-bit (sf == 1)

NEG <Xd>, <Xm>{, <shift> #<amount>}
is equivalent to
SUB <Xd>, XZR, <Xm> {, <shift> #<amount>}

and is always the preferred disassembly.

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Wm> Is the 32-bit name of the general-purpose source register, encoded in the "Rm" field.
<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Xm> Is the 64-bit name of the general-purpose source register, encoded in the "Rm" field.
<shift> Is the optional shift type to be applied to the second source operand, defaulting to LSL and encoded in
“shift”:
shift <shift>

00 LSL

01 LSR

10 ASR

11 RESERVED

<amount> For the 32-bit variant: is the shift amount, in the range 0 to 31, defaulting to 0 and encoded in the
"imm6" field.

For the 64-bit variant: is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the
"iImm6" field.

Operation

The description of SUB (shifted register) gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:
¢ The execution time of this instruction is independent of:

NEG (shifted register) Page 343

o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

NEG (shifted register) Page 344

NEGS

Negate, setting flags, negates an optionally-shifted register value, and writes the result to the destination register. It
updates the condition flags based on the result.

This is an alias of SUBS (shifted register). This means:

¢ The encodings in this description are named to match the encodings of SUBS (shifted register).
* The description of SUBS (shifted register) gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
Isf][1]1]0 1 0 1 1[shift[0] Rm | imm6 1 1 1 1 1] !=11111 |
op S Rn Rd

32-bit (sf == 0)

NEGS <Wd>, <Wm>{, <shift> #<amount>}
is equivalent to
SUBS <Wd>, WZR, <Wm> {, <shift> #<amount>}

and is always the preferred disassembly.
64-bit (sf == 1)

NEGS <Xd>, <Xm>{, <shift> #<amount>}
is equivalent to
SUBS <Xd>, XZR, <Xm> {, <shift> #<amount>}

and is always the preferred disassembly.

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Wm> Is the 32-bit name of the general-purpose source register, encoded in the "Rm" field.
<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Xm> Is the 64-bit name of the general-purpose source register, encoded in the "Rm" field.
<shift> Is the optional shift type to be applied to the second source operand, defaulting to LSL and encoded in
“shift”:
shift <shift>

00 LSL

01 LSR

10 ASR

11 RESERVED

<amount> For the 32-bit variant: is the shift amount, in the range 0 to 31, defaulting to 0 and encoded in the
"imm6" field.

For the 64-bit variant: is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the
"iImm6" field.

Operation

The description of SUBS (shifted register) gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:

NEGS Page 345

¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
¢ The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

NEGS Page 346

NGC

Negate with Carry negates the sum of a register value and the value of NOT (Carry flag), and writes the result to the
destination register.

This is an alias of SBC. This means:

¢ The encodings in this description are named to match the encodings of SBC.
¢ The description of SBC gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Isf[1/0[1 1 0 1 0 0 O O] Rm |0 0 00O Of[1 1 1 1 1] Rd |
op S Rn

32-bit (sf == 0)

NGC <wWd>, <Wm>
is equivalent to
SBC <Wd>, WZR, <Wm>

and is always the preferred disassembly.
64-bit (sf == 1)

NGC <Xd>, <Xm>
is equivalent to
SBC <Xd>, XZR, <Xm>

and is always the preferred disassembly.

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Wm> Is the 32-bit name of the general-purpose source register, encoded in the "Rm" field.
<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Xm> Is the 64-bit name of the general-purpose source register, encoded in the "Rm" field.
Operation

The description of SBC gives the operational pseudocode for this instruction.
Operational information

If PSTATE.DIT is 1:

¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
¢ The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

NGC Page 347

NGCS

Negate with Carry, setting flags, negates the sum of a register value and the value of NOT (Carry flag), and writes the
result to the destination register. It updates the condition flags based on the result.

This is an alias of SBCS. This means:

¢ The encodings in this description are named to match the encodings of SBCS.
¢ The description of SBCS gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
Isf[1]1]1 1 0 1 0 0 0 0] Rm]0 00O OO 0OJ]1 11 1 1] Rd |
op S Rn

32-bit (sf == 0)

NGCS <Wd>, <Wm>
is equivalent to
SBCS <Wd>, WZR, <Wm>

and is always the preferred disassembly.
64-bit (sf == 1)

NGCS <Xd>, <Xm>
is equivalent to
SBCS <Xd>, XZR, <Xm>

and is always the preferred disassembly.

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Wm> Is the 32-bit name of the general-purpose source register, encoded in the "Rm" field.
<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Xm> Is the 64-bit name of the general-purpose source register, encoded in the "Rm" field.
Operation

The description of SBCS gives the operational pseudocode for this instruction.
Operational information

If PSTATE.DIT is 1:

¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
¢ The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

NGCS Page 348

NOP

No Operation does nothing, other than advance the value of the program counter by 4. This instruction can be used for

instruction alignment purposes.

The timing effects of including a NOP instruction in a program are not guaranteed. It can increase execution time, leave

it unchanged, or even reduce it. Therefore, NOP instructions are not suitable for timing loops.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8

[1 1 01 01010o0[0[0O0[01 1[0 0 1 0[0 0 0 0]

7 6 5 4 3 2 1 O
0 00111 1 1]

CRm

NOP

// Empty.

Operation

// do nothing
Operational information

If PSTATE.DIT is 1:
¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

op2

* The response of this instruction to asynchronous exceptions does not vary based on:

o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

NOP

Page 349

ORN (shifted register)

Bitwise OR NOT (shifted register) performs a bitwise (inclusive) OR of a register value and the complement of an
optionally-shifted register value, and writes the result to the destination register.

This instruction is used by the alias MVN.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

Isf]0 1]0 1 0 1 ofshift[1] Rm imm6 | Rn | Rd |
opc N
32-bit (sf == 0)
ORN <Wd>, <Wn>, <Wm>{, <shift> #<amount>}
64-bit (sf == 1)
ORN <Xd>, <Xn>, <Xm>{, <shift> #<amount>}
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer datasize = if sf == '1l' then 64 else 32;
if sf == '0' && imm6<5> == '1' then UNDEFINED;
ShiftType shift type = DecodeShift(shift);
integer shift _amount = UInt(imm6);
Assembler Symbols
<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.
<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.
<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.
<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.
<shift> Is the optional shift to be applied to the final source, defaulting to LSL and encoded in “shift”:
shift <shift>
00 LSL
01 LSR
10 ASR
11 ROR

<amount> For the 32-bit variant: is the shift amount, in the range 0 to 31, defaulting to 0 and encoded in the

"imm6" field.

For the 64-bit variant: is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the

"imm6" field,

Alias Conditions

Alias Is preferred when

MVN Rn == '11111"'

ORN (shifted register)

Page 350

Operation

X[nl;
ShiftReg(m, shift type, shift amount);

bits(datasize) operandl
bits(datasize) operand2

operand2 = NOT(operand2);

result = operandl OR operand2;
X[d] = result;

Operational information

If PSTATE.DIT is 1:
* The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
* The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ORN (shifted register) Page 351

ORR (immediate)

Bitwise OR (immediate) performs a bitwise (inclusive) OR of a register value and an immediate register value, and

writes the result to the destination register.

This instruction is used by the alias MOV (bitmask immediate).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
Isfl0 1]1 0 0 1 0 O[N] immr | imms | Rn | Rd |
opc

32-bit (sf == 0 && N == 0)
ORR <Wd|WSP>, <Wn>, #<imm>
64-bit (sf == 1)

ORR <Xd|SP>, <Xn>, #<imm>

integer d = UInt(Rd);
integer n = UInt(Rn);

integer datasize = if sf == 'l' then 64 else 32;
bits(datasize) imm;
if sf == '0' & N !'= '0' then UNDEFINED;

(imm, -) = DecodeBitMasks(N, imms, immr, TRUE);

Assembler Symbols

<Wd|WSP> Is the 32-bit name of the destination general-purpose register or stack pointer, encoded in the "Rd"

field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<Xd|SP> Is the 64-bit name of the destination general-purpose register or stack pointer, encoded in the "Rd"
field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<imm> For the 32-bit variant: is the bitmask immediate, encoded in "imms:immr".

For the 64-bit variant: is the bitmask immediate, encoded in "N:imms:immr".

Alias Conditions

Alias Is preferred when
MOV (bitmask immediate) Rn == '11111' && ! MoveWidePreferred(sf, N, imms, immr)
Operation

bits(datasize) result;
bits(datasize) operandl = X[n];

result = operandl OR imm;
if d == 31 then

SP[] = result;
else

X[d] = result;

Operational information

If PSTATE.DIT is 1:
¢ The execution time of this instruction is independent of:

o The values of the data supplied in any of its registers.

ORR (immediate)

Page 352

o The values of the NZCV flags.
The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ORR (immediate) Page 353

ORR (shifted register)

Bitwise OR (shifted register) performs a bitwise (inclusive) OR of a register value and an optionally-shifted register
value, and writes the result to the destination register.

This instruction is used by the alias MOV (register).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
Isf]0 1]0 1 0 1 ofshift[0] Rm | imm6 | Rn | Rd |
opc N

32-bit (sf == 0)

ORR <Wd>, <Wn>, <Wm>{, <shift> #<amount>}

64-bit (sf == 1)

ORR <Xd>, <Xn>, <Xm>{, <shift> #<amount>}

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer datasize = if sf == '1l' then 64 else 32;
if sf == '0' && imm6<5> == '1' then UNDEFINED;
ShiftType shift type = DecodeShift(shift);
integer shift _amount = UInt(imm6);
Assembler Symbols
<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.
<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.
<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.
<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.
<shift> Is the optional shift to be applied to the final source, defaulting to LSL and encoded in “shift”:
shift <shift>
00 LSL
01 LSR
10 ASR
11 ROR
<amount> For the 32-bit variant: is the shift amount, in the range 0 to 31, defaulting to 0 and encoded in the
"imm6" field.
For the 64-bit variant: is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the
"imm6" field,

Alias Conditions

Alias Is preferred when
MOV (register) shift == '00' && imm6 == '000000' && Rn == '11111°

ORR (shifted register) Page 354

Operation

X[nl;
ShiftReg(m, shift type, shift amount);

bits(datasize) operandl
bits(datasize) operand2

result = operandl OR operand2;
X[d] = result;

Operational information

If PSTATE.DIT is 1:
* The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.

o The values of the NZCV flags.
* The response of this instruction to asynchronous exceptions does not vary based on:

o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ORR (shifted register) Page 355

PACDA, PACDZA

Pointer Authentication Code for Data address, using key A. This instruction computes and inserts a pointer
authentication code for a data address, using a modifier and key A.

The address is in the general-purpose register that is specified by <Xd>.

The modifier is:
« In the general-purpose register or stack pointer that is specified by <Xn|SP> for PACDA.
¢ The value zero, for PACDZA.

Integer
(FEAT_PAuth)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
[1]/1]/0o[1 1 0 1 0 1 1 0/0 0 0 0 1[0f[0]Z|[0 1 O] Rn | Rd |

PACDA (Z == 0)
PACDA <Xd>, <Xn|SP>
PACDZA (Z == 1 && Rn == 11111)

PACDZA <Xd>

boolean source is sp = FALSE;
integer d = UInt(Rd);
integer n = UInt(Rn);

if 'HavePACExt() then
UNDEFINED;

if Z == '0' then // PACDA

if n == 31 then source_is sp = TRUE;
else // PACDZA

if n != 31 then UNDEFINED;

Assembler Symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Xn|SP> Is the 64-bit name of the general-purpose source register or stack pointer, encoded in the "Rn" field.
Operation

if source is sp then

X[d] = AddPACDA(X[d], SP[]);
else

X[d] = AddPACDA(X[d], X[nl);

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PACDA, PACDZA Page 356

PACDB, PACDZB

Pointer Authentication Code for Data address, using key B. This instruction computes and inserts a pointer
authentication code for a data address, using a modifier and key B.

The address is in the general-purpose register that is specified by <Xd>.

The modifier is:
¢ In the general-purpose register or stack pointer that is specified by <Xn|SP> for PACDB.
¢ The value zero, for PACDZB.

Integer
(FEAT_PAuth)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
[1]1]0J1 1 01 0 1 1 0[0 000 1[0f[0[Z]0 1 1] Rn | Rd |

PACDB (Z == 0)
PACDB <Xd>, <Xn|SP>
PACDZB (Z == 1 && Rn == 11111)

PACDZB <Xd>

boolean source is sp = FALSE;
integer d = UInt(Rd);
integer n = UInt(Rn);

if 'HavePACExt() then
UNDEFINED;

if Z == '0' then // PACDB

if n == 31 then source_is sp = TRUE;
else // PACDZB

if n != 31 then UNDEFINED;

Assembler Symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Xn|SP> Is the 64-bit name of the general-purpose source register or stack pointer, encoded in the "Rn" field.
Operation

if source is sp then

X[d] = AddPACDB(X[d], SP[]);
else

X[d] = AddPACDB(X[d], X[n]);

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PACDB, PACDZB Page 357

PACGA

Pointer Authentication Code, using Generic key. This instruction computes the pointer authentication code for an
address in the first source register, using a modifier in the second source register, and the Generic key. The computed
pointer authentication code is returned in the upper 32 bits of the destination register.

Integer
(FEAT_PAuth)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
[1]o]0o]1 1 0 1 0 1 1 O] Rm [0 01 1 0 0] Rn | Rd |

PACGA <Xd>, <Xn>, <Xm|SP>

boolean source is sp = FALSE;

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

if 'HavePACExt() then
UNDEFINED;

if m == 31 then source is sp = TRUE;
Assembler Symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm|SP> Is the 64-bit name of the second general-purpose source register or stack pointer, encoded in the "Rm"
field.

Operation

if source is sp then

X[d] = AddPACGA(X[n], SP[1);
else

X[d] = AddPACGA(X[n], X[m]);

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PACGA Page 358

PACIA, PACIA1716, PACIASP, PACIAZ, PACIZA

Pointer Authentication Code for Instruction address, using key A. This instruction computes and inserts a pointer

authentication code for an instruction address, using a modifier and key A.
The address is:
» In the general-purpose register that is specified by <Xd> for PACIA and PACIZA.
e In X17, for PACIA1716.
e In X30, for PACIASP and PACIAZ.
The modifier is:
In the general-purpose register or stack pointer that is specified by <Xn|SP> for PACIA.
The value zero, for PACIZA and PACIAZ.
In X16, for PACIA1716.
In SP, for PACIASP.

It has encodings from 2 classes: Integer and System

Integer
(FEAT_PAuth)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
[1]1]0o]1 1 01 0 1 1 0/o 0 0 0 1][of[0]Z][0 0 O] Rn | Rd |

PACIA (Z == 0)
PACIA <Xd>, <Xn|SP>
PACIZA (Z == 1 && Rn == 11111)

PACIZA <Xd>

boolean source is sp = FALSE;
integer d UInt(Rd);
integer n UInt(Rn);

if 'HavePACExt() then
UNDEFINED;

if Z == '0' then // PACIA

if n == 31 then source is sp = TRUE;
else // PACIZA

if n != 31 then UNDEFINED;

System
(FEAT_PAuth)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
11 01 01010 0[0[00[01 1[0 01000 x 1/0 0 x[1 1 1 1 1|
CRm op2
PACIA, PACIA1716, PACIASP, Page 359

PACIAZ, PACIZA

PACIA1716 (CRm == 0001 && op2 == 000)

PACIA1716

PACIASP (CRm == 0011 && op2 == 001)

PACIASP

PACIAZ (CRm == 0011 && op2 == 000)

PACIAZ

integer d
integer n

boolean source is sp = FALSE;

case CRm:op2 of

when
d

when

d = 30;

'0011

= 30;
n = 31;

'0011

000’

001’

// PACIAZ

// PACIASP

source is sp = TRUE;

if HaveBTIExt() then

// Check for branch target compatibility between PSTATE.BTYPE
// and implicit branch target of PACIASP instruction.
SetBTypeCompatible(BTypeCompatible PACIXSP());

when
d
n
when
when
when
when
when
when
when

'0001

= 17;
= 16;

'0001
'0001
'0001
'0011
'0011
'0011
‘0000

000"

010' SEE
100" SEE
110" SEE
01x' SEE
10x"' SEE
11x"' SEE
111" SEE

// PACIA1716

"PACIB";
"AUTIA"Y;
"AUTIB";
"PACIB";
"AUTIA"Y;
"AUTIB";
"XPACLRI";

otherwise SEE "HINT";

Assembler Symbols

<Xd>
<Xn|SP>

Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

Is the 64-bit name of the general-purpose source register or stack pointer, encoded in the "Rn" field.

Operation

if HavePACExt() then

if source is sp then
X[d]

else

X[d]

AddPACTIA(X[d], SP[]);

AddPACTIA(X[d], XInl);

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PACIA, PACIA1716, PACIASPE,

PACIAZ, PACIZA Page 360

PACIB, PACIB1716, PACIBSP, PACIBZ, PACIZB

Pointer Authentication Code for Instruction address, using key B. This instruction computes and inserts a pointer
authentication code for an instruction address, using a modifier and key B.
The address is:
» In the general-purpose register that is specified by <Xd> for PACIB and PACIZB.
e In X17, for PACIB1716.
e In X30, for PACIBSP and PACIBZ.
The modifier is:
In the general-purpose register or stack pointer that is specified by <Xn|SP> for PACIB.
The value zero, for PACIZB and PACIBZ.
In X16, for PACIB1716.
In SP, for PACIBSP.

It has encodings from 2 classes: Integer and System

Integer
(FEAT_PAuth)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
[1]1]0o]1 1 01 0 1 1 0/o 0 0 0 1][of0]Z[0 0 1] Rn | Rd |

PACIB (Z == 0)
PACIB <Xd>, <Xn|SP>
PACIZB (Z == 1 && Rn == 11111)

PACIZB <Xd>

boolean source is sp = FALSE;
integer d = UInt(Rd);
integer n UInt(Rn);

if 'HavePACExt() then
UNDEFINED;

if Z == '0' then // PACIB

if n == 31 then source is sp = TRUE;
else // PACIZB

if n != 31 then UNDEFINED;

System
(FEAT_PAuth)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
11 01 01010 0[0[00[01 1[0 01000 x 1/0 1 x[1 1 1 1 1|
CRm op2
PACIB, PACIB1716, PACIBSP, Page 361

PACIBZ, PACIZB

PACIB1716 (CRm == 0001 && op2 == 010)
PACIB1716

PACIBSP (CRm == 0011 && op2 == 011)
PACIBSP

PACIBZ (CRm == 0011 && op2 == 010)

PACIBZ

integer d;

integer n;

boolean source is sp = FALSE;

case CRm:op2 of

when '0011 010' // PACIBZ
d = 30;
n = 31;

when '0011 011' // PACIBSP
d = 30;

source is sp = TRUE;

if HaveBTIExt() then
// Check for branch target compatibility between PSTATE.BTYPE
// and implicit branch target of PACIBSP instruction.
SetBTypeCompatible(BTypeCompatible PACIXSP());

when '0001 010' // PACIB1716
d =17;
n = 16;

when '0001 000' SEE "PACIA";
when '0001 100' SEE "AUTIA";
when '0001 110' SEE "AUTIB";
when '0011 00x' SEE "PACIA";
when '0011 10x' SEE "AUTIA";
when '0011 11x' SEE "AUTIB";
when '0000 111' SEE "XPACLRI";
otherwise SEE "HINT";

Assembler Symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Xn|SP> Is the 64-bit name of the general-purpose source register or stack pointer, encoded in the "Rn" field.
Operation

if HavePACExt() then
if source is sp then
X[d] = AddPACIB(X[d], SP[]);
else
X[d]

AddPACIB(X[d], X[n]);

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PACIB, PACIB1716, PACIBSP,

PACIBZ, PACIZB Page 362

PRFM (immediate)

Prefetch Memory (immediate) signals the memory system that data memory accesses from a specified address are
likely to occur in the near future. The memory system can respond by taking actions that are expected to speed up the
memory accesses when they do occur, such as preloading the cache line containing the specified address into one or
more caches.

The effect of an PRFM instruction is IMPLEMENTATION DEFINED. For more information, see Prefetch memory.
For information about memory accesses, see Load/Store addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
1 1]1 1 1]o]J0 1]1 0] imm12 | Rn | Rt |
size opc

PRFM (<prfop>|#<imm5>), [<Xn|SP>{, #<pimm>}]

bits(64) offset = LSL(ZeroExtend(imml2, 64), 3);

Assembler Symbols

<prfop> Is the prefetch operation, defined as <type><target><policy>.
<type> is one of:

PLD
Prefetch for load, encoded in the "Rt<4:3>" field as 0b00.

P11
Preload instructions, encoded in the "Rt<4:3>" field as 0bO1.

PST
Prefetch for store, encoded in the "Rt<4:3>" field as 0b10.

<target> is one of:

L1

Level 1 cache, encoded in the "Rt<2:1>" field as 0b00.
L2

Level 2 cache, encoded in the "Rt<2:1>" field as 0b01.
L3

Level 3 cache, encoded in the "Rt<2:1>" field as 0b10.

<policy> is one of:
KEEP
Retained or temporal prefetch, allocated in the cache normally. Encoded in the "Rt<0>" field as 0.

STRM
Streaming or non-temporal prefetch, for data that is used only once. Encoded in the "Rt<0>" field
as 1.

For more information on these prefetch operations, see Prefetch memory.
For other encodings of the "Rt" field, use <imm5>.

<imm5> Is the prefetch operation encoding as an immediate, in the range 0 to 31, encoded in the "Rt" field.
This syntax is only for encodings that are not accessible using <prfop>.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<pimm> Is the optional positive immediate byte offset, a multiple of 8 in the range 0 to 32760, defaulting to 0

and encoded in the "imm12" field as <pimm>/8.

Shared Decode

integer n
integer t

UInt(Rn);
UInt(Rt);

PRFM (immediate) Page 363

Operation

if HaveMTE2Ext() then

SetTagCheckedInstruction(FALSE);

bits(64) address;
if n == 31 then
address = SP[];
else
address = X[n];
address = address + offset;

Prefetch(address, t<4:0>);

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PRFM (immediate)

Page 364

PRFM (literal)

Prefetch Memory (literal) signals the memory system that data memory accesses from a specified address are likely to
occur in the near future. The memory system can respond by taking actions that are expected to speed up the memory
accesses when they do occur, such as preloading the cache line containing the specified address into one or more
caches.

The effect of an PRFM instruction is IMPLEMENTATION DEFINED. For more information, see Prefetch memory.
For information about memory accesses, see Load/Store addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
|1 1]0 1 1]0f0 0] imm19 | Rt |
opc

PRFM (<prfop>|#<imm5>), <label>

integer t = UInt(Rt);
bits(64) offset;

offset = SignExtend(imml9:'00', 64);

Assembler Symbols

<prfop> Is the prefetch operation, defined as <type><target><policy>.
<type> is one of:
PLD
Prefetch for load, encoded in the "Rt<4:3>" field as 0b00.

P11
Preload instructions, encoded in the "Rt<4:3>" field as 0bO1.

PST
Prefetch for store, encoded in the "Rt<4:3>" field as 0b10.

<target> is one of:

L1

Level 1 cache, encoded in the "Rt<2:1>" field as 0b00.
L2

Level 2 cache, encoded in the "Rt<2:1>" field as 0b01.
L3

Level 3 cache, encoded in the "Rt<2:1>" field as 0b10.

<policy> is one of:
KEEP
Retained or temporal prefetch, allocated in the cache normally. Encoded in the "Rt<0>" field as 0.

STRM

Streaming or non-temporal prefetch, for data that is used only once. Encoded in the "Rt<0>" field
as 1.

For more information on these prefetch operations, see Prefetch memory.
For other encodings of the "Rt" field, use <imm5>.

<imm5> Is the prefetch operation encoding as an immediate, in the range 0 to 31, encoded in the "Rt" field.
This syntax is only for encodings that are not accessible using <prfop>.

<label> Is the program label from which the data is to be loaded. Its offset from the address of this instruction,
in the range +/-1MB, is encoded as "imm19" times 4.

PRFM (literal) Page 365

Operation

bits(64) address = PC[] + offset;

if HaveMTE2Ext() then
SetTagCheckedInstruction(FALSE);

Prefetch(address, t<4:0>);

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PRFM (literal) Page 366

PRFM (register)

Prefetch Memory (register) signals the memory system that data memory accesses from a specified address are likely
to occur in the near future. The memory system can respond by taking actions that are expected to speed up the
memory accesses when they do occur, such as preloading the cache line containing the specified address into one or
more caches.

The effect of an PRFM instruction is IMPLEMENTATION DEFINED. For more information, see Prefetch memory.
For information about memory accesses, see Load/Store addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
1 1]1 1 1]o]Jo of1 of1] Rm | option [S]|1 0] Rn | Rt |
size opc

PRFM (<prfop>|#<imm5>), [<Xn|SP>, (<Wm>|<Xm>){, <extend> {<amount>}}]

if option<l> == '0' then UNDEFINED; // sub-word index
ExtendType extend type = DecodeRegExtend(option);
integer shift = if S == '1' then 3 else 0;

Assembler Symbols

<prfop> Is the prefetch operation, defined as <type><target><policy>.
<type> is one of:

PLD
Prefetch for load, encoded in the "Rt<4:3>" field as 0b00.

P11
Preload instructions, encoded in the "Rt<4:3>" field as 0bO1.

PST
Prefetch for store, encoded in the "Rt<4:3>" field as 0b10.

<target> is one of:

L1

Level 1 cache, encoded in the "Rt<2:1>" field as 0b00.
L2

Level 2 cache, encoded in the "Rt<2:1>" field as 0b01.
L3

Level 3 cache, encoded in the "Rt<2:1>" field as 0b10.

<policy> is one of:
KEEP
Retained or temporal prefetch, allocated in the cache normally. Encoded in the "Rt<0>" field as 0.

STRM
Streaming or non-temporal prefetch, for data that is used only once. Encoded in the "Rt<0>" field
as 1.

For more information on these prefetch operations, see Prefetch memory.
For other encodings of the "Rt" field, use <imm5>.

<imm5> Is the prefetch operation encoding as an immediate, in the range 0 to 31, encoded in the "Rt" field.
This syntax is only for encodings that are not accessible using <prfop>.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Wm> When option<0> is set to 0, is the 32-bit name of the general-purpose index register, encoded in the
"Rm" field.

<Xm> When option<0> is set to 1, is the 64-bit name of the general-purpose index register, encoded in the
"Rm" field.

<extend> Is the index extend/shift specifier, defaulting to LSL, and which must be omitted for the LSL option
when <amount> is omitted. encoded in “option”:

PRFM (register) Page 367

option <extend>

010 UXTW
011 LSL

110 SXTW
111 SXTX

<amount> Is the index shift amount, optional only when <extend> is not LSL. Where it is permitted to be optional,
it defaults to #0. It is encoded in “S”:

S <amount>
0 #0
1 #3

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);
integer m = UInt(Rm);
Operation

bits(64) offset = ExtendReg(m, extend type, shift);
if HaveMTE2Ext() then
SetTagCheckedInstruction(FALSE);

bits(64) address;
if n == 31 then
address = SP[];
else
address = X[n];
address = address + offset;

Prefetch(address, t<4:0>);

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PRFM (register) Page 368

PRFUM

Prefetch Memory (unscaled offset) signals the memory system that data memory accesses from a specified address are
likely to occur in the near future. The memory system can respond by taking actions that are expected to speed up the
memory accesses when they do occur, such as preloading the cache line containing the specified address into one or
more caches.

The effect of an PRFUM instruction is IMPLEMENTATION DEFINED. For more information, see Prefetch memory.
For information about memory accesses, see Load/Store addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
|1 1]1 1 1]o]Jo0 o1 of0] imm9 [0 0] Rn | Rt |
size opc

PRFUM (<prfop>|#<imm5>), [<Xn|SP>{, #<simm>}]

bits(64) offset = SignExtend(imm9, 64);

Assembler Symbols

<prfop> Is the prefetch operation, defined as <type><target><policy>.
<type> is one of:

PLD
Prefetch for load, encoded in the "Rt<4:3>" field as 0b00.

P11
Preload instructions, encoded in the "Rt<4:3>" field as 0bO1.

PST
Prefetch for store, encoded in the "Rt<4:3>" field as 0b10.

<target> is one of:

L1

Level 1 cache, encoded in the "Rt<2:1>" field as 0b00.
L2

Level 2 cache, encoded in the "Rt<2:1>" field as 0b01.
L3

Level 3 cache, encoded in the "Rt<2:1>" field as 0b10.

<policy> is one of:

KEEP
Retained or temporal prefetch, allocated in the cache normally. Encoded in the "Rt<0>" field as 0.

STRM
Streaming or non-temporal prefetch, for data that is used only once. Encoded in the "Rt<0>" field
as 1.

For more information on these prefetch operations, see Prefetch memory.
For other encodings of the "Rt" field, use <imm5>.

<imm5> Is the prefetch operation encoding as an immediate, in the range 0 to 31, encoded in the "Rt" field.
This syntax is only for encodings that are not accessible using <prfop>.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded in

the "imm9" field.

Shared Decode

UInt(Rn);
UInt(Rt);

integer n
integer t

PRFUM Page 369

Operation

if HaveMTE2Ext() then

SetTagCheckedInstruction(FALSE);

bits(64) address;
if n == 31 then
address = SP[];
else
address = X[n];
address = address + offset;

Prefetch(address, t<4:0>);

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PRFUM

Page 370

PSB CSYNC

Profiling Synchronization Barrier. This instruction is a barrier that ensures that all existing profiling data for the
current PE has been formatted, and profiling buffer addresses have been translated such that all writes to the profiling
buffer have been initiated. A following DSB instruction completes when the writes to the profiling buffer have
completed.

If the Statistical Profiling Extension is not implemented, this instruction executes as a NOP.

System
(FEAT_SPE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3
/11 01 010100[0[0O0[01 1[0 0 1 0[/0010[0O01[1 1
CRm op2

=Y IN)
[y
= f)

PSB CSYNC

if 'HaveStatisticalProfiling() then EndOfInstruction();

Operation

ProfilingSynchronizationBarrier();

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PSB CSYNC Page 371

PSSBB

Physical Speculative Store Bypass Barrier is a memory barrier which prevents speculative loads from bypassing
earlier stores to the same physical address.

The semantics of the Physical Speculative Store Bypass Barrier are:

* When a load to a location appears in program order after the PSSBB, then the load does not speculatively
read an entry earlier in the coherence order for that location than the entry generated by the latest store
satisfying all of the following conditions:

o The store is to the same location as the load.
o The store appears in program order before the PSSBB.

* When a load to a location appears in program order before the PSSBB, then the load does not speculatively
read data from any store satisfying all of the following conditions:

o The store is to the same location as the load.
o The store appears in program order after the PSSBB.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
/11 01 01 0100[0[0O0[01 1[0 01 1[0 1 0 O0f1/0 01 1 1 1 1|
CRm opc

PSSBB

// No additional decoding required
Operation

SpeculativeStoreBypassBarrierToPA();

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PSSBB Page 372

RBIT

Reverse Bits reverses the bit order in a register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3

Isf[1/0[1 1 0 1 0 1 1 0/0 0 O 0 0[O0 O O 0[O0 O] Rn |

32-bit (sf == 0)

RBIT <Wd>, <Wn>

64-bit (sf == 1)

RBIT <Xd>, <Xn>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer datasize = if sf == 'l' then 64 else 32;

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.
<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.
Operation

bits(datasize) operand = X[n];
bits(datasize) result;

for i = 0 to datasize-1
result<datasize-1-i> = operand<i>;

X[d] = result;
Operational information

If PSTATE.DIT is 1:

¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
¢ The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

RBIT

Page 373

RET

Return from subroutine branches unconditionally to an address in a register, with a hint that this is a subroutine
return.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
|1 1 01 01 1]/0of/0f1 0f1 1 1 1 1[0 0 0 O0f[0]0] Rn [0 0 0 0 O]
Z op A M Rm
RET {<Xn>}
integer n = UInt(Rn);
Assembler Symbols
<Xn> Is the 64-bit name of the general-purpose register holding the address to be branched to, encoded in

the "Rn" field. Defaults to X30 if absent.

Operation

bits(64) target = X[n];

// Value in BTypeNext will be used to set PSTATE.BTYPE
BTypeNext = '00';

BranchTo(target, BranchType RET);

Operational information

If PSTATE.DIT is 1:

¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
¢ The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

RET Page 374

RETAA, RETAB

Return from subroutine, with pointer authentication. This instruction authenticates the address that is held in LR,
using SP as the modifier and the specified key, branches to the authenticated address, with a hint that this instruction
is a subroutine return.

Key A is used for RETAA, and key B is used for RETAB.

If the authentication passes, the PE continues execution at the target of the branch. If the authentication fails, a
Translation fault is generated.

The authenticated address is not written back to LR.

Integer
(FEAT_PAuth)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
/11 01 01 1]ofof1 0[1 111 1[0o000f1[M[1 1 1 1 1]1 1 1 1 1|

Z op A Rn Rm
RETAA (M == 0)
RETAA
RETAB (M == 1)
RETAB
boolean use key a = (M == '0');

if 'HavePACExt() then
UNDEFINED;

Operation

bits(64) target = X[30];

bits(64) modifier = SP[];

if use key a then

target = AuthIA(target, modifier, TRUE);
else

target = AuthIB(target, modifier, TRUE);

// Value in BTypeNext will be used to set PSTATE.BTYPE
BTypeNext = '00';

BranchTo(target, BranchType RET);

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

RETAA, RETAB Page 375

REV

Reverse Bytes reverses the byte order in a register.

This instruction is used by the pseudo-instruction REV64.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8

7

[sf[1]J0]1 1 0 1 0 1 1 0J]0O 0 0 0 0J]O 0 O O]1 x|

opc

32-bit (sf == 0 && opc == 10)

REV <Wd>, <Wn>

64-bit (sf == 1 && opc == 11)

REV <Xd>, <Xn>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer datasize = if sf == 'l' then 64 else 32;

integer container size;
case opc of

when '00'
Unreachable();
when '01'
container size = 16;
when '10'
container size = 32;
when '11'
if sf == '0' then UNDEFINED;

container size = 64;

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.
<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.
Operation
bits(datasize) operand = X[n];
bits(datasize) result;
integer containers = datasize DIV container size;
integer elements per container = container size DIV 8;
integer index = 0;
integer rev_index;
for ¢ = 0 to containers-1
rev_index = index + ((elements per container - 1) * 8);
for e = 0 to elements per container-1
result<rev_index+7:rev_index> = operand<index+7:index>;
index = index + 8;
rev_index = rev_index - 8;
X[d] = result;

REV

Page 376

Operational information

If PSTATE.DIT is 1:

¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
¢ The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

REV Page 377

REV16

Reverse bytes in 16-bit halfwords reverses the byte order in each 16-bit halfword of a register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0
Isf[1/0[1 1 0 1 0 1 1 0/0 0 O O O[O0 O 0 O[O0 1] Rn | Rd |
opc
32-bit (sf == 0)
REV16 <Wd>, <Wn>
64-bit (sf == 1)
REV16 <Xd>, <Xn>
integer d = UInt(Rd);
integer n = UInt(Rn);
integer datasize = if sf == 'l' then 64 else 32;
integer container size;
case opc of
when '00'
Unreachable();
when '01'
container size = 16;
when '10'
container size = 32;
when '11'
if sf == '0' then UNDEFINED;
container size = 64;
Assembler Symbols
<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.
<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

Operation

bits(datasize) operand = X[n];
bits(datasize) result;

integer containers = datasize DIV container size;

integer elements per container = container size DIV 8;

integer index = 0;
integer rev_index;
for ¢ = 0 to containers-1

rev_index = index + ((elements per container - 1) * 8);

for e = 0 to elements per container-1

result<rev_index+7:rev_index> = operand<index+7:index>;

index = index + 8;
rev_index = rev_index - 8;

X[d] = result;
Operational information

If PSTATE.DIT is 1:

REV16

Page 378

¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
¢ The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

REV16 Page 379

REV32

Reverse bytes in 32-bit words reverses the byte order in each 32-bit word of a register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
l1]/1]/0[1 1 0 1 0 1 1 0/0 O O 0 0[O0 0 0 O[1 O] Rn | Rd |
sf opc

REV32 <Xd>, <Xn>

integer d = UInt(Rd);
integer n = UInt(Rn);

integer datasize = if sf == 'l' then 64 else 32;

integer container size;
case opc of

when '00'
Unreachable();
when '01'
container size = 16;
when '10'
container size = 32;
when '11'
if sf == '0' then UNDEFINED;

container size = 64;

Assembler Symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.
Operation

bits(datasize) operand = X[n];
bits(datasize) result;

integer containers = datasize DIV container size;
integer elements per container = container size DIV 8;
integer index = 0;
integer rev_index;
for ¢ = 0 to containers-1
rev_index = index + ((elements per container - 1) * 8);
for e = 0 to elements per container-1
result<rev_index+7:rev_index> = operand<index+7:index>;
index = index + 8;
rev_index = rev_index - 8;

X[d] = result;
Operational information

If PSTATE.DIT is 1:

¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
¢ The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

REV32 Page 380

REV64

Reverse Bytes reverses the byte order in a 64-bit general-purpose register.

When assembling for Armv8.2, an assembler must support this pseudo-instruction. It is OPTIONAL whether an
assembler supports this pseudo-instruction when assembling for an architecture earlier than Armv8.2.

This is a pseudo-instruction of REV. This means:
¢ The encodings in this description are named to match the encodings of REV.
¢ The assembler syntax is used only for assembly, and is not used on disassembly:.

¢ The description of REV gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

[1]1]0of1 1 01 0 1 1 0/0o 0 0 0 0[O0 O 0 Of1 1] Rn | Rd |
sf opc
64-bit

REV64 <Xd>, <Xn>
is equivalent to

REV <Xd>, <Xn>

Assembler Symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.
Operation

The description of REV gives the operational pseudocode for this instruction.
Operational information

If PSTATE.DIT is 1:

¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
¢ The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

REV64 Page 381

RMIF

Performs a rotation right of a value held in a general purpose register by an immediate value, and then inserts a
selection of the bottom four bits of the result of the rotation into the PSTATE flags, under the control of a second
immediate mask.

Integer
(FEAT_FlagM)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
[1]0]1]1 1 0 1 0 0 0 O] imm6 [0 0 0 0 1] Rn [0] mask |
sf

RMIF <Xn>, #<shift>, #<mask>

if !'HaveFlagManipulateExt() then UNDEFINED;
integer lsb = UInt(imm6);
integer n = UInt(Rn);

Assembler Symbols

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.
<shift> Is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the "imm6" field,
<mask> Is the flag bit mask, an immediate in the range 0 to 15, which selects the bits that are inserted into the

NZCV condition flags, encoded in the "mask" field.

Operation

bits(4) tmp;
bits(64) tmpreg = X[n];

tmp (tmpreg:tmpreg)<lsb+3:1lsb>;

if mask<3> == '1' then PSTATE.N = tmp<3>;
if mask<2> == '1' then PSTATE.Z = tmp<2>;
if mask<l> == '1' then PSTATE.C = tmp<l>;
if mask<0> == '1' then PSTATE.V = tmp<0>;

Operational information

If PSTATE.DIT is 1:

¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
¢ The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

RMIF Page 382

ROR (immediate)

Rotate right (immediate) provides the value of the contents of a register rotated by a variable number of bits. The bits
that are rotated off the right end are inserted into the vacated bit positions on the left.

This is an alias of EXTR. This means:

¢ The encodings in this description are named to match the encodings of EXTR.
¢ The description of EXTR gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
Isf][0 0]1 0 0 1 1 1[N[O] Rm | imms | Rn | Rd |

32-bit (sf == 0 && N == 0 && imms == 0xXXXXX)

ROR <Wd>, <Ws>, #<shift>
is equivalent to
EXTR <Wd>, <Ws>, <Ws>, #<shift>

and is the preferred disassembly when Rn == Rm.
64-bit (sf == 1 && N == 1)

ROR <Xd>, <Xs>, #<shift>
is equivalent to
EXTR <Xd>, <Xs>, <Xs>, #<shift>

and is the preferred disassembly when Rn == Rm.

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Ws> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" and "Rm" fields.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xs> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" and "Rm" fields.

<shift> For the 32-bit variant: is the amount by which to rotate, in the range 0 to 31, encoded in the "imms"
field.
For the 64-bit variant: is the amount by which to rotate, in the range 0 to 63, encoded in the "imms"
field.

Operation

The description of EXTR gives the operational pseudocode for this instruction.
Operational information

If PSTATE.DIT is 1:
¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
* The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ROR (immediate) Page 383

ROR (register)

Rotate Right (register) provides the value of the contents of a register rotated by a variable number of bits. The bits
that are rotated off the right end are inserted into the vacated bit positions on the left. The remainder obtained by
dividing the second source register by the data size defines the number of bits by which the first source register is
right-shifted.

This is an alias of RORV. This means:

¢ The encodings in this description are named to match the encodings of RORV.
e The description of RORV gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
IsfloJ0]1 1 0 1 0 1 1 0] Rm |0 01 01 1] Rn | Rd |
op2

32-bit (sf == 0)

ROR <Wd>, <Wn>, <Wm>
is equivalent to
RORV <Wd>, <Wn>, <Wm>

and is always the preferred disassembly.
64-bit (sf == 1)

ROR <Xd>, <Xn>, <Xm>
is equivalent to
RORV <Xd>, <Xn>, <Xm>

and is always the preferred disassembly.

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register holding a shift amount from 0 to 31 in
its bottom 5 bits, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register holding a shift amount from 0 to 63 in

its bottom 6 bits, encoded in the "Rm" field.

Operation
The description of RORV gives the operational pseudocode for this instruction.
Operational information

If PSTATE.DIT is 1:
¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
¢ The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

ROR (register) Page 384

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ROR (register) Page 385

RORV

Rotate Right Variable provides the value of the contents of a register rotated by a variable number of bits. The bits
that are rotated off the right end are inserted into the vacated bit positions on the left. The remainder obtained by
dividing the second source register by the data size defines the number of bits by which the first source register is
right-shifted.

This instruction is used by the alias ROR (register).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
IsfloJ0]1 1 0 1 0 1 1 0] Rm 0 01 01 1] Rn | Rd |
op2

32-bit (sf == 0)

RORV <Wd>, <Wn>, <Wm>

64-bit (sf == 1)

RORV <Xd>, <Xn>, <Xm>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer datasize = if sf == '1' then 64 else 32;

ShiftType shift type = DecodeShift(op2);

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register holding a shift amount from 0 to 31 in
its bottom 5 bits, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register holding a shift amount from 0 to 63 in

its bottom 6 bits, encoded in the "Rm" field.

Operation

bits(datasize) result;
bits(datasize) operand2 = X[m];

result = ShiftReg(n, shift type, UInt(operand2) MOD datasize);
X[d] = result;

Operational information

If PSTATE.DIT is 1:

¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
¢ The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

RORV Page 386

SB

Speculation Barrier is a barrier that controls speculation.
The semantics of the Speculation Barrier are that the execution, until the barrier completes, of any instruction that
appears later in the program order than the barrier:
¢ Cannot be performed speculatively to the extent that such speculation can be observed through side-channels
as a result of control flow speculation or data value speculation.
¢ Can be speculatively executed as a result of predicting that a potentially exception generating instruction has
not generated an exception.
In particular, any instruction that appears later in the program order than the barrier cannot cause a speculative
allocation into any caching structure where the allocation of that entry could be indicative of any data value present in
memory or in the registers.
The SB instruction:
¢ Cannot be speculatively executed as a result of control flow speculation or data value speculation.
¢ Can be speculatively executed as a result of predicting that a potentially exception generating instruction has
not generated an exception. The potentially exception generating instruction can complete once it is known
not to be speculative, and all data values generated by instructions appearing in program order before the SB
instruction have their predicted values confirmed.
When the prediction of the instruction stream is not informed by data taken from the register outputs of the
speculative execution of instructions appearing in program order after an uncompleted SB instruction, the SB
instruction has no effect on the use of prediction resources to predict the instruction stream that is being fetched.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
/11 01 010100[0[0O0[011[00 1 1/(MOMOMO 11 1{1 1 1 1 1]
CRm opc

SB

if !'HaveSBExt() then UNDEFINED;
Operation

SpeculationBarrier();

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SB Page 387

SBC

Subtract with Carry subtracts a register value and the value of NOT (Carry flag) from a register value, and writes the
result to the destination register.

This instruction is used by the alias NGC.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Isf[1/0[1 1 0 1 0 0 O O] Rm |0 0 0O O 0 O] Rn | Rd |
op S

32-bit (sf == 0)

SBC <Wd>, <Wn>, <Wm>

64-bit (sf == 1)

SBC <Xd>, <Xn>, <Xm>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer datasize = if sf == '1' then 64 else 32;

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.
<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.
<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.
<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

Alias Conditions

Alias Is preferred when
NGC Rn == '11111'
Operation

bits(datasize) result;
bits(datasize) operandl
bits(datasize) operand2

o
< X

operand2 = NOT(operand2);
(result, -) = AddWithCarry(operandl, operand2, PSTATE.C);

X[d] = result;
Operational information

If PSTATE.DIT is 1:
¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
¢ The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.

SBC Page 388

o The values of the NZCV flags.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SBC Page 389

SBCS

Subtract with Carry, setting flags, subtracts a register value and the value of NOT (Carry flag) from a register value,
and writes the result to the destination register. It updates the condition flags based on the result.

This instruction is used by the alias NGCS.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Isf[1[1]/1 1 0 1 0 0 O O] Rm |0 0 0O O 0 O] Rn | Rd |
op S

32-bit (sf == 0)

SBCS <Wd>, <Wn>, <Wm>

64-bit (sf == 1)

SBCS <Xd>, <Xn>, <Xm>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer datasize = if sf == '1' then 64 else 32;

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.
<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.
<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.
<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

Alias Conditions

Alias Is preferred when
NGCS Rn == '11111'

Operation

bits
bits
bits
bits

datasize) result;
datasize) operandl
datasize) operand2
4) nzcv;

o
< X

operand2 = NOT(operand2);
(result, nzcv) = AddWithCarry(operandl, operand2, PSTATE.C);
PSTATE.<N,Z,C,V> = nzcv;

X[d] = result;
Operational information

If PSTATE.DIT is 1:

¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.

SBCS Page 390

o The values of the NZCV flags.
The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SBCS Page 391

SBFIZ

Signed Bitfield Insert in Zeros copies a bitfield of <width> bits from the least significant bits of the source register to
bit position <lsb> of the destination register, setting the destination bits below the bitfield to zero, and the bits above
the bitfield to a copy of the most significant bit of the bitfield.

This is an alias of SBFM. This means:

¢ The encodings in this description are named to match the encodings of SBFM.
¢ The description of SBFM gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
Isfl0 0]1 0 0 1 1 O[N] immr | imms | Rn | Rd |
opc

32-bit (sf == 0 && N == 0)

SBFIZ <Wd>, <Wn>, #<lsb>, #<width>
is equivalent to
SBFM <Wd>, <Wn>, #(-<lsb> MOD 32), #(<width>-1)

and is the preferred disassembly when UInt(imms) < UInt(immr).
64-bit (sf ==1 && N ==1)

SBFIZ <Xd>, <Xn>, #<lsb>, #<width>
is equivalent to
SBFM <Xd>, <Xn>, #(-<lsb> MOD 64), #(<width>-1)

and is the preferred disassembly when UInt(imms) < UInt(immr).

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<lsh> For the 32-bit variant: is the bit number of the Isb of the destination bitfield, in the range 0 to 31.

For the 64-bit variant: is the bit number of the Isb of the destination bitfield, in the range 0 to 63.
<width> For the 32-bit variant: is the width of the bitfield, in the range 1 to 32-<Isb>.
For the 64-bit variant: is the width of the bitfield, in the range 1 to 64-<lsb>.

Operation
The description of SBFM gives the operational pseudocode for this instruction.
Operational information

If PSTATE.DIT is 1:
¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
¢ The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

SBFIZ Page 392

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SBFIZ Page 393

SBFM

Signed Bitfield Move is usually accessed via one of its aliases, which are always preferred for disassembly.

If <imms> is greater than or equal to <immr>, this copies a bitfield of (<imms>-<immr>+1) bits starting from bit
position <immr> in the source register to the least significant bits of the destination register.

If <imms> is less than <immr>, this copies a bitfield of (<imms=>+1) bits from the least significant bits of the source
register to bit position (regsize-<immr>) of the destination register, where regsize is the destination register size of 32
or 64 bits.

In both cases the destination bits below the bitfield are set to zero, and the bits above the bitfield are set to a copy of
the most significant bit of the bitfield.

This instruction is used by the aliases ASR (immediate), SBFIZ, SBFX, SXTB, SXTH, and SXTW.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[sf[0 0[1 0 0 1 1 O[N] immr | imms | Rn | Rd |
opc

32-bit (sf == 0 && N == 0)
SBFM <Wd>, <Wn>, #<immr>, #<imms>
64-bit (sf == 1 && N == 1)

SBFM <Xd>, <Xn>, #<immr>, #<imms>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer datasize = if sf == 'l' then 64 else 32;

integer R;
integer S;
bits(datasize) wmask;
bits(datasize) tmask;

if sf == '1' & N != '1' then UNDEFINED;

if sf == '0' & (N !'= '0"' || immr<5> != 'Q' || imms<5> != 'Q') then UNDEFINED;
R = UInt(immr);

S = UInt(imms);

(wmask, tmask) = DecodeBitMasks (N, imms, immr, FALSE);

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<immr> For the 32-bit variant: is the right rotate amount, in the range 0 to 31, encoded in the "immr" field.

For the 64-bit variant: is the right rotate amount, in the range 0 to 63, encoded in the "immr" field.

<imms> For the 32-bit variant: is the leftmost bit number to be moved from the source, in the range 0 to 31,
encoded in the "imms" field.

For the 64-bit variant: is the leftmost bit number to be moved from the source, in the range 0 to 63,
encoded in the "imms" field.

Alias Conditions

Alias Of variant Is preferred when
ASR (immediate) 32-bit imms == '011111"'

SBFM Page 394

Alias Of variant Is preferred when

ASR (immediate) 64-bit imms == '111111"'

SBFIZ UInt(imms) < UInt(immr)

SBFX BFXPreferred(sf, opc<l>, imms, immr)

SXTB immr == '000000' && imms == '000111'

SXTH immr == '000000' && imms == '001111'

SXTW immr == '000000' && imms == '011111'
Operation

bits(datasize) src = X[n];

// perform bitfield move on low bits
bits(datasize) bot = ROR(src, R) AND wmask;

// determine extension bits (sign, zero or dest register)
bits(datasize) top = Replicate(src<S>);

// combine extension bits and result bits
X[d] = (top AND NOT(tmask)) OR (bot AND tmask);

Operational information

If PSTATE.DIT is 1:

¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
* The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SBFM Page 395

SBFX

Signed Bitfield Extract copies a bitfield of <width> bits starting from bit position <lsb> in the source register to the
least significant bits of the destination register, and sets destination bits above the bitfield to a copy of the most
significant bit of the bitfield.

This is an alias of SBFM. This means:

¢ The encodings in this description are named to match the encodings of SBFM.
¢ The description of SBFM gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
Isfl0 0]1 0 0 1 1 O[N] immr | imms | Rn | Rd |
opc

32-bit (sf == 0 && N == 0)

SBFX <Wd>, <Wn>, #<lsb>, #<width>
is equivalent to
SBFM <Wd>, <Wn>, #<lsb>, #(<lsb>+<width>-1)

and is the preferred disassembly when BFXPreferred(sf, opc<l>, imms, immr).
64-bit (sf ==1 && N ==1)

SBFX <Xd>, <Xn>, #<lsb>, #<width>
is equivalent to
SBFM <Xd>, <Xn>, #<lsb>, #(<lsb>+<width>-1)

and is the preferred disassembly when BFXPreferred(sf, opc<l>, imms, immr).

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<lsh> For the 32-bit variant: is the bit number of the Isb of the source bitfield, in the range 0 to 31.

For the 64-bit variant: is the bit number of the Isb of the source bitfield, in the range 0 to 63.
<width> For the 32-bit variant: is the width of the bitfield, in the range 1 to 32-<Isb>.
For the 64-bit variant: is the width of the bitfield, in the range 1 to 64-<lsb>.

Operation
The description of SBFM gives the operational pseudocode for this instruction.
Operational information

If PSTATE.DIT is 1:
¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
¢ The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

SBFX Page 396

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SBFX Page 397

SDIV

Signed Divide divides a signed integer register value by another signed integer register value, and writes the result to
the destination register. The condition flags are not affected.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

IsfloJ0]1 1 0 1 0 1 1 0] Rm |0 0 0 0 1]1] Rn | Rd |

ol

32-bit (sf == 0)

SDIV <Wd>, <Wn>, <Wm>

64-bit (sf == 1)

SDIV <Xd>, <Xn>, <Xm>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer datasize = if sf == '1' then 64 else 32;

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.
<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.
<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.
<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.
Operation

bits(datasize) operandl = X[n];

bits(datasize) operand2 = X[m];

integer result;

if IsZero(operand2) then
result = 0;
else
result = RoundTowardsZero(Real(Int(operandl, FALSE)) / Real(Int(operand2, FALSE)));

X[d] = result<datasize-1:0>;

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SDIV

Page 398

SETF8, SETF16

Set the PSTATE.NZV flags based on the value in the specified general-purpose register. SETF8 treats the value as an 8
bit value, and SETF16 treats the value as an 16 bit value.

The PSTATE.C flag is not affected by these instructions.

Integer
(FEAT_FlagM)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
lolof[1][1 1 0 1 0 0 0 O[O O O O O Ofsz[0O 0 1 O] Rn [0[1 1 0 1]
sf

SETF8 (sz == 0)
SETF8 <Wn>
SETF16 (sz == 1)

SETF16 <Wn>

if !'HaveFlagManipulateExt() then UNDEFINED;
integer msb = if sz == '1' then 15 else 7;
integer n = UInt(Rn);

Assembler Symbols

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

Operation

bits(32) tmpreg = X[n];

PSTATE.N = tmpreg<msb>;
PSTATE.Z = if (tmpreg<msb:0> == Zeros(msb + 1)) then 'l' else '0';
PSTATE.V = tmpreg<msb+1> EOR tmpreg<msb>;

//PSTATE.C unchanged;
Operational information

If PSTATE.DIT is 1:

¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
* The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SETFS8, SETF16 Page 399

SEV

Send Event is a hint instruction. It causes an event to be signaled to all PEs in the multiprocessor system. For more
information, see Wait for Event mechanism and Send event.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8

7 6 5 4 3 2 1 0
/11 01 010100[0[0O0[01 1[0 0 10[/00O0O0O[1 001 1 1 1 1]
CRm op2

SEV

// Empty.
Operation

SendEvent();

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SEV Page 400

SEVL

Send Event Local is a hint instruction that causes an event to be signaled locally without requiring the event to be
signaled to other PEs in the multiprocessor system. It can prime a wait-loop which starts with a WFE instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8

7 6 5 4 3 2 1 0
/11 01 010100[0[0O0[01 1[0 0 10[/000O0O[1 011 1 1 1 1]
CRm op2

SEVL

// Empty.
Operation

SendEventLocal();

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SEVL Page 401

SMADDL

Signed Multiply-Add Long multiplies two 32-bit register values, adds a 64-bit register value, and writes the result to
the 64-bit destination register.

This instruction is used by the alias SMULL.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
[1/]0 0J]1 1 0 1 1[0f0 1] Rm 0] Ra | Rn | Rd |
U o0

SMADDL <Xd>, <Wn>, <Wm>, <Xa>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer a = UInt(Ra);

Assembler Symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register holding the multiplicand, encoded in the
"Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register holding the multiplier, encoded in the
"Rm" field.

<Xa> Is the 64-bit name of the third general-purpose source register holding the addend, encoded in the "Ra"
field.

Alias Conditions

Alias Is preferred when
SMULL Ra == '11111'
Operation
bits(32) operandl = X[n];
bits(32) operand2 = X[m];
bits(64) operand3 = X[a];

integer result;
result = Int(operand3, FALSE) + (Int(operandl, FALSE) * Int(operand2, FALSE));

X[d] = result<63:0>;
Operational information

If PSTATE.DIT is 1:

¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
¢ The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SMADDL Page 402

SMC

Secure Monitor Call causes an exception to EL3.
SMC is available only for software executing at EL1 or higher. It is UNDEFINED in ELO.

If the values of HCR_EL2.TSC and SCR_EL3.SMD are both 0, execution of an SMC instruction at EL1 or higher
generates a Secure Monitor Call exception, recording it in ESR_ELXx, using the EC value 0x17, that is taken to EL3.

If the value of HCR EL2.TSC is 1 and EL2 is enabled in the current Security state, execution of an SMC instruction at
EL1 generates an exception that is taken to EL2, regardless of the value of SCR_EL3.SMD. For more information, see
Traps to EL2 of Non-secure EL1 execution of SMC instructions.

If the value of HCR_EL2.TSC is 0 and the value of SCR_EL3.SMD is 1, the SMC instruction is UNDEFINED.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[1 1 01 010 0[0 0 O] imm16 [0 0 O0[1 1|
SMC #<imm>
// Empty.

Assembler Symbols
<imm> Is a 16-bit unsigned immediate, in the range 0 to 65535, encoded in the "imm16" field.

Operation

AArch64.CheckForSMCUndefOrTrap(imml6) ;
AArch64.CallSecureMonitor(imml6);

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SMC Page 403

SMNEGL

Signed Multiply-Negate Long multiplies two 32-bit register values, negates the product, and writes the result to the
64-bit destination register.

This is an alias of SMSUBL. This means:

¢ The encodings in this description are named to match the encodings of SMSUBL.
¢ The description of SMSUBL gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
[1/]0 0J]1 1 0 1 1][0f0 1] Rm [1]1 1 1 1 1] Rn | Rd |
U o0 Ra

SMNEGL <Xd>, <Wn>, <Wm>
is equivalent to
SMSUBL <Xd>, <Wn>, <Wm>, XZR

and is always the preferred disassembly.

Assembler Symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register holding the multiplicand, encoded in the
"Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register holding the multiplier, encoded in the
"Rm" field.

Operation

The description of SMSUBL gives the operational pseudocode for this instruction.
Operational information

If PSTATE.DIT is 1:

¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
¢ The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SMNEGL Page 404

SMSUBL

Signed Multiply-Subtract Long multiplies two 32-bit register values, subtracts the product from a 64-bit register value,
and writes the result to the 64-bit destination register.

This instruction is used by the alias SMNEGL.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
[1/]0 0J]1 1 0 1 1[0f0 1] Rm 1] Ra | Rn | Rd |
U o0

SMSUBL <Xd>, <Wn>, <Wm>, <Xa>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer a = UInt(Ra);

Assembler Symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register holding the multiplicand, encoded in the
"Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register holding the multiplier, encoded in the
"Rm" field.

<Xa> Is the 64-bit name of the third general-purpose source register holding the minuend, encoded in the
"Ra" field.

Alias Conditions

Alias Is preferred when
SMNEGL Ra == '11111"
Operation
bits(32) operandl = X[n];
bits(32) operand2 = X[m];
bits(64) operand3 = X[a];

integer result;

result = Int(operand3, FALSE) - (Int(operandl, FALSE) * Int(operand2, FALSE));
X[d] = result<63:0>;

Operational information

If PSTATE.DIT is 1:

¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
¢ The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SMSUBL Page 405

SMULH

Signed Multiply High multiplies two 64-bit register values, and writes bits[127:64] of the 128-bit result to the 64-bit
destination register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[1/0 0[1 1 0 1 1[{0]1 O] Rm [0 [(1) (1) (1) (1) (1)] Rn | Rd |
U Ra

SMULH <Xd>, <Xn>, <Xm>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

Assembler Symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Xn> Is the 64-bit name of the first general-purpose source register holding the multiplicand, encoded in the
"Rn" field.
<Xm> Is the 64-bit name of the second general-purpose source register holding the multiplier, encoded in the
"Rm" field.
Operation
bits(64) operandl = X[n];
bits(64) operand2 = X[m];

integer result;
result = Int(operandl, FALSE) * Int(operand2, FALSE);

X[d] = result<127:64>;
Operational information

If PSTATE.DIT is 1:

¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
¢ The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SMULH Page 406

SMULL

Signed Multiply Long multiplies two 32-bit register values, and writes the result to the 64-bit destination register.

This is an alias of SMADDL. This means:

¢ The encodings in this description are named to match the encodings of SMADDI..
¢ The description of SMADDL gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
[1/]0 0J]1 1 0 1 1[0f0 1] Rm loJ1 1 1 1 1] Rn | Rd |
U o0 Ra

SMULL <Xd>, <Wn>, <Wm>
is equivalent to
SMADDL <Xd>, <Wn>, <Wm>, XZR

and is always the preferred disassembly.

Assembler Symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register holding the multiplicand, encoded in the
"Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register holding the multiplier, encoded in the
"Rm" field.

Operation

The description of SMADDL gives the operational pseudocode for this instruction.
Operational information

If PSTATE.DIT is 1:

¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

¢ The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SMULL Page 407

SSBB

Speculative Store Bypass Barrier is a memory barrier which prevents speculative loads from bypassing earlier stores
to the same virtual address under certain conditions.

The semantics of the Speculative Store Bypass Barrier are:

* When a load to a location appears in program order after the SSBB, then the load does not speculatively read
an entry earlier in the coherence order for that location than the entry generated by the latest store satisfying
all of the following conditions:

o The store is to the same location as the load.
o The store uses the same virtual address as the load.
o The store appears in program order before the SSBB.

* When a load to a location appears in program order before the SSBB, then the load does not speculatively
read data from any store satisfying all of the following conditions:

o The store is to the same location as the load.
o The store uses the same virtual address as the load.
o The store appears in program order after the SSBB.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2
/11 01 010100[0[0O0[01 1[0 01 1/0 0 0 O0[1]/0 01 1 1
CRm opc

[y
(o

SSBB

// No additional decoding required
Operation

SpeculativeStoreBypassBarrierToVA();

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SSBB Page 408

ST2G

Store Allocation Tags stores an Allocation Tag to two Tag granules of memory. The address used for the store is
calculated from the base register and an immediate signed offset scaled by the Tag granule. The Allocation Tag is
calculated from the Logical Address Tag in the source register.

This instruction generates an Unchecked access.

It has encodings from 3 classes: Post-index , Pre-index and Signed offset

Post-index
(FEAT_MTE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
1 1 01100 1[1]0f1] imm9 [o]1] Xn | Xt |

ST2G <Xt|SP>, [<Xn|SP>], #<simm>

if !'HaveMTEExt() then UNDEFINED;
integer n = UInt(Xn);

integer t = UInt(Xt);
bits(64) offset = LSL(SignExtend(imm9, 64), LOG2 TAG GRANULE);

boolean writeback = TRUE;
boolean postindex = TRUE;
Pre-index
(FEAT_MTE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[1 1 01100 1[1]0]1] imm9 [1]1] Xn | Xt |

ST2G <Xt|SP>, [<Xn|SP>, #<simm>]!

if !HaveMTEExt() then UNDEFINED;
integer n = UInt(Xn);

integer t = UInt(Xt);
bits(64) offset = LSL(SignExtend(imm9, 64), L0G2 TAG GRANULE);
boolean writeback = TRUE;

boolean postindex FALSE;

Signed offset
(FEAT_MTE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
[1 1 01100 1[1]0]1] imm9 [1]0] Xn | Xt |

ST2G <Xt|SP>, [<Xn|SP>{, #<simm>}]

if 'HaveMTEExt() then UNDEFINED;
integer n = UInt(Xn);

integer t = UInt(Xt);
bits(64) offset = LSL(SignExtend(imm9, 64), L0OG2 TAG GRANULE);
boolean writeback FALSE;

boolean postindex FALSE;

Assembler Symbols

<Xt|SP> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Xt" field.
<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Xn" field.

<simm> Is the optional signed immediate offset, a multiple of 16 in the range -4096 to 4080, defaulting to 0 and
encoded in the "imm9" field.

ST2G Page 409

Operation

bits(64) address;
bits(64) data = if t == 31 then SP[] else X[t];
bits(4) tag = AArch64.AllocationTagFromAddress(data);

SetTagCheckedInstruction(FALSE);

if n == 31 then
CheckSPAlignment () ;
address = SP[];
else
address = X[n];

if !postindex then
address = address + offset;

AArch64.MemTag[address, AccType NORMAL] = tag;
AArch64.MemTag[address+TAG_GRANULE, AccType NORMAL] = tag;

if writeback then
if postindex then
address = address + offset;

if n == 31 then
SP[] = address;
else
X[n] = address;

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ST2G

Page 410

ST64B

Single-copy Atomic 64-byte Store without Return stores eight 64-bit doublewords from consecutive registers, Xt to
X(t+7), to a memory location. The data that is stored is atomic and is required to be 64-byte-aligned.

Integer
(FEAT_LS64)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
[1 1]1 1 1]o]o ofJoJof1]1 1 1 1 1[1[/0 0 1[0 O] Rn Rt |

ST64B <Xt>, [<Xn|SP> {,#0}]

if 'HaveFeatlS64() then UNDEFINED;

if Rt<4:3> == '11' || Rt<0> == '1' then UNDEFINED;
integer n = UInt(Rn);

integer t = UInt(Rt);

boolean tag checked = n != 31;

Assembler Symbols

<Xt> Is the 64-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.
<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.
Operation

ChecklLDST64BEnabled() ;

bits(512) data;

bits(64) address;

bits(64) value;

acctype = AccType ATOMICLS64;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag checked);

for i = 0 to 7
value = X[t+i];
if BigEndian(acctype) then value = BigEndianReverse(value);
data<63+64*i:64*i> = value;

if n == 31 then
CheckSPAlignment();
address = SP[];
else
address = X[n];

MemStore64B(address, data, acctype);

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ST64B Page 411

ST64BV

Single-copy Atomic 64-byte Store with Return stores eight 64-bit doublewords from consecutive registers, Xt to
X(t+7), to a memory location, and writes the status result of the store to a register. The data that is stored is atomic
and is required to be 64-byte aligned.

Integer
(FEAT_LS64_V)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
[1 1]1 1 1]/of0 ofo]oO[1] Rs [1]0 1 1[0 O] Rn Rt |

ST64BV <Xs>, <Xt>, [<Xn|SP>]

if 'HaveFeatlS64() then UNDEFINED;

if Rt<4:3> == '11' || Rt<0> == '1' then UNDEFINED;
integer n = UInt(Rn);

integer t = UInt(Rt);

integer s = UInt(Rs);

boolean tag checked = n != 31;

Assembler Symbols

<Xs> Is the 64-bit name of the general-purpose register into which the status result of this instruction is
written, encoded in the "Rs" field.
The value returned is:

0
If the operation updates memory.

-

If the operation fails to update memory.

OxFFFFFFFF_FFFFFFFF
If the memory location accessed does not support this instruction.

If XZR is used, then the return value is ignored.
<Xt> Is the 64-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

ST64BV Page 412

Operation

CheckST64BVEnabled();

bits(512) data;

bits(64) address;

bits(64) value;

bits(64) status;

acctype = AccType ATOMICLS64;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag checked);

for i = 0 to 7
value = X[t+i];
if BigEndian(acctype) then value = BigEndianReverse(value);
data<63+64*i:64*i> = value;

if n == 31 then
CheckSPAlignment();
address = SP[];
else
address = X[n];

status = MemStore64BWithRet(address, data, acctype);

if s != 31 then X[s] = status;

Internal version only: isa v32.13, AAvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ST64BV Page 413

ST64BVO

Single-copy Atomic 64-byte ELO Store with Return stores eight 64-bit doublewords from consecutive registers, Xt to
X(t+7), to a memory location, with the bottom 32 bits taken from ACCDATA EL1, and writes the status result of the
store to a register. The data that is stored is atomic and is required to be 64-byte aligned.

Integer
(FEAT_LS64_V)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
[1 1]1 1 1]/of0 ofo]oO[1] Rs [1]0 1 0[]0 O] Rn Rt |

ST64BVO <Xs>, <Xt>, [<Xn|SP>]

if 'HaveFeatlS64() then UNDEFINED;

if Rt<4:3> == '11' || Rt<0> == '1' then UNDEFINED;
integer n = UInt(Rn);

integer t = UInt(Rt);

integer s = UInt(Rs);

boolean tag checked = n != 31;

Assembler Symbols

<Xs> Is the 64-bit name of the general-purpose register into which the status result of this instruction is
written, encoded in the "Rs" field.
The value returned is:

0
If the operation updates memory.

-

If the operation fails to update memory.

OxFFFFFFFF_FFFFFFFF
If the memory location accessed does not support this instruction.

If XZR is used, then the return value is ignored.
<Xt> Is the 64-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

ST64BVO Page 414

Operation

CheckST64BVOEnabled();

bits(512) data;

bits(64) address;

bits(64) value;

bits(64) status;

acctype = AccType ATOMICLS64;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag checked);

bits(64) Xt = X[t];
value<31:0> = ACCDATA EL1<31:0>;
value<63:32> = Xt<63:32>;
if BigEndian(acctype) then value = BigEndianReverse(value);
data<63:0> = value;
for i =1 to 7
value = X[t+i];
if BigEndian(acctype) then value = BigEndianReverse(value);
data<63+64*i:64*i> = value;

if n == 31 then
CheckSPAlignment () ;
address = SP[];
else
address = X[n];

status = MemStore64BWithRet(address, data, acctype);

if s != 31 then X[s] = status;

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ST64BVO Page 415

STADD, STADDL

Atomic add on word or doubleword in memory, without return, atomically loads a 32-bit word or 64-bit doubleword
from memory, adds the value held in a register to it, and stores the result back to memory.

¢ STADD does not have release semantics.
e STADDL stores to memory with release semantics, as described in Load-Acquire, Store-Release.

For information about memory accesses see Load/Store addressing modes.

This is an alias of LDADD, LDADDA, LDADDAL, ILDADDL. This means:

¢ The encodings in this description are named to match the encodings of LDADD, LDADDA, LDADDAL,
LDADDL.

* The description of LDADD, LDADDA, LDADDAL, LDADDL gives the operational pseudocode for this
instruction.

Integer
(FEAT_LSE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5
[1 x[1 1 1]0[0 Of[O][R[1] Rs [o]0o 0 0[]0 O] Rn |
size A opc Rt

R|s
—|w
[N}
[y
~lo

32-bit LDADD alias (size == 10 && R == 0)

STADD <Ws>, [<Xn|SP>]
is equivalent to
LDADD <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.
32-bit LDADDL alias (size == 10 && R == 1)

STADDL <Ws>, [<Xn|SP>]
is equivalent to
LDADDL <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.
64-bit LDADD alias (size == 11 && R == 0)

STADD <Xs>, [<Xn|SP>]
is equivalent to
LDADD <Xs>, XZR, [<Xn|SP>]

and is always the preferred disassembly.
64-bit LDADDL alias (size == 11 && R == 1)

STADDL <Xs>, [<Xn|SP>]
is equivalent to
LDADDL <Xs>, XZR, [<Xn|SP>]

and is always the preferred disassembly.

STADD, STADDL Page 416

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

The description of LDADD, LDADDA, L.DADDAL, I.DADDL gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STADD, STADDL Page 417

STADDB, STADDLB

Atomic add on byte in memory, without return, atomically loads an 8-bit byte from memory, adds the value held in a
register to it, and stores the result back to memory.

e STADDB does not have release semantics.
e STADDLB stores to memory with release semantics, as described in Load-Acquire, Store-Release.

For information about memory accesses see Load/Store addressing modes.

This is an alias of LDADDB, LDADDAB, LDADDAILB, LDADDIB. This means:

¢ The encodings in this description are named to match the encodings of LDADDB, LDADDAB, L.LDADDALB,
LDADDLB.

e The description of LDADDB, LDADDAB, LDADDALB, LDADDLB gives the operational pseudocode for this
instruction.

Integer
(FEAT_LSE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5

R|s
—|w
[N}
[y
~lo

[0 0[]1 1 1]0[0 OfJO|R[1] Rs [o]0o 0 0[]0 O] Rn |
size A opc Rt
No memory ordering (R == 0)

STADDB <Ws>, [<Xn|SP>]
is equivalent to
LDADDB <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.
Release (R == 1)

STADDLB <Ws>, [<Xn|SP>]
is equivalent to
LDADDLB <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

The description of LDADDB, LDADDAB, LDADDALB, LDADDLB gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STADDB, STADDLB Page 418

STADDH, STADDLH

Atomic add on halfword in memory, without return, atomically loads a 16-bit halfword from memory, adds the value
held in a register to it, and stores the result back to memory.

¢ STADDH does not have release semantics.
e STADDLH stores to memory with release semantics, as described in Load-Acquire, Store-Release.

For information about memory accesses see Load/Store addressing modes.

This is an alias of LDADDH, LDADDAH, LDADDAILH, LDADDLH. This means:

¢ The encodings in this description are named to match the encodings of LDADDH, LDADDAH, .LDADDALH,
LDADDLH.

¢ The description of LDADDH, I.DADDAH, I.DADDALH, .LDADDLH gives the operational pseudocode for this
instruction.

Integer
(FEAT_LSE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5

R|s
—|w
[N}
[y
~lo

[0 1]1 1 1]0[0 OfJO|R[1] Rs [o]0o 0 0[]0 O] Rn |
size A opc Rt
No memory ordering (R == 0)

STADDH <Ws>, [<Xn|SP>]
is equivalent to
LDADDH <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.
Release (R == 1)

STADDLH <Ws>, [<Xn|SP>]
is equivalent to
LDADDLH <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

The description of LDADDH, IL.LDADDAH, IL.LDADDALH, LDADDLH gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STADDH, STADDLH Page 419

STCLR, STCLRL

Atomic bit clear on word or doubleword in memory, without return, atomically loads a 32-bit word or 64-bit
doubleword from memory, performs a bitwise AND with the complement of the value held in a register on it, and
stores the result back to memory.

¢ STCLR does not have release semantics.
¢ STCLRL stores to memory with release semantics, as described in Load-Acquire, Store-Release.

For information about memory accesses see Load/Store addressing modes.

This is an alias of LDCLR, LDCLRA, LDCILRAI, IL.DCILRI.. This means:

¢ The encodings in this description are named to match the encodings of LDCLR, LDCILRA, ILDCIL.RAL, IL.DCLRI.
¢ The description of LDCLR, LDCLRA, LDCL.RAL, LDCLRI gives the operational pseudocode for this
instruction.

Integer
(FEAT_LSE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5
[1 x[1 1 1]0[0 Of[O][R[1] Rs [o0]0o 0 1]0 O] Rn |
size A opc Rt

R|s
—|w
[N}
[y
~lo

32-bit LDCLR alias (size == 10 && R == 0)

STCLR <Ws>, [<Xn|SP>]
is equivalent to
LDCLR <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.
32-bit LDCLRL alias (size == 10 && R == 1)

STCLRL <Ws>, [<Xn|SP>]
is equivalent to
LDCLRL <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.
64-bit LDCLR alias (size == 11 && R == 0)

STCLR <Xs>, [<Xn|SP>]
is equivalent to
LDCLR <Xs>, XZR, [<Xn|SP>]

and is always the preferred disassembly.
64-bit LDCLRL alias (size == 11 && R == 1)

STCLRL <Xs>, [<Xn|SP>]
is equivalent to
LDCLRL <Xs>, XZR, [<Xn|SP>]

and is always the preferred disassembly.

STCLR, STCLRL Page 420

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

The description of LDCLR, LDCLRA, LDCLRAL, LDCLRL gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STCLR, STCLRL Page 421

STCLRB, STCLRLB

Atomic bit clear on byte in memory, without return, atomically loads an 8-bit byte from memory, performs a bitwise
AND with the complement of the value held in a register on it, and stores the result back to memory.

¢ STCLRB does not have release semantics.
¢ STCLRLB stores to memory with release semantics, as described in Load-Acquire, Store-Release.

For information about memory accesses see Load/Store addressing modes.

This is an alias of LDCLRB, LDCLRAB, . DCIL.RAI B, LDCLRLB. This means:

¢ The encodings in this description are named to match the encodings of LDCLRB, IL.LDCLRAB, LDCLRALB,
LDCLRLB.

¢ The description of LDCLRB, LDCLRAB, LDCLRAILB, LDCLRI.B gives the operational pseudocode for this
instruction.

Integer
(FEAT_LSE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5

R|s
—|w
[N}
[y
~lo

[0 0[]1 1 1]0[0 OfJO|R[1] Rs [o0]0o 0 1]0 O] Rn |
size A opc Rt
No memory ordering (R == 0)

STCLRB <Ws>, [<Xn|SP>]
is equivalent to
LDCLRB <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.
Release (R == 1)

STCLRLB <Ws>, [<Xn|SP>]
is equivalent to
LDCLRLB <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

The description of LDCLRB, LDCLRAB, LDCLRALB, LLDCLRIB gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STCLRB, STCLRLB Page 422

STCLRH, STCLRLH

Atomic bit clear on halfword in memory, without return, atomically loads a 16-bit halfword from memory, performs a
bitwise AND with the complement of the value held in a register on it, and stores the result back to memory.

¢ STCLRH does not have release semantics.
¢ STCLRLH stores to memory with release semantics, as described in Load-Acquire, Store-Release.

For information about memory accesses see Load/Store addressing modes.

This is an alias of LDCLRH, LDCILRAH, LDCLRALH, LDCLRLH. This means:

¢ The encodings in this description are named to match the encodings of LDCL.RH, LDCL.RAH, I.DCLRALH,
LDCLRLH.

e The description of LDCL.RH, LDCL.RAH, I.DCLRALH, IL.DCLRILH gives the operational pseudocode for this
instruction.

Integer
(FEAT_LSE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5

R|s
—|w
[N}
[y
~lo

[0 1]1 1 1]0[0 OfJO|R[1] Rs [o0]0o 0 1]0 O] Rn |
size A opc Rt
No memory ordering (R == 0)

STCLRH <Ws>, [<Xn|SP>]
is equivalent to
LDCLRH <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.
Release (R == 1)

STCLRLH <Ws>, [<Xn|SP>]
is equivalent to
LDCLRLH <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

The description of LDCLRH, LDCLRAH, LDCLRALH, LLDCLRLH gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STCLRH, STCLRLH Page 423

STEOR, STEORL

Atomic exclusive OR on word or doubleword in memory, without return, atomically loads a 32-bit word or 64-bit
doubleword from memory, performs an exclusive OR with the value held in a register on it, and stores the result back

to memory.
¢ STEOR does not have release semantics.

¢ STEORL stores to memory with release semantics, as described in Load-Acquire, Store-Release.
For information about memory accesses see Load/Store addressing modes.

This is an alias of LDEOR, LDEORA, ILDEORAIL, LDEORL. This means:

¢ The encodings in this description are named to match the encodings of LDEOR, LDEORA, LDEORAL,

LDEORL.

¢ The description of LDEOR, LDEORA, LDEORAIL, I.LDEORL gives the operational pseudocode for this

instruction.

Integer
(FEAT_LSE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 4 3 2 1 O
[1 x[1 1 1]0][0 O[O][R[1] Rs [o0]0 1 0[]0 O] 111 1 1]
size A opc

32-bit LDEOR alias (size == 10 && R == 0)

STEOR <Ws>, [<Xn]|SP>]
is equivalent to
LDEOR <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.
32-bit LDEORL alias (size == 10 && R == 1)

STEORL <Ws>, [<Xn|SP>]
is equivalent to
LDEORL <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.
64-bit LDEOR alias (size == 11 && R == 0)

STEOR <Xs>, [<Xn|SP>]
is equivalent to
LDEOR <Xs>, XZR, [<Xn|SP>]

and is always the preferred disassembly.
64-bit LDEORL alias (size == 11 && R == 1)

STEORL <Xs>, [<Xn|SP>]
is equivalent to
LDEORL <Xs>, XZR, [<Xn|SP>]

and is always the preferred disassembly.

STEOR, STEORL

Page 424

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

The description of LDEOR, LDEORA, LDEORAL, LDEORL gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STEOR, STEORL Page 425

STEORB, STEORLB

Atomic exclusive OR on byte in memory, without return, atomically loads an 8-bit byte from memory, performs an
exclusive OR with the value held in a register on it, and stores the result back to memory.

¢ STEORB does not have release semantics.
¢ STEORLB stores to memory with release semantics, as described in Load-Acquire, Store-Release.

For information about memory accesses see Load/Store addressing modes.

This is an alias of LDEORB, LDEORAB, LDEORALB, LDEORLB. This means:

¢ The encodings in this description are named to match the encodings of LDEORB, LDEORAB, LDEORALB,
LDEORLB.

e The description of LDEORB, LDEORAB, LDEORALB, LDEORLB gives the operational pseudocode for this
instruction.

Integer
(FEAT_LSE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5

R|s
—|w
[N}
[y
~lo

[0 0[]1 1 1]0[0 OfJO|R[1] Rs [o0]0o 1 0[]0 O] Rn |
size A opc Rt
No memory ordering (R == 0)

STEORB <Ws>, [<Xn|SP>]
is equivalent to
LDEORB <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.
Release (R == 1)

STEORLB <Ws>, [<Xn|SP>]
is equivalent to
LDEORLB <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

The description of LDEORB, LDEORAB, LDEORALB, LDEORLB gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STEORB, STEORLB Page 426

STEORH, STEORLH

Atomic exclusive OR on halfword in memory, without return, atomically loads a 16-bit halfword from memory, performs
an exclusive OR with the value held in a register on it, and stores the result back to memory.

¢ STEORH does not have release semantics.
¢ STEORLH stores to memory with release semantics, as described in Load-Acquire, Store-Release.

For information about memory accesses see Load/Store addressing modes.

This is an alias of LDEORH, LDEORAH, LDEORALH, ILDEORLH. This means:

¢ The encodings in this description are named to match the encodings of LDEORH, ILDEORAH, LDEORALH,
LDEORLH.

¢ The description of LDEORH, LDEORAH, IDEORALH, I.DEORLH gives the operational pseudocode for this
instruction.

Integer
(FEAT_LSE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5

R|s
—|w
[N}
[y
~lo

[0 1]1 1 1]0[0 OfJO|R[1] Rs [o0]0o 1 0[]0 O] Rn |
size A opc Rt
No memory ordering (R == 0)

STEORH <Ws>, [<Xn|SP>]
is equivalent to
LDEORH <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.
Release (R == 1)

STEORLH <Ws>, [<Xn|SP>]
is equivalent to
LDEORLH <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

The description of LDEORH, LDEORAH, LDEORALH, LDEORLH gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STEORH, STEORLH Page 427

STG

Store Allocation Tag stores an Allocation Tag to memory. The address used for the store is calculated from the base
register and an immediate signed offset scaled by the Tag granule. The Allocation Tag is calculated from the Logical

Address Tag in the source register.

This instruction generates an Unchecked access.

It has encodings from 3 classes: Post-index , Pre-index and Signed offset

Post-index
(FEAT_MTE)

31 30 29 28 27 26 25 24 23 22 21 20 19

18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

1 1 01100 1][0f0f1]

imm9 [o]1] Xn | Xt |

STG <Xt|SP>, [<Xn|SP>], #<simm>

if !'HaveMTEExt() then UNDEFINED;
integer n = UInt(Xn);

integer t = UInt(Xt);
bits(64) offset =

boolean writeback = TRUE;
boolean postindex = TRUE;
Pre-index
(FEAT_MTE)

31 30 29 28 27 26 25 24 23 22 21 20 19

LSL(SignExtend(imm9,

64), LOG2_TAG_GRANULE);

18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

[1 1 01100 1[0]0]1]

imm9 [1]1] Xn | Xt |

STG <Xt|SP>, [<Xn|SP>, #<simm>]!

if !'HaveMTEExt() then UNDEFINED;
integer n = UInt(Xn);

integer t = UInt(Xt);
bits(64) offset =
boolean writeback
boolean postindex

TRUE;
FALSE;

Signed offset
(FEAT_MTE)

31 30 29 28 27 26 25 24 23 22 21 20 19

LSL (SignExtend(imm9,

64), LOG2 TAG GRANULE);

18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

[1 1 01100 1[0]0]1]

imm9 [1]0] Xn | Xt |

STG <Xt|SP>, [<Xn|SP>{, #<simm>}]

if 'HaveMTEExt() then UNDEFINED;
integer n = UInt(Xn);

integer t = UInt(Xt);
bits(64) offset =
boolean writeback
boolean postindex

FALSE;
FALSE;

Assembler Symbols

LSL (SignExtend(imm9,

64), LOG2 TAG GRANULE);

<Xt|SP> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Xt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Xn" field.

<simm> Is the optional signed immediate offset, a multiple of 16 in the range -4096 to 4080, defaulting to 0 and

encoded in the "imm9" field.

STG Page 428

Operation

bits(64) address;

SetTagCheckedInstruction(FALSE);

if n == 31 then
CheckSPAlignment () ;
address = SP[];
else
address = X[n];

if !postindex then
address = address + offset;

bits(64) data = if t == 31 then SP[] else X[t];

bits(4) tag = AArch64.AllocationTagFromAddress(data);

AArch64.MemTag[address, AccType NORMAL] = tag;

if writeback then
if postindex then
address = address + offset;

if n == 31 then
SP[] = address;
else
X[n] = address;

Internal version only: isa v32.13, AAvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STG

Page 429

STGM

Store Tag Multiple writes a naturally aligned block of N Allocation Tags, where the size of N is identified in
GMID EL1.BS, and the Allocation Tag written to address A is taken from the source register at
4*¥A<7:4>43:4*A<7:4>.

This instruction is UNDEFINED at ELO.
This instruction generates an Unchecked access.
If ID AA64PFR1 EL1.MTE != 0b0010, this instruction is UNDEFINED.

Integer
(FEAT_MTE2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
1 1 01100 1[1]/0of1][ofo]Jo|o|[o[0[0]O[0[0]O0] Xn | Xt |

STGM <Xt>, [<Xn|SP>]

if !'HaveMTE2Ext() then UNDEFINED;
integer t = UInt(Xt);
integer n = UInt(Xn);

Assembler Symbols

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Xt" field.
<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Xn" field.
Operation

if PSTATE.EL == ELQ then
UNDEFINED;

bits(64) data = X[t];
bits(64) address;

if n == 31 then
CheckSPAlignment () ;
address = SP[];
else
address = X[n];

integer size = 4 * (2 ~ (UInt(GMID EL1.BS)));

address = Align(address, size);

integer count = size >> L0G2 TAG _GRANULE;

integer index = UInt(address<L0G2 TAG GRANULE+3:L0G2 TAG GRANULE>);

for i = 0 to count-1
bits(4) tag = data<(index*4)+3:index*4>;
AArch64.MemTag[address, AccType NORMAL] = tag;
address = address + TAG_GRANULE;
index = index + 1;

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STGM Page 430

STGP

Store Allocation Tag and Pair of registers stores an Allocation Tag and two 64-bit doublewords to memory, from two
registers. The address used for the store is calculated from the base register and an immediate signed offset scaled by
the Tag granule. The Allocation Tag is calculated from the Logical Address Tag in the base register.

This instruction generates an Unchecked access.

It has encodings from 3 classes: Post-index , Pre-index and Signed offset

Post-index
(FEAT_MTE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
loJ1]1 o 1]o]Jo0 0 1]0] simm7 | Xt2 | Xn | Xt |

STGP <Xtl>, <Xt2>, [<Xn|SP>], #<imm>

if !'HaveMTEExt() then UNDEFINED;

integer n = UInt(Xn);

integer t = UInt(Xt);

integer t2 = UInt(Xt2);

bits(64) offset = LSL(SignExtend(simm7, 64), LOG2 TAG GRANULE);

boolean writeback = TRUE;
boolean postindex = TRUE;
Pre-index
(FEAT_MTE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
[0[1]1 o 1]0[0 1 1]0] simm7 | Xt2 | Xn | Xt |

STGP <Xtl>, <Xt2>, [<Xn|SP>, #<imm>]!

if !HaveMTEExt() then UNDEFINED;
integer n = nt(Xn);

integer t = t(Xt);

integer t2 = UInt(Xt2);

bits(64) offset = LSL(SignExtend(simm7, 64), LOG2 TAG GRANULE);
boolean writeback = TRUE;
boolean postindex FALSE;

Signed offset
(FEAT_MTE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
[0[1]1 0o 1]0[0 1 o]0 simm7 | Xt2 | Xn | Xt |

STGP <Xtl>, <Xt2>, [<Xn|SP>{, #<imm>}]

if 'HaveMTEExt() then UNDEFINED;

integer n = UInt(Xn);

integer t = UInt(Xt);

integer t2 = UInt(Xt2);

bits(64) offset = LSL(SignExtend(simm7, 64), LOG2 TAG GRANULE);
boolean writeback FALSE;

boolean postindex FALSE;

Assembler Symbols

<Xtl> Is the 64-bit name of the first general-purpose register to be transferred, encoded in the "Xt" field.

<Xt2> Is the 64-bit name of the second general-purpose register to be transferred, encoded in the "Xt2" field.

STGP Page 431

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Xn" field.

<imm> For the post-index and pre-index variant: is the signed immediate offset, a multiple of 16 in the range
-1024 to 1008, encoded in the "simm7" field.

For the signed offset variant: is the optional signed immediate offset, a multiple of 16 in the range -1024

to 1008, defaulting to 0 and encoded in the "simm7" field.

Operation

bits(64) address;
bits(64) datal;
bits(64) data2;

SetTagCheckedInstruction(FALSE);

if n == 31 then
CheckSPAlignment () ;
address = SP[];
else
address = X[n];

datal
data2

X[t];
X[t2]1;

if !postindex then
address = address + offset;

if address != Align(address, TAG_GRANULE) then
AArch64.Abort (address, AArch64.AlignmentFault(AccType NORMAL, TRUE, FALSE));

Mem[address, 8, AccType NORMAL]

Mem[address+8, 8, AccType NORMA

AArch64 .MemTag[address, AccType NORMAL] = AArch64.AllocationTagFromAddress(address);

if writeback then
if postindex then

address = address + offset;

if n == 31 then
SP[] = address;

else
X[n]

address;

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STGP

Page 432

STLLR

Store LORelease Register stores a 32-bit word or a 64-bit doubleword to a memory location, from a register. The
instruction also has memory ordering semantics as described in Load LOAcquire, Store LORelease. For information
about memory accesses, see Load/Store addressing modes.

No offset
(FEAT_LOR)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
[1 x][o 01 0 0 of1]0]0(1)(@) @)@ @][o0]1)(Q)(1)(1)(1)] Rn Rt |
size L Rs o0 Rt2

32-bit (size == 10)

STLLR <Wt>, [<Xn|SP>{,#0}]

64-bit (size == 11)

STLLR <Xt>, [<Xn|SP>{,#0}]

UInt(Rn);
UInt(Rt);

integer n
integer t

integer elsize = 8 << Ulnt(size);
boolean tag checked = n != 31;

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.
<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.
<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.
Operation

bits(64) address;
bits(elsize) data;
constant integer dbytes = elsize DIV 8;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag checked);

if n == 31 then

CheckSPAlignment () ;
address = SP[];

else
address = X[n];

data = X[t];
Mem[address, dbytes, AccType LIMITEDORDERED] = data;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STLLR Page 433

STLLRB

Store LORelease Register Byte stores a byte from a 32-bit register to a memory location. The instruction also has
memory ordering semantics as described in Load LOAcquire, Store LORelease. For information about memory
accesses, see Load/Store addressing modes.

No offset
(FEAT_LOR)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
[0 0J]o 0 1 0 0 of1]o]0()() (@@ @][o]1)(Q)(1)(1) (1) Rn Rt |
size L Rs o0 Rt2

STLLRB <Wt>, [<Xn|SP>{,#0}]

integer n
integer t

UInt(Rn);
UInt(Rt);

boolean tag checked = n != 31;

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.
<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.
Operation

bits(64) address;
bits(8) data;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag checked);

if n == 31 then
CheckSPAlignment();
address = SP[];
else
address = X[n];

data = X[t];
Mem[address, 1, AccType LIMITEDORDERED] = data;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STLLRB Page 434

STLLRH

Store LORelease Register Halfword stores a halfword from a 32-bit register to a memory location. The instruction also
has memory ordering semantics as described in Load LOAcquire, Store LORelease. For information about memory
accesses, see Load/Store addressing modes.

No offset
(FEAT_LOR)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
[0 1]0o 0 1 0 0 of1]o]o0()(@ @@ @][o]1)(Q)()(1)(1)] Rn Rt |
size L Rs o0 Rt2

STLLRH <Wt>, [<Xn|SP>{,#0}]

integer n
integer t

UInt(Rn);
UInt(Rt);

boolean tag checked = n != 31;

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.
<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.
Operation

bits(64) address;
bits(16) data;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag checked);

if n == 31 then
CheckSPAlignment();
address = SP[];
else
address = X[n];

data = X[t];
Mem[address, 2, AccType LIMITEDORDERED] = data;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STLLRH Page 435

STLR

Store-Release Register stores a 32-bit word or a 64-bit doubleword to a memory location, from a register. The
instruction also has memory ordering semantics as described in Load-Acquire, Store-Release. For information about
memory accesses, see Load/Store addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
|1 x[0 01 0 0 of1]0]0[(1)@) (@) (D) (M[1[1)(@)(1)(1) (1) Rn | Rt |
size L Rs o0 Rt2

32-bit (size == 10)
STLR <Wt>, [<Xn|SP>{,#0}]
64-bit (size == 11)

STLR <Xt>, [<Xn|SP>{,#0}]

integer n
integer t

UInt(Rn);
UInt(Rt);

integer elsize = 8 << Ulnt(size);
boolean tag checked = n != 31;

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.
<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.
<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.
Operation

bits(64) address;
bits(elsize) data;
constant integer dbytes = elsize DIV 8;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag checked);

if n == 31 then
CheckSPAlignment();
address = SP[];
else
address = X[n];

data = X[t];
Mem[address, dbytes, AccType ORDERED] = data;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STLR Page 436

STLRB

Store-Release Register Byte stores a byte from a 32-bit register to a memory location. The instruction also has memory
ordering semantics as described in Load-Acquire, Store-Release. For information about memory accesses, see Load/
Store addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
|0 0[O0 0 1 0 0 of1]0]0[(1)@) (M) (D)(M]1[1)(@)(1)(1) (1) RN | Rt |
size L Rs o0 Rt2

STLRB <Wt>, [<Xn|SP>{,#0}]

UInt(Rn);
UInt(Rt);

integer n
integer t

boolean tag checked = n != 31;

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.
<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.
Operation

bits(64) address;
bits(8) data;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag checked);

if n == 31 then
CheckSPAlignment();
address = SP[];
else
address = X[n];

data = X[t];
Mem[address, 1, AccType ORDERED] = data;

Operational information
If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STLRB Page 437

STLRH

Store-Release Register Halfword stores a halfword from a 32-bit register to a memory location. The instruction also
has memory ordering semantics as described in Load-Acquire, Store-Release. For information about memory accesses,
see Load/Store addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
0 1[0 0 1 0 0 of1]0]0(1)@) ()M (D]1[1)(@)(1)(1) (1) Rn | Rt |
size L Rs o0 Rt2

STLRH <Wt>, [<Xn|SP>{,#0}]

UInt(Rn);
UInt(Rt);

integer n
integer t

boolean tag checked = n != 31;

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.
<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.
Operation

bits(64) address;
bits(16) data;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag checked);

if n == 31 then
CheckSPAlignment();
address = SP[];
else
address = X[n];

data = X[t];
Mem[address, 2, AccType ORDERED] = data;

Operational information
If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STLRH Page 438

STLUR

Store-Release Register (unscaled) calculates an address from a base register value and an immediate offset, and
stores a 32-bit word or a 64-bit doubleword to the calculated address, from a register.

The instruction has memory ordering semantics as described in Load-Acquire, Load-AcquirePC, and Store-Release
For information about memory accesses, see Load/Store addressing modes.

Unscaled offset
(FEAT_LRCPC2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
[1 x[0o 1 1 0 0 1[0 0]0] imm9 [0 O] Rn Rt |
size opc

32-bit (size == 10)
STLUR <Wt>, [<Xn|SP>{, #<simm>}]
64-bit (size == 11)

STLUR <Xt>, [<Xn|SP>{, #<simm>}]

integer scale = Ulnt(size);
bits(64) offset = SignExtend(imm9, 64);

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.
<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.
<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded in

the "imm9" field.

Shared Decode

UInt(Rn);
UInt(Rt);

integer n
integer t

integer datasize = 8 << scale;
boolean tag checked = n != 31;

Operation

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag checked);

bits(64) address;
bits(datasize) data;

if n == 31 then
CheckSPAlignment () ;
address = SP[];
else
address = X[n];

address = address + offset;

data = X[t];
Mem[address, datasize DIV 8, AccType ORDERED] = data;

STLUR Page 439

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STLUR Page 440

STLURB

Store-Release Register Byte (unscaled) calculates an address from a base register value and an immediate offset, and

stores a byte

to the calculated address, from a 32-bit register.

The instruction has memory ordering semantics as described in Load-Acquire, Load-AcquirePC, and Store-Release

For informati

on about memory accesses, see Load/Store addressing modes.

Unscaled offset
(FEAT_LRCPC2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
[0 0[]0 1 1 0 0 1[0 0[O imm9 [0 O] Rn Rt |
size opc

STLURB <Wt>

bits(64) of

Assembler S
<Wt>

<Xn|SP>

<simm>

, [<Xn|SP>{, #<simm>}]

fset = SignExtend(imm9, 64);

ymbols

Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.
Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded in
the "imm9" field.

Shared Decode

integer n
integer t

boolean tag

Operation

UInt(Rn);
UInt(Rt);

checked = n != 31;

if HaveMTE2

SetTagC

Ext() then
heckedInstruction(tag checked);

bits(64) ad
bits(8) dat

if n == 31

dress;
a;

then

CheckSPAlignment();

address
else
address

= SP[];

= X[n];

address = address + offset;

data = X[t]
Mem[address

Operational

’

, 1, AccType ORDERED] = data;

information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STLURB Page 441

STLURH

Store-Release Register Halfword (unscaled) calculates an address from a base register value and an immediate offset,
and stores a halfword to the calculated address, from a 32-bit register.
The instruction has memory ordering semantics as described in Load-Acquire, Load-AcquirePC, and Store-Release

For informati

on about memory accesses, see Load/Store addressing modes.

Unscaled offset
(FEAT_LRCPC2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
[0 1]/]0 1 1 0 0 1[0 0[O imm9 [0 O] Rn Rt |
size opc

STLURH <Wt>

bits(64) of

Assembler S
<Wt>

<Xn|SP>

<simm>

, [<Xn|SP>{, #<simm>}]

fset = SignExtend(imm9, 64);

ymbols

Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.
Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded in
the "imm9" field.

Shared Decode

integer n
integer t

boolean tag

Operation

UInt(Rn);
UInt(Rt);

checked = n != 31;

if HaveMTE2

SetTagC

Ext() then
heckedInstruction(tag checked);

bits(64) ad
bits(16) da

if n == 31

dress;
ta;

then

CheckSPAlignment();

address
else
address

= SP[];

= X[n];

address = address + offset;

data = X[t]
Mem[address

Operational

’

, 2, AccType ORDERED] = data;

information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STLURH Page 442

STLXP

Store-Release Exclusive Pair of registers stores two 32-bit words or two 64-bit doublewords to a memory location if the
PE has exclusive access to the memory address, from two registers, and returns a status value of 0 if the store was
successful, or of 1 if no store was performed. See Synchronization and semaphores. A 32-bit pair requires the address
to be doubleword aligned and is single-copy atomic at doubleword granularity. A 64-bit pair requires the address to be
quadword aligned and, if the Store-Exclusive succeeds, it causes a single-copy atomic update of the 128-bit memory
location being updated. The instruction also has memory ordering semantics as described in Load-Acquire, Store-
Release. For information about memory accesses see Load/Store addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

|1]sz|0 0 1 0 0 of[o[0[1] Rs 1] Rt2 | Rn | Rt |
L o0

32-bit (sz == 0)
STLXP <Ws>, <Wtl>, <Wt2>, [<Xn|SP>{,#0}]
64-bit (sz == 1)

STLXP <Ws>, <Xtl>, <Xt2>, [<Xn|SP>{,#0}]

integer n = UInt(Rn);
integer t = UInt(Rt);
integer t2 = UInt(Rt2); // ignored by load/store single register
integer s = UInt(Rs); // ignored by all loads and store-release

integer elsize = 32 << UInt(sz);
integer datasize = elsize * 2;
boolean tag checked = n != 31;

boolean rt _unknown = FALSE;
boolean rn_unknown = FALSE;
if s ==t || (s == t2) then
Constraint c¢ = ConstrainUnpredictable(Unpredictable DATAOVERLAP);
assert ¢ IN {Constraint UNKNOWN, Constraint NONE, Constraint UNDEF, Constraint NOP};

case c¢ of
when Constraint UNKNOWN rt unknown = TRUE; // store UNKNOWN value
when Constraint NONE rt_unknown = FALSE; // store original value
when Constraint UNDEF UNDEFINED;
when Constraint NOP EndOfInstruction();

if s == n & n != 31 then
Constraint c¢ = ConstrainUnpredictable(Unpredictable BASEOVERLAP);
assert ¢ IN {Constraint UNKNOWN, Constraint NONE, Constraint UNDEF, Constraint NOP};

case c of
when Constraint UNKNOWN rn_unknown = TRUE; // address is UNKNOWN
when Constraint NONE rn_unknown = FALSE; // address is original base
when Constraint UNDEF UNDEFINED;
when Constraint NOP EndOfInstruction();

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints on
UNPREDICTABLE behaviors, and particularly STLXP.

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register into which the status result of the store exclusive is
written, encoded in the "Rs" field. The value returned is:
0
If the operation updates memory.
1
If the operation fails to update memory.
<Xtl> Is the 64-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

STLXP Page 443

<Xt2> Is the 64-bit name of the second general-purpose register to be transferred, encoded in the "Rt2" field.

<Wt1> Is the 32-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.
<Wt2> Is the 32-bit name of the second general-purpose register to be transferred, encoded in the "Rt2" field.
<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Aborts and alignment

If a synchronous Data Abort exception is generated by the execution of this instruction:

¢ Memory is not updated.

¢ <Ws> is not updated.
Accessing an address that is not aligned to the size of the data being accessed causes an Alignment fault Data Abort
exception to be generated, subject to the following rules:

¢ If AArch64.ExclusiveMonitorsPass() returns TRUE, the exception is generated.

¢ Otherwise, it is IMPLEMENTATION DEFINED whether the exception is generated.

If AArch64.ExclusiveMonitorsPass() returns FALSE and the memory address, if accessed, would generate a
synchronous Data Abort exception, it is IMPLEMENTATION DEFINED whether the exception is generated.

Operation

bits(64) address;
bits(datasize) data;
constant integer dbytes = datasize DIV 8;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag checked);

if n == 31 then
CheckSPAlignment();
address = SP[];
elsif rn_unknown then
address = bits(64) UNKNOWN;
else
address = X[n];

if rt_unknown then
data = bits(datasize) UNKNOWN;
else
bits(datasize DIV 2) ell X[t];
bits(datasize DIV 2) el2 X[t2];
data = if BigEndian(AccType ORDEREDATOMIC) then ell:el2 else el2:ell;
bit status = '1';
// Check whether the Exclusives monitors are set to include the
// physical memory locations corresponding to virtual address
// range [address, address+dbytes-1].
if AArch64.ExclusiveMonitorsPass(address, dbytes) then
// This atomic write will be rejected if it does not refer
// to the same physical locations after address translation.
Mem[address, dbytes, AccType ORDEREDATOMIC] = data;
status = ExclusiveMonitorsStatus();
X[s] = ZeroExtend(status, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STLXP Page 444

STLXR

Store-Release Exclusive Register stores a 32-bit word or a 64-bit doubleword to memory if the PE has exclusive access
to the memory address, from two registers, and returns a status value of 0 if the store was successful, or of 1 if no
store was performed. See Synchronization and semaphores. The memory access is atomic. The instruction also has
memory ordering semantics as described in Load-Acquire, Store-Release. For information about memory accesses see
Load/Store addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
|1 x[0 01 0 0 0[0][0]O] Rs | 1[(1)(1)(1) (1) (1) Rn | Rt |
size L o0 Rt2

32-bit (size == 10)
STLXR <Ws>, <Wt>, [<Xn|SP>{,#0}]
64-bit (size == 11)

STLXR <Ws>, <Xt>, [<Xn|SP>{,#0}]

integer n = UInt(Rn);
integer t = UInt(Rt);
integer s = UInt(Rs); // ignored by all loads and store-release

integer elsize = 8 << Ulnt(size);
boolean tag checked = n != 31;

boolean rt unknown
boolean rn_unknown
if s == t then
Constraint c¢ = ConstrainUnpredictable(Unpredictable DATAOVERLAP);
assert ¢ IN {Constraint UNKNOWN, Constraint NONE, Constraint UNDEF, Constraint NOP};

FALSE;
FALSE;

case c¢ of
when Constraint UNKNOWN rt unknown = TRUE; // store UNKNOWN value
when Constraint NONE rt_unknown = FALSE; // store original value
when Constraint UNDEF UNDEFINED;
when Constraint NOP EndOfInstruction();

if s == n & n != 31 then
Constraint c¢ = ConstrainUnpredictable(Unpredictable BASEOVERLAP);
assert ¢ IN {Constraint UNKNOWN, Constraint NONE, Constraint UNDEF, Constraint NOP};

case c of
when Constraint UNKNOWN rn_unknown = TRUE; // address is UNKNOWN
when Constraint NONE rn_unknown = FALSE; // address is original base
when Constraint UNDEF UNDEFINED;
when Constraint NOP EndOfInstruction();

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints on
UNPREDICTABLE behaviors, and particularly STLXR.

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register into which the status result of the store exclusive is
written, encoded in the "Rs" field. The value returned is:
0
If the operation updates memory.
1
If the operation fails to update memory.
<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.
<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.
<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

STLXR Page 445

Aborts and alignment
If a synchronous Data Abort exception is generated by the execution of this instruction:

¢ Memory is not updated.
¢ <Ws> is not updated.

Accessing an address that is not aligned to the size of the data being accessed causes an Alignment fault Data Abort
exception to be generated, subject to the following rules:

e If AArch64.ExclusiveMonitorsPass() returns TRUE, the exception is generated.
¢ Otherwise, it is IMPLEMENTATION DEFINED whether the exception is generated.

If AArch64.ExclusiveMonitorsPass() returns FALSE and the memory address, if accessed, would generate a
synchronous Data Abort exception, it is IMPLEMENTATION DEFINED whether the exception is generated.

Operation

bits(64) address;
bits(elsize) data;
constant integer dbytes = elsize DIV 8;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag checked);

if n == 31 then
CheckSPAlignment();
address = SP[];
elsif rn_unknown then
address = bits(64) UNKNOWN;
else
address = X[n];

if rt_unknown then

data = bits(elsize) UNKNOWN;
else

data = X[t];

bit status = '1';
// Check whether the Exclusives monitors are set to include the
// physical memory locations corresponding to virtual address
// range [address, address+dbytes-1].
if AArch64.ExclusiveMonitorsPass(address, dbytes) then
// This atomic write will be rejected if it does not refer
// to the same physical locations after address translation.
Mem[address, dbytes, AccType ORDEREDATOMIC] = data;
status = ExclusiveMonitorsStatus();
X[s] = ZeroExtend(status, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STLXR Page 446

STLXRB

Store-Release Exclusive Register Byte stores a byte from a 32-bit register to memory if the PE has exclusive access to
the memory address, and returns a status value of 0 if the store was successful, or of 1 if no store was performed. See
Synchronization and semaphores. The memory access is atomic. The instruction also has memory ordering semantics
as described in Load-Acquire, Store-Release. For information about memory accesses see Load/Store addressing
modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
|0 0/0 01 0 0 0o[0][O]/O] Rs | 1[(1)(1)(1) (1) (1) Rn | Rt |
size L o0 Rt2

STLXRB <Ws>, <Wt>, [<Xn|SP>{,#0}]

integer n = UInt(Rn);
integer t = UInt(Rt);
integer s = UInt(Rs); // ignored by all loads and store-release

boolean tag checked = n != 31;

boolean rt unknown
boolean rn_unknown
if s == t then
Constraint c¢ = ConstrainUnpredictable(Unpredictable DATAOVERLAP);
assert ¢ IN {Constraint UNKNOWN, Constraint NONE, Constraint UNDEF, Constraint NOP};

FALSE;
FALSE;

case c¢ of
when Constraint UNKNOWN rt unknown = TRUE; // store UNKNOWN value
when Constraint NONE rt_unknown = FALSE; // store original value
when Constraint UNDEF UNDEFINED;
when Constraint NOP EndOfInstruction();

if s == n & n != 31 then
Constraint c¢ = ConstrainUnpredictable(Unpredictable BASEOVERLAP);
assert ¢ IN {Constraint UNKNOWN, Constraint NONE, Constraint UNDEF, Constraint NOP};

case c of
when Constraint UNKNOWN rn_unknown = TRUE; // address is UNKNOWN
when Constraint NONE rn_unknown = FALSE; // address is original base
when Constraint UNDEF UNDEFINED;
when Constraint NOP EndOfInstruction();

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints on
UNPREDICTABLE behaviors, and particularly STLXRB.

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register into which the status result of the store exclusive is
written, encoded in the "Rs" field. The value returned is:
0
If the operation updates memory.
1
If the operation fails to update memory.
<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.
<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Aborts
If a synchronous Data Abort exception is generated by the execution of this instruction:

* Memory is not updated.
¢ <Ws> is not updated.

If AArch64.ExclusiveMonitorsPass() returns FALSE and the memory address, if accessed, would generate a
synchronous Data Abort exception, it is IMPLEMENTATION DEFINED whether the exception is generated.

STLXRB Page 447

Operation

bits(64) address;
bits(8) data;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag checked);

if n == 31 then
CheckSPAlignment();
address = SP[1];
elsif rn_unknown then
address = bits(64) UNKNOWN;
else
address = X[n];

if rt _unknown then

data = bits(8) UNKNOWN;
else

data = X[t];

bit status = '1"';
// Check whether the Exclusives monitors are set to include the
// physical memory locations corresponding to virtual address
// range [address, address+dbytes-1].
if AArch64.ExclusiveMonitorsPass(address, 1) then
// This atomic write will be rejected if it does not refer
// to the same physical locations after address translation.
Mem[address, 1, AccType ORDEREDATOMIC] = data;
status = ExclusiveMonitorsStatus();
X[s] = ZeroExtend(status, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STLXRB Page 448

STLXRH

Store-Release Exclusive Register Halfword stores a halfword from a 32-bit register to memory if the PE has exclusive
access to the memory address, and returns a status value of 0 if the store was successful, or of 1 if no store was
performed. See Synchronization and semaphores. The memory access is atomic. The instruction also has memory
ordering semantics as described in Load-Acquire, Store-Release. For information about memory accesses see Load/
Store addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
|0 1/0 01 0 0 0[0]0]O] Rs | 1[(1)(1)(1) (1) (1) Rn | Rt |
size L o0 Rt2

STLXRH <Ws>, <Wt>, [<Xn|SP>{,#0}]

integer n = UInt(Rn);
integer t = UInt(Rt);
integer s = UInt(Rs); // ignored by all loads and store-release

boolean tag checked = n != 31;

boolean rt unknown
boolean rn_unknown
if s == t then
Constraint c¢ = ConstrainUnpredictable(Unpredictable DATAOVERLAP);
assert ¢ IN {Constraint UNKNOWN, Constraint NONE, Constraint UNDEF, Constraint NOP};

FALSE;
FALSE;

case c¢ of
when Constraint UNKNOWN rt unknown = TRUE; // store UNKNOWN value
when Constraint NONE rt_unknown = FALSE; // store original value
when Constraint UNDEF UNDEFINED;
when Constraint NOP EndOfInstruction();

if s == n & n != 31 then
Constraint c¢ = ConstrainUnpredictable(Unpredictable BASEOVERLAP);
assert ¢ IN {Constraint UNKNOWN, Constraint NONE, Constraint UNDEF, Constraint NOP};

case c of
when Constraint UNKNOWN rn_unknown = TRUE; // address is UNKNOWN
when Constraint NONE rn_unknown = FALSE; // address is original base
when Constraint UNDEF UNDEFINED;
when Constraint NOP EndOfInstruction();

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints on
UNPREDICTABLE behaviors, and particularly STLXRH.

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register into which the status result of the store exclusive is
written, encoded in the "Rs" field. The value returned is:
0
If the operation updates memory.
1
If the operation fails to update memory.
<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.
<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Aborts and alignment
If a synchronous Data Abort exception is generated by the execution of this instruction:

* Memory is not updated.
¢ <Ws> is not updated.

A non halfword-aligned memory address causes an Alignment fault Data Abort exception to be generated, subject to
the following rules:

* If AArch64.ExclusiveMonitorsPass() returns TRUE, the exception is generated.
* Otherwise, it is IMPLEMENTATION DEFINED whether the exception is generated.

STLXRH Page 449

If AArch64.ExclusiveMonitorsPass() returns FALSE and the memory address, if accessed, would generate a
synchronous Data Abort exception, it is IMPLEMENTATION DEFINED whether the exception is generated.

Operation

bits(64) address;
bits(16) data;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag checked);

if n == 31 then
CheckSPAlignment();
address = SP[];
elsif rn_unknown then
address = bits(64) UNKNOWN;
else
address = X[n];

if rt_unknown then

data = bits(16) UNKNOWN;
else

data = X[t];

bit status = '1"';
// Check whether the Exclusives monitors are set to include the
// physical memory locations corresponding to virtual address
// range [address, address+dbytes-1].
if AArch64.ExclusiveMonitorsPass(address, 2) then
// This atomic write will be rejected if it does not refer
// to the same physical locations after address translation.
Mem[address, 2, AccType ORDEREDATOMIC] = data;
status = ExclusiveMonitorsStatus();
X[s] = ZeroExtend(status, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STLXRH Page 450

STNP

Store Pair of Registers, with non-temporal hint, calculates an address from a base register value and an immediate
offset, and stores two 32-bit words or two 64-bit doublewords to the calculated address, from two registers. For
information about memory accesses, see Load/Store addressing modes. For information about Non-temporal pair
instructions, see Load/Store Non-temporal pair.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
Ix 0]1 0 1]oJ0 0 o]0] imm7 | Rt2 | Rn | Rt |
opc L

32-bit (opc == 00)
STNP <Wtl>, <Wt2>, [<Xn|SP>{, #<imm>}]
64-bit (opc == 10)

STNP <Xtl1l>, <Xt2>, [<Xn|SP>{, #<imm>}]

// Empty.

Assembler Symbols

<Wtl> Is the 32-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.
<Wt2> Is the 32-bit name of the second general-purpose register to be transferred, encoded in the "Rt2" field.
<Xtl> Is the 64-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.
<Xt2> Is the 64-bit name of the second general-purpose register to be transferred, encoded in the "Rt2" field.
<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.
<imm> For the 32-bit variant: is the optional signed immediate byte offset, a multiple of 4 in the range -256 to

252, defaulting to 0 and encoded in the "imm?7" field as <imm>/4.

For the 64-bit variant: is the optional signed immediate byte offset, a multiple of 8 in the range -512 to
504, defaulting to 0 and encoded in the "imm7" field as <imm>/8.

Shared Decode

integer n = UInt(Rn);

integer t = UInt(Rt);

integer t2 = UInt(Rt2);

if opc<0> == '1' then UNDEFINED;

integer scale = 2 + UInt(opc<l>);

integer datasize = 8 << scale;

bits(64) offset = LSL(SignExtend(imm7, 64), scale);
boolean tag checked = n != 31;

STNP Page 451

Operation

bits(64) address;

bits(datasize) datal;

bits(datasize) data2;

constant integer dbytes = datasize DIV 8;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag checked);

if n == 31 then
CheckSPAlignment () ;
address = SP[];
else
address = X[n];

address = address + offset;

datal = X[t];

data2 = X[t2];

Mem[address, dbytes, AccType STREAM] = datal;
Mem[address+dbytes, dbytes, AccType STREAM] = data2;

Operational information
If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STNP Page 452

STP

Store Pair of Registers calculates an address from a base register value and an immediate offset, and stores two 32-bit
words or two 64-bit doublewords to the calculated address, from two registers. For information about memory
accesses, see Load/Store addressing modes.

It has encodings from 3 classes: Post-index , Pre-index and Signed offset

Post-index

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
[x 0[]1 0 1]0[0 0 1]0] imm7 | Rt2 | Rn Rt |
opc L

32-bit (opc == 00)
STP <Wtl>, <Wt2>, [<Xn|SP>], #<imm>
64-bit (opc == 10)

STP <Xtl>, <Xt2>, [<Xn|SP>], #<imm>

boolean wback = TRUE;
boolean postindex = TRUE;

Pre-index

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
Ix 0]1 0 1]0o]J0 1 1[0] imm7 | Rt2 | Rn Rt |
opc L

32-bit (opc == 00)
STP <Wtl>, <Wt2>, [<Xn|SP>, #<imm>]!
64-bit (opc == 10)

STP <Xtl>, <Xt2>, [<Xn|SP>, #<imm>]!

boolean wback = TRUE;
boolean postindex = FALSE;

Signed offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
Ix 0]1 0o 1]o]Jo0 1 o]o0] imm7 | Rt2 | Rn Rt |
opc L

32-bit (opc == 00)
STP <Wtl>, <Wt2>, [<Xn|SP>{, #<imm>}]
64-bit (opc == 10)

STP <Xtl>, <Xt2>, [<Xn|SP>{, #<imm>}]

boolean wback = FALSE;
boolean postindex = FALSE;

STP Page 453

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints on
UNPREDICTABLE behaviors, and particularly STP.

Assembler Symbols

<Wt1> Is the 32-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.
<Wt2> Is the 32-bit name of the second general-purpose register to be transferred, encoded in the "Rt2" field.
<Xtl> Is the 64-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.
<Xt2> Is the 64-bit name of the second general-purpose register to be transferred, encoded in the "Rt2" field.
<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.
<imm> For the 32-bit post-index and 32-bit pre-index variant: is the signed immediate byte offset, a multiple of

4 in the range -256 to 252, encoded in the "imm7" field as <imm>/4.

For the 32-bit signed offset variant: is the optional signed immediate byte offset, a multiple of 4 in the
range -256 to 252, defaulting to 0 and encoded in the "imm?7" field as <imm>/4.

For the 64-bit post-index and 64-bit pre-index variant: is the signed immediate byte offset, a multiple of
8 in the range -512 to 504, encoded in the "imm7" field as <imm>/8.

For the 64-bit signed offset variant: is the optional signed immediate byte offset, a multiple of 8 in the
range -512 to 504, defaulting to 0 and encoded in the "imm?7" field as <imm>/8.

Shared Decode

integer n = UInt(Rn);

integer t = UInt(Rt);

integer t2 = UInt(Rt2);

if L:opc<@> == '0O1' || opc == '11' then UNDEFINED;

integer scale = 2 + UInt(opc<l>);

integer datasize = 8 << scale;

bits(64) offset = LSL(SignExtend(imm7, 64), scale);
boolean tag checked = wback || n != 31;

boolean rt unknown = FALSE;

if wback & (t == n || t2 == n) & n != 31 then
Constraint ¢ = ConstrainUnpredictable(Unpredictable WBOVERLAPST);
assert ¢ IN {Constraint NONE, Constraint UNKNOWN, Constraint UNDEF, Constraint NOP};

case c of
when Constraint NONE rt_unknown = FALSE; // value stored is pre-writeback
when Constraint UNKNOWN rt unknown = TRUE; // value stored is UNKNOWN
when Constraint UNDEF UNDEFINED;
when Constraint NOP EndOfInstruction();

STP Page 454

Operation

bits(64) address;

bits(datasize) datal;

bits(datasize) data2;

constant integer dbytes = datasize DIV 8;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag checked);

if n == 31 then
CheckSPAlignment () ;
address = SP[];
else
address = X[n];

if !postindex then
address = address + offset;

if rt unknown && t == n then
datal = bits(datasize) UNKNOWN;
else
datal = X[t];
if rt unknown && t2 == n then
data2 = bits(datasize) UNKNOWN;
else
data2 = X[t2];
Mem[address, dbytes, AccType NORMAL] = datal;
Mem[address+dbytes, dbytes, AccType NORMAL] = data2;

if wback then
if postindex then
address = address + offset;
if n == 31 then
SP[] = address;
else
X[n] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STP Page 455

STR (immediate)

Store Register (immediate) stores a word or a doubleword from a register to memory. The address that is used for the
store is calculated from a base register and an immediate offset. For information about memory accesses, see Load/
Store addressing modes.

It has encodings from 3 classes: Post-index , Pre-index and Unsigned offset

Post-index

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
[1 x[1 1 1]/0[0 0[O0 0]0O] imm9 [0 1] Rn Rt |
size opc

32-bit (size == 10)
STR <Wt>, [<Xn|SP>], #<simm>
64-bit (size == 11)

STR <Xt>, [<Xn|SP>], #<simm>

boolean wback = TRUE;

boolean postindex = TRUE;

integer scale = Ulnt(size);

bits(64) offset = SignExtend(imm9, 64);

Pre-index

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
|1 x]1 1 1]o]0 0[O0 0[0] imm9 [1 1] Rn Rt |
size opc

32-bit (size == 10)
STR <Wt>, [<Xn|SP>, #<simm>]!
64-bit (size == 11)

STR <Xt>, [<Xn|SP>, #<simm>]!

boolean wback = TRUE;

boolean postindex = FALSE;

integer scale = Ulnt(size);

bits(64) offset = SignExtend(imm9, 64);

Unsigned offset
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0

|1 x]1 1 1]o]Jo 1]0 0] imm12 | Rn Rt |
size opc

STR (immediate) Page 456

32-bit (size == 10)
STR <Wt>, [<Xn|SP>{, #<pimm>}]
64-bit (size == 11)

STR <Xt>, [<Xn|SP>{, #<pimm>}]

boolean wback = FALSE;

boolean postindex = FALSE;

integer scale = Ulnt(size);

bits(64) offset = LSL(ZeroExtend(imml2, 64), scale);

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.
<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.
<simm> Is the signed immediate byte offset, in the range -256 to 255, encoded in the "imm9" field.

<pimm> For the 32-bit variant: is the optional positive immediate byte offset, a multiple of 4 in the range 0 to

16380, defaulting to 0 and encoded in the "imm12" field as <pimm>/4.

For the 64-bit variant: is the optional positive immediate byte offset, a multiple of 8 in the range 0 to
32760, defaulting to 0 and encoded in the "imm12" field as <pimm>/8.

Shared Decode

UInt(Rn);
UInt(Rt);

integer n
integer t

integer datasize = 8 << scale;
boolean tag checked = wback || n != 31;

boolean rt unknown = FALSE;
if wback & n == t && n != 31 then

c = ConstrainUnpredictable(Unpredictable WBOVERLAPST);
assert ¢ IN {Constraint NONE, Constraint UNKNOWN, Constraint UNDEF, Constraint NOP};

case c of
when Constraint NONE rt_unknown = FALSE; // value stored is original value
when Constraint UNKNOWN rt unknown = TRUE; // value stored is UNKNOWN
when Constraint UNDEF UNDEFINED;
when Constraint NOP EndOfInstruction();

STR (immediate) Page 457

Operation

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag checked);

bits(64) address;
bits(datasize) data;

if n == 31 then
CheckSPAlignment();
address = SP[];
else
address = X[n];

if !postindex then
address = address + offset;

if rt _unknown then
data = bits(datasize) UNKNOWN;
else
data = X[t];
Mem[address, datasize DIV 8, AccType NORMAL]

if wback then
if postindex then
address = address + offset;
if n == 31 then
SP[] = address;
else
X[n] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

= data;

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STR (immediate)

Page 458

STR (register)

Store Register (register) calculates an address from a base register value and an offset register value, and stores a
32-bit word or a 64-bit doubleword to the calculated address, from a register. For information about memory accesses,
see Load/Store addressing modes.

The instruction uses an offset addressing mode, that calculates the address used for the memory access from a base
register value and an offset register value. The offset can be optionally shifted and extended.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[1 x[1 1 1]/0][0 0[O0 Of1] Rm | option [S|[1 0] Rn | Rt |
size opc

32-bit (size == 10)
STR <Wt>, [<Xn|SP>, (<Wm>|<Xm>){, <extend> {<amount>}}]
64-bit (size == 11)

STR <Xt>, [<Xn|SP>, (<Wm>|<Xm>){, <extend> {<amount>}}]

integer scale = Ulnt(size);

if option<l> == 'O' then UNDEFINED; // sub-word index
ExtendType extend type = DecodeRegExtend(option);
integer shift = if S == '1' then scale else 0;

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Wm> When option<0> is set to 0, is the 32-bit name of the general-purpose index register, encoded in the
"Rm" field.

<Xm> V\Pf{hen f;)plfiion<0> is set to 1, is the 64-bit name of the general-purpose index register, encoded in the
"Rm" field.

<extend> Is the index extend/shift specifier, defaulting to LSL, and which must be omitted for the LSL option
when <amount> is omitted. encoded in “option”:

option <extend>

010 UXTW
011 LSL

110 SXTW
111 SXTX

<amount> For the 32-bit variant: is the index shift amount, optional only when <extend> is not LSL. Where it is
permitted to be optional, it defaults to #0. It is encoded in “S”:

S <amount>
0 #0
1 #2

For the 64-bit variant: is the index shift amount, optional only when <extend> is not LSL. Where it is
permitted to be optional, it defaults to #0. It is encoded in “S”:

S <amount>
0 #0
1 #3

STR (register) Page 459

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);
integer m = UInt(Rm);

integer datasize = 8 << scale;

Operation

bits(64) offset = ExtendReg(m, extend type,

if HaveMTE2Ext() then
SetTagCheckedInstruction(TRUE);

bits(64) address;
bits(datasize) data;

if n == 31 then

CheckSPAlignment () ;
address = SP[];

else
address = X[n];
address = address + offset;

data = X[t];

shift);

Mem[address, datasize DIV 8, AccType NORMAL] = data;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STR (register)

Page 460

STRB (immediate)

Store Register Byte (immediate) stores the least significant byte of a 32-bit register to memory. The address that is

used for the store is calculated from a base register and an immediate offset. For information about memory accesses,
see Load/Store addressing modes.

It has encodings from 3 classes: Post-index , Pre-index and Unsigned offset

Post-index

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
[0 0[]1 1 1]/0[0 0[O0 OO imm9 [0 1] Rn Rt |
size opc

STRB <Wt>, [<Xn|SP>], #<simm>

boolean wback = TRUE;
boolean postindex = TRUE;
bits(64) offset = SignExtend(imm9, 64);

Pre-index

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 1514 13 12 1110 9 8 7 6 5 4 3 2 1 0
|0 0[/1 1 1/0[0 0[O0 O[O imm9 [1 1] Rn Rt |
size opc

STRB <Wt>, [<Xn|SP>, #<simm>]!

boolean wback = TRUE;
boolean postindex = FALSE;
bits(64) offset = SignExtend(imm9, 64);

Unsigned offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0[1 1 1]/0[0 1[0 O] imm12 | Rn Rt |
size opc

STRB <Wt>, [<Xn|SP>{, #<pimm>}]

boolean wback = FALSE;

boolean postindex = FALSE;

bits(64) offset = LSL(ZeroExtend(imml2, 64), 0);

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints on
UNPREDICTABLE behaviors, and particularly STRB (immediate).

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the signed immediate byte offset, in the range -256 to 255, encoded in the "imm9" field.

<pimm> Is thelc;ptlilorllgl positive immediate byte offset, in the range 0 to 4095, defaulting to 0 and encoded in the
"imm12" field.

STRB (immediate) Page 461

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);
boolean tag checked = wback || n != 31;

boolean rt _unknown = FALSE;

if wback & n == t & n != 31

then

c = ConstrainUnpredictable(Unpredictable WBOVERLAPST);

assert c¢ IN {Constraint NONE, Constraint UNKNOWN, Constraint UNDEF, Constraint NOP};

case c of
when Constraint NONE

rt_unknown FALSE;

TRUE;

when Constraint UNKNOWN rt unknown

when Constraint UNDEF

when Constraint NOP

UNDEFINED;
EndOfInstruction();

Operation

if HaveMTE2Ext() then

SetTagCheckedInstruction(tag checked);

bits(64) address;
bits(8) data;

if n == 31 then

CheckSPAlignment () ;

address = SP[];
else

address = X[n];

if !postindex then

address = address + offset;

if rt_unknown then

data = bits(8) UNKNOWN;
else

data = X[t];

Mem[address, 1, AccType NORMAL] = data;

if wback then
if postindex then

address = address + offset;

if n == 31 then
SP[] = address;
else
X[n] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

// value stored is original value
// value stored is UNKNOWN

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STRB (immediate)

Page 462

STRB (register)

Store Register Byte (register) calculates an address from a base register value and an offset register value, and stores
a byte from a 32-bit register to the calculated address. For information about memory accesses, see Load/Store
addressing modes.

The instruction uses an offset addressing mode, that calculates the address used for the memory access from a base
register value and an offset register value. The offset can be optionally shifted and extended.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[0 0[]1 1 1]/0[0 0[O0 Of1] Rm | option [S|[1 0] Rn | Rt |
size opc

Extended register (option != 011)
STRB <Wt>, [<Xn|SP>, (<Wm>|<Xm>), <extend> {<amount>}]
Shifted register (option == 011)

STRB <Wt>, [<Xn]|SP>, <Xm>{, LSL <amount>}]

if option<l> == 'O' then UNDEFINED; // sub-word index
ExtendType extend type = DecodeRegExtend(option);

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Wm> When option<0> is set to 0, is the 32-bit name of the general-purpose index register, encoded in the
"Rm" field.

<Xm> V}f{hen ICi)pliaion<0> is set to 1, is the 64-bit name of the general-purpose index register, encoded in the
"Rm" field.

<extend> Is the index extend specifier, encoded in “option”:

option <extend>

010 UXTW
110 SXTW
111 SXTX

<amount> Is the index shift amount, it must be #0, encoded in "S" as 0 if omitted, or as 1 if present.

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);
integer m = UInt(Rm);

STRB (register) Page 463

Operation

bits(64) offset = ExtendReg(m, extend type,
if HaveMTE2Ext() then
SetTagCheckedInstruction(TRUE);

bits(64) address;
bits(8) data;

if n == 31 then
CheckSPAlignment () ;
address = SP[];
else
address = X[n];

address = address + offset;

data = X[t];
Mem[address, 1, AccType NORMAL] = data;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

0);

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STRB (register)

Page 464

STRH (immediate)

Store Register Halfword (immediate) stores the least significant halfword of a 32-bit register to memory. The address

that is used for the store is calculated from a base register and an immediate offset. For information about memory
accesses, see Load/Store addressing modes.

It has encodings from 3 classes: Post-index , Pre-index and Unsigned offset

Post-index

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
[0 1]1 1 1]/0[0 0[O0 O[O imm9 [0 1] Rn Rt |
size opc

STRH <Wt>, [<Xn|SP>], #<simm>

boolean wback = TRUE;
boolean postindex = TRUE;
bits(64) offset = SignExtend(imm9, 64);

Pre-index

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
|0 1]1 1 1]o]0 0[O0 0[0] imm9 [1 1] Rn Rt |
size opc

STRH <Wt>, [<Xn|SP>, #<simm>]!

boolean wback = TRUE;
boolean postindex = FALSE;
bits(64) offset = SignExtend(imm9, 64);

Unsigned offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
0 1]1 1 1]o]Jo 1]0 0] imm12 | Rn Rt |
size opc

STRH <Wt>, [<Xn|SP>{, #<pimm>}]

boolean wback = FALSE;
boolean postindex = FALSE;
bits(64) offset = LSL(ZeroExtend(imml2, 64), 1);

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints on
UNPREDICTABLE behaviors, and particularly STRH (immediate).

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.
<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.
<simm> Is the signed immediate byte offset, in the range -256 to 255, encoded in the "imm9" field.

<pimm> Is the optional positive immediate byte offset, a multiple of 2 in the range 0 to 8190, defaulting to 0 and

encoded in the "imm12" field as <pimm>/2.

STRH (immediate) Page 465

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);
boolean tag checked = wback || n != 31;

boolean rt _unknown = FALSE;

if wback & n == t & n != 31

then

c = ConstrainUnpredictable(Unpredictable WBOVERLAPST);

assert c¢ IN {Constraint NONE, Constraint UNKNOWN, Constraint UNDEF, Constraint NOP};

case c of
when Constraint NONE

rt_unknown FALSE;

TRUE;

when Constraint UNKNOWN rt unknown

when Constraint UNDEF

when Constraint NOP

UNDEFINED;
EndOfInstruction();

Operation

if HaveMTE2Ext() then

SetTagCheckedInstruction(tag checked);

bits(64) address;
bits(16) data;

if n == 31 then

CheckSPAlignment () ;

address = SP[];
else

address = X[n];

if !postindex then

address = address + offset;

if rt_unknown then

data = bits(16) UNKNOWN;
else

data = X[t];

Mem[address, 2, AccType NORMAL] = data;

if wback then
if postindex then

address = address + offset;

if n == 31 then
SP[] = address;
else
X[n] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

// value stored is original value
// value stored is UNKNOWN

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STRH (immediate)

Page 466

STRH (register)

Store Register Halfword (register) calculates an address from a base register value and an offset register value, and
stores a halfword from a 32-bit register to the calculated address. For information about memory accesses, see Load/
Store addressing modes.

The instruction uses an offset addressing mode, that calculates the address used for the memory access from a base
register value and an offset register value. The offset can be optionally shifted and extended.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[0 1[1 1 1]/0[0 00 Of1] Rm | option [S|[1 0] Rn | Rt |
size opc

STRH <Wt>, [<Xn]|SP>, (<Wm>|<Xm>){, <extend> {<amount>}}]

if option<l> == 'O' then UNDEFINED; // sub-word index
ExtendType extend type = DecodeRegExtend(option);
integer shift = if S == '1' then 1 else 0;

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Wm> When option<0> is set to 0, is the 32-bit name of the general-purpose index register, encoded in the
"Rm" field.

<Xm> V}f{hen ICi)pliaion<0> is set to 1, is the 64-bit name of the general-purpose index register, encoded in the
"Rm" field.

<extend> Is the index extend/shift specifier, defaulting to LSL, and which must be omitted for the LSL option
when <amount> is omitted. encoded in “option”:

option <extend>

010 UXTW
011 LSL

110 SXTW
111 SXTX

<amount> Is the index shift amount, optional only when <extend> is not LSL. Where it is permitted to be optional,
it defaults to #0. It is encoded in “S”:

S <amount>
0 #0
1 #1

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);
integer m = UInt(Rm);

STRH (register) Page 467

Operation

bits(64) offset = ExtendReg(m, extend type, shift);
if HaveMTE2Ext() then
SetTagCheckedInstruction(TRUE);

bits(64) address;
bits(16) data;

if n == 31 then
CheckSPAlignment () ;
address = SP[];
else
address = X[n];

address = address + offset;

data = X[t];
Mem[address, 2, AccType NORMAL] = data;

Operational information
If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STRH (register) Page 468

STSET, STSETL

Atomic bit set on word or doubleword in memory, without return, atomically loads a 32-bit word or 64-bit doubleword
from memory, performs a bitwise OR with the value held in a register on it, and stores the result back to memory.

¢ STSET does not have release semantics.
e STSETL stores to memory with release semantics, as described in Load-Acquire, Store-Release.

For information about memory accesses see Load/Store addressing modes.

This is an alias of LDSET, IL.DSETA, I.DSETAL, ILDSETL. This means:

¢ The encodings in this description are named to match the encodings of LDSET, LDSETA, LDSETAL, I.LDSETL.
¢ The description of LDSET, LDSETA, LDSETAL, I.LDSETL gives the operational pseudocode for this instruction.

Integer
(FEAT_LSE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5
[1 x[1 1 1]0][0 Of[O][R[1] Rs [o0]0 1 1[0 O] Rn |
size A opc Rt

Y I
—|w
(1IN}
[y
~lo

32-bit LDSET alias (size == 10 && R == 0)

STSET <Ws>, [<Xn|SP>]
is equivalent to
LDSET <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.
32-bit LDSETL alias (size == 10 && R == 1)

STSETL <Ws>, [<Xn|SP>]
is equivalent to
LDSETL <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.
64-bit LDSET alias (size == 11 && R == 0)

STSET <Xs>, [<Xn|SP>]
is equivalent to
LDSET <Xs>, XZR, [<Xn|SP>]

and is always the preferred disassembly.
64-bit LDSETL alias (size == 11 && R == 1)

STSETL <Xs>, [<Xn|SP>]
is equivalent to
LDSETL <Xs>, XZR, [<Xn|SP>]

and is always the preferred disassembly.

STSET, STSETL Page 469

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

The description of LDSET, LDSETA, LDSETAL, LDSETL gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STSET, STSETL Page 470

STSETB, STSETLB

Atomic bit set on byte in memory, without return, atomically loads an 8-bit byte from memory, performs a bitwise OR
with the value held in a register on it, and stores the result back to memory.

e STSETB does not have release semantics.
e STSETLB stores to memory with release semantics, as described in Load-Acquire, Store-Release.

For information about memory accesses see Load/Store addressing modes.

This is an alias of LDSETB, LDSETAB, LDSETALB, LDSETLB. This means:

¢ The encodings in this description are named to match the encodings of LDSETB, LDSETAB, IL.LDSETALB,
LDSETLB.

e The description of LDSETB, ILDSETAB, LDSETALB, LDSETLB gives the operational pseudocode for this
instruction.

Integer
(FEAT_LSE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5

R|s
—|w
[N}
[y
~lo

[0 0[]1 1 1]0[0 OfJO|R[1] Rs [o0]0 1 1[0 O] Rn |
size A opc Rt
No memory ordering (R == 0)

STSETB <Ws>, [<Xn|SP>]
is equivalent to
LDSETB <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.
Release (R == 1)

STSETLB <Ws>, [<Xn|SP>]
is equivalent to
LDSETLB <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

The description of LDSETB, LDSETAB, ILDSETALB, LDSETLB gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STSETB, STSETLB Page 471

STSETH, STSETLH

Atomic bit set on halfword in memory, without return, atomically loads a 16-bit halfword from memory, performs a
bitwise OR with the value held in a register on it, and stores the result back to memory.

¢ STSETH does not have release semantics.
¢ STSETLH stores to memory with release semantics, as described in Load-Acquire, Store-Release.

For information about memory accesses see Load/Store addressing modes.

This is an alias of LDSETH, LDSETAH, ILDSETALH, LDSETLH. This means:

¢ The encodings in this description are named to match the encodings of LDSETH, LDSETAH, LDSETALH,
LDSETLH.

e The description of LDSETH, IDSETAH, LDSETALH, LDSETLH gives the operational pseudocode for this
instruction.

Integer
(FEAT_LSE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5

R|s
—|w
[N}
[y
~lo

[0 1]1 1 1]0[0 OfJO|R[1] Rs [o0]0 1 1[0 O] Rn |
size A opc Rt
No memory ordering (R == 0)

STSETH <Ws>, [<Xn|SP>]
is equivalent to
LDSETH <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.
Release (R == 1)

STSETLH <Ws>, [<Xn|SP>]
is equivalent to
LDSETLH <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

The description of LDSETH, LDSETAH, ILDSETALH, LDSETLH gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STSETH, STSETLH Page 472

STSMAX, STSMAXL

Atomic signed maximum on word or doubleword in memory, without return, atomically loads a 32-bit word or 64-bit
doubleword from memory, compares it against the value held in a register, and stores the larger value back to memory,
treating the values as signed numbers.

¢ STSMAX does not have release semantics.
¢ STSMAXL stores to memory with release semantics, as described in Load-Acquire, Store-Release.

For information about memory accesses see Load/Store addressing modes.

This is an alias of LDSMAX, LDSMAXA, LDSMAXAIL, ILDSMAXIL.. This means:

¢ The encodings in this description are named to match the encodings of LDSMAX, LDSMAXA, ILDSMAXAL,
LDSMAXL.

e The description of LDSMAX, LDSMAXA, LDSMAXAL, LDSMAXL gives the operational pseudocode for this
instruction.

Integer
(FEAT_LSE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5
[1 x[1 1 1]0][0 O[O][R[1] Rs [0]1 0 0[]0 O] Rn |
size A opc Rt

Y I
—|w
[N}
[y
~lo

32-bit LDSMAX alias (size == 10 && R == 0)

STSMAX <Ws>, [<Xn|SP>]
is equivalent to
LDSMAX <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.
32-bit LDSMAXL alias (size == 10 && R == 1)

STSMAXL <Ws>, [<Xn|SP>]
is equivalent to
LDSMAXL <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.
64-bit LDSMAX alias (size == 11 && R == 0)

STSMAX <Xs>, [<Xn|SP>]
is equivalent to
LDSMAX <Xs>, XZR, [<Xn|SP>]

and is always the preferred disassembly.
64-bit LDSMAXL alias (size == 11 && R == 1)

STSMAXL <Xs>, [<Xn|SP>]
is equivalent to
LDSMAXL <Xs>, XZR, [<Xn|SP>]

and is always the preferred disassembly.

STSMAX, STSMAXL Page 473

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

The description of LDSMAX, LDSMAXA, LDSMAXAL, LDSMAXIL gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STSMAX, STSMAXL Page 474

STSMAXB, STSMAXLB

Atomic signed maximum on byte in memory, without return, atomically loads an 8-bit byte from memory, compares it
against the value held in a register, and stores the larger value back to memory, treating the values as signed
numbers.

¢ STSMAXB does not have release semantics.
¢ STSMAXLB stores to memory with release semantics, as described in Load-Acquire, Store-Release.

For information about memory accesses see Load/Store addressing modes.

This is an alias of LDSMAXB, LDSMAXAB, LDSMAXALB, LDSMAXILB. This means:

¢ The encodings in this description are named to match the encodings of LDSMAXB, LDSMAXAB, LDSMAXALB,
LDSMAXILB.

e The description of LDSMAXB, LDSMAXAB, LDSMAXALB, LDSMAXI.B gives the operational pseudocode for
this instruction.

Integer
(FEAT_LSE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5

Y I
—|w
[N}
[y
~lo

[0 0[]1 1 1]0[0 OfJO|R[1] Rs [0]1 0 0[]0 O] Rn |
size A opc Rt
No memory ordering (R == 0)

STSMAXB <Ws>, [<Xn|SP>]
is equivalent to
LDSMAXB <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.
Release (R == 1)

STSMAXLB <Ws>, [<Xn|SP>]
is equivalent to
LDSMAXLB <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

The description of LDSMAXB, LDSMAXAB, LDSMAXAI.B, LDSMAXILB gives the operational pseudocode for this
instruction.

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STSMAXB, STSMAXLB Page 475

STSMAXH, STSMAXLH

Atomic signed maximum on halfword in memory, without return, atomically loads a 16-bit halfword from memory,
compares it against the value held in a register, and stores the larger value back to memory, treating the values as
signed numbers.

¢ STSMAXH does not have release semantics.
¢ STSMAXLH stores to memory with release semantics, as described in Load-Acquire, Store-Release.

For information about memory accesses see Load/Store addressing modes.

This is an alias of LDSMAXH, LDSMAXAH, LDSMAXAILH, LDSMAXI H. This means:

¢ The encodings in this description are named to match the encodings of LDSMAXH, LDSMAXAH,
LDSMAXALH, LDSMAXILH.

e The description of LDSMAXH, LDSMAXAH, L.DSMAXAILH, LDSMAXI.H gives the operational pseudocode for
this instruction.

Integer
(FEAT_LSE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5

Y I
—|w
[N}
[y
~lo

[0 1]1 1 1]0[0 OfJO|R[1] Rs [0]1 0 0[]0 O] Rn |
size A opc Rt
No memory ordering (R == 0)

STSMAXH <Ws>, [<Xn|SP>]
is equivalent to
LDSMAXH <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.
Release (R == 1)

STSMAXLH <Ws>, [<Xn|SP>]
is equivalent to
LDSMAXLH <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

The description of LDSMAXH, ILDSMAXAH, LDSMAXAILH, LDSMAXLH gives the operational pseudocode for this
instruction.

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STSMAXH, STSMAXLH Page 476

STSMIN, STSMINL

Atomic signed minimum on word or doubleword in memory, without return, atomically loads a 32-bit word or 64-bit
doubleword from memory, compares it against the value held in a register, and stores the smaller value back to
memory, treating the values as signed numbers.

¢ STSMIN does not have release semantics.
¢ STSMINL stores to memory with release semantics, as described in Load-Acquire, Store-Release.

For information about memory accesses see Load/Store addressing modes.

This is an alias of LDSMIN, LDSMINA, LDSMINAI, I.DSMINL. This means:

¢ The encodings in this description are named to match the encodings of LDSMIN, LDSMINA, LDSMINAL,
LDSMINL..

¢ The description of LDSMIN, LDSMINA, LDSMINAL, LDSMINI. gives the operational pseudocode for this
instruction.

Integer
(FEAT_LSE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5
[1 x[1 1 1]0][0 O[O][R[1] Rs [0]1 0 1]0 O] Rn |
size A opc Rt

Y I
—|w
[N}
[y
~lo

32-bit LDSMIN alias (size == 10 && R == 0)

STSMIN <Ws>, [<Xn|SP>]
is equivalent to
LDSMIN <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.
32-bit LDSMINL alias (size == 10 && R == 1)

STSMINL <Ws>, [<Xn|SP>]
is equivalent to
LDSMINL <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.
64-bit LDSMIN alias (size == 11 && R == 0)

STSMIN <Xs>, [<Xn|SP>]
is equivalent to
LDSMIN <Xs>, XZR, [<Xn|SP>]

and is always the preferred disassembly.
64-bit LDSMINL alias (size == 11 && R == 1)

STSMINL <Xs>, [<Xn|SP>]
is equivalent to
LDSMINL <Xs>, XZR, [<Xn|SP>]

and is always the preferred disassembly.

STSMIN, STSMINL Page 477

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

The description of LDSMIN, LDSMINA, LDSMINAL, LDSMINTL gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STSMIN, STSMINL Page 478

STSMINB, STSMINLB

Atomic signed minimum on byte in memory, without return, atomically loads an 8-bit byte from memory, compares it
against the value held in a register, and stores the smaller value back to memory, treating the values as signed
numbers.

¢ STSMINB does not have release semantics.
e STSMINLB stores to memory with release semantics, as described in Load-Acquire, Store-Release.

For information about memory accesses see Load/Store addressing modes.

This is an alias of LDSMINB, LDSMINAB, ILDSMINALB, LDSMINLB. This means:

¢ The encodings in this description are named to match the encodings of LDSMINB, LDSMINAB, LDSMINALB,
LDSMINLB.

¢ The description of LDSMINB, LDSMINAB, LDSMINAILB, LDSMINILB gives the operational pseudocode for
this instruction.

Integer
(FEAT_LSE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5

Y I
—|w
[N}
[y
~lo

[0 0[]1 1 1]0[0 OfJO|R[1] Rs [0]1 0 1]0 O] Rn |
size A opc Rt
No memory ordering (R == 0)

STSMINB <Ws>, [<Xn|SP>]
is equivalent to
LDSMINB <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.
Release (R == 1)

STSMINLB <Ws>, [<Xn|SP>]
is equivalent to
LDSMINLB <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

The description of LDSMINB, LDSMINAB, LDSMINALB, LDSMINILB gives the operational pseudocode for this
instruction.

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STSMINB, STSMINLB Page 479

STSMINH, STSMINLH

Atomic signed minimum on halfword in memory, without return, atomically loads a 16-bit halfword from memory,
compares it against the value held in a register, and stores the smaller value back to memory, treating the values as
signed numbers.

¢ STSMINH does not have release semantics.
¢ STSMINLH stores to memory with release semantics, as described in Load-Acquire, Store-Release.

For information about memory accesses see Load/Store addressing modes.

This is an alias of LDSMINH, LDSMINAH, ILDSMINALH, IL.DSMINLH. This means:

¢ The encodings in this description are named to match the encodings of LDSMINH, LDSMINAH, LDSMINALH,
LDSMINLH.

¢ The description of LDSMINH, LDSMINAH, LDSMINALH, LDSMINLH gives the operational pseudocode for
this instruction.

Integer
(FEAT_LSE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5

Y I
—|w
[N}
[y
~lo

[0 1]1 1 1]0[0 OfJO|R[1] Rs [0]1 0 1]0 O] Rn |
size A opc Rt
No memory ordering (R == 0)

STSMINH <Ws>, [<Xn|SP>]
is equivalent to
LDSMINH <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.
Release (R == 1)

STSMINLH <Ws>, [<Xn|SP>]
is equivalent to
LDSMINLH <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

The description of LDSMINH, LDSMINAH, LDSMINALH, LDSMINLH gives the operational pseudocode for this
instruction.

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STSMINH, STSMINLH Page 480

STTR

Store Register (unprivileged) stores a word or doubleword from a register to memory. The address that is used for the
store is calculated from a base register and an immediate offset.

Memory accesses made by the instruction behave as if the instruction was executed at ELO if the Effective value of
PSTATE.UAO is 0 and either:

¢ The instruction is executed at EL1.
¢ The instruction is executed at EL2 when the Effective value of HCR EL2.{E2H, TGE} is {1, 1}.

Otherwise, the memory access operates with the restrictions determined by the Exception level at which the
instruction is executed. For information about memory accesses, see Load/Store addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[1 x[1 1 1]/0][0 0[O0 O0]O] imm9 [1 0] Rn | Rt |
size opc

32-bit (size == 10)
STTR <Wt>, [<Xn|SP>{, #<simm>}]
64-bit (size == 11)

STTR <Xt>, [<Xn|SP>{, #<simm>}]

integer scale = Ulnt(size);
bits(64) offset = SignExtend(imm9, 64);

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.
<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.
<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded in

the "imm9" field.

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);
unpriv_at ell = PSTATE.EL == EL1 && ! (EL2Enabled() && HaveNVExt() && HCR EL2.<NV,NV1> == '11');
unpriv_at el2 = PSTATE.EL == EL2 && HaveVirtHostExt() && HCR EL2.<E2H,TGE> == '11‘';
user_access_override = HaveUAOExt() && PSTATE.UAO == '1‘';
if luser _access override && (unpriv_at ell || unpriv_at el2) then

acctype = AccType UNPRIV;

else
acctype = AccType NORMAL;

integer datasize = 8 << scale;
boolean tag checked = n != 31;

STTR Page 481

Operation

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag checked);

bits(64) address;
bits(datasize) data;

if n == 31 then
CheckSPAlignment () ;
address = SP[];
else
address = X[n];

address = address + offset;

data = X[t];
Mem[address, datasize DIV 8, acctype] = data;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STTR Page 482

STTRB

Store Register Byte (unprivileged) stores a byte from a 32-bit register to memory. The address that is used for the
store is calculated from a base register and an immediate offset.

Memory accesses made by the instruction behave as if the instruction was executed at ELO if the Effective value of
PSTATE.UAO is 0 and either:

¢ The instruction is executed at EL1.
¢ The instruction is executed at EL2 when the Effective value of HCR EL2.{E2H, TGE} is {1, 1}.

Otherwise, the memory access operates with the restrictions determined by the Exception level at which the
instruction is executed. For information about memory accesses, see Load/Store addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[0 0[]1 1 1]/0[0 0[O0 OO imm9 [1 0] Rn | Rt |
size opc

STTRB <Wt>, [<Xn|SP>{, #<simm>}]

bits(64) offset = SignExtend(imm9, 64);

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.
<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.
<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded in

the "imm9" field.

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);
unpriv_at ell = PSTATE.EL == EL1 && !(EL2Enabled() && HaveNVExt() && HCR EL2.<NV,NV1> == '11');
unpriv_at el2 = PSTATE.EL == EL2 && HaveVirtHostExt() && HCR EL2.<E2H,TGE> == '11°';
user_access override = HaveUAOExt() && PSTATE.UAQO == '1';
if luser access override && (unpriv_at ell || unpriv_at el2) then
acctype = AccType UNPRIV;

else
acctype = AccType NORMAL;

boolean tag checked = n != 31;
Operation

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag checked);

bits(64) address;
bits(8) data;

if n == 31 then
CheckSPAlignment () ;
address = SP[];
else
address = X[n];

address = address + offset;

data = X[t];
Mem[address, 1, acctype] = data;

STTRB Page 483

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STTRB Page 484

STTRH

Store Register Halfword (unprivileged) stores a halfword from a 32-bit register to memory. The address that is used
for the store is calculated from a base register and an immediate offset.

Memory accesses made by the instruction behave as if the instruction was executed at ELO if the Effective value of
PSTATE.UAO is 0 and either:

¢ The instruction is executed at EL1.
¢ The instruction is executed at EL2 when the Effective value of HCR EL2.{E2H, TGE} is {1, 1}.

Otherwise, the memory access operates with the restrictions determined by the Exception level at which the
instruction is executed. For information about memory accesses, see Load/Store addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[0 1[1 1 1]/0[0 0[O0 O]O] imm9 [1 0] Rn | Rt |
size opc

STTRH <Wt>, [<Xn|SP>{, #<simm>}]

bits(64) offset = SignExtend(imm9, 64);

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.
<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.
<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded in

the "imm9" field.

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);
unpriv_at ell = PSTATE.EL == EL1 && !(EL2Enabled() && HaveNVExt() && HCR EL2.<NV,NV1> == '11');
unpriv_at el2 = PSTATE.EL == EL2 && HaveVirtHostExt() && HCR EL2.<E2H,TGE> == '11°';
user_access override = HaveUAOExt() && PSTATE.UAQO == '1';
if luser access override && (unpriv_at ell || unpriv_at el2) then
acctype = AccType UNPRIV;

else
acctype = AccType NORMAL;

boolean tag checked = n != 31;
Operation

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag checked);

bits(64) address;
bits(16) data;

if n == 31 then
CheckSPAlignment () ;
address = SP[];
else
address = X[n];

address = address + offset;

data = X[t];
Mem[address, 2, acctype] = data;

STTRH Page 485

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STTRH Page 486

STUMAX, STUMAXL

Atomic unsigned maximum on word or doubleword in memory, without return, atomically loads a 32-bit word or 64-bit
doubleword from memory, compares it against the value held in a register, and stores the larger value back to memory,
treating the values as unsigned numbers.

¢ STUMAX does not have release semantics.
¢ STUMAXL stores to memory with release semantics, as described in Load-Acquire, Store-Release.

For information about memory accesses see Load/Store addressing modes.

This is an alias of LDUMAX, LDUMAXA, LDUMAXAL, LDUMAXL. This means:

¢ The encodings in this description are named to match the encodings of LDUMAX, LDUMAXA, ILDUMAXAL,
LDUMAXIL..

¢ The description of LDUMAX, LDUMAXA, LDUMAXAL, LDUMAXI. gives the operational pseudocode for this
instruction.

Integer
(FEAT_LSE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5
[1 x[1 1 1]0][0 O[O][R[1] Rs [0]1 1 0[]0 O] Rn |
size A opc Rt

Y I
—|w
[N}
[y
~lo

32-bit LDUMAX alias (size == 10 && R == 0)

STUMAX <Ws>, [<Xn|SP>]
is equivalent to
LDUMAX <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.
32-bit LDUMAXL alias (size == 10 && R == 1)

STUMAXL <Ws>, [<Xn|SP>]
is equivalent to
LDUMAXL <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.
64-bit LDUMAX alias (size == 11 && R == 0)

STUMAX <Xs>, [<Xn|SP>]
is equivalent to
LDUMAX <Xs>, XZR, [<Xn|SP>]

and is always the preferred disassembly.
64-bit LDUMAXL alias (size == 11 && R == 1)

STUMAXL <Xs>, [<Xn|SP>]
is equivalent to
LDUMAXL <Xs>, XZR, [<Xn|SP>]

and is always the preferred disassembly.

STUMAX, STUMAXL Page 487

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

The description of LDUMAX, LDUMAXA, LDUMAXAIL, LDUMAXI. gives the operational pseudocode for this
instruction.

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STUMAX, STUMAXL Page 488

STUMAXB, STUMAXLB

Atomic unsigned maximum on byte in memory, without return, atomically loads an 8-bit byte from memory, compares
it against the value held in a register, and stores the larger value back to memory, treating the values as unsigned
numbers.

¢ STUMAXB does not have release semantics.
¢ STUMAXLB stores to memory with release semantics, as described in Load-Acquire, Store-Release.

For information about memory accesses see Load/Store addressing modes.

This is an alias of LDUMAXB, LDUMAXAB, LDUMAXAI B, LDUMAXI.B. This means:

¢ The encodings in this description are named to match the encodings of LDUMAXB, LDUMAXAB,
LDUMAXALB, LDUMAXLB.

e The description of LDUMAXB, LDUMAXAB, LDUMAXAIB, LDUMAXI.B gives the operational pseudocode for
this instruction.

Integer
(FEAT_LSE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5

Y I
—|w
[N}
[y
~lo

[0 0[]1 1 1]0[0 OfJO|R[1] Rs [0]1 1 0[]0 O] Rn |
size A opc Rt
No memory ordering (R == 0)

STUMAXB <Ws>, [<Xn|SP>]
is equivalent to
LDUMAXB <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.
Release (R == 1)

STUMAXLB <Ws>, [<Xn|SP>]
is equivalent to
LDUMAXLB <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

The description of LDUMAXB, LDUMAXAB, LDUMAXAILB, LDUMAXI B gives the operational pseudocode for this
instruction.

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STUMAXB, STUMAXLB Page 489

STUMAXH, STUMAXLH

Atomic unsigned maximum on halfword in memory, without return, atomically loads a 16-bit halfword from memory,
compares it against the value held in a register, and stores the larger value back to memory, treating the values as
unsigned numbers.

¢ STUMAXH does not have release semantics.
¢ STUMAXLH stores to memory with release semantics, as described in Load-Acquire, Store-Release.

For information about memory accesses see Load/Store addressing modes.

This is an alias of LDUMAXH, I DUMAXAH, LDUMAXAI H, LDUMAXI.H. This means:

¢ The encodings in this description are named to match the encodings of LDUMAXH, ILDUMAXAH,
LDUMAXALH, LDUMAXLH.

e The description of LDUMAXH, LDUMAXAH, LDUMAXAILH, ILDUMAXI.H gives the operational pseudocode for
this instruction.

Integer
(FEAT_LSE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5

Y I
—|w
[N}
[y
~lo

[0 1]1 1 1]0[0 OfJO|R[1] Rs [0]1 1 0[]0 O] Rn |
size A opc Rt
No memory ordering (R == 0)

STUMAXH <Ws>, [<Xn|SP>]
is equivalent to
LDUMAXH <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.
Release (R == 1)

STUMAXLH <Ws>, [<Xn|SP>]
is equivalent to
LDUMAXLH <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

The description of LDUMAXH, LDUMAXAH, LDUMAXALH, LDUMAXILH gives the operational pseudocode for this
instruction.

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STUMAXH, STUMAXLH Page 490

STUMIN, STUMINL

Atomic unsigned minimum on word or doubleword in memory, without return, atomically loads a 32-bit word or 64-bit
doubleword from memory, compares it against the value held in a register, and stores the smaller value back to
memory, treating the values as unsigned numbers.

¢ STUMIN does not have release semantics.
¢ STUMINL stores to memory with release semantics, as described in Load-Acquire, Store-Release.

For information about memory accesses see Load/Store addressing modes.

This is an alias of LDUMIN, LDUMINA, ILDUMINAI, ILDUMINL. This means:

¢ The encodings in this description are named to match the encodings of LDUMIN, LDUMINA, LDUMINAL,
LDUMINL.

e The description of LDUMIN, LDUMINA, LDUMINAL, LDUMINL gives the operational pseudocode for this
instruction.

Integer
(FEAT_LSE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5
[1 x[1 1 1]0][0 O[O][R[1] Rs [0]1 1 1]0 O] Rn |
size A opc Rt

Y I
—|w
[N}
[y
~lo

32-bit LDUMIN alias (size == 10 && R == 0)

STUMIN <Ws>, [<Xn|SP>]
is equivalent to
LDUMIN <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.
32-bit LDUMINL alias (size == 10 && R == 1)

STUMINL <Ws>, [<Xn|SP>]
is equivalent to
LDUMINL <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.
64-bit LDUMIN alias (size == 11 && R == 0)

STUMIN <Xs>, [<Xn|SP>]
is equivalent to
LDUMIN <Xs>, XZR, [<Xn|SP>]

and is always the preferred disassembly.
64-bit LDUMINL alias (size == 11 && R == 1)

STUMINL <Xs>, [<Xn|SP>]
is equivalent to
LDUMINL <Xs>, XZR, [<Xn|SP>]

and is always the preferred disassembly.

STUMIN, STUMINL Page 491

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

The description of LDUMIN, LDUMINA, LDUMINAL, LDUMINL gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STUMIN, STUMINL Page 492

STUMINB, STUMINLB

Atomic unsigned minimum on byte in memory, without return, atomically loads an 8-bit byte from memory, compares it
against the value held in a register, and stores the smaller value back to memory, treating the values as unsigned
numbers.

¢ STUMINB does not have release semantics.
¢ STUMINLB stores to memory with release semantics, as described in Load-Acquire, Store-Release.

For information about memory accesses see Load/Store addressing modes.

This is an alias of LDUMINB, LDUMINAB, LDUMINALB, LDUMINILB. This means:

¢ The encodings in this description are named to match the encodings of LDUMINB, LDUMINAB, LDUMINALB,
LDUMINLB.

¢ The description of LDUMINB, LDUMINAB, LDUMINALB, LDUMINIB gives the operational pseudocode for
this instruction.

Integer
(FEAT_LSE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5

Y I
—|w
[N}
[y
~lo

[0 0[]1 1 1]0[0 OfJO|R[1] Rs [0]1 1 1]0 O] Rn |
size A opc Rt
No memory ordering (R == 0)

STUMINB <Ws>, [<Xn|SP>]
is equivalent to
LDUMINB <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.
Release (R == 1)

STUMINLB <Ws>, [<Xn|SP>]
is equivalent to
LDUMINLB <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

The description of LDUMINB, LDUMINAB, LDUMINALB, LDUMINILB gives the operational pseudocode for this
instruction.

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STUMINB, STUMINLB Page 493

STUMINH, STUMINLH

Atomic unsigned minimum on halfword in memory, without return, atomically loads a 16-bit halfword from memory,
compares it against the value held in a register, and stores the smaller value back to memory, treating the values as
unsigned numbers.

¢ STUMINH does not have release semantics.
¢ STUMINLH stores to memory with release semantics, as described in Load-Acquire, Store-Release.

For information about memory accesses see Load/Store addressing modes.

This is an alias of LDUMINH, LDUMINAH, LDUMINALH, LDUMINLH. This means:

¢ The encodings in this description are named to match the encodings of LDUMINH, LDUMINAH,
LDUMINALH, LDUMINLH.

¢ The description of LDUMINH, LDUMINAH, LDUMINALH, LDUMINLH gives the operational pseudocode for
this instruction.

Integer
(FEAT_LSE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5

Y I
—|w
[N}
[y
~lo

[0 1]1 1 1]0[0 OfJO|R[1] Rs [0]1 1 1]0 O] Rn |
size A opc Rt
No memory ordering (R == 0)

STUMINH <Ws>, [<Xn|SP>]
is equivalent to
LDUMINH <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.
Release (R == 1)

STUMINLH <Ws>, [<Xn|SP>]
is equivalent to
LDUMINLH <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

The description of LDUMINH, LDUMINAH, LDUMINALH, LDUMINLH gives the operational pseudocode for this
instruction.

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STUMINH, STUMINLH Page 494

STUR

Store Register (unscaled) calculates an address from a base register value and an immediate offset, and stores a 32-bit

word or

a 64-bit doubleword to the calculated address, from a register. For information about memory accesses, see

Load/Store addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
|1 x]1 1 1]o]Jo o0 o[0] imm9 [0 0] Rn | Rt |
size opc

32-bit (size == 10)

STUR <Wt>, [<Xn|SP>{, #<simm>}]

64-bit (size == 11)

STUR <X

integer
bits (64

Assembl

<Wt>
<Xt>

t>, [<Xn|SP>{, #<simm>}]

scale = Ulnt(size);
) offset = SignExtend(imm9, 64);

er Symbols

Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm>

Shared

integer
integer

integer
boolean

Operati

Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded in
the "imm9" field.

Decode

UInt(Rn);
UInt(Rt);

n
t

datasize = 8 << scale;
tag checked = n != 31;

on

MTE2Ext () then

if Have
Set

bits (64
bits(da

if n ==
Che

TagCheckedInstruction(tag checked);

) address;
tasize) data;

31 then
ckSPAlignment();

add
else
add

address

data =
Mem[add

ress = SP[1];
ress = X[nl;
= address + offset;

X[t];
ress, datasize DIV 8, AccType NORMAL] = data;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

STUR Page 495

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STUR Page 496

STURB

Store Register Byte (unscaled) calculates an address from a base register value and an immediate offset, and stores a
byte to the calculated address, from a 32-bit register. For information about memory accesses, see Load/Store
addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
|0 0[1 1 1/0[0 0[O0 O[O imm9 [0 O] Rn | Rt |
size opc

STURB <Wt>, [<Xn|SP>{, #<simm>}]

bits(64) offset = SignExtend(imm9, 64);

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.
<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.
<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded in

the "imm9" field.

Shared Decode

UInt(Rn);
UInt(Rt);

integer n
integer t

boolean tag checked = n != 31;
Operation

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag checked);

bits(64) address;
bits(8) data;

if n == 31 then

CheckSPAlignment () ;
address = SP[];

else
address = X[n];
address = address + offset;

data = X[t];
Mem[address, 1, AccType NORMAL] = data;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STURB Page 497

STURH

Store Register Halfword (unscaled) calculates an address from a base register value and an immediate offset, and
stores a halfword to the calculated address, from a 32-bit register. For information about memory accesses, see Load/
Store addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[0 1[1 1 1/0[0 0[O0 O[O imm9 [0 O] Rn | Rt |
size opc

STURH <Wt>, [<Xn|SP>{, #<simm>}]

bits(64) offset = SignExtend(imm9, 64);

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.
<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.
<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded in

the "imm9" field.

Shared Decode

UInt(Rn);
UInt(Rt);

integer n
integer t

boolean tag checked = n != 31;
Operation

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag checked);

bits(64) address;
bits(16) data;

if n == 31 then

CheckSPAlignment () ;
address = SP[];

else
address = X[n];
address = address + offset;

data = X[t];
Mem[address, 2, AccType NORMAL] = data;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STURH Page 498

STXP

Store Exclusive Pair of registers stores two 32-bit words or two 64-bit doublewords from two registers to a memory
location if the PE has exclusive access to the memory address, and returns a status value of 0 if the store was
successful, or of 1 if no store was performed. See Synchronization and semaphores. A 32-bit pair requires the address
to be doubleword aligned and is single-copy atomic at doubleword granularity. A 64-bit pair requires the address to be
quadword aligned and, if the Store-Exclusive succeeds, it causes a single-copy atomic update of the 128-bit memory
location being updated. For information about memory accesses see Load/Store addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

|1]sz|0 0 1 0 0 of[o0[0[1] Rs 0] Rt2 | Rn | Rt |
L o0

32-bit (sz == 0)
STXP <Ws>, <Wtl>, <Wt2>, [<Xn|SP>{,#0}]
64-bit (sz == 1)

STXP <Ws>, <Xtl>, <Xt2>, [<Xn|SP>{,#0}]

integer n = UInt(Rn);
integer t = UInt(Rt);
integer t2 = UInt(Rt2); // ignored by load/store single register
integer s = UInt(Rs); // ignored by all loads and store-release

integer elsize = 32 << UInt(sz);
integer datasize = elsize * 2;
boolean tag checked = n != 31;

boolean rt _unknown = FALSE;
boolean rn_unknown = FALSE;
if s ==t || (s == t2) then
Constraint c¢ = ConstrainUnpredictable(Unpredictable DATAOVERLAP);
assert ¢ IN {Constraint UNKNOWN, Constraint NONE, Constraint UNDEF, Constraint NOP};

case c¢ of
when Constraint UNKNOWN rt unknown = TRUE; // store UNKNOWN value
when Constraint NONE rt_unknown = FALSE; // store original value
when Constraint UNDEF UNDEFINED;
when Constraint NOP EndOfInstruction();

if s == n & n != 31 then
Constraint c¢ = ConstrainUnpredictable(Unpredictable BASEOVERLAP);
assert ¢ IN {Constraint UNKNOWN, Constraint NONE, Constraint UNDEF, Constraint NOP};

case c of
when Constraint UNKNOWN rn_unknown = TRUE; // address is UNKNOWN
when Constraint NONE rn_unknown = FALSE; // address is original base
when Constraint UNDEF UNDEFINED;
when Constraint NOP EndOfInstruction();

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints on
UNPREDICTABLE behaviors, and particularly STXP.

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register into which the status result of the store exclusive is
written, encoded in the "Rs" field. The value returned is:
0
If the operation updates memory.
1
If the operation fails to update memory.
<Xtl> Is the 64-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

STXP Page 499

<Xt2> Is the 64-bit name of the second general-purpose register to be transferred, encoded in the "Rt2" field.

<Wt1> Is the 32-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.
<Wt2> Is the 32-bit name of the second general-purpose register to be transferred, encoded in the "Rt2" field.
<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Aborts and alignment

If a synchronous Data Abort exception is generated by the execution of this instruction:

¢ Memory is not updated.

¢ <Ws> is not updated.
Accessing an address that is not aligned to the size of the data being accessed causes an Alignment fault Data Abort
exception to be generated, subject to the following rules:

¢ If AArch64.ExclusiveMonitorsPass() returns TRUE, the exception is generated.

¢ Otherwise, it is IMPLEMENTATION DEFINED whether the exception is generated.

If AArch64.ExclusiveMonitorsPass() returns FALSE and the memory address, if accessed, would generate a
synchronous Data Abort exception, it is IMPLEMENTATION DEFINED whether the exception is generated.

Operation

bits(64) address;
bits(datasize) data;
constant integer dbytes = datasize DIV 8;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag checked);

if n == 31 then
CheckSPAlignment();
address = SP[];
elsif rn_unknown then
address = bits(64) UNKNOWN;
else
address = X[n];

if rt_unknown then
data = bits(datasize) UNKNOWN;
else
bits(datasize DIV 2) ell X[t];
bits(datasize DIV 2) el2 X[t2];
data = if BigEndian(AccType ATOMIC) then ell:el2 else el2:ell;
bit status = '1';
// Check whether the Exclusives monitors are set to include the
// physical memory locations corresponding to virtual address
// range [address, address+dbytes-1].
if AArch64.ExclusiveMonitorsPass(address, dbytes) then
// This atomic write will be rejected if it does not refer
// to the same physical locations after address translation.
Mem[address, dbytes, AccType ATOMIC] = data;
status = ExclusiveMonitorsStatus();
X[s] = ZeroExtend(status, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STXP Page 500

STXR

Store Exclusive Register stores a 32-bit word or a 64-bit doubleword from a register to memory if the PE has exclusive
access to the memory address, and returns a status value of 0 if the store was successful, or of 1 if no store was
performed. See Synchronization and semaphores. For information about memory accesses see Load/Store addressing
modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
|1 x[0 01 0 0 0[0][0]0O] Rs | 0 [(1) (1) (1) (1) (1)] Rn | Rt |
size L o0 Rt2

32-bit (size == 10)
STXR <Ws>, <Wt>, [<Xn|SP>{,#0}]
64-bit (size == 11)

STXR <Ws>, <Xt>, [<Xn|SP>{,#0}]

integer n = UInt(Rn);
integer t = UInt(Rt);
integer s = UInt(Rs); // ignored by all loads and store-release

integer elsize = 8 << Ulnt(size);
boolean tag checked = n != 31;

boolean rt unknown
boolean rn_unknown
if s == t then
Constraint c¢ = ConstrainUnpredictable(Unpredictable DATAOVERLAP);
assert ¢ IN {Constraint UNKNOWN, Constraint NONE, Constraint UNDEF, Constraint NOP};

FALSE;
FALSE;

case c¢ of
when Constraint UNKNOWN rt unknown = TRUE; // store UNKNOWN value
when Constraint NONE rt_unknown = FALSE; // store original value
when Constraint UNDEF UNDEFINED;
when Constraint NOP EndOfInstruction();

if s == n & n != 31 then
Constraint c¢ = ConstrainUnpredictable(Unpredictable BASEOVERLAP);
assert ¢ IN {Constraint UNKNOWN, Constraint NONE, Constraint UNDEF, Constraint NOP};

case c of
when Constraint UNKNOWN rn_unknown = TRUE; // address is UNKNOWN
when Constraint NONE rn_unknown = FALSE; // address is original base
when Constraint UNDEF UNDEFINED;
when Constraint NOP EndOfInstruction();

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints on
UNPREDICTABLE behaviors, and particularly STXR.

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register into which the status result of the store exclusive is
written, encoded in the "Rs" field. The value returned is:
0
If the operation updates memory.
1
If the operation fails to update memory.
<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.
<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.
<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Aborts and alignment

STXR Page 501

If a synchronous Data Abort exception is generated by the execution of this instruction:

* Memory is not updated.

e <Ws> is not updated.
Accessing an address that is not aligned to the size of the data being accessed causes an Alignment fault Data Abort
exception to be generated, subject to the following rules:

e If AArch64.ExclusiveMonitorsPass() returns TRUE, the exception is generated.
e Otherwise, it is IMPLEMENTATION DEFINED whether the exception is generated.

If AArch64.ExclusiveMonitorsPass() returns FALSE and the memory address, if accessed, would generate a
synchronous Data Abort exception, it is IMPLEMENTATION DEFINED whether the exception is generated.

Operation

bits(64) address;
bits(elsize) data;
constant integer dbytes = elsize DIV 8;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag checked);

if n == 31 then
CheckSPAlignment();
address = SP[];
elsif rn_unknown then
address = bits(64) UNKNOWN;
else
address = X[n];

if rt_unknown then

data = bits(elsize) UNKNOWN;
else

data = X[t];

bit status = '1"';
// Check whether the Exclusives monitors are set to include the
// physical memory locations corresponding to virtual address
// range [address, address+dbytes-1].
if AArch64.ExclusiveMonitorsPass(address, dbytes) then
// This atomic write will be rejected if it does not refer
// to the same physical locations after address translation.
Mem[address, dbytes, AccType ATOMIC] = data;
status = ExclusiveMonitorsStatus();
X[s] = ZeroExtend(status, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.13, AdvSIMD v29.05, pseudocode v2020-12, sve v2020-12 ; Build timestamp: 2020-12-16T16:19

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STXR Page 502

STXRB

Store Exclusive Register Byte stores a byte from a register to memory if the PE has exclusive access to the memory
address, and returns a status value of 0 if the store was successful, or of 1 if no store was performed. See
Synchronization and semaphores. The memory access is atomic.

For information about memory accesses see Load/Store addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[0 0[]0 0 1 0 0 o[0]O]O] Rs [0 [(1) (1) (1) (1) (1)] Rn Rt |
size L o0 Rt2

STXRB <Ws>, <Wt>, [<Xn|SP>{,#0}]

integer n = UInt(Rn);
integer t = UInt(Rt);
integer s = UInt(Rs); // ignored by all loads and store-release

boolean tag checked = n != 31;

boolean rt _unknown
boolean rn_unknown
if s == t then
Constraint c¢ = ConstrainUnpredictable(Unpredictable DATAQVERLAP);
assert ¢ IN {Constraint UNKNOWN, Constraint NONE, Constraint UNDEF, Constraint NOP};

FALSE;
FALSE;

case c of
when Constraint UNKNOWN rt unknown = TRUE; // store UNKNOWN value
when Constraint NONE rt_unknown = FALSE; // store original value
when Constraint UNDEF UNDEFINED;
when Constraint NOP EndOfInstruction();

if s == n & n !'= 31 then

Constraint c¢ = ConstrainUnpredictable(Unpredictable BASEQVERLAP);
assert ¢ IN {Constraint UNKNOWN, Constraint NONE, Constraint UNDEF, Constraint NOP};

case c of
when Constrain