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Preface

This preface introduces the ARM® Generic Interrupt ControllerArchitecture Specification. It contains the following
sections:

About this specification on page X.
Using this specification on page Xi.
Conventions on page Xii.
Additional reading on page xiii.
Feedback on page xiv.
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Preface
About this specification

About this specification

This specification describes the ARM Generic Interrupt Controller (GIC) architecture. It defines version 3.0
(GICv3) and version 4.0 (GICv4) of the GIC architecture.

Throughout this document, references to the GIC or a GIC refer to a device that implements this GIC architecture.
Unless the context makes it clear that a reference is to an IMPLEMENTATION DEFINED feature of the device, these
references describe the requirements of this specification.

Intended audience

This specification is written for users who want to design, implement, or program the GIC in a range of
ARM-compliant implementations from simple uniprocessor implementations to complex multiprocessor systems.
It does not assume familiarity with previous version of the GIC.

The specification assumes that users have some experience of ARM products, and are familiar with the terminology
that describes the ARMvS architecture. See the ARM™ Architecture Reference Manual, ARMVS, for ARMvS-A
architecture profile for more information.

X Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617



Preface
Using this specification

Using this specification

This specification is organized into the following chapters:

Chapter 1 Introduction

Read this for an overview of the GIC, and information about the terminology used in this document.

Chapter 2 Distribution and Routing of Interrupts

Read this for information about how the GIC uses affinity routing to distribute interrupts.

Chapter 3 GIC Partitioning
Read this for an overview of the GIC partitioning and information about the GIC logical
components.

Chapter 4 Physical Interrupt Handling and Prioritization
Read this for information about how the GIC handles physical interrupts.

Chapter 5 Virtual Interrupt Handling and Prioritization

Read this for information about how the GIC handles virtual interrupts.

Chapter 6 Locality-specific Peripheral Interrupts and the ITS
Read this for a description of Locality-specific Peripheral Interrupts (LPIs) and use of the Interrupt
Translation Service (ITS).

Chapter 7 Power Management

Read this for information about GIC power management.

Chapter 8 Programmers’ Model
Read this for a description of the GIC register interfaces, and all GIC registers.

Chapter 9 System Error Reporting
Read this for information about GIC support for error reporting.
Chapter 10 Legacy Operation and Asymmetric Configurations
Read this for information about GIC support for legacy operation and asymmetric configurations.
Appendix A GIC Stream Protocol interface
Read this for a description of the AXI4-Stream protocol standard message-based interface that the
GIC Stream Protocol interface uses.
Appendix B Pseudocode Definition
Read this for a definition of the pseudocode that is used in this specification.

Glossary
Read this for definitions of some of the terms used in this specification.

ARM IHI 0069D
ID072617
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Preface

Conventions

Conventions

The following sections describe conventions that this book can use:

. Typographic conventions.
. Signals.

. Numbers.

. Pseudocode descriptions.

Typographic conventions

Signals

Numbers

The typographical conventions are:

italic Introduces special terminology, and denotes citations.
bold Denotes signal names, and is used for terms in descriptive lists, where appropriate.
monospace Used for assembler syntax descriptions, pseudocode, and source code examples.

Also used in the main text for instruction mnemonics and for references to other items appearing in
assembler syntax descriptions, pseudocode, and source code examples.
SMALL CAPITALS

Used for a few terms that have specific technical meanings, and are included in the Glossary.

Colored text Indicates a link. This can be:
. A URL, for example http://infocenter.arm.com.

. A cross-reference, that includes the page number of the referenced information if it is not on
the current page, for example, About the Generic Interrupt Controller (GIC) on page 1-16.

. A link, to a chapter or appendix, or to a glossary entry, or to the section of the document that
defines the colored term, for example, Banked register or GICC_CTLR.

In general this specification does not define processor signals, but it does include some signal examples and
recommendations. The signal conventions are:

Signal level The level of an asserted signal depends on whether the signal is active-HIGH or
active-LOW. Asserted means:

. HIGH for active-HIGH signals
. LOW for active-LOW signals.

Lowercase n At the start or end of a signal name denotes an active-LOW signal.

Numbers are normally written in decimal. Binary numbers are preceded by b, and hexadecimal numbers by 0x. In
both cases, the prefix and the associated value are written in a monospace font, for example 0xFFFF0000.

Pseudocode descriptions

This specification uses a form of pseudocode to provide precise descriptions of the specified functionality. This
pseudocode is written in a monospace font, and follows the conventions described in the ARM® Architecture
Reference Manual, ARMVS, for ARMvS-A architecture profile and the ARM® Architecture Reference Manual,
ARMv7-A and ARMv7-R edition.

Xii

Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617



Preface
Additional reading

Additional reading
This section lists relevant publications from ARM and third parties.

See the Infocenter, http://infocenter.arm.com for access to ARM documentation.

ARM publications
. AMBA® 4 AXI4-Stream Protocol Specification (ARM IHI 0051).
. ARM® Architecture Reference Manual, ARMv7-A and ARMv7-R edition (ARM DDI 0406).
. ARM® Architecture Reference Manual, ARMVS, for ARMvS-A architecture profile (ARM DDI 0487).
. ARM® Generic Interrupt Controller, Architecture version 2.0, Architecture Specification (ARM IHI 0048).
. ARM® CoreSight™ Architecture Specification v3.0 (ARM IHI 0029).
. ARM"® Server Base System Architecture (SBSA) (ARM-DEN-0029).
. GICv3 and GICv4 Software Overview (DAI 0492).
. Application Note GIC Stream Protocol Interface (ARM-ECM-0495013).

Other publications

The following books are referred to in this manual, or provide more information:
. JEDEC Solid State Technology Association, Standard Manufacture s Identification Code, JEP106.

ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. xiii
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Preface
Feedback

Feedback

ARM welcomes feedback on its documentation.

Feedback on this manual

If you have comments on the content of this manual, send an e-mail to errata@arm.com. Provide:

. The title.

. The number, ARM IHI 0069D.

. The page numbers to which your comments apply.
. A concise explanation of your comments.

ARM also welcomes general suggestions for additions and improvements.

Xiv Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617



Chapter 1
Introduction

This chapter provides an introduction to the GIC architecture. It provides an overview of the GIC architecture, and
of the features that are new to the architecture. It also provides definitions of the terminology that is used throughout
this document. It contains the following sections:

. About the Generic Interrupt Controller (GIC) on page 1-16.
. Terminology on page 1-19.
. Supported configurations and compatibility on page 1-23.

ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 1-15
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1 Introduction

1.1 About the Generic Interrupt Controller (GIC)

1.1 About the Generic Interrupt Controller (GIC)

The GICv3 architecture is designed to operate with ARMvS-A and ARMv8-R compliant processing elements, PEs.

The Generic Interrupt Controller (GIC) architecture defines:
. The architectural requirements for handling all interrupt sources for any PE connected to a GIC.

. A common interrupt controller programming interface applicable to uniprocessor or multiprocessor systems.

The GIC is an architected resource that supports and controls interrupts. It provides:
. Registers for managing interrupt sources, interrupt behavior, and the routing of interrupts to one or more PEs.

. Support for:
—  The ARMVS architecture.
—  Locality-specific Peripheral Interrupts (LPIs).
—  Private Peripheral Interrupts (PPIs).
—  Software Generated Interrupts (SGIs).
—  Shared Peripheral Interrupts (SPIs).
—  Interrupt masking and prioritization.
—  Uniprocessor and multiprocessor systems.
—  Wakeup events in power management environments.

For each PE, the GIC architecture describes how IRQ and FIQ interrupts can be generated from different types of
interrupts within the system. The ARMv8-A Exception model then describes how the PE handles these IRQ and
FIQ interrupts.

Interrupt handling also depends on other aspects of the ARMv8 architecture, such as the Security state, and, for
Non-secure interrupts, support for virtualization. The ARM architecture provides two Security states, each with an
associated physical memory address space:

. Secure state.
. Non-secure state.

The GIC architecture supports the routing and handling of interrupts that are associated with both Security states.
See Interrupt grouping and security on page 4-58 for more information.

The GIC architecture supports the ARMv8-A model for handling virtual interrupts that are associated with a virtual
machine, VM. ARMvS8-A supports virtualization in Non-secure state only. A virtualized system has:

. A hypervisor that must include a component executing at EL2, which is responsible for switching between
VMs.

. Several VMs executing at Non-secure EL1.

. Applications executing at Non-secure ELO on a VM.

For more information about the ARMv8 architecture, see ARM® Architecture Reference Manual, ARMVS, for
ARMNVS-A architecture profile. For more information about VMs, see About GIC support for virtualization on
page 5-78.

This specification defines version 3.0 (GICv3) and version 4.0 (GICv4) of the GIC architecture. Version 2.0
(GICv2) is only described in terms of the GICv3 optional support for legacy operation, see GICv3 with legacy
operation on page 1-26. For detailed information about the GICv2 architecture, see the ARM® Generic Interrupt
Controller, Architecture version 2.0, Architecture Specification.

Note

Because GICv4 is an extension of GICv3, all references to GICv3 in this manual apply equally to GICv4, unless
explicitly indicated otherwise.

Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
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1 Introduction
1.1 About the Generic Interrupt Controller (GIC)

111 Changes to the GIC architecture from GICv2

GIC scalability

The GICv2 architecture only supports a maximum of eight PEs, and so has features that do not scale
to a large system. GICv3 addresses this by changing the mechanism by which interrupts are routed,
called affinity routing, and by introducing a new component to the interrupt distribution, called a
Redistributor. See Chapter 3 GIC Partitioning for more information.

Affinity routing for a Security state is enabled by setting GICD CTLR.ARE S or
GICD_CTLR.ARE NSto 1.
Interrupt grouping

Interrupt grouping is the mechanism that is used by GICv3 to align interrupt handling with the

ARMvS8 Exception model:

. Group 0 physical interrupts are expected to be handled at the highest implemented Exception
level.

. Secure Group 1 physical interrupts are expected to be handled at Secure EL1.

. Non-secure Group 1 physical interrupts are excepted to be handled at Non-secure EL2 in

systems using virtualization, or at Non-secure EL1 in systems not using virtualization.

These interrupt groups can be mapped onto the ARMvS8 FIQ and IRQ signals as described in
Interrupt grouping on page 4-58, using configuration bits from the ARMv8 architecture and
configuration bits within the GICv3 architecture.

In GICv3, interrupt grouping supports:

. Configuring each interrupt as Group 0, Secure Group 1, or Non-secure Group 1.

. Signaling Group 0 physical interrupts to the target PE using the FIQ exception request.

. Signaling Group 1 physical interrupts to the target PE in a manner that allows them to be
handled using the IRQ handler in their own Security state. The exact handling of Group 1
interrupts depends on the current Exception level and Security state, as described in
Chapter 4 Physical Interrupt Handling and Prioritization.

. A unified scheme for handling the priority of Group 0 and Group 1 interrupts.

Interrupt Translation Service (ITS)

The Interrupt Translation Service, ITS, provides functionality that allows software to control how
interrupts that are forwarded to the ITS are translated into:

. Physical interrupts, in GICv3 and GICv4.

. Virtual interrupts, in GICv4 only.

The ITS also allows software to determine the target Redistributor for a translated interrupt.
Software can control the ITS through a command interface and associated table-based structures in
memory. The outputs of the Interrupt Translation Service (ITS) are always LPIs, which are a form
of message-based interrupt. See The ITS on page 6-99.

Locality-specific Peripheral Interrupts (LPIs)
LPIs are a new class of interrupt that significantly extends the interrupt ID space that the GIC can
handle. LPIs are optional, and, if implemented, can be generated and supported by an Interrupt
Translation Service, ITS. See LPIs on page 6-92.

Software Generated Interrupts (SGIs)

With the ability of GICv3 to support large-scale systems, the context of an SGI is modified and no
longer includes the identity of the source PE. See Software Generated Interrupts on page 4-55.

Note

The original SGI format is only available in GIC implementations that support legacy operation.

Shared Peripheral Interrupts (SPIs)

A new set of registers in the Distributor are added to support the setting and clearing of
message-based SPIs. See Shared Peripheral Interrupts on page 4-56.

ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 1-17
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1 Introduction

1.1 About the Generic Interrupt Controller (GIC)

System register interface

This interface uses System register instructions in an ARMv8-A or ARMv8-R PE to provide a
closely-coupled interface for the CPU interface registers. This interface is used for registers that are
associated directly with interrupt handling and priority masking to minimize access latency. For
virtualization, the registers that are accessed in this manner include both the registers that are
accessed by a VM interrupt handler, and the registers that forward virtual interrupts from a
hypervisor to a VM. All other registers are memory-mapped.

For AArch64 state, access to the System register interface is enabled by the following settings:
. ICC SRE ELI.SRE==1.

. ICC_SRE EL2.SRE == 1.

. ICC_SRE EL3.SRE==1.

For AArch32 state, access to the System register interface is enabled by the following settings:
. ICC SRE.SRE==1.

. ICC_HSRE.SRE == 1.

. ICC_MSRE.SRE == 1.

Other behavior, which is backwards compatible with GICv2, is described in Chapter 10 Legacy
Operation and Asymmetric Configurations.

Note

In a GIC that supports legacy operation, memory-mapped access is available for all architected GIC
registers.

Unless indicated otherwise, this manual describes the GICv3 architecture in a system with affinity routing, System
register access, and two Security states, enabled. This means that:

«  GICD CTLR.ARE NS==1.
«  GICD CTLR.ARE S==1.
«  GICD CTLR.DS==0.

For operation in AArch64 state:

. ICC_SRE _ELI1.SRE == 1, for both the Secure and the Non-secure copy of this register.
. ICC SRE EL2.SRE==1.

. ICC SRE EL3.SRE==1.

For operation in AArch32 state:
«  ICC_SRE.SRE==1.

. ICC HSRE.SRE ==1.

. ICC_MSRE.SRE == 1.

From GICv3 onwards, legacy operation with the ARE and SRE control bits set to 0 is deprecated. See Chapter 10
Legacy Operation and Asymmetric Configurations for more information about legacy operation.

Changes specific to GICv4

GICv4 adds support for the direct injection of virtual interrupts to a VM, without involving the hypervisor. Direct
injections are only supported by systems that implement at least one ITS that translates interrupts into LPIs.

Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
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1 Introduction
1.2 Terminology

1.2 Terminology

The architecture descriptions in this manual use the same terminology that is used for the ARMv8 architecture. For
more information about this terminology, see the introduction to Part A of the ARM® Architecture Reference
Manual, ARMvS, for ARMvS-A architecture profile.

In addition, the AArch64 System register names are used where appropriate, in preference to listing both the
AArch32 and AArch64 System register names. The ELx suffix on the AArch64 register name indicates the lowest
Exception level at which the register can be accessed. The individual AArch64 System register descriptions contain
a reference to the AArch32 System register that provides the same functionality.

The following sections define the architectural terms used in this manual:
. Interrupt types.

. Interrupt states on page 1-20.

. Models for handling interrupts on page 1-20.

. Additional terms on page 1-21.

1.21 Interrupt types

A device that implements the GIC architecture can control peripheral interrupts. Peripheral interrupts are typically
asserted by a physical signal to the GIC. The GIC architecture defines the following types of peripheral interrupt:

Locality-specific Peripheral Interrupt (LPI)
An LPI is a targeted peripheral interrupt that is routed to a specific PE within the affinity hierarchy:

. LPIs are always Non-secure Group 1 interrupts, in a system where two Security states are
enabled.

. LPIs have edge-triggered behavior.

. LPIs can be routed using an ITS.

. LPIs do not have an active state, and therefore do not require explicit deactivation.

. LPIs are always message-based interrupts.

See LPIs on page 6-92 for more information.

Private Peripheral Interrupt (PPI)

This is a peripheral interrupt that targets a single, specific PE, and different PEs can use the same
interrupt number to indicate different events:

. PPIs can be Group 0 interrupts, Secure Group 1 interrupts, or Non-secure Group 1 interrupts.
. PPIs can support either edge-triggered or level-sensitive behavior.
. PPIs are never routed using an ITS.
. PPIs have an active state and therefore require explicit deactivation.
Note

Commonly, it is expected that PPIs are used by different instances of the same interrupt source on
each PE, thereby allowing a common interrupt number to be used for PE specific events, such as the
interrupts from a private timer.

Shared Peripheral Interrupt (SPI)

This is a peripheral interrupt that the Distributor can route to a specified PE that can handle the
interrupt, or to a PE that is one of a group of PEs in the system that has been configured to accept
this type of interrupt:

. SPIs can be Group 0 interrupts, Secure Group 1 interrupts, or Non-secure Group 1 interrupts.
. SPIs can support either edge-triggered or level-sensitive behavior.

. SPIs are never routed using an ITS.

. SPIs have an active state and therefore require explicit deactivation.

See Shared Peripheral Interrupts on page 4-56 for more information. For more information about
the Distributor, see Chapter 3 GIC Partitioning.
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Software Generated Interrupt (SGI)

SGIs are typically used for inter-processor communication, and are generated by a write to an SGI
register in the GIC:

SGIs can be Group 0 interrupts, Secure Group 1 interrupts, or Non-secure Group 1 interrupts.
SGIs have edge-triggered behavior.
SGIs are never routed using an ITS.

SGIs have an active state and therefore require explicit deactivation.

See Software Generated Interrupts on page 4-55 for more information.

An interrupt that is edge-triggered has the following property:

. It is asserted on detection of a rising edge of an interrupt signal and then, regardless of the state of the signal,
remains asserted until the interrupt is acknowledged by software.

For information about edge-triggered message-based interrupts, see Message-based interrupt.

An interrupt that is level-sensitive has the following properties:

. It is asserted whenever the interrupt signal level is active, and deasserted whenever the level is not active.
. It is explicitly deasserted by software.
1.2.2 Interrupt states

The following states apply at each interface between the GIC and a connected PE:

Inactive An interrupt that is not active or pending.

Pending An interrupt that is recognized as asserted in hardware, or generated by software, and is
waiting to be handled by the target PE.

Active An interrupt that has been acknowledged by a PE and is being handled, so that another
assertion of the same interrupt is not presented as an interrupt to a PE, until the initial
interrupt is no longer active.

LPIs do not have an active state, and transition to the inactive state on being acknowledged
by a PE.

Active and pending  An interrupt that is active from one assertion of the interrupt, and is pending from a
subsequent assertion.

LPIs do not have an active and pending state, and transition to the inactive state on being
acknowledged by a PE.

The GIC maintains state for each supported interrupt. The state machine defines the possible transitions between

interrupt states, and, for each interrupt type, the conditions that cause a transition. See Interrupt handling state

machine on page 4-51 for more information.
1.2.3 Models for handling interrupts
In a multiprocessor implementation, the following models exist for handling interrupts:
Targeted distribution model
This model applies to all PPIs and to all LPIs. It also applies to:
. SPIs during non-legacy operation, if GICD_IROUTER<n>.Interrupt Routing Mode == 0.
. During legacy operation, when GICD CTLR.ARE * == 0, if only one bit in the appropriate
GICD_ITARGETSR<n> field == 1.
A target PE that has been specified by software receives the interrupt.
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Targeted list model

This model applies to SGIs only. Multiple PEs receive the interrupt independently. When a PE
acknowledges the interrupt, the interrupt pending state is cleared only for that PE. The interrupt
remains pending for each PE independently until it has been acknowledged by the PE.

1 of N model
This model applies to SPIs only. The interrupt is targeted at a specified set of PEs, and is taken on
only one PE in that set. The PE that takes the interrupt is selected in an IMPLEMENTATION DEFINED
manner. The architecture applies restrictions on which PEs can be selected, see Enabling the
distribution of interrupts on page 4-63.

Note

. The ARM GIC architecture guarantees that a 1 of N interrupt is presented to only one PE
listed in the target PE set.

. A 1 of N interrupt might be presented to a PE where the interrupt is not the highest priority
interrupt, or where the interrupt is masked by ICC_PMR_EL1 or within the PE. See Interrupt
lifecycle on page 4-46.

For SPIs during legacy operation, this model applies when more than one target PE is specified in
the target registers.

The hardware implements a mechanism to determine which PE activates the interrupt, if more than
one PE can handle the interrupt.

1.2.4 Additional terms

The following additional terms are used throughout this manual:

Idle priority
In GICv3, the idle priority, 0xFF, is the running priority read from ICC_RPR_EL1 on the CPU
interface when no interrupts are active on that interface. During legacy operation, the idle priority,
as read from GICC_RPR, is IMPLEMENTATION DEFINED, as in GICv2.

Interrupt Identifier (INTID)
The number space that uniquely identifies an interrupt with an associated event and its source. The
interrupt is then routed to one or more PEs for handling. PPI and SGI interrupt numbers are local to
each PE. SPIs and LPIs have global interrupt numbers for the physical domain. See /NTIDs on
page 2-31 for more information.

Interrupt Routing Infrastructure (IRI)
The Distributor, Redistributors and, optionally, one or more ITSs. See The GIC logical components
on page 3-38 for more information.

Message-based interrupt

A message-based interrupt is an interrupt that is asserted because of a memory write access to an
assigned address. Physical interrupts can be converted to message-based interrupts. Message-based
interrupts can support either level-sensitive or edge-triggered behavior, although LPIs are always
edge-triggered.

GICv3 supports two mechanisms for message-based interrupts:

. A mechanism for communicating an SPI, where the assigned address is held in the
Distributor. In this case the message-based interrupt can be either level-sensitive or
edge-triggered.

. A mechanism for communicating an LPI, where the assigned address is held in an ITS, if an
ITS is implemented, or in the Redistributor.

ARM recommends the use of LPIs to provide support for MST and MSI-X capabilities in systems
that support PCle. See Chapter 6 Locality-specific Peripheral Interrupts and the ITS for more
information. GICv3 also includes architected support for signaling SPIs using message-based
interrupts, see Shared Peripheral Interrupts on page 4-56.
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Physical interrupt
An interrupt that targets a physical PE is a physical interrupt. It is signaled to the PE by the physical
CPU interface to which the PE is connected.

Running priority
At any given time, the running priority of a CPU interface is either:

. The group priority of the active interrupt, for which there has not been a priority drop on that
interface.
. If there is no active interrupt for which there has not been a priority drop on the interface, the

running priority is the idle priority 0xFF.

Sufficient priority
The GIC CPU interface compares the priority of an enabled, pending interrupt with all of the
following, to determine whether the interrupt has sufficient priority:
. The Priority Mask Register, [CC_PMR _ELI.

. The preemption settings for the interface, as indicated by ICC_BPRO _EL1 and
ICC_BPRI_ELI.

. The current running priority, as indicated by ICC_RPR_EL1 for the CPU interface.

If the interrupt has sufficient priority it is signaled to the connected PE.

Virtual interrupt
An interrupt that targets a VM is a virtual interrupt. It is signaled by the associated virtual CPU
interface. See Chapter 5 Virtual Interrupt Handling and Prioritization for more information.

Maintenance interrupt

A physical interrupt that signals key events associated with interrupt handling on a VM to allow the
hypervisor to track those events. These events are processed by the hypervisor, and include enabling
and disabling a particular group of interrupts. See Maintenance interrupts on page 5-85 for more
information.
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1.3 Supported configurations and compatibility

In ARMv8-A, EL2 and EL3 are optional, and a PE can support one, both, or neither of these Exception levels.
However:

. A PE requires EL3 to support both Secure and Non-secure state.
. A PE requires EL2 to support virtualization.
. If EL3 is not implemented, there is only a single Security state. This Security state is either Secure state or

Non-secure state.

GICv3 supports interrupt handling for all of these configurations, and for execution in both AArch32 state and
AArch64 state, in accordance with the interprocessing rules described in ARM® Architecture Reference Manual,
ARMVS, for ARMVS-A architecture profile.

1.3.1 Affinity routing configuration

The GICv3 architecture supports affinity routing. It provides optional support for:

. An asymmetric configuration, where affinity routing is enabled for Non-secure state and disabled for Secure
state. This provides support for a Secure legacy environment.

. A legacy-only environment where affinity routing is disabled for both Secure state and Non-secure state.

1.3.2 System register configuration

When affinity routing is enabled for execution in both Security states, the GIC must be configured to use System
register access to handle physical interrupts. The architecture does not support having affinity routing enabled for a
Security state, and not having System register access configured for that Security state. Configuring the GIC this
way results in UNPREDICTABLE behavior. When affinity routing is enabled for execution in Non-secure state, the
GIC architecture optionally supports legacy operation for virtual interrupts, that is legacy interrupt handling at
Non-secure EL1 under the control of a hypervisor executing at EL2.

1.3.3 GIC control and configuration

Many of the GIC registers are available in different forms, to permit effective interrupt handling:

. For two Security states.
. For different interrupt groups.
. Using System register access for GICv3 or memory-mapped access for legacy operation.

When System register access is enabled, control and configuration of the GIC architecture is handled by architected
System registers and the associated accesses that define the GIC programmers’ model. See Chapter 8 Programmers’
Model for more information.

Some registers are always memory-mapped, while others use System register access in GICv3, and
memory-mapped access for legacy operations.

Table 1-1 shows the registers that are always memory-mapped.

Table 1-1 Memory-mapped registers

Prefix in short register name Registers

GICD Distributor registers
GICR Redistributor registers?
GITS ITS registersb

a. There is one copy of each of the Redistributor registers per PE.

b. There can be more than one ITS in an implementation. Each ITS has its own copy of the GITS
registers.
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Table 1-2 shows the registers that are memory-mapped for legacy operations, but are replaced by System register
access in GICv3 when System register access is enabled.

Table 1-2 Memory-mapped registers for legacy operation

Prefix in short register name Registers
GICC Physical CPU interface registers
GICV Virtual CPU interface registers
GICH Virtual interface control registers
Note
. An operating system executing at Non-secure EL1 uses either the GICC_* or the GICV_* registers to control

interrupts, and is unaware of the difference.

The GICR_* and GITS_* registers are introduced in GICv3.

Table 1-3 shows the registers that GICv3 supports when System register access is enabled.

Table 1-3 System registers

Prefix in short register name System registers accessed
ICC Physical CPU interface registers
ICcv Virtual CPU interface registers
ICH Virtual interface control registers

The ARMVS support for virtualization and the Exception level at which a PE is operating determine whether the
physical CPU interface registers or the virtual CPU interface registers are accessed.

For more information about register names and the factors that affect which register to use, see GIC System register
access on page 8-159.
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Table 1-4 shows the ARMvS8 architectural state that is used with or affects the operation of the GIC.

Table 1-4 ARMv8 architectural state affecting GIC operation

AArch64 AArch32
Purpose
State Field State Field
PSTATE? A PSTATE®? A SError interrupt mask bit (AArch64 state)
Asynchronous Abort mask bit (AArch32 state)
I I IRQ mask bit
F F FIQ mask bit
- - DFSR STATUS/FS  Fault status
- ExT External abort type
ESR ELx EC HSR EC Exception class
IL IL Instruction length for synchronous exceptions
ISS ISS Instruction Specific Syndrome
HCR_EL2 AMO HCR AMO SError interrupt routing (AArch64 state)
Asynchronous External Abort interrupt routing
(AArch32 state)
IMO MO Physical IRQ routing
FMO FMO Physical FIQ routing
RW RESO Execution state control for lower Exception levels
(AArch64 state)
VSE VA Virtual SError Abort exception (AArch64 state)
Virtual Asynchronous Abort exception (AArch32
state)
VI VI Virtual IRQ interrupt
VF VF Virtual FIQ interrupt
HSTR EL2 T<n> HSTR T<n> Hypervisor system traps
I I IRQ pending
F F FIQ pending
ID_AA64PFRO_EL1 GIC - - System register GIC interface support
ID_PFR1 EL1 GIC ID_PFR1 GIC System register GIC CPU interface support
ISR _ELI A ISR A SError pending (AArch64 state)
External Abort pending (AArch32 state)
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Table 1-4 ARMv8 architectural state affecting GIC operation (continued)

AArch64 AArch32
Purpose
State Field State Field
MPIDR _ELI Aff3 MPIDR - Affinity level 3
Aff2 Aff2 Affinity level 2
Affl Affl Affinity level 1
Aff0 Aff0 Affinity level 0
SCR_EL3 RW SCR RESO Execution state control for lower Exception levels
(AArch64 state only)
EA EA SError interrupt routing (AArch64 state)
External Abort interrupt routing (AArch32 state)
FIQ FIQ Physical FIQ routing
IRQ IRQ Physical IRQ routing
NS NS Non-secure bit

a. Process state, PSTATE, is an abstraction of the process state information. For more information, see ARM® Architecture Reference Manual,
ARMVS, for ARMVS-A architecture profile.

For more information about these registers and fields, see ARM® Architecture Reference Manual, ARMVS, for
ARMVS-A architecture profile.

1.3.5 GICv3 with no legacy operation

In an implementation that does not support legacy operation, affinity routing and System register access are
permanently enabled. This means that the associated control bits are RAO/WI. Table 1-5 shows the register fields
that are affected by this.

Table 1-5 Control bits for affinity routing and System register access

AArch64 registers AArch32 registers Memory-mapped registers
ICC_SRE ELI.SRE? ICC_SRE.SRE# -
ICC_SRE EL2.SRE ICC_HSRE.SRE -
ICC_SRE EL3.SRE ICC_MSRE.SRE -

- - GICD CTLR.ARE_ S

- - GICD CTLR.ARE NS

a. There is a Secure copy and a Non-secure copy of this register.

1.3.6 GICv3 with legacy operation

Legacy operation is a form of limited backwards compatibility with GICv2 that is provided to allow systems using
GICv3 to run code using GICv2, provided that this code meets the restrictions described in this section. Legacy
operation is optional in GICv3. See Legacy support of interrupts and asymmetric configurations on page 10-710.
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In a GICv3 implementation that supports legacy operation, a maximum of eight PEs, whose individual support for
a memory-mapped register interface is IMPLEMENTATION DEFINED, are available as physical or virtual interrupt
targets within a given VM. It is IMPLEMENTATION DEFINED:

. Whether legacy operation applies to execution in both Security states, or to execution in Secure state only.

. Whether legacy operation is available only in the virtual CPU interface when executing in Non-secure EL1.
In GICv3, the following restrictions apply to legacy operation:

. The GICv2 feature GICC_CTLR.AckCtl was deprecated in GICv2 and is not supported in GICv3.
Correspondingly, even in legacy mode, the behavior is as if the GICC_CTLR.AckCtl bit described in GICv2
is RAZ/WI.

Note

In a GICv3 implementation that supports legacy operation, a VM is permitted to control Non-secure
interrupts when GICV_CTLR.AckCtl set to 1. However, ARM deprecates the use of GICV_CTLR.AckCtl.

. The GICv2 configuration lockdown feature and the associated CFGSDISABLE input signal are not
supported.

. A hypervisor executing at EL2 can control virtual interrupts only for the PE on which the EL2 software is
executing, and cannot control virtual interrupts on other PEs

For legacy operation, an asymmetric configuration is supported where:
. Affinity routing and System register access are enabled in Non-secure state and at EL3.

. Affinity routing and System register access are disabled at Secure EL1.

This allows a secure operating system, running at Secure EL1, to use legacy functionality, provided that it does not
configure Non-secure interrupts.

In GICv2 software executing in Secure state could use GICC_AIAR, GICC_AEOIR, GICC_AHPPIR, and
GICC_ABPR to control interrupts in Non-secure state. There is no equivalent functionality in asymmetric
configurations.
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Chapter 2
Distribution and Routing of Interrupts

This chapter describes the distribution and routing of interrupts to a target PE using affinity routing, and the
assignment of interrupt IDs. It contains the following sections:

. The Distributor and Redistributors on page 2-30.
. INTIDs on page 2-31.
. Affinity routing on page 2-35.
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2.1 The Distributor and Redistributors

21 The Distributor and Redistributors

The Distributor provides the routing configuration for SPIs, and holds all the associated routing and priority
information.

The Redistributor provides the configuration settings for PPIs and SGIs.

A Redistributor always presents the pending interrupt with the highest priority to the CPU interface in finite time.
For more information about interrupt prioritization, see Interrupt prioritization on page 4-65.

The highest priority pending interrupt might change because:

. The previous highest priority interrupt has been acknowledged.

. The previous highest priority interrupt has been preempted.

. The previous highest priority interrupt is removed and no longer valid.
. The group interrupt enable has been modified.

. The PE is no longer a participating PE. See Participating nodes on page 2-36.

2-30 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617



2 Distribution and Routing of Interrupts
2.2 INTIDs

2.2 INTIDs

Interrupts are identified using /D numbers (INTIDs). The range of INTIDs supported by GICv3 is IMPLEMENTATION
DEFINED, according to the following rules:

. For the number of INTID bits supported in the Distributor and Redistributor:

—  If LPIs are not supported, the ID space in the Distributor is limited to 10 bits. This is the same as in
earlier versions of the GIC architecture.

—  If LPIs are supported, the INTID field is IMPLEMENTATION DEFINED in the range of 14-24 bits, as
described in the register description for GICD_TYPER.

Note

A Redistributor can be configured through GICR_ PROPBASER to use fewer bits than specified by
GICD_TYPER.

. For the number of INTID bits supported in the ITS:
—  If LPIs are supported, the INTID field is IMPLEMENTATION DEFINED in the range of 14-24 bits.
—  The size of the INTID field is defined by GITS TYPER.IDbits.
The ITS must be programmed so that interrupts that are forwarded to a Redistributor are in the range of
interrupts that are supported by that Redistributor, otherwise the behavior is UNPREDICTABLE.

. For the number of INTID bits supported in the CPU interface:

—  The GICv3 CPU interface supports either a 16-bit or a 24-bit INTID field, the choice being
IMPLEMENTATION DEFINED. The number of physical interrupt identifier bits that are supported is
indicated by ICC_CTLR_ELI1.IDbits and ICC_CTLR_EL3.IDbits.

The valid INTID space is governed by the implemented size in the CPU interface and the Distributor. It is a
programming error to forward an INTID that is greater than the supported size to a CPU interface.

Unused INTID bits are RAZ. This means that any affected bit field is zero-extended.

Table 2-1 shows how the INTID space is partitioned by interrupt type.

Table 2-1 INTIDs

INTID Interrupt type  Details Notes

0-15 SGI These interrupts are local to a CPU interface. INTIDs 0-1023 are compatible
with earlier versions of the GIC

16 -31 PPI architecture

32-1019 SPI Shared peripheral interrupts that the Distributor can

route to either a specific PE, or to any one of the PEs in
the system that is a participating node, see
Participating nodes on page 2-36.

1020 — 1023 Special interrupt  Interrupt IDs that are reserved for special purposes, as
number Special INTIDs on page 2-32 describes.
1024 — 8191 - Reserved -
8192 — LPI Peripheral hardware interrupts that are routed to a -
IMPLEMENTATION specific PE.
DEFINED
Note

The ARM recommended PPI INTID assignments are provided by the Server Base System Architecture, see ARM"
Server Base System Architecture (SBSA).
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2.21

222

The GICv4 architecture provides a unique INTID space for each VM by supporting a vPEID in addition to the
INTID space. See About GIC support for virtualization on page 5-78 for more information about VMs and The ITS
on page 6-99 for more information about vPEIDs.

ARM strongly recommends that implemented interrupts are grouped to use the lowest INTID numbers and as small

arange of INTIDs as possible. This reduces the size of the associated tables in memory that must be implemented,

and that discovery routines must check.

ARM strongly recommends that software reserves:

. INTIDO - INTID7 for Non-secure interrupts.

. INTIDS - INTID15 for Secure interrupts.

Special INTIDs

The list of the INTIDs that the GIC architecture reserves for special purposes is as follows:

1020 The GIC returns this value in response to a read of ICC_TARO EL1 or ICC_HPPIRO_EL1 at EL3,
to indicate that the interrupt being acknowledged is one which is expected to be handled at Secure
EL1. This INTID is only returned when the PE is executing at EL3 using AArch64 state, or when
the PE is executing in AArch32 state in Monitor mode.

This value can also be returned by reads of ICC_ TIAR1 EL1 or ICC_HPPIR1 EL1 at EL3 when
ICC_CTLR_EL3.RM == 1, see Asymmetric operation and the use of ICC_CTLR_EL3.RM on
page 10-714.

1021 The GIC returns this value in response to a read of ICC_TARO EL1 or ICC_HPPIRO_EL1 at EL3,
to indicate that the interrupt being acknowledged is one which is expected to be handled at
Non-secure EL1 or EL2. This INTID is only returned when the PE is executing at EL3 using
AArch64 state, or when the PE is executing in AArch32 state in Monitor mode.

This value can also be returned by reads of ICC_IAR1 ELlor ICC_HPPIR1 ELI at EL3 when
ICC_CTLR_EL3.RM == 1, see Asymmetric operation and the use of ICC_CTLR_EL3.RM on
page 10-714

1022 This value applies to legacy operation only. For more information, see Use of the special INTID
1022 on page 10-711.

1023 This value is returned in response to an interrupt acknowledge, if there is no pending interrupt with
sufficient priority for it to be signaled to the PE, or if the highest priority pending interrupt is not
appropriate for the:

. Current Security state.
. Interrupt group that is associated with the System register.
Note

These INTIDs do not require an end of interrupt or deactivation.

For more information about the use of special INTIDs, see the descriptions for the following registers:

. ICC_TARO_ELI.

. ICC_TARI_ELI.

. ICC_HPPIRO_ELI.

. ICC_HPPIRI ELI.

Implementations with mixed INTD sizes

Implementations might choose to implement different INTID sizes for different parts of the GIC, subject to the
following rules:

. PEs might implement either 16 or 24 bits of INTID.
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Note
A system might include a mixture of PEs that support 16 bits of INTID and PEs that support 24 bits of INTID.

. The Distributor and Redistributors must all implement the same number of INTID bits.

. In systems that support LPIs, the Distributors and all Redistributors must implement at least 14 bits of INTID.
The number of bits that is implemented in the Distributor and Redistributors must not exceed the minimum
number that is implemented on any PE in the system.

Note

Because interrupts might target any PE, each PE must be able to receive the maximum INTID that can be
sent by a Redistributor. This means that the INTID size that is supported by the Redistributors cannot exceed
the minimum INTID size that is supported by each PE in the system.

. In systems that do not support LPIs, the Distributor and all Redistributors must implement at least 5 bits of
INTID and cannot implement more than 10 bits of INTID.
. In systems that include one or more ITSs, an ITS might implement any value up to and including the number

of bits that are supported by the Distributor and the Redistributors down to a minimum of 14 bits, which is
the minimum number that is required for LPI support.

2.2.3 Valid interrupt ID check pseudocode

The following pseudocode describes how the GIC checks whether an INTID for a physical interrupt is valid:

// InterruptIdentifierValid()
//

boolean InterruptIdentifierValid(bits(64) data, boolean TpiAllowed)

// First check whether any out of range bits are set
integer N = CPUInterfaceIDSize();

if !IsZero(data<63:N>) then
if GenerateLocalSError() then
// Reporting of locally generated SEIs is supported
IMPLEMENTATION_DEFINED “SError INVALID_INTERRUPT_IDENTIFIER”;
UNPREDICTABLE;

intID = data<INTID_SIZE-1:0>;

if !TpiAllowed && IsLPI(intID) then // LPIs are not supported
if GeneratelLocalSError() then
// Reporting of locally generated SEIs is supported
IMPLEMENTATION_DEFINED “SError INVALID_INTERRUPT_IDENTIFIER”;
UNPREDICTABLE;

// Now check for special identifiers
if IsSpecial(intID) then
return FALSE; // It is a special ID

// A1l the checks pass so the identifier is valid
return TRUE;

The following pseudocode describes how the GIC checks whether an INTID for a virtual interrupt is valid:

// VirtualIdentifiervalid()
//

boolean VirtualldentifierValid(bits(64) data, boolean TpiAllowed)

// First check whether any out of range bits are set
integer N = VIDBits();

if !IsZero(data<63:N>) then
if ICH_VTR_EL2.SEIS == ‘1’ then
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// Reporting of Tocally generated SEIs is supported
IMPLEMENTATION_DEFINED “SError INVALID_INTERRUPT_IDENTIFIER”;
UNPREDICTABLE;

intID = data<INTID_SIZE-1:0>;

if !MpiAllowed && IsLPI(intID) then // LPIs are not supported
if ICH_VTR_EL2.SEIS == ‘1’ then
// Reporting of locally generated SEIs is supported
IMPLEMENTATION_DEFINED “SError INVALID_INTERRUPT_IDENTIFIER”;
UNPREDICTABLE;

// Now check for special identifiers
if IsSpecial(intID) then
return FALSE; // It is a special ID

// A11 the checks pass so the identifier is valid
return TRUE;

The following pseudocode describes CPU interface ID size function.

// CPUInterfaceIDSize()

//

// Returns the number of Interrupt ID bits implemented at the CPU interface. This value is an
// IMPLEMENTATION DEFINED choice of 16 or 24 and is discoverable from ICC_CTLR_EL1/EL3.IDbits

integer CPUInterfaceIDSize()

return integer IMPLEMENTATION_DEFINED “CPU interface INTID size 16 or 24”;
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23 Affinity routing

Affinity routing is a hierarchical address-based scheme to identify specific PE nodes for interrupt routing.

For a PE, the affinity value is defined in MPIDR_EL1 for AArch64 state, and in MPIDR for AArch32 state:

. Affinity routing is a 32-bit value that is composed of four 8-bit affinity fields. These fields are the nodes a,
b, c,and d.

. GICv3 using AArch64 state can support:
— A four level routing hierarchy, a.b.c.d.
— A three level routing hierarchy, 0.b.c.d.
. GICv3 using AArch32 state only supports three affinity levels.
. ICC_CTLR EL3.A3V,ICC CTLR_EL1.A3V, and GICD TYPER.A3V indicate whether four levels or
three levels of affinity are implemented.
Note

An implementation that requires four levels of affinity must only support AArch64 state.

The enumeration notation for specifying nodes in an affinity hierarchy is of the following form, where Affx is
Affinity level x:

Aff3.Aff2.Aff1.ATFO

Affinity routing for a Security state is enabled in the Distributor, using the Affinity Routing Enable (ARE) bits.
Affinity routing is enabled:

. For Secure interrupts, if GICD_CTLR.ARE Siis set to 1.
. For Non-secure interrupts, if the GICD_CTLR.ARE_NS bit is set to 1.

GICD_CTLR.ARE S and GICD_CTLR.ARE_NS are RAO/WI if affinity routing is permanently enabled.

For the handling of physical interrupts when affinity routing is enabled, System register access must also be enabled,
see GIC System register access on page 8-159. For the other cases, see Chapter 10 Legacy Operation and
Asymmetric Configurations.

2.31 Routing SPIs and SGls by PE affinity

SPIs are routed using an affinity address and the routing mode information that is held in GICD_IROUTER<n>.
SGIs are routed using the affinity address and routing mode information that is written by software when it generates
the SGI.

SGIs are generated using the following registers:
. ICC_SGIOR_ELI.

. ICC SGIIR ELI.

. ICC_ASGIIR_ELI.

ARM strongly recommends that only values in the range 0-15 are used at affinity level 0 to align with the SGI target
list capability. See Software Generated Interrupts on page 4-55.

SPIs and SGIs are routed using different registers:

. SPIs are routed using GICD_IROUTER<n>.Interrupt Routing Mode:

—  If GICD_IROUTER<n>.Interrupt Routing Mode is cleared to 0, SPIs are routed to a single PE
specified by a.b.c.d.

—  If GICD_IROUTER<n>.Interrupt Routing Mode is set to 1, SPIs are routed to any PE defined as a
participating node:
- The mechanisms by which the IRI is selects the target PE is IMPLEMENTATION DEFINED.

- When ICC_CTLR_EL3.PMHE==1,0orICC_CTLR ELI1.PMHE ==1, the ICC_PMR_ELI register
associated with the PE might be used by the IRI to determine the target PE.

For more information about participating nodes, see Participating nodes on page 2-36.
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2.3 Affinity routing

. SGIs are routed using ICC_SGIOR_EL1.IRM, and ICC_SGI1R_ELI1.IRM:

—  Ifthe IRM bit is set to 1, SGIs are routed to all participating PEs in the system, excluding the
originating PE.

—  Ifthe IRM bit is cleared to 0, SGIs are routed to a group of PEs, specified by a.b.c.targetlist. The
target list provides a bitfield encoding for affinity level 0 values of 0-15.

2.3.2 Participating nodes

An enabled SPI configured to use the 1 of N distribution model can target a PE when:
. GICR_WAKER.ProcessorSleep == 0 and the interrupt group of the interrupt is enabled on the PE.
. GICD _CTLR.EINWF ==1.

. GICR_TYPER.DPGS == 1, and for the interrupt group of the interrupt, GICR_CTLR.{DPG1S, DPGINS,
DPGO} == 0.

For more information about whether a PE can be selected as the target when the 1 of N distribution model is used,
see GICR _CTLR, Redistributor Control Register on page 8-517.

For more information about enabling interrupts and interrupt groups, see Enabling the distribution of interrupts on
page 4-63.

233 Changing affinity routing enables

This manual describes the GICv3 architecture in a system with affinity routing enabled. This means that:
«  GICD CTLR.ARE NS ==1.
. GICD_CTLR.ARE_S==1.

If the value of GICD_CTLR.ARE NS or GICD CTLR.ARE S is changed from 1 to 0, the result is
UNPREDICTABLE.

When GICD _CTLR. DS == 0, then:

. Changing GICD_CTLR.ARE S from 0 to 1 is UNPREDICTABLE except when all of the following apply:
—  GICD_CTLR.EnableGrp0 == 0.
—  GICD_CTLR.EnableGrplS == 0.
—  GICD_CTLR.EnableGrpINS == 0.

. Changing GICD_CTLR.ARE_NS from 0 to 1 is UNPREDICTABLE except when GICD_CTLR.
EnableGrpINS == 0.

When GICD_CTLR.DS == 1, then:

. Changing GICD_CTLR.ARE from 0 to 1 is UNPREDICTABLE except when all of the following apply:
—  GICD_CTLR.EnableGrp0 == 0.
—  GICD_CTLR.EnableGrpl == 0.

Note

The effect of clearing GICD CTLR.EnableGrp0, GICD_CTLR.EnableGrp1S, or GICD_CTLR.EnableGrpINS, as
appropriate, must be visible when changing GICD _CTLR.ARE S or GICD CTLR.ARE NS from 0 to 1. Software
can poll GICD_CTLR.RWP to check that writes that clear GICD CTLR.EnableGrp0, GICD CTLR.EnableGrp1S,
or GICD_CTLR.EnableGrp1NS bits have completed.

2-36

Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617



Chapter 3
GIC Partitioning

This chapter describes the GIC logical partitioning. It contains the following sections:
. The GIC logical components on page 3-38.
. Interrupt bypass support on page 3-43.
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31 The GIC logical components

The GICv3 architecture consists of a set of logical components:

. A Distributor.

. A Redistributor for each PE that is supported.

. A CPU interface for each PE that is supported.

. Interrupt Translation Service components (ITS), to support the optional translation of events into LPIs.

The Distributor, Redistributor and ITS are collectively known as an IRI.

Figure 3-1 shows the IRI.

wptRoutng ]

I_Interrupt Routing
| Infrastructure (IRI)

| Distributor ITs? |

PE PE
x.y.0.0 x.y.0.1
Cluster CO

. Redistributor® D CPU interface®

a. The inclusion of an ITS is optional, and there might be more than
one ITS in an IRI.

b. There is one Redistributor per PE.

c. There is one CPU interface per PE.

Figure 3-1 Interrupt Routing Infrastructure

The CPU interface handles physical interrupts at all implemented Exception levels:
. Interrupts that are translated into LPIs are optionally routed via the ITS to the Redistributor and the CPU

interface.

. PPIs are routed directly from the source to the local Redistributor.

. SPIs are routed from the source through the Distributor to the target Redistributor and the associated CPU
interface.

. SGIs are generated by software through the CPU interface and Redistributor. They are then routed through
the Distributor to one or more target Redistributors and the associated CPU interfaces.

In GICv3, the ITS is an optional component and translates events into physical LPIs. The architecture also supports
direct LPIs that do not require the use of an ITS. Where LPIs are supported, it is IMPLEMENTATION DEFINED whether
either:

. Direct LPIs are supported by accessing the registers in the Redistributors.
. LPI support is provided by the ITS.

An implementation must only support one of these methods.

In GICv4, the inclusion of at least one ITS is mandatory to provide support for the direct injection of virtual LPIs.
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3.1 The GIC logical components

Figure 3-2 shows the GIC partitioning in an implementation that includes an ITS.

SPIs ——»

Distributor

PPls —»

TSGIsb TSGIsb TSGIS"

1

PE PE PE PE PE
x.y.0.0 x.y.0.1 x.y.0.2 x.y.n.0 x.y.n.1
Cluster CO Cluster Cn

. Redistributor

|:| Distributor

a. The inclusion of an ITS is optional, and there might be more than one

ITSinaGl

b. SGls are generated by a PE and routed through the Distributor.

C.

D CPU interface

D Interrupt Translation Service

ITS®

LPIs

Figure 3-2 GIC logical partitioning with an ITS

The mechanism for communication between the ITS and the Redistributors is IMPLEMENTATION DEFINED.

The mechanism for communication between the CPU interfaces and the Redistributors is also IMPLEMENTATION

DEFINED.

Note

ARM recommends that an implementation uses the GIC Stream Protocol for communication between the CPU

interfaces and the Redistributors, see Appendix A GIC Stream Protocol interface.

Figure 3-3 on page 3-40 shows the GIC partitioning in an implementation that does not include an ITS and that

supports direct LPIs.
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3.1 The GIC logical components

e
SPls Distributor

LPls
PPls —»

TSGISa TSGISa TSGISa TSGISa

—

PE PE PE PE PE
x.y.0.0 x.y.0.1 x.y.0.2 x.y.n.0 x.y.n.1
Cluster CO Cluster Cn
. Redistributor D CPU interface

|:| Distributor

a. SGls are generated by a PE and routed through the Distributor.

Figure 3-3 GIC logical partitioning without an ITS
The following list describes the components that are depicted in Figure 3-2 on page 3-39 in more detail:
Distributor The Distributor performs interrupt prioritization and distribution of SPIs and SGIs to the
Redistributors and CPU interfaces that are connected to the PEs in the system.

GICD_CTLR provides global settings for:

. Enabling affinity routing.

. Disabling security.

. Enabling Secure and Non-secure Group 1 interrupts.
. Enabling Group 0 interrupts.

For SPIs, the Distributor provides a programming interface for:
. Enabling or disabling SPIs.
. Setting the priority level of each SPL

. Routing information for each SPI.

. Setting each SPI to be level-sensitive or edge-triggered.
. Generating message-based SPIs.

. Assigning each SPI to an interrupt group.

. Controlling the pending and active state of SPIs.
The Distributor registers are identified by the GICD_ prefix.

See Chapter 2 Distribution and Routing of Interrupts for more information.
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Note

When handling physical interrupts during legacy operation, the Distributor controls the
configuration information for PPIs and SGIs. See Chapter 10 Legacy Operation and
Asymmetric Configurations.

Interrupt translation service, ITS

The ITS is an OPTIONAL hardware mechanism in the GICv3 architecture that routes LPIs to
the appropriate Redistributor. Software uses a command queue to configure an ITS. Table
structures in memory that are associated with an ITS translate an EventID associated with a
device into a pending INTID for a PE.

The ITS is not OPTIONAL in GICv4, and all GICv4 implementations must include at least
one ITS.

See The ITS on page 6-99 for more information.

Redistributor A Redistributor is the part of the IRI that is connected to the CPU interface of the PE. The
Redistributor holds the control, prioritization, and pending information for all physical LPIs
using data structures that are held in memory. Two registers in the Redistributor point to
these data structures:

. GICR_PROPBASER.

. GICR_PENDBASER.

In GICv4, the Redistributor also includes registers to handle virtual LPIs that are forwarded

by an ITS to a Redistributor and directly to a VM, without involving the hypervisor. This is

referred to as a direct injection of virtual interrupts into a VM.

In GICv4, the Redistributors collectively host the control, prioritization, and pending

information for all virtual LPIs using data structures that are held in memory. Two registers

in the Redistributor point to these data structures:

. GICR_VPROPBASER.

. GICR_VPENDBASER.

In an implementation that supports LPIs but does not include an ITS, the GICR_* registers

contain a simple memory-mapped interface to signal and control physical LPIs.

Redistributors provide a programming interface for:

. Identifying, controlling, and configuring supported features to enable interrupts and
interrupt routing of the implementation.

. Enabling or disabling SGIs and PPIs.

. Setting the priority level of SGIs and PPIs.

. Setting each PPI to be level-sensitive or edge-triggered.

. Assigning each SGI and PPI to an interrupt group.

. Controlling the pending state of SGIs and PPIs.

. Controlling the active state of SGIs and PPIs.

. Power management support for the connected PE.

. Where LPIs are supported, base address control for the data structures in memory that
support the associated interrupt properties and their pending status.

. Where GICv4 is supported, base address control for the data structures in memory
that support the associated virtual interrupt properties and their pending status.

The Redistributor registers are identified by the GICR _ prefix.

See Affinity routing on page 2-35 and The Distributor and Redistributors on page 2-30 for

more information about the Redistributor.

ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 3-41
ID072617 Non-Confidential
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3.1 The GIC logical components

CPU interface

The GIC architecture supports a CPU interface that provides a register interface to a PE in
the system. Each CPU interface provides a programming interface for:

. General control and configuration to enable interrupt handling in accordance with the
Security state and legacy support requirements of the implementation.

. Acknowledging an interrupt.

. Performing a priority drop.

. Deactivation of an interrupt.

. Setting an interrupt priority mask for the PE.

. Defining the preemption policy for the PE.

. Determining the highest priority pending interrupt for the PE.

The CPU interface has several components:

. A component that allows a supervisory level of software to control the handling of
physical interrupts. The registers that are associated with this are identified by the
ICC_ prefix.

. A component that allows a supervisory level of software to control the handling of
virtual interrupts. The registers that are associated with this are identified by the
ICV_ prefix.

. A component that allows a hypervisor to control the set of pending interrupts. The
registers that are associated with this are identified by the ICH_ prefix.

Note

The System registers in the CPU interface are associated with software that is handling
interrupts in the physical domain, or with execution at Non-secure EL1 as part ofa VM. The
configuration of HCR_EL2 determines whether the accesses are to the physical resources
or the virtual resources.

The System registers accessible at EL2 that are used for controlling the list of active,
pending, and active and pending, virtual interrupts for a PE are identified by the ICH_
prefix.

For more information on handling physical interrupts, see Chapter 4 Physical Interrupt
Handling and Prioritization.

For more information on handling virtual interrupts, see Chapter 5 Virtual Interrupt
Handling and Prioritization.
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3.2 Interrupt bypass support

A CPU interface optionally includes interrupt signal bypass, so that, when the signaling of an interrupt by the
interface is disabled, a legacy interrupt signal is passed to the interrupt request input on the PE, bypassing the GIC
functionality.

It is IMPLEMENTATION DEFINED whether bypass is supported.

The controls to determine whether GICv3 FIQ and IRQ outputs or the bypass signals are used differ depending on
whether System register access is enabled.

When System register access is enabled, bypass disable is controlled at the highest implemented Exception level
using two bits in ICC_SRE ELI1, ICC_SRE EL2, or ICC_SRE EL3, as appropriate:

. For FIQ bypass, this is the DFB bit.
. For IRQ bypass, this is the DIB bit.

This bypass mechanism is used when System register access is enabled. For information about bypass support
during legacy operation, see Legacy operation and bypass support on page 10-712.

The interrupt groups that are supported by the GIC are allocated to FIQs and IRQs, as described in Interrupt
grouping on page 4-58. Interrupt groups must be disabled at the CPU interface when bypass is enabled, otherwise
the behavior of the GICv3 implementation is UNPREDICTABLE. This means that:

. ICC IGRPENO_ELI1.Enable must have the value 0 when ICC_SRE ELx.DFB ==0.
. ICC_IGRPEN1 EL1.Enable must have the value 0 when ICC_SRE ELx.DIB == 0.

For more information about enabling interrupts, see Enabling the distribution of interrupts on page 4-63.

For information about the behavior when System register access is not enabled, see Chapter 10 Legacy Operation
and Asymmetric Configurations.

For FIQs, the following pseudocode determines the source for interrupt signaling to a PE.

if ICC_SRE_EL3.SRE == 1 then
if ICC_SRE_EL3.DFB == @ then
if ICC_SRE_EL1.SRE Secure == 1 then
BypassFIQsource
else
use legacy bypass support
else
use GICv3 FIQ output
else
use legacy bypass support

For IRQs, the following pseudocode determines the source for interrupt signaling to a PE.

if ICC_SRE_EL3.SRE == 1 then
if ICC_SRE_EL3.DIB == @ then
if ICC_SRE_EL1.SRE Secure == 1 then
BypassIRQsource
else
use legacy bypass support
else
use GICv3 IRQ output
else
use legacy bypass support
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Chapter 4
Physical Interrupt Handling and Prioritization

This chapter describes the fundamental aspects of GIC interrupt handling and prioritization. It contains the

following sections:

Interrupt lifecycle on page 4-46.

Locality-specific Peripheral Interrupts on page 4-53.
Private Peripheral Interrupts on page 4-54.
Software Generated Interrupts on page 4-55.

Shared Peripheral Interrupts on page 4-56.
Interrupt grouping on page 4-58.

Enabling the distribution of interrupts on page 4-63.

Interrupt prioritization on page 4-65.
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4.1 Interrupt lifecycle

4.1 Interrupt lifecycle

GIC interrupt handling is based on the GIC interrupt lifecycle, a series of high-level processes that apply to any
interrupt using the GIC architecture. The interrupt lifecycle provides a basis for describing the detailed steps of the
interrupt handling process. The GIC also maintains a state machine that controls interrupt state transitions during
the lifecycle.

Figure 4-1 shows the GIC interrupt lifecycle for physical interrupts.

Priority

drop [ [The PE ends the
interrupt
-

A device generates an
interrupt

The CPU interface
delivers interrupt to the
PE

The PE acknowledges
the interrupt

a. This step does not apply to LPIs.

Figure 4-1 Physical interrupt lifecycle

The interrupt lifecycle in Figure 4-1 is as follows:
1. Generate interrupt. An interrupt is generated either by the peripheral or by software.

2. Distribute. The IRI performs interrupt grouping, interrupt prioritization, and controls the forwarding of
interrupts to the CPU interfaces.

3. Deliver. A physical CPU interface delivers interrupts to the corresponding PE.

4. Activate. When software running on a PE acknowledges an interrupt, the GIC sets the highest active priority
to that of the activated interrupt, and for SPIs, SGIs, and PPIs the interrupt becomes active.

5. Priority drop. Software running on the PE signals to the GIC that the highest priority interrupt has been
handled to the point where the running priority can be dropped. The running priority then has the value that
it had before the interrupt was acknowledged. This is the point where the end of interrupt is indicated by the
interrupt handler. The end of the interrupt can be configured to also perform deactivation of the interrupt.

6. Deactivation. Deactivation clears the active state of the interrupt, and thereby allows the interrupt, when it is
pending, to be taken again. Deactivation is not required for LPIs. Deactivation can be configured to occur at
the same time as the priority drop, or it can be configured to occur later as the result of an explicit interrupt
deactivation operation. This latter approach allows for software architectures where there is an advantage to
separating interrupt handling into initial handling and scheduled handling.

411 Physical CPU interface

A CPU interface provides an interface to a PE that is connected to the GIC. Each CPU interface is connected to a
single PE.
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A CPU interface receives pending interrupts prioritized by the IRI, and determines whether the interrupt is a
member of a group that is enabled in the CPU interface and has sufficient priority to be signaled to the PE. At any
time, the connected PE can determine the:

. INTID of its highest priority pending interrupt, by reading ICC_HPPIRO EL1 or ICC_HPPIR1 ELI.
. The running priority of the CPU interface by reading ICC_RPR_EL1.

Note

The priority of the highest priority active interrupt for which there has not been a priority drop is also known
as the running priority.

When an LPI is acknowledged, the pending state for the interrupt changes to not pending in the Redistributor. The
Redistributor does not maintain an active state for LPIs.

When the PE acknowledges an SGI, a PP, or an SPI at the CPU interface, the IRI changes the status of the interrupt
to active if:

. It is an edge-triggered interrupt, and another edge has not been detected since the interrupt was
acknowledged.
. It is a level-sensitive interrupt, and the level has been deasserted since the interrupt was acknowledged.

When the PE acknowledges an SGI, a PP, or an SPI at the CPU interface, the IRI changes the status of the interrupt
to active and pending if:

. It is an edge-triggered interrupt, and another edge has been detected since the interrupt was acknowledged.
. It is a level-sensitive interrupt, and the level has not been deasserted since the interrupt was acknowledged.

When the PE acknowledges an SGI, a PPI, or an SPI at the CPU interface, the CPU interface can signal another
interrupt to the PE, to preempt interrupts that are active on the PE. If there is no pending interrupt with sufficient
priority to be signaled to the PE, the interface deasserts the interrupt request signal to the PE.

The following stages of the interrupt lifecycle are described in the remainder of this section:
. Activation.

. Priority drop on page 4-48.

. Deactivation on page 4-49.

The priority drop and deactivation can be performed as a single operation or can be split, as defined by
ICC_CTLR_EL1.EOImode and ICC_CTLR_EL3.EOImode EL3.

Activation

The interrupt handler reads ICC_IARO_EL1 for Group 0 interrupts, and ICC_IAR1 EL1 for Group 1 interrupts, in
the corresponding CPU interface to acknowledge the interrupt. This read returns either:

. The INTID of the highest priority pending interrupt, if that interrupt is of sufficient priority for it to be
signaled to the PE. This is the normal response to an interrupt acknowledge.

. Under certain conditions, an INTID that indicates a special interrupt number, see /NTIDs on page 2-31.

Whether a read of ICC_IARO _EL1 and ICC _IAR1 EL1 returns a valid INTID depends on:

. Which of the two registers is accessed.

. The Security state of the PE.

. Whether there is a pending interrupt of sufficient priority to be signaled to the PE, and if so, whether:
—  The highest priority pending interrupt is a Secure Group 1 or a Non-secure Group 1 interrupt.
—  Interrupt signaling is enabled for that interrupt group.

. The Exception level at which the PE is executing.

All interrupts, when acknowledged, modify the Active Priorities Registers. See System register access to the Active
Priorities registers on page 4-70.
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In certain circumstances, the value of SCR_EL3.NS affects the value returned when a PE acknowledges an
interrupt. That is, when the PE is executing at EL3, a Secure read of ICC_IARO_EL1 returns a special interrupt
number that indicates the required Security state transition for the highest priority pending interrupt. Otherwise, the
INTID is returned.

For SGIs in a multiprocessor implementation, the GIC uses the targeted list model, where the acknowledgement of
an interrupt by one PE has no effect on the state of the interrupt on other CPU interfaces. When a PE acknowledges
the interrupt, the pending state of the interrupt is cleared only for that PE. The interrupt remains pending for the
other PEs.

The effects of reading ICC_IARO_EL1 and ICC_IAR1 _ELI on the state of a returned INTID are not guaranteed to
be visible until after the execution of a DSB.

Priority drop

After an interrupt has been acknowledged, a valid write to ICC_EOIRO EL1 for Group 0 interrupts, or a valid write
to ICC_EOIR1_EL1 for Group 1 interrupts, results in a priority drop.

A valid write to ICC_EOIR0_EL1 or ICC_EOIR1_ELI1 to perform a priority drop is required for each
acknowledged interrupt, even for LPIs which do not have an active state. A priority drop must be performed by the
same PE that activated the interrupt.

Note
A valid write is a write that is:
. Not UNPREDICTABLE.

. Not ignored.
. Not writing an INTID that is either unsupported or within the range 1020-1023.

For each CPU interface, the GIC architecture requires the order of the valid writes to ICC_EOIR0_EL1 and
ICC_EOIR1_ELI to be the exact reverse of the order of the reads from ICC_TARO EL1 and ICC IARI1 EL1, as
shown in Figure 4-2.

Read order
ICC_IARO_EL1| 1
ICC_IAR1_EL1| 2
ICC_IARO_EL1| 3

ICC_IARO_EL1| 4
Write order

4 |ICC_EOIRO_EL1
3 |IcC_EOIRO_EL1
2 ||CC_EOIR1_EL1

1 [ICC_EOIR0O_EL1

Figure 4-2 Read and write order
On a priority drop, the running priority is reduced from the priority of the interrupt indicated by the write to
ICC_EOIRO EL1 or ICC_EOIR1 _ELL to either:

. The priority of the highest-priority active interrupt for which there has been no write to ICC_EOIR0_EL1 or
ICC_EOIR1_ELI.

. The idle priority, 0xFF, if there is no active interrupt.
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Note

For compatibility with possible extensions to the GIC architecture specification, software must preserve the entire
register value read from ICC_IARO EL1 and ICC IAR1 EL1 when it acknowledges the interrupt, and use that
entire value for the corresponding write to ICC_EOIRO _EL1 and ICC_EOIR1_ ELI1 by the same PE.

When GICD_CTLR.DS ==0:
. A write to ICC_EOIRO_EL1 performs a priority drop for Group 0 interrupts.

. A write to ICC_EOIR1_EL1 performs a priority drop for Non-secure Group 1 interrupts, if the PE is
operating in Non-secure state or at EL3.

. When operating in Secure state, a write to ICC_EOIR1_EL1 performs a priority drop for Secure Group 1
interrupts.

When GICD_CTLR.DS == 1:
. A write to ICC_EOIRO_EL1 performs a priority drop for Group 0 interrupts.
. A write to ICC_EOIR1_EL1 performs a priority drop for Group 1 interrupts.

Deactivation
PPIs, SGIs, and SPIs have an active state in the IRI and must be deactivated.
SGIs and PPIs must be deactivated by the PE that activated the interrupt. SPIs can be deactivated by a different PE.

Interrupt deactivation is required to change the state of an interrupt either:
. From active and pending to pending.

. From active to inactive.

Depending on the Exception level and Security state, [CC_CTLR EL1.EOImode and
ICC_CTLR_EL3.EOImode EL3 in the appropriate CPU Interface Control Register determine whether priority
drop and interrupt deactivation happen together or separately:

. The priority drop and interrupt deactivation happen together when ICC_CTLR_EL1.EOImode or
ICC _CTLR EL3.EOImode EL3 in the CPU interface is 0, and the PE writes to ICC_EOIR0_EL1 or
ICC _EOIR1 _ELLI. In this case a write to [CC_DIR_EL1 is not required.

. The priority drop and interrupt deactivation are separated when ICC_CTLR_EL1.EOImode or
ICC _CTLR EL3.EOImode EL3 in the CPU interface is 1, and the PE writes to ICC_EOIR0 EL1 or
ICC _EOIR1 _ELI. In this case:
—  The priority drop happens when the PE writes to [CC_EOIR0_EL1 or ICC_EOIR1 ELI.
—  Interrupt deactivation happens later, when the PE writes to ICC_DIR_EL1. A valid write to
ICC _DIR _ELI1 results in interrupt deactivation for a Group 0 or a Group 1 interrupt.

There are no ordering requirements for writes to ICC_DIR_EL1. If software writes to ICC_DIR EL1 when the
following conditions are true, the results are UNPREDICTABLE:
. The appropriate EOIMode bit is cleared to 0.

. The ICC_CTLR_EL1.EOImode or ICC_CTLR _EL3.EOIMode EL3 is set to 1 and there has not been a
corresponding write to ICC_EOIRO_EL1 or ICC_EOIR1 ELI.

When ICC_CTLR _EL1.EOImode or ICC_CTLR EL3.EOIMode EL3 == 1 but the interrupt is not active in the
Distributor, writes to ICC_DIR_EL1 must be ignored. If supported, an implementation might generate a system
CITOT.
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Table 4-1 shows how a write to ICC_EOIR0_EL1 or ICC_EOIR1_EL1 affects deactivation.

Table 4-1 Effect of writing to ICC_EOIR0_EL1 or ICC_EOIR1_EL1

ICC_CTLR_EL1.EOIlmode or

Identified

Access ICC_CTLR_EL3.EOImode_EL3 interrupt Effect

ICC EOIR1_EL1 0 Group 0 Access ignored

ICC _EOIRO EL1 0 Group 0 Interrupt deactivated
ICC_EOIR1 _ELI 0 Group 1 Interrupt deactivated
ICC EOIRO EL1 0 Group 1 Access ignored

Interrupt remains active

When GICD CTLR.DS == 0, access to certain registers is restricted. See Interrupt grouping and security on
page 4-58.

The following pseudocode determines whether EOImode is set for the current Exception level and Security state:

// EOImodeSet()

//

booTean EOImodeSet()

if HaveEL(EL3) then

// EL3 is implemented so return the value appropriate to the EL and security state

if ISEL30rMon() && ICC_SRE_EL3.SRE == ‘1’1 then

// In EL3

EOImode = ICC_CTLR_EL3.EOImode_EL3;

elsif IsSecure() then
EOImode = ICC_CTLR_EL3.EOImode_EL1S;

else

EOImode = ICC_CTLR_EL3.EOImode_ELINS;

else

// No EL3 so return the value from ICC_CTLR_EL1

EOImode = ICC_CTLR_EL1.EOImode;

return EOImode == ‘1’;

// Non-secure

Effect of Security states on writes to ICC_DIR_EL1

The effect of a write to ICC_DIR _EL1 depends on whether the GIC supports one or two Security states:

If GICD_CTLR.DS == 0, a valid:

—  Secure write to [CC_DIR_EL1 deactivates the specified interrupt, regardless of whether that interrupt
is a Group 0 or a Group 1 interrupt.

—  Non-secure write to [CC_DIR _EL1 deactivates the specified interrupt only if that interrupt is a
Non-secure Group 1 interrupt.

If GICD_CTLR.DS

= 1, a valid write to ICC_DIR_EL1 deactivates the specified interrupt, regardless of
whether that interrupt is a Group 0 or Group 1 interrupt.
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Table 4-2 shows the behavior of valid writes to ICC_DIR _ELI. In an implementation that supports only a single
Security state, valid writes have the behavior shown for Secure writes to ICC_DIR ELI.

Table 4-2 Behavior of writes to ICC_DIR_EL1

Security state

of writes to Interrupt group GICD_CTLR.DS SCR_EL3.IRQ SCR_EL3.FIQ Effect
ICC_DIR_EL1

EL3 X X X X Interrupt is deactivated
Secure EL1 Group 0 X X 0 Interrupt is deactivated
Secure EL1 Group 0 X X 1 Write is ignored
Secure EL1 Group 1 X 0 X Interrupt is deactivated
Secure EL1 Group 1 X 1 X Write is ignored

EL2 or Group 0 or Secure 0 X X Write is ignored
Non-secure EL1 Group 1

EL2 or Group 0 1 X 0 Interrupt is deactivated
Non-secure EL1

EL2 or Group 0 1 X 1 Write is ignored
Non-secure EL1

EL2 or Non-secure Group 1 0 0 X Interrupt is deactivated
Non-secure EL1

EL2 or Non-secure Group 1 0 1 X Write is ignored
Non-secure EL1

EL2 or Group 1 1 0 X Interrupt is deactivated
Non-secure EL1

EL2 or Group 1 1 1 X Write is ignored

Non-secure EL1

41.2

Interrupt handling state machine

The GIC maintains a state machine for each supported interrupt. The possible states of an interrupt are:

. Inactive.
. Pending.
. Active.

. Active and pending.

PPIs, SGIs, and SPIs can have an active and pending state. Interrupts that are active and pending are never signaled

to a connected PE.

LPIs have a pending state that is held in memory associated with a Redistributor, and therefore a PE. This also
applies to directly injected virtual LPIs, see Virtual LPI support on page 5-86.

Note

There is no active or active and pending state for LPIs.

Figure 4-3 on page 4-52 shows an instance of the interrupt handling state machine, and the possible state transitions.
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Active and
pending®

A1
E2
Pending A2 B2

B1 C

E1

a. Not applicable for LPlIs.
Figure 4-3 Interrupt handling state machine

Note

LPIs do not have an active state in the Redistributor, but do require an active priority in the CPU interface. See
Chapter 6 Locality-specific Peripheral Interrupts and the ITS for more information.

When interrupt forwarding by the Distributor and interrupt signaling by the CPU interface are enabled, the
conditions that cause each of the state transitions are as follows:
Transition Al or A2, add pending state
This transition occurs when the interrupt becomes pending, either as a result of the peripheral
generating the interrupt or as result of software generating the interrupt.
Transition B1 or B2, remove pending state

This transition occurs when the interrupt has been deasserted by the peripheral, if the interrupt is a
level-sensitive interrupt, or when software has changed the pending state.

For LPIs, it also occurs on acknowledgement of the interrupt.

Transition C, pending to active

This transition occurs on acknowledgement of the interrupt by the PE for edge-triggered SPIs, SGIs,
and PPIs.

For SPIs, SGIs, and PPIs, this transition occurs when software reads an INTID value from
ICC TARO ELI or ICC IAR1 ELI.
Transition D, pending to active and pending
This transition occurs on acknowledgement of the interrupt by the PE for level-sensitive SPIs, SGIs,
and PPIs.
Transition E1 or E2, remove active state

This transition occurs when software deactivates an interrupt for SPIs, SGIs, and PPIs.
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4.2 Locality-specific Peripheral Interrupts

LPIs are targeted peripheral interrupts that are routed to a specific PE within the affinity hierarchy. In a system where
two Security states are enabled, LPIs are always Non-secure Group 1 interrupts. LPIs only support edge-triggered
behavior. For more information about LPIs, see LPIs on page 6-92.
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4.3 Private Peripheral Interrupts

PPIs are interrupts that target a single, specific PE, and different PEs can use the same INTID to indicate different
events. PPIs can be Group 0 interrupts, Secure Group 1 interrupts, or Non-secure Group 1 interrupts. They can
support either edge-triggered or level-sensitive behavior.

Note

Commonly, ARM expects that PPIs are used by different instances of the same interrupt source on each PE, thereby
allowing a common INTID to be used for PE specific events, such as the interrupts from a private timer.
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4.4 Software Generated Interrupts

SGIs are typically used for inter-processor communication, and are generated by a write to an SGI register in the
GIC. SGIs can be either Group 0 or Group 1 interrupts, and they can support only edge-triggered behavior.

The registers associated with the generation of SGIs are part of the CPU interface:
. A PE generates a Group 1 SGI by writing to ICC_SGIIR_EL1 or ICC_ASGIIR ELI.
. A PE generates a Group 0 SGI by writing to ICC_SGIOR _ELI.

. Routing information is supplied as the bitfield value in the write to the register that generated the SGI. The
SGI can be routed to:

—  The group of PEs specified by a.b.c.targetlist. This can include the originating PE.
—  All participating PEs in the system, excluding the originating PE.
See Routing SPIs and SGIs by PE affinity on page 2-35 for more information.

ICC_SGIIR_ELTI allows software executing in a Secure state to generate Secure Group 1 SGIs.
ICC_SGIIR_ELTI allows software executing in a Non-secure state to generate Non-secure Group 1 SGIs.
ICC_ASGIIR_EL1 allows software executing in a Secure state to generate Non-secure Group 1 SGIs.

ICC_ASGI1R_EL1 allows software executing in a Non-secure state to generate Secure Group 1 SGIs, if permitted
by the settings of GICR_NSACR in the Redistributor corresponding to the target PE.

ICC_SGIOR _EL1 allows software executing in Secure state to generate Group 0 SGIs.

ICC _SGIOR _EL1 allows software executing in Non-secure state to generate Group 0 SGIs, if permitted by the
settings of GICR_NSACR in the Redistributor corresponding to the target PE.

For more information about the use of control registers to forward SGIs to a target PE, see Table 8-14 on page 8-169.
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4.5 Shared Peripheral Interrupts

SPIs are peripheral interrupts that the Distributor can route to a specified PE that can handle the interrupt, or to a PE

that is one of a group of PEs in the system that has been configured to accept this type of interrupt. SPIs can be either

Group 0 or Group 1 interrupts, and they can support either edge-triggered or level-sensitive behavior.

SPIs can be either wired-based or message-based interrupts.

Support for message-based SPIs is optional, and can be discovered through GICD TYPER.MBIS. Message-based

SPIs can be:

. Generated by a write to GICD_SETSPI NSR or GICD_SETSPI SR

. Cleared by a write to GICD_CLRSPI_NSR or GICD CLRSPI SR.

The effect of a write to these registers depends on whether the targeted SPI is configured to be an edge-triggered or

a level-sensitive interrupt:

. For an edge-triggered interrupt, a write to GICD_SETSPI_NSR or GICD_SETSPI SR sets the interrupt
pending. The interrupt is no longer pending when it is activated, or when it is cleared by a write to
GICD_CLRSPI_NSR, GICD CLRSPI SR, or GICD_ICPENDR<n>.

. For a level-sensitive interrupt, a write to GICD_SETSPI_NSR or GICD_SETSPI SR sets the interrupt
pending. It remains pending until it is deasserted by a write to GICD_CLRSPI_NSR or GICD_CLRSPI_SR.
If the interrupt is activated between the time it is asserted by a write to GICD_SETSPI NSR or
GICD_SETSPI SR and the time it is deactivated by a write to GICD_CLRSPI NSR or GICD_CLRSPI SR,
then the interrupt becomes active and pending.

It is IMPLEMENTATION DEFINED for a level-sensitive interrupt whether a write to GICD ICPENDR<n> has
any effect on an interrupt that has been set pending by a write to GICD_SETSPI NSR or GICD_SETSPI SR,
or whether a write to GICD_CLRSPI NSR or GICD_CLRSPI_SR has any effect on an interrupt that has
been set pending by a write GICD ISPENDR<n>.

It is IMPLEMENTATION DEFINED whether acknowledging an interrupt that was set pending by a write to
GICD_ISPENDR<n> clears the pending state.

. Changing the configuration of an interrupt from level-sensitive to edge-triggered, or from edge-triggered to
level-sensitive, when there is a pending interrupt, leaves the interrupt in an UNKNOWN state.

Figure 4-4 on page 4-57 shows how message-based interrupt requests can trigger SPIs.

4-56 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D

Non-Confidential ID072617



Message-

based SPIs
—

4 Physical Interrupt Handling and Prioritization

Wire-based

b

4.5 Shared Peripheral Interrupts

SPIs

bl

Distributor

GICD_SETSPI_SR registers

GICD_SETSPI_NSR registers

GICD_CLRSPI_SR registers

GICD_CLRSPI_NSR registers

PE PE PE
x.y.0.0 x.y.0.1 x.y.0.2

PE PE
x.y.n.0 x.y.n.1

Cluster CO

Cluster Cn

. Redistributor

D CPU interface

Figure 4-4 Triggering SPIs

ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 4-57
ID072617 Non-Confidential



4 Physical Interrupt Handling and Prioritization
4.6 Interrupt grouping

4.6 Interrupt grouping

GICv3 uses interrupt grouping as a mechanism to align interrupt handling with the ARMv8 Exception model and
Security model.

In a system with two Security states, an interrupt is configured as one of the following:
. A Group 0 physical interrupt:
—  ARM expects these interrupts to be handled at EL3.
. A Secure Group 1 physical interrupt:
—  ARM expects these interrupts to be handled at Secure EL1.
. A Non-secure Group 1 physical interrupt:

—  ARM expects these interrupts to be handled at Non-secure EL2 in systems using virtualization, or at
Non-secure EL1 in systems not using virtualization.

In a system with one Security state an interrupt is configured to be either:
. Group 0.
. Group 1.

At the System level, GICD CTLR.DS indicates if the GIC is configured with one or two Security states. For more
information about Security, see Interrupt grouping and security.

These interrupt groups are mapped onto the ARMv8 FIQ and IRQ exceptions, see Interrupt assignment to IRQ and
FIQ signals on page 4-60.

GICD_IGROUPR<n> and GICD_IGRPMODR<n> configure the interrupt group for SPIs. n is greater than zero.

GICR_IGROUPRO and GICR_IGRPMODRO configure the interrupt group for SGIs and PPIs.

Note

When GICD_CTLR.DS == 0, LPIs are always Non-secure Group 1 interrupts. When GICD_CTLR.DS == 1, LPIs
are always Group 1 interrupts.

System registers control and configure Group 0 and Group 1 interrupts:

. For Group 0 interrupts, software uses:
—  ICC IARO _EL1 to read a Group 0 INTID on an interrupt acknowledge.
— ICC _EOIRO _ELI to write a Group 0 interrupt completion.

— ICC _BPRO _ELI1 to configure the binary point for Group 0 prioritization.
This register is also used for Group 1 prioritization when ICC_CTLR EL1.CBPR ==

—  ICC_HPPIRO ELI to read the highest Group O interrupt that is currently pending.
—  ICC_IGRPENO_ELT1 to enable Group 0 interrupts at the CPU interface.

. For Group 1 interrupts, software uses:
—  ICC IAR1 ELI1 to read a Group 1 INTID on an interrupt acknowledge.
— ICC EOIRI1_ELI to write a Group 1 interrupt completion.
— ICC BPR1_ELI1 to configure the binary point for Group 1 prioritization for the current Security state.
— ICC _HPPIR1 _ELI1 to read the highest Group 1 interrupt that is currently pending.
—  ICC IGRPENI EL1 to enable Group 1 interrupts for the target Security state of the interrupt.

In a system with two Security states, Group 0 interrupts are always Secure. For more information about grouping
and Security, see Interrupt grouping and security.
4.6.1 Interrupt grouping and security

The ARM architecture provides two Security states, each with an associated physical memory address space:
. Secure state.
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. Non-secure state.

A software hierarchy of user and privileged code can execute in either state, and software executing in Non-secure
state can only access Secure state through a system call to the Secure monitor. The GIC architecture supports the
routing and handling of interrupts associated with both Security states.

GICD_CTLR.DS indicates whether a GIC is configured to support the ARMv8-A Security model. This
configuration affects:

. Register access, see GIC System register access on page 8-159.

. The interrupt groups that are supported.

When GICD_CTLR.DS ==0:
. The GIC supports two Security states, Secure state and Non-secure state.
. The GIC supports three interrupt groups:
—  Group 0.
—  Secure Group 1.
—  Non-secure Group 1.
. Both the Security state and GICR_ NSACR determine whether an SGI can be generated.
. The Security state is checked during:
—  Configuration of an interrupt.
—  Acknowledgement of an interrupt.
—  Priority drop.
—  Deactivation.
. Secure Group 1 interrupts are treated as Group 0 by a CPU interface if:
—  The PE does not implement EL3.
— ICC_SRE _ELI(S).SRE ==0.

When GICD CTLR.DS == 1:

. The GIC supports only a single Security state. This can be either Secure state or Non-secure state.
. The GIC supports two interrupt groups:
—  Group 0.
—  Group 1.
. SGIs can be generated regardless of the settings in GICR_NSACR.
. The Security state is not checked during:

—  Configuration of an interrupt.

—  Acknowledgement of an interrupt.
—  Priority drop.

—  Deactivation.

In a multiprocessor system, one or more PEs within the system might support accesses to resources that are available
only in Secure state, or accesses to resources that are available only in Non-secure state. It is a programming error
if software configures:

. A Group 0 or Secure Groupl1 interrupt to be forwarded to a PE that only supports Non-secure state.

. A Non-secure Group! interrupt to be forwarded to a PE that only supports Secure state.

There is a dedicated register for the priority grouping for each interrupt group, ICC_BPRO_EL1 for Group 0

interrupts and ICC_BPR1_EL1 for Group 1 interrupts. However, it is possible to configure a common Binary Point

Register for both groups using:

. ICC_CTLR_ELI.CBPR.

. ICC_CTLR_EL3.CBPR_ELINS and ICC_CTLR_EL3.CBPR_ELIS for an independent common Binary
Point Register configuration of Non-secure Group 1 and Secure Group 1 interrupts.

For information about interrupt grouping and legacy operation, see Chapter 10 Legacy Operation and Asymmetric
Configurations.
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4.6.2 Interrupt assignment to IRQ and FIQ signals

This subsection applies to implementations in which affinity routing is enabled.

A Group 0 physical interrupt, when it is the highest priority pending interrupt and has sufficient priority, is always
signaled as an FIQ.

A Group 1 physical interrupt, when it is the highest priority pending interrupt and has sufficient priority, is signaled
as an FIQ if either of the following conditions is true, otherwise it is signaled as an IRQ:

. It is an interrupt for the other Security state, that is, the Security state in which the PE is not executing.
. The PE is executing at EL3.

Table 4-3 summarizes the signaling of interrupts when EL3 is using AArch64 state.

Table 4-3 Interrupt signals for two Security states when EL3 is using AArch64 state

Current Exception level Group 0 interrupts Group 1 interrupts
Secure Non-secure

Secure EL1or ELO FIQ IRQ FIQ

Non-secure EL1 or ELO FI1Q FIQ IRQ

Non-secure EL2 FIQ FIQ IRQ

EL3 FIQ FIQ FIQ

Table 4-4 summarizes the signaling of interrupts when EL3 is using AArch32 state.

Table 4-4 Interrupt signals for two Security states when EL3 is using AArch32 state

Current Exception level Group 0 interrupts Group 1 interrupts
Secure Non-secure

Secure ELO FIQ IRQ FIQ

Non-secure EL1 or ELO FIQ FIQ IRQ

Non-secure EL2 FIQ FIQ IRQ

EL3 FIQ IRQ FIQ

Table 4-5 summarizes the signaling of interrupts in systems that support only a single Security state, that is where
EL3 is not implemented or when GICD CTLR.DS == 1.

Table 4-5 Interrupt signals for a single Security state

Current Exception level Group 0 interrupts Group 1 interrupts

Any FIQ IRQ

The assertion and de-assertion of IRQs and FIQs are affected by the current Exception level and Security state of
the PE. As part of the Context Synchronization that occurs as the result of taking or returning from an exception,
the CPU interface ensures that IRQ and FIQ are both appropriately asserted or deasserted for the Exception level
and Security state that the PE is entering.
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Note

For the effects of GICC_CTLR.FIQEn on interrupt signaling in asymmetric configurations, see The asymmetric
configuration on page 10-714.

4.6.3 Interrupt routing and System register access

When executing in AArch64 state, interrupt routing to an Exception level is controlled by the following bits:
. SCR_EL3.FIQ, SCR_EL3.NS, and HCR_EL2.FMO control FIQs.
. SCR_EL3.IRQ, SCR_EL3.NS, and HCR_EL2.IMO control IRQs.

This routing also controls the Exception level at which the EL1 CPU interface System registers that control and
acknowledge interrupts are accessible. This applies to:

. ICC _IARO_ELI1, ICC EOIRO _EL1, ICC_HPPIRO EL1, ICC_BPRO EL1, ICC_APOR<n> ELI1 and
ICC_IGRPENO _ELI. These are the registers that are associated with Group 0 interrupts.

. ICC IAR1 ELIL, ICC EOIR1 EL1, ICC HPPIR1 EL1, ICC BPR1 EL1, ICC _APIR<n> ELI1 and
ICC_IGRPEN1 ELL. These are the registers that are associated with Group 1 interrupts.

. ICC_SGIOR _EL1, ICC _SGIIR EL1, ICC _ASGIIR _EL1,ICC CTLR_ELI1,ICC DIR _ELI,
ICC_PMR ELI, and ICC_RPR_EL1. These are the Common registers.

When (SCR_EL3.NS =1 && (HCR_EL2.FMO ==1 || HCR_EL2.IMO == 1)), accesses at EL1 are virtual
accesses. Virtual accesses to [CC_SGIOR_EL1, ICC_SGIIR EL1,and ICC_ASGIIR EL1 always generate a Trap
exception that is taken to EL2.
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Where a Distributor supports two Security states a PE might not implement EL2 or EL3. Table 4-6 shows the
configurations that are supported in these cases.

Table 4-6 Supported configurations when EL3 is not implemented

Distributor EL3 EL2  S°%UY  pegeription
State
Two Security states and No - Non-secure  The PE is always Non-secure and can only
GICD_CTLR.DS == receive Non-secure Group 1 interrupts.
The PE must behave as if software had:
. Set ICC_SRE EL3.Enableto 1 to allow
EL2 to use the System registers, if
required.
. Set ICC_SRE _EL3.DFBto 1.
. Set SCR_EL3.FIQ to 1.
. Cleared SCR_EL3.IRQ to 0.
. Set SCR_EL3.NS to 1.
. Cleared ICC_IGRPENO EL1.Enableto
0 to disable the signaling of Group 0
interrupts to the PE.
. Set the Secure copy of
ICC _IGRPEN!_ELI1.Enable to 0 to
disable the signaling of Secure Group 1
interrupts to this PE.
Two Security states and No No Secure The PE is always Secure and can only receive
GICD_CTLR.DS == Group 0 and Secure Group 1 interrupts.
The PE must behave as if software had:
. Set ICC_SRE_EL3.Enable to 1.
. Cleared SCR_EL3.FIQ to 0.
. Cleared SCR_EL3.IRQ to 0.
. Cleared SCR_EL3.NS to 0.
. Cleared the Non-secure copy of
ICC_IGRPEN1 _ELI1.Enable to 0 to
disable the signaling of Non-secure
Group 1 interrupts to this PE.
One Security state or No - - The Distributor and all PEs are always in a
two Security states and single Security state, and can receive Group 0
GICD CTLR.DS == and Group 1 interrupts.
- All PEs must behave as if software had:
. Set ICC_SRE _EL3.Enable to 1.
. Cleared SCR_EL3.FIQ to 0.
. Cleared SCR_EL3.IRQ to 0.
. Set SCR_EL3.NS to 1.
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4.7 Enabling the distribution of interrupts

The following control bits enable and disable the distribution of interrupts:
. GICD_CTLR.EnableGrplS.

«  GICD CTLR.EnableGrpINS.

. GICD_CTLR.EnableGrp0.

The following control bits enable and disable the distribution of interrupt groups at the CPU interface:
. ICC IGRPENO_EL1.Enable for Group 0 interrupts.
. ICC IGRPEN1 EL1.Enable for Group 1 interrupts.

Note

There is a Secure and a Non-secure copy of this register.

. ICC_IGRPEN1 EL3.{EnableGrpl1S, EnableGrpINS}.

Physical LPIs are enabled by a write to GICR_CTLR.EnableLPIs.

4.71 Enabling individual interrupts

PPIs
PPIs can be enabled and disabled by writing to GICR_ISENABLERO and GICR_ICENABLERO
when affinity routing is enabled for the Security state of the interrupt. Individual PPIs can also be
enabled and disabled by writing to GICD ISENABLER<n> and GICD ICENABLER<n>.n=0
for PPIs, if legacy operation for physical interrupts is supported and configured.

SPIs
Individual SPIs can be enabled and disabled by writing to GICD ISENABLER<n> and
GICD_ICENABLER<n>. n >0 for SPIs.

SGIs
SGIs can be enabled and disabled by writing to GICR_ISENABLERO and GICR_ICENABLERO
when affinity routing is enabled. Individual SGIs can also be enabled and disabled by writing to
GICD_ISENABLER<n> and GICD ICENABLER<n>. n = 0 for SGIs, if legacy operation for
physical interrupts is supported and configured.

Note

Whether SGIs are permanently enabled, or can be enabled and disabled by writes to
GICR_ISENABLERO and GICR_ICENABLERO, is IMPLEMENTATION DEFINED.

LPIs
Individual LPIs can be enabled by setting the enable bits programmed in the LPI Configuration
table. For more information about enabling LPIs using the LPI Configuration tables, see LP/
Configuration tables on page 6-95.

4.7.2 Interaction of group and individual interrupt enables

The GICD_* and GICR_* registers determine, at any moment in time, the highest priority pending interrupt that the

hardware is aware of for each target PE. This interrupt is presented to the CPU interface of a PE to evaluate whether

it is to be signaled to the PE. The enabling of the interrupts affects this evaluation as follows:

. A pending interrupt that is individually disabled in the GICD_* or GICR_* registers is not one which is
considered in the determination of the highest priority pending interrupt, and so cannot be signaled to the PE.

. A pending interrupt that is individually enabled in the GICD_*or GICR_* registers, but is a member of a
group that is disabled in GICD_CTLR, is not one that is considered in the determination of the highest
priority pending interrupt, and so cannot be signaled to the PE.
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. A pending 1 of N interrupt that is individually enabled in the GICD_* registers and is a member of a group
that is enabled in GICD_CTLR, but is a member of a group that is disabled in ICC_IGRPENO EL1,
ICC IGRPENI1 EL1, or ICC_IGRPEN1 ELS3 for a PE, cannot be selected for that PE. Such an interrupt is
not considered in the determination of the highest priority pending interrupt and so cannot be signaled to the
PE.

. For a pending direct interrupt that is individually enabled in the GICD * or GICR_* registers and is a
member of a group that is enabled in GICD_CTLR, but is a member of a group that is disabled in
ICC IGRPENO ELI1,ICC IGRPEN1 ELI, or ICC IGRPEN1 EL3, it is IMPLEMENTATION DEFINED
whether or not the interrupt is considered in the determination of the highest priority pending interrupt. If it
is determined to be the highest priority pending interrupt, the interrupt is not signaled to the PE, but will mask
a lower priority pending interrupt that is a member of a group that is enabled in ICC_IGRPENO_EL1,
ICC_IGRPENI_ELI, or ICC_IGRPENI_EL3.

LPIs are enabled individually in the LPI Configuration tables, see LPI Configuration tables on page 6-95.

4.7.3 Effect of disabling interrupts
Disabling an interrupt by writing to the appropriate GICD_ICENABLER<n> or to GICR_ICENABLERO, or by
writing to the LPI Configuration tables, does not prevent that interrupt from changing state, for example from
becoming pending. When GICR CTLR.EnableLPIs == 0, LPIs are never set pending.
If GICD CTLR.EnableGrp0, GICD CTLR.EnableGrpl1S, and GICD CTLR.EnableGrp1NS are all cleared to 0, it
is IMPLEMENTATION DEFINED whether:
. An edge-triggered interrupt signal moves the interrupt to the pending state.
. SGIs can be set pending by writing to GICD_SGIR, ICC_SGIOR_EL1, ICC_SGI1R _EL1, or

ICC_ASGIIR_ELI.
If an interrupt is pending on a CPU interface when the corresponding GICD CTLR.EnableGrp0,
GICD_CTLR.EnableGrpINS, or GICD_ CTLR.EnableGrplS bit is written from 1 to 0, then the interrupt must be
retrieved from the CPU interface.
Note

This might have no effect on the forwarded interrupt if it has already been activated.
If an interrupt is pending on a CPU interface when software writes I[CC_IGRPENO_EL1.Enable,
ICC _IGRPENO EL1,ICC IGRPENI_ ELI1.Enable, or ICC_ IGRPENI_ EL3.Enable from 1 to 0, the interrupt must
be released by the CPU interface to allow the Distributor to forward the interrupt to a different PE.
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4.8 Interrupt prioritization

This section describes interrupt prioritization in the GIC architecture. Prioritization describes the:
. Configuration and control of interrupt priority.

. Order of execution of pending interrupts.

. Determination of when interrupts are visible to a target PE, including:

— Interrupt priority masking.
—  Priority grouping.
—  Preemption of an active interrupt.

Software configures interrupt prioritization in the GIC by assigning a priority value to each interrupt source. Priority
values are an 8-bit unsigned binary number. A GIC implementation that supports two Security states must
implement a minimum of 32 and a maximum of 256 levels of physical priority. A GIC implementation that supports
only a single Security state must implement a minimum of 16 and a maximum of 256 levels of physical priority. If
the GIC implements fewer than 256 priority levels, the low-order bits of the priority fields are RAZ/WI. This means
that the number of implemented priority field bits is IMPLEMENTATION DEFINED, in the range 4-8. Table 4-7 shows
the relation between the priority field bits and the number of priority levels supported by an implementation.

Table 4-7 Effect of not implementing some priority field bits

Implemented priority bits Possible priority field values Number of priority levels
[7:0] 0x00-0xFF (0-255), all values 256

[7:1] 0x00-0xFE, (0-254), even values only 128

[7:2] 0x00-0xFC (0-252), in steps of 4 64

[7:3] 0x00-0xF8 (0-248), in steps of 8 32

[7:4] 0x00-0xF0 (0-240), in steps of 16 16

In the GIC prioritization scheme, lower numbers have higher priority. This means that the lower the assigned
priority value, the higher the priority of the interrupt. Priority field value 0 always indicates the highest possible
interrupt priority, and the lowest priority value depends on the number of implemented priority levels.

The GICD IPRIORITYR<n> registers hold the priority value for each supported SPI. An implementation might
reserve an SPI for a particular purpose and assign a fixed priority to that interrupt, meaning the priority value for
that interrupt is read-only. For other SPIs the GICD IPRIORITYR<n> registers can be written by software to set
the interrupt priorities. It is IMPLEMENTATION DEFINED whether a write to GICD_IPRIORITYR<n> changes the
priority of any active SPI.

In a multiprocessor implementation, the GICR_IPRIORITYR<n> registers define the interrupt priority of each SGI
and PPI INTID independently for each target PE. The order in which the CPU interface serializes these SGIs is
implementation specific.

LPI Configuration tables and LPI Pending tables in memory store LPI priority information and pending status, see
LPI Configuration tables on page 6-95 and LPI Pending tables on page 6-97.

The GIC security model provides Secure and Non-secure accesses to the interrupt priority settings.The Non-secure
accesses can configure interrupts only in the lower priority half of the supported priority values. Therefore, if the
GIC implements 32 priority values, Non-secure accesses see only 16 priority values. See Software accesses of
interrupt priority on page 4-72 for more information.

To determine the number of priority bits implemented for SPIs, software can write 0xFF to a writable
GICD_IPRIORITYR<n> priority field and read back the value stored.

To determine the number of priority bits implemented for SGIs and PPIs, software can write 0xFF to the
GICR_IPRIORITYR<n> priority fields, and read back the value stored.

The GIC architecture does not require all PEs in the system to use the same number of priority bits to control
interrupt priority.
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In a multiprocessor implementation, [ICC_CTLR_EL1.PRIbits and ICC_CTLR_EL3.PRIbits indicate the number
of priority bits implemented, independently for each target PE.

Note

ARM recommends that implementations support the same number of priority bits for each PE.

For information about the priority range supported for virtual interrupts, see Chapter 5 Virtual Interrupt Handling
and Prioritization.

Note

ARM recommends that, before checking the priority range in this way:

. For a peripheral interrupt, software first disables the interrupt.

. For an SGI, software first checks that the interrupt is inactive.

If, on a particular CPU interface, multiple pending interrupts have the same priority, and have sufficient priority for
the interface to signal them to the PE, it is IMPLEMENTATION DEFINED how the interface selects which interrupt to
signal.

GICv3 guarantees that the highest priority, unmasked, enabled interrupt will be delivered to a target PE in finite
time.

There is no guarantee that higher priority interrupts will always be taken before lower priority interrupts, although
this will generally be the case.

The remainder of this section describes:

. Non-secure accesses to register fields for Secure interrupt priorities.
. Priority grouping on page 4-67.

. System register access to the Active Priorities registers on page 4-70.
. Preemption on page 4-71.

. Priority masking on page 4-72.

. Software accesses of interrupt priority on page 4-72.

. Changing the priority of enabled PPIs, SGIs, and SPIs on page 4-76.

4.8.1 Non-secure accesses to register fields for Secure interrupt priorities

When GICD _CTLR.DS == 0, the GIC supports the use of:

. Group 0 interrupts as Secure interrupts.
. Secure Group 1 interrupts.
. Non-secure Group 1 interrupts.

In order to support the ARMv8 Security model the register fields associated with Secure interrupts are RAZ/WI for
Non-secure accesses. In addition, the following rules apply:

For Non-secure access to a priority field in GICx_IPRIORITYR<n>:

If the priority field corresponds to a Non-secure Group 1 interrupt in Software accesses of interrupt
priority on page 4-72:

. For SPIs, the priority field is determined by GICD IPRIORITYR<n>.

. For PPIs and SGIs, the priority field is determined by GICR_IPRIORITYR<n>.

For Non-secure access to ICC_PMR_EL1 and ICC_RPR_EL1 when SCR_EL3.FIQ ==1:
. If the current priority mask value is in the range of 0x00-0x7F:
—  Arread access returns the value 0x00.
—  The GIC ignores a write access to [CC_PMR_ELI.
. If the current priority mask value is in the range of 0x80-0xFF:
— A read access returns the Non-secure read of the current value.
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— A write access to ICC_PMR_EL1 succeeds, based on the Non-secure read of the
priority mask value written to the register.

Note

This means a Non-secure write cannot set a priority mask value in the range of 0x00-0x7F.

For Non-secure access to ICC_PMR_EL1 and ICC_RPR_EL1 when SCR_EL3.FIQ == 0:
The Secure, unshifted view applies.

AArch64 functions on page 8-691 provides pseudocode that describes accesses to the following System registers in
a GIC that supports two Security states:

«  ICC_PMR ELI.
«  ICC RPR ELI.

4.8.2 Priority grouping

Priority grouping uses the following Binary Point Registers:
. ICC_BPRO _EL1 for Group 0 interrupts. This register is available in all GIC implementations.

. A Non-secure copy of ICC_BPR1_ELI for Non-secure Group 1 interrupts. If an implementation supports
two Security states, there is a Secure and a Non-secure copy of this register. If an implementation supports
only one Security state, there is only one copy of this register

. A Secure copy of ICC_BPR1_EL1 for Secure Group 1 interrupts. This register is available only in a GIC
implementation that supports two Security states.

The Binary Point Registers split a priority value into two fields, the group priority and the subpriority. When
determining preemption, all interrupts with the same group priority are considered to have the same priority,
regardless of the subpriority.

Where multiple pending interrupts have the same group priority, the GIC uses the subpriority field to resolve the
priority within a group. Where two or more pending interrupts in a group have the same subpriority, how the GIC
selects between the interrupts is implementation specific.

The GIC uses the group priority field to determine whether a pending interrupt has sufficient priority to preempt
execution on a PE, as follows:

. The value of the group priority field for the interrupt must be lower than the value of the running priority of
the PE. The running priority is the group priority of the highest priority active interrupt that has not received
a priority drop on that PE.

. The value of the priority for the interrupt must be lower than the value of its priority mask.
ICC_BPRO _EL1 determines the priority grouping of Group 0 interrupts:

. When ICC_CTLR _EL3.CBPR ELI1Sissetto 1, [CC BPRO EL1 also determines the priority grouping of
Secure Group 1 interrupts.

. When ICC_CTLR _EL3.CBPR_ELINSissetto 1, [CC_BPRO EL1 also determines the priority grouping of
Non-secure Group 1 interrupts

ICC_BPR1_EL1 determines the priority of Group 1 interrupts:

. When ICC_CTLR _EL3.CBPR_ELIS is cleared to 0, the Secure copy of ICC_BPR1_EL1 determines the
priority grouping of Secure Group 1 interrupts.

. When ICC_CTLR _EL3.CBPR_ELINS is cleared to 0, the Non-secure copy of ICC_BPR1_EL1 determines
the priority grouping of Non-secure Group 1 interrupts.
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Table 4-8 shows the split of the interrupt priority fields for Secure ICC_BPR1_EL1.

Table 4-8 Secure ICC_BPR1_EL1 Binary Point when CBPR ==

I(:.C—BPR1—EL1 Group L Field with binary
Binary point A Subpriority field .
priority field point
value
0 [7:1] [0] £228Lee.s
1 [7:2] [1:0] £8228g.ss
2 [7:3] [2:0] £gggg.Sss
3 [7:4] [3:0] £82g.8SsS
4 [7:5] [4:0] 282.SSSSS
5 [7:6] [5:0] £8.558SSS
6 [7] [6:0] £.558SSSS
7 No preemption [7:0] .SS8SSSSS

Table 4-9 shows the split of the interrupt priority fields for Non-secure ICC_BPR1_EL1.

Table 4-9 Non-secure ICC_BPR1_EL1 Binary Point when CBPR ==

IQC—BPRLEU Group I Field with binary

Binary point A Subpriority field .
priority field point

value

0 - - -

1 [7:1] [0] 82882888

2 [7:2] [1:0] 8L88Lge.ss

3 [7:3] [2:0] £geeg.Sss

4 [7:4] [3:0] 2ggg.SSsS

5 [7:5] [4:0] 22g.SSSSS

6 [7:6] [5:0] £g.588SSS

7 [7] [6:0] £.5SSSSSSS

Table 4-10 shows the split of the interrupt priority fields for ICC_BPRO EL1.

Table 4-10 ICC_BPRO_EL1 Binary Point for Group 1 interrupts when CBPR == 1, or for Group 0

interrupts

ICC_BPRO_EL1
Binary point value

Group field priority  Subpriority field

Field with binary point

0 [7:1]2 [0] 2ggeeeg.s
1 [7:2]2 [1:0] 2222gg.5s
2 [7:3]2 [2:0] 2gggg.sss
3 [7:4]2 [3:0] £222g.558S

4-68

Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved.

Non-Confidential

ARM IHI 0069D
ID072617



4 Physical Interrupt Handling and Prioritization
4.8 Interrupt prioritization

Table 4-10 ICC_BPRO_EL1 Binary Point for Group 1 interrupts when CBPR == 1, or for Group 0
interrupts (continued)

ICC_BPRO_EL1

Binary point value Group field priority Subpriority field Field with binary point

4 [7:5]2 [4:0] ggg.58SSS
5 [7:6]2 [5:0] gg.5555SS
6 [7]2 [6:0] 2.55558SS
7 No preemption [7:0] .SSSSSSSS

a. IfaNon-secure write sets the priority value field for a Non-secure interrupt then bit[7] == 1.

The minimum binary point value that is supported depends on the IMPLEMENTATION DEFINED number of priority
bits, as shown in Table 4-11.

Table 4-11 Minimum binary point value support

Number of implemented priority bits Minimum value of ICC_BPRO_EL1

8 0
7 0
6 1
5 2
4 3

The number of priority bits that are implemented is indicated by ICC_CTLR_EL1.PRIBits and
ICC_CTLR_EL3.PRIBits.

In a GIC that supports two Security states, when:

ICC_CTLR_EL3.CBPR_ELIS==1:
—  Writes to ICC_BPR1 EL1 at Secure EL1 modify ICC_BPRO ELI.
—  Reads from ICC_BPR1 _ELI at Secure EL1 return the value of ICC_BPRO ELI.

ICC_CTLR_EL3.CBPR_ELINS ==1:
—  Non-secure writes to ICC_BPR1 EL1 modify ICC_ BPRO ELI.
—  Non-secure reads from ICC_BPR1_ELI return the value of ICC_BPRO_EL1.

Note

When an interrupt is using Non-secure ICC_BPR1_EL1, the effective binary point value is that stored in the
register, minus one, as shown in Table 4-9 on page 4-68. This means that software with no awareness of the
effects of interrupt grouping and where two Security states are supported, sees the same priority grouping
mechanism, regardless of whether it is running on a PE that is in Secure state or in Non-secure state.

Priority grouping always operates on the full priority, which is the value that would be visible to a Secure
read. This is different from the value that is visible to a Non-secure read of the priority value corresponding
to a Non-secure interrupt. See Figure 4-8 on page 4-74 and Figure 4-9 on page 4-75.

When EL3 is using AArch32, and ICC_MCTLR.CBPR ELIS == 1, accesses to [CC_BPR1 at EL3 and not
in Monitor mode access the state of [CC_BPRO.
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4.8.3

System

Pseudocode

The following pseudocode indicates the group priority of the interrupt.

// GroupBits()

// Returns the priority group field for the current BPR value for the group

bits(8) GroupBits(bits(8) priority, IntGroup group)
bit cbpr_GINS = if HaveEL(EL3) then ICC_CTLR_EL3.CBPR_ELINS else ICC_CTLR_EL1.CBPR;
bit cbpr_G1S = if HaveEL(EL3) then ICC_CTLR_EL3.CBPR_EL1S else ‘Q’;

if (group == IntGroup_GO ||
(group == IntGroup_GINS && cbpr_GINS == ‘1’) ||
(group == IntGroup_G1S && cbhpr_G1S == ‘1’)) then
bpr = UInt(ICC_BPRO_EL1.BinaryPoint);

elsif group == IntGroup_G1S then
bpr = UInt(ICC_BPR1_EL1S.BinaryPoint);

else
bpr = UInt(ICC_BPR1_ELINS.BinaryPoint) -1;

mask = Ones(7-bpr):Zeros(bpr+l);

return priority AND mask;

register access to the Active Priorities registers

Physical Group 0 and Group 1 interrupts access different Active Priorities registers, depending on the interrupt
group.

For Group 0 interrupts, these registers are [CC_APOR<n> ELI1, where n = 0-3:

. If 32 or fewer priority levels are implemented, accesses to [CC_APOR<n> ELI1, where n = 1-3, are
UNDEFINED.

. If more than 32 and fewer than 65 priority levels are implemented, accesses to ICC_APOR<n> EL1, where
n = 2-3, are UNDEFINED.

For Group 1 interrupts, these registers are ICC_API1R<n> EL1, where n= 0-3:

. If 32 or fewer priority levels are implemented, accesses to [CC_AP1R<n> ELI1, where n = 1-3, are
UNDEFINED.

. If more than 32 and fewer than 65 priority levels are implemented, accesses to ICC_AP1R<n> ELI, where
n = 2-3, are UNDEFINED.

The content of ICC_APOR<n> ELI, Secure ICC_AP1R<n> ELI1, and Non-secure ICC_AP1R<n> ELI is
IMPLEMENTATION DEFINED. However, the value 0x00000000 must be consistent with no priorities being active.

Writing any value other than the last read value, or 0x00000000, to these registers can cause:
. Interrupts that would otherwise preempt execution to not preempt execution.
. Interrupts that otherwise would not preempt execution to preempt execution.

Writing any value to Non-secure ICC_APIR<n> EL1 cannot prevent the correct prioritization and the forwarding
of interrupts of higher priority than those in the Non-secure priority range, meaning that this does not create a
security hole.

Writes to these registers in any order other than the following can result in UNPREDICTABLE behavior:
1. ICC_APOR<n> ELI.

2. Secure ICC_AP1R<n> ELI.

3. Non-secure ICC_AP1R<n> ELI.
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Note
An ISB is not required between each write to ICC_APOR<n> EL1, Secure ICC_AP1R<n> EL1, and Non-secure
ICC_APIR<n> ELI.

Table 4-12 shows an implementation of ICC_APOR<n> EL1.

Table 4-12 Group 0 Active Priorities Register implementation

Minimum value of: Maximum number of:
Secure Non-secure Gr_ou_p Preemption . .
ICC_BPRO_EL1 ICC_BPR1_EL1 g:t':"ty levels ICC_APORn implementation
4 4 16 ICC_APOR<n> EL1[15:0], where n=0
3 5 32 ICC_APOR<n> ELI1[31:0], wheren=0
2 6 64 ICC_APOR<n> ELI1, where n=0-1
1 7 128 ICC_APOR<n> EL1, where n=0-3

Table 4-13 shows an implementation of ICC_AP1R<n> ELI1.

Table 4-13 Group 1 Active Priorities Register implementation

Minimum value of: Maximum number of:
Secure Non-secure Gr_ou_p Preemption . .
ICC_BPRO_EL1 ICC_BPR1_EL1 girt':”ty levels ICC_AP1Rn implementation
4 4 16 ICC_AP1R<n> ELI[15:0], wheren =0
3 5 32 ICC_AP1R<n> ELI1[31:0], wheren=0
2 6 64 ICC_API1R<n> ELI1, where n=0-1
1 7 128 ICC_API1R<n> ELI1, where n=0-3

4.8.4 Preemption

A CPU interface supports signaling of higher priority pending interrupts to a target PE before an active interrupt

completes. A pending interrupt is only signaled if both:

. Its priority is higher than the priority mask for that CPU interface. See Priority masking on page 4-72.

. Its group priority is higher than that of the running priority on the CPU interface. See Priority grouping on
page 4-67 for more information.

Preemption occurs at the time when the PE takes the new interrupt, and starts handling the new interrupt instead of
the previously active interrupt or the currently running process. When this occurs, the initial active interrupt is said
to have been preempted.

Note
The value of the I or F bit in the Process State, PSTATE, and the Exception level and the interrupt routing controls
in software and hardware, determine whether the PE responds to the signaled interrupt by taking the interrupt. For
more information, see ARM® Architecture Reference Manual, ARMvS, for ARMvS-A architecture profile.

For more information about enabling interrupts, see Enabling the distribution of interrupts on page 4-63.
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Preemption level control
ICC_BPRO_EL1 determines whether a Group 0 interrupt is signaled to the PE for possible preemption. In addition:

. When ICC_CTLR _EL3.CBPR ELINS==1,ICC BPRO_EL1 also determines whether a Non-secure Group
1 interrupt is signaled to the PE for possible preemption.

. When ICC_CTLR EL3.CBPR EL1S==1, ICC BPRO EL1 also determines whether a Secure Group 1
interrupt is signaled to the PE for possible preemption.

ICC_BPR1_ELI1 determines whether a Group 1 interrupt is signaled to the PE for possible preemption. The
Non-secure copy of this register is used for Non-secure Group 1 interrupts. The Secure copy is used for Secure
Group 1 interrupts.

When ICC_CTLR_EL3.CBPR_ELINS is set to 1:
. EL3 can write to ICC_BPR1_ELI(NS).

When EL3 is using AArch64 state, accesses to ICC_BPR1_EL1(NS) from EL3 are not affected by
ICC_CTLR EL3.CBPR _ELINS.

When EL3 is using AArch32 state, accesses to [CC_BPR1_EL1(NS) from Monitor mode are not affected by
ICC_CTLR EL3.CBPR _ELINS.

. Non-secure writes to ICC_BPR1_EL1 at EL1 or EL2 are ignored.
. Non-secure reads of [CC_BPR1_ELI at EL1 or EL2 return the value of ICC_BPRO_EL1 +1, saturating at 7.

When ICC_CTLR EL3.CBPR ELIS s set to 1:
. Secure reads of ICC_BPR1_EL1 return the value of ICC_BPRO EL1.
. Secure writes to ICC_BPR1_EL1 update ICC_BPRO ELI.

4.8.5 Priority masking
The Priority Mask Register for a CPU interface, ICC_PMR_EL1, defines a priority threshold for the target PE. The
GIC only signals pending interrupts that have a higher priority than this priority threshold to the target PE. A value
of zero, the register reset value, masks all interrupts from being signaled to the associated PE. The GIC does not use
priority grouping when comparing the priority of a pending interrupt with the priority threshold.
The GIC always masks an interrupt that has the lowest supported priority. This priority is sometimes referred to as
the idle priority

Note

Writing 0xFF to ICC_PMR_EL1 always sets it to the lowest supported priority. Table 4-7 on page 4-65 shows how
the lowest supported priority varies with the number of implemented priority bits.
If the GIC provides support for two Security states, [CC_PMR_EL1 is RAZ/WI to Non-secure accesses, if bit[7]
== 0. During normal operation, software executing in Non-secure state does not access ICC_PMR_ELIwhen it is
programmed with such a value.
For information that relates to different GIC configurations, see Non-secure accesses to register fields for Secure
interrupt priorities on page 4-66.

4.8.6 Software accesses of interrupt priority
This section describes Secure and Non-secure reads of interrupt priority, and the relationship between them. It also
describes writes to the priority value fields.

Note

This section applies to any GIC implementation that supports two Security states.
When a PE reads the priority value of a Non-secure Group 1 interrupt, the GIC returns either the Secure or the
Non-secure read of that value, depending on whether the access is Secure or Non-secure.
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The GIC implements a minimum of 32 and a maximum of 256 priority levels. This means it implements 5-8 bits of
the 8-bit priority value fields in the appropriate GICR_IPRIORITYR<n>and GICD IPRIORITYR<n> register. All
of the implemented priority bits can be accessed by a Secure access, and unimplemented low-order bits of the
priority fields are RAZ/WI. Figure 4-5 shows the Secure read of a priority value field for an interrupt. The priority
value stored in the Distributor is equivalent to the Secure read.

Figure 4-5 Secure read of the priority field for any interrupt

In this view:

. Bits H-D are the bits that the GIC must implement, corresponding to 32 priority levels.
. Bits C-A are the bits the GIC might implement. They are RAZ/WI if not implemented.
. The GIC must implement bits H-A to provide the maximum 256 priority levels.

For Non-secure accesses, the GIC supports half the priority levels it supports for Secure accesses, which means a
minimum of 16 priority levels. Figure 4-6 shows the Non-secure view of a priority value field for a Non-secure
Group 1 interrupt.

Figure 4-6 Non-secure read of the priority field for a Non-secure Group 1 interrupt

In this read:

. Bits G-D are the bits that the GIC must implement, corresponding to 16 priority levels.
. Bits C-A are the bits the GIC might implement, that are RAZ/WTI if not implemented.

. The GIC must implement bits G-A to provide the maximum 128 priority levels.

. Bit [0] is RAZ/WI.

The Non-secure read of a priority value does not show how the value is stored in the registers in the Distributor. For
Non-secure writes to a priority field of a Non-secure Group 1 interrupt, before storing the value:

. The value is right-shifted by one bit.

. Bit [7] of the value is set to 1.

This translation means the priority value for the Non-secure Group 1 interrupt is in the bottom half of the priority
range.

A Secure read of the priority value for an interrupt returns the value stored in the Distributor. Figure 4-7 shows this
Secure read of the priority value field for a Non-secure Group 1 interrupt that has had its priority value field set by
a Non-secure access, or has had a priority value with bit[7] == 1 set by a Secure access:

Figure 4-7 Secure read of the priority field for a Non-secure Group 1 interrupt

A Secure write to the priority value field for a Non-secure Group 1 interrupt can set bit [7] to 0. If a Secure write
sets bit[7] to 0:

. A Non-secure read returns the value GFEDCBADO.

. A Non-secure write can change the value of the field, but only to a value that has bit [7] set to 1 for the Secure
read of the field.
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Note

. This behavior of Non-secure accesses applies only to the priority value fields in GICR_IPRIORITYR<n>
and GICD_IPRIORITYR<n>, as appropriate:

—  If'the Priority field in ICC_PMR_ELI holds a value with bit [7] == 0, then the field is RAZ/WTI for

Non-secure accesses.

—  If the Priority field in ICC_RPR_EL1 holds a value with bit [7] == 0, then the field is RAZ for

Non-secure reads.

. ARM does not recommend setting bit[7] to 0 for a Non-secure Group 1 interrupt in this way because it places
the interrupt in the wrong half of the priority range for maintenance by non-secure code.

Figure 4-8 shows the relationship between the reads of the priority value fields for Non-secure Group 1 interrupts.

Secure access

Non-secure access

Secure access

76 5 4 10
H|G|F|E BA
)
76 5 4 10
G|F|E|D A0
(
76 5 4 10
H|G|F|E B[A

Matches Secure view

Translation of Secure view

Matches Secure view

Figure 4-8 Relationship between Secure and Non-secure reads of interrupt priority fields

Figure 4-9 on page 4-75 shows how software reads of the interrupt priorities from Secure and Non-secure accesses
relate to the priority values held in the Distributor, and to the interrupt values that are visible to Secure and
Non-secure accesses. Figure 4-9 on page 4-75 applies to a GIC that implements the maximum range of priority

values.
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Figure 4-9 Software reads of the priorities of Group 1 and Group 0 interrupts

Table 4-14 shows how the number of priority value bits implemented by the GIC affects the Secure and Non-secure
reads of the priority of a Non-secure Group 1 interrupt.

Note

Software executing in Non-secure state has no visibility of the priority settings of Group 0 interrupts, or where
applicable, of Secure Group 1 interrupts.

Table 4-14 Effect of not implementing some priority field bits, two Security states

Implemented priority bits, as
seen by a Secure read

Possible priority field values, for a Non-secure Group 1 interrupt

Secure read

Non-secure read

[7:0] OxFF-0x00 (255-0), all values 0XFE-0x00 (254-0), even values only
[7:1] 0XFE-0x00 (254-0), even values only ~ 0xFC-0x00 (252-0), in steps of 4
[7:2] 0xFC-0x00 (252-0), in steps of 4 0xF8-0x00 (248-0), in steps of 8
[7:3] 0xF8-0x00 (248-0), in steps of 8 0xF0-0x00 (240-0), in steps of 16

This model for the presentation of priority values ensures software written to operate with an implementation of this
GIC architecture functions as intended regardless of whether the GIC provides support for two Security states.
However, programmers must ensure that software assigns the appropriate priority levels to the Group 0 and Group

1 interrupts.

Note

To control priority values, ARM strongly recommends that:

. For a Group 0 interrupt, software sets bit[7] of the priority value field to 0.
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. Ifusing a Secure write to set the priority of a Non-secure Group 1 interrupt, software sets bit[7] of the priority
value field to 1.

This ensures that all Group 0 and, if applicable, Secure Group 1 interrupts have higher priorities than all Non-secure
Group 1 interrupts. However, a system might have requirements that cannot be met with this scheme.

Table 4-15 shows an example priority allocation scheme that ensures:
. Some Group 0 interrupts have higher priority than any other interrupts.

. Some Secure Group 1 interrupts have higher priority than any Non-secure Group 1 interrupt.

Table 4-15 Example priority allocation

Interrupt security configuration = GICR_IPRIORITYR<n>[7:6]

Group 0 0b00
Secure Group 1 0b01
Non-secure Group 1 0b10
0bll
. Software might not be aware that the GIC supports two Security states, and therefore might not know whether

it is making Secure or Non-secure accesses to GIC registers. However, for any implemented interrupt,
software can write OxFF to the corresponding GICR _IPRIORITYR<n> priority value field, and then read
back the value stored in the field to determine the supported interrupt priority range. ARM recommends that,
before checking the priority range in this way:

—  For a peripheral interrupt, software first disables the interrupt.

—  For an SGI, software first checks that the interrupt is inactive.

4.8.7 Changing the priority of enabled PPlIs, SGls, and SPIs

If software writes to the GICD_IPRIORITYR<n> or GICR_IPRIORITYR<n> register of an enabled interrupt while
the interrupt is pending, it is IMPLEMENTATION DEFINED whether the GIC uses the old value or the new value. The
GIC ensures that no interrupt is handled more than once, and that no interrupt is lost. The effect of the write must
be visible in finite time.
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Chapter 5
Virtual Interrupt Handling and Prioritization

This chapter describes the fundamental aspects of GIC virtual interrupt handling and prioritization:
About GIC support for virtualization on page 5-78.

. Operation overview on page 5-79.

. Configuration and control of VMs on page 5-83.

. Virtual LPI support on page 5-86.

. Pseudocode on page 5-88.
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5.1 About GIC support for virtualization

51 About GIC support for virtualization
An operating system that is executing at EL1 under the control of a hypervisor executing at EL2 is sometimes
referred as a virtual machine (VM). A VM can support multiprocessing, which means that multiple virtual PEs
(VPEs), that are scheduled by the hypervisor are executing on one or more physical PEs. When a vPE is executing
on a PE, that vPE of the VM is referred to as being scheduled on the physical PE.
In ARMv8, when EL2 is implemented and enabled, the CPU interface provides mechanisms to minimize the
hypervisor overhead of routing interrupts to a VM. For more information about vPEs, see Operation overview on
page 5-79.
For more information about EL2 and virtual interrupts, see ARM™ Architecture Reference Manual, ARMVS, for
ARMVS-A architecture profile.
In GICv4, for the directly injected virtual LPIs , the scheduled vPE is determined by GICR_VPENDBASER. For
more information, see Doorbell interrupts on page 5-87

Note
The GIC does not provide additional mechanisms for the virtualization of the GICD_*, GICR_*, and GITS_*
registers. To virtualize VM accesses to these registers, the hypervisor must set stage 2 data aborts to those memory
locations so that the hypervisor can emulate these effects. For more information about stage 2 data aborts, see ARM®™
Architecture Reference Manual, ARMVS, for ARMvS-A architecture profile.
When a GIC provides support for virtualization, the VM operates in an environment that has the following features:
. The VvPE can be configured to receive virtual Group 0 interrupts.
. The vPE can be configured to receive virtual Group 1 interrupts.
. Virtual Group 0 interrupts are signaled using the virtual FIQ signal to Non-secure EL1.
. Virtual Group 1 interrupts are signaled using the virtual IRQ signal to Non-secure EL1.
. Virtual interrupts can be handled by the vPE as if they were physical interrupts.
Note

This applies when affinity routing and System register access are enabled. For information about support for virtual
interrupts in legacy operation, see Support for legacy operation of VMs on page 10-715.
EL2 controls the generation of virtual interrupts for a VM. This allows software executing at EL2 to:
. Generate virtual Group 0 and Group 1 interrupts for the vPE.
. Save and restore the interrupt state of the vPE.
. Control the prioritization of the virtual interrupts.
. Change the vPE that is scheduled.
GICv4 introduces the ability to present virtual LPIs from an ITS directly to a vPE, without hypervisor intervention.
Handling virtual interrupts in legacy operation requires a GICV_* memory-mapped interface. See Support for
legacy operation of VMs on page 10-715 for more information.
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5.2 Operation overview

GICv3 supports the ARMVS-A virtualization functionality. A hypervisor executing at EL2 uses the ICH_* System
register interface to configure and control a virtual PE (VPE) executing at Non-secure EL1. For information about
the VM control interface, see Configuration and control of VMs on page 5-83. A vPE uses the ICC_* EL1 System
register interface to communicate with the GIC. The configuration of HCR_EL2.{IMO, FMO} determines whether
the virtual or the physical interface registers are accessed.

Note

This chapter describes the handling of virtual interrupts in the context of the AArch64 execution state with System
register access enabled. The individual AArch64 System register descriptions that are cross-referenced in this
chapter contain a reference to the AArch32 System register that provides the same functionality. For information
about VMs in legacy operation, see Support for legacy operation of VMs on page 10-715.

Software executing at EL3 or EL2 configures the PE to route physical interrupts to EL2. The interrupt can be:

. An interrupt targeting a vPE. The hypervisor sets the corresponding virtual INTID to the pending state on the
target VPE and includes the information about the associated physical INTID. When the vPE is not scheduled
on a PE, the hypervisor might choose to reschedule the vPE. Otherwise the interrupt is left pending on the
vPE for scheduling by the hypervisor at a later time.

. An interrupt targeting the hypervisor. This interrupt might:
—  Have been generated by the system.

—  Beamaintenance interrupt associated with a scheduled VM. See Maintenance interrupts on page 5-85
for more details.

—  In GICv4, be a doorbell interrupt from an ITS. In GICv4, a virtual interrupt can be presented to a vPE
without hypervisor involvement. A doorbell interrupt must be generated when a virtual interrupt is
made pending for a vPE but the vPE is not scheduled on a PE.

The hypervisor handles physical interrupts according to the rules described in Chapter 4 Physical Interrupt
Handling and Prioritization before they are virtualized. For information about the handling of physical interrupts
and their virtualization during legacy operation, see Chapter 10 Legacy Operation and Asymmetric Configurations.

The GIC virtualization support includes a list of virtual interrupts for a vPE that is stored in hardware List registers,
see Usage model for the List registers on page 5-81. Each entry in the list corresponds to either a pending or an
active interrupt, and the entry describes the virtual interrupt number, the interrupt group, the interrupt state, and the
virtual priority of the interrupt. A virtual interrupt described in the list entry can be configured to be associated with
a physical SPI or PPI.

The GIC implementation selects the highest priority pending virtual interrupt from the list of interrupts held in the
List registers and, if it is of sufficient virtual priority compared to the active virtual interrupts and virtual priority
mask, presents it as either a virtual FIQ or a virtual IRQ, depending on the group of the interrupt. The virtual CPU
interface controls apply to the virtual interrupt in the same way as the physical interrupt controls apply to the
physical interrupt. Therefore, using the virtual CPU interface controls, software executing on the vPE can:

. Set the virtual priority mask.

. Control how the virtual priority is split between the group priority and the subpriority.
. Acknowledge a virtual interrupt.

. Perform a priority drop on the virtual interrupt.

. Deactivate the virtual interrupt.

The virtual CPU interface supports both EOImodes, so that a virtual EOI can perform a priority drop alone, or a
combined priority drop and deactivation.

When a virtual interrupt is acknowledged, then the state of the virtual interrupt changes from pending to active in
the corresponding List register entry.

When a virtual interrupt is deactivated, then the state of the virtual interrupt changes from active to inactive, or from
active and pending to pending, in the corresponding List register entry. If the virtual interrupt is associated with a
physical interrupt, then the associated physical interrupt is deactivated.
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Virtual interrupts taken to Non-secure EL1 are handled in a similar manner to physical interrupts that are handled
in a system with a single Security state, that is where GICD_CTLR.DS is set to 1:

. Group 0 interrupts are signalled using the virtual FIQ signal.

. Group 1 interrupts are signalled using the virtual IRQ signal.
. Group 0 and Group 1 interrupts share an interrupt prioritization and preemption scheme. A minimum of 32
and a maximum of 256 priority levels are supported, as determined by the values in ICH_VTR_EL2.
Note

The priority value is not subject to the shift used for Non-secure physical interrupts. While virtualization
supports up to 8 bits of priority, a minimum of 5 and a maximum of 8 bits must be implemented.

Note

For information about the rules governing exception entry on an ARMv8-A PE, see ARM" Architecture Reference
Manual, ARMvS, for ARMvS-A architecture profile.

Accesses at Non-secure EL1 to Group 0 registers are virtual when HCR_EL2.FMO == 1.

Virtual accesses to the following Group 0 ICC_* registers access the ICV_* equivalents:
. Accesses to ICC_APOR<n> EL1 access ICV_APOR<n> ELI.

. Accesses to ICC_BPRO_EL1 access ICV_BPRO ELI.

. Accesses to [CC_EOIRO_EL1 access ICV_EOIRO ELI.

. Accesses to [CC_HPPIRO_EL1 access ICV_HPPIRO EL1.

. Accesses to ICC_IARO_EL1 access ICV_IARO_EL1.

. Accesses to ICC_IGRPENO_EL1 access ICV_IGRPENO ELI.

Accesses at Non-secure EL1 to Group 1 registers are virtual when HCR_EL2.IMO == 1.

Virtual accesses to the following Group 1 ICC_* registers access the ICV_* equivalents:
. Accesses to ICC_AP1R<n> ELI1 access ICV_AP1R<n> ELI.

. Accesses to ICC_BPR1 EL1 access ICV_BPR1 ELI.

. Accesses to [CC_EOIR1_EL1 access ICV_EOIR1 ELI.

. Accesses to [CC_HPPIR1 _EL1 access ICV_HPPIR1 ELI.

. Accesses to ICC_IAR1 EL1 access ICV_IAR1 ELI1.

. Accesses to ICC_IGRPEN1 EL1 access ICV_IGRPENI ELI.

Accesses at Non-secure EL1 to the Common registers are virtual when either HCR_EL2.IMO == 1 or
HCR_EL2.FMO == 1, or both.

Virtual accesses to the following Common ICC_* registers access the ICV_* equivalents:
. Accesses to ICC_RPR_ELI access ICV_RPR ELI.

. Accesses to ICC_CTLR _ELI access ICV_CTLR ELI.

. Accesses to ICC_DIR EL1 access ICV_DIR _ELI.

. Accesses to [ICC_PMR _EL1 access ICV_PMR _ELI.

A virtual write to ICC_SGIOR EL1, ICC_SGIIR EL1, or ICC_ASGIIR ELI traps to EL2.

Software executing at EL2 can access some ICV_* register state using ICH VMCR _EL2 and ICH VTR EL2 as
follows:

. ICV_PMR _ELI1.Priority aliases ICH VMCR EL2.VPMR.

. ICV_BPRO_EL1.BinaryPoint aliases ICH_VMCR_EL2.VBPRO.
. ICV_BPRI1_EL1.BinaryPoint aliases ICH_VMCR_EL2.VBPRI.
. ICV_CTLR ELI1.EOImode aliases ICH VMCR_EL2.VEOIM.

. ICV_CTLR_EL1.CBPR aliases ICH_VMCR_EL2.VCBPR.

. ICV_IGRPENO_ELlaliases ICH_VMCR_EL2.VENGO.

. ICV_IGRPENI_ELI. aliases ICH_VMCR_EL2.VENGI.

. ICV_CTLR_ELI1.PRIbits aliases ICH_VTR_EL2.PRIbits.
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«  ICV_CTLR_EL1.IDbits aliases ICH_VTR_EL2.IDbits.
«  ICV_CTLR _ELI.SEIS aliases ICH_VTR_EL2.SEIS.
«  ICV_CTLR ELI1.A3V aliases ICH VTR _EL2.A3V.

5.21 Usage model for the List registers

A fundamental function of an interrupt controller is to develop list of pending interrupts in priority order for each
PE, and then to present the highest priority interrupt to the PE if the interrupt is of sufficient priority. For physical
interrupts, this task is performed entirely in hardware by the GIC. However, in order to reduce the cost in hardware,
the GIC handles virtual interrupts using both hardware and software.

For each physical interrupt received that is targeting a vPE, the hypervisor adds that interrupt to a prioritized list of
pending virtual interrupts that is presented to the vPE. The GIC hardware also provides a set of List registers,

ICH _LR<n> EL2, that holds an IMPLEMENTATION DEFINED number of the top entries in the prioritized list for the
currently running vPE. Typically, there are at most only a few pending virtual interrupts for that vPE. The interrupts
in the List register are then handled by the vPE in hardware, providing the same behavior for the VM as is seen by
a non-virtualized operating system handling physical interrupts.

However, the total number of interrupts that are pending, active and pending, or active, can exceed the number of
List registers available. In this case, the hypervisor can save one or more entries to memory, and later restore them
to the List registers based on their priority. In this way, the List registers act as a cache for the list of pending, active,
or active and pending interrupts that is controlled by software, for a vPE.

The List registers provide maintenance interrupts for:

. The purpose of signalling when there are no pending interrupts in the List registers to allow the hypervisor
to load more pending interrupts to the List registers.

. The purpose of signalling when the List registers are empty or nearly empty to allow the hypervisor to refill
the List registers with entries from the list in memory.

. The purpose of signalling when an EOI has been received for an entry that is not in the List registers, which
can occur if an active interrupt is held in memory.

. The enabling and disabling of virtual interrupt groups, which might result in a requirement to change the
content of the List registers.

For more details on maintenance interrupts, see Maintenance interrupts on page 5-85.

Note

Although the List registers might include only active interrupts, with the hypervisor maintaining any pending
interrupts in memory, a pending interrupt cannot be signalled to the vPE until the hypervisor adds it to the List
registers. Therefore, to minimize interrupt latency and ensure the efficient operation of the vPE, ARM strongly
recommends that the List registers contain at least one pending interrupt, if a List register is available for this
interrupt.

The List registers form part of the context of the vPE. When there is switch from one vPE running on a PE to another
VPE, the hypervisor switches the List registers accordingly.

The number of List registers is IMPLEMENTATION DEFINED, and can be discovered by reading ICH HCR_EL2
The following pseudocode indicates the number of List registers that are implemented.

// NumListRegs()

// The number of implemented List Registers. This value is IMPLEMENTATION DEFINED.

integer NumListRegs()
return integer IMPLEMENTATION_DEFINED “Number of List registers”;

5.2.2 List register usage resulting in UNPREDICTABLE behavior
The following cases are considered software programming errors and result in UNPREDICTABLE behavior:

. Having two or more interrupts with the same pINTID in the List registers for a single virtual CPU interface.
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. Having a List register entry with ICH_LR<n> EL2.HW= 1, which is associated with a physical interrupt, in
active state or in pending state in the List registers if the Distributor does not have the corresponding physical
interrupt in either the active state or the active and pending state.

. IfICC_CTLR EL1.EOImode ==0 or ICC_CTLR EL3.EOImode EL3 == 0, then either:

—  Havingan active interrupt in the List registers with a priority that is not set in the corresponding Active
Priorities Register.
—  Having two interrupts in the List registers in the active state with the same preemption priority.
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5.3 Configuration and control of VMs

The virtual GIC works by holding a prioritized list of pending virtual interrupts for each PE. In GICv3 this list is
compiled in software and a number of the top entries are held in List registers in hardware. For LPIs, this list can be
compiled using tables for each vPE. These tables are controlled by the GICR_* registers.

A hypervisor uses a System register interface that is accessible at EL2 to switch context and to control multiple
VMs. The context held in the ICH_* System registers is the context for the scheduled vPE. A vPE is scheduled
when:

«  ICH HCR EL2.En==1.
. HCR_EL2.FMO == 1, when virtualizing Group 0 interrupts.
. HCR_EL2.IMO == 1, when virtualizing Group 1 interrupts.

When a vPE is scheduled, the ICH_* EL2 registers affect software executing at Non-secure EL1.

The ICH * EL2 registers control and maintain a vPE as follows:
. ICH_HCR _EL2 is used for the top level configuration and control of virtual interrupts.

. Information about the implementation, such as the size of the supported virtual INTIDs and the number of
levels of prioritization is read from ICH_VTR EL2.

. A hypervisor can monitor and provide context for ICV_CTLR_EL1 using ICH VMCR_EL2.

. A set of List registers, [CH_LR<n> EL2, are used by the hypervisor to forward a queue of pending interrupts
to the PE, see Usage model for the List registers on page 5-81. The status of free locations in
ICH_LR<n> EL2 is held in ICH_ELRSR_EL2.

. The end of interrupt status for the List registers is held in I[CH_EISR EL2.
. The VM maintenance interrupt status is held in ICH_MISR_EL2.
. The active priority status is held in:

—  ICH_APOR<n> EL2, where n = 0-3.

—  ICH_API1R<n> EL2, where n = 0-3.

5.3.1 Association of virtual interrupts with physical interrupts

A virtual interrupt can become pending in response to a physical interrupt, where, for example, the physical interrupt
is being used by a peripheral that is owned by a particular VM, or it can be generated for other reasons by the
hypervisor where there is no corresponding physical interrupt. This second case can be used, for example, when the
hypervisor emulates a virtual peripheral.

To support these two models, for SPIs and PPIs, the GIC List registers provide a mechanism to configure a virtual
interrupt be associated with a physical interrupt. The physical interrupt and the virtual interrupt do not necessarily
have the same INTID.

Usage model for associating a virtual interrupt with a physical interrupt

A virtual interrupt can be associated with a physical interrupt as follows:

1. The hypervisor configures ICC_CTLR_EL1.EOImode == 1, in this model.

2. On taking a physical PPI or a physical SPI that is targeting a vPE, the interrupt is taken to the hypervisor, and
is acknowledged by hypervisor. The makes the physical interrupt active.

3. The hypervisor inserts a virtual interrupt to the list of pending interrupts for the targeted vPE. The hypervisor
performs an EOI when it wants to do a priority drop for that interrupt. The hypervisor does not deactivate the
interrupt.

4. When this virtual interrupt has a sufficiently high priority in the list of pending interrupts for that vPE, and
that vPE is scheduled on the PE, the hypervisor writes this pending virtual interrupt into a List register, and
ICH _LR<n> EL2.HW is set to 1 to indicate that the virtual interrupt is associated with a physical interrupt.
The INTID of the associated physical interrupt is held in the same List register.

5. When the vPE is running, it will take the pending virtual interrupt, and acknowledge it in the same way as it
would acknowledge a physical interrupt, using the virtual CPU interface. When the interrupt handler running
on the vPE has completed its task, and the virtual interrupt is to be deactivated, then the hardware deactivates
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both the virtual interrupt and the associated physical interrupt. The virtual interrupt might be deactivated as
the result of either an end of interrupt, if ICH_ VMCR_EL2.VEOIM== 0, or as the result of a separate
deactivation if [CH VMCR _EL2.VEOIM == 1.

5.3.2 The Active Priorities registers
The active priority is held separately for virtual Group 0 and Group 1 interrupts, using ICH APOR<n> EL2 and
ICH _APIR<n> EL2, where n=0-3. The Active Priorities Registers have a bit for each priority group implemented
by the implementation. In GICv3, virtualization supports up to 8 bits of priority. However, as a result of interrupt
priority grouping, bit[0] cannot be used for preemption. This means that a maximum of 128 active priority bits are
required to maintain context. The number of registers implemented is dependent on the number of group priority
bits supported, as shown in Table 5-1.
Table 5-1 Group bit count in the hypervisor Active Priorities Registers
Bits Register Nur:nber of
registers
5 ICH APOR<n> EL2 n=0
ICH_API1R<n> EL2
6 ICH_APOR<n> EL2  n=0-1
ICH_APIR<n> EL2
7 ICH_APOR<n> EL2 n=0-3
ICH_APIR<n> EL2
Ifabitissetto 1 in one of the ICH APOR<n> EL2 registers, the equivalent bit in the ICH_AP1R<n> EL2 register
must be zero when executing in Non-secure EL1 or Non-secure ELO, otherwise the behavior of the GIC is
UNPREDICTABLE.
Ifabitissetto 1 in one of the ICH AP1R<n> EL2 registers, the equivalent bit in the ICH_APOR<n> EL2 register
must be zero when executing in Non-secure EL1 or Non-secure EL0, otherwise the behavior of the GIC is
UNPREDICTABLE.
ICH_APOR<n> EL2 provide a list of up to 128 bits where there is a bit for each implemented preemptable priority.
If a bit is 1, this indicates that there is a Group 0 interrupt in that priority group which has been acknowledged but
has not had a priority drop. If a bit is 0, this indicates that there is no Group 0 interrupt active at that priority, or that
all active Group 0 interrupts within that priority group have undergone a priority drop.
Note
Writing to the Link registers does not have an effect on the Active Priorities Registers.
ICH_AP1R<n> EL2 provide a list of up to 128 bits where there is a bit for each implemented preemptable priority.
If a bit is 1, this indicates that there is a Group 1 interrupt in that priority group which has been acknowledged but
has not had a priority drop. If a bit is 0, this indicates that there is no Group 1 interrupt active at that priority or that
all active Group 1 interrupts within that priority group have undergone a priority drop.
Writing any value other than the last read value of the register, or 0x00000000, to these registers can cause:
. Virtual interrupts that would otherwise preempt execution to not preempt execution.
. Virtual interrupts that otherwise would not preempt execution to preempt execution at Non-secure EL1 or
ELO.
Note
ARM does not expect these registers to be read and written by software for any purpose other than:
. Saving and restoring state, as part of software power management.
. Context switching between vPEs on the same PE.
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Writing to the Active Priority Registers in any order other than the following order results in UNPREDICTABLE
behavior:

1. ICH_APOR<n> EL2.
2. ICH APIR<n> EL2.

Note
An ISB is not required between the write to ICH_APOR<n> EL2 and the write to ICH_AP1R<n> EL2.

5.3.3 Maintenance interrupts

Maintenance interrupts can signal key events in the operation of a GIC that implements virtualization. These events
are processed by the hypervisor.

Note
. Maintenance interrupts are generated only when the global enable bit for the virtual CPU interface,
ICH HCR EL2.En,issetto 1.
. ARM strongly recommends that maintenance interrupts are configured to use INTID 25. For more

information, see Server Base System Architecture (SBSA).

Maintenance interrupts are level-sensitive interrupts. Configuration bits in ICH_HCR_EL2 can be set to 1 to enable
the generation of maintenance interrupts when:

. Group 0 virtual interrupts are enabled.

. Group 1 virtual interrupts are enabled.

. Group 0 virtual interrupts are disabled.

. Group 1 virtual interrupts are disabled.

. There are no pending interrupts in the List registers.

. At least one EOI request occurs with no valid List register entry for the corresponding interrupt.

. There are no valid entries, or there is only one valid entry, in the List registers. This is an underflow condition.
. At least one List register entry has received an EOI request.

See ICH MISR _EL2, Interrupt Controller Maintenance Interrupt State Register on page 8-300 for more
information about the control and status reporting of maintenance interrupts.
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54 Virtual

LPI support

In GICv3 LPIs can be presented to a virtualized system by the hypervisor, which must be using the System registers.
A virtual LPI is generated when the hypervisor writes a VINTID corresponding to the LPI range, that is a vVINTID
that is greater than 8191, to a List register. Because an LPI does not have an active state, it is not possible to associate
a virtual LPI with a physical interrupt.

GICv4 provides support for the direct injection of virtual LPIs, vLPls, in the LPI INTID range. With the direct
injection of VLPIs, the GICR_* registers use structures in memory for each vPE to hold LPI configuration and
pending information for vLPIs in the same way that they use structures in memory to hold LPI configuration and
pending information for physical LPIs. However, the virtual structures are different from the physical structures,
with the vLPI tables for the current vPE scheduled on a PE by GICR._ VPENDBASER and GICR_ VPROPBASER
in the Redistributor associated with that PE, For more information about the physical LPI tables, see LP/
Configuration tables on page 6-95 and LPI Pending tables on page 6-97.

The Redistributor associated with the PE on which the vPE is scheduled determines the highest priority pending
vLPI, and forwards this to the virtual CPU interface of the vPE. This vLPI and the interrupts in the List register are
then prioritized together to determine the highest priority pending virtual interrupt for the vPE.

For information about virtual LPIs and the virtual CPU tables, see The vPE table on page 6-104.

5.4.1 Direct injection of virtual interrupts

The ITS maps an EventID and a DevicelD to an INTID associated with a PE, see The ITS on page 6-99 for more
information. GICv4 introduces the ability to generate a virtual LPI without involving the hypervisor. In this case an
ITS maps the EventID for the interrupt translation using the following mechanism:

. The ITS interruption translation table entry for a vLPI is configured with:
— A control flag that indicates the EventID is associated with a virtual LPI.

— A vPEID to index into the ITS vPE table. For more information about vPEID and the vPE table, see
The vPE table on page 6-104. The vPE table provides:

L. The base address of the GICR_* registers in the format defined by GITS TYPER.PTA.
2. The base address of the virtual LPI Pending table associated with the target VM.
— A virtual INTID, vINTID, that indicates which vLPI becomes pending.

— A physical INTID, pINTID, that can be used as a doorbell interrupt to the hypervisor if the vPE is not
scheduled on a PE. The value 1023 is used where a doorbell interrupt is not required, otherwise an
INTID in the physical LPI range must be provided.

For more information about:
. Physical LPIs, see LPIs on page 6-92.
. The ITS and format of an Interrupt translation table (ITT), see The ITS on page 6-99.

. The commands used to control the handling of virtual LPIs associated with an ITS, see Table 6-6 on
page 6-108 and the following commands:

— VINVALL on page 6-125.
—  VMAPI on page 6-126.
—  VMAPP on page 6-127.
— VMAPTI on page 6-129.
— VMOVI on page 6-130.
— VMOVP on page 6-132.
— VSYNC on page 6-134.

The GIC hardware determines whether the vPE is scheduled on a PE when:
. GICR_VPENDBASER.Valid == 1.

. GICR_VPENDBASER.Physical Address holds the same value as defined in the VPT addr field in the
VMAPP command for the vPE that is the target of the vLPI.
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If, at the time that a VPE is descheduled from a PE, there are one or more vLPIs pending for the PE,
GICR_VPENDBASER .PendingLast is set to 1. This can be used by the hypervisor to make scheduling decisions.

5.4.2 Doorbell interrupts

When an interrupt that targets a vVPE becomes pending, it might target a vPE that is not currently scheduled on a PE.
Where those interrupts are presented as physical interrupts, the hypervisor can schedule in the vPE as a result of that
interrupt. In this case the hypervisor can make the scheduling decisions for the vPE based on the full set of pending
virtual interrupts for the vPE.

The equivalent capability is provided in the case of direct injections of vLPIs by the provision of doorbell LPIs.

For a vLPI, the ITS can configure a physical LPI that is sent to a PE when the vLPI becomes pending and the vPE
is not scheduled on that PE. This physical LPI is a Doorbell LPI.
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5.5 Pseudocode

The following pseudocode indicates the number of virtual active priority bits.

// ActiveVirtualPRIBits()
//

integer ActiveVirtualPRIBits()
if VirtualPRIBits() == 8 then
return 128;
else
return 2A(VirtualPREBits());

The following pseudocode indicates the highest active group virtual priority.

// GetHighestActiveVGroup()
//

// Returns a value indicating the interrupt group of the highest priority
// bit set from two registers. Returns None if no bits are set.

IntGroup GetHighestActiveVGroup(bits(128) avp@, bits(128) avpl)
for rval = 0 to ActiveVirtualPRIBits() - 1
if avpO<rval> != ‘@’ then
return IntGroup_GO;
elsif avpl<rval> != ‘@’ then
return IntGroup_GINS;

return IntGroup_None;

The following pseudocode indicates the highest active virtual priority.

// GetHighestActiveVPriority()

/!
// Returns the index of the highest priority bit set from two registers.

// Returns OxFF if no bits are set.

bits(8) GetHighestActiveVPriority(bits(128) avp@, bits(128) avpl)
for rval = 0 to ActiveVirtualPRIBits() - 1
if avpO<rval> != ‘@’ || avpl<rval> != ‘@’ then
return rval<7:0>;

return Ones();

The following pseudocode indicates whether any bits are set in the supplied Active Priorities registers.

// VPriorityBitsSet()
// Returns TRUE if any bit is set in the supplied registers, FALSE otherwise
boolean VPriorityBitsSet(bits(128) avp@, bits(128) avpl)
for i = 0 to ActiveVirtualPRIBits() - 1
if avpl<i> != ‘@’ || avpl<i> != ‘@’ then
return TRUE;

return FALSE;

The following pseudocode clears the highest priority bit in the supplied virtual Active Priorities registers.

// VPriorityDrop()
// Clears the highest priority bit set in the supplied registers.

VPriorityDrop[bits(128) &avp@, bits(128) &avpl] = bit v
assert IsZero(v);
for i = 0 to ActiveVirtualPRIBits() - 1
if avp@<i> != v then
avpo<i> = v;
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return;

elsif avpl<i> != v then
avpl<i> = v;
return;

return;
The following pseudocode determines which active bits are set.
// FindActiveVirtualInterrupt()

//

// Find a matching List register. Returns -1 if there is no match.

integer FindActiveVirtualInterrupt(bits(INTID_SIZE) vID)

for i = @ to NumListRegs() - 1
if ((ICH_LR_EL2[i].State IN {IntState_Active, IntState_ActivePending}) &&
ICH_LR_EL2[i].VirtualID<INTID_SIZE-1:0> == vID) then
return 1i;

return -1;
The following pseudocode indicates the virtual group priority based on the minimum Binary Point register.
// VPriorityGroup()
// Returns the priority group field for the minimum BPR value

bits(8) VPriorityGroup(bits(8) priority, integer group)
integer vpre_bits = VirtualPREBits();
mask = Ones(vpre_bits):Zeros(8 - vpre_bits);
return (priority AND mask);

The following pseudocode indicates the virtual group priority based on the appropriate Binary Point register.
// VGroupBits()
// Returns the priority group field for the current BPR value for the group

bits(8) VGroupBits(bits(8) priority, bit group)
bpr = UInt(ICH_VMCR_EL2.VBPR1) -1;

if group == ‘0’ || ICH_VMCR_EL2.VCBPR == ‘1’ then
bpr = UInt(ICH_VMCR_EL2.VBPRO);

mask = Ones(7-bpr):Zeros(bpr+l);
return (priority AND mask);

The following pseudocode indicates the number of virtual ID bits.

// VIDBits()
7

integer VIDBits()
id_bits = ICH_VTR_EL2.IDbits;
case id_bits of
when ‘000’ return 16;
when ‘001’ return 24;
otherwise  Unreachable();

The following pseudocode indicates the number of virtual preemption bits.

// VirtualPREBits()
/] =====mmmmmmm==

integer VirtualPREBits()
return UInt(ICH_VTR_EL2.PREbits) + 1;
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The following pseudocode indicates the number of virtual priority bits.
// VirtualPRIBits()
integer VirtualPRIBits()
return UInt(ICH_VTR_EL2.PRIbits) + 1;
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Chapter 6
Locality-specific Peripheral Interrupts and the ITS

This chapter describes Locality-specific Peripheral Interrupts (LPIs) and the Interrupt Translation Service (ITS). It
contains the following sections:

. LPIs on page 6-92.

. The ITS on page 6-99.

. ITS commands on page 6-108.

. Common ITS pseudocode functions on page 6-136.

. ITS command error encodings on page 6-145.
. ITS power management on page 6-148.
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6.1 LPls
6.1 LPIs
Locality-specific Peripheral Interrupts (LPIs) are edge-triggered message-based interrupts that can use an Interrupt
Translation Service (ITS), if it is implemented, to route an interrupt to a specific Redistributor and connected PE.
GICv3 provides two types of support for LPIs. LPIs can be supported either:
. Using the ITS to translate an EventID from a device into an LPI INTID. For more information about
EventIDs, see The ITS on page 6-99.
. By forwarding an LPI INTID directly to the Redistributors, using GICR_SETLPIR.
An implementation must support only one of these methods.
Note
The following registers are mandatory in an implementation that supports LPIs but does not include an ITS. The
function of the registers is IMPLEMENTATION DEFINED in implementations that do include an ITS:
. GICR_SETLPIR.
. GICR_CLRLPIR.
. GICR_INVLPIR.
. GICR_INVALLR.
. GICR_SYNCR.
These registers control physical LPIs in a system that does not include an ITS.
In an implementation that includes LPIs, at least 8192 LPIs are supported. For this reason, the configuration of each
interrupt, and the pending information for each interrupt, is held in tables in memory, rather than in registers, and
the tables are pointed to by registers held in the Redistributors.
Note
. ARM expects that an implementation will cache parts of the tables in the Redistributors to reduce latency and
memory traffic. The form of these caches is IMPLEMENTATION DEFINED.
. The addresses for the LPI tables are in the Non-secure physical address space.
Figure 6-1 on page 6-93 shows the generation of LPIs in an implementation that includes at least one ITS.
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Message-based interrupts

oo

ITs

GITS_TRANSLATER

LPIs

Distributor
PE PE PE PE PE
x.y.0.0 x.y.0.1 x.y.0.2 x.y.n.0 x.y.n.1
Cluster CO Cluster Cn

. Redistributor

D CPU interface

a. There might be zero, one, or more than one ITS in a GIC.

Note

In Figure 6-1, the ITS channel to the Redistributors is IMPLEMENTATION DEFINED.

Figure 6-1 Triggering LPIs in an implementation with an ITS

Figure 6-2 on page 6-94 shows the generation of LPIs in an implementation without an ITS.
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6.1LPIs
Message-based interrupts
Distributor
A
LPIs
B I
PE PE PE PE PE
x.y.0.0 x.y.0.1 x.y.0.2 x.y.n.0 x.y.n.1
Cluster CO Cluster Cn
. Redistributor |:| CPU interface
Figure 6-2 Triggering LPIs in an implementation without an ITS
When GICD CTLR.DS ==0:
. LPIs are only supported when affinity routing is enabled for Non-secure state.
. LPIs are always Non-secure Group 1 interrupts.
When GICD_CTLR.DS == 1:
. LPIs are only supported when affinity routing is enabled.
. LPIs are always Group 1 interrupts.
There is a single global physical LPI space so that LPIs can be moved between all Redistributors. Software programs
the size of the single global physical LPI space using GICR_PROPBASER.IDbits.
Note
The size of the physical LPI space is limited to the maximum size that an implementation supports, which is defined
in GICD_TYPER.IDbits.
For a given Redistributor, LPI configuration and state are maintained in two tables in memory, described in the
following sections:
. LPI Configuration tables on page 6-95.
. LPI Pending tables on page 6-97.
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If a Redistributor supports physical LPIs, it has:

. LPI priority and enable bits programmed in the LPI Configuration table. The address of the LPI
Configuration table is defined by GICR_PROPBASER. If GICR_PROPBASER is updated when
GICR_CTLR.EnableLPIs == 1, the effects are UNPREDICTABLE. See LPI Configuration tables for more
information.

. Memory-backed storage for LPI pending bits in an LPI Pending table. This table is specific to a particular
Redistributor. The address of the LPI Pending table is defined by GICR_PENDBASER. If
GICR_PENDBASER is updated when GICR_CTLR.EnableLPIs == 1, the effects are UNPREDICTABLE.

GICR_PROPBASER.IDBIits sets the size of the ID space, and thereby the number of entries in the LPI
Configuration table and the corresponding LPI Pending table.

Physical LPIs are enabled by a write to GICR_CTLR.EnableLPIs.

Note

When LPIs are disabled at the Redistributor interface, that is when GICR_CTLR.EnableLPIs == 0, LPIs cannot
become pending. An attempt to make an LPI pending in this situation has no effect, and the LPI is lost. This differs
from disabling SGIs, PPIs, and SPIs, which prevents only the signaling of the interrupt to the CPU interface.

GICv4 introduces equivalent tables for handling virtual LPIs with addresses referenced in GICR_VPROPBASER
and GICR_VPENDBASER.

In GICv4, virtual LPIs are enabled by a write to GICR_VPENDBASER.Valid.

6.1.1 LPI Configuration tables

LPI configuration is global. Whether a GIC supports Redistributors that point at different copies of the LPI
Configuration table is IMPLEMENTATION DEFINED.

It is IMPLEMENTATION DEFINED whether GICR_PROPBASER can be set to different values on different
Redistributors. GICR_TYPER.CommonLPIAffindicates which Redistributors must have GICR_PROPBASER set
to the same value whenever GICR_CTLR.EnableLPIs == 1.

An implementation can treat all copies of GICR_PROPBASER that are required to have the same value as accessing
common state.

Setting different values in different copies of GICR_PROPBASER on Redistributors that are required to use a
common LPI Configuration table when GICR_CTLR.EnableLPIs == 1 leads to UNPREDICTABLE behavior.

If GICR_PROPBASER is programmed to different values on different Redistributors, it is IMPLEMENTATION
DEFINED which copy or copies of GICR PROPBASER are used when the GIC reads the LPI Configuration tables.
However, the copy or copies that are used will correspond to a Redistributor on which GICR_CTLR.EnableLPIs ==
1.

To avoid UNPREDICTABLE behavior, software must ensure that all copies of the LPI Configuration tables are
identical, and all changes are globally observable, whenever:

. GICR_CTLR.EnableLPlIs is written from 0 to 1 on any Redistributor.

. GICR_INVLPIR and GICR_INVALLR are written on any Redistributor with GICR_CTLR.EnableLPIs ==
1, if direct LPIs are supported.

. The INV and INVALL command is executed by an ITS, in an implementation that includes at least one ITS.

An LPI Configuration table in memory stores entries containing configuration information for each LPI, where:

. GICR_PROPBASER specifies a 4KB aligned physical address. This is the LPI Configuration table base
address.

. For any LPI N, the location of the table entry is defined by (base address + (N — 8192)).

To change the configuration of an interrupt, software writes to the LPI Configuration tables and then issues the INV
or INVALL command. In implementations that do not include an ITS, software writes to GICR_INVALLR or
GICR_INVLPIR.
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The LPI Configuration table contains an 8-bit entry for each LPI. Figure 6-3 shows the LPI Configuration table
entry format.

Priority
RES1-
Enable

Figure 6-3 LPI Configuration table entry

Table 6-1 shows the LPI Configuration table entry bit assignments.

Table 6-1 LPI Configuration table entry bit assignments

Bits Name Function

[7:2]  Priority  The priority of the LPI. These are the most significant bits of the LPI priority. Bits[1:0] of
the priority are 0.
When GICD CTLR.DS == 0, this value is shifted in accordance with the security and
priority rules specified in Software accesses of interrupt priority on page 4-72. This means
that LPI priorities are always in the lower half of the priority range. The priority value range
is 128-254.

If GICD_CTLR.DS == 1, the value in this field is not shifted.
— Note

An implementation might support fewer than 8 bits of priority. Unimplemented bits will be
treated as RESO.

See Interrupt prioritization on page 4-65 for more information about interrupt priorities.
[1] - RES].

[0] Enable LPI enable. This bit controls whether the LPI is enabled:
0 The LPI is not enabled.
1 The LPI is enabled.

Caching

A Redistributor can cache the information from the LPI Configuration tables pointed to by GICR_ PROPBASER,
when GICR_CTLR.EnableLPI == 1, subject to all of the following rules:

. Whether or not one or more caches are present is IMPLEMENTATION DEFINED. Where at least one cache is
present, the structure and size is IMPLEMENTATION DEFINED.

. An LPI Configuration table entry might be allocated into the cache at any time.
. A cached LPI Configuration table entry is not guaranteed to remain in the cache.
. A cached LPI Configuration table entry is not guaranteed to remain incoherent with memory.

. A change to the LPI configuration is not guaranteed to be visible until an appropriate invalidation operation
has completed:

—  Ifone or more ITS is implemented, invalidation is performed using the INV or INVALL command. A
SYNC command completes the INV and INVALL commands.

—  Ifno ITS is implemented, invalidation is performed by writing to GICR_INVALLR or
GICR_INVLPIR.

If there is no Redistributor with GICR_CTLR.EnableLPIs == 1, the GIC has no cached LPI Configuration table
entries.
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6.1.2 LPI Pending tables

Software configures the LPI Pending tables, using the implemented range of valid LPI INTIDs, by writing to
GICR_PENDBASER. This register provides the base address of the LPI Pending table for physical LPIs.

Each Redistributor maintains entries in a separate LPI Pending table that indicates the pending state of each LPI
when GICR _CTLR.EnableLPIs == 1 in the Redistributor:

0 The LPI is not pending.
1 The LPI is pending.
For a given LPI:

. The corresponding byte in the LPI Pending table is (base address + (N / 8)).
. The bit position in the byte is (N MOD 8).

An LPI Pending table that contains only zeros, including in the first 1KB, indicates that there are no pending LPIs.

The first 1KB of the LPI Pending table is IMPLEMENTATION DEFINED. However, if the first 1KB of the LPI Pending
table and the rest of the table contain only zeros, this must indicate that there are no pending LPIs.

The first IKB of memory for the LPI Pending tables must contain only zeros on initial allocation, and this must be
visible to the Redistributors, or else the effect is UNPREDICTABLE.

During normal operation, the LPI Pending table is maintained solely by the Redistributor.

Behavior is UNPREDICTABLE if software writes to the LPI Pending tables while GICR_CTLR.EnableLPIs == 1.
When GICR_CTLR.EnableLPIs is cleared to 0, behavior is UNPREDICTABLE if the LPI Pending table is written
before GICR_CTLR.RWP reads 0.

Redistributors that are required to share a common LPI Configuration table, as indicated by
GICR_TYPER.CommonLPIAff, might treat the OuterCache, Shareability, or InnerCache fields of
GICR _PENDBASER as accessing common state.

Having the OuterCache, Shareability, or InnerCache fields of GICR_PENDBASER are programmed to different
values on different Redistributors with GICR_CTLR.EnableLPIs == 1 in a system is UNPREDICTABLE.

For physical LPIs, when GICR_CTLR.EnableLPlIs is changed to 1, the Redistributor must read the pending status
of the physical LPIs from the physical LPI Pending table.

Note

If GICR_PENDBASER.PTZ == 1, software guarantees that the LPI Pending table contains only zeros, including in
the first 1KB. In this case hardware might not read any part of the table.

If GICR_CTLR.EnableLPIs is cleared to 0, then when GICR_CTLR.RWP reads as 0 there are no further accesses
by the GIC to the LPI Pending table, and any caching of the LPI Pending table is invalidated. There is no guarantee
that clearing GICR_CTLR.EnableLPIs causes the LPI Pending table to be updated in memory.

Note

If one or more ITS is implemented, ARM strongly recommends that all LPIs are mapped to another Redistributor
before GICR_CTLR.EnableLPIs is cleared to 0.

For virtual LPIs, when GICR_CTLR.EnableLPIs ==1, and GICR_ VPENDBASER.Valid is changed to 1, the
Redistributor must read the pending status of the virtual LPIs from the virtual LPI Pending table.

Note

IF GICR_VPENDBASER.IDAI == 0, the software guarantees that the LPI Pending table was written out by the
same GIC implementation, meaning that hardware can rely on the first 1KB of the table and might not read the entire
table.
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6.1.3 Virtual LPI Configuration tables and virtual LPI Pending tables

GICv4 uses the same concept of memory tables to hold the configuration and pending information for virtual LPIs.
The format of these tables is the same as for physical LPIs, but the virtual LPI Configuration table is provided by
GICR_VPROPBASER and the virtual LPI Pending table is provided by GICR_ VPENDBASER, see Virtual LPI

support on page 5-86.

When scheduling a vPE, GICR_ VPENDBASER.IDAI can be cleared to 0:

. When the vPE was last scheduled on a Redistributor on the same GIC.

. When the VPE is scheduled for the first time after the initial allocation, and the entire virtual LPI Pending
table contained only zeros on initial allocation.

. In IMPLEMENTATION DEFINED cases.

Clearing GICR_VPENDBASER.IDAI to 0 at any other time results in UNPREDICTABLE behavior.
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6.2 The ITS

The ITS translates an input EventID from a device, identified by its DevicelD, and determines:
1. The corresponding INTID for this input.
2. The target Redistributor and, through this, the target PE for that INTID.

For GICv3, the ITS performs this function for events that are translated into physical LPIs. LPIs can be forwarded
to a Redistributor either by an ITS or by a direct write to GICR_SETLPIR. An implementation must support only
one of these methods.

For GICv4, the ITS also performs this function for interrupts that are directly injected as virtual LPIs.
An ITS has no effect on SGIs, SPIs, or PPIs.

The flow of the ITS translation is as follows:

1. The DevicelD selects a Device table entry (DTE) in the Device table that describes which Interrupt
translation table (ITT) to use.

2. The EventID selects an Interrupt translation entry (ITE) in the ITT that describes:
. For physical interrupts:
—  The output physical INTID.
—  The Interrupt collection number, ICID.
. For virtual interrupts, in GICv4:
—  The output virtual INTID.
—  The vPEID.
— A doorbell to use if the VPE is not scheduled.

3. For physical interrupts, ICID selects a Collection table entry in the Collection table (CT) that describes the
target Redistributor, and therefore the target PE, to which the interrupt is routed.

4. For virtual interrupts, in GICv4, the vPEID selects a VPE table entry that describes the Redistributor that is
currently hosting the target vPE to which the interrupt is routed.

The tables used in the translation process are described in more detail in the following sections:
. The ITS tables.

. The Device table on page 6-102.

. The Interrupt translation table on page 6-103.

. The Collection table on page 6-104.

. The vPE table on page 6-104.

These tables are created and maintained using the ITS commands described in /7S commands on page 6-108. GICv3
and GICv4 do not support direct access to the tables, and the tables must be configured using the ITS commands.

6.2.1 The ITS tables

To allow software to provision memory for the ITS private tables, the GIC provides a set of registers that allow the
following features to be discovered:

. The number of private tables that are required.
. The size of each entry in each table.
. The type of each table.

Note
AILITS tables are in the Non-secure physical address space.

The state and configuration of the ITS tables is stored in a set of tables in memory. This memory is allocated by
software before enabling the ITS.

GITS_BASER<n> specifies the base address and size of the ITS tables, and must be provisioned before the ITS is
enabled.
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The ITS tables have either a flat structure or a two-level structure. The structure is determined by
GITS BASER<n>, as follows:

0 Flat table. In this case a contiguous block of memory is allocated for the table. The format of the
table is IMPLEMENTATION DEFINED.

Behavior is UNPREDICTABLE if memory that is used for the ITS tables does not contain zeros at the
time of the new allocation for use by the ITS.

1 Two-level table. In this case each entry in the level 1 table is 64 bits, and has the following format:
. Bit[63] - Valid:
—  If'this bit is cleared to 0, the PhysicalAddress field does not point to the base address
of a level 2 table.

—  If'this bit is set to 1, the PhysicalAddress field points to the base address of a level 2
table.

. Bits[62:52] - RES 0.

. Bits[51:N] - Physical Address of the level 2 table. N is the number of bits that are required to
specify the page size:
—  The size of the level 2 table is determined by GITS BASER<n>.Page Size.

. Bits[N-1:0] - RES 0. N is the number of bits that are required to specify the page size.

The level 1 table is indexed by the appropriate ID so that level 1 entry = ID/(Page Size / Entry Size).
Note

This allows software to determine the level 2 table that must be allocated for a given CollectionID,
DevicelD, or vPEID.

For level 1 table entries, when Valid == 0:

. If the Type field specifies a valid table type other than an Collection table, the ITS discards
any writes to the level 2 table.

. If the Type field specifies the Collection table, and ICID is greater than or equal to the number
indicated by GITS TYPER.HCC, the ITS discards any writes to the level 2 table.

The format of the level 2 table is IMPLEMENTATION DEFINED.
Behavior is UNPREDICTABLE if:

. Memory that is used for the level 2 tables does not contain zeros at the time of the new
allocation for use by the ITS.

. Multiple level 1 table entries with Valid == 1 point to the same level 2 table.

Note

As part of restoring the state of the ITS from powerdown events, the registers that describe the table can point to
tables that were previously populated by the ITS, and so might contains values other than zeros. The details of power
management of the ITS are IMPLEMENTATION DEFINED. See /TS power management on page 6-148.

Figure 6-4 on page 6-101 shows how these tables are used in the translation process.
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Figure 6-4 ITS tables

When GITS CTLR.Enabled is written from 0 to 1 behavior is UNPREDICTABLE if any of the following conditions
are true:

. GITS_CBASER.Valid == 0.
. GITS BASER<n>.Valid == 0, for any GITS BASER<n> register where the Type field indicates Device.

. GITS_BASER<n>.Valid == 0, for any GITS BASER<n> register where the Type field indicates collection
and GITS_TYPER.HCC == 0.

. In GICv4, GITS_BASER<n>.Valid == 0, for any GITS BASER<n> register where the Type field indicates
a vPE.

Software access to the private ITS tables.

If GITS BASER<n>.Indirect == 0, behavior is UNPREDICTABLE if memory that is used for the ITS tables does not
contain all zeros when first allocated to the ITS.

If GITS BASER<n>.Indirect == 1, behavior is UNPREDICTABLE if memory that is used for a level 2 table does not
contain all zeros when it is first allocated for use by the ITS.

When GITS _CTLR.Enabled == 0 and GITS_CTLR.Quiescent == 1:
. An implementation will not access the tables that are pointed to by any of the GITS BASER<n> registers.
When GITS CTLR.Enabled == 1 or GITS CTLR.Quiescent == 0:

. An implementation will not access a table that is pointed to by any GITS BASER<n> register for which
GITS BASER<n>.Valid == 0.

. For a table that is pointed to by a GITS BASER<n> register for which GITS BASER<n>.Valid == 1 and
GITS BASER<n>.Indirect == 0, behavior is UNPREDICTABLE if the table is written by software.

. For a table that is pointed to by a GITS BASER<n> register for which GITS BASER<n>.Valid == 1 and
GITS BASER<n>.Indirect == 1:
—  Behavior is UNPREDICTABLE if any of the level 2 table entries are written by software.
—  AnITS will not cache any entry in the level 1 table where the valid bit is cleared to 0.

—  Behavior is UNPREDICTABLE if any level 1 table entry where the valid bit set to 1 is written by software.
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—  Awrite to alevel 1 table entry that changes the valid bit from 0 to 1 must be globally visible before
software adds a command to the ITS command queue that relies on that entry. Otherwise it is
UNKNOWN if the command will succeed or if it will be ignored.

6.2.2 Interrupt collections

In GICv3, the ITS considers all physical LPIs that it generates to be members of collections. The data that is
associated with a collection can be held in the ITS, in external memory, or in both. The ITS supports collections that
are held in memory if any of the GITS BASER<n>.Type == 0b100:

. When the ITS supports collections that are held in memory, the total number of collections that is supported
is determined by the memory allocated by software:

—  If GITS BASER<n>.Indirect == 0, the number of collections supported in memory can be calculated
using the following formula:
((number of pages * page size) / entry size)
The relevant values for this formula are indicated in GITS BASER<n>.Size,
GITS BASER<n>PageSize, and GITS BASER<n>.EntrySize.
—  IfGITS_BASER<n>.Indirect == 1, the number of collections supported in memory can be calculated
using the following formula:
(((number of pages in level 1 table * page size) /8) * (page size/entry size)).
The relevant values for this formula are indicated in GITS BASER<n>.Size,
GITS_BASER<n>.PageSize, and GITS BASER<n>.EntrySize.
Note

Indirect tables allow sparse allocations, so not all ICIDs in the supported range might be usable.

. Where collections are held in both the ITS and external memory, the total number of collections is indicated
by GITS_TYPER.CCT.

When GITS TYPER.HCC!=0:
. Collections with identifiers in the range {0... GITS TYPER.HCC-1} are held in the ITS.

. Collections with identifiers in the range greater than that indicated in GITS TYPER.HCC are held in external
memory, if this is supported.

When GITS_TYPER.HCC ==0:
. The ITS must support collections in external memory, and all collections are held in external memory.

The maximum number of collections that are supported is limited by the size of the ICID:
. If GITS_TYPER.CIL == 0, the ICID is 16 bits.
. If GITS TYPER.CIL == 1, the ICID is reported by GITS TYPER.CIDbits.

6.2.3 The Device table

The Device table provides a table of Device table entries (DTEs). Each DTE describes a mapping between a
DevicelD and an ITT base address that points to the memory that the ITS can use to store the translations for the
EventID. The ITS uses the ITT to store the translations for every EventID for the specified DeviceID. The DevicelD
is a unique identifier assigned to each device that can create a range of EventIDs. For example, ARM expects that
the 16-bit Requester ID from a PCle Root Complex is presented to an ITS as a DevicelD.

The DevicelD provides the index value for the table.
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Table 6-2 shows an example of the number of bits that might be assigned to each DTE.

Table 6-2 DTE entries

Number of bits Assignment Notes

1 Valid Boolean
40 ITT Address Base physical address
5 ITT Range Log2 (number of EventIDs supported by the ITT minus one)

6.2.4 The Interrupt translation table

An Interrupt translation table (ITT) is specific to each device that can create numbered events. Each entry inan ITT
is referred to as an Interrupt translation entries (ITEs).

In GICv3, ITEs are only defined for physical interrupts

In GICv4, ITEs are defined for physical interrupts and for virtual interrupts, and provide a distinction between:
. An entry for a physical LPI and the use of an ICT for routing information.
. An entry for a virtual LPI and the use of a vPE table.

An ITT must be assigned a contiguous physical address space starting at ITT Address. The size is 2(DTE.ITT
Range + 1)* GITS TYPER.ITT entry_size.

Behavior is UNPREDICTABLE if the memory does not contain all zeros at the time of new allocation for use by the
ITS.

If multiple ITTs overlap in memory, behavior is UNPREDICTABLE.
ITS accesses to an ITT use the same Shareability and Cacheability attributes that are specified for the Device table.

For physical interrupts, each ITE describes the mapping between the input EventID and:
. The output physical INTID (pINTID) that is sent to the target PE.

. The ICID that identifies an entry in the Collection table, that determines the target PE for the LPI. For more
information about the Collection table, see The Collection table on page 6-104.

For virtual interrupts, each ITE describes the mapping of the EventID as outlined in the preceding list, and:
. The output virtual INTID (VINTID) that is sent to the target vPE.

. The virtual PE number (VPEID) that identifies an entry in the VPE table to determine the current host
Redistributor. For more information about the vPE table, see The vPE table on page 6-104.

. A physical LPI that is sent to a physical PE if a virtual interrupt is translated when the target vPE is not
currently scheduled on a physical PE.

The EventID provides the index value for the table.

Table 6-3 shows an example of the number of bits that might be stored in an ITE.

Table 6-3 ITE entries

Number of bits Assignment Notes

1 Valid Boolean

1 Interrupt_Type Boolean, indicates whether the interrupt is physical or virtual
Size of the LPI Interrupt Number pINTID or VINTID depending on the interrupt type

number space?
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6.2.5

Table 6-3 ITE entries (continued)

Number of bits Assignment Notes

Size of the LPI Interrupt Number In GICv4 pINTID is used as a doorbell. In GICv3, and in

number space? HypervisorID GICv4 when a doorbell is not required, the programmed value
is 1023.

16 ICID Interrupt Collection ID, for physical interrupts only.

16 vPEID vPE ID, for virtual interrupt only.

a. For information about the size of the LPI number space, see /NT/Ds on page 2-31

The Collection table

The Collection table (CT) provides a table of Collection table entries (CTEs). For physical LPIs only, each CTE
describes a mapping between:

. The ICID generated by the ITT.
. The address of the target Redistributor in the format defined by GITS TYPER.PTA.

There is a single CT for each ITS, which can be held in registers or in memory, or in a combination of the two. See
GITS BASER<n>.Type and GITS TYPER.HCC for more information.

The TableID provides the index value for the table. It is derived from ICID.

Table 6-4 shows an example of the number of bits that might be assigned to each CT.

Table 6-4 CT entries
Number of bits Assignment Notes
1 Valid Boolean
Size of RDbase RDbase The GIC supports two formats for RDbase, see RDbase
identifier
6.2.6 The vPE table
The VPE table consists of VPE table entries that provide a mapping from the vPEID generated by the ITS to:
. The target Redistributor, in the format defined by GITS TYPER.PTA.
. The base address of the virtual LPI Pending table associated with the target vPE.
An area of memory defined by GITS BASER<n> holds the vPE table and indicates the size of each entry in the
table.
The vPE table describes all the vPEs associated with an ITS. Table 6-5 on page 6-105 shows an example of the
number of bits that an implementation might store in a VPE table.
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The 16-bit vPEID provides the index value for the table.

Table 6-5 vPE table entries

Number of

bits Assignment Notes

1 Valid Boolean

Size of RDbase The GIC supports two formats for RDbase.

RDbase

identifier

Size of VPT addr VPT _addr locates the LPI Pending table when the VM is not

address resident in the Redistributor. It is used as the address in
GICR_VPENDBASER when the vPE is scheduled in the
GICR_* registers associated with RDbase.

5 Size The size of the VINTID range supported (minus one).

6.2.7 Control and configuration of the ITS

An ITS is controlled and configured using a memory-mapped interface where:

The version can be read from GITS_IIDR and from GITS PIDR2.
GITS_TYPER specifies the features that are supported by an ITS.
GITS_CTLR controls the operation of an ITS.

GITS_TRANSLATER receives EventID information. It is IMPLEMENTATION DEFINED how the DevicelD is
supplied. See /TS commands on page 6-108 for more details.

GITS_BASER<n> registers provide information about the type, size and access attributes for the architected
ITS memory structures.

GITS_CBASER, GITS CREADR, and GITS CWRITER store address information for the ITS command
queue interface.

There is an enable bit for each ITS, GITS CTLR.Enabled.

6.2.8 The ITS command interface

Figure 6-5 on page 6-106 shows how the ITS provides the base address and the size that are used by the ITS
command queue.
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GITS_CBASER
- P Base address and
- size of command
queue
GITS_CREADR
Command 1 < Next command to be
processed by the ITS
Command 2
Command 3
_ P GITS_CWRITER
B Next empty location
Figure 6-5 The ITS command queue
GITS_CBASER, GITS CREADR, and GITS_CWRITER define the ITS command queue.
. GITS_CBASER uses the following fields:
—  Valid. This field indicates the allocation of memory for the ITS command queue.
—  Cacheability. This field indicates the cacheability attributes of accesses to the ITS command queue.
—  Shareability. This field indicates the Shareability attributes of accesses to the ITS command queue.
—  Physical address. This field provides the base physical address of the memory containing the ITS
command queue.
—  Size. This field indicates the number of 4KB pages of physical memory for the ITS command queue.
. GITS_CREADR specifies the base address offset from which an ITS reads the next command to execute.
. GITS_CWRITER specifies the base address offset of the next free entry to which software writes the next
command.
The size of an ITS command queue entry is 32 bytes. This means that there is support for 128 entries in each 4KB
page.
The ITS command queue uses a little endian memory order model.
In the ITS command queue:
. The base address is always aligned to 64KB.
. Size is expressed as a multiple of 4KB.
. The address at which the queue wraps is always aligned to 4KB, and is (base address + (Size * 4KB)).
Note
All addresses are Non-secure physical addresses.
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When the first command is complete, the ITS starts to process the next command. The read pointer,
GITS_CREADR, advances as the ITS processes commands. If GITS CREADR reaches the top of the memory
specified in GITS CBASER then the pointer wraps back to the base address specified in GITS CBASER.
GITS_CWRITER is controlled by software.

The ITS command queue is empty when GITS CWRITER and GITS CREADR specify the same base address
offset value.

The ITS command queue is full when GITS CWRITER points to an address 32 bytes behind GITS CREADR in
the buffer.

When GITS CREADR.Stalled == 1 no subsequent commands are processed.

The INT ITS command generates an interrupt on execution, and this can generate an interrupt on completion of a
particular sequence of commands, see /7S commands on page 6-108.

6.2.9 Ordering of translations with the output to ITS commands

Each command queue entry appears to be executed atomically so that a translation request either sees the state of
the ITS before a command or the state of the ITS after the command.

A translation request initiated after a SYNC or VSYNC command has completed is translated using an ITS state
that is consistent with the state after the command is performed.

In the absence of a SYNC or VSYNC command the ordering of ITS commands and translation requests is not
defined by the architecture.

6.2.10 Restrictions for INTID mapping rules

The behavior of the GIC is UNPREDICTABLE if software:

. Maps multiple EventID-DevicelD combinations to the same physical LPI INTID.

. Assigns doorbell interrupts with the same physical LPI INTID to different physical PEs. This applies to
GICv4 only.

. Maps an EventID-DevicelD combination and a doorbell interrupt to the same physical LPI INTID, unless
they target the same physical PE. This applies to GICv4 only.

. Maps multiple EventID-DevicelD combinations to the same virtual LPI INTID-vPEID. This applies to
GICv4 only.

Note
Conceptually the restriction is that software should not map multiple EventID-DevicelD combinations to the same
vLPI within a given virtual machine. However, the ITS has no awareness of which vPEs belong to the same virtual
machine.
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6.3 ITS commands

Table 6-6 provides a summary of all ITS commands.

Table 6-6 ITS commands

Command Command arguments Description

CLEAR DeviceID, EventID Translates the event defined by EventID and DeviceID into an ICID and
pINTID, and instruct the appropriate Redistributor to remove the pending
state.

DISCARD DevicelID, EventID Translates the event defined by EventID and DevicelID and instructs the
appropriate Redistributor to remove the pending state of the interrupt. It
also ensures that any caching in the Redistributors associated with a
specific EventID is consistent with the configuration held in memory.
DISCARD removes the mapping of the DeviceID and EventID from the ITT,
and ensures that incoming requests with a particular EventID are silently
discarded.

INT DeviceID, EventID Translates the event defined by EventID and DeviceID into an ICID and
pINTID, and instruct the appropriate Redistributor to set the interrupt
pending.

INV DevicelID, EventID Specifies that the ITS must ensure that any caching in the Redistributors
associated with the specified EventID is consistent with the LPI
Configuration tables held in memory.

INVALL ICID Specifies that the ITS must ensure any caching associated with the
interrupt collection defined by ICID is consistent with the LPI
Configuration tables held in memory for all Redistributors.

MAPC ICID, RDbase Maps the Collection table entry defined by ICID to the target
Redistributor, defined by RDbase.

MAPD DeviceID, ITT_addr, Size Maps the Device table entry associated with DevicelD to its associated
ITT, defined by ITT_addr and Size.

MAPI DeviceID, EventID, ICID Maps the event defined by EventID and DevicelD into an ITT entry with
ICID and pINTID = EventID.

Note
. pINTID >0x2000 for a valid LPI INTID.
. This is equivalent to MAPTI DeviceID, EventID, EventID, ICID

MAPTI? DeviceID, EventID, pINTID, ICID Maps the event defined by EventID and DevicelD to its associated ITE,
defined by ICID and pINTID in the ITT associated with DevicelD.

Note
pINTID >0x2000 for a valid LPI INTID.

MOVALL RDbasel, RDbase2 Instructs the Redistributor specified by RDbasel to move all of its
interrupts to the Redistributor specified by RDbase2.

MOVI DeviceID, EventID, ICID Updates the ICID field in the ITT entry for the event defined by DeviceID
and EventID. It also translates the event defined by EventID and DeviceID
into an ICID and pINTID, and instructs the appropriate Redistributor to
move the pending state, if it is set, of the interrupt to the Redistributor
defined by the new ICID, and to update the ITE associated with the event
to use the new ICID.
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Table 6-6 ITS commands (continued)

Command

Command arguments

Description

SYNC

RDbase

Ensures all outstanding ITS operations associated with physical
interrupts for the Redistributor specified by RDbase are globally observed
before any further ITS commands are executed. Following the execution
of'a SYNC the effects of all previous commands must apply to
subsequent writes to GITS TRANSLATER. See Ordering of
translations with the output to ITS commands on page 6-107 for more
information.

VINVALLD

VPEID

Ensures any cached Redistributor information associated with vPEID is
consistent with the associated LPI Configuration tables held in memory.

VMAPIb

VMAPPb

VMAPTIbe

VMOVIb

DevicelID, EventID, Dbell_pINTID,
vPEID

vPEID, RDbase, VPT_addr, VPT_size

DevicelID, EventID, VINTID,
Dbe11_pINTID, VvPEID

DeviceID, EventID, vPEID

Maps the event defined by DeviceID and EventID into an ITT entry with
VPEID, VINTID=EventID, and Dbel11_PINTID, a doorbell provision.
Note
. VINTID >0x2000 for a valid LPI INTID.
. This is equivalent to VMAPTI DeviceID, EventID,EventID, pINTID,
VPEID
. Dbe11_pINTID must be either 1023 or Dbel1_pINTID >0x2000 for a
valid LPT INTID.

Maps the vPE table entry defined by vPEID to the target RDbase, including
an associated virtual LPI Pending table (VPT_addr, VPT_size).

Maps the event defined by DeviceID and EventID into an ITT entry with
vPEID and VINTID, and Dbe11_pINTID, a doorbell provision.

Note
. VINTID >0x2000 for a valid LPI INTID.

. Dbe11_pINTID must be either 1023 or Dbe11_pINTID >0x2000 for a
valid LPI INTID.

Updates the vPEID field in the ITT entry for the event defined by DeviceID
and EventID. Translates the event defined by EventID and DeviceID into a
VPEID and pINTID, and instructs the appropriate Redistributor to move the
pending state, if it is set, of the interrupt to the Redistributor defined by
the new vPEID, and updates the ITE associated with the event to use the
new VPEID.

VMOVP?

VSYNCb

vPEID, RDbase, SequenceNumber,
ITSList

VPEID

Updates the vPE table entry defined by vPEID to the target Redistributor
specified by RDbase. Software must use SequenceNumber and ITSList to
synchronize the execution of VMOVP commands across more than one
ITS.

Ensures all outstanding ITS operations for the vPEID specified are
globally observed before any further ITS commands are executed.
Following the execution of a VSYNC the effects of all previous
commands must apply to subsequent writes to GITS TRANSLATER.

a. This command was previously called MAPVI.

b. This command exists in GICv4 only.

c. This command was previously called VMAPVL.

The number of bits of EventID and DeviceID that an implementation supports are discoverable from GITS TYPER.
Unimplemented bits are RESO.
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6.3.1

Note

. The INTID of an LPI is in the range of 8192 - maximum number. The maximum number is IMPLEMENTATION
DEFINED. See INTIDs on page 2-31.

. The following argument names have been changed from those used in preliminary information associated
with this GIC specification:

Device has been changed to DevicelD.

ID has been changed to EventID.

pID has been changed to pINTID.

vID has been changed to vINTID.

pCID has been changed to ICID.

target address has been changed to RDbase.
VCPU has been changed to vPE.

. The format of the collection target address, RDbase, is indicated by GITS TYPER.PTA.

IMPLEMENTATION DEFINED sizes in ITS command parameters

Some ITS commands include the following types of parameter that have an IMPLEMENTATION DEFINED size:

DevicelDs

EventID

ICID

pINTID

RDbase

vINTID

vPEID

The maximum number of Device identifiers supported by the associated Device table is determined
by the number of bits available, as specified by GITS TYPER.Devbits.

EventID is limited by the maximum MAPD Size field, which is limited by GITS TYPER.ID_bits.

The number of collections supported is IMPLEMENTATION DEFINED:

. For implementations that do not support Collection tables in external memory,
GITS TYPER.HCC indicates the number of collections.

. For implementations that do support Collection tables in external memory, the number of
supported collections is limited by the size of the allocated collection table:

—  The total number of collections supported is calculated as follows:
GITS TYPER.HCC + (Size of collection table / Entry size)

When GITS TYPER.CIL == 1, the maximum number of collections is limited by
GITS_TYPER.CIDbits.

pINTID is limited by GICR_PROPBASER.IDbits, which is limited by GICD TYPER.IDbits. This
also applies to Dbe11_pINTID.

RDbase is associated with a Redistributor and is specified in one of two formats:
. The base physical address of RD_base when GITS TYPER.PTA == 1.
Note

Addresses can be up to 52 bits in size and must be 64KB aligned. The RDbase field consists
of bits[51:16] of the address.

. A PE number, as indicated in GICR_TYPER.Processor Number when GITS TYPER.PTA

VINTID can be limited by GICR_VPROPBASER.IDbits, which is limited by
GICD_TYPER.IDbits.

vPEID is limited by the size of the VPE table.
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6.3.2 Command errors

6.3.3 CLEAR

If the ITS detects an error in the data provided to a command, the resulting behavior is a CONSTRAINED
UNPREDICTABLE choice of:

. Ignoring the command:
—  No action is performed that alters the handling of interrupts.
—  GITS_CREADR is incremented to point to the next command, wrapping if necessary.
—  IfGITS _TYPER.SEIS is set to 1, a System error is generated.

Note
It is IMPLEMENTATION DEFINED how the System error is recorded and how it is reported to the PE.

. Stalling the ITS command queue:
—  GITS_CREADR is not incremented and continues to point to the entry that triggered the error.
—  GITS_CREADR:.Stalled is set to 1.
—  Software can restart the processing of commands by writing 1 to GITS CWRITER.Retry.
—  IfGITS _TYPER.SEIS is set to 1, a System error is generated.

Note
It is IMPLEMENTATION DEFINED how the system error is recorded and how it is reported to the PE.

. Treating the data as valid data:

—  The data that generated the error or errors is treated as having a legal value, and the command is
processed accordingly.

—  GITS_CREADR is incremented to point to the next command, wrapping if necessary.
—  IfGITS _TYPER.SEIS is set to 1 a System error is generated.
Note
It is IMPLEMENTATION DEFINED how the System error is recorded and how it is reported to the PE.

See ITS command error encodings on page 6-145 for more information.

This command translates the event defined by EventID and DeviceID into an ICID and pINTID, and instructs the
appropriate Redistributor to remove the pending state.

Figure 6-6 shows the format of the CLEAR command.

63 32 31 87 0 DW
DevicelD RESO 0x04 0

RESO EventID 1

RESO 2

RESO 3

Figure 6-6 CLEAR command format

In Figure 6-6:

. EventID identifies the interrupt, associated with a device, for which the pending state is to be cleared.
. DeviceID specifies the requesting device.

. DW is the doubleword offset within a 32 byte, or four doubleword, ITS command packet.

The command and its arguments are:

CLEAR DevicelID, EventID
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A command error occurs if any of the following apply:
. DeviceID exceeds the maximum value supported by the ITS.
. The device specified by DevicelD is not mapped to an Interrupt translation table, using MAPD.

. EventID exceeds the maximum value allowed by the ITT. This value is specified by the Size field when the
MAPD command is issued.

. The EventID for the device is not mapped to a collection, using MAPI or MAPTI.
. The EventID for the device is mapped to a collection that has not been mapped to an RDbase using MAPC.

In this case, the ITS must take the actions described in Command errors on page 6-111.
The following pseudocode describes the operation of the CLEAR command:

// ITS.CLEAR

ITS.CLEAR(ITSCommand cmd)
if DeviceOutOfRange(cmd.DeviceID) then
if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError CLEAR_DEVICE_OOR”;
UNPREDICTABLE;

dte = ReadDeviceTable(UInt(cmd.DeviceID));

if !dte.valid then
if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError CLEAR_UNMAPPED_DEVICE”;
UNPREDICTABLE;

if IdOutOfRange(cmd.EventID, dte.ITT_size) then
if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError CLEAR_ID_OOR”;
UNPREDICTABLE;

InterruptTableEntry ite = ReadTranslationTable(dte.ITT_base, UInt(cmd.EventID));

if lite.Valid then
if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError CLEAR_UNMAPPED_INTERRUPT”;
UNPREDICTABLE;

success = ClearPendingState(ite);

if !success then
if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError CLEAR_ITE_INVALID”;
UNPREDICTABLE;

IncrementReadPointer();
return;

6.3.4 DISCARD

This command translates the event defined by EventID and DeviceID and instructs the appropriate Redistributor to
remove the pending state of the interrupt. It also ensures that any caching in the Redistributors associated with a
specific EventID is consistent with the configuration held in memory. DISCARD removes the mapping of the DeviceID
and EventID from the ITT, and ensures that incoming requests with a particular EventID are silently discarded.

Figure 6-7 shows the format of the DISCARD command.

63 32 31 8 7 0 DW
DevicelD RESO O0xOF 0
RESO EventlD 1
RESO 2
RESO 3

Figure 6-7 DISCARD command format

6-112 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617
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6.3 ITS commands

In Figure 6-7 on page 6-112:

EventID identifies the interrupt, associated with a device, that is to be discarded.
DeviceID specifies the requesting device.
DW is the doubleword offset within a 32 byte, or four doubleword, ITS command packet.

The command and its arguments are:

DISCARD DeviceID, EventID

A command error occurs if any of the following apply:

DeviceID exceeds the maximum value supported by the ITS.

The device specified by DevicelID is not mapped to an ITT, using MAPD.

EventID exceeds the maximum value allowed by the ITT. This value is specified by the Size field when the

MAPD command is issued.

The EventID for the device is not mapped to a collection, using MAPI or MAPTI.

The EventID for the device is mapped to a collection that has not been mapped to an RDbase using MAPC.

In this case, the ITS must take the actions described in Command errors on page 6-111.

The following pseudocode describes the operation of the DISCARD command:

// ITS.DISCARD

//

ITS.DISCARD(ITSCommand cmd)

if DeviceOutOfRange(cmd.DeviceID) then
if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError DISCARD_DEVICE_OOR”;
UNPREDICTABLE;

DeviceTableEntry dte = ReadDeviceTable(UInt(cmd.DeviceID));

if !dte.vValid then
if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError DISCARD_UNMAPPED_DEVICE”;
UNPREDICTABLE;

if IdOutOfRange(cmd.EventID, dte.ITT_size) then
if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError DISCARD_ID_OOR”;
UNPREDICTABLE;

InterruptTableEntry ite = ReadTranslationTable(dte.ITT_base, UInt(cmd.EventID));
if ite.valid then
success = ClearPendingState(ite);
if !success then
if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError DISCARD_ITE_INVALID”;
UNPREDICTABLE;
else

if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError DISCARD_UNMAPPED_INTERRUPT”;

UNPREDICTABLE;
ite.Valid = FALSE;
WriteTranslationTable(dte.ITT_base, UInt(cmd.EventID), ite);

IncrementReadPointer();
return;

6.3.5 INT
This command translates the event defined by EventID and DeviceID into an ICID and pINTID, and instructs the
appropriate Redistributor to set the interrupt pending.
Figure 6-8 on page 6-114 shows the format of the INT command.

ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 6-113

ID072617

Non-Confidential
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6.3 ITS commands

63 32 31 8 7 0 DW
DevicelD RESO 0x03

RESO EventID
RESO
RESO

w|IN|~|O

Figure 6-8 INT command format

In Figure 6-8:

. EventID identifies an interrupt source associated with a device. The ITS then translates this into an LPI
INTID.

. DevicelID specifies the requesting device.
. DW is the doubleword offset within a 32 byte, or four doubleword, ITS command packet.

The command and its arguments are:
INT DeviceID, EventID

A command error occurs if any of the following apply:
. DeviceID exceeds the maximum value supported by the ITS.
. The device specified by DeviceID is not mapped to an ITT, using MAPD.

. EventID exceeds the maximum value allowed by the ITT. This value is specified by the Size field when the
MAPD command is issued.

. EventID is not mapped to a collection, using MAPI or MAPTI.
. The EventID for the device is mapped to a collection that has not been mapped to an RDbase using MAPC.

In this case, the ITS must take the actions described in Command errors on page 6-111.
The following pseudocode describes the operation of the INT command:

// ITS.INT

ITS.INT(ITSCommand cmd)
if DeviceOutOfRange(cmd.DeviceID) then
if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError INT_DEVICE_OOR”;
UNPREDICTABLE;

DeviceTableEntry dte = ReadDeviceTable(UInt(cmd.DeviceID));

if !dte.vValid then
if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SEr