
ARM® Generic Interrupt Controller
Architecture Specification

GIC architecture version 3.0 and version 4.0
Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved.
ARM IHI 0069D (ID072617)

ARM Generic Interrupt Controller Architecture Specification

GIC architecture version 3.0 and version 4.0

Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved.

Release Information

The following changes have been made to this document.

Some of the information in this specification was previously published in ARM® Generic Interrupt Controller, Architecture
version 2.0, Architecture Specification.

Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information contained
in this document may be protected by one or more patents or pending patent applications. No part of this document may be
reproduced in any form by any means without the express prior written permission of ARM Limited (“ARM”). No license,
express or implied, by estoppel or otherwise to any intellectual property rights is granted by this document unless
specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use
the information for the purposes of determining whether implementations infringe any patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR
PURPOSE WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, ARM makes no representation with respect to,
and has undertaken no analysis to identify or understand the scope and content of, third party patents, copyrights, trade secrets, or
other rights.

This document may include technical inaccuracies or typographical errors.

This document may be translated into other languages for convenience, and you agree that if there is any conflict between the
English version of this document and any translation, the terms of the English version shall prevail.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING
OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure
of this document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof
is not exported, directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to ARM’s customers
is not intended to create or refer to any partnership relationship with any other company. ARM may make changes to this document
at any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any signed written agreement specifically
covering this document with ARM, then the signed written agreement prevails over and supersedes the conflicting provisions of
these terms.

Words and logos marked with ® or ™ are registered trademarks or trademarks of ARM Limited or its affiliates in the EU and/or
elsewhere. All rights reserved. Other brands and names mentioned in this document may be the trademarks of their respective
owners. You must follow the ARM trademark usage guidelines http://www.arm.com/about/trademark-usage-guidelines.php.

Change History

Date Issue Confidentiality Change

June 2015 A Non-confidential First release of GICv3 and GICv4 issue A

December 2015 B Non-confidential First release of GICv3 and GICv4 issue B

July 2016 C Non-confidential First release of GICv3 and GICv4 issue C

August 2017 D Non-confidential First release of GICv3 and GICv4 issue D
ii Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM Limited. Company 02557590
registered in England.
110 Fulbourn Road, Cambridge, England CB1 9NJ.

LES-PRE-20327

In this document, where the term ARM is used to refer to the company it means “ARM or any of its subsidiaries as appropriate”.

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license restrictions in
accordance with the terms of the agreement entered into by ARM and the party that ARM delivered this document to.

Product Status

The information in this document is final, that is for a developed product.

Web Address

http://www.arm.com
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. iii
ID072617 Non-Confidential

iv Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

Contents
ARM Generic Interrupt Controller Architecture
Specification GIC architecture version 3.0 and
version 4.0

Preface
About this specification ... x
Using this specification ... xi
Conventions ... xii
Additional reading ... xiii
Feedback .. xiv

Chapter 1 Introduction
1.1 About the Generic Interrupt Controller (GIC) .. 1-16
1.2 Terminology ... 1-19
1.3 Supported configurations and compatibility .. 1-23

Chapter 2 Distribution and Routing of Interrupts
2.1 The Distributor and Redistributors .. 2-30
2.2 INTIDs .. 2-31
2.3 Affinity routing .. 2-35

Chapter 3 GIC Partitioning
3.1 The GIC logical components .. 3-38
3.2 Interrupt bypass support .. 3-43

Chapter 4 Physical Interrupt Handling and Prioritization
4.1 Interrupt lifecycle .. 4-46
4.2 Locality-specific Peripheral Interrupts .. 4-53
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. v
ID072617 Non-Confidential

4.3 Private Peripheral Interrupts .. 4-54
4.4 Software Generated Interrupts ... 4-55
4.5 Shared Peripheral Interrupts .. 4-56
4.6 Interrupt grouping ... 4-58
4.7 Enabling the distribution of interrupts ... 4-63
4.8 Interrupt prioritization ... 4-65

Chapter 5 Virtual Interrupt Handling and Prioritization
5.1 About GIC support for virtualization ... 5-78
5.2 Operation overview .. 5-79
5.3 Configuration and control of VMs ... 5-83
5.4 Virtual LPI support .. 5-86
5.5 Pseudocode ... 5-88

Chapter 6 Locality-specific Peripheral Interrupts and the ITS
6.1 LPIs .. 6-92
6.2 The ITS ... 6-99
6.3 ITS commands ... 6-108
6.4 Common ITS pseudocode functions .. 6-136
6.5 ITS command error encodings ... 6-145
6.6 ITS power management ... 6-148

Chapter 7 Power Management
7.1 Power management ... 7-150

Chapter 8 Programmers’ Model
8.1 About the programmers’ model .. 8-152
8.2 AArch64 System register descriptions ... 8-177
8.3 AArch64 System register descriptions of the virtual registers 8-246
8.4 AArch64 virtualization control System registers ... 8-281
8.5 AArch32 System register descriptions ... 8-309
8.6 AArch32 System register descriptions of the virtual registers 8-386
8.7 AArch32 virtualization control System registers ... 8-424
8.8 The GIC Distributor register map ... 8-454
8.9 The GIC Distributor register descriptions ... 8-456
8.10 The GIC Redistributor register map ... 8-511
8.11 The GIC Redistributor register descriptions ... 8-514
8.12 The GIC CPU interface register map ... 8-573
8.13 The GIC CPU interface register descriptions ... 8-574
8.14 The GIC virtual CPU interface register map ... 8-612
8.15 The GIC virtual CPU interface register descriptions ... 8-614
8.16 The GIC virtual interface control register map .. 8-646
8.17 The GIC virtual interface control register descriptions ... 8-647
8.18 The ITS register map ... 8-669
8.19 The ITS register descriptions ... 8-670
8.20 Pseudocode ... 8-691

Chapter 9 System Error Reporting
9.1 About System Error reporting ... 9-708

Chapter 10 Legacy Operation and Asymmetric Configurations
10.1 Legacy support of interrupts and asymmetric configurations 10-710
10.2 The asymmetric configuration .. 10-714
10.3 Support for legacy operation of VMs .. 10-715

Appendix A GIC Stream Protocol interface
A.1 Overview ... A-718
A.2 Signals and the GIC Stream Protocol ... A-719
vi Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

A.3 The GIC Stream Protocol .. A-722
A.4 Alphabetic list of command and response packet formats A-727

Appendix B Pseudocode Definition
B.1 About ARM pseudocode ... B-746
B.2 Data types ... B-747
B.3 Expressions ... B-751
B.4 Operators and built-in functions .. B-753
B.5 Statements and program structure .. B-758
B.6 Pseudocode terminology ... B-762
B.7 Miscellaneous helper procedures and support functions B-763

Glossary
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. vii
ID072617 Non-Confidential

viii Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

Preface

This preface introduces the ARM® Generic Interrupt ControllerArchitecture Specification. It contains the following
sections:
• About this specification on page x.
• Using this specification on page xi.
• Conventions on page xii.
• Additional reading on page xiii.
• Feedback on page xiv.
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ix
ID072617 Non-Confidential

 Preface
 About this specification
About this specification

This specification describes the ARM Generic Interrupt Controller (GIC) architecture. It defines version 3.0
(GICv3) and version 4.0 (GICv4) of the GIC architecture.

Throughout this document, references to the GIC or a GIC refer to a device that implements this GIC architecture.
Unless the context makes it clear that a reference is to an IMPLEMENTATION DEFINED feature of the device, these
references describe the requirements of this specification.

Intended audience

This specification is written for users who want to design, implement, or program the GIC in a range of
ARM-compliant implementations from simple uniprocessor implementations to complex multiprocessor systems.
It does not assume familiarity with previous version of the GIC.

The specification assumes that users have some experience of ARM products, and are familiar with the terminology
that describes the ARMv8 architecture. See the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A
architecture profile for more information.
x Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

 Preface
 Using this specification
Using this specification

This specification is organized into the following chapters:

Chapter 1 Introduction

Read this for an overview of the GIC, and information about the terminology used in this document.

Chapter 2 Distribution and Routing of Interrupts

Read this for information about how the GIC uses affinity routing to distribute interrupts.

Chapter 3 GIC Partitioning

Read this for an overview of the GIC partitioning and information about the GIC logical
components.

Chapter 4 Physical Interrupt Handling and Prioritization

Read this for information about how the GIC handles physical interrupts.

Chapter 5 Virtual Interrupt Handling and Prioritization

Read this for information about how the GIC handles virtual interrupts.

Chapter 6 Locality-specific Peripheral Interrupts and the ITS

Read this for a description of Locality-specific Peripheral Interrupts (LPIs) and use of the Interrupt
Translation Service (ITS).

Chapter 7 Power Management

Read this for information about GIC power management.

Chapter 8 Programmers’ Model

Read this for a description of the GIC register interfaces, and all GIC registers.

Chapter 9 System Error Reporting

Read this for information about GIC support for error reporting.

Chapter 10 Legacy Operation and Asymmetric Configurations
Read this for information about GIC support for legacy operation and asymmetric configurations.

Appendix A GIC Stream Protocol interface

Read this for a description of the AXI4-Stream protocol standard message-based interface that the
GIC Stream Protocol interface uses.

Appendix B Pseudocode Definition

Read this for a definition of the pseudocode that is used in this specification.

 Glossary
Read this for definitions of some of the terms used in this specification.
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. xi
ID072617 Non-Confidential

 Preface
 Conventions
Conventions

The following sections describe conventions that this book can use:
• Typographic conventions.
• Signals.
• Numbers.
• Pseudocode descriptions.

Typographic conventions

The typographical conventions are:

italic Introduces special terminology, and denotes citations.

bold Denotes signal names, and is used for terms in descriptive lists, where appropriate.

monospace Used for assembler syntax descriptions, pseudocode, and source code examples.

Also used in the main text for instruction mnemonics and for references to other items appearing in
assembler syntax descriptions, pseudocode, and source code examples.

SMALL CAPITALS

Used for a few terms that have specific technical meanings, and are included in the Glossary.

Colored text Indicates a link. This can be:

• A URL, for example http://infocenter.arm.com.

• A cross-reference, that includes the page number of the referenced information if it is not on
the current page, for example, About the Generic Interrupt Controller (GIC) on page 1-16.

• A link, to a chapter or appendix, or to a glossary entry, or to the section of the document that
defines the colored term, for example, Banked register or GICC_CTLR.

Signals

In general this specification does not define processor signals, but it does include some signal examples and
recommendations. The signal conventions are:

Signal level The level of an asserted signal depends on whether the signal is active-HIGH or
active-LOW. Asserted means:
• HIGH for active-HIGH signals
• LOW for active-LOW signals.

Lowercase n At the start or end of a signal name denotes an active-LOW signal.

Numbers

Numbers are normally written in decimal. Binary numbers are preceded by 0b, and hexadecimal numbers by 0x. In
both cases, the prefix and the associated value are written in a monospace font, for example 0xFFFF0000.

Pseudocode descriptions

This specification uses a form of pseudocode to provide precise descriptions of the specified functionality. This
pseudocode is written in a monospace font, and follows the conventions described in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile and the ARM® Architecture Reference Manual,
ARMv7-A and ARMv7-R edition.
xii Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

 Preface
 Additional reading
Additional reading

This section lists relevant publications from ARM and third parties.

See the Infocenter, http://infocenter.arm.com for access to ARM documentation.

ARM publications
• AMBA® 4 AXI4-Stream Protocol Specification (ARM IHI 0051).
• ARM® Architecture Reference Manual, ARMv7-A and ARMv7-R edition (ARM DDI 0406).
• ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile (ARM DDI 0487).
• ARM® Generic Interrupt Controller, Architecture version 2.0, Architecture Specification (ARM IHI 0048).
• ARM® CoreSight™ Architecture Specification v3.0 (ARM IHI 0029).
• ARM® Server Base System Architecture (SBSA) (ARM-DEN-0029).
• GICv3 and GICv4 Software Overview (DAI 0492).
• Application Note GIC Stream Protocol Interface (ARM-ECM-0495013).

Other publications

The following books are referred to in this manual, or provide more information:
• JEDEC Solid State Technology Association, Standard Manufacture’s Identification Code, JEP106.
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. xiii
ID072617 Non-Confidential

 Preface
 Feedback
Feedback

ARM welcomes feedback on its documentation.

Feedback on this manual

If you have comments on the content of this manual, send an e-mail to errata@arm.com. Provide:
• The title.
• The number, ARM IHI 0069D.
• The page numbers to which your comments apply.
• A concise explanation of your comments.

ARM also welcomes general suggestions for additions and improvements.
xiv Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

Chapter 1
Introduction

This chapter provides an introduction to the GIC architecture. It provides an overview of the GIC architecture, and
of the features that are new to the architecture. It also provides definitions of the terminology that is used throughout
this document. It contains the following sections:
• About the Generic Interrupt Controller (GIC) on page 1-16.
• Terminology on page 1-19.
• Supported configurations and compatibility on page 1-23.
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 1-15
ID072617 Non-Confidential

1 Introduction
1.1 About the Generic Interrupt Controller (GIC)
1.1 About the Generic Interrupt Controller (GIC)
The GICv3 architecture is designed to operate with ARMv8-A and ARMv8-R compliant processing elements, PEs.

The Generic Interrupt Controller (GIC) architecture defines:
• The architectural requirements for handling all interrupt sources for any PE connected to a GIC.
• A common interrupt controller programming interface applicable to uniprocessor or multiprocessor systems.

The GIC is an architected resource that supports and controls interrupts. It provides:

• Registers for managing interrupt sources, interrupt behavior, and the routing of interrupts to one or more PEs.

• Support for:
— The ARMv8 architecture.
— Locality-specific Peripheral Interrupts (LPIs).
— Private Peripheral Interrupts (PPIs).
— Software Generated Interrupts (SGIs).
— Shared Peripheral Interrupts (SPIs).
— Interrupt masking and prioritization.
— Uniprocessor and multiprocessor systems.
— Wakeup events in power management environments.

For each PE, the GIC architecture describes how IRQ and FIQ interrupts can be generated from different types of
interrupts within the system. The ARMv8-A Exception model then describes how the PE handles these IRQ and
FIQ interrupts.

Interrupt handling also depends on other aspects of the ARMv8 architecture, such as the Security state, and, for
Non-secure interrupts, support for virtualization. The ARM architecture provides two Security states, each with an
associated physical memory address space:
• Secure state.
• Non-secure state.

The GIC architecture supports the routing and handling of interrupts that are associated with both Security states.
See Interrupt grouping and security on page 4-58 for more information.

The GIC architecture supports the ARMv8-A model for handling virtual interrupts that are associated with a virtual
machine, VM. ARMv8-A supports virtualization in Non-secure state only. A virtualized system has:
• A hypervisor that must include a component executing at EL2, which is responsible for switching between

VMs.
• Several VMs executing at Non-secure EL1.
• Applications executing at Non-secure EL0 on a VM.

For more information about the ARMv8 architecture, see ARM® Architecture Reference Manual, ARMv8, for
ARMv8-A architecture profile. For more information about VMs, see About GIC support for virtualization on
page 5-78.

This specification defines version 3.0 (GICv3) and version 4.0 (GICv4) of the GIC architecture. Version 2.0
(GICv2) is only described in terms of the GICv3 optional support for legacy operation, see GICv3 with legacy
operation on page 1-26. For detailed information about the GICv2 architecture, see the ARM® Generic Interrupt
Controller, Architecture version 2.0, Architecture Specification.

Note
 Because GICv4 is an extension of GICv3, all references to GICv3 in this manual apply equally to GICv4, unless
explicitly indicated otherwise.
1-16 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

1 Introduction
1.1 About the Generic Interrupt Controller (GIC)
1.1.1 Changes to the GIC architecture from GICv2

GIC scalability

The GICv2 architecture only supports a maximum of eight PEs, and so has features that do not scale
to a large system. GICv3 addresses this by changing the mechanism by which interrupts are routed,
called affinity routing, and by introducing a new component to the interrupt distribution, called a
Redistributor. See Chapter 3 GIC Partitioning for more information.

Affinity routing for a Security state is enabled by setting GICD_CTLR.ARE_S or
GICD_CTLR.ARE_NS to 1.

Interrupt grouping

Interrupt grouping is the mechanism that is used by GICv3 to align interrupt handling with the
ARMv8 Exception model:
• Group 0 physical interrupts are expected to be handled at the highest implemented Exception

level.
• Secure Group 1 physical interrupts are expected to be handled at Secure EL1.
• Non-secure Group 1 physical interrupts are excepted to be handled at Non-secure EL2 in

systems using virtualization, or at Non-secure EL1 in systems not using virtualization.

These interrupt groups can be mapped onto the ARMv8 FIQ and IRQ signals as described in
Interrupt grouping on page 4-58, using configuration bits from the ARMv8 architecture and
configuration bits within the GICv3 architecture.

In GICv3, interrupt grouping supports:
• Configuring each interrupt as Group 0, Secure Group 1, or Non-secure Group 1.
• Signaling Group 0 physical interrupts to the target PE using the FIQ exception request.
• Signaling Group 1 physical interrupts to the target PE in a manner that allows them to be

handled using the IRQ handler in their own Security state. The exact handling of Group 1
interrupts depends on the current Exception level and Security state, as described in
Chapter 4 Physical Interrupt Handling and Prioritization.

• A unified scheme for handling the priority of Group 0 and Group 1 interrupts.

Interrupt Translation Service (ITS)

The Interrupt Translation Service, ITS, provides functionality that allows software to control how
interrupts that are forwarded to the ITS are translated into:
• Physical interrupts, in GICv3 and GICv4.
• Virtual interrupts, in GICv4 only.

The ITS also allows software to determine the target Redistributor for a translated interrupt.
Software can control the ITS through a command interface and associated table-based structures in
memory. The outputs of the Interrupt Translation Service (ITS) are always LPIs, which are a form
of message-based interrupt. See The ITS on page 6-99.

Locality-specific Peripheral Interrupts (LPIs)

LPIs are a new class of interrupt that significantly extends the interrupt ID space that the GIC can
handle. LPIs are optional, and, if implemented, can be generated and supported by an Interrupt
Translation Service, ITS. See LPIs on page 6-92.

Software Generated Interrupts (SGIs)

With the ability of GICv3 to support large-scale systems, the context of an SGI is modified and no
longer includes the identity of the source PE. See Software Generated Interrupts on page 4-55.

Note
 The original SGI format is only available in GIC implementations that support legacy operation.

Shared Peripheral Interrupts (SPIs)

A new set of registers in the Distributor are added to support the setting and clearing of
message-based SPIs. See Shared Peripheral Interrupts on page 4-56.
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 1-17
ID072617 Non-Confidential

1 Introduction
1.1 About the Generic Interrupt Controller (GIC)
System register interface

This interface uses System register instructions in an ARMv8-A or ARMv8-R PE to provide a
closely-coupled interface for the CPU interface registers. This interface is used for registers that are
associated directly with interrupt handling and priority masking to minimize access latency. For
virtualization, the registers that are accessed in this manner include both the registers that are
accessed by a VM interrupt handler, and the registers that forward virtual interrupts from a
hypervisor to a VM. All other registers are memory-mapped.

For AArch64 state, access to the System register interface is enabled by the following settings:
• ICC_SRE_EL1.SRE == 1.
• ICC_SRE_EL2.SRE == 1.
• ICC_SRE_EL3.SRE == 1.

For AArch32 state, access to the System register interface is enabled by the following settings:
• ICC_SRE.SRE == 1.
• ICC_HSRE.SRE == 1.
• ICC_MSRE.SRE == 1.

Other behavior, which is backwards compatible with GICv2, is described in Chapter 10 Legacy
Operation and Asymmetric Configurations.

Note
 In a GIC that supports legacy operation, memory-mapped access is available for all architected GIC

registers.

Unless indicated otherwise, this manual describes the GICv3 architecture in a system with affinity routing, System
register access, and two Security states, enabled. This means that:
• GICD_CTLR.ARE_NS == 1.
• GICD_CTLR.ARE_S == 1.
• GICD_CTLR.DS == 0.

For operation in AArch64 state:
• ICC_SRE_EL1.SRE == 1, for both the Secure and the Non-secure copy of this register.
• ICC_SRE_EL2.SRE == 1.
• ICC_SRE_EL3.SRE == 1.

For operation in AArch32 state:
• ICC_SRE.SRE == 1.
• ICC_HSRE.SRE == 1.
• ICC_MSRE.SRE == 1.

From GICv3 onwards, legacy operation with the ARE and SRE control bits set to 0 is deprecated. See Chapter 10
Legacy Operation and Asymmetric Configurations for more information about legacy operation.

Changes specific to GICv4

GICv4 adds support for the direct injection of virtual interrupts to a VM, without involving the hypervisor. Direct
injections are only supported by systems that implement at least one ITS that translates interrupts into LPIs.
1-18 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

1 Introduction
1.2 Terminology
1.2 Terminology
The architecture descriptions in this manual use the same terminology that is used for the ARMv8 architecture. For
more information about this terminology, see the introduction to Part A of the ARM® Architecture Reference
Manual, ARMv8, for ARMv8-A architecture profile.

In addition, the AArch64 System register names are used where appropriate, in preference to listing both the
AArch32 and AArch64 System register names. The ELx suffix on the AArch64 register name indicates the lowest
Exception level at which the register can be accessed. The individual AArch64 System register descriptions contain
a reference to the AArch32 System register that provides the same functionality.

The following sections define the architectural terms used in this manual:
• Interrupt types.
• Interrupt states on page 1-20.
• Models for handling interrupts on page 1-20.
• Additional terms on page 1-21.

1.2.1 Interrupt types

A device that implements the GIC architecture can control peripheral interrupts. Peripheral interrupts are typically
asserted by a physical signal to the GIC. The GIC architecture defines the following types of peripheral interrupt:

Locality-specific Peripheral Interrupt (LPI)

An LPI is a targeted peripheral interrupt that is routed to a specific PE within the affinity hierarchy:
• LPIs are always Non-secure Group 1 interrupts, in a system where two Security states are

enabled.
• LPIs have edge-triggered behavior.
• LPIs can be routed using an ITS.
• LPIs do not have an active state, and therefore do not require explicit deactivation.
• LPIs are always message-based interrupts.

See LPIs on page 6-92 for more information.

Private Peripheral Interrupt (PPI)

This is a peripheral interrupt that targets a single, specific PE, and different PEs can use the same
interrupt number to indicate different events:
• PPIs can be Group 0 interrupts, Secure Group 1 interrupts, or Non-secure Group 1 interrupts.
• PPIs can support either edge-triggered or level-sensitive behavior.
• PPIs are never routed using an ITS.
• PPIs have an active state and therefore require explicit deactivation.

Note
 Commonly, it is expected that PPIs are used by different instances of the same interrupt source on

each PE, thereby allowing a common interrupt number to be used for PE specific events, such as the
interrupts from a private timer.

Shared Peripheral Interrupt (SPI)

This is a peripheral interrupt that the Distributor can route to a specified PE that can handle the
interrupt, or to a PE that is one of a group of PEs in the system that has been configured to accept
this type of interrupt:
• SPIs can be Group 0 interrupts, Secure Group 1 interrupts, or Non-secure Group 1 interrupts.
• SPIs can support either edge-triggered or level-sensitive behavior.
• SPIs are never routed using an ITS.
• SPIs have an active state and therefore require explicit deactivation.

See Shared Peripheral Interrupts on page 4-56 for more information. For more information about
the Distributor, see Chapter 3 GIC Partitioning.
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 1-19
ID072617 Non-Confidential

1 Introduction
1.2 Terminology
Software Generated Interrupt (SGI)

SGIs are typically used for inter-processor communication, and are generated by a write to an SGI
register in the GIC:
• SGIs can be Group 0 interrupts, Secure Group 1 interrupts, or Non-secure Group 1 interrupts.
• SGIs have edge-triggered behavior.
• SGIs are never routed using an ITS.
• SGIs have an active state and therefore require explicit deactivation.

See Software Generated Interrupts on page 4-55 for more information.

An interrupt that is edge-triggered has the following property:

• It is asserted on detection of a rising edge of an interrupt signal and then, regardless of the state of the signal,
remains asserted until the interrupt is acknowledged by software.

For information about edge-triggered message-based interrupts, see Message-based interrupt.

An interrupt that is level-sensitive has the following properties:
• It is asserted whenever the interrupt signal level is active, and deasserted whenever the level is not active.
• It is explicitly deasserted by software.

1.2.2 Interrupt states

The following states apply at each interface between the GIC and a connected PE:

Inactive An interrupt that is not active or pending.

Pending An interrupt that is recognized as asserted in hardware, or generated by software, and is
waiting to be handled by the target PE.

Active An interrupt that has been acknowledged by a PE and is being handled, so that another
assertion of the same interrupt is not presented as an interrupt to a PE, until the initial
interrupt is no longer active.

LPIs do not have an active state, and transition to the inactive state on being acknowledged
by a PE.

Active and pending An interrupt that is active from one assertion of the interrupt, and is pending from a
subsequent assertion.

LPIs do not have an active and pending state, and transition to the inactive state on being
acknowledged by a PE.

The GIC maintains state for each supported interrupt. The state machine defines the possible transitions between
interrupt states, and, for each interrupt type, the conditions that cause a transition. See Interrupt handling state
machine on page 4-51 for more information.

1.2.3 Models for handling interrupts

In a multiprocessor implementation, the following models exist for handling interrupts:

Targeted distribution model

This model applies to all PPIs and to all LPIs. It also applies to:

• SPIs during non-legacy operation, if GICD_IROUTER<n>.Interrupt_Routing_Mode == 0.

• During legacy operation, when GICD_CTLR.ARE_* == 0, if only one bit in the appropriate
GICD_ITARGETSR<n> field == 1.

 A target PE that has been specified by software receives the interrupt.
1-20 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

1 Introduction
1.2 Terminology
Targeted list model

This model applies to SGIs only. Multiple PEs receive the interrupt independently. When a PE
acknowledges the interrupt, the interrupt pending state is cleared only for that PE. The interrupt
remains pending for each PE independently until it has been acknowledged by the PE.

1 of N model
This model applies to SPIs only. The interrupt is targeted at a specified set of PEs, and is taken on
only one PE in that set. The PE that takes the interrupt is selected in an IMPLEMENTATION DEFINED
manner. The architecture applies restrictions on which PEs can be selected, see Enabling the
distribution of interrupts on page 4-63.

Note
 • The ARM GIC architecture guarantees that a 1 of N interrupt is presented to only one PE

listed in the target PE set.

• A 1 of N interrupt might be presented to a PE where the interrupt is not the highest priority
interrupt, or where the interrupt is masked by ICC_PMR_EL1 or within the PE. See Interrupt
lifecycle on page 4-46.

For SPIs during legacy operation, this model applies when more than one target PE is specified in
the target registers.

The hardware implements a mechanism to determine which PE activates the interrupt, if more than
one PE can handle the interrupt.

1.2.4 Additional terms

The following additional terms are used throughout this manual:

Idle priority
In GICv3, the idle priority, 0xFF, is the running priority read from ICC_RPR_EL1 on the CPU
interface when no interrupts are active on that interface. During legacy operation, the idle priority,
as read from GICC_RPR, is IMPLEMENTATION DEFINED, as in GICv2.

Interrupt Identifier (INTID)
The number space that uniquely identifies an interrupt with an associated event and its source. The
interrupt is then routed to one or more PEs for handling. PPI and SGI interrupt numbers are local to
each PE. SPIs and LPIs have global interrupt numbers for the physical domain. See INTIDs on
page 2-31 for more information.

Interrupt Routing Infrastructure (IRI)
The Distributor, Redistributors and, optionally, one or more ITSs. See The GIC logical components
on page 3-38 for more information.

Message-based interrupt

A message-based interrupt is an interrupt that is asserted because of a memory write access to an
assigned address. Physical interrupts can be converted to message-based interrupts. Message-based
interrupts can support either level-sensitive or edge-triggered behavior, although LPIs are always
edge-triggered.

GICv3 supports two mechanisms for message-based interrupts:

• A mechanism for communicating an SPI, where the assigned address is held in the
Distributor. In this case the message-based interrupt can be either level-sensitive or
edge-triggered.

• A mechanism for communicating an LPI, where the assigned address is held in an ITS, if an
ITS is implemented, or in the Redistributor.

ARM recommends the use of LPIs to provide support for MSI and MSI-X capabilities in systems
that support PCIe. See Chapter 6 Locality-specific Peripheral Interrupts and the ITS for more
information. GICv3 also includes architected support for signaling SPIs using message-based
interrupts, see Shared Peripheral Interrupts on page 4-56.
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 1-21
ID072617 Non-Confidential

1 Introduction
1.2 Terminology
Physical interrupt
An interrupt that targets a physical PE is a physical interrupt. It is signaled to the PE by the physical
CPU interface to which the PE is connected.

Running priority
At any given time, the running priority of a CPU interface is either:

• The group priority of the active interrupt, for which there has not been a priority drop on that
interface.

• If there is no active interrupt for which there has not been a priority drop on the interface, the
running priority is the idle priority 0xFF.

Sufficient priority
The GIC CPU interface compares the priority of an enabled, pending interrupt with all of the
following, to determine whether the interrupt has sufficient priority:
• The Priority Mask Register, ICC_PMR_EL1.
• The preemption settings for the interface, as indicated by ICC_BPR0_EL1 and

ICC_BPR1_EL1.
• The current running priority, as indicated by ICC_RPR_EL1 for the CPU interface.

If the interrupt has sufficient priority it is signaled to the connected PE.

Virtual interrupt
An interrupt that targets a VM is a virtual interrupt. It is signaled by the associated virtual CPU
interface. See Chapter 5 Virtual Interrupt Handling and Prioritization for more information.

Maintenance interrupt

A physical interrupt that signals key events associated with interrupt handling on a VM to allow the
hypervisor to track those events. These events are processed by the hypervisor, and include enabling
and disabling a particular group of interrupts. See Maintenance interrupts on page 5-85 for more
information.
1-22 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

1 Introduction
1.3 Supported configurations and compatibility
1.3 Supported configurations and compatibility
In ARMv8-A, EL2 and EL3 are optional, and a PE can support one, both, or neither of these Exception levels.
However:

• A PE requires EL3 to support both Secure and Non-secure state.
• A PE requires EL2 to support virtualization.
• If EL3 is not implemented, there is only a single Security state. This Security state is either Secure state or

Non-secure state.

GICv3 supports interrupt handling for all of these configurations, and for execution in both AArch32 state and
AArch64 state, in accordance with the interprocessing rules described in ARM® Architecture Reference Manual,
ARMv8, for ARMv8-A architecture profile.

1.3.1 Affinity routing configuration

The GICv3 architecture supports affinity routing. It provides optional support for:

• An asymmetric configuration, where affinity routing is enabled for Non-secure state and disabled for Secure
state. This provides support for a Secure legacy environment.

• A legacy-only environment where affinity routing is disabled for both Secure state and Non-secure state.

1.3.2 System register configuration

When affinity routing is enabled for execution in both Security states, the GIC must be configured to use System
register access to handle physical interrupts. The architecture does not support having affinity routing enabled for a
Security state, and not having System register access configured for that Security state. Configuring the GIC this
way results in UNPREDICTABLE behavior. When affinity routing is enabled for execution in Non-secure state, the
GIC architecture optionally supports legacy operation for virtual interrupts, that is legacy interrupt handling at
Non-secure EL1 under the control of a hypervisor executing at EL2.

1.3.3 GIC control and configuration

Many of the GIC registers are available in different forms, to permit effective interrupt handling:
• For two Security states.
• For different interrupt groups.
• Using System register access for GICv3 or memory-mapped access for legacy operation.

When System register access is enabled, control and configuration of the GIC architecture is handled by architected
System registers and the associated accesses that define the GIC programmers’ model. See Chapter 8 Programmers’
Model for more information.

Some registers are always memory-mapped, while others use System register access in GICv3, and
memory-mapped access for legacy operations.

Table 1-1 shows the registers that are always memory-mapped.

Table 1-1 Memory-mapped registers

Prefix in short register name Registers

GICD Distributor registers

GICR Redistributor registersa

a. There is one copy of each of the Redistributor registers per PE.

GITS ITS registersb

b. There can be more than one ITS in an implementation. Each ITS has its own copy of the GITS
registers.
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 1-23
ID072617 Non-Confidential

1 Introduction
1.3 Supported configurations and compatibility
Table 1-2 shows the registers that are memory-mapped for legacy operations, but are replaced by System register
access in GICv3 when System register access is enabled.

Note
 • An operating system executing at Non-secure EL1 uses either the GICC_* or the GICV_* registers to control

interrupts, and is unaware of the difference.

• The GICR_* and GITS_* registers are introduced in GICv3.

Table 1-3 shows the registers that GICv3 supports when System register access is enabled.

The ARMv8 support for virtualization and the Exception level at which a PE is operating determine whether the
physical CPU interface registers or the virtual CPU interface registers are accessed.

For more information about register names and the factors that affect which register to use, see GIC System register
access on page 8-159.

Table 1-2 Memory-mapped registers for legacy operation

Prefix in short register name Registers

GICC Physical CPU interface registers

GICV Virtual CPU interface registers

GICH Virtual interface control registers

Table 1-3 System registers

Prefix in short register name System registers accessed

ICC Physical CPU interface registers

ICV Virtual CPU interface registers

ICH Virtual interface control registers
1-24 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

1 Introduction
1.3 Supported configurations and compatibility
1.3.4 References to the ARMv8 architectural state

Table 1-4 shows the ARMv8 architectural state that is used with or affects the operation of the GIC.

Table 1-4 ARMv8 architectural state affecting GIC operation

AArch64 AArch32
Purpose

State Field State Field

PSTATEa A PSTATEa A SError interrupt mask bit (AArch64 state)
Asynchronous Abort mask bit (AArch32 state)

I I IRQ mask bit

F F FIQ mask bit

- - DFSR STATUS/FS Fault status

- ExT External abort type

ESR_ELx EC HSR EC Exception class

IL IL Instruction length for synchronous exceptions

ISS ISS Instruction Specific Syndrome

HCR_EL2 AMO HCR AMO SError interrupt routing (AArch64 state)
Asynchronous External Abort interrupt routing
(AArch32 state)

IMO IMO Physical IRQ routing

FMO FMO Physical FIQ routing

RW RES0 Execution state control for lower Exception levels
(AArch64 state)

VSE VA Virtual SError Abort exception (AArch64 state)
Virtual Asynchronous Abort exception (AArch32
state)

VI VI Virtual IRQ interrupt

VF VF Virtual FIQ interrupt

HSTR_EL2 T<n> HSTR T<n> Hypervisor system traps

I I IRQ pending

F F FIQ pending

ID_AA64PFR0_EL1 GIC - - System register GIC interface support

ID_PFR1_EL1 GIC ID_PFR1 GIC System register GIC CPU interface support

ISR_EL1 A ISR A SError pending (AArch64 state)
External Abort pending (AArch32 state)
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 1-25
ID072617 Non-Confidential

1 Introduction
1.3 Supported configurations and compatibility
For more information about these registers and fields, see ARM® Architecture Reference Manual, ARMv8, for
ARMv8-A architecture profile.

1.3.5 GICv3 with no legacy operation

In an implementation that does not support legacy operation, affinity routing and System register access are
permanently enabled. This means that the associated control bits are RAO/WI. Table 1-5 shows the register fields
that are affected by this.

1.3.6 GICv3 with legacy operation

Legacy operation is a form of limited backwards compatibility with GICv2 that is provided to allow systems using
GICv3 to run code using GICv2, provided that this code meets the restrictions described in this section. Legacy
operation is optional in GICv3. See Legacy support of interrupts and asymmetric configurations on page 10-710.

MPIDR_EL1 Aff3 MPIDR - Affinity level 3

Aff2 Aff2 Affinity level 2

Aff1 Aff1 Affinity level 1

Aff0 Aff0 Affinity level 0

SCR_EL3 RW SCR RES0 Execution state control for lower Exception levels
(AArch64 state only)

EA EA SError interrupt routing (AArch64 state)
External Abort interrupt routing (AArch32 state)

FIQ FIQ Physical FIQ routing

IRQ IRQ Physical IRQ routing

NS NS Non-secure bit

a. Process state, PSTATE, is an abstraction of the process state information. For more information, see ARM® Architecture Reference Manual,
ARMv8, for ARMv8-A architecture profile.

Table 1-4 ARMv8 architectural state affecting GIC operation (continued)

AArch64 AArch32
Purpose

State Field State Field

Table 1-5 Control bits for affinity routing and System register access

AArch64 registers AArch32 registers Memory-mapped registers

ICC_SRE_EL1.SREa

a. There is a Secure copy and a Non-secure copy of this register.

ICC_SRE.SREa -

ICC_SRE_EL2.SRE ICC_HSRE.SRE -

ICC_SRE_EL3.SRE ICC_MSRE.SRE -

- - GICD_CTLR.ARE_S

- - GICD_CTLR.ARE_NS
1-26 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

1 Introduction
1.3 Supported configurations and compatibility
In a GICv3 implementation that supports legacy operation, a maximum of eight PEs, whose individual support for
a memory-mapped register interface is IMPLEMENTATION DEFINED, are available as physical or virtual interrupt
targets within a given VM. It is IMPLEMENTATION DEFINED:
• Whether legacy operation applies to execution in both Security states, or to execution in Secure state only.
• Whether legacy operation is available only in the virtual CPU interface when executing in Non-secure EL1.

In GICv3, the following restrictions apply to legacy operation:

• The GICv2 feature GICC_CTLR.AckCtl was deprecated in GICv2 and is not supported in GICv3.
Correspondingly, even in legacy mode, the behavior is as if the GICC_CTLR.AckCtl bit described in GICv2
is RAZ/WI.

Note
 In a GICv3 implementation that supports legacy operation, a VM is permitted to control Non-secure

interrupts when GICV_CTLR.AckCtl set to 1. However, ARM deprecates the use of GICV_CTLR.AckCtl.

• The GICv2 configuration lockdown feature and the associated CFGSDISABLE input signal are not
supported.

• A hypervisor executing at EL2 can control virtual interrupts only for the PE on which the EL2 software is
executing, and cannot control virtual interrupts on other PEs

For legacy operation, an asymmetric configuration is supported where:
• Affinity routing and System register access are enabled in Non-secure state and at EL3.
• Affinity routing and System register access are disabled at Secure EL1.

This allows a secure operating system, running at Secure EL1, to use legacy functionality, provided that it does not
configure Non-secure interrupts.

In GICv2 software executing in Secure state could use GICC_AIAR, GICC_AEOIR, GICC_AHPPIR, and
GICC_ABPR to control interrupts in Non-secure state. There is no equivalent functionality in asymmetric
configurations.
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 1-27
ID072617 Non-Confidential

1 Introduction
1.3 Supported configurations and compatibility
1-28 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

Chapter 2
Distribution and Routing of Interrupts

This chapter describes the distribution and routing of interrupts to a target PE using affinity routing, and the
assignment of interrupt IDs. It contains the following sections:
• The Distributor and Redistributors on page 2-30.
• INTIDs on page 2-31.
• Affinity routing on page 2-35.
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 2-29
ID072617 Non-Confidential

2 Distribution and Routing of Interrupts
2.1 The Distributor and Redistributors
2.1 The Distributor and Redistributors
The Distributor provides the routing configuration for SPIs, and holds all the associated routing and priority
information.

The Redistributor provides the configuration settings for PPIs and SGIs.

A Redistributor always presents the pending interrupt with the highest priority to the CPU interface in finite time.
For more information about interrupt prioritization, see Interrupt prioritization on page 4-65.

The highest priority pending interrupt might change because:
• The previous highest priority interrupt has been acknowledged.
• The previous highest priority interrupt has been preempted.
• The previous highest priority interrupt is removed and no longer valid.
• The group interrupt enable has been modified.
• The PE is no longer a participating PE. See Participating nodes on page 2-36.
2-30 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

2 Distribution and Routing of Interrupts
2.2 INTIDs
2.2 INTIDs
Interrupts are identified using ID numbers (INTIDs). The range of INTIDs supported by GICv3 is IMPLEMENTATION
DEFINED, according to the following rules:

• For the number of INTID bits supported in the Distributor and Redistributor:

— If LPIs are not supported, the ID space in the Distributor is limited to 10 bits. This is the same as in
earlier versions of the GIC architecture.

— If LPIs are supported, the INTID field is IMPLEMENTATION DEFINED in the range of 14-24 bits, as
described in the register description for GICD_TYPER.

Note
 A Redistributor can be configured through GICR_PROPBASER to use fewer bits than specified by

GICD_TYPER.

• For the number of INTID bits supported in the ITS:

— If LPIs are supported, the INTID field is IMPLEMENTATION DEFINED in the range of 14-24 bits.

— The size of the INTID field is defined by GITS_TYPER.IDbits.

The ITS must be programmed so that interrupts that are forwarded to a Redistributor are in the range of
interrupts that are supported by that Redistributor, otherwise the behavior is UNPREDICTABLE.

• For the number of INTID bits supported in the CPU interface:

— The GICv3 CPU interface supports either a 16-bit or a 24-bit INTID field, the choice being
IMPLEMENTATION DEFINED. The number of physical interrupt identifier bits that are supported is
indicated by ICC_CTLR_EL1.IDbits and ICC_CTLR_EL3.IDbits.

The valid INTID space is governed by the implemented size in the CPU interface and the Distributor. It is a
programming error to forward an INTID that is greater than the supported size to a CPU interface.

Unused INTID bits are RAZ. This means that any affected bit field is zero-extended.

Table 2-1 shows how the INTID space is partitioned by interrupt type.

Note
 The ARM recommended PPI INTID assignments are provided by the Server Base System Architecture, see ARM®
Server Base System Architecture (SBSA).

Table 2-1 INTIDs

INTID Interrupt type Details Notes

0 – 15 SGI These interrupts are local to a CPU interface. INTIDs 0-1023 are compatible
with earlier versions of the GIC
architecture16 – 31 PPI

32 – 1019 SPI Shared peripheral interrupts that the Distributor can
route to either a specific PE, or to any one of the PEs in
the system that is a participating node, see
Participating nodes on page 2-36.

1020 – 1023 Special interrupt
number

Interrupt IDs that are reserved for special purposes, as
Special INTIDs on page 2-32 describes.

1024 – 8191 - Reserved -

8192 –
IMPLEMENTATION
DEFINED

LPI Peripheral hardware interrupts that are routed to a
specific PE.

-

ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 2-31
ID072617 Non-Confidential

2 Distribution and Routing of Interrupts
2.2 INTIDs
The GICv4 architecture provides a unique INTID space for each VM by supporting a vPEID in addition to the
INTID space. See About GIC support for virtualization on page 5-78 for more information about VMs and The ITS
on page 6-99 for more information about vPEIDs.

ARM strongly recommends that implemented interrupts are grouped to use the lowest INTID numbers and as small
a range of INTIDs as possible. This reduces the size of the associated tables in memory that must be implemented,
and that discovery routines must check.

ARM strongly recommends that software reserves:
• INTID0 - INTID7 for Non-secure interrupts.
• INTID8 - INTID15 for Secure interrupts.

2.2.1 Special INTIDs

The list of the INTIDs that the GIC architecture reserves for special purposes is as follows:

1020 The GIC returns this value in response to a read of ICC_IAR0_EL1 or ICC_HPPIR0_EL1 at EL3,
to indicate that the interrupt being acknowledged is one which is expected to be handled at Secure
EL1. This INTID is only returned when the PE is executing at EL3 using AArch64 state, or when
the PE is executing in AArch32 state in Monitor mode.

This value can also be returned by reads of ICC_IAR1_EL1 or ICC_HPPIR1_EL1 at EL3 when
ICC_CTLR_EL3.RM == 1, see Asymmetric operation and the use of ICC_CTLR_EL3.RM on
page 10-714.

1021 The GIC returns this value in response to a read of ICC_IAR0_EL1 or ICC_HPPIR0_EL1 at EL3,
to indicate that the interrupt being acknowledged is one which is expected to be handled at
Non-secure EL1 or EL2. This INTID is only returned when the PE is executing at EL3 using
AArch64 state, or when the PE is executing in AArch32 state in Monitor mode.

This value can also be returned by reads of ICC_IAR1_EL1or ICC_HPPIR1_EL1 at EL3 when
ICC_CTLR_EL3.RM == 1, see Asymmetric operation and the use of ICC_CTLR_EL3.RM on
page 10-714

1022 This value applies to legacy operation only. For more information, see Use of the special INTID
1022 on page 10-711.

1023 This value is returned in response to an interrupt acknowledge, if there is no pending interrupt with
sufficient priority for it to be signaled to the PE, or if the highest priority pending interrupt is not
appropriate for the:
• Current Security state.
• Interrupt group that is associated with the System register.

Note
 These INTIDs do not require an end of interrupt or deactivation.

For more information about the use of special INTIDs, see the descriptions for the following registers:
• ICC_IAR0_EL1.
• ICC_IAR1_EL1.
• ICC_HPPIR0_EL1.
• ICC_HPPIR1_EL1.

2.2.2 Implementations with mixed INTD sizes

Implementations might choose to implement different INTID sizes for different parts of the GIC, subject to the
following rules:
• PEs might implement either 16 or 24 bits of INTID.
2-32 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

2 Distribution and Routing of Interrupts
2.2 INTIDs
Note
 A system might include a mixture of PEs that support 16 bits of INTID and PEs that support 24 bits of INTID.

• The Distributor and Redistributors must all implement the same number of INTID bits.
• In systems that support LPIs, the Distributors and all Redistributors must implement at least 14 bits of INTID.

The number of bits that is implemented in the Distributor and Redistributors must not exceed the minimum
number that is implemented on any PE in the system.

Note
 Because interrupts might target any PE, each PE must be able to receive the maximum INTID that can be

sent by a Redistributor. This means that the INTID size that is supported by the Redistributors cannot exceed
the minimum INTID size that is supported by each PE in the system.

• In systems that do not support LPIs, the Distributor and all Redistributors must implement at least 5 bits of
INTID and cannot implement more than 10 bits of INTID.

• In systems that include one or more ITSs, an ITS might implement any value up to and including the number
of bits that are supported by the Distributor and the Redistributors down to a minimum of 14 bits, which is
the minimum number that is required for LPI support.

2.2.3 Valid interrupt ID check pseudocode

 The following pseudocode describes how the GIC checks whether an INTID for a physical interrupt is valid:

// InterruptIdentifierValid()
// ==========================

boolean InterruptIdentifierValid(bits(64) data, boolean lpiAllowed)

 // First check whether any out of range bits are set
 integer N = CPUInterfaceIDSize();

 if !IsZero(data<63:N>) then
 if GenerateLocalSError() then
 // Reporting of locally generated SEIs is supported
 IMPLEMENTATION_DEFINED “SError INVALID_INTERRUPT_IDENTIFIER”;
 UNPREDICTABLE;

 intID = data<INTID_SIZE-1:0>;

 if !lpiAllowed && IsLPI(intID) then // LPIs are not supported
 if GenerateLocalSError() then
 // Reporting of locally generated SEIs is supported
 IMPLEMENTATION_DEFINED “SError INVALID_INTERRUPT_IDENTIFIER”;
 UNPREDICTABLE;

 // Now check for special identifiers
 if IsSpecial(intID) then
 return FALSE; // It is a special ID

 // All the checks pass so the identifier is valid
 return TRUE;

The following pseudocode describes how the GIC checks whether an INTID for a virtual interrupt is valid:

// VirtualIdentifierValid()
// ========================

boolean VirtualIdentifierValid(bits(64) data, boolean lpiAllowed)

 // First check whether any out of range bits are set
 integer N = VIDBits();

 if !IsZero(data<63:N>) then
 if ICH_VTR_EL2.SEIS == ‘1’ then
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 2-33
ID072617 Non-Confidential

2 Distribution and Routing of Interrupts
2.2 INTIDs
 // Reporting of locally generated SEIs is supported
 IMPLEMENTATION_DEFINED “SError INVALID_INTERRUPT_IDENTIFIER”;
 UNPREDICTABLE;

 intID = data<INTID_SIZE-1:0>;

 if !lpiAllowed && IsLPI(intID) then // LPIs are not supported
 if ICH_VTR_EL2.SEIS == ‘1’ then
 // Reporting of locally generated SEIs is supported
 IMPLEMENTATION_DEFINED “SError INVALID_INTERRUPT_IDENTIFIER”;
 UNPREDICTABLE;

 // Now check for special identifiers
 if IsSpecial(intID) then
 return FALSE; // It is a special ID

 // All the checks pass so the identifier is valid
 return TRUE;

The following pseudocode describes CPU interface ID size function.

// CPUInterfaceIDSize()
// ====================
// Returns the number of Interrupt ID bits implemented at the CPU interface. This value is an
// IMPLEMENTATION DEFINED choice of 16 or 24 and is discoverable from ICC_CTLR_EL1/EL3.IDbits

integer CPUInterfaceIDSize()
 return integer IMPLEMENTATION_DEFINED “CPU interface INTID size 16 or 24”;
2-34 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

2 Distribution and Routing of Interrupts
2.3 Affinity routing
2.3 Affinity routing
Affinity routing is a hierarchical address-based scheme to identify specific PE nodes for interrupt routing.

For a PE, the affinity value is defined in MPIDR_EL1 for AArch64 state, and in MPIDR for AArch32 state:
• Affinity routing is a 32-bit value that is composed of four 8-bit affinity fields. These fields are the nodes a,

b, c, and d.
• GICv3 using AArch64 state can support:

— A four level routing hierarchy, a.b.c.d.
— A three level routing hierarchy, 0.b.c.d.

• GICv3 using AArch32 state only supports three affinity levels.
• ICC_CTLR_EL3.A3V, ICC_CTLR_EL1.A3V, and GICD_TYPER.A3V indicate whether four levels or

three levels of affinity are implemented.

Note
 An implementation that requires four levels of affinity must only support AArch64 state.

The enumeration notation for specifying nodes in an affinity hierarchy is of the following form, where Affx is
Affinity level x:

Aff3.Aff2.Aff1.Aff0

Affinity routing for a Security state is enabled in the Distributor, using the Affinity Routing Enable (ARE) bits.
Affinity routing is enabled:
• For Secure interrupts, if GICD_CTLR.ARE_S is set to 1.
• For Non-secure interrupts, if the GICD_CTLR.ARE_NS bit is set to 1.

GICD_CTLR.ARE_S and GICD_CTLR.ARE_NS are RAO/WI if affinity routing is permanently enabled.

For the handling of physical interrupts when affinity routing is enabled, System register access must also be enabled,
see GIC System register access on page 8-159. For the other cases, see Chapter 10 Legacy Operation and
Asymmetric Configurations.

2.3.1 Routing SPIs and SGIs by PE affinity

SPIs are routed using an affinity address and the routing mode information that is held in GICD_IROUTER<n>.
SGIs are routed using the affinity address and routing mode information that is written by software when it generates
the SGI.

SGIs are generated using the following registers:
• ICC_SGI0R_EL1.
• ICC_SGI1R_EL1.
• ICC_ASGI1R_EL1.

ARM strongly recommends that only values in the range 0-15 are used at affinity level 0 to align with the SGI target
list capability. See Software Generated Interrupts on page 4-55.

SPIs and SGIs are routed using different registers:

• SPIs are routed using GICD_IROUTER<n>.Interrupt_Routing_Mode:

— If GICD_IROUTER<n>.Interrupt_Routing_Mode is cleared to 0, SPIs are routed to a single PE
specified by a.b.c.d.

— If GICD_IROUTER<n>.Interrupt_Routing_Mode is set to 1, SPIs are routed to any PE defined as a
participating node:
- The mechanisms by which the IRI is selects the target PE is IMPLEMENTATION DEFINED.
- When ICC_CTLR_EL3.PMHE == 1, or ICC_CTLR_EL1.PMHE == 1, the ICC_PMR_EL1 register
associated with the PE might be used by the IRI to determine the target PE.
For more information about participating nodes, see Participating nodes on page 2-36.
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 2-35
ID072617 Non-Confidential

2 Distribution and Routing of Interrupts
2.3 Affinity routing
• SGIs are routed using ICC_SGI0R_EL1.IRM, and ICC_SGI1R_EL1.IRM:

— If the IRM bit is set to 1, SGIs are routed to all participating PEs in the system, excluding the
originating PE.

— If the IRM bit is cleared to 0, SGIs are routed to a group of PEs, specified by a.b.c.targetlist. The
target list provides a bitfield encoding for affinity level 0 values of 0-15.

2.3.2 Participating nodes

An enabled SPI configured to use the 1 of N distribution model can target a PE when:
• GICR_WAKER.ProcessorSleep == 0 and the interrupt group of the interrupt is enabled on the PE.
• GICD_CTLR.E1NWF == 1.
• GICR_TYPER.DPGS == 1, and for the interrupt group of the interrupt, GICR_CTLR.{DPG1S, DPG1NS,

DPG0} == 0.

For more information about whether a PE can be selected as the target when the 1 of N distribution model is used,
see GICR_CTLR, Redistributor Control Register on page 8-517.

For more information about enabling interrupts and interrupt groups, see Enabling the distribution of interrupts on
page 4-63.

2.3.3 Changing affinity routing enables

This manual describes the GICv3 architecture in a system with affinity routing enabled. This means that:
• GICD_CTLR.ARE_NS == 1.
• GICD_CTLR.ARE_S == 1.

If the value of GICD_CTLR.ARE_NS or GICD_CTLR.ARE_S is changed from 1 to 0, the result is
UNPREDICTABLE.

When GICD_CTLR. DS == 0, then:

• Changing GICD_CTLR.ARE_S from 0 to 1 is UNPREDICTABLE except when all of the following apply:

— GICD_CTLR.EnableGrp0 == 0.

— GICD_CTLR.EnableGrp1S == 0.

— GICD_CTLR.EnableGrp1NS == 0.

• Changing GICD_CTLR.ARE_NS from 0 to 1 is UNPREDICTABLE except when GICD_CTLR.
EnableGrp1NS == 0.

When GICD_CTLR.DS == 1, then:

• Changing GICD_CTLR.ARE from 0 to 1 is UNPREDICTABLE except when all of the following apply:

— GICD_CTLR.EnableGrp0 == 0.

— GICD_CTLR.EnableGrp1 == 0.

Note
 The effect of clearing GICD_CTLR.EnableGrp0, GICD_CTLR.EnableGrp1S, or GICD_CTLR.EnableGrp1NS, as
appropriate, must be visible when changing GICD_CTLR.ARE_S or GICD_CTLR.ARE_NS from 0 to 1. Software
can poll GICD_CTLR.RWP to check that writes that clear GICD_CTLR.EnableGrp0, GICD_CTLR.EnableGrp1S,
or GICD_CTLR.EnableGrp1NS bits have completed.
2-36 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

Chapter 3
GIC Partitioning

This chapter describes the GIC logical partitioning. It contains the following sections:
• The GIC logical components on page 3-38.
• Interrupt bypass support on page 3-43.
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 3-37
ID072617 Non-Confidential

3 GIC Partitioning
3.1 The GIC logical components
3.1 The GIC logical components
The GICv3 architecture consists of a set of logical components:
• A Distributor.
• A Redistributor for each PE that is supported.
• A CPU interface for each PE that is supported.
• Interrupt Translation Service components (ITS), to support the optional translation of events into LPIs.

The Distributor, Redistributor and ITS are collectively known as an IRI.

Figure 3-1 shows the IRI.

Figure 3-1 Interrupt Routing Infrastructure

The CPU interface handles physical interrupts at all implemented Exception levels:
• Interrupts that are translated into LPIs are optionally routed via the ITS to the Redistributor and the CPU

interface.
• PPIs are routed directly from the source to the local Redistributor.
• SPIs are routed from the source through the Distributor to the target Redistributor and the associated CPU

interface.
• SGIs are generated by software through the CPU interface and Redistributor. They are then routed through

the Distributor to one or more target Redistributors and the associated CPU interfaces.

In GICv3, the ITS is an optional component and translates events into physical LPIs. The architecture also supports
direct LPIs that do not require the use of an ITS. Where LPIs are supported, it is IMPLEMENTATION DEFINED whether
either:
• Direct LPIs are supported by accessing the registers in the Redistributors.
• LPI support is provided by the ITS.

An implementation must only support one of these methods.

In GICv4, the inclusion of at least one ITS is mandatory to provide support for the direct injection of virtual LPIs.

Distributor

PE
x.y.0.0

PE
x.y.0.1

Cluster C0

Redistributorb

ITSa

CPU interfacec

a. The inclusion of an ITS is optional, and there might be more than
one ITS in an IRI.
b. There is one Redistributor per PE.
c. There is one CPU interface per PE.

Interrupt Routing
Infrastructure (IRI)
3-38 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

3 GIC Partitioning
3.1 The GIC logical components
Figure 3-2 shows the GIC partitioning in an implementation that includes an ITS.

Figure 3-2 GIC logical partitioning with an ITS

The mechanism for communication between the ITS and the Redistributors is IMPLEMENTATION DEFINED.

The mechanism for communication between the CPU interfaces and the Redistributors is also IMPLEMENTATION
DEFINED.

Note
 ARM recommends that an implementation uses the GIC Stream Protocol for communication between the CPU
interfaces and the Redistributors, see Appendix A GIC Stream Protocol interface.

Figure 3-3 on page 3-40 shows the GIC partitioning in an implementation that does not include an ITS and that
supports direct LPIs.

Distributor

PE
x.y.0.0

PE
x.y.0.1

PE
x.y.0.2

Cluster C0

PE
x.y.n.0

PE
x.y.n.1

Cluster Cn

Redistributor

ITSa

Interrupt Translation Service

CPU interface

Distributor

a. The inclusion of an ITS is optional, and there might be more than one
ITS in a GIC.
b. SGIs are generated by a PE and routed through the Distributor.

PPIs

LPIs

SGIsb SGIsbSGIsbSGIsb

SPIs

SGIsb
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 3-39
ID072617 Non-Confidential

3 GIC Partitioning
3.1 The GIC logical components
Figure 3-3 GIC logical partitioning without an ITS

The following list describes the components that are depicted in Figure 3-2 on page 3-39 in more detail:

Distributor The Distributor performs interrupt prioritization and distribution of SPIs and SGIs to the
Redistributors and CPU interfaces that are connected to the PEs in the system.

GICD_CTLR provides global settings for:
• Enabling affinity routing.
• Disabling security.
• Enabling Secure and Non-secure Group 1 interrupts.
• Enabling Group 0 interrupts.

For SPIs, the Distributor provides a programming interface for:

• Enabling or disabling SPIs.

• Setting the priority level of each SPI.

• Routing information for each SPI.

• Setting each SPI to be level-sensitive or edge-triggered.

• Generating message-based SPIs.

• Assigning each SPI to an interrupt group.

• Controlling the pending and active state of SPIs.

The Distributor registers are identified by the GICD_ prefix.

See Chapter 2 Distribution and Routing of Interrupts for more information.

Distributor

PE
x.y.0.0

PE
x.y.0.1

PE
x.y.0.2

Cluster C0

PE
x.y.n.0

PE
x.y.n.1

Cluster Cn

Redistributor CPU interface

Distributor

a. SGIs are generated by a PE and routed through the Distributor.

PPIs
LPIs

SGIsa SGIsaSGIsaSGIsa

SPIs

SGIsa
3-40 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

3 GIC Partitioning
3.1 The GIC logical components
Note
 When handling physical interrupts during legacy operation, the Distributor controls the

configuration information for PPIs and SGIs. See Chapter 10 Legacy Operation and
Asymmetric Configurations.

Interrupt translation service, ITS
The ITS is an OPTIONAL hardware mechanism in the GICv3 architecture that routes LPIs to
the appropriate Redistributor. Software uses a command queue to configure an ITS. Table
structures in memory that are associated with an ITS translate an EventID associated with a
device into a pending INTID for a PE.

The ITS is not OPTIONAL in GICv4, and all GICv4 implementations must include at least
one ITS.

See The ITS on page 6-99 for more information.

Redistributor A Redistributor is the part of the IRI that is connected to the CPU interface of the PE. The
Redistributor holds the control, prioritization, and pending information for all physical LPIs
using data structures that are held in memory. Two registers in the Redistributor point to
these data structures:
• GICR_PROPBASER.
• GICR_PENDBASER.

In GICv4, the Redistributor also includes registers to handle virtual LPIs that are forwarded
by an ITS to a Redistributor and directly to a VM, without involving the hypervisor. This is
referred to as a direct injection of virtual interrupts into a VM.

In GICv4, the Redistributors collectively host the control, prioritization, and pending
information for all virtual LPIs using data structures that are held in memory. Two registers
in the Redistributor point to these data structures:
• GICR_VPROPBASER.
• GICR_VPENDBASER.

In an implementation that supports LPIs but does not include an ITS, the GICR_* registers
contain a simple memory-mapped interface to signal and control physical LPIs.

Redistributors provide a programming interface for:
• Identifying, controlling, and configuring supported features to enable interrupts and

interrupt routing of the implementation.
• Enabling or disabling SGIs and PPIs.
• Setting the priority level of SGIs and PPIs.
• Setting each PPI to be level-sensitive or edge-triggered.
• Assigning each SGI and PPI to an interrupt group.
• Controlling the pending state of SGIs and PPIs.
• Controlling the active state of SGIs and PPIs.
• Power management support for the connected PE.
• Where LPIs are supported, base address control for the data structures in memory that

support the associated interrupt properties and their pending status.
• Where GICv4 is supported, base address control for the data structures in memory

that support the associated virtual interrupt properties and their pending status.

The Redistributor registers are identified by the GICR_ prefix.

See Affinity routing on page 2-35 and The Distributor and Redistributors on page 2-30 for
more information about the Redistributor.
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 3-41
ID072617 Non-Confidential

3 GIC Partitioning
3.1 The GIC logical components
CPU interface
The GIC architecture supports a CPU interface that provides a register interface to a PE in
the system. Each CPU interface provides a programming interface for:

• General control and configuration to enable interrupt handling in accordance with the
Security state and legacy support requirements of the implementation.

• Acknowledging an interrupt.

• Performing a priority drop.

• Deactivation of an interrupt.

• Setting an interrupt priority mask for the PE.

• Defining the preemption policy for the PE.

• Determining the highest priority pending interrupt for the PE.

The CPU interface has several components:
• A component that allows a supervisory level of software to control the handling of

physical interrupts. The registers that are associated with this are identified by the
ICC_ prefix.

• A component that allows a supervisory level of software to control the handling of
virtual interrupts. The registers that are associated with this are identified by the
ICV_ prefix.

• A component that allows a hypervisor to control the set of pending interrupts. The
registers that are associated with this are identified by the ICH_ prefix.

Note
 The System registers in the CPU interface are associated with software that is handling

interrupts in the physical domain, or with execution at Non-secure EL1 as part of a VM. The
configuration of HCR_EL2 determines whether the accesses are to the physical resources
or the virtual resources.

The System registers accessible at EL2 that are used for controlling the list of active,
pending, and active and pending, virtual interrupts for a PE are identified by the ICH_
prefix.

For more information on handling physical interrupts, see Chapter 4 Physical Interrupt
Handling and Prioritization.

For more information on handling virtual interrupts, see Chapter 5 Virtual Interrupt
Handling and Prioritization.
3-42 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

3 GIC Partitioning
3.2 Interrupt bypass support
3.2 Interrupt bypass support
A CPU interface optionally includes interrupt signal bypass, so that, when the signaling of an interrupt by the
interface is disabled, a legacy interrupt signal is passed to the interrupt request input on the PE, bypassing the GIC
functionality.

It is IMPLEMENTATION DEFINED whether bypass is supported.

The controls to determine whether GICv3 FIQ and IRQ outputs or the bypass signals are used differ depending on
whether System register access is enabled.

When System register access is enabled, bypass disable is controlled at the highest implemented Exception level
using two bits in ICC_SRE_EL1, ICC_SRE_EL2, or ICC_SRE_EL3, as appropriate:
• For FIQ bypass, this is the DFB bit.
• For IRQ bypass, this is the DIB bit.

This bypass mechanism is used when System register access is enabled. For information about bypass support
during legacy operation, see Legacy operation and bypass support on page 10-712.

The interrupt groups that are supported by the GIC are allocated to FIQs and IRQs, as described in Interrupt
grouping on page 4-58. Interrupt groups must be disabled at the CPU interface when bypass is enabled, otherwise
the behavior of the GICv3 implementation is UNPREDICTABLE. This means that:
• ICC_IGRPEN0_EL1.Enable must have the value 0 when ICC_SRE_ELx.DFB == 0.
• ICC_IGRPEN1_EL1.Enable must have the value 0 when ICC_SRE_ELx.DIB == 0.

For more information about enabling interrupts, see Enabling the distribution of interrupts on page 4-63.

For information about the behavior when System register access is not enabled, see Chapter 10 Legacy Operation
and Asymmetric Configurations.

For FIQs, the following pseudocode determines the source for interrupt signaling to a PE.

if ICC_SRE_EL3.SRE == 1 then
 if ICC_SRE_EL3.DFB == 0 then
 if ICC_SRE_EL1.SRE Secure == 1 then
 BypassFIQsource
 else
 use legacy bypass support
 else
 use GICv3 FIQ output
else
 use legacy bypass support

For IRQs, the following pseudocode determines the source for interrupt signaling to a PE.

if ICC_SRE_EL3.SRE == 1 then
 if ICC_SRE_EL3.DIB == 0 then
 if ICC_SRE_EL1.SRE Secure == 1 then
 BypassIRQsource
 else
 use legacy bypass support
 else
 use GICv3 IRQ output
else
 use legacy bypass support
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 3-43
ID072617 Non-Confidential

3 GIC Partitioning
3.2 Interrupt bypass support
3-44 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

Chapter 4
Physical Interrupt Handling and Prioritization

This chapter describes the fundamental aspects of GIC interrupt handling and prioritization. It contains the
following sections:
• Interrupt lifecycle on page 4-46.
• Locality-specific Peripheral Interrupts on page 4-53.
• Private Peripheral Interrupts on page 4-54.
• Software Generated Interrupts on page 4-55.
• Shared Peripheral Interrupts on page 4-56.
• Interrupt grouping on page 4-58.
• Enabling the distribution of interrupts on page 4-63.
• Interrupt prioritization on page 4-65.
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 4-45
ID072617 Non-Confidential

4 Physical Interrupt Handling and Prioritization
4.1 Interrupt lifecycle
4.1 Interrupt lifecycle
GIC interrupt handling is based on the GIC interrupt lifecycle, a series of high-level processes that apply to any
interrupt using the GIC architecture. The interrupt lifecycle provides a basis for describing the detailed steps of the
interrupt handling process. The GIC also maintains a state machine that controls interrupt state transitions during
the lifecycle.

Figure 4-1 shows the GIC interrupt lifecycle for physical interrupts.

Figure 4-1 Physical interrupt lifecycle

The interrupt lifecycle in Figure 4-1 is as follows:

1. Generate interrupt. An interrupt is generated either by the peripheral or by software.

2. Distribute. The IRI performs interrupt grouping, interrupt prioritization, and controls the forwarding of
interrupts to the CPU interfaces.

3. Deliver. A physical CPU interface delivers interrupts to the corresponding PE.

4. Activate. When software running on a PE acknowledges an interrupt, the GIC sets the highest active priority
to that of the activated interrupt, and for SPIs, SGIs, and PPIs the interrupt becomes active.

5. Priority drop. Software running on the PE signals to the GIC that the highest priority interrupt has been
handled to the point where the running priority can be dropped. The running priority then has the value that
it had before the interrupt was acknowledged. This is the point where the end of interrupt is indicated by the
interrupt handler. The end of the interrupt can be configured to also perform deactivation of the interrupt.

6. Deactivation. Deactivation clears the active state of the interrupt, and thereby allows the interrupt, when it is
pending, to be taken again. Deactivation is not required for LPIs. Deactivation can be configured to occur at
the same time as the priority drop, or it can be configured to occur later as the result of an explicit interrupt
deactivation operation. This latter approach allows for software architectures where there is an advantage to
separating interrupt handling into initial handling and scheduled handling.

4.1.1 Physical CPU interface

A CPU interface provides an interface to a PE that is connected to the GIC. Each CPU interface is connected to a
single PE.

Start

A device generates an
interrupt

Generate

End

Distribute

Deliver

Activate

Priority
drop

The CPU interface
delivers interrupt to the
PE

Deactivationa

a. This step does not apply to LPIs.

The PE ends the
interrupt

The PE acknowledges
the interrupt
4-46 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

4 Physical Interrupt Handling and Prioritization
4.1 Interrupt lifecycle
A CPU interface receives pending interrupts prioritized by the IRI, and determines whether the interrupt is a
member of a group that is enabled in the CPU interface and has sufficient priority to be signaled to the PE. At any
time, the connected PE can determine the:
• INTID of its highest priority pending interrupt, by reading ICC_HPPIR0_EL1 or ICC_HPPIR1_EL1.
• The running priority of the CPU interface by reading ICC_RPR_EL1.

Note
 The priority of the highest priority active interrupt for which there has not been a priority drop is also known

as the running priority.

When an LPI is acknowledged, the pending state for the interrupt changes to not pending in the Redistributor. The
Redistributor does not maintain an active state for LPIs.

When the PE acknowledges an SGI, a PPI, or an SPI at the CPU interface, the IRI changes the status of the interrupt
to active if:
• It is an edge-triggered interrupt, and another edge has not been detected since the interrupt was

acknowledged.
• It is a level-sensitive interrupt, and the level has been deasserted since the interrupt was acknowledged.

When the PE acknowledges an SGI, a PPI, or an SPI at the CPU interface, the IRI changes the status of the interrupt
to active and pending if:
• It is an edge-triggered interrupt, and another edge has been detected since the interrupt was acknowledged.
• It is a level-sensitive interrupt, and the level has not been deasserted since the interrupt was acknowledged.

When the PE acknowledges an SGI, a PPI, or an SPI at the CPU interface, the CPU interface can signal another
interrupt to the PE, to preempt interrupts that are active on the PE. If there is no pending interrupt with sufficient
priority to be signaled to the PE, the interface deasserts the interrupt request signal to the PE.

The following stages of the interrupt lifecycle are described in the remainder of this section:
• Activation.
• Priority drop on page 4-48.
• Deactivation on page 4-49.

The priority drop and deactivation can be performed as a single operation or can be split, as defined by
ICC_CTLR_EL1.EOImode and ICC_CTLR_EL3.EOImode_EL3.

Activation

The interrupt handler reads ICC_IAR0_EL1 for Group 0 interrupts, and ICC_IAR1_EL1 for Group 1 interrupts, in
the corresponding CPU interface to acknowledge the interrupt. This read returns either:

• The INTID of the highest priority pending interrupt, if that interrupt is of sufficient priority for it to be
signaled to the PE. This is the normal response to an interrupt acknowledge.

• Under certain conditions, an INTID that indicates a special interrupt number, see INTIDs on page 2-31.

Whether a read of ICC_IAR0_EL1 and ICC_IAR1_EL1 returns a valid INTID depends on:
• Which of the two registers is accessed.
• The Security state of the PE.
• Whether there is a pending interrupt of sufficient priority to be signaled to the PE, and if so, whether:

— The highest priority pending interrupt is a Secure Group 1 or a Non-secure Group 1 interrupt.
— Interrupt signaling is enabled for that interrupt group.

• The Exception level at which the PE is executing.

All interrupts, when acknowledged, modify the Active Priorities Registers. See System register access to the Active
Priorities registers on page 4-70.
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 4-47
ID072617 Non-Confidential

4 Physical Interrupt Handling and Prioritization
4.1 Interrupt lifecycle
In certain circumstances, the value of SCR_EL3.NS affects the value returned when a PE acknowledges an
interrupt. That is, when the PE is executing at EL3, a Secure read of ICC_IAR0_EL1 returns a special interrupt
number that indicates the required Security state transition for the highest priority pending interrupt. Otherwise, the
INTID is returned.

For SGIs in a multiprocessor implementation, the GIC uses the targeted list model, where the acknowledgement of
an interrupt by one PE has no effect on the state of the interrupt on other CPU interfaces. When a PE acknowledges
the interrupt, the pending state of the interrupt is cleared only for that PE. The interrupt remains pending for the
other PEs.

The effects of reading ICC_IAR0_EL1 and ICC_IAR1_EL1 on the state of a returned INTID are not guaranteed to
be visible until after the execution of a DSB.

Priority drop

After an interrupt has been acknowledged, a valid write to ICC_EOIR0_EL1 for Group 0 interrupts, or a valid write
to ICC_EOIR1_EL1 for Group 1 interrupts, results in a priority drop.

A valid write to ICC_EOIR0_EL1 or ICC_EOIR1_EL1 to perform a priority drop is required for each
acknowledged interrupt, even for LPIs which do not have an active state. A priority drop must be performed by the
same PE that activated the interrupt.

Note
 A valid write is a write that is:
• Not UNPREDICTABLE.
• Not ignored.
• Not writing an INTID that is either unsupported or within the range 1020-1023.

For each CPU interface, the GIC architecture requires the order of the valid writes to ICC_EOIR0_EL1 and
ICC_EOIR1_EL1 to be the exact reverse of the order of the reads from ICC_IAR0_EL1 and ICC_IAR1_EL1, as
shown in Figure 4-2.

Figure 4-2 Read and write order

On a priority drop, the running priority is reduced from the priority of the interrupt indicated by the write to
ICC_EOIR0_EL1 or ICC_EOIR1_EL1 to either:
• The priority of the highest-priority active interrupt for which there has been no write to ICC_EOIR0_EL1 or

ICC_EOIR1_EL1.
• The idle priority, 0xFF, if there is no active interrupt.

ICC_IAR0_EL1

ICC_IAR1_EL1

ICC_IAR0_EL1

ICC_IAR0_EL1

Read order

1

2

3

4
Write order

4

3

2

1

ICC_EOIR0_EL1

ICC_EOIR0_EL1

ICC_EOIR1_EL1

ICC_EOIR0_EL1
4-48 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

4 Physical Interrupt Handling and Prioritization
4.1 Interrupt lifecycle
Note
 For compatibility with possible extensions to the GIC architecture specification, software must preserve the entire
register value read from ICC_IAR0_EL1 and ICC_IAR1_EL1 when it acknowledges the interrupt, and use that
entire value for the corresponding write to ICC_EOIR0_EL1 and ICC_EOIR1_EL1 by the same PE.

When GICD_CTLR.DS == 0:
• A write to ICC_EOIR0_EL1 performs a priority drop for Group 0 interrupts.
• A write to ICC_EOIR1_EL1 performs a priority drop for Non-secure Group 1 interrupts, if the PE is

operating in Non-secure state or at EL3.
• When operating in Secure state, a write to ICC_EOIR1_EL1 performs a priority drop for Secure Group 1

interrupts.

When GICD_CTLR.DS == 1:
• A write to ICC_EOIR0_EL1 performs a priority drop for Group 0 interrupts.
• A write to ICC_EOIR1_EL1 performs a priority drop for Group 1 interrupts.

Deactivation

PPIs, SGIs, and SPIs have an active state in the IRI and must be deactivated.

SGIs and PPIs must be deactivated by the PE that activated the interrupt. SPIs can be deactivated by a different PE.

Interrupt deactivation is required to change the state of an interrupt either:
• From active and pending to pending.
• From active to inactive.

Depending on the Exception level and Security state, ICC_CTLR_EL1.EOImode and
ICC_CTLR_EL3.EOImode_EL3 in the appropriate CPU Interface Control Register determine whether priority
drop and interrupt deactivation happen together or separately:

• The priority drop and interrupt deactivation happen together when ICC_CTLR_EL1.EOImode or
ICC_CTLR_EL3.EOImode_EL3 in the CPU interface is 0, and the PE writes to ICC_EOIR0_EL1 or
ICC_EOIR1_EL1. In this case a write to ICC_DIR_EL1 is not required.

• The priority drop and interrupt deactivation are separated when ICC_CTLR_EL1.EOImode or
ICC_CTLR_EL3.EOImode_EL3 in the CPU interface is 1, and the PE writes to ICC_EOIR0_EL1 or
ICC_EOIR1_EL1. In this case:
— The priority drop happens when the PE writes to ICC_EOIR0_EL1 or ICC_EOIR1_EL1.
— Interrupt deactivation happens later, when the PE writes to ICC_DIR_EL1. A valid write to

ICC_DIR_EL1 results in interrupt deactivation for a Group 0 or a Group 1 interrupt.

There are no ordering requirements for writes to ICC_DIR_EL1. If software writes to ICC_DIR_EL1 when the
following conditions are true, the results are UNPREDICTABLE:
• The appropriate EOIMode bit is cleared to 0.
• The ICC_CTLR_EL1.EOImode or ICC_CTLR_EL3.EOIMode_EL3 is set to 1 and there has not been a

corresponding write to ICC_EOIR0_EL1 or ICC_EOIR1_EL1.

When ICC_CTLR_EL1.EOImode or ICC_CTLR_EL3.EOIMode_EL3 == 1 but the interrupt is not active in the
Distributor, writes to ICC_DIR_EL1 must be ignored. If supported, an implementation might generate a system
error.
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 4-49
ID072617 Non-Confidential

4 Physical Interrupt Handling and Prioritization
4.1 Interrupt lifecycle
Table 4-1 shows how a write to ICC_EOIR0_EL1 or ICC_EOIR1_EL1 affects deactivation.

When GICD_CTLR.DS == 0, access to certain registers is restricted. See Interrupt grouping and security on
page 4-58.

The following pseudocode determines whether EOImode is set for the current Exception level and Security state:

// EOImodeSet()
// ============

boolean EOImodeSet()

 if HaveEL(EL3) then
 // EL3 is implemented so return the value appropriate to the EL and security state
 if IsEL3OrMon() && ICC_SRE_EL3.SRE == ‘1’1 then
 // In EL3
 EOImode = ICC_CTLR_EL3.EOImode_EL3;

 elsif IsSecure() then
 EOImode = ICC_CTLR_EL3.EOImode_EL1S;

 else // Non-secure
 EOImode = ICC_CTLR_EL3.EOImode_EL1NS;
 else
 // No EL3 so return the value from ICC_CTLR_EL1
 EOImode = ICC_CTLR_EL1.EOImode;

 return EOImode == ‘1’;

Effect of Security states on writes to ICC_DIR_EL1

The effect of a write to ICC_DIR_EL1 depends on whether the GIC supports one or two Security states:

• If GICD_CTLR.DS == 0, a valid:

— Secure write to ICC_DIR_EL1 deactivates the specified interrupt, regardless of whether that interrupt
is a Group 0 or a Group 1 interrupt.

— Non-secure write to ICC_DIR_EL1 deactivates the specified interrupt only if that interrupt is a
Non-secure Group 1 interrupt.

• If GICD_CTLR.DS == 1, a valid write to ICC_DIR_EL1 deactivates the specified interrupt, regardless of
whether that interrupt is a Group 0 or Group 1 interrupt.

Table 4-1 Effect of writing to ICC_EOIR0_EL1 or ICC_EOIR1_EL1

Access ICC_CTLR_EL1.EOImode or
ICC_CTLR_EL3.EOImode_EL3

Identified
interrupt Effect

ICC_EOIR1_EL1 0 Group 0 Access ignored

ICC_EOIR0_EL1 0 Group 0 Interrupt deactivated

ICC_EOIR1_EL1 0 Group 1 Interrupt deactivated

ICC_EOIR0_EL1 0 Group 1 Access ignored

- 1 - Interrupt remains active
4-50 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

4 Physical Interrupt Handling and Prioritization
4.1 Interrupt lifecycle
Table 4-2 shows the behavior of valid writes to ICC_DIR_EL1. In an implementation that supports only a single
Security state, valid writes have the behavior shown for Secure writes to ICC_DIR_EL1.

4.1.2 Interrupt handling state machine

The GIC maintains a state machine for each supported interrupt. The possible states of an interrupt are:
• Inactive.
• Pending.
• Active.
• Active and pending.

PPIs, SGIs, and SPIs can have an active and pending state. Interrupts that are active and pending are never signaled
to a connected PE.

LPIs have a pending state that is held in memory associated with a Redistributor, and therefore a PE. This also
applies to directly injected virtual LPIs, see Virtual LPI support on page 5-86.

Note
 There is no active or active and pending state for LPIs.

Figure 4-3 on page 4-52 shows an instance of the interrupt handling state machine, and the possible state transitions.

Table 4-2 Behavior of writes to ICC_DIR_EL1

Security state
of writes to
ICC_DIR_EL1

Interrupt group GICD_CTLR.DS SCR_EL3.IRQ SCR_EL3.FIQ Effect

EL3 x x x x Interrupt is deactivated

Secure EL1 Group 0 x x 0 Interrupt is deactivated

Secure EL1 Group 0 x x 1 Write is ignored

Secure EL1 Group 1 x 0 x Interrupt is deactivated

Secure EL1 Group 1 x 1 x Write is ignored

EL2 or
Non-secure EL1

Group 0 or Secure
Group 1

0 x x Write is ignored

EL2 or
Non-secure EL1

Group 0 1 x 0 Interrupt is deactivated

EL2 or
Non-secure EL1

Group 0 1 x 1 Write is ignored

EL2 or
Non-secure EL1

Non-secure Group 1 0 0 x Interrupt is deactivated

EL2 or
Non-secure EL1

Non-secure Group 1 0 1 x Write is ignored

EL2 or
Non-secure EL1

Group 1 1 0 x Interrupt is deactivated

EL2 or
Non-secure EL1

Group 1 1 1 x Write is ignored
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 4-51
ID072617 Non-Confidential

4 Physical Interrupt Handling and Prioritization
4.1 Interrupt lifecycle
Figure 4-3 Interrupt handling state machine

Note
 LPIs do not have an active state in the Redistributor, but do require an active priority in the CPU interface. See
Chapter 6 Locality-specific Peripheral Interrupts and the ITS for more information.

When interrupt forwarding by the Distributor and interrupt signaling by the CPU interface are enabled, the
conditions that cause each of the state transitions are as follows:

Transition A1 or A2, add pending state

This transition occurs when the interrupt becomes pending, either as a result of the peripheral
generating the interrupt or as result of software generating the interrupt.

Transition B1 or B2, remove pending state

This transition occurs when the interrupt has been deasserted by the peripheral, if the interrupt is a
level-sensitive interrupt, or when software has changed the pending state.

For LPIs, it also occurs on acknowledgement of the interrupt.

Transition C, pending to active

This transition occurs on acknowledgement of the interrupt by the PE for edge-triggered SPIs, SGIs,
and PPIs.

For SPIs, SGIs, and PPIs, this transition occurs when software reads an INTID value from
ICC_IAR0_EL1 or ICC_IAR1_EL1.

Transition D, pending to active and pending

This transition occurs on acknowledgement of the interrupt by the PE for level-sensitive SPIs, SGIs,
and PPIs.

Transition E1 or E2, remove active state

This transition occurs when software deactivates an interrupt for SPIs, SGIs, and PPIs.

Inactive Pending

Activea

Active and
pendinga

B2A2
E2

D

C

E1

B1

A1

a. Not applicable for LPIs.
4-52 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

4 Physical Interrupt Handling and Prioritization
4.2 Locality-specific Peripheral Interrupts
4.2 Locality-specific Peripheral Interrupts
LPIs are targeted peripheral interrupts that are routed to a specific PE within the affinity hierarchy. In a system where
two Security states are enabled, LPIs are always Non-secure Group 1 interrupts. LPIs only support edge-triggered
behavior. For more information about LPIs, see LPIs on page 6-92.
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 4-53
ID072617 Non-Confidential

4 Physical Interrupt Handling and Prioritization
4.3 Private Peripheral Interrupts
4.3 Private Peripheral Interrupts
PPIs are interrupts that target a single, specific PE, and different PEs can use the same INTID to indicate different
events. PPIs can be Group 0 interrupts, Secure Group 1 interrupts, or Non-secure Group 1 interrupts. They can
support either edge-triggered or level-sensitive behavior.

Note
 Commonly, ARM expects that PPIs are used by different instances of the same interrupt source on each PE, thereby
allowing a common INTID to be used for PE specific events, such as the interrupts from a private timer.
4-54 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

4 Physical Interrupt Handling and Prioritization
4.4 Software Generated Interrupts
4.4 Software Generated Interrupts
SGIs are typically used for inter-processor communication, and are generated by a write to an SGI register in the
GIC. SGIs can be either Group 0 or Group 1 interrupts, and they can support only edge-triggered behavior.

The registers associated with the generation of SGIs are part of the CPU interface:
• A PE generates a Group 1 SGI by writing to ICC_SGI1R_EL1 or ICC_ASGI1R_EL1.
• A PE generates a Group 0 SGI by writing to ICC_SGI0R_EL1.
• Routing information is supplied as the bitfield value in the write to the register that generated the SGI. The

SGI can be routed to:
— The group of PEs specified by a.b.c.targetlist. This can include the originating PE.
— All participating PEs in the system, excluding the originating PE.
See Routing SPIs and SGIs by PE affinity on page 2-35 for more information.

ICC_SGI1R_EL1 allows software executing in a Secure state to generate Secure Group 1 SGIs.

ICC_SGI1R_EL1 allows software executing in a Non-secure state to generate Non-secure Group 1 SGIs.

ICC_ASGI1R_EL1 allows software executing in a Secure state to generate Non-secure Group 1 SGIs.

ICC_ASGI1R_EL1 allows software executing in a Non-secure state to generate Secure Group 1 SGIs, if permitted
by the settings of GICR_NSACR in the Redistributor corresponding to the target PE.

ICC_SGI0R_EL1 allows software executing in Secure state to generate Group 0 SGIs.

ICC_SGI0R_EL1 allows software executing in Non-secure state to generate Group 0 SGIs, if permitted by the
settings of GICR_NSACR in the Redistributor corresponding to the target PE.

For more information about the use of control registers to forward SGIs to a target PE, see Table 8-14 on page 8-169.
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 4-55
ID072617 Non-Confidential

4 Physical Interrupt Handling and Prioritization
4.5 Shared Peripheral Interrupts
4.5 Shared Peripheral Interrupts
SPIs are peripheral interrupts that the Distributor can route to a specified PE that can handle the interrupt, or to a PE
that is one of a group of PEs in the system that has been configured to accept this type of interrupt. SPIs can be either
Group 0 or Group 1 interrupts, and they can support either edge-triggered or level-sensitive behavior.

SPIs can be either wired-based or message-based interrupts.

Support for message-based SPIs is optional, and can be discovered through GICD_TYPER.MBIS. Message-based
SPIs can be:
• Generated by a write to GICD_SETSPI_NSR or GICD_SETSPI_SR
• Cleared by a write to GICD_CLRSPI_NSR or GICD_CLRSPI_SR.

The effect of a write to these registers depends on whether the targeted SPI is configured to be an edge-triggered or
a level-sensitive interrupt:
• For an edge-triggered interrupt, a write to GICD_SETSPI_NSR or GICD_SETSPI_SR sets the interrupt

pending. The interrupt is no longer pending when it is activated, or when it is cleared by a write to
GICD_CLRSPI_NSR, GICD_CLRSPI_SR, or GICD_ICPENDR<n>.

• For a level-sensitive interrupt, a write to GICD_SETSPI_NSR or GICD_SETSPI_SR sets the interrupt
pending. It remains pending until it is deasserted by a write to GICD_CLRSPI_NSR or GICD_CLRSPI_SR.
If the interrupt is activated between the time it is asserted by a write to GICD_SETSPI_NSR or
GICD_SETSPI_SR and the time it is deactivated by a write to GICD_CLRSPI_NSR or GICD_CLRSPI_SR,
then the interrupt becomes active and pending.
It is IMPLEMENTATION DEFINED for a level-sensitive interrupt whether a write to GICD_ICPENDR<n> has
any effect on an interrupt that has been set pending by a write to GICD_SETSPI_NSR or GICD_SETSPI_SR,
or whether a write to GICD_CLRSPI_NSR or GICD_CLRSPI_SR has any effect on an interrupt that has
been set pending by a write GICD_ISPENDR<n>.
It is IMPLEMENTATION DEFINED whether acknowledging an interrupt that was set pending by a write to
GICD_ISPENDR<n> clears the pending state.

• Changing the configuration of an interrupt from level-sensitive to edge-triggered, or from edge-triggered to
level-sensitive, when there is a pending interrupt, leaves the interrupt in an UNKNOWN state.

Figure 4-4 on page 4-57 shows how message-based interrupt requests can trigger SPIs.
4-56 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

4 Physical Interrupt Handling and Prioritization
4.5 Shared Peripheral Interrupts
Figure 4-4 Triggering SPIs

Distributor

PE
x.y.0.0

PE
x.y.0.1

PE
x.y.0.2

Cluster C0

PE
x.y.n.0

PE
x.y.n.1

Cluster Cn

Redistributor CPU interface

GICD_SETSPI_SR registers GICD_SETSPI_NSR registers

Wire-based SPIs

Message-
based SPIs

GICD_CLRSPI_SR registers GICD_CLRSPI_NSR registers
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 4-57
ID072617 Non-Confidential

4 Physical Interrupt Handling and Prioritization
4.6 Interrupt grouping
4.6 Interrupt grouping
GICv3 uses interrupt grouping as a mechanism to align interrupt handling with the ARMv8 Exception model and
Security model.

In a system with two Security states, an interrupt is configured as one of the following:
• A Group 0 physical interrupt:

— ARM expects these interrupts to be handled at EL3.
• A Secure Group 1 physical interrupt:

— ARM expects these interrupts to be handled at Secure EL1.
• A Non-secure Group 1 physical interrupt:

— ARM expects these interrupts to be handled at Non-secure EL2 in systems using virtualization, or at
Non-secure EL1 in systems not using virtualization.

In a system with one Security state an interrupt is configured to be either:
• Group 0.
• Group 1.

At the System level, GICD_CTLR.DS indicates if the GIC is configured with one or two Security states. For more
information about Security, see Interrupt grouping and security.

These interrupt groups are mapped onto the ARMv8 FIQ and IRQ exceptions, see Interrupt assignment to IRQ and
FIQ signals on page 4-60.

GICD_IGROUPR<n> and GICD_IGRPMODR<n> configure the interrupt group for SPIs. n is greater than zero.

GICR_IGROUPR0 and GICR_IGRPMODR0 configure the interrupt group for SGIs and PPIs.

Note
 When GICD_CTLR.DS == 0, LPIs are always Non-secure Group 1 interrupts. When GICD_CTLR.DS == 1, LPIs
are always Group 1 interrupts.

System registers control and configure Group 0 and Group 1 interrupts:

• For Group 0 interrupts, software uses:

— ICC_IAR0_EL1 to read a Group 0 INTID on an interrupt acknowledge.

— ICC_EOIR0_EL1 to write a Group 0 interrupt completion.

— ICC_BPR0_EL1 to configure the binary point for Group 0 prioritization.
This register is also used for Group 1 prioritization when ICC_CTLR_EL1.CBPR == 1.

— ICC_HPPIR0_EL1 to read the highest Group 0 interrupt that is currently pending.

— ICC_IGRPEN0_EL1 to enable Group 0 interrupts at the CPU interface.

• For Group 1 interrupts, software uses:

— ICC_IAR1_EL1 to read a Group 1 INTID on an interrupt acknowledge.

— ICC_EOIR1_EL1 to write a Group 1 interrupt completion.

— ICC_BPR1_EL1 to configure the binary point for Group 1 prioritization for the current Security state.

— ICC_HPPIR1_EL1 to read the highest Group 1 interrupt that is currently pending.

— ICC_IGRPEN1_EL1 to enable Group 1 interrupts for the target Security state of the interrupt.

In a system with two Security states, Group 0 interrupts are always Secure. For more information about grouping
and Security, see Interrupt grouping and security.

4.6.1 Interrupt grouping and security

The ARM architecture provides two Security states, each with an associated physical memory address space:
• Secure state.
4-58 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

4 Physical Interrupt Handling and Prioritization
4.6 Interrupt grouping
• Non-secure state.

A software hierarchy of user and privileged code can execute in either state, and software executing in Non-secure
state can only access Secure state through a system call to the Secure monitor. The GIC architecture supports the
routing and handling of interrupts associated with both Security states.

GICD_CTLR.DS indicates whether a GIC is configured to support the ARMv8-A Security model. This
configuration affects:
• Register access, see GIC System register access on page 8-159.
• The interrupt groups that are supported.

When GICD_CTLR.DS == 0:
• The GIC supports two Security states, Secure state and Non-secure state.
• The GIC supports three interrupt groups:

— Group 0.
— Secure Group 1.
— Non-secure Group 1.

• Both the Security state and GICR_NSACR determine whether an SGI can be generated.
• The Security state is checked during:

— Configuration of an interrupt.
— Acknowledgement of an interrupt.
— Priority drop.
— Deactivation.

• Secure Group 1 interrupts are treated as Group 0 by a CPU interface if:
— The PE does not implement EL3.
— ICC_SRE_EL1(S).SRE == 0.

When GICD_CTLR.DS == 1:
• The GIC supports only a single Security state. This can be either Secure state or Non-secure state.
• The GIC supports two interrupt groups:

— Group 0.
— Group 1.

• SGIs can be generated regardless of the settings in GICR_NSACR.
• The Security state is not checked during:

— Configuration of an interrupt.
— Acknowledgement of an interrupt.
— Priority drop.
— Deactivation.

In a multiprocessor system, one or more PEs within the system might support accesses to resources that are available
only in Secure state, or accesses to resources that are available only in Non-secure state. It is a programming error
if software configures:
• A Group 0 or Secure Group1 interrupt to be forwarded to a PE that only supports Non-secure state.
• A Non-secure Group1 interrupt to be forwarded to a PE that only supports Secure state.

There is a dedicated register for the priority grouping for each interrupt group, ICC_BPR0_EL1 for Group 0
interrupts and ICC_BPR1_EL1 for Group 1 interrupts. However, it is possible to configure a common Binary Point
Register for both groups using:
• ICC_CTLR_EL1.CBPR.
• ICC_CTLR_EL3.CBPR_EL1NS and ICC_CTLR_EL3.CBPR_EL1S for an independent common Binary

Point Register configuration of Non-secure Group 1 and Secure Group 1 interrupts.

For information about interrupt grouping and legacy operation, see Chapter 10 Legacy Operation and Asymmetric
Configurations.
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 4-59
ID072617 Non-Confidential

4 Physical Interrupt Handling and Prioritization
4.6 Interrupt grouping
4.6.2 Interrupt assignment to IRQ and FIQ signals

This subsection applies to implementations in which affinity routing is enabled.

 A Group 0 physical interrupt, when it is the highest priority pending interrupt and has sufficient priority, is always
signaled as an FIQ.

A Group 1 physical interrupt, when it is the highest priority pending interrupt and has sufficient priority, is signaled
as an FIQ if either of the following conditions is true, otherwise it is signaled as an IRQ:
• It is an interrupt for the other Security state, that is, the Security state in which the PE is not executing.
• The PE is executing at EL3.

Table 4-3 summarizes the signaling of interrupts when EL3 is using AArch64 state.

Table 4-4 summarizes the signaling of interrupts when EL3 is using AArch32 state.

Table 4-5 summarizes the signaling of interrupts in systems that support only a single Security state, that is where
EL3 is not implemented or when GICD_CTLR.DS == 1.

The assertion and de-assertion of IRQs and FIQs are affected by the current Exception level and Security state of
the PE. As part of the Context Synchronization that occurs as the result of taking or returning from an exception,
the CPU interface ensures that IRQ and FIQ are both appropriately asserted or deasserted for the Exception level
and Security state that the PE is entering.

Table 4-3 Interrupt signals for two Security states when EL3 is using AArch64 state

Current Exception level Group 0 interrupts Group 1 interrupts

Secure Non-secure

Secure EL1or EL0 FIQ IRQ FIQ

Non-secure EL1 or EL0 FIQ FIQ IRQ

Non-secure EL2 FIQ FIQ IRQ

EL3 FIQ FIQ FIQ

Table 4-4 Interrupt signals for two Security states when EL3 is using AArch32 state

Current Exception level Group 0 interrupts Group 1 interrupts

Secure Non-secure

Secure EL0 FIQ IRQ FIQ

Non-secure EL1 or EL0 FIQ FIQ IRQ

Non-secure EL2 FIQ FIQ IRQ

EL3 FIQ IRQ FIQ

Table 4-5 Interrupt signals for a single Security state

Current Exception level Group 0 interrupts Group 1 interrupts

Any FIQ IRQ
4-60 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

4 Physical Interrupt Handling and Prioritization
4.6 Interrupt grouping
Note
 For the effects of GICC_CTLR.FIQEn on interrupt signaling in asymmetric configurations, see The asymmetric
configuration on page 10-714.

4.6.3 Interrupt routing and System register access

When executing in AArch64 state, interrupt routing to an Exception level is controlled by the following bits:
• SCR_EL3.FIQ, SCR_EL3.NS, and HCR_EL2.FMO control FIQs.
• SCR_EL3.IRQ, SCR_EL3.NS, and HCR_EL2.IMO control IRQs.

This routing also controls the Exception level at which the EL1 CPU interface System registers that control and
acknowledge interrupts are accessible. This applies to:

• ICC_IAR0_EL1, ICC_EOIR0_EL1, ICC_HPPIR0_EL1, ICC_BPR0_EL1, ICC_AP0R<n>_EL1 and
ICC_IGRPEN0_EL1. These are the registers that are associated with Group 0 interrupts.

• ICC_IAR1_EL1, ICC_EOIR1_EL1, ICC_HPPIR1_EL1, ICC_BPR1_EL1, ICC_AP1R<n>_EL1 and
ICC_IGRPEN1_EL1. These are the registers that are associated with Group 1 interrupts.

• ICC_SGI0R_EL1, ICC_SGI1R_EL1, ICC_ASGI1R_EL1, ICC_CTLR_EL1, ICC_DIR_EL1,
ICC_PMR_EL1, and ICC_RPR_EL1. These are the Common registers.

When (SCR_EL3.NS == 1 && (HCR_EL2.FMO ==1 || HCR_EL2.IMO == 1)), accesses at EL1 are virtual
accesses. Virtual accesses to ICC_SGI0R_EL1, ICC_SGI1R_EL1, and ICC_ASGI1R_EL1 always generate a Trap
exception that is taken to EL2.
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 4-61
ID072617 Non-Confidential

4 Physical Interrupt Handling and Prioritization
4.6 Interrupt grouping
Where a Distributor supports two Security states a PE might not implement EL2 or EL3. Table 4-6 shows the
configurations that are supported in these cases.

Table 4-6 Supported configurations when EL3 is not implemented

Distributor EL3 EL2 Security
State Description

Two Security states and
GICD_CTLR.DS == 0

No - Non-secure The PE is always Non-secure and can only
receive Non-secure Group 1 interrupts.
The PE must behave as if software had:
• Set ICC_SRE_EL3.Enable to 1 to allow

EL2 to use the System registers, if
required.

• Set ICC_SRE_EL3.DFB to 1.
• Set SCR_EL3.FIQ to 1.
• Cleared SCR_EL3.IRQ to 0.
• Set SCR_EL3.NS to 1.
• Cleared ICC_IGRPEN0_EL1.Enable to

0 to disable the signaling of Group 0
interrupts to the PE.

• Set the Secure copy of
ICC_IGRPEN1_EL1.Enable to 0 to
disable the signaling of Secure Group 1
interrupts to this PE.

Two Security states and
GICD_CTLR.DS == 0

No No Secure The PE is always Secure and can only receive
Group 0 and Secure Group 1 interrupts.
The PE must behave as if software had:
• Set ICC_SRE_EL3.Enable to 1.
• Cleared SCR_EL3.FIQ to 0.
• Cleared SCR_EL3.IRQ to 0.
• Cleared SCR_EL3.NS to 0.
• Cleared the Non-secure copy of

ICC_IGRPEN1_EL1.Enable to 0 to
disable the signaling of Non-secure
Group 1 interrupts to this PE.

One Security state or
two Security states and
GICD_CTLR.DS == 1

No - - The Distributor and all PEs are always in a
single Security state, and can receive Group 0
and Group 1 interrupts.
All PEs must behave as if software had:
• Set ICC_SRE_EL3.Enable to 1.
• Cleared SCR_EL3.FIQ to 0.
• Cleared SCR_EL3.IRQ to 0.
• Set SCR_EL3.NS to 1.
4-62 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

4 Physical Interrupt Handling and Prioritization
4.7 Enabling the distribution of interrupts
4.7 Enabling the distribution of interrupts
The following control bits enable and disable the distribution of interrupts:
• GICD_CTLR.EnableGrp1S.
• GICD_CTLR.EnableGrp1NS.
• GICD_CTLR.EnableGrp0.

The following control bits enable and disable the distribution of interrupt groups at the CPU interface:
• ICC_IGRPEN0_EL1.Enable for Group 0 interrupts.
• ICC_IGRPEN1_EL1.Enable for Group 1 interrupts.

Note
 There is a Secure and a Non-secure copy of this register.

• ICC_IGRPEN1_EL3.{EnableGrp1S, EnableGrp1NS}.

Physical LPIs are enabled by a write to GICR_CTLR.EnableLPIs.

4.7.1 Enabling individual interrupts

PPIs
PPIs can be enabled and disabled by writing to GICR_ISENABLER0 and GICR_ICENABLER0
when affinity routing is enabled for the Security state of the interrupt. Individual PPIs can also be
enabled and disabled by writing to GICD_ISENABLER<n> and GICD_ICENABLER<n>. n = 0
for PPIs, if legacy operation for physical interrupts is supported and configured.

SPIs
Individual SPIs can be enabled and disabled by writing to GICD_ISENABLER<n> and
GICD_ICENABLER<n>. n >0 for SPIs.

SGIs
SGIs can be enabled and disabled by writing to GICR_ISENABLER0 and GICR_ICENABLER0
when affinity routing is enabled. Individual SGIs can also be enabled and disabled by writing to
GICD_ISENABLER<n> and GICD_ICENABLER<n>. n = 0 for SGIs, if legacy operation for
physical interrupts is supported and configured.

Note
 Whether SGIs are permanently enabled, or can be enabled and disabled by writes to

GICR_ISENABLER0 and GICR_ICENABLER0, is IMPLEMENTATION DEFINED.

LPIs
Individual LPIs can be enabled by setting the enable bits programmed in the LPI Configuration
table. For more information about enabling LPIs using the LPI Configuration tables, see LPI
Configuration tables on page 6-95.

4.7.2 Interaction of group and individual interrupt enables

The GICD_* and GICR_* registers determine, at any moment in time, the highest priority pending interrupt that the
hardware is aware of for each target PE. This interrupt is presented to the CPU interface of a PE to evaluate whether
it is to be signaled to the PE. The enabling of the interrupts affects this evaluation as follows:
• A pending interrupt that is individually disabled in the GICD_* or GICR_* registers is not one which is

considered in the determination of the highest priority pending interrupt, and so cannot be signaled to the PE.
• A pending interrupt that is individually enabled in the GICD_*or GICR_* registers, but is a member of a

group that is disabled in GICD_CTLR, is not one that is considered in the determination of the highest
priority pending interrupt, and so cannot be signaled to the PE.
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 4-63
ID072617 Non-Confidential

4 Physical Interrupt Handling and Prioritization
4.7 Enabling the distribution of interrupts
• A pending 1 of N interrupt that is individually enabled in the GICD_* registers and is a member of a group
that is enabled in GICD_CTLR, but is a member of a group that is disabled in ICC_IGRPEN0_EL1,
ICC_IGRPEN1_EL1, or ICC_IGRPEN1_EL3 for a PE, cannot be selected for that PE. Such an interrupt is
not considered in the determination of the highest priority pending interrupt and so cannot be signaled to the
PE.

• For a pending direct interrupt that is individually enabled in the GICD_* or GICR_* registers and is a
member of a group that is enabled in GICD_CTLR, but is a member of a group that is disabled in
ICC_IGRPEN0_EL1, ICC_IGRPEN1_EL1, or ICC_IGRPEN1_EL3 , it is IMPLEMENTATION DEFINED
whether or not the interrupt is considered in the determination of the highest priority pending interrupt. If it
is determined to be the highest priority pending interrupt, the interrupt is not signaled to the PE, but will mask
a lower priority pending interrupt that is a member of a group that is enabled in ICC_IGRPEN0_EL1,
ICC_IGRPEN1_EL1, or ICC_IGRPEN1_EL3.

LPIs are enabled individually in the LPI Configuration tables, see LPI Configuration tables on page 6-95.

4.7.3 Effect of disabling interrupts

Disabling an interrupt by writing to the appropriate GICD_ICENABLER<n> or to GICR_ICENABLER0, or by
writing to the LPI Configuration tables, does not prevent that interrupt from changing state, for example from
becoming pending. When GICR_CTLR.EnableLPIs == 0, LPIs are never set pending.

If GICD_CTLR.EnableGrp0, GICD_CTLR.EnableGrp1S, and GICD_CTLR.EnableGrp1NS are all cleared to 0, it
is IMPLEMENTATION DEFINED whether:
• An edge-triggered interrupt signal moves the interrupt to the pending state.
• SGIs can be set pending by writing to GICD_SGIR, ICC_SGI0R_EL1, ICC_SGI1R_EL1, or

ICC_ASGI1R_EL1.

If an interrupt is pending on a CPU interface when the corresponding GICD_CTLR.EnableGrp0,
GICD_CTLR.EnableGrp1NS, or GICD_CTLR.EnableGrp1S bit is written from 1 to 0, then the interrupt must be
retrieved from the CPU interface.

Note
 This might have no effect on the forwarded interrupt if it has already been activated.

If an interrupt is pending on a CPU interface when software writes ICC_IGRPEN0_EL1.Enable,
ICC_IGRPEN0_EL1, ICC_IGRPEN1_EL1.Enable, or ICC_IGRPEN1_EL3.Enable from 1 to 0, the interrupt must
be released by the CPU interface to allow the Distributor to forward the interrupt to a different PE.
4-64 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

4 Physical Interrupt Handling and Prioritization
4.8 Interrupt prioritization
4.8 Interrupt prioritization
This section describes interrupt prioritization in the GIC architecture. Prioritization describes the:
• Configuration and control of interrupt priority.
• Order of execution of pending interrupts.
• Determination of when interrupts are visible to a target PE, including:

— Interrupt priority masking.
— Priority grouping.
— Preemption of an active interrupt.

Software configures interrupt prioritization in the GIC by assigning a priority value to each interrupt source. Priority
values are an 8-bit unsigned binary number. A GIC implementation that supports two Security states must
implement a minimum of 32 and a maximum of 256 levels of physical priority. A GIC implementation that supports
only a single Security state must implement a minimum of 16 and a maximum of 256 levels of physical priority. If
the GIC implements fewer than 256 priority levels, the low-order bits of the priority fields are RAZ/WI. This means
that the number of implemented priority field bits is IMPLEMENTATION DEFINED, in the range 4-8. Table 4-7 shows
the relation between the priority field bits and the number of priority levels supported by an implementation.

In the GIC prioritization scheme, lower numbers have higher priority. This means that the lower the assigned
priority value, the higher the priority of the interrupt. Priority field value 0 always indicates the highest possible
interrupt priority, and the lowest priority value depends on the number of implemented priority levels.

The GICD_IPRIORITYR<n> registers hold the priority value for each supported SPI. An implementation might
reserve an SPI for a particular purpose and assign a fixed priority to that interrupt, meaning the priority value for
that interrupt is read-only. For other SPIs the GICD_IPRIORITYR<n> registers can be written by software to set
the interrupt priorities. It is IMPLEMENTATION DEFINED whether a write to GICD_IPRIORITYR<n> changes the
priority of any active SPI.

In a multiprocessor implementation, the GICR_IPRIORITYR<n> registers define the interrupt priority of each SGI
and PPI INTID independently for each target PE. The order in which the CPU interface serializes these SGIs is
implementation specific.

LPI Configuration tables and LPI Pending tables in memory store LPI priority information and pending status, see
LPI Configuration tables on page 6-95 and LPI Pending tables on page 6-97.

The GIC security model provides Secure and Non-secure accesses to the interrupt priority settings.The Non-secure
accesses can configure interrupts only in the lower priority half of the supported priority values. Therefore, if the
GIC implements 32 priority values, Non-secure accesses see only 16 priority values. See Software accesses of
interrupt priority on page 4-72 for more information.

To determine the number of priority bits implemented for SPIs, software can write 0xFF to a writable
GICD_IPRIORITYR<n> priority field and read back the value stored.

To determine the number of priority bits implemented for SGIs and PPIs, software can write 0xFF to the
GICR_IPRIORITYR<n> priority fields, and read back the value stored.

The GIC architecture does not require all PEs in the system to use the same number of priority bits to control
interrupt priority.

Table 4-7 Effect of not implementing some priority field bits

Implemented priority bits Possible priority field values Number of priority levels

[7:0] 0x00-0xFF (0-255), all values 256

[7:1] 0x00-0xFE, (0-254), even values only 128

[7:2] 0x00-0xFC (0-252), in steps of 4 64

[7:3] 0x00-0xF8 (0-248), in steps of 8 32

[7:4] 0x00-0xF0 (0-240), in steps of 16 16
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 4-65
ID072617 Non-Confidential

4 Physical Interrupt Handling and Prioritization
4.8 Interrupt prioritization
In a multiprocessor implementation, ICC_CTLR_EL1.PRIbits and ICC_CTLR_EL3.PRIbits indicate the number
of priority bits implemented, independently for each target PE.

Note
 ARM recommends that implementations support the same number of priority bits for each PE.

For information about the priority range supported for virtual interrupts, see Chapter 5 Virtual Interrupt Handling
and Prioritization.

Note
 ARM recommends that, before checking the priority range in this way:
• For a peripheral interrupt, software first disables the interrupt.
• For an SGI, software first checks that the interrupt is inactive.

If, on a particular CPU interface, multiple pending interrupts have the same priority, and have sufficient priority for
the interface to signal them to the PE, it is IMPLEMENTATION DEFINED how the interface selects which interrupt to
signal.

GICv3 guarantees that the highest priority, unmasked, enabled interrupt will be delivered to a target PE in finite
time.

There is no guarantee that higher priority interrupts will always be taken before lower priority interrupts, although
this will generally be the case.

The remainder of this section describes:
• Non-secure accesses to register fields for Secure interrupt priorities.
• Priority grouping on page 4-67.
• System register access to the Active Priorities registers on page 4-70.
• Preemption on page 4-71.
• Priority masking on page 4-72.
• Software accesses of interrupt priority on page 4-72.
• Changing the priority of enabled PPIs, SGIs, and SPIs on page 4-76.

4.8.1 Non-secure accesses to register fields for Secure interrupt priorities

When GICD_CTLR.DS == 0, the GIC supports the use of:
• Group 0 interrupts as Secure interrupts.
• Secure Group 1 interrupts.
• Non-secure Group 1 interrupts.

In order to support the ARMv8 Security model the register fields associated with Secure interrupts are RAZ/WI for
Non-secure accesses. In addition, the following rules apply:

For Non-secure access to a priority field in GICx_IPRIORITYR<n>:

If the priority field corresponds to a Non-secure Group 1 interrupt in Software accesses of interrupt
priority on page 4-72:

• For SPIs, the priority field is determined by GICD_IPRIORITYR<n>.

• For PPIs and SGIs, the priority field is determined by GICR_IPRIORITYR<n>.

For Non-secure access to ICC_PMR_EL1 and ICC_RPR_EL1 when SCR_EL3.FIQ == 1:
• If the current priority mask value is in the range of 0x00-0x7F:

— A read access returns the value 0x00.
— The GIC ignores a write access to ICC_PMR_EL1.

• If the current priority mask value is in the range of 0x80-0xFF:
— A read access returns the Non-secure read of the current value.
4-66 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

4 Physical Interrupt Handling and Prioritization
4.8 Interrupt prioritization
— A write access to ICC_PMR_EL1 succeeds, based on the Non-secure read of the
priority mask value written to the register.

Note
 This means a Non-secure write cannot set a priority mask value in the range of 0x00-0x7F.

For Non-secure access to ICC_PMR_EL1 and ICC_RPR_EL1 when SCR_EL3.FIQ == 0:
The Secure, unshifted view applies.

AArch64 functions on page 8-691 provides pseudocode that describes accesses to the following System registers in
a GIC that supports two Security states:
• ICC_PMR_EL1.
• ICC_RPR_EL1.

4.8.2 Priority grouping

Priority grouping uses the following Binary Point Registers:
• ICC_BPR0_EL1 for Group 0 interrupts. This register is available in all GIC implementations.
• A Non-secure copy of ICC_BPR1_EL1 for Non-secure Group 1 interrupts. If an implementation supports

two Security states, there is a Secure and a Non-secure copy of this register. If an implementation supports
only one Security state, there is only one copy of this register

• A Secure copy of ICC_BPR1_EL1 for Secure Group 1 interrupts. This register is available only in a GIC
implementation that supports two Security states.

The Binary Point Registers split a priority value into two fields, the group priority and the subpriority. When
determining preemption, all interrupts with the same group priority are considered to have the same priority,
regardless of the subpriority.

Where multiple pending interrupts have the same group priority, the GIC uses the subpriority field to resolve the
priority within a group. Where two or more pending interrupts in a group have the same subpriority, how the GIC
selects between the interrupts is implementation specific.

The GIC uses the group priority field to determine whether a pending interrupt has sufficient priority to preempt
execution on a PE, as follows:
• The value of the group priority field for the interrupt must be lower than the value of the running priority of

the PE. The running priority is the group priority of the highest priority active interrupt that has not received
a priority drop on that PE.

• The value of the priority for the interrupt must be lower than the value of its priority mask.

ICC_BPR0_EL1 determines the priority grouping of Group 0 interrupts:

• When ICC_CTLR_EL3.CBPR_EL1S is set to 1, ICC_BPR0_EL1 also determines the priority grouping of
Secure Group 1 interrupts.

• When ICC_CTLR_EL3.CBPR_EL1NS is set to 1, ICC_BPR0_EL1 also determines the priority grouping of
Non-secure Group 1 interrupts

ICC_BPR1_EL1 determines the priority of Group 1 interrupts:

• When ICC_CTLR_EL3.CBPR_EL1S is cleared to 0, the Secure copy of ICC_BPR1_EL1 determines the
priority grouping of Secure Group 1 interrupts.

• When ICC_CTLR_EL3.CBPR_EL1NS is cleared to 0, the Non-secure copy of ICC_BPR1_EL1 determines
the priority grouping of Non-secure Group 1 interrupts.
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 4-67
ID072617 Non-Confidential

4 Physical Interrupt Handling and Prioritization
4.8 Interrupt prioritization
Table 4-8 shows the split of the interrupt priority fields for Secure ICC_BPR1_EL1.

Table 4-9 shows the split of the interrupt priority fields for Non-secure ICC_BPR1_EL1.

Table 4-10 shows the split of the interrupt priority fields for ICC_BPR0_EL1.

Table 4-8 Secure ICC_BPR1_EL1 Binary Point when CBPR == 0

ICC_BPR1_EL1
Binary point
value

Group
priority field Subpriority field Field with binary

point

0 [7:1] [0] ggggggg.s

1 [7:2] [1:0] gggggg.ss

2 [7:3] [2:0] ggggg.sss

3 [7:4] [3:0] gggg.ssss

4 [7:5] [4:0] ggg.sssss

5 [7:6] [5:0] gg.ssssss

6 [7] [6:0] g.sssssss

7 No preemption [7:0] .ssssssss

Table 4-9 Non-secure ICC_BPR1_EL1 Binary Point when CBPR == 0

ICC_BPR1_EL1
Binary point
value

Group
priority field Subpriority field Field with binary

point

0 - - -

1 [7:1] [0] gggggggg.s

2 [7:2] [1:0] gggggg.ss

3 [7:3] [2:0] ggggg.sss

4 [7:4] [3:0] gggg.ssss

5 [7:5] [4:0] ggg.sssss

6 [7:6] [5:0] gg.ssssss

7 [7] [6:0] g.ssssssss

Table 4-10 ICC_BPR0_EL1 Binary Point for Group 1 interrupts when CBPR == 1, or for Group 0
interrupts

ICC_BPR0_EL1
Binary point value Group field priority Subpriority field Field with binary point

0 [7:1]a [0] ggggggg.s

1 [7:2]a [1:0] gggggg.ss

2 [7:3]a [2:0] ggggg.sss

3 [7:4]a [3:0] gggg.ssss
4-68 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

4 Physical Interrupt Handling and Prioritization
4.8 Interrupt prioritization
The minimum binary point value that is supported depends on the IMPLEMENTATION DEFINED number of priority
bits, as shown in Table 4-11.

The number of priority bits that are implemented is indicated by ICC_CTLR_EL1.PRIBits and
ICC_CTLR_EL3.PRIBits.

In a GIC that supports two Security states, when:

• ICC_CTLR_EL3.CBPR_EL1S == 1:

— Writes to ICC_BPR1_EL1 at Secure EL1 modify ICC_BPR0_EL1.

— Reads from ICC_BPR1_EL1 at Secure EL1 return the value of ICC_BPR0_EL1.

• ICC_CTLR_EL3.CBPR_EL1NS == 1:

— Non-secure writes to ICC_BPR1_EL1 modify ICC_BPR0_EL1.

— Non-secure reads from ICC_BPR1_EL1 return the value of ICC_BPR0_EL1.

Note
 • When an interrupt is using Non-secure ICC_BPR1_EL1, the effective binary point value is that stored in the

register, minus one, as shown in Table 4-9 on page 4-68. This means that software with no awareness of the
effects of interrupt grouping and where two Security states are supported, sees the same priority grouping
mechanism, regardless of whether it is running on a PE that is in Secure state or in Non-secure state.

• Priority grouping always operates on the full priority, which is the value that would be visible to a Secure
read. This is different from the value that is visible to a Non-secure read of the priority value corresponding
to a Non-secure interrupt. See Figure 4-8 on page 4-74 and Figure 4-9 on page 4-75.

• When EL3 is using AArch32, and ICC_MCTLR.CBPR_EL1S == 1, accesses to ICC_BPR1 at EL3 and not
in Monitor mode access the state of ICC_BPR0.

4 [7:5]a [4:0] ggg.sssss

5 [7:6]a [5:0] gg.ssssss

6 [7]a [6:0] g.sssssss

7 No preemption [7:0] .ssssssss

a. If a Non-secure write sets the priority value field for a Non-secure interrupt then bit[7] == 1.

Table 4-11 Minimum binary point value support

Number of implemented priority bits Minimum value of ICC_BPR0_EL1

8 0

7 0

6 1

5 2

4 3

Table 4-10 ICC_BPR0_EL1 Binary Point for Group 1 interrupts when CBPR == 1, or for Group 0
interrupts (continued)

ICC_BPR0_EL1
Binary point value Group field priority Subpriority field Field with binary point
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 4-69
ID072617 Non-Confidential

4 Physical Interrupt Handling and Prioritization
4.8 Interrupt prioritization
Pseudocode

The following pseudocode indicates the group priority of the interrupt.

// GroupBits()
// ===========
// Returns the priority group field for the current BPR value for the group

bits(8) GroupBits(bits(8) priority, IntGroup group)
 bit cbpr_G1NS = if HaveEL(EL3) then ICC_CTLR_EL3.CBPR_EL1NS else ICC_CTLR_EL1.CBPR;
 bit cbpr_G1S = if HaveEL(EL3) then ICC_CTLR_EL3.CBPR_EL1S else ‘0’;

 if (group == IntGroup_G0 ||
 (group == IntGroup_G1NS && cbpr_G1NS == ‘1’) ||
 (group == IntGroup_G1S && cbpr_G1S == ‘1’)) then
 bpr = UInt(ICC_BPR0_EL1.BinaryPoint);
 elsif group == IntGroup_G1S then
 bpr = UInt(ICC_BPR1_EL1S.BinaryPoint);
 else
 bpr = UInt(ICC_BPR1_EL1NS.BinaryPoint) -1;

 mask = Ones(7-bpr):Zeros(bpr+1);

 return priority AND mask;

4.8.3 System register access to the Active Priorities registers

Physical Group 0 and Group 1 interrupts access different Active Priorities registers, depending on the interrupt
group.

For Group 0 interrupts, these registers are ICC_AP0R<n>_EL1, where n = 0-3:

• If 32 or fewer priority levels are implemented, accesses to ICC_AP0R<n>_EL1, where n = 1-3, are
UNDEFINED.

• If more than 32 and fewer than 65 priority levels are implemented, accesses to ICC_AP0R<n>_EL1, where
n = 2-3, are UNDEFINED.

For Group 1 interrupts, these registers are ICC_AP1R<n>_EL1, where n= 0-3:

• If 32 or fewer priority levels are implemented, accesses to ICC_AP1R<n>_EL1, where n = 1-3, are
UNDEFINED.

• If more than 32 and fewer than 65 priority levels are implemented, accesses to ICC_AP1R<n>_EL1, where
n = 2-3, are UNDEFINED.

The content of ICC_AP0R<n>_EL1, Secure ICC_AP1R<n>_EL1, and Non-secure ICC_AP1R<n>_EL1 is
IMPLEMENTATION DEFINED. However, the value 0x00000000 must be consistent with no priorities being active.

Writing any value other than the last read value, or 0x00000000, to these registers can cause:
• Interrupts that would otherwise preempt execution to not preempt execution.
• Interrupts that otherwise would not preempt execution to preempt execution.

Writing any value to Non-secure ICC_AP1R<n>_EL1 cannot prevent the correct prioritization and the forwarding
of interrupts of higher priority than those in the Non-secure priority range, meaning that this does not create a
security hole.

Writes to these registers in any order other than the following can result in UNPREDICTABLE behavior:
1. ICC_AP0R<n>_EL1.
2. Secure ICC_AP1R<n>_EL1.
3. Non-secure ICC_AP1R<n>_EL1.
4-70 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

4 Physical Interrupt Handling and Prioritization
4.8 Interrupt prioritization
Note
 An ISB is not required between each write to ICC_AP0R<n>_EL1, Secure ICC_AP1R<n>_EL1, and Non-secure
ICC_AP1R<n>_EL1.

Table 4-12 shows an implementation of ICC_AP0R<n>_EL1.

Table 4-13 shows an implementation of ICC_AP1R<n>_EL1.

4.8.4 Preemption

A CPU interface supports signaling of higher priority pending interrupts to a target PE before an active interrupt
completes. A pending interrupt is only signaled if both:
• Its priority is higher than the priority mask for that CPU interface. See Priority masking on page 4-72.
• Its group priority is higher than that of the running priority on the CPU interface. See Priority grouping on

page 4-67 for more information.

Preemption occurs at the time when the PE takes the new interrupt, and starts handling the new interrupt instead of
the previously active interrupt or the currently running process. When this occurs, the initial active interrupt is said
to have been preempted.

Note
 The value of the I or F bit in the Process State, PSTATE, and the Exception level and the interrupt routing controls
in software and hardware, determine whether the PE responds to the signaled interrupt by taking the interrupt. For
more information, see ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile.

For more information about enabling interrupts, see Enabling the distribution of interrupts on page 4-63.

Table 4-12 Group 0 Active Priorities Register implementation

Minimum value of: Maximum number of:

Secure
ICC_BPR0_EL1

Non-secure
ICC_BPR1_EL1

Group
priority
bits

Preemption
levels ICC_AP0Rn implementation

3 4 4 16 ICC_AP0R<n>_EL1[15:0], where n = 0

2 3 5 32 ICC_AP0R<n>_EL1[31:0], where n = 0

1 2 6 64 ICC_AP0R<n>_EL1, where n = 0-1

0 1 7 128 ICC_AP0R<n>_EL1, where n = 0-3

Table 4-13 Group 1 Active Priorities Register implementation

Minimum value of: Maximum number of:

Secure
ICC_BPR0_EL1

Non-secure
ICC_BPR1_EL1

Group
priority
bits

Preemption
levels ICC_AP1Rn implementation

3 4 4 16 ICC_AP1R<n>_EL1[15:0], where n = 0

2 3 5 32 ICC_AP1R<n>_EL1[31:0], where n = 0

1 2 6 64 ICC_AP1R<n>_EL1, where n = 0-1

0 1 7 128 ICC_AP1R<n>_EL1, where n = 0-3
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 4-71
ID072617 Non-Confidential

4 Physical Interrupt Handling and Prioritization
4.8 Interrupt prioritization
Preemption level control

ICC_BPR0_EL1 determines whether a Group 0 interrupt is signaled to the PE for possible preemption. In addition:

• When ICC_CTLR_EL3.CBPR_EL1NS == 1, ICC_BPR0_EL1 also determines whether a Non-secure Group
1 interrupt is signaled to the PE for possible preemption.

• When ICC_CTLR_EL3.CBPR_EL1S == 1, ICC_BPR0_EL1 also determines whether a Secure Group 1
interrupt is signaled to the PE for possible preemption.

ICC_BPR1_EL1 determines whether a Group 1 interrupt is signaled to the PE for possible preemption. The
Non-secure copy of this register is used for Non-secure Group 1 interrupts. The Secure copy is used for Secure
Group 1 interrupts.

When ICC_CTLR_EL3.CBPR_EL1NS is set to 1:
• EL3 can write to ICC_BPR1_EL1(NS).

When EL3 is using AArch64 state, accesses to ICC_BPR1_EL1(NS) from EL3 are not affected by
ICC_CTLR_EL3.CBPR_EL1NS.
When EL3 is using AArch32 state, accesses to ICC_BPR1_EL1(NS) from Monitor mode are not affected by
ICC_CTLR_EL3.CBPR_EL1NS.

• Non-secure writes to ICC_BPR1_EL1 at EL1 or EL2 are ignored.
• Non-secure reads of ICC_BPR1_EL1 at EL1 or EL2 return the value of ICC_BPR0_EL1 +1, saturating at 7.

When ICC_CTLR_EL3.CBPR_EL1S is set to 1:
• Secure reads of ICC_BPR1_EL1 return the value of ICC_BPR0_EL1.
• Secure writes to ICC_BPR1_EL1 update ICC_BPR0_EL1.

4.8.5 Priority masking

The Priority Mask Register for a CPU interface, ICC_PMR_EL1, defines a priority threshold for the target PE. The
GIC only signals pending interrupts that have a higher priority than this priority threshold to the target PE. A value
of zero, the register reset value, masks all interrupts from being signaled to the associated PE. The GIC does not use
priority grouping when comparing the priority of a pending interrupt with the priority threshold.

The GIC always masks an interrupt that has the lowest supported priority. This priority is sometimes referred to as
the idle priority.

Note
 Writing 0xFF to ICC_PMR_EL1 always sets it to the lowest supported priority. Table 4-7 on page 4-65 shows how
the lowest supported priority varies with the number of implemented priority bits.

If the GIC provides support for two Security states, ICC_PMR_EL1 is RAZ/WI to Non-secure accesses, if bit[7]
== 0. During normal operation, software executing in Non-secure state does not access ICC_PMR_EL1when it is
programmed with such a value.

For information that relates to different GIC configurations, see Non-secure accesses to register fields for Secure
interrupt priorities on page 4-66.

4.8.6 Software accesses of interrupt priority

This section describes Secure and Non-secure reads of interrupt priority, and the relationship between them. It also
describes writes to the priority value fields.

Note
 This section applies to any GIC implementation that supports two Security states.

When a PE reads the priority value of a Non-secure Group 1 interrupt, the GIC returns either the Secure or the
Non-secure read of that value, depending on whether the access is Secure or Non-secure.
4-72 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

4 Physical Interrupt Handling and Prioritization
4.8 Interrupt prioritization
The GIC implements a minimum of 32 and a maximum of 256 priority levels. This means it implements 5-8 bits of
the 8-bit priority value fields in the appropriate GICR_IPRIORITYR<n> and GICD_IPRIORITYR<n> register. All
of the implemented priority bits can be accessed by a Secure access, and unimplemented low-order bits of the
priority fields are RAZ/WI. Figure 4-5 shows the Secure read of a priority value field for an interrupt. The priority
value stored in the Distributor is equivalent to the Secure read.

Figure 4-5 Secure read of the priority field for any interrupt

In this view:
• Bits H-D are the bits that the GIC must implement, corresponding to 32 priority levels.
• Bits C-A are the bits the GIC might implement. They are RAZ/WI if not implemented.
• The GIC must implement bits H-A to provide the maximum 256 priority levels.

For Non-secure accesses, the GIC supports half the priority levels it supports for Secure accesses, which means a
minimum of 16 priority levels. Figure 4-6 shows the Non-secure view of a priority value field for a Non-secure
Group 1 interrupt.

Figure 4-6 Non-secure read of the priority field for a Non-secure Group 1 interrupt

In this read:
• Bits G-D are the bits that the GIC must implement, corresponding to 16 priority levels.
• Bits C-A are the bits the GIC might implement, that are RAZ/WI if not implemented.
• The GIC must implement bits G-A to provide the maximum 128 priority levels.
• Bit [0] is RAZ/WI.

The Non-secure read of a priority value does not show how the value is stored in the registers in the Distributor. For
Non-secure writes to a priority field of a Non-secure Group 1 interrupt, before storing the value:
• The value is right-shifted by one bit.
• Bit [7] of the value is set to 1.

This translation means the priority value for the Non-secure Group 1 interrupt is in the bottom half of the priority
range.

A Secure read of the priority value for an interrupt returns the value stored in the Distributor. Figure 4-7 shows this
Secure read of the priority value field for a Non-secure Group 1 interrupt that has had its priority value field set by
a Non-secure access, or has had a priority value with bit[7] == 1 set by a Secure access:

Figure 4-7 Secure read of the priority field for a Non-secure Group 1 interrupt

A Secure write to the priority value field for a Non-secure Group 1 interrupt can set bit [7] to 0. If a Secure write
sets bit[7] to 0:
• A Non-secure read returns the value GFEDCBA0.
• A Non-secure write can change the value of the field, but only to a value that has bit [7] set to 1 for the Secure

read of the field.

A

7 6 5 4 3 2 1 0

H G F E D C B

0

7 6 5 4 3 2 1 0

G F E D C B A

A

7 6 5 4 3 2 1 0

1 G F E D C B
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 4-73
ID072617 Non-Confidential

4 Physical Interrupt Handling and Prioritization
4.8 Interrupt prioritization
Note
 • This behavior of Non-secure accesses applies only to the priority value fields in GICR_IPRIORITYR<n>

and GICD_IPRIORITYR<n>, as appropriate:
— If the Priority field in ICC_PMR_EL1 holds a value with bit [7] == 0, then the field is RAZ/WI for

Non-secure accesses.
— If the Priority field in ICC_RPR_EL1 holds a value with bit [7] == 0, then the field is RAZ for

Non-secure reads.

• ARM does not recommend setting bit[7] to 0 for a Non-secure Group 1 interrupt in this way because it places
the interrupt in the wrong half of the priority range for maintenance by non-secure code.

Figure 4-8 shows the relationship between the reads of the priority value fields for Non-secure Group 1 interrupts.

Figure 4-8 Relationship between Secure and Non-secure reads of interrupt priority fields

Figure 4-9 on page 4-75 shows how software reads of the interrupt priorities from Secure and Non-secure accesses
relate to the priority values held in the Distributor, and to the interrupt values that are visible to Secure and
Non-secure accesses. Figure 4-9 on page 4-75 applies to a GIC that implements the maximum range of priority
values.

A

7 6 5 4 3 2 1 0

H G F E D C B Matches Secure view

0

7 6 5 4 3 2 1 0

G F E D C B A Translation of Secure view

A

7 6 5 4 3 2 1 0

H G F E D C B Matches Secure view

Secure access

Non-secure access

Secure access
4-74 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

4 Physical Interrupt Handling and Prioritization
4.8 Interrupt prioritization
Figure 4-9 Software reads of the priorities of Group 1 and Group 0 interrupts

Table 4-14 shows how the number of priority value bits implemented by the GIC affects the Secure and Non-secure
reads of the priority of a Non-secure Group 1 interrupt.

Note
 Software executing in Non-secure state has no visibility of the priority settings of Group 0 interrupts, or where
applicable, of Secure Group 1 interrupts.

This model for the presentation of priority values ensures software written to operate with an implementation of this
GIC architecture functions as intended regardless of whether the GIC provides support for two Security states.
However, programmers must ensure that software assigns the appropriate priority levels to the Group 0 and Group
1 interrupts.

Note
 To control priority values, ARM strongly recommends that:
• For a Group 0 interrupt, software sets bit[7] of the priority value field to 0.

0x00

0x7F
0x80

0xFF

Priority range for
Non-secure Group

1 interrupts b

0x00

0xFE

Increasing
prioritya

0x00

0xFF

Increasing
priority

Priority range for
 Group 0 and Secure
Group 1 interrupts b

Priority values
in Distributor

a. All priority values are even (bit [0] == 0) in the software view of Non-secure
accesses.

Software view from
Non-secure accesses

Software view from
Secure accesses

b. Ranges recommended by ARM.

Lowest
priority

Highest
priority

Table 4-14 Effect of not implementing some priority field bits, two Security states

Implemented priority bits, as
seen by a Secure read

Possible priority field values, for a Non-secure Group 1 interrupt

Secure read Non-secure read

[7:0] 0xFF-0x00 (255-0), all values 0xFE-0x00 (254-0), even values only

[7:1] 0xFE-0x00 (254-0), even values only 0xFC-0x00 (252-0), in steps of 4

[7:2] 0xFC-0x00 (252-0), in steps of 4 0xF8-0x00 (248-0), in steps of 8

[7:3] 0xF8-0x00 (248-0), in steps of 8 0xF0-0x00 (240-0), in steps of 16
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 4-75
ID072617 Non-Confidential

4 Physical Interrupt Handling and Prioritization
4.8 Interrupt prioritization
• If using a Secure write to set the priority of a Non-secure Group 1 interrupt, software sets bit[7] of the priority
value field to 1.

This ensures that all Group 0 and, if applicable, Secure Group 1 interrupts have higher priorities than all Non-secure
Group 1 interrupts. However, a system might have requirements that cannot be met with this scheme.

Table 4-15 shows an example priority allocation scheme that ensures:
• Some Group 0 interrupts have higher priority than any other interrupts.
• Some Secure Group 1 interrupts have higher priority than any Non-secure Group 1 interrupt.

• Software might not be aware that the GIC supports two Security states, and therefore might not know whether
it is making Secure or Non-secure accesses to GIC registers. However, for any implemented interrupt,
software can write 0xFF to the corresponding GICR_IPRIORITYR<n> priority value field, and then read
back the value stored in the field to determine the supported interrupt priority range. ARM recommends that,
before checking the priority range in this way:
— For a peripheral interrupt, software first disables the interrupt.
— For an SGI, software first checks that the interrupt is inactive.

4.8.7 Changing the priority of enabled PPIs, SGIs, and SPIs

If software writes to the GICD_IPRIORITYR<n> or GICR_IPRIORITYR<n> register of an enabled interrupt while
the interrupt is pending, it is IMPLEMENTATION DEFINED whether the GIC uses the old value or the new value. The
GIC ensures that no interrupt is handled more than once, and that no interrupt is lost. The effect of the write must
be visible in finite time.

Table 4-15 Example priority allocation

Interrupt security configuration GICR_IPRIORITYR<n>[7:6]

Group 0 0b00

Secure Group 1 0b01

Non-secure Group 1 0b10

0b11
4-76 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

Chapter 5
Virtual Interrupt Handling and Prioritization

This chapter describes the fundamental aspects of GIC virtual interrupt handling and prioritization:
• About GIC support for virtualization on page 5-78.
• Operation overview on page 5-79.
• Configuration and control of VMs on page 5-83.
• Virtual LPI support on page 5-86.
• Pseudocode on page 5-88.
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 5-77
ID072617 Non-Confidential

5 Virtual Interrupt Handling and Prioritization
5.1 About GIC support for virtualization
5.1 About GIC support for virtualization
An operating system that is executing at EL1 under the control of a hypervisor executing at EL2 is sometimes
referred as a virtual machine (VM). A VM can support multiprocessing, which means that multiple virtual PEs
(vPEs), that are scheduled by the hypervisor are executing on one or more physical PEs. When a vPE is executing
on a PE, that vPE of the VM is referred to as being scheduled on the physical PE.

In ARMv8, when EL2 is implemented and enabled, the CPU interface provides mechanisms to minimize the
hypervisor overhead of routing interrupts to a VM. For more information about vPEs, see Operation overview on
page 5-79.

For more information about EL2 and virtual interrupts, see ARM® Architecture Reference Manual, ARMv8, for
ARMv8-A architecture profile.

In GICv4, for the directly injected virtual LPIs , the scheduled vPE is determined by GICR_VPENDBASER. For
more information, see Doorbell interrupts on page 5-87

Note
 The GIC does not provide additional mechanisms for the virtualization of the GICD_*, GICR_*, and GITS_*
registers. To virtualize VM accesses to these registers, the hypervisor must set stage 2 data aborts to those memory
locations so that the hypervisor can emulate these effects. For more information about stage 2 data aborts, see ARM®
Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile.

When a GIC provides support for virtualization, the VM operates in an environment that has the following features:
• The vPE can be configured to receive virtual Group 0 interrupts.
• The vPE can be configured to receive virtual Group 1 interrupts.
• Virtual Group 0 interrupts are signaled using the virtual FIQ signal to Non-secure EL1.
• Virtual Group 1 interrupts are signaled using the virtual IRQ signal to Non-secure EL1.
• Virtual interrupts can be handled by the vPE as if they were physical interrupts.

Note
 This applies when affinity routing and System register access are enabled. For information about support for virtual
interrupts in legacy operation, see Support for legacy operation of VMs on page 10-715.

EL2 controls the generation of virtual interrupts for a VM. This allows software executing at EL2 to:
• Generate virtual Group 0 and Group 1 interrupts for the vPE.
• Save and restore the interrupt state of the vPE.
• Control the prioritization of the virtual interrupts.
• Change the vPE that is scheduled.

GICv4 introduces the ability to present virtual LPIs from an ITS directly to a vPE, without hypervisor intervention.

Handling virtual interrupts in legacy operation requires a GICV_* memory-mapped interface. See Support for
legacy operation of VMs on page 10-715 for more information.
5-78 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

5 Virtual Interrupt Handling and Prioritization
5.2 Operation overview
5.2 Operation overview
GICv3 supports the ARMv8-A virtualization functionality. A hypervisor executing at EL2 uses the ICH_* System
register interface to configure and control a virtual PE (vPE) executing at Non-secure EL1. For information about
the VM control interface, see Configuration and control of VMs on page 5-83. A vPE uses the ICC_*_EL1 System
register interface to communicate with the GIC. The configuration of HCR_EL2.{IMO, FMO} determines whether
the virtual or the physical interface registers are accessed.

Note
 This chapter describes the handling of virtual interrupts in the context of the AArch64 execution state with System
register access enabled. The individual AArch64 System register descriptions that are cross-referenced in this
chapter contain a reference to the AArch32 System register that provides the same functionality. For information
about VMs in legacy operation, see Support for legacy operation of VMs on page 10-715.

Software executing at EL3 or EL2 configures the PE to route physical interrupts to EL2. The interrupt can be:

• An interrupt targeting a vPE. The hypervisor sets the corresponding virtual INTID to the pending state on the
target vPE and includes the information about the associated physical INTID. When the vPE is not scheduled
on a PE, the hypervisor might choose to reschedule the vPE. Otherwise the interrupt is left pending on the
vPE for scheduling by the hypervisor at a later time.

• An interrupt targeting the hypervisor. This interrupt might:

— Have been generated by the system.

— Be a maintenance interrupt associated with a scheduled VM. See Maintenance interrupts on page 5-85
for more details.

— In GICv4, be a doorbell interrupt from an ITS. In GICv4, a virtual interrupt can be presented to a vPE
without hypervisor involvement. A doorbell interrupt must be generated when a virtual interrupt is
made pending for a vPE but the vPE is not scheduled on a PE.

The hypervisor handles physical interrupts according to the rules described in Chapter 4 Physical Interrupt
Handling and Prioritization before they are virtualized. For information about the handling of physical interrupts
and their virtualization during legacy operation, see Chapter 10 Legacy Operation and Asymmetric Configurations.

The GIC virtualization support includes a list of virtual interrupts for a vPE that is stored in hardware List registers,
see Usage model for the List registers on page 5-81. Each entry in the list corresponds to either a pending or an
active interrupt, and the entry describes the virtual interrupt number, the interrupt group, the interrupt state, and the
virtual priority of the interrupt. A virtual interrupt described in the list entry can be configured to be associated with
a physical SPI or PPI.

The GIC implementation selects the highest priority pending virtual interrupt from the list of interrupts held in the
List registers and, if it is of sufficient virtual priority compared to the active virtual interrupts and virtual priority
mask, presents it as either a virtual FIQ or a virtual IRQ, depending on the group of the interrupt. The virtual CPU
interface controls apply to the virtual interrupt in the same way as the physical interrupt controls apply to the
physical interrupt. Therefore, using the virtual CPU interface controls, software executing on the vPE can:
• Set the virtual priority mask.
• Control how the virtual priority is split between the group priority and the subpriority.
• Acknowledge a virtual interrupt.
• Perform a priority drop on the virtual interrupt.
• Deactivate the virtual interrupt.

The virtual CPU interface supports both EOImodes, so that a virtual EOI can perform a priority drop alone, or a
combined priority drop and deactivation.

When a virtual interrupt is acknowledged, then the state of the virtual interrupt changes from pending to active in
the corresponding List register entry.

When a virtual interrupt is deactivated, then the state of the virtual interrupt changes from active to inactive, or from
active and pending to pending, in the corresponding List register entry. If the virtual interrupt is associated with a
physical interrupt, then the associated physical interrupt is deactivated.
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 5-79
ID072617 Non-Confidential

5 Virtual Interrupt Handling and Prioritization
5.2 Operation overview
Virtual interrupts taken to Non-secure EL1 are handled in a similar manner to physical interrupts that are handled
in a system with a single Security state, that is where GICD_CTLR.DS is set to 1:
• Group 0 interrupts are signalled using the virtual FIQ signal.
• Group 1 interrupts are signalled using the virtual IRQ signal.
• Group 0 and Group 1 interrupts share an interrupt prioritization and preemption scheme. A minimum of 32

and a maximum of 256 priority levels are supported, as determined by the values in ICH_VTR_EL2.

Note
 The priority value is not subject to the shift used for Non-secure physical interrupts. While virtualization

supports up to 8 bits of priority, a minimum of 5 and a maximum of 8 bits must be implemented.

Note
 For information about the rules governing exception entry on an ARMv8-A PE, see ARM® Architecture Reference
Manual, ARMv8, for ARMv8-A architecture profile.

Accesses at Non-secure EL1 to Group 0 registers are virtual when HCR_EL2.FMO == 1.

Virtual accesses to the following Group 0 ICC_* registers access the ICV_* equivalents:
• Accesses to ICC_AP0R<n>_EL1 access ICV_AP0R<n>_EL1.
• Accesses to ICC_BPR0_EL1 access ICV_BPR0_EL1.
• Accesses to ICC_EOIR0_EL1 access ICV_EOIR0_EL1.
• Accesses to ICC_HPPIR0_EL1 access ICV_HPPIR0_EL1.
• Accesses to ICC_IAR0_EL1 access ICV_IAR0_EL1.
• Accesses to ICC_IGRPEN0_EL1 access ICV_IGRPEN0_EL1.

Accesses at Non-secure EL1 to Group 1 registers are virtual when HCR_EL2.IMO == 1.

Virtual accesses to the following Group 1 ICC_* registers access the ICV_* equivalents:
• Accesses to ICC_AP1R<n>_EL1 access ICV_AP1R<n>_EL1.
• Accesses to ICC_BPR1_EL1 access ICV_BPR1_EL1.
• Accesses to ICC_EOIR1_EL1 access ICV_EOIR1_EL1.
• Accesses to ICC_HPPIR1_EL1 access ICV_HPPIR1_EL1.
• Accesses to ICC_IAR1_EL1 access ICV_IAR1_EL1.
• Accesses to ICC_IGRPEN1_EL1 access ICV_IGRPEN1_EL1.

Accesses at Non-secure EL1 to the Common registers are virtual when either HCR_EL2.IMO == 1 or
HCR_EL2.FMO == 1, or both.

Virtual accesses to the following Common ICC_* registers access the ICV_* equivalents:
• Accesses to ICC_RPR_EL1 access ICV_RPR_EL1.
• Accesses to ICC_CTLR_EL1 access ICV_CTLR_EL1.
• Accesses to ICC_DIR_EL1 access ICV_DIR_EL1.
• Accesses to ICC_PMR_EL1 access ICV_PMR_EL1.

A virtual write to ICC_SGI0R_EL1, ICC_SGI1R_EL1, or ICC_ASGI1R_EL1 traps to EL2.

Software executing at EL2 can access some ICV_* register state using ICH_VMCR_EL2 and ICH_VTR_EL2 as
follows:
• ICV_PMR_EL1.Priority aliases ICH_VMCR_EL2.VPMR.
• ICV_BPR0_EL1.BinaryPoint aliases ICH_VMCR_EL2.VBPR0.
• ICV_BPR1_EL1.BinaryPoint aliases ICH_VMCR_EL2.VBPR1.
• ICV_CTLR_EL1.EOImode aliases ICH_VMCR_EL2.VEOIM.
• ICV_CTLR_EL1.CBPR aliases ICH_VMCR_EL2.VCBPR.
• ICV_IGRPEN0_EL1aliases ICH_VMCR_EL2.VENG0.
• ICV_IGRPEN1_EL1. aliases ICH_VMCR_EL2.VENG1.
• ICV_CTLR_EL1.PRIbits aliases ICH_VTR_EL2.PRIbits.
5-80 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

5 Virtual Interrupt Handling and Prioritization
5.2 Operation overview
• ICV_CTLR_EL1.IDbits aliases ICH_VTR_EL2.IDbits.
• ICV_CTLR_EL1.SEIS aliases ICH_VTR_EL2.SEIS.
• ICV_CTLR_EL1.A3V aliases ICH_VTR_EL2.A3V.

5.2.1 Usage model for the List registers

A fundamental function of an interrupt controller is to develop list of pending interrupts in priority order for each
PE, and then to present the highest priority interrupt to the PE if the interrupt is of sufficient priority. For physical
interrupts, this task is performed entirely in hardware by the GIC. However, in order to reduce the cost in hardware,
the GIC handles virtual interrupts using both hardware and software.

For each physical interrupt received that is targeting a vPE, the hypervisor adds that interrupt to a prioritized list of
pending virtual interrupts that is presented to the vPE. The GIC hardware also provides a set of List registers,
ICH_LR<n>_EL2, that holds an IMPLEMENTATION DEFINED number of the top entries in the prioritized list for the
currently running vPE. Typically, there are at most only a few pending virtual interrupts for that vPE. The interrupts
in the List register are then handled by the vPE in hardware, providing the same behavior for the VM as is seen by
a non-virtualized operating system handling physical interrupts.

However, the total number of interrupts that are pending, active and pending, or active, can exceed the number of
List registers available. In this case, the hypervisor can save one or more entries to memory, and later restore them
to the List registers based on their priority. In this way, the List registers act as a cache for the list of pending, active,
or active and pending interrupts that is controlled by software, for a vPE.

The List registers provide maintenance interrupts for:
• The purpose of signalling when there are no pending interrupts in the List registers to allow the hypervisor

to load more pending interrupts to the List registers.
• The purpose of signalling when the List registers are empty or nearly empty to allow the hypervisor to refill

the List registers with entries from the list in memory.
• The purpose of signalling when an EOI has been received for an entry that is not in the List registers, which

can occur if an active interrupt is held in memory.
• The enabling and disabling of virtual interrupt groups, which might result in a requirement to change the

content of the List registers.

For more details on maintenance interrupts, see Maintenance interrupts on page 5-85.

Note
 Although the List registers might include only active interrupts, with the hypervisor maintaining any pending
interrupts in memory, a pending interrupt cannot be signalled to the vPE until the hypervisor adds it to the List
registers. Therefore, to minimize interrupt latency and ensure the efficient operation of the vPE, ARM strongly
recommends that the List registers contain at least one pending interrupt, if a List register is available for this
interrupt.

The List registers form part of the context of the vPE. When there is switch from one vPE running on a PE to another
vPE, the hypervisor switches the List registers accordingly.

The number of List registers is IMPLEMENTATION DEFINED, and can be discovered by reading ICH_HCR_EL2

The following pseudocode indicates the number of List registers that are implemented.

// NumListRegs()
// =============
// The number of implemented List Registers. This value is IMPLEMENTATION DEFINED.

integer NumListRegs()
 return integer IMPLEMENTATION_DEFINED “Number of List registers”;

5.2.2 List register usage resulting in UNPREDICTABLE behavior

The following cases are considered software programming errors and result in UNPREDICTABLE behavior:

• Having two or more interrupts with the same pINTID in the List registers for a single virtual CPU interface.
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 5-81
ID072617 Non-Confidential

5 Virtual Interrupt Handling and Prioritization
5.2 Operation overview
• Having a List register entry with ICH_LR<n>_EL2.HW= 1, which is associated with a physical interrupt, in
active state or in pending state in the List registers if the Distributor does not have the corresponding physical
interrupt in either the active state or the active and pending state.

• If ICC_CTLR_EL1.EOImode == 0 or ICC_CTLR_EL3.EOImode_EL3 == 0, then either:
— Having an active interrupt in the List registers with a priority that is not set in the corresponding Active

Priorities Register.
— Having two interrupts in the List registers in the active state with the same preemption priority.
5-82 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

5 Virtual Interrupt Handling and Prioritization
5.3 Configuration and control of VMs
5.3 Configuration and control of VMs
The virtual GIC works by holding a prioritized list of pending virtual interrupts for each PE. In GICv3 this list is
compiled in software and a number of the top entries are held in List registers in hardware. For LPIs, this list can be
compiled using tables for each vPE. These tables are controlled by the GICR_* registers.

A hypervisor uses a System register interface that is accessible at EL2 to switch context and to control multiple
VMs. The context held in the ICH_* System registers is the context for the scheduled vPE. A vPE is scheduled
when:
• ICH_HCR_EL2.En == 1.
• HCR_EL2.FMO == 1, when virtualizing Group 0 interrupts.
• HCR_EL2.IMO == 1, when virtualizing Group 1 interrupts.

When a vPE is scheduled, the ICH_*_EL2 registers affect software executing at Non-secure EL1.

The ICH_*_EL2 registers control and maintain a vPE as follows:
• ICH_HCR_EL2 is used for the top level configuration and control of virtual interrupts.
• Information about the implementation, such as the size of the supported virtual INTIDs and the number of

levels of prioritization is read from ICH_VTR_EL2.
• A hypervisor can monitor and provide context for ICV_CTLR_EL1 using ICH_VMCR_EL2.
• A set of List registers, ICH_LR<n>_EL2, are used by the hypervisor to forward a queue of pending interrupts

to the PE, see Usage model for the List registers on page 5-81. The status of free locations in
ICH_LR<n>_EL2 is held in ICH_ELRSR_EL2.

• The end of interrupt status for the List registers is held in ICH_EISR_EL2.
• The VM maintenance interrupt status is held in ICH_MISR_EL2.
• The active priority status is held in:

— ICH_AP0R<n>_EL2, where n = 0-3.
— ICH_AP1R<n>_EL2, where n = 0-3.

5.3.1 Association of virtual interrupts with physical interrupts

A virtual interrupt can become pending in response to a physical interrupt, where, for example, the physical interrupt
is being used by a peripheral that is owned by a particular VM, or it can be generated for other reasons by the
hypervisor where there is no corresponding physical interrupt. This second case can be used, for example, when the
hypervisor emulates a virtual peripheral.

To support these two models, for SPIs and PPIs, the GIC List registers provide a mechanism to configure a virtual
interrupt be associated with a physical interrupt. The physical interrupt and the virtual interrupt do not necessarily
have the same INTID.

Usage model for associating a virtual interrupt with a physical interrupt

A virtual interrupt can be associated with a physical interrupt as follows:
1. The hypervisor configures ICC_CTLR_EL1.EOImode == 1, in this model.
2. On taking a physical PPI or a physical SPI that is targeting a vPE, the interrupt is taken to the hypervisor, and

is acknowledged by hypervisor. The makes the physical interrupt active.
3. The hypervisor inserts a virtual interrupt to the list of pending interrupts for the targeted vPE. The hypervisor

performs an EOI when it wants to do a priority drop for that interrupt. The hypervisor does not deactivate the
interrupt.

4. When this virtual interrupt has a sufficiently high priority in the list of pending interrupts for that vPE, and
that vPE is scheduled on the PE, the hypervisor writes this pending virtual interrupt into a List register, and
ICH_LR<n>_EL2.HW is set to 1 to indicate that the virtual interrupt is associated with a physical interrupt.
The INTID of the associated physical interrupt is held in the same List register.

5. When the vPE is running, it will take the pending virtual interrupt, and acknowledge it in the same way as it
would acknowledge a physical interrupt, using the virtual CPU interface. When the interrupt handler running
on the vPE has completed its task, and the virtual interrupt is to be deactivated, then the hardware deactivates
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 5-83
ID072617 Non-Confidential

5 Virtual Interrupt Handling and Prioritization
5.3 Configuration and control of VMs
both the virtual interrupt and the associated physical interrupt. The virtual interrupt might be deactivated as
the result of either an end of interrupt, if ICH_VMCR_EL2.VEOIM== 0, or as the result of a separate
deactivation if ICH_VMCR_EL2.VEOIM == 1.

5.3.2 The Active Priorities registers

The active priority is held separately for virtual Group 0 and Group 1 interrupts, using ICH_AP0R<n>_EL2 and
ICH_AP1R<n>_EL2, where n = 0-3. The Active Priorities Registers have a bit for each priority group implemented
by the implementation. In GICv3, virtualization supports up to 8 bits of priority. However, as a result of interrupt
priority grouping, bit[0] cannot be used for preemption. This means that a maximum of 128 active priority bits are
required to maintain context. The number of registers implemented is dependent on the number of group priority
bits supported, as shown in Table 5-1.

If a bit is set to 1 in one of the ICH_AP0R<n>_EL2 registers, the equivalent bit in the ICH_AP1R<n>_EL2 register
must be zero when executing in Non-secure EL1 or Non-secure EL0, otherwise the behavior of the GIC is
UNPREDICTABLE.

If a bit is set to 1 in one of the ICH_AP1R<n>_EL2 registers, the equivalent bit in the ICH_AP0R<n>_EL2 register
must be zero when executing in Non-secure EL1 or Non-secure EL0, otherwise the behavior of the GIC is
UNPREDICTABLE.

ICH_AP0R<n>_EL2 provide a list of up to 128 bits where there is a bit for each implemented preemptable priority.
If a bit is 1, this indicates that there is a Group 0 interrupt in that priority group which has been acknowledged but
has not had a priority drop. If a bit is 0, this indicates that there is no Group 0 interrupt active at that priority, or that
all active Group 0 interrupts within that priority group have undergone a priority drop.

Note
 Writing to the Link registers does not have an effect on the Active Priorities Registers.

ICH_AP1R<n>_EL2 provide a list of up to 128 bits where there is a bit for each implemented preemptable priority.
If a bit is 1, this indicates that there is a Group 1 interrupt in that priority group which has been acknowledged but
has not had a priority drop. If a bit is 0, this indicates that there is no Group 1 interrupt active at that priority or that
all active Group 1 interrupts within that priority group have undergone a priority drop.

Writing any value other than the last read value of the register, or 0x00000000, to these registers can cause:
• Virtual interrupts that would otherwise preempt execution to not preempt execution.
• Virtual interrupts that otherwise would not preempt execution to preempt execution at Non-secure EL1 or

EL0.

Note
 ARM does not expect these registers to be read and written by software for any purpose other than:
• Saving and restoring state, as part of software power management.
• Context switching between vPEs on the same PE.

Table 5-1 Group bit count in the hypervisor Active Priorities Registers

Bits Register Number of
registers

5 ICH_AP0R<n>_EL2
ICH_AP1R<n>_EL2

n = 0

6 ICH_AP0R<n>_EL2
ICH_AP1R<n>_EL2

n = 0-1

7 ICH_AP0R<n>_EL2
ICH_AP1R<n>_EL2

n = 0-3
5-84 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

5 Virtual Interrupt Handling and Prioritization
5.3 Configuration and control of VMs
Writing to the Active Priority Registers in any order other than the following order results in UNPREDICTABLE
behavior:
1. ICH_AP0R<n>_EL2.
2. ICH_AP1R<n>_EL2.

Note
 An ISB is not required between the write to ICH_AP0R<n>_EL2 and the write to ICH_AP1R<n>_EL2.

5.3.3 Maintenance interrupts

Maintenance interrupts can signal key events in the operation of a GIC that implements virtualization. These events
are processed by the hypervisor.

Note
 • Maintenance interrupts are generated only when the global enable bit for the virtual CPU interface,

ICH_HCR_EL2.En, is set to 1.
• ARM strongly recommends that maintenance interrupts are configured to use INTID 25. For more

information, see Server Base System Architecture (SBSA).

Maintenance interrupts are level-sensitive interrupts. Configuration bits in ICH_HCR_EL2 can be set to 1 to enable
the generation of maintenance interrupts when:
• Group 0 virtual interrupts are enabled.
• Group 1 virtual interrupts are enabled.
• Group 0 virtual interrupts are disabled.
• Group 1 virtual interrupts are disabled.
• There are no pending interrupts in the List registers.
• At least one EOI request occurs with no valid List register entry for the corresponding interrupt.
• There are no valid entries, or there is only one valid entry, in the List registers. This is an underflow condition.
• At least one List register entry has received an EOI request.

See ICH_MISR_EL2, Interrupt Controller Maintenance Interrupt State Register on page 8-300 for more
information about the control and status reporting of maintenance interrupts.
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 5-85
ID072617 Non-Confidential

5 Virtual Interrupt Handling and Prioritization
5.4 Virtual LPI support
5.4 Virtual LPI support
In GICv3 LPIs can be presented to a virtualized system by the hypervisor, which must be using the System registers.
A virtual LPI is generated when the hypervisor writes a vINTID corresponding to the LPI range, that is a vINTID
that is greater than 8191, to a List register. Because an LPI does not have an active state, it is not possible to associate
a virtual LPI with a physical interrupt.

GICv4 provides support for the direct injection of virtual LPIs, vLPIs, in the LPI INTID range. With the direct
injection of vLPIs, the GICR_* registers use structures in memory for each vPE to hold LPI configuration and
pending information for vLPIs in the same way that they use structures in memory to hold LPI configuration and
pending information for physical LPIs. However, the virtual structures are different from the physical structures,
with the vLPI tables for the current vPE scheduled on a PE by GICR_VPENDBASER and GICR_VPROPBASER
in the Redistributor associated with that PE, For more information about the physical LPI tables, see LPI
Configuration tables on page 6-95 and LPI Pending tables on page 6-97.

The Redistributor associated with the PE on which the vPE is scheduled determines the highest priority pending
vLPI, and forwards this to the virtual CPU interface of the vPE. This vLPI and the interrupts in the List register are
then prioritized together to determine the highest priority pending virtual interrupt for the vPE.

For information about virtual LPIs and the virtual CPU tables, see The vPE table on page 6-104.

5.4.1 Direct injection of virtual interrupts

The ITS maps an EventID and a DeviceID to an INTID associated with a PE, see The ITS on page 6-99 for more
information. GICv4 introduces the ability to generate a virtual LPI without involving the hypervisor. In this case an
ITS maps the EventID for the interrupt translation using the following mechanism:

• The ITS interruption translation table entry for a vLPI is configured with:

— A control flag that indicates the EventID is associated with a virtual LPI.

— A vPEID to index into the ITS vPE table. For more information about vPEID and the vPE table, see
The vPE table on page 6-104. The vPE table provides:

1. The base address of the GICR_* registers in the format defined by GITS_TYPER.PTA.

2. The base address of the virtual LPI Pending table associated with the target VM.

— A virtual INTID, vINTID, that indicates which vLPI becomes pending.

— A physical INTID, pINTID, that can be used as a doorbell interrupt to the hypervisor if the vPE is not
scheduled on a PE. The value 1023 is used where a doorbell interrupt is not required, otherwise an
INTID in the physical LPI range must be provided.

For more information about:
• Physical LPIs, see LPIs on page 6-92.
• The ITS and format of an Interrupt translation table (ITT), see The ITS on page 6-99.
• The commands used to control the handling of virtual LPIs associated with an ITS, see Table 6-6 on

page 6-108 and the following commands:
— VINVALL on page 6-125.
— VMAPI on page 6-126.
— VMAPP on page 6-127.
— VMAPTI on page 6-129.
— VMOVI on page 6-130.
— VMOVP on page 6-132.
— VSYNC on page 6-134.

The GIC hardware determines whether the vPE is scheduled on a PE when:
• GICR_VPENDBASER.Valid == 1.
• GICR_VPENDBASER.Physical_Address holds the same value as defined in the VPT_addr field in the

VMAPP command for the vPE that is the target of the vLPI.
5-86 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

5 Virtual Interrupt Handling and Prioritization
5.4 Virtual LPI support
If, at the time that a vPE is descheduled from a PE, there are one or more vLPIs pending for the PE,
GICR_VPENDBASER.PendingLast is set to 1. This can be used by the hypervisor to make scheduling decisions.

5.4.2 Doorbell interrupts

When an interrupt that targets a vPE becomes pending, it might target a vPE that is not currently scheduled on a PE.
Where those interrupts are presented as physical interrupts, the hypervisor can schedule in the vPE as a result of that
interrupt. In this case the hypervisor can make the scheduling decisions for the vPE based on the full set of pending
virtual interrupts for the vPE.

The equivalent capability is provided in the case of direct injections of vLPIs by the provision of doorbell LPIs.

For a vLPI, the ITS can configure a physical LPI that is sent to a PE when the vLPI becomes pending and the vPE
is not scheduled on that PE. This physical LPI is a Doorbell LPI.
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 5-87
ID072617 Non-Confidential

5 Virtual Interrupt Handling and Prioritization
5.5 Pseudocode
5.5 Pseudocode
The following pseudocode indicates the number of virtual active priority bits.

// ActiveVirtualPRIBits()
// ======================

integer ActiveVirtualPRIBits()
 if VirtualPRIBits() == 8 then
 return 128;
 else
 return 2^(VirtualPREBits());

The following pseudocode indicates the highest active group virtual priority.

// GetHighestActiveVGroup()
// ========================
// Returns a value indicating the interrupt group of the highest priority
// bit set from two registers. Returns None if no bits are set.

IntGroup GetHighestActiveVGroup(bits(128) avp0, bits(128) avp1)
 for rval = 0 to ActiveVirtualPRIBits() - 1
 if avp0<rval> != ‘0’ then
 return IntGroup_G0;
 elsif avp1<rval> != ‘0’ then
 return IntGroup_G1NS;

 return IntGroup_None;

The following pseudocode indicates the highest active virtual priority.

// GetHighestActiveVPriority()
// ===========================
// Returns the index of the highest priority bit set from two registers.

// Returns 0xFF if no bits are set.

bits(8) GetHighestActiveVPriority(bits(128) avp0, bits(128) avp1)
 for rval = 0 to ActiveVirtualPRIBits() - 1
 if avp0<rval> != ‘0’ || avp1<rval> != ‘0’ then
 return rval<7:0>;

 return Ones();

The following pseudocode indicates whether any bits are set in the supplied Active Priorities registers.

// VPriorityBitsSet()
// ==================
// Returns TRUE if any bit is set in the supplied registers, FALSE otherwise

boolean VPriorityBitsSet(bits(128) avp0, bits(128) avp1)
 for i = 0 to ActiveVirtualPRIBits() - 1
 if avp0<i> != ‘0’ || avp1<i> != ‘0’ then
 return TRUE;

 return FALSE;

The following pseudocode clears the highest priority bit in the supplied virtual Active Priorities registers.

// VPriorityDrop()
// ===============
// Clears the highest priority bit set in the supplied registers.

VPriorityDrop[bits(128) &avp0, bits(128) &avp1] = bit v
 assert IsZero(v);
 for i = 0 to ActiveVirtualPRIBits() - 1
 if avp0<i> != v then
 avp0<i> = v;
5-88 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

5 Virtual Interrupt Handling and Prioritization
5.5 Pseudocode
 return;
 elsif avp1<i> != v then
 avp1<i> = v;
 return;

 return;

The following pseudocode determines which active bits are set.

// FindActiveVirtualInterrupt()
// ============================
// Find a matching List register. Returns -1 if there is no match.

integer FindActiveVirtualInterrupt(bits(INTID_SIZE) vID)

 for i = 0 to NumListRegs() - 1
 if ((ICH_LR_EL2[i].State IN {IntState_Active, IntState_ActivePending}) &&
 ICH_LR_EL2[i].VirtualID<INTID_SIZE-1:0> == vID) then
 return i;

 return -1;

The following pseudocode indicates the virtual group priority based on the minimum Binary Point register.

// VPriorityGroup()
// ================
// Returns the priority group field for the minimum BPR value

bits(8) VPriorityGroup(bits(8) priority, integer group)
 integer vpre_bits = VirtualPREBits();
 mask = Ones(vpre_bits):Zeros(8 - vpre_bits);
 return (priority AND mask);

The following pseudocode indicates the virtual group priority based on the appropriate Binary Point register.

// VGroupBits()
// ============
// Returns the priority group field for the current BPR value for the group

bits(8) VGroupBits(bits(8) priority, bit group)
 bpr = UInt(ICH_VMCR_EL2.VBPR1) -1;

 if group == ‘0’ || ICH_VMCR_EL2.VCBPR == ‘1’ then
 bpr = UInt(ICH_VMCR_EL2.VBPR0);

 mask = Ones(7-bpr):Zeros(bpr+1);
 return (priority AND mask);

The following pseudocode indicates the number of virtual ID bits.

// VIDBits()
// =========

integer VIDBits()
 id_bits = ICH_VTR_EL2.IDbits;
 case id_bits of
 when ‘000’ return 16;
 when ‘001’ return 24;
 otherwise Unreachable();

The following pseudocode indicates the number of virtual preemption bits.

// VirtualPREBits()
// ================

integer VirtualPREBits()
 return UInt(ICH_VTR_EL2.PREbits) + 1;
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 5-89
ID072617 Non-Confidential

5 Virtual Interrupt Handling and Prioritization
5.5 Pseudocode
The following pseudocode indicates the number of virtual priority bits.

// VirtualPRIBits()
// ================

integer VirtualPRIBits()
 return UInt(ICH_VTR_EL2.PRIbits) + 1;
5-90 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

Chapter 6
Locality-specific Peripheral Interrupts and the ITS

This chapter describes Locality-specific Peripheral Interrupts (LPIs) and the Interrupt Translation Service (ITS). It
contains the following sections:
• LPIs on page 6-92.
• The ITS on page 6-99.
• ITS commands on page 6-108.
• Common ITS pseudocode functions on page 6-136.
• ITS command error encodings on page 6-145.
• ITS power management on page 6-148.
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 6-91
ID072617 Non-Confidential

6 Locality-specific Peripheral Interrupts and the ITS
6.1 LPIs
6.1 LPIs
Locality-specific Peripheral Interrupts (LPIs) are edge-triggered message-based interrupts that can use an Interrupt
Translation Service (ITS), if it is implemented, to route an interrupt to a specific Redistributor and connected PE.
GICv3 provides two types of support for LPIs. LPIs can be supported either:
• Using the ITS to translate an EventID from a device into an LPI INTID. For more information about

EventIDs, see The ITS on page 6-99.
• By forwarding an LPI INTID directly to the Redistributors, using GICR_SETLPIR.

An implementation must support only one of these methods.

Note
 The following registers are mandatory in an implementation that supports LPIs but does not include an ITS. The
function of the registers is IMPLEMENTATION DEFINED in implementations that do include an ITS:
• GICR_SETLPIR.
• GICR_CLRLPIR.
• GICR_INVLPIR.
• GICR_INVALLR.
• GICR_SYNCR.

These registers control physical LPIs in a system that does not include an ITS.

In an implementation that includes LPIs, at least 8192 LPIs are supported. For this reason, the configuration of each
interrupt, and the pending information for each interrupt, is held in tables in memory, rather than in registers, and
the tables are pointed to by registers held in the Redistributors.

Note
 • ARM expects that an implementation will cache parts of the tables in the Redistributors to reduce latency and

memory traffic. The form of these caches is IMPLEMENTATION DEFINED.
• The addresses for the LPI tables are in the Non-secure physical address space.

Figure 6-1 on page 6-93 shows the generation of LPIs in an implementation that includes at least one ITS.
6-92 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

6 Locality-specific Peripheral Interrupts and the ITS
6.1 LPIs
Figure 6-1 Triggering LPIs in an implementation with an ITS

Note
 In Figure 6-1, the ITS channel to the Redistributors is IMPLEMENTATION DEFINED.

Figure 6-2 on page 6-94 shows the generation of LPIs in an implementation without an ITS.

Distributor

PE
x.y.0.0

PE
x.y.0.1

PE
x.y.0.2

Cluster C0

PE
x.y.n.0

PE
x.y.n.1

Cluster Cn

Redistributor

ITSa

CPU interface

a. There might be zero, one, or more than one ITS in a GIC.

GITS_TRANSLATER

Message-based interrupts

LPIs
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 6-93
ID072617 Non-Confidential

6 Locality-specific Peripheral Interrupts and the ITS
6.1 LPIs
Figure 6-2 Triggering LPIs in an implementation without an ITS

When GICD_CTLR.DS == 0:
• LPIs are only supported when affinity routing is enabled for Non-secure state.
• LPIs are always Non-secure Group 1 interrupts.

When GICD_CTLR.DS == 1:
• LPIs are only supported when affinity routing is enabled.
• LPIs are always Group 1 interrupts.

There is a single global physical LPI space so that LPIs can be moved between all Redistributors. Software programs
the size of the single global physical LPI space using GICR_PROPBASER.IDbits.

Note
 The size of the physical LPI space is limited to the maximum size that an implementation supports, which is defined
in GICD_TYPER.IDbits.

For a given Redistributor, LPI configuration and state are maintained in two tables in memory, described in the
following sections:
• LPI Configuration tables on page 6-95.
• LPI Pending tables on page 6-97.

Distributor

PE
x.y.0.0

PE
x.y.0.1

PE
x.y.0.2

Cluster C0

PE
x.y.n.0

PE
x.y.n.1

Cluster Cn

Redistributor CPU interface

Message-based interrupts

LPIs
6-94 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

6 Locality-specific Peripheral Interrupts and the ITS
6.1 LPIs
If a Redistributor supports physical LPIs, it has:

• LPI priority and enable bits programmed in the LPI Configuration table. The address of the LPI
Configuration table is defined by GICR_PROPBASER. If GICR_PROPBASER is updated when
GICR_CTLR.EnableLPIs == 1, the effects are UNPREDICTABLE. See LPI Configuration tables for more
information.

• Memory-backed storage for LPI pending bits in an LPI Pending table. This table is specific to a particular
Redistributor. The address of the LPI Pending table is defined by GICR_PENDBASER. If
GICR_PENDBASER is updated when GICR_CTLR.EnableLPIs == 1, the effects are UNPREDICTABLE.

GICR_PROPBASER.IDBits sets the size of the ID space, and thereby the number of entries in the LPI
Configuration table and the corresponding LPI Pending table.

Physical LPIs are enabled by a write to GICR_CTLR.EnableLPIs.

Note
 When LPIs are disabled at the Redistributor interface, that is when GICR_CTLR.EnableLPIs == 0, LPIs cannot
become pending. An attempt to make an LPI pending in this situation has no effect, and the LPI is lost. This differs
from disabling SGIs, PPIs, and SPIs, which prevents only the signaling of the interrupt to the CPU interface.

GICv4 introduces equivalent tables for handling virtual LPIs with addresses referenced in GICR_VPROPBASER
and GICR_VPENDBASER.

In GICv4, virtual LPIs are enabled by a write to GICR_VPENDBASER.Valid.

6.1.1 LPI Configuration tables

LPI configuration is global. Whether a GIC supports Redistributors that point at different copies of the LPI
Configuration table is IMPLEMENTATION DEFINED.

It is IMPLEMENTATION DEFINED whether GICR_PROPBASER can be set to different values on different
Redistributors. GICR_TYPER.CommonLPIAff indicates which Redistributors must have GICR_PROPBASER set
to the same value whenever GICR_CTLR.EnableLPIs == 1.

An implementation can treat all copies of GICR_PROPBASER that are required to have the same value as accessing
common state.

Setting different values in different copies of GICR_PROPBASER on Redistributors that are required to use a
common LPI Configuration table when GICR_CTLR.EnableLPIs == 1 leads to UNPREDICTABLE behavior.

If GICR_PROPBASER is programmed to different values on different Redistributors, it is IMPLEMENTATION
DEFINED which copy or copies of GICR_PROPBASER are used when the GIC reads the LPI Configuration tables.
However, the copy or copies that are used will correspond to a Redistributor on which GICR_CTLR.EnableLPIs ==
1.

To avoid UNPREDICTABLE behavior, software must ensure that all copies of the LPI Configuration tables are
identical, and all changes are globally observable, whenever:
• GICR_CTLR.EnableLPIs is written from 0 to 1 on any Redistributor.
• GICR_INVLPIR and GICR_INVALLR are written on any Redistributor with GICR_CTLR.EnableLPIs ==

1, if direct LPIs are supported.
• The INV and INVALL command is executed by an ITS, in an implementation that includes at least one ITS.

An LPI Configuration table in memory stores entries containing configuration information for each LPI, where:
• GICR_PROPBASER specifies a 4KB aligned physical address. This is the LPI Configuration table base

address.
• For any LPI N, the location of the table entry is defined by (base address + (N – 8192)).

To change the configuration of an interrupt, software writes to the LPI Configuration tables and then issues the INV
or INVALL command. In implementations that do not include an ITS, software writes to GICR_INVALLR or
GICR_INVLPIR.
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 6-95
ID072617 Non-Confidential

6 Locality-specific Peripheral Interrupts and the ITS
6.1 LPIs
The LPI Configuration table contains an 8-bit entry for each LPI. Figure 6-3 shows the LPI Configuration table
entry format.

Figure 6-3 LPI Configuration table entry

Table 6-1 shows the LPI Configuration table entry bit assignments.

Caching

A Redistributor can cache the information from the LPI Configuration tables pointed to by GICR_PROPBASER,
when GICR_CTLR.EnableLPI == 1, subject to all of the following rules:
• Whether or not one or more caches are present is IMPLEMENTATION DEFINED. Where at least one cache is

present, the structure and size is IMPLEMENTATION DEFINED.
• An LPI Configuration table entry might be allocated into the cache at any time.
• A cached LPI Configuration table entry is not guaranteed to remain in the cache.
• A cached LPI Configuration table entry is not guaranteed to remain incoherent with memory.
• A change to the LPI configuration is not guaranteed to be visible until an appropriate invalidation operation

has completed:
— If one or more ITS is implemented, invalidation is performed using the INV or INVALL command. A

SYNC command completes the INV and INVALL commands.
— If no ITS is implemented, invalidation is performed by writing to GICR_INVALLR or

GICR_INVLPIR.

If there is no Redistributor with GICR_CTLR.EnableLPIs == 1, the GIC has no cached LPI Configuration table
entries.

Enable
RES1

7 2 1 0

Priority

Table 6-1 LPI Configuration table entry bit assignments

Bits Name Function

[7:2] Priority The priority of the LPI. These are the most significant bits of the LPI priority. Bits[1:0] of
the priority are 0.
When GICD_CTLR.DS == 0, this value is shifted in accordance with the security and
priority rules specified in Software accesses of interrupt priority on page 4-72. This means
that LPI priorities are always in the lower half of the priority range. The priority value range
is 128-254.
If GICD_CTLR.DS == 1, the value in this field is not shifted.

Note
 An implementation might support fewer than 8 bits of priority. Unimplemented bits will be
treated as RES0.

See Interrupt prioritization on page 4-65 for more information about interrupt priorities.

[1] - RES1.

[0] Enable LPI enable. This bit controls whether the LPI is enabled:
0 The LPI is not enabled.
1 The LPI is enabled.
6-96 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

6 Locality-specific Peripheral Interrupts and the ITS
6.1 LPIs
6.1.2 LPI Pending tables

Software configures the LPI Pending tables, using the implemented range of valid LPI INTIDs, by writing to
GICR_PENDBASER. This register provides the base address of the LPI Pending table for physical LPIs.

Each Redistributor maintains entries in a separate LPI Pending table that indicates the pending state of each LPI
when GICR_CTLR.EnableLPIs == 1 in the Redistributor:
0 The LPI is not pending.
1 The LPI is pending.

For a given LPI:
• The corresponding byte in the LPI Pending table is (base address + (N / 8)).
• The bit position in the byte is (N MOD 8).

An LPI Pending table that contains only zeros, including in the first 1KB, indicates that there are no pending LPIs.

The first 1KB of the LPI Pending table is IMPLEMENTATION DEFINED. However, if the first 1KB of the LPI Pending
table and the rest of the table contain only zeros, this must indicate that there are no pending LPIs.

The first 1KB of memory for the LPI Pending tables must contain only zeros on initial allocation, and this must be
visible to the Redistributors, or else the effect is UNPREDICTABLE.

During normal operation, the LPI Pending table is maintained solely by the Redistributor.

Behavior is UNPREDICTABLE if software writes to the LPI Pending tables while GICR_CTLR.EnableLPIs == 1.
When GICR_CTLR.EnableLPIs is cleared to 0, behavior is UNPREDICTABLE if the LPI Pending table is written
before GICR_CTLR.RWP reads 0.

Redistributors that are required to share a common LPI Configuration table, as indicated by
GICR_TYPER.CommonLPIAff, might treat the OuterCache, Shareability, or InnerCache fields of
GICR_PENDBASER as accessing common state.

Having the OuterCache, Shareability, or InnerCache fields of GICR_PENDBASER are programmed to different
values on different Redistributors with GICR_CTLR.EnableLPIs == 1 in a system is UNPREDICTABLE.

For physical LPIs, when GICR_CTLR.EnableLPIs is changed to 1, the Redistributor must read the pending status
of the physical LPIs from the physical LPI Pending table.

Note
 If GICR_PENDBASER.PTZ == 1, software guarantees that the LPI Pending table contains only zeros, including in
the first 1KB. In this case hardware might not read any part of the table.

If GICR_CTLR.EnableLPIs is cleared to 0, then when GICR_CTLR.RWP reads as 0 there are no further accesses
by the GIC to the LPI Pending table, and any caching of the LPI Pending table is invalidated. There is no guarantee
that clearing GICR_CTLR.EnableLPIs causes the LPI Pending table to be updated in memory.

Note
 If one or more ITS is implemented, ARM strongly recommends that all LPIs are mapped to another Redistributor
before GICR_CTLR.EnableLPIs is cleared to 0.

For virtual LPIs, when GICR_CTLR.EnableLPIs ==1, and GICR_VPENDBASER.Valid is changed to 1, the
Redistributor must read the pending status of the virtual LPIs from the virtual LPI Pending table.

Note
 IF GICR_VPENDBASER.IDAI == 0, the software guarantees that the LPI Pending table was written out by the
same GIC implementation, meaning that hardware can rely on the first 1KB of the table and might not read the entire
table.
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 6-97
ID072617 Non-Confidential

6 Locality-specific Peripheral Interrupts and the ITS
6.1 LPIs
6.1.3 Virtual LPI Configuration tables and virtual LPI Pending tables

GICv4 uses the same concept of memory tables to hold the configuration and pending information for virtual LPIs.
The format of these tables is the same as for physical LPIs, but the virtual LPI Configuration table is provided by
GICR_VPROPBASER and the virtual LPI Pending table is provided by GICR_VPENDBASER, see Virtual LPI
support on page 5-86.

When scheduling a vPE, GICR_VPENDBASER.IDAI can be cleared to 0:
• When the vPE was last scheduled on a Redistributor on the same GIC.
• When the vPE is scheduled for the first time after the initial allocation, and the entire virtual LPI Pending

table contained only zeros on initial allocation.
• In IMPLEMENTATION DEFINED cases.

Clearing GICR_VPENDBASER.IDAI to 0 at any other time results in UNPREDICTABLE behavior.
6-98 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

6 Locality-specific Peripheral Interrupts and the ITS
6.2 The ITS
6.2 The ITS
The ITS translates an input EventID from a device, identified by its DeviceID, and determines:
1. The corresponding INTID for this input.
2. The target Redistributor and, through this, the target PE for that INTID.

For GICv3, the ITS performs this function for events that are translated into physical LPIs. LPIs can be forwarded
to a Redistributor either by an ITS or by a direct write to GICR_SETLPIR. An implementation must support only
one of these methods.

For GICv4, the ITS also performs this function for interrupts that are directly injected as virtual LPIs.

An ITS has no effect on SGIs, SPIs, or PPIs.

The flow of the ITS translation is as follows:
1. The DeviceID selects a Device table entry (DTE) in the Device table that describes which Interrupt

translation table (ITT) to use.
2. The EventID selects an Interrupt translation entry (ITE) in the ITT that describes:

• For physical interrupts:
— The output physical INTID.
— The Interrupt collection number, ICID.

• For virtual interrupts, in GICv4:
— The output virtual INTID.
— The vPEID.
— A doorbell to use if the vPE is not scheduled.

3. For physical interrupts, ICID selects a Collection table entry in the Collection table (CT) that describes the
target Redistributor, and therefore the target PE, to which the interrupt is routed.

4. For virtual interrupts, in GICv4, the vPEID selects a vPE table entry that describes the Redistributor that is
currently hosting the target vPE to which the interrupt is routed.

The tables used in the translation process are described in more detail in the following sections:
• The ITS tables.
• The Device table on page 6-102.
• The Interrupt translation table on page 6-103.
• The Collection table on page 6-104.
• The vPE table on page 6-104.

These tables are created and maintained using the ITS commands described in ITS commands on page 6-108. GICv3
and GICv4 do not support direct access to the tables, and the tables must be configured using the ITS commands.

6.2.1 The ITS tables

To allow software to provision memory for the ITS private tables, the GIC provides a set of registers that allow the
following features to be discovered:
• The number of private tables that are required.
• The size of each entry in each table.
• The type of each table.

Note
 All ITS tables are in the Non-secure physical address space.

The state and configuration of the ITS tables is stored in a set of tables in memory. This memory is allocated by
software before enabling the ITS.

GITS_BASER<n> specifies the base address and size of the ITS tables, and must be provisioned before the ITS is
enabled.
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 6-99
ID072617 Non-Confidential

6 Locality-specific Peripheral Interrupts and the ITS
6.2 The ITS
The ITS tables have either a flat structure or a two-level structure. The structure is determined by
GITS_BASER<n>, as follows:

0 Flat table. In this case a contiguous block of memory is allocated for the table. The format of the
table is IMPLEMENTATION DEFINED.

Behavior is UNPREDICTABLE if memory that is used for the ITS tables does not contain zeros at the
time of the new allocation for use by the ITS.

1 Two-level table. In this case each entry in the level 1 table is 64 bits, and has the following format:
• Bit[63] - Valid:

— If this bit is cleared to 0, the PhysicalAddress field does not point to the base address
of a level 2 table.

— If this bit is set to 1, the PhysicalAddress field points to the base address of a level 2
table.

• Bits[62:52] - RES 0.
• Bits[51:N] - PhysicalAddress of the level 2 table. N is the number of bits that are required to

specify the page size:
— The size of the level 2 table is determined by GITS_BASER<n>.Page_Size.

• Bits[N-1:0] - RES 0. N is the number of bits that are required to specify the page size.

The level 1 table is indexed by the appropriate ID so that level 1 entry = ID/(Page Size / Entry Size).

Note
 This allows software to determine the level 2 table that must be allocated for a given CollectionID,

DeviceID, or vPEID.

For level 1 table entries, when Valid == 0:
• If the Type field specifies a valid table type other than an Collection table, the ITS discards

any writes to the level 2 table.
• If the Type field specifies the Collection table, and ICID is greater than or equal to the number

indicated by GITS_TYPER.HCC, the ITS discards any writes to the level 2 table.

The format of the level 2 table is IMPLEMENTATION DEFINED.

Behavior is UNPREDICTABLE if:

• Memory that is used for the level 2 tables does not contain zeros at the time of the new
allocation for use by the ITS.

• Multiple level 1 table entries with Valid == 1 point to the same level 2 table.

Note
 As part of restoring the state of the ITS from powerdown events, the registers that describe the table can point to
tables that were previously populated by the ITS, and so might contains values other than zeros. The details of power
management of the ITS are IMPLEMENTATION DEFINED. See ITS power management on page 6-148.

Figure 6-4 on page 6-101 shows how these tables are used in the translation process.
6-100 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

6 Locality-specific Peripheral Interrupts and the ITS
6.2 The ITS
Figure 6-4 ITS tables

When GITS_CTLR.Enabled is written from 0 to 1 behavior is UNPREDICTABLE if any of the following conditions
are true:
• GITS_CBASER.Valid == 0.
• GITS_BASER<n>.Valid == 0, for any GITS_BASER<n> register where the Type field indicates Device.
• GITS_BASER<n>.Valid == 0, for any GITS_BASER<n> register where the Type field indicates collection

and GITS_TYPER.HCC == 0.
• In GICv4, GITS_BASER<n>.Valid == 0, for any GITS_BASER<n> register where the Type field indicates

a vPE.

Software access to the private ITS tables.

If GITS_BASER<n>.Indirect == 0, behavior is UNPREDICTABLE if memory that is used for the ITS tables does not
contain all zeros when first allocated to the ITS.

If GITS_BASER<n>.Indirect == 1, behavior is UNPREDICTABLE if memory that is used for a level 2 table does not
contain all zeros when it is first allocated for use by the ITS.

When GITS_CTLR.Enabled == 0 and GITS_CTLR.Quiescent == 1:

• An implementation will not access the tables that are pointed to by any of the GITS_BASER<n> registers.

When GITS_CTLR.Enabled == 1 or GITS_CTLR.Quiescent == 0:

• An implementation will not access a table that is pointed to by any GITS_BASER<n> register for which
GITS_BASER<n>.Valid == 0.

• For a table that is pointed to by a GITS_BASER<n> register for which GITS_BASER<n>.Valid == 1 and
GITS_BASER<n>.Indirect == 0, behavior is UNPREDICTABLE if the table is written by software.

• For a table that is pointed to by a GITS_BASER<n> register for which GITS_BASER<n>.Valid == 1 and
GITS_BASER<n>.Indirect == 1:

— Behavior is UNPREDICTABLE if any of the level 2 table entries are written by software.

— An ITS will not cache any entry in the level 1 table where the valid bit is cleared to 0.

— Behavior is UNPREDICTABLE if any level 1 table entry where the valid bit set to 1 is written by software.

Interrupt
Source

Device
table

Interrupt
translation

table

vPE table
(GICv4 only)

Collection
table

DeviceID

EventID vPEID

CollectionID

vIN
TID

pINTID

pINTID (direct LPI support)

Pending table

Redistributor B

Virtual
pending table

Redistributor A
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 6-101
ID072617 Non-Confidential

6 Locality-specific Peripheral Interrupts and the ITS
6.2 The ITS
— A write to a level 1 table entry that changes the valid bit from 0 to 1 must be globally visible before
software adds a command to the ITS command queue that relies on that entry. Otherwise it is
UNKNOWN if the command will succeed or if it will be ignored.

6.2.2 Interrupt collections

In GICv3, the ITS considers all physical LPIs that it generates to be members of collections. The data that is
associated with a collection can be held in the ITS, in external memory, or in both. The ITS supports collections that
are held in memory if any of the GITS_BASER<n>.Type == 0b100:

• When the ITS supports collections that are held in memory, the total number of collections that is supported
is determined by the memory allocated by software:

— If GITS_BASER<n>.Indirect == 0, the number of collections supported in memory can be calculated
using the following formula:
((number of pages * page size) / entry size)
The relevant values for this formula are indicated in GITS_BASER<n>.Size,
GITS_BASER<n>.PageSize, and GITS_BASER<n>.EntrySize.

— If GITS_BASER<n>.Indirect == 1, the number of collections supported in memory can be calculated
using the following formula:
(((number of pages in level 1 table * page size) /8) * (page size/entry size)).
The relevant values for this formula are indicated in GITS_BASER<n>.Size,
GITS_BASER<n>.PageSize, and GITS_BASER<n>.EntrySize.

Note
 Indirect tables allow sparse allocations, so not all ICIDs in the supported range might be usable.

• Where collections are held in both the ITS and external memory, the total number of collections is indicated
by GITS_TYPER.CCT.

When GITS_TYPER.HCC!= 0:
• Collections with identifiers in the range {0... GITS_TYPER.HCC-1} are held in the ITS.
• Collections with identifiers in the range greater than that indicated in GITS_TYPER.HCC are held in external

memory, if this is supported.

When GITS_TYPER.HCC == 0:

• The ITS must support collections in external memory, and all collections are held in external memory.

The maximum number of collections that are supported is limited by the size of the ICID:
• If GITS_TYPER.CIL == 0, the ICID is 16 bits.
• If GITS_TYPER.CIL == 1, the ICID is reported by GITS_TYPER.CIDbits.

6.2.3 The Device table

The Device table provides a table of Device table entries (DTEs). Each DTE describes a mapping between a
DeviceID and an ITT base address that points to the memory that the ITS can use to store the translations for the
EventID. The ITS uses the ITT to store the translations for every EventID for the specified DeviceID. The DeviceID
is a unique identifier assigned to each device that can create a range of EventIDs. For example, ARM expects that
the 16-bit Requester ID from a PCIe Root Complex is presented to an ITS as a DeviceID.

The DeviceID provides the index value for the table.
6-102 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

6 Locality-specific Peripheral Interrupts and the ITS
6.2 The ITS
Table 6-2 shows an example of the number of bits that might be assigned to each DTE.

6.2.4 The Interrupt translation table

An Interrupt translation table (ITT) is specific to each device that can create numbered events. Each entry in an ITT
is referred to as an Interrupt translation entries (ITEs).

In GICv3, ITEs are only defined for physical interrupts

In GICv4, ITEs are defined for physical interrupts and for virtual interrupts, and provide a distinction between:
• An entry for a physical LPI and the use of an ICT for routing information.
• An entry for a virtual LPI and the use of a vPE table.

An ITT must be assigned a contiguous physical address space starting at ITT Address. The size is 2^(DTE.ITT
Range + 1)* GITS_TYPER.ITT_entry_size.

Behavior is UNPREDICTABLE if the memory does not contain all zeros at the time of new allocation for use by the
ITS.

If multiple ITTs overlap in memory, behavior is UNPREDICTABLE.

ITS accesses to an ITT use the same Shareability and Cacheability attributes that are specified for the Device table.

For physical interrupts, each ITE describes the mapping between the input EventID and:
• The output physical INTID (pINTID) that is sent to the target PE.
• The ICID that identifies an entry in the Collection table, that determines the target PE for the LPI. For more

information about the Collection table, see The Collection table on page 6-104.

For virtual interrupts, each ITE describes the mapping of the EventID as outlined in the preceding list, and:
• The output virtual INTID (vINTID) that is sent to the target vPE.
• The virtual PE number (vPEID) that identifies an entry in the vPE table to determine the current host

Redistributor. For more information about the vPE table, see The vPE table on page 6-104.
• A physical LPI that is sent to a physical PE if a virtual interrupt is translated when the target vPE is not

currently scheduled on a physical PE.

The EventID provides the index value for the table.

Table 6-3 shows an example of the number of bits that might be stored in an ITE.

Table 6-2 DTE entries

Number of bits Assignment Notes

1 Valid Boolean

40 ITT Address Base physical address

5 ITT Range Log2 (number of EventIDs supported by the ITT minus one)

Table 6-3 ITE entries

Number of bits Assignment Notes

1 Valid Boolean

1 Interrupt_Type Boolean, indicates whether the interrupt is physical or virtual

Size of the LPI
number spacea

Interrupt_Number pINTID or vINTID depending on the interrupt type
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 6-103
ID072617 Non-Confidential

6 Locality-specific Peripheral Interrupts and the ITS
6.2 The ITS
6.2.5 The Collection table

The Collection table (CT) provides a table of Collection table entries (CTEs). For physical LPIs only, each CTE
describes a mapping between:
• The ICID generated by the ITT.
• The address of the target Redistributor in the format defined by GITS_TYPER.PTA.

There is a single CT for each ITS, which can be held in registers or in memory, or in a combination of the two. See
GITS_BASER<n>.Type and GITS_TYPER.HCC for more information.

The TableID provides the index value for the table. It is derived from ICID.

Table 6-4 shows an example of the number of bits that might be assigned to each CT.

6.2.6 The vPE table

The vPE table consists of vPE table entries that provide a mapping from the vPEID generated by the ITS to:
• The target Redistributor, in the format defined by GITS_TYPER.PTA.
• The base address of the virtual LPI Pending table associated with the target vPE.

An area of memory defined by GITS_BASER<n> holds the vPE table and indicates the size of each entry in the
table.

The vPE table describes all the vPEs associated with an ITS. Table 6-5 on page 6-105 shows an example of the
number of bits that an implementation might store in a vPE table.

Size of the LPI
number spacea

Interrupt_Number
HypervisorID

In GICv4 pINTID is used as a doorbell. In GICv3, and in
GICv4 when a doorbell is not required, the programmed value
is 1023.

16 ICID Interrupt Collection ID, for physical interrupts only.

16 vPEID vPE ID, for virtual interrupt only.

a. For information about the size of the LPI number space, see INTIDs on page 2-31

Table 6-3 ITE entries (continued)

Number of bits Assignment Notes

Table 6-4 CT entries

Number of bits Assignment Notes

1 Valid Boolean

Size of RDbase
identifier

RDbase The GIC supports two formats for RDbase, see RDbase
6-104 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

6 Locality-specific Peripheral Interrupts and the ITS
6.2 The ITS
The 16-bit vPEID provides the index value for the table.

6.2.7 Control and configuration of the ITS

An ITS is controlled and configured using a memory-mapped interface where:

• The version can be read from GITS_IIDR and from GITS_PIDR2.

• GITS_TYPER specifies the features that are supported by an ITS.

• GITS_CTLR controls the operation of an ITS.

• GITS_TRANSLATER receives EventID information. It is IMPLEMENTATION DEFINED how the DeviceID is
supplied. See ITS commands on page 6-108 for more details.

• GITS_BASER<n> registers provide information about the type, size and access attributes for the architected
ITS memory structures.

• GITS_CBASER, GITS_CREADR, and GITS_CWRITER store address information for the ITS command
queue interface.

There is an enable bit for each ITS, GITS_CTLR.Enabled.

6.2.8 The ITS command interface

Figure 6-5 on page 6-106 shows how the ITS provides the base address and the size that are used by the ITS
command queue.

Table 6-5 vPE table entries

Number of
bits Assignment Notes

1 Valid Boolean

Size of
RDbase
identifier

RDbase The GIC supports two formats for RDbase.

Size of
address

VPT_addr VPT_addr locates the LPI Pending table when the VM is not
resident in the Redistributor. It is used as the address in
GICR_VPENDBASER when the vPE is scheduled in the
GICR_* registers associated with RDbase.

5 Size The size of the vINTID range supported (minus one).
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 6-105
ID072617 Non-Confidential

6 Locality-specific Peripheral Interrupts and the ITS
6.2 The ITS
Figure 6-5 The ITS command queue

GITS_CBASER, GITS_CREADR, and GITS_CWRITER define the ITS command queue.

• GITS_CBASER uses the following fields:
— Valid. This field indicates the allocation of memory for the ITS command queue.
— Cacheability. This field indicates the cacheability attributes of accesses to the ITS command queue.
— Shareability. This field indicates the Shareability attributes of accesses to the ITS command queue.
— Physical address. This field provides the base physical address of the memory containing the ITS

command queue.
— Size. This field indicates the number of 4KB pages of physical memory for the ITS command queue.

• GITS_CREADR specifies the base address offset from which an ITS reads the next command to execute.

• GITS_CWRITER specifies the base address offset of the next free entry to which software writes the next
command.

The size of an ITS command queue entry is 32 bytes. This means that there is support for 128 entries in each 4KB
page.

The ITS command queue uses a little endian memory order model.

In the ITS command queue:
• The base address is always aligned to 64KB.
• Size is expressed as a multiple of 4KB.
• The address at which the queue wraps is always aligned to 4KB, and is (base address + (Size * 4KB)).

Note
 All addresses are Non-secure physical addresses.

-

-

-

Command 1

Command 2

Command 3

-

-

-

ITS

GITS_CBASER
Base address and
size of command
queue

GITS_CREADR
Next command to be
processed by the ITS

GITS_CWRITER
Next empty location
6-106 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

6 Locality-specific Peripheral Interrupts and the ITS
6.2 The ITS
When the first command is complete, the ITS starts to process the next command. The read pointer,
GITS_CREADR, advances as the ITS processes commands. If GITS_CREADR reaches the top of the memory
specified in GITS_CBASER then the pointer wraps back to the base address specified in GITS_CBASER.
GITS_CWRITER is controlled by software.

The ITS command queue is empty when GITS_CWRITER and GITS_CREADR specify the same base address
offset value.

The ITS command queue is full when GITS_CWRITER points to an address 32 bytes behind GITS_CREADR in
the buffer.

When GITS_CREADR.Stalled == 1 no subsequent commands are processed.

The INT ITS command generates an interrupt on execution, and this can generate an interrupt on completion of a
particular sequence of commands, see ITS commands on page 6-108.

6.2.9 Ordering of translations with the output to ITS commands

Each command queue entry appears to be executed atomically so that a translation request either sees the state of
the ITS before a command or the state of the ITS after the command.

A translation request initiated after a SYNC or VSYNC command has completed is translated using an ITS state
that is consistent with the state after the command is performed.

In the absence of a SYNC or VSYNC command the ordering of ITS commands and translation requests is not
defined by the architecture.

6.2.10 Restrictions for INTID mapping rules

The behavior of the GIC is UNPREDICTABLE if software:
• Maps multiple EventID-DeviceID combinations to the same physical LPI INTID.
• Assigns doorbell interrupts with the same physical LPI INTID to different physical PEs. This applies to

GICv4 only.
• Maps an EventID-DeviceID combination and a doorbell interrupt to the same physical LPI INTID, unless

they target the same physical PE. This applies to GICv4 only.
• Maps multiple EventID-DeviceID combinations to the same virtual LPI INTID-vPEID. This applies to

GICv4 only.

Note
 Conceptually the restriction is that software should not map multiple EventID-DeviceID combinations to the same
vLPI within a given virtual machine. However, the ITS has no awareness of which vPEs belong to the same virtual
machine.
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 6-107
ID072617 Non-Confidential

6 Locality-specific Peripheral Interrupts and the ITS
6.3 ITS commands
6.3 ITS commands
Table 6-6 provides a summary of all ITS commands.

Table 6-6 ITS commands

Command Command arguments Description

CLEAR DeviceID, EventID Translates the event defined by EventID and DeviceID into an ICID and
pINTID, and instruct the appropriate Redistributor to remove the pending
state.

DISCARD DeviceID, EventID Translates the event defined by EventID and DeviceID and instructs the
appropriate Redistributor to remove the pending state of the interrupt. It
also ensures that any caching in the Redistributors associated with a
specific EventID is consistent with the configuration held in memory.
DISCARD removes the mapping of the DeviceID and EventID from the ITT,
and ensures that incoming requests with a particular EventID are silently
discarded.

INT DeviceID, EventID Translates the event defined by EventID and DeviceID into an ICID and
pINTID, and instruct the appropriate Redistributor to set the interrupt
pending.

INV DeviceID, EventID Specifies that the ITS must ensure that any caching in the Redistributors
associated with the specified EventID is consistent with the LPI
Configuration tables held in memory.

INVALL ICID Specifies that the ITS must ensure any caching associated with the
interrupt collection defined by ICID is consistent with the LPI
Configuration tables held in memory for all Redistributors.

MAPC ICID, RDbase Maps the Collection table entry defined by ICID to the target
Redistributor, defined by RDbase.

MAPD DeviceID, ITT_addr, Size Maps the Device table entry associated with DeviceID to its associated
ITT, defined by ITT_addr and Size.

MAPI DeviceID, EventID, ICID Maps the event defined by EventID and DeviceID into an ITT entry with
ICID and pINTID = EventID.

Note
 • pINTID ≥0x2000 for a valid LPI INTID.
• This is equivalent to MAPTI DeviceID, EventID, EventID, ICID

MAPTIa DeviceID, EventID, pINTID, ICID Maps the event defined by EventID and DeviceID to its associated ITE,
defined by ICID and pINTID in the ITT associated with DeviceID.

Note
 pINTID ≥0x2000 for a valid LPI INTID.

MOVALL RDbase1, RDbase2 Instructs the Redistributor specified by RDbase1 to move all of its
interrupts to the Redistributor specified by RDbase2.

MOVI DeviceID, EventID, ICID Updates the ICID field in the ITT entry for the event defined by DeviceID
and EventID. It also translates the event defined by EventID and DeviceID
into an ICID and pINTID, and instructs the appropriate Redistributor to
move the pending state, if it is set, of the interrupt to the Redistributor
defined by the new ICID, and to update the ITE associated with the event
to use the new ICID.
6-108 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

6 Locality-specific Peripheral Interrupts and the ITS
6.3 ITS commands
The number of bits of EventID and DeviceID that an implementation supports are discoverable from GITS_TYPER.
Unimplemented bits are RES0.

SYNC RDbase Ensures all outstanding ITS operations associated with physical
interrupts for the Redistributor specified by RDbase are globally observed
before any further ITS commands are executed. Following the execution
of a SYNC the effects of all previous commands must apply to
subsequent writes to GITS_TRANSLATER. See Ordering of
translations with the output to ITS commands on page 6-107 for more
information.

VINVALLb vPEID Ensures any cached Redistributor information associated with vPEID is
consistent with the associated LPI Configuration tables held in memory.

VMAPIb DeviceID, EventID, Dbell_pINTID,
vPEID

Maps the event defined by DeviceID and EventID into an ITT entry with
vPEID, vINTID=EventID, and Dbell_PINTID, a doorbell provision.

Note
 • vINTID ≥0x2000 for a valid LPI INTID.
• This is equivalent to VMAPTI DeviceID, EventID,EventID, pINTID,

vPEID

• Dbell_pINTID must be either 1023 or Dbell_pINTID ≥0x2000 for a
valid LPI INTID.

VMAPPb vPEID, RDbase, VPT_addr, VPT_size Maps the vPE table entry defined by vPEID to the target RDbase, including
an associated virtual LPI Pending table (VPT_addr, VPT_size).

VMAPTIbc DeviceID, EventID, vINTID,
Dbell_pINTID, vPEID

Maps the event defined by DeviceID and EventID into an ITT entry with
vPEID and vINTID, and Dbell_pINTID, a doorbell provision.

Note
 • vINTID ≥0x2000 for a valid LPI INTID.
• Dbell_pINTID must be either 1023 or Dbell_pINTID ≥0x2000 for a

valid LPI INTID.

VMOVIb DeviceID, EventID, vPEID Updates the vPEID field in the ITT entry for the event defined by DeviceID
and EventID. Translates the event defined by EventID and DeviceID into a
vPEID and pINTID, and instructs the appropriate Redistributor to move the
pending state, if it is set, of the interrupt to the Redistributor defined by
the new vPEID, and updates the ITE associated with the event to use the
new vPEID.

VMOVPb vPEID, RDbase, SequenceNumber,
ITSList

Updates the vPE table entry defined by vPEID to the target Redistributor
specified by RDbase. Software must use SequenceNumber and ITSList to
synchronize the execution of VMOVP commands across more than one
ITS.

VSYNCb vPEID Ensures all outstanding ITS operations for the vPEID specified are
globally observed before any further ITS commands are executed.
Following the execution of a VSYNC the effects of all previous
commands must apply to subsequent writes to GITS_TRANSLATER.

a. This command was previously called MAPVI.
b. This command exists in GICv4 only.
c. This command was previously called VMAPVI.

Table 6-6 ITS commands (continued)

Command Command arguments Description
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 6-109
ID072617 Non-Confidential

6 Locality-specific Peripheral Interrupts and the ITS
6.3 ITS commands
Note
 • The INTID of an LPI is in the range of 8192 - maximum number. The maximum number is IMPLEMENTATION

DEFINED. See INTIDs on page 2-31.
• The following argument names have been changed from those used in preliminary information associated

with this GIC specification:
— Device has been changed to DeviceID.
— ID has been changed to EventID.
— pID has been changed to pINTID.
— vID has been changed to vINTID.
— pCID has been changed to ICID.
— target address has been changed to RDbase.
— VCPU has been changed to vPE.

• The format of the collection target address, RDbase, is indicated by GITS_TYPER.PTA.

6.3.1 IMPLEMENTATION DEFINED sizes in ITS command parameters

Some ITS commands include the following types of parameter that have an IMPLEMENTATION DEFINED size:

DeviceIDs

The maximum number of Device identifiers supported by the associated Device table is determined
by the number of bits available, as specified by GITS_TYPER.Devbits.

EventID EventID is limited by the maximum MAPD Size field, which is limited by GITS_TYPER.ID_bits.

ICID The number of collections supported is IMPLEMENTATION DEFINED:
• For implementations that do not support Collection tables in external memory,

GITS_TYPER.HCC indicates the number of collections.
• For implementations that do support Collection tables in external memory, the number of

supported collections is limited by the size of the allocated collection table:
— The total number of collections supported is calculated as follows:

GITS_TYPER.HCC + (Size of collection table / Entry size)
When GITS_TYPER.CIL == 1, the maximum number of collections is limited by
GITS_TYPER.CIDbits.

pINTID pINTID is limited by GICR_PROPBASER.IDbits, which is limited by GICD_TYPER.IDbits. This
also applies to Dbell_pINTID.

RDbase

RDbase is associated with a Redistributor and is specified in one of two formats:
• The base physical address of RD_base when GITS_TYPER.PTA == 1.

Note
 Addresses can be up to 52 bits in size and must be 64KB aligned. The RDbase field consists

of bits[51:16] of the address.

• A PE number, as indicated in GICR_TYPER.Processor_Number when GITS_TYPER.PTA
== 0.

vINTID vINTID can be limited by GICR_VPROPBASER.IDbits, which is limited by
GICD_TYPER.IDbits.

vPEID vPEID is limited by the size of the vPE table.
6-110 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

6 Locality-specific Peripheral Interrupts and the ITS
6.3 ITS commands
6.3.2 Command errors

If the ITS detects an error in the data provided to a command, the resulting behavior is a CONSTRAINED
UNPREDICTABLE choice of:
• Ignoring the command:

— No action is performed that alters the handling of interrupts.
— GITS_CREADR is incremented to point to the next command, wrapping if necessary.
— If GITS_TYPER.SEIS is set to 1, a System error is generated.

Note
 It is IMPLEMENTATION DEFINED how the System error is recorded and how it is reported to the PE.

• Stalling the ITS command queue:
— GITS_CREADR is not incremented and continues to point to the entry that triggered the error.
— GITS_CREADR.Stalled is set to 1.
— Software can restart the processing of commands by writing 1 to GITS_CWRITER.Retry.
— If GITS_TYPER.SEIS is set to 1, a System error is generated.

Note
 It is IMPLEMENTATION DEFINED how the system error is recorded and how it is reported to the PE.

• Treating the data as valid data:
— The data that generated the error or errors is treated as having a legal value, and the command is

processed accordingly.
— GITS_CREADR is incremented to point to the next command, wrapping if necessary.
— If GITS_TYPER.SEIS is set to 1 a System error is generated.

Note
 It is IMPLEMENTATION DEFINED how the System error is recorded and how it is reported to the PE.

See ITS command error encodings on page 6-145 for more information.

6.3.3 CLEAR

This command translates the event defined by EventID and DeviceID into an ICID and pINTID, and instructs the
appropriate Redistributor to remove the pending state.

Figure 6-6 shows the format of the CLEAR command.

Figure 6-6 CLEAR command format

In Figure 6-6:
• EventID identifies the interrupt, associated with a device, for which the pending state is to be cleared.
• DeviceID specifies the requesting device.
• DW is the doubleword offset within a 32 byte, or four doubleword, ITS command packet.

The command and its arguments are:

CLEAR DeviceID, EventID

63
0

1

2

3

0x04RES0DeviceID
32 31 8 7 0 DW

RES0 EventID

RES0

RES0
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 6-111
ID072617 Non-Confidential

6 Locality-specific Peripheral Interrupts and the ITS
6.3 ITS commands
A command error occurs if any of the following apply:
• DeviceID exceeds the maximum value supported by the ITS.
• The device specified by DeviceID is not mapped to an Interrupt translation table, using MAPD.
• EventID exceeds the maximum value allowed by the ITT. This value is specified by the Size field when the

MAPD command is issued.
• The EventID for the device is not mapped to a collection, using MAPI or MAPTI.
• The EventID for the device is mapped to a collection that has not been mapped to an RDbase using MAPC.

In this case, the ITS must take the actions described in Command errors on page 6-111.

The following pseudocode describes the operation of the CLEAR command:

// ITS.CLEAR
// =========

ITS.CLEAR(ITSCommand cmd)
 if DeviceOutOfRange(cmd.DeviceID) then
 if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError CLEAR_DEVICE_OOR”;
 UNPREDICTABLE;

 dte = ReadDeviceTable(UInt(cmd.DeviceID));

 if !dte.Valid then
 if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError CLEAR_UNMAPPED_DEVICE”;
 UNPREDICTABLE;

 if IdOutOfRange(cmd.EventID, dte.ITT_size) then
 if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError CLEAR_ID_OOR”;
 UNPREDICTABLE;

 InterruptTableEntry ite = ReadTranslationTable(dte.ITT_base, UInt(cmd.EventID));

 if !ite.Valid then
 if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError CLEAR_UNMAPPED_INTERRUPT”;
 UNPREDICTABLE;

 success = ClearPendingState(ite);

 if !success then
 if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError CLEAR_ITE_INVALID”;
 UNPREDICTABLE;

 IncrementReadPointer();
 return;

6.3.4 DISCARD

This command translates the event defined by EventID and DeviceID and instructs the appropriate Redistributor to
remove the pending state of the interrupt. It also ensures that any caching in the Redistributors associated with a
specific EventID is consistent with the configuration held in memory. DISCARD removes the mapping of the DeviceID
and EventID from the ITT, and ensures that incoming requests with a particular EventID are silently discarded.

Figure 6-7 shows the format of the DISCARD command.

Figure 6-7 DISCARD command format

63
0

1

2

3

0x0FRES0DeviceID
32 31 8 7 0 DW

RES0 EventID

RES0

RES0
6-112 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

6 Locality-specific Peripheral Interrupts and the ITS
6.3 ITS commands
In Figure 6-7 on page 6-112:
• EventID identifies the interrupt, associated with a device, that is to be discarded.
• DeviceID specifies the requesting device.
• DW is the doubleword offset within a 32 byte, or four doubleword, ITS command packet.

The command and its arguments are:

DISCARD DeviceID, EventID

A command error occurs if any of the following apply:
• DeviceID exceeds the maximum value supported by the ITS.
• The device specified by DeviceID is not mapped to an ITT, using MAPD.
• EventID exceeds the maximum value allowed by the ITT. This value is specified by the Size field when the

MAPD command is issued.
• The EventID for the device is not mapped to a collection, using MAPI or MAPTI.
• The EventID for the device is mapped to a collection that has not been mapped to an RDbase using MAPC.

In this case, the ITS must take the actions described in Command errors on page 6-111.

The following pseudocode describes the operation of the DISCARD command:

// ITS.DISCARD
// ===========

ITS.DISCARD(ITSCommand cmd)
 if DeviceOutOfRange(cmd.DeviceID) then
 if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError DISCARD_DEVICE_OOR”;
 UNPREDICTABLE;

 DeviceTableEntry dte = ReadDeviceTable(UInt(cmd.DeviceID));

 if !dte.Valid then
 if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError DISCARD_UNMAPPED_DEVICE”;
 UNPREDICTABLE;

 if IdOutOfRange(cmd.EventID, dte.ITT_size) then
 if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError DISCARD_ID_OOR”;
 UNPREDICTABLE;

 InterruptTableEntry ite = ReadTranslationTable(dte.ITT_base, UInt(cmd.EventID));
 if ite.Valid then
 success = ClearPendingState(ite);
 if !success then
 if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError DISCARD_ITE_INVALID”;
 UNPREDICTABLE;
 else
 if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError DISCARD_UNMAPPED_INTERRUPT”;
 UNPREDICTABLE;

 ite.Valid = FALSE;
 WriteTranslationTable(dte.ITT_base, UInt(cmd.EventID), ite);

 IncrementReadPointer();
 return;

6.3.5 INT

This command translates the event defined by EventID and DeviceID into an ICID and pINTID, and instructs the
appropriate Redistributor to set the interrupt pending.

Figure 6-8 on page 6-114 shows the format of the INT command.
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 6-113
ID072617 Non-Confidential

6 Locality-specific Peripheral Interrupts and the ITS
6.3 ITS commands
Figure 6-8 INT command format

In Figure 6-8:
• EventID identifies an interrupt source associated with a device. The ITS then translates this into an LPI

INTID.
• DeviceID specifies the requesting device.
• DW is the doubleword offset within a 32 byte, or four doubleword, ITS command packet.

The command and its arguments are:

INT DeviceID, EventID

A command error occurs if any of the following apply:
• DeviceID exceeds the maximum value supported by the ITS.
• The device specified by DeviceID is not mapped to an ITT, using MAPD.
• EventID exceeds the maximum value allowed by the ITT. This value is specified by the Size field when the

MAPD command is issued.
• EventID is not mapped to a collection, using MAPI or MAPTI.
• The EventID for the device is mapped to a collection that has not been mapped to an RDbase using MAPC.

In this case, the ITS must take the actions described in Command errors on page 6-111.

The following pseudocode describes the operation of the INT command:

// ITS.INT
// =======

ITS.INT(ITSCommand cmd)
 if DeviceOutOfRange(cmd.DeviceID) then
 if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError INT_DEVICE_OOR”;
 UNPREDICTABLE;

 DeviceTableEntry dte = ReadDeviceTable(UInt(cmd.DeviceID));

 if !dte.Valid then
 if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError INT_UNMAPPED_DEVICE”;
 UNPREDICTABLE;

 if IdOutOfRange(cmd.EventID, dte.ITT_size) then
 if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError INT_ID_OOR”;
 UNPREDICTABLE;

 InterruptTableEntry ite = ReadTranslationTable(dte.ITT_base, UInt(cmd.EventID));

 if !ite.Valid then
 if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError INT_UNMAPPED_INTERRUPT”;
 UNPREDICTABLE;

 boolean success = SetPendingState(ite);

 if !success then
 if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError INT_ITE_INVALID”;
 UNPREDICTABLE;

 IncrementReadPointer();
 return;

63
0

1

2

3

0x03RES0DeviceID
32 31 8 7 0 DW

RES0 EventID

RES0

RES0
6-114 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

6 Locality-specific Peripheral Interrupts and the ITS
6.3 ITS commands
6.3.6 INV

This command specifies that the ITS must ensure that any caching in the Redistributors associated with the specified
EventID is consistent with the LPI Configuration tables held in memory.

Note
 The INV command performs the same function regardless of whether the interrupt is mapped as a physical interrupt
or a virtual interrupt.

Figure 6-9 shows the format of the INV command.

Figure 6-9 INV command format

In Figure 6-9:
• EventID identifies an interrupt source associated with a device. The ITS then translates this into an LPI

INTID.
• DeviceID specifies the requesting device.
• DW is the doubleword offset within a 32 byte, or four doubleword, ITS command packet.

The command and its arguments are:

INV DeviceID, EventID

A command error occurs if any of the following apply:
• DeviceID exceeds the maximum value supported by the ITS.
• The device specified by DeviceID is not mapped to an ITT, using MAPD.
• EventID exceeds the maximum value allowed by the ITT. This value is specified by the Size field when the

MAPD command is issued.
• EventID is not mapped to a collection, using MAPI or MAPTI.
• The EventID for the device corresponds to a physical LPI and is mapped to a collection that has not been

mapped to an RDbase using MAPC.
• The EventID for the device corresponds to a virtual LPI associated with a vPE that has not been mapped to a

Redistributor using VMAPP.

In this case, the ITS must take the actions described in Command errors on page 6-111.

The following pseudocode describes the operation of the INV command:

// ITS.INV
// =======

ITS.INV(ITSCommand cmd)
 if DeviceOutOfRange(cmd.DeviceID) then
 if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError INV_DEVICE_OOR”;
 UNPREDICTABLE;

 DeviceTableEntry dte = ReadDeviceTable(UInt(cmd.DeviceID));

 if !dte.Valid then
 if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError INV_UNMAPPED_DEVICE”;
 UNPREDICTABLE;

 if IdOutOfRange(cmd.EventID, dte.ITT_size) then
 if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError INV_ID_OOR”;
 UNPREDICTABLE;

63
0

1

2

3

0x0CRES0DeviceID
32 31 8 7 0 DW

RES0 EventID

RES0

RES0
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 6-115
ID072617 Non-Confidential

6 Locality-specific Peripheral Interrupts and the ITS
6.3 ITS commands
 InterruptTableEntry ite = ReadTranslationTable(dte.ITT_base, UInt(cmd.EventID));

 if !ite.Valid then
 if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError INV_UNMAPPED_INTERRUPT”;
 UNPREDICTABLE;

 invalidateByITE(ite);

 IncrementReadPointer();
 return;

6.3.7 INVALL

This command specifies that the ITS must ensure any caching associated with the interrupt collection defined by
ICID is consistent with the LPI Configuration tables held in memory for all Redistributors.

Figure 6-10 shows the format of the INVALL command.

Figure 6-10 INVALL command format

In Figure 6-10:
• ICID specifies the interrupt collection.
• DW is the doubleword offset within a 32 byte, or four doubleword, ITS command packet.

The command and its arguments are:

INVALL ICID

A command error occurs if any of the following apply:
• The collection specified by ICID exceeds the maximum number supported by the ITS.
• The collection specified by ICID has not been mapped to an RDbase using MAPC.

In this case, the ITS must take the actions described in Command errors on page 6-111.

The following pseudocode describes the operation of the INVALL command:

// ITS.INVALL
// ==========

ITS.INVALL(ITSCommand cmd)
 if (CollectionOutOfRange(cmd.ICID)) then
 if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError INVALL_COLLECTION_OOR”;
 UNPREDICTABLE;

 CollectionTableEntry cte = ReadCollectionTable(UInt(cmd.ICID));

 if !cte.Valid then
 if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError INVALL_UNMAPPED_COLLECTION”;
 UNPREDICTABLE;

 // This invalidates any caches containing the configuration data for all interrupts in the
 // collection. Over invalidation is permitted.
 InvalidateCollectionCaches(UInt(cmd.ICID));

 IncrementReadPointer();
 return;

63
0

1

2

3

0x0DRES0
8 7 0 DW

RES0

RES0

RES0

16 15

ICID
6-116 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

6 Locality-specific Peripheral Interrupts and the ITS
6.3 ITS commands
6.3.8 MAPC

This command maps the Collection table entry defined by ICID to the target Redistributor, defined by RDbase.

Figure 6-11 shows the format of the MAPC command.

Figure 6-11 MAPC command format

In Figure 6-11:
• V specifies whether RDbase is valid for the collection.
• RDbase specifies the target Redistributor to which interrupts in the collection are forwarded. See

IMPLEMENTATION DEFINED sizes in ITS command parameters on page 6-110.
• ICID specifies the interrupt collection that is to be mapped.
• DW is the doubleword offset within a 32 byte, or four doubleword, ITS command packet.

If GITS_TYPER.PTA == 1 and a physical address is specified, the target addresses must be 64KB aligned, meaning
that only bits[47:16] are required. See IMPLEMENTATION DEFINED sizes in ITS command parameters on
page 6-110 for more information. In addition, when V is cleared to 0, this field must be written as zero, but hardware
might ignore the value.

The command and its arguments are:

MAPC ICID, RDbase, V

When V is 1:

• Behavior is UNPREDICTABLE if there are interrupts that are mapped to the specified collection and the
collection is currently mapped to a Redistributor, unless MAPC is followed by MOVALLso that the pending state
for the collection is moved from the old target Redistributor or the new target Redistributor. MOVALL might be
issued by a different ITS:

— Where multiple collections are remapped from the same source to the same destination, behavior is
UNPREDICTABLE if MOVALL is issued before all the MAPCs are globally observable.

— Behavior is UNPREDICTABLE if any ITS command that affects interrupts that belong to a remapped
collection is issued after the MAPC, but before the MOVALL is globally observable.

• Behavior is UNPREDICTABLE if RDbase does not specify a valid Redistributor.

When V is 0:
• MAPC removes the mapping of the specified interrupt collection. Interrupts for that are mapped to this

collection are ignored.
• Behavior is UNPREDICTABLE if there are interrupts that are mapped to the specified collection, with the

restriction that further translation requests from that device are ignored.

A command error occurs if the following applies:
• The collection specified by ICID exceeds the maximum number supported by the ITS.

In this case, the ITS must take the actions described in Command errors on page 6-111.

Note
 When software uses a MAPC command to move a collection from targeting Redistributor A to targeting Redistributor
B, it must issue a SYNC command to Redistributor A before issuing the accompanying MOVALL command. Otherwise,
interrupts from the collection might still be taken by the PE associated with Redistributor A.

The following pseudocode describes the operation of the MAPC command:

63
0

1

2

3

0x09RES0
8 7 0 DW

RES0

RES0

RES0

16 15

ICID

62

V RDbase

51 50
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 6-117
ID072617 Non-Confidential

6 Locality-specific Peripheral Interrupts and the ITS
6.3 ITS commands
// ITS.MAPC
// ========

ITS.MAPC(ITSCommand cmd)
 if CollectionOutOfRange(cmd.ICID) then
 if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError MAPC_COLLECTION_OOR”;
 UNPREDICTABLE;

 CollectionTableEntry cte;

 cte.Valid = cmd.V == ‘1’;
 cte.RDbase = cmd.RDbase;

 WriteCollectionTable(UInt(cmd.ICID), cte);

 IncrementReadPointer();
 return;

6.3.9 MAPD

This command maps the Device table entry associated with DeviceID to its associated ITT, defined by ITT_addr and
Size.

Figure 6-12 shows the format of the MAPD command.

Figure 6-12 MAPD command format

In Figure 6-12:
• DeviceID specifies the device that uses the ITT.

Note
 For more information about mapping devices to ITTs, see The Interrupt translation table on page 6-103.

• V specifies whether the ITT_addr and Size fields are valid.
• ITT_addr specifies bits[51:8] of the physical address of the ITT.
• Size is a 5-bit number that specifies the supported number of bits for the device, minus one. The size field

enables range checking of EventID for translation requests for this DeviceID.
• DW is the doubleword offset within a 32 byte, or four doubleword, ITS command packet.

 Behavior is UNPREDICTABLE if any of the following apply:
• There is an existing mapping for the DeviceID and the mapped ITT contains valid EventID mappings
• When V == 1, the specified ITT does not contain all zeros.

The command and its arguments are:

MAPD DeviceID, ITT_addr, Size, V

The format of the ITT entries is IMPLEMENTATION DEFINED. A typical example entry size of 8 bytes permits
allocation of identifiers to devices in multiples of 32 interrupts.

When V is 1:

• MAPD associates a DeviceID with a 256 byte aligned address of an ITT.

When V is 0:
• MAPD removes the mapping for the specified DeviceID. Translation requests from that device are ignored.

63
0

1

2

3

0x08
8 7 0 DW

RES0

RES0

RES0

RES0

62

V ITT_addr

DeviceID
32 31

RES0
5 4

Size

5152
6-118 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

6 Locality-specific Peripheral Interrupts and the ITS
6.3 ITS commands
• MAPD removes the mapping of the specified DeviceID. and interrupt requests from that device are discarded. A
subsequent translation for the DeviceID does not generate and LPI or VLPI until DeviceID has been mapped
to the ITT again.

A command error occurs if any of the following apply:
• DeviceID exceeds the maximum number of devices supported by an ITS.
• Size exceeds the maximum value permitted by the settings of GITS_TYPER.ID_bits, when V is set to 1.

In this case, the ITS must take the actions described in Command errors on page 6-111.

Note
 ITS accesses to an ITT use the same Shareability and Cacheability attributes that are specified for the Device table,
see The Device table on page 6-102.

The following pseudocode describes the operation of the MAPD command:

// ITS.MAPD
// ========

ITS.MAPD(ITSCommand cmd)
 if DeviceOutOfRange(cmd.DeviceID) then
 if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError MAPD_DEVICE_OOR”;
 UNPREDICTABLE;

 if SizeOutOfRange(cmd.Size) then
 if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError MAPD_ITTSIZE_OOR”;
 UNPREDICTABLE;

 // If a device is Re-mapped software must perform the following actions
 // to ensure the LPI configuration is up to date:
 // 1. Ensure that the device is quiescent and that all interrupts have
 // been handled.
 // 2. Remap the device with the new (empty) ITT
 //
 DeviceTableEntry dte;

 dte.Valid = cmd.V == ‘1’;
 dte.ITT_base = cmd.ITT_addr:’00000000’;
 dte.ITT_size = cmd.Size;

 WriteDeviceTable(UInt(cmd.DeviceID), dte);

 IncrementReadPointer();
 return;

6.3.10 MAPI

This command maps the event defined by EventID and DeviceID into an ITT entry with ICID and pINTID = EventID.

Note
 • pINTID ≥0x2000 for a valid LPI INTID.
• This is equivalent to MAPTI DeviceID, EventID, EventID, ICID

Figure 6-13 on page 6-120 shows the format of the MAPI command.
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 6-119
ID072617 Non-Confidential

6 Locality-specific Peripheral Interrupts and the ITS
6.3 ITS commands
Figure 6-13 MAPI command format

In Figure 6-13:
• EventID identifies the interrupt, associated with a device, that is to be mapped.
• DeviceID specifies the requesting device.
• ICID specifies the interrupt collection that includes the specified interrupt.
• DW is the doubleword offset within a 32 byte, or four doubleword, ITS command packet.

If there is an existing mapping for the EventID-DeviceID combination, behavior is UNPREDICTABLE.

The command and its arguments are:

MAPI DeviceID, EventID, ICID

A command error occurs if any of the following apply:
• DeviceID exceeds the maximum value supported by the ITS.
• The device specified by DeviceID is not mapped to an ITT, using MAPD.
• ICID exceeds the maximum number of interrupt collections supported by an ITS. For more information, see

The Collection table on page 6-104.
• The EventID exceeds the maximum value allowed by the ITT. This value is specified by the Size field when

the MAPD command is issued.
• EventID does not specify a valid LPI identifier. See INTIDs on page 2-31.

In this case, the ITS must take the actions described in Command errors on page 6-111.

The following pseudocode describes the operation of the MAPI command:

// ITS.MAPI
// ========

ITS.MAPI(ITSCommand cmd)
 if DeviceOutOfRange(cmd.DeviceID) then
 if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError MAPI_DEVICE_OOR”;
 UNPREDICTABLE;

 if CollectionOutOfRange(cmd.ICID) then
 if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError MAPI_COLLECTION_OOR”;
 UNPREDICTABLE;

 DeviceTableEntry dte = ReadDeviceTable(UInt(cmd.DeviceID));

 if !dte.Valid then
 if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError MAPI_UNMAPPED_DEVICE”;
 UNPREDICTABLE;

 if IdOutOfRange(cmd.EventID, dte.ITT_size) then
 if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError MAPI_ID_OOR”;
 UNPREDICTABLE;

 if LPIOutOfRange(cmd.EventID) then
 if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError MAPI_ID_OOR”;
 UNPREDICTABLE;

 InterruptTableEntry ite = ReadTranslationTable(dte.ITT_base, UInt(cmd.EventID));

 ite.Valid = TRUE;
 ite.Type = physical_interrupt;

63
0

1

2

3

0x0BRES0DeviceID
32 31 8 7 0 DW

RES0 EventID

RES0

RES0

1615

ICID
6-120 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

6 Locality-specific Peripheral Interrupts and the ITS
6.3 ITS commands
 ite.OutputID = cmd.EventID;
 ite.DoorbellID = ZeroExtend(INTID_SPURIOUS); // Don’t generate a doorbell
 ite.ICID = cmd.ICID;

 WriteTranslationTable(dte.ITT_base, UInt(cmd.EventID), ite);

 IncrementReadPointer();
 return;

6.3.11 MAPTI

This command maps the event defined by EventID and DeviceID to its associated ITE, defined by ICID and pINTID in
the ITT associated with DeviceID.

Figure 6-14 shows the format of the MAPTI command.

Figure 6-14 MAPTI command format

In Figure 6-14:
• EventID identifies the interrupt, associated with a device, that is to be mapped.
• pINTID is the INTID of the physical interrupt that is presented to software.
• DeviceID specifies the requesting device.
• ICID specifies the interrupt collection that includes the specified physical interrupt.
• DW is the doubleword offset within a 32 byte, or four doubleword, ITS command packet.

If there is an existing mapping for the EventID-DeviceID combination, behavior is UNPREDICTABLE.

The command and its arguments are:

MAPTI DeviceID, EventID, pINTID, ICID

A command error occurs if any of the following apply:
• DeviceID exceeds the maximum value supported by the ITS.
• The device specified by DeviceID is not mapped to an ITT using MAPD.
• The number of collections exceeds the maximum number of collections supported by the ITS. For more

information, see The Collection table on page 6-104.
• The EventID exceeds the maximum value allowed by the ITT. This value is specified by the Size field when

the MAPD command is issued.
• pINTID does not specify a valid LPI INTID. For information about the LPI INTID range, see INTIDs on

page 2-31.

In this case, the ITS must take the actions described in Command errors on page 6-111.

The following pseudocode describes the operation of the MAPTI command:

// ITS.MAPTI
// =========

ITS.MAPTI(ITSCommand cmd)
 if DeviceOutOfRange(cmd.DeviceID) then
 if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError MAPTI_DEVICE_OOR”;
 UNPREDICTABLE;

 if CollectionOutOfRange(cmd.ICID) then
 if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError MAPTI_COLLECTION_OOR”;
 UNPREDICTABLE;

63
0

1

2

3

0x0ARES0DeviceID
32 31 8 7 0 DW

pINTID EventID

RES0

RES0

1615

ICID
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 6-121
ID072617 Non-Confidential

6 Locality-specific Peripheral Interrupts and the ITS
6.3 ITS commands
 DeviceTableEntry dte = ReadDeviceTable(UInt(cmd.DeviceID));

 if !dte.Valid then
 if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError MAPTI_UNMAPPED_DEVICE”;
 UNPREDICTABLE;

 if IdOutOfRange(cmd.EventID, dte.ITT_size) then
 if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError MAPTI_ID_OOR”;
 UNPREDICTABLE;

 if LPIOutOfRange(cmd.pINTID) then
 if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError MAPTI_PHYSICALID_OOR”;
 UNPREDICTABLE;

 InterruptTableEntry ite = ReadTranslationTable(dte.ITT_base, UInt(cmd.EventID));

 ite.Valid = TRUE;
 ite.Type = physical_interrupt;
 ite.OutputID = cmd.pINTID;
 ite.DoorbellID = ZeroExtend(INTID_SPURIOUS); // Don’t generate a doorbell
 ite.ICID = cmd.ICID;

 WriteTranslationTable(dte.ITT_base, UInt(cmd.EventID), ite);

 IncrementReadPointer();
 return;

6.3.12 MOVALL

This command instructs the Redistributor specified by RDbase1 to move all of its interrupts to the Redistributor
specified by RDbase2.

Note
 Both the mapping of interrupts to collections and the mapping of collections to Redistributors are normally
unaffected by this command. Software must ensure that any interrupts that might be affected by this command target
the Redistributor specified by RDbase2, otherwise system behavior is UNPREDICTABLE. In particular, an
implementation might choose to remap all affected collections to RDbase2.

Figure 6-15 shows the format of the MOVALL command.

Figure 6-15 MOVALL command format

In Figure 6-15:
• RDbase1 specifies the Redistributor with which the interrupts are currently associated. See

IMPLEMENTATION DEFINED sizes in ITS command parameters on page 6-110.
• RDbase2 specifies the Redistributor to which the interrupts are to be moved. See IMPLEMENTATION

DEFINED sizes in ITS command parameters on page 6-110.
• DW is the doubleword offset within a 32 byte, or four doubleword, ITS command packet.

The command and its arguments are:

MOVALL RDbase1, RDbase2

Behavior is UNPREDICTABLE if RDbase1 and RDbase2 do not specify a valid Redistributor. The format of these fields
is specified by GITS_TYPER.PTA.

63
0

1

0x0ERES0
32 31 8 7 0 DW

RES0

161551 50

2RES0 RES0Rdbase 1

3RES0 RES0Rdbase 2
6-122 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

6 Locality-specific Peripheral Interrupts and the ITS
6.3 ITS commands
The following pseudocode describes the operation of the MOVALL command:

// ITS.MOVALL
// ==========

ITS.MOVALL(ITSCommand cmd)
 rd1 = cmd.RD1base;
 rd2 = cmd.RD2base;

 if rd1 != rd2 then
 MoveAllPendingState(rd1, rd2);

 IncrementReadPointer();
 return;

6.3.13 MOVI

This command updates the ICID field in the ITT entry for the event defined by DeviceID and EventID. It also translates
the event defined by EventID and DeviceID into an ICID and pINTID, and instructs the appropriate Redistributor to
move the pending state, if it is set, of the interrupt to the Redistributor defined by the new ICID, and to update the
ITE associated with the event to use the new ICID.

Figure 6-16 shows the format of the MOVI command.

Figure 6-16 MOVI command format

In Figure 6-16:
• EventID identifies the interrupt, associated with a device, that is to be redirected.
• DeviceID specifies the requesting device.
• ICID specifies the new interrupt collection that is to include the specified physical interrupt.
• DW is the doubleword offset within a 32 byte, or four doubleword, ITS command packet.

The command and its arguments are:

MOVI DeviceID, EventID, ICID

A command error occurs if any of the following apply:
• DeviceID exceeds the maximum value supported by the ITS.
• The device specified by DeviceID is not mapped to an ITT, using MAPD.
• ICID exceeds the maximum number of interrupt collections supported by an ITS.
• ICID is not mapped to an RDbase using MAPC.
• EventID is not mapped to a collection, using MAPI or MAPTI.
• EventID corresponds to a virtual LPI.

In this case, the ITS must take the actions described in Command errors on page 6-111.

Note
 If, after using MOVI to move an interrupt from collection A to collection B, software moves the same interrupt again
from collection B to collection C, a SYNC command must be used before the second MOVI for the Redistributor
associated with collection A to ensure correct behavior.

The following pseudocode describes the operation of the MOVI command:

// ITS.MOVI

63
0

1

2

3

0x01RES0DeviceID
32 31 8 7 0 DW

RES0 EventID

RES0

RES0

1615

ICID
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 6-123
ID072617 Non-Confidential

6 Locality-specific Peripheral Interrupts and the ITS
6.3 ITS commands
// ========

ITS.MOVI(ITSCommand cmd)
 if DeviceOutOfRange(cmd.DeviceID) then
 if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError MOVI_DEVICE_OOR”;
 UNPREDICTABLE;

 if CollectionOutOfRange(cmd.ICID) then
 if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError MOVI_COLLECTION_OOR”;
 UNPREDICTABLE;

 DeviceTableEntry dte = ReadDeviceTable(UInt(cmd.DeviceID));

 if !dte.Valid then
 if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError MOVI_UNMAPPED_DEVICE”;
 UNPREDICTABLE;

 if IdOutOfRange(cmd.EventID, dte.ITT_size) then
 if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError MOVI_ID_OOR”;
 UNPREDICTABLE;

 InterruptTableEntry ite = ReadTranslationTable(dte.ITT_base, UInt(cmd.EventID));

 if !ite.Valid then
 if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError MOVI_UNMAPPED_INTERRUPT”;
 IncrementReadPointer();
 return;

 if ite.Type == virtual_interrupt then
 if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError MOVI_ID_IS_VIRTUAL”;
 UNPREDICTABLE;

 CollectionTableEntry cte1 = ReadCollectionTable(UInt(ite.ICID));

 if !cte1.Valid then
 if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError MOVI_UNMAPPED_COLLECTION”;
 UNPREDICTABLE;

 CollectionTableEntry cte2 = ReadCollectionTable(UInt(cmd.ICID));

 if !cte2.Valid then
 if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError MOVI_UNMAPPED_COLLECTION”;
 IncrementReadPointer();
 return;

 bits(32) rd1 = cte1.RDbase;
 bits(32) rd2 = cte2.RDbase;

 if rd1 != rd2 then
 // Move the move the pending state to rd2 if set taking care of any races where the
 // interrupt has been forwarded to the processor
 MovePendingState(rd1, rd2, ite.OutputID);

 ite.ICID = cmd.ICID;

 WriteTranslationTable(dte.ITT_base, UInt(cmd.EventID), ite);

 IncrementReadPointer();
 return;

6.3.14 SYNC

This command ensures all outstanding ITS operations associated with physical interrupts for the Redistributor
specified by RDbase are globally observed before any further ITS commands are executed. Following the execution
of a SYNC, the effects of all previous commands must apply to subsequent writes to GITS_TRANSLATER.

Figure 6-17 on page 6-125 shows the format of the SYNC command.
6-124 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

6 Locality-specific Peripheral Interrupts and the ITS
6.3 ITS commands
Figure 6-17 SYNC command format

In Figure 6-17:
• RDbase specifies the physical address of the target Redistributor. The format of the target address is

determined by GITS_TYPER.PTA. See IMPLEMENTATION DEFINED sizes in ITS command parameters
on page 6-110 for more information.

• DW is the doubleword offset within a 32 byte, or four doubleword, ITS command packet.

The command and its arguments are:

SYNC RDbase

The following pseudocode describes the operation of the SYNC command:

// ITS.SYNC
// ========

ITS.SYNC(ITSCommand cmd)
 // Wait for external effects of any physical comamnds to be observable by all redistributors
 // and ensure the internal effects of any previous commands affect any subsequent interrupt
 // requests or commands
 WaitForCompletion(cmd.RDbase);

 IncrementReadPointer();

6.3.15 VINVALL

This command ensures that any cached Redistributor information associated with vPEID is consistent with the
associated LPI Configuration tables held in memory.

This command is provided only in GICv4.

Figure 6-18 shows the format of the VINVALL command.

Figure 6-18 VINVALL command format

In Figure 6-18:
• vPEID specifies the vPE.
• DW is the doubleword offset within a 32 byte, or four doubleword, ITS command packet.

The command and its arguments are:

VINVALL vPEID

A command error occurs if any of the following apply:
• vPEID exceeds the maximum number supported by the ITS, as defined by GITS_BASER<n>.
• The PE specified by vPEID is not mapped to a Redistributor using VMAPP.

In this case, the ITS must take the actions described in Command errors on page 6-111.

63
0

1

2

3

0x05RES0
32 31 8 7 0 DW

RES0

RES0

RES0

1615

RES0

51 50

RDbase

63
0

1

2

3

0x2DRES0
32 31 8 7 0 DW

RES0

RES0

RES0

48 47

vPEID RES0
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 6-125
ID072617 Non-Confidential

6 Locality-specific Peripheral Interrupts and the ITS
6.3 ITS commands
The following pseudocode describes the operation of the VINVALL command:

// ITS.VINVALL
// ===========

ITS.VINVALL(ITSCommand cmd)
 if VCPUOutOfRange(cmd.VCPUID) then
 if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError VINVALL_VCPU_OOR”;
 UNPREDICTABLE;

 VCPUTableEntry vte = ReadVCPUTable(UInt(cmd.VCPUID));

 if !vte.Valid then
 if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError VINVALL_VCPU_INVALID”;
 UNPREDICTABLE;

 InvalidateVCPUCaches(UInt(cmd.VCPUID));

 IncrementReadPointer();
 return;

6.3.16 VMAPI

This command maps the event defined by DeviceID and EventID into an ITT entry with vPEID, vINTID=EventID, and
Dbell_PINTID, a doorbell provision.

Note
 • vINTID ≥0x2000 for a valid LPI INTID.
• This is equivalent to VMAPTI DeviceID, EventID,EventID, pINTID, vPEID.
• Dbell_pINTID must be either 1023 or Dbell_pINTID ≥0x2000 for a valid LPI INTID.

This command is provided only in GICv4.

Figure 6-19 shows the format of the VMAPI command.

Figure 6-19 VMAPI command format

In Figure 6-19:
• EventID identifies the interrupt, associated with a device, that is to be presented to the VM.
• DeviceID specifies the requesting device.
• vPEID specifies the vPE.
• Dbell_pINTID specifies the ID that is presented to the hypervisor if the vPE is not scheduled.

Note
 If Dbell_pINTID indicates a spurious interrupt, then no physical interrupt is generated.

• DW is the doubleword offset within a 32 byte, or four doubleword, ITS command packet.

If there is an existing mapping for the EventID-DeviceID combination, behavior is UNPREDICTABLE.

The command and its arguments are:

VMAPI DeviceID, EventID, Dbell_pINTID, vPEID

63
0

1

2

3

0x2BRES0DeviceID
32 31 8 7 0 DW

RES0 EventID

Dbell_pINTID

RES0

RES0

48 47

vPEID
6-126 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

6 Locality-specific Peripheral Interrupts and the ITS
6.3 ITS commands
A command error occurs if any of the following apply:
• DeviceID exceeds the maximum value supported by the ITS.
• vPEID exceeds the maximum number supported by the ITS, as defined by GITS_BASER<n>.
• The device specified by DeviceID is not mapped to an ITT, using MAPD.
• EventID exceeds the maximum value allowed by the ITT. This value is specified by the Size field when the

MAPD command is issued.
• EventID does not specify a valid LPI INTID. For information about valid LPI INTIDs, see INTIDs on

page 2-31.
• Dbell_pINTID does not specify a valid doorbell INTID, where a valid INTID is either:

— 1023.
— Within the supported range for LPIs.

In this case, the ITS must take the actions described in Command errors on page 6-111.

The following pseudocode describes the operation of the VMAPI command:

// ITS.VMAPI
// =========

ITS.VMAPI(ITSCommand cmd)
 if DeviceOutOfRange(cmd.DeviceID) then
 if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError VMAPI_DEVICE_OOR”;
 UNPREDICTABLE;

 if VCPUOutOfRange(cmd.VCPUID) then
 if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError VMAPI_VCPU_OOR”;
 UNPREDICTABLE;

 DeviceTableEntry dte = ReadDeviceTable(UInt(cmd.DeviceID));

 if !dte.Valid then
 if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError VMAPI_UNMAPPED_DEVICE”;
 UNPREDICTABLE;

 if IdOutOfRange(cmd.EventID, dte.ITT_size) then
 if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError VMAPI_ID_OOR”;
 UNPREDICTABLE;

 if LPIOutOfRange(cmd.EventID) then
 if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError VMAPI_ID_OOR”;
 UNPREDICTABLE;

 if LPIOutOfRange(cmd.Dbell_pINTID) then
 if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError VMAPI_PHYSICALID_OOR”;
 UNPREDICTABLE;

 InterruptTableEntry ite = ReadTranslationTable(dte.ITT_base, UInt(cmd.EventID));

 ite.Valid = TRUE;
 ite.Type = virtual_interrupt;
 ite.OutputID = cmd.EventID;
 ite.DoorbellID = cmd.Dbell_pINTID;
 ite.VCPUID = cmd.VCPUID;

 WriteTranslationTable(dte.ITT_base, UInt(cmd.EventID), ite);

 IncrementReadPointer();
 return;

6.3.17 VMAPP

This command maps the vPE table entry defined by vPEID to the target RDbase, including an associated virtual LPI
Pending table (VPT_addr, VPT_size).
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 6-127
ID072617 Non-Confidential

6 Locality-specific Peripheral Interrupts and the ITS
6.3 ITS commands
Figure 6-20 shows the format of the VMAPP command.

Figure 6-20 VMAPP command format

In Figure 6-20:
• vPEID specifies the vPE.
• V specifies whether the RDbase and VPT_addr are valid for the vPE.
• RDbase specifies the target Redistributor that owns the vPE and to which the ITS directs commands for that

PE. See IMPLEMENTATION DEFINED sizes in ITS command parameters on page 6-110.
• VPT_addr specifies bits [51:16] of the physical address of the virtual LPI Pending table for the vPE.

Note
 The target addresses must be 64KB aligned, meaning that only bits [51:16] are required. Bits[15:0] of the

physical address are 0.

• VPT_size specifies the number of vINTID bits that the vPE supports, minus one.
• DW is the doubleword offset within a 32 byte, or four doubleword, ITS command packet.

The command and its arguments are:

VMAPP vPEID, RDbase, VPT_addr, VPT_size, V

When V is 0:

• VMAPP removes the mapping for the specified vPE. Interrupts that are mapped to this vPE are discarded.

 When V is 1:

• Behavior is UNPREDICTABLE if RDbase does not specify a valid Redistributor.

A command error occurs if any of the following apply:
• vPEID exceeds the maximum number supported by the ITS, as defined by GITS_BASER<n>.
• Size exceeds the maximum value permitted by the settings of GITS_TYPER.ID_bits.

In this case, the ITS must take the actions described in Command errors on page 6-111.

The following pseudocode describes the operation of the VMAPP command:

// ITS.VMAPP
// =========

ITS.VMAPP(ITSCommand cmd)
 if VCPUOutOfRange(cmd.VCPUID) then
 if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError VMAPP_VCPU_OOR”;
 UNPREDICTABLE;

 if SizeOutOfRange(cmd.VPT_size) then
 if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError VMAPP_VPTSIZE_OOR”;
 UNPREDICTABLE;

 VCPUTableEntry vte;

 vte.Valid = cmd.V == ‘1’;
 vte.RDbase = cmd.RDbase;
 vte.VPT_base = cmd.VPT_addr:Zeros(16);
 vte.VPT_size = cmd.VPT_size;

63
0

1

2

3

0x29
8 7 0 DW

RES0

RES0

RES0

RES0

62 51 50

V RDbase

32 31
RES0

5 4

vPEID RES0

16 15

VPT_
sizeVPT_addrRES0
6-128 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

6 Locality-specific Peripheral Interrupts and the ITS
6.3 ITS commands
 WriteVCPUTable(UInt(cmd.VCPUID), vte);

 IncrementReadPointer();
 return;

6.3.18 VMAPTI

This command maps the event defined by DeviceID and EventID into an ITT entry with vPEID and vINTID, and
Dbell_pINTID, a doorbell provision.

Note
 • vINTID ≥0x2000 for a valid LPI INTID.
• Dbell_pINTID must be either 1023 or Dbell_pINTID ≥0x2000 for a valid LPI INTID.

This command is provided only in GICv4.

Figure 6-21 shows the format of the VMAPTI command.

Figure 6-21 VMAPTI command format

In Figure 6-21:
• vPEID specifies the vPE.
• DeviceID specifies a device owned by the vPE.
• vINTID specifies the INTID presented to the vPE that controls the device that DeviceID specifies.
• Dbell_pINTID specifies the pINTID that is presented to the PE if the vPE is not scheduled.

Note
 If Dbell_pINTID is 1023 then no physical interrupt is generated.

• DW is the doubleword offset within a 32 byte, or four doubleword, ITS command packet.

If there is an existing mapping for the EventID-DeviceID combination, behavior is UNPREDICTABLE.

The command and its arguments are:

VMAPTI DeviceID, EventID, vINTID, Dbell_pINTID, vPEID

A command error occurs if any of the following apply:
• DeviceID exceeds the maximum value supported by the ITS.
• vPEID exceeds the maximum number supported by the ITS, as defined by GITS_BASER<n>.
• The device specified by DeviceID is not mapped to an ITT, using MAPD.
• The EventID exceeds the maximum value allowed by the ITT. This value is specified by the Size field when

the MAPD command is issued.
• vINTID does not specify a valid LPI INTID, see INTIDs on page 2-31.
• Dbell_pINTID does not specify a valid doorbell INTID, where a valid INTID is either:

— 1023.
— Within the supported range for LPIs.

In this case, the ITS must take the actions described in Command errors on page 6-111.

The following pseudocode describes the operation of the VMAPTI command:

// ITS.VMAPTI

63
0

1

2

3

0x2ADeviceID
8 7 0 DW

RES0

Dbell_pINTID

RES0

16 15

vINTID

48 47 32 31
RES0

vPEID EventID
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 6-129
ID072617 Non-Confidential

6 Locality-specific Peripheral Interrupts and the ITS
6.3 ITS commands
// ==========

ITS.VMAPTI(ITSCommand cmd)
 if DeviceOutOfRange(cmd.DeviceID) then
 if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError VMAPTI_DEVICE_OOR”;
 UNPREDICTABLE;

 if VCPUOutOfRange(cmd.VCPUID) then
 if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError VMAPTI_VCPU_OOR”;
 UNPREDICTABLE;

 DeviceTableEntry dte = ReadDeviceTable(UInt(cmd.DeviceID));

 if !dte.Valid then
 if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError VMAPTI_UNMAPPED_DEVICE”;
 UNPREDICTABLE;

 if IdOutOfRange(cmd.EventID, dte.ITT_size) then
 if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError VMAPTI_ID_OOR”;
 UNPREDICTABLE;

 if LPIOutOfRange(cmd.vINTID) then
 if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError VMAPTI_VIRTUALID_OOR”;
 IncrementReadPointer();
 return;

 if LPIOutOfRange(cmd.pINTID) then
 if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError VMAPTI_PHYSICALID_OOR”;
 UNPREDICTABLE;

 InterruptTableEntry ite = ReadTranslationTable(dte.ITT_base, UInt(cmd.EventID));

 ite.Valid = TRUE;
 ite.Type = virtual_interrupt;
 ite.OutputID = cmd.vINTID;
 ite.DoorbellID = cmd.Dbell_pINTID;
 ite.VCPUID = cmd.VCPUID;

 WriteTranslationTable(dte.ITT_base, UInt(cmd.EventID), ite);

 IncrementReadPointer();
 return;

6.3.19 VMOVI

This command updates the vPEID field in the ITT entry for the event defined by DeviceID and EventID. It also
translates the event defined by EventID and DeviceID into a vPEID and pINTID, and instructs the appropriate
Redistributor to move the pending state of the interrupt to the Redistributor defined by the new vPEID, and updates
the ITE associated with the event to use the new vPEID.

This command is provided only in GICv4.

Figure 6-22 shows the format of the VMOVI command.

Figure 6-22 VMOVI command format

In Figure 6-22:
• vPEID specifies the vPE.

63
0

1

2

3

0x21DeviceID
8 7 0 DW

RES0

Dbell_pINTID

RES0

RES0

48 47 32 31
RES0

vPEID EventID

1

D

6-130 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

6 Locality-specific Peripheral Interrupts and the ITS
6.3 ITS commands
• EventID identifies the interrupt, associated with a device and already mapped by the ITS, that is to be moved
to a new target specified by vPEID.

• D specifies whether the Dbell_pINTID field is valid.
• DeviceID specifies the device that generates the interrupt.
• Dbell_pINTID specifies the ID that is presented to the hypervisor if the vPE is not scheduled.

Note
 If Dbell_pINTID is 1023 then no physical interrupt is generated.

• DW is the doubleword offset within a 32 byte, or four doubleword, ITS command packet.

The command and its arguments are:

VMOVI DeviceID, EventID, vPEID, [Dbell_pINTID]

A command error occurs if any of the following apply:
• DeviceID exceeds the maximum value supported by the ITS.
• vPEID exceeds the maximum number supported by the ITS, as defined by GITS_BASER<n>.
• The device specified by DeviceID is not mapped to an ITT, using MAPD.
• The EventID exceeds the maximum value allowed by the ITT. This value is specified by the Size field when

the MAPD command is issued.
• The vPE is not mapped to a Redistributor, using VMAPP.
• EventID corresponds to a physical LPI.
• If D is 1 and pINTID does not specify a valid doorbell INTID, where a valid INTID is either:

— 1023.
— Within the supported range for LPIs.

In this case, the ITS must take the actions described in Command errors on page 6-111.

Note
 If, after using VMOVI to move an interrupt from vPE A to vPE B, software moves the same interrupt again, a VSYNC
command must be issued to vPE A between the moves to ensure correct behavior.

The following pseudocode describes the operation of the VMOVI command:

// ITS.VMOVI
// =========

ITS.VMOVI(ITSCommand cmd)

 if DeviceOutOfRange(cmd.DeviceID) then
 if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError VMOVI_DEVICE_OOR”;
 UNPREDICTABLE;

 if VCPUOutOfRange(cmd.VCPUID) then
 if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError VMOVI_COLLECTION_OOR”;
 UNPREDICTABLE;

 if (cmd.V == ‘1’ && LPIOutOfRange(cmd.pINTID) && cmd.pINTID != ‘1023’) then
 if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError VMOVI_PHYSICALID_OOR”;
 UNPREDICTABLE;

 DeviceTableEntry dte = ReadDeviceTable(UInt(cmd.DeviceID));

 if !dte.Valid then
 if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError VMOVI_UNMAPPED_DEVICE”;
 UNPREDICTABLE;

 if IdOutOfRange(cmd.EventID, dte.ITT_size) then
 if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError VMOVI_ID_OOR”;
 UNPREDICTABLE;
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 6-131
ID072617 Non-Confidential

6 Locality-specific Peripheral Interrupts and the ITS
6.3 ITS commands
 InterruptTableEntry ite = ReadTranslationTable(dte.ITT_base, UInt(cmd.EventID));

 if !ite.Valid then
 if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError VMOVI_UNMAPPED_INTERRUPT”;
 UNPREDICTABLE;

 if ite.Type == physical_interrupt then
 if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError VMOVI_ID_IS_PHYSICAL”;
 UNPREDICTABLE;

 VCPUTableEntry vte1 = ReadVCPUTable(UInt(ite.VCPUID));
 VCPUTableEntry vte2 = ReadVCPUTable(UInt(cmd.VCPUID));

 if !vte1.Valid then
 if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError VMOVI_ITEVCPU_INVALID”;
 UNPREDICTABLE;

 if !vte2.Valid then
 if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError VMOVI_CMDVCPU_INVALID”;
 UNPREDICTABLE;

 bits(32) rd1 = vte1.RDbase;
 Address vpt1 = vte1.VPT_base;
 bits(32) rd2 = vte2.RDbase;
 Address vpt2 = vte2.VPT_base;

 ite.VCPUID = cmd.VCPUID;

 if cmd.V == ‘1’ then
 ite.DoorbellID = cmd.pINTID;

 WriteTranslationTable(dte.ITT_base, UInt(cmd.EventID), ite);
 // From this point new interrupts sent to the new VCPU move the pending state to rd2 if set taking
care of any races where the interrupt
 // has been forwarded to the processor
 MoveVirtualPendingState(rd1, vpt1, vpt2, ite.OutputID);

 IncrementReadPointer();
 return;

6.3.20 VMOVP

This command updates the vPE table entry defined by vPEID to the target RDbase. Software must use SequenceNumber
and ITSList to synchronize the execution of VMOVP commands across more than one ITS.

This command is provided only in GICv4.

Software must ensure that this command is not executed with a vPEID that is scheduled on the target Redistributor,
otherwise system behavior is UNPREDICTABLE.

Figure 6-23 shows the format of the VMOVP command.

Figure 6-23 VMOVP command format

In Figure 6-23:
• vPEID specifies the vPE.

63
0

1

2

3

0x22RES0RES0
32 31 8 7 0 DW

RES0 RES0

RES0

RES0

RDbase

51 50

vPEID

16 15
Sequence Number

ITSList

RES0
6-132 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

6 Locality-specific Peripheral Interrupts and the ITS
6.3 ITS commands
• RDbase specifies the Redistributor to which interrupts are forwarded. See IMPLEMENTATION DEFINED
sizes in ITS command parameters on page 6-110.

• Sequence Number specifies the identity of the synchronization point that every ITS included in ITS List uses.
When GITS_TYPER.VMOVP == 0 Sequence Number specifies the identity of the synchronization point that
is used by all ITSs that are included in ITSList.
When GITS_TYPER.VMOVP == 1 Sequence Number is RES0.
For more information, see VMOVP usage.

• ITSList specifies the ITS instances that are included in the synchronization operation, where:
— Each bit in ITS List identifies an ITS where bit[n] corresponds to ITS n.
— An ITS is included if the corresponding bit is set to 1.
When GITS_TYPER.VMOVP == 0 ITSList specifies which ITSs are included in the synchronization
operation. Each bit of ITSList corresponds to an ITS, for example bit[0] of ITSList corresponds to ITS 0,
bit[1] to ITS 1.
When GITS_TYPER.VMOVP ==1 ITSList is RES0.

• DW is the doubleword offset within a 32 byte, or four doubleword, ITS command packet.

The command and its arguments are:

VMOVP, vPEID, RDbase, SequenceNumber, ITSList

A command error occurs if any of the following apply:
• If the PE specified by vPEID is not mapped to a Redistributor, using VMAPP.
• vPEID exceeds the maximum number supported by the ITS, as defined by GITS_BASER<n>.

In this case, the ITS must take the actions described in Command errors on page 6-111.

The following pseudocode describes the operation of the VMOVP command:

// ITS.VMOVP
// =========

ITS.VMOVP(ITSCommand cmd)
 if VCPUOutOfRange(cmd.VCPUID) then
 if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError VMOVP_VCPU_OOR”;
 UNPREDICTABLE;

 VCPUTableEntry vte = ReadVCPUTable(UInt(cmd.VCPUID));

 if !vte.Valid then
 if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError VMOVP_VCPU_INVALID”;
 UNPREDICTABLE;

 vte.RDbase = cmd.RDbase;

 WriteVCPUTable(UInt(cmd.VCPUID), vte);

 IncrementReadPointer();
 return;

VMOVP usage

Where more than one ITS controls interrupts for the same vPE, moving this vPE must be co-ordinated between the
different ITSs. This is controlled by software using one of the two approaches detailed here:

When GITS_TYPER.VMOVP == 0:

• The VMOVP command must be issued for each ITS that controls interrupts for the vPE that is being moved.
Each of these commands must have a common sequence number. That sequence number cannot be used for
other VMOVP commands until all commands that previously used that sequence number have been processed
by all ITSs.

• The VMOVP command issued for each ITS contains a list of all the ITSs that are affected by moving the vPE.
This is the ITS List.
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 6-133
ID072617 Non-Confidential

6 Locality-specific Peripheral Interrupts and the ITS
6.3 ITS commands
• Each ITS must have the sequence numbers presented to it in the same order in that they are presented to the
other ITSs.

When GITS_TYPER.VMOVP == 1:
• The VMOVP command must be issued on only one of the ITSs that controls interrupts for the vPE that is being

moved.
• The implementation is responsible for propagating the updated mapping.

Not following this approach results in UNPREDICTABLE behavior.

6.3.21 VSYNC

This command ensures all outstanding ITS operations for the vPEID specified are globally observed before any
further ITS commands are executed. Following the execution of a VSYNC the effects of all previous commands
must apply to subsequent writes to GITS_TRANSLATER.

This command is provided only in GICv4.

Figure 6-24 shows the format of the VSYNC command.

Figure 6-24 VSYNC command format

In Figure 6-24:
• vPEID specifies the vPE for which commands must be synchronized.
• DW is the doubleword offset within a 32 byte, or four doubleword, ITS command packet.

The command and its arguments are:

VSYNC vPEID

A command error occurs if any of the following apply:
• If the PE specified by vPEID is not mapped to a Redistributor, using VMAPP.
• vPEID exceeds the maximum number supported by the ITS, as defined by GITS_BASER<n>.

In this case, the ITS must take the actions described in Command errors on page 6-111.

The following pseudocode describes the operation of the VSYNC command:

// ITS.VSYNC
// =========

ITS.VSYNC(ITSCommand cmd)
 if VCPUOutOfRange(cmd.VCPUID) then
 if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError VSYNC_VCPU_OOR”;
 UNPREDICTABLE;

 VCPUTableEntry vte = ReadVCPUTable(UInt(cmd.VCPUID));

 if !vte.Valid then
 if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError VSYNC_VCPU_INVALID”;
 UNPREDICTABLE;

 bits(32) rd_base = vte.RDbase;

 // Wait for the external effects of any virtual commands to be observable by all redistributors
 // and ensure the internal effects of any previous commands affect any subsequent interrupt
 // requests or commands
 WaitForVirtualCompletion(rd_base);

63
0

1

2

3

0x25RES0
32 31 8 7 0 DW

RES0

RES0

RES0

48 47

RES0 vPEID
6-134 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

6 Locality-specific Peripheral Interrupts and the ITS
6.3 ITS commands
 IncrementReadPointer();
 return;
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 6-135
ID072617 Non-Confidential

6 Locality-specific Peripheral Interrupts and the ITS
6.4 Common ITS pseudocode functions
6.4 Common ITS pseudocode functions
The following terminology appears in some of the pseudocode functions in this section:
Interrupt Translation

An action that causes the ITS to attempt to set a particular pending bit in a particular table.
Pending Interrupt

A particular pending bit is set in a particular table.

The pseudocode functions in this section are based on the following assumptions:
• Each ITS function must be performed as an atomic operation. Implementations must ensure that the observed

behavior is consistent with that from a strictly atomic implementation.
• Where the pseudocode issues a sequence of read and write operations to a particular Redistributor, these

operations must be performed in the order in which they were generated.
• Where the pseudocode issues a write to a particular Redistributor, operation does not need to wait for the

completion of the write.
• Where the pseudocode issues writes to memory to update a table, operation does not need to wait for the

completion of these writes. A write to memory might never become visible to an external observer. However,
the effect of any such writes must be ordered by any subsequent ITS operations, including the handling of
interrupt translations. There are no ordering rules other than the standard rule that memory must appear as if
writes to each location occurred in program order.

• Because each ITS function is performed as an atomic operation, any new interrupt translation that occurs
after the function must be subject to the effects of that function.

• The effects of caching of the Redistributor LPI Configuration and LPI Pending tables are specified explicitly
in the pseudocode.

• An interrupt translation might set a pending bit and pending bits remain set until handled by the PE. While
an interrupt is pending it might be affected by an interrupt translation that is updated by a subsequent ITS
function.

Note
 Some variable names used in the pseudocode differ from those used in the body text. For a list of the affected
variables, see Pseudocode terminology on page B-762.

The following pseudocode invalidates any associated caching for the LPI configuration in the Redistributor for the
specified translation.

// InvalidateByITE
// ===============

boolean InvalidateByITE(InterruptTableEntry ite)
 if ite.Type == physical_interrupt then
 CollectionTableEntry cte = ReadCollectionTable(UInt(ite.ICID));

 if !cte.Valid then
 return FALSE;

 InvalidateInterruptCaches(ite.ICID, ite.OutputID);
 else
 VCPUTableEntry vte = ReadVCPUTable(UInt(ite.VCPUID));

 if !vte.Valid then
 return FALSE;

 InvalidateVirtualInterruptCaches(ite.VCPUID, ite.OutputID);

 return TRUE;

The following pseudocode describes moving a pending interrupt.

// MovePendingState()
// ==================
6-136 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

6 Locality-specific Peripheral Interrupts and the ITS
6.4 Common ITS pseudocode functions
MovePendingState(bits(32) rd1, bits(32) rd2, bits(32) ID)
 if IsPending(GICR_PENDBASER[rd1], ID) then
 // The interrupt is pending in the source redistributor

 // Make sure the interrupt is released or taken by the processor for
 // example by sending a clear and waiting for the response
 EnsureInterruptNotPendingOnProcessor(rd1, ID);

 if IsPending(GICR_PENDBASER[rd1], ID) then
 // The CPU released the interrupt and it is still pending
 // Note: the following must be done without any possibility of the
 // source redistributor re-forwarding the interrupt to the processor
 ClearPendingStateLocal(GICR_PENDBASER[rd1], ID);
 SetPendingStateLocal(GICR_PENDBASER[rd2], ID);

The following pseudocode describes moving a pending virtual interrupt.

// MoveVirtualPendingState()
// =========================

MoveVirtualPendingState(bits(32) rd_base, Address vpt1, Address vpt2, bits(32) ID)
 if IsPending(vpt1, ID) then
 // The interrupt is pending in the source redistributor

 // Make sure the interrupt is released or taken by the processor for example by sending a
 // VClear and waiting for the response
 EnsureVirtualInterruptNotPendingOnProcessor(rd_base, vpt1, ID);

 if IsPending(vpt1, ID) then
 // The CPU released the interrupt and it is still pending
 // Note: the following must be done without any possibility of the source redistributor
 // re-forwarding the interrupt to the processor
 ClearVirtualPendingStateLocal(vpt1, ID);
 SetVirtualPendingStateLocal(vpt2, ID);
 return;

6.4.1 ITS helper functions

This subsection describes the ITS helper functions. These functions are placeholder functions for behavior that is
not architected and that is IMPLEMENTATION DEFINED.

The functions are indicated by the hierarchical path names, for example shared/gic/its/its_helper:
• shared/gic/its/its_helper/Address on page 6-138.
• shared/gic/its/its_helper/ClearPendingState on page 6-138.
• shared/gic/its/its_helper/ClearPendingStateLocal on page 6-138.
• shared/gic/its/its_helper/CollectionOutOfRange on page 6-139.
• shared/gic/its/its_helper/CollectionTableEntry on page 6-139.
• shared/gic/its/its_helper/DeviceOutOfRange on page 6-139.
• shared/gic/its/its_helper/DeviceTableEntry on page 6-139.
• shared/gic/its/its_helper/EndOfCommand on page 6-139.
• shared/gic/its/its_helper/EnsureInterruptNotPendingOnProcessor on page 6-139.
• shared/gic/its/its_helper/EnsureVirtualInterruptNotPendingOnProcessor on page 6-140.
• shared/gic/its/its_helper/IdOutOfRange on page 6-140.
• shared/gic/its/its_helper/IncrementReadPointer on page 6-140.
• shared/gic/its/its_helper/InterruptTableEntry on page 6-140.
• shared/gic/its/its_helper/InterruptType on page 6-140.
• shared/gic/its/its_helper/InterruptType on page 6-140.
• shared/gic/its/its_helper/InvalidateInterruptCaches on page 6-140.
• shared/gic/its/its_helper/InvalidateInterruptConfigurationCaches on page 6-141.
• shared/gic/its/its_helper/InvalidateVCPUCaches on page 6-141.
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 6-137
ID072617 Non-Confidential

6 Locality-specific Peripheral Interrupts and the ITS
6.4 Common ITS pseudocode functions
• shared/gic/its/its_helper/InvalidateVirtualConfigurationCaches on page 6-141.
• shared/gic/its/its_helper/InvalidateVirtualInterruptCaches on page 6-141.
• shared/gic/its/its_helper/IsPending on page 6-141.
• shared/gic/its/its_helper/IsPending on page 6-141.
• shared/gic/its/its_helper/LPIOutOfRange on page 6-142.
• shared/gic/its/its_helper/MoveAllPendingState on page 6-142.
• shared/gic/its/its_helper/ReadCollectionTable on page 6-142.
• shared/gic/its/its_helper/ReadDeviceTable on page 6-142.
• shared/gic/its/its_helper/ReadTranslationTable on page 6-142.
• shared/gic/its/its_helper/ReadVCPUTable on page 6-142.
• shared/gic/its/its_helper/RetargetVirtualInterrupt on page 6-142.
• shared/gic/its/its_helper/SetPendingState on page 6-143.
• shared/gic/its/its_helper/SetPendingStateLocal on page 6-143.
• shared/gic/its/its_helper/SizeOutOfRange on page 6-143.
• shared/gic/its/its_helper/VCPUOutOfRange on page 6-143.
• shared/gic/its/its_helper/VCPUTableEntry on page 6-143.
• shared/gic/its/its_helper/WaitForCompletion on page 6-143.
• shared/gic/its/its_helper/WaitForVirtualCompletion on page 6-144.
• shared/gic/its/its_helper/WriteCollectionTable on page 6-144.
• shared/gic/its/its_helper/WriteDeviceTable on page 6-144.
• shared/gic/its/its_helper/WriteTranslationTable on page 6-144.
• shared/gic/its/its_helper/WriteVCPUTable on page 6-144.

shared/gic/its/its_helper/Address

// Address()
// ============

type Address = bits(48);

shared/gic/its/its_helper/ClearPendingState

// ClearPendingState()
// ================

boolean ClearPendingState(InterruptTableEntry ite);

shared/gic/its/its_helper/ClearPendingStateLocal

// ClearPendingStateLocal()
// =============================

// Clears the pending state of the physical interrupt specified by INTID
// for the redistributor which owns the LPI pending table specified by PendBase

ClearPendingStateLocal(PBType PendBase, bits(32) INTID);

// ClearVirtualPendingStateLocal()
// ============================

// Clears the pending state of the virtual interrupt specified by vINTID
// in the LPI pending table specified by base

ClearPendingStateLocal(Address base, bits(32) vINTID);
6-138 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

6 Locality-specific Peripheral Interrupts and the ITS
6.4 Common ITS pseudocode functions
shared/gic/its/its_helper/CollectionOutOfRange

// CollectionOutOfRange()
// ================================

// Returns TRUE if the value supplied has bits above the implemented range
// or if the value exceeds the total number of collections supported in
// hardware and external memory

boolean CollectionOutOfRange(bits(16) collection);

shared/gic/its/its_helper/CollectionTableEntry

//CollectionTableEntry()
// =======================

type CollectionTableEntry is (
 boolean Valid,
 bits(32) RDbase
)

shared/gic/its/its_helper/DeviceOutOfRange

// DeviceOutOfRange()
// =====================

// Returns TRUE if the value supplied has bits above the implemented range
// or if the value supplied exceeds the maximum configured size in the
// appropriate GITS_BASER<n>

boolean DeviceOutOfRange(bits(32) device);

shared/gic/its/its_helper/DeviceTableEntry

// DeviceTableEntry()
// =============

type DeviceTableEntry is (
 boolean Valid,
 Address ITT_base,
 bits(5) ITT_size
)

shared/gic/its/its_helper/EndOfCommand

// EndOfCommand()
// ================

// Terminate processing of the current command without incrementing the read pointer.
// This means the command will be run again.

EndOfCommand();

shared/gic/its/its_helper/EnsureInterruptNotPendingOnProcessor

// EnsureInterruptNotPendingOnProcessor()
// ======================================

// Returns when the physical interrupt specified by ID is not pending on
// the CPU interface connected to the redistributor specified by rd1

EnsureInterruptNotPendingOnProcessor(bits(32) rd1, bits(32) ID);
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 6-139
ID072617 Non-Confidential

6 Locality-specific Peripheral Interrupts and the ITS
6.4 Common ITS pseudocode functions
shared/gic/its/its_helper/EnsureVirtualInterruptNotPendingOnProcessor

// EnsureVirtualInterruptNotPendingOnProcessor()
// ==

// Returns when the virtual interrupt specified by ID is not pending on
// the CPU interface connected to the redistributor specified by rd1

EnsureVirtualInterruptNotPendingOnProcessor(bits(32) rd1, Address vpt, bits(32) ID);

shared/gic/its/its_helper/IdOutOfRange

// IdOutOfRange()
// ============================

// Returns TRUE if the value supplied has bits above the implemented size or above the ITT_size

boolean IdOutOfRange(bits(32) ID, bits(5) ITT_size);

shared/gic/its/its_helper/IncrementReadPointer

// IncrementReadPointer()
// ===================

//Increments GITS_CREADR, wrapping if appropriate

IncrementReadPointer();

shared/gic/its/its_helper/InterruptTableEntry

// InterruptTableEntry()
// =====================

type InterruptTableEntry is (
 boolean Valid,
 InterruptType Type,
 bits(32) OutputID,
 bits(32) DoorbellID,
 bits(16) ICID,
 bits(16) VCPUID
)

shared/gic/its/its_helper/InterruptType

// InterruptType
// ====================

enumeration InterruptType { virtual_interrupt, physical_interrupt };

shared/gic/its/its_helper/InvalidateCollectionCaches

//InvalidateCollectionCaches()
// =========================

// Invalidates any caching of configuration for interrupts which are
// members of the collection specified by “collection”

InvalidateCollectionCaches(integer collection);

shared/gic/its/its_helper/InvalidateInterruptCaches

// InvalidateInterruptCaches()
// =============================
6-140 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

6 Locality-specific Peripheral Interrupts and the ITS
6.4 Common ITS pseudocode functions
// Invalidates any caching of configuration for the physical
// interrupt specified by interruptID , which is a member of
// the collection specified by collection

InvalidateInterruptCaches(bits(16) collection, bits(32) interruptID);

shared/gic/its/its_helper/InvalidateInterruptConfigurationCaches

// InvalidateInterruptConfigurationCaches()
// ===================================

InvalidateInterruptConfigurationCaches(bits(32) ID, integer collection);

shared/gic/its/its_helper/InvalidateVCPUCaches

// InvalidateVCPUCaches()
// ==========================

// Invalidates any caching of configuration for the vPE specificed by vcpu_id

InvalidateVCPUCaches(integer vcpu_id);

shared/gic/its/its_helper/InvalidateVirtualConfigurationCaches

// InvalidateVirtualConfigurationCaches
// ================================

InvalidateVirtualConfigurationCaches(bits(32) ID, bits(16) VCPU);

shared/gic/its/its_helper/InvalidateVirtualInterruptCaches

// InvalidateVirtualInterruptCaches()
// =====================================

// Invalidates any caching of configuration for the virtual interrpt specified
// by the interruptID for the vPE specified by vcpi_id

InvalidateVirtualInterruptCaches(bits(16) vcpu_id, bits(32) interruptID);

shared/gic/its/its_helper/IsPending

// IsPending()
// =========================

// Returns TRUE if the physical interrupt specified by interrupt ID
// is pending for the Redistributor which owns the LPI pending table
// specified by PendBase

boolean IsPending(PBType PendBase, bits(32) interruptID);

shared/gic/its/its_helper/IsPending

// IsPending()
// ========================

// Returns TRUE if the virtual interrupt specified by interruptID
// is pending in the LPI pending table specified by base

boolean IsPending(Address base, bits(32) interruptID);
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 6-141
ID072617 Non-Confidential

6 Locality-specific Peripheral Interrupts and the ITS
6.4 Common ITS pseudocode functions
shared/gic/its/its_helper/LPIOutOfRange

//LPIOutOfRange()
// ==========================

// Returns TRUE if the value supplied is larger than that permitted by GICD_TYPER.IDbits or not in the
// LPI range and is not 1023

boolean LPIOutOfRange(bits(32) ID);

shared/gic/its/its_helper/MoveAllPendingState

// MoveAllPendingState()
// ===================

// Moves the pending state of all interrupts from the Redistributor specified by rd1
// to the Redistributor specified by rd2

MoveAllPendingState(bits(32) rd1, bits(32) rd2);

shared/gic/its/its_helper/ReadCollectionTable

// ReadCollectionTableEntry()
=========================

// Reads a collection table entry from memory

CollectionTableEntry ReadCollectionTable(integer index);

shared/gic/its/its_helper/ReadDeviceTable

// ReadDevicePointer()
// ==========================

// Reads a device table entry from memory

DeviceTableEntry ReadDeviceTable(integer index);

shared/gic/its/its_helper/ReadTranslationTable

// ReadTranslationTable()
// =======================

// Reads an ITT table entry from memory

InterruptTableEntry ReadTranslationTable(Address base, integer index);

shared/gic/its/its_helper/ReadVCPUTable

//ReadVCPUTable()
// ===========================

// Reads a VCPU table entry from memory

VCPUTableEntry ReadVCPUTable(integer index);

shared/gic/its/its_helper/RetargetVirtualInterrupt

// RetargetVirtualInterrupt()
// =======================

RetargetVirtualInterrupt(integer device, bits(32) ID, integer vcpu);
6-142 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

6 Locality-specific Peripheral Interrupts and the ITS
6.4 Common ITS pseudocode functions
shared/gic/its/its_helper/SetPendingState

// SetPendingState()
// ========================

boolean SetPendingState(InterruptTableEntry ite);

shared/gic/its/its_helper/SetPendingStateLocal

// SetPendingStateLocal()
// =======================

// Sets the pending state of the physical interrupt specified by INTID
// for the Redistributor that owns the LPI pending table specified by PendBase

SetPendingStateLocal(PBType PendBase, bits(32) INTID);

// SetVirtualPendingStateLocal()
// =======================

// Sets the pending state of the virtual interupt specified by INTID
// in the LPI pending table specified by base

SetPendingStateLocal(Address base, bits(32)INTID);

shared/gic/its/its_helper/SizeOutOfRange

// SizeOutOfRange()
// =====================

// Returns TRUE if the value supplied exceeds the maximum allowed by GITS_TYPER.ID_bits

boolean SizeOutOfRange(bits(5) ITT_size);

shared/gic/its/its_helper/VCPUOutOfRange

// VCPUOutOfRange()
// =======================

// Returns TRUE if the value supplied has bits above the implemented range or
// if the value supplied exceeds the maximum configured size in the
// appropriate GITS_BASERn

boolean VCPUOutOfRange(bits(16) vcpu);

shared/gic/its/its_helper/VCPUTableEntry

//VCPUTableEntry()
// ==================

type VCPUTableEntry is (
 boolean Valid,
 bits(32) RDbase,
 Address VPT_base,
 bits(5) VPT_size
)

shared/gic/its/its_helper/WaitForCompletion

// WaitForCompletion()
// ============================
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 6-143
ID072617 Non-Confidential

6 Locality-specific Peripheral Interrupts and the ITS
6.4 Common ITS pseudocode functions
// Returns when all external effects of any phsical commands are observable
// by all Redistributors and the internal effects of any previous
// commands affect any subsequent interrupt requests or commands

WaitForCompletion(bits(32) RDbase);

shared/gic/its/its_helper/WaitForVirtualCompletion

// WaitForVirtualCompletion()
// =======================

WaitForVirtualCompletion(bits(32) RDbase);

shared/gic/its/its_helper/WriteCollectionTable

//WriteCollectionTable()
// =========================

// Writes a collection table entry to memory

WriteCollectionTable(integer index, CollectionTableEntry cte);

shared/gic/its/its_helper/WriteDeviceTable

// WriteDeviceTable()
// ========================

// Writes a device table entry to memory

WriteDeviceTable(integer index, DeviceTableEntry dte);

shared/gic/its/its_helper/WriteTranslationTable

// WriteTranslationTable()
// ================================

// Writes an ITT table entry to memory

WriteTranslationTable(Address base, integer index, InterruptTableEntry cte);

shared/gic/its/its_helper/WriteVCPUTable

// WriteVCPUTable()
// ===============================

// Writes a VCPU table entry to memory

WriteVCPUTable(integer index, VCPUTableEntry vte);
6-144 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

6 Locality-specific Peripheral Interrupts and the ITS
6.5 ITS command error encodings
6.5 ITS command error encodings
When an ITS supports system errors, that is when GITS_TYPER.SEIS == 1, ITS command errors can be reported
to software. It is IMPLEMENTATION DEFINED how these errors are recorded and reported.

Table 6-7 shows the ITS command error encodings.

Table 6-7 ITS command error encodings

Encoding Error mnemonic Command Error description

0x01_0801 MAPD_DEVICE_OOR MAPD Out of range

0x01_0802 MAPD_ITTSIZE_OOR

0x01_0903 MAPC_COLLECTION_OOR MAPC Out of range

0x01_0B01 MAPI_DEVICE_OOR MAPI

0x01_0B03 MAPI_COLLECTION_OOR

0x01_0B04 MAPI_UNMAPPED_DEVICE Unmapped device

0x01_0B05 MAPI_ID_OOR Out of range

0x01_0A01 MAPTI_DEVICE_OOR MAPTI

0x01_0A03 MAPTI_COLLECTION_OOR

0x01_0A04 MAPTI_UNMAPPED_DEVICE Unmapped device

0x01_0A05 MAPTI_ID_OOR Out of range

0x01_0A06 MAPTI_PHYSICALID_OOR

0x01_0101 MOVI_DEVICE_OOR MOVI

0x01_0103 MOVI_COLLECTION_OOR

0x01_0104 MOVI_UNMAPPED_DEVICE Unmapped device

0x01_0105 MOVI_ID_OOR Out of range

0x01_0107 MOVI_UNMAPPED_INTERRUPT Unmapped interrupt

0x01_0108 MOVI_ID_IS_VIRTUAL vINTID specified

0x01_0109 MOVI_UNMAPPED_COLLECTION Unmapped interrupt collection

0x01_0F01 DISCARD_DEVICE_OOR DISCARD Out of range

0x01_0F04 DISCARD_UNMAPPED_DEVICE Unmapped device

0x01_0F05 DISCARD_ID_OOR Out of range

0x01_0F07 DISCARD_UNMAPPED_INTERRUPT Unmapped interrupt

0x01_0F10 DISCARD_ITE_INVALID Invalid translation table entry
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 6-145
ID072617 Non-Confidential

6 Locality-specific Peripheral Interrupts and the ITS
6.5 ITS command error encodings
0x01_0C01 INV_DEVICE_OOR INV Out of range

0x01_0C04 INV_UNMAPPED_DEVICE Unmapped device

0x01_0C05 INV_ID_OOR Out of range

0x01_0C07 INV_UNMAPPED_INTERRUPT Unmapped interrupt

0x01_0C10 INV_ITE_INVALID Invalid translation table entry

0x01_0D03 INVALL_COLLECTION_OOR INVALL Out of range

0x01_0D09 INVALL_UNMAPPED_COLLECTION Unmapped interrupt collection

0x01_0301 INT_DEVICE_OOR INT Out of range

0x01_0304 INT_UNMAPPED_DEVICE Unmapped device

0x01_0305 INT_ID_OOR Out of range

0x01_0307 INT_UNMAPPED_INTERRUPT Unmapped interrupt

0x01_0310 INT_ITE_INVALID Invalid translation table entry

0x01_0501 CLEAR_DEVICE_OOR CLEAR Out of range

0x01_0504 CLEAR_UNMAPPED_DEVICE Unmapped device

0x01_0505 CLEAR_ID_OOR Out of range

0x01_0507 CLEAR_UNMAPPED_INTERRUPT Unmapped interrupt

0x01_0510 CLEAR_ITE_INVALID Invalid translation table entry

0x01_2911 VMAPP_VCPU_OOR VMAPP Out of range

0x01_2912 VMAPP_VPTSIZE_OOR

0x01_2b01 VMAPI_DEVICE_OOR VMAPI Out of range

0x01_2b11 VMAPI_VCPU_OOR

0x01_2b04 VMAPI_UNMAPPED_DEVICE Unmapped device

0x01_2b05 VMAPI_ID_OOR Out of range

0x01_2b06 VMAPI_PHYSICALID_OOR

0x01_2a01 VMAPTI_DEVICE_OOR VMAPTI

0x01_2a11 VMAPTI_VCPU_OOR

0x01_2a04 VMAPTI_UNMAPPED_DEVICE Unmapped device

0x01_2a05 VMAPTI_ID_OOR Out of range

0x01_2a13 VMAPTI_VIRTUALID_OOR

0x01_2a06 VMAPTI_PHYSICALID_OOR

0x01_2d11 VINVALL_VCPU_OOR VINVALL

0x01_2d14 VINVALL_VCPU_INVALID Invalid vPE specified

Table 6-7 ITS command error encodings (continued)

Encoding Error mnemonic Command Error description
6-146 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

6 Locality-specific Peripheral Interrupts and the ITS
6.5 ITS command error encodings
0x01_2511 VSYNC_VCPU_OOR VSYNC Out of range

0x01_2514 VSYNC_VCPU_INVALID Invalid vPE specified

0x01_2211 VMOVP_VCPU_OOR VMOVP Out of range

0x01_2214 VMOVP_VCPU_INVALID Invalid vPE specified

0x01_2101 VMOVI_DEVICE_OOR VMOVI Out of range

0x01_2103 VMOVI_COLLECTION_OOR

0x01_2104 VMOVI_UNMAPPED_DEVICE Unmapped device

0x01_2105 VMOVI_ID_OOR Out of range

0x01_2106 VMOVI_PHYSICALID_OOR

0x01_2107 VMOVI_UNMAPPED_INTERRUPT Unmapped interrupt

0x01_2115 VMOVI_ID_IS_PHYSICAL pINTID specified

0x01_2116 VMOVI_ITEVCPU_INVALID Invalid translation table entry

0x01_2117 VMOVI_CMDVCPU_INVALID Invalid vPE specified

Table 6-7 ITS command error encodings (continued)

Encoding Error mnemonic Command Error description
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 6-147
ID072617 Non-Confidential

6 Locality-specific Peripheral Interrupts and the ITS
6.6 ITS power management
6.6 ITS power management
This subsection describes the software sequences for enabling and disabling an ITS. It contains the following
sections:
• Enabling an ITS.
• Disabling an ITS.

6.6.1 Enabling an ITS

On power up, an ITS is reset to the quiescent state where GITS_CTLR.Quiescent == 1 and GITS_CTLR.Enabled
== 0. To enable an ITS, software must:
1. Ensure any memory structures required to support the device, interrupt translation, interrupt collection, or

virtual CPU tables are initialized or restored.
2. Ensure that the ITS command queue has been provisioned.
3. Set GITS_CTLR.Enabled to 1.
4. Configure the ITS as required using the appropriate ITS commands. For more information about the ITS

commands, see ITS commands on page 6-108.

6.6.2 Disabling an ITS

To disable an ITS, software must:
1. Ensure that all interrupts that target the ITS that is being powered down are either redirected or disabled.
2. Disable the ITS by clearing GITS_CTLR.Enable to 0. The disabled ITS completes all outstanding operations

and then sets GITS_CTLR.Quiescent to 1.
3. Ensure the ITS is quiescent by polling until GITS_CTLR.Quiescent == 1.

When GITS_CTLR.Enable == 0, write accesses to GITS_TRANSLATER are ignored. When
GITS_CTLR.Quiescent == 1, all operations have completed and memory backed state is committed. The ITS can
then be powered down to an IMPLEMENTATION DEFINED state.
6-148 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

Chapter 7
Power Management

This chapter describes power management. It contains the following section:
• Power management on page 7-150.
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 7-149
ID072617 Non-Confidential

7 Power Management
7.1 Power management
7.1 Power management
In an implementation compliant with the GICv3 architecture, the CPU interface and the PE must be in the same
power domain, but this does not have to be the same power domain as that within which the associated Redistributor
is located. This means that it is possible to have a situation where the PE and its CPU interface are powered down,
and the Redistributor, Distributor, and ITS, are powered up. In this situation, the GIC architecture supports the use
of interrupts targeted at the PE to signal a powerup event to the PE and CPU interface.

Note
 ARM strongly recommends that the GIC is not configured in such a way that an interrupt can cause wake-up of a
particular PE, if on waking software on that PE cannot handle the interrupt.

GICv3 provides power management to control this situation, because the architecture is designed to allow the
Redistributors designed by one organization to be used with PEs and CPU interfaces that have been designed by a
different organization.

All other aspects of power management for the GIC are IMPLEMENTATION DEFINED.

Before powering down the CPU interface and the PE when the Redistributor is powered up, software must put the
interface between the CPU interface and the Redistributor into the quiescent state or the system will become
UNPREDICTABLE. The transition to the quiescent state is initiated by setting GICR_WAKER.ProcessorSleep to 1.
When the interface is quiescent, GICR_WAKER.ChildrenAsleep is also set to 1.

GICR_WAKER.ProcessorSleep == 1 has the following effects:
• The Redistributor does not forward any interrupts for the PE to the CPU interface. If there is a pending

interrupt for the PE that would otherwise be forwarded to the PE, a hardware signal, WakeRequest, is
asserted to indicate that the PE is to have its power restored. In a GICv4 implementation, this applies to virtual
LPIs in addition to any other interrupts.

• The Distributor does not select this PE as a candidate for selection for a 1 of N interrupt, unless
GICD_CTLR.E1NWF == 1, and the PE has been selected by an IMPLEMENTATION DEFINED mechanism:
— For a 1 of N interrupt that causes wake-up, the GIC is not required to select a new target PE if the PE

that received the WakeRequest does not handle the interrupt on waking.

When the interface between the Redistributor and the CPU interface is in a quiescent state, the following
architectural state of the CPU interface can be saved as part of saving the state within the power domain of the CPU
interface and the PE:
• The CPU interface state related to physical interrupts of the connected PE.
• The CPU interface state related to virtual interrupts that is part of the vPE that is scheduled on the associated

PE.

Setting GICR_WAKER.ProcessorSleep to 1 when the physical group enables in the CPU interface are set to 1
results in UNPREDICTABLE behavior.

When GICR_WAKER.ProcessorSleep == 1 or GICR_WAKER.ChildrenAsleep == 1 then a write to any GICC_*,
GICV_*, GICH_*, ICC_*, ICV_*, or ICH_* registers, other than those in the following list, is UNPREDICTABLE:
• ICC_SRE_EL1.
• ICC_SRE_EL2.
• ICC_SRE_EL3.
7-150 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

Chapter 8
Programmers’ Model

This chapter provides information about the GIC register interfaces and describes all of the GIC registers. It contains
the following sections:
• About the programmers’ model on page 8-152.
• AArch64 System register descriptions on page 8-177.
• AArch64 System register descriptions of the virtual registers on page 8-246.
• AArch64 virtualization control System registers on page 8-281.
• AArch32 System register descriptions on page 8-309.
• AArch32 System register descriptions of the virtual registers on page 8-386.
• AArch32 virtualization control System registers on page 8-424.
• The GIC Distributor register map on page 8-454.
• The GIC Distributor register descriptions on page 8-456.
• The GIC Redistributor register map on page 8-511.
• The GIC Redistributor register descriptions on page 8-514.
• The GIC CPU interface register map on page 8-573.
• The GIC CPU interface register descriptions on page 8-574.
• The GIC virtual CPU interface register map on page 8-612.
• The GIC virtual CPU interface register descriptions on page 8-614.
• The GIC virtual interface control register map on page 8-646.
• The GIC virtual interface control register descriptions on page 8-647.
• The ITS register map on page 8-669.
• The ITS register descriptions on page 8-670.
• Pseudocode on page 8-691.
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-151
ID072617 Non-Confidential

8 Programmers’ Model
8.1 About the programmers’ model
8.1 About the programmers’ model
The GIC is partitioned into several logical components, as defined in Chapter 3 GIC Partitioning, and each
component supports one or more programming interfaces. Software uses these programming interfaces to access
the programmers’ model and control the GIC. The interfaces are either memory-mapped or support System register
accesses as follows:

• The Distributor, Redistributor, and ITS programming interfaces are always memory-mapped.

• The CPU interfaces for physical and virtual interrupt handling, and the virtual machine control interface used
by the hypervisor use:

— System register interfaces for the operation of GICv3 and GICv4.

— Memory-mapped interfaces for legacy operation.

Note
 Support for legacy operation is optional. Implementations are allowed to support legacy operation for

virtual interrupts only, meaning that the GICV_* registers are the only memory-mapped CPU interface
registers that are provided. In these implementations, GICC_* registers and GICH_* registers are not
provided. GICC_* and GICH_* registers are only required to support legacy operation by physical
interrupts.

When accessing a System register, the register content accessed depends on:
• The Exception level at which the PE is executing.
• Whether the access is Secure or Non-secure.
• For a Non-secure access at EL1, whether the Exception level is configured by HCR_EL2 when executing in

AArch64 state, or by HCR when executing in AArch32 state, to handle virtual or physical interrupts.

8.1.1 GIC register names

All of the GIC registers have names that provide a short mnemonic for the function of the register:
• Memory-mapped registers are prefixed by one of the following:

— GICC, to indicate a CPU interface register.
— GICD, to indicate a Distributor register.
— GICH, to indicate a virtual interface control register, typically accessed by a hypervisor.
— GICR, to indicate a Redistributor register.
— GICV, to indicate a virtual CPU interface register.
— GITS, to indicate an ITS register.

• System registers are prefixed by:
— ICC, to indicate a physical GIC CPU interface System register.
— ICV, to indicate a virtual GIC CPU interface System register.
— ICH, to indicate a virtual interface control System register.

• The remaining letters are a mnemonic for the register, for example the GIC Distributor Control Register is
called GICD_CTLR.

Figure 8-1 on page 8-153 shows the interfaces that the programmer can use for the different logical components
when affinity routing and System register access are enabled for all Exception levels.
8-152 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.1 About the programmers’ model
Figure 8-1 Register interfaces without legacy support (GICv3 only)

A System register might be accessible from different Exception levels. In AArch64 state, a register suffix defines
the lowest Exception level at which the register is accessible. That is, any access to ICC_*_ELx must be from
Exception level ELx or higher.

8.1.2 Relation between System registers and memory-mapped registers

The GIC architecture permits, but does not require, that the same registers can be shared between memory-mapped
registers and the equivalent System registers. This means that if the memory-mapped registers have been accessed
while ICC_SRE_ELx.SRE == 0, the System registers might be modified. Therefore, ARM recommends that
software only relies on the reset values of the System registers if there has been no use of the GIC functionality while
the memory-mapped registers are in use, otherwise ARM recommends that the values are treated as UNKNOWN.

GITS_*

GICD_*

Redistributor CPU interface vCPU interface ITS

Distributor Virtual interface control

GICR_* GICR_*

ICC_* ICC_*

ICH_*

PE

HypervisorvPEa

ICC_*

PE

HypervisorvPEa

ICC_* ICH_*

a. A vPE is a virtual PE
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-153
ID072617 Non-Confidential

8 Programmers’ Model
8.1 About the programmers’ model
Table 8-1 shows the registers that are shared between the memory-mapped registers and the System registers.

Table 8-1 Relation between System registers and memory-mapped registers

System registersa Memory-mapped CPU
interface registers

Memory-mapped virtual CPU
interface registers

AArch64 AArch32

ICC_AP0R<n>_EL1 ICC_AP0R<n> GICC_APR<n>,
GICC_NSAPR<n>

GICV_APR<n>

ICC_AP1R<n>_EL1 ICC_AP1R<n>

ICC_BPR0_EL1 ICC_BPR0 GICC_BPR, GICC_ABPRbc GICV_BPR

ICC_BPR1_EL1 ICC_BPR1 GICV_ABPR

ICC_CTLR_EL1 ICC_CTLR GICC_CTLR GICV_CTLR

ICC_CTLR_EL3 ICC_MCTLR

ICC_DIR_EL1 ICC_DIR GICC_DIR GICV_DIR

ICC_EOIR0_EL1 ICC_EOIR0 GICC_EOIR, GICC_AEOIR GICV_EOIR

ICC_EOIR1_EL1 ICC_EOIR1 GICV_AEOIR

ICC_HPPIR0_EL1 ICC_HPPIR0 GICC_HPPIR, GICC_AHPPIR GICV_HPPIR

ICC_HPPIR1_EL1 ICC_HPPIR1 GICV_AHPPIR

ICC_IAR0_EL1 ICC_IAR0 GICC_IAR, GICC_AIARd GICV_IAR

ICC_IAR1_EL1 ICC_IAR0 GICV_AIAR

ICC_IGRPEN0_EL1 ICC_IGRPEN0 GICC_CTLR GICV_CTLR

ICC_IGRPEN1_EL1 ICC_IGRPEN1

ICC_IGRPEN1_EL3 ICC_MGRPEN1

ICC_PMR_EL1 ICC_PMR GICC_PMR GICV_PMR

ICC_RPR_EL1 ICC_RPR GICC_RPR GICV_RPR

ICH_AP0R<n>_EL2 ICH_AP0R<n> GICH_APR<n> -

ICH_AP1R<n>_EL2 ICH_AP1R<n> -

ICH_EISR_EL2 ICH_EISR GICH_EISR -

ICH_ELRSR_EL2 ICH_ELRSR GICH_ELRSR -

ICH_HCR_EL2 ICH_HCR GICH_HCR -

ICH_LR<n>_EL2 ICH_LR<n> GICH_LR<n> -

ICH_LRC<n> -

ICH_MISR_EL2 ICH_MISR GICH_MISR -

ICH_VMCR_EL2 ICH_VMCR GICH_VMCR -

ICH_VTR_EL2 ICH_VTR GICH_VTR -
8-154 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.1 About the programmers’ model
8.1.3 GIC memory-mapped register access

In any system, access to the following registers must be supported:

• Single copy atomic 32-bit accesses to:

— All 32-bit GICC_*, GICV_*, GICD_*, GICH_*, GITS_*, and GICR_* registers.

• Single copy atomic 64-bit accesses to:
— All 64-bit GITS_* registers.
— All 64-bit GICD_* registers.
— All 64-bit GICR_* registers.

• Byte accesses to:
— GICD_IPRIORITYR<n>.
— GICD_ITARGETSR<n>.
— GICD_SPENDSGIR<n>.
— GICD_CPENDSGIR<n>.
— GICR_IPRIORITYR<n>.

In addition, in system where one or more PE supports AArch32:

• Single copy atomic 32-bit accesses to:

— All 64-bit GICD_*, GICR_*, and GITS_* registers, including independent access to the upper 32-bits
and the lower 32-bits of the register. This does not apply to registers that are specifically marked as
being 64-bit accessible only.

ARM does not expect the following registers to be accessed directly by software, but single-copy atomic 16-bit and
32-bit accesses to these registers must be supported:
• GITS_TRANSLATER.
• GICD_SETSPI_NSR.
• GICD_CLRSPI_NSR.
• GICD_SETSPI_SR.
• GICD_CLRSPI_SR.

All other accesses to these registers result in UNPREDICTABLE behavior.

In the GIC architecture, all registers that are doubleword-accessible, halfword-accessible, or byte-accessible use a
little endian memory order model.

The following accesses are not supported:
• Byte access to registers other than those specifically listed in this section.
• Unaligned word accesses. These accesses are not word single-copy atomic.
• Unaligned doubleword accesses. These accesses are not doubleword single-copy atomic.
• Word accesses for registers marked as requiring a 64-bit access.
• Doubleword accesses, other than those specifically listed in this section.
• Quadword or higher.
• Exclusive accesses.

For each of these access types, it is UNPREDICTABLE whether:
• The access generates an external abort or not.

a. There are also System registers prefixed with ICV, rather than ICC, and these are the virtual GIC CPU interface System registers, see
AArch64 System register descriptions of the virtual registers on page 8-246 and AArch32 System register descriptions of the virtual registers
on page 8-386.

b. This register is an alias of the Non-secure copy of GICC_BPR.
c. If ICC_CTLR_EL3.CBPR_EL1NS == 1, Secure accesses to this register access (and might modify) ICC_BPR0_EL1.
d. In GIC implementations that support two Security states, this register is an alias of the Non-secure view of GICC_IAR.
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-155
ID072617 Non-Confidential

8 Programmers’ Model
8.1 About the programmers’ model
• The defined side-effects of a read occur or not. A read returns UNKNOWN data.
• A write is ignored or sets the accessed register or registers to UNKNOWN values.

For memory-mapped accesses by a PE that complies with the ARM architecture, the single-copy atomicity rules for
the instruction, the type of instruction, and the type of memory accessed, determine the size of the access made by
the instruction. Example 8-1 shows this.

Example 8-1 Access sizes for memory-mapped accesses

Two Load Doubleword instructions made to consecutive doubleword-aligned locations generate a pair of
single-copy atomic doubleword reads. However, if the accesses are made to Normal memory or Device-GRE
memory they might appear as a single quadword access that is not supported by the peripheral.

ARMv8 does not require the size of each element accessed by a multi-register load or store instruction to be
identifiable by the memory system beyond the PE. Any memory-mapped access to a GIC is defined to be beyond
the PE.

Software must use a Device-nGRE or stronger memory-type, and use only single register load and store instructions,
to create memory accesses that are supported by the peripheral.

Reads and writes of the memory-mapped registers complete in the order in which they arrive at the GIC. For access
to different register locations, software must create this order by:
• Marking the memory as Device-nGnRnE or Device-nGnRE.
• Using the appropriate memory barriers.

Software must be able to guarantee completion of a write, for example by:
• Marking the memory as Device-nGnRnE and executing a DSB barrier, if the system supports this property.
• Reading back the value written.

For more information on endianness, memory ordering, and barrier instructions, see ARM® Architecture Reference
Manual, ARMv8, for ARMv8-A architecture profile.

The access type definitions for the memory-mapped register interface are:
RW Read and write.
RO Read only. Writes are ignored.
WO Write only. Reads return an UNKNOWN value.

8.1.4 Access to memory-mapped registers when System register access is enabled

Because memory-mapped accesses and System register accesses might not access the same state, and are not
guaranteed to be synchronized when System registers access is enabled for a particular Exception level and Security
state, ARM recommends that the System registers be used instead of the memory-mapped registers that provide the
same functionality.

In implementations that include the GICC_* registers, and where the Secure copy of ICC_SRE_EL1.SRE is
programmable, the following state must be shared between System register access and memory-mapped access to
ensure the correct operation of preemption:
• GICC_PMR and ICC_PMR_EL1 or ICC_PMR must access the same state.
• GICC_APR<n> and ICC_AP0R<n>_EL1 must access the same state.
• GICC_NSAPR<n> and ICC_AP1R<n>_EL1(NS) must access the same state.
• GICC_CTLR.CBPR and ICC_CTLR_EL3(NS).CBPR must access the same state.
• Secure accesses to GICC_BPR and ICC_BPR0_EL1 must access the same state when GICC_CTLR.CBPR

== 0.
• Secure accesses to GICC_ABPR and ICC_BPR1_EL1 must access the same state when GICC_CTLR.CBPR

== 0.
8-156 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.1 About the programmers’ model
Note
 • Software must follow the rules specified in GIC System register access on page 8-159 when changing the

setting of the SRE fields.
• Relation between System registers and memory-mapped registers on page 8-153 specifies the relationship

between memory-mapped registers and System registers. State can only be shared between registers that
perform the same function, and the registers listed in Table 8-1 on page 8-154 might share state.

When changing from a state where the registers are required to access the same state to a state where the registers
are not required to access the same state, or when changing from a state where the registers are not required to access
the same state to a state where the registers are required to access the same state, the content of the registers becomes
UNKNOWN.

Note
 The priority bits implemented for memory-mapped and System register state must be the same, as must the
minimum value of the Binary Point Register for Group 0 interrupts for both Secure and Non-secure views.

Accesses to the GICC_* registers might be affected by whether System register access is enabled or not, depending
on the implementation:
• If the Secure copy of ICC_SRE_EL1.SRE == 1, then the GICC_* registers might not be accessible or might

be RAZ/WI.

Note
 When EL3 is configured to use AArch32 state, Secure EL1 is not accessible but software must still set the

Secure copy of ICC_SRE.SRE to 1, to enable support for Secure Group 1 interrupts, otherwise the system is
UNPREDICTABLE.

• If ICC_SRE_EL2.SRE ==1, then the GICH_* registers might not be accessible or might be RAZ/WI.
• If the Non-secure copy of ICC_SRE_EL1.SRE == 1, then the GICV_* registers might not be accessible or

might be RAZ/WI.

Note
 In implementations where the Non-secure copy of ICC_SRE_EL1.SRE is programmable, that is, it is not RAO/WI,
the GICV_* register interface must still be provided.

An implementation might be able to detect accesses to memory-mapped registers that must not be accessed because
an SRE bit is 1, and report them in an IMPLEMENTATION DEFINED manner.

8.1.5 Execution state

The ARMv8-A architecture has two Execution states:
• AArch64 state.
• AArch32 state.

To see the mapping between the AArch64 System registers and the AArch32 System registers, see:
• Table 8-3 on page 8-161.
• Table 8-4 on page 8-162.

8.1.6 Observability of the effects of accesses to the GIC registers

The PE and CPU interface logic must ensure that:

• Writes to ICC_PMR_EL1 are self-synchronizing.
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-157
ID072617 Non-Confidential

8 Programmers’ Model
8.1 About the programmers’ model
Note
 This ensures that no interrupts with a priority lower than the priority value in ICC_PMR_EL1 are taken after

a write to ICC_PMR_EL1 is architecturally executed.

• Reads of ICC_IAR0_EL1 and ICC_IAR1_EL1 are self-synchronizing when interrupts are masked by the PE,
that is when PSTATE.F == 1, for reads of ICC_IAR0_EL1, and when PSTATE.I == 1, for reads of
ICC_IAR1_EL1.

Note
 This ensures that the effect of activating an interrupt on the signaling of an interrupt exception is observed

when a read of ICC_IAR0_EL1 and ICC_IAR1_EL1 is architecturally executed. This means that no spurious
interrupt exception occurs if interrupts are unmasked by an instruction immediately following the read.

• Instructions that change the current Exception level from EL3 to a lower Exception level, for example the
ERET instruction, must be synchronized with any corresponding change in the allocation of interrupts as FIQs
and IRQs, so that no spurious FIQ is taken after the architectural execution of the instruction, see Interrupt
assignment to IRQ and FIQ signals on page 4-60.

• Architectural execution of a DSB instruction guarantees that

— The last value written to ICC_PMR_EL1 or GICC_PMR is observed by the associated Redistributor.

— The last value written to ICC_SGI0R_EL1 or ICC_SGI1R_EL1 is observed by the associated
Redistributor.

— The last value written to ICC_ASGI1R_EL1 is observed by the associated Redistributor.

— The last value written to ICC_IGRPEN0_EL1, ICC_IGRPEN1_EL1, ICC_IGRPEN1_EL3 or
GICC_CTLR.{EnableGrp0, EnableGrp1}is observed by the associated Redistributor.

— The last value written to ICH_VMCR_EL2.{VENG0, VENG1}, or GICV_CTLR.{EnableGrp0,
EnableGrp1} is observed by the associated Redistributor.

— The last SPI INTID read from ICC_IAR0_EL1, ICC_IAR1_EL1, GICC_IAR or GICC_AIAR is
observed by the Distributor and by accesses from any PE to the Distributor.

— The last SGI, PPI or LPI INTID read from ICC_IAR0_EL1, ICC_IAR1_EL1, GICC_IAR or
GICC_AIAR is observed by the associated Redistributor and by accesses from the PE to the associated
Redistributor.

— The last vLPI INTID read from ICV_IAR1_EL1, where that vLPI was received from a direct injection,
is observed by the associated Redistributor.

— The last Deactivate command for an SPI generated by a write to ICC_EOIR0_EL1, ICC_EOIR1_EL1,
GICC_AEOIR, GICC_EOIR, ICC_DIR_EL1 or GICC_DIR is observed by the Distributor and by
accesses from any PE to the Distributor.

— The last Deactivate command for an SGI or PPI generated by a write to ICC_EOIR0_EL1,
ICC_EOIR1_EL1, GICC_AEOIR, GICC_EOIR, ICC_DIR_EL1 or GICC_DIR is observed by the
Redistributor and by accesses from any PE to the Redistributor.

— The last Deactivate command for a physical PPI, SGI, or SPI generated by a write to
ICV_EOIR0_EL1, ICV_EOIR1_EL1, GICV_AEOIR, GICV_EOIR, ICV_DIR_EL1, or GICV_DIR
is observed by the Redistributor and by accesses from any PE to the Redistributor.

In all cases in this section where a DSB is referred to, this refers to a DSB whose required access type is both
loads and stores with any Shareability attribute.

For more information about the encoding of the DSB instruction, see the ARM® Architecture Reference
Manual, ARMv8, for ARMv8-A architecture profile.

Note
 An ISB or other context synchronization operation must precede the DSB to ensure visibility of System register writes.
8-158 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.1 About the programmers’ model
8.1.7 GIC System register access

The GIC System register interface is managed by Exception level, using the following AArch64 System registers:
• ICC_SRE_EL3, if EL3 is implemented.
• ICC_SRE_EL2, if EL2 is implemented.
• ICC_SRE_EL1.

Table 8-2 shows the permitted ICC_SRE_ELx.SRE settings.

Note
 The information in Table 8-2 applies to implementations that support both EL2 and EL3.

All combinations of ICC_SRE_ELx.SRE settings not listed in Table 8-2 result in UNPREDICTABLE behavior.

All settings other than ICC_SRE_ELx.SRE == 1 are deprecated.

Note
 • When HCR_EL2 is configured so that virtualization at EL1 is enabled, it is IMPLEMENTATION DEFINED

whether a Non-secure access to ICC_SRE_EL1.SRE or ICC_SRE.SRE is programmable to support a legacy
VM.

• ARM expects that when ICC_SRE_EL3.SRE == 1 and ICC_SRE_EL1(S).SRE == 0, then
ICC_CTLR_EL3.RM == 1.

The following changes to ICC_SRE_ELx result in UNPREDICTABLE behavior:
• Changing the value of ICC_SRE_EL3.SRE from 1 to 0.
• Changing the value of ICC_SRE_EL2.SRE from 1 to 0.

Table 8-2 Permitted ICC_SRE_ELx.SRE settings

ICC_SRE_EL1(S) ICC_SRE_EL1(NS) ICC_SRE_EL2 ICC_SRE_EL3 Notes

0 0 0 0 Legacy, see Chapter 10 Legacy
Operation and Asymmetric
Configurations

0 0 0 1 Supported only when EL3 is using
AArch64

0 0 1 1 Supported only when EL3 is using
AArch64 and virtual interrupts are
enabled

0 1 1 1 Supported only when EL3 is using
AArch64

1 0 1 1 Supported only when
HCR_EL2.FMO==1
&&HCR_EL2.IMO==1&&
HCR_EL2.AMO==1

Note
 An implementation is permitted but not
required to support this setting when
HCR_EL2.FMO==1&&
HCR_EL2.IMO==1.

1 1 1 1 Fully supported System register access
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-159
ID072617 Non-Confidential

8 Programmers’ Model
8.1 About the programmers’ model
• Changing the value of ICC_SRE_EL1(S).SRE from 1 to 0.

Note
 ICC_SRE_EL1(NS) can be changed from 1 to 0 to allow different VMs to have different ICC_SRE_EL1 values.

Each ICC_SRE_ELx register listed in this section provides:
• An SRE bit to enable the ICC_* System register interface at that Exception level. For EL2 and EL3, the SRE

bit also enables access to all ICH_* registers.
• DIB and DFB bits to support interrupt bypass for the Exception level hierarchy. For more information about

bypass, see Interrupt bypass support on page 3-43.

In addition:

• ICC_SRE_EL3.Enable controls EL1 access to ICC_SRE_EL1, and EL2 access to ICC_SRE_EL1 and
ICC_SRE_EL2.

• ICC_SRE_EL2.Enable controls Non-secure EL1 accesses to ICC_SRE_EL1 if EL3 is not present or
ICC_SRE_EL3.Enable == 1.

Note
 The ICC_SRE_ELx register associated with the highest implemented Exception level is always accessible to allow
software executing at that Exception level to configure the System register at different Exception levels.

The System register interface can be used for execution in both AArch32 state and AArch64 state.

For AArch32 state, accesses to GIC registers that are visible in the System register interface use the following
instructions:
• The MRC instruction for 32-bit read accesses.
• The MCR instruction for32-bit write accesses.
• The MCRR instruction for 64-bit write accesses to ICC_SGI0R, ICC_SGI1R and ICC_ASGI1R.

See the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile for information about the
form of the MRC, MCR, and MCRR instructions.

System registers support 32-bit or 64-bit accesses. See the individual register description for the associated access
size.

The access type definitions for the System register interface are:
RW Read and write.
RO Read only. Writes result in an UNDEFINED exception.
WO Write only. Reads result in an UNDEFINED exception.

Note
 For more information about UNDEFINED exceptions, see ARM® Architecture Reference Manual, ARMv8, for
ARMv8-A architecture profile.
8-160 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.1 About the programmers’ model
Table 8-3 shows the AArch64 and AArch32 register mappings for System register accesses by the GIC CPU
interface.

The GIC virtual interface control registers are accessible when ICC_SRE_EL2.SRE == 1.

Table 8-3 System register accesses for GIC CPU interface registers

Name of System register accessed

AArch64 AArch32

ICC_IAR0_EL1a

a. In addition to ICC_SRE_EL*.SRE,
ICC_SRE.SRE, ICC_HSRE.SRE,
and ICC_MSRE.SRE, SCR_EL3
and HCR_EL2 control accessibility
to these registers.

ICC_IAR0

ICC_IAR1_EL1a ICC_IAR1

ICC_EOIR0_EL1a ICC_EOIR0

ICC_EOIR1_EL1a ICC_EOIR1

ICC_HPPIR0_EL1a ICC_HPPIR0

ICC_HPPIR1_EL1a ICC_HPPIR1

ICC_BPR0_EL1a ICC_BPR0

ICC_BPR1_EL1a ICC_BPR1

ICC_DIR_EL1a ICC_DIR

ICC_PMR_EL1 ICC_PMR

ICC_RPR_EL1 ICC_RPR

ICC_AP0R<n>_EL1a ICC_AP0R<n>

ICC_AP1R<n>_EL1a ICC_AP1R<n>

ICC_CTLR_EL1 ICC_CTLR

ICC_CTLR_EL3 ICC_MCTLR

ICC_IGRPEN0_EL1 ICC_IGRPEN0

ICC_IGRPEN1_EL1 ICC_IGRPEN1

ICC_IGRPEN1_EL3 ICC_MGRPEN1

ICC_SGI1R_EL1 ICC_SGI1R

ICC_ASGI1R_EL1 ICC_ASGI1R

ICC_SGI0R_EL1 ICC_SGI0R

ICC_SRE_EL1 ICC_SRE

ICC_SRE_EL2 ICC_HSRE

ICC_SRE_EL3 ICC_MSRE
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-161
ID072617 Non-Confidential

8 Programmers’ Model
8.1 About the programmers’ model
Table 8-4 shows the AArch64 and AArch32 System register mappings for the GIC virtual interface control
registers.

AArch64 System register access instruction encodings

Table 8-5 shows the format of the A64 MSR and MRS instructions to access the physical and virtual CPU interface.

Table 8-4 System register mappings for GIC virtual interface control registers

Name of System register accessed

AArch64 AArch32

ICH_HCR_EL2 ICH_HCR

ICH_VTR_EL2 ICH_VTR

ICH_MISR_EL2 ICH_MISR

ICH_EISR_EL2 ICH_EISR

ICH_ELRSR_EL2 ICH_ELRSR

ICH_AP0R<n>_EL2a

a. n = 0-3

ICH_AP0R<n>a

ICH_AP1R<n>_EL2a ICH_AP1R<n>a

ICH_LR<n>_EL2[63:32]b ICH_LRC<n>b

ICH_LR<n>_EL2[31:0]b

b. n = 0-15.

ICH_LR<n>b

ICH_VMCR_EL2 ICH_VMCR

Table 8-5 Mapping of MSR and MRS to physical and virtual CPU interface registers, AArch64 state

System register Access opc0 opc1 CRn CRm opc2

ICC_AP0R<n>_EL1a RW 3 0 c12 c8 4-7

ICC_AP1R<n>_EL1ab RW 3 0 c12 c9 0-3

ICC_ASGI1R_EL1 WO 3 0 c12 c11 6

ICC_BPR0_EL1 RW 3 0 c12 c8 3

ICC_BPR1_EL1b RW 3 0 c12 c12 3

ICC_CTLR_EL1b RW 3 0 c12 c12 4

ICC_CTLR_EL3 RW 3 6 c12 c12 4

ICC_DIR_EL1 WO 3 0 c12 c11 1

ICC_EOIR0_EL1 WO 3 0 c12 c8 1

ICC_EOIR1_EL1 WO 3 0 c12 c12 1

ICC_HPPIR0_EL1 RO 3 0 c12 c8 2

ICC_HPPIR1_EL1 RO 3 0 c12 c12 2
8-162 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.1 About the programmers’ model
Table 8-6 shows the format of the A64 MSR and MRS instructions that access the virtual interface control registers.

For more information about the A64 instructions, see the ARM® Architecture Reference Manual, ARMv8, for
ARMv8-A architecture profile.

ICC_IAR0_EL1 RO 3 0 c12 c8 0

ICC_IAR1_EL1 RO 3 0 c12 c12 0

ICC_IGRPEN0_EL1 RW 3 0 c12 c12 6

ICC_IGRPEN1_EL1b RW 3 0 c12 c12 7

ICC_IGRPEN1_EL3 RW 3 6 c12 c12 7

ICC_PMR_EL1 RW 3 0 c4 c6 0

ICC_RPR_EL1 RO 3 0 c12 c11 3

ICC_SGI0R_EL1 WO 3 0 c12 c11 7

ICC_SGI1R_EL1 WO 3 0 c12 c11 5

ICC_SRE_EL1b RW 3 0 c12 c12 5

ICC_SRE_EL2 RW 3 4 c12 c9 5

ICC_SRE_EL3 RW 3 6 c12 c12 5

a. n = 0-3.
b. There is a Secure copy and a Non-secure copy of this register.

Table 8-6 Mapping of MSR and MRS to virtual interface control registers, AArch64 state

System register Access opc0 opc1 CRn CRm opc2

ICH_AP0R<n>_EL2 RW 3 4 c12 c8 0-3

ICH_AP1R<n>_EL2 RW 3 4 c12 c9 0-3

ICH_HCR_EL2 RW 3 4 c12 c11 0

ICH_VTR_EL2 RO 3 4 c12 c11 1

ICH_MISR_EL2 RO 3 4 c12 c11 2

ICH_EISR_EL2 RO 3 4 c12 c11 3

ICH_ELRSR_EL2 RO 3 4 c12 c11 5

ICH_VMCR_EL2 RW 3 4 c12 c11 7

ICH_LR<n>_EL2a

a. n = 0-15

RW 3 4 c12 c12, c13 0-7

Table 8-5 Mapping of MSR and MRS to physical and virtual CPU interface registers, AArch64 state

System register Access opc0 opc1 CRn CRm opc2
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-163
ID072617 Non-Confidential

8 Programmers’ Model
8.1 About the programmers’ model
AArch32 System register access instruction encodings

Table 8-7 shows the format of the A32 and T32 MCR and MRC instructions that access the physical and virtual CPU
interface.

Table 8-7 Mapping of MCR and MRC to physical and virtual CPU interface registers, AArch32 state

System register Access opc1 CRn CRm opc2 Notes

ICC_AP0R<n> RW 0 c12 c8 4-7 -

ICC_AP1R<n>a RW 0 c12 c9 0-3 -

ICC_ASGI1R WO 1 - c12 - Accessed using the MCRR and MRRC instructions

ICC_BPR0 RW 0 c12 c8 3 -

ICC_BPR1a RW 0 c12 c12 3 -

ICC_CTLRa RW 0 c12 c12 4 -

ICC_DIR WO 0 c12 c11 1 -

ICC_EOIR0 WO 0 c12 c8 1 -

ICC_EOIR1 WO 0 c12 c12 1 -

ICC_HPPIR0 RO 0 c12 c8 2 -

ICC_HPPIR1 RO 0 c12 c12 2 -

ICC_HSRE RW 4 c12 c9 5 -

ICC_IAR0 RO 0 c12 c8 0 -

ICC_IAR1 RO 0 c12 c12 0 -

ICC_IGRPEN0 RW 0 c12 c12 6 -

ICC_IGRPEN1a RW 0 c12 c12 7 -

ICC_MCTLR RW 6 c12 c12 4 -

ICC_MGRPEN1 RW 6 c12 c12 7 -

ICC_MSRE RW 6 c12 c12 5 -

ICC_PMR RW 0 c4 c6 0 -

ICC_RPR RO 0 c12 c11 3 -

ICC_SGI0R WO 2 - c12 - Accessed using the MCRR and MRRC instructions

ICC_SGI1R WO 0 - c12 - Accessed using the MCRR and MRRC instructions

ICC_SREa RW 0 c12 c12 5 -

a. There is a Secure copy and a Non-secure copy of this register.
8-164 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.1 About the programmers’ model
Table 8-8 shows the format of the A32 and T32 MCR and MRC instructions that access the virtual interface control
registers.

For more information about the T32 and A32 instructions, see the ARM® Architecture Reference Manual, ARMv8,
for ARMv8-A architecture profile.

Implementations with fixed System register enables

GICv3 implementations that are not required to be backwards compatible with GICv2 might have some System
register enable bits that are RAO/WI. GICv3 supports the following options:
• ICC_SRE_EL3.SRE might be RAO/WI. This means that software executing at EL3 must always access the

GIC using the System registers, but lower Exception levels might use the memory-mapped registers to access
the GIC.

• ICC_SRE_EL2.SRE might be RAO/WI if ICC_SRE_EL3.SRE is also RAO/WI, or if EL3 is not
implemented. This means that software executing at EL2 must always access the GIC using the System
registers and software executing at Non-secure EL1 might use the memory-mapped registers to access the
GIC.

• The Non-secure copy of ICC_SRE_EL1.SRE might be RAO/WI if:
— EL2 and EL3 are not implemented.
— Only EL2 is implemented, and ICC_SRE_EL2.SRE is RAO/WI.
— Only EL3 is implemented, and ICC_SRE_EL3.SRE is RAO/WI.
— Both EL2 and EL3 are implemented, and both ICC_SRE_EL2.SRE and ICC_SRE_EL3.SRE are

RAO/WI.
This means that software executing at Non-secure EL1 must always access the GIC using the System
registers.

• The Secure copy of ICC_SRE_EL1.SRE might be RAO/WI if:
— EL3 is not implemented.
— EL3 is implemented, EL2 is not implemented, and ICC_SRE_EL3.SRE and the Non-secure copy of

ICC_SRE_EL1 are RAO/WI.
— Both EL2 and EL3 are implemented, and both ICC_SRE_EL2.SRE and ICC_SRE_EL3.SRE are

RAO/WI.
ICC_SRE_EL3.SRE and ICC_SRE_EL2.SRE are also RAO/WI. This means that software executing in
Secure EL1 must access the GIC using the System registers.

Table 8-8 Mapping of MCR and MRC to virtual interface control registers, AArch32 state

System register Access opc1 CRn CRm opc2

ICH_AP0R<n>a

a. n = 0-15.

RW 4 c12 c8 0-3

ICH_AP1R<n>a RW 4 c12 c9 0-3

ICH_HCR RW 4 c12 c11 0

ICH_VTR RO 4 c12 c11 1

ICH_MISR RO 4 c12 c11 2

ICH_EISR RO 4 c12 c11 3

ICH_ELRSR RO 4 c12 c11 5

ICH_VMCR RW 4 c12 c11 7

ICH_LR<n>a RW 4 c12 c12, c13 0-7

ICH_LRC<n>a RW 4 c12 c14, c15 0-7
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-165
ID072617 Non-Confidential

8 Programmers’ Model
8.1 About the programmers’ model
8.1.8 Access to Common registers

When System register access is enabled for interrupts at Non-secure EL1, Group 0 and Group 1 interrupts are
virtualized separately. This means that a VM operating at EL1 might control both physical interrupts and virtual
interrupts. For example, a VM might be configured to handle:
• Virtual Group 0 interrupts by setting SCR_EL3.NS and HCR_EL2.FMO to 1.
• Physical Group 1 interrupts by setting SCR_EL3.NS to 1, and clearing SCR_EL3.IRQ and HCR_EL2.IMO

to 0.

For most operations, this separate virtualization is achieved by using different registers to handle Group 0 and Group
1 interrupts. However, a number of registers are common to both Group 0 and Group 1 interrupts. These Common
registers are:
• ICC_SGI0R_EL1, ICC_SGI1R_EL1, ICC_ASGI1R_EL1.
• ICC_CTLR_EL1.
• ICC_DIR_EL1.
• ICC_PMR_EL1.
• ICC_RPR_EL1.

The rules governing whether accesses to the Common registers are physical accesses, virtual accesses, or whether
they generate a Trap exception, are as follows:
• When ICH_HCR_EL2.TC == 1, Non-secure accesses at EL1 generate a Trap Exception that is taken to EL2.
• When ICH_HCR_EL2.TDIR == 1, Non-secure writes at EL1 to ICC_DIR_EL1 generate a Trap exception

that is taken to EL2.
• When HCR_EL2.FMO == 1 || HCR_EL2.IMO == 1 Non-secure accesses at EL1 are virtual accesses:

— Accesses to all ICC_* registers that are accessible at EL1, other than ICC_SRE_EL1*, access the
equivalent ICV_* registers instead.

— Virtual accesses to ICC_SGI0R_EL1, ICC_SGI1R_EL1 and ICC_ASGI1R_EL1 always generate a
Trap exception that is taken to EL2.

Otherwise, the lowest Exception level at which the Common registers can be accessed is the lowest Exception level
that is either:
• Specified by SCR_EL3.FIQ, SCR_EL3.NS, and HCR_EL2.FMO.
• Specified by SCR_EL3.IRQ, SCR_EL3.NS, and HCR_EL2.IMO.

This means that the Common registers can be accessed at:

• EL1, without trapping, when (SCR_EL3.FIQ == 0 || SCR_EL3.IRQ == 0) && (SCR_EL3.NS == 0 ||
HCR_EL2.FMO == 0 || HCR_EL2. IMO == 0).

• EL2, without trapping, when (SCR_EL3.FIQ == 0 || SCR_EL3.IRQ == 0) && SCR_EL3.NS == 1.

Note
 ARM expects that software configures a GIC so that:
• ICH_HCR_EL2.TC == 1 when Group 0 and Group 1 are configured asymmetrically and therefore access

different states, for example one group accesses the virtualized state and the other group accesses the physical
state.

• ICH_HCR_EL2.TC == 0 when the configuration is symmetric, and accesses to ICC_DIR_EL1 access the
physical state or the virtualized state for both Group 0 and Group 1.

8.1.9 Traps and enables for the ICC_SRE_ELx registers

The read/write behavior of ICC_SRE_ELx.SRE is controlled as follows:

• ICC_SRE_EL1(NS) is controlled by ICC_SRE_EL2.{SRE, Enable} and ICC_SRE_EL3.{SRE, Enable}:
— If ICC_SRE_EL2.SRE == 0 or ICC_SRE_EL3.SRE == 0, then ICC_SRE_EL1.SRE(NS) is RAZ/WI.
— If ICC_SRE_EL2.Enable == 0, then accesses to ICC_SRE_EL1(NS) are trapped to EL2.
— If ICC_SRE_EL3.Enable == 0, then accesses to ICC_SRE_EL1(NS) are trapped to EL3.
8-166 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.1 About the programmers’ model
• ICC_SRE_EL1(S) is controlled by ICC_SRE_EL3.{SRE, Enable}:
— If ICC_SRE_EL3.SRE == 0, then ICC_SRE_EL1(S) is RAZ/WI.
— If ICC_SRE_EL3.Enable == 0, then accesses to ICC_SRE_EL1(S) are trapped to EL3.

• ICC_SRE_EL2 is controlled by ICC_SRE_EL3.{SRE, Enable}:
— If ICC_SRE_EL3.SRE == 0, then ICC_SRE_EL2.SRE is RAZ/WI.
— If ICC_SRE_EL2.SRE == 0, then ICC_SRE_EL2.Enable is treated as 1 for all purposes, other than

reading/writing the register.
— If ICC_SRE_EL3.Enable == 0, then accesses to ICC_SRE_EL2 trap to EL3.

• If ICC_SRE_EL3.SRE == 0, then ICC_SRE_EL3.Enable is treated as 1 for all purposes, other than reading
or writing the register.

• In an implementation that includes EL3, if ICC_SRE_EL1(S).SRE == 1 and ICC_SRE_EL3.SRE == 1, then
ICC_SRE_EL2.SRE == 0 leads to UNPREDICTABLE behavior.

In the following tables:
x Indicates that the bit can be either 0 or 1.
- Indicates that this access is not applicable.
[0] RAZ/WI. Reads return 0 and writes are ignored. This bits is treated as 0.
{1} This bit is treated as 1 for all purposes, other than reading/writing the register.
(1) This bit must be set to 1, otherwise behavior is UNPREDICTABLE.
NS Indicates the value of SCR_EL3.NS.
RW Indicates that a read/write access is allowed.
T(EL2) Generates a Trap exception that is taken to EL2.
T(EL3) Generates a Trap exception that is taken to EL3. When EL3 is using AArch32, this is replaced by

an Undefined exception that is taken to the current Exception level.
UND Generates an UNDEFINED exception or a trap to the current Exception level.

Table 8-9 shows the conditions under which ICC_SRE_EL3 can be accessed.

Table 8-10 shows the conditions under which ICC_SRE_EL2 can be accessed.

Table 8-9 ICC_SRE_EL3 access

ICC_SRE_EL3 ICC_SRE_EL2 ICC_SRE_EL1 EL1 EL2 EL3

SRE Enable SRE Enable
SRE
NS=0

SRE
NS=1

NS = 0 NS = 1 NS = 1

x x x x x x UND UND UND RW

Table 8-10 ICC_SRE_EL2 access

ICC_SRE_EL3 ICC_SRE_EL2 ICC_SRE_EL1 EL1 EL2 EL3

SRE Enable SRE Enable
SRE
NS=0

SRE
NS=1

NS=0 NS=1 NS = 1 NS=0 NS=1

0 {1} [0] {1} [0] [0] UND UND RW UND RW

1 0 x x 0 x UND UND T(EL3) UND RW

1 0 (1) x 1 x UND UND T(EL3) UND RW

1 1 x x 0 x UND UND RW UND RW

1 1 (1) x 1 x UND UND RW UND RW
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-167
ID072617 Non-Confidential

8 Programmers’ Model
8.1 About the programmers’ model
Table 8-11 shows the conditions under which ICC_SRE_EL1(S) can be accessed when EL3 is implemented.

Table 8-12 shows the conditions under which ICC_SRE_EL1(NS) can be accessed when EL3 is implemented.

Table 8-13 shows the conditions under which the single copy of ICC_SRE_EL1 can be accessed when EL3 is not
implemented.

Table 8-11 ICC_SRE_EL1(S) access

ICC_SRE_EL3 ICC_SRE_EL2 ICC_SRE_EL1 EL1 EL2 EL3

SRE Enable SRE Enable
SRE
NS=0

SRE
NS=1

NS=0 NS=1 NS = 1 NS=0 NS=1

0 {1} [0] {1} [0] [0] RW N/A N/A RW N/A

1 0 x x x x T(EL3) N/A N/A RW N/A

1 1 x x x x RW N/A N/A RW N/A

Table 8-12 ICC_SRE_EL1(NS) access

ICC_SRE_EL3 ICC_SRE_EL2 ICC_SRE_EL1 EL1 EL2 EL3

SRE Enable SRE Enable
SRE
NS=0

SRE
NS=1

NS=0 NS=1 NS = 1 NS=0 NS=1

0 {1} [0] {1} [0] [0] N/A RW RW N/A RW

1 0 0 {1} 0 [0] N/A T(EL3) T(EL3) N/A RW

1 1 0 {1} 0 [0] N/A RW RW N/A RW

1 0 (1) 0 1 x N/A T(EL2) T(EL3) N/A RW

1 1 (1) 0 1 x N/A T(EL2) RW N/A RW

1 0 (1) 1 1 x N/A T(EL3) T(EL3) N/A RW

1 1 (1) 1 1 x N/A RW RW N/A RW

1 0 1 0 0 x N/A T(EL2) T(EL3) N/A RW

1 1 1 0 0 x N/A T(EL2) RW N/A RW

1 0 1 1 0 x N/A T(EL3) T(EL3) N/A RW

1 1 1 1 0 x N/A RW RW N/A RW

Table 8-13 ICC_SRE_EL1 access

ICC_SRE_EL2 ICC_SRE_EL1 EL1 EL2

SRE Enable

0 {1} [0] RW RW

0 1 [0] RW RW

1 0 x T(EL2) RW

1 1 x RW RW
8-168 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.1 About the programmers’ model
Accesses that are not described in these tables are not possible.

8.1.10 Use of control registers for SGI forwarding

Table 8-14 shows the conditions that determine which SGI register is accessed, and whether an SGI is forwarded to
a specified target CPU interface when affinity routing is enabled.

Table 8-14 Forwarding an SGI to a target PE

Access SGI register accessed Configuration of specified
SGI on target PE Signal SGI?

AArch64 AArch32

Secure EL1
EL3

ICC_SGI1R_EL1 ICC_SGI1R Secure Group 0 Yes, provided GICD_CTLR.DS == 1

Secure Group 1 Yes

Non-secure Group 1 No

ICC_ASGI1R_EL1 ICC_ASGI1R Secure Group 0 No

Secure Group 1 No

Non-secure Group 1 Yes

ICC_SGI0R_EL1 ICC_SGI0R Secure Group 0 Yes

Secure Group 1 No

Non-secure Group 1 No
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-169
ID072617 Non-Confidential

8 Programmers’ Model
8.1 About the programmers’ model
Note
 • When System register access is not enabled for Secure EL1, or when GICD_CTLR.DS == 1, the Distributor

treats Secure Group 1 interrupts as Group 0 interrupts. When Table 8-14 on page 8-169 indicates that a
Secure Group 1 interrupt is generated, the Distributor must send a Secure Group 0 interrupt to the CPU
interface.

• Generating SGIs for the other Security state is only supported when affinity routing is enabled for both
Security states.

8.1.11 GIC Security States

When a GIC supports two Security states, the behavior of PE accesses to the GIC registers depends on whether the
access is Secure or Non-secure. Except where this document explicitly indicates otherwise, when accessing GIC
registers:
• A Non-secure read of a register field holding state information for a Secure interrupt returns zero.

Non-secure EL1
EL2

ICC_SGI1R_EL1 ICC_SGI1R Secure Group 0 Yes, provided either that:
• This is permitted by the

corresponding field in
GICR_NSACR at each target
PE.

• GICD_CTLR.DS == 1.

Secure Group 1 Yes, if permitted by the corresponding
field in GICR_NSACR at each target
PE.

Non-secure Group 1 Yes

ICC_ASGI1R_EL1 ICC_ASGI1R Secure Group 0 Yes, provided either that:
• This is permitted by the

corresponding field in
GICR_NSACR at each target
PE.

• GICD_CTLR.DS == 1.

Secure Group 1 If permitted by the corresponding
field in GICR_NSACR.

Non-secure Group 1 No

ICC_SGI0R_EL1 ICC_SGI0R Secure Group 0 Yes, provided either that:
• This is permitted by the

corresponding field in
GICR_NSACR at each target
PE.

• GICD_CTLR.DS == 1.

Secure Group 1 No

Non-secure Group 1 No

Table 8-14 Forwarding an SGI to a target PE (continued)

Access SGI register accessed Configuration of specified
SGI on target PE Signal SGI?

AArch64 AArch32
8-170 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.1 About the programmers’ model
• The GIC ignores any Non-secure write to a register field holding state information for a Secure interrupt.

The ARM architecture defines the following register types:
Banked The device implements Secure and Non-secure copies of the register. See Register banking for more

information.
Secure The register is accessible only from a Secure access. The address of a Secure register is RAZ/WI to

any Non-secure access.
Common The register is accessible from both Secure and Non-secure accesses. The access permissions of

some or all fields in the register might depend on whether the access is Secure or Non-secure.

8.1.12 Register banking

Register banking refers to providing multiple copies of a register. The GIC banks registers in the following cases:

• If a GIC supports two Security states, some registers are Banked to provide separate Secure and Non-secure
copies of the registers. The Secure and Non-secure register bit assignments can differ. A Secure access to the
register address accesses the Secure copy of the register, and a Non-secure access accesses the Non-secure
copy.

• If the GIC is implemented as part of a multiprocessor system:

— Some registers are Banked to provide a separate copy for each connected PE. These include the
registers associated with PPIs and SGIs, and GICD_NSACR<n>, where n=0, when implemented.

— The GIC implements the CPU interface registers independently for each CPU interface, and each
connected PE accesses the registers for the interface to which it connects.

The following GIC System registers are banked by Security state:
• ICC_AP1R<n>_EL1.
• ICC_BPR1_EL1.
• ICC_CTLR_EL1.
• ICC_IGRPEN1_EL1.
• ICC_SRE_EL1.

Note
 These are the only ARMv8 AArch64 System registers that are banked by Security state.

Where legacy operation supports physical interrupts, the following GICC_* memory-mapped registers are banked
by Security state:
• GICC_CTLR.
• GICC_BPR.

8.1.13 Identification registers

Register offsets 0xFFD0-0xFFFC are defined as read-only identification register space. For ARM implementations of
the GIC architecture, the assignment of this register space, and the naming of registers in this space, is consistent
with the ARM identification scheme for CoreLink and CoreSight components. ARM strongly recommends that
other implementers also use this scheme to provide a consistent software discovery model.
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-171
ID072617 Non-Confidential

8 Programmers’ Model
8.1 About the programmers’ model
The architecture specification defines offsets 0xFFD0 - 0xFFFC in the Distributor register map as identification register
space, as Table 8-15 shows.

The architecture specification defines offsets 0xFFD0 - 0xFFFC in the Redistributor register map as identification
register space, as Table 8-16 shows.

The architecture specification defines offsets 0xFFD0 - 0xFFFC in the ITS register map as identification register space,
as Table 8-17 shows.

ARM generic ID registers can be used in the IMPLEMENTATION DEFINED register space.

GICD_PIDR2, Peripheral ID2 Register

Where an implementation implements the CoreLink and CoreSight ID scheme described in Identification registers
on page 8-171, the GICD_PIDR2 characteristics are:

Purpose This register provides a four-bit architecturally-defined architecture revision field. The
remaining bits of the register are IMPLEMENTATION DEFINED.

Usage constraints Bits[31:8] of the register are reserved, RAZ.

Configurations This register is available in all configurations of the GIC.

Attributes See the register summary in Table 8-15.

Figure 8-2 on page 8-173 shows the GICD_PIDR2 bit assignments.

Table 8-15 The GIC identification register space, Distributor register map

Offset Name Type Description

0xFFD0-0xFFE4 - RO IMPLEMENTATION DEFINED registers

0xFFE8 GICD_PIDR2 RO Distributor Peripheral ID2 Register

0xFFEC-0xFFFC - RO IMPLEMENTATION DEFINED registers

Table 8-16 The GIC identification register space, Redistributor register map

Offset Name Type Description

0xFFD0-0xFFE4 - RO IMPLEMENTATION DEFINED registers

0xFFE8 GICR_PIDR2 RO Redistributor Peripheral ID2 Register

0xFFEC-0xFFFC - RO IMPLEMENTATION DEFINED registers

Table 8-17 The GIC identification register space, ITS register map

Offset Name Type Description

0xFFD0-0xFFE4 - RO IMPLEMENTATION DEFINED registers

0xFFE8 GITS_PIDR2 RO ITS Peripheral ID2 Register

0xFFEC-0xFFFC - RO IMPLEMENTATION DEFINED registers
8-172 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.1 About the programmers’ model
Figure 8-2 GICD_PIDR2 bit assignments

Table 8-18 shows the GICD_PIDR2 bit assignments.

GICR_PIDR2, Redistributor Peripheral ID2 Register

Where an implementation implements the CoreLink and CoreSight ID scheme described in Identification registers
on page 8-171, the GICR_PIDR2 characteristics are:

Purpose This register provides a four-bit architecturally-defined architecture revision field. The
remaining bits of the register are IMPLEMENTATION DEFINED.

Usage constraints Bits[31:8] of the register are reserved, RAZ.

Configurations This register is available in all configurations of the GIC.

Attributes See the register summary in Table 8-16 on page 8-172.

The GICR_PIDR2 bit assignments are the same as those for GICD_PIDR2.

GITS_PIDR2, Redistributor Peripheral ID2 Register

Where an implementation implements the CoreLink and CoreSight ID scheme described in Identification registers
on page 8-171, the GITS_PIDR2 characteristics are:

Purpose This register provides a four-bit architecturally-defined architecture revision field. The
remaining bits of the register are IMPLEMENTATION DEFINED.

Usage constraints Bits[31:8] of the register are reserved, RAZ.

Configurations This register is available in all configurations of the GIC.

Attributes See the register summary in Table 8-17 on page 8-172.

The GITS_PIDR2 bit assignments are the same as those for GICD_PIDR2.

ArchRevIMPLEMENTATION DEFINED

31 8 7 4 3 0

IMPLEMENTATION DEFINED

Table 8-18 GICD_PIDR2 bit assignments

Bits Name Function

[31:8] - IMPLEMENTATION DEFINED. The CoreLink and CoreSight Peripheral ID Registers scheme requires these bits
to be reserved, RES0, and ARM strongly recommends that implementations follow this scheme.

[7:4] ArchRev Revision field for the GIC architecture. The value of this field depends on the GIC architecture version that
applies to the Distributor or Redistributor:
• 0x1. GICv1.
• 0x2. GICv2.
• 0x3. GICv3.
• 0x4. GICv4.
• All other values are reserved.

[3:0] - IMPLEMENTATION DEFINED.
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-173
ID072617 Non-Confidential

8 Programmers’ Model
8.1 About the programmers’ model
The ARM implementation of the GIC identification registers

Note
 • The ARM implementation of these registers is consistent with the identification scheme for CoreLink and

CoreSight components. This implementation identifies the device as a GIC that implements this architecture.
It does not identify the designer or manufacturer of the GIC implementation. For information about the
designer and manufacturer of a GIC implementation, see the descriptions for GICD_IIDR and GICC_IIDR.

• In other contexts, this identification scheme identifies a component in a system. The GIC use of the scheme
is different. It identifies only that the device is an implementation of a version of the GIC architecture defined
by this specification. Software must read GICD_IIDR and GICC_IIDR to discover, for example, the
implementer and version of the GIC hardware.

All component classes require the implementation of the Component and Peripheral Identification registers, as
described in:
• Component Identification Registers, CIDR0-CIDR3.
• Peripheral Identification Registers, PIDR0 - PIDR7.

Component Identification Registers, CIDR0-CIDR3

Table 8-19 shows the Component Identification Registers.

Peripheral Identification Registers, PIDR0 - PIDR7

Table 8-20 shows the Peripheral Identification Registers.

Table 8-19 Component Identification Registers

Name Offset Bits Field Value Description

CIDR3 0xFFFC [7:0] PRMBL_3 0xB1 Preamble

CIDR2 0xFFF8 [7:0] PRMBL_2 0x05 Preamble

CIDR1 0xFFF4 [7:4] CLASS 0xF Component Class

[3:0] PRMBL_1 0x0 Preamble

CIDR0 0xFFF0 [7:0] PRMBL_0 0x0D Preamble

Table 8-20 Peripheral Identification Registers

Name Offset Bits Field Value Description

PIDR7 0xFFDC [7:0] - RES0 Reserved

PIDR6 0xFFD8 [7:0] - RES0 Reserved

PIDR5 0XFFD4 [7:0] - RES0 Reserved

PIDR4 0xFFD0 [7:4] SIZE 0x4 64 KB software visible page

[3:0] DES_2 0x4 ARM implementation

PIDR3 0xFFEC [7:4] RevAnd IMP DEF Manufacturer defined revision number

[3:0] Customer Modified IMP DEF -
8-174 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.1 About the programmers’ model
A component is uniquely identified by the following fields:
• JEP106 continuation code.
• JEP106 identification code.
• Part Number.
• ArchRev.
• Customer Modified.
• RevAnd.

The meaning of the fields is as follows:

JEP106 continuation code, JEP106 identification code (DES_2, DES_1, DES_0)

These indicate the designer of the component and not the implementer, except where the two are the
same. To obtain a number, or to see the assignment of these codes, contact JEDEC at
http://www.jedec.org.

A JEDEC code takes the following form:
• A sequence of zero or more bytes, all of the value 0x7F.
• A following 8-bit number, that is not 0x7F, and where bit[7] is an odd parity bit.

For example, ARM Limited is assigned the code 0x7F 0x7F 0x7F 0x7F 0x3B.

The encoding used in the Peripheral Identification Registers is as follows:

• The continuation code is the number of times 0x7F appears before the final number. for
example, for ARM Limited this is 0x4.

• The identification code is bits[6:0] of the final number. For example, for ARM Limited this
is 0x3B.

Part number (PART_1, PART_0)

This is selected by the designer of the component.

ArchRev In GICv3, this field is ArchRev, see GICD_PIDR2, Peripheral ID2 Register on page 8-172.

Customer Modified (CMOD) Where the component is reusable IP, this value indicates if the customer has
modified the behavior of the component. In most cases this field is zero.

RevAnd (REVAND) The RevAnd field is an incremental value starting at 0x0 for the first design of a component.
This only increases by 1 for both major and minor revisions, and is simply used as a look-up to
establish the exact major and minor revision.

PIDR2 0xFFE8 [7:4] ARCHREV IMP DEF • 0x1. GICv1.
• 0x2. GICv2.
• 0x3. GICv3.
• 0x4. GICv4.
• All other values are reserved.

[3] JEDEC 0x1 JEP code

[2:0] DES_1 0x3 JEP106 identification code, bits[6:4]

PIDR1 0xFFE4 [7:4] DES_0 0xB JEP106 identification code, bits[3:0]

[3:0] PART_1 0x4 Part number, bits[11:8]

PIDR0 0xFFE0 [7:0] PART_0 0x92 Part number, bits[7:0]

Table 8-20 Peripheral Identification Registers (continued)

Name Offset Bits Field Value Description
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-175
ID072617 Non-Confidential

8 Programmers’ Model
8.1 About the programmers’ model
4KB Count (SIZE) This is a 4-bit value that indicates the total contiguous size of the memory block used by this
component in powers of 2 from the standard 4KB. If a component only requires a single 4KB then
this must read as log to the base of 2 of the number of 4KB blocks.

8.1.14 CPU interface register reset domain

All registers in the CPU interface logic belong to the Warm reset domain of the PE. This applies to both System
registers and memory-mapped registers. For more information about reset domains, see the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile.
8-176 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.2 AArch64 System register descriptions
8.2 AArch64 System register descriptions
This section describes each of the physical AArch64 GIC System registers in register name order. The ICC prefix
indicates a GIC CPU interface System register. Each AArch64 System register description contains a reference to
the AArch32 register that provides the same functionality.

Unless otherwise stated, the bit assignments for the GIC System registers are the same as those for the equivalent
GICC_* and GICV_* memory-mapped registers.

The ICC prefix is used by the System register access mechanism to select the physical or virtual interface System
registers according to the setting of HCR_EL2. The equivalent memory-mapped physical registers are described in
The GIC CPU interface register descriptions on page 8-574.The equivalent virtual interface memory-mapped
registers are described in The GIC virtual CPU interface register descriptions on page 8-614.

Table 8-21 shows the encodings for the AArch64 System registers.

Table 8-21 Encodings for the AArch64 System registers

Register Width (bits)
Access instruction encoding

Notes
Op0 Op1 CRn CRm Op2

ICC_PMR_EL1 32 3 0 4 6 0 RW

ICC_IAR0_EL1 32 12 8 0 RO

ICC_EOIR0_EL1 32 1 WO

ICC_HPPIR0_EL1 32 2 RO

ICC_BPR0_EL1 32 3 RW

ICC_AP0R<n>_EL1 32 4-7 RW, <n> = Op2-4

ICC_AP1R<n>_EL1 32 9 0-3 RW, <n> = Op2

ICC_DIR_EL1 32 11 1 WO

ICC_RPR_EL1 32 3 RO

ICC_SGI1R_EL1 64 5 WO

ICC_ASGI1R_EL1 64 6 WO

ICC_SGI0R_EL1 64 7 WO

ICC_IAR1_EL1 32 12 0 RO

ICC_EOIR1_EL1 32 1 WO

ICC_HPPIR1_EL1 32 2 RO

ICC_BPR1_EL1 32 3 RW

ICC_CTLR_EL1 32 4 RW

ICC_SRE_EL1 32 5 RW

ICC_IGRPEN0_EL1 32 6 RW

ICC_IGRPEN1_EL1 32 7 RW

ICC_SRE_EL2 32 3 4 12 9 5 RW
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-177
ID072617 Non-Confidential

8 Programmers’ Model
8.2 AArch64 System register descriptions
The following access encodings are IMPLEMENTATION DEFINED.

ICC_CTLR_EL3 32 3 6 12 12 4 RW

ICC_SRE_EL3 32 5 RW

ICC_IGRPEN1_EL3 32 7 RW

op0 op1 CRn CRm op2

11 000 1100 1101 000

Table 8-21 Encodings for the AArch64 System registers (continued)

Register Width (bits)
Access instruction encoding

Notes
Op0 Op1 CRn CRm Op2
8-178 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.2 AArch64 System register descriptions
8.2.1 ICC_AP0R<n>_EL1, Interrupt Controller Active Priorities Group 0 Registers, n = 0 - 3

The ICC_AP0R<n>_EL1 characteristics are:

Purpose

Provides information about Group 0 active priorities.

Configurations

AArch64 System register ICC_AP0R<n>_EL1 is architecturally mapped to AArch32 System
register ICC_AP0R<n>.

Attributes

ICC_AP0R<n>_EL1 is a 32-bit register.

Field descriptions

The ICC_AP0R<n>_EL1 bit assignments are:

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

When this register has an architecturally-defined reset value, this field resets to 0.

The contents of these registers are IMPLEMENTATION DEFINED with the one architectural requirement that the value
0x00000000 is consistent with no interrupts being active.

Accessing the ICC_AP0R<n>_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax is encoded with the following settings in the instruction encoding:

When HCR_EL2.FMO is set to 1, execution of this encoding at Non-secure EL1 results in an access to
ICV_AP0R<n>_EL1.

IMPLEMENTATION DEFINED

31 0

<systemreg> op0 op1 CRn CRm op2

ICC_AP0R<n>_EL1 11 000 1100 1000 1:n<1:0>
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-179
ID072617 Non-Confidential

8 Programmers’ Model
8.2 AArch64 System register descriptions
Accessibility

The register is accessible in software as follows:

The ICC_AP0R<n>_EL1 registers are only accessible at Non-secure EL1 when HCR_EL2.FMO is set to 0.

Note
 When HCR_EL2.FMO is set to 1, at Non-secure EL1, the instruction encoding to access ICC_AP0R<n>_EL1
results in an access to ICV_AP0R<n>_EL1.

Writing to these registers with any value other than the last read value of the register (or 0x00000000 when there are
no Group 0 active priorities) might result in UNPREDICTABLE behavior of the interrupt prioritization system, causing:

• Interrupts that should preempt execution to not preempt execution.

• Interrupts that should not preempt execution to preempt execution.

ICC_AP0R1_EL1 is only implemented in implementations that support 6 or more bits of priority.
ICC_AP0R2_EL1 and ICC_AP0R3_EL1 are only implemented in implementations that support 7 or more bits of
priority. Unimplemented registers are UNDEFINED.

Note
 The number of bits of preemption is indicated by ICH_VTR_EL2.PREbits.

Writing to the active priority registers in any order other than the following order will result in UNPREDICTABLE
behavior:

• ICC_AP0R<n>_EL1.

• Secure ICC_AP1R<n>_EL1.

• Non-secure ICC_AP1R<n>_EL1.

Traps and Enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception
prioritization for exceptions taken to AArch64) in the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A
architecture profile. Subject to the prioritization rules:

• In both Security states, and not dependent on other bits:

— If ICC_SRE_EL1.SRE==0, accesses to this register from EL1 are trapped to EL1.

— If ICC_SRE_EL2.SRE==0, accesses to this register from EL2 are trapped to EL2.

— If ICC_SRE_EL3.SRE==0, accesses to this register from EL3 are trapped to EL3.

• When SCR_EL3.NS == 1:

— If ICH_HCR_EL2.TALL0==1, Non-secure accesses to this register from EL1 are trapped to EL2.

Control Accessibility

FMO IMO NS EL0 EL1 EL2 EL3

x x 0 - RW n/a RW

x x 1 - n/a RW RW

0 x 1 - RW RW RW

1 x 1 - ICV_AP0R<n>_EL1 RW RW
8-180 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.2 AArch64 System register descriptions
• When EL3 is implemented and is using AArch64 and SCR_EL3.NS == 0:

— If SCR_EL3.FIQ==1, Secure accesses to this register from EL1 are trapped to EL3.

• When EL3 is implemented and is using AArch64:

— If SCR_EL3.FIQ==1, accesses to this register from EL2 are trapped to EL3.

• When EL3 is implemented and is using AArch64 and SCR_EL3.NS == 1:

— If SCR_EL3.FIQ==1, and HCR_EL2.FMO==0, Non-secure accesses to this register from EL1 are
trapped to EL3.
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-181
ID072617 Non-Confidential

8 Programmers’ Model
8.2 AArch64 System register descriptions
8.2.2 ICC_AP1R<n>_EL1, Interrupt Controller Active Priorities Group 1 Registers, n = 0 - 3

The ICC_AP1R<n>_EL1 characteristics are:

Purpose

Provides information about Group 1 active priorities.

Configurations

AArch64 System register ICC_AP1R<n>_EL1(S) is architecturally mapped to AArch32 System
register ICC_AP1R<n> (S).

AArch64 System register ICC_AP1R<n>_EL1(NS) is architecturally mapped to AArch32 System
register ICC_AP1R<n> (NS).

Attributes

ICC_AP1R<n>_EL1 is a 32-bit register.

Field descriptions

The ICC_AP1R<n>_EL1 bit assignments are:

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

When this register has an architecturally-defined reset value, this field resets to 0.

The contents of these registers are IMPLEMENTATION DEFINED with the one architectural requirement that the value
0x00000000 is consistent with no interrupts being active.

Accessing the ICC_AP1R<n>_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax is encoded with the following settings in the instruction encoding:

When HCR_EL2.IMO is set to 1, execution of this encoding at Non-secure EL1 results in an access to
ICV_AP1R<n>_EL1.

IMPLEMENTATION DEFINED

31 0

<systemreg> op0 op1 CRn CRm op2

ICC_AP1R<n>_EL1 11 000 1100 1001 0:n<1:0>
8-182 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.2 AArch64 System register descriptions
Accessibility

The register is accessible in software as follows:

The ICC_AP1R<n>_EL1 registers are only accessible at Non-secure EL1 when HCR_EL2.IMO is set to 0.

Note
 When HCR_EL2.IMO is set to 1, at Non-secure EL1, the instruction encoding to access ICC_AP1R<n>_EL1
results in an access to ICV_AP1R<n>_EL1.

Writing to these registers with any value other than the last read value of the register (or 0x00000000 when there are
no Group 1 active priorities) might result in UNPREDICTABLE behavior of the interrupt prioritization system, causing:

• Interrupts that should preempt execution to not preempt execution.

• Interrupts that should not preempt execution to preempt execution.

ICC_AP1R1_EL1 is only implemented in implementations that support 6 or more bits of priority.
ICC_AP1R2_EL1 and ICC_AP1R3_EL1 are only implemented in implementations that support 7 or more bits of
priority. Unimplemented registers are UNDEFINED.

Note
 The number of bits of preemption is indicated by ICH_VTR_EL2.PREbits.

Writing to the active priority registers in any order other than the following order will result in UNPREDICTABLE
behavior:

• ICC_AP0R<n>_EL1.

• Secure ICC_AP1R<n>_EL1.

• Non-secure ICC_AP1R<n>_EL1.

Traps and Enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception
prioritization for exceptions taken to AArch64) in the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A
architecture profile. Subject to the prioritization rules:

• In both Security states, and not dependent on other bits:

— If ICC_SRE_EL1.SRE==0, accesses to this register from EL1 are trapped to EL1.

— If ICC_SRE_EL2.SRE==0, accesses to this register from EL2 are trapped to EL2.

— If ICC_SRE_EL3.SRE==0, accesses to this register from EL3 are trapped to EL3.

• When SCR_EL3.NS == 1:

— If ICH_HCR_EL2.TALL1==1, Non-secure accesses to this register from EL1 are trapped to EL2.

Control Accessibility
Instance

FMO IMO NS EL0 EL1 EL2 EL3

x x 0 - RW n/a RW ICC_AP1R<n>_EL1_s

x x 1 - n/a RW RW ICC_AP1R<n>_EL1_ns

x 0 1 - RW RW RW ICC_AP1R<n>_EL1_ns

x 1 1 - ICV_AP1R<n>_EL1 RW RW ICC_AP1R<n>_EL1_ns
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-183
ID072617 Non-Confidential

8 Programmers’ Model
8.2 AArch64 System register descriptions
• When EL3 is implemented and is using AArch64 and SCR_EL3.NS == 0:

— If SCR_EL3.IRQ==1, Secure accesses to this register from EL1 are trapped to EL3.

• When EL3 is implemented and is using AArch64:

— If SCR_EL3.IRQ==1, accesses to this register from EL2 are trapped to EL3.

• When EL3 is implemented and is using AArch64 and SCR_EL3.NS == 1:

— If SCR_EL3.IRQ==1, and HCR_EL2.IMO==0, Non-secure accesses to this register from EL1 are
trapped to EL3.
8-184 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.2 AArch64 System register descriptions
8.2.3 ICC_ASGI1R_EL1, Interrupt Controller Alias Software Generated Interrupt Group 1 Register

The ICC_ASGI1R_EL1 characteristics are:

Purpose

Generates Group 1 SGIs for the Security state that is not the current Security state.

Configurations

AArch64 System register ICC_ASGI1R_EL1 performs the same function as AArch32 System
register ICC_ASGI1R.

Under certain conditions a write to ICC_ASGI1R_EL1 can generate Group 0 interrupts, see
Table 8-14 on page 8-169.

Attributes

ICC_ASGI1R_EL1 is a 64-bit register.

Field descriptions

The ICC_ASGI1R_EL1 bit assignments are:

Bits [63:56]

Reserved, RES0.

Aff3, bits [55:48]

The affinity 3 value of the affinity path of the cluster for which SGI interrupts will be generated.

If the IRM bit is 1, this field is RES0.

RS, bits [47:44]

RangeSelector

Controls which group of 16 values is represented by the TargetList field.

TargetList[n] represents aff0 value ((RS * 16) + n).

When ICC_CTLR_EL1.RSS==0, RS is RES0.

When ICC_CTLR_EL1.RSS==1 and GICD_TYPER.RSS==0, writing this register with RS != 0 is
a CONSTRAINED UNPREDICTABLE choice of :

• The write is ignored.

• The RS field is treated as 0.

Bits [43:41]

Reserved, RES0.

IRM, bit [40]

Interrupt Routing Mode. Determines how the generated interrupts are distributed to PEs. Possible
values are:

0 Interrupts routed to the PEs specified by Aff3.Aff2.Aff1.<target list>.

1 Interrupts routed to all PEs in the system, excluding "self".

RES0

63 56

Aff3

55 48

RS

47 44

RES0

43 41 40

Aff2

39 32

RES0

31 28

INTID

27 24

Aff1

23 16

TargetList

15 0

IRM
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-185
ID072617 Non-Confidential

8 Programmers’ Model
8.2 AArch64 System register descriptions
Aff2, bits [39:32]

The affinity 2 value of the affinity path of the cluster for which SGI interrupts will be generated.

If the IRM bit is 1, this field is RES0.

Bits [31:28]

Reserved, RES0.

INTID, bits [27:24]

The INTID of the SGI.

Aff1, bits [23:16]

The affinity 1 value of the affinity path of the cluster for which SGI interrupts will be generated.

If the IRM bit is 1, this field is RES0.

TargetList, bits [15:0]

Target List. The set of PEs for which SGI interrupts will be generated. Each bit corresponds to the
PE within a cluster with an Affinity 0 value equal to the bit number.

If a bit is 1 and the bit does not correspond to a valid target PE, the bit must be ignored by the
Distributor. It is IMPLEMENTATION DEFINED whether, in such cases, a Distributor can signal a system
error.

Note
 This restricts a system to sending targeted SGIs to PEs with an affinity 0 number that is less than 16.

If SRE is set only for Secure EL3, software executing at EL3 might use the System register interface
to generate SGIs. Therefore, the Distributor must always be able to receive and acknowledge
Generate SGI packets received from CPU interface regardless of the ARE settings for a Security
state. However, the Distributor might discard such packets.

If the IRM bit is 1, this field is RES0.

Accessing the ICC_ASGI1R_EL1

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax is encoded with the following settings in the instruction encoding:

Accessibility

The register is accessible in software as follows:

<systemreg> op0 op1 CRn CRm op2

ICC_ASGI1R_EL1 11 000 1100 1011 110

Control Accessibility

NS EL0 EL1 EL2 EL3

0 - WO n/a WO

1 - WO WO WO

1 - n/a WO WO
8-186 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.2 AArch64 System register descriptions
This register allows software executing in a Secure state to generate Non-secure Group 1 SGIs. It will also allow
software executing in a Non-secure state to generate Secure Group 1 SGIs, if permitted by the settings of
GICR_NSACR in the Redistributor corresponding to the target PE.

When GICD_CTLR.DS==0, Non-secure writes do not generate an interrupt for a target PE if not permitted by the
GICR_NSACR register associated with the target PE. For more information see Use of control registers for SGI
forwarding on page 8-169.

Note
 Accesses at EL3 are treated as Secure regardless of the value of SCR_EL3.NS.

Traps and Enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception
prioritization for exceptions taken to AArch64) in the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A
architecture profile. Subject to the prioritization rules:

• In both Security states, and not dependent on other bits:

— If ICC_SRE_EL1.SRE==0, write accesses to this register from EL1 are trapped to EL1.

— If ICC_SRE_EL2.SRE==0, write accesses to this register from EL2 are trapped to EL2.

— If ICC_SRE_EL3.SRE==0, write accesses to this register from EL3 are trapped to EL3.

• When EL2 is implemented and is using AArch64 and SCR_EL3.NS == 1:

— If HCR_EL2.FMO==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

— If HCR_EL2.IMO==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

• When SCR_EL3.NS == 1:

— If ICH_HCR_EL2.TC==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

• When EL3 is implemented and is using AArch64 and SCR_EL3.NS == 0:

— If SCR_EL3.FIQ==1, and SCR_EL3.IRQ==1, Secure write accesses to this register from EL1 are
trapped to EL3.

• When EL3 is implemented and is using AArch64:

— If SCR_EL3.FIQ==1, and SCR_EL3.IRQ==1, write accesses to this register from EL2 are trapped to
EL3.

• When EL3 is implemented and is using AArch64 and SCR_EL3.NS == 1:

— If SCR_EL3.FIQ==1, SCR_EL3.IRQ==1, HCR_EL2.IMO==0, and HCR_EL2.FMO==0,
Non-secure write accesses to this register from EL1 are trapped to EL3.
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-187
ID072617 Non-Confidential

8 Programmers’ Model
8.2 AArch64 System register descriptions
8.2.4 ICC_BPR0_EL1, Interrupt Controller Binary Point Register 0

The ICC_BPR0_EL1 characteristics are:

Purpose

Defines the point at which the priority value fields split into two parts, the group priority field and
the subpriority field. The group priority field determines Group 0 interrupt preemption.

Configurations

AArch64 System register ICC_BPR0_EL1 is architecturally mapped to AArch32 System register
ICC_BPR0.

Virtual accesses to this register update ICH_VMCR_EL2.VBPR0.

Attributes

ICC_BPR0_EL1 is a 32-bit register.

Field descriptions

The ICC_BPR0_EL1 bit assignments are:

Bits [31:3]

Reserved, RES0.

BinaryPoint, bits [2:0]

The value of this field controls how the 8-bit interrupt priority field is split into a group priority field,
that determines interrupt preemption, and a subpriority field. This is done as follows:

Accessing the ICC_BPR0_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

RES0

31 3 2 0

BinaryPoint

Binary point value Group priority field Subpriority field Field with binary point

0 [7:1] [0] ggggggg.s

1 [7:2] [1:0] gggggg.ss

2 [7:3] [2:0] ggggg.sss

3 [7:4] [3:0] gggg.ssss

4 [7:5] [4:0] ggg.sssss

5 [7:6] [5:0] gg.ssssss

6 [7] [6:0] g.sssssss

7 No preemption [7:0] .ssssssss
8-188 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.2 AArch64 System register descriptions
MSR <systemreg>, <Xt>

This syntax is encoded with the following settings in the instruction encoding:

When HCR_EL2.FMO is set to 1, execution of this encoding at Non-secure EL1 results in an access to
ICV_BPR0_EL1.

Accessibility

The register is accessible in software as follows:

ICC_BPR0_EL1 is only accessible at Non-secure EL1 when HCR_EL2.FMO is set to 0.

Note
 When HCR_EL2.FMO is set to 1, at Non-secure EL1, the instruction encoding to access ICC_BPR0_EL1 results
in an access to ICV_BPR0_EL1.

The minimum binary point value is derived from the number of implemented priority bits. The number of priority
bits is IMPLEMENTATION DEFINED, and reported by ICC_CTLR_EL1.PRIbits and ICC_CTLR_EL3.PRIbits.

An attempt to program the binary point field to a value less than the minimum value sets the field to the minimum
value. On a reset, the binary point field is UNKNOWN.

Traps and Enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception
prioritization for exceptions taken to AArch64) in the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A
architecture profile. Subject to the prioritization rules:

• In both Security states, and not dependent on other bits:

— If ICC_SRE_EL1.SRE==0, accesses to this register from EL1 are trapped to EL1.

— If ICC_SRE_EL2.SRE==0, accesses to this register from EL2 are trapped to EL2.

— If ICC_SRE_EL3.SRE==0, accesses to this register from EL3 are trapped to EL3.

• When SCR_EL3.NS == 1:

— If ICH_HCR_EL2.TALL0==1, Non-secure accesses to this register from EL1 are trapped to EL2.

• When EL3 is implemented and is using AArch64 and SCR_EL3.NS == 0:

— If SCR_EL3.FIQ==1, Secure accesses to this register from EL1 are trapped to EL3.

<systemreg> op0 op1 CRn CRm op2

ICC_BPR0_EL1 11 000 1100 1000 011

Control Accessibility

FMO IMO NS EL0 EL1 EL2 EL3

x x 0 - RW n/a RW

x x 1 - n/a RW RW

0 x 1 - RW RW RW

1 x 1 - ICV_BPR0_EL1 RW RW
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-189
ID072617 Non-Confidential

8 Programmers’ Model
8.2 AArch64 System register descriptions
• When EL3 is implemented and is using AArch64:

— If SCR_EL3.FIQ==1, accesses to this register from EL2 are trapped to EL3.

• When EL3 is implemented and is using AArch64 and SCR_EL3.NS == 1:

— If SCR_EL3.FIQ==1, and HCR_EL2.FMO==0, Non-secure accesses to this register from EL1 are
trapped to EL3.
8-190 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.2 AArch64 System register descriptions
8.2.5 ICC_BPR1_EL1, Interrupt Controller Binary Point Register 1

The ICC_BPR1_EL1 characteristics are:

Purpose

Defines the point at which the priority value fields split into two parts, the group priority field and
the subpriority field. The group priority field determines Group 1 interrupt preemption.

Configurations

AArch64 System register ICC_BPR1_EL1(S) is architecturally mapped to AArch32 System
register ICC_BPR1 (S).

AArch64 System register ICC_BPR1_EL1(NS) is architecturally mapped to AArch32 System
register ICC_BPR1 (NS).

Virtual accesses to this register update ICH_VMCR_EL2.VBPR1.

Attributes

ICC_BPR1_EL1 is a 32-bit register.

Field descriptions

The ICC_BPR1_EL1 bit assignments are:

Bits [31:3]

Reserved, RES0.

BinaryPoint, bits [2:0]

If the GIC is configured to use separate binary point fields for Group 0 and Group 1 interrupts, the
value of this field controls how the 8-bit interrupt priority field is split into a group priority field,
that determines interrupt preemption, and a subpriority field. For more information about priorities,
see Priority grouping on page 4-67.

The minimum value of the Non-secure copy of this register is the minimum value of
ICC_BPR0_EL1 + 1. The minimum value of the Secure copy of this register is the minimum value
of ICC_BPR0_EL1.

If EL3 is implemented and ICC_CTLR_EL3.CBPR_EL1S is 1:

• Writing to this register at Secure EL1 modifies ICC_BPR0_EL1.

• Reading this register at Secure EL1 returns the value of ICC_BPR0_EL1.

RES0

31 3 2 0

BinaryPoint
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-191
ID072617 Non-Confidential

8 Programmers’ Model
8.2 AArch64 System register descriptions
If EL3 is implemented and ICC_CTLR_EL3.CBPR_EL1NS is 1, Non-secure accesses to this
register at EL1 or EL2 behave as follows, depending on the values of HCR_EL2.IMO and
SCR_EL3.IRQ:

If EL3 is not implemented and ICC_CTLR_EL1.CBPR is 1, Non-secure accesses to this register at
EL1 or EL2 behave as follows, depending on the values of HCR_EL2.IMO:

Accessing the ICC_BPR1_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax is encoded with the following settings in the instruction encoding:

When HCR_EL2.IMO is set to 1, execution of this encoding at Non-secure EL1 results in an access to
ICV_BPR1_EL1.

Accessibility

The register is accessible in software as follows:

HCR_EL2.IMO SCR_EL3.IRQ Behavior

0 0 Non-secure EL1 and EL2 reads return ICC_BPR0_EL1 + 1 saturated to 0b111. Non-secure EL1
and EL2 writes are ignored.

0 1 Non-secure EL1 and EL2 accesses trap to EL3.

1 0 Non-secure EL1 accesses affect virtual interrupts. Non-secure EL2 reads return
ICC_BPR0_EL1 + 1 saturated to 0b111. Non-secure EL2 writes are ignored.

1 1 Non-secure EL1 accesses affect virtual interrupts. Non-secure EL2 accesses trap to EL3.

HCR_EL2.IMO Behavior

0 Non-secure EL1 and EL2 reads return ICC_BPR0_EL1 + 1 saturated to 0b111. Non-secure EL1 and EL2 writes
are ignored.

1 Non-secure EL1 accesses affect virtual interrupts. Non-secure EL2 reads return ICC_BPR0_EL1 + 1 saturated
to 0b111. Non-secure EL2 writes are ignored.

<systemreg> op0 op1 CRn CRm op2

ICC_BPR1_EL1 11 000 1100 1100 011

Control Accessibility
Instance

FMO IMO NS EL0 EL1 EL2 EL3

x x 0 - RW n/a RW ICC_BPR1_EL1_s
8-192 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.2 AArch64 System register descriptions
ICC_BPR1_EL1 is only accessible at Non-secure EL1 when HCR_EL2.IMO is set to 0.

Note
 When HCR_EL2.IMO is set to 1, at Non-secure EL1, the instruction encoding to access ICC_BPR1_EL1 results in
an access to ICV_BPR1_EL1.

On a reset, the binary point field is UNKNOWN.

An attempt to program the binary point field to a value less than the minimum value sets the field to the minimum
value.

Traps and Enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception
prioritization for exceptions taken to AArch64) in the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A
architecture profile. Subject to the prioritization rules:

• In both Security states, and not dependent on other bits:

— If ICC_SRE_EL1.SRE==0, accesses to this register from EL1 generate an Undefined exception that
is taken to EL1.

— If ICC_SRE_EL2.SRE==0, accesses to this register from EL2 are trapped to EL2.

— If ICC_SRE_EL3.SRE==0, accesses to this register from EL3 are trapped to EL3.

• When SCR_EL3.NS == 1:

— If ICH_HCR_EL2.TALL1==1, Non-secure accesses to this register from EL1 are trapped to EL2.

• When EL3 is implemented and is using AArch64 and SCR_EL3.NS == 0:

— If SCR_EL3.IRQ==1, Secure accesses to this register from EL1 are trapped to EL3.

• When EL3 is implemented and is using AArch64:

— If SCR_EL3.IRQ==1, accesses to this register from EL2 are trapped to EL3.

• When EL3 is implemented and is using AArch64 and SCR_EL3.NS == 1:

— If SCR_EL3.IRQ==1, and HCR_EL2.IMO==0, Non-secure accesses to this register from EL1 are
trapped to EL3.

x x 1 - n/a RW RW ICC_BPR1_EL1_ns

x 0 1 - RW RW RW ICC_BPR1_EL1_ns

x 1 1 - ICV_BPR1_EL1 RW RW ICC_BPR1_EL1_ns

Control Accessibility
Instance

FMO IMO NS EL0 EL1 EL2 EL3
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-193
ID072617 Non-Confidential

8 Programmers’ Model
8.2 AArch64 System register descriptions
8.2.6 ICC_CTLR_EL1, Interrupt Controller Control Register (EL1)

The ICC_CTLR_EL1 characteristics are:

Purpose

Controls aspects of the behavior of the GIC CPU interface and provides information about the
features implemented.

Configurations

AArch64 System register ICC_CTLR_EL1(S) is architecturally mapped to AArch32 System
register ICC_CTLR (S).

AArch64 System register ICC_CTLR_EL1(NS) is architecturally mapped to AArch32 System
register ICC_CTLR (NS).

Attributes

ICC_CTLR_EL1 is a 32-bit register.

Field descriptions

The ICC_CTLR_EL1 bit assignments are:

Bits [31:19]

Reserved, RES0.

RSS, bit [18]

Range Selector Support. Possible values are:

0 Targeted SGIs with affinity level 0 values of 0 - 15 are supported.

1 Targeted SGIs with affinity level 0 values of 0 - 255 are supported.

This bit is read-only.

Bits [17:16]

Reserved, RES0.

A3V, bit [15]

Affinity 3 Valid. Read-only and writes are ignored. Possible values are:

0 The CPU interface logic only supports zero values of Affinity 3 in SGI generation
System registers.

1 The CPU interface logic supports non-zero values of Affinity 3 in SGI generation
System registers.

If EL3 is implemented, this bit is an alias of ICC_CTLR_EL3.A3V.

RES0

31 19 18 17 16 15 14

IDbits

13 11

PRIbits

10 8 7 6

RES0

5 2 1 0

RSS
RES0

CBPR
EOImode

PMHE
RES0
SEIS
A3V
8-194 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.2 AArch64 System register descriptions
SEIS, bit [14]

SEI Support. Read-only and writes are ignored. Indicates whether the CPU interface supports local
generation of SEIs:

0 The CPU interface logic does not support local generation of SEIs.

1 The CPU interface logic supports local generation of SEIs.

If EL3 is implemented, this bit is an alias of ICC_CTLR_EL3.SEIS.

IDbits, bits [13:11]

Identifier bits. Read-only and writes are ignored. The number of physical interrupt identifier bits
supported:

000 16 bits.

001 24 bits.

All other values are reserved.

If EL3 is implemented, this field is an alias of ICC_CTLR_EL3.IDbits.

PRIbits, bits [10:8]

Priority bits. Read-only and writes are ignored. The number of priority bits implemented, minus
one.

An implementation that supports two Security states must implement at least 32 levels of physical
priority (5 priority bits).

An implementation that supports only a single Security state must implement at least 16 levels of
physical priority (4 priority bits).

Note
 This field always returns the number of priority bits implemented, regardless of the Security state

of the access or the value of GICD_CTLR.DS.

For physical accesses, this field determines the minimum value of ICC_BPR0_EL1.

If EL3 is implemented, physical accesses return the value from ICC_CTLR_EL3.PRIbits.

If EL3 is not implemented, physical accesses return the value from this field.

Bit [7]

Reserved, RES0.

PMHE, bit [6]

Priority Mask Hint Enable. Controls whether the priority mask register is used as a hint for interrupt
distribution:

0 Disables use of ICC_PMR_EL1 as a hint for interrupt distribution.

1 Enables use of ICC_PMR_EL1 as a hint for interrupt distribution.

If EL3 is implemented, this bit is an alias of ICC_CTLR_EL3.PMHE. Whether this bit can be
written as part of an access to this register depends on the value of GICD_CTLR.DS:

• If GICD_CTLR.DS == 0, this bit is read-only.

• If GICD_CTLR.DS == 1, this bit is read/write.

If EL3 is not implemented, it is IMPLEMENTATION DEFINED whether this bit is read-only or
read-write:

• If this bit is read-only, an implementation can choose to make this field RAZ/WI or RAO/WI.

• If this bit is read/write, it resets to zero.

Bits [5:2]

Reserved, RES0.
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-195
ID072617 Non-Confidential

8 Programmers’ Model
8.2 AArch64 System register descriptions
EOImode, bit [1]

EOI mode for the current Security state. Controls whether a write to an End of Interrupt register also
deactivates the interrupt:

0 ICC_EOIR0_EL1 and ICC_EOIR1_EL1 provide both priority drop and interrupt
deactivation functionality. Accesses to ICC_DIR_EL1 are UNPREDICTABLE.

1 ICC_EOIR0_EL1 and ICC_EOIR1_EL1 provide priority drop functionality only.
ICC_DIR_EL1 provides interrupt deactivation functionality.

The Secure ICC_CTLR_EL1.EOIMode is an alias of ICC_CTLR_EL3.EOImode_EL1S.

The Non-secure ICC_CTLR_EL1.EOIMode is an alias of ICC_CTLR_EL3.EOImode_EL1NS

This field resets to a value that is architecturally UNKNOWN.

CBPR, bit [0]

Common Binary Point Register. Controls whether the same register is used for interrupt preemption
of both Group 0 and Group 1 interrupts:

0 ICC_BPR0_EL1 determines the preemption group for Group 0 interrupts only.
ICC_BPR1_EL1 determines the preemption group for Group 1 interrupts.

1 ICC_BPR0_EL1 determines the preemption group for both Group 0 and Group 1
interrupts.

If EL3 is implemented:

• This bit is an alias of ICC_CTLR_EL3.CBPR_EL1{S,NS} where S or NS corresponds to the
current Security state.

• If GICD_CTLR.DS == 0, this bit is read-only.

• If GICD_CTLR.DS == 1, this bit is read/write.

If EL3 is not implemented, this bit is read/write.

This field resets to a value that is architecturally UNKNOWN.

Accessing the ICC_CTLR_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax is encoded with the following settings in the instruction encoding:

When HCR_EL2.{FMO, IMO} != {0, 0}, execution of this encoding at Non-secure EL1 results in an access to
ICV_CTLR_EL1.

<systemreg> op0 op1 CRn CRm op2

ICC_CTLR_EL1 11 000 1100 1100 100
8-196 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.2 AArch64 System register descriptions
Accessibility

The register is accessible in software as follows:

ICC_CTLR_EL1 is only accessible at Non-secure EL1 when HCR_EL2.{FMO, IMO} == {0, 0}.

Note
 When HCR_EL2.{FMO, IMO} != {0, 0}, at Non-secure EL1, the instruction encoding to access ICC_CTLR_EL1
results in an access to ICV_CTLR_EL1.

Traps and Enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception
prioritization for exceptions taken to AArch64) in the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A
architecture profile. Subject to the prioritization rules:

• In both Security states, and not dependent on other bits:

— If ICC_SRE_EL1.SRE==0, accesses to this register from EL1 are trapped to EL1.

— If ICC_SRE_EL2.SRE==0, accesses to this register from EL2 are trapped to EL2.

— If ICC_SRE_EL3.SRE==0, accesses to this register from EL3 are trapped to EL3.

• When SCR_EL3.NS == 1:

— If ICH_HCR_EL2.TC==1, Non-secure accesses to this register from EL1 are trapped to EL2.

• When EL3 is implemented and is using AArch64 and SCR_EL3.NS == 0:

— If SCR_EL3.FIQ==1, and SCR_EL3.IRQ==1, Secure accesses to this register from EL1 are trapped
to EL3.

• When EL3 is implemented and is using AArch64:

— If SCR_EL3.FIQ==1, and SCR_EL3.IRQ==1, accesses to this register from EL2 are trapped to EL3.

• When EL3 is implemented and is using AArch64 and SCR_EL3.NS == 1:

— If SCR_EL3.FIQ==1, SCR_EL3.IRQ==1, HCR_EL2.IMO==0, and HCR_EL2.FMO==0,
Non-secure accesses to this register from EL1 are trapped to EL3.

Control Accessibility
Instance

FMO IMO NS EL0 EL1 EL2 EL3

x x 1 - n/a RW RW ICC_CTLR_EL1_ns

x 1 1 - ICV_CTLR_EL1 RW RW ICC_CTLR_EL1_ns

1 x 1 - ICV_CTLR_EL1 RW RW ICC_CTLR_EL1_ns

0 0 1 - RW RW RW ICC_CTLR_EL1_ns

x x 0 - RW n/a RW ICC_CTLR_EL1_s
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-197
ID072617 Non-Confidential

8 Programmers’ Model
8.2 AArch64 System register descriptions
8.2.7 ICC_CTLR_EL3, Interrupt Controller Control Register (EL3)

The ICC_CTLR_EL3 characteristics are:

Purpose

Controls aspects of the behavior of the GIC CPU interface and provides information about the
features implemented.

Configurations

AArch64 System register ICC_CTLR_EL3 can be mapped to AArch32 System register
ICC_MCTLR, but this is not architecturally mandated.

Attributes

ICC_CTLR_EL3 is a 32-bit register.

Field descriptions

The ICC_CTLR_EL3 bit assignments are:

Bits [31:19]

Reserved, RES0.

RSS, bit [18]

Range Selector Support. Possible values are:

0 Targeted SGIs with affinity level 0 values of 0 - 15 are supported.

1 Targeted SGIs with affinity level 0 values of 0 - 255 are supported.

This bit is read-only.

nDS, bit [17]

Disable Security not supported. Read-only and writes are ignored. Possible values are:

0 The CPU interface logic supports disabling of security.

1 The CPU interface logic does not support disabling of security, and requires that
security is not disabled.

Bit [16]

Reserved, RES0.

RES0

31 19 18 17 16 15 14

IDbits

13 11

PRIbits

10 8 7 6 5 4 3 2 1 0

RSS
nDS
RES0

CBPR_EL1S
CBPR_EL1NS
EOImode_EL3

EOImode_EL1S
EOImode_EL1NS

RM
PMHE
RES0
SEIS
A3V
8-198 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.2 AArch64 System register descriptions
A3V, bit [15]

Affinity 3 Valid. Read-only and writes are ignored. Possible values are:

0 The CPU interface logic does not support non-zero values of the Aff3 field in SGI
generation System registers.

1 The CPU interface logic supports non-zero values of the Aff3 field in SGI generation
System registers.

If EL3 is present, ICC_CTLR_EL1.AV3 is an alias of ICC_CTLR_EL3.A3V

SEIS, bit [14]

SEI Support. Read-only and writes are ignored. Indicates whether the CPU interface supports
generation of SEIs:

0 The CPU interface logic does not support generation of SEIs.

1 The CPU interface logic supports generation of SEIs.

If EL3 is present, ICC_CTLR_EL1.SEIS is an alias of ICC_CTLR_EL3.SEIS

IDbits, bits [13:11]

Identifier bits. Read-only and writes are ignored. The number of physical interrupt identifier bits
supported:

000 16 bits.

001 24 bits.

All other values are reserved.

If EL3 is present, ICC_CTLR_EL1.IDbits is an alias of ICC_CTLR_EL3.IDbits

PRIbits, bits [10:8]

Priority bits. Read-only and writes are ignored. The number of priority bits implemented, minus
one.

An implementation that supports two Security states must implement at least 32 levels of physical
priority (5 priority bits).

An implementation that supports only a single Security state must implement at least 16 levels of
physical priority (4 priority bits).

Note
 This field always returns the number of priority bits implemented, regardless of the value of

SCR_EL3.NS or the value of GICD_CTLR.DS.

The division between group priority and subpriority is defined in the binary point registers
ICC_BPR0_EL1 and ICC_BPR1_EL1.

This field determines the minimum value of ICC_BPR0_EL1.

Bit [7]

Reserved, RES0.

PMHE, bit [6]

Priority Mask Hint Enable.

0 Disables use of the priority mask register as a hint for interrupt distribution.

1 Enables use of the priority mask register as a hint for interrupt distribution.

Software must write ICC_PMR_EL1 to 0xFF before clearing this field to 0.

• An implementation might choose to make this field RAO/WI if priority-based routing is
always used

• An implementation might choose to make this field RAZ/WI if priority-based routing is
never used
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-199
ID072617 Non-Confidential

8 Programmers’ Model
8.2 AArch64 System register descriptions
If EL3 is present, ICC_CTLR_EL1.PMHE is an alias of ICC_CTLR_EL3.PMHE.

When this register has an architecturally-defined reset value, if this field is implemented as an RW
field, it resets to 0.

RM, bit [5]

Routing Modifier. For legacy operation of EL1 software with GICC_CTLR.FIQen set to 1, this bit
indicates whether interrupts can be acknowledged or observed as the Highest Priority Pending
Interrupt, or whether a special INTID value is returned.

Possible values of this bit are:

0 Secure Group 0 and Non-secure Group 1 interrupts can be acknowledged and observed
as the highest priority interrupt at the Secure Exception level where the interrupt is
taken.

1 When accessed at EL3 in AArch64 state:

• Secure Group 0 interrupts return a special INTID value of 1020. This affects
accesses to ICC_IAR0_EL1 and ICC_HPPIR0_EL1.

• Non-secure Group 1 interrupts return a special INTID value of 1021. This affects
accesses to ICC_IAR1_EL1 and ICC_HPPIR1_EL1.

Note
 The Routing Modifier bit is supported in AArch64 only. In systems without EL3 the behavior is as

if the value is 0.

Software must ensure this bit is 0 when the Secure copy of ICC_SRE_EL1.SRE is 1, otherwise
system behavior is UNPREDICTABLE.

In systems without EL3 or where the Secure copy of ICC_SRE_EL1.SRE is RAO/WI, this bit is
RES0.

If this field is implemented as an RW field, it resets to a value that is architecturally UNKNOWN.

EOImode_EL1NS, bit [4]

EOI mode for interrupts handled at Non-secure EL1 and EL2. Controls whether a write to an End
of Interrupt register also deactivates the interrupt:

0 ICC_EOIR0_EL1 and ICC_EOIR1_EL1 provide both priority drop and interrupt
deactivation functionality. Accesses to ICC_DIR_EL1 are UNPREDICTABLE.

1 ICC_EOIR0_EL1 and ICC_EOIR1_EL1 provide priority drop functionality only.
ICC_DIR_EL1 provides interrupt deactivation functionality.

If EL3 is present, ICC_CTLR_EL1(NS).EOImode is an alias of
ICC_CTLR_EL3.EOImode_EL1NS.

This field resets to a value that is architecturally UNKNOWN.

EOImode_EL1S, bit [3]

EOI mode for interrupts handled at Secure EL1. Controls whether a write to an End of Interrupt
register also deactivates the interrupt:

0 ICC_EOIR0_EL1 and ICC_EOIR1_EL1 provide both priority drop and interrupt
deactivation functionality. Accesses to ICC_DIR_EL1 are UNPREDICTABLE.

1 ICC_EOIR0_EL1 and ICC_EOIR1_EL1 provide priority drop functionality only.
ICC_DIR_EL1 provides interrupt deactivation functionality.

If EL3 is present, ICC_CTLR_EL1(S).EOImode is an alias of ICC_CTLR_EL3.EOImode_EL1S.

This field resets to a value that is architecturally UNKNOWN.
8-200 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.2 AArch64 System register descriptions
EOImode_EL3, bit [2]

EOI mode for interrupts handled at EL3. Controls whether a write to an End of Interrupt register
also deactivates the interrupt:

0 ICC_EOIR0_EL1 and ICC_EOIR1_EL1 provide both priority drop and interrupt
deactivation functionality. Accesses to ICC_DIR_EL1 are UNPREDICTABLE.

1 ICC_EOIR0_EL1 and ICC_EOIR1_EL1 provide priority drop functionality only.
ICC_DIR_EL1 provides interrupt deactivation functionality.

This field resets to a value that is architecturally UNKNOWN.

CBPR_EL1NS, bit [1]

Common Binary Point Register, EL1 Non-secure. Controls whether the same register is used for
interrupt preemption of both Group 0 and Group 1 Non-secure interrupts at EL1 and EL2:

0 ICC_BPR0_EL1 determines the preemption group for Group 0 interrupts only.
ICC_BPR1_EL1 determines the preemption group for Non-secure Group 1 interrupts.

1 ICC_BPR0_EL1 determines the preemption group for Group 0 interrupts and
Non-secure Group 1 interrupts. Non-secure accesses to GICC_BPR and
ICC_BPR1_EL1 access the state of ICC_BPR0_EL1.

If EL3 is present, ICC_CTLR_EL1(NS).CBPR is an alias of ICC_CTLR_EL3.CBPR_EL1NS.

This field resets to a value that is architecturally UNKNOWN.

CBPR_EL1S, bit [0]

Common Binary Point Register, EL1 Secure. Controls whether the same register is used for
interrupt preemption of both Group 0 and Group 1 Secure interrupts at EL1:

0 ICC_BPR0_EL1 determines the preemption group for Group 0 interrupts only.
ICC_BPR1_EL1 determines the preemption group for Secure Group 1 interrupts.

1 ICC_BPR0_EL1 determines the preemption group for Group 0 interrupts and Secure
Group 1 interrupts. Secure EL1 accesses to ICC_BPR1_EL1 access the state of
ICC_BPR0_EL1.

If EL3 is present, ICC_CTLR_EL1(S).CBPR is an alias of ICC_CTLR_EL3.CBPR_EL1S.

This field resets to a value that is architecturally UNKNOWN.

Accessing the ICC_CTLR_EL3

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax is encoded with the following settings in the instruction encoding:

<systemreg> op0 op1 CRn CRm op2

ICC_CTLR_EL3 11 110 1100 1100 100
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-201
ID072617 Non-Confidential

8 Programmers’ Model
8.2 AArch64 System register descriptions
Accessibility

The register is accessible in software as follows:

Traps and Enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception
prioritization for exceptions taken to AArch64) in the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A
architecture profile. Subject to the prioritization rules:

• In both Security states, and not dependent on other bits:

— If ICC_SRE_EL3.SRE==0, accesses to this register from EL3 are trapped to EL3.

Control Accessibility

NS EL0 EL1 EL2 EL3

0 - - n/a RW

1 - - - RW

1 - n/a - RW
8-202 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.2 AArch64 System register descriptions
8.2.8 Interrupt Controller Deactivate Interrupt Register

The ICC_DIR_EL1 characteristics are:

Purpose

When interrupt priority drop is separated from interrupt deactivation, a write to this register
deactivates the specified interrupt.

Configurations

AArch64 System register ICC_DIR_EL1 performs the same function as AArch32 System register
ICC_DIR.

Attributes

ICC_DIR_EL1 is a 32-bit register.

Field descriptions

The ICC_DIR_EL1 bit assignments are:

Bits [31:24]

Reserved, RES0.

INTID, bits [23:0]

The INTID of the interrupt to be deactivated.

This field has either 16 or 24 bits implemented. The number of implemented bits can be found in
ICC_CTLR_EL1.IDbits and ICC_CTLR_EL3.IDbits. If only 16 bits are implemented, bits [23:16]
of this register are RES0.

Accessing the ICC_DIR_EL1

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax is encoded with the following settings in the instruction encoding:

This encoding results in an access to ICV_DIR_EL1 at Non-secure EL1 in the following cases:

• When HCR_EL2.FMO is set to 1.

• When HCR_EL2.IMO is set to 1.

RES0

31 24

INTID

23 0

<systemreg> op0 op1 CRn CRm op2

ICC_DIR_EL1 11 000 1100 1011 001
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-203
ID072617 Non-Confidential

8 Programmers’ Model
8.2 AArch64 System register descriptions
Accessibility

The register is accessible in software as follows:

The ICC_DIR_EL1 register is only accessible at Non-secure EL1 when HCR_EL2.{FMO, IMO} == {0, 0}.

There are two cases when writing to ICC_DIR_EL1 that were UNPREDICTABLE for a corresponding GICv2 write to
GICC_DIR:

• When EOImode == 0 GICv3 implementations must ignore such writes. In systems supporting system error
generation, an implementation might generate an SEI.

• When EOImode == 1 but no EOI has been issued. The interrupt will be de-activated by the Distributor,
however the active priority in the CPU interface for the interrupt will remain set (because no EOI was issued).

Traps and Enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception
prioritization for exceptions taken to AArch64) in the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A
architecture profile. Subject to the prioritization rules:

• In both Security states, and not dependent on other bits:

— If ICC_SRE_EL1.SRE==0, write accesses to this register from EL1 are trapped to EL1.

— If ICC_SRE_EL2.SRE==0, write accesses to this register from EL2 are trapped to EL2.

— If ICC_SRE_EL3.SRE==0, write accesses to this register from EL3 are trapped to EL3.

• When SCR_EL3.NS == 1:

— If ICH_HCR_EL2.TC==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

— If ICH_HCR_EL2.TDIR==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

• When EL3 is implemented and is using AArch64 and SCR_EL3.NS == 0:

— If SCR_EL3.FIQ==1, and SCR_EL3.IRQ==1, Secure write accesses to this register from EL1 are
trapped to EL3.

• When EL3 is implemented and is using AArch64:

— If SCR_EL3.FIQ==1, and SCR_EL3.IRQ==1, write accesses to this register from EL2 are trapped to
EL3.

• When EL3 is implemented and is using AArch64 and SCR_EL3.NS == 1:

— If SCR_EL3.FIQ==1, SCR_EL3.IRQ==1, HCR_EL2.IMO==0, and HCR_EL2.FMO==0,
Non-secure write accesses to this register from EL1 are trapped to EL3.

Control Accessibility

FMO IMO NS EL0 EL1 EL2 EL3

x x 0 - WO n/a WO

x x 1 - n/a WO WO

x 1 1 - ICV_DIR_EL1 WO WO

1 x 1 - ICV_DIR_EL1 WO WO

0 0 1 - WO WO WO
8-204 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.2 AArch64 System register descriptions
8.2.9 ICC_EOIR0_EL1, Interrupt Controller End Of Interrupt Register 0

The ICC_EOIR0_EL1 characteristics are:

Purpose

A PE writes to this register to inform the CPU interface that it has completed the processing of the
specified Group 0 interrupt.

Configurations

AArch64 System register ICC_EOIR0_EL1 performs the same function as AArch32 System
register ICC_EOIR0.

Attributes

ICC_EOIR0_EL1 is a 32-bit register.

Field descriptions

The ICC_EOIR0_EL1 bit assignments are:

Bits [31:24]

Reserved, RES0.

INTID, bits [23:0]

The INTID from the corresponding ICC_IAR0_EL1 access.

This field has either 16 or 24 bits implemented. The number of implemented bits can be found in
ICC_CTLR_EL1.IDbits and ICC_CTLR_EL3.IDbits. If only 16 bits are implemented, bits [23:16]
of this register are RES0.

If the EOImode bit for the current Exception level and Security state is 0, a write to this register
drops the priority for the interrupt, and also deactivates the interrupt.

If the EOImode bit for the current Exception level and Security state is 1, a write to this register only
drops the priority for the interrupt. Software must write to ICC_DIR_EL1 to deactivate the interrupt.

The EOImode bit for the current Exception level and Security state is determined as follows:

• If EL3 is not implemented, the appropriate bit is ICC_CTLR_EL1.EOImode.

• If EL3 is implemented and the software is executing at EL3, the appropriate bit is
ICC_CTLR_EL3.EOImode_EL3.

• If EL3 is implemented and the software is not executing at EL3, the bit depends on the current
Security state:

— If the software is executing in Secure state, the bit is
ICC_CTLR_EL3.EOImode_EL1S.

— If the software is executing in Non-secure state, the bit is
ICC_CTLR_EL3.EOImode_EL1NS.

Accessing the ICC_EOIR0_EL1

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

RES0

31 24

INTID

23 0
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-205
ID072617 Non-Confidential

8 Programmers’ Model
8.2 AArch64 System register descriptions
This syntax is encoded with the following settings in the instruction encoding:

When HCR_EL2.FMO is set to 1, execution of this encoding at Non-secure EL1 results in an access to
ICV_EOIR0_EL1.

Accessibility

The register is accessible in software as follows:

ICC_EOIR0_EL1 is only accessible at Non-secure EL1 when HCR_EL2.FMO is set to 0.

Note
 When HCR_EL2.FMO is set to 1, at Non-secure EL1, the instruction encoding to access ICC_EOIR0_EL1 results
in an access to ICV_EOIR0_EL1.

A write to this register must correspond to the most recent valid read by this PE from an Interrupt Acknowledge
Register, and must correspond to the INTID that was read from ICC_IAR0_EL1, otherwise the system behavior is
UNPREDICTABLE. A valid read is a read that returns a valid INTID that is not a special INTID.

A write of a Special INTID is ignored. See Special INTIDs on page 2-32, for more information.

Traps and Enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception
prioritization for exceptions taken to AArch64) in the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A
architecture profile. Subject to the prioritization rules:

• In both Security states, and not dependent on other bits:

— If ICC_SRE_EL1.SRE==0, write accesses to this register from EL1 are trapped to EL1.

— If ICC_SRE_EL2.SRE==0, write accesses to this register from EL2 are trapped to EL2.

— If ICC_SRE_EL3.SRE==0, write accesses to this register from EL3 are trapped to EL3.

• When SCR_EL3.NS == 1:

— If ICH_HCR_EL2.TALL0==1, Non-secure write accesses to this register from EL1 are trapped to
EL2.

• When EL3 is implemented and is using AArch64 and SCR_EL3.NS == 0:

— If SCR_EL3.FIQ==1, Secure write accesses to this register from EL1 are trapped to EL3.

<systemreg> op0 op1 CRn CRm op2

ICC_EOIR0_EL1 11 000 1100 1000 001

Control Accessibility

FMO IMO NS EL0 EL1 EL2 EL3

x x 0 - WO n/a WO

x x 1 - n/a WO WO

0 x 1 - WO WO WO

1 x 1 - ICV_EOIR0_EL1 WO WO
8-206 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.2 AArch64 System register descriptions
• When EL3 is implemented and is using AArch64:

— If SCR_EL3.FIQ==1, write accesses to this register from EL2 are trapped to EL3.

• When EL3 is implemented and is using AArch64 and SCR_EL3.NS == 1:

— If SCR_EL3.FIQ==1, and HCR_EL2.FMO==0, Non-secure write accesses to this register from EL1
are trapped to EL3.
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-207
ID072617 Non-Confidential

8 Programmers’ Model
8.2 AArch64 System register descriptions
8.2.10 ICC_EOIR1_EL1, Interrupt Controller End Of Interrupt Register 1

The ICC_EOIR1_EL1 characteristics are:

Purpose

A PE writes to this register to inform the CPU interface that it has completed the processing of the
specified Group 1 interrupt.

Configurations

AArch64 System register ICC_EOIR1_EL1 performs the same function as AArch32 System
register ICC_EOIR1.

Attributes

ICC_EOIR1_EL1 is a 32-bit register.

Field descriptions

The ICC_EOIR1_EL1 bit assignments are:

Bits [31:24]

Reserved, RES0.

INTID, bits [23:0]

The INTID from the corresponding ICC_IAR1_EL1 access.

This field has either 16 or 24 bits implemented. The number of implemented bits can be found in
ICC_CTLR_EL1.IDbits and ICC_CTLR_EL3.IDbits. If only 16 bits are implemented, bits [23:16]
of this register are RES0.

If the EOImode bit for the current Exception level and Security state is 0, a write to this register
drops the priority for the interrupt, and also deactivates the interrupt.

If the EOImode bit for the current Exception level and Security state is 1, a write to this register only
drops the priority for the interrupt. Software must write to ICC_DIR_EL1 to deactivate the interrupt.

The EOImode bit for the current Exception level and Security state is determined as follows:

• If EL3 is not implemented, the appropriate bit is ICC_CTLR_EL1.EOImode.

• If EL3 is implemented and the software is executing at EL3, the appropriate bit is
ICC_CTLR_EL3.EOImode_EL3.

• If EL3 is implemented and the software is not executing at EL3, the bit depends on the current
Security state:

— If the software is executing in Secure state, the bit is
ICC_CTLR_EL3.EOImode_EL1S.

— If the software is executing in Non-secure state, the bit is
ICC_CTLR_EL3.EOImode_EL1NS.

Accessing the ICC_EOIR1_EL1

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

RES0

31 24

INTID

23 0
8-208 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.2 AArch64 System register descriptions
This syntax is encoded with the following settings in the instruction encoding:

When HCR_EL2.IMO is set to 1, execution of this encoding at Non-secure EL1 results in an access to
ICV_EOIR1_EL1.

Accessibility

The register is accessible in software as follows:

ICC_EOIR1_EL1 is only accessible at Non-secure EL1 when HCR_EL2.IMO is set to 0.

Note
 When HCR_EL2.IMO is set to 1, at Non-secure EL1, the instruction encoding to access ICC_EOIR1_EL1 results
in an access to ICV_EOIR1_EL1.

A write to this register must correspond to the most recent valid read by this PE from an Interrupt Acknowledge
Register, and must correspond to the INTID that was read from ICC_IAR1_EL1, otherwise the system behavior is
UNPREDICTABLE. A valid read is a read that returns a valid INTID that is not a special INTID.

A write of a Special INTID is ignored. See Special INTIDs on page 2-32, for more information.

Traps and Enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception
prioritization for exceptions taken to AArch64) in the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A
architecture profile. Subject to the prioritization rules:

• In both Security states, and not dependent on other bits:

— If ICC_SRE_EL1.SRE==0, write accesses to this register from EL1 are trapped to EL1.

— If ICC_SRE_EL2.SRE==0, write accesses to this register from EL2 are trapped to EL2.

— If ICC_SRE_EL3.SRE==0, write accesses to this register from EL3 are trapped to EL3.

• When SCR_EL3.NS == 1:

— If ICH_HCR_EL2.TALL1==1, Non-secure write accesses to this register from EL1 are trapped to
EL2.

• When EL3 is implemented and is using AArch64 and SCR_EL3.NS == 0:

— If SCR_EL3.IRQ==1, Secure write accesses to this register from EL1 are trapped to EL3.

<systemreg> op0 op1 CRn CRm op2

ICC_EOIR1_EL1 11 000 1100 1100 001

Control Accessibility

FMO IMO NS EL0 EL1 EL2 EL3

x x 0 - WO n/a WO

x x 1 - n/a WO WO

x 0 1 - WO WO WO

x 1 1 - ICV_EOIR1_EL1 WO WO
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-209
ID072617 Non-Confidential

8 Programmers’ Model
8.2 AArch64 System register descriptions
• When EL3 is implemented and is using AArch64:

— If SCR_EL3.IRQ==1, write accesses to this register from EL2 are trapped to EL3.

• When EL3 is implemented and is using AArch64 and SCR_EL3.NS == 1:

— If SCR_EL3.IRQ==1, and HCR_EL2.IMO==0, Non-secure write accesses to this register from EL1
are trapped to EL3.
8-210 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.2 AArch64 System register descriptions
8.2.11 ICC_HPPIR0_EL1, Interrupt Controller Highest Priority Pending Interrupt Register 0

The ICC_HPPIR0_EL1 characteristics are:

Purpose

Indicates the highest priority pending Group 0 interrupt on the CPU interface.

Configurations

AArch64 System register ICC_HPPIR0_EL1 performs the same function as AArch32 System
register ICC_HPPIR0.

Attributes

ICC_HPPIR0_EL1 is a 32-bit register.

Field descriptions

The ICC_HPPIR0_EL1 bit assignments are:

Bits [31:24]

Reserved, RES0.

INTID, bits [23:0]

The INTID of the highest priority pending interrupt, if that interrupt is observable at the current
Security state and Exception level.

If the highest priority pending interrupt is not observable, this field contains a special INTID to
indicate the reason. These special INTIDs can be one of: 1020, 1021, or 1023. See Special INTIDs
on page 2-32, for more information.

This field has either 16 or 24 bits implemented. The number of implemented bits can be found in
ICC_CTLR_EL1.IDbits and ICC_CTLR_EL3.IDbits. If only 16 bits are implemented, bits [23:16]
of this register are RES0.

Accessing the ICC_HPPIR0_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This syntax is encoded with the following settings in the instruction encoding:

When HCR_EL2.FMO is set to 1, execution of this encoding at Non-secure EL1 results in an access to
ICV_HPPIR0_EL1.

RES0

31 24

INTID

23 0

<systemreg> op0 op1 CRn CRm op2

ICC_HPPIR0_EL1 11 000 1100 1000 010
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-211
ID072617 Non-Confidential

8 Programmers’ Model
8.2 AArch64 System register descriptions
Accessibility

The register is accessible in software as follows:

ICC_HPPIR0_EL1 is only accessible at Non-secure EL1 when HCR_EL2.FMO is set to 0.

Note
 When HCR_EL2.FMO is set to 1, at Non-secure EL1, the instruction encoding to access ICC_HPPIR0_EL1 results
in an access to ICV_HPPIR0_EL1.

Traps and Enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception
prioritization for exceptions taken to AArch64) in the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A
architecture profile. Subject to the prioritization rules:

• In both Security states, and not dependent on other bits:

— If ICC_SRE_EL1.SRE==0, read accesses to this register from EL1 are trapped to EL1.

— If ICC_SRE_EL2.SRE==0, read accesses to this register from EL2 are trapped to EL2.

— If ICC_SRE_EL3.SRE==0, read accesses to this register from EL3 are trapped to EL3.

• When SCR_EL3.NS == 1:

— If ICH_HCR_EL2.TALL0==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• When EL3 is implemented and is using AArch64 and SCR_EL3.NS == 0:

— If SCR_EL3.FIQ==1, Secure read accesses to this register from EL1 are trapped to EL3.

• When EL3 is implemented and is using AArch64:

— If SCR_EL3.FIQ==1, read accesses to this register from EL2 are trapped to EL3.

• When EL3 is implemented and is using AArch64 and SCR_EL3.NS == 1:

— If SCR_EL3.FIQ==1, and HCR_EL2.FMO==0, Non-secure read accesses to this register from EL1
are trapped to EL3.

Control Accessibility

FMO IMO NS EL0 EL1 EL2 EL3

x x 0 - RO n/a RO

x x 1 - n/a RO RO

0 x 1 - RO RO RO

1 x 1 - ICV_HPPIR0_EL1 RO RO
8-212 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.2 AArch64 System register descriptions
8.2.12 ICC_HPPIR1_EL1, Interrupt Controller Highest Priority Pending Interrupt Register 1

The ICC_HPPIR1_EL1 characteristics are:

Purpose

Indicates the highest priority pending Group 1 interrupt on the CPU interface.

Configurations

AArch64 System register ICC_HPPIR1_EL1 performs the same function as AArch32 System
register ICC_HPPIR1.

Attributes

ICC_HPPIR1_EL1 is a 32-bit register.

Field descriptions

The ICC_HPPIR1_EL1 bit assignments are:

Bits [31:24]

Reserved, RES0.

INTID, bits [23:0]

The INTID of the highest priority pending interrupt, if that interrupt is observable at the current
Security state and Exception level.

If the highest priority pending interrupt is not observable, this field contains a special INTID to
indicate the reason. These special INTIDs can be one of: 1020, 1021, or 1023. See Special INTIDs
on page 2-32, for more information.

This field has either 16 or 24 bits implemented. The number of implemented bits can be found in
ICC_CTLR_EL1.IDbits and ICC_CTLR_EL3.IDbits. If only 16 bits are implemented, bits [23:16]
of this register are RES0.

Accessing the ICC_HPPIR1_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This syntax is encoded with the following settings in the instruction encoding:

When HCR_EL2.IMO is set to 1, execution of this encoding at Non-secure EL1 results in an access to
ICV_HPPIR1_EL1.

RES0

31 24

INTID

23 0

<systemreg> op0 op1 CRn CRm op2

ICC_HPPIR1_EL1 11 000 1100 1100 010
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-213
ID072617 Non-Confidential

8 Programmers’ Model
8.2 AArch64 System register descriptions
Accessibility

The register is accessible in software as follows:

ICC_HPPIR1_EL1 is only accessible at Non-secure EL1 when HCR_EL2.IMO is set to 0.

Note
 When HCR_EL2.IMO is set to 1, at Non-secure EL1, the instruction encoding to access ICC_HPPIR1_EL1 results
in an access to ICV_HPPIR1_EL1.

Traps and Enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception
prioritization for exceptions taken to AArch64) in the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A
architecture profile. Subject to the prioritization rules:

• In both Security states, and not dependent on other bits:

— If ICC_SRE_EL1.SRE==0, read accesses to this register from EL1 are trapped to EL1.

— If ICC_SRE_EL2.SRE==0, read accesses to this register from EL2 are trapped to EL2.

— If ICC_SRE_EL3.SRE==0, read accesses to this register from EL3 are trapped to EL3.

• When SCR_EL3.NS == 1:

— If ICH_HCR_EL2.TALL1==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• When EL3 is implemented and is using AArch64 and SCR_EL3.NS == 0:

— If SCR_EL3.IRQ==1, Secure read accesses to this register from EL1 are trapped to EL3.

• When EL3 is implemented and is using AArch64:

— If SCR_EL3.IRQ==1, read accesses to this register from EL2 are trapped to EL3.

• When EL3 is implemented and is using AArch64 and SCR_EL3.NS == 1:

— If SCR_EL3.IRQ==1, and HCR_EL2.IMO==0, Non-secure read accesses to this register from EL1
are trapped to EL3.

Control Accessibility

FMO IMO NS EL0 EL1 EL2 EL3

x x 0 - RO n/a RO

x x 1 - n/a RO RO

x 0 1 - RO RO RO

x 1 1 - ICV_HPPIR1_EL1 RO RO
8-214 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.2 AArch64 System register descriptions
8.2.13 ICC_IAR0_EL1, Interrupt Controller Interrupt Acknowledge Register 0

The ICC_IAR0_EL1 characteristics are:

Purpose

The PE reads this register to obtain the INTID of the signaled Group 0 interrupt. This read acts as
an acknowledge for the interrupt.

Configurations

AArch64 System register ICC_IAR0_EL1 performs the same function as AArch32 System register
ICC_IAR0.

To allow software to ensure appropriate observability of actions initiated by GIC register accesses,
the PE and CPU interface logic must ensure that reads of this register are self-synchronising when
interrupts are masked by the PE (that is when PSTATE.{I,F} == {0,0}). This ensures that the effect
of activating an interrupt on the signaling of interrupt exceptions is observed when a read of this
register is architecturally executed so that no spurious interrupt exception occurs if interrupts are
unmasked by an instruction immediately following the read. See Observability of the effects of
accesses to the GIC registers on page 8-157, for more information.

Attributes

ICC_IAR0_EL1 is a 32-bit register.

Field descriptions

The ICC_IAR0_EL1 bit assignments are:

Bits [31:24]

Reserved, RES0.

INTID, bits [23:0]

The INTID of the signaled interrupt.

This is the INTID of the highest priority pending interrupt, if that interrupt is of sufficient priority
for it to be signaled to the PE, and if it can be acknowledged at the current Security state and
Exception level.

If the highest priority pending interrupt is not observable, this field contains a special INTID to
indicate the reason. These special INTIDs can be one of: 1020, 1021, or 1023. See Special INTIDs
on page 2-32, for more information.

This field has either 16 or 24 bits implemented. The number of implemented bits can be found in
ICC_CTLR_EL1.IDbits and ICC_CTLR_EL3.IDbits. If only 16 bits are implemented, bits [23:16]
of this register are RES0.

Accessing the ICC_IAR0_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

RES0

31 24

INTID

23 0
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-215
ID072617 Non-Confidential

8 Programmers’ Model
8.2 AArch64 System register descriptions
This syntax is encoded with the following settings in the instruction encoding:

When HCR_EL2.FMO is set to 1, execution of this encoding at Non-secure EL1 results in an access to
ICV_IAR0_EL1.

Accessibility

The register is accessible in software as follows:

ICC_IAR0_EL1 is only accessible at Non-secure EL1 when HCR_EL2.FMO is set to 0.

Note
 When HCR_EL2.FMO is set to 1, at Non-secure EL1, the instruction encoding to access ICC_IAR0_EL1 results in
an access to ICV_IAR0_EL1.

Traps and Enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception
prioritization for exceptions taken to AArch64) in the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A
architecture profile. Subject to the prioritization rules:

• In both Security states, and not dependent on other bits:

— If ICC_SRE_EL1.SRE==0, read accesses to this register from EL1 are trapped to EL1.

— If ICC_SRE_EL2.SRE==0, read accesses to this register from EL2 are trapped to EL2.

— If ICC_SRE_EL3.SRE==0, read accesses to this register from EL3 are trapped to EL3.

• When SCR_EL3.NS == 1:

— If ICH_HCR_EL2.TALL0==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• When EL3 is implemented and is using AArch64 and SCR_EL3.NS == 0:

— If SCR_EL3.FIQ==1, Secure read accesses to this register from EL1 are trapped to EL3.

• When EL3 is implemented and is using AArch64:

— If SCR_EL3.FIQ==1, read accesses to this register from EL2 are trapped to EL3.

• When EL3 is implemented and is using AArch64 and SCR_EL3.NS == 1:

— If SCR_EL3.FIQ==1, and HCR_EL2.FMO==0, Non-secure read accesses to this register from EL1
are trapped to EL3.

<systemreg> op0 op1 CRn CRm op2

ICC_IAR0_EL1 11 000 1100 1000 000

Control Accessibility

FMO IMO NS EL0 EL1 EL2 EL3

x x 0 - RO n/a RO

x x 1 - n/a RO RO

0 x 1 - RO RO RO

1 x 1 - ICV_IAR0_EL1 RO RO
8-216 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.2 AArch64 System register descriptions
8.2.14 ICC_IAR1_EL1, Interrupt Controller Interrupt Acknowledge Register 1

The ICC_IAR1_EL1 characteristics are:

Purpose

The PE reads this register to obtain the INTID of the signaled Group 1 interrupt. This read acts as
an acknowledge for the interrupt.

Configurations

AArch64 System register ICC_IAR1_EL1 performs the same function as AArch32 System register
ICC_IAR1.

To allow software to ensure appropriate observability of actions initiated by GIC register accesses,
the PE and CPU interface logic must ensure that reads of this register are self-synchronising when
interrupts are masked by the PE (that is when PSTATE.{I,F} == {0,0}). This ensures that the effect
of activating an interrupt on the signaling of interrupt exceptions is observed when a read of this
register is architecturally executed so that no spurious interrupt exception occurs if interrupts are
unmasked by an instruction immediately following the read. See Observability of the effects of
accesses to the GIC registers on page 8-157, for more information.

Attributes

ICC_IAR1_EL1 is a 32-bit register.

Field descriptions

The ICC_IAR1_EL1 bit assignments are:

Bits [31:24]

Reserved, RES0.

INTID, bits [23:0]

The INTID of the signaled interrupt.

This is the INTID of the highest priority pending interrupt, if that interrupt is of sufficient priority
for it to be signaled to the PE, and if it can be acknowledged at the current Security state and
Exception level.

If the highest priority pending interrupt is not observable, this field contains a special INTID to
indicate the reason. These special INTIDs can be one of: 1020, 1021, or 1023. See Special INTIDs
on page 2-32, for more information.

This field has either 16 or 24 bits implemented. The number of implemented bits can be found in
ICC_CTLR_EL1.IDbits and ICC_CTLR_EL3.IDbits. If only 16 bits are implemented, bits [23:16]
of this register are RES0.

Accessing the ICC_IAR1_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

RES0

31 24

INTID

23 0
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-217
ID072617 Non-Confidential

8 Programmers’ Model
8.2 AArch64 System register descriptions
This syntax is encoded with the following settings in the instruction encoding:

When HCR_EL2.IMO is set to 1, execution of this encoding at Non-secure EL1 results in an access to
ICV_IAR1_EL1.

Accessibility

The register is accessible in software as follows:

ICC_IAR1_EL1 is only accessible at Non-secure EL1 when HCR_EL2.IMO is set to 0.

Note
 When HCR_EL2.IMO is set to 1, at Non-secure EL1, the instruction encoding to access ICC_IAR1_EL1 results in
an access to ICV_IAR1_EL1.

Traps and Enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception
prioritization for exceptions taken to AArch64) in the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A
architecture profile. Subject to the prioritization rules:

• In both Security states, and not dependent on other bits:

— If ICC_SRE_EL1.SRE==0, read accesses to this register from EL1 are trapped to EL1.

— If ICC_SRE_EL2.SRE==0, read accesses to this register from EL2 are trapped to EL2.

— If ICC_SRE_EL3.SRE==0, read accesses to this register from EL3 are trapped to EL3.

• When SCR_EL3.NS == 1:

— If ICH_HCR_EL2.TALL1==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• When EL3 is implemented and is using AArch64 and SCR_EL3.NS == 0:

— If SCR_EL3.IRQ==1, Secure read accesses to this register from EL1 are trapped to EL3.

• When EL3 is implemented and is using AArch64:

— If SCR_EL3.IRQ==1, read accesses to this register from EL2 are trapped to EL3.

• When EL3 is implemented and is using AArch64 and SCR_EL3.NS == 1:

— If SCR_EL3.IRQ==1, and HCR_EL2.IMO==0, Non-secure read accesses to this register from EL1
are trapped to EL3.

<systemreg> op0 op1 CRn CRm op2

ICC_IAR1_EL1 11 000 1100 1100 000

Control Accessibility

FMO IMO NS EL0 EL1 EL2 EL3

x x 0 - RO n/a RO

x x 1 - n/a RO RO

x 0 1 - RO RO RO

x 1 1 - ICV_IAR1_EL1 RO RO
8-218 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.2 AArch64 System register descriptions
8.2.15 ICC_IGRPEN0_EL1, Interrupt Controller Interrupt Group 0 Enable register

The ICC_IGRPEN0_EL1 characteristics are:

Purpose

Controls whether Group 0 interrupts are enabled or not.

Configurations

AArch64 System register ICC_IGRPEN0_EL1 is architecturally mapped to AArch32 System
register ICC_IGRPEN0.

Attributes

ICC_IGRPEN0_EL1 is a 32-bit register.

Field descriptions

The ICC_IGRPEN0_EL1 bit assignments are:

Bits [31:1]

Reserved, RES0.

Enable, bit [0]

Enables Group 0 interrupts.

0 Group 0 interrupts are disabled.

1 Group 0 interrupts are enabled.

Virtual accesses to this register update ICH_VMCR_EL2.VENG0.

If the highest priority pending interrupt for that PE is a Group 0 interrupt using 1 of N model, then
the interrupt will be targeted to another PE as a result of the Enable bit changing from 1 to 0.

When this register has an architecturally-defined reset value, this field resets to 0.

Accessing the ICC_IGRPEN0_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax is encoded with the following settings in the instruction encoding:

When HCR_EL2.FMO is set to 1, execution of this encoding at Non-secure EL1 results in an access to
ICV_IGRPEN0_EL1.

RES0

31 1 0

Enable

<systemreg> op0 op1 CRn CRm op2

ICC_IGRPEN0_EL1 11 000 1100 1100 110
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-219
ID072617 Non-Confidential

8 Programmers’ Model
8.2 AArch64 System register descriptions
Accessibility

The register is accessible in software as follows:

ICC_IGRPEN0_EL1 is only accessible at Non-secure EL1 when HCR_EL2.FMO is set to 0.

Note
 When HCR_EL2.FMO is set to 1, at Non-secure EL1, the instruction encoding to access ICC_IGRPEN0_EL1
results in an access to ICV_IGRPEN0_EL1.

Traps and Enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception
prioritization for exceptions taken to AArch64) in the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A
architecture profile. Subject to the prioritization rules:

• In both Security states, and not dependent on other bits:

— If ICC_SRE_EL1.SRE==0, accesses to this register from EL1 are trapped to EL1.

— If ICC_SRE_EL2.SRE==0, accesses to this register from EL2 are trapped to EL2.

— If ICC_SRE_EL3.SRE==0, accesses to this register from EL3 are trapped to EL3.

• When SCR_EL3.NS == 1:

— If ICH_HCR_EL2.TALL0==1, Non-secure accesses to this register from EL1 are trapped to EL2.

• When EL3 is implemented and is using AArch64 and SCR_EL3.NS == 0:

— If SCR_EL3.FIQ==1, Secure accesses to this register from EL1 are trapped to EL3.

• When EL3 is implemented and is using AArch64:

— If SCR_EL3.FIQ==1, accesses to this register from EL2 are trapped to EL3.

• When EL3 is implemented and is using AArch64 and SCR_EL3.NS == 1:

— If SCR_EL3.FIQ==1, and HCR_EL2.FMO==0, Non-secure accesses to this register from EL1 are
trapped to EL3.

Control Accessibility

FMO IMO NS EL0 EL1 EL2 EL3

x x 0 - RW n/a RW

x x 1 - n/a RW RW

0 x 1 - RW RW RW

1 x 1 - ICV_IGRPEN0_EL1 RW RW
8-220 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.2 AArch64 System register descriptions
8.2.16 ICC_IGRPEN1_EL1, Interrupt Controller Interrupt Group 1 Enable register

The ICC_IGRPEN1_EL1 characteristics are:

Purpose

Controls whether Group 1 interrupts are enabled for the current Security state.

Configurations

AArch64 System register ICC_IGRPEN1_EL1(S) is architecturally mapped to AArch32 System
register ICC_IGRPEN1 (S).

AArch64 System register ICC_IGRPEN1_EL1(NS) is architecturally mapped to AArch32 System
register ICC_IGRPEN1 (NS).

Attributes

ICC_IGRPEN1_EL1 is a 32-bit register.

Field descriptions

The ICC_IGRPEN1_EL1 bit assignments are:

Bits [31:1]

Reserved, RES0.

Enable, bit [0]

Enables Group 1 interrupts for the current Security state.

0 Group 1 interrupts are disabled for the current Security state.

1 Group 1 interrupts are enabled for the current Security state.

Virtual accesses to this register update ICH_VMCR_EL2.VENG1.

If EL3 is present:

• The Secure ICC_IGRPEN1_EL1.Enable bit is a read/write alias of the
ICC_IGRPEN1_EL3.EnableGrp1S bit.

• The Non-secure ICC_IGRPEN1_EL1.Enable bit is a read/write alias of the
ICC_IGRPEN1_EL3.EnableGrp1NS bit.

If the highest priority pending interrupt for that PE is a Group 1 interrupt using 1 of N model, then
the interrupt will target another PE as a result of the Enable bit changing from 1 to 0.

When this register has an architecturally-defined reset value, this field resets to 0.

Accessing the ICC_IGRPEN1_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

RES0

31 1 0

Enable
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-221
ID072617 Non-Confidential

8 Programmers’ Model
8.2 AArch64 System register descriptions
This syntax is encoded with the following settings in the instruction encoding:

When HCR_EL2.IMO is set to 1, execution of this encoding at Non-secure EL1 results in an access to
ICV_IGRPEN1_EL1.

Accessibility

The register is accessible in software as follows:

ICC_IGRPEN1_EL1 is only accessible at Non-secure EL1 when HCR_EL2.IMO is set to 0.

Note
 When HCR_EL2.IMO is set to 1, at Non-secure EL1, the instruction encoding to access ICC_IGRPEN1_EL1
results in an access to ICV_IGRPEN1_EL1.

If EL3 is present and this register is accessed at EL3, the copy of this register appropriate to the current setting of
SCR_EL3.NS is accessed.

Traps and Enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception
prioritization for exceptions taken to AArch64) in the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A
architecture profile. Subject to the prioritization rules:

• In both Security states, and not dependent on other bits:

— If ICC_SRE_EL1.SRE==0, accesses to this register from EL1 are trapped to EL1.

— If ICC_SRE_EL2.SRE==0, accesses to this register from EL2 are trapped to EL2.

— If ICC_SRE_EL3.SRE==0, accesses to this register from EL3 are trapped to EL3.

• When SCR_EL3.NS == 1:

— If ICH_HCR_EL2.TALL1==1, Non-secure accesses to this register from EL1 are trapped to EL2.

• When EL3 is implemented and is using AArch64 and SCR_EL3.NS == 0:

— If SCR_EL3.IRQ==1, Secure accesses to this register from EL1 are trapped to EL3.

• When EL3 is implemented and is using AArch64:

— If SCR_EL3.IRQ==1, accesses to this register from EL2 are trapped to EL3.

<systemreg> op0 op1 CRn CRm op2

ICC_IGRPEN1_EL1 11 000 1100 1100 111

Control Accessibility
Instance

FMO IMO NS EL0 EL1 EL2 EL3

x x 0 - RW n/a RW ICC_IGRPEN1_EL1_s

x x 1 - n/a RW RW ICC_IGRPEN1_EL1_ns

x 0 1 - RW RW RW ICC_IGRPEN1_EL1_ns

x 1 1 - ICV_IGRPEN1_EL1 RW RW ICC_IGRPEN1_EL1_ns
8-222 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.2 AArch64 System register descriptions
• When EL3 is implemented and is using AArch64 and SCR_EL3.NS == 1:

— If SCR_EL3.IRQ==1, and HCR_EL2.IMO==0, Non-secure accesses to this register from EL1 are
trapped to EL3.
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-223
ID072617 Non-Confidential

8 Programmers’ Model
8.2 AArch64 System register descriptions
8.2.17 ICC_IGRPEN1_EL3, Interrupt Controller Interrupt Group 1 Enable register (EL3)

The ICC_IGRPEN1_EL3 characteristics are:

Purpose

Controls whether Group 1 interrupts are enabled or not.

Configurations

AArch64 System register ICC_IGRPEN1_EL3 can be mapped to AArch32 System register
ICC_MGRPEN1, but this is not architecturally mandated.

Attributes

ICC_IGRPEN1_EL3 is a 32-bit register.

Field descriptions

The ICC_IGRPEN1_EL3 bit assignments are:

Bits [31:2]

Reserved, RES0.

EnableGrp1S, bit [1]

Enables Group 1 interrupts for the Secure state.

0 Secure Group 1 interrupts are disabled.

1 Secure Group 1 interrupts are enabled.

The Secure ICC_IGRPEN1_EL1.Enable bit is a read/write alias of the
ICC_IGRPEN1_EL3.EnableGrp1S bit.

If the highest priority pending interrupt for that PE is a Group 1 interrupt using 1 of N model, then
the interrupt will target another PE as a result of the Enable bit changing from 1 to 0.

When this register has an architecturally-defined reset value, this field resets to 0.

EnableGrp1NS, bit [0]

Enables Group 1 interrupts for the Non-secure state.

0 Non-secure Group 1 interrupts are disabled.

1 Non-secure Group 1 interrupts are enabled.

The Non-secure ICC_IGRPEN1_EL1.Enable bit is a read/write alias of the
ICC_IGRPEN1_EL3.EnableGrp1NS bit.

If the highest priority pending interrupt for that PE is a Group 1 interrupt using 1 of N model, then
the interrupt will target another PE as a result of the Enable bit changing from 1 to 0.

When this register has an architecturally-defined reset value, this field resets to 0.

Accessing the ICC_IGRPEN1_EL3

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

RES0

31 2 1 0

EnableGrp1S
EnableGrp1NS
8-224 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.2 AArch64 System register descriptions
This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax is encoded with the following settings in the instruction encoding:

Accessibility

The register is accessible in software as follows:

Traps and Enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception
prioritization for exceptions taken to AArch64) in the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A
architecture profile. Subject to the prioritization rules:

• In both Security states, and not dependent on other bits:

— If ICC_SRE_EL3.SRE==0, accesses to this register from EL3 are trapped to EL3.

<systemreg> op0 op1 CRn CRm op2

ICC_IGRPEN1_EL3 11 110 1100 1100 111

Control Accessibility

FMO IMO NS EL0 EL1 EL2 EL3

x x 0 - - n/a RW

x x 1 - - - RW

x x 1 - n/a - RW
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-225
ID072617 Non-Confidential

8 Programmers’ Model
8.2 AArch64 System register descriptions
8.2.18 ICC_PMR_EL1, Interrupt Controller Interrupt Priority Mask Register

The ICC_PMR_EL1 characteristics are:

Purpose

Provides an interrupt priority filter. Only interrupts with a higher priority than the value in this
register are signaled to the PE.

Writes to this register must be high performance and must ensure that no interrupt of lower priority
than the written value occurs after the write, without requiring an ISB or an exception boundary.

Configurations

AArch64 System register ICC_PMR_EL1 is architecturally mapped to AArch32 System register
ICC_PMR.

To allow software to ensure appropriate observability of actions initiated by GIC register accesses,
the PE and CPU interface logic must ensure that writes to this register are self-synchronising. This
ensures that no interrupts below the written PMR value will be taken after a write to this register is
architecturally executed. See Observability of the effects of accesses to the GIC registers on
page 8-157, for more information.

Attributes

ICC_PMR_EL1 is a 32-bit register.

Field descriptions

The ICC_PMR_EL1 bit assignments are:

Bits [31:8]

Reserved, RES0.

Priority, bits [7:0]

The priority mask level for the CPU interface. If the priority of an interrupt is higher than the value
indicated by this field, the interface signals the interrupt to the PE.

The possible priority field values are as follows:

Unimplemented priority bits are RAZ/WI.

When this register has an architecturally-defined reset value, this field resets to 0.

RES0

31 8

Priority

7 0

Implemented priority bits Possible priority field values Number of priority levels

[7:0] 0x00-0xFF (0-255), all values 256

[7:1] 0x00-0xFE (0-254), even values only 128

[7:2] 0x00-0xFC (0-252), in steps of 4 64

[7:3] 0x00-0xF8 (0-248), in steps of 8 32

[7:4] 0x00-0xF0 (0-240), in steps of 16 16
8-226 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.2 AArch64 System register descriptions
Accessing the ICC_PMR_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax is encoded with the following settings in the instruction encoding:

When HCR_EL2.{FMO, IMO} != {0, 0}, execution of this encoding at Non-secure EL1 results in an access to
ICV_PMR_EL1.

Accessibility

The register is accessible in software as follows:

ICC_PMR_EL1 is only accessible at Non-secure EL1 when HCR_EL2.{FMO, IMO} == {0, 0}.

Note
 When HCR_EL2.{FMO, IMO} != {0, 0}, at Non-secure EL1, the instruction encoding to access ICC_PMR_EL1
results in an access to ICV_PMR_EL1.

Traps and Enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception
prioritization for exceptions taken to AArch64) in the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A
architecture profile. Subject to the prioritization rules:

• In both Security states, and not dependent on other bits:

— If ICC_SRE_EL1.SRE==0, accesses to this register from EL1 are trapped to EL1.

— If ICC_SRE_EL2.SRE==0, accesses to this register from EL2 are trapped to EL2.

— If ICC_SRE_EL3.SRE==0, accesses to this register from EL3 are trapped to EL3.

• When SCR_EL3.NS == 1:

— If ICH_HCR_EL2.TC==1, Non-secure accesses to this register from EL1 are trapped to EL2.

<systemreg> op0 op1 CRn CRm op2

ICC_PMR_EL1 11 000 0100 0110 000

Control Accessibility

FMO IMO NS EL0 EL1 EL2 EL3

x x 0 - RW n/a RW

x x 1 - n/a RW RW

x 1 1 - ICV_PMR_EL1 RW RW

1 x 1 - ICV_PMR_EL1 RW RW

0 0 1 - RW RW RW
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-227
ID072617 Non-Confidential

8 Programmers’ Model
8.2 AArch64 System register descriptions
• When EL3 is implemented and is using AArch64 and SCR_EL3.NS == 0:

— If SCR_EL3.FIQ==1, and SCR_EL3.IRQ==1, Secure accesses to this register from EL1 are trapped
to EL3.

• When EL3 is implemented and is using AArch64:

— If SCR_EL3.FIQ==1, and SCR_EL3.IRQ==1, accesses to this register from EL2 are trapped to EL3.

• When EL3 is implemented and is using AArch64 and SCR_EL3.NS == 1:

— If SCR_EL3.FIQ==1, SCR_EL3.IRQ==1, HCR_EL2.IMO==0, and HCR_EL2.FMO==0,
Non-secure accesses to this register from EL1 are trapped to EL3.
8-228 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.2 AArch64 System register descriptions
8.2.19 ICC_RPR_EL1, Interrupt Controller Running Priority Register

The ICC_RPR_EL1 characteristics are:

Purpose

Indicates the Running priority of the CPU interface.

Configurations

AArch64 System register ICC_RPR_EL1 performs the same function as AArch32 System register
ICC_RPR.

Attributes

ICC_RPR_EL1 is a 32-bit register.

Field descriptions

The ICC_RPR_EL1 bit assignments are:

Bits [31:8]

Reserved, RES0.

Priority, bits [7:0]

The current running priority on the CPU interface. This is the group priority of the current active
interrupt.

If there are no active interrupts on the CPU interface, or all active interrupts have undergone a
priority drop, the value returned is the Idle priority.

The priority returned is the group priority as if the BPR for the current Exception level and Security
state was set to the minimum value of BPR for the number of implemented priority bits.

Note
 If 8 bits of priority are implemented the group priority is bits[7:1] of the priority.

Accessing the ICC_RPR_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This syntax is encoded with the following settings in the instruction encoding:

When HCR_EL2.{FMO, IMO} != {0, 0}, execution of this encoding at Non-secure EL1 results in an access to
ICV_RPR_EL1.

RES0

31 8

Priority

7 0

<systemreg> op0 op1 CRn CRm op2

ICC_RPR_EL1 11 000 1100 1011 011
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-229
ID072617 Non-Confidential

8 Programmers’ Model
8.2 AArch64 System register descriptions
Accessibility

The register is accessible in software as follows:

ICC_RPR_EL1 is only accessible at Non-secure EL1 when HCR_EL2.{FMO, IMO} == {0, 0}.

Note
 When HCR_EL2.{FMO, IMO} != {0, 0}, at Non-secure EL1, the instruction encoding to access ICC_RPR_EL1
results in an access to ICV_RPR_EL1.

Software cannot determine the number of implemented priority bits from a read of this register.

Traps and Enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception
prioritization for exceptions taken to AArch64) in the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A
architecture profile. Subject to the prioritization rules:

• In both Security states, and not dependent on other bits:

— If ICC_SRE_EL1.SRE==0, read accesses to this register from EL1 are trapped to EL1.

— If ICC_SRE_EL2.SRE==0, read accesses to this register from EL2 are trapped to EL2.

— If ICC_SRE_EL3.SRE==0, read accesses to this register from EL3 are trapped to EL3.

• When SCR_EL3.NS == 1:

— If ICH_HCR_EL2.TC==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• When EL3 is implemented and is using AArch64 and SCR_EL3.NS == 0:

— If SCR_EL3.FIQ==1, and SCR_EL3.IRQ==1, Secure read accesses to this register from EL1 are
trapped to EL3.

• When EL3 is implemented and is using AArch64:

— If SCR_EL3.FIQ==1, and SCR_EL3.IRQ==1, read accesses to this register from EL2 are trapped to
EL3.

• When EL3 is implemented and is using AArch64 and SCR_EL3.NS == 1:

— If SCR_EL3.FIQ==1, SCR_EL3.IRQ==1, HCR_EL2.IMO==0, and HCR_EL2.FMO==0,
Non-secure read accesses to this register from EL1 are trapped to EL3.

Control Accessibility

FMO IMO NS EL0 EL1 EL2 EL3

x x 0 - RO n/a RO

x x 1 - n/a RO RO

x 1 1 - ICV_RPR_EL1 RO RO

1 x 1 - ICV_RPR_EL1 RO RO

0 0 1 - RO RO RO
8-230 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.2 AArch64 System register descriptions
8.2.20 ICC_SGI0R_EL1, Interrupt Controller Software Generated Interrupt Group 0 Register

The ICC_SGI0R_EL1 characteristics are:

Purpose

Generates Secure Group 0 SGIs.

Configurations

AArch64 System register ICC_SGI0R_EL1 performs the same function as AArch32 System
instruction ICC_SGI0R.

Attributes

ICC_SGI0R_EL1 is a 64-bit register.

Field descriptions

The ICC_SGI0R_EL1 bit assignments are:

Bits [63:56]

Reserved, RES0.

Aff3, bits [55:48]

The affinity 3 value of the affinity path of the cluster for which SGI interrupts will be generated.

If the IRM bit is 1, this field is RES0.

RS, bits [47:44]

RangeSelector

Controls which group of 16 values is represented by the TargetList field.

TargetList[n] represents aff0 value ((RS * 16) + n).

When ICC_CTLR_EL1.RSS==0, RS is RES0.

When ICC_CTLR_EL1.RSS==1 and GICD_TYPER.RSS==0, writing this register with RS != 0 is
a CONSTRAINED UNPREDICTABLE choice of :

• The write is ignored.

• The RS field is treated as 0.

Bits [43:41]

Reserved, RES0.

IRM, bit [40]

Interrupt Routing Mode. Determines how the generated interrupts are distributed to PEs. Possible
values are:

0 Interrupts routed to the PEs specified by Aff3.Aff2.Aff1.<target list>.

1 Interrupts routed to all PEs in the system, excluding "self".

Aff2, bits [39:32]

The affinity 2 value of the affinity path of the cluster for which SGI interrupts will be generated.

If the IRM bit is 1, this field is RES0.

RES0

63 56

Aff3

55 48

RS

47 44

RES0

43 41 40

Aff2

39 32

RES0

31 28

INTID

27 24

Aff1

23 16

TargetList

15 0

IRM
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-231
ID072617 Non-Confidential

8 Programmers’ Model
8.2 AArch64 System register descriptions
Bits [31:28]

Reserved, RES0.

INTID, bits [27:24]

The INTID of the SGI.

Aff1, bits [23:16]

The affinity 1 value of the affinity path of the cluster for which SGI interrupts will be generated.

If the IRM bit is 1, this field is RES0.

TargetList, bits [15:0]

Target List. The set of PEs for which SGI interrupts will be generated. Each bit corresponds to the
PE within a cluster with an Affinity 0 value equal to the bit number.

If a bit is 1 and the bit does not correspond to a valid target PE, the bit must be ignored by the
Distributor. It is IMPLEMENTATION DEFINED whether, in such cases, a Distributor can signal a system
error.

Note
 This restricts a system to sending targeted SGIs to PEs with an affinity 0 number that is less than 16.

If SRE is set only for Secure EL3, software executing at EL3 might use the System register interface
to generate SGIs. Therefore, the Distributor must always be able to receive and acknowledge
Generate SGI packets received from CPU interface regardless of the ARE settings for a Security
state. However, the Distributor might discard such packets.

If the IRM bit is 1, this field is RES0.

Accessing the ICC_SGI0R_EL1

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax is encoded with the following settings in the instruction encoding:

Accessibility

The register is accessible in software as follows:

This register allows software executing in a Secure state to generate Group 0 SGIs. It will also allow software
executing in a Non-secure state to generate Group 0 SGIs, if permitted by the settings of GICR_NSACR in the
Redistributor corresponding to the target PE.

<systemreg> op0 op1 CRn CRm op2

ICC_SGI0R_EL1 11 000 1100 1011 111

Control Accessibility

NS EL0 EL1 EL2 EL3

0 - WO n/a WO

1 - WO WO WO

1 - n/a WO WO
8-232 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.2 AArch64 System register descriptions
When GICD_CTLR.DS==0, Non-secure writes do not generate an interrupt for a target PE if not permitted by the
GICR_NSACR register associated with the target PE. For more information see Use of control registers for SGI
forwarding on page 8-169.

Note
 Accesses at EL3 are treated as Secure regardless of the value of SCR_EL3.NS.

Traps and Enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception
prioritization for exceptions taken to AArch64) in the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A
architecture profile. Subject to the prioritization rules:

• In both Security states, and not dependent on other bits:

— If ICC_SRE_EL1.SRE==0, write accesses to this register from EL1 are trapped to EL1.

— If ICC_SRE_EL2.SRE==0, write accesses to this register from EL2 are trapped to EL2.

— If ICC_SRE_EL3.SRE==0, write accesses to this register from EL3 are trapped to EL3.

• When EL2 is implemented and is using AArch64 and SCR_EL3.NS == 1:

— If HCR_EL2.FMO==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

— If HCR_EL2.IMO==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

• When SCR_EL3.NS == 1:

— If ICH_HCR_EL2.TC==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

• When EL3 is implemented and is using AArch64 and SCR_EL3.NS == 0:

— If SCR_EL3.FIQ==1, and SCR_EL3.IRQ==1, Secure write accesses to this register from EL1 are
trapped to EL3.

• When EL3 is implemented and is using AArch64:

— If SCR_EL3.FIQ==1, and SCR_EL3.IRQ==1, write accesses to this register from EL2 are trapped to
EL3.

• When EL3 is implemented and is using AArch64 and SCR_EL3.NS == 1:

— If SCR_EL3.FIQ==1, SCR_EL3.IRQ==1, HCR_EL2.IMO==0, and HCR_EL2.FMO==0,
Non-secure write accesses to this register from EL1 are trapped to EL3.
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-233
ID072617 Non-Confidential

8 Programmers’ Model
8.2 AArch64 System register descriptions
8.2.21 ICC_SGI1R_EL1, Interrupt Controller Software Generated Interrupt Group 1 Register

The ICC_SGI1R_EL1 characteristics are:

Purpose

Generates Group 1 SGIs for the current Security state.

Configurations

AArch64 System register ICC_SGI1R_EL1 performs the same function as AArch32 System
register ICC_SGI1R.

Under certain conditions a write to ICC_SGI1R_EL1 can generate Group 0 interrupts, see
Table 8-14 on page 8-169.

Attributes

ICC_SGI1R_EL1 is a 64-bit register.

Field descriptions

The ICC_SGI1R_EL1 bit assignments are:

Bits [63:56]

Reserved, RES0.

Aff3, bits [55:48]

The affinity 3 value of the affinity path of the cluster for which SGI interrupts will be generated.

If the IRM bit is 1, this field is RES0.

RS, bits [47:44]

RangeSelector

Controls which group of 16 values is represented by the TargetList field.

TargetList[n] represents aff0 value ((RS * 16) + n).

When ICC_CTLR_EL1.RSS==0, RS is RES0.

When ICC_CTLR_EL1.RSS==1 and GICD_TYPER.RSS==0, writing this register with RS != 0 is
a CONSTRAINED UNPREDICTABLE choice of :

• The write is ignored.

• The RS field is treated as 0.

Bits [43:41]

Reserved, RES0.

IRM, bit [40]

Interrupt Routing Mode. Determines how the generated interrupts are distributed to PEs. Possible
values are:

0 Interrupts routed to the PEs specified by Aff3.Aff2.Aff1.<target list>.

1 Interrupts routed to all PEs in the system, excluding "self".

RES0

63 56

Aff3

55 48

RS

47 44

RES0

43 41 40

Aff2

39 32

RES0

31 28

INTID

27 24

Aff1

23 16

TargetList

15 0

IRM
8-234 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.2 AArch64 System register descriptions
Aff2, bits [39:32]

The affinity 2 value of the affinity path of the cluster for which SGI interrupts will be generated.

If the IRM bit is 1, this field is RES0.

Bits [31:28]

Reserved, RES0.

INTID, bits [27:24]

The INTID of the SGI.

Aff1, bits [23:16]

The affinity 1 value of the affinity path of the cluster for which SGI interrupts will be generated.

If the IRM bit is 1, this field is RES0.

TargetList, bits [15:0]

Target List. The set of PEs for which SGI interrupts will be generated. Each bit corresponds to the
PE within a cluster with an Affinity 0 value equal to the bit number.

If a bit is 1 and the bit does not correspond to a valid target PE, the bit must be ignored by the
Distributor. It is IMPLEMENTATION DEFINED whether, in such cases, a Distributor can signal a system
error.

Note
 This restricts a system to sending targeted SGIs to PEs with an affinity 0 number that is less than 16.

If SRE is set only for Secure EL3, software executing at EL3 might use the System register interface
to generate SGIs. Therefore, the Distributor must always be able to receive and acknowledge
Generate SGI packets received from CPU interface regardless of the ARE settings for a Security
state. However, the Distributor might discard such packets.

If the IRM bit is 1, this field is RES0.

Accessing the ICC_SGI1R_EL1

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax is encoded with the following settings in the instruction encoding:

Accessibility

The register is accessible in software as follows:

<systemreg> op0 op1 CRn CRm op2

ICC_SGI1R_EL1 11 000 1100 1011 101

Control Accessibility

NS EL0 EL1 EL2 EL3

0 - WO n/a WO

1 - WO WO WO

1 - n/a WO WO
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-235
ID072617 Non-Confidential

8 Programmers’ Model
8.2 AArch64 System register descriptions
Note
 Accesses at EL3 are treated as Secure regardless of the value of SCR_EL3.NS.

Traps and Enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception
prioritization for exceptions taken to AArch64) in the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A
architecture profile. Subject to the prioritization rules:

• In both Security states, and not dependent on other bits:

— If ICC_SRE_EL1.SRE==0, write accesses to this register from EL1 are trapped to EL1.

— If ICC_SRE_EL2.SRE==0, write accesses to this register from EL2 are trapped to EL2.

— If ICC_SRE_EL3.SRE==0, write accesses to this register from EL3 are trapped to EL3.

• When EL2 is implemented and is using AArch64 and SCR_EL3.NS == 1:

— If HCR_EL2.FMO==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

— If HCR_EL2.IMO==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

• When SCR_EL3.NS == 1:

— If ICH_HCR_EL2.TC==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

• When EL3 is implemented and is using AArch64 and SCR_EL3.NS == 0:

— If SCR_EL3.FIQ==1, and SCR_EL3.IRQ==1, Secure write accesses to this register from EL1 are
trapped to EL3.

• When EL3 is implemented and is using AArch64:

— If SCR_EL3.FIQ==1, and SCR_EL3.IRQ==1, write accesses to this register from EL2 are trapped to
EL3.

• When EL3 is implemented and is using AArch64 and SCR_EL3.NS == 1:

— If SCR_EL3.FIQ==1, SCR_EL3.IRQ==1, HCR_EL2.IMO==0, and HCR_EL2.FMO==0,
Non-secure write accesses to this register from EL1 are trapped to EL3.
8-236 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.2 AArch64 System register descriptions
8.2.22 ICC_SRE_EL1, Interrupt Controller System Register Enable register (EL1)

The ICC_SRE_EL1 characteristics are:

Purpose

Controls whether the System register interface or the memory-mapped interface to the GIC CPU
interface is used for EL1.

Configurations

AArch64 System register ICC_SRE_EL1(S) is architecturally mapped to AArch32 System register
ICC_SRE (S).

AArch64 System register ICC_SRE_EL1(NS) is architecturally mapped to AArch32 System
register ICC_SRE (NS).

Attributes

ICC_SRE_EL1 is a 32-bit register.

Field descriptions

The ICC_SRE_EL1 bit assignments are:

Bits [31:3]

Reserved, RES0.

DIB, bit [2]

Disable IRQ bypass.

0 IRQ bypass enabled.

1 IRQ bypass disabled.

If EL3 is implemented and GICD_CTLR.DS == 0, this field is a read-only alias of
ICC_SRE_EL3.DIB.

If EL3 is implemented and GICD_CTLR.DS == 1, and EL2 is not implemented, this field is a
read-write alias of ICC_SRE_EL3.DIB.

If EL3 is not implemented or GICD_CTLR.DS == 1, and EL2 is implemented, this field is a
read-only alias of ICC_SRE_EL2.DIB.

In systems that do not support IRQ bypass, this field is RAO/WI.

When this register has an architecturally-defined reset value, if this field is implemented as an RW
field, it resets to 0.

DFB, bit [1]

Disable FIQ bypass.

0 FIQ bypass enabled.

1 FIQ bypass disabled.

If EL3 is implemented and GICD_CTLR.DS == 0, this field is a read-only alias of
ICC_SRE_EL3.DFB.

RES0

31 3 2 1 0

SRE
DFB
DIB
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-237
ID072617 Non-Confidential

8 Programmers’ Model
8.2 AArch64 System register descriptions
If EL3 is implemented and GICD_CTLR.DS == 1, and EL2 is not implemented, this field is a
read-write alias of ICC_SRE_EL3.DFB.

If EL3 is not implemented or GICD_CTLR.DS == 1, and EL2 is implemented, this field is a
read-only alias of ICC_SRE_EL2.DFB.

In systems that do not support FIQ bypass, this field is RAO/WI.

When this register has an architecturally-defined reset value, if this field is implemented as an RW
field, it resets to 0.

SRE, bit [0]

System Register Enable.

0 The memory-mapped interface must be used. Access at EL1 to any ICC_* System
register other than ICC_SRE_EL1 is trapped to EL1.

1 The System register interface for the current Security state is enabled.

If software changes this bit from 1 to 0 in the Secure instance of this register, the results are
UNPREDICTABLE.

If an implementation supports only a System register interface to the GIC CPU interface, this bit is
RAO/WI.

If EL3 is implemented and ICC_SRE_EL3.SRE==0 the Secure copy of this bit is RAZ/WI. If
{ICC_SRE_EL3.SRE is changed from zero to one, the Secure copy of this bit becomes UNKNOWN.

If EL2 is implemented and ICC_SRE_EL2.SRE==0 the Non-secure copy of this bit is RAZ/WI. If
ICC_SRE_EL2.SRE is changed from zero to one, the Non-secure copy of this bit becomes
UNKNOWN.

If EL3 is implemented and ICC_SRE_EL3.SRE==0 the Non-secure copy of this bit is RAZ/WI. If
ICC_SRE_EL3.SRE is changed from zero to one, the Non-secure copy of this bit becomes
UNKNOWN.

GICv3 implementations that do not require GICv2 compatibility might choose to make this bit
RAO/WI. The following options are supported:

• The Non-secure copy of ICC_SRE_EL1.SRE can be RAO/WI if ICC_SRE_EL2.SRE is also
RAO/WI. This means all Non-secure software, including VMs using only virtual interrupts,
must access the GIC using System registers.

• The Secure copy of ICC_SRE_EL1.SRE can be RAO/WI if ICC_SRE_EL3.SRE and
ICC_SRE_EL2.SRE are also RAO/WI. This means that all Secure software must access the
GIC using System registers and all Non-secure accesses to registers for physical interrupts
must use System registers.

Note
 A VM using only virtual interrupts might still use memory-mapped access if the Non-secure copy

of ICC_SRE_EL1.SRE is not RAO/WI.

When this register has an architecturally-defined reset value, if this field is implemented as an RW
field, it resets to 0.

Accessing the ICC_SRE_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>
8-238 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.2 AArch64 System register descriptions
This syntax is encoded with the following settings in the instruction encoding:

Accessibility

The register is accessible in software as follows:

Execution with ICC_SRE_EL1.SRE set to 0 might make some System registers UNKNOWN.

Traps and Enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception
prioritization for exceptions taken to AArch64) in the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A
architecture profile. Subject to the prioritization rules:

• In both Security states, and not dependent on other bits:

— If ICC_SRE_EL3.Enable==0, and EL3 is implemented, accesses to this register from EL1 and EL2
are trapped to EL3.

• When SCR_EL3.NS == 1:

— If ICC_SRE_EL2.Enable==0, and EL2 is implemented, Non-secure accesses to this register from EL1
are trapped to EL2.

<systemreg> op0 op1 CRn CRm op2

ICC_SRE_EL1 11 000 1100 1100 101

Control Accessibility
Instance

NS EL0 EL1 EL2 EL3

0 - RW n/a RW ICC_SRE_EL1_s

1 - RW RW RW ICC_SRE_EL1_ns

1 - n/a RW RW ICC_SRE_EL1_ns
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-239
ID072617 Non-Confidential

8 Programmers’ Model
8.2 AArch64 System register descriptions
8.2.23 ICC_SRE_EL2, Interrupt Controller System Register Enable register (EL2)

The ICC_SRE_EL2 characteristics are:

Purpose

Controls whether the System register interface or the memory-mapped interface to the GIC CPU
interface is used for EL2.

Configurations

AArch64 System register ICC_SRE_EL2 is architecturally mapped to AArch32 System register
ICC_HSRE.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

ICC_SRE_EL2 is a 32-bit register.

Field descriptions

The ICC_SRE_EL2 bit assignments are:

Bits [31:4]

Reserved, RES0.

Enable, bit [3]

Enable. Enables lower Exception level access to ICC_SRE_EL1.

0 Non-secure EL1 accesses to ICC_SRE_EL1 trap to EL2.

1 Non-secure EL1 accesses to ICC_SRE_EL1 do not trap to EL2.

If ICC_SRE_EL2.SRE is RAO/WI, an implementation is permitted to make the Enable bit
RAO/WI.

If ICC_SRE_EL2.SRE is 0, the Enable bit behaves as 1 for all purposes other than reading the value
of the bit.

DIB, bit [2]

Disable IRQ bypass.

0 IRQ bypass enabled.

1 IRQ bypass disabled.

If EL3 is implemented and GICD_CTLR.DS is 0, this field is a read-only alias of
ICC_SRE_EL3.DIB.

If EL3 is implemented and GICD_CTLR.DS is 1, this field is a read-write alias of
ICC_SRE_EL3.DIB.

In systems that do not support IRQ bypass, this bit is RAO/WI.

When this register has an architecturally-defined reset value, if this field is implemented as an RW
field, it resets to 0.

RES0

31 4 3 2 1 0

SRE
DFB
DIB

Enable
8-240 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.2 AArch64 System register descriptions
DFB, bit [1]

Disable FIQ bypass.

0 FIQ bypass enabled.

1 FIQ bypass disabled.

If EL3 is implemented and GICD_CTLR.DS is 0, this field is a read-only alias of
ICC_SRE_EL3.DFB.

If EL3 is implemented and GICD_CTLR.DS is 1, this field is a read-write alias of
ICC_SRE_EL3.DFB.

In systems that do not support FIQ bypass, this bit is RAO/WI.

When this register has an architecturally-defined reset value, if this field is implemented as an RW
field, it resets to 0.

SRE, bit [0]

System Register Enable.

0 The memory-mapped interface must be used. Access at EL2 to any ICH_* or ICC_*
register other than ICC_SRE_EL1 or ICC_SRE_EL2, is trapped to EL2.

1 The System register interface to the ICH_* registers and the EL1 and EL2 ICC_*
registers is enabled for EL2.

If software changes this bit from 1 to 0, the results are UNPREDICTABLE.

If an implementation supports only a System register interface to the GIC CPU interface, this bit is
RAO/WI.

If EL3 is implemented and ICC_SRE_EL3.SRE==0 this bit is RAZ/WI. If ICC_SRE_EL3.SRE is
changed from zero to one, this bit becomes UNKNOWN.

GICv3 implementations that do not require GICv2 compatibility might choose to make this bit
RAO/WI, but this is only allowed if ICC_SRE_EL3.SRE is also RAO/WI.

When this register has an architecturally-defined reset value, if this field is implemented as an RW
field, it resets to 0.

Accessing the ICC_SRE_EL2

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax is encoded with the following settings in the instruction encoding:

<systemreg> op0 op1 CRn CRm op2

ICC_SRE_EL2 11 100 1100 1001 101
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-241
ID072617 Non-Confidential

8 Programmers’ Model
8.2 AArch64 System register descriptions
Accessibility

The register is accessible in software as follows:

Execution with ICC_SRE_EL2.SRE set to 0 might make some System registers UNKNOWN.

Traps and Enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception
prioritization for exceptions taken to AArch64) in the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A
architecture profile. Subject to the prioritization rules:

• In both Security states, and not dependent on other bits:

— If ICC_SRE_EL3.Enable==0, accesses to this register from EL2 are trapped to EL3.

• When EL2 is implemented and is using AArch64 and SCR_EL3.NS == 1:

— If HCR_EL2.NV==1, Non-secure accesses to this register from EL1 are trapped to EL2.

Control Accessibility

NS EL0 EL1 EL2 EL3

0 - - n/a -

1 - - RW RW

1 - n/a RW RW
8-242 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.2 AArch64 System register descriptions
8.2.24 ICC_SRE_EL3, Interrupt Controller System Register Enable register (EL3)

The ICC_SRE_EL3 characteristics are:

Purpose

Controls whether the System register interface or the memory-mapped interface to the GIC CPU
interface is used for EL3.

Configurations

AArch64 System register ICC_SRE_EL3 can be mapped to AArch32 System register ICC_MSRE,
but this is not architecturally mandated.

Attributes

ICC_SRE_EL3 is a 32-bit register.

Field descriptions

The ICC_SRE_EL3 bit assignments are:

Bits [31:4]

Reserved, RES0.

Enable, bit [3]

Enable. Enables lower Exception level access to ICC_SRE_EL1 and ICC_SRE_EL2.

0 Secure EL1 accesses to Secure ICC_SRE_EL1 trap to EL3.
EL2 accesses to Non-secure ICC_SRE_EL1 and ICC_SRE_EL2 trap to EL3.
Non-secure EL1 accesses to ICC_SRE_EL1 trap to EL3, unless these accesses are
trapped to EL2 as a result of ICC_SRE_EL3.Enable == 0.

1 Secure EL1 accesses to Secure ICC_SRE_EL1 do not trap to EL3.
EL2 accesses to Non-secure ICC_SRE_EL1 and ICC_SRE_EL2 do not trap to EL3.
Non-secure EL1 accesses to ICC_SRE_EL1 do not trap to EL3.

If ICC_SRE_EL3.SRE is RAO/WI, an implementation is permitted to make the Enable bit
RAO/WI.

If ICC_SRE_EL3.SRE is 0, the Enable bit behaves as 1 for all purposes other than reading the value
of the bit.

DIB, bit [2]

Disable IRQ bypass.

0 IRQ bypass enabled.

1 IRQ bypass disabled.

In systems that do not support IRQ bypass, this bit is RAO/WI.

When this register has an architecturally-defined reset value, if this field is implemented as an RW
field, it resets to 0.

RES0

31 4 3 2 1 0

SRE
DFB
DIB

Enable
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-243
ID072617 Non-Confidential

8 Programmers’ Model
8.2 AArch64 System register descriptions
DFB, bit [1]

Disable FIQ bypass.

0 FIQ bypass enabled.

1 FIQ bypass disabled.

In systems that do not support FIQ bypass, this bit is RAO/WI.

When this register has an architecturally-defined reset value, if this field is implemented as an RW
field, it resets to 0.

SRE, bit [0]

System Register Enable.

0 The memory-mapped interface must be used. Access at EL3 to any ICH_* or ICC_*
register other than ICC_SRE_EL1, ICC_SRE_EL2, or ICC_SRE_EL3 is trapped to
EL3

1 The System register interface to the ICH_* registers and the EL1, EL2, and EL3 ICC_*
registers is enabled for EL3.

If software changes this bit from 1 to 0, the results are UNPREDICTABLE.

GICv3 implementations that do not require GICv2 compatibility might choose to make this bit
RAO/WI.

When this register has an architecturally-defined reset value, if this field is implemented as an RW
field, it resets to 0.

Accessing the ICC_SRE_EL3

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax is encoded with the following settings in the instruction encoding:

Accessibility

The register is accessible in software as follows:

This register is always System register accessible.

<systemreg> op0 op1 CRn CRm op2

ICC_SRE_EL3 11 110 1100 1100 101

Control Accessibility

NS EL0 EL1 EL2 EL3

0 - - n/a RW

1 - - - RW

1 - n/a - RW
8-244 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.2 AArch64 System register descriptions
Traps and Enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception
prioritization for exceptions taken to AArch64) in the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A
architecture profile. Subject to the prioritization rules:

• When EL2 is implemented and is using AArch64 and SCR_EL3.NS == 1:

— If HSTR_EL2.T12==1, Non-secure accesses to this register from EL1 are trapped to EL2.

— If ICC_SRE_EL2.Enable==0, Non-secure accesses to this register from EL1 are trapped to EL2.

• When EL3 is implemented and is using AArch64:

— If ICC_SRE_EL3.Enable==0, accesses to this register from EL2 are trapped to EL3.
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-245
ID072617 Non-Confidential

8 Programmers’ Model
8.3 AArch64 System register descriptions of the virtual registers
8.3 AArch64 System register descriptions of the virtual registers
This section describes each of the virtual AArch64 GIC System registers in register name order. The ICV prefix
indicates a virtual GIC CPU interface System register. Each AArch64 System register description contains a
reference to the AArch32 register that provides the same functionality.

Unless otherwise stated, the bit assignments for the GIC System registers are the same as those for the equivalent
GICC_* and GICV_* memory-mapped registers.

The ICV_* registers are only accessible at Non-secure EL1. Whether an access encoding maps to an ICC_* register
or the equivalent ICV_* register is determined by HCR_EL2, see Chapter 5 Virtual Interrupt Handling and
Prioritization. The equivalent virtual interface memory-mapped registers are described in The GIC virtual CPU
interface register descriptions on page 8-614.

The encodings for the virtual registers are the same as for the physical registers, see Table 8-21 on page 8-177.
8-246 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.3 AArch64 System register descriptions of the virtual registers
8.3.1 ICV_AP0R<n>_EL1, Interrupt Controller Virtual Active Priorities Group 0 Registers, n = 0 - 3

The ICV_AP0R<n>_EL1 characteristics are:

Purpose

Provides information about virtual Group 0 active priorities.

Configurations

AArch64 System register ICV_AP0R<n>_EL1 is architecturally mapped to AArch32 System
register ICV_AP0R<n>.

Attributes

ICV_AP0R<n>_EL1 is a 32-bit register.

Field descriptions

The ICV_AP0R<n>_EL1 bit assignments are:

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

This field resets to a value that is architecturally UNKNOWN.

The contents of these registers are IMPLEMENTATION DEFINED with the one architectural requirement that the value
0x00000000 is consistent with no interrupts being active.

Accessing the ICV_AP0R<n>_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax is encoded with the following settings in the instruction encoding:

When HCR_EL2.FMO is set to 0, execution of this encoding at Non-secure EL1 results in an access to
ICC_AP0R<n>_EL1.

IMPLEMENTATION DEFINED

31 0

<systemreg> op0 op1 CRn CRm op2

ICC_AP0R<n>_EL1 11 000 1100 1000 1:n<1:0>
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-247
ID072617 Non-Confidential

8 Programmers’ Model
8.3 AArch64 System register descriptions of the virtual registers
Accessibility

The register is accessible in software as follows:

The ICV_AP0R<n>_EL1 registers are only accessible at Non-secure EL1 when HCR_EL2.FMO is set to 1.

Note
 When HCR_EL2.FMO is set to 0, at Non-secure EL1, the instruction encoding to access ICV_AP0R<n>_EL1
results in an access to ICC_AP0R<n>_EL1.

Writing to these registers with any value other than the last read value of the register (or 0x00000000 when there are
no Group 0 active priorities) might result in UNPREDICTABLE behavior of the virtual interrupt prioritization system,
causing:

• Interrupts that should preempt execution to not preempt execution.

• Interrupts that should not preempt execution to preempt execution.

ICV_AP0R1_EL1 is only implemented in implementations that support 6 or more bits of priority.
ICV_AP0R2_EL1 and ICV_AP0R3_EL1 are only implemented in implementations that support 7 bits of priority.
Unimplemented registers are UNDEFINED.

Writing to the active priority registers in any order other than the following order might result in UNPREDICTABLE
behavior of the interrupt prioritization system:

• ICV_AP0R<n>_EL1.

• ICV_AP1R<n>_EL1.

Traps and Enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception
prioritization for exceptions taken to AArch64) in the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A
architecture profile. Subject to the prioritization rules:

• In both Security states, and not dependent on other bits:

— If ICC_SRE_EL1.SRE==0, Non-secure accesses to this register from EL1 are trapped to EL1.

• When SCR_EL3.NS == 1:

— If ICH_HCR_EL2.TALL0==1, Non-secure accesses to this register from EL1 are trapped to EL2.

Control Accessibility

FMO IMO NS EL0 EL1 EL2 EL3

x x 0 - ICC_AP0R<n>_EL1 n/a ICC_AP0R<n>_EL1

x x 1 - n/a ICC_AP0R<n>_EL1 ICC_AP0R<n>_EL1

0 x 1 - ICC_AP0R<n>_EL1 ICC_AP0R<n>_EL1 ICC_AP0R<n>_EL1

1 x 1 - RW ICC_AP0R<n>_EL1 ICC_AP0R<n>_EL1
8-248 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.3 AArch64 System register descriptions of the virtual registers
8.3.2 ICV_AP1R<n>_EL1, Interrupt Controller Virtual Active Priorities Group 1 Registers, n = 0 - 3

The ICV_AP1R<n>_EL1 characteristics are:

Purpose

Provides information about virtual Group 1 active priorities.

Configurations

AArch64 System register ICV_AP1R<n>_EL1 is architecturally mapped to AArch32 System
register ICV_AP1R<n>.

Attributes

ICV_AP1R<n>_EL1 is a 32-bit register.

Field descriptions

The ICV_AP1R<n>_EL1 bit assignments are:

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

This field resets to a value that is architecturally UNKNOWN.

The contents of these registers are IMPLEMENTATION DEFINED with the one architectural requirement that the value
0x00000000 is consistent with no interrupts being active.

Accessing the ICV_AP1R<n>_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax is encoded with the following settings in the instruction encoding:

When HCR_EL2.IMO is set to 0, execution of this encoding at Non-secure EL1 results in an access to
ICC_AP1R<n>_EL1.

IMPLEMENTATION DEFINED

31 0

<systemreg> op0 op1 CRn CRm op2

ICC_AP1R<n>_EL1 11 000 1100 1001 0:n<1:0>
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-249
ID072617 Non-Confidential

8 Programmers’ Model
8.3 AArch64 System register descriptions of the virtual registers
Accessibility

The register is accessible in software as follows:

The ICV_AP1R<n>_EL1 registers are only accessible at Non-secure EL1 when HCR_EL2.IMO == 1.

Note
 When HCR_EL2.IMO is set to 0, at Non-secure EL1, the instruction encoding to access ICV_AP1R<n>_EL1
results in an access to ICC_AP1R<n>_EL1.

Writing to these registers with any value other than the last read value of the register (or 0x00000000 when there are
no Group 1 active priorities) might result in UNPREDICTABLE behavior of the virtual interrupt prioritization system,
causing:

• Interrupts that should preempt execution to not preempt execution.

• Interrupts that should not preempt execution to preempt execution.

ICV_AP1R1_EL1 is only implemented in implementations that support 6 or more bits of priority.
ICV_AP1R2_EL1 and ICV_AP1R3_EL1 are only implemented in implementations that support 7 bits of priority.
Unimplemented registers are UNDEFINED.

Writing to the active priority registers in any order other than the following order might result in UNPREDICTABLE
behavior of the interrupt prioritization system:

• ICV_AP0R<n>_EL1.

• ICV_AP1R<n>_EL1.

Traps and Enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception
prioritization for exceptions taken to AArch64) in the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A
architecture profile. Subject to the prioritization rules:

• In both Security states, and not dependent on other bits:

— If ICC_SRE_EL1.SRE==0, Non-secure accesses to this register from EL1 are trapped to EL1.

• When SCR_EL3.NS == 1:

— If ICH_HCR_EL2.TALL1==1, Non-secure accesses to this register from EL1 are trapped to EL2.

Control Accessibility

FMO IMO NS EL0 EL1 EL2 EL3

x x 0 - ICC_AP1R<n>_EL1 n/a ICC_AP1R<n>_EL1

x x 1 - n/a ICC_AP1R<n>_EL1 ICC_AP1R<n>_EL1

x 0 1 - ICC_AP1R<n>_EL1 ICC_AP1R<n>_EL1 ICC_AP1R<n>_EL1

x 1 1 - RW ICC_AP1R<n>_EL1 ICC_AP1R<n>_EL1
8-250 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.3 AArch64 System register descriptions of the virtual registers
8.3.3 ICV_BPR0_EL1, Interrupt Controller Virtual Binary Point Register 0

The ICV_BPR0_EL1 characteristics are:

Purpose

Defines the point at which the priority value fields split into two parts, the group priority field and
the subpriority field. The group priority field determines virtual Group 0 interrupt preemption.

Configurations

AArch64 System register ICV_BPR0_EL1 is architecturally mapped to AArch32 System register
ICV_BPR0.

Attributes

ICV_BPR0_EL1 is a 32-bit register.

Field descriptions

The ICV_BPR0_EL1 bit assignments are:

Bits [31:3]

Reserved, RES0.

BinaryPoint, bits [2:0]

The value of this field controls how the 8-bit interrupt priority field is split into a group priority field,
that determines interrupt preemption, and a subpriority field. This is done as follows:

Accessing the ICV_BPR0_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

RES0

31 3 2 0

BinaryPoint

Binary point value Group priority field Subpriority field Field with binary point

0 [7:1] [0] ggggggg.s

1 [7:2] [1:0] gggggg.ss

2 [7:3] [2:0] ggggg.sss

3 [7:4] [3:0] gggg.ssss

4 [7:5] [4:0] ggg.sssss

5 [7:6] [5:0] gg.ssssss

6 [7] [6:0] g.sssssss

7 No preemption [7:0] .ssssssss
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-251
ID072617 Non-Confidential

8 Programmers’ Model
8.3 AArch64 System register descriptions of the virtual registers
This syntax is encoded with the following settings in the instruction encoding:

When HCR_EL2.FMO is set to 0, execution of this encoding at Non-secure EL1 results in an access to
ICC_BPR0_EL1.

Accessibility

The register is accessible in software as follows:

ICV_BPR0_EL1 is only accessible at Non-secure EL1 when HCR_EL2.FMO is set to 1.

Note
 When HCR_EL2.FMO is set to 0, at Non-secure EL1, the instruction encoding to access ICV_BPR0_EL1 results
in an access to ICC_BPR0_EL1.

The minimum binary point value is derived from the number of implemented preemption bits, as shown in the
following table:

The number of implemented preemption bits is indicated by ICH_VTR_EL2.PREbits.

An attempt to program the binary point field to a value less than the minimum value sets the field to the minimum
value. On a reset, the binary point field is UNKNOWN.

Traps and Enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception
prioritization for exceptions taken to AArch64) in the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A
architecture profile. Subject to the prioritization rules:

• In both Security states, and not dependent on other bits:

— If ICC_SRE_EL1.SRE==0, Non-secure accesses to this register from EL1 are trapped to EL1.

<systemreg> op0 op1 CRn CRm op2

ICC_BPR0_EL1 11 000 1100 1000 011

Control Accessibility

FMO IMO NS EL0 EL1 EL2 EL3

x x 0 - ICC_BPR0_EL1 n/a ICC_BPR0_EL1

x x 1 - n/a ICC_BPR0_EL1 ICC_BPR0_EL1

0 x 1 - ICC_BPR0_EL1 ICC_BPR0_EL1 ICC_BPR0_EL1

1 x 1 - RW ICC_BPR0_EL1 ICC_BPR0_EL1

Number of implemented preemption bits Minimum value of BPR0

7 0

6 1

5 2
8-252 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.3 AArch64 System register descriptions of the virtual registers
• When SCR_EL3.NS == 1:

— If ICH_HCR_EL2.TALL0==1, Non-secure accesses to this register from EL1 are trapped to EL2.
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-253
ID072617 Non-Confidential

8 Programmers’ Model
8.3 AArch64 System register descriptions of the virtual registers
8.3.4 ICV_BPR1_EL1, Interrupt Controller Virtual Binary Point Register 1

The ICV_BPR1_EL1 characteristics are:

Purpose

Defines the point at which the priority value fields split into two parts, the group priority field and
the subpriority field. The group priority field determines virtual Group 1 interrupt preemption.

Configurations

AArch64 System register ICV_BPR1_EL1 is architecturally mapped to AArch32 System register
ICV_BPR1.

Attributes

ICV_BPR1_EL1 is a 32-bit register.

Field descriptions

The ICV_BPR1_EL1 bit assignments are:

Bits [31:3]

Reserved, RES0.

BinaryPoint, bits [2:0]

If the GIC is configured to use separate binary point fields for virtual Group 0 and virtual Group 1
interrupts, the value of this field controls how the 8-bit interrupt priority field is split into a group
priority field, that determines interrupt preemption, and a subpriority field. This is done as follows:

Writing 0 to this field will set this field to its reset value, which is IMPLEMENTATION DEFINED and
non-zero.

If ICV_CTLR_EL1.CBPR is set to 1, Non-secure EL1 reads return ICV_BPR0_EL1 + 1 saturated
to 0b111. Non-secure EL1 writes are ignored.

RES0

31 3 2 0

BinaryPoint

Binary point value Group priority field Subpriority field Field with binary point

0 - - -

1 [7:1] [0] ggggggg.s

2 [7:2] [1:0] gggggg.ss

3 [7:3] [2:0] ggggg.sss

4 [7:4] [3:0] gggg.ssss

5 [7:5] [4:0] ggg.sssss

6 [7:6] [5:0] gg.ssssss

7 [7] [6:0] g.sssssss
8-254 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.3 AArch64 System register descriptions of the virtual registers
Accessing the ICV_BPR1_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax is encoded with the following settings in the instruction encoding:

When HCR_EL2.IMO is set to 0, execution of this encoding at Non-secure EL1 results in an access to
ICC_BPR1_EL1.

Accessibility

The register is accessible in software as follows:

ICV_BPR1_EL1 is only accessible at Non-secure EL1 when HCR_EL2.IMO is set to 1.

Note
 When HCR_EL2.IMO is set to 0, at Non-secure EL1, the instruction encoding to access ICV_BPR1_EL1 results in
an access to ICC_BPR1_EL1.

The reset value is IMPLEMENTATION DEFINED, but is equal to the minimum value of ICV_BPR0_EL1 plus one.

An attempt to program the binary point field to a value less than the reset value sets the field to the reset value.

Traps and Enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception
prioritization for exceptions taken to AArch64) in the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A
architecture profile. Subject to the prioritization rules:

• In both Security states, and not dependent on other bits:

— If ICC_SRE_EL1.SRE==0, Non-secure accesses to this register from EL1 are trapped to EL1.

• When SCR_EL3.NS == 1:

— If ICH_HCR_EL2.TALL1==1, Non-secure accesses to this register from EL1 are trapped to EL2.

<systemreg> op0 op1 CRn CRm op2

ICC_BPR1_EL1 11 000 1100 1100 011

Control Accessibility

FMO IMO NS EL0 EL1 EL2 EL3

x x 0 - ICC_BPR1_EL1 n/a ICC_BPR1_EL1

x x 1 - n/a ICC_BPR1_EL1 ICC_BPR1_EL1

x 0 1 - ICC_BPR1_EL1 ICC_BPR1_EL1 ICC_BPR1_EL1

x 1 1 - RW ICC_BPR1_EL1 ICC_BPR1_EL1
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-255
ID072617 Non-Confidential

8 Programmers’ Model
8.3 AArch64 System register descriptions of the virtual registers
8.3.5 ICV_CTLR_EL1, Interrupt Controller Virtual Control Register

The ICV_CTLR_EL1 characteristics are:

Purpose

Controls aspects of the behavior of the GIC virtual CPU interface and provides information about
the features implemented.

Configurations

AArch64 System register ICV_CTLR_EL1 is architecturally mapped to AArch32 System register
ICV_CTLR.

Attributes

ICV_CTLR_EL1 is a 32-bit register.

Field descriptions

The ICV_CTLR_EL1 bit assignments are:

Bits [31:19]

Reserved, RES0.

RSS, bit [18]

Range Selector Support. Possible values are:

0 Targeted SGIs with affinity level 0 values of 0 - 15 are supported.

1 Targeted SGIs with affinity level 0 values of 0 - 255 are supported.

This bit is read-only.

Bits [17:16]

Reserved, RES0.

A3V, bit [15]

Affinity 3 Valid. Read-only and writes are ignored. Possible values are:

0 The virtual CPU interface logic only supports zero values of Affinity 3 in SGI
generation System registers.

1 The virtual CPU interface logic supports non-zero values of Affinity 3 in SGI generation
System registers.

SEIS, bit [14]

SEI Support. Read-only and writes are ignored. Indicates whether the virtual CPU interface
supports local generation of SEIs:

0 The virtual CPU interface logic does not support local generation of SEIs.

1 The virtual CPU interface logic supports local generation of SEIs.

RES0

31 19 18 17 16 15 14

IDbits

13 11

PRIbits

10 8

RES0

7 2 1 0

RSS
RES0

CBPR
EOImode

SEIS
A3V
8-256 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.3 AArch64 System register descriptions of the virtual registers
IDbits, bits [13:11]

Identifier bits. Read-only and writes are ignored. The number of virtual interrupt identifier bits
supported:

000 16 bits.

001 24 bits.

All other values are reserved.

PRIbits, bits [10:8]

Priority bits. Read-only and writes are ignored. The number of priority bits implemented, minus
one.

An implementation must implement at least 32 levels of physical priority (5 priority bits).

Note
 This field always returns the number of priority bits implemented.

The division between group priority and subpriority is defined in the binary point registers
ICV_BPR0_EL1 and ICV_BPR1_EL1.

Bits [7:2]

Reserved, RES0.

EOImode, bit [1]

Virtual EOI mode. Controls whether a write to an End of Interrupt register also deactivates the
virtual interrupt:

0 ICV_EOIR0_EL1 and ICV_EOIR1_EL1 provide both priority drop and interrupt
deactivation functionality. Accesses to ICV_DIR_EL1 are UNPREDICTABLE.

1 ICV_EOIR0_EL1 and ICV_EOIR1_EL1 provide priority drop functionality only.
ICV_DIR_EL1 provides interrupt deactivation functionality.

This field resets to a value that is architecturally UNKNOWN.

CBPR, bit [0]

Common Binary Point Register. Controls whether the same register is used for interrupt preemption
of both virtual Group 0 and virtual Group 1 interrupts:

0 ICV_BPR0_EL1 determines the preemption group for virtual Group 0 interrupts only.
ICV_BPR1_EL1 determines the preemption group for virtual Group 1 interrupts.

1 ICV_BPR0_EL1 determines the preemption group for both virtual Group 0 and virtual
Group 1 interrupts.
Reads of ICV_BPR1_EL1 return ICV_BPR0_EL1 plus one, saturated to 0b111. Writes
to ICV_BPR1_EL1 are ignored.

This field resets to a value that is architecturally UNKNOWN.

Accessing the ICV_CTLR_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-257
ID072617 Non-Confidential

8 Programmers’ Model
8.3 AArch64 System register descriptions of the virtual registers
This syntax is encoded with the following settings in the instruction encoding:

When HCR_EL2.{FMO, IMO} == {0, 0}, execution of this encoding at Non-secure EL1 results in an access to
ICC_CTLR_EL1.

Accessibility

The register is accessible in software as follows:

ICV_CTLR_EL1 is only accessible at Non-secure EL1 when HCR_EL2.{FMO, IMO} != {0, 0}.

Note
 When HCR_EL2.{FMO, IMO} == {0, 0}, at Non-secure EL1, the instruction encoding to access ICV_CTLR_EL1
results in an access to ICC_CTLR_EL1.

Traps and Enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception
prioritization for exceptions taken to AArch64) in the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A
architecture profile. Subject to the prioritization rules:

• In both Security states, and not dependent on other bits:

— If ICC_SRE_EL1.SRE==0, Non-secure accesses to this register from EL1 are trapped to EL1.

• When SCR_EL3.NS == 1:

— If ICH_HCR_EL2.TC==1, Non-secure accesses to this register from EL1 are trapped to EL2.

<systemreg> op0 op1 CRn CRm op2

ICC_CTLR_EL1 11 000 1100 1100 100

Control Accessibility

FMO IMO NS EL0 EL1 EL2 EL3

x x 0 - ICC_CTLR_EL1 n/a ICC_CTLR_EL1

x x 1 - n/a ICC_CTLR_EL1 ICC_CTLR_EL1

x 1 1 - RW ICC_CTLR_EL1 ICC_CTLR_EL1

1 x 1 - RW ICC_CTLR_EL1 ICC_CTLR_EL1

0 0 1 - ICC_CTLR_EL1 ICC_CTLR_EL1 ICC_CTLR_EL1
8-258 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.3 AArch64 System register descriptions of the virtual registers
8.3.6 ICV_DIR_EL1, Interrupt Controller Deactivate Virtual Interrupt Register

The ICV_DIR_EL1 characteristics are:

Purpose

When interrupt priority drop is separated from interrupt deactivation, a write to this register
deactivates the specified virtual interrupt.

Configurations

AArch64 System register ICV_DIR_EL1 performs the same function as AArch32 System register
ICV_DIR.

Attributes

ICV_DIR_EL1 is a 32-bit register.

Field descriptions

The ICV_DIR_EL1 bit assignments are:

Bits [31:24]

Reserved, RES0.

INTID, bits [23:0]

The INTID of the virtual interrupt to be deactivated.

This field has either 16 or 24 bits implemented. The number of implemented bits can be found in
ICV_CTLR_EL1.IDbits. If only 16 bits are implemented, bits [23:16] of this register are RES0.

Accessing the ICV_DIR_EL1

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax is encoded with the following settings in the instruction encoding:

This encoding results in an access to ICV_DIR_EL1 at Non-secure EL1 in the following cases:

• When HCR_EL2.FMO is set to 1.

• When HCR_EL2.IMO is set to 1.

This encoding results in an access to ICC_DIR_EL1 at Non-secure EL1 in the following cases:

• When HCR_EL2.{FMO, IMO} == {0, 0}.

RES0

31 24

INTID

23 0

<systemreg> op0 op1 CRn CRm op2

ICC_DIR_EL1 11 000 1100 1011 001
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-259
ID072617 Non-Confidential

8 Programmers’ Model
8.3 AArch64 System register descriptions of the virtual registers
Accessibility

The register is accessible in software as follows:

The ICV_DIR_EL1 register is only accessible at Non-secure EL1 in the following cases:

• When HCR_EL2.FMO is set to 1.

• When HCR_EL2.IMO is set to 1.

Note
 At Non-secure EL1, the instruction encoding to access ICV_DIR_EL1 results in an access to ICC_DIR_EL1 when
HCR_EL2.{FMO, IMO} == {0, 0}.

When EOImode == 0, writes are ignored In systems supporting system error generation, an implementation might
generate an SEI.

Traps and Enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception
prioritization for exceptions taken to AArch64) in the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A
architecture profile. Subject to the prioritization rules:

• In both Security states, and not dependent on other bits:

— If ICC_SRE_EL1.SRE==0, Non-secure write accesses to this register from EL1 are trapped to EL1.

• When SCR_EL3.NS == 1:

— If ICH_HCR_EL2.TC==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

— If ICH_HCR_EL2.TDIR==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

Control Accessibility

FMO IMO NS EL0 EL1 EL2 EL3

x x 0 - ICC_DIR_EL1 n/a ICC_DIR_EL1

x x 1 - n/a ICC_DIR_EL1 ICC_DIR_EL1

x 1 1 - WO ICC_DIR_EL1 ICC_DIR_EL1

1 x 1 - WO ICC_DIR_EL1 ICC_DIR_EL1

0 0 1 - ICC_DIR_EL1 ICC_DIR_EL1 ICC_DIR_EL1
8-260 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.3 AArch64 System register descriptions of the virtual registers
8.3.7 ICV_EOIR0_EL1, Interrupt Controller Virtual End Of Interrupt Register 0

The ICV_EOIR0_EL1 characteristics are:

Purpose

A PE writes to this register to inform the CPU interface that it has completed the processing of the
specified virtual Group 0 interrupt.

Configurations

AArch64 System register ICV_EOIR0_EL1 performs the same function as AArch32 System
register ICV_EOIR0.

Attributes

ICV_EOIR0_EL1 is a 32-bit register.

Field descriptions

The ICV_EOIR0_EL1 bit assignments are:

Bits [31:24]

Reserved, RES0.

INTID, bits [23:0]

The INTID from the corresponding ICV_IAR0_EL1 access.

This field has either 16 or 24 bits implemented. The number of implemented bits can be found in
ICV_CTLR_EL1.IDbits. If only 16 bits are implemented, bits [23:16] of this register are RES0.

If the ICV_CTLR.EOImode bit is 0, a write to this register drops the priority for the virtual interrupt,
and also deactivates the virtual interrupt.

If the ICV_CTLR.EOImode bit is 1, a write to this register only drops the priority for the virtual
interrupt. Software must write to ICV_DIR_EL1 to deactivate the virtual interrupt.

Accessing the ICV_EOIR0_EL1

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax is encoded with the following settings in the instruction encoding:

When HCR_EL2.FMO is set to 0, execution of this encoding at Non-secure EL1 results in an access to
ICC_EOIR0_EL1.

RES0

31 24

INTID

23 0

<systemreg> op0 op1 CRn CRm op2

ICC_EOIR0_EL1 11 000 1100 1000 001
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-261
ID072617 Non-Confidential

8 Programmers’ Model
8.3 AArch64 System register descriptions of the virtual registers
Accessibility

The register is accessible in software as follows:

ICV_EOIR0_EL1 is only accessible at Non-secure EL1 when HCR_EL2.FMO is set to 1.

Note
 When HCR_EL2.FMO is set to 0, at Non-secure EL1, the instruction encoding to access ICV_EOIR0_EL1 results
in an access to ICC_EOIR0_EL1.

A write to this register must correspond to the most recent valid read by this vPE from a Virtual Interrupt
Acknowledge Register, and must correspond to the INTID that was read from ICV_IAR0_EL1, otherwise the
system behavior is UNPREDICTABLE. A valid read is a read that returns a valid INTID that is not a special INTID.

Traps and Enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception
prioritization for exceptions taken to AArch64) in the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A
architecture profile. Subject to the prioritization rules:

• In both Security states, and not dependent on other bits:

— If ICC_SRE_EL1.SRE==0, Non-secure write accesses to this register from EL1 are trapped to EL1.

• When SCR_EL3.NS == 1:

— If ICH_HCR_EL2.TALL0==1, Non-secure write accesses to this register from EL1 are trapped to
EL2.

Control Accessibility

FMO IMO NS EL0 EL1 EL2 EL3

x x 0 - ICC_EOIR0_EL1 n/a ICC_EOIR0_EL1

x x 1 - n/a ICC_EOIR0_EL1 ICC_EOIR0_EL1

0 x 1 - ICC_EOIR0_EL1 ICC_EOIR0_EL1 ICC_EOIR0_EL1

1 x 1 - WO ICC_EOIR0_EL1 ICC_EOIR0_EL1
8-262 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.3 AArch64 System register descriptions of the virtual registers
8.3.8 ICV_EOIR1_EL1, Interrupt Controller Virtual End Of Interrupt Register 1

The ICV_EOIR1_EL1 characteristics are:

Purpose

A PE writes to this register to inform the CPU interface that it has completed the processing of the
specified virtual Group 1 interrupt.

Configurations

AArch64 System register ICV_EOIR1_EL1 performs the same function as AArch32 System
register ICV_EOIR1.

Attributes

ICV_EOIR1_EL1 is a 32-bit register.

Field descriptions

The ICV_EOIR1_EL1 bit assignments are:

Bits [31:24]

Reserved, RES0.

INTID, bits [23:0]

The INTID from the corresponding ICV_IAR1_EL1 access.

This field has either 16 or 24 bits implemented. The number of implemented bits can be found in
ICV_CTLR_EL1.IDbits. If only 16 bits are implemented, bits [23:16] of this register are RES0.

If the ICV_CTLR.EOImode bit is 0, a write to this register drops the priority for the virtual interrupt,
and also deactivates the virtual interrupt.

If the ICV_CTLR.EOImode bit is 1, a write to this register only drops the priority for the virtual
interrupt. Software must write to ICV_DIR_EL1 to deactivate the virtual interrupt.

Accessing the ICV_EOIR1_EL1

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax is encoded with the following settings in the instruction encoding:

When HCR_EL2.IMO is set to 0, execution of this encoding at Non-secure EL1 results in an access to
ICC_EOIR1_EL1.

RES0

31 24

INTID

23 0

<systemreg> op0 op1 CRn CRm op2

ICC_EOIR1_EL1 11 000 1100 1100 001
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-263
ID072617 Non-Confidential

8 Programmers’ Model
8.3 AArch64 System register descriptions of the virtual registers
Accessibility

The register is accessible in software as follows:

ICV_EOIR1_EL1 is only accessible at Non-secure EL1 when HCR_EL2.IMO is set to 1.

Note
 When HCR_EL2.IMO is set to 0, at Non-secure EL1, the instruction encoding to access ICV_EOIR1_EL1 results
in an access to ICC_EOIR1_EL1.

A write to this register must correspond to the most recent valid read by this vPE from a Virtual Interrupt
Acknowledge Register, and must correspond to the INTID that was read from ICV_IAR1_EL1, otherwise the
system behavior is UNPREDICTABLE. A valid read is a read that returns a valid INTID that is not a special INTID.

Traps and Enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception
prioritization for exceptions taken to AArch64) in the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A
architecture profile. Subject to the prioritization rules:

• In both Security states, and not dependent on other bits:

— If ICC_SRE_EL1.SRE==0, Non-secure write accesses to this register from EL1 are trapped to EL1.

• When SCR_EL3.NS == 1:

— If ICH_HCR_EL2.TALL1==1, Non-secure write accesses to this register from EL1 are trapped to
EL2.

Control Accessibility

FMO IMO NS EL0 EL1 EL2 EL3

x x 0 - ICC_EOIR1_EL1 n/a ICC_EOIR1_EL1

x x 1 - n/a ICC_EOIR1_EL1 ICC_EOIR1_EL1

x 0 1 - ICC_EOIR1_EL1 ICC_EOIR1_EL1 ICC_EOIR1_EL1

x 1 1 - WO ICC_EOIR1_EL1 ICC_EOIR1_EL1
8-264 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.3 AArch64 System register descriptions of the virtual registers
8.3.9 ICV_HPPIR0_EL1, Interrupt Controller Virtual Highest Priority Pending Interrupt Register 0

The ICV_HPPIR0_EL1 characteristics are:

Purpose

Indicates the highest priority pending virtual Group 0 interrupt on the virtual CPU interface.

Configurations

AArch64 System register ICV_HPPIR0_EL1 performs the same function as AArch32 System
register ICV_HPPIR0.

Attributes

ICV_HPPIR0_EL1 is a 32-bit register.

Field descriptions

The ICV_HPPIR0_EL1 bit assignments are:

Bits [31:24]

Reserved, RES0.

INTID, bits [23:0]

The INTID of the highest priority pending virtual interrupt.

If the highest priority pending interrupt is not observable, this field contains a special INTID to
indicate the reason. This special INTID can take the value 1023 only. See Special INTIDs on
page 2-32, for more information.

This field has either 16 or 24 bits implemented. The number of implemented bits can be found in
ICV_CTLR_EL1.IDbits. If only 16 bits are implemented, bits [23:16] of this register are RES0.

Accessing the ICV_HPPIR0_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This syntax is encoded with the following settings in the instruction encoding:

When HCR_EL2.FMO is set to 0, execution of this encoding at Non-secure EL1 results in an access to
ICC_HPPIR0_EL1.

RES0

31 24

INTID

23 0

<systemreg> op0 op1 CRn CRm op2

ICC_HPPIR0_EL1 11 000 1100 1000 010
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-265
ID072617 Non-Confidential

8 Programmers’ Model
8.3 AArch64 System register descriptions of the virtual registers
Accessibility

The register is accessible in software as follows:

ICV_HPPIR0_EL1 is only accessible at Non-secure EL1 when HCR_EL2.FMO is set to 1.

Note
 When HCR_EL2.FMO is set to 0, at Non-secure EL1, the instruction encoding to access ICV_HPPIR0_EL1 results
in an access to ICC_HPPIR0_EL1.

Traps and Enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception
prioritization for exceptions taken to AArch64) in the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A
architecture profile. Subject to the prioritization rules:

• In both Security states, and not dependent on other bits:

— If ICC_SRE_EL1.SRE==0, Non-secure read accesses to this register from EL1 are trapped to EL1.

• When SCR_EL3.NS == 1:

— If ICH_HCR_EL2.TALL0==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

Control Accessibility

FMO IMO NS EL0 EL1 EL2 EL3

x x 0 - ICC_HPPIR0_EL1 n/a ICC_HPPIR0_EL1

x x 1 - n/a ICC_HPPIR0_EL1 ICC_HPPIR0_EL1

0 x 1 - ICC_HPPIR0_EL1 ICC_HPPIR0_EL1 ICC_HPPIR0_EL1

1 x 1 - RO ICC_HPPIR0_EL1 ICC_HPPIR0_EL1
8-266 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.3 AArch64 System register descriptions of the virtual registers
8.3.10 ICV_HPPIR1_EL1, Interrupt Controller Virtual Highest Priority Pending Interrupt Register 1

The ICV_HPPIR1_EL1 characteristics are:

Purpose

Indicates the highest priority pending virtual Group 1 interrupt on the virtual CPU interface.

Configurations

AArch64 System register ICV_HPPIR1_EL1 performs the same function as AArch32 System
register ICV_HPPIR1.

Attributes

ICV_HPPIR1_EL1 is a 32-bit register.

Field descriptions

The ICV_HPPIR1_EL1 bit assignments are:

Bits [31:24]

Reserved, RES0.

INTID, bits [23:0]

The INTID of the highest priority pending virtual interrupt.

If the highest priority pending interrupt is not observable, this field contains a special INTID to
indicate the reason. This special INTID can take the value 1023 only. See Special INTIDs on
page 2-32, for more information.

This field has either 16 or 24 bits implemented. The number of implemented bits can be found in
ICV_CTLR_EL1.IDbits. If only 16 bits are implemented, bits [23:16] of this register are RES0.

Accessing the ICV_HPPIR1_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This syntax is encoded with the following settings in the instruction encoding:

When HCR_EL2.IMO is set to 0, execution of this encoding at Non-secure EL1 results in an access to
ICC_HPPIR1_EL1.

RES0

31 24

INTID

23 0

<systemreg> op0 op1 CRn CRm op2

ICC_HPPIR1_EL1 11 000 1100 1100 010
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-267
ID072617 Non-Confidential

8 Programmers’ Model
8.3 AArch64 System register descriptions of the virtual registers
Accessibility

The register is accessible in software as follows:

ICV_HPPIR1_EL1 is only accessible at Non-secure EL1 when HCR_EL2.IMO is set to 1.

Note
 When HCR_EL2.IMO is set to 0, at Non-secure EL1, the instruction encoding to access ICV_HPPIR1_EL1 results
in an access to ICC_HPPIR1_EL1.

Traps and Enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception
prioritization for exceptions taken to AArch64) in the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A
architecture profile. Subject to the prioritization rules:

• In both Security states, and not dependent on other bits:

— If ICC_SRE_EL1.SRE==0, Non-secure read accesses to this register from EL1 are trapped to EL1.

• When SCR_EL3.NS == 1:

— If ICH_HCR_EL2.TALL1==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

Control Accessibility

FMO IMO NS EL0 EL1 EL2 EL3

x x 0 - ICC_HPPIR1_EL1 n/a ICC_HPPIR1_EL1

x x 1 - n/a ICC_HPPIR1_EL1 ICC_HPPIR1_EL1

x 0 1 - ICC_HPPIR1_EL1 ICC_HPPIR1_EL1 ICC_HPPIR1_EL1

x 1 1 - RO ICC_HPPIR1_EL1 ICC_HPPIR1_EL1
8-268 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.3 AArch64 System register descriptions of the virtual registers
8.3.11 ICV_IAR0_EL1, Interrupt Controller Virtual Interrupt Acknowledge Register 0

The ICV_IAR0_EL1 characteristics are:

Purpose

The PE reads this register to obtain the INTID of the signaled virtual Group 0 interrupt. This read
acts as an acknowledge for the interrupt.

Configurations

AArch64 System register ICV_IAR0_EL1 performs the same function as AArch32 System register
ICV_IAR0.

To allow software to ensure appropriate observability of actions initiated by GIC register accesses,
the PE and CPU interface logic must ensure that reads of this register are self-synchronising when
interrupts are masked by the PE (that is when PSTATE.{I,F} == {0,0}). This ensures that the effect
of activating an interrupt on the signaling of interrupt exceptions is observed when a read of this
register is architecturally executed so that no spurious interrupt exception occurs if interrupts are
unmasked by an instruction immediately following the read. See Observability of the effects of
accesses to the GIC registers on page 8-157, for more information.

Attributes

ICV_IAR0_EL1 is a 32-bit register.

Field descriptions

The ICV_IAR0_EL1 bit assignments are:

Bits [31:24]

Reserved, RES0.

INTID, bits [23:0]

The INTID of the signaled virtual interrupt.

This is the INTID of the highest priority pending virtual interrupt, if that interrupt is of sufficient
priority for it to be signaled to the PE, and if it can be acknowledged.

If the highest priority pending interrupt is not observable, this field contains a special INTID to
indicate the reason. This special INTID can take the value 1023 only. See Special INTIDs on
page 2-32, for more information.

This field has either 16 or 24 bits implemented. The number of implemented bits can be found in
ICV_CTLR_EL1.IDbits. If only 16 bits are implemented, bits [23:16] of this register are RES0.

Accessing the ICV_IAR0_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This syntax is encoded with the following settings in the instruction encoding:

RES0

31 24

INTID

23 0

<systemreg> op0 op1 CRn CRm op2

ICC_IAR0_EL1 11 000 1100 1000 000
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-269
ID072617 Non-Confidential

8 Programmers’ Model
8.3 AArch64 System register descriptions of the virtual registers
When HCR_EL2.FMO is set to 0, execution of this encoding at Non-secure EL1 results in an access to
ICC_IAR0_EL1.

Accessibility

The register is accessible in software as follows:

ICV_IAR0_EL1 is only accessible at Non-secure EL1 when HCR_EL2.FMO is set to 1.

Note
 When HCR_EL2.FMO is set to 0, at Non-secure EL1, the instruction encoding to access ICV_IAR0_EL1 results in
an access to ICC_IAR0_EL1.

Traps and Enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception
prioritization for exceptions taken to AArch64) in the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A
architecture profile. Subject to the prioritization rules:

• In both Security states, and not dependent on other bits:

— If ICC_SRE_EL1.SRE==0, Non-secure read accesses to this register from EL1 are trapped to EL1.

• When SCR_EL3.NS == 1:

— If ICH_HCR_EL2.TALL0==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

Control Accessibility

FMO IMO NS EL0 EL1 EL2 EL3

x x 0 - ICC_IAR0_EL1 n/a ICC_IAR0_EL1

x x 1 - n/a ICC_IAR0_EL1 ICC_IAR0_EL1

0 x 1 - ICC_IAR0_EL1 ICC_IAR0_EL1 ICC_IAR0_EL1

1 x 1 - RO ICC_IAR0_EL1 ICC_IAR0_EL1
8-270 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.3 AArch64 System register descriptions of the virtual registers
8.3.12 ICV_IAR1_EL1, Interrupt Controller Virtual Interrupt Acknowledge Register 1

The ICV_IAR1_EL1 characteristics are:

Purpose

The PE reads this register to obtain the INTID of the signaled virtual Group 1 interrupt. This read
acts as an acknowledge for the interrupt.

Configurations

AArch64 System register ICV_IAR1_EL1 performs the same function as AArch32 System register
ICV_IAR1.

To allow software to ensure appropriate observability of actions initiated by GIC register accesses,
the PE and CPU interface logic must ensure that reads of this register are self-synchronising when
interrupts are masked by the PE (that is when PSTATE.{I,F} == {0,0}). This ensures that the effect
of activating an interrupt on the signaling of interrupt exceptions is observed when a read of this
register is architecturally executed so that no spurious interrupt exception occurs if interrupts are
unmasked by an instruction immediately following the read. See Observability of the effects of
accesses to the GIC registers on page 8-157, for more information.

Attributes

ICV_IAR1_EL1 is a 32-bit register.

Field descriptions

The ICV_IAR1_EL1 bit assignments are:

Bits [31:24]

Reserved, RES0.

INTID, bits [23:0]

The INTID of the signaled virtual interrupt.

This is the INTID of the highest priority pending virtual interrupt, if that interrupt is of sufficient
priority for it to be signaled to the PE, and if it can be acknowledged.

If the highest priority pending interrupt is not observable, this field contains a special INTID to
indicate the reason. This special INTID can take the value 1023 only. See Special INTIDs on
page 2-32, for more information.

This field has either 16 or 24 bits implemented. The number of implemented bits can be found in
ICV_CTLR_EL1.IDbits. If only 16 bits are implemented, bits [23:16] of this register are RES0.

Accessing the ICV_IAR1_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This syntax is encoded with the following settings in the instruction encoding:

RES0

31 24

INTID

23 0

<systemreg> op0 op1 CRn CRm op2

ICC_IAR1_EL1 11 000 1100 1100 000
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-271
ID072617 Non-Confidential

8 Programmers’ Model
8.3 AArch64 System register descriptions of the virtual registers
When HCR_EL2.IMO is set to 0, execution of this encoding at Non-secure EL1 results in an access to
ICC_IAR1_EL1.

Accessibility

The register is accessible in software as follows:

ICV_IAR1_EL1 is only accessible at Non-secure EL1 when HCR_EL2.IMO is set to 1.

Note
 When HCR_EL2.IMO is set to 0, at Non-secure EL1, the instruction encoding to access ICV_IAR1_EL1 results in
an access to ICC_IAR1_EL1.

Traps and Enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception
prioritization for exceptions taken to AArch64) in the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A
architecture profile. Subject to the prioritization rules:

• In both Security states, and not dependent on other bits:

— If ICC_SRE_EL1.SRE==0, Non-secure read accesses to this register from EL1 are trapped to EL1.

• When SCR_EL3.NS == 1:

— If ICH_HCR_EL2.TALL1==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

Control Accessibility

FMO IMO NS EL0 EL1 EL2 EL3

x x 0 - ICC_IAR1_EL1 n/a ICC_IAR1_EL1

x x 1 - n/a ICC_IAR1_EL1 ICC_IAR1_EL1

x 0 1 - ICC_IAR1_EL1 ICC_IAR1_EL1 ICC_IAR1_EL1

x 1 1 - RO ICC_IAR1_EL1 ICC_IAR1_EL1
8-272 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.3 AArch64 System register descriptions of the virtual registers
8.3.13 ICV_IGRPEN0_EL1, Interrupt Controller Virtual Interrupt Group 0 Enable register

The ICV_IGRPEN0_EL1 characteristics are:

Purpose

Controls whether virtual Group 0 interrupts are enabled or not.

Configurations

AArch64 System register ICV_IGRPEN0_EL1 is architecturally mapped to AArch32 System
register ICV_IGRPEN0.

Attributes

ICV_IGRPEN0_EL1 is a 32-bit register.

Field descriptions

The ICV_IGRPEN0_EL1 bit assignments are:

Bits [31:1]

Reserved, RES0.

Enable, bit [0]

Enables virtual Group 0 interrupts.

0 Virtual Group 0 interrupts are disabled.

1 Virtual Group 0 interrupts are enabled.

This field resets to a value that is architecturally UNKNOWN.

Accessing the ICV_IGRPEN0_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax is encoded with the following settings in the instruction encoding:

When HCR_EL2.FMO is set to 0, execution of this encoding at Non-secure EL1 results in an access to
ICC_IGRPEN0_EL1.

RES0

31 1 0

Enable

<systemreg> op0 op1 CRn CRm op2

ICC_IGRPEN0_EL1 11 000 1100 1100 110
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-273
ID072617 Non-Confidential

8 Programmers’ Model
8.3 AArch64 System register descriptions of the virtual registers
Accessibility

The register is accessible in software as follows:

ICV_IGRPEN0_EL1 is only accessible at Non-secure EL1 when HCR_EL2.FMO is set to 1.

Note
 When HCR_EL2.FMO is set to 0, at Non-secure EL1, the instruction encoding to access ICV_IGRPEN0_EL1
results in an access to ICC_IGRPEN0_EL1.

Traps and Enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception
prioritization for exceptions taken to AArch64) in the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A
architecture profile. Subject to the prioritization rules:

• In both Security states, and not dependent on other bits:

— If ICC_SRE_EL1.SRE==0, Non-secure accesses to this register from EL1 are trapped to EL1.

• When SCR_EL3.NS == 1:

— If ICH_HCR_EL2.TALL0==1, Non-secure accesses to this register from EL1 are trapped to EL2.

Control Accessibility

FMO IMO NS EL0 EL1 EL2 EL3

x x 0 - ICC_IGRPEN0_EL1 n/a ICC_IGRPEN0_EL1

x x 1 - n/a ICC_IGRPEN0_EL1 ICC_IGRPEN0_EL1

0 x 1 - ICC_IGRPEN0_EL1 ICC_IGRPEN0_EL1 ICC_IGRPEN0_EL1

1 x 1 - RW ICC_IGRPEN0_EL1 ICC_IGRPEN0_EL1
8-274 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.3 AArch64 System register descriptions of the virtual registers
8.3.14 ICV_IGRPEN1_EL1, Interrupt Controller Virtual Interrupt Group 1 Enable register

The ICV_IGRPEN1_EL1 characteristics are:

Purpose

Controls whether virtual Group 1 interrupts are enabled for the current Security state.

Configurations

AArch64 System register ICV_IGRPEN1_EL1 is architecturally mapped to AArch32 System
register ICV_IGRPEN1.

Attributes

ICV_IGRPEN1_EL1 is a 32-bit register.

Field descriptions

The ICV_IGRPEN1_EL1 bit assignments are:

Bits [31:1]

Reserved, RES0.

Enable, bit [0]

Enables virtual Group 1 interrupts.

0 Virtual Group 1 interrupts are disabled.

1 Virtual Group 1 interrupts are enabled.

This field resets to a value that is architecturally UNKNOWN.

Accessing the ICV_IGRPEN1_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax is encoded with the following settings in the instruction encoding:

When HCR_EL2.IMO is set to 0, execution of this encoding at Non-secure EL1 results in an access to
ICC_IGRPEN1_EL1.

RES0

31 1 0

Enable

<systemreg> op0 op1 CRn CRm op2

ICC_IGRPEN1_EL1 11 000 1100 1100 111
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-275
ID072617 Non-Confidential

8 Programmers’ Model
8.3 AArch64 System register descriptions of the virtual registers
Accessibility

The register is accessible in software as follows:

ICV_IGRPEN1_EL1 is only accessible at Non-secure EL1 when HCR_EL2.IMO is set to 1.

Note
 When HCR_EL2.IMO is set to 0, at Non-secure EL1, the instruction encoding to access ICV_IGRPEN1_EL1
results in an access to ICC_IGRPEN1_EL1.

Traps and Enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception
prioritization for exceptions taken to AArch64) in the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A
architecture profile. Subject to the prioritization rules:

• In both Security states, and not dependent on other bits:

— If ICC_SRE_EL1.SRE==0, Non-secure accesses to this register from EL1 are trapped to EL1.

• When SCR_EL3.NS == 1:

— If ICH_HCR_EL2.TALL1==1, Non-secure accesses to this register from EL1 are trapped to EL2.

Control Accessibility

FMO IMO NS EL0 EL1 EL2 EL3

x x 0 - ICC_IGRPEN1_EL1 n/a ICC_IGRPEN1_EL1

x x 1 - n/a ICC_IGRPEN1_EL1 ICC_IGRPEN1_EL1

x 0 1 - ICC_IGRPEN1_EL1 ICC_IGRPEN1_EL1 ICC_IGRPEN1_EL1

x 1 1 - RW ICC_IGRPEN1_EL1 ICC_IGRPEN1_EL1
8-276 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.3 AArch64 System register descriptions of the virtual registers
8.3.15 ICV_PMR_EL1, Interrupt Controller Virtual Interrupt Priority Mask Register

The ICV_PMR_EL1 characteristics are:

Purpose

Provides a virtual interrupt priority filter. Only virtual interrupts with a higher priority than the value
in this register are signaled to the PE.

Configurations

AArch64 System register ICV_PMR_EL1 is architecturally mapped to AArch32 System register
ICV_PMR.

To allow software to ensure appropriate observability of actions initiated by GIC register accesses,
the PE and CPU interface logic must ensure that writes to this register are self-synchronising. This
ensures that no interrupts below the written PMR value will be taken after a write to this register is
architecturally executed. See Observability of the effects of accesses to the GIC registers on
page 8-157, for more information.

Attributes

ICV_PMR_EL1 is a 32-bit register.

Field descriptions

The ICV_PMR_EL1 bit assignments are:

Bits [31:8]

Reserved, RES0.

Priority, bits [7:0]

The priority mask level for the virtual CPU interface. If the priority of a virtual interrupt is higher
than the value indicated by this field, the interface signals the virtual interrupt to the PE.

The possible priority field values are as follows:

Unimplemented priority bits are RAZ/WI.

This field resets to a value that is architecturally UNKNOWN.

Accessing the ICV_PMR_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

RES0

31 8

Priority

7 0

Implemented priority bits Possible priority field values Number of priority levels

[7:0] 0x00-0xFF (0-255), all values 256

[7:1] 0x00-0xFE (0-254), even values only 128

[7:2] 0x00-0xFC (0-252), in steps of 4 64

[7:3] 0x00-0xF8 (0-248), in steps of 8 32

[7:4] 0x00-0xF0 (0-240), in steps of 16 16
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-277
ID072617 Non-Confidential

8 Programmers’ Model
8.3 AArch64 System register descriptions of the virtual registers
This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax is encoded with the following settings in the instruction encoding:

When HCR_EL2.{FMO, IMO} == {0, 0}, execution of this encoding at Non-secure EL1 results in an access to
ICC_PMR_EL1.

Accessibility

The register is accessible in software as follows:

ICV_PMR_EL1 is only accessible at Non-secure EL1 when HCR_EL2.{FMO, IMO} != {0, 0}.

Note
 When HCR_EL2.{FMO, IMO} == {0, 0}, at Non-secure EL1, the instruction encoding to access ICV_PMR_EL1
results in an access to ICC_PMR_EL1.

Traps and Enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception
prioritization for exceptions taken to AArch64) in the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A
architecture profile. Subject to the prioritization rules:

• In both Security states, and not dependent on other bits:

— If ICC_SRE_EL1.SRE==0, Non-secure accesses to this register from EL1 are trapped to EL1.

• When SCR_EL3.NS == 1:

— If ICH_HCR_EL2.TC==1, Non-secure accesses to this register from EL1 are trapped to EL2.

<systemreg> op0 op1 CRn CRm op2

ICC_PMR_EL1 11 000 0100 0110 000

Control Accessibility

FMO IMO NS EL0 EL1 EL2 EL3

x x 0 - ICC_PMR_EL1 n/a ICC_PMR_EL1

x x 1 - n/a ICC_PMR_EL1 ICC_PMR_EL1

x 1 1 - RW ICC_PMR_EL1 ICC_PMR_EL1

1 x 1 - RW ICC_PMR_EL1 ICC_PMR_EL1

0 0 1 - ICC_PMR_EL1 ICC_PMR_EL1 ICC_PMR_EL1
8-278 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.3 AArch64 System register descriptions of the virtual registers
8.3.16 ICV_RPR_EL1, Interrupt Controller Virtual Running Priority Register

The ICV_RPR_EL1 characteristics are:

Purpose

Indicates the Running priority of the virtual CPU interface.

Configurations

AArch64 System register ICV_RPR_EL1 performs the same function as AArch32 System register
ICV_RPR.

Attributes

ICV_RPR_EL1 is a 32-bit register.

Field descriptions

The ICV_RPR_EL1 bit assignments are:

Bits [31:8]

Reserved, RES0.

Priority, bits [7:0]

The current running priority on the virtual CPU interface. This is the group priority of the current
active virtual interrupt.

If there are no active interrupts on the virtual CPU interface, or all active interrupts have undergone
a priority drop, the value returned is the Idle priority.

The priority returned is the group priority as if the BPR for the current Exception level and Security
state was set to the minimum value of BPR for the number of implemented priority bits.

Note
 If 8 bits of priority are implemented the group priority is bits[7:1] of the priority.

Accessing the ICV_RPR_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This syntax is encoded with the following settings in the instruction encoding:

When HCR_EL2.{FMO, IMO} == {0, 0}, execution of this encoding at Non-secure EL1 results in an access to
ICC_RPR_EL1.

RES0

31 8

Priority

7 0

<systemreg> op0 op1 CRn CRm op2

ICC_RPR_EL1 11 000 1100 1011 011
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-279
ID072617 Non-Confidential

8 Programmers’ Model
8.3 AArch64 System register descriptions of the virtual registers
Accessibility

The register is accessible in software as follows:

ICV_RPR_EL1 is only accessible at Non-secure EL1 when HCR_EL2.{FMO, IMO} != {0, 0}.

Note
 When HCR_EL2.{FMO, IMO} == {0, 0}, at Non-secure EL1, the instruction encoding to access ICV_RPR_EL1
results in an access to ICC_RPR_EL1.

If there are no active interrupts on the virtual CPU interface, or all active interrupts have undergone a priority drop,
the value returned is the Idle priority.

Software cannot determine the number of implemented priority bits from a read of this register.

Traps and Enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception
prioritization for exceptions taken to AArch64) in the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A
architecture profile. Subject to the prioritization rules:

• In both Security states, and not dependent on other bits:

— If ICC_SRE_EL1.SRE==0, Non-secure read accesses to this register from EL1 are trapped to EL1.

• When SCR_EL3.NS == 1:

— If ICH_HCR_EL2.TC==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

Control Accessibility

FMO IMO NS EL0 EL1 EL2 EL3

x x 0 - ICC_RPR_EL1 n/a ICC_RPR_EL1

x x 1 - n/a ICC_RPR_EL1 ICC_RPR_EL1

x 1 1 - RO ICC_RPR_EL1 ICC_RPR_EL1

1 x 1 - RO ICC_RPR_EL1 ICC_RPR_EL1

0 0 1 - ICC_RPR_EL1 ICC_RPR_EL1 ICC_RPR_EL1
8-280 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.4 AArch64 virtualization control System registers
8.4 AArch64 virtualization control System registers
This section describes each of the virtualization control AArch64 GIC System registers in register name order. The
ICH prefix indicates a virtual interface control System register. Each AArch64 System register description contains
a reference to the AArch32 register that provides the same functionality.

Unless otherwise stated, the bit assignments for the GIC System registers are the same as those for the equivalent
GICH_* memory-mapped registers. See The GIC virtual interface control register descriptions on page 8-647.

Table 8-22 shows the encodings for the AArch64 virtualization control System registers.

Table 8-22 Encodings for AArch64 virtualization control System registers

Register Width (bits)
Access instruction encoding

Notes
Op0 Op1 CRn CRm Op2

ICH_AP0R<n>_EL2 32 3 4 12 8 0-3 RW, <n>=Op2.

ICH_AP1R<n>_EL2 32 9 0-3 RW, <n>=Op2.

ICH_HCR_EL2 32 11 0 RW

ICH_VTR_EL2 32 1 RO

ICH_MISR_EL2 32 2 RO

ICH_EISR_EL2 32 3 RO

ICH_ELRSR_EL2 32 5 RO

ICH_VMCR_EL2 32 7 RW

ICH_LR<n>_EL2 64 12, 13 0-7 RW:
• For CRm==12, <n>=Op2.
• For CRm==13, <n>=Op2+8.
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-281
ID072617 Non-Confidential

8 Programmers’ Model
8.4 AArch64 virtualization control System registers
8.4.1 ICH_AP0R<n>_EL2, Interrupt Controller Hyp Active Priorities Group 0 Registers, n = 0 - 3

The ICH_AP0R<n>_EL2 characteristics are:

Purpose

Provides information about Group 0 virtual active priorities for EL2.

Configurations

AArch64 System register ICH_AP0R<n>_EL2 is architecturally mapped to AArch32 System
register ICH_AP0R<n>.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

ICH_AP0R<n>_EL2 is a 32-bit register.

Field descriptions

The ICH_AP0R<n>_EL2 bit assignments are:

P<x>, bit [x], for x = 0 to 31

Provides the access to the virtual active priorities for Group 0 interrupts. Possible values of each bit
are:

0 There is no Group 0 interrupt active with this priority level, or all active Group 0
interrupts with this priority level have undergone priority-drop.

1 There is a Group 0 interrupt active with this priority level which has not undergone
priority drop.

The correspondence between priority levels and bits depends on the number of bits of priority that
are implemented.

If 5 bits of preemption are implemented (bits [7:3] of priority), then there are 32 preemption levels,
and the active state of these preemption levels are held in ICH_AP0R0_EL2 in the bits
corresponding to Priority[7:3].

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10

P9

9

P8

8

P7

7

P6

6

P5

5

P4

4

P3

3

P2

2

P1

1

P0

0

P31
P30
P29
P28
P27
P26
P25
P24
P23
P22
P21
P20
P19
P18
P17
P16

P10
P11
P12
P13
P14
P15
8-282 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.4 AArch64 virtualization control System registers
If 6 bits of preemption are implemented (bits [7:2] of priority), then there are 64 preemption levels,
and:

• The active state of preemption levels 0 - 124 are held in ICH_AP0R0_EL2 in the bits
corresponding to 0:Priority[6:2].

• The active state of preemption levels 128 - 252 are held in ICH_AP0R1_EL2 in the bits
corresponding to 1:Priority[6:2].

If 7 bits of preemption are implemented (bits [7:1] of priority), then there are 128 preemption levels,
and:

• The active state of preemption levels 0 - 62 are held in ICH_AP0R0_EL2 in the bits
corresponding to 00:Priority[5:1].

• The active state of preemption levels 64 - 126 are held in ICH_AP0R1_EL2 in the bits
corresponding to 01:Priority[5:1].

• The active state of preemption levels 128 - 190 are held in ICH_AP0R2_EL2 in the bits
corresponding to 10:Priority[5:1].

• The active state of preemption levels 192 - 254 are held in ICH_AP0R3_EL2 in the bits
corresponding to 11:Priority[5:1].

Note
 Having the bit corresponding to a priority set to 1 in both ICH_AP0R<n>_EL2 and

ICH_AP1R<n>_EL2 might result in UNPREDICTABLE behavior of the interrupt prioritization system
for virtual interrupts.

When this register has an architecturally-defined reset value, this field resets to 0.

Software must ensure that ICH_AP0R<n>_EL2 is 0 for legacy VMs otherwise behaviour is UNPREDICTABLE. For
more information about support for legacy VMs, see Support for legacy operation of VMs on page 10-715.

The active priorities for Group 0 and Group 1 interrupts for legacy VMs are held in ICH_AP1R<n>_EL2 and reads
and writes to GICV_APR access ICH_AP1R<n>_EL2. This means that ICH_AP0R<n>_EL2 is inaccessible to
legacy VMs.

Accessing the ICH_AP0R<n>_EL2

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax is encoded with the following settings in the instruction encoding:

<systemreg> op0 op1 CRn CRm op2

ICH_AP0R<n>_EL2 11 100 1100 1000 0:n<1:0>
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-283
ID072617 Non-Confidential

8 Programmers’ Model
8.4 AArch64 virtualization control System registers
Accessibility

The register is accessible in software as follows:

ICH_AP0R1_EL2 is only implemented in implementations that support 6 or more bits of preemption.
ICH_AP0R2_EL2 and ICH_AP0R3_EL2 are only implemented in implementations that support 7 bits of
preemption. Unimplemented registers are UNDEFINED.

Note
 The number of bits of preemption is indicated by ICH_VTR_EL2.PREbits

Writing to these registers with any value other than the last read value of the register (or 0x00000000 for a newly set
up virtual machine) can result in UNPREDICTABLE behavior of the virtual interrupt prioritization system allowing
either:

• Virtual interrupts that should preempt execution to not preempt execution.

• Interrupts that should not preempt execution to preempt execution at Non-secure EL1 or EL0.

Writing to the active priority registers in any order other than the following order will result in UNPREDICTABLE
behavior:

• ICH_AP0R<n>_EL2.

• ICH_AP1R<n>_EL2.

Having the bit corresponding to a priority set in both ICH_AP0R<n>_EL2 and ICH_AP1R<n>_EL2 can result in
UNPREDICTABLE behavior of the interrupt prioritization system for virtual interrupts.

Traps and Enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception
prioritization for exceptions taken to AArch64) in the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A
architecture profile. Subject to the prioritization rules:

• In both Security states, and not dependent on other bits:

— If ICC_SRE_EL2.SRE==0, accesses to this register from EL2 are trapped to EL2.

— If ICC_SRE_EL3.SRE==0, accesses to this register from EL3 are trapped to EL3.

• When EL2 is implemented and is using AArch64 and SCR_EL3.NS == 1:

— If HCR_EL2.NV==1, Non-secure accesses to this register from EL1 are trapped to EL2.

Control Accessibility

FMO IMO NS EL0 EL1 EL2 EL3

x x 0 - - n/a RW

x x 1 - - RW RW

x x 1 - n/a RW RW
8-284 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.4 AArch64 virtualization control System registers
8.4.2 ICH_AP1R<n>_EL2, Interrupt Controller Hyp Active Priorities Group 1 Registers, n = 0 - 3

The ICH_AP1R<n>_EL2 characteristics are:

Purpose

Provides information about Group 1 virtual active priorities for EL2.

Configurations

AArch64 System register ICH_AP1R<n>_EL2 is architecturally mapped to AArch32 System
register ICH_AP1R<n>.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

ICH_AP1R<n>_EL2 is a 32-bit register.

Field descriptions

The ICH_AP1R<n>_EL2 bit assignments are:

P<x>, bit [x], for x = 0 to 31

Group 1 interrupt active priorities. Possible values of each bit are:

0 There is no Group 1 interrupt active with this priority level, or all active Group 1
interrupts with this priority level have undergone priority-drop.

1 There is a Group 1 interrupt active with this priority level which has not undergone
priority drop.

The correspondence between priority levels and bits depends on the number of bits of priority that
are implemented.

If 5 bits of preemption are implemented (bits [7:3] of priority), then there are 32 preemption levels,
and the active state of these preemption levels are held in ICH_AP1R0_EL2 in the bits
corresponding to Priority[7:3].

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10

P9

9

P8

8

P7

7

P6

6

P5

5

P4

4

P3

3

P2

2

P1

1

P0

0

P31
P30
P29
P28
P27
P26
P25
P24
P23
P22
P21
P20
P19
P18
P17
P16

P10
P11
P12
P13
P14
P15
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-285
ID072617 Non-Confidential

8 Programmers’ Model
8.4 AArch64 virtualization control System registers
If 6 bits of preemption are implemented (bits [7:2] of priority), then there are 64 preemption levels,
and:

• The active state of preemption levels 0 - 124 are held in ICH_AP1R0_EL2 in the bits
corresponding to 0:Priority[6:2].

• The active state of preemption levels 128 - 252 are held in ICH_AP1R1_EL2 in the bits
corresponding to 1:Priority[6:2].

If 7 bits of preemption are implemented (bits [7:1] of priority), then there are 128 preemption levels,
and:

• The active state of preemption levels 0 - 62 are held in ICH_AP1R0_EL2 in the bits
corresponding to 00:Priority[5:1].

• The active state of preemption levels 64 - 126 are held in ICH_AP1R1_EL2 in the bits
corresponding to 01:Priority[5:1].

• The active state of preemption levels 128 - 190 are held in ICH_AP1R2_EL2 in the bits
corresponding to 10:Priority[5:1].

• The active state of preemption levels 192 - 254 are held in ICH_AP1R3_EL2 in the bits
corresponding to 11:Priority[5:1].

Note
 Having the bit corresponding to a priority set to 1 in both ICH_AP0R<n>_EL2 and

ICH_AP1R<n>_EL2 might result in UNPREDICTABLE behavior of the interrupt prioritization system
for virtual interrupts.

When this register has an architecturally-defined reset value, this field resets to 0.

This register is always used for legacy VMs, regardless of the group of the virtual interrupt. Reads and writes to
GICV_APR<n> access ICH_AP1R<n>_EL2. For more information about support for legacy VMs, see Support for
legacy operation of VMs on page 10-715.

Accessing the ICH_AP1R<n>_EL2

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax is encoded with the following settings in the instruction encoding:

Accessibility

The register is accessible in software as follows:

<systemreg> op0 op1 CRn CRm op2

ICH_AP1R<n>_EL2 11 100 1100 1001 0:n<1:0>

Control Accessibility

FMO IMO NS EL0 EL1 EL2 EL3

x x 0 - - n/a RW

x x 1 - - RW RW

x x 1 - n/a RW RW
8-286 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.4 AArch64 virtualization control System registers
ICH_AP1R1_EL2 is only implemented in implementations that support 6 or more bits of preemption.
ICH_AP1R2_EL2 and ICH_AP1R3_EL2 are only implemented in implementations that support 7 bits of
preemption. Unimplemented registers are UNDEFINED.

Note
 The number of bits of preemption is indicated by ICH_VTR_EL2.PREbits

Writing to these registers with any value other than the last read value of the register (or 0x00000000 for a newly set
up virtual machine) can result in UNPREDICTABLE behavior of the virtual interrupt prioritization system allowing
either:

• Virtual interrupts that should preempt execution to not preempt execution.

• Interrupts that should not preempt execution to preempt execution at Non-secure EL1 or EL0.

Writing to the active priority registers in any order other than the following order will result in UNPREDICTABLE
behavior:

• ICH_AP0R<n>_EL2.

• ICH_AP1R<n>_EL2.

Traps and Enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception
prioritization for exceptions taken to AArch64) in the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A
architecture profile. Subject to the prioritization rules:

• In both Security states, and not dependent on other bits:

— If ICC_SRE_EL2.SRE==0, accesses to this register from EL2 are trapped to EL2.

— If ICC_SRE_EL3.SRE==0, accesses to this register from EL3 are trapped to EL3.

• When EL2 is implemented and is using AArch64 and SCR_EL3.NS == 1:

— If HCR_EL2.NV==1, Non-secure accesses to this register from EL1 are trapped to EL2.
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-287
ID072617 Non-Confidential

8 Programmers’ Model
8.4 AArch64 virtualization control System registers
8.4.3 ICH_EISR_EL2, Interrupt Controller End of Interrupt Status Register

The ICH_EISR_EL2 characteristics are:

Purpose

Indicates which List registers have outstanding EOI maintenance interrupts.

Configurations

AArch64 System register ICH_EISR_EL2 is architecturally mapped to AArch32 System register
ICH_EISR.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

ICH_EISR_EL2 is a 32-bit register.

Field descriptions

The ICH_EISR_EL2 bit assignments are:

Bits [31:16]

Reserved, RES0.

Status<n>, bit [n], for n = 0 to 15

EOI maintenance interrupt status bit for List register <n>:

0 List register <n>, ICH_LR<n>_EL2, does not have an EOI maintenance interrupt.

1 List register <n>, ICH_LR<n>_EL2, has an EOI maintenance interrupt that has not
been handled.

For any ICH_LR<n>_EL2, the corresponding status bit is set to 1 if all of the following are true:

• ICH_LR<n>_EL2.State is 0b00.

• ICH_LR<n>_EL2.HW is 0.

• ICH_LR<n>_EL2.EOI (bit [41]) is 1, indicating that when the interrupt corresponding to that
List register is deactivated, a maintenance interrupt is asserted.

Otherwise the status bit takes the value 0.

Accessing the ICH_EISR_EL2

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This syntax is encoded with the following settings in the instruction encoding:

RES0

31 16

Status<n>, bit [n], for n = 0 to 15

15 0

<systemreg> op0 op1 CRn CRm op2

ICH_EISR_EL2 11 100 1100 1011 011
8-288 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.4 AArch64 virtualization control System registers
Accessibility

The register is accessible in software as follows:

Traps and Enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception
prioritization for exceptions taken to AArch64) in the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A
architecture profile. Subject to the prioritization rules:

• In both Security states, and not dependent on other bits:

— If ICC_SRE_EL2.SRE==0, read accesses to this register from EL2 are trapped to EL2.

— If ICC_SRE_EL3.SRE==0, read accesses to this register from EL3 are trapped to EL3.

Control Accessibility

NS EL0 EL1 EL2 EL3

0 - - n/a RO

1 - - RO RO

1 - n/a RO RO
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-289
ID072617 Non-Confidential

8 Programmers’ Model
8.4 AArch64 virtualization control System registers
8.4.4 ICH_ELRSR_EL2, Interrupt Controller Empty List Register Status Register

The ICH_ELRSR_EL2 characteristics are:

Purpose

These registers can locate a usable List register when the hypervisor is delivering an interrupt to a
VM.

Configurations

AArch64 System register ICH_ELRSR_EL2 is architecturally mapped to AArch32 System register
ICH_ELRSR.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

ICH_ELRSR_EL2 is a 32-bit register.

Field descriptions

The ICH_ELRSR_EL2 bit assignments are:

Bits [31:16]

Reserved, RES0.

Status<n>, bit [n], for n = 0 to 15

Status bit for List register <n>, ICH_LR<n>_EL2:

0 List register ICH_LR<n>_EL2, if implemented, contains a valid interrupt. Using this
List register can result in overwriting a valid interrupt.

1 List register ICH_LR<n>_EL2 does not contain a valid interrupt. The List register is
empty and can be used without overwriting a valid interrupt or losing an EOI
maintenance interrupt.

For any List register <n>, the corresponding status bit is set to 1 if ICH_LR<n>_EL2.State is 0b00
and either ICH_LR<n>_EL2.HW is 1 or ICH_LR<n>_EL2.EOI (bit [41]) is 0.

Otherwise the status bit takes the value 0.

Accessing the ICH_ELRSR_EL2

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This syntax is encoded with the following settings in the instruction encoding:

RES0

31 16

Status<n>, bit [n], for n = 0 to 15

15 0

<systemreg> op0 op1 CRn CRm op2

ICH_ELRSR_EL2 11 100 1100 1011 101
8-290 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.4 AArch64 virtualization control System registers
Accessibility

The register is accessible in software as follows:

Traps and Enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception
prioritization for exceptions taken to AArch64) in the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A
architecture profile. Subject to the prioritization rules:

• In both Security states, and not dependent on other bits:

— If ICC_SRE_EL2.SRE==0, read accesses to this register from EL2 are trapped to EL2.

— If ICC_SRE_EL3.SRE==0, read accesses to this register from EL3 are trapped to EL3.

Control Accessibility

NS EL0 EL1 EL2 EL3

0 - - n/a RO

1 - - RO RO

1 - n/a RO RO
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-291
ID072617 Non-Confidential

8 Programmers’ Model
8.4 AArch64 virtualization control System registers
8.4.5 ICH_HCR_EL2, Interrupt Controller Hyp Control Register

The ICH_HCR_EL2 characteristics are:

Purpose

Controls the environment for VMs.

Configurations

AArch64 System register ICH_HCR_EL2 is architecturally mapped to AArch32 System register
ICH_HCR.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

ICH_HCR_EL2 is a 32-bit register.

Field descriptions

The ICH_HCR_EL2 bit assignments are:

EOIcount, bits [31:27]

This field is incremented whenever a successful write to a virtual EOIR or DIR register would have
resulted in a virtual interrupt deactivation. That is either:

• A virtual write to EOIR with a valid interrupt identifier that is not in the LPI range (for
example < 8192) when EOI mode is zero and no List Register was found.

• A virtual write to DIR with a valid interrupt identifier that is not in the LPI range (for example
< 8192) when EOI mode is one and no List Register was found.

This allows software to manage more active interrupts than there are implemented List Registers.

It is CONSTRAINED UNPREDICTABLE whether a virtual write to EOIR that does not clear a bit in the
Active Priorities registers (ICH_AP0R<n>_EL2/ICH_AP1R<n>_EL2) increments EOIcount.
Permitted behaviors are:

• Increment EOIcount.

• Leave EOIcount unchanged.

When this register has an architecturally-defined reset value, this field resets to 0.

Bits [26:15]

Reserved, RES0.

EOIcount

31 27

RES0

26 15 14 13 12 11

TC

10 9 8 7 6 5 4 3 2 1

En

0

UIE
LRENPIE

NPIE
VGrp0EIE
VGrp0DIE
VGrp1EIE
VGrp1DIE

RES0
TALL0
TALL1

TSEI
TDIR
8-292 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.4 AArch64 virtualization control System registers
TDIR, bit [14]

Trap Non-secure EL1 writes to ICC_DIR_EL1 and ICV_DIR_EL1.

0 Non-secure EL1 writes of ICC_DIR_EL1 and ICV_DIR_EL1 are not trapped to EL2,
unless trapped by other mechanisms.

1 Non-secure EL1 writes of ICV_DIR_EL1 are trapped to EL2. It is IMPLEMENTATION
DEFINED whether Non-secure writes of ICC_DIR_EL1 are trapped. Not trapping
ICC_DIR_EL1 writes is deprecated.

Support for this bit is OPTIONAL, with support indicated by ICH_VTR_EL2.

If the implementation does not support this trap, this bit is RES0.

ARM deprecates not including this trap bit.

When this register has an architecturally-defined reset value, if this field is implemented as an RW
field, it resets to 0.

TSEI, bit [13]

Trap all locally generated SEIs. This bit allows the hypervisor to intercept locally generated SEIs
that would otherwise be taken at Non-secure EL1.

0 Locally generated SEIs do not cause a trap to EL2.

1 Locally generated SEIs trap to EL2.

If ICH_VTR_EL2.SEIS is 0, this bit is RES0.

When this register has an architecturally-defined reset value, if this field is implemented as an RW
field, it resets to 0.

TALL1, bit [12]

Trap all Non-secure EL1 accesses to ICC_* and ICV_* System registers for Group 1 interrupts to
EL2.

0 Non-Secure EL1 accesses to ICC_* and ICV_* registers for Group 1 interrupts proceed
as normal.

1 Non-secure EL1 accesses to ICC_* and ICV_* registers for Group 1 interrupts trap to
EL2.

When this register has an architecturally-defined reset value, this field resets to 0.

TALL0, bit [11]

Trap all Non-secure EL1 accesses to ICC_* and ICV_* System registers for Group 0 interrupts to
EL2.

0 Non-Secure EL1 accesses to ICC_* and ICV_* registers for Group 0 interrupts proceed
as normal.

1 Non-secure EL1 accesses to ICC_* and ICV_* registers for Group 0 interrupts trap to
EL2.

When this register has an architecturally-defined reset value, this field resets to 0.

TC, bit [10]

Trap all Non-secure EL1 accesses to System registers that are common to Group 0 and Group 1 to
EL2.

0 Non-secure EL1 accesses to common registers proceed as normal.

1 Non-secure EL1 accesses to common registers trap to EL2.

This affects accesses to ICC_SGI0R_EL1, ICC_SGI1R_EL1, ICC_ASGI1R_EL1,
ICC_CTLR_EL1, ICC_DIR_EL1, ICC_PMR_EL1, ICC_RPR_EL1, ICV_CTLR_EL1,
ICV_DIR_EL1, ICV_PMR_EL1, and ICV_RPR_EL1.

When this register has an architecturally-defined reset value, this field resets to 0.
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-293
ID072617 Non-Confidential

8 Programmers’ Model
8.4 AArch64 virtualization control System registers
Bits [9:8]

Reserved, RES0.

VGrp1DIE, bit [7]

VM Group 1 Disabled Interrupt Enable. Enables the signaling of a maintenance interrupt while
signaling of Group 1 interrupts from the virtual CPU interface to the connected vPE is disabled:

0 Maintenance interrupt disabled.

1 Maintenance interrupt signaled when ICH_VMCR_EL2.VENG1 == 0.

When this register has an architecturally-defined reset value, this field resets to 0.

VGrp1EIE, bit [6]

VM Group 1 Enabled Interrupt Enable. Enables the signaling of a maintenance interrupt while
signaling of Group 1 interrupts from the virtual CPU interface to the connected vPE is enabled:

0 Maintenance interrupt disabled.

1 Maintenance interrupt signaled when ICH_VMCR_EL2.VENG1 == 1.

When this register has an architecturally-defined reset value, this field resets to 0.

VGrp0DIE, bit [5]

VM Group 0 Disabled Interrupt Enable. Enables the signaling of a maintenance interrupt while
signaling of Group 0 interrupts from the virtual CPU interface to the connected vPE is disabled:

0 Maintenance interrupt disabled.

1 Maintenance interrupt signaled when ICH_VMCR_EL2.VENG0 == 0.

When this register has an architecturally-defined reset value, this field resets to 0.

VGrp0EIE, bit [4]

VM Group 0 Enabled Interrupt Enable. Enables the signaling of a maintenance interrupt while
signaling of Group 0 interrupts from the virtual CPU interface to the connected vPE is enabled:

0 Maintenance interrupt disabled.

1 Maintenance interrupt signaled when ICH_VMCR_EL2.VENG0 == 1.

When this register has an architecturally-defined reset value, this field resets to 0.

NPIE, bit [3]

No Pending Interrupt Enable. Enables the signaling of a maintenance interrupt when there are no
List registers with the State field set to 0b01 (pending):

0 Maintenance interrupt disabled.

1 Maintenance interrupt signaled while the List registers contain no interrupts in the
pending state.

When this register has an architecturally-defined reset value, this field resets to 0.

LRENPIE, bit [2]

List Register Entry Not Present Interrupt Enable. Enables the signaling of a maintenance interrupt
while the virtual CPU interface does not have a corresponding valid List register entry for an EOI
request:

0 Maintenance interrupt disabled.

1 Maintenance interrupt is asserted while the EOIcount field is not 0.

When this register has an architecturally-defined reset value, this field resets to 0.

UIE, bit [1]

Underflow Interrupt Enable. Enables the signaling of a maintenance interrupt when the List
registers are empty, or hold only one valid entry:

0 Maintenance interrupt disabled.
8-294 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.4 AArch64 virtualization control System registers
1 Maintenance interrupt is asserted if none, or only one, of the List register entries is
marked as a valid interrupt.

When this register has an architecturally-defined reset value, this field resets to 0.

En, bit [0]

Enable. Global enable bit for the virtual CPU interface:

0 Virtual CPU interface operation disabled.

1 Virtual CPU interface operation enabled.

When this field is set to 0:

• The virtual CPU interface does not signal any maintenance interrupts.

• The virtual CPU interface does not signal any virtual interrupts.

• A read of ICV_IAR0_EL1, ICV_IAR1_EL1, GICV_IAR or GICV_AIAR returns a spurious
interrupt ID.

When this register has an architecturally-defined reset value, this field resets to 0.

Accessing the ICH_HCR_EL2

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax is encoded with the following settings in the instruction encoding:

Accessibility

The register is accessible in software as follows:

Traps and Enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception
prioritization for exceptions taken to AArch64) in the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A
architecture profile. Subject to the prioritization rules:

• In both Security states, and not dependent on other bits:

— If ICC_SRE_EL2.SRE==0, accesses to this register from EL2 are trapped to EL2.

— If ICC_SRE_EL3.SRE==0, accesses to this register from EL3 are trapped to EL3.

<systemreg> op0 op1 CRn CRm op2

ICH_HCR_EL2 11 100 1100 1011 000

Control Accessibility

NS EL0 EL1 EL2 EL3

0 - - n/a RW

1 - - RW RW

1 - n/a RW RW
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-295
ID072617 Non-Confidential

8 Programmers’ Model
8.4 AArch64 virtualization control System registers
• When EL2 is implemented and is using AArch64 and SCR_EL3.NS == 1:

— If HCR_EL2.NV==1, Non-secure accesses to this register from EL1 are trapped to EL2.
8-296 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.4 AArch64 virtualization control System registers
8.4.6 ICH_LR<n>_EL2, Interrupt Controller List Registers, n = 0 - 15

The ICH_LR<n>_EL2 characteristics are:

Purpose

Provides interrupt context information for the virtual CPU interface.

Configurations

AArch64 System register ICH_LR<n>_EL2[31:0] is architecturally mapped to AArch32 System
register ICH_LR<n>.

AArch64 System register ICH_LR<n>_EL2[63:32] is architecturally mapped to AArch32 System
register ICH_LRC<n>.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

ICH_LR<n>_EL2 is a 64-bit register.

Field descriptions

The ICH_LR<n>_EL2 bit assignments are:

State, bits [63:62]

The state of the interrupt:

00 Invalid (Inactive).

01 Pending.

10 Active.

11 Pending and active.

The GIC updates these state bits as virtual interrupts proceed through the interrupt life cycle. Entries
in the invalid state are ignored, except for the purpose of generating virtual maintenance interrupts.

For hardware interrupts, the pending and active state is held in the physical Distributor rather than
the virtual CPU interface. A hypervisor must only use the pending and active state for software
originated interrupts, which are typically associated with virtual devices, or SGIs.

This field resets to a value that is architecturally UNKNOWN.

HW, bit [61]

Indicates whether this virtual interrupt maps directly to a hardware interrupt, meaning that it
corresponds to a physical interrupt. Deactivation of the virtual interrupt also causes the deactivation
of the physical interrupt with the ID that the pINTID field indicates.

0 The interrupt is triggered entirely by software. No notification is sent to the Distributor
when the virtual interrupt is deactivated.

1 The interrupt maps directly to a hardware interrupt. A deactivate interrupt request is sent
to the Distributor when the virtual interrupt is deactivated, using the pINTID field from
this register to indicate the physical interrupt ID.

State

63 62 61 60

RES0

59 56

Priority

55 48

RES0

47 42

pINTID

41 32

vINTID

31 0

HW
Group
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-297
ID072617 Non-Confidential

8 Programmers’ Model
8.4 AArch64 virtualization control System registers
If ICH_VMCR_EL2.VEOIM is 0, this request corresponds to a write to
ICC_EOIR0_EL1 or ICC_EOIR1_EL1. Otherwise, it corresponds to a write to
ICC_DIR_EL1.

This field resets to a value that is architecturally UNKNOWN.

Group, bit [60]

Indicates the group for this virtual interrupt.

0 This is a Group 0 virtual interrupt. ICH_VMCR_EL2.VFIQEn determines whether it is
signaled as a virtual IRQ or as a virtual FIQ, and ICH_VMCR_EL2.VENG0 enables
signaling of this interrupt to the virtual machine.

1 This is a Group 1 virtual interrupt, signaled as a virtual IRQ. ICH_VMCR_EL2.VENG1
enables the signaling of this interrupt to the virtual machine.
If ICH_VMCR_EL2.VCBPR is 0, then ICC_BPR1_EL1 determines if a pending Group
1 interrupt has sufficient priority to preempt current execution. Otherwise,
ICH_LR<n>_EL2 determines preemption.

This field resets to a value that is architecturally UNKNOWN.

Bits [59:56]

Reserved, RES0.

Priority, bits [55:48]

The priority of this interrupt.

It is IMPLEMENTATION DEFINED how many bits of priority are implemented, though at least five bits
must be implemented. Unimplemented bits are RES0 and start from bit [48] up to bit [50]. The
number of implemented bits can be discovered from ICH_VTR_EL2.PRIbits.

This field resets to a value that is architecturally UNKNOWN.

Bits [47:42]

Reserved, RES0.

pINTID, bits [41:32]

Physical INTID, for hardware interrupts.

When the HW bit is 0 (there is no corresponding physical interrupt), this field has the following
meaning:

Bit [41] EOI. If this bit is 1, then when the interrupt identified by vINTID is deactivated, a
maintenance interrupt is asserted.

Bits [40:32] Reserved, RES0.

When the HW bit is 1 (there is a corresponding physical interrupt):

• This field indicates the physical INTID. This field is only required to implement enough bits
to hold a valid value for the implemented INTID size. Any unused higher order bits are RES0.

• If the value of pINTID is 0-15 or 1020-1023, behavior is UNPREDICTABLE. If the value of
pINTID is 16-31, this field applies to the PPI associated with this same physical PE ID as the
virtual CPU interface requesting the deactivation.

A hardware physical identifier is only required in List Registers for interrupts that require
deactivation. This means only 10 bits of Physical INTID are required, regardless of the number
specified by ICC_CTLR_EL1.IDbits.

This field resets to a value that is architecturally UNKNOWN.

vINTID, bits [31:0]

Virtual INTID of the interrupt.

If the value of vINTID is 1020-1023 and State!=0b00 (inactive), behavior is UNPREDICTABLE.

Behavior is UNPREDICTABLE if two or more List Registers specify the same vINTID when:

• ICH_LR<n>_EL2.State == 01.
8-298 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.4 AArch64 virtualization control System registers
• ICH_LR<n>_EL2.State == 10.

• ICH_LR<n>_EL2.State == 11.

It is IMPLEMENTATION DEFINED how many bits are implemented, though at least 16 bits must be
implemented. Unimplemented bits are RES0. The number of implemented bits can be discovered
from ICH_VTR_EL2.IDbits.

Note
 When a VM is using memory-mapped access to the GIC, software must ensure that the correct

source PE ID is provided in bits[12:10].

This field resets to a value that is architecturally UNKNOWN.

Accessing the ICH_LR<n>_EL2

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax is encoded with the following settings in the instruction encoding:

• <CRm> is in the range 12 - 13.

• <op2> is in the range 0 - 7.

Accessibility

The register is accessible in software as follows:

Traps and Enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception
prioritization for exceptions taken to AArch64) in the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A
architecture profile. Subject to the prioritization rules:

• In both Security states, and not dependent on other bits:

— If ICC_SRE_EL2.SRE==0, accesses to this register from EL2 are trapped to EL2.

— If ICC_SRE_EL3.SRE==0, accesses to this register from EL3 are trapped to EL3.

• When EL2 is implemented and is using AArch64 and SCR_EL3.NS == 1:

— If HCR_EL2.NV==1, Non-secure accesses to this register from EL1 are trapped to EL2.

<systemreg> op0 op1 CRn CRm op2

ICH_LR<n>_EL2 11 100 1100 110:n<3> n<2:0>

Control Accessibility

NS EL0 EL1 EL2 EL3

0 - - n/a RW

1 - - RW RW

1 - n/a RW RW
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-299
ID072617 Non-Confidential

8 Programmers’ Model
8.4 AArch64 virtualization control System registers
8.4.7 ICH_MISR_EL2, Interrupt Controller Maintenance Interrupt State Register

The ICH_MISR_EL2 characteristics are:

Purpose

Indicates which maintenance interrupts are asserted.

Configurations

AArch64 System register ICH_MISR_EL2 is architecturally mapped to AArch32 System register
ICH_MISR.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

ICH_MISR_EL2 is a 32-bit register.

Field descriptions

The ICH_MISR_EL2 bit assignments are:

Bits [31:8]

Reserved, RES0.

VGrp1D, bit [7]

vPE Group 1 Disabled.

0 vPE Group 1 Disabled maintenance interrupt not asserted.

1 vPE Group 1 Disabled maintenance interrupt asserted.

This maintenance interrupt is asserted when ICH_HCR_EL2.VGrp1DIE==1 and
ICH_VMCR_EL2.VENG1==is 0.

When this register has an architecturally-defined reset value, this field resets to 0.

VGrp1E, bit [6]

vPE Group 1 Enabled.

0 vPE Group 1 Enabled maintenance interrupt not asserted.

1 vPE Group 1 Enabled maintenance interrupt asserted.

This maintenance interrupt is asserted when ICH_HCR_EL2.VGrp1EIE==1 and
ICH_VMCR_EL2.VENG1==is 1.

When this register has an architecturally-defined reset value, this field resets to 0.

VGrp0D, bit [5]

vPE Group 0 Disabled.

0 vPE Group 0 Disabled maintenance interrupt not asserted.

RES0

31 8 7 6 5 4

NP

3 2

U

1 0

EOI
LRENP

VGrp0E
VGrp0D
VGrp1E
VGrp1D
8-300 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.4 AArch64 virtualization control System registers
1 vPE Group 0 Disabled maintenance interrupt asserted.

This maintenance interrupt is asserted when ICH_HCR_EL2.VGrp0DIE==1 and
ICH_VMCR_EL2.VENG0==0.

When this register has an architecturally-defined reset value, this field resets to 0.

VGrp0E, bit [4]

vPE Group 0 Enabled.

0 vPE Group 0 Enabled maintenance interrupt not asserted.

1 vPE Group 0 Enabled maintenance interrupt asserted.

This maintenance interrupt is asserted when ICH_HCR_EL2.VGrp0EIE==1 and
ICH_VMCR_EL2.VENG0==1.

When this register has an architecturally-defined reset value, this field resets to 0.

NP, bit [3]

No Pending.

0 No Pending maintenance interrupt not asserted.

1 No Pending maintenance interrupt asserted.

This maintenance interrupt is asserted when ICH_HCR_EL2.NPIE==1 and no List register is in
pending state.

When this register has an architecturally-defined reset value, this field resets to 0.

LRENP, bit [2]

List Register Entry Not Present.

0 List Register Entry Not Present maintenance interrupt not asserted.

1 List Register Entry Not Present maintenance interrupt asserted.

This maintenance interrupt is asserted when ICH_HCR_EL2.LRENPIE==1 and
ICH_HCR_EL2.EOIcount is non-zero.

When this register has an architecturally-defined reset value, this field resets to 0.

U, bit [1]

Underflow.

0 Underflow maintenance interrupt not asserted.

1 Underflow maintenance interrupt asserted.

This maintenance interrupt is asserted when ICH_HCR_EL2.UIE==1 and zero or one of the List
register entries are marked as a valid interrupt, that is, if the corresponding ICH_LR<n>_EL2.State
bits do not equal 0x0.

When this register has an architecturally-defined reset value, this field resets to 0.

EOI, bit [0]

End Of Interrupt.

0 End Of Interrupt maintenance interrupt not asserted.

1 End Of Interrupt maintenance interrupt asserted.

This maintenance interrupt is asserted when at least one bit in ICH_EISR_EL2 is 1.

When this register has an architecturally-defined reset value, this field resets to 0.

The U and NP bits do not include the status of any pending/active VSet packets because these bits control generation
of interrupts that allow software management of the contents of the List Registers (which are not affected by VSet
packets).
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-301
ID072617 Non-Confidential

8 Programmers’ Model
8.4 AArch64 virtualization control System registers
Accessing the ICH_MISR_EL2

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This syntax is encoded with the following settings in the instruction encoding:

Accessibility

The register is accessible in software as follows:

Traps and Enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception
prioritization for exceptions taken to AArch64) in the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A
architecture profile. Subject to the prioritization rules:

• In both Security states, and not dependent on other bits:

— If ICC_SRE_EL2.SRE==0, read accesses to this register from EL2 are trapped to EL2.

— If ICC_SRE_EL3.SRE==0, read accesses to this register from EL3 are trapped to EL3.

<systemreg> op0 op1 CRn CRm op2

ICH_MISR_EL2 11 100 1100 1011 010

Control Accessibility

NS EL0 EL1 EL2 EL3

0 - - n/a RO

1 - - RO RO

1 - n/a RO RO
8-302 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.4 AArch64 virtualization control System registers
8.4.8 ICH_VMCR_EL2, Interrupt Controller Virtual Machine Control Register

The ICH_VMCR_EL2 characteristics are:

Purpose

Enables the hypervisor to save and restore the virtual machine view of the GIC state.

Configurations

AArch64 System register ICH_VMCR_EL2 is architecturally mapped to AArch32 System register
ICH_VMCR.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

ICH_VMCR_EL2 is a 32-bit register.

Field descriptions

The ICH_VMCR_EL2 bit assignments are:

VPMR, bits [31:24]

Virtual Priority Mask. The priority mask level for the virtual CPU interface. If the priority of a
pending virtual interrupt is higher than the value indicated by this field, the interface signals the
virtual interrupt to the PE.

This field is an alias of ICV_PMR_EL1.Priority.

VBPR0, bits [23:21]

Virtual Binary Point Register, Group 0. Defines the point at which the priority value fields split into
two parts, the group priority field and the subpriority field. The group priority field determines
Group 0 interrupt preemption, and also determines Group 1 interrupt preemption if
ICH_VMCR_EL2.VCBPR == 1.

This field is an alias of ICV_BPR0_EL1.BinaryPoint.

The minimum value of this field is determined by ICH_VTR_EL2.PREbits. An attempt to program
the binary point field to a value less than the minimum value sets the field to the minimum value.

VBPR1, bits [20:18]

Virtual Binary Point Register, Group 1. Defines the point at which the priority value fields split into
two parts, the group priority field and the subpriority field. The group priority field determines
Group 1 interrupt preemption if ICH_VMCR_EL2.VCBPR == 0.

This field is an alias of ICV_BPR1_EL1.BinaryPoint.

This field is always accessible to EL2 accesses, regardless of the setting of the
ICH_VMCR_EL2.VCBPR field.

VPMR

31 24

VBPR0

23 21

VBPR1

20 18

RES0

17 10 9

RES0

8 5 4 3 2 1 0

VENG0
VENG1

VAckCtl
VFIQEn
VCBPR
VEOIM
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-303
ID072617 Non-Confidential

8 Programmers’ Model
8.4 AArch64 virtualization control System registers
The minimum value of this field is the minimum value of ICH_VMCR_EL2.VBPR0 plus one. An
attempt to program the binary point field to a value less than the minimum value sets the field to the
minimum value.

Bits [17:10]

Reserved, RES0.

VEOIM, bit [9]

Virtual EOI mode. Controls whether a write to an End of Interrupt register also deactivates the
virtual interrupt:

0 ICV_EOIR0_EL1 and ICV_EOIR1_EL1 provide both priority drop and interrupt
deactivation functionality. Accesses to ICV_DIR_EL1 are UNPREDICTABLE.

1 ICV_EOIR0_EL1 and ICV_EOIR1_EL1 provide priority drop functionality only.
ICV_DIR_EL1 provides interrupt deactivation functionality.

This bit is an alias of ICV_CTLR_EL1.EOImode.

Bits [8:5]

Reserved, RES0.

VCBPR, bit [4]

Virtual Common Binary Point Register. Possible values of this bit are:

0 ICV_BPR0_EL1 determines the preemption group for virtual Group 0 interrupts only.
ICV_BPR1_EL1 determines the preemption group for virtual Group 1 interrupts.

1 ICV_BPR0_EL1 determines the preemption group for both virtual Group 0 and virtual
Group 1 interrupts.
Reads of ICV_BPR1_EL1 return ICV_BPR0_EL1 plus one, saturated to 0b111. Writes
to ICV_BPR1_EL1 are ignored.

This field is an alias of ICV_CTLR_EL1.CBPR.

VFIQEn, bit [3]

Virtual FIQ enable. Possible values of this bit are:

0 Group 0 virtual interrupts are presented as virtual IRQs.

1 Group 0 virtual interrupts are presented as virtual FIQs.

This bit is an alias of GICV_CTLR.FIQEn.

In implementations where the Non-secure copy of ICC_SRE_EL1.SRE is always 1, this bit is RES1.

VAckCtl, bit [2]

Virtual AckCtl. Possible values of this bit are:

0 If the highest priority pending interrupt is Group 1, a read of GICV_IAR or
GICV_HPPIR returns an INTID of 1022.

1 If the highest priority pending interrupt is Group 1, a read of GICV_IAR or
GICV_HPPIR returns the INTID of the corresponding interrupt.

This bit is an alias of GICV_CTLR.AckCtl.

This field is supported for backwards compatibility with GICv2. ARM deprecates the use of this
field.

In implementations where the Non-secure copy of ICC_SRE_EL1.SRE is always 1, this bit is RES0.

VENG1, bit [1]

Virtual Group 1 interrupt enable. Possible values of this bit are:

0 Virtual Group 1 interrupts are disabled.

1 Virtual Group 1 interrupts are enabled.

This bit is an alias of ICV_IGRPEN1_EL1.Enable.
8-304 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.4 AArch64 virtualization control System registers
VENG0, bit [0]

Virtual Group 0 interrupt enable. Possible values of this bit are:

0 Virtual Group 0 interrupts are disabled.

1 Virtual Group 0 interrupts are enabled.

This bit is an alias of ICV_IGRPEN0_EL1.Enable.

Accessing the ICH_VMCR_EL2

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax is encoded with the following settings in the instruction encoding:

Accessibility

The register is accessible in software as follows:

When EL2 is using System register access, EL1 using either System register or memory-mapped access must be
supported.

Traps and Enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception
prioritization for exceptions taken to AArch64) in the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A
architecture profile. Subject to the prioritization rules:

• In both Security states, and not dependent on other bits:

— If ICC_SRE_EL2.SRE==0, accesses to this register from EL2 are trapped to EL2.

— If ICC_SRE_EL3.SRE==0, accesses to this register from EL3 are trapped to EL3.

• When EL2 is implemented and is using AArch64 and SCR_EL3.NS == 1:

— If HCR_EL2.NV==1, Non-secure accesses to this register from EL1 are trapped to EL2.

<systemreg> op0 op1 CRn CRm op2

ICH_VMCR_EL2 11 100 1100 1011 111

Control Accessibility

NS EL0 EL1 EL2 EL3

0 - - n/a RW

1 - - RW RW

1 - n/a RW RW
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-305
ID072617 Non-Confidential

8 Programmers’ Model
8.4 AArch64 virtualization control System registers
8.4.9 ICH_VTR_EL2, Interrupt Controller VGIC Type Register

The ICH_VTR_EL2 characteristics are:

Purpose

Reports supported GIC virtualisartion features.

Configurations

AArch64 System register ICH_VTR_EL2 is architecturally mapped to AArch32 System register
ICH_VTR.

If EL2 is not implemented, all bits in this register are RES0 from EL3, except for nV4, which is RES1
from EL3.

Attributes

ICH_VTR_EL2 is a 32-bit register.

Field descriptions

The ICH_VTR_EL2 bit assignments are:

PRIbits, bits [31:29]

Priority bits. The number of virtual priority bits implemented, minus one.

An implementation must implement at least 32 levels of virtual priority (5 priority bits).

This field is an alias of ICV_CTLR_EL1.PRIbits.

PREbits, bits [28:26]

The number of virtual preemption bits implemented, minus one.

An implementation must implement at least 32 levels of virtual preemption priority (5 preemption
bits).

The value of this field must be less than or equal to the value of ICH_VTR_EL2.PRIbits.

The maximum value of this field is 6, indicating 7 bits of preemption.

This field determines the minimum value of ICH_VMCR_EL2.VBPR0.

IDbits, bits [25:23]

The number of virtual interrupt identifier bits supported:

000 16 bits.

001 24 bits.

All other values are reserved.

This field is an alias of ICV_CTLR_EL1.IDbits.

SEIS, bit [22]

SEI Support. Indicates whether the virtual CPU interface supports generation of SEIs:

0 The virtual CPU interface logic does not support generation of SEIs.

PRIbits

31 29

PREbits

28 26

IDbits

25 23 22 21 20 19

RES0

18 5

ListRegs

4 0

SEIS
A3V
nV4
TDS
8-306 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.4 AArch64 virtualization control System registers
1 The virtual CPU interface logic supports generation of SEIs.

This bit is an alias of ICV_CTLR_EL1.SEIS.

A3V, bit [21]

Affinity 3 Valid. Possible values are:

0 The virtual CPU interface logic only supports zero values of Affinity 3 in SGI
generation System registers.

1 The virtual CPU interface logic supports non-zero values of Affinity 3 in SGI generation
System registers.

This bit is an alias of ICV_CTLR_EL1.A3V.

nV4, bit [20]

Direct injection of virtual interrupts not supported. Possible values are:

0 The CPU interface logic supports direct injection of virtual interrupts.

1 The CPU interface logic does not support direct injection of virtual interrupts.

In GICv3 this bit is RES1.

TDS, bit [19]

Separate trapping of Non-secure EL1 writes to ICV_DIR_EL1 supported.

0 Implementation does not support ICH_HCR_EL2.TDIR.

1 Implementation supports ICH_HCR_EL2.TDIR.

Bits [18:5]

Reserved, RES0.

ListRegs, bits [4:0]

The number of implemented List registers, minus one. For example, a value of 0b01111 indicates that
the maximum of 16 List registers are implemented.

Accessing the ICH_VTR_EL2

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This syntax is encoded with the following settings in the instruction encoding:

Accessibility

The register is accessible in software as follows:

<systemreg> op0 op1 CRn CRm op2

ICH_VTR_EL2 11 100 1100 1011 001

Control Accessibility

NS EL0 EL1 EL2 EL3

0 - - n/a RO

1 - - RO RO

1 - n/a RO RO
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-307
ID072617 Non-Confidential

8 Programmers’ Model
8.4 AArch64 virtualization control System registers
Traps and Enables

For a description of the prioritization of any generated exceptions, see section D1.13.2 (Synchronous exception
prioritization for exceptions taken to AArch64) in the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A
architecture profile. Subject to the prioritization rules:

• In both Security states, and not dependent on other bits:

— If ICC_SRE_EL2.SRE==0, read accesses to this register from EL2 are trapped to EL2.

— If ICC_SRE_EL3.SRE==0, read accesses to this register from EL3 are trapped to EL3.
8-308 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.5 AArch32 System register descriptions
8.5 AArch32 System register descriptions
This section describes each of the physical AArch32 GIC System registers in register name order. The ICC prefix
indicates a GIC CPU interface System register. Each AArch32 System register description contains a reference to
the AArch64 register that provides the same functionality.

Unless otherwise stated, the bit assignments for the GIC System registers are the same as those for the equivalent
GICC_* and GICV_* memory-mapped registers.

The ICC prefix is used by the System register access mechanism to select the physical or virtual interface System
registers according to the setting of HCR. The equivalent memory-mapped physical registers are described in The
GIC CPU interface register descriptions on page 8-574. The equivalent virtual interface memory-mapped registers
are described in The GIC virtual CPU interface register descriptions on page 8-614.

Table 8-23 shows the encodings for the AArch32 System registers.

Table 8-23 Encodings for the AArch32 System registers

Register Width (bits) opc1 CRn CRm opc2 Notes

ICC_PMR 32 0 4 6 0 RW

ICC_SGI1R 64 - 12 - WO

ICC_IAR0 32 12 8 0 RO

ICC_EOIR0 32 1 WO

ICC_HPPIR0 32 2 RO

ICC_BPR0 32 3 RW

ICC_AP0R<n> 32 4 RW

ICC_AP0R<n> 32 5 RW

ICC_AP0R<n> 32 6 RW

ICC_AP0R<n> 32 7 RW

ICC_AP1R<n> 32 9 0 RW

ICC_AP1R<n> 32 1 RW

ICC_AP1R<n> 32 2 RW

ICC_AP1R<n> 32 3 RW

ICC_DIR 32 11 1 WO

ICC_RPR 32 3 RO
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-309
ID072617 Non-Confidential

8 Programmers’ Model
8.5 AArch32 System register descriptions
The following access encodings are IMPLEMENTATION DEFINED.

ICC_IAR1 32 0 12 12 0 RO

ICC_EOIR1 32 1 WO

ICC_HPPIR1 32 2 RO

ICC_BPR1 32 3 RW

ICC_CTLR 32 4 RW

ICC_SRE 32 5 RW

ICC_IGRPEN0 32 6 RW

ICC_IGRPEN1 32 7 RW

ICC_ASGI1R 64 1 - - WO

ICC_SGI0R 64 2 - - WO

ICC_HSRE 32 4 12 9 5 RW

ICC_MCTLR 32 6 12 12 4 RW

ICC_MSRE 32 5 RW

ICC_MGRPEN1 32 7 RW

op1 CRn CRm op2

000 1100 1101 000

Table 8-23 Encodings for the AArch32 System registers (continued)

Register Width (bits) opc1 CRn CRm opc2 Notes
8-310 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.5 AArch32 System register descriptions
8.5.1 ICC_AP0R<n>, Interrupt Controller Active Priorities Group 0 Registers, n = 0 - 3

The ICC_AP0R<n> characteristics are:

Purpose

Provides information about Group 0 active priorities.

Configurations

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register ICC_AP0R<n> is architecturally mapped to AArch64 System register
ICC_AP0R<n>_EL1.

Attributes

ICC_AP0R<n> is a 32-bit register.

Field descriptions

The ICC_AP0R<n> bit assignments are:

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

When this register has an architecturally-defined reset value, this field resets to 0.

The contents of these registers are IMPLEMENTATION DEFINED with the one architectural requirement that the value
0x00000000 is consistent with no interrupts being active.

Accessing the ICC_AP0R<n>

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax is encoded with the following settings in the instruction encoding:

When HCR.FMO is set to 1, execution of this encoding at Non-secure EL1 results in an access to ICV_AP0R<n>.

IMPLEMENTATION DEFINED

31 0

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c12, c8, <opc2> 000 1:n<1:0> 1100 1111 1000
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-311
ID072617 Non-Confidential

8 Programmers’ Model
8.5 AArch32 System register descriptions
Accessibility

The register is accessible in software as follows:

The ICC_AP0R<n> registers are only accessible at Non-secure EL1 when HCR.FMO is set to 0.

Note
 When HCR.FMO is set to 1, at Non-secure EL1, the instruction encoding to access ICC_AP0R<n> results in an
access to ICV_AP0R<n>.

Writing to these registers with any value other than the last read value of the register (or 0x00000000 when there are
no Group 0 active priorities) might result in UNPREDICTABLE behavior of the interrupt prioritization system, causing:

• Interrupts that should preempt execution to not preempt execution.

• Interrupts that should not preempt execution to preempt execution.

ICC_AP0R1 is only implemented in implementations that support 6 or more bits of preemption. ICC_AP0R2 and
ICC_AP0R3 are only implemented in implementations that support 7 bits of preemption. Unimplemented registers
are UNDEFINED.

Note
 The number of bits of preemption is indicated by ICH_VTR.PREbits.

Writing to the active priority registers in any order other than the following order will result in UNPREDICTABLE
behavior:

• ICC_AP0R<n>.

• Secure ICC_AP1R<n>.

• Non-secure ICC_AP1R<n>.

Traps and Enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in
the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to
AArch32 state and section D1.13.2 (Synchronous exception prioritization for exceptions taken to AArch64) in the
ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch64
state. Subject to the prioritization rules:

• In both Security states, and not dependent on other bits:

— If ICC_SRE.SRE==0, accesses to this register from EL1 are UNDEFINED.

— If ICC_HSRE.SRE==0, accesses to this register from EL2 are UNDEFINED.

— If ICC_MSRE.SRE==0, accesses to this register from EL3 are UNDEFINED.

Control Accessibility

FMO IMO NS EL0 EL1 EL2 EL3

x x 0 - RW n/a RW

x x 1 - n/a RW RW

0 x 1 - RW RW RW

1 x 1 - ICV_AP0R<n> RW RW
8-312 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.5 AArch32 System register descriptions
• When EL2 is implemented and is using AArch64 and SCR_EL3.NS == 1:

— If HSTR_EL2.T12==1, Non-secure accesses to this register from EL1 are trapped to EL2.

• When EL2 is implemented and is using AArch32 and SCR_EL3.NS == 1:

— If HSTR.T12==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

• When SCR_EL3.NS == 1:

— If ICH_HCR.TALL0==1, Non-secure accesses to this register from EL1 are trapped to EL2.

— If ICH_HCR_EL2.TALL0==1, Non-secure accesses to this register from EL1 are trapped to EL2.

• When EL3 is implemented and is using AArch32:

— If SCR.FIQ==1, and EL3 is implemented and configured to use AArch32, accesses to this register
from EL2 and EL3 modes other than Monitor mode are UNDEFINED.

• When EL3 is implemented and is using AArch32 and SCR_EL3.NS == 1:

— If SCR.FIQ==1, and HCR.FMO==0, and EL2 is implemented and configured to use AArch32,
Non-secure accesses to this register from EL1 are UNDEFINED.

• When EL3 is implemented and is using AArch64 and SCR_EL3.NS == 0:

— If SCR_EL3.FIQ==1, and EL3 is implemented and configured to use AArch64, Secure accesses to this
register from EL1 are trapped to EL3.

• When EL3 is implemented and is using AArch64:

— If SCR_EL3.FIQ==1, and EL3 is implemented and configured to use AArch64, accesses to this
register from EL2 are trapped to EL3.

• When EL3 is implemented and is using AArch64 and SCR_EL3.NS == 1:

— If SCR_EL3.FIQ==1, and HCR.FMO==0, and EL3 is implemented and configured to use AArch64
and EL2 is implemented and configured to use AArch32, Non-secure accesses to this register from
EL1 are trapped to EL3.

— If SCR_EL3.FIQ==1, and HCR_EL2.FMO==0, and EL2 is implemented and configured to use
AArch64, Non-secure accesses to this register from EL1 are trapped to EL3.
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-313
ID072617 Non-Confidential

8 Programmers’ Model
8.5 AArch32 System register descriptions
8.5.2 ICC_AP1R<n>, Interrupt Controller Active Priorities Group 1 Registers, n = 0 - 3

The ICC_AP1R<n> characteristics are:

Purpose

Provides information about Group 1 active priorities.

Configurations

AArch32 System register ICC_AP1R<n>(S) is architecturally mapped to AArch64 System register
ICC_AP1R<n>_EL1 (S).

AArch32 System register ICC_AP1R<n>(NS) is architecturally mapped to AArch64 System
register ICC_AP1R<n>_EL1 (NS).

Attributes

ICC_AP1R<n> is a 32-bit register.

Field descriptions

The ICC_AP1R<n> bit assignments are:

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

When this register has an architecturally-defined reset value, this field resets to 0.

The contents of these registers are IMPLEMENTATION DEFINED with the one architectural requirement that the value
0x00000000 is consistent with no interrupts being active.

Accessing the ICC_AP1R<n>

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax is encoded with the following settings in the instruction encoding:

When HCR.IMO is set to 1, execution of this encoding at Non-secure EL1 results in an access to ICV_AP1R<n>.

IMPLEMENTATION DEFINED

31 0

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c12, c9, <opc2> 000 0:n<1:0> 1100 1111 1001
8-314 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.5 AArch32 System register descriptions
Accessibility

The register is accessible in software as follows:

The ICC_AP1R<n> registers are only accessible at Non-secure EL1 when HCR.IMO is set to 0.

Note
 When HCR.IMO is set to 1, at Non-secure EL1, the instruction encoding to access ICC_AP1R<n> results in an
access to ICV_AP1R<n>.

Writing to these registers with any value other than the last read value of the register (or 0x00000000 when there are
no Group 1 active priorities) might result in UNPREDICTABLE behavior of the interrupt prioritization system, causing:

• Interrupts that should preempt execution to not preempt execution.

• Interrupts that should not preempt execution to preempt execution.

ICC_AP1R1 is only implemented in implementations that support 6 or more bits of preemption. ICC_AP1R2 and
ICC_AP1R3 are only implemented in implementations that support 7 bits of preemption. Unimplemented registers
are UNDEFINED.

Note
 The number of bits of preemption is indicated by ICH_VTR.PREbits.

Writing to the active priority registers in any order other than the following order will result in UNPREDICTABLE
behavior:

• ICC_AP0R<n>.

• Secure ICC_AP1R<n>.

• Non-secure ICC_AP1R<n>.

Configuration
Control Accessibility

Instance
FMO IMO NS EL0 EL1 EL2 EL3

EL3 is not implemented." x x 0 - RW n/a n/a ICC_AP1R<n>

EL3 is not implemented." x x 1 - n/a RW n/a ICC_AP1R<n>

EL3 is not implemented." x 0 1 - RW RW n/a ICC_AP1R<n>

EL3 is not implemented." x 1 1 - ICV_AP1R<n> RW n/a ICC_AP1R<n>

EL3 is using AArch64. x x 1 - n/a RW n/a ICC_AP1R<n>_ns

EL3 is using AArch64. x 0 1 - RW RW n/a ICC_AP1R<n>_ns

EL3 is using AArch64. x 1 1 - ICV_AP1R<n> RW n/a ICC_AP1R<n>_ns

EL3 is using AArch32. x x 1 - n/a RW RW ICC_AP1R<n>_ns

EL3 is using AArch32. x 0 1 - RW RW RW ICC_AP1R<n>_ns

EL3 is using AArch32. x 1 1 - ICV_AP1R<n> RW RW ICC_AP1R<n>_ns

EL3 is using AArch64. x x 0 - RW n/a n/a ICC_AP1R<n>_s

EL3 is using AArch32. x x 0 - - - RW ICC_AP1R<n>_s
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-315
ID072617 Non-Confidential

8 Programmers’ Model
8.5 AArch32 System register descriptions
Traps and Enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in
the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to
AArch32 state and section D1.13.2 (Synchronous exception prioritization for exceptions taken to AArch64) in the
ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch64
state. Subject to the prioritization rules:

• In both Security states, and not dependent on other bits:

— If ICC_SRE.SRE==0, accesses to this register from EL1 are UNDEFINED.

— If ICC_HSRE.SRE==0, accesses to this register from EL2 are UNDEFINED.

— If ICC_MSRE.SRE==0, accesses to this register from EL3 are UNDEFINED.

• When EL2 is implemented and is using AArch64 and SCR_EL3.NS == 1:

— If HSTR_EL2.T12==1, Non-secure accesses to this register from EL1 are trapped to EL2.

• When EL2 is implemented and is using AArch32 and SCR_EL3.NS == 1:

— If HSTR.T12==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

• When SCR_EL3.NS == 1:

— If ICH_HCR.TALL1==1, Non-secure accesses to this register from EL1 are trapped to EL2.

— If ICH_HCR_EL2.TALL1==1, Non-secure accesses to this register from EL1 are trapped to EL2.

• When EL3 is implemented and is using AArch32:

— If SCR.IRQ==1, accesses to this register from EL2 and EL3 modes other than Monitor mode are
UNDEFINED.

• When EL3 is implemented and is using AArch32 and SCR_EL3.NS == 1:

— If SCR.IRQ==1, and HCR.IMO==0, Non-secure accesses to this register from EL1 are UNDEFINED.

• When EL3 is implemented and is using AArch64 and SCR_EL3.NS == 0:

— If SCR_EL3.IRQ==1, Secure accesses to this register from EL1 are trapped to EL3.

• When EL3 is implemented and is using AArch64:

— If SCR_EL3.IRQ==1, accesses to this register from EL2 are trapped to EL3.

• When EL3 is implemented and is using AArch64 and SCR_EL3.NS == 1:

— If SCR_EL3.IRQ==1, and HCR.IMO==0, Non-secure accesses to this register from EL1 are trapped
to EL3.

— If SCR_EL3.IRQ==1, and HCR_EL2.IMO==0, Non-secure accesses to this register from EL1 are
trapped to EL3.
8-316 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.5 AArch32 System register descriptions
8.5.3 ICC_ASGI1R, Interrupt Controller Alias Software Generated Interrupt Group 1 Register

The ICC_ASGI1R characteristics are:

Purpose

Generates Group 1 SGIs for the Security state that is not the current Security state.

Configurations

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register ICC_ASGI1R performs the same function as AArch64 System register
ICC_ASGI1R_EL1.

Under certain conditions a write to ICC_ASGI1R can generate Group 0 interrupts, see Table 8-14
on page 8-169.

Attributes

ICC_ASGI1R is a 64-bit register.

Field descriptions

The ICC_ASGI1R bit assignments are:

Bits [63:56]

Reserved, RES0.

Aff3, bits [55:48]

The affinity 3 value of the affinity path of the cluster for which SGI interrupts will be generated.

If the IRM bit is 1, this field is RES0.

RS, bits [47:44]

RangeSelector

Controls which group of 16 values is represented by the TargetList field.

TargetList[n] represents aff0 value ((RS * 16) + n).

When ICC_CTLR.RSS==0, RS is RES0.

When ICC_CTLR.RSS==1 and GICD_TYPER.RSS==0, writing this register with RS != 0 is a
CONSTRAINED UNPREDICTABLE choice of :

• The write is ignored.

• The RS field is treated as 0.

Bits [43:41]

Reserved, RES0.

IRM, bit [40]

Interrupt Routing Mode. Determines how the generated interrupts are distributed to PEs. Possible
values are:

0 Interrupts routed to the PEs specified by Aff3.Aff2.Aff1.<target list>.

1 Interrupts routed to all PEs in the system, excluding "self".

RES0

63 56

Aff3

55 48

RS

47 44

RES0

43 41 40

Aff2

39 32

RES0

31 28

INTID

27 24

Aff1

23 16

TargetList

15 0

IRM
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-317
ID072617 Non-Confidential

8 Programmers’ Model
8.5 AArch32 System register descriptions
Aff2, bits [39:32]

The affinity 2 value of the affinity path of the cluster for which SGI interrupts will be generated.

If the IRM bit is 1, this field is RES0.

Bits [31:28]

Reserved, RES0.

INTID, bits [27:24]

The INTID of the SGI.

Aff1, bits [23:16]

The affinity 1 value of the affinity path of the cluster for which SGI interrupts will be generated.

If the IRM bit is 1, this field is RES0.

TargetList, bits [15:0]

Target List. The set of PEs for which SGI interrupts will be generated. Each bit corresponds to the
PE within a cluster with an Affinity 0 value equal to the bit number.

If a bit is 1 and the bit does not correspond to a valid target PE, the bit must be ignored by the
Distributor. It is IMPLEMENTATION DEFINED whether, in such cases, a Distributor can signal a system
error.

Note
 This restricts a system to sending targeted SGIs to PEs with an affinity 0 number that is less than 16.

If SRE is set only for Secure EL3, software executing at EL3 might use the System register interface
to generate SGIs. Therefore, the Distributor must always be able to receive and acknowledge
Generate SGI packets received from CPU interface regardless of the ARE settings for a Security
state. However, the Distributor might discard such packets.

If the IRM bit is 1, this field is RES0.

Accessing the ICC_ASGI1R

This register can be written using MCRR with the following syntax:

MCRR <syntax>

This syntax is encoded with the following settings in the instruction encoding:

Accessibility

The register is accessible in software as follows:

<syntax> opc1 coproc CRm

p15, 1, <Rt>, <Rt2>, c12 0001 1111 1100

Control Accessibility

NS EL0 EL1 EL2 EL3

0 - WO n/a WO

1 - WO WO WO

1 - n/a WO WO
8-318 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.5 AArch32 System register descriptions
This register allows software executing in a Secure state to generate Non-secure Group 1 SGIs. It will also allow
software executing in a Non-secure state to generate Secure Group 1 SGIs, if permitted by the settings of
GICR_NSACR in the Redistributor corresponding to the target PE.

When GICD_CTLR.DS==0, Non-secure writes do not generate an interrupt for a target PE if not permitted by the
GICR_NSACR register associated with the target PE. For more information see Use of control registers for SGI
forwarding on page 8-169.

Note
 Accesses from Secure Monitor mode are treated as Secure regardless of the value of SCR.NS.

Traps and Enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in
the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to
AArch32 state and section D1.13.2 (Synchronous exception prioritization for exceptions taken to AArch64) in the
ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch64
state. Subject to the prioritization rules:

• In both Security states, and not dependent on other bits:

— If ICC_SRE.SRE==0, write accesses to this register from EL1 are UNDEFINED.

• When EL2 is implemented and is using AArch64 and SCR_EL3.NS == 1:

— If HCR_EL2.FMO==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

— If HCR_EL2.IMO==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

— If HSTR_EL2.T12==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

• When EL2 is implemented and is using AArch32 and SCR_EL3.NS == 1:

— If HCR.FMO==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

— If HCR.IMO==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

— If HSTR.T12==1, Non-secure write accesses to this register from EL1 are trapped to Hyp mode.

• When SCR_EL3.NS == 1:

— If ICH_HCR.TC==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

— If ICH_HCR_EL2.TC==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

• When EL3 is implemented and is using AArch32:

— If SCR.FIQ==1, and SCR.IRQ==1, write accesses to this register from EL2 and EL3 modes other than
Monitor mode are UNDEFINED.

• When EL3 is implemented and is using AArch64 and SCR_EL3.NS == 0:

— If SCR_EL3.FIQ==1, and SCR_EL3.IRQ==1, Secure write accesses to this register from EL1 are
trapped to EL3.

• When EL3 is implemented and is using AArch64:

— If SCR_EL3.FIQ==1, and SCR_EL3.IRQ==1, write accesses to this register from EL2 are trapped to
EL3.

• When EL3 is implemented and is using AArch64 and SCR_EL3.NS == 1:

— If SCR_EL3.FIQ==1, SCR_EL3.IRQ==1, HCR.IMO==0, and HCR.FMO==0, Non-secure write
accesses to this register from EL1 are trapped to EL3.

— If SCR_EL3.FIQ==1, SCR_EL3.IRQ==1, HCR_EL2.IMO==0, and HCR_EL2.FMO==0,
Non-secure write accesses to this register from EL1 are trapped to EL3.
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-319
ID072617 Non-Confidential

8 Programmers’ Model
8.5 AArch32 System register descriptions
8.5.4 ICC_BPR0, Interrupt Controller Binary Point Register 0

The ICC_BPR0 characteristics are:

Purpose

Defines the point at which the priority value fields split into two parts, the group priority field and
the subpriority field. The group priority field determines Group 0 interrupt preemption.

Configurations

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register ICC_BPR0 is architecturally mapped to AArch64 System register
ICC_BPR0_EL1.

Attributes

ICC_BPR0 is a 32-bit register.

Field descriptions

The ICC_BPR0 bit assignments are:

Bits [31:3]

Reserved, RES0.

BinaryPoint, bits [2:0]

The value of this field controls how the 8-bit interrupt priority field is split into a group priority field,
that determines interrupt preemption, and a subpriority field. This is done as follows:

Accessing the ICC_BPR0

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

RES0

31 3 2 0

BinaryPoint

Binary point value Group priority field Subpriority field Field with binary point

0 [7:1] [0] ggggggg.s

1 [7:2] [1:0] gggggg.ss

2 [7:3] [2:0] ggggg.sss

3 [7:4] [3:0] gggg.ssss

4 [7:5] [4:0] ggg.sssss

5 [7:6] [5:0] gg.ssssss

6 [7] [6:0] g.sssssss

7 No preemption [7:0] .ssssssss
8-320 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.5 AArch32 System register descriptions
MCR <syntax>

This syntax is encoded with the following settings in the instruction encoding:

When HCR.FMO is set to 1, execution of this encoding at Non-secure EL1 results in an access to ICV_BPR0.

Accessibility

The register is accessible in software as follows:

ICC_BPR0 is only accessible at Non-secure EL1 when HCR.FMO is set to 0.

Note
 When HCR.FMO is set to 1, at Non-secure EL1, the instruction encoding to access ICC_BPR0 results in an access
to ICV_BPR0.

The minimum binary point value is derived from the number of implemented priority bits. The number of priority
bits is IMPLEMENTATION DEFINED, and reported by ICC_CTLR.PRIbits and ICC_MCTLR.PRIbits.

An attempt to program the binary point field to a value less than the minimum value sets the field to the minimum
value. On a reset, the binary point field is set to the minimum supported value.

Traps and Enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in
the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to
AArch32 state and section D1.13.2 (Synchronous exception prioritization for exceptions taken to AArch64) in the
ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch64
state. Subject to the prioritization rules:

• In both Security states, and not dependent on other bits:

— If ICC_SRE.SRE==0, accesses to this register from EL1 are UNDEFINED.

— If ICC_HSRE.SRE==0, accesses to this register from EL2 are UNDEFINED.

— If ICC_MSRE.SRE==0, accesses to this register from EL3 are UNDEFINED.

• When EL2 is implemented and is using AArch64 and SCR_EL3.NS == 1:

— If HSTR_EL2.T12==1, Non-secure accesses to this register from EL1 are trapped to EL2.

• When EL2 is implemented and is using AArch32 and SCR_EL3.NS == 1:

— If HSTR.T12==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c12, c8, 3 000 011 1100 1111 1000

Control Accessibility

FMO IMO NS EL0 EL1 EL2 EL3

x x 0 - RW n/a RW

x x 1 - n/a RW RW

0 x 1 - RW RW RW

1 x 1 - ICV_BPR0 RW RW
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-321
ID072617 Non-Confidential

8 Programmers’ Model
8.5 AArch32 System register descriptions
• When SCR_EL3.NS == 1:

— If ICH_HCR.TALL0==1, Non-secure accesses to this register from EL1 are trapped to EL2.

— If ICH_HCR_EL2.TALL0==1, Non-secure accesses to this register from EL1 are trapped to EL2.

• When EL3 is implemented and is using AArch32:

— If SCR.FIQ==1, and EL3 is implemented and configured to use AArch32, accesses to this register
from EL2 and EL3 modes other than Monitor mode are UNDEFINED.

• When EL3 is implemented and is using AArch32 and SCR_EL3.NS == 1:

— If SCR.FIQ==1, and HCR.FMO==0, and EL2 is implemented and configured to use AArch32,
Non-secure accesses to this register from EL1 are UNDEFINED.

• When EL3 is implemented and is using AArch64 and SCR_EL3.NS == 0:

— If SCR_EL3.FIQ==1, and EL3 is implemented and configured to use AArch64, Secure accesses to this
register from EL1 are trapped to EL3.

• When EL3 is implemented and is using AArch64:

— If SCR_EL3.FIQ==1, and EL3 is implemented and configured to use AArch64, accesses to this
register from EL2 are trapped to EL3.

• When EL3 is implemented and is using AArch64 and SCR_EL3.NS == 1:

— If SCR_EL3.FIQ==1, and HCR.FMO==0, and EL3 is implemented and configured to use AArch64
and EL2 is implemented and configured to use AArch32, Non-secure accesses to this register from
EL1 are trapped to EL3.

— If SCR_EL3.FIQ==1, and HCR_EL2.FMO==0, and EL2 is implemented and configured to use
AArch64, Non-secure accesses to this register from EL1 are trapped to EL3.
8-322 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.5 AArch32 System register descriptions
8.5.5 ICC_BPR1, Interrupt Controller Binary Point Register 1

The ICC_BPR1 characteristics are:

Purpose

Defines the point at which the priority value fields split into two parts, the group priority field and
the subpriority field. The group priority field determines Group 1 interrupt preemption.

Configurations

AArch32 System register ICC_BPR1(S) is architecturally mapped to AArch64 System register
ICC_BPR1_EL1 (S).

AArch32 System register ICC_BPR1(NS) is architecturally mapped to AArch64 System register
ICC_BPR1_EL1 (NS).

In GIC implementations supporting two Security states, this register is Banked.

Attributes

ICC_BPR1 is a 32-bit register.

Field descriptions

The ICC_BPR1 bit assignments are:

Bits [31:3]

Reserved, RES0.

BinaryPoint, bits [2:0]

If the GIC is configured to use separate binary point fields for Group 0 and Group 1 interrupts, the
value of this field controls how the 8-bit interrupt priority field is split into a group priority field,
that determines interrupt preemption, and a subpriority field. For more information about priorities,
see Priority grouping on page 4-67.

Writing 0 to this field will set this field to its reset value, which is IMPLEMENTATION DEFINED and
non-zero.

If EL3 is implemented and ICC_MCTLR.CBPR_EL1S is 1:

• Writing to this register at Secure EL1, or at EL3 not in Monitor mode, modifies ICC_BPR0.

• Reading this register at Secure EL1, or at EL3 not in Monitor mode, returns the value of
ICC_BPR0.

If EL3 is implemented and ICC_MCTLR.CBPR_EL1NS is 1, Non-secure accesses to this register
at EL1 or EL2 behave as follows, depending on the values of HCR.IMO and SCR.IRQ:

RES0

31 3 2 0

BinaryPoint

HCR.IMO SCR.IRQ Behavior

0 0 Non-secure EL1 and EL2 reads return ICC_BPR0 + 1 saturated to 0b111. Non-secure EL1 and EL2
writes are ignored.
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-323
ID072617 Non-Confidential

8 Programmers’ Model
8.5 AArch32 System register descriptions
If EL3 is not implemented and ICC_CTLR.CBPR is 1, Non-secure accesses to this register at EL1
or EL2 behave as follows, depending on the values of HCR.IMO:

Accessing the ICC_BPR1

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax is encoded with the following settings in the instruction encoding:

When HCR.IMO is set to 1, execution of this encoding at Non-secure EL1 results in an access to ICV_BPR1.

Accessibility

The register is accessible in software as follows:

0 1 Non-secure EL1 and EL2 accesses trap to EL3.

1 0 Non-secure EL1 accesses affect virtual interrupts. Non-secure EL2 reads return ICC_BPR0 + 1
saturated to 0b111. Non-secure EL2 writes are ignored.

1 1 Non-secure EL1 accesses affect virtual interrupts. Non-secure EL2 accesses trap to EL3.

HCR.IMO SCR.IRQ Behavior

HCR.IMO Behavior

0 Non-secure EL1 and EL2 reads return ICC_BPR0 + 1 saturated to 0b111. Non-secure EL1 and EL2 writes are
ignored.

1 Non-secure EL1 accesses affect virtual interrupts. Non-secure EL2 reads return ICC_BPR0 + 1 saturated to 0b111.
Non-secure EL2 writes are ignored.

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c12, c12, 3 000 011 1100 1111 1100

Configuration
Control Accessibility

Instance
FMO IMO NS EL0 EL1 EL2 EL3

EL3 is not implemented." x x 0 - RW n/a n/a ICC_BPR1

EL3 is not implemented." x x 1 - n/a RW n/a ICC_BPR1

EL3 is not implemented." x 0 1 - RW RW n/a ICC_BPR1

EL3 is not implemented." x 1 1 - ICV_BPR1 RW n/a ICC_BPR1

EL3 is using AArch64. x x 1 - n/a RW n/a ICC_BPR1
_ns

EL3 is using AArch64. x 0 1 - RW RW n/a ICC_BPR1
_ns
8-324 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.5 AArch32 System register descriptions
ICC_BPR1 is only accessible at Non-secure EL1 when HCR.IMO is set to 0.

Note
 When HCR.IMO is set to 1, at Non-secure EL1, the instruction encoding to access ICC_BPR1 results in an access
to ICV_BPR1.

When the PE resets into an Exception level that is using AArch32, the reset value is equal to:

• For the Secure copy of the register, the minimum value of ICC_BPR0 plus one.

• For the Non-secure copy of the register, the minimum value of ICC_BPR0.

Where the minimum value of ICC_BPR0 is IMPLEMENTATION DEFINED.

If EL3 is not implemented:

• If the PE is Secure this reset value is (minimum value of ICC_BPR0 plus one).

• If the PE is Non-secure this reset value is (minimum value of ICC_BPR0).

An attempt to program the binary point field to a value less than the reset value sets the field to the reset value.

Traps and Enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in
the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to
AArch32 state and section D1.13.2 (Synchronous exception prioritization for exceptions taken to AArch64) in the
ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch64
state. Subject to the prioritization rules:

• In both Security states, and not dependent on other bits:

— If ICC_SRE.SRE==0, accesses to this register from EL1 are UNDEFINED.

— If ICC_HSRE.SRE==0, accesses to this register from EL2 are UNDEFINED.

— If ICC_MSRE.SRE==0, accesses to this register from EL3 are UNDEFINED.

• When EL2 is implemented and is using AArch64 and SCR_EL3.NS == 1:

— If HSTR_EL2.T12==1, Non-secure accesses to this register from EL1 are trapped to EL2.

EL3 is using AArch64. x 1 1 - ICV_BPR1 RW n/a ICC_BPR1
_ns

EL3 is using AArch32. x x 1 - n/a RW RW ICC_BPR1
_ns

EL3 is using AArch32. x 0 1 - RW RW RW ICC_BPR1
_ns

EL3 is using AArch32. x 1 1 - ICV_BPR1 RW RW ICC_BPR1
_ns

EL3 is using AArch64. x x 0 - RW n/a n/a ICC_BPR1
_s

EL3 is using AArch32. x x 0 - - - RW ICC_BPR1
_s

Configuration
Control Accessibility

Instance
FMO IMO NS EL0 EL1 EL2 EL3
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-325
ID072617 Non-Confidential

8 Programmers’ Model
8.5 AArch32 System register descriptions
• When EL2 is implemented and is using AArch32 and SCR_EL3.NS == 1:

— If HSTR.T12==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

• When SCR_EL3.NS == 1:

— If ICH_HCR.TALL1==1, Non-secure accesses to this register from EL1 are trapped to EL2.

— If ICH_HCR_EL2.TALL1==1, Non-secure accesses to this register from EL1 are trapped to EL2.

• When EL3 is implemented and is using AArch32:

— If SCR.IRQ==1, accesses to this register from EL2 and EL3 modes other than Monitor mode are
UNDEFINED.

• When EL3 is implemented and is using AArch32 and SCR_EL3.NS == 1:

— If SCR.IRQ==1, and HCR.IMO==0, Non-secure accesses to this register from EL1 are UNDEFINED.

• When EL3 is implemented and is using AArch64 and SCR_EL3.NS == 0:

— If SCR_EL3.IRQ==1, Secure accesses to this register from EL1 are trapped to EL3.

• When EL3 is implemented and is using AArch64:

— If SCR_EL3.IRQ==1, accesses to this register from EL2 are trapped to EL3.

• When EL3 is implemented and is using AArch64 and SCR_EL3.NS == 1:

— If SCR_EL3.IRQ==1, and HCR.IMO==0, Non-secure accesses to this register from EL1 are trapped
to EL3.

— If SCR_EL3.IRQ==1, and HCR_EL2.IMO==0, Non-secure accesses to this register from EL1 are
trapped to EL3.
8-326 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.5 AArch32 System register descriptions
8.5.6 ICC_CTLR, Interrupt Controller Control Register

The ICC_CTLR characteristics are:

Purpose

Controls aspects of the behavior of the GIC CPU interface and provides information about the
features implemented.

Configurations

AArch32 System register ICC_CTLR(S) is architecturally mapped to AArch64 System register
ICC_CTLR_EL1 (S).

AArch32 System register ICC_CTLR(NS) is architecturally mapped to AArch64 System register
ICC_CTLR_EL1 (NS).

Attributes

ICC_CTLR is a 32-bit register.

Field descriptions

The ICC_CTLR bit assignments are:

Bits [31:19]

Reserved, RES0.

RSS, bit [18]

Range Selector Support. Possible values are:

0 Targeted SGIs with affinity level 0 values of 0 - 15 are supported.

1 Targeted SGIs with affinity level 0 values of 0 - 255 are supported.

This bit is read-only.

Bits [17:16]

Reserved, RES0.

A3V, bit [15]

Affinity 3 Valid. Read-only and writes are ignored. Possible values are:

0 The CPU interface logic only supports zero values of Affinity 3 in SGI generation
System registers.

1 The CPU interface logic supports non-zero values of Affinity 3 in SGI generation
System registers.

If EL3 is implemented and using AArch32, this bit is an alias of ICC_MCTLR.A3V.

If EL3 is implemented and using AArch64, this bit is an alias of ICC_CTLR_EL3.A3V.

RES0

31 19 18 17 16 15 14

IDbits

13 11

PRIbits

10 8 7 6

RES0

5 2 1 0

RSS
RES0

CBPR
EOImode

PMHE
RES0
SEIS
A3V
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-327
ID072617 Non-Confidential

8 Programmers’ Model
8.5 AArch32 System register descriptions
SEIS, bit [14]

SEI Support. Read-only and writes are ignored. Indicates whether the CPU interface supports local
generation of SEIs:

0 The CPU interface logic does not support local generation of SEIs.

1 The CPU interface logic supports local generation of SEIs.

If EL3 is implemented and using AArch32, this bit is an alias of ICC_MCTLR.SEIS.

If EL3 is implemented and using AArch64, this bit is an alias of ICC_CTLR_EL3.SEIS.

IDbits, bits [13:11]

Identifier bits. Read-only and writes are ignored. The number of physical interrupt identifier bits
supported:

000 16 bits.

001 24 bits.

All other values are reserved.

If EL3 is implemented and using AArch32, this field is an alias of ICC_MCTLR.IDbits.

If EL3 is implemented and using AArch64, this field is an alias of ICC_CTLR_EL3.IDbits.

PRIbits, bits [10:8]

Priority bits. Read-only and writes are ignored. The number of priority bits implemented, minus
one.

An implementation that supports two Security states must implement at least 32 levels of physical
priority (5 priority bits).

An implementation that supports only a single Security state must implement at least 16 levels of
physical priority (4 priority bits).

Note
 This field always returns the number of priority bits implemented, regardless of the Security state

of the access or the value of GICD_CTLR.DS.

The division between group priority and subpriority is defined in the binary point registers
ICC_BPR0 and ICC_BPR1.

If EL3 is implemented and using AArch32, physical accesses return the value from
ICC_MCTLR.PRIbits.

If EL3 is implemented and using AArch64, physical accesses return the value from
ICC_CTLR_EL3.PRIbits.

If EL3 is not implemented, physical accesses return the value from this field.

Bit [7]

Reserved, RES0.

PMHE, bit [6]

Priority Mask Hint Enable. Controls whether the priority mask register is used as a hint for interrupt
distribution:

0 Disables use of ICC_PMR as a hint for interrupt distribution.

1 Enables use of ICC_PMR as a hint for interrupt distribution.

If EL3 is implemented:

• If EL3 is using AArch32, this bit is an alias of ICC_MCTLR.PMHE.

• If EL3 is using AArch64, this bit is an alias of ICC_CTLR_EL3.PMHE.

• If GICD_CTLR.DS == 0, this bit is read-only.

• If GICD_CTLR.DS == 1, this bit is read/write.
8-328 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.5 AArch32 System register descriptions
If EL3 is not implemented, it is IMPLEMENTATION DEFINED whether this bit is read-only or
read-write:

• If this bit is read-only, an implementation can choose to make this field RAZ/WI or RAO/WI.

• If this bit is read/write, it resets to zero.

Bits [5:2]

Reserved, RES0.

EOImode, bit [1]

EOI mode for the current Security state. Controls whether a write to an End of Interrupt register also
deactivates the interrupt:

0 ICC_EOIR0 and ICC_EOIR1 provide both priority drop and interrupt deactivation
functionality. Accesses to ICC_DIR are UNPREDICTABLE.

1 ICC_EOIR0 and ICC_EOIR1 provide priority drop functionality only. ICC_DIR
provides interrupt deactivation functionality.

If EL3 is implemented:

• If EL3 is using AArch32, this bit is an alias of ICC_MCTLR.EOImode_EL1{S, NS} where
S or NS corresponds to the current Security state.

• If EL3 is using AArch64, this bit is an alias of ICC_CTLR_EL3.EOImode_EL1{S, NS}
where S or NS corresponds to the current Security state.

If EL3 is not implemented, it is IMPLEMENTATION DEFINED whether this bit is read-only or
read-write:

• If this bit is read-only, an implementation can choose to make this field RAZ/WI or RAO/WI.

• If this bit is read/write, it resets to zero.

If this field is implemented as an RW field, it resets to a value that is architecturally UNKNOWN.

CBPR, bit [0]

Common Binary Point Register. Controls whether the same register is used for interrupt preemption
of both Group 0 and Group 1 interrupts:

0 ICC_BPR0 determines the preemption group for Group 0 interrupts only.
ICC_BPR1 determines the preemption group for Group 1 interrupts.

1 ICC_BPR0 determines the preemption group for both Group 0 and Group 1 interrupts.

If EL3 is implemented:

• If EL3 is using AArch32, this bit is an alias of ICC_MCTLR.CBPR_EL1{S,NS} where S or
NS corresponds to the current Security state.

• If EL3 is using AArch64, this bit is an alias of ICC_CTLR_EL3.CBPR_EL1{S,NS} where
S or NS corresponds to the current Security state.

• If GICD_CTLR.DS == 0, this bit is read-only.

• If GICD_CTLR.DS == 1, this bit is read/write.

If EL3 is not implemented, it is IMPLEMENTATION DEFINED whether this bit is read-only or
read-write:

• If this bit is read-only, an implementation can choose to make this field RAZ/WI or RAO/WI.

• If this bit is read/write, it resets to zero.

This field resets to a value that is architecturally UNKNOWN.

Accessing the ICC_CTLR

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-329
ID072617 Non-Confidential

8 Programmers’ Model
8.5 AArch32 System register descriptions
MCR <syntax>

This syntax is encoded with the following settings in the instruction encoding:

When HCR.{FMO, IMO} != {0, 0}, execution of this encoding at Non-secure EL1 results in an access to
ICV_CTLR.

Accessibility

The register is accessible in software as follows:

ICC_CTLR is only accessible at Non-secure EL1 when HCR.{FMO, IMO} == {0, 0}.

Note
 When HCR.{FMO, IMO} != {0, 0}, at Non-secure EL1, the instruction encoding to access ICC_CTLR results in
an access to ICV_CTLR.

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c12, c12, 4 000 100 1100 1111 1100

Configuration
Control Accessibility

Instance
FMO IMO NS EL0 EL1 EL2 EL3

EL3 is not implemented." x x 0 - RW n/a n/a ICC_CTLR

EL3 is not implemented." x x 1 - n/a RW n/a ICC_CTLR

EL3 is not implemented." x 1 1 - ICV_CTLR RW n/a ICC_CTLR

EL3 is not implemented." 1 x 1 - ICV_CTLR RW n/a ICC_CTLR

EL3 is not implemented." 0 0 1 - RW RW n/a ICC_CTLR

EL3 is using AArch64. x x 0 - RW n/a n/a ICC_CTLR_s

EL3 is using AArch32. x x 0 - - - RW ICC_CTLR_s

EL3 is using AArch64. x x 1 - n/a RW n/a ICC_CTLR_ns

EL3 is using AArch64. x 1 1 - ICV_CTLR RW n/a ICC_CTLR_ns

EL3 is using AArch64. 1 x 1 - ICV_CTLR RW n/a ICC_CTLR_ns

EL3 is using AArch64. 0 0 1 - RW RW n/a ICC_CTLR_ns

EL3 is using AArch32. x x 1 - n/a RW RW ICC_CTLR_ns

EL3 is using AArch32. x 1 1 - ICV_CTLR RW RW ICC_CTLR_ns

EL3 is using AArch32. 1 x 1 - ICV_CTLR RW RW ICC_CTLR_ns

EL3 is using AArch32. 0 0 1 - RW RW RW ICC_CTLR_ns
8-330 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.5 AArch32 System register descriptions
Traps and Enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in
the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to
AArch32 state and section D1.13.2 (Synchronous exception prioritization for exceptions taken to AArch64) in the
ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch64
state. Subject to the prioritization rules:

• In both Security states, and not dependent on other bits:

— If ICC_SRE.SRE==0, accesses to this register from EL1 are UNDEFINED.

— If ICC_HSRE.SRE==0, accesses to this register from EL2 are UNDEFINED.

— If ICC_MSRE.SRE==0, accesses to this register from EL3 are UNDEFINED.

• When EL2 is implemented and is using AArch64 and SCR_EL3.NS == 1:

— If HSTR_EL2.T12==1, Non-secure accesses to this register from EL1 are trapped to EL2.

• When EL2 is implemented and is using AArch32 and SCR_EL3.NS == 1:

— If HSTR.T12==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

• When SCR_EL3.NS == 1:

— If ICH_HCR.TC==1, Non-secure accesses to this register from EL1 are trapped to EL2.

— If ICH_HCR_EL2.TC==1, Non-secure accesses to this register from EL1 are trapped to EL2.

• When EL3 is implemented and is using AArch32:

— If SCR.IRQ==1, and SCR.FIQ==1, accesses to this register from EL2 and EL3 modes other than
Monitor mode are UNDEFINED.

• When EL3 is implemented and is using AArch32 and SCR_EL3.NS == 1:

— If SCR.IRQ==1, SCR.FIQ==1, HCR.IMO==0, and HCR.FMO==0, Non-secure accesses to this
register from EL1 are UNDEFINED.

• When EL3 is implemented and is using AArch64 and SCR_EL3.NS == 0:

— If SCR_EL3.FIQ==1, and SCR_EL3.IRQ==1, Secure accesses to this register from EL1 are trapped
to EL3.

• When EL3 is implemented and is using AArch64:

— If SCR_EL3.FIQ==1, and SCR_EL3.IRQ==1, accesses to this register from EL2 are trapped to EL3.

• When EL3 is implemented and is using AArch64 and SCR_EL3.NS == 1:

— If SCR_EL3.FIQ==1, SCR_EL3.IRQ==1, HCR.IMO==0, and HCR.FMO==0, Non-secure accesses
to this register from EL1 are trapped to EL3.

— If SCR_EL3.FIQ==1, SCR_EL3.IRQ==1, HCR_EL2.IMO==0, and HCR_EL2.FMO==0,
Non-secure accesses to this register from EL1 are trapped to EL3.
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-331
ID072617 Non-Confidential

8 Programmers’ Model
8.5 AArch32 System register descriptions
8.5.7 ICC_DIR, Interrupt Controller Deactivate Interrupt Register

The ICC_DIR characteristics are:

Purpose

When interrupt priority drop is separated from interrupt deactivation, a write to this register
deactivates the specified interrupt.

Configurations

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register ICC_DIR performs the same function as AArch64 System register
ICC_DIR_EL1.

Attributes

ICC_DIR is a 32-bit register.

Field descriptions

The ICC_DIR bit assignments are:

Bits [31:24]

Reserved, RES0.

INTID, bits [23:0]

The INTID of the interrupt to be deactivated.

This field has either 16 or 24 bits implemented. The number of implemented bits can be found in
ICC_CTLR.IDbits and ICC_MCTLR.IDbits. If only 16 bits are implemented, bits [23:16] of this
register are RES0.

Accessing the ICC_DIR

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax is encoded with the following settings in the instruction encoding:

This encoding results in an access to ICV_DIR at Non-secure EL1 in the following cases:

• When HCR.FMO is set to 1.

• When HCR.IMO is set to 1.

RES0

31 24

INTID

23 0

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c12, c11, 1 000 001 1100 1111 1011
8-332 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.5 AArch32 System register descriptions
Accessibility

The register is accessible in software as follows:

The ICC_DIR register is only accessible at Non-secure EL1 when HCR.{FMO, IMO} == {0, 0}.

Note
 At Non-secure EL1, the instruction encoding to access ICC_DIR results in an access to ICV_DIR in the following
cases:

• When HCR.FMO is set to 1.

• When HCR.IMO is set to 1.

There are two cases when writing to ICC_DIR_EL1 that were UNPREDICTABLE for a corresponding GICv2 write to
GICC_DIR:

• When EOImode == 0. GICv3 implementations must ignore such writes. In systems supporting system error
generation, an implementation might generate an SEI.

• When EOImode == 1 but no EOI has been issued. The interrupt will be de-activated by the Distributor,
however the active priority in the CPU interface for the interrupt will remain set (because no EOI was issued).

Traps and Enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in
the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to
AArch32 state and section D1.13.2 (Synchronous exception prioritization for exceptions taken to AArch64) in the
ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch64
state. Subject to the prioritization rules:

• In both Security states, and not dependent on other bits:

— If ICC_SRE.SRE==0, write accesses to this register from EL1 are UNDEFINED.

— If ICC_HSRE.SRE==0, write accesses to this register from EL2 are UNDEFINED.

— If ICC_MSRE.SRE==0, write accesses to this register from EL3 are UNDEFINED.

• When EL2 is implemented and is using AArch64 and SCR_EL3.NS == 1:

— If HSTR_EL2.T12==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

• When EL2 is implemented and is using AArch32 and SCR_EL3.NS == 1:

— If HSTR.T12==1, Non-secure write accesses to this register from EL1 are trapped to Hyp mode.

• When SCR_EL3.NS == 1:

— If ICH_HCR.TC==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

Control Accessibility

FMO IMO NS EL0 EL1 EL2 EL3

x x 0 - WO n/a WO

x x 1 - n/a WO WO

x 1 1 - ICV_DIR WO WO

1 x 1 - ICV_DIR WO WO

0 0 1 - WO WO WO
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-333
ID072617 Non-Confidential

8 Programmers’ Model
8.5 AArch32 System register descriptions
— If ICH_HCR_EL2.TC==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

• When EL3 is implemented and is using AArch32:

— If SCR.IRQ==1, and SCR.FIQ==1, write accesses to this register from EL2 and EL3 modes other than
Monitor mode are UNDEFINED.

• When EL3 is implemented and is using AArch32 and SCR_EL3.NS == 1:

— If SCR.IRQ==1, SCR.FIQ==1, HCR.IMO==0, and HCR.FMO==0, Non-secure write accesses to this
register from EL1 are UNDEFINED.

• When EL3 is implemented and is using AArch64 and SCR_EL3.NS == 0:

— If SCR_EL3.FIQ==1, and SCR_EL3.IRQ==1, Secure write accesses to this register from EL1 are
trapped to EL3.

• When EL3 is implemented and is using AArch64:

— If SCR_EL3.FIQ==1, and SCR_EL3.IRQ==1, write accesses to this register from EL2 are trapped to
EL3.

• When EL3 is implemented and is using AArch64 and SCR_EL3.NS == 1:

— If SCR_EL3.FIQ==1, SCR_EL3.IRQ==1, HCR.IMO==0, and HCR.FMO==0, Non-secure write
accesses to this register from EL1 are trapped to EL3.

— If SCR_EL3.FIQ==1, SCR_EL3.IRQ==1, HCR_EL2.IMO==0, and HCR_EL2.FMO==0,
Non-secure write accesses to this register from EL1 are trapped to EL3.
8-334 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.5 AArch32 System register descriptions
8.5.8 ICC_EOIR0, Interrupt Controller End Of Interrupt Register 0

The ICC_EOIR0 characteristics are:

Purpose

A PE writes to this register to inform the CPU interface that it has completed the processing of the
specified Group 0 interrupt.

Configurations

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register ICC_EOIR0 performs the same function as AArch64 System register
ICC_EOIR0_EL1.

Attributes

ICC_EOIR0 is a 32-bit register.

Field descriptions

The ICC_EOIR0 bit assignments are:

Bits [31:24]

Reserved, RES0.

INTID, bits [23:0]

The INTID from the corresponding ICC_IAR0 access.

This field has either 16 or 24 bits implemented. The number of implemented bits can be found in
ICC_CTLR.IDbits and ICC_MCTLR.IDbits. If only 16 bits are implemented, bits [23:16] of this
register are RES0.

If the EOImode bit for the current Exception level and Security state is 0, a write to this register
drops the priority for the interrupt, and also deactivates the interrupt.

If the EOImode bit for the current Exception level and Security state is 1, a write to this register only
drops the priority for the interrupt. Software must write to ICC_DIR to deactivate the interrupt.

The appropriate EOImode bit varies as follows:

• If EL3 is not implemented, the appropriate bit is ICC_CTLR.EOImode.

• If EL3 is implemented and the software is executing in Monitor mode, the appropriate bit is
ICC_MCTLR.EOImode_EL3.

• If EL3 is implemented and the software is not executing in Monitor mode, the bit depends on
the current Security state:

— If the software is executing in Secure state, the bit is ICC_CTLR.EOImode in the
Secure instance of ICC_CTLR. This is an alias of ICC_MCTLR.EOImode_EL1S.

— If the software is executing in Non-secure state, the bit is ICC_CTLR.EOImode in the
Non-secure instance of ICC_CTLR. This is an alias of
ICC_MCTLR.EOImode_EL1NS.

Accessing the ICC_EOIR0

This register can be written using MCR with the following syntax:

MCR <syntax>

RES0

31 24

INTID

23 0
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-335
ID072617 Non-Confidential

8 Programmers’ Model
8.5 AArch32 System register descriptions
This syntax is encoded with the following settings in the instruction encoding:

When HCR.FMO is set to 1, execution of this encoding at Non-secure EL1 results in an access to ICV_EOIR0.

Accessibility

The register is accessible in software as follows:

ICC_EOIR0 is only accessible at Non-secure EL1 when HCR.FMO is set to 0.

Note
 When HCR.FMO is set to 1, at Non-secure EL1, the instruction encoding to access ICC_EOIR0 results in an access
to ICV_EOIR0.

A write to this register must correspond to the most recent valid read by this PE from an Interrupt Acknowledge
Register, and must correspond to the INTID that was read from ICC_IAR0, otherwise the system behavior is
UNPREDICTABLE. A valid read is a read that returns a valid INTID that is not a special INTID.

A write of a Special INTID is ignored. See Special INTIDs on page 2-32, for more information.

Traps and Enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in
the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to
AArch32 state and section D1.13.2 (Synchronous exception prioritization for exceptions taken to AArch64) in the
ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch64
state. Subject to the prioritization rules:

• In both Security states, and not dependent on other bits:

— If ICC_SRE.SRE==0, write accesses to this register from EL1 are UNDEFINED.

— If ICC_HSRE.SRE==0, write accesses to this register from EL2 are UNDEFINED.

— If ICC_MSRE.SRE==0, write accesses to this register from EL3 are UNDEFINED.

• When EL2 is implemented and is using AArch64 and SCR_EL3.NS == 1:

— If HSTR_EL2.T12==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

• When EL2 is implemented and is using AArch32 and SCR_EL3.NS == 1:

— If HSTR.T12==1, Non-secure write accesses to this register from EL1 are trapped to Hyp mode.

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c12, c8, 1 000 001 1100 1111 1000

Control Accessibility

FMO IMO NS EL0 EL1 EL2 EL3

x x 0 - WO n/a WO

x x 1 - n/a WO WO

0 x 1 - WO WO WO

1 x 1 - ICV_EOIR0 WO WO
8-336 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.5 AArch32 System register descriptions
• When SCR_EL3.NS == 1:

— If ICH_HCR.TALL0==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

— If ICH_HCR_EL2.TALL0==1, Non-secure write accesses to this register from EL1 are trapped to
EL2.

• When EL3 is implemented and is using AArch32:

— If SCR.FIQ==1, and EL3 is implemented and configured to use AArch32, write accesses to this
register from EL2 and EL3 modes other than Monitor mode are UNDEFINED.

• When EL3 is implemented and is using AArch32 and SCR_EL3.NS == 1:

— If SCR.FIQ==1, and HCR.FMO==0, and EL2 is implemented and configured to use AArch32,
Non-secure write accesses to this register from EL1 are UNDEFINED.

• When EL3 is implemented and is using AArch64 and SCR_EL3.NS == 0:

— If SCR_EL3.FIQ==1, and EL3 is implemented and configured to use AArch64, Secure write accesses
to this register from EL1 are trapped to EL3.

• When EL3 is implemented and is using AArch64:

— If SCR_EL3.FIQ==1, and EL3 is implemented and configured to use AArch64, write accesses to this
register from EL2 are trapped to EL3.

• When EL3 is implemented and is using AArch64 and SCR_EL3.NS == 1:

— If SCR_EL3.FIQ==1, and HCR.FMO==0, and EL3 is implemented and configured to use AArch64
and EL2 is implemented and configured to use AArch32, Non-secure write accesses to this register
from EL1 are trapped to EL3.

— If SCR_EL3.FIQ==1, and HCR_EL2.FMO==0, and EL2 is implemented and configured to use
AArch64, Non-secure write accesses to this register from EL1 are trapped to EL3.
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-337
ID072617 Non-Confidential

8 Programmers’ Model
8.5 AArch32 System register descriptions
8.5.9 ICC_EOIR1, Interrupt Controller End Of Interrupt Register 1

The ICC_EOIR1 characteristics are:

Purpose

A PE writes to this register to inform the CPU interface that it has completed the processing of the
specified Group 1 interrupt.

Configurations

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register ICC_EOIR1 performs the same function as AArch64 System register
ICC_EOIR1_EL1.

Attributes

ICC_EOIR1 is a 32-bit register.

Field descriptions

The ICC_EOIR1 bit assignments are:

Bits [31:24]

Reserved, RES0.

INTID, bits [23:0]

The INTID from the corresponding ICC_IAR1 access.

This field has either 16 or 24 bits implemented. The number of implemented bits can be found in
ICC_CTLR.IDbits and ICC_MCTLR.IDbits. If only 16 bits are implemented, bits [23:16] of this
register are RES0.

If the EOImode bit for the current Exception level and Security state is 0, a write to this register
drops the priority for the interrupt, and also deactivates the interrupt.

If the EOImode bit for the current Exception level and Security state is 1, a write to this register only
drops the priority for the interrupt. Software must write to ICC_DIR to deactivate the interrupt.

The appropriate EOImode bit varies as follows:

• If EL3 is not implemented, the appropriate bit is ICC_CTLR.EOImode.

• If EL3 is implemented and the software is executing in Monitor mode, the appropriate bit is
ICC_MCTLR.EOImode_EL3.

• If EL3 is implemented and the software is not executing in Monitor mode, the bit depends on
the current Security state:

— If the software is executing in Secure state, the bit is ICC_CTLR.EOImode in the
Secure instance of ICC_CTLR. This is an alias of ICC_MCTLR.EOImode_EL1S.

— If the software is executing in Non-secure state, the bit is ICC_CTLR.EOImode in the
Non-secure instance of ICC_CTLR. This is an alias of
ICC_MCTLR.EOImode_EL1NS.

Accessing the ICC_EOIR1

This register can be written using MCR with the following syntax:

MCR <syntax>

RES0

31 24

INTID

23 0
8-338 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.5 AArch32 System register descriptions
This syntax is encoded with the following settings in the instruction encoding:

When HCR.IMO is set to 1, execution of this encoding at Non-secure EL1 results in an access to ICV_EOIR1.

Accessibility

The register is accessible in software as follows:

ICC_EOIR1 is only accessible at Non-secure EL1 when HCR.IMO is set to 0.

Note
 When HCR.IMO is set to 1, at Non-secure EL1, the instruction encoding to access ICC_EOIR1 results in an access
to ICV_EOIR1.

A write to this register must correspond to the most recent valid read by this PE from an Interrupt Acknowledge
Register, and must correspond to the INTID that was read from ICC_IAR1, otherwise the system behavior is
UNPREDICTABLE. A valid read is a read that returns a valid INTID that is not a special INTID.

A write of a Special INTID is ignored. See Special INTIDs on page 2-32, for more information.

Traps and Enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in
the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to
AArch32 state and section D1.13.2 (Synchronous exception prioritization for exceptions taken to AArch64) in the
ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch64
state. Subject to the prioritization rules:

• In both Security states, and not dependent on other bits:

— If ICC_SRE.SRE==0, write accesses to this register from EL1 are UNDEFINED.

— If ICC_HSRE.SRE==0, write accesses to this register from EL2 are UNDEFINED.

— If ICC_MSRE.SRE==0, write accesses to this register from EL3 are UNDEFINED.

• When EL2 is implemented and is using AArch64 and SCR_EL3.NS == 1:

— If HSTR_EL2.T12==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

• When EL2 is implemented and is using AArch32 and SCR_EL3.NS == 1:

— If HSTR.T12==1, Non-secure write accesses to this register from EL1 are trapped to Hyp mode.

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c12, c12, 1 000 001 1100 1111 1100

Control Accessibility

FMO IMO NS EL0 EL1 EL2 EL3

x x 0 - WO n/a WO

x x 1 - n/a WO WO

x 0 1 - WO WO WO

x 1 1 - ICV_EOIR1 WO WO
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-339
ID072617 Non-Confidential

8 Programmers’ Model
8.5 AArch32 System register descriptions
• When SCR_EL3.NS == 1:

— If ICH_HCR.TALL1==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

— If ICH_HCR_EL2.TALL1==1, Non-secure write accesses to this register from EL1 are trapped to
EL2.

• When EL3 is implemented and is using AArch32:

— If SCR.IRQ==1, write accesses to this register from EL2 and EL3 modes other than Monitor mode are
UNDEFINED.

• When EL3 is implemented and is using AArch32 and SCR_EL3.NS == 1:

— If SCR.IRQ==1, and HCR.IMO==0, Non-secure write accesses to this register from EL1 are
UNDEFINED.

• When EL3 is implemented and is using AArch64 and SCR_EL3.NS == 0:

— If SCR_EL3.IRQ==1, Secure write accesses to this register from EL1 are trapped to EL3.

• When EL3 is implemented and is using AArch64:

— If SCR_EL3.IRQ==1, write accesses to this register from EL2 are trapped to EL3.

• When EL3 is implemented and is using AArch64 and SCR_EL3.NS == 1:

— If SCR_EL3.IRQ==1, and HCR.IMO==0, Non-secure write accesses to this register from EL1 are
trapped to EL3.

— If SCR_EL3.IRQ==1, and HCR_EL2.IMO==0, Non-secure write accesses to this register from EL1
are trapped to EL3.
8-340 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.5 AArch32 System register descriptions
8.5.10 ICC_HPPIR0, Interrupt Controller Highest Priority Pending Interrupt Register 0

The ICC_HPPIR0 characteristics are:

Purpose

Indicates the highest priority pending Group 0 interrupt on the CPU interface.

Configurations

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register ICC_HPPIR0 performs the same function as AArch64 System register
ICC_HPPIR0_EL1.

Attributes

ICC_HPPIR0 is a 32-bit register.

Field descriptions

The ICC_HPPIR0 bit assignments are:

Bits [31:24]

Reserved, RES0.

INTID, bits [23:0]

The INTID of the highest priority pending interrupt, if that interrupt is observable at the current
Security state and Exception level.

If the highest priority pending interrupt is not observable, this field contains a special INTID to
indicate the reason. These special INTIDs can be one of: 1020, 1021, or 1023. See Special INTIDs
on page 2-32, for more information.

This field has either 16 or 24 bits implemented. The number of implemented bits can be found in
ICC_CTLR.IDbits and ICC_MCTLR.IDbits. If only 16 bits are implemented, bits [23:16] of this
register are RES0.

Accessing the ICC_HPPIR0

This register can be read using MRC with the following syntax:

MRC <syntax>

This syntax is encoded with the following settings in the instruction encoding:

When HCR.FMO is set to 1, execution of this encoding at Non-secure EL1 results in an access to ICV_HPPIR0.

RES0

31 24

INTID

23 0

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c12, c8, 2 000 010 1100 1111 1000
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-341
ID072617 Non-Confidential

8 Programmers’ Model
8.5 AArch32 System register descriptions
Accessibility

The register is accessible in software as follows:

ICC_HPPIR0 is only accessible at Non-secure EL1 when HCR.FMO is set to 0.

Note
 When HCR.FMO is set to 1, at Non-secure EL1, the instruction encoding to access ICC_HPPIR0 results in an access
to ICV_HPPIR0.

Traps and Enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in
the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to
AArch32 state and section D1.13.2 (Synchronous exception prioritization for exceptions taken to AArch64) in the
ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch64
state. Subject to the prioritization rules:

• In both Security states, and not dependent on other bits:

— If ICC_SRE.SRE==0, read accesses to this register from EL1 are UNDEFINED.

— If ICC_HSRE.SRE==0, read accesses to this register from EL2 are UNDEFINED.

— If ICC_MSRE.SRE==0, read accesses to this register from EL3 are UNDEFINED.

• When EL2 is implemented and is using AArch64 and SCR_EL3.NS == 1:

— If HSTR_EL2.T12==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• When EL2 is implemented and is using AArch32 and SCR_EL3.NS == 1:

— If HSTR.T12==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

• When SCR_EL3.NS == 1:

— If ICH_HCR.TALL0==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

— If ICH_HCR_EL2.TALL0==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• When EL3 is implemented and is using AArch32:

— If SCR.FIQ==1, and EL3 is implemented and configured to use AArch32, read accesses to this register
from EL2 and EL3 modes other than Monitor mode are UNDEFINED.

• When EL3 is implemented and is using AArch32 and SCR_EL3.NS == 1:

— If SCR.FIQ==1, and HCR.FMO==0, and EL2 is implemented and configured to use AArch32,
Non-secure read accesses to this register from EL1 are UNDEFINED.

• When EL3 is implemented and is using AArch64 and SCR_EL3.NS == 0:

— If SCR_EL3.FIQ==1, and EL3 is implemented and configured to use AArch64, Secure read accesses
to this register from EL1 are trapped to EL3.

Control Accessibility

FMO IMO NS EL0 EL1 EL2 EL3

x x 0 - RO n/a RO

x x 1 - n/a RO RO

0 x 1 - RO RO RO

1 x 1 - ICV_HPPIR0 RO RO
8-342 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.5 AArch32 System register descriptions
• When EL3 is implemented and is using AArch64:

— If SCR_EL3.FIQ==1, and EL3 is implemented and configured to use AArch64, read accesses to this
register from EL2 are trapped to EL3.

• When EL3 is implemented and is using AArch64 and SCR_EL3.NS == 1:

— If SCR_EL3.FIQ==1, and HCR.FMO==0, and EL3 is implemented and configured to use AArch64
and EL2 is implemented and configured to use AArch32, Non-secure read accesses to this register
from EL1 are trapped to EL3.

— If SCR_EL3.FIQ==1, and HCR_EL2.FMO==0, and EL2 is implemented and configured to use
AArch64, Non-secure read accesses to this register from EL1 are trapped to EL3.
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-343
ID072617 Non-Confidential

8 Programmers’ Model
8.5 AArch32 System register descriptions
8.5.11 ICC_HPPIR1, Interrupt Controller Highest Priority Pending Interrupt Register 1

The ICC_HPPIR1 characteristics are:

Purpose

Indicates the highest priority pending Group 1 interrupt on the CPU interface.

Configurations

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register ICC_HPPIR1 performs the same function as AArch64 System register
ICC_HPPIR1_EL1.

Attributes

ICC_HPPIR1 is a 32-bit register.

Field descriptions

The ICC_HPPIR1 bit assignments are:

Bits [31:24]

Reserved, RES0.

INTID, bits [23:0]

The INTID of the highest priority pending interrupt, if that interrupt is observable at the current
Security state and Exception level.

If the highest priority pending interrupt is not observable, this field contains a special INTID to
indicate the reason. This special INTID can take the value 1023 only. See Special INTIDs on
page 2-32, for more information.

This field has either 16 or 24 bits implemented. The number of implemented bits can be found in
ICC_CTLR.IDbits and ICC_MCTLR.IDbits. If only 16 bits are implemented, bits [23:16] of this
register are RES0.

Accessing the ICC_HPPIR1

This register can be read using MRC with the following syntax:

MRC <syntax>

This syntax is encoded with the following settings in the instruction encoding:

When HCR.IMO is set to 1, execution of this encoding at Non-secure EL1 results in an access to ICV_HPPIR1.

RES0

31 24

INTID

23 0

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c12, c12, 2 000 010 1100 1111 1100
8-344 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.5 AArch32 System register descriptions
Accessibility

The register is accessible in software as follows:

ICC_HPPIR1 is only accessible at Non-secure EL1 when HCR.IMO is set to 0.

Note
 When HCR.IMO is set to 1, at Non-secure EL1, the instruction encoding to access ICC_HPPIR1 results in an access
to ICV_HPPIR1.

Traps and Enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in
the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to
AArch32 state and section D1.13.2 (Synchronous exception prioritization for exceptions taken to AArch64) in the
ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch64
state. Subject to the prioritization rules:

• In both Security states, and not dependent on other bits:

— If ICC_SRE.SRE==0, read accesses to this register from EL1 are UNDEFINED.

— If ICC_HSRE.SRE==0, read accesses to this register from EL2 are UNDEFINED.

— If ICC_MSRE.SRE==0, read accesses to this register from EL3 are UNDEFINED.

• When EL2 is implemented and is using AArch64 and SCR_EL3.NS == 1:

— If HSTR_EL2.T12==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• When EL2 is implemented and is using AArch32 and SCR_EL3.NS == 1:

— If HSTR.T12==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

• When SCR_EL3.NS == 1:

— If ICH_HCR.TALL1==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

— If ICH_HCR_EL2.TALL1==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• When EL3 is implemented and is using AArch32:

— If SCR.IRQ==1, read accesses to this register from EL2 and EL3 modes other than Monitor mode are
UNDEFINED.

• When EL3 is implemented and is using AArch32 and SCR_EL3.NS == 1:

— If SCR.IRQ==1, and HCR.IMO==0, Non-secure read accesses to this register from EL1 are
UNDEFINED.

• When EL3 is implemented and is using AArch64 and SCR_EL3.NS == 0:

— If SCR_EL3.IRQ==1, Secure read accesses to this register from EL1 are trapped to EL3.

Control Accessibility

FMO IMO NS EL0 EL1 EL2 EL3

x x 0 - RO n/a RO

x x 1 - n/a RO RO

x 0 1 - RO RO RO

x 1 1 - ICV_HPPIR1 RO RO
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-345
ID072617 Non-Confidential

8 Programmers’ Model
8.5 AArch32 System register descriptions
• When EL3 is implemented and is using AArch64:

— If SCR_EL3.IRQ==1, read accesses to this register from EL2 are trapped to EL3.

• When EL3 is implemented and is using AArch64 and SCR_EL3.NS == 1:

— If SCR_EL3.IRQ==1, and HCR.IMO==0, Non-secure read accesses to this register from EL1 are
trapped to EL3.

— If SCR_EL3.IRQ==1, and HCR_EL2.IMO==0, Non-secure read accesses to this register from EL1
are trapped to EL3.
8-346 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.5 AArch32 System register descriptions
8.5.12 ICC_HSRE, Interrupt Controller Hyp System Register Enable register

The ICC_HSRE characteristics are:

Purpose

Controls whether the System register interface or the memory-mapped interface to the GIC CPU
interface is used for EL2.

Configurations

AArch32 System register ICC_HSRE is architecturally mapped to AArch64 System register
ICC_SRE_EL2.

Attributes

ICC_HSRE is a 32-bit register.

Field descriptions

The ICC_HSRE bit assignments are:

Bits [31:4]

Reserved, RES0.

Enable, bit [3]

Enable. Enables lower Exception level access to ICC_SRE.

0 Non-secure EL1 accesses to ICC_SRE trap to EL2.

1 Non-secure EL1 accesses to ICC_SRE do not trap to EL2.

If ICC_HSRE.SRE is RAO/WI, an implementation is permitted to make the Enable bit RAO/WI.

If ICC_HSRE.SRE is 0, the Enable bit behaves as 1 for all purposes other than reading the value of
the bit.

DIB, bit [2]

Disable IRQ bypass.

0 IRQ bypass enabled.

1 IRQ bypass disabled.

If EL3 is implemented and GICD_CTLR.DS is 0, this field is a read-only alias of ICC_MSRE.DIB.

If EL3 is implemented and GICD_CTLR.DS is 1, this field is a read-write alias of ICC_MSRE.DIB.

In systems that do not support IRQ bypass, this bit is RAO/WI.

When this register has an architecturally-defined reset value, if this field is implemented as an RW
field, it resets to 0.

DFB, bit [1]

Disable FIQ bypass.

0 FIQ bypass enabled.

RES0

31 4 3 2 1 0

SRE
DFB
DIB

Enable
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-347
ID072617 Non-Confidential

8 Programmers’ Model
8.5 AArch32 System register descriptions
1 FIQ bypass disabled.

If EL3 is implemented and GICD_CTLR.DS is 0, this field is a read-only alias of ICC_MSRE.DFB.

If EL3 is implemented and GICD_CTLR.DS is 1, this field is a read-write alias of
ICC_MSRE.DFB.

In systems that do not support FIQ bypass, this bit is RAO/WI.

When this register has an architecturally-defined reset value, if this field is implemented as an RW
field, it resets to 0.

SRE, bit [0]

System Register Enable.

0 The memory-mapped interface must be used. Accesses at EL2 or below to any ICH_*
System register, or any EL1 or EL2 ICC_* register other than ICC_SRE or ICC_HSRE,
are UNDEFINED.

1 The System register interface to the ICH_* registers and the EL1 and EL2 ICC_*
registers is enabled for EL2.

If software changes this bit from 1 to 0, the results are UNPREDICTABLE.

If an implementation supports only a System register interface to the GIC CPU interface, this bit is
RAO/WI.

If EL3 is implemented and using AArch64:

• When ICC_SRE_EL3.SRE==0 this bit is RAZ/WI.

If EL3 is implemented using AArch32:

• When ICC_MSRE.SRE==0 this bit is RAZ/WI.

When this register has an architecturally-defined reset value, if this field is implemented as an RW
field, it resets to 0.

Accessing the ICC_HSRE

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax is encoded with the following settings in the instruction encoding:

Accessibility

The register is accessible in software as follows:

<syntax> opc1 opc2 CRn coproc CRm

p15, 4, <Rt>, c12, c9, 5 100 101 1100 1111 1001

Control Accessibility

NS EL0 EL1 EL2 EL3

0 - - n/a -

1 - - RW RW

1 - n/a RW RW
8-348 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.5 AArch32 System register descriptions
The GIC architecture permits, but does not require, that registers can be shared between memory-mapped registers
and the equivalent System registers. This means that if the memory-mapped registers have been accessed while
ICC_HSRE.SRE==0, then the System registers might be modified. Therefore, software must only rely on the reset
values of the System registers if there has been no use of the GIC functionality while the memory-mapped registers
are in use. Otherwise, the System register values must be treated as UNKNOWN.

Traps and Enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in
the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to
AArch32 state and section D1.13.2 (Synchronous exception prioritization for exceptions taken to AArch64) in the
ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch64
state. Subject to the prioritization rules:

• In both Security states, and not dependent on other bits:

— If ICC_MSRE.Enable==0, accesses to this register from EL2 are UNDEFINED.

— If ICC_SRE_EL3.Enable==0, accesses to this register from EL2 are trapped to EL3.

• When EL2 is implemented and is using AArch64 and SCR_EL3.NS == 1:

— If HSTR_EL2.T12==1, Non-secure accesses to this register from EL1 are trapped to EL2.

• When EL2 is implemented and is using AArch32 and SCR_EL3.NS == 1:

— If HSTR.T12==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-349
ID072617 Non-Confidential

8 Programmers’ Model
8.5 AArch32 System register descriptions
8.5.13 ICC_IAR0, Interrupt Controller Interrupt Acknowledge Register 0

The ICC_IAR0 characteristics are:

Purpose

The PE reads this register to obtain the INTID of the signaled Group 0 interrupt. This read acts as
an acknowledge for the interrupt.

Configurations

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register ICC_IAR0 performs the same function as AArch64 System register
ICC_IAR0_EL1.

To allow software to ensure appropriate observability of actions initiated by GIC register accesses,
the PE and CPU interface logic must ensure that reads of this register are self-synchronising when
interrupts are masked by the PE (that is when PSTATE.{I,F} == {0,0}). This ensures that the effect
of activating an interrupt on the signaling of interrupt exceptions is observed when a read of this
register is architecturally executed so that no spurious interrupt exception occurs if interrupts are
unmasked by an instruction immediately following the read. See Observability of the effects of
accesses to the GIC registers on page 8-157, for more information.

Attributes

ICC_IAR0 is a 32-bit register.

Field descriptions

The ICC_IAR0 bit assignments are:

Bits [31:24]

Reserved, RES0.

INTID, bits [23:0]

The INTID of the signaled interrupt.

This is the INTID of the highest priority pending interrupt, if that interrupt is of sufficient priority
for it to be signaled to the PE, and if it can be acknowledged at the current Security state and
Exception level.

If the highest priority pending interrupt is not observable, this field contains a special INTID to
indicate the reason. These special INTIDs can be one of: 1020, 1021, or 1023. See Special INTIDs
on page 2-32, for more information.

This field has either 16 or 24 bits implemented. The number of implemented bits can be found in
ICC_CTLR.IDbits and ICC_MCTLR.IDbits. If only 16 bits are implemented, bits [23:16] of this
register are RES0.

Accessing the ICC_IAR0

This register can be read using MRC with the following syntax:

MRC <syntax>

RES0

31 24

INTID

23 0
8-350 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.5 AArch32 System register descriptions
This syntax is encoded with the following settings in the instruction encoding:

When HCR.FMO is set to 1, execution of this encoding at Non-secure EL1 results in an access to ICV_IAR0.

Accessibility

The register is accessible in software as follows:

ICC_IAR0 is only accessible at Non-secure EL1 when HCR.FMO is set to 0.

Note
 When HCR.FMO is set to 1, at Non-secure EL1, the instruction encoding to access ICC_IAR0 results in an access
to ICV_IAR0.

Traps and Enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in
the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to
AArch32 state and section D1.13.2 (Synchronous exception prioritization for exceptions taken to AArch64) in the
ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch64
state. Subject to the prioritization rules:

• In both Security states, and not dependent on other bits:

— If ICC_SRE.SRE==0, read accesses to this register from EL1 are UNDEFINED.

— If ICC_HSRE.SRE==0, read accesses to this register from EL2 are UNDEFINED.

— If ICC_MSRE.SRE==0, read accesses to this register from EL3 are UNDEFINED.

• When EL2 is implemented and is using AArch64 and SCR_EL3.NS == 1:

— If HSTR_EL2.T12==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• When EL2 is implemented and is using AArch32 and SCR_EL3.NS == 1:

— If HSTR.T12==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

• When SCR_EL3.NS == 1:

— If ICH_HCR.TALL0==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

— If ICH_HCR_EL2.TALL0==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c12, c8, 0 000 000 1100 1111 1000

Control Accessibility

FMO IMO NS EL0 EL1 EL2 EL3

x x 0 - RO n/a RO

x x 1 - n/a RO RO

0 x 1 - RO RO RO

1 x 1 - ICV_IAR0 RO RO
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-351
ID072617 Non-Confidential

8 Programmers’ Model
8.5 AArch32 System register descriptions
• When EL3 is implemented and is using AArch32:

— If SCR.FIQ==1, and EL3 is implemented and configured to use AArch32, read accesses to this register
from EL2 and EL3 modes other than Monitor mode are UNDEFINED.

• When EL3 is implemented and is using AArch32 and SCR_EL3.NS == 1:

— If SCR.FIQ==1, and HCR.FMO==0, and EL2 is implemented and configured to use AArch32,
Non-secure read accesses to this register from EL1 are UNDEFINED.

• When EL3 is implemented and is using AArch64 and SCR_EL3.NS == 0:

— If SCR_EL3.FIQ==1, and EL3 is implemented and configured to use AArch64, Secure read accesses
to this register from EL1 are trapped to EL3.

• When EL3 is implemented and is using AArch64:

— If SCR_EL3.FIQ==1, and EL3 is implemented and configured to use AArch64, read accesses to this
register from EL2 are trapped to EL3.

• When EL3 is implemented and is using AArch64 and SCR_EL3.NS == 1:

— If SCR_EL3.FIQ==1, and HCR.FMO==0, and EL3 is implemented and configured to use AArch64
and EL2 is implemented and configured to use AArch32, Non-secure read accesses to this register
from EL1 are trapped to EL3.

— If SCR_EL3.FIQ==1, and HCR_EL2.FMO==0, and EL2 is implemented and configured to use
AArch64, Non-secure read accesses to this register from EL1 are trapped to EL3.
8-352 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.5 AArch32 System register descriptions
8.5.14 ICC_IAR1, Interrupt Controller Interrupt Acknowledge Register 1

The ICC_IAR1 characteristics are:

Purpose

The PE reads this register to obtain the INTID of the signaled Group 1 interrupt. This read acts as
an acknowledge for the interrupt.

Configurations

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register ICC_IAR1 performs the same function as AArch64 System register
ICC_IAR1_EL1.

To allow software to ensure appropriate observability of actions initiated by GIC register accesses,
the PE and CPU interface logic must ensure that reads of this register are self-synchronising when
interrupts are masked by the PE (that is when PSTATE.{I,F} == {0,0}). This ensures that the effect
of activating an interrupt on the signaling of interrupt exceptions is observed when a read of this
register is architecturally executed so that no spurious interrupt exception occurs if interrupts are
unmasked by an instruction immediately following the read. See Observability of the effects of
accesses to the GIC registers on page 8-157, for more information.

Attributes

ICC_IAR1 is a 32-bit register.

Field descriptions

The ICC_IAR1 bit assignments are:

Bits [31:24]

Reserved, RES0.

INTID, bits [23:0]

The INTID of the signaled interrupt.

This is the INTID of the highest priority pending interrupt, if that interrupt is of sufficient priority
for it to be signaled to the PE, and if it can be acknowledged at the current Security state and
Exception level.

If the highest priority pending interrupt is not observable, this field contains a special INTID to
indicate the reason. This special INTID can take the value 1023 only. See Special INTIDs on
page 2-32, for more information.

This field has either 16 or 24 bits implemented. The number of implemented bits can be found in
ICC_CTLR.IDbits and ICC_MCTLR.IDbits. If only 16 bits are implemented, bits [23:16] of this
register are RES0.

Accessing the ICC_IAR1

This register can be read using MRC with the following syntax:

MRC <syntax>

RES0

31 24

INTID

23 0
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-353
ID072617 Non-Confidential

8 Programmers’ Model
8.5 AArch32 System register descriptions
This syntax is encoded with the following settings in the instruction encoding:

When HCR.IMO is set to 1, execution of this encoding at Non-secure EL1 results in an access to ICV_IAR1.

Accessibility

The register is accessible in software as follows:

ICC_IAR1 is only accessible at Non-secure EL1 when HCR.IMO is set to 0.

Note
 When HCR.IMO is set to 1, at Non-secure EL1, the instruction encoding to access ICC_IAR1 results in an access
to ICV_IAR1.

Traps and Enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in
the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to
AArch32 state and section D1.13.2 (Synchronous exception prioritization for exceptions taken to AArch64) in the
ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch64
state. Subject to the prioritization rules:

• In both Security states, and not dependent on other bits:

— If ICC_SRE.SRE==0, read accesses to this register from EL1 are UNDEFINED.

— If ICC_HSRE.SRE==0, read accesses to this register from EL2 are UNDEFINED.

— If ICC_MSRE.SRE==0, read accesses to this register from EL3 are UNDEFINED.

• When EL2 is implemented and is using AArch64 and SCR_EL3.NS == 1:

— If HSTR_EL2.T12==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• When EL2 is implemented and is using AArch32 and SCR_EL3.NS == 1:

— If HSTR.T12==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

• When SCR_EL3.NS == 1:

— If ICH_HCR.TALL1==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

— If ICH_HCR_EL2.TALL1==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c12, c12, 0 000 000 1100 1111 1100

Control Accessibility

FMO IMO NS EL0 EL1 EL2 EL3

x x 0 - RO n/a RO

x x 1 - n/a RO RO

x 0 1 - RO RO RO

x 1 1 - ICV_IAR1 RO RO
8-354 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.5 AArch32 System register descriptions
• When EL3 is implemented and is using AArch32:

— If SCR.IRQ==1, read accesses to this register from EL2 and EL3 modes other than Monitor mode are
UNDEFINED.

• When EL3 is implemented and is using AArch32 and SCR_EL3.NS == 1:

— If SCR.IRQ==1, and HCR.IMO==0, Non-secure read accesses to this register from EL1 are
UNDEFINED.

• When EL3 is implemented and is using AArch64 and SCR_EL3.NS == 0:

— If SCR_EL3.IRQ==1, Secure read accesses to this register from EL1 are trapped to EL3.

• When EL3 is implemented and is using AArch64:

— If SCR_EL3.IRQ==1, read accesses to this register from EL2 are trapped to EL3.

• When EL3 is implemented and is using AArch64 and SCR_EL3.NS == 1:

— If SCR_EL3.IRQ==1, and HCR.IMO==0, Non-secure read accesses to this register from EL1 are
trapped to EL3.

— If SCR_EL3.IRQ==1, and HCR_EL2.IMO==0, Non-secure read accesses to this register from EL1
are trapped to EL3.
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-355
ID072617 Non-Confidential

8 Programmers’ Model
8.5 AArch32 System register descriptions
8.5.15 ICC_IGRPEN0, Interrupt Controller Interrupt Group 0 Enable register

The ICC_IGRPEN0 characteristics are:

Purpose

Controls whether Group 0 interrupts are enabled or not.

Configurations

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register ICC_IGRPEN0 is architecturally mapped to AArch64 System register
ICC_IGRPEN0_EL1.

Attributes

ICC_IGRPEN0 is a 32-bit register.

Field descriptions

The ICC_IGRPEN0 bit assignments are:

Bits [31:1]

Reserved, RES0.

Enable, bit [0]

Enables Group 0 interrupts.

0 Group 0 interrupts are disabled.

1 Group 0 interrupts are enabled.

Virtual accesses to this register update ICH_VMCR.VENG0.

When this register has an architecturally-defined reset value, this field resets to 0.

Accessing the ICC_IGRPEN0

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax is encoded with the following settings in the instruction encoding:

When HCR.FMO is set to 1, execution of this encoding at Non-secure EL1 results in an access to ICV_IGRPEN0.

RES0

31 1 0

Enable

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c12, c12, 6 000 110 1100 1111 1100
8-356 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.5 AArch32 System register descriptions
Accessibility

The register is accessible in software as follows:

This table applies to all instructions that can access this register.

ICC_IGRPEN0 is only accessible at Non-secure EL1 when HCR.FMO is set to 0.

Note
 When HCR.FMO is set to 1, at Non-secure EL1, the instruction encoding to access ICC_IGRPEN0 results in an
access to ICV_IGRPEN0.

The lowest Exception level at which this register can be accessed is governed by the Exception level to which FIQ
is routed. This routing depends on SCR.FIQ, SCR.NS and HCR.FMO.

If an interrupt is pending within the CPU interface when Enable becomes 0, the interrupt must be released to allow
the Distributor to forward the interrupt to a different PE.

Traps and Enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in
the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to
AArch32 state and section D1.13.2 (Synchronous exception prioritization for exceptions taken to AArch64) in the
ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch64
state. Subject to the prioritization rules:

• In both Security states, and not dependent on other bits:

— If ICC_SRE.SRE==0, accesses to this register from EL1 are UNDEFINED.

— If ICC_HSRE.SRE==0, accesses to this register from EL2 are UNDEFINED.

— If ICC_MSRE.SRE==0, accesses to this register from EL3 are UNDEFINED.

• When EL2 is implemented and is using AArch64 and SCR_EL3.NS == 1:

— If HSTR_EL2.T12==1, Non-secure accesses to this register from EL1 are trapped to EL2.

• When EL2 is implemented and is using AArch32 and SCR_EL3.NS == 1:

— If HSTR.T12==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

• When SCR_EL3.NS == 1:

— If ICH_HCR.TALL0==1, Non-secure accesses to this register from EL1 are trapped to EL2.

— If ICH_HCR_EL2.TALL0==1, Non-secure accesses to this register from EL1 are trapped to EL2.

• When EL3 is implemented and is using AArch32:

— If SCR.FIQ==1, and EL3 is implemented and configured to use AArch32, accesses to this register
from EL2 and EL3 modes other than Monitor mode are UNDEFINED.

<syntax>
Control Accessibility

FMO IMO NS EL0 EL1 EL2 EL3

p15, 0, <Rt>, c12, c12, 6 x x 0 - RW n/a RW

p15, 0, <Rt>, c12, c12, 6 x x 1 - n/a RW RW

p15, 0, <Rt>, c12, c12, 6 0 x 1 - RW RW RW

p15, 0, <Rt>, c12, c12, 6 1 x 1 - ICV_IGRPEN0 RW RW
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-357
ID072617 Non-Confidential

8 Programmers’ Model
8.5 AArch32 System register descriptions
• When EL3 is implemented and is using AArch32 and SCR_EL3.NS == 1:

— If SCR.FIQ==1, and HCR.FMO==0, and EL2 is implemented and configured to use AArch32,
Non-secure accesses to this register from EL1 are UNDEFINED.

• When EL3 is implemented and is using AArch64 and SCR_EL3.NS == 0:

— If SCR_EL3.FIQ==1, and EL3 is implemented and configured to use AArch64, Secure accesses to this
register from EL1 are trapped to EL3.

• When EL3 is implemented and is using AArch64:

— If SCR_EL3.FIQ==1, and EL3 is implemented and configured to use AArch64, accesses to this
register from EL2 are trapped to EL3.

• When EL3 is implemented and is using AArch64 and SCR_EL3.NS == 1:

— If SCR_EL3.FIQ==1, and HCR.FMO==0, and EL3 is implemented and configured to use AArch64
and EL2 is implemented and configured to use AArch32, Non-secure accesses to this register from
EL1 are trapped to EL3.

— If SCR_EL3.FIQ==1, and HCR_EL2.FMO==0, and EL2 is implemented and configured to use
AArch64, Non-secure accesses to this register from EL1 are trapped to EL3.
8-358 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.5 AArch32 System register descriptions
8.5.16 ICC_IGRPEN1, Interrupt Controller Interrupt Group 1 Enable register

The ICC_IGRPEN1 characteristics are:

Purpose

Controls whether Group 1 interrupts are enabled for the current Security state.

Configurations

AArch32 System register ICC_IGRPEN1(S) is architecturally mapped to AArch64 System register
ICC_IGRPEN1_EL1 (S).

AArch32 System register ICC_IGRPEN1(NS) is architecturally mapped to AArch64 System
register ICC_IGRPEN1_EL1 (NS).

Attributes

ICC_IGRPEN1 is a 32-bit register.

Field descriptions

The ICC_IGRPEN1 bit assignments are:

Bits [31:1]

Reserved, RES0.

Enable, bit [0]

Enables Group 1 interrupts for the current Security state.

0 Group 1 interrupts are disabled for the current Security state.

1 Group 1 interrupts are enabled for the current Security state.

Virtual accesses to this register update ICH_VMCR.VENG1.

If EL3 is present:

• This bit is a read/write alias of ICC_MGRPEN1.EnableGrp1{S, NS} as appropriate if EL3
is using AArch32, or ICC_IGRPEN1_EL3.EnableGrp1{S, NS} as appropriate if EL3 is
using AArch64.

• When this register is accessed at EL3, the copy of this register appropriate to the current
setting of SCR.NS is accessed.

When this register has an architecturally-defined reset value, this field resets to 0.

Accessing the ICC_IGRPEN1

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

RES0

31 1 0

Enable
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-359
ID072617 Non-Confidential

8 Programmers’ Model
8.5 AArch32 System register descriptions
This syntax is encoded with the following settings in the instruction encoding:

When HCR.IMO is set to 1, execution of this encoding at Non-secure EL1 results in an access to ICV_IGRPEN1.

Accessibility

The register is accessible in software as follows:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c12, c12, 7 000 111 1100 1111 1100

<syntax> Configuration
Control Accessibility

Instance
FMO IMO NS EL0 EL1 EL2 EL3

p15, 0, <Rt>, c12,
c12, 7

EL3 is not
implemented."

x x 0 - RW n/a n/a ICC_IGRPEN1

p15, 0, <Rt>, c12,
c12, 7

EL3 is not
implemented."

x x 1 - n/a RW n/a ICC_IGRPEN1

p15, 0, <Rt>, c12,
c12, 7

EL3 is not
implemented."

x 0 1 - RW RW n/a ICC_IGRPEN1

p15, 0, <Rt>, c12,
c12, 7

EL3 is not
implemented."

x 1 1 - ICV_IGRPEN1 RW n/a ICC_IGRPEN1

 <coproc>, <opc1>,
<Rt>, <CRn>,
<CRm>, <opc2>

EL3 is using
AArch64.

x x 1 - n/a RW n/a ICC_IGRPEN1_ns

 <coproc>, <opc1>,
<Rt>, <CRn>,
<CRm>, <opc2>

EL3 is using
AArch64.

x 0 1 - RW RW n/a ICC_IGRPEN1_ns

 <coproc>, <opc1>,
<Rt>, <CRn>,
<CRm>, <opc2>

EL3 is using
AArch64.

x 1 1 - ICV_IGRPEN1 RW n/a ICC_IGRPEN1_ns

 <coproc>, <opc1>,
<Rt>, <CRn>,
<CRm>, <opc2>

EL3 is using
AArch32.

x x 1 - n/a RW RW ICC_IGRPEN1_ns

 <coproc>, <opc1>,
<Rt>, <CRn>,
<CRm>, <opc2>

EL3 is using
AArch32.

x 0 1 - RW RW RW ICC_IGRPEN1_ns

 <coproc>, <opc1>,
<Rt>, <CRn>,
<CRm>, <opc2>

EL3 is using
AArch32.

x 1 1 - ICV_IGRPEN1 RW RW ICC_IGRPEN1_ns

 <coproc>, <opc1>,
<Rt>, <CRn>,
<CRm>, <opc2>

EL3 is using
AArch64.

x x 0 - RW n/a n/a ICC_IGRPEN1_s

 <coproc>, <opc1>,
<Rt>, <CRn>,
<CRm>, <opc2>

EL3 is using
AArch32.

x x 0 - - - RW ICC_IGRPEN1_s
8-360 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.5 AArch32 System register descriptions
This table applies to all instructions that can access this register.

ICC_IGRPEN1 is only accessible at Non-secure EL1 when HCR.IMO is set to 0.

Note
 When HCR.IMO is set to 1, at Non-secure EL1, the instruction encoding to access ICC_IGRPEN1 results in an
access to ICV_IGRPEN1.

The lowest Exception level at which this register can be accessed is governed by the Exception level to which IRQ
is routed. This routing depends on SCR.IRQ, SCR.NS and HCR.IMO.

If an interrupt is pending within the CPU interface when Enable becomes 0, the interrupt must be released to allow
the Distributor to forward the interrupt to a different PE.

Traps and Enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in
the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to
AArch32 state and section D1.13.2 (Synchronous exception prioritization for exceptions taken to AArch64) in the
ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch64
state. Subject to the prioritization rules:

• In both Security states, and not dependent on other bits:

— If ICC_SRE.SRE==0, accesses to this register from EL1 are UNDEFINED.

— If ICC_HSRE.SRE==0, accesses to this register from EL2 are UNDEFINED.

— If ICC_MSRE.SRE==0, accesses to this register from EL3 are UNDEFINED.

• When EL2 is implemented and is using AArch64 and SCR_EL3.NS == 1:

— If HSTR_EL2.T12==1, Non-secure accesses to this register from EL1 are trapped to EL2.

• When EL2 is implemented and is using AArch32 and SCR_EL3.NS == 1:

— If HSTR.T12==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

• When SCR_EL3.NS == 1:

— If ICH_HCR.TALL1==1, Non-secure accesses to this register from EL1 are trapped to EL2.

— If ICH_HCR_EL2.TALL1==1, Non-secure accesses to this register from EL1 are trapped to EL2.

• When EL3 is implemented and is using AArch32:

— If SCR.IRQ==1, accesses to this register from EL2 and EL3 modes other than Monitor mode are
UNDEFINED.

• When EL3 is implemented and is using AArch32 and SCR_EL3.NS == 1:

— If SCR.IRQ==1, and HCR.IMO==0, Non-secure accesses to this register from EL1 are UNDEFINED.

• When EL3 is implemented and is using AArch64 and SCR_EL3.NS == 0:

— If SCR_EL3.IRQ==1, Secure accesses to this register from EL1 are trapped to EL3.

• When EL3 is implemented and is using AArch64:

— If SCR_EL3.IRQ==1, accesses to this register from EL2 are trapped to EL3.

• When EL3 is implemented and is using AArch64 and SCR_EL3.NS == 1:

— If SCR_EL3.IRQ==1, and HCR.IMO==0, Non-secure accesses to this register from EL1 are trapped
to EL3.

— If SCR_EL3.IRQ==1, and HCR_EL2.IMO==0, Non-secure accesses to this register from EL1 are
trapped to EL3.
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-361
ID072617 Non-Confidential

8 Programmers’ Model
8.5 AArch32 System register descriptions
8.5.17 ICC_MCTLR, Interrupt Controller Monitor Control Register

The ICC_MCTLR characteristics are:

Purpose

Controls aspects of the behavior of the GIC CPU interface and provides information about the
features implemented.

Configurations

This register is only accessible in Secure state.

AArch32 System register ICC_MCTLR can be mapped to AArch64 System register
ICC_CTLR_EL3, but this is not architecturally mandated.

Attributes

ICC_MCTLR is a 32-bit register.

Field descriptions

The ICC_MCTLR bit assignments are:

Bits [31:19]

Reserved, RES0.

RSS, bit [18]

Range Selector Support. Possible values are:

0 Targeted SGIs with affinity level 0 values of 0 - 15 are supported.

1 Targeted SGIs with affinity level 0 values of 0 - 255 are supported.

This bit is read-only.

nDS, bit [17]

Disable Security not supported. Read-only and writes are ignored. Possible values are:

0 The CPU interface logic supports disabling of security.

1 The CPU interface logic does not support disabling of security, and requires that
security is not disabled.

Bit [16]

Reserved, RES0.

RES0

31 19 18 17 16 15 14

IDbits

13 11

PRIbits

10 8 7 6 5 4 3 2 1 0

RSS
nDS
RES0

CBPR_EL1S
CBPR_EL1NS
EOImode_EL3

EOImode_EL1S
EOImode_EL1NS

RM
PMHE
RES0
SEIS
A3V
8-362 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.5 AArch32 System register descriptions
A3V, bit [15]

Affinity 3 Valid. Read-only and writes are ignored. Possible values are:

0 The CPU interface logic does not support non-zero values of the Aff3 field in SGI
generation System registers.

1 The CPU interface logic supports non-zero values of the Aff3 field in SGI generation
System registers.

If EL3 is present, ICC_CTLR.AV3 is an alias of ICC_MCTLR.A3V

SEIS, bit [14]

SEI Support. Read-only and writes are ignored. Indicates whether the CPU interface supports
generation of SEIs:

0 The CPU interface logic does not support generation of SEIs.

1 The CPU interface logic supports generation of SEIs.

If EL3 is present, ICC_CTLR.SEIS is an alias of ICC_MCTLR.SEIS

IDbits, bits [13:11]

Identifier bits. Read-only and writes are ignored. The number of physical interrupt identifier bits
supported:

000 16 bits.

001 24 bits.

All other values are reserved.

If EL3 is present, ICC_CTLR.IDbits is an alias of ICC_MCTLR.IDbits

PRIbits, bits [10:8]

Priority bits. Read-only and writes are ignored. The number of priority bits implemented, minus
one.

An implementation that supports two Security states must implement at least 32 levels of physical
priority (5 priority bits).

An implementation that supports only a single Security state must implement at least 16 levels of
physical priority (4 priority bits).

Note
 This field always returns the number of priority bits implemented, regardless of the value of

SCR.NS or the value of GICD_CTLR.DS.

The division between group priority and subpriority is defined in the binary point registers
ICC_BPR0 and ICC_BPR1.

This field determines the minimum value of ICC_BPR0.

Bit [7]

Reserved, RES0.

PMHE, bit [6]

Priority Mask Hint Enable.

0 Disables use of the priority mask register as a hint for interrupt distribution.

1 Enables use of the priority mask register as a hint for interrupt distribution.

Software must write ICC_PMR to 0xFF before clearing this field to 0.

An implementation might choose to make this field RAO/WI.

If EL3 is present, ICC_CTLR.PMHE is an alias of ICC_MCTLR.PMHE.

When this register has an architecturally-defined reset value, if this field is implemented as an RW
field, it resets to 0.
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-363
ID072617 Non-Confidential

8 Programmers’ Model
8.5 AArch32 System register descriptions
RM, bit [5]

SBZ.

The equivalent bit in AArch64 is the Routing Modifier bit. This feature is not supported when EL3
is using AArch32.

This field resets to a value that is architecturally UNKNOWN.

EOImode_EL1NS, bit [4]

EOI mode for interrupts handled at Non-secure EL1 and EL2. Controls whether a write to an End
of Interrupt register also deactivates the interrupt:

0 ICC_EOIR0 and ICC_EOIR1 provide both priority drop and interrupt deactivation
functionality. Accesses to ICC_DIR are UNPREDICTABLE.

1 ICC_EOIR0 and ICC_EOIR1 provide priority drop functionality only. ICC_DIR
provides interrupt deactivation functionality.

If EL3 is present, ICC_CTLR(NS).EOImode is an alias of ICC_MCTLR.EOImode_EL1NS.

This field resets to a value that is architecturally UNKNOWN.

EOImode_EL1S, bit [3]

EOI mode for interrupts handled at Secure EL1. Controls whether a write to an End of Interrupt
register also deactivates the interrupt:

0 ICC_EOIR0 and ICC_EOIR1 provide both priority drop and interrupt deactivation
functionality. Accesses to ICC_DIR are UNPREDICTABLE.

1 ICC_EOIR0 and ICC_EOIR1 provide priority drop functionality only. ICC_DIR
provides interrupt deactivation functionality.

If EL3 is present, ICC_CTLR(S).EOImode is an alias of ICC_MCTLR.EOImode_EL1S.

This field resets to a value that is architecturally UNKNOWN.

EOImode_EL3, bit [2]

EOI mode for interrupts handled at EL3. Controls whether a write to an End of Interrupt register
also deactivates the interrupt:

0 ICC_EOIR0 and ICC_EOIR1 provide both priority drop and interrupt deactivation
functionality. Accesses to ICC_DIR are UNPREDICTABLE.

1 ICC_EOIR0 and ICC_EOIR1 provide priority drop functionality only. ICC_DIR
provides interrupt deactivation functionality.

This field resets to a value that is architecturally UNKNOWN.

CBPR_EL1NS, bit [1]

Common Binary Point Register, EL1 Non-secure. Controls whether the same register is used for
interrupt preemption of both Group 0 and Group 1 Non-secure interrupts at EL1 and EL2:

0 ICC_BPR0 determines the preemption group for Group 0 interrupts only.
ICC_BPR1 determines the preemption group for Non-secure Group 1 interrupts.

1 ICC_BPR0 determines the preemption group for Group 0 interrupts and Non-secure
Group 1 interrupts. Non-secure accesses to GICC_BPR and ICC_BPR1 access the state
of ICC_BPR0.

If EL3 is present, ICC_CTLR(NS).CBPR is an alias of ICC_MCTLR.CBPR_EL1NS.

This field resets to a value that is architecturally UNKNOWN.

CBPR_EL1S, bit [0]

Common Binary Point Register, EL1 Secure. Controls whether the same register is used for
interrupt preemption of both Group 0 and Group 1 Secure interrupts in Secure non-Monitor modes:

0 ICC_BPR0 determines the preemption group for Group 0 interrupts only.
ICC_BPR1 determines the preemption group for Secure Group 1 interrupts.
8-364 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.5 AArch32 System register descriptions
1 ICC_BPR0 determines the preemption group for Group 0 interrupts and Secure Group
1 interrupts. Secure EL1 accesses, or EL3 accesses when not in Monitor mode, to
ICC_BPR1 access the state of ICC_BPR0.

If EL3 is present, ICC_CTLR(S).CBPR is an alias of ICC_MCTLR.CBPR_EL1S.

This field resets to a value that is architecturally UNKNOWN.

Accessing the ICC_MCTLR

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax is encoded with the following settings in the instruction encoding:

Accessibility

The register is accessible in software as follows:

This register is only accessible when executing in Monitor mode.

Traps and Enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in
the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to
AArch32 state and section D1.13.2 (Synchronous exception prioritization for exceptions taken to AArch64) in the
ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch64
state. Subject to the prioritization rules:

• In both Security states, and not dependent on other bits:

— If ICC_MSRE.SRE==0, accesses to this register from EL3 are UNDEFINED.

• When EL2 is implemented and is using AArch64 and SCR_EL3.NS == 1:

— If HSTR_EL2.T12==1, Non-secure accesses to this register from EL1 are trapped to EL2.

• When EL2 is implemented and is using AArch32 and SCR_EL3.NS == 1:

— If HSTR.T12==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

<syntax> opc1 opc2 CRn coproc CRm

p15, 6, <Rt>, c12, c12, 4 110 100 1100 1111 1100

Control Accessibility

NS EL0 EL1 EL2 EL3

0 - - n/a RW

1 - - - RW

1 - n/a - RW
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-365
ID072617 Non-Confidential

8 Programmers’ Model
8.5 AArch32 System register descriptions
8.5.18 ICC_MGRPEN1, Interrupt Controller Monitor Interrupt Group 1 Enable register

The ICC_MGRPEN1 characteristics are:

Purpose

Controls whether Group 1 interrupts are enabled or not.

Configurations

This register is only accessible in Secure state.

AArch32 System register ICC_MGRPEN1 can be mapped to AArch64 System register
ICC_IGRPEN1_EL3, but this is not architecturally mandated.

Attributes

ICC_MGRPEN1 is a 32-bit register.

Field descriptions

The ICC_MGRPEN1 bit assignments are:

Bits [31:2]

Reserved, RES0.

EnableGrp1S, bit [1]

Enables Group 1 interrupts for the Secure state.

0 Secure Group 1 interrupts are disabled.

1 Secure Group 1 interrupts are enabled.

The Secure ICC_IGRPEN1.Enable bit is a read/write alias of the ICC_MGRPEN1.EnableGrp1S
bit.

If the highest priority pending interrupt for that PE is a Group 1 interrupt using 1 of N model, then
the interrupt will target another PE as a result of the Enable bit changing from 1 to 0.

When this register has an architecturally-defined reset value, this field resets to 0.

EnableGrp1NS, bit [0]

Enables Group 1 interrupts for the Non-secure state.

0 Non-secure Group 1 interrupts are disabled.

1 Non-secure Group 1 interrupts are enabled.

The Non-secure ICC_IGRPEN1.Enable bit is a read/write alias of the
ICC_MGRPEN1.EnableGrp1NS bit.

If the highest priority pending interrupt for that PE is a Group 1 interrupt using 1 of N model, then
the interrupt will target another PE as a result of the Enable bit changing from 1 to 0.

When this register has an architecturally-defined reset value, this field resets to 0.

Accessing the ICC_MGRPEN1

This register can be read using MRC with the following syntax:

RES0

31 2 1 0

EnableGrp1S
EnableGrp1NS
8-366 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.5 AArch32 System register descriptions
MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax is encoded with the following settings in the instruction encoding:

Accessibility

The register is accessible in software as follows:

If an interrupt is pending within the CPU interface when an Enable bit becomes 0, the interrupt must be released to
allow the Distributor to forward the interrupt to a different PE.

This register is only accessible when executing in Monitor mode.

Traps and Enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in
the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to
AArch32 state and section D1.13.2 (Synchronous exception prioritization for exceptions taken to AArch64) in the
ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch64
state. Subject to the prioritization rules:

• In both Security states, and not dependent on other bits:

— If ICC_MSRE.SRE==0, accesses to this register from EL3 are UNDEFINED.

• When EL2 is implemented and is using AArch64 and SCR_EL3.NS == 1:

— If HSTR_EL2.T12==1, Non-secure accesses to this register from EL1 are trapped to EL2.

• When EL2 is implemented and is using AArch32 and SCR_EL3.NS == 1:

— If HSTR.T12==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

<syntax> opc1 opc2 CRn coproc CRm

p15, 6, <Rt>, c12, c12, 7 110 111 1100 1111 1100

Control Accessibility

FMO IMO NS EL0 EL1 EL2 EL3

x x 0 - - n/a RW

x x 1 - - - RW

x x 1 - n/a - RW
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-367
ID072617 Non-Confidential

8 Programmers’ Model
8.5 AArch32 System register descriptions
8.5.19 ICC_MSRE, Interrupt Controller Monitor System Register Enable register

The ICC_MSRE characteristics are:

Purpose

Controls whether the System register interface or the memory-mapped interface to the GIC CPU
interface is used for EL3.

Configurations

This register is only accessible in Secure state.

AArch32 System register ICC_MSRE can be mapped to AArch64 System register ICC_SRE_EL3,
but this is not architecturally mandated.

Attributes

ICC_MSRE is a 32-bit register.

Field descriptions

The ICC_MSRE bit assignments are:

Bits [31:4]

Reserved, RES0.

Enable, bit [3]

Enable. Enables lower Exception level access to ICC_SRE and ICC_HSRE.

0 Secure EL1 accesses to Secure ICC_SRE trap to EL3.
EL2 accesses to Non-secure ICC_SRE and ICC_HSRE trap to EL3.
Non-secure EL1 accesses to ICC_SRE trap to EL3, unless these accesses are trapped to
EL2 as a result of ICC_MSRE.Enable == 0.

1 Secure EL1 accesses to Secure ICC_SRE do not trap to EL3.
EL2 accesses to Non-secure ICC_SRE and ICC_HSRE do not trap to EL3.
Non-secure EL1 accesses to ICC_SRE do not trap to EL3.

If ICC_MSRE.SRE is RAO/WI, an implementation is permitted to make the Enable bit RAO/WI.

If ICC_MSRE.SRE is 0, the Enable bit behaves as 1 for all purposes other than reading the value of
the bit.

DIB, bit [2]

Disable IRQ bypass.

0 IRQ bypass enabled.

1 IRQ bypass disabled.

In systems that do not support IRQ bypass, this bit is RAO/WI.

When this register has an architecturally-defined reset value, if this field is implemented as an RW
field, it resets to 0.

RES0

31 4 3 2 1 0

SRE
DFB
DIB

Enable
8-368 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.5 AArch32 System register descriptions
DFB, bit [1]

Disable FIQ bypass.

0 FIQ bypass enabled.

1 FIQ bypass disabled.

In systems that do not support FIQ bypass, this bit is RAO/WI.

When this register has an architecturally-defined reset value, if this field is implemented as an RW
field, it resets to 0.

SRE, bit [0]

System Register Enable.

0 The memory-mapped interface must be used. Accesses at EL3 or below to any ICH_*
System register, or any EL1, EL2, or EL3 ICC_* register other than ICC_SRE,
ICC_HSRE, or ICC_MSRE, are UNDEFINED.

1 The System register interface to the ICH_* registers and the EL1, EL2, and EL3 ICC_*
registers is enabled for EL3.

If software changes this bit from 1 to 0, the results are UNPREDICTABLE.

If an implementation supports only a System register interface to the GIC CPU interface, this bit is
RAO/WI.

When this register has an architecturally-defined reset value, if this field is implemented as an RW
field, it resets to 0.

Accessing the ICC_MSRE

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax is encoded with the following settings in the instruction encoding:

Accessibility

The register is accessible in software as follows:

This register is always System register accessible.

<syntax> opc1 opc2 CRn coproc CRm

p15, 6, <Rt>, c12, c12, 5 110 101 1100 1111 1100

Control Accessibility

NS EL0 EL1 EL2 EL3

0 - - n/a RW

1 - - - RW

1 - n/a - RW
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-369
ID072617 Non-Confidential

8 Programmers’ Model
8.5 AArch32 System register descriptions
The GIC architecture permits, but does not require, that registers can be shared between memory-mapped registers
and the equivalent System registers. This means that if the memory-mapped registers have been accessed while
ICC_MSRE.SRE==0, then the System registers might be modified. Therefore, software must only rely on the reset
values of the System registers if there has been no use of the GIC functionality while the memory-mapped registers
are in use. Otherwise, the System register values must be treated as UNKNOWN.

This register is only accessible when executing in Monitor mode.

Traps and Enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in
the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to
AArch32 state and section D1.13.2 (Synchronous exception prioritization for exceptions taken to AArch64) in the
ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch64
state. Subject to the prioritization rules:

• When EL2 is implemented and is using AArch64 and SCR_EL3.NS == 1:

— If HSTR_EL2.T12==1, Non-secure accesses to this register from EL1 are trapped to EL2.

— If ICC_SRE_EL2.Enable==0, Non-secure accesses to this register from EL1 are trapped to EL2.

• When EL2 is implemented and is using AArch32 and SCR_EL3.NS == 1:

— If HSTR.T12==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

— If ICC_HSRE.Enable==0, Non-secure accesses to this register from EL1 are trapped to EL2.

• When EL3 is implemented and is using AArch32:

— If ICC_MSRE.Enable==0, accesses to this register from EL2 are trapped to EL3.

• When EL3 is implemented and is using AArch64:

— If ICC_SRE_EL3.Enable==0, accesses to this register from EL2 are trapped to EL3.
8-370 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.5 AArch32 System register descriptions
8.5.20 ICC_PMR, Interrupt Controller Interrupt Priority Mask Register

The ICC_PMR characteristics are:

Purpose

Provides an interrupt priority filter. Only interrupts with a higher priority than the value in this
register are signaled to the PE.

Configurations

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register ICC_PMR is architecturally mapped to AArch64 System register
ICC_PMR_EL1.

To allow software to ensure appropriate observability of actions initiated by GIC register accesses,
the PE and CPU interface logic must ensure that writes to this register are self-synchronising. This
ensures that no interrupts below the written PMR value will be taken after a write to this register is
architecturally executed. See Observability of the effects of accesses to the GIC registers on
page 8-157, for more information.

Attributes

ICC_PMR is a 32-bit register.

Field descriptions

The ICC_PMR bit assignments are:

Bits [31:8]

Reserved, RES0.

Priority, bits [7:0]

The priority mask level for the CPU interface. If the priority of an interrupt is higher than the value
indicated by this field, the interface signals the interrupt to the PE.

The possible priority field values are as follows:

Unimplemented priority bits are RAZ/WI.

When this register has an architecturally-defined reset value, this field resets to 0.

Accessing the ICC_PMR

This register can be read using MRC with the following syntax:

RES0

31 8

Priority

7 0

Implemented priority bits Possible priority field values Number of priority levels

[7:0] 0x00-0xFF (0-255), all values 256

[7:1] 0x00-0xFE (0-254), even values only 128

[7:2] 0x00-0xFC (0-252), in steps of 4 64

[7:3] 0x00-0xF8 (0-248), in steps of 8 32

[7:4] 0x00-0xF0 (0-240), in steps of 16 16
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-371
ID072617 Non-Confidential

8 Programmers’ Model
8.5 AArch32 System register descriptions
MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax is encoded with the following settings in the instruction encoding:

When HCR.{FMO, IMO} != {0, 0}, execution of this encoding at Non-secure EL1 results in an access to
ICV_PMR.

Accessibility

The register is accessible in software as follows:

ICC_PMR is only accessible at Non-secure EL1 when HCR.{FMO, IMO} == {0, 0}.

Note
 When HCR.{FMO, IMO} != {0, 0}, at Non-secure EL1, the instruction encoding to access ICC_PMR results in an
access to ICV_PMR.

Traps and Enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in
the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to
AArch32 state and section D1.13.2 (Synchronous exception prioritization for exceptions taken to AArch64) in the
ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch64
state. Subject to the prioritization rules:

• In both Security states, and not dependent on other bits:

— If ICC_SRE.SRE==0, accesses to this register from EL1 are UNDEFINED.

— If ICC_HSRE.SRE==0, accesses to this register from EL2 are UNDEFINED.

— If ICC_MSRE.SRE==0, accesses to this register from EL3 are UNDEFINED.

• When SCR_EL3.NS == 1:

— If ICH_HCR.TC==1, Non-secure accesses to this register from EL1 are trapped to EL2.

— If ICH_HCR_EL2.TC==1, Non-secure accesses to this register from EL1 are trapped to EL2.

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c4, c6, 0 000 000 0100 1111 0110

Control Accessibility

FMO IMO NS EL0 EL1 EL2 EL3

x x 0 - RW n/a RW

x x 1 - n/a RW RW

x 1 1 - ICV_PMR RW RW

1 x 1 - ICV_PMR RW RW

0 0 1 - RW RW RW
8-372 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.5 AArch32 System register descriptions
• When EL3 is implemented and is using AArch32:

— If SCR.IRQ==1, and SCR.FIQ==1, accesses to this register from EL2 and EL3 modes other than
Monitor mode are UNDEFINED.

• When EL3 is implemented and is using AArch32 and SCR_EL3.NS == 1:

— If SCR.IRQ==1, SCR.FIQ==1, HCR.IMO==0, and HCR.FMO==0, Non-secure accesses to this
register from EL1 are UNDEFINED.

• When EL3 is implemented and is using AArch64 and SCR_EL3.NS == 0:

— If SCR_EL3.FIQ==1, and SCR_EL3.IRQ==1, Secure accesses to this register from EL1 are trapped
to EL3.

• When EL3 is implemented and is using AArch64:

— If SCR_EL3.FIQ==1, and SCR_EL3.IRQ==1, accesses to this register from EL2 are trapped to EL3.

• When EL3 is implemented and is using AArch64 and SCR_EL3.NS == 1:

— If SCR_EL3.FIQ==1, SCR_EL3.IRQ==1, HCR.IMO==0, and HCR.FMO==0, Non-secure accesses
to this register from EL1 are trapped to EL3.

— If SCR_EL3.FIQ==1, SCR_EL3.IRQ==1, HCR_EL2.IMO==0, and HCR_EL2.FMO==0,
Non-secure accesses to this register from EL1 are trapped to EL3.
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-373
ID072617 Non-Confidential

8 Programmers’ Model
8.5 AArch32 System register descriptions
8.5.21 ICC_RPR, Interrupt Controller Running Priority Register

The ICC_RPR characteristics are:

Purpose

Indicates the Running priority of the CPU interface.

Configurations

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register ICC_RPR performs the same function as AArch64 System register
ICC_RPR_EL1.

Attributes

ICC_RPR is a 32-bit register.

Field descriptions

The ICC_RPR bit assignments are:

Bits [31:8]

Reserved, RES0.

Priority, bits [7:0]

The current running priority on the CPU interface. This is the group priority of the current active
interrupt.

The priority returned is the group priority as if the BPR for the current Exception level and Security
state was set to the minimum value of BPR for the number of implemented priority bits.

Note
 If 8 bits of priority are implemented the group priority is bits[7:1] of the priority.

Accessing the ICC_RPR

This register can be read using MRC with the following syntax:

MRC <syntax>

This syntax is encoded with the following settings in the instruction encoding:

When HCR.{FMO, IMO} != {0, 0}, execution of this encoding at Non-secure EL1 results in an access to ICV_RPR.

RES0

31 8

Priority

7 0

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c12, c11, 3 000 011 1100 1111 1011
8-374 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.5 AArch32 System register descriptions
Accessibility

The register is accessible in software as follows:

ICC_RPR is only accessible at Non-secure EL1 when HCR.{FMO, IMO} == {0, 0}.

Note
 When HCR.{FMO, IMO} != {0, 0}, at Non-secure EL1, the instruction encoding to access ICC_RPR results in an
access to ICV_RPR.

If there are no active interrupts on the CPU interface, or all active interrupts have undergone a priority drop, the
value returned is the Idle priority.

Software cannot determine the number of implemented priority bits from a read of this register.

Traps and Enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in
the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to
AArch32 state and section D1.13.2 (Synchronous exception prioritization for exceptions taken to AArch64) in the
ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch64
state. Subject to the prioritization rules:

• In both Security states, and not dependent on other bits:

— If ICC_SRE.SRE==0, read accesses to this register from EL1 are UNDEFINED.

— If ICC_HSRE.SRE==0, read accesses to this register from EL2 are UNDEFINED.

— If ICC_MSRE.SRE==0, read accesses to this register from EL3 are UNDEFINED.

• When EL2 is implemented and is using AArch64 and SCR_EL3.NS == 1:

— If HSTR_EL2.T12==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• When EL2 is implemented and is using AArch32 and SCR_EL3.NS == 1:

— If HSTR.T12==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

• When SCR_EL3.NS == 1:

— If ICH_HCR.TC==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

— If ICH_HCR_EL2.TC==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• When EL3 is implemented and is using AArch32:

— If SCR.IRQ==1, and SCR.FIQ==1, read accesses to this register from EL2 and EL3 modes other than
Monitor mode are UNDEFINED.

Control Accessibility

FMO IMO NS EL0 EL1 EL2 EL3

x x 0 - RO n/a RO

x x 1 - n/a RO RO

x 1 1 - ICV_RPR RO RO

1 x 1 - ICV_RPR RO RO

0 0 1 - RO RO RO
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-375
ID072617 Non-Confidential

8 Programmers’ Model
8.5 AArch32 System register descriptions
• When EL3 is implemented and is using AArch32 and SCR_EL3.NS == 1:

— If SCR.IRQ==1, SCR.FIQ==1, HCR.IMO==0, and HCR.FMO==0, Non-secure read accesses to this
register from EL1 are UNDEFINED.

• When EL3 is implemented and is using AArch64 and SCR_EL3.NS == 0:

— If SCR_EL3.FIQ==1, and SCR_EL3.IRQ==1, Secure read accesses to this register from EL1 are
trapped to EL3.

• When EL3 is implemented and is using AArch64:

— If SCR_EL3.FIQ==1, and SCR_EL3.IRQ==1, read accesses to this register from EL2 are trapped to
EL3.

• When EL3 is implemented and is using AArch64 and SCR_EL3.NS == 1:

— If SCR_EL3.FIQ==1, SCR_EL3.IRQ==1, HCR.IMO==0, and HCR.FMO==0, Non-secure read
accesses to this register from EL1 are trapped to EL3.

— If SCR_EL3.FIQ==1, SCR_EL3.IRQ==1, HCR_EL2.IMO==0, and HCR_EL2.FMO==0,
Non-secure read accesses to this register from EL1 are trapped to EL3.
8-376 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.5 AArch32 System register descriptions
8.5.22 ICC_SGI0R, Interrupt Controller Software Generated Interrupt Group 0 Register

The ICC_SGI0R characteristics are:

Purpose

Generates Secure Group 0 SGIs.

Configurations

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register ICC_SGI0R performs the same function as AArch64 System register
ICC_SGI0R_EL1.

Attributes

ICC_SGI0R is a 64-bit register.

Field descriptions

The ICC_SGI0R bit assignments are:

Bits [63:56]

Reserved, RES0.

Aff3, bits [55:48]

The affinity 3 value of the affinity path of the cluster for which SGI interrupts will be generated.

If the IRM bit is 1, this field is RES0.

RS, bits [47:44]

RangeSelector

Controls which group of 16 values is represented by the TargetList field.

TargetList[n] represents aff0 value ((RS * 16) + n).

When ICC_CTLR.RSS==0, RS is RES0.

When ICC_CTLR.RSS==1 and GICD_TYPER.RSS==0, writing this register with RS != 0 is a
CONSTRAINED UNPREDICTABLE choice of :

• The write is ignored.

• The RS field is treated as 0.

Bits [43:41]

Reserved, RES0.

IRM, bit [40]

Interrupt Routing Mode. Determines how the generated interrupts are distributed to PEs. Possible
values are:

0 Interrupts routed to the PEs specified by Aff3.Aff2.Aff1.<target list>.

1 Interrupts routed to all PEs in the system, excluding "self".

Aff2, bits [39:32]

The affinity 2 value of the affinity path of the cluster for which SGI interrupts will be generated.

RES0

63 56

Aff3

55 48

RS

47 44

RES0

43 41 40

Aff2

39 32

RES0

31 28

INTID

27 24

Aff1

23 16

TargetList

15 0

IRM
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-377
ID072617 Non-Confidential

8 Programmers’ Model
8.5 AArch32 System register descriptions
If the IRM bit is 1, this field is RES0.

Bits [31:28]

Reserved, RES0.

INTID, bits [27:24]

The INTID of the SGI.

Aff1, bits [23:16]

The affinity 1 value of the affinity path of the cluster for which SGI interrupts will be generated.

If the IRM bit is 1, this field is RES0.

TargetList, bits [15:0]

Target List. The set of PEs for which SGI interrupts will be generated. Each bit corresponds to the
PE within a cluster with an Affinity 0 value equal to the bit number.

If a bit is 1 and the bit does not correspond to a valid target PE, the bit must be ignored by the
Distributor. It is IMPLEMENTATION DEFINED whether, in such cases, a Distributor can signal a system
error.

Note
 This restricts a system to sending targeted SGIs to PEs with an affinity 0 number that is less than 16.

If SRE is set only for Secure EL3, software executing at EL3 might use the System register interface
to generate SGIs. Therefore, the Distributor must always be able to receive and acknowledge
Generate SGI packets received from CPU interface regardless of the ARE settings for a Security
state. However, the Distributor might discard such packets.

If the IRM bit is 1, this field is RES0.

Accessing the ICC_SGI0R

This register can be written using MCRR with the following syntax:

MCRR <syntax>

This syntax is encoded with the following settings in the instruction encoding:

Accessibility

The register is accessible in software as follows:

This register allows software executing in a Secure state to generate Group 0 SGIs. It will also allow software
executing in a Non-secure state to generate Group 0 SGIs, if permitted by the settings of GICR_NSACR in the
Redistributor corresponding to the target PE.

<syntax> opc1 coproc CRm

p15, 2, <Rt>, <Rt2>, c12 0010 1111 1100

Control Accessibility

NS EL0 EL1 EL2 EL3

0 - WO n/a WO

1 - WO WO WO

1 - n/a WO WO
8-378 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.5 AArch32 System register descriptions
When GICD_CTLR.DS==0, Non-secure writes do not generate an interrupt for a target PE if not permitted by the
GICR_NSACR register associated with the target PE. For more information see Use of control registers for SGI
forwarding on page 8-169.

Note
 Accesses from Secure Monitor mode are treated as Secure regardless of the value of SCR.NS.

Traps and Enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in
the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to
AArch32 state and section D1.13.2 (Synchronous exception prioritization for exceptions taken to AArch64) in the
ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch64
state. Subject to the prioritization rules:

• In both Security states, and not dependent on other bits:

— If ICC_SRE.SRE==0, write accesses to this register from EL1 are UNDEFINED.

— If ICC_HSRE.SRE==0, write accesses to this register from EL2 are UNDEFINED.

— If ICC_MSRE.SRE==0, write accesses to this register from EL3 are UNDEFINED.

• When EL2 is implemented and is using AArch64 and SCR_EL3.NS == 1:

— If HCR_EL2.FMO==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

— If HCR_EL2.IMO==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

— If HSTR_EL2.T12==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

• When EL2 is implemented and is using AArch32 and SCR_EL3.NS == 1:

— If HCR.FMO==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

— If HCR.IMO==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

— If HSTR.T12==1, Non-secure write accesses to this register from EL1 are trapped to Hyp mode.

• When SCR_EL3.NS == 1:

— If ICH_HCR.TC==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

— If ICH_HCR_EL2.TC==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

• When EL3 is implemented and is using AArch32:

— If SCR.FIQ==1, and SCR.IRQ==1, write accesses to this register from EL2 and EL3 modes other than
Monitor mode are UNDEFINED.

• When EL3 is implemented and is using AArch64 and SCR_EL3.NS == 0:

— If SCR_EL3.FIQ==1, and SCR_EL3.IRQ==1, Secure write accesses to this register from EL1 are
trapped to EL3.

• When EL3 is implemented and is using AArch64:

— If SCR_EL3.FIQ==1, and SCR_EL3.IRQ==1, write accesses to this register from EL2 are trapped to
EL3.

• When EL3 is implemented and is using AArch64 and SCR_EL3.NS == 1:

— If SCR_EL3.FIQ==1, SCR_EL3.IRQ==1, HCR.IMO==0, and HCR.FMO==0, Non-secure write
accesses to this register from EL1 are trapped to EL3.

— If SCR_EL3.FIQ==1, SCR_EL3.IRQ==1, HCR_EL2.IMO==0, and HCR_EL2.FMO==0,
Non-secure write accesses to this register from EL1 are trapped to EL3.
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-379
ID072617 Non-Confidential

8 Programmers’ Model
8.5 AArch32 System register descriptions
8.5.23 ICC_SGI1R, Interrupt Controller Software Generated Interrupt Group 1 Register

The ICC_SGI1R characteristics are:

Purpose

Generates Group 1 SGIs for the current Security state.

Configurations

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register ICC_SGI1R performs the same function as AArch64 System register
ICC_SGI1R_EL1.

Under certain conditions a write to ICC_SGI1R can generate Group 0 interrupts, see Table 8-14 on
page 8-169.

Attributes

ICC_SGI1R is a 64-bit register.

Field descriptions

The ICC_SGI1R bit assignments are:

Bits [63:56]

Reserved, RES0.

Aff3, bits [55:48]

The affinity 3 value of the affinity path of the cluster for which SGI interrupts will be generated.

If the IRM bit is 1, this field is RES0.

RS, bits [47:44]

RangeSelector

Controls which group of 16 values is represented by the TargetList field.

TargetList[n] represents aff0 value ((RS * 16) + n).

When ICC_CTLR.RSS==0, RS is RES0.

When ICC_CTLR.RSS==1 and GICD_TYPER.RSS==0, writing this register with RS != 0 is a
CONSTRAINED UNPREDICTABLE choice of :

• The write is ignored.

• The RS field is treated as 0.

Bits [43:41]

Reserved, RES0.

IRM, bit [40]

Interrupt Routing Mode. Determines how the generated interrupts are distributed to PEs. Possible
values are:

0 Interrupts routed to the PEs specified by Aff3.Aff2.Aff1.<target list>.

1 Interrupts routed to all PEs in the system, excluding "self".

RES0

63 56

Aff3

55 48

RS

47 44

RES0

43 41 40

Aff2

39 32

RES0

31 28

INTID

27 24

Aff1

23 16

TargetList

15 0

IRM
8-380 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.5 AArch32 System register descriptions
Aff2, bits [39:32]

The affinity 2 value of the affinity path of the cluster for which SGI interrupts will be generated.

If the IRM bit is 1, this field is RES0.

Bits [31:28]

Reserved, RES0.

INTID, bits [27:24]

The INTID of the SGI.

Aff1, bits [23:16]

The affinity 1 value of the affinity path of the cluster for which SGI interrupts will be generated.

If the IRM bit is 1, this field is RES0.

TargetList, bits [15:0]

Target List. The set of PEs for which SGI interrupts will be generated. Each bit corresponds to the
PE within a cluster with an Affinity 0 value equal to the bit number.

If a bit is 1 and the bit does not correspond to a valid target PE, the bit must be ignored by the
Distributor. It is IMPLEMENTATION DEFINED whether, in such cases, a Distributor can signal a system
error.

Note
 This restricts a system to sending targeted SGIs to PEs with an affinity 0 number that is less than 16.

If SRE is set only for Secure EL3, software executing at EL3 might use the System register interface
to generate SGIs. Therefore, the Distributor must always be able to receive and acknowledge
Generate SGI packets received from CPU interface regardless of the ARE settings for a Security
state. However, the Distributor might discard such packets.

If the IRM bit is 1, this field is RES0.

Accessing the ICC_SGI1R

This register can be written using MCRR with the following syntax:

MCRR <syntax>

This syntax is encoded with the following settings in the instruction encoding:

Accessibility

The register is accessible in software as follows:

<syntax> opc1 coproc CRm

p15, 0, <Rt>, <Rt2>, c12 0000 1111 1100

Control Accessibility

NS EL0 EL1 EL2 EL3

0 - WO n/a WO

1 - WO WO WO

1 - n/a WO WO
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-381
ID072617 Non-Confidential

8 Programmers’ Model
8.5 AArch32 System register descriptions
Note
 Accesses from Secure Monitor mode are treated as Secure regardless of the value of SCR.NS.

Traps and Enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in
the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to
AArch32 state and section D1.13.2 (Synchronous exception prioritization for exceptions taken to AArch64) in the
ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch64
state. Subject to the prioritization rules:

• In both Security states, and not dependent on other bits:

— If ICC_SRE.SRE==0, write accesses to this register from EL1 are UNDEFINED.

— If ICC_HSRE.SRE==0, write accesses to this register from EL2 are UNDEFINED.

— If ICC_MSRE.SRE==0, write accesses to this register from EL3 are UNDEFINED.

• When EL2 is implemented and is using AArch64 and SCR_EL3.NS == 1:

— If HCR_EL2.FMO==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

— If HCR_EL2.IMO==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

— If HSTR_EL2.T12==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

• When EL2 is implemented and is using AArch32 and SCR_EL3.NS == 1:

— If HCR.FMO==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

— If HCR.IMO==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

— If HSTR.T12==1, Non-secure write accesses to this register from EL1 are trapped to Hyp mode.

• When SCR_EL3.NS == 1:

— If ICH_HCR.TC==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

— If ICH_HCR_EL2.TC==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

• When EL3 is implemented and is using AArch32:

— If SCR.FIQ==1, and SCR.IRQ==1, write accesses to this register from EL2 and EL3 modes other than
Monitor mode are UNDEFINED.

• When EL3 is implemented and is using AArch64 and SCR_EL3.NS == 0:

— If SCR_EL3.FIQ==1, and SCR_EL3.IRQ==1, Secure write accesses to this register from EL1 are
trapped to EL3.

• When EL3 is implemented and is using AArch64:

— If SCR_EL3.FIQ==1, and SCR_EL3.IRQ==1, write accesses to this register from EL2 are trapped to
EL3.

• When EL3 is implemented and is using AArch64 and SCR_EL3.NS == 1:

— If SCR_EL3.FIQ==1, SCR_EL3.IRQ==1, HCR.IMO==0, and HCR.FMO==0, Non-secure write
accesses to this register from EL1 are trapped to EL3.

— If SCR_EL3.FIQ==1, SCR_EL3.IRQ==1, HCR_EL2.IMO==0, and HCR_EL2.FMO==0,
Non-secure write accesses to this register from EL1 are trapped to EL3.
8-382 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.5 AArch32 System register descriptions
8.5.24 ICC_SRE, Interrupt Controller System Register Enable register

The ICC_SRE characteristics are:

Purpose

Controls whether the System register interface or the memory-mapped interface to the GIC CPU
interface is used for EL0 and EL1.

Configurations

AArch32 System register ICC_SRE(S) is architecturally mapped to AArch64 System register
ICC_SRE_EL1 (S).

AArch32 System register ICC_SRE(NS) is architecturally mapped to AArch64 System register
ICC_SRE_EL1 (NS).

Attributes

ICC_SRE is a 32-bit register.

Field descriptions

The ICC_SRE bit assignments are:

Bits [31:3]

Reserved, RES0.

DIB, bit [2]

Disable IRQ bypass.

0 IRQ bypass enabled.

1 IRQ bypass disabled.

If EL3 is implemented and GICD_CTLR.DS == 0, this field is a read-only alias of
ICC_MSRE.DIB.

If EL3 is implemented and GICD_CTLR.DS == 1, and EL2 is not implemented, this field is a
read-write alias of ICC_MSRE.DIB.

If EL3 is not implemented or GICD_CTLR.DS == 1, and EL2 is implemented, this field is a
read-only alias of ICC_HSRE.DIB.

In systems that do not support IRQ bypass, this field is RAO/WI.

When this register has an architecturally-defined reset value, if this field is implemented as an RW
field, it resets to 0.

DFB, bit [1]

Disable FIQ bypass.

0 FIQ bypass enabled.

1 FIQ bypass disabled.

If EL3 is implemented and GICD_CTLR.DS == 0, this field is a read-only alias of
ICC_MSRE.DFB.

RES0

31 3 2 1 0

SRE
DFB
DIB
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-383
ID072617 Non-Confidential

8 Programmers’ Model
8.5 AArch32 System register descriptions
If EL3 is implemented and GICD_CTLR.DS == 1, and EL2 is not implemented, this field is a
read-write alias of ICC_MSRE.DFB.

If EL3 is not implemented or GICD_CTLR.DS == 1, and EL2 is implemented, this field is a
read-only alias of ICC_HSRE.DFB.

In systems that do not support FIQ bypass, this field is RAO/WI.

When this register has an architecturally-defined reset value, if this field is implemented as an RW
field, it resets to 0.

SRE, bit [0]

System Register Enable.

0 The memory-mapped interface must be used. Accesses at EL1 to any ICC_* System
register other than ICC_SRE are UNDEFINED.

1 The System register interface for the current Security state is enabled.

If software changes this bit from 1 to 0 in the Secure instance of this register, the results are
UNPREDICTABLE.

If an implementation supports only a System register interface to the GIC CPU interface, this bit is
RAO/WI.

If EL3 is implemented and using AArch64:

• When ICC_SRE_EL3.SRE==0 the Secure copy of this bit is RAZ/WI.

• When ICC_SRE_EL3.SRE==0 the Non-secure copy of this bit is RAZ/WI.

If EL3 is implemented and using AArch32:

• When ICC_MSRE.SRE==0 the Secure copy of this bit is RAZ/WI.

• When ICC_MSRE.SRE==0 the Non-secure copy of this bit is RAZ/WI.

If EL2 is implemented and using AArch64:

• When ICC_SRE_EL2.SRE==0 the Non-secure copy of this bit is RAZ/WI.

If EL2 is implemented and using AArch32:

• When ICC_HSRE.SRE==0 the Non-secure copy of this bit is RAZ/WI.

When this register has an architecturally-defined reset value, if this field is implemented as an RW
field, it resets to 0.

Accessing the ICC_SRE

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax is encoded with the following settings in the instruction encoding:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c12, c12, 5 000 101 1100 1111 1100
8-384 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.5 AArch32 System register descriptions
Accessibility

The register is accessible in software as follows:

The GIC architecture permits, but does not require, that registers can be shared between memory-mapped registers
and the equivalent System registers. This means that if the memory-mapped registers have been accessed while
ICC_SRE.SRE==0, then the System registers might be modified. Therefore, software must only rely on the reset
values of the System registers if there has been no use of the GIC functionality while the memory-mapped registers
are in use. Otherwise, the System register values must be treated as UNKNOWN.

Traps and Enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in
the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to
AArch32 state and section D1.13.2 (Synchronous exception prioritization for exceptions taken to AArch64) in the
ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch64
state. Subject to the prioritization rules:

• In both Security states, and not dependent on other bits:

— If ICC_MSRE.Enable==0, accesses to this register from EL1 and EL2 are trapped to EL3.

— If ICC_SRE_EL3.Enable==0, accesses to this register from EL1 and EL2 are trapped to EL3.

• When EL2 is implemented and is using AArch64 and SCR_EL3.NS == 1:

— If HSTR_EL2.T12==1, Non-secure accesses to this register from EL1 are trapped to EL2.

• When EL2 is implemented and is using AArch32 and SCR_EL3.NS == 1:

— If HSTR.T12==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

• When SCR_EL3.NS == 1:

— If ICC_HSRE.Enable==0, Non-secure accesses to this register from EL1 are trapped to EL2.

— If ICC_SRE_EL2.Enable==0, Non-secure accesses to this register from EL1 are trapped to EL2.

Configuration
Control Accessibility

Instance
NS EL0 EL1 EL2 EL3

EL3 is not implemented." 0 - RW n/a - ICC_SRE

EL3 is not implemented." 1 - RW RW - ICC_SRE

EL3 is not implemented." 1 - n/a RW - ICC_SRE

EL3 is using AArch64. 1 - RW RW - ICC_SRE_ns

EL3 is using AArch64. 1 - n/a RW - ICC_SRE_ns

EL3 is using AArch32. 1 - RW RW RW ICC_SRE_ns

EL3 is using AArch32. 1 - n/a RW RW ICC_SRE_ns

EL3 is using AArch64. 0 - RW n/a - ICC_SRE_s

EL3 is using AArch32. 0 - - - RW ICC_SRE_s
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-385
ID072617 Non-Confidential

8 Programmers’ Model
8.6 AArch32 System register descriptions of the virtual registers
8.6 AArch32 System register descriptions of the virtual registers
This section describes each of the virtual AArch32 GIC System registers in register name order. The ICV prefix
indicates a virtual GIC CPU interface System register. Each AArch32 System register description contains a
reference to the AArch64 register that provides the same functionality.

Unless otherwise stated, the bit assignments for the GIC System registers are the same as those for the equivalent
GICC_* and GICV_* memory-mapped registers.

The ICV_* registers are only accessible at Non-secure EL1. Whether an access encoding maps to an ICC_* register
or the equivalent ICV_* register is determined by HCR, see Chapter 5 Virtual Interrupt Handling and
Prioritization. The equivalent virtual interface memory-mapped registers are described in The GIC virtual CPU
interface register descriptions on page 8-614.

The encodings for the virtual registers are the same as for the physical registers, see Table 8-23 on page 8-309.
8-386 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.6 AArch32 System register descriptions of the virtual registers
8.6.1 ICV_AP0R<n>, Interrupt Controller Virtual Active Priorities Group 0 Registers, n = 0 - 3

The ICV_AP0R<n> characteristics are:

Purpose

Provides information about virtual Group 0 active priorities.

Configurations

AArch32 System register ICV_AP0R<n> is architecturally mapped to AArch64 System register
ICV_AP0R<n>_EL1.

Attributes

ICV_AP0R<n> is a 32-bit register.

Field descriptions

The ICV_AP0R<n> bit assignments are:

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

When this register has an architecturally-defined reset value, this field resets to an UNKNOWN value.

The contents of these registers are IMPLEMENTATION DEFINED with the one architectural requirement that the value
0x00000000 is consistent with no interrupts being active.

Accessing the ICV_AP0R<n>

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax is encoded with the following settings in the instruction encoding:

When HCR.FMO is set to 0, execution of this encoding at Non-secure EL1 results in an access to ICC_AP0R<n>.

IMPLEMENTATION DEFINED

31 0

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c12, c8, <opc2> 000 1:n<1:0> 1100 1111 1000
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-387
ID072617 Non-Confidential

8 Programmers’ Model
8.6 AArch32 System register descriptions of the virtual registers
Accessibility

The register is accessible in software as follows:

The ICV_AP0R<n> registers are only accessible at Non-secure EL1 when HCR.FMO is set to 1.

Note
 When HCR.FMO is set to 0, at Non-secure EL1, the instruction encoding to access ICV_AP0R<n> results in an
access to ICC_AP0R<n>.

Writing to these registers with any value other than the last read value of the register (or 0x00000000 when there are
no Group 0 active priorities) might result in UNPREDICTABLE behavior of the virtual interrupt prioritization system,
causing:

• Interrupts that should preempt execution to not preempt execution.

• Interrupts that should not preempt execution to preempt execution.

ICV_AP0R1 is only implemented in implementations that support 6 or more bits of priority. ICV_AP0R2 and
ICV_AP0R3 are only implemented in implementations that support 7 bits of priority. Unimplemented registers are
UNDEFINED.

Writing to the active priority registers in any order other than the following order might result in UNPREDICTABLE
behavior of the interrupt prioritization system:

• ICV_AP0R<n>.

• ICV_AP1R<n>.

Traps and Enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in
the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to
AArch32 state and section D1.13.2 (Synchronous exception prioritization for exceptions taken to AArch64) in the
ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch64
state. Subject to the prioritization rules:

• In both Security states, and not dependent on other bits:

— If ICC_SRE.SRE==0, Non-secure accesses to this register from EL1 are UNDEFINED.

— If ICC_SRE_EL1.SRE==0, Non-secure accesses to this register from EL1 are trapped to EL1.

• When EL2 is implemented and is using AArch64 and SCR_EL3.NS == 1:

— If HSTR_EL2.T12==1, Non-secure accesses to this register from EL1 are trapped to EL2.

• When EL2 is implemented and is using AArch32 and SCR_EL3.NS == 1:

— If HSTR.T12==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

Control Accessibility

FMO IMO NS EL0 EL1 EL2 EL3

x x 0 - ICC_AP0R<n> n/a ICC_AP0R<n>

x x 1 - n/a ICC_AP0R<n> ICC_AP0R<n>

0 x 1 - ICC_AP0R<n> ICC_AP0R<n> ICC_AP0R<n>

1 x 1 - RW ICC_AP0R<n> ICC_AP0R<n>
8-388 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.6 AArch32 System register descriptions of the virtual registers
• When SCR_EL3.NS == 1:

— If ICH_HCR.TALL0==1, Non-secure accesses to this register from EL1 are trapped to EL2.

— If ICH_HCR_EL2.TALL0==1, Non-secure accesses to this register from EL1 are trapped to EL2.
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-389
ID072617 Non-Confidential

8 Programmers’ Model
8.6 AArch32 System register descriptions of the virtual registers
8.6.2 ICV_AP1R<n>, Interrupt Controller Virtual Active Priorities Group 1 Registers, n = 0 - 3

The ICV_AP1R<n> characteristics are:

Purpose

Provides information about virtual Group 1 active priorities.

Configurations

AArch32 System register ICV_AP1R<n> is architecturally mapped to AArch64 System register
ICV_AP1R<n>_EL1.

Attributes

ICV_AP1R<n> is a 32-bit register.

Field descriptions

The ICV_AP1R<n> bit assignments are:

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

When this register has an architecturally-defined reset value, this field resets to an UNKNOWN value.

The contents of these registers are IMPLEMENTATION DEFINED with the one architectural requirement that the value
0x00000000 is consistent with no interrupts being active.

Accessing the ICV_AP1R<n>

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax is encoded with the following settings in the instruction encoding:

When HCR.IMO is set to 0, execution of this encoding at Non-secure EL1 results in an access to ICC_AP1R<n>.

IMPLEMENTATION DEFINED

31 0

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c12, c9, <opc2> 000 0:n<1:0> 1100 1111 1001
8-390 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.6 AArch32 System register descriptions of the virtual registers
Accessibility

The register is accessible in software as follows:

The ICV_AP1R<n> registers are only accessible at Non-secure EL1 when HCR.IMO == 1.

Note
 When HCR.IMO is set to 0, at Non-secure EL1, the instruction encoding to access ICV_AP1R<n> results in an
access to ICC_AP1R<n>.

Writing to these registers with any value other than the last read value of the register (or 0x00000000 when there are
no Group 1 active priorities) might result in UNPREDICTABLE behavior of the virtual interrupt prioritization system,
causing:

• Interrupts that should preempt execution to not preempt execution.

• Interrupts that should not preempt execution to preempt execution.

ICV_AP1R1 is only implemented in implementations that support 6 or more bits of priority. ICV_AP1R2 and
ICV_AP1R3 are only implemented in implementations that support 7 bits of priority. Unimplemented registers are
UNDEFINED.

Writing to the active priority registers in any order other than the following order might result in UNPREDICTABLE
behavior of the interrupt prioritization system:

• ICV_AP0R<n>.

• ICV_AP1R<n>.

Traps and Enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in
the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to
AArch32 state and section D1.13.2 (Synchronous exception prioritization for exceptions taken to AArch64) in the
ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch64
state. Subject to the prioritization rules:

• In both Security states, and not dependent on other bits:

— If ICC_SRE.SRE==0, Non-secure accesses to this register from EL1 are UNDEFINED.

— If ICC_SRE_EL1.SRE==0, Non-secure accesses to this register from EL1 are trapped to EL1.

• When EL2 is implemented and is using AArch64 and SCR_EL3.NS == 1:

— If HSTR_EL2.T12==1, Non-secure accesses to this register from EL1 are trapped to EL2.

• When EL2 is implemented and is using AArch32 and SCR_EL3.NS == 1:

— If HSTR.T12==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

Control Accessibility

FMO IMO NS EL0 EL1 EL2 EL3

x x 0 - ICC_AP1R<n> n/a ICC_AP1R<n>

x x 1 - n/a ICC_AP1R<n> ICC_AP1R<n>

x 0 1 - ICC_AP1R<n> ICC_AP1R<n> ICC_AP1R<n>

x 1 1 - RW ICC_AP1R<n> ICC_AP1R<n>
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-391
ID072617 Non-Confidential

8 Programmers’ Model
8.6 AArch32 System register descriptions of the virtual registers
• When SCR_EL3.NS == 1:

— If ICH_HCR.TALL1==1, Non-secure accesses to this register from EL1 are trapped to EL2.

— If ICH_HCR_EL2.TALL1==1, Non-secure accesses to this register from EL1 are trapped to EL2.
8-392 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.6 AArch32 System register descriptions of the virtual registers
8.6.3 ICV_BPR0, Interrupt Controller Virtual Binary Point Register 0

The ICV_BPR0 characteristics are:

Purpose

Defines the point at which the priority value fields split into two parts, the group priority field and
the subpriority field. The group priority field determines virtual Group 0 interrupt preemption.

Configurations

AArch32 System register ICV_BPR0 is architecturally mapped to AArch64 System register
ICV_BPR0_EL1.

Attributes

ICV_BPR0 is a 32-bit register.

Field descriptions

The ICV_BPR0 bit assignments are:

Bits [31:3]

Reserved, RES0.

BinaryPoint, bits [2:0]

The value of this field controls how the 8-bit interrupt priority field is split into a group priority field,
that determines interrupt preemption, and a subpriority field. This is done as follows:

Accessing the ICV_BPR0

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

RES0

31 3 2 0

BinaryPoint

Binary point value Group priority field Subpriority field Field with binary point

0 [7:1] [0] ggggggg.s

1 [7:2] [1:0] gggggg.ss

2 [7:3] [2:0] ggggg.sss

3 [7:4] [3:0] gggg.ssss

4 [7:5] [4:0] ggg.sssss

5 [7:6] [5:0] gg.ssssss

6 [7] [6:0] g.sssssss

7 No preemption [7:0] .ssssssss
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-393
ID072617 Non-Confidential

8 Programmers’ Model
8.6 AArch32 System register descriptions of the virtual registers
This syntax is encoded with the following settings in the instruction encoding:

When HCR.FMO is set to 0, execution of this encoding at Non-secure EL1 results in an access to ICC_BPR0.

Accessibility

The register is accessible in software as follows:

ICV_BPR0 is only accessible at Non-secure EL1 when HCR.FMO is set to 1.

Note
 When HCR.FMO is set to 0, at Non-secure EL1, the instruction encoding to access ICV_BPR0 results in an access
to ICC_BPR0.

The minimum binary point value is derived from the number of implemented priority bits. The number of priority
bits is IMPLEMENTATION DEFINED, and reported by ICV_CTLR.PRIbits.

An attempt to program the binary point field to a value less than the minimum value sets the field to the minimum
value. On a reset, the binary point field is set to the minimum supported value.

Traps and Enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in
the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to
AArch32 state and section D1.13.2 (Synchronous exception prioritization for exceptions taken to AArch64) in the
ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch64
state. Subject to the prioritization rules:

• In both Security states, and not dependent on other bits:

— If ICC_SRE.SRE==0, Non-secure accesses to this register from EL1 are UNDEFINED.

— If ICC_SRE_EL1.SRE==0, Non-secure accesses to this register from EL1 are trapped to EL1.

• When EL2 is implemented and is using AArch64 and SCR_EL3.NS == 1:

— If HSTR_EL2.T12==1, Non-secure accesses to this register from EL1 are trapped to EL2.

• When EL2 is implemented and is using AArch32 and SCR_EL3.NS == 1:

— If HSTR.T12==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

• When SCR_EL3.NS == 1:

— If ICH_HCR.TALL0==1, Non-secure accesses to this register from EL1 are trapped to EL2.

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c12, c8, 3 000 011 1100 1111 1000

Control Accessibility

FMO IMO NS EL0 EL1 EL2 EL3

x x 0 - ICC_BPR0 n/a ICC_BPR0

x x 1 - n/a ICC_BPR0 ICC_BPR0

0 x 1 - ICC_BPR0 ICC_BPR0 ICC_BPR0

1 x 1 - RW ICC_BPR0 ICC_BPR0
8-394 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.6 AArch32 System register descriptions of the virtual registers
— If ICH_HCR_EL2.TALL0==1, Non-secure accesses to this register from EL1 are trapped to EL2.
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-395
ID072617 Non-Confidential

8 Programmers’ Model
8.6 AArch32 System register descriptions of the virtual registers
8.6.4 ICV_BPR1, Interrupt Controller Virtual Binary Point Register 1

The ICV_BPR1 characteristics are:

Purpose

Defines the point at which the priority value fields split into two parts, the group priority field and
the subpriority field. The group priority field determines virtual Group 1 interrupt preemption.

Configurations

AArch32 System register ICV_BPR1 is architecturally mapped to AArch64 System register
ICV_BPR1_EL1.

Attributes

ICV_BPR1 is a 32-bit register.

Field descriptions

The ICV_BPR1 bit assignments are:

Bits [31:3]

Reserved, RES0.

BinaryPoint, bits [2:0]

If the GIC is configured to use separate binary point fields for virtual Group 0 and virtual Group 1
interrupts, the value of this field controls how the 8-bit interrupt priority field is split into a group
priority field, that determines interrupt preemption, and a subpriority field. This is done as follows:

Writing 0 to this field will set this field to its reset value, which is IMPLEMENTATION DEFINED and
non-zero.

If ICV_CTLR.CBPR is set to 1, Non-secure EL1 reads return ICV_BPR0 + 1 saturated to 0b111.
Non-secure EL1 writes are ignored.

RES0

31 3 2 0

BinaryPoint

Binary point value Group priority field Subpriority field Field with binary point

0 - - -

1 [7:1] [0] ggggggg.s

2 [7:2] [1:0] gggggg.ss

3 [7:3] [2:0] ggggg.sss

4 [7:4] [3:0] gggg.ssss

5 [7:5] [4:0] ggg.sssss

6 [7:6] [5:0] gg.ssssss

7 [7] [6:0] g.sssssss
8-396 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.6 AArch32 System register descriptions of the virtual registers
Accessing the ICV_BPR1

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax is encoded with the following settings in the instruction encoding:

When HCR.IMO is set to 0, execution of this encoding at Non-secure EL1 results in an access to ICC_BPR1.

Accessibility

The register is accessible in software as follows:

ICV_BPR1 is only accessible at Non-secure EL1 when HCR.IMO is set to 1.

Note
 When HCR.IMO is set to 0, at Non-secure EL1, the instruction encoding to access ICV_BPR1 results in an access
to ICC_BPR1.

The reset value is IMPLEMENTATION DEFINED, but is equal to the minimum value of ICV_BPR0 plus one.

An attempt to program the binary point field to a value less than the reset value sets the field to the reset value.

Traps and Enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in
the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to
AArch32 state and section D1.13.2 (Synchronous exception prioritization for exceptions taken to AArch64) in the
ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch64
state. Subject to the prioritization rules:

• In both Security states, and not dependent on other bits:

— If ICC_SRE.SRE==0, Non-secure accesses to this register from EL1 are UNDEFINED.

— If ICC_SRE_EL1.SRE==0, Non-secure accesses to this register from EL1 are trapped to EL1.

• When EL2 is implemented and is using AArch64 and SCR_EL3.NS == 1:

— If HSTR_EL2.T12==1, Non-secure accesses to this register from EL1 are trapped to EL2.

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c12, c12, 3 000 011 1100 1111 1100

Control Accessibility

FMO IMO EL0 EL1 EL2 EL3

x x - ICC_BPR1 n/a ICC_BPR1

x x - n/a ICC_BPR1 ICC_BPR1

x 0 - ICC_BPR1 ICC_BPR1 ICC_BPR1

x 1 - RW ICC_BPR1 ICC_BPR1
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-397
ID072617 Non-Confidential

8 Programmers’ Model
8.6 AArch32 System register descriptions of the virtual registers
• When EL2 is implemented and is using AArch32 and SCR_EL3.NS == 1:

— If HSTR.T12==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

• When SCR_EL3.NS == 1:

— If ICH_HCR.TALL1==1, Non-secure accesses to this register from EL1 are trapped to EL2.

— If ICH_HCR_EL2.TALL1==1, Non-secure accesses to this register from EL1 are trapped to EL2.
8-398 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.6 AArch32 System register descriptions of the virtual registers
8.6.5 ICV_CTLR, Interrupt Controller Virtual Control Register

The ICV_CTLR characteristics are:

Purpose

Controls aspects of the behavior of the GIC virtual CPU interface and provides information about
the features implemented.

Configurations

AArch32 System register ICV_CTLR is architecturally mapped to AArch64 System register
ICV_CTLR_EL1.

Attributes

ICV_CTLR is a 32-bit register.

Field descriptions

The ICV_CTLR bit assignments are:

Bits [31:19]

Reserved, RES0.

RSS, bit [18]

Range Selector Support. Possible values are:

0 Targeted SGIs with affinity level 0 values of 0 - 15 are supported.

1 Targeted SGIs with affinity level 0 values of 0 - 255 are supported.

This bit is read-only.

Bits [17:16]

Reserved, RES0.

A3V, bit [15]

Affinity 3 Valid. Read-only and writes are ignored. Possible values are:

0 The virtual CPU interface logic only supports zero values of Affinity 3 in SGI
generation System registers.

1 The virtual CPU interface logic supports non-zero values of Affinity 3 in SGI generation
System registers.

SEIS, bit [14]

SEI Support. Read-only and writes are ignored. Indicates whether the virtual CPU interface
supports local generation of SEIs:

0 The virtual CPU interface logic does not support local generation of SEIs.

1 The virtual CPU interface logic supports local generation of SEIs.

RES0

31 19 18 17 16 15 14

IDbits

13 11

PRIbits

10 8

RES0

7 2 1 0

RSS
RES0

CBPR
EOImode

SEIS
A3V
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-399
ID072617 Non-Confidential

8 Programmers’ Model
8.6 AArch32 System register descriptions of the virtual registers
IDbits, bits [13:11]

Identifier bits. Read-only and writes are ignored. The number of virtual interrupt identifier bits
supported:

000 16 bits.

001 24 bits.

All other values are reserved.

PRIbits, bits [10:8]

Priority bits. Read-only and writes are ignored. The number of priority bits implemented, minus
one.

An implementation must implement at least 32 levels of physical priority (5 priority bits).

Note
 This field always returns the number of priority bits implemented.

The division between group priority and subpriority is defined in the binary point registers
ICV_BPR0 and ICV_BPR1.

Bits [7:2]

Reserved, RES0.

EOImode, bit [1]

Virtual EOI mode. Controls whether a write to an End of Interrupt register also deactivates the
virtual interrupt:

0 ICV_EOIR0 and ICV_EOIR1 provide both priority drop and interrupt deactivation
functionality. Accesses to ICV_DIR are UNPREDICTABLE.

1 ICV_EOIR0 and ICV_EOIR1 provide priority drop functionality only. ICV_DIR
provides interrupt deactivation functionality.

This field resets to a value that is architecturally UNKNOWN.

CBPR, bit [0]

Common Binary Point Register. Controls whether the same register is used for interrupt preemption
of both virtual Group 0 and virtual Group 1 interrupts:

0 ICV_BPR0 determines the preemption group for virtual Group 0 interrupts only.
ICV_BPR1 determines the preemption group for virtual Group 1 interrupts.

1 ICV_BPR0 determines the preemption group for both virtual Group 0 and virtual Group
1 interrupts.
Reads of ICV_BPR1 return ICV_BPR0 plus one, saturated to 0b111. Writes to
ICV_BPR1 are ignored.

This field resets to a value that is architecturally UNKNOWN.

Accessing the ICV_CTLR

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>
8-400 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.6 AArch32 System register descriptions of the virtual registers
This syntax is encoded with the following settings in the instruction encoding:

When HCR.{FMO, IMO} == {0, 0}, execution of this encoding at Non-secure EL1 results in an access to
ICC_CTLR.

Accessibility

The register is accessible in software as follows:

ICV_CTLR is only accessible at Non-secure EL1 when HCR.{FMO, IMO} != {0, 0}.

Note
 When HCR.{FMO, IMO} == {0, 0}, at Non-secure EL1, the instruction encoding to access ICV_CTLR results in
an access to ICC_CTLR.

Traps and Enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in
the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to
AArch32 state and section D1.13.2 (Synchronous exception prioritization for exceptions taken to AArch64) in the
ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch64
state. Subject to the prioritization rules:

• In both Security states, and not dependent on other bits:

— If ICC_SRE.SRE==0, Non-secure accesses to this register from EL1 are UNDEFINED.

— If ICC_SRE_EL1.SRE==0, Non-secure accesses to this register from EL1 are trapped to EL1.

• When EL2 is implemented and is using AArch64 and SCR_EL3.NS == 1:

— If HSTR_EL2.T12==1, Non-secure accesses to this register from EL1 are trapped to EL2.

• When EL2 is implemented and is using AArch32 and SCR_EL3.NS == 1:

— If HSTR.T12==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

• When SCR_EL3.NS == 1:

— If ICH_HCR.TC==1, Non-secure accesses to this register from EL1 are trapped to EL2.

— If ICH_HCR_EL2.TC==1, Non-secure accesses to this register from EL1 are trapped to EL2.

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c12, c12, 4 000 100 1100 1111 1100

Control Accessibility

FMO IMO NS EL0 EL1 EL2 EL3

x x 0 - ICC_CTLR n/a ICC_CTLR

x x 1 - n/a ICC_CTLR ICC_CTLR

x 1 1 - RW ICC_CTLR ICC_CTLR

1 x 1 - RW ICC_CTLR ICC_CTLR

0 0 1 - ICC_CTLR ICC_CTLR ICC_CTLR
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-401
ID072617 Non-Confidential

8 Programmers’ Model
8.6 AArch32 System register descriptions of the virtual registers
8.6.6 ICV_DIR, Interrupt Controller Deactivate Virtual Interrupt Register

The ICV_DIR characteristics are:

Purpose

When interrupt priority drop is separated from interrupt deactivation, a write to this register
deactivates the specified virtual interrupt.

Configurations

AArch32 System register ICV_DIR performs the same function as AArch64 System register
ICV_DIR_EL1.

Attributes

ICV_DIR is a 32-bit register.

Field descriptions

The ICV_DIR bit assignments are:

Bits [31:24]

Reserved, RES0.

INTID, bits [23:0]

The INTID of the virtual interrupt to be deactivated.

This field has either 16 or 24 bits implemented. The number of implemented bits can be found in
ICV_CTLR.IDbits. If only 16 bits are implemented, bits [23:16] of this register are RES0.

Accessing the ICV_DIR

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax is encoded with the following settings in the instruction encoding:

This encoding results in an access to ICV_DIR at Non-secure EL1 in the following cases:

• When HCR.FMO is set to 1.

• When HCR.IMO is set to 1.

This encoding results in an access to ICC_DIR at Non-secure EL1 in the following cases:

• When HCR2.{FMO, IMO} == {0, 0}.

RES0

31 24

INTID

23 0

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c12, c11, 1 000 001 1100 1111 1011
8-402 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.6 AArch32 System register descriptions of the virtual registers
Accessibility

The register is accessible in software as follows:

The ICV_DIR register is only accessible at Non-secure EL1 in the following cases:

• When HCR.FMO is set to 1.

• When HCR.IMO is set to 1.

When EOImode == 0, writes are ignored In systems supporting system error generation, an implementation might
generate an SEI.

Traps and Enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in
the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to
AArch32 state and section D1.13.2 (Synchronous exception prioritization for exceptions taken to AArch64) in the
ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch64
state. Subject to the prioritization rules:

• In both Security states, and not dependent on other bits:

— If ICC_SRE.SRE==0, Non-secure write accesses to this register from EL1 are UNDEFINED.

— If ICC_SRE_EL1.SRE==0, Non-secure write accesses to this register from EL1 are trapped to EL1.

• When EL2 is implemented and is using AArch64 and SCR_EL3.NS == 1:

— If HSTR_EL2.T12==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

• When EL2 is implemented and is using AArch32 and SCR_EL3.NS == 1:

— If HSTR.T12==1, Non-secure write accesses to this register from EL1 are trapped to Hyp mode.

• When SCR_EL3.NS == 1:

— If ICH_HCR.TC==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

— If ICH_HCR_EL2.TC==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

Control Accessibility

FMO IMO NS EL0 EL1 EL2 EL3

x x 0 - ICC_DIR n/a ICC_DIR

x x 1 - n/a ICC_DIR ICC_DIR

x 1 1 - WO ICC_DIR ICC_DIR

1 x 1 - WO ICC_DIR ICC_DIR

0 0 1 - ICC_DIR ICC_DIR ICC_DIR
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-403
ID072617 Non-Confidential

8 Programmers’ Model
8.6 AArch32 System register descriptions of the virtual registers
8.6.7 ICV_EOIR0, Interrupt Controller Virtual End Of Interrupt Register 0

The ICV_EOIR0 characteristics are:

Purpose

A PE writes to this register to inform the CPU interface that it has completed the processing of the
specified virtual Group 0 interrupt.

Configurations

AArch32 System register ICV_EOIR0 performs the same function as AArch64 System register
ICV_EOIR0_EL1.

Attributes

ICV_EOIR0 is a 32-bit register.

Field descriptions

The ICV_EOIR0 bit assignments are:

Bits [31:24]

Reserved, RES0.

INTID, bits [23:0]

The INTID from the corresponding ICV_IAR0 access.

This field has either 16 or 24 bits implemented. The number of implemented bits can be found in
ICV_CTLR.IDbits. If only 16 bits are implemented, bits [23:16] of this register are RES0.

If the ICV_CTLR.EOImode bit is 0, a write to this register drops the priority for the virtual interrupt,
and also deactivates the virtual interrupt.

If the ICV_CTLR.EOImode bit is 1, a write to this register only drops the priority for the virtual
interrupt. Software must write to ICV_DIR to deactivate the virtual interrupt.

Accessing the ICV_EOIR0

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax is encoded with the following settings in the instruction encoding:

When HCR.FMO is set to 0, execution of this encoding at Non-secure EL1 results in an access to ICC_EOIR0.

RES0

31 24

INTID

23 0

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c12, c8, 1 000 001 1100 1111 1000
8-404 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.6 AArch32 System register descriptions of the virtual registers
Accessibility

The register is accessible in software as follows:

ICV_EOIR0 is only accessible at Non-secure EL1 when HCR.FMO is set to 1.

Note
 When HCR.FMO is set to 0, at Non-secure EL1, the instruction encoding to access ICV_EOIR0 results in an access
to ICC_EOIR0.

A write to this register must correspond to the most recent valid read by this vPE from a Virtual Interrupt
Acknowledge Register, and must correspond to the INTID that was read from ICV_IAR0, otherwise the system
behavior is UNPREDICTABLE. A valid read is a read that returns a valid INTID that is not a special INTID.

Traps and Enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in
the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to
AArch32 state and section D1.13.2 (Synchronous exception prioritization for exceptions taken to AArch64) in the
ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch64
state. Subject to the prioritization rules:

• In both Security states, and not dependent on other bits:

— If ICC_SRE.SRE==0, Non-secure write accesses to this register from EL1 are UNDEFINED.

— If ICC_SRE_EL1.SRE==0, Non-secure write accesses to this register from EL1 are trapped to EL1.

• When EL2 is implemented and is using AArch64 and SCR_EL3.NS == 1:

— If HSTR_EL2.T12==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

• When EL2 is implemented and is using AArch32 and SCR_EL3.NS == 1:

— If HSTR.T12==1, Non-secure write accesses to this register from EL1 are trapped to Hyp mode.

• When SCR_EL3.NS == 1:

— If ICH_HCR.TALL0==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

— If ICH_HCR_EL2.TALL0==1, Non-secure write accesses to this register from EL1 are trapped to
EL2.

Control Accessibility

FMO IMO NS EL0 EL1 EL2 EL3

x x 0 - ICC_EOIR0 n/a ICC_EOIR0

x x 1 - n/a ICC_EOIR0 ICC_EOIR0

0 x 1 - ICC_EOIR0 ICC_EOIR0 ICC_EOIR0

1 x 1 - WO ICC_EOIR0 ICC_EOIR0
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-405
ID072617 Non-Confidential

8 Programmers’ Model
8.6 AArch32 System register descriptions of the virtual registers
8.6.8 ICV_EOIR1, Interrupt Controller Virtual End Of Interrupt Register 1

The ICV_EOIR1 characteristics are:

Purpose

A PE writes to this register to inform the CPU interface that it has completed the processing of the
specified virtual Group 1 interrupt.

Configurations

AArch32 System register ICV_EOIR1 performs the same function as AArch64 System register
ICV_EOIR1_EL1.

Attributes

ICV_EOIR1 is a 32-bit register.

Field descriptions

The ICV_EOIR1 bit assignments are:

Bits [31:24]

Reserved, RES0.

INTID, bits [23:0]

The INTID from the corresponding ICV_IAR1 access.

This field has either 16 or 24 bits implemented. The number of implemented bits can be found in
ICV_CTLR.IDbits. If only 16 bits are implemented, bits [23:16] of this register are RES0.

If the ICV_CTLR.EOImode bit is 0, a write to this register drops the priority for the virtual interrupt,
and also deactivates the virtual interrupt.

If the ICV_CTLR.EOImode bit is 1, a write to this register only drops the priority for the virtual
interrupt. Software must write to ICV_DIR to deactivate the virtual interrupt.

Accessing the ICV_EOIR1

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax is encoded with the following settings in the instruction encoding:

When HCR.IMO is set to 0, execution of this encoding at Non-secure EL1 results in an access to ICC_EOIR1.

RES0

31 24

INTID

23 0

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c12, c12, 1 000 001 1100 1111 1100
8-406 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.6 AArch32 System register descriptions of the virtual registers
Accessibility

The register is accessible in software as follows:

ICV_EOIR1 is only accessible at Non-secure EL1 when HCR.IMO is set to 1.

Note
 When HCR.IMO is set to 0, at Non-secure EL1, the instruction encoding to access ICV_EOIR1 results in an access
to ICC_EOIR1.

A write to this register must correspond to the most recent valid read by this vPE from a Virtual Interrupt
Acknowledge Register, and must correspond to the INTID that was read from ICV_IAR1, otherwise the system
behavior is UNPREDICTABLE. A valid read is a read that returns a valid INTID that is not a special INTID.

Traps and Enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in
the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to
AArch32 state and section D1.13.2 (Synchronous exception prioritization for exceptions taken to AArch64) in the
ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch64
state. Subject to the prioritization rules:

• In both Security states, and not dependent on other bits:

— If ICC_SRE.SRE==0, Non-secure write accesses to this register from EL1 are UNDEFINED.

— If ICC_SRE_EL1.SRE==0, Non-secure write accesses to this register from EL1 are trapped to EL1.

• When EL2 is implemented and is using AArch64 and SCR_EL3.NS == 1:

— If HSTR_EL2.T12==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

• When EL2 is implemented and is using AArch32 and SCR_EL3.NS == 1:

— If HSTR.T12==1, Non-secure write accesses to this register from EL1 are trapped to Hyp mode.

• When SCR_EL3.NS == 1:

— If ICH_HCR.TALL1==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

— If ICH_HCR_EL2.TALL1==1, Non-secure write accesses to this register from EL1 are trapped to
EL2.

Control Accessibility

FMO IMO NS EL0 EL1 EL2 EL3

x x 0 - ICC_EOIR1 n/a ICC_EOIR1

x x 1 - n/a ICC_EOIR1 ICC_EOIR1

x 0 1 - ICC_EOIR1 ICC_EOIR1 ICC_EOIR1

x 1 1 - WO ICC_EOIR1 ICC_EOIR1
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-407
ID072617 Non-Confidential

8 Programmers’ Model
8.6 AArch32 System register descriptions of the virtual registers
8.6.9 ICV_HPPIR0, Interrupt Controller Virtual Highest Priority Pending Interrupt Register 0

The ICV_HPPIR0 characteristics are:

Purpose

Indicates the highest priority pending virtual Group 0 interrupt on the virtual CPU interface.

Configurations

AArch32 System register ICV_HPPIR0 performs the same function as AArch64 System register
ICV_HPPIR0_EL1.

Attributes

ICV_HPPIR0 is a 32-bit register.

Field descriptions

The ICV_HPPIR0 bit assignments are:

Bits [31:24]

Reserved, RES0.

INTID, bits [23:0]

The INTID of the highest priority pending virtual interrupt.

If the highest priority pending interrupt is not observable, this field contains a special INTID to
indicate the reason. This special INTID can take the value 1023 only. See Special INTIDs on
page 2-32, for more information.

This field has either 16 or 24 bits implemented. The number of implemented bits can be found in
ICV_CTLR.IDbits. If only 16 bits are implemented, bits [23:16] of this register are RES0.

Accessing the ICV_HPPIR0

This register can be read using MRC with the following syntax:

MRC <syntax>

This syntax is encoded with the following settings in the instruction encoding:

When HCR.FMO is set to 0, execution of this encoding at Non-secure EL1 results in an access to ICC_HPPIR0.

RES0

31 24

INTID

23 0

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c12, c8, 2 000 010 1100 1111 1000
8-408 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.6 AArch32 System register descriptions of the virtual registers
Accessibility

The register is accessible in software as follows:

ICV_HPPIR0 is only accessible at Non-secure EL1 when HCR.FMO is set to 1.

Note
 When HCR.FMO is set to 0, at Non-secure EL1, the instruction encoding to access ICV_HPPIR0 results in an
access to ICC_HPPIR0.

Traps and Enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in
the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to
AArch32 state and section D1.13.2 (Synchronous exception prioritization for exceptions taken to AArch64) in the
ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch64
state. Subject to the prioritization rules:

• In both Security states, and not dependent on other bits:

— If ICC_SRE.SRE==0, Non-secure read accesses to this register from EL1 are UNDEFINED.

— If ICC_SRE_EL1.SRE==0, Non-secure read accesses to this register from EL1 are trapped to EL1.

• When EL2 is implemented and is using AArch64 and SCR_EL3.NS == 1:

— If HSTR_EL2.T12==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• When EL2 is implemented and is using AArch32 and SCR_EL3.NS == 1:

— If HSTR.T12==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

• When SCR_EL3.NS == 1:

— If ICH_HCR.TALL0==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

— If ICH_HCR_EL2.TALL0==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

Control Accessibility

FMO IMO NS EL0 EL1 EL2 EL3

x x 0 - ICC_HPPIR0 n/a ICC_HPPIR0

x x 1 - n/a ICC_HPPIR0 ICC_HPPIR0

0 x 1 - ICC_HPPIR0 ICC_HPPIR0 ICC_HPPIR0

1 x 1 - RO ICC_HPPIR0 ICC_HPPIR0
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-409
ID072617 Non-Confidential

8 Programmers’ Model
8.6 AArch32 System register descriptions of the virtual registers
8.6.10 ICV_HPPIR1, Interrupt Controller Virtual Highest Priority Pending Interrupt Register 1

The ICV_HPPIR1 characteristics are:

Purpose

Indicates the highest priority pending virtual Group 1 interrupt on the virtual CPU interface.

Configurations

AArch32 System register ICV_HPPIR1 performs the same function as AArch64 System register
ICV_HPPIR1_EL1.

Attributes

ICV_HPPIR1 is a 32-bit register.

Field descriptions

The ICV_HPPIR1 bit assignments are:

Bits [31:24]

Reserved, RES0.

INTID, bits [23:0]

The INTID of the highest priority pending virtual interrupt.

If the highest priority pending interrupt is not observable, this field contains a special INTID to
indicate the reason. This special INTID can take the value 1023 only. See Special INTIDs on
page 2-32, for more information.

This field has either 16 or 24 bits implemented. The number of implemented bits can be found in
ICV_CTLR.IDbits. If only 16 bits are implemented, bits [23:16] of this register are RES0.

Accessing the ICV_HPPIR1

This register can be read using MRC with the following syntax:

MRC <syntax>

This syntax is encoded with the following settings in the instruction encoding:

When HCR.IMO is set to 0, execution of this encoding at Non-secure EL1 results in an access to ICC_HPPIR1.

RES0

31 24

INTID

23 0

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c12, c12, 2 000 010 1100 1111 1100
8-410 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.6 AArch32 System register descriptions of the virtual registers
Accessibility

The register is accessible in software as follows:

ICV_HPPIR1 is only accessible at Non-secure EL1 when HCR.IMO is set to 1.

Note
 When HCR.IMO is set to 0, at Non-secure EL1, the instruction encoding to access ICV_HPPIR1 results in an access
to ICC_HPPIR1.

Traps and Enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in
the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to
AArch32 state and section D1.13.2 (Synchronous exception prioritization for exceptions taken to AArch64) in the
ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch64
state. Subject to the prioritization rules:

• In both Security states, and not dependent on other bits:

— If ICC_SRE.SRE==0, Non-secure read accesses to this register from EL1 are UNDEFINED.

— If ICC_SRE_EL1.SRE==0, Non-secure read accesses to this register from EL1 are trapped to EL1.

• When EL2 is implemented and is using AArch64 and SCR_EL3.NS == 1:

— If HSTR_EL2.T12==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• When EL2 is implemented and is using AArch32 and SCR_EL3.NS == 1:

— If HSTR.T12==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

• When SCR_EL3.NS == 1:

— If ICH_HCR.TALL1==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

— If ICH_HCR_EL2.TALL1==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

Control Accessibility

FMO IMO NS EL0 EL1 EL2 EL3

x x 0 - ICC_HPPIR1 n/a ICC_HPPIR1

x x 1 - n/a ICC_HPPIR1 ICC_HPPIR1

x 0 1 - ICC_HPPIR1 ICC_HPPIR1 ICC_HPPIR1

x 1 1 - RO ICC_HPPIR1 ICC_HPPIR1
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-411
ID072617 Non-Confidential

8 Programmers’ Model
8.6 AArch32 System register descriptions of the virtual registers
8.6.11 ICV_IAR0, Interrupt Controller Virtual Interrupt Acknowledge Register 0

The ICV_IAR0 characteristics are:

Purpose

The PE reads this register to obtain the INTID of the signaled virtual Group 0 interrupt. This read
acts as an acknowledge for the interrupt.

Configurations

AArch32 System register ICV_IAR0 performs the same function as AArch64 System register
ICV_IAR0_EL1.

To allow software to ensure appropriate observability of actions initiated by GIC register accesses,
the PE and CPU interface logic must ensure that reads of this register are self-synchronising when
interrupts are masked by the PE (that is when PSTATE.{I,F} == {0,0}). This ensures that the effect
of activating an interrupt on the signaling of interrupt exceptions is observed when a read of this
register is architecturally executed so that no spurious interrupt exception occurs if interrupts are
unmasked by an instruction immediately following the read. See Observability of the effects of
accesses to the GIC registers on page 8-157, for more information.

Attributes

ICV_IAR0 is a 32-bit register.

Field descriptions

The ICV_IAR0 bit assignments are:

Bits [31:24]

Reserved, RES0.

INTID, bits [23:0]

The INTID of the signaled virtual interrupt.

This is the INTID of the highest priority pending virtual interrupt, if that interrupt is of sufficient
priority for it to be signaled to the PE, and if it can be acknowledged.

If the highest priority pending interrupt is not observable, this field contains a special INTID to
indicate the reason. This special INTID can take the value 1023 only. See Special INTIDs on
page 2-32, for more information.

This field has either 16 or 24 bits implemented. The number of implemented bits can be found in
ICV_CTLR.IDbits. If only 16 bits are implemented, bits [23:16] of this register are RES0.

Accessing the ICV_IAR0

This register can be read using MRC with the following syntax:

MRC <syntax>

This syntax is encoded with the following settings in the instruction encoding:

RES0

31 24

INTID

23 0

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c12, c8, 0 000 000 1100 1111 1000
8-412 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.6 AArch32 System register descriptions of the virtual registers
When HCR.FMO is set to 0, execution of this encoding at Non-secure EL1 results in an access to ICC_IAR0.

Accessibility

The register is accessible in software as follows:

ICV_IAR0 is only accessible at Non-secure EL1 when HCR.FMO is set to 1.

Note
 When HCR.FMO is set to 0, at Non-secure EL1, the instruction encoding to access ICV_IAR0 results in an access
to ICC_IAR0.

Traps and Enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in
the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to
AArch32 state and section D1.13.2 (Synchronous exception prioritization for exceptions taken to AArch64) in the
ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch64
state. Subject to the prioritization rules:

• In both Security states, and not dependent on other bits:

— If ICC_SRE.SRE==0, Non-secure read accesses to this register from EL1 are UNDEFINED.

— If ICC_SRE_EL1.SRE==0, Non-secure read accesses to this register from EL1 are trapped to EL1.

• When EL2 is implemented and is using AArch64 and SCR_EL3.NS == 1:

— If HSTR_EL2.T12==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• When EL2 is implemented and is using AArch32 and SCR_EL3.NS == 1:

— If HSTR.T12==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

• When SCR_EL3.NS == 1:

— If ICH_HCR.TALL0==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

— If ICH_HCR_EL2.TALL0==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

Control Accessibility

FMO IMO NS EL0 EL1 EL2 EL3

x x 0 ICC_IAR0 ICC_IAR0 n/a ICC_IAR0

x x 1 - n/a ICC_IAR0 ICC_IAR0

0 x 1 - ICC_IAR0 ICC_IAR0 ICC_IAR0

1 x 1 - RO ICC_IAR0 ICC_IAR0
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-413
ID072617 Non-Confidential

8 Programmers’ Model
8.6 AArch32 System register descriptions of the virtual registers
8.6.12 ICV_IAR1, Interrupt Controller Virtual Interrupt Acknowledge Register 1

The ICV_IAR1 characteristics are:

Purpose

The PE reads this register to obtain the INTID of the signaled virtual Group 1 interrupt. This read
acts as an acknowledge for the interrupt.

Configurations

AArch32 System register ICV_IAR1 performs the same function as AArch64 System register
ICV_IAR1_EL1.

To allow software to ensure appropriate observability of actions initiated by GIC register accesses,
the PE and CPU interface logic must ensure that reads of this register are self-synchronising when
interrupts are masked by the PE (that is when PSTATE.{I,F} == {0,0}). This ensures that the effect
of activating an interrupt on the signaling of interrupt exceptions is observed when a read of this
register is architecturally executed so that no spurious interrupt exception occurs if interrupts are
unmasked by an instruction immediately following the read. See Observability of the effects of
accesses to the GIC registers on page 8-157, for more information.

Attributes

ICV_IAR1 is a 32-bit register.

Field descriptions

The ICV_IAR1 bit assignments are:

Bits [31:24]

Reserved, RES0.

INTID, bits [23:0]

The INTID of the signaled virtual interrupt.

This is the INTID of the highest priority pending virtual interrupt, if that interrupt is of sufficient
priority for it to be signaled to the PE, and if it can be acknowledged.

If the highest priority pending interrupt is not observable, this field contains a special INTID to
indicate the reason. This special INTID can take the value 1023 only. See Special INTIDs on
page 2-32, for more information.

This field has either 16 or 24 bits implemented. The number of implemented bits can be found in
ICV_CTLR.IDbits. If only 16 bits are implemented, bits [23:16] of this register are RES0.

Accessing the ICV_IAR1

This register can be read using MRC with the following syntax:

MRC <syntax>

This syntax is encoded with the following settings in the instruction encoding:

RES0

31 24

INTID

23 0

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c12, c12, 0 000 000 1100 1111 1100
8-414 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.6 AArch32 System register descriptions of the virtual registers
When HCR.IMO is set to 0, execution of this encoding at Non-secure EL1 results in an access to ICC_IAR1.

Accessibility

The register is accessible in software as follows:

ICV_IAR1 is only accessible at Non-secure EL1 when HCR.IMO is set to 1.

Note
 When HCR.IMO is set to 0, at Non-secure EL1, the instruction encoding to access ICV_IAR1 results in an access
to ICC_IAR1.

Traps and Enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in
the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to
AArch32 state and section D1.13.2 (Synchronous exception prioritization for exceptions taken to AArch64) in the
ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch64
state. Subject to the prioritization rules:

• In both Security states, and not dependent on other bits:

— If ICC_SRE.SRE==0, Non-secure read accesses to this register from EL1 are UNDEFINED.

— If ICC_SRE_EL1.SRE==0, Non-secure read accesses to this register from EL1 are trapped to EL1.

• When EL2 is implemented and is using AArch64 and SCR_EL3.NS == 1:

— If HSTR_EL2.T12==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• When EL2 is implemented and is using AArch32 and SCR_EL3.NS == 1:

— If HSTR.T12==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

• When SCR_EL3.NS == 1:

— If ICH_HCR.TALL1==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

— If ICH_HCR_EL2.TALL1==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

Control Accessibility

FMO IMO NS EL0 EL1 EL2 EL3

x x 0 - ICC_IAR1 n/a ICC_IAR1

x x 1 - n/a ICC_IAR1 ICC_IAR1

x 0 1 - ICC_IAR1 ICC_IAR1 ICC_IAR1

x 1 1 - RO ICC_IAR1 ICC_IAR1
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-415
ID072617 Non-Confidential

8 Programmers’ Model
8.6 AArch32 System register descriptions of the virtual registers
8.6.13 ICV_IGRPEN0, Interrupt Controller Virtual Interrupt Group 0 Enable register

The ICV_IGRPEN0 characteristics are:

Purpose

Controls whether virtual Group 0 interrupts are enabled or not.

Configurations

AArch32 System register ICV_IGRPEN0 is architecturally mapped to AArch64 System register
ICV_IGRPEN0_EL1.

Attributes

ICV_IGRPEN0 is a 32-bit register.

Field descriptions

The ICV_IGRPEN0 bit assignments are:

Bits [31:1]

Reserved, RES0.

Enable, bit [0]

Enables virtual Group 0 interrupts.

0 Virtual Group 0 interrupts are disabled.

1 Virtual Group 0 interrupts are enabled.

When this register has an architecturally-defined reset value, this field resets to an UNKNOWN value.

Accessing the ICV_IGRPEN0

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax is encoded with the following settings in the instruction encoding:

When HCR.FMO is set to 0, execution of this encoding at Non-secure EL1 results in an access to ICC_IGRPEN0.

RES0

31 1 0

Enable

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c12, c12, 6 000 110 1100 1111 1100
8-416 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.6 AArch32 System register descriptions of the virtual registers
Accessibility

The register is accessible in software as follows:

This table applies to all instructions that can access this register.

ICV_IGRPEN0 is only accessible at Non-secure EL1 when HCR.FMO is set to 1.

Note
 When HCR.FMO is set to 0, at Non-secure EL1, the instruction encoding to access ICV_IGRPEN0 results in an
access to ICC_IGRPEN0.

Traps and Enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in
the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to
AArch32 state and section D1.13.2 (Synchronous exception prioritization for exceptions taken to AArch64) in the
ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch64
state. Subject to the prioritization rules:

• In both Security states, and not dependent on other bits:

— If ICC_SRE.SRE==0, Non-secure accesses to this register from EL1 are UNDEFINED.

— If ICC_SRE_EL1.SRE==0, Non-secure accesses to this register from EL1 are trapped to EL1.

• When EL2 is implemented and is using AArch64 and SCR_EL3.NS == 1:

— If HSTR_EL2.T12==1, Non-secure accesses to this register from EL1 are trapped to EL2.

• When EL2 is implemented and is using AArch32 and SCR_EL3.NS == 1:

— If HSTR.T12==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

• When SCR_EL3.NS == 1:

— If ICH_HCR.TALL0==1, Non-secure accesses to this register from EL1 are trapped to EL2.

— If ICH_HCR_EL2.TALL0==1, Non-secure accesses to this register from EL1 are trapped to EL2.

<syntax>
Control Accessibility

FMO IMO NS EL0 EL1 EL2 EL3

p15, 0, <Rt>, c12, c12, 6 x x 0 - ICC_IGRPEN0 n/a ICC_IGRPEN0

p15, 0, <Rt>, c12, c12, 6 x x 1 - n/a ICC_IGRPEN0 ICC_IGRPEN0

p15, 0, <Rt>, c12, c12, 6 0 x 1 - ICC_IGRPEN0 ICC_IGRPEN0 ICC_IGRPEN0

p15, 0, <Rt>, c12, c12, 6 1 x 1 - RW ICC_IGRPEN0 ICC_IGRPEN0
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-417
ID072617 Non-Confidential

8 Programmers’ Model
8.6 AArch32 System register descriptions of the virtual registers
8.6.14 ICV_IGRPEN1, Interrupt Controller Virtual Interrupt Group 1 Enable register

The ICV_IGRPEN1 characteristics are:

Purpose

Controls whether virtual Group 1 interrupts are enabled for the current Security state.

Configurations

AArch32 System register ICV_IGRPEN1 is architecturally mapped to AArch64 System register
ICV_IGRPEN1_EL1.

Attributes

ICV_IGRPEN1 is a 32-bit register.

Field descriptions

The ICV_IGRPEN1 bit assignments are:

Bits [31:1]

Reserved, RES0.

Enable, bit [0]

Enables virtual Group 1 interrupts.

0 Virtual Group 1 interrupts are disabled.

1 Virtual Group 1 interrupts are enabled.

When this register has an architecturally-defined reset value, this field resets to an UNKNOWN value.

Accessing the ICV_IGRPEN1

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax is encoded with the following settings in the instruction encoding:

When HCR.IMO is set to 0, execution of this encoding at Non-secure EL1 results in an access to ICC_IGRPEN1.

RES0

31 1 0

Enable

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c12, c12, 7 000 111 1100 1111 1100
8-418 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.6 AArch32 System register descriptions of the virtual registers
Accessibility

The register is accessible in software as follows:

This table applies to all instructions that can access this register.

ICV_IGRPEN1 is only accessible at Non-secure EL1 when HCR.IMO is set to 1.

Note
 When HCR.IMO is set to 0, at Non-secure EL1, the instruction encoding to access ICV_IGRPEN1 results in an
access to ICC_IGRPEN1.

Traps and Enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in
the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to
AArch32 state and section D1.13.2 (Synchronous exception prioritization for exceptions taken to AArch64) in the
ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch64
state. Subject to the prioritization rules:

• In both Security states, and not dependent on other bits:

— If ICC_SRE.SRE==0, Non-secure accesses to this register from EL1 are UNDEFINED.

— If ICC_SRE_EL1.SRE==0, Non-secure accesses to this register from EL1 are trapped to EL1.

• When EL2 is implemented and is using AArch64 and SCR_EL3.NS == 1:

— If HSTR_EL2.T12==1, Non-secure accesses to this register from EL1 are trapped to EL2.

• When EL2 is implemented and is using AArch32 and SCR_EL3.NS == 1:

— If HSTR.T12==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

• When SCR_EL3.NS == 1:

— If ICH_HCR.TALL1==1, Non-secure accesses to this register from EL1 are trapped to EL2.

— If ICH_HCR_EL2.TALL1==1, Non-secure accesses to this register from EL1 are trapped to EL2.

<syntax>
Control Accessibility

FMO IMO NS EL0 EL1 EL2 EL3

p15, 0, <Rt>, c12, c12, 7 x x 0 - ICC_IGRPEN1 n/a ICC_IGRPEN1

p15, 0, <Rt>, c12, c12, 7 x x 1 - n/a ICC_IGRPEN1 ICC_IGRPEN1

p15, 0, <Rt>, c12, c12, 7 x 0 1 - ICC_IGRPEN1 ICC_IGRPEN1 ICC_IGRPEN1

p15, 0, <Rt>, c12, c12, 7 x 1 1 - RW ICC_IGRPEN1 ICC_IGRPEN1
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-419
ID072617 Non-Confidential

8 Programmers’ Model
8.6 AArch32 System register descriptions of the virtual registers
8.6.15 ICV_PMR, Interrupt Controller Virtual Interrupt Priority Mask Register

The ICV_PMR characteristics are:

Purpose

Provides a virtual interrupt priority filter. Only virtual interrupts with a higher priority than the value
in this register are signaled to the PE.

Configurations

AArch32 System register ICV_PMR is architecturally mapped to AArch64 System register
ICV_PMR_EL1.

To allow software to ensure appropriate observability of actions initiated by GIC register accesses,
the PE and CPU interface logic must ensure that writes to this register are self-synchronising. This
ensures that no interrupts below the written PMR value will be taken after a write to this register is
architecturally executed. See Observability of the effects of accesses to the GIC registers on
page 8-157, for more information.

Attributes

ICV_PMR is a 32-bit register.

Field descriptions

The ICV_PMR bit assignments are:

Bits [31:8]

Reserved, RES0.

Priority, bits [7:0]

The priority mask level for the virtual CPU interface. If the priority of a virtual interrupt is higher
than the value indicated by this field, the interface signals the virtual interrupt to the PE.

The possible priority field values are as follows:

Unimplemented priority bits are RAZ/WI.

When this register has an architecturally-defined reset value, this field resets to an UNKNOWN value.

Accessing the ICV_PMR

This register can be read using MRC with the following syntax:

MRC <syntax>

RES0

31 8

Priority

7 0

Implemented priority bits Possible priority field values Number of priority levels

[7:0] 0x00-0xFF (0-255), all values 256

[7:1] 0x00-0xFE (0-254), even values only 128

[7:2] 0x00-0xFC (0-252), in steps of 4 64

[7:3] 0x00-0xF8 (0-248), in steps of 8 32

[7:4] 0x00-0xF0 (0-240), in steps of 16 16
8-420 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.6 AArch32 System register descriptions of the virtual registers
This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax is encoded with the following settings in the instruction encoding:

When HCR.{FMO, IMO} == {0, 0}, execution of this encoding at Non-secure EL1 results in an access to
ICC_PMR.

Accessibility

The register is accessible in software as follows:

ICV_PMR is only accessible at Non-secure EL1 when HCR.{FMO, IMO} != {0, 0}.

Note
 When HCR.{FMO, IMO} == {0, 0}, at Non-secure EL1, the instruction encoding to access ICV_PMR results in an
access to ICC_PMR.

Traps and Enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in
the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to
AArch32 state and section D1.13.2 (Synchronous exception prioritization for exceptions taken to AArch64) in the
ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch64
state. Subject to the prioritization rules:

• In both Security states, and not dependent on other bits:

— If ICC_SRE.SRE==0, Non-secure accesses to this register from EL1 are UNDEFINED.

— If ICC_SRE_EL1.SRE==0, Non-secure accesses to this register from EL1 are trapped to EL1.

• When SCR_EL3.NS == 1:

— If ICH_HCR.TC==1, Non-secure accesses to this register from EL1 are trapped to EL2.

— If ICH_HCR_EL2.TC==1, Non-secure accesses to this register from EL1 are trapped to EL2.

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c4, c6, 0 000 000 0100 1111 0110

Control Accessibility

FMO IMO NS EL0 EL1 EL2 EL3

x x 0 - ICC_PMR n/a ICC_PMR

x x 1 - n/a ICC_PMR ICC_PMR

x 1 1 - RW ICC_PMR ICC_PMR

1 x 1 - RW ICC_PMR ICC_PMR

0 0 1 - ICC_PMR ICC_PMR ICC_PMR
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-421
ID072617 Non-Confidential

8 Programmers’ Model
8.6 AArch32 System register descriptions of the virtual registers
8.6.16 ICV_RPR, Interrupt Controller Virtual Running Priority Register

The ICV_RPR characteristics are:

Purpose

Indicates the Running priority of the virtual CPU interface.

Configurations

AArch32 System register ICV_RPR performs the same function as AArch64 System register
ICV_RPR_EL1.

Attributes

ICV_RPR is a 32-bit register.

Field descriptions

The ICV_RPR bit assignments are:

Bits [31:8]

Reserved, RES0.

Priority, bits [7:0]

The current running priority on the virtual CPU interface. This is the group priority of the current
active virtual interrupt.

The priority returned is the group priority as if the BPR for the current Exception level and Security
state was set to the minimum value of BPR for the number of implemented priority bits.

Note
 If 8 bits of priority are implemented the group priority is bits[7:1] of the priority.

Accessing the ICV_RPR

This register can be read using MRC with the following syntax:

MRC <syntax>

This syntax is encoded with the following settings in the instruction encoding:

When HCR.{FMO, IMO} == {0, 0}, execution of this encoding at Non-secure EL1 results in an access to
ICC_RPR.

RES0

31 8

Priority

7 0

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c12, c11, 3 000 011 1100 1111 1011
8-422 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.6 AArch32 System register descriptions of the virtual registers
Accessibility

The register is accessible in software as follows:

ICV_RPR is only accessible at Non-secure EL1 when HCR.{FMO, IMO} != {0, 0}.

Note
 When HCR.{FMO, IMO} == {0, 0}, at Non-secure EL1, the instruction encoding to access ICV_RPR results in an
access to ICC_RPR.

If there are no active interrupts on the virtual CPU interface, or all active interrupts have undergone a priority drop,
the value returned is the Idle priority.

Software cannot determine the number of implemented priority bits from a read of this register.

Traps and Enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in
the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to
AArch32 state and section D1.13.2 (Synchronous exception prioritization for exceptions taken to AArch64) in the
ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch64
state. Subject to the prioritization rules:

• In both Security states, and not dependent on other bits:

— If ICC_SRE.SRE==0, Non-secure read accesses to this register from EL1 are UNDEFINED.

— If ICC_SRE_EL1.SRE==0, Non-secure read accesses to this register from EL1 are trapped to EL1.

• When EL2 is implemented and is using AArch64 and SCR_EL3.NS == 1:

— If HSTR_EL2.T12==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• When EL2 is implemented and is using AArch32 and SCR_EL3.NS == 1:

— If HSTR.T12==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

• When SCR_EL3.NS == 1:

— If ICH_HCR.TC==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

— If ICH_HCR_EL2.TC==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

Control Accessibility

FMO IMO NS EL0 EL1 EL2 EL3

x x 0 - ICC_RPR n/a ICC_RPR

x x 1 - n/a ICC_RPR ICC_RPR

x 1 1 - RO ICC_RPR ICC_RPR

1 x 1 - RO ICC_RPR ICC_RPR

0 0 1 - ICC_RPR ICC_RPR ICC_RPR
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-423
ID072617 Non-Confidential

8 Programmers’ Model
8.7 AArch32 virtualization control System registers
8.7 AArch32 virtualization control System registers
This section describes each of the virtualization control AArch32 GIC System registers in register name order. The
ICH prefix indicates a virtual interface control System register. Each AArch32 System register description contains
a reference to the AArch64 register that provides the same functionality.

Unless otherwise stated, the bit assignments for the GIC System registers are the same as those for the equivalent
GICH_* memory-mapped registers, see The GIC virtual interface control register descriptions on page 8-647.

Table 8-24 shows the encodings for the AArch 32 virtualization control System registers.

Table 8-24 Encodings for the AArch32 virtualization control System registers

Register Width (bits) opc1 CRn CRm opc2 Notes

ICH_AP0R<n> 32 4 12 8 0 RW

ICH_AP0R<n> 32 1 RW

ICH_AP0R<n> 32 2 RW

ICH_AP0R<n> 32 3 RW

ICH_AP1R<n> 32 9 0 RW

ICH_AP1R<n> 32 1 RW

ICH_AP1R<n> 32 2 RW

ICH_AP1R<n> 32 3 RW

ICH_HCR 32 11 0 RW

ICH_VTR 32 1 RO

ICH_MISR 32 2 RO

ICH_EISR 32 3 RO

ICH_ELRSR 32 5 RO

ICH_VMCR 32 7 RW

ICH_LR<n>, for n=0 - 7 32 12 0-7 RW

ICH_LR<n>, for n=8 - 15 32 13 0-7 RW

ICH_LRC<n>, for n=0 - 7 32 14 0-7 RW

ICH_LRC<n>, for n=8 - 15 32 15 0-7 RW
8-424 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.7 AArch32 virtualization control System registers
8.7.1 ICH_AP0R<n>, Interrupt Controller Hyp Active Priorities Group 0 Registers, n = 0 - 3

The ICH_AP0R<n> characteristics are:

Purpose

Provides information about Group 0 active priorities for EL2.

Configurations

AArch32 System register ICH_AP0R<n> is architecturally mapped to AArch64 System register
ICH_AP0R<n>_EL2.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

ICH_AP0R<n> is a 32-bit register.

Field descriptions

The ICH_AP0R<n> bit assignments are:

P<x>, bit [x], for x = 0 to 31

Provides the access to the virtual active priorities for Group 0 interrupts. Possible values of each bit
are:

0 There is no Group 0 interrupt active at the priority corresponding to that bit.

1 There is a Group 0 interrupt active at the priority corresponding to that bit.

The correspondence between priority levels and bits depends on the number of bits of priority that
are implemented.

If 5 bits of preemption are implemented (bits [7:3] of priority), then there are 32 preemption levels,
and the active state of these preemption levels are held in ICH_AP0R0 in the bits corresponding to
Priority[7:3].

If 6 bits of preemption are implemented (bits [7:2] of priority), then there are 64 preemption levels,
and:

• The active state of preemption levels 0 - 124 are held in ICH_AP0R0 in the bits
corresponding to 0:Priority[6:2].

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10

P9

9

P8

8

P7

7

P6

6

P5

5

P4

4

P3

3

P2

2

P1

1

P0

0

P31
P30
P29
P28
P27
P26
P25
P24
P23
P22
P21
P20
P19
P18
P17
P16

P10
P11
P12
P13
P14
P15
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-425
ID072617 Non-Confidential

8 Programmers’ Model
8.7 AArch32 virtualization control System registers
• The active state of preemption levels 128 - 252 are held in ICH_AP0R1 in the bits
corresponding to 1:Priority[6:2].

If 7 bits of preemption are implemented (bits [7:1] of priority), then there are 128 preemption levels,
and:

• The active state of preemption levels 0 - 62 are held in ICH_AP0R0 in the bits corresponding
to 00:Priority[5:1].

• The active state of preemption levels 64 - 126 are held in ICH_AP0R1 in the bits
corresponding to 01:Priority[5:1].

• The active state of preemption levels 128 - 190 are held in ICH_AP0R2 in the bits
corresponding to 10:Priority[5:1].

• The active state of preemption levels 192 - 254 are held in ICH_AP0R3 in the bits
corresponding to 11:Priority[5:1].

Note
 Having the bit corresponding to a priority set to 1 in both ICH_AP0R<n> and ICH_AP1R<n> might

result in UNPREDICTABLE behavior of the interrupt prioritization system for virtual interrupts.

When this register has an architecturally-defined reset value, this field resets to 0.

Accessing the ICH_AP0R<n>

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax is encoded with the following settings in the instruction encoding:

Accessibility

The register is accessible in software as follows:

ICH_AP0R1 is only implemented in implementations that support 6 or more bits of preemption. ICH_AP0R2 and
ICH_AP0R3 are only implemented in implementations that support 7 bits of preemption. Unimplemented registers
are UNDEFINED.

Note
 The number of bits of preemption is indicated by ICH_VTR.PREbits.

<syntax> opc1 opc2 CRn coproc CRm

p15, 4, <Rt>, c12, c8, <opc2> 100 0:n<1:0> 1100 1111 1000

Control Accessibility

FMO IMO NS EL0 EL1 EL2 EL3

x x 0 - - n/a -

x x 1 - - RW RW

x x 1 - n/a RW RW
8-426 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.7 AArch32 virtualization control System registers
Writing to the active priority registers in any order other than the following order will result in UNPREDICTABLE
behavior:

• ICH_AP0R<n>.

• ICH_AP1R<n>.

Traps and Enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in
the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to
AArch32 state and section D1.13.2 (Synchronous exception prioritization for exceptions taken to AArch64) in the
ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch64
state. Subject to the prioritization rules:

• In both Security states, and not dependent on other bits:

— If ICC_HSRE.SRE==0, accesses to this register from EL2 are UNDEFINED.

— If ICC_MSRE.SRE==0, Non-secure accesses to this register from EL3 are UNDEFINED.

• When EL2 is implemented and is using AArch64 and SCR_EL3.NS == 1:

— If HSTR_EL2.T12==1, Non-secure accesses to this register from EL1 are trapped to EL2.

• When EL2 is implemented and is using AArch32 and SCR_EL3.NS == 1:

— If HSTR.T12==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-427
ID072617 Non-Confidential

8 Programmers’ Model
8.7 AArch32 virtualization control System registers
8.7.2 ICH_AP1R<n>, Interrupt Controller Hyp Active Priorities Group 1 Registers, n = 0 - 3

The ICH_AP1R<n> characteristics are:

Purpose

Provides information about Group 1 active priorities for EL2.

Configurations

AArch32 System register ICH_AP1R<n> is architecturally mapped to AArch64 System register
ICH_AP1R<n>_EL2.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

ICH_AP1R<n> is a 32-bit register.

Field descriptions

The ICH_AP1R<n> bit assignments are:

P<x>, bit [x], for x = 0 to 31

Group 1 interrupt active priorities. Possible values of each bit are:

0 There is no Group 1 interrupt active at the priority corresponding to that bit.

1 There is a Group 1 interrupt active at the priority corresponding to that bit.

The correspondence between priority levels and bits depends on the number of bits of priority that
are implemented.

If 5 bits of preemption are implemented (bits [7:3] of priority), then there are 32 preemption levels,
and the active state of these preemption levels are held in ICH_AP1R0 in the bits corresponding to
Priority[7:3].

If 6 bits of preemption are implemented (bits [7:2] of priority), then there are 64 preemption levels,
and:

• The active state of preemption levels 0 - 124 are held in ICH_AP1R0 in the bits
corresponding to 0:Priority[6:2].

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10

P9

9

P8

8

P7

7

P6

6

P5

5

P4

4

P3

3

P2

2

P1

1

P0

0

P31
P30
P29
P28
P27
P26
P25
P24
P23
P22
P21
P20
P19
P18
P17
P16

P10
P11
P12
P13
P14
P15
8-428 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.7 AArch32 virtualization control System registers
• The active state of preemption levels 128 - 252 are held in ICH_AP1R1 in the bits
corresponding to 1:Priority[6:2].

If 7 bits of preemption are implemented (bits [7:1] of priority), then there are 128 preemption levels,
and:

• The active state of preemption levels 0 - 62 are held in ICH_AP1R0 in the bits corresponding
to 00:Priority[5:1].

• The active state of preemption levels 64 - 126 are held in ICH_AP1R1 in the bits
corresponding to 01:Priority[5:1].

• The active state of preemption levels 128 - 190 are held in ICH_AP1R2 in the bits
corresponding to 10:Priority[5:1].

• The active state of preemption levels 192 - 254 are held in ICH_AP1R3 in the bits
corresponding to 11:Priority[5:1].

Note
 Having the bit corresponding to a priority set to 1 in both ICH_AP0R<n> and ICH_AP1R<n> might

result in UNPREDICTABLE behavior of the interrupt prioritization system for virtual interrupts.

When this register has an architecturally-defined reset value, this field resets to 0.

Accessing the ICH_AP1R<n>

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax is encoded with the following settings in the instruction encoding:

Accessibility

The register is accessible in software as follows:

ICH_AP1R1 is only implemented in implementations that support 6 or more bits of preemption. ICH_AP1R2 and
ICH_AP1R3 are only implemented in implementations that support 7 bits of preemption. Unimplemented registers
are UNDEFINED.

Note
 The number of bits of preemption is indicated by ICH_VTR.PREbits

<syntax> opc1 opc2 CRn coproc CRm

p15, 4, <Rt>, c12, c9, <opc2> 100 0:n<1:0> 1100 1111 1001

Control Accessibility

FMO IMO NS EL0 EL1 EL2 EL3

x x 0 - - n/a -

x x 1 - - RW RW

x x 1 - n/a RW RW
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-429
ID072617 Non-Confidential

8 Programmers’ Model
8.7 AArch32 virtualization control System registers
Writing to the active priority registers in any order other than the following order will result in UNPREDICTABLE
behavior:

• ICH_AP0R<n>.

• ICH_AP1R<n>.

Traps and Enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in
the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to
AArch32 state and section D1.13.2 (Synchronous exception prioritization for exceptions taken to AArch64) in the
ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch64
state. Subject to the prioritization rules:

• In both Security states, and not dependent on other bits:

— If ICC_HSRE.SRE==0, accesses to this register from EL2 are UNDEFINED.

— If ICC_MSRE.SRE==0, Non-secure accesses to this register from EL3 are UNDEFINED.

• When EL2 is implemented and is using AArch64 and SCR_EL3.NS == 1:

— If HSTR_EL2.T12==1, Non-secure accesses to this register from EL1 are trapped to EL2.

• When EL2 is implemented and is using AArch32 and SCR_EL3.NS == 1:

— If HSTR.T12==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.
8-430 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.7 AArch32 virtualization control System registers
8.7.3 ICH_EISR, Interrupt Controller End of Interrupt Status Register

The ICH_EISR characteristics are:

Purpose

Indicates which List registers have outstanding EOI maintenance interrupts.

Configurations

AArch32 System register ICH_EISR is architecturally mapped to AArch64 System register
ICH_EISR_EL2.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

ICH_EISR is a 32-bit register.

Field descriptions

The ICH_EISR bit assignments are:

Bits [31:16]

Reserved, RES0.

Status<n>, bit [n], for n = 0 to 15

EOI maintenance interrupt status bit for List register <n>:

0 List register <n>, ICH_LR<n>, does not have an EOI maintenance interrupt.

1 List register <n>, ICH_LR<n>, has an EOI maintenance interrupt that has not been
handled.

For any ICH_LR<n>, the corresponding status bit is set to 1 if all of the following are true:

• ICH_LRC<n>.State is 0b00.

• ICH_LRC<n>.HW is 0.

• ICH_LRC<n>.EOI (bit [9]) is 1, indicating that when the interrupt corresponding to that List
register is deactivated, a maintenance interrupt is asserted.

When this register has an architecturally-defined reset value, this field resets to 0.

Accessing the ICH_EISR

This register can be read using MRC with the following syntax:

MRC <syntax>

This syntax is encoded with the following settings in the instruction encoding:

RES0

31 16

Status<n>, bit [n], for n = 0 to 15

15 0

<syntax> opc1 opc2 CRn coproc CRm

p15, 4, <Rt>, c12, c11, 3 100 011 1100 1111 1011
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-431
ID072617 Non-Confidential

8 Programmers’ Model
8.7 AArch32 virtualization control System registers
Accessibility

The register is accessible in software as follows:

Traps and Enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in
the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to
AArch32 state and section D1.13.2 (Synchronous exception prioritization for exceptions taken to AArch64) in the
ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch64
state. Subject to the prioritization rules:

• In both Security states, and not dependent on other bits:

— If ICC_HSRE.SRE==0, read accesses to this register from EL2 are UNDEFINED.

— If ICC_MSRE.SRE==0, Non-secure read accesses to this register from EL3 are UNDEFINED.

• When EL2 is implemented and is using AArch64 and SCR_EL3.NS == 1:

— If HSTR_EL2.T12==1, Non-secure accesses to this register from EL1 are trapped to EL2.

• When EL2 is implemented and is using AArch32 and SCR_EL3.NS == 1:

— If HSTR.T12==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

Control Accessibility

NS EL0 EL1 EL2 EL3

0 - - n/a -

1 - - RO RO

1 - n/a RO RO
8-432 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.7 AArch32 virtualization control System registers
8.7.4 ICH_ELRSR, Interrupt Controller Empty List Register Status Register

The ICH_ELRSR characteristics are:

Purpose

Indicates which List registers contain valid interrupts.

Configurations

AArch32 System register ICH_ELRSR is architecturally mapped to AArch64 System register
ICH_ELRSR_EL2.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

ICH_ELRSR is a 32-bit register.

Field descriptions

The ICH_ELRSR bit assignments are:

Bits [31:16]

Reserved, RES0.

Status<n>, bit [n], for n = 0 to 15

Status bit for List register <n>, ICH_LR<n>:

0 List register ICH_LR<n>, if implemented, contains a valid interrupt. Using this List
register can result in overwriting a valid interrupt.

1 List register ICH_LR<n> does not contain a valid interrupt. The List register is empty
and can be used without overwriting a valid interrupt or losing an EOI maintenance
interrupt.

For any List register <n>, the corresponding status bit is set to 1 if ICH_LRC<n>.State is 0b00 and
either ICH_LRC<n>.HW is 1 or ICH_LRC<n>.EOI (bit [9]) is 0.

Accessing the ICH_ELRSR

This register can be read using MRC with the following syntax:

MRC <syntax>

This syntax is encoded with the following settings in the instruction encoding:

RES0

31 16

Status<n>, bit [n], for n = 0 to 15

15 0

<syntax> opc1 opc2 CRn coproc CRm

p15, 4, <Rt>, c12, c11, 5 100 101 1100 1111 1011
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-433
ID072617 Non-Confidential

8 Programmers’ Model
8.7 AArch32 virtualization control System registers
Accessibility

The register is accessible in software as follows:

Traps and Enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in
the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to
AArch32 state and section D1.13.2 (Synchronous exception prioritization for exceptions taken to AArch64) in the
ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch64
state. Subject to the prioritization rules:

• In both Security states, and not dependent on other bits:

— If ICC_HSRE.SRE==0, read accesses to this register from EL2 are UNDEFINED.

— If ICC_MSRE.SRE==0, Non-secure read accesses to this register from EL3 are UNDEFINED.

• When EL2 is implemented and is using AArch64 and SCR_EL3.NS == 1:

— If HSTR_EL2.T12==1, Non-secure accesses to this register from EL1 are trapped to EL2.

• When EL2 is implemented and is using AArch32 and SCR_EL3.NS == 1:

— If HSTR.T12==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

Control Accessibility

NS EL0 EL1 EL2 EL3

0 - - n/a -

1 - - RO RO

1 - n/a RO RO
8-434 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.7 AArch32 virtualization control System registers
8.7.5 ICH_HCR, Interrupt Controller Hyp Control Register

The ICH_HCR characteristics are:

Purpose

Controls the environment for VMs.

Configurations

AArch32 System register ICH_HCR is architecturally mapped to AArch64 System register
ICH_HCR_EL2.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

ICH_HCR is a 32-bit register.

Field descriptions

The ICH_HCR bit assignments are:

EOIcount, bits [31:27]

This field is incremented whenever a successful write to a virtual EOIR or DIR register would have
resulted in a virtual interrupt deactivation. That is either:

• A virtual write to EOIR with a valid interrupt identifier that is not in the LPI range (for
example < 8192) when EOI mode is zero and no List Register was found.

• A virtual write to DIR with a valid interrupt identifier that is not in the LPI range (for example
< 8192) when EOI mode is one and no List Register was found.

This allows software to manage more active interrupts than there are implemented List Registers.

It is CONSTRAINED UNPREDICTABLE whether a virtual write to EOIR that does not clear a bit in the
Active Priorities registers (ICH_AP0R<n>/ICH_AP1R<n>) increments EOIcount. Permitted
behaviors are:

• Increment EOIcount.

• Leave EOIcount unchanged.

When this register has an architecturally-defined reset value, this field resets to 0.

Bits [26:15]

Reserved, RES0.

EOIcount

31 27

RES0

26 15 14 13 12 11

TC

10 9 8 7 6 5 4 3 2 1

En

0

UIE
LRENPIE

NPIE
VGrp0EIE
VGrp0DIE
VGrp1EIE
VGrp1DIE

RES0
TALL0
TALL1

TSEI
TDIR
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-435
ID072617 Non-Confidential

8 Programmers’ Model
8.7 AArch32 virtualization control System registers
TDIR, bit [14]

Trap Non-secure EL1 writes to ICC_DIR and ICV_DIR.

0 Non-secure EL1 writes of ICC_DIR and ICV_DIR are not trapped to EL2, unless
trapped by other mechanisms.

1 Non-secure EL1 writes of ICC_DIR and ICV_DIR are trapped to EL2.

Support for this bit is OPTIONAL, with support indicated by ICH_VTR.

If the implementation does not support this trap, this bit is RES0.

ARM deprecates not including this trap bit.

When this register has an architecturally-defined reset value, if this field is implemented as an RW
field, it resets to 0.

TSEI, bit [13]

Trap all locally generated SEIs. This bit allows the hypervisor to intercept locally generated SEIs
that would otherwise be taken at Non-secure EL1.

0 Locally generated SEIs do not cause a trap to EL2.

1 Locally generated SEIs trap to EL2.

If ICH_VTR.SEIS is 0, this bit is RES0.

When this register has an architecturally-defined reset value, if this field is implemented as an RW
field, it resets to 0.

TALL1, bit [12]

Trap all Non-secure EL1 accesses to ICC_* and ICV_* System registers for Group 1 interrupts to
EL2.

0 Non-Secure EL1 accesses to ICC_* and ICV_* registers for Group 1 interrupts proceed
as normal.

1 Non-secure EL1 accesses to ICC_* and ICV_* registers for Group 1 interrupts trap to
EL2.

When this register has an architecturally-defined reset value, this field resets to 0.

TALL0, bit [11]

Trap all Non-secure EL1 accesses to ICC_* and ICV_* System registers for Group 0 interrupts to
EL2.

0 Non-Secure EL1 accesses to ICC_* and ICV_* registers for Group 0 interrupts proceed
as normal.

1 Non-secure EL1 accesses to ICC_* and ICV_* registers for Group 0 interrupts trap to
EL2.

When this register has an architecturally-defined reset value, this field resets to 0.

TC, bit [10]

Trap all Non-secure EL1 accesses to System registers that are common to Group 0 and Group 1 to
EL2.

0 Non-secure EL1 accesses to common registers proceed as normal.

1 Non-secure EL1 accesses to common registers trap to EL2.

This affects accesses to ICC_SGI0R, ICC_SGI1R, ICC_ASGI1R, ICC_CTLR, ICC_DIR,
ICC_PMR, ICC_RPR, ICV_CTLR, ICV_DIR, ICV_PMR, and ICV_RPR.

When this register has an architecturally-defined reset value, this field resets to 0.

Bits [9:8]

Reserved, RES0.
8-436 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.7 AArch32 virtualization control System registers
VGrp1DIE, bit [7]

VM Group 1 Disabled Interrupt Enable. Enables the signaling of a maintenance interrupt while
signaling of Group 1 interrupts from the virtual CPU interface to the connected vPE is disabled:

0 Maintenance interrupt disabled.

1 Maintenance interrupt signaled when ICH_VMCR.VENG1 is 0.

When this register has an architecturally-defined reset value, this field resets to 0.

VGrp1EIE, bit [6]

VM Group 1 Enabled Interrupt Enable. Enables the signaling of a maintenance interrupt while
signaling of Group 1 interrupts from the virtual CPU interface to the connected vPE is enabled:

0 Maintenance interrupt disabled.

1 Maintenance interrupt signaled when ICH_VMCR.VENG1 is 1.

When this register has an architecturally-defined reset value, this field resets to 0.

VGrp0DIE, bit [5]

VM Group 0 Disabled Interrupt Enable. Enables the signaling of a maintenance interrupt while
signaling of Group 0 interrupts from the virtual CPU interface to the connected vPE is disabled:

0 Maintenance interrupt disabled.

1 Maintenance interrupt signaled when ICH_VMCR.VENG0 is 0.

When this register has an architecturally-defined reset value, this field resets to 0.

VGrp0EIE, bit [4]

VM Group 0 Enabled Interrupt Enable. Enables the signaling of a maintenance interrupt while
signaling of Group 0 interrupts from the virtual CPU interface to the connected vPE is enabled:

0 Maintenance interrupt disabled.

1 Maintenance interrupt signaled when ICH_VMCR.VENG0 is 1.

When this register has an architecturally-defined reset value, this field resets to 0.

NPIE, bit [3]

No Pending Interrupt Enable. Enables the signaling of a maintenance interrupt when there are no
List registers with the State field set to 0b01 (pending):

0 Maintenance interrupt disabled.

1 Maintenance interrupt signaled while the List registers contain no interrupts in the
pending state.

When this register has an architecturally-defined reset value, this field resets to 0.

LRENPIE, bit [2]

List Register Entry Not Present Interrupt Enable. Enables the signaling of a maintenance interrupt
while the virtual CPU interface does not have a corresponding valid List register entry for an EOI
request:

0 Maintenance interrupt disabled.

1 Maintenance interrupt is asserted while the EOIcount field is not 0.

When this register has an architecturally-defined reset value, this field resets to 0.

UIE, bit [1]

Underflow Interrupt Enable. Enables the signaling of a maintenance interrupt when the List
registers are empty, or hold only one valid entry:

0 Maintenance interrupt disabled.

1 Maintenance interrupt is asserted if none, or only one, of the List register entries is
marked as a valid interrupt.

When this register has an architecturally-defined reset value, this field resets to 0.
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-437
ID072617 Non-Confidential

8 Programmers’ Model
8.7 AArch32 virtualization control System registers
En, bit [0]

Enable. Global enable bit for the virtual CPU interface:

0 Virtual CPU interface operation disabled.

1 Virtual CPU interface operation enabled.

When this field is set to 0:

• The virtual CPU interface does not signal any maintenance interrupts.

• The virtual CPU interface does not signal any virtual interrupts.

• A read of ICV_IAR0, ICV_IAR1, GICV_IAR or GICV_AIAR returns a spurious interrupt
ID.

When this register has an architecturally-defined reset value, this field resets to 0.

Accessing the ICH_HCR

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax is encoded with the following settings in the instruction encoding:

Accessibility

The register is accessible in software as follows:

Traps and Enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in
the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to
AArch32 state and section D1.13.2 (Synchronous exception prioritization for exceptions taken to AArch64) in the
ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch64
state. Subject to the prioritization rules:

• In both Security states, and not dependent on other bits:

— If ICC_HSRE.SRE==0, accesses to this register from EL2 are UNDEFINED.

— If ICC_MSRE.SRE==0, Non-secure accesses to this register from EL3 are UNDEFINED.

• When EL2 is implemented and is using AArch64 and SCR_EL3.NS == 1:

— If HSTR_EL2.T12==1, Non-secure accesses to this register from EL1 are trapped to EL2.

<syntax> opc1 opc2 CRn coproc CRm

p15, 4, <Rt>, c12, c11, 0 100 000 1100 1111 1011

Control Accessibility

NS EL0 EL1 EL2 EL3

0 - - n/a -

1 - - RW RW

1 - n/a RW RW
8-438 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.7 AArch32 virtualization control System registers
• When EL2 is implemented and is using AArch32 and SCR_EL3.NS == 1:

— If HSTR.T12==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-439
ID072617 Non-Confidential

8 Programmers’ Model
8.7 AArch32 virtualization control System registers
8.7.6 ICH_LR<n>, Interrupt Controller List Registers, n = 0 - 15

The ICH_LR<n> characteristics are:

Purpose

Provides interrupt context information for the virtual CPU interface.

Configurations

AArch32 System register ICH_LR<n> is architecturally mapped to AArch64 System register
ICH_LR<n>_EL2[31:0].

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

ICH_LR<n> is a 32-bit register.

Field descriptions

The ICH_LR<n> bit assignments are:

vINTID, bits [31:0]

Virtual INTID of the interrupt.

If the value of vINTID is 1020-1023 and ICH_LRC<n>State!=0b00 (inactive), behavior is
UNPREDICTABLE.

Behavior is UNPREDICTABLE if two or more List Registers specify the same vINTID when:

• ICH_LRC<n>.State == 01.

• ICH_LRC<n>.State == 10.

• ICH_LRC<n>.State == 11.

It is IMPLEMENTATION DEFINED how many bits are implemented, though at least 16 bits must be
implemented. Unimplemented bits are RES0. The number of implemented bits can be discovered
from ICH_VTR.IDbits.

Note
 When a VM is using memory-mapped access to the GIC, software must ensure that the correct

source PE ID is provided in bits[12:10].

When this register has an architecturally-defined reset value, this field resets to an UNKNOWN value.

Accessing the ICH_LR<n>

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

vINTID

31 0
8-440 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.7 AArch32 virtualization control System registers
This syntax is encoded with the following settings in the instruction encoding:

• <opc2> is in the range 0 - 7.

• <CRm> is in the range c12 - c13.

Accessibility

The register is accessible in software as follows:

ICH_LR<n> and ICH_LRC<n> can be updated independently.

Traps and Enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in
the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to
AArch32 state and section D1.13.2 (Synchronous exception prioritization for exceptions taken to AArch64) in the
ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch64
state. Subject to the prioritization rules:

• In both Security states, and not dependent on other bits:

— If ICC_HSRE.SRE==0, accesses to this register from EL2 are UNDEFINED.

— If ICC_MSRE.SRE==0, Non-secure accesses to this register from EL3 are UNDEFINED.

• When EL2 is implemented and is using AArch64 and SCR_EL3.NS == 1:

— If HSTR_EL2.T12==1, Non-secure accesses to this register from EL1 are trapped to EL2.

• When EL2 is implemented and is using AArch32 and SCR_EL3.NS == 1:

— If HSTR.T12==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

<syntax> opc1 opc2 CRn coproc CRm

p15, 4, <Rt>, c12, <CRm>, <opc2> 100 n<2:0> 1100 1111 110:n<3>

Control Accessibility

NS EL0 EL1 EL2 EL3

0 - - n/a -

1 - - RW RW

1 - n/a RW RW
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-441
ID072617 Non-Confidential

8 Programmers’ Model
8.7 AArch32 virtualization control System registers
8.7.7 ICH_LRC<n>, Interrupt Controller List Registers, n = 0 - 15

The ICH_LRC<n> characteristics are:

Purpose

Provides interrupt context information for the virtual CPU interface.

Configurations

AArch32 System register ICH_LRC<n> is architecturally mapped to AArch64 System register
ICH_LR<n>_EL2[63:32].

Attributes

ICH_LRC<n> is a 32-bit register.

Field descriptions

The ICH_LRC<n> bit assignments are:

State, bits [31:30]

The state of the interrupt:

00 Invalid (Inactive).

01 Pending.

10 Active.

11 Pending and active.

The GIC updates these state bits as virtual interrupts proceed through the interrupt life cycle. Entries
in the invalid state are ignored, except for the purpose of generating virtual maintenance interrupts.

For hardware interrupts, the pending and active state is held in the physical Distributor rather than
the virtual CPU interface. A hypervisor must only use the pending and active state for software
originated interrupts, which are typically associated with virtual devices, or SGIs.

When this register has an architecturally-defined reset value, this field resets to an UNKNOWN value.

HW, bit [29]

Indicates whether this virtual interrupt maps directly to a hardware interrupt, meaning that it
corresponds to a physical interrupt. Deactivation of the virtual interrupt also causes the deactivation
of the physical interrupt with the INTID that the pINTID field indicates.

0 The interrupt is triggered entirely by software. No notification is sent to the Distributor
when the virtual interrupt is deactivated.

1 The interrupt maps directly to a hardware interrupt. A deactivate interrupt request is sent
to the Distributor when the virtual interrupt is deactivated, using the pINTID field from
this register to indicate the physical INTID.
If ICH_VMCR.VEOIM is 0, this request corresponds to a write to ICC_EOIR0 or
ICC_EOIR1. Otherwise, it corresponds to a write to ICC_DIR.

When this register has an architecturally-defined reset value, this field resets to an UNKNOWN value.

State

31 30 29 28

RES0

27 24

Priority

23 16

RES0

15 10

pINTID

9 0

HW
Group
8-442 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.7 AArch32 virtualization control System registers
Group, bit [28]

Indicates the group for this virtual interrupt.

0 This is a Group 0 virtual interrupt. ICH_VMCR.VFIQEn determines whether it is
signaled as a virtual IRQ or as a virtual FIQ, and ICH_VMCR.VENG0 enables
signaling of this interrupt to the virtual machine.

1 This is a Group 1 virtual interrupt, signaled as a virtual IRQ. ICH_VMCR.VENG1
enables the signaling of this interrupt to the virtual machine.
If ICH_VMCR.VCBPR is 0, then ICC_BPR1 determines if a pending Group 1 interrupt
has sufficient priority to preempt current execution. Otherwise, ICH_LR<n> determines
preemption.

When this register has an architecturally-defined reset value, this field resets to an UNKNOWN value.

Bits [27:24]

Reserved, RES0.

Priority, bits [23:16]

The priority of this interrupt.

It is IMPLEMENTATION DEFINED how many bits of priority are implemented, though at least five bits
must be implemented. Unimplemented bits are RES0 and start from bit [16] up to bit [18]. The
number of implemented bits can be discovered from ICH_VTR.PRIbits.

When this register has an architecturally-defined reset value, this field resets to 0.

Bits [15:10]

Reserved, RES0.

pINTID, bits [9:0]

Physical INTID, for hardware interrupts.

When the HW bit is 0 (there is no corresponding physical interrupt), this field has the following
meaning:

Bit [9] EOI. If this bit is 1, then when the interrupt identified by vINTID is deactivated, an EOI
maintenance interrupt is asserted.

Bits [8:0] Reserved, RES0.

When the HW bit is 1 (there is a corresponding physical interrupt):

• This field indicates the physical INTID. This field is only required to implement enough bits
to hold a valid value for the implemented INTID size. Any unused higher order bits are RES0.

• If the value of pINTID is 0-15 or 1020-1023, behavior is UNPREDICTABLE. If the value of
pINTID is 16-31, this field applies to the PPI associated with this same physical PE ID as the
virtual CPU interface requesting the deactivation.

A hardware physical identifier is only required in List Registers for interrupts that require
deactivation. This means only 10 bits of Physical INTID are required, regardless of the number
specified by ICC_CTLR.IDbits.

When this register has an architecturally-defined reset value, this field resets to 0.

Accessing the ICH_LRC<n>

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-443
ID072617 Non-Confidential

8 Programmers’ Model
8.7 AArch32 virtualization control System registers
This syntax is encoded with the following settings in the instruction encoding:

• <opc2> is in the range 0 - 7.

• <CRm> is in the range c14 - c15.

Accessibility

The register is accessible in software as follows:

ICH_LR<n> and ICH_LRC<n> can be updated independently.

Traps and Enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in
the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to
AArch32 state and section D1.13.2 (Synchronous exception prioritization for exceptions taken to AArch64) in the
ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch64
state. Subject to the prioritization rules:

• In both Security states, and not dependent on other bits:

— If ICC_HSRE.SRE==0, accesses to this register from EL2 are UNDEFINED.

— If ICC_MSRE.SRE==0, Non-secure accesses to this register from EL3 are UNDEFINED.

• When EL2 is implemented and is using AArch64 and SCR_EL3.NS == 1:

— If HSTR_EL2.T12==1, Non-secure accesses to this register from EL1 are trapped to EL2.

• When EL2 is implemented and is using AArch32 and SCR_EL3.NS == 1:

— If HSTR.T12==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

<syntax> opc1 opc2 CRn coproc CRm

p15, 4, <Rt>, c12, <CRm>, <opc2> 100 n<2:0> 1100 1111 111:n<3>

Control Accessibility

NS EL0 EL1 EL2 EL3

0 - - n/a -

1 - - RW RW

1 - n/a RW RW
8-444 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.7 AArch32 virtualization control System registers
8.7.8 ICH_MISR, Interrupt Controller Maintenance Interrupt State Register

The ICH_MISR characteristics are:

Purpose

Indicates which maintenance interrupts are asserted.

Configurations

AArch32 System register ICH_MISR is architecturally mapped to AArch64 System register
ICH_MISR_EL2.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

ICH_MISR is a 32-bit register.

Field descriptions

The ICH_MISR bit assignments are:

Bits [31:8]

Reserved, RES0.

VGrp1D, bit [7]

vPE Group 1 Disabled.

0 vPE Group 1 Disabled maintenance interrupt not asserted.

1 vPE Group 1 Disabled maintenance interrupt asserted.

This maintenance interrupt is asserted when ICH_HCR.VGrp1DIE==1 and
ICH_VMCR.VMGrp1En==0.

When this register has an architecturally-defined reset value, this field resets to 0.

VGrp1E, bit [6]

vPE Group 1 Enabled.

0 vPE Group 1 Enabled maintenance interrupt not asserted.

1 vPE Group 1 Enabled maintenance interrupt asserted.

This maintenance interrupt is asserted when ICH_HCR.VGrp1EIE==1 and
ICH_VMCR.VMGrp1En==1.

When this register has an architecturally-defined reset value, this field resets to 0.

VGrp0D, bit [5]

vPE Group 0 Disabled.

0 vPE Group 0 Disabled maintenance interrupt not asserted.

RES0

31 8 7 6 5 4

NP

3 2

U

1 0

EOI
LRENP

VGrp0E
VGrp0D
VGrp1E
VGrp1D
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-445
ID072617 Non-Confidential

8 Programmers’ Model
8.7 AArch32 virtualization control System registers
1 vPE Group 0 Disabled maintenance interrupt asserted.

This maintenance interrupt is asserted when ICH_HCR.VGrp0DIE==1 and
ICH_VMCR.VMGrp0En==0.

When this register has an architecturally-defined reset value, this field resets to 0.

VGrp0E, bit [4]

vPE Group 0 Enabled.

0 vPE Group 0 Enabled maintenance interrupt not asserted.

1 vPE Group 0 Enabled maintenance interrupt asserted.

This maintenance interrupt is asserted when ICH_HCR.VGrp0EIE==1 and
ICH_VMCR.VMGrp0En==1.

When this register has an architecturally-defined reset value, this field resets to 0.

NP, bit [3]

No Pending.

0 No Pending maintenance interrupt not asserted.

1 No Pending maintenance interrupt asserted.

This maintenance interrupt is asserted when ICH_HCR.NPIE==1 and no List register is in pending
state.

When this register has an architecturally-defined reset value, this field resets to 0.

LRENP, bit [2]

List Register Entry Not Present.

0 List Register Entry Not Present maintenance interrupt not asserted.

1 List Register Entry Not Present maintenance interrupt asserted.

This maintenance interrupt is asserted when ICH_HCR.LRENPIE==1 and ICH_HCR.EOIcount is
non-zero.

When this register has an architecturally-defined reset value, this field resets to 0.

U, bit [1]

Underflow.

0 Underflow maintenance interrupt not asserted.

1 Underflow maintenance interrupt asserted.

This maintenance interrupt is asserted when ICH_HCR.UIE==1 and zero or one of the List register
entries are marked as a valid interrupt, that is, if the corresponding ICH_LRC<n>.State bits do not
equal 0x0.

When this register has an architecturally-defined reset value, this field resets to 0.

EOI, bit [0]

End Of Interrupt.

0 End Of Interrupt maintenance interrupt not asserted.

1 End Of Interrupt maintenance interrupt asserted.

This maintenance interrupt is asserted when at least one bit in ICH_EISR is 1.

When this register has an architecturally-defined reset value, this field resets to 0.

Accessing the ICH_MISR

This register can be read using MRC with the following syntax:

MRC <syntax>
8-446 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.7 AArch32 virtualization control System registers
This syntax is encoded with the following settings in the instruction encoding:

Accessibility

The register is accessible in software as follows:

Traps and Enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in
the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to
AArch32 state and section D1.13.2 (Synchronous exception prioritization for exceptions taken to AArch64) in the
ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch64
state. Subject to the prioritization rules:

• In both Security states, and not dependent on other bits:

— If ICC_HSRE.SRE==0, read accesses to this register from EL2 are UNDEFINED.

— If ICC_MSRE.SRE==0, Non-secure read accesses to this register from EL3 are UNDEFINED.

• When EL2 is implemented and is using AArch64 and SCR_EL3.NS == 1:

— If HSTR_EL2.T12==1, Non-secure accesses to this register from EL1 are trapped to EL2.

• When EL2 is implemented and is using AArch32 and SCR_EL3.NS == 1:

— If HSTR.T12==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

<syntax> opc1 opc2 CRn coproc CRm

p15, 4, <Rt>, c12, c11, 2 100 010 1100 1111 1011

Control Accessibility

NS EL0 EL1 EL2 EL3

0 - - n/a -

1 - - RO RO

1 - n/a RO RO
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-447
ID072617 Non-Confidential

8 Programmers’ Model
8.7 AArch32 virtualization control System registers
8.7.9 ICH_VMCR, Interrupt Controller Virtual Machine Control Register

The ICH_VMCR characteristics are:

Purpose

Enables the hypervisor to save and restore the virtual machine view of the GIC state.

Configurations

AArch32 System register ICH_VMCR is architecturally mapped to AArch64 System register
ICH_VMCR_EL2.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

ICH_VMCR is a 32-bit register.

Field descriptions

The ICH_VMCR bit assignments are:

VPMR, bits [31:24]

Virtual Priority Mask. The priority mask level for the virtual CPU interface. If the priority of a
pending virtual interrupt is higher than the value indicated by this field, the interface signals the
virtual interrupt to the PE.

This field is an alias of ICV_PMR.Priority.

VBPR0, bits [23:21]

Virtual Binary Point Register, Group 0. Defines the point at which the priority value fields split into
two parts, the group priority field and the subpriority field. The group priority field determines
Group 0 interrupt preemption, and also determines Group 1 interrupt preemption if
ICH_VMCR.VCBPR == 1.

This field is an alias of ICV_BPR0.BinaryPoint.

VBPR1, bits [20:18]

Virtual Binary Point Register, Group 1. Defines the point at which the priority value fields split into
two parts, the group priority field and the subpriority field. The group priority field determines
Group 1 interrupt preemption if ICH_VMCR.VCBPR == 0.

This field is an alias of ICV_BPR1.BinaryPoint.

Bits [17:10]

Reserved, RES0.

VPMR

31 24

VBPR0

23 21

VBPR1

20 18

RES0

17 10 9

RES0

8 5 4 3 2 1 0

VENG0
VENG1

VAckCtl
VFIQEn
VCBPR
VEOIM
8-448 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.7 AArch32 virtualization control System registers
VEOIM, bit [9]

Virtual EOI mode. Controls whether a write to an End of Interrupt register also deactivates the
virtual interrupt:

0 ICV_EOIR0 and ICV_EOIR1 provide both priority drop and interrupt deactivation
functionality. Accesses to ICV_DIR are UNPREDICTABLE.

1 ICV_EOIR0 and ICV_EOIR1 provide priority drop functionality only. ICV_DIR
provides interrupt deactivation functionality.

This bit is an alias of ICV_CTLR.EOImode.

Bits [8:5]

Reserved, RES0.

VCBPR, bit [4]

Virtual Common Binary Point Register. Possible values of this bit are:

0 ICV_BPR0 determines the preemption group for virtual Group 0 interrupts only.
ICV_BPR1 determines the preemption group for virtual Group 1 interrupts.

1 ICV_BPR0 determines the preemption group for both virtual Group 0 and virtual Group
1 interrupts.
Reads of ICV_BPR1 return ICV_BPR0 plus one, saturated to 0b111. Writes to
ICV_BPR1 are ignored.

This field is an alias of ICV_CTLR.CBPR.

VFIQEn, bit [3]

Virtual FIQ enable. Possible values of this bit are:

0 Group 0 virtual interrupts are presented as virtual IRQs.

1 Group 0 virtual interrupts are presented as virtual FIQs.

This bit is an alias of GICV_CTLR.FIQEn.

In implementations where the Non-secure copy of ICC_SRE.SRE is always 1, this bit is RES1.

VAckCtl, bit [2]

Virtual AckCtl. Possible values of this bit are:

0 If the highest priority pending interrupt is Group 1, a read of GICV_IAR or
GICV_HPPIR returns an INTID of 1022.

1 If the highest priority pending interrupt is Group 1, a read of GICV_IAR or
GICV_HPPIR returns the INTID of the corresponding interrupt.

This bit is an alias of GICV_CTLR.AckCtl.

This field is supported for backwards compatibility with GICv2. ARM deprecates the use of this
field.

In implementations where the Non-secure copy of ICC_SRE.SRE is always 1, this bit is RES0.

VENG1, bit [1]

Virtual Group 1 interrupt enable. Possible values of this bit are:

0 Virtual Group 1 interrupts are disabled.

1 Virtual Group 1 interrupts are enabled.

This bit is an alias of ICV_IGRPEN1.Enable.

VENG0, bit [0]

Virtual Group 0 interrupt enable. Possible values of this bit are:

0 Virtual Group 0 interrupts are disabled.

1 Virtual Group 0 interrupts are enabled.

This bit is an alias of ICV_IGRPEN0.Enable.
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-449
ID072617 Non-Confidential

8 Programmers’ Model
8.7 AArch32 virtualization control System registers
Accessing the ICH_VMCR

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax is encoded with the following settings in the instruction encoding:

Accessibility

The register is accessible in software as follows:

When EL2 is using System register access, EL1 using either System register or memory-mapped access must be
supported.

Traps and Enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in
the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to
AArch32 state and section D1.13.2 (Synchronous exception prioritization for exceptions taken to AArch64) in the
ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch64
state. Subject to the prioritization rules:

• In both Security states, and not dependent on other bits:

— If ICC_HSRE.SRE==0, accesses to this register from EL2 are UNDEFINED.

— If ICC_MSRE.SRE==0, Non-secure accesses to this register from EL3 are UNDEFINED.

• When EL2 is implemented and is using AArch64 and SCR_EL3.NS == 1:

— If HSTR_EL2.T12==1, Non-secure accesses to this register from EL1 are trapped to EL2.

• When EL2 is implemented and is using AArch32 and SCR_EL3.NS == 1:

— If HSTR.T12==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

<syntax> opc1 opc2 CRn coproc CRm

p15, 4, <Rt>, c12, c11, 7 100 111 1100 1111 1011

Control Accessibility

NS EL0 EL1 EL2 EL3

0 - - n/a -

1 - - RW RW

1 - n/a RW RW
8-450 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.7 AArch32 virtualization control System registers
8.7.10 ICH_VTR, Interrupt Controller VGIC Type Register

The ICH_VTR characteristics are:

Purpose

Reports supported GIC virtualisartion features.

Configurations

AArch32 System register ICH_VTR is architecturally mapped to AArch64 System register
ICH_VTR_EL2.

If EL2 is not implemented, all bits in this register are RES0 from EL3, except for nV4, which is RES1
from EL3.

Attributes

ICH_VTR is a 32-bit register.

Field descriptions

The ICH_VTR bit assignments are:

PRIbits, bits [31:29]

Priority bits. The number of virtual priority bits implemented, minus one.

An implementation must implement at least 32 levels of virtual priority (5 priority bits).

This field is an alias of ICV_CTLR.PRIbits.

PREbits, bits [28:26]

The number of virtual preemption bits implemented, minus one.

An implementation must implement at least 32 levels of virtual preemption priority (5 preemption
bits).

The value of this field must be less than or equal to the value of ICH_VTR.PRIbits.

IDbits, bits [25:23]

The number of virtual interrupt identifier bits supported:

000 16 bits.

001 24 bits.

All other values are reserved.

This field is an alias of ICV_CTLR.IDbits.

SEIS, bit [22]

SEI Support. Indicates whether the virtual CPU interface supports generation of SEIs:

0 The virtual CPU interface logic does not support generation of SEIs.

1 The virtual CPU interface logic supports generation of SEIs.

This bit is an alias of ICV_CTLR.SEIS.

PRIbits

31 29

PREbits

28 26

IDbits

25 23 22 21 20 19

RES0

18 5

ListRegs

4 0

SEIS
A3V
nV4
TDS
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-451
ID072617 Non-Confidential

8 Programmers’ Model
8.7 AArch32 virtualization control System registers
A3V, bit [21]

Affinity 3 Valid. Possible values are:

0 The virtual CPU interface logic only supports zero values of Affinity 3 in SGI
generation System registers.

1 The virtual CPU interface logic supports non-zero values of Affinity 3 in SGI generation
System registers.

This bit is an alias of ICV_CTLR.A3V.

nV4, bit [20]

Direct injection of virtual interrupts not supported. Possible values are:

0 The CPU interface logic supports direct injection of virtual interrupts.

1 The CPU interface logic does not support direct injection of virtual interrupts.

In GICv3 this bit is RES1.

TDS, bit [19]

Separate trapping of Non-secure EL1 writes to ICV_DIR supported.

0 Implementation does not support ICH_HCR.TDIR.

1 Implementation supports ICH_HCR.TDIR.

Bits [18:5]

Reserved, RES0.

ListRegs, bits [4:0]

The number of implemented List registers, minus one. For example, a value of 0b01111 indicates that
the maximum of 16 List registers are implemented.

Accessing the ICH_VTR

This register can be read using MRC with the following syntax:

MRC <syntax>

This syntax is encoded with the following settings in the instruction encoding:

Accessibility

The register is accessible in software as follows:

<syntax> opc1 opc2 CRn coproc CRm

p15, 4, <Rt>, c12, c11, 1 100 001 1100 1111 1011

Control Accessibility

NS EL0 EL1 EL2 EL3

0 - - n/a -

1 - - RO RO

1 - n/a RO RO
8-452 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.7 AArch32 virtualization control System registers
Traps and Enables

For a description of the prioritization of any generated exceptions, see section G1.11.2 (Exception priority order) in
the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to
AArch32 state and section D1.13.2 (Synchronous exception prioritization for exceptions taken to AArch64) in the
ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile for exceptions taken to AArch64
state. Subject to the prioritization rules:

• In both Security states, and not dependent on other bits:

— If ICC_HSRE.SRE==0, read accesses to this register from EL2 are UNDEFINED.

— If ICC_MSRE.SRE==0, Non-secure read accesses to this register from EL3 are UNDEFINED.

• When EL2 is implemented and is using AArch64 and SCR_EL3.NS == 1:

— If HSTR_EL2.T12==1, Non-secure accesses to this register from EL1 are trapped to EL2.

• When EL2 is implemented and is using AArch32 and SCR_EL3.NS == 1:

— If HSTR.T12==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-453
ID072617 Non-Confidential

8 Programmers’ Model
8.8 The GIC Distributor register map
8.8 The GIC Distributor register map
Table 8-25 shows the Distributor register map. Address offsets are relative to the Distributor base address defined
by the system memory map. Unless otherwise stated in the register description, all GIC registers are 32-bits wide.
Reserved register addresses are RES0.

Table 8-25 Distributor register map

Offset Name Type Reseta Description

0x0000 GICD_CTLR RW See the register description Distributor Control Register

0x0004 GICD_TYPER RO IMPLEMENTATION DEFINED Interrupt Controller Type Register

0x0008 GICD_IIDR RO IMPLEMENTATION DEFINED Distributor Implementer Identification
Register

0x000C - - - Reserved

0x0010 GICD_STATUSR RW 0x0000 00000 Error Reporting Status Register, optional

0x0014-0x001C - - - Reserved

0x0020-0x003C - - - IMPLEMENTATION DEFINED registers

0x0040 GICD_SETSPI_NSR WO - Set SPI Register

0x0044 - - - Reserved

0x0048 GICD_CLRSPI_NSR WO - Clear SPI Register

0x004C - - - Reserved

0x0050 GICD_SETSPI_SR WO - Set SPI, Secure Register

0x0054 - - - Reserved

0x0058 GICD_CLRSPI_SR WO - Clear SPI, Secure Register

0x005C-0x007C - - - Reserved

0x0080 GICD_IGROUPR<n> RW IMPLEMENTATION DEFINED Interrupt Group Registers

0x0084-0x00FC 0x0000 0000

0x0100-0x017C GICD_ISENABLER<n> RW IMPLEMENTATION DEFINED Interrupt Set-Enable Registers

0x0180-0x01FC GICD_ICENABLER<n> RW IMPLEMENTATION DEFINED Interrupt Clear-Enable Registers

0x0200-0x027C GICD_ISPENDR<n> RW 0x0000 0000 Interrupt Set-Pending Registers

0x0280-0x02FC GICD_ICPENDR<n> RW 0x0000 0000 Interrupt Clear-Pending Registers

0x0300-0x037C GICD_ISACTIVER<n> RW 0x0000 0000 Interrupt Set-Active Registers

0x0380-0x03FC GICD_ICACTIVER<n> RW 0x0000 0000 Interrupt Clear-Active Registers

0x0400-0x07F8 GICD_IPRIORITYR<n> RW implementation defined Interrupt Priority Registers

0x0800-0x081C GICD_ITARGETSR<n>bc RO IMPLEMENTATION DEFINED Interrupt Processor Targets Registers

0x0820-0xBF8 RW 0x0000 0000

0x0C00-0x0CFC GICD_ICFGR<n> RW IMPLEMENTATION DEFINED Interrupt Configuration Registers

0x0D00-0x0D7C GICD_IGRPMODR<n>d - 0x0000 0000 Interrupt Group Modifier Registers
8-454 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.8 The GIC Distributor register map
A Distributor might optionally provide an IMPLEMENTATION DEFINED set of aliases for message-based interrupt
requests.

Table 8-26 shows the Distributor message-based interrupt register map.

0x0E00-0x0EFC GICD_NSACR<n> RW 0x0000 0000 Non-secure Access Control Registers

0x0F00 GICD_SGIR WO - Software Generated Interrupt Register

0x0F10-0x0F1C GICD_CPENDSGIR<n>e RW 0x0000 0000 SGI Clear-Pending Registers

0x0F20-0x0F2C GICD_SPENDSGIR<n>e RW 0x0000 0000 SGI Set-Pending Registers

0x0F30-0x60FC - - - Reserved

0x6100-0x7FD8 GICD_IROUTER<n> RW - Interrupt Routing Registers

0x7FE0-0xBFFC - - - Reserved

0xC000-0xFFCC - - - IMPLEMENTATION DEFINED registers

0xFFD0-0xFFFC - RO IMPLEMENTATION DEFINED Reserved for ID registers, see Identification
registers on page 8-171

a. For details of any restrictions that apply to the reset values that are IMPLEMENTATION DEFINED, see the appropriate register description.
b. When affinity routing is enabled, GICD_IROUTER<n> are used instead of these registers.
c. In an implementation with a single connected PE, these registers are RAZ/WI.
d. These registers are RES0 when affinity routing is not enabled for the Secure state.
e. Used only when affinity routing is not enabled.

Table 8-25 Distributor register map (continued)

Offset Name Type Reseta Description

Table 8-26 Distributor message-based interrupt register map

Offset Name Type Reset Description

0x0000-0x003C - - - Reserved

0x0040 GICD_SETSPI_NSR WO - Set SPI Register

0x044 - - - Reserved

0x0048 GICD_CLRSPI_NSR WO - Clear SPI Register

0x004C - - - Reserved

0x0050 GICD_SETSPI_SR WO - Set SPI, Secure Register

0x0054 - - - Reserved

0x0058 GICD_CLRSPI_SR WO - Clear SPI, Secure Register

0x005C - - - Reserved

0x0060-0xFFFC - - - Reserved
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-455
ID072617 Non-Confidential

8 Programmers’ Model
8.9 The GIC Distributor register descriptions
8.9 The GIC Distributor register descriptions
This section describes each of the GIC Distributor registers in register name order.
8-456 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.9 The GIC Distributor register descriptions
8.9.1 GICD_CLRSPI_NSR, Clear Non-secure SPI Pending Register

The GICD_CLRSPI_NSR characteristics are:

Purpose

Removes the pending state from a valid SPI if permitted by the Security state of the access and the
GICD_NSACR<n> value for that SPI.

A write to this register changes the state of a pending SPI to inactive, and the state of an active and
pending SPI to active.

Usage constraints

This register is accessible as follows:

Writes to this register have no effect if:

• The value written specifies a Secure SPI, the value is written by a Non-secure access, and the
value of the corresponding GICD_NSACR<n> register is less than 0b10.

• The value written specifies an invalid SPI.

• The SPI is not pending.

16-bit accesses to bits [15:0] of this register must be supported.

Note
 A Secure access to this register can clear the pending state of any valid SPI.

Configurations

If GICD_TYPER.MBIS == 0, this register is reserved.

When GICD_CTLR.DS==1, this register provides functionality for all SPIs.

Attributes

GICD_CLRSPI_NSR is a 32-bit register.

Field descriptions

The GICD_CLRSPI_NSR bit assignments are:

Bits [31:10]

Reserved, RES0.

INTID, bits [9:0]

The INTID of the SPI.

Security disabled Secure Non-secure

WO WO WO

RES0

31 10

INTID

9 0
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-457
ID072617 Non-Confidential

8 Programmers’ Model
8.9 The GIC Distributor register descriptions
The function of this register depends on whether the targeted SPI is configured to be an edge-triggered or
level-sensitive interrupt:

• For an edge-triggered interrupt, a write to GICD_SETSPI_NSR or GICD_SETSPI_SR adds the pending state
to the targeted interrupt. It will stop being pending on activation, or if the pending state is removed by a write
to GICD_CLRSPI_NSR, GICD_CLRSPI_SR, or GICD_ICPENDR<n>.

• For a level-sensitive interrupt, a write to GICD_SETSPI_NSR or GICD_SETSPI_SR adds the pending state
to the targeted interrupt. It will remain pending until it is deasserted by a write to GICD_CLRSPI_NSR or
GICD_CLRSPI_SR. If the interrupt is activated between having the pending state added and being
deactivated, then the interrupt will be active and pending.

Accessing the GICD_CLRSPI_NSR:

GICD_CLRSPI_NSR can be accessed through its memory-mapped interface:

Component Offset

GIC Distributor 0x0048
8-458 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.9 The GIC Distributor register descriptions
8.9.2 GICD_CLRSPI_SR, Clear Secure SPI Pending Register

The GICD_CLRSPI_SR characteristics are:

Purpose

Removes the pending state from a valid SPI.

A write to this register changes the state of a pending SPI to inactive, and the state of an active and
pending SPI to active.

Usage constraints

This register is accessible as follows:

Writes to this register have no effect if:

• The value is written by a Non-secure access.

• The value written specifies an invalid SPI.

• The SPI is not pending.

16-bit accesses to bits [15:0] of this register must be supported.

Configurations

If GICD_TYPER.MBIS == 0, this register is reserved.

When GICD_CTLR.DS==1, this register is WI.

Attributes

GICD_CLRSPI_SR is a 32-bit register.

Field descriptions

The GICD_CLRSPI_SR bit assignments are:

Bits [31:10]

Reserved, RES0.

INTID, bits [9:0]

The INTID of the SPI.

The function of this register depends on whether the targeted SPI is configured to be an edge-triggered or
level-sensitive interrupt:

• For an edge-triggered interrupt, a write to GICD_SETSPI_NSR or GICD_SETSPI_SR adds the pending state
to the targeted interrupt. It will stop being pending on activation, or if the pending state is removed by a write
to GICD_CLRSPI_NSR, GICD_CLRSPI_SR, or GICD_ICPENDR<n>.

• For a level-sensitive interrupt, a write to GICD_SETSPI_NSR or GICD_SETSPI_SR adds the pending state
to the targeted interrupt. It will remain pending until it is deasserted by a write to GICD_CLRSPI_NSR or
GICD_CLRSPI_SR. If the interrupt is activated between having the pending state added and being
deactivated, then the interrupt will be active and pending.

Security disabled Secure Non-secure

WI WO WI

RES0

31 10

INTID

9 0
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-459
ID072617 Non-Confidential

8 Programmers’ Model
8.9 The GIC Distributor register descriptions
Accessing the GICD_CLRSPI_SR:

GICD_CLRSPI_SR can be accessed through its memory-mapped interface:

Component Offset

GIC Distributor 0x0058
8-460 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.9 The GIC Distributor register descriptions
8.9.3 GICD_CPENDSGIR<n>, SGI Clear-Pending Registers, n = 0 - 3

The GICD_CPENDSGIR<n> characteristics are:

Purpose

Removes the pending state from an SGI.

A write to this register changes the state of a pending SGI to inactive, and the state of an active and
pending SGI to active.

Usage constraints

This register is accessible as follows:

These registers are used only when affinity routing is not enabled. When affinity routing is enabled,
this register is RES0. An implementation is permitted to make the register RAZ/WI in this case.

A register bit that corresponds to an unimplemented SGI is RAZ/WI.

These registers are byte-accessible.

If the GIC implementation supports two Security states:

• A register bit that corresponds to a Group 0 interrupt is RAZ/WI to Non-secure accesses.

• Register bits corresponding to unimplemented PEs are RAZ/WI.

Configurations

Some or all RW fields of this register have defined reset values.

Four SGI clear-pending registers are implemented. Each register contains eight clear-pending bits
for each of four SGIs, for a total of 16 possible SGIs.

In multiprocessor implementations, each PE has a copy of these registers.

Attributes

GICD_CPENDSGIR<n> is a 32-bit register.

Field descriptions

The GICD_CPENDSGIR<n> bit assignments are:

SGI_clear_pending_bits<x>, bits [8x+7:8x], for x = 0 to 3

Removes the pending state from SGI number 4n + x for the PE corresponding to the bit number
written to.

Reads and writes have the following behavior:

0 If read, indicates that the SGI from the corresponding PE is not pending and is not active
and pending.
If written, has no effect.

1 If read, indicates that the SGI from the corresponding PE is pending or is active and
pending.
If written, removes the pending state from the SGI for the corresponding PE.

Security disabled Secure Non-secure

RW RW RW

SGI_clear_pending_bits<x>, bits [8x+7:8x], for x = 0 to 3

31 0
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-461
ID072617 Non-Confidential

8 Programmers’ Model
8.9 The GIC Distributor register descriptions
When this register has an architecturally-defined reset value, this field resets to 0.

For SGI ID m, generated by processing element C writing to the corresponding GICD_SGIR field, where DIV and
MOD are the integer division and modulo operations:

• The corresponding GICD_CPENDSGIR<n> number is given by n = m DIV 4.

• The offset of the required register is (0xF10 + (4n)).

• The offset of the required field within the register GICD_CPENDSGIR<n> is given by m MOD 4.

• The required bit in the 8-bit SGI clear-pending field m is bit C.

Accessing the GICD_CPENDSGIR<n>:

GICD_CPENDSGIR<n> can be accessed through its memory-mapped interface:

Component Offset

GIC Distributor 0x0F10 + 4n
8-462 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.9 The GIC Distributor register descriptions
8.9.4 GICD_CTLR, Distributor Control Register

The GICD_CTLR characteristics are:

Purpose

Enables interrupts and affinity routing.

Usage constraints

This register is accessible as follows:

If an interrupt is pending within a CPU interface when the corresponding
GICD_CTLR.EnableGrpX bit is written from 1 to 0 the interrupt must be retrieved from the CPU
interface.

Note
 This might have no effect on the forwarded interrupt if it has already been activated.

When a write changes the value of ARE for a Security state or the value of the DS bit, the format
used for interpreting the remaining bits provided in the write data is the format that applied before
the write takes effect.

Configurations

Some or all RW fields of this register have defined reset values.

The format of this register depends on the Security state of the access and the number of Security
states supported, which is specified by GICD_CTLR.DS.

Attributes

GICD_CTLR is a 32-bit register.

Field descriptions

The GICD_CTLR bit assignments are:

When access is Secure, in a system that supports two Security states:

Security disabled Secure Non-secure

RW RW RW

31

RES0

30 8 7 6 5 4 3 2 1 0

RWP EnableGrp0
EnableGrp1NS

EnableGrp1S
RES0

ARE_S
ARE_NS

DS
E1NWF
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-463
ID072617 Non-Confidential

8 Programmers’ Model
8.9 The GIC Distributor register descriptions
RWP, bit [31]

Register Write Pending. Read only. Indicates whether a register write is in progress or not:

0 No register write in progress. The effects of previous register writes to the affected
register fields are visible to all logical components of the GIC architecture, including
the CPU interfaces.

1 Register write in progress. The effects of previous register writes to the affected register
fields are not guaranteed to be visible to all logical components of the GIC architecture,
including the CPU interfaces, as the effects of the changes are still being propagated.

This field tracks writes to:

• GICD_CTLR[2:0], the Group Enables, for transitions from 1 to 0 only.

• GICD_CTLR[7:4], the ARE bits, E1NWF bit and DS bit.

• GICD_ICENABLER<n>.

Updates to other register fields are not tracked by this field.

This field resets to a value that is architecturally UNKNOWN.

Bits [30:8]

Reserved, RES0.

E1NWF, bit [7]

Enable 1 of N Wakeup Functionality.

It is IMPLEMENTATION DEFINED whether this bit is programmable, or RAZ/WI.

If it is implemented, then it has the following behavior:

0 A PE that is asleep cannot be picked for 1 of N interrupts.

1 A PE that is asleep can be picked for 1 of N interrupts as determined by
IMPLEMENTATION DEFINED controls.

If this field is implemented as an RW field, it resets to a value that is architecturally UNKNOWN.

DS, bit [6]

Disable Security.

0 Non-secure accesses are not permitted to access and modify registers that control Group
0 interrupts.

1 Non-secure accesses are permitted to access and modify registers that control Group 0
interrupts.

If DS is written from 0 to 1 when GICD_CTLR.ARE_S == 1, then GICD_CTLR.ARE for the single
Security state is RAO/WI.

If the Distributor only supports a single Security state, this bit is RAO/WI.

If the Distributor supports two Security states, it IMPLEMENTATION DEFINED whether this bit is
programmable or implemented as RAZ/WI.

When this field is set to 1, all accesses to GICD_CTLR access the single Security state view, and all
bits are accessible.

When set to 1, this field can only be cleared by a hardware reset.

Writing this bit from 0 to 1 is UNPREDICTABLE if any of the following is true:

• GICD_CTLR.EnableGrp0==1.

• GICD_CTLR.EnableGrp1S==1.

• GICD_CTLR.EnableGrp1NS==1.

• One or more INTID is in the Active or Active and Pending state.

When this register has an architecturally-defined reset value, if this field is implemented as an RW
field, it resets to 0.
8-464 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.9 The GIC Distributor register descriptions
ARE_NS, bit [5]

Affinity Routing Enable, Non-secure state.

0 Affinity routing disabled for Non-secure state.

1 Affinity routing enabled for Non-secure state.

When affinity routing is enabled for the Secure state, this field is RAO/WI.

Changing the ARE_NS settings from 0 to 1 is UNPREDICTABLE except when
GICD_CTLR.EnableGrp1 Non-Secure == 0.

Changing the ARE_NS settings from 1 to 0 is UNPREDICTABLE.

If GICv2 backwards compatibility for Non-secure state is not implemented, this field is RAO/WI.

When this register has an architecturally-defined reset value, if this field is implemented as an RW
field, it resets to 0.

ARE_S, bit [4]

Affinity Routing Enable, Secure state.

0 Affinity routing disabled for Secure state.

1 Affinity routing enabled for Secure state.

Changing the ARE_S setting from 0 to 1 is UNPREDICTABLE except when all of the following apply:

• GICD_CTLR.EnableGrp0==0.

• GICD_CTLR.EnableGrp1S==0.

• GICD_CTLR.EnableGrp1NS==0.

Changing the ARE_S settings from 1 to 0 is UNPREDICTABLE.

If GICv2 backwards compatibility for Secure state is not implemented, this field is RAO/WI.

When this register has an architecturally-defined reset value, if this field is implemented as an RW
field, it resets to 0.

Bit [3]

Reserved, RES0.

EnableGrp1S, bit [2]

Enable Secure Group 1 interrupts.

0 Secure Group 1 interrupts are disabled.

1 Secure Group 1 interrupts are enabled.

If GICD_CTLR.ARE_S == 0, this field is RES0.

This field resets to a value that is architecturally UNKNOWN.

EnableGrp1NS, bit [1]

Enable Non-secure Group 1 interrupts.

0 Non-secure Group 1 interrupts are disabled.

1 Non-secure Group 1 interrupts are enabled.

Note
 This field also controls whether LPIs are forwarded to the PE.

This field resets to a value that is architecturally UNKNOWN.

EnableGrp0, bit [0]

Enable Group 0 interrupts.

0 Group 0 interrupts are disabled.

1 Group 0 interrupts are enabled.
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-465
ID072617 Non-Confidential

8 Programmers’ Model
8.9 The GIC Distributor register descriptions
This field resets to a value that is architecturally UNKNOWN.

When access is Non-secure, in a system that supports two Security states:

RWP, bit [31]

This bit is a read-only alias of the Secure GICD_CTLR.RWP bit.

Bits [30:5]

Reserved, RES0.

ARE_NS, bit [4]

This bit is a read-write alias of the Secure GICD_CTLR.ARE_NS bit.

If GICv2 backwards compatibility for Non-secure state is not implemented, this field is RAO/WI.

Bits [3:2]

Reserved, RES0.

EnableGrp1A, bit [1]

If ARE_NS == 1, then this bit is a read-write alias of the Secure GICD_CTLR.EnableGrp1NS bit.

If ARE_NS == 0, then this bit is RES0.

EnableGrp1, bit [0]

If ARE_NS == 0, then this bit is a read-write alias of the Secure GICD_CTLR.EnableGrp1NS bit.

If ARE_NS == 1, then this bit is RES0.

When in a system that supports only a single Security state:

31

RES0

30 5 4 3 2 1 0

RWP EnableGrp1
EnableGrp1A

RES0
ARE_NS

31

RES0

30 8 7 6 5 4 3 2 1 0

RWP EnableGrp0
EnableGrp1

RES0
ARE

RES0
DS

E1NWF
8-466 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.9 The GIC Distributor register descriptions
RWP, bit [31]

Register Write Pending. Read only. Indicates whether a register write is in progress or not:

0 No register write in progress. The effects of previous register writes to the affected
register fields are visible to all logical components of the GIC architecture, including
the CPU interfaces.

1 Register write in progress. The effects of previous register writes to the affected register
fields are not guaranteed to be visible to all logical components of the GIC architecture,
including the CPU interfaces, as the effects of the changes are still being propagated.

This field tracks updates to:

• GICD_CTLR[2:0], the Group Enables, for transitions from 1 to 0 only.

• GICD_CTLR[7:4], the ARE bits, E1NWF bit and DS bit.

• GICD_ICENABLER<n>, the bits that allow disabling of SPIs.

Updates to other register fields are not tracked by this field.

This field resets to a value that is architecturally UNKNOWN.

Bits [30:8]

Reserved, RES0.

E1NWF, bit [7]

Enable 1 of N Wakeup Functionality.

It is IMPLEMENTATION DEFINED whether this bit is programmable, or RAZ/WI.

If it is implemented, then it has the following behavior:

0 A PE that is asleep cannot be picked for 1 of N interrupts.

1 A PE that is asleep can be picked for 1 of N interrupts as determined by
IMPLEMENTATION DEFINED controls.

If this field is implemented as an RW field, it resets to a value that is architecturally UNKNOWN.

DS, bit [6]

Disable Security. This field is RAO/WI.

Bit [5]

Reserved, RES0.

ARE, bit [4]

Affinity Routing Enable.

0 Affinity routing disabled.

1 Affinity routing enabled.

Changing the ARE settings from 0 to 1 is UNPREDICTABLE except when all of the following apply:

• GICD_CTLR.EnableGrp1==0.

• GICD_CTLR.EnableGrp0==0.

Changing ARE from 1 to 0 is UNPREDICTABLE.

If GICv2 backwards compatibility is not implemented, this field is RAO/WI.

When this register has an architecturally-defined reset value, if this field is implemented as an RW
field, it resets to 0.

Bits [3:2]

Reserved, RES0.
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-467
ID072617 Non-Confidential

8 Programmers’ Model
8.9 The GIC Distributor register descriptions
EnableGrp1, bit [1]

Enable Group 1 interrupts.

0 Group 1 interrupts disabled.

1 Group 1 interrupts enabled.

This field resets to a value that is architecturally UNKNOWN.

EnableGrp0, bit [0]

Enable Group 0 interrupts.

0 Group 0 interrupts are disabled.

1 Group 0 interrupts are enabled.

This field resets to a value that is architecturally UNKNOWN.

Accessing the GICD_CTLR:

GICD_CTLR can be accessed through its memory-mapped interface:

Component Offset

GIC Distributor 0x0000
8-468 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.9 The GIC Distributor register descriptions
8.9.5 GICD_ICACTIVER<n>, Interrupt Clear-Active Registers, n = 0 - 31

The GICD_ICACTIVER<n> characteristics are:

Purpose

Deactivates the corresponding interrupt. These registers are used when saving and restoring GIC
state.

Usage constraints

This register is accessible as follows:

When affinity routing is enabled for the Security state of an interrupt, the bits corresponding to SGIs
and PPIs in that Security state are RAZ/WI, and equivalent functionality for SGIs and PPIs is
provided by GICR_ICACTIVER0.

Bits corresponding to unimplemented interrupts are RAZ/WI.

If GICD_CTLR.DS==0, unless the GICD_NSACR<n> registers permit Non-secure software to
control Group 0 and Secure Group 1 interrupts, any bits that correspond to Group 0 or Secure Group
1 interrupts are accessible only by Secure accesses and are RAZ/WI to Non-secure accesses.

Configurations

Some or all RW fields of this register have defined reset values.

These registers are available in all GIC configurations. If GICD_CTLR.DS==0, these registers are
Common.

The number of implemented GICD_ICACTIVER<n> registers is
(GICD_TYPER.ITLinesNumber+1). Registers are numbered from 0.

GICD_ICACTIVER0 is Banked for each connected PE with GICR_TYPER.Processor_Number <
8.

Accessing GICD_ICACTIVER0 from a PE with GICR_TYPER.Processor_Number > 7 is
CONSTRAINED UNPREDICTABLE:

• Register is RAZ/WI.

• An UNKNOWN banked copy of the register is accessed.

Attributes

GICD_ICACTIVER<n> is a 32-bit register.

Field descriptions

The GICD_ICACTIVER<n> bit assignments are:

Clear_active_bit<x>, bit [x], for x = 0 to 31

Removes the active state from interrupt number 32n + x. Reads and writes have the following
behavior:

0 If read, indicates that the corresponding interrupt is not active, and is not active and
pending.

Security disabled Secure Non-secure

RW RW RW

Clear_active_bit<x>, bit [x], for x = 0 to 31

31 0
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-469
ID072617 Non-Confidential

8 Programmers’ Model
8.9 The GIC Distributor register descriptions
If written, has no effect.

1 If read, indicates that the corresponding interrupt is active, or is active and pending.
If written, deactivates the corresponding interrupt, if the interrupt is active. If the
interrupt is already deactivated, the write has no effect.

When this register has an architecturally-defined reset value, this field resets to 0.

For INTID m, when DIV and MOD are the integer division and modulo operations:

• The corresponding GICD_ICACTIVER<n> number, n, is given by n = m DIV 32.

• The offset of the required GICD_ICACTIVER is (0x380 + (4*n)).

• The bit number of the required group modifier bit in this register is m MOD 32.

Accessing the GICD_ICACTIVER<n>:

GICD_ICACTIVER<n> can be accessed through its memory-mapped interface:

Component Offset

GIC Distributor 0x0380 + 4n
8-470 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.9 The GIC Distributor register descriptions
8.9.6 GICD_ICENABLER<n>, Interrupt Clear-Enable Registers, n = 0 - 31

The GICD_ICENABLER<n> characteristics are:

Purpose

Disables forwarding of the corresponding interrupt to the CPU interfaces.

Usage constraints

This register is accessible as follows:

For SGIs and PPIs:

• When ARE is 1 for the Security state of an interrupt, the field for that interrupt is RES0 and
an implementation is permitted to make the field RAZ/WI in this case.

• Equivalent functionality is provided by GICR_ICENABLER0.

Bits corresponding to unimplemented interrupts are RAZ/WI.

When GICD_CTLR.DS==0, bits corresponding to Group 0 and Secure Group 1 interrupts are
RAZ/WI to Non-secure accesses.

It is IMPLEMENTATION DEFINED whether implemented SGIs are permanently enabled, or can be
enabled and disabled by writes to GICD_ISENABLER<n> and GICD_ICENABLER<n> where
n=0.

Completion of a write to this register does not guarantee that the effects of the write are visible
throughout the affinity hierarchy. To ensure an enable has been cleared, software must write to the
register with bits set to 1 to clear the required enables. Software must then poll GICD_CTLR.RWP
until it has the value zero.

Configurations

Some or all RW fields of this register have defined reset values.

These registers are available in all GIC configurations. If GICD_CTLR.DS==0, these registers are
Common.

The number of implemented GICD_ICENABLER<n> registers is
(GICD_TYPER.ITLinesNumber+1). Registers are numbered from 0.

GICD_ICENABLER0 is Banked for each connected PE with GICR_TYPER.Processor_Number <
8.

Accessing GICD_ICENABLER0 from a PE with GICR_TYPER.Processor_Number > 7 is
CONSTRAINED UNPREDICTABLE:

• Register is RAZ/WI.

• An UNKNOWN banked copy of the register is accessed.

Attributes

GICD_ICENABLER<n> is a 32-bit register.

Field descriptions

The GICD_ICENABLER<n> bit assignments are:

Security disabled Secure Non-secure

RW RW RW
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-471
ID072617 Non-Confidential

8 Programmers’ Model
8.9 The GIC Distributor register descriptions
Clear_enable_bit<x>, bit [x], for x = 0 to 31

For SPIs and PPIs, controls the forwarding of interrupt number 32n + x to the CPU interfaces. Reads
and writes have the following behavior:

0 If read, indicates that forwarding of the corresponding interrupt is disabled.
If written, has no effect.

1 If read, indicates that forwarding of the corresponding interrupt is enabled.
If written, disables forwarding of the corresponding interrupt.
After a write of 1 to this bit, a subsequent read of this bit returns 0.

For SGIs, the behavior of this bit is IMPLEMENTATION DEFINED.

This field resets to a value that is architecturally UNKNOWN.

For INTID m, when DIV and MOD are the integer division and modulo operations:

• The corresponding GICD_ICENABLER<n> number, n, is given by n = m DIV 32.

• The offset of the required GICD_ICENABLER is (0x180 + (4*n)).

• The bit number of the required group modifier bit in this register is m MOD 32.

Note
 Writing a 1 to a GICD_ICENABLER<n> bit only disables the forwarding of the corresponding interrupt from the
Distributor to any CPU interface. It does not prevent the interrupt from changing state, for example becoming
pending or active and pending if it is already active.

Accessing the GICD_ICENABLER<n>:

GICD_ICENABLER<n> can be accessed through its memory-mapped interface:

Clear_enable_bit<x>, bit [x], for x = 0 to 31

31 0

Component Offset

GIC Distributor 0x0180 + 4n
8-472 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.9 The GIC Distributor register descriptions
8.9.7 GICD_ICFGR<n>, Interrupt Configuration Registers, n = 0 - 63

The GICD_ICFGR<n> characteristics are:

Purpose

Determines whether the corresponding interrupt is edge-triggered or level-sensitive.

Usage constraints

This register is accessible as follows:

Configurations

Some or all RW fields of this register have defined reset values.

These registers are available in all GIC configurations. If the GIC implementation supports two
Security states, these registers are Common.

GICD_ICFGR1 is Banked for each connected PE with GICR_TYPER.Processor_Number < 8.

Accessing GICD_ICFGR1 from a PE with GICR_TYPER.Processor_Number > 7 is CONSTRAINED
UNPREDICTABLE:

• Register is RAZ/WI.

• An UNKNOWN banked copy of the register is accessed.

For SGIs and PPIs:

• When ARE is 1 for the Security state of an interrupt, the field for that interrupt is RES0 and
an implementation is permitted to make the field RAZ/WI in this case.

• Equivalent functionality is provided by GICR_ICFGR<n>.

For each supported PPI, it is IMPLEMENTATION DEFINED whether software can program the
corresponding Int_config field.

For SGIs, Int_config fields are RO, meaning that GICD_ICFGR0 is RO.

Changing Int_config when the interrupt is individually enabled is UNPREDICTABLE.

Changing the interrupt configuration between level-sensitive and edge-triggered (in either
direction) at a time when there is a pending interrupt will leave the interrupt in an UNKNOWN
pending state.

Fields corresponding to unimplemented interrupts are RAZ/WI.

Attributes

GICD_ICFGR<n> is a 32-bit register.

Field descriptions

The GICD_ICFGR<n> bit assignments are:

Int_config<x>, bits [2x+1:2x], for x = 0 to 15

Indicates whether the interrupt with ID 16n + x is level-sensitive or edge-triggered.

Int_config[0] (bit [2x]) is RES0.

Security disabled Secure Non-secure

RW RW RW

Int_config<x>, bits [2x+1:2x], for x = 0 to 15

31 0
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-473
ID072617 Non-Confidential

8 Programmers’ Model
8.9 The GIC Distributor register descriptions
Possible values of Int_config[1] (bit [2x+1]) are:

0 Corresponding interrupt is level-sensitive.

1 Corresponding interrupt is edge-triggered.

For SGIs, Int_config[1] is RAO/WI.

For SPIs and PPIs, Int_config[1] is programmable unless the implementation supports two Security
states and the bit corresponds to a Group 0 or Secure Group 1 interrupt, in which case the bit is
RAZ/WI to Non-secure accesses.

This field resets to a value that is architecturally UNKNOWN.

Accessing the GICD_ICFGR<n>:

GICD_ICFGR<n> can be accessed through its memory-mapped interface:

Component Offset

GIC Distributor 0x0C00 + 4n
8-474 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.9 The GIC Distributor register descriptions
8.9.8 GICD_ICPENDR<n>, Interrupt Clear-Pending Registers, n = 0 - 31

The GICD_ICPENDR<n> characteristics are:

Purpose

Removes the pending state from the corresponding interrupt.

Usage constraints

This register is accessible as follows:

Clear-pending bits for SGIs are RO/WI.

When affinity routing is enabled for the Security state of an interrupt:

• Bits corresponding to SGIs and PPIs are RAZ/WI, and equivalent functionality for SGIs and
PPIs is provided by GICR_ICPENDR0.

• Bits corresponding to Group 0 and Group 1 Secure interrupts can only be cleared by Secure
accesses.

Bits corresponding to unimplemented interrupts are RAZ/WI.

If GICD_CTLR.DS==0, unless the GICD_NSACR<n> registers permit Non-secure software to
control Group 0 and Secure Group 1 interrupts, any bits that correspond to Group 0 or Secure Group
1 interrupts are accessible only by Secure accesses and are RAZ/WI to Non-secure accesses.

Configurations

Some or all RW fields of this register have defined reset values.

These registers are available in all GIC configurations. If GICD_CTLR.DS==0, these registers are
Common.

The number of implemented GICD_ICPENDR<n> registers is
(GICD_TYPER.ITLinesNumber+1). Registers are numbered from 0.

GICD_ICPENDR0 is Banked for each connected PE with GICR_TYPER.Processor_Number < 8.

Accessing GICD_ICPENDR0 from a PE with GICR_TYPER.Processor_Number > 7 is
CONSTRAINED UNPREDICTABLE:

• Register is RAZ/WI.

• An UNKNOWN banked copy of the register is accessed.

Attributes

GICD_ICPENDR<n> is a 32-bit register.

Field descriptions

The GICD_ICPENDR<n> bit assignments are:

Security disabled Secure Non-secure

RW RW RW

Clear_pending_bit<x>, bit [x], for x = 0 to 31

31 0
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-475
ID072617 Non-Confidential

8 Programmers’ Model
8.9 The GIC Distributor register descriptions
Clear_pending_bit<x>, bit [x], for x = 0 to 31

For SPIs and PPIs, removes the pending state from interrupt number 32n + x. Reads and writes have
the following behavior:

0 If read, indicates that the corresponding interrupt is not pending on any PE.
If written, has no effect.

1 If read, indicates that the corresponding interrupt is pending, or active and pending:

• On this PE if the interrupt is an SGI or PPI.

• On at least one PE if the interrupt is an SPI.
If written, changes the state of the corresponding interrupt from pending to inactive, or
from active and pending to active. This has no effect in the following cases:

• If the interrupt is an SGI. In this case, the write is ignored. The pending state of
an SGI can be cleared using GICD_CPENDSGIR<n>.

• If the interrupt is not pending and is not active and pending.

• If the interrupt is a level-sensitive interrupt that is pending or active and pending
for a reason other than a write to GICD_ISPENDR<n>. In this case, if the
interrupt signal continues to be asserted, the interrupt remains pending or active
and pending.

When this register has an architecturally-defined reset value, this field resets to 0.

For INTID m, when DIV and MOD are the integer division and modulo operations:

• The corresponding GICD_ICPENDR<n> number, n, is given by n = m DIV 32.

• The offset of the required GICD_ICPENDR is (0x200 + (4*n)).

• The bit number of the required group modifier bit in this register is m MOD 32.

Accessing the GICD_ICPENDR<n>:

GICD_ICPENDR<n> can be accessed through its memory-mapped interface:

Component Offset

GIC Distributor 0x0280 + 4n
8-476 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.9 The GIC Distributor register descriptions
8.9.9 GICD_IGROUPR<n>, Interrupt Group Registers, n = 0 - 31

The GICD_IGROUPR<n> characteristics are:

Purpose

Controls whether the corresponding interrupt is in Group 0 or Group 1.

Usage constraints

This register is accessible as follows:

For SGIs and PPIs:

• When ARE is 1 for the Security state of an interrupt, the field for that interrupt is RES0 and
an implementation is permitted to make the field RAZ/WI in this case.

• Equivalent functionality is provided by GICR_IGROUPR0.

When GICD_CTLR.DS==0, the register is RAZ/WI to Non-secure accesses.

Bits corresponding to unimplemented interrupts are RAZ/WI.

Note
 Accesses to GICD_IGROUPR0 when affinity routing is not enabled for a Security state access the

same state as GICR_IGROUPR0, and must update Redistributor state associated with the PE
performing the accesses.

Implementations must ensure that an interrupt that is pending at the time of the write uses either the
old value or the new value and must ensure that the interrupt is neither lost nor handled more than
once. The effect of the change must be visible in finite time.

Configurations

GICD_IGROUPR0 resets to an IMPLEMENTATION DEFINED value, that might be UNKNOWN.

GICD_IGROUPR<n> where n is greater than 0 resets to 0x00000000.

These registers are available in all GIC configurations. If GICD_CTLR.DS==0, these registers are
Secure.

The number of implemented GICD_IGROUPR<n> registers is
(GICD_TYPER.ITLinesNumber+1). Registers are numbered from 0.

GICD_IGROUPR0 is Banked for each connected PE with GICR_TYPER.Processor_Number < 8.

Accessing GICD_IGROUPR0 from a PE with GICR_TYPER.Processor_Number > 7 is
CONSTRAINED UNPREDICTABLE:

• Register is RAZ/WI.

• An UNKNOWN banked copy of the register is accessed.

Attributes

GICD_IGROUPR<n> is a 32-bit register.

Field descriptions

The GICD_IGROUPR<n> bit assignments are:

Security disabled Secure Non-secure

RW RW RAZ/WI
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-477
ID072617 Non-Confidential

8 Programmers’ Model
8.9 The GIC Distributor register descriptions
Group_status_bit<x>, bit [x], for x = 0 to 31

Group status bit.

0 When GICD_CTLR.DS==1, the corresponding interrupt is Group 0.
When GICD_CTLR.DS==0, the corresponding interrupt is Secure.

1 When GICD_CTLR.DS==1, the corresponding interrupt is Group 1.
When GICD_CTLR.DS==0, the corresponding interrupt is Non-secure Group 1.

If affinity routing is enabled for the Security state of an interrupt, the bit that corresponds to the
interrupt is concatenated with the equivalent bit in GICD_IGRPMODR<n> to form a 2-bit field that
defines an interrupt group. The encoding of this field is described in GICD_IGRPMODR<n>.

If affinity routing is disabled for the Security state of an interrupt, then:

• The corresponding GICD_IGRPMODR<n> bit is RES0.

• For Secure interrupts, the interrupt is Secure Group 0.

• For Non-secure interrupts, the interrupt is Non-secure Group 1.

For INTID m, when DIV and MOD are the integer division and modulo operations:

• The corresponding GICD_IGROUP<n> number, n, is given by n = m DIV 32.

• The offset of the required GICD_IGROUP is (0x080 + (4*n)).

• The bit number of the required group modifier bit in this register is m MOD 32.

Accessing the GICD_IGROUPR<n>:

GICD_IGROUPR<n> can be accessed through its memory-mapped interface:

Group_status_bit<x>, bit [x], for x = 0 to 31

31 0

Component Offset

GIC Distributor 0x0080 + 4n
8-478 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.9 The GIC Distributor register descriptions
8.9.10 GICD_IGRPMODR<n>, Interrupt Group Modifier Registers, n = 0 - 31

The GICD_IGRPMODR<n> characteristics are:

Purpose

When GICD_CTLR.DS==0, this register together with the GICD_IGROUPR<n> registers,
controls whether the corresponding interrupt is in:

• Secure Group 0.

• Non-secure Group 1.

• Secure Group 1.

Usage constraints

This register is accessible as follows:

When affinity routing is enabled for Secure state, GICD_IGRPMODR0 is RES0 and equivalent
functionality is proved by GICR_IGRPMODR0.

When GICD_CTLR.DS==0, the register is RAZ/WI to Non-secure accesses.

Bits corresponding to unimplemented interrupts are RAZ/WI.

Note
 Implementations must ensure that an interrupt that is pending at the time of the write uses either the

old value or the new value and must ensure that the interrupt is neither lost nor handled more than
once. The effect of the change must be visible in finite time.

Configurations

Some or all RW fields of this register have defined reset values.

When GICD_CTLR.DS==0, these registers are Secure.

The number of implemented GICD_IGROUPR<n> registers is
(GICD_TYPER.ITLinesNumber+1). Registers are numbered from 0.

When GICD_CTLR.ARE_S==0 or GICD_CTLR.DS==1, the GICD_IGRPMODR<n> registers
are RES0. An implementation can make these registers RAZ/WI in this case.

Attributes

GICD_IGRPMODR<n> is a 32-bit register.

Field descriptions

The GICD_IGRPMODR<n> bit assignments are:

Security disabled Secure Non-secure

RW RW RAZ/WI

Group_modifier_bit<x>, bit [x], for x = 0 to 31

31 0
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-479
ID072617 Non-Confidential

8 Programmers’ Model
8.9 The GIC Distributor register descriptions
Group_modifier_bit<x>, bit [x], for x = 0 to 31

Group modifier bit. When affinity routing is enabled for the Security state of an interrupt, the bit
that corresponds to the interrupt is concatenated with the equivalent bit in GICD_IGROUPR<n> to
form a 2-bit field that defines an interrupt group:

When this register has an architecturally-defined reset value, this field resets to 0.

For INTID m, when DIV and MOD are the integer division and modulo operations:

• The corresponding GICD_IGRPMODR<n> number, n, is given by n = m DIV 32.

• The offset of the required GICD_IGRPMODR is (0x080 + (4*n)).

• The bit number of the required group modifier bit in this register is m MOD 32.

See GICD_IGROUPR<n> for information about the GICD_IGRPMODR0 reset value.

Accessing the GICD_IGRPMODR<n>:

GICD_IGRPMODR<n> can be accessed through its memory-mapped interface:

Group modifier bit Group status bit Definition Short name

0 0 Secure Group 0 G0S

0 1 Non-secure Group 1 G1NS

1 0 Secure Group 1 G1S

1 1 Reserved, treated as Non-secure Group 1 -

Component Offset

GIC Distributor 0x0D00 + 4n
8-480 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.9 The GIC Distributor register descriptions
8.9.11 GICD_IIDR, Distributor Implementer Identification Register

The GICD_IIDR characteristics are:

Purpose

Provides information about the implementer and revision of the Distributor.

Usage constraints

This register is accessible as follows:

Configurations

This register is available in all configurations of the GIC. If the GIC implementation supports two
Security states, this register is Common.

Attributes

GICD_IIDR is a 32-bit register.

Field descriptions

The GICD_IIDR bit assignments are:

ProductID, bits [31:24]

An IMPLEMENTATION DEFINED product identifier.

Bits [23:20]

Reserved, RES0.

Variant, bits [19:16]

An IMPLEMENTATION DEFINED variant number. Typically, this field distinguishes product variants,
or major revisions of a product.

Revision, bits [15:12]

An IMPLEMENTATION DEFINED revision number. Typically, this field distinguishes minor revisions
of a product.

Implementer, bits [11:0]

Contains the JEP106 code of the company that implemented the Distributor:

• Bits [11:8] are the JEP106 continuation code of the implementer. For an ARM
implementation, this field is 0x4.

• Bit [7] is always 0.

• Bits [6:0] are the JEP106 identity code of the implementer. For an ARM implementation, bits
[7:0] are therefore 0x3B.

Security disabled Secure Non-secure

RO RO RO

ProductID

31 24

RES0

23 20

Variant

19 16

Revision

15 12

Implementer

11 0
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-481
ID072617 Non-Confidential

8 Programmers’ Model
8.9 The GIC Distributor register descriptions
Accessing the GICD_IIDR:

GICD_IIDR can be accessed through its memory-mapped interface:

Component Offset

GIC Distributor 0x0008
8-482 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.9 The GIC Distributor register descriptions
8.9.12 GICD_IPRIORITYR<n>, Interrupt Priority Registers, n = 0 - 254

The GICD_IPRIORITYR<n> characteristics are:

Purpose

Holds the priority of the corresponding interrupt.

Usage constraints

This register is accessible as follows:

These registers are always used when affinity routing is not enabled. When affinity routing is
enabled for the Security state of an interrupt:

• GICR_IPRIORITYR<n> is used instead of GICD_IPRIORITYR<n> where n = 0 to 7 (that
is, for SGIs and PPIs).

• GICD_IPRIORITYR<n> is RAZ/WI where n = 0 to 7.

These registers are byte-accessible.

A register field corresponding to an unimplemented interrupt is RAZ/WI.

A GIC might implement fewer than eight priority bits, but must implement at least bits [7:4] of each
field. In each field, unimplemented bits are RAZ/WI, see Interrupt prioritization on page 4-65.

When GICD_CTLR.DS==0:

• A register bit that corresponds to a Group 0 or Secure Group 1 interrupt is RAZ/WI to
Non-secure accesses.

• A Non-secure access to a field that corresponds to a Non-secure Group 1 interrupt behaves
as described in Software accesses of interrupt priority on page 4-72.

It is IMPLEMENTATION DEFINED whether changing the value of a priority field changes the priority
of an active interrupt.

Note
 Implementations must ensure that an interrupt that is pending at the time of the write uses either the

old value or the new value and must ensure that the interrupt is neither lost nor handled more than
once. The effect of the change must be visible in finite time.

Configurations

Some or all RW fields of this register have defined reset values.

These registers are available in all configurations of the GIC. When GICD_CTLR.DS==0, these
registers are Common.

The number of implemented GICD_IPRIORITYR<n> registers is
8*(GICD_TYPER.ITLinesNumber+1). Registers are numbered from 0.

GICD_IPRIORITYR0 to GICD_IPRIORITYR7 are Banked for each connected PE with
GICR_TYPER.Processor_Number < 8.

Accessing GICD_IPRIORITYR0 to GICD_IPRIORITYR7 from a PE with
GICR_TYPER.Processor_Number > 7 is CONSTRAINED UNPREDICTABLE:

• Register is RAZ/WI.

• An UNKNOWN banked copy of the register is accessed.

Attributes

GICD_IPRIORITYR<n> is a 32-bit register.

Security disabled Secure Non-secure

RW RW RW
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-483
ID072617 Non-Confidential

8 Programmers’ Model
8.9 The GIC Distributor register descriptions
Field descriptions

The GICD_IPRIORITYR<n> bit assignments are:

Priority_offset_3B, bits [31:24]

Interrupt priority value from an IMPLEMENTATION DEFINED range, at byte offset 3. Lower priority
values correspond to greater priority of the interrupt.

When this register has an architecturally-defined reset value, this field resets to 0.

Priority_offset_2B, bits [23:16]

Interrupt priority value from an IMPLEMENTATION DEFINED range, at byte offset 2. Lower priority
values correspond to greater priority of the interrupt.

When this register has an architecturally-defined reset value, this field resets to 0.

Priority_offset_1B, bits [15:8]

Interrupt priority value from an IMPLEMENTATION DEFINED range, at byte offset 1. Lower priority
values correspond to greater priority of the interrupt.

When this register has an architecturally-defined reset value, this field resets to 0.

Priority_offset_0B, bits [7:0]

Interrupt priority value from an IMPLEMENTATION DEFINED range, at byte offset 0. Lower priority
values correspond to greater priority of the interrupt.

When this register has an architecturally-defined reset value, this field resets to 0.

For interrupt ID m, when DIV and MOD are the integer division and modulo operations:

• The corresponding GICD_IPRIORITYR<n> number, n, is given by n = m DIV 4.

• The offset of the required GICD_IPRIORITYR<n> register is (0x400 + (4*n)).

• The byte offset of the required Priority field in this register is m MOD 4, where:

— Byte offset 0 refers to register bits [7:0].

— Byte offset 1 refers to register bits [15:8].

— Byte offset 2 refers to register bits [23:16].

— Byte offset 3 refers to register bits [31:24].

Accessing the GICD_IPRIORITYR<n>:

GICD_IPRIORITYR<n> can be accessed through its memory-mapped interface:

Priority_offset_3B

31 24

Priority_offset_2B

23 16

Priority_offset_1B

15 8

Priority_offset_0B

7 0

Component Offset

GIC Distributor 0x0400 + 4n
8-484 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.9 The GIC Distributor register descriptions
8.9.13 GICD_IROUTER<n>, Interrupt Routing Registers, n = 32 - 1019

The GICD_IROUTER<n> characteristics are:

Purpose

When affinity routing is enabled, provides routing information for the SPI with INTID n.

Usage constraints

This register is accessible as follows:

These registers are used only when affinity routing is enabled. When affinity routing is not enabled:

• These registers are RES0. An implementation is permitted to make the register RAZ/WI in
this case.

• The GICD_ITARGETSR<n> registers provide interrupt routing information.

Note
 When affinity routing becomes enabled for a Security state (for example, following a reset or

following a write to GICD_CTLR) the value of all writeable fields in this register is UNKNOWN for
that Security state. When the group of an interrupt changes so the ARE setting for the interrupt
changes to 1, the value of this register is UNKNOWN for that interrupt.

If GICD_CTLR.DS==0, unless the GICD_NSACR<n> registers permit Non-secure software to
control Group 0 and Secure Group 1 interrupts, any GICD_IROUTER<n> registers that correspond
to Group 0 or Secure Group 1 interrupts are accessible only by Secure accesses and are RAZ/WI to
Non-secure accesses.

Note
 For each interrupt, a GIC implementation might support fewer than 256 values for an affinity level.

In this case, some bits of the corresponding affinity level field might be RO.

Implementations must ensure that an interrupt that is pending at the time of the write uses either the
old value or the new value and must ensure that the interrupt is neither lost nor handled more than
once. The effect of the change must be visible in finite time.

Configurations

These registers are available in all configurations of the GIC. If the GIC implementation supports
two Security states, these registers are Common.

The maximum value of n is given by (32*(GICD_TYPER.ITLinesNumber+1) - 1).
GICD_IROUTER<n> registers where n=0 to 31 are reserved.

Attributes

GICD_IROUTER<n> is a 64-bit register.

Field descriptions

The GICD_IROUTER<n> bit assignments are:

Security disabled Secure Non-secure

RW RW RW
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-485
ID072617 Non-Confidential

8 Programmers’ Model
8.9 The GIC Distributor register descriptions
Bits [63:40]

Reserved, RES0.

Aff3, bits [39:32]

Affinity level 3, the least significant affinity level field.

Interrupt_Routing_Mode, bit [31]

Interrupt Routing Mode. Defines how SPIs are routed in an affinity hierarchy:

0 Interrupts routed to the PE specified by a.b.c.d. In this routing, a, b, c, and d are the
values of fields Aff3, Aff2, Aff1, and Aff0 respectively.

1 Interrupts routed to any PE defined as a participating node.

If GICD_IROUTER<n>.IRM == 0 and the affinity path does not correspond to an implemented PE,
then if the corresponding interrupt becomes pending it will not be forwarded to any PE and will
remain pending.

In implementations that do not require 1 of N distribution of SPIs, this bit might be RAZ/WI.

When this bit is set to 1, GICD_IROUTER<n>.{Aff3, Aff2, Aff1, Aff0} are UNKNOWN.

Note
 An implementation might choose to make the Aff<n> fields RO when this field is 1.

Bits [30:24]

Reserved, RES0.

Aff2, bits [23:16]

Affinity level 2, an intermediate affinity level field.

Aff1, bits [15:8]

Affinity level 1, an intermediate affinity level field.

Aff0, bits [7:0]

Affinity level 0, the most significant affinity level field.

For an SPI with INTID m:

• The corresponding GICD_IROUTER<n> register number, n, is given by n = m.

• The offset of the GICD_IROUTER<n> register is 0x6000 + 8n.

Accessing the GICD_IROUTER<n>:

GICD_IROUTER<n> can be accessed through its memory-mapped interface:

RES0

63 40

Aff3

39 32 31

RES0

30 24

Aff2

23 16

Aff1

15 8

Aff0

7 0

Interrupt_Routing_Mode

Component Offset

GIC Distributor 0x6000 + 8n
8-486 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.9 The GIC Distributor register descriptions
8.9.14 GICD_ISACTIVER<n>, Interrupt Set-Active Registers, n = 0 - 31

The GICD_ISACTIVER<n> characteristics are:

Purpose

Activates the corresponding interrupt. These registers are used when saving and restoring GIC state.

Usage constraints

This register is accessible as follows:

When affinity routing is enabled for the Security state of an interrupt, bits corresponding to SGIs
and PPIs are RAZ/WI, and equivalent functionality for SGIs and PPIs is provided by
GICR_ISACTIVER0.

Bits corresponding to unimplemented interrupts are RAZ/WI.

If GICD_CTLR.DS==0, unless the GICD_NSACR<n> registers permit Non-secure software to
control Group 0 and Secure Group 1 interrupts, any bits that correspond to Group 0 or Secure Group
1 interrupts are accessible only by Secure accesses and are RAZ/WI to Non-secure accesses.

The bit reads as one if the status of the interrupt is active or active and pending.
GICD_ISPENDR<n> and GICD_ICPENDR<n> provide the pending status of the interrupt.

Configurations

Some or all RW fields of this register have defined reset values.

These registers are available in all GIC configurations. If GICD_CTLR.DS==0, these registers are
Common.

The number of implemented GICD_ISACTIVER<n> registers is
(GICD_TYPER.ITLinesNumber+1). Registers are numbered from 0.

GICD_ISACTIVER0 is Banked for each connected PE with GICR_TYPER.Processor_Number <
8.

Accessing GICD_ISACTIVER0 from a PE with GICR_TYPER.Processor_Number > 7 is
CONSTRAINED UNPREDICTABLE:

• Register is RAZ/WI.

• An UNKNOWN banked copy of the register is accessed.

Attributes

GICD_ISACTIVER<n> is a 32-bit register.

Field descriptions

The GICD_ISACTIVER<n> bit assignments are:

Set_active_bit<x>, bit [x], for x = 0 to 31

Adds the active state to interrupt number 32n + x. Reads and writes have the following behavior:

0 If read, indicates that the corresponding interrupt is not active, and is not active and
pending.

Security disabled Secure Non-secure

RW RW RW

Set_active_bit<x>, bit [x], for x = 0 to 31

31 0
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-487
ID072617 Non-Confidential

8 Programmers’ Model
8.9 The GIC Distributor register descriptions
If written, has no effect.

1 If read, indicates that the corresponding interrupt is active, or is active and pending.
If written, activates the corresponding interrupt, if the interrupt is not already active. If
the interrupt is already active, the write has no effect.
After a write of 1 to this bit, a subsequent read of this bit returns 1.

When this register has an architecturally-defined reset value, this field resets to 0.

For INTID m, when DIV and MOD are the integer division and modulo operations:

• The corresponding GICD_ISACTIVER<n> number, n, is given by n = m DIV 32.

• The offset of the required GICD_ISACTIVER is (0x300 + (4*n)).

• The bit number of the required group modifier bit in this register is m MOD 32.

Accessing the GICD_ISACTIVER<n>:

GICD_ISACTIVER<n> can be accessed through its memory-mapped interface:

Component Offset

GIC Distributor 0x0300 + 4n
8-488 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.9 The GIC Distributor register descriptions
8.9.15 GICD_ISENABLER<n>, Interrupt Set-Enable Registers, n = 0 - 31

The GICD_ISENABLER<n> characteristics are:

Purpose

Enables forwarding of the corresponding interrupt to the CPU interfaces.

Usage constraints

This register is accessible as follows:

For SGIs and PPIs:

• When ARE is 1 for the Security state of an interrupt, the field for that interrupt is RES0 and
an implementation is permitted to make the field RAZ/WI in this case.

• Equivalent functionality is provided by GICR_ISENABLER0.

Bits corresponding to unimplemented interrupts are RAZ/WI.

When GICD_CTLR.DS==0, bits corresponding to Group 0 or Secure Group 1 interrupts are
RAZ/WI to Non-secure accesses.

It is IMPLEMENTATION DEFINED whether implemented SGIs are permanently enabled, or can be
enabled and disabled by writes to GICD_ISENABLER<n> and GICD_ICENABLER<n> where
n=0.

For SPIs and PPIs, each bit controls the forwarding of the corresponding interrupt from the
Distributor to the CPU interfaces.

Configurations

Some or all RW fields of this register have defined reset values.

These registers are available in all GIC configurations. If GICD_CTLR.DS==0, these registers are
Common.

The number of implemented GICD_ISENABLER<n> registers is
(GICD_TYPER.ITLinesNumber+1). Registers are numbered from 0.

GICD_ISENABLER0 is Banked for each connected PE with GICR_TYPER.Processor_Number <
8.

Accessing GICD_ISENABLER0 from a PE with GICR_TYPER.Processor_Number > 7 is
CONSTRAINED UNPREDICTABLE:

• Register is RAZ/WI.

• An UNKNOWN banked copy of the register is accessed.

Attributes

GICD_ISENABLER<n> is a 32-bit register.

Field descriptions

The GICD_ISENABLER<n> bit assignments are:

Security disabled Secure Non-secure

RW RW RW

Set_enable_bit<x>, bit [x], for x = 0 to 31

31 0
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-489
ID072617 Non-Confidential

8 Programmers’ Model
8.9 The GIC Distributor register descriptions
Set_enable_bit<x>, bit [x], for x = 0 to 31

For SPIs and PPIs, controls the forwarding of interrupt number 32n + x to the CPU interfaces. Reads
and writes have the following behavior:

0 If read, indicates that forwarding of the corresponding interrupt is disabled.
If written, has no effect.

1 If read, indicates that forwarding of the corresponding interrupt is enabled.
If written, enables forwarding of the corresponding interrupt.
After a write of 1 to this bit, a subsequent read of this bit returns 1.

For SGIs, the behavior of this bit is IMPLEMENTATION DEFINED.

This field resets to a value that is architecturally UNKNOWN.

For INTID m, when DIV and MOD are the integer division and modulo operations:

• The corresponding GICD_ISENABLER<n> number, n, is given by n = m DIV 32.

• The offset of the required GICD_ISENABLER is (0x100 + (4*n)).

• The bit number of the required group modifier bit in this register is m MOD 32.

At start-up, and after a reset, a PE can use this register to discover which peripheral INTIDs the GIC supports. If
GICD_CTLR.DS==0 in a system that supports EL3, the PE must do this for the Secure view of the available
interrupts, and Non-secure software running on the PE must do this discovery after the Secure software has
configured interrupts as Group 0/Secure Group 1 and Non-secure Group 1.

Accessing the GICD_ISENABLER<n>:

GICD_ISENABLER<n> can be accessed through its memory-mapped interface:

Component Offset

GIC Distributor 0x0100 + 4n
8-490 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.9 The GIC Distributor register descriptions
8.9.16 GICD_ISPENDR<n>, Interrupt Set-Pending Registers, n = 0 - 31

The GICD_ISPENDR<n> characteristics are:

Purpose

Adds the pending state to the corresponding interrupt.

Usage constraints

This register is accessible as follows:

Set-pending bits for SGIs are read-only and ignore writes. The Set-pending bits for SGIs are
provided as GICD_SPENDSGIR<n>.

When affinity routing is enabled for the Security state of an interrupt:

• Bits corresponding to SGIs and PPIs are RAZ/WI, and equivalent functionality for SGIs and
PPIs is provided by GICR_ISPENDR0.

• Bits corresponding to Group 0 and Group 1 Secure interrupts can only be set by Secure
accesses.

Bits corresponding to unimplemented interrupts are RAZ/WI.

If GICD_CTLR.DS==0, unless the GICD_NSACR<n> registers permit Non-secure software to
control Group 0 and Secure Group 1 interrupts, any bits that correspond to Group 0 or Secure Group
1 interrupts are accessible only by Secure accesses and are RAZ/WI to Non-secure accesses.

Configurations

Some or all RW fields of this register have defined reset values.

These registers are available in all GIC configurations. If GICD_CTLR.DS==0, these registers are
Common.

The number of implemented GICD_ISPENDR<n> registers is
(GICD_TYPER.ITLinesNumber+1). Registers are numbered from 0.

GICD_ISPENDR0 is Banked for each connected PE with GICR_TYPER.Processor_Number < 8.

Accessing GICD_ISPENDR0 from a PE with GICR_TYPER.Processor_Number > 7 is
CONSTRAINED UNPREDICTABLE:

• Register is RAZ/WI.

• An UNKNOWN banked copy of the register is accessed.

Attributes

GICD_ISPENDR<n> is a 32-bit register.

Field descriptions

The GICD_ISPENDR<n> bit assignments are:

Security disabled Secure Non-secure

RW RW RW

Set_pending_bit<x>, bit [x], for x = 0 to 31

31 0
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-491
ID072617 Non-Confidential

8 Programmers’ Model
8.9 The GIC Distributor register descriptions
Set_pending_bit<x>, bit [x], for x = 0 to 31

For SPIs and PPIs, adds the pending state to interrupt number 32n + x. Reads and writes have the
following behavior:

0 If read, indicates that the corresponding interrupt is not pending on any PE.
If written, has no effect.

1 If read, indicates that the corresponding interrupt is pending, or active and pending:

• On this PE if the interrupt is an SGI or PPI.

• On at least one PE if the interrupt is an SPI.
If written, changes the state of the corresponding interrupt from inactive to pending, or
from active to active and pending. This has no effect in the following cases:

• If the interrupt is an SGI. The pending state of an SGI can be set using
GICD_SPENDSGIR<n>.

• If the interrupt is not inactive and is not active.

• If the interrupt is already pending because of a write to GICD_ISPENDR<n>.

• If the interrupt is already pending because the corresponding interrupt signal is
asserted. In this case, the interrupt remains pending if the interrupt signal is
deasserted.

When this register has an architecturally-defined reset value, this field resets to 0.

Accessing the GICD_ISPENDR<n>:

GICD_ISPENDR<n> can be accessed through its memory-mapped interface:

Component Offset

GIC Distributor 0x0200 + 4n
8-492 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.9 The GIC Distributor register descriptions
8.9.17 GICD_ITARGETSR<n>, Interrupt Processor Targets Registers, n = 0 - 254

The GICD_ITARGETSR<n> characteristics are:

Purpose

When affinity routing is not enabled, holds the list of target PEs for the interrupt. That is, it holds
the list of CPU interfaces to which the Distributor forwards the interrupt if it is asserted and has
sufficient priority.

Usage constraints

This register is accessible as follows:

These registers are used when affinity routing is not enabled. When affinity routing is enabled for
the Security state of an interrupt, the target PEs for an interrupt are defined by GICD_IROUTER<n>
and the associated byte in GICD_ITARGETSR<n> is RES0. An implementation is permitted to
make the byte RAZ/WI in this case.

• These registers are byte-accessible.

• A register field corresponding to an unimplemented interrupt is RAZ/WI.

• A field bit corresponding to an unimplemented CPU interface is RAZ/WI.

• GICD_ITARGETSR0-GICD_ITARGETSR7 are read-only. Each field returns a value that
corresponds only to the PE reading the register.

• It is IMPLEMENTATION DEFINED which, if any, SPIs are statically configured in hardware. The
field for such an SPI is read-only, and returns a value that indicates the PE targets for the
interrupt.

• If GICD_CTLR.DS==0, unless the GICD_NSACR<n> registers permit Non-secure software
to control Group 0 and Secure Group 1 interrupts, any bits that correspond to Group 0 or
Secure Group 1 interrupts are accessible only by Secure accesses and are RAZ/WI to
Non-secure accesses.

In a single connected PE implementation, all interrupts target one PE, and these registers are
RAZ/WI.

Note
 Implementations must ensure that an interrupt that is pending at the time of the write uses either the

old value or the new value and must ensure that the interrupt is neither lost nor handled more than
once. The effect of the change must be visible in finite time.

Configurations

RW fields in this register reset to architecturally UNKNOWN values.

These registers are available in all configurations of the GIC. When GICD_CTLR.DS==0, these
registers are Common.

The number of implemented GICD_ITARGETSR<n> registers is
8*(GICD_TYPER.ITLinesNumber+1). Registers are numbered from 0.

GICD_ITARGETSR0 to GICD_ITARGETSR7 are Banked for each connected PEwith
GICR_TYPER.Processor_Number < 8.

Accessing GICD_ITARGETSR0 to GICD_ITARGETSR7 from a PE with
GICR_TYPER.Processor_Number > 7 is CONSTRAINED UNPREDICTABLE:

• Register is RAZ/WI.

• An UNKNOWN banked copy of the register is accessed.

Security disabled Secure Non-secure

RW RW RW
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-493
ID072617 Non-Confidential

8 Programmers’ Model
8.9 The GIC Distributor register descriptions
Attributes

GICD_ITARGETSR<n> is a 32-bit register.

Field descriptions

The GICD_ITARGETSR<n> bit assignments are:

PEs in the system number from 0, and each bit in a PE targets field refers to the corresponding PE. For example, a
value of 0x3 means that the Pending interrupt is sent to PEs 0 and 1. For
GICD_ITARGETSR0-GICD_ITARGETSR7, a read of any targets field returns the number of the PE performing
the read.

CPU_targets_offset_3B, bits [31:24]

PE targets for an interrupt, at byte offset 3.

This field resets to a value that is architecturally UNKNOWN.

CPU_targets_offset_2B, bits [23:16]

PE targets for an interrupt, at byte offset 2.

This field resets to a value that is architecturally UNKNOWN.

CPU_targets_offset_1B, bits [15:8]

PE targets for an interrupt, at byte offset 1.

This field resets to a value that is architecturally UNKNOWN.

CPU_targets_offset_0B, bits [7:0]

PE targets for an interrupt, at byte offset 0.

This field resets to a value that is architecturally UNKNOWN.

The bits that are set to 1 in the PE targets field determine which PEs are targeted:

For interrupt ID m, when DIV and MOD are the integer division and modulo operations:

• The corresponding GICD_ITARGETSR<n> number, n, is given by n = m DIV 4.

CPU_targets_offset_3B

31 24

CPU_targets_offset_2B

23 16

CPU_targets_offset_1B

15 8

CPU_targets_offset_0B

7 0

Value of PE targets field Interrupt targets

0bxxxxxxx1 CPU interface 0

0bxxxxxx1x CPU interface 1

0bxxxxx1xx CPU interface 2

0bxxxx1xxx CPU interface 3

0bxxx1xxxx CPU interface 4

0bxx1xxxxx CPU interface 5

0bx1xxxxxx CPU interface 6

0b1xxxxxxx CPU interface 7
8-494 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.9 The GIC Distributor register descriptions
• The offset of the required GICD_ITARGETSR<n> register is (0x800 + (4*n)).

• The byte offset of the required Priority field in this register is m MOD 4, where:

— Byte offset 0 refers to register bits [7:0].

— Byte offset 1 refers to register bits [15:8].

— Byte offset 2 refers to register bits [23:16].

— Byte offset 3 refers to register bits [31:24].

Software can write to these registers at any time. Any change to a targets field value:

• Has no effect on any active interrupt. This means that removing a CPU interface from a targets list does not
cancel an active state for interrupts on that CPU interface. There is no effect on interrupts that are active and
pending until the active status is cleared, at which time it is treated as a pending interrupt.

• Has an effect on any pending interrupts. This means:

— Enables the CPU interface to be chosen as a target for the pending interrupt using an IMPLEMENTATION
DEFINED mechanism.

— Removing a CPU interface from the target list of a pending interrupt removes the pending state of the
interrupt on that CPU interface.

Accessing the GICD_ITARGETSR<n>:

GICD_ITARGETSR<n> can be accessed through its memory-mapped interface:

Component Offset

GIC Distributor 0x0800 + 4n
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-495
ID072617 Non-Confidential

8 Programmers’ Model
8.9 The GIC Distributor register descriptions
8.9.18 GICD_NSACR<n>, Non-secure Access Control Registers, n = 0 - 63

The GICD_NSACR<n> characteristics are:

Purpose

Enables Secure software to permit Non-secure software on a particular PE to create and control
Group 0 interrupts.

Usage constraints

This register is accessible as follows:

When GICD_CTLR.DS==1, this register is RAZ/WI.

These registers are Secure, and are RAZ/WI to Non-secure accesses.

These registers are always used when affinity routing is not enabled. When affinity routing is
enabled for the Secure state, GICD_NSACR0 is RES0 and GICR_NSACR provides equivalent
functionality for SGIs.

These registers do not support PPIs, therefore GICD_NSACR1 is RAZ/WI.

Configurations

Some or all RW fields of this register have defined reset values.

The concept of selective enabling of Non-secure access to Group 0 and Secure Group 1 interrupts
applies to SGIs and SPIs.

GICD_NSACR0 is a Banked register used for SGIs. A copy is provided for every PE that has a CPU
interface and that supports this feature.

Attributes

GICD_NSACR<n> is a 32-bit register.

Field descriptions

The GICD_NSACR<n> bit assignments are:

NS_access<x>, bits [2x+1:2x], for x = 0 to 15

Controls Non-secure access of the interrupt with ID 16n + x.

If the corresponding interrupt does not support configurable Non-secure access, the field is
RAZ/WI.

Otherwise, the field is RW and determines the level of Non-secure control permitted if the interrupt
is a Secure interrupt. If the interrupt is a Non-secure interrupt, this field is ignored.

The possible values of each 2-bit field are:

00 No Non-secure access is permitted to fields associated with the corresponding interrupt.

Security disabled Secure Non-secure

RAZ/WI RW RAZ/WI

NS_access<x>, bits [2x+1:2x], for x = 0 to 15

31 0
8-496 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.9 The GIC Distributor register descriptions
01 Non-secure read and write access is permitted to set-pending bits in
GICD_ISPENDR<n> associated with the corresponding interrupt. A Non-secure write
access to GICD_SETSPI_NSR is permitted to set the pending state of the corresponding
interrupt. A Non-secure write access to GICD_SGIR is permitted to generate a Secure
SGI for the corresponding interrupt.
An implementation might also provide read access to clear-pending bits in
GICD_ICPENDR<n> associated with the corresponding interrupt.

10 As 01, but adds Non-secure read and write access permission to fields associated with
the corresponding interrupt in the GICD_ICPENDR<n> registers. A Non-secure write
access to GICD_CLRSPI_NSR is permitted to clear the pending state of the
corresponding interrupt. Also adds Non-secure read access permission to fields
associated with the corresponding interrupt in the GICD_ISACTIVER<n> and
GICD_ICACTIVER<n> registers.

11 For GICD_NSACR0 this encoding is reserved and treated as 10.
For all other GICD_NSACR<n> registers this encoding is treated as 10, but adds
Non-secure read and write access permission to GICD_ITARGETSR<n> and
GICD_IROUTER<n> fields associated with the corresponding interrupt.

When this register has an architecturally-defined reset value, if this field is implemented as an RW
field, it resets to 0.

For interrupt ID m, when DIV and MOD are the integer division and modulo operations:

• The corresponding GICD_NSACR<n> number, n, is given by n = m DIV 16.

• The offset of the required GICD_NSACR<n> register is (0xE00 + (4*n)).

Note
 Because each field in this register comprises two bits, GICD_NSACR0 controls access rights to SGI registers,
GICD_NSACR1 controls access to PPI registers (and is always RAZ/WI), and all other GICD_NSACR<n>
registers control access to SPI registers.

For compatibility with GICv2, writes to GICD_NSACR0 for a particular PE must be coordinated within the
Distributor and must update GICR_NSACR for the Redistributor associated with that PE.

Accessing the GICD_NSACR<n>:

GICD_NSACR<n> can be accessed through its memory-mapped interface:

Component Offset

GIC Distributor 0x0E00 + 4n
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-497
ID072617 Non-Confidential

8 Programmers’ Model
8.9 The GIC Distributor register descriptions
8.9.19 GICD_SETSPI_NSR, Set Non-secure SPI Pending Register

The GICD_SETSPI_NSR characteristics are:

Purpose

Adds the pending state to a valid SPI if permitted by the Security state of the access and the
GICD_NSACR<n> value for that SPI.

A write to this register changes the state of an inactive SPI to pending, and the state of an active SPI
to active and pending.

Usage constraints

This register is accessible as follows:

Writes to this register have no effect if:

• The value written specifies a Secure SPI, the value is written by a Non-secure access, and the
value of the corresponding GICD_NSACR<n> register is 0.

• The value written specifies an invalid SPI.

• The SPI is already pending.

16-bit accesses to bits [15:0] of this register must be supported.

Note
 A Secure access to this register can set the pending state of any valid SPI.

Configurations

If GICD_TYPER.MBIS == 0, this register is reserved.

When GICD_CTLR.DS==1, this register provides functionality for all SPIs.

Attributes

GICD_SETSPI_NSR is a 32-bit register.

Field descriptions

The GICD_SETSPI_NSR bit assignments are:

Bits [31:10]

Reserved, RES0.

INTID, bits [9:0]

The INTID of the SPI.

Security disabled Secure Non-secure

WO WO WO

RES0

31 10

INTID

9 0
8-498 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.9 The GIC Distributor register descriptions
The function of this register depends on whether the targeted SPI is configured to be an edge-triggered or
level-sensitive interrupt:

• For an edge-triggered interrupt, a write to GICD_SETSPI_NSR or GICD_SETSPI_SR adds the pending state
to the targeted interrupt. It will stop being pending on activation, or if the pending state is removed by a write
to GICD_CLRSPI_NSR, GICD_CLRSPI_SR, or GICD_ICPENDR<n>.

• For a level-sensitive interrupt, a write to GICD_SETSPI_NSR or GICD_SETSPI_SR adds the pending state
to the targeted interrupt. It will remain pending until it is deasserted by a write to GICD_CLRSPI_NSR or
GICD_CLRSPI_SR. If the interrupt is activated between having the pending state added and being
deactivated, then the interrupt will be active and pending.

Accessing the GICD_SETSPI_NSR:

GICD_SETSPI_NSR can be accessed through its memory-mapped interface:

Component Offset

GIC Distributor 0x0040
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-499
ID072617 Non-Confidential

8 Programmers’ Model
8.9 The GIC Distributor register descriptions
8.9.20 GICD_SETSPI_SR, Set Secure SPI Pending Register

The GICD_SETSPI_SR characteristics are:

Purpose

Adds the pending state to a valid SPI.

A write to this register changes the state of an inactive SPI to pending, and the state of an active SPI
to active and pending.

Usage constraints

This register is accessible as follows:

Writes to this register have no effect if:

• The value is written by a Non-secure access.

• The value written specifies an invalid SPI.

• The SPI is already pending.

16-bit accesses to bits [15:0] of this register must be supported.

Configurations

If GICD_TYPER.MBIS == 0, this register is reserved.

When GICD_CTLR.DS==1, this register is WI.

Attributes

GICD_SETSPI_SR is a 32-bit register.

Field descriptions

The GICD_SETSPI_SR bit assignments are:

Bits [31:10]

Reserved, RES0.

INTID, bits [9:0]

The INTID of the SPI.

The function of this register depends on whether the targeted SPI is configured to be an edge-triggered or
level-sensitive interrupt:

• For an edge-triggered interrupt, a write to GICD_SETSPI_NSR or GICD_SETSPI_SR adds the pending state
to the targeted interrupt. It will stop being pending on activation, or if the pending state is removed by a write
to GICD_CLRSPI_NSR, GICD_CLRSPI_SR, or GICD_ICPENDR<n>.

• For a level-sensitive interrupt, a write to GICD_SETSPI_NSR or GICD_SETSPI_SR adds the pending state
to the targeted interrupt. It will remain pending until it is deasserted by a write to GICD_CLRSPI_NSR or
GICD_CLRSPI_SR. If the interrupt is activated between having the pending state added and being
deactivated, then the interrupt will be active and pending.

Security disabled Secure Non-secure

WI WO WI

RES0

31 10

INTID

9 0
8-500 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.9 The GIC Distributor register descriptions
Accessing the GICD_SETSPI_SR:

GICD_SETSPI_SR can be accessed through its memory-mapped interface:

Component Offset

GIC Distributor 0x0050
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-501
ID072617 Non-Confidential

8 Programmers’ Model
8.9 The GIC Distributor register descriptions
8.9.21 GICD_SGIR, Software Generated Interrupt Register

The GICD_SGIR characteristics are:

Purpose

Controls the generation of SGIs.

Usage constraints

This register is accessible as follows:

This register is used only when affinity routing is not enabled. When affinity routing is enabled, this
register is RES0.

It is IMPLEMENTATION DEFINED whether this register has any effect when the forwarding of
interrupts by the Distributor is disabled by GICD_CTLR.

Configurations

This register is available in all configurations of the GIC. If the GIC supports two Security states
this register is Common.

Attributes

GICD_SGIR is a 32-bit register.

Field descriptions

The GICD_SGIR bit assignments are:

Bits [31:26]

Reserved, RES0.

TargetListFilter, bits [25:24]

Determines how the Distributor processes the requested SGI.

00 Forward the interrupt to the CPU interfaces specified by GICD_SGIR.CPUTargetList.

01 Forward the interrupt to all CPU interfaces except that of the PE that requested the
interrupt.

10 Forward the interrupt only to the CPU interface of the PE that requested the interrupt.

11 Reserved.

CPUTargetList, bits [23:16]

When GICD_SGIR.TargetListFilter is 00, this field defines the CPU interfaces to which the
Distributor must forward the interrupt.

Each bit of the field refers to the corresponding CPU interface. For example, CPUTargetList[0]
corresponds to interface 0. Setting a bit to 1 indicates that the interrupt must be forwarded to the
corresponding interface.

Security disabled Secure Non-secure

WO WO WO

RES0

31 26 25 24

CPUTargetList

23 16 15

RES0

14 4

INTID

3 0

TargetListFilter NSATT
8-502 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.9 The GIC Distributor register descriptions
If this field is 00000000 when GICD_SGIR.TargetListFilter is 00, the Distributor does not forward
the interrupt to any CPU interface.

NSATT, bit [15]

Specifies the required group of the SGI.

0 Forward the SGI specified in the INTID field to a specified CPU interface only if the
SGI is configured as Group 0 on that interface.

1 Forward the SGI specified in the INTID field to a specified CPU interface only if the
SGI is configured as Group 1 on that interface.

This field is writable only by a Secure access. Non-secure accesses can also generate Group 0
interrupts, if allowed to do so by GICD_NSACR0. Otherwise, Non-secure writes to GICD_SGIR
generate an SGI only if the specified SGI is programmed as Group 1, regardless of the value of bit
[15] of the write.

Bits [14:4]

Reserved, RES0.

INTID, bits [3:0]

The INTID of the SGI to forward to the specified CPU interfaces.

Accessing the GICD_SGIR:

GICD_SGIR can be accessed through its memory-mapped interface:

Component Offset

GIC Distributor 0x0F00
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-503
ID072617 Non-Confidential

8 Programmers’ Model
8.9 The GIC Distributor register descriptions
8.9.22 GICD_SPENDSGIR<n>, SGI Set-Pending Registers, n = 0 - 3

The GICD_SPENDSGIR<n> characteristics are:

Purpose

Adds the pending state to an SGI.

A write to this register changes the state of an inactive SGI to pending, and the state of an active SGI
to active and pending.

Usage constraints

This register is accessible as follows:

These registers are used only when affinity routing is not enabled. When affinity routing is enabled
for the Security state of an interrupt then the bit associated with SGI in that Security state is RES0.
An implementation is permitted to make the register RAZ/WI in this case.

A register bit that corresponds to an unimplemented SGI is RAZ/WI.

These registers are byte-accessible.

If the GIC implementation supports two Security states:

• A register bit that corresponds to a Group 0 interrupt is RAZ/WI to Non-secure accesses.

• Register bits corresponding to unimplemented PEs are RAZ/WI.

Configurations

Some or all RW fields of this register have defined reset values.

Four SGI set-pending registers are implemented. Each register contains eight set-pending bits for
each of four SGIs, for a total of 16 possible SGIs.

In multiprocessor implementations, each PE has a copy of these registers.

Attributes

GICD_SPENDSGIR<n> is a 32-bit register.

Field descriptions

The GICD_SPENDSGIR<n> bit assignments are:

SGI_set_pending_bits<x>, bits [8x+7:8x], for x = 0 to 3

Adds the pending state to SGI number 4n + x for the PE corresponding to the bit number written to.

Reads and writes have the following behavior:

0 If read, indicates that the SGI from the corresponding PE is not pending and is not active
and pending.
If written, has no effect.

1 If read, indicates that the SGI from the corresponding PE is pending or is active and
pending.
If written, adds the pending state to the SGI for the corresponding PE.

Security disabled Secure Non-secure

RW RW RW

SGI_set_pending_bits<x>, bits [8x+7:8x], for x = 0 to 3

31 0
8-504 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.9 The GIC Distributor register descriptions
When this register has an architecturally-defined reset value, this field resets to 0.

For SGI ID m, generated by processing element C writing to the corresponding GICD_SGIR field, where DIV and
MOD are the integer division and modulo operations:

• The corresponding GICD_SPENDSGIR<n> number is given by n = m DIV 4.

• The offset of the required register is (0xF20 + (4n)).

• The offset of the required field within the register GICD_SPENDSGIR<n> is given by m MOD 4.

• The required bit in the 8-bit SGI set-pending field m is bit C.

Accessing the GICD_SPENDSGIR<n>:

GICD_SPENDSGIR<n> can be accessed through its memory-mapped interface:

Component Offset

GIC Distributor 0x0F20 + 4n
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-505
ID072617 Non-Confidential

8 Programmers’ Model
8.9 The GIC Distributor register descriptions
8.9.23 GICD_STATUSR, Error Reporting Status Register

The GICD_STATUSR characteristics are:

Purpose

Provides software with a mechanism to detect:

• Accesses to reserved locations.

• Writes to read-only locations.

• Reads of write-only locations.

Usage constraints

GICD_STATUSR(S) is accessible as follows:

GICD_STATUSR(NS) is accessible as follows:

This is an optional register. If the register is not implemented, the location is RAZ/WI.

Configurations

If the GIC implementation supports two Security states this register is Banked to provide Secure and
Non-secure copies.

Attributes

GICD_STATUSR is a 32-bit register.

Field descriptions

The GICD_STATUSR bit assignments are:

Bits [31:4]

Reserved, RES0.

WROD, bit [3]

Write to an RO location.

0 Normal operation.

1 A write to an RO location has been detected.

Security disabled Secure Non-secure

RW RW -

Security disabled Secure Non-secure

RW - RW

RES0

31 4 3 2 1 0

RRD
WRD

RWOD
WROD
8-506 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.9 The GIC Distributor register descriptions
When a violation is detected, software must write 1 to this register to reset it.

RWOD, bit [2]

Read of a WO location.

0 Normal operation.

1 A read of a WO location has been detected.

When a violation is detected, software must write 1 to this register to reset it.

WRD, bit [1]

Write to a reserved location.

0 Normal operation.

1 A write to a reserved location has been detected.

When a violation is detected, software must write 1 to this register to reset it.

RRD, bit [0]

Read of a reserved location.

0 Normal operation.

1 A read of a reserved location has been detected.

When a violation is detected, software must write 1 to this register to reset it.

Accessing the GICD_STATUSR:

GICD_STATUSR can be accessed through its memory-mapped interface:

Component Offset

GIC Distributor 0x0010
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-507
ID072617 Non-Confidential

8 Programmers’ Model
8.9 The GIC Distributor register descriptions
8.9.24 GICD_TYPER, Interrupt Controller Type Register

The GICD_TYPER characteristics are:

Purpose

Provides information about what features the GIC implementation supports. It indicates:

• Whether the GIC implementation supports two Security states.

• The maximum number of INTIDs that the GIC implementation supports.

• The number of PEs that can be used as interrupt targets.

Usage constraints

This register is accessible as follows:

Configurations

This register is available in all configurations of the GIC. When GICD_CTLR.DS==0, this register
is Common.

Attributes

GICD_TYPER is a 32-bit register.

Field descriptions

The GICD_TYPER bit assignments are:

Bits [31:27]

Reserved, RES0.

RSS, bit [26]

Range Selector Support. Possible values are:

0 The IRI supports targeted SGIs with affinity level 0 values of 0 - 15.

1 The IRI supports targeted SGIs with affinity level 0 values of 0 - 255.

No1N, bit [25]

Indicates whether 1 of N SPI interrupts are supported.

0 1 of N SPI interrupts are supported.

1 1 of N SPI interrupts are not supported.

Security disabled Secure Non-secure

RO RO RO

RES0

31 27 26 25 24

IDbits

23 19 18 17 16

RES0

15 11 10 9 8 7 5

ITLinesNumber

4 0

RSS
No1N
A3V
DVIS
LPIS
MBIS

CPUNumber
RES0

SecurityExtn
8-508 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.9 The GIC Distributor register descriptions
A3V, bit [24]

Affinity 3 valid. Indicates whether the Distributor supports nonzero values of Affinity level 3.
Possible values are:

0 The Distributor only supports zero values of Affinity level 3.

1 The Distributor supports nonzero values of Affinity level 3.

IDbits, bits [23:19]

The number of interrupt identifier bits supported, minus one.

DVIS, bit [18]

Indicates whether the implementation supports Direct Virtual LPI injection.

0 The implementation does not support Direct Virtual LPI injection.

1 The implementation supports Direct Virtual LPI injection.

For GICv3, this field is RES0.

LPIS, bit [17]

Indicates whether the implementation supports LPIs.

0 The implementation does not support LPIs.

1 The implementation supports LPIs.

MBIS, bit [16]

Indicates whether the implementation supports message-based interrupts by writing to Distributor
registers.

0 The implementation does not support message-based interrupts by writing to
Distributor registers.
The GICD_CLRSPI_NSR, GICD_SETSPI_NSR, GICD_CLRSPI_SR, and
GICD_SETSPI_SR registers are reserved.

1 The implementation supports message-based interrupts by writing to the
GICD_CLRSPI_NSR, GICD_SETSPI_NSR, GICD_CLRSPI_SR, or
GICD_SETSPI_SR registers.

Bits [15:11]

Reserved, RES0.

SecurityExtn, bit [10]

Indicates whether the GIC implementation supports two Security states:

When GICD_CTLR.DS == 1, this field is RAZ.

0 The GIC implementation supports only a single Security state.

1 The GIC implementation supports two Security states.

Bits [9:8]

Reserved, RES0.

CPUNumber, bits [7:5]

Reports the number of PEs that can be used when affinity routing is not enabled, minus 1.

These PEs must be numbered contiguously from zero, but the relationship between this number and
the affinity hierarchy from MPIDR is IMPLEMENTATION DEFINED. If the implementation does not
support ARE being zero, this field is 000.

ITLinesNumber, bits [4:0]

Indicates the maximum SPI INTID that the GIC implementation supports. If the value of this field
is N, the maximum SPI INTID is 32(N+1)-1. For example, 00011 specifies that the maximum SPI
INTID is 127.
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-509
ID072617 Non-Confidential

8 Programmers’ Model
8.9 The GIC Distributor register descriptions
The maximum SPI INTID an implementation might support is 1019 (field value 11111). Regardless
of the range of INTIDs defined by this field, interrupt IDs 1020-1023 are reserved for special
purposes.

Note
 The value derived from this field specifies the maximum number of SPIs that the GIC

implementation might support. An implementation might not implement all SPIs up to this
maximum.

The ITLinesNumber field only indicates the maximum number of SPIs that the GIC implementation might support.
This value determines the number of instances of the following interrupt registers:

• GICD_IGROUPR<n>.

• GICD_ISENABLER<n>.

• GICD_ICENABLER<n>.

• GICD_ISPENDR<n>.

• GICD_ICPENDR<n>.

• GICD_ISACTIVER<n>.

• GICD_ICACTIVER<n>.

• GICD_IPRIORITYR<n>.

• GICD_ITARGETSR<n>.

• GICD_ICFGR<n>.

The GIC architecture does not require a GIC implementation to support a continuous range of SPI interrupt IDs.
Software must check which SPI INTIDs are supported, up to the maximum value indicated by
GICD_TYPER.ITLinesNumber.

Accessing the GICD_TYPER:

GICD_TYPER can be accessed through its memory-mapped interface:

Component Offset

GIC Distributor 0x0004
8-510 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.10 The GIC Redistributor register map
8.10 The GIC Redistributor register map
This section describes the Redistributor register map.

The mechanism by which an ITS communicates with the Redistributors is IMPLEMENTATION DEFINED. An
implementation might perform this communication using memory-mapped functionality, and a portion of the
Redistributor memory map is allocated for such communication. The definition of the communication is outside the
scope of this GIC architecture specification.

Each Redistributor defines two 64KB frames in the physical address map:
• RD_base for controlling the overall behavior of the Redistributor, for controlling LPIs, and for generating

LPIs in a system that does not include at least one ITS.
• SGI_base for controlling and generating PPIs and SGIs.

The frame for each Redistributor must be contiguous and must be ordered as follows:
1. RD_base

2. SGI_base

In GICv4, there are two additional 64KB frames:
• A frame to control virtual LPIs. The base address of this frame is referred to as VLPI_base.
• A frame for a reserved page.

The frames for each Redistributor must be contiguous and must be ordered as follows:
1. RD_base

2. SGI_base

3. VLPI_base

4. Reserved

Reserved register addresses are RES0.

Table 8-27 shows the GIC Redistributor register map for the physical LPI registers.

Table 8-27 GIC physical LPI Redistributor register map

Offset from
RD_base

Name Type Reset Description

0x0000 GICR_CTLR RW See the register description Redistributor Control Register

0x0004 GICR_IIDR RO IMPLEMENTATION DEFINED Implementer Identification Register

0x0008 GICR_TYPER RO IMPLEMENTATION DEFINED Redistributor Type Register

0x0010 GICR_STATUSR RW 0x0000 0000 Error Reporting Status Register, optional

0x0014 GICR_WAKER RW See the register description Redistributor Wake Register

0x0018 - - - Reserved

0x0020 - - IMPLEMENTATION DEFINED IMPLEMENTATION DEFINED registers

0x0040 GICR_SETLPIRa WO - Set LPI Pending Register

0x0048 GICR_CLRLPIRa WO - Clear LPI Pending Register

0x0050 - - - Reserved

0x0070 GICR_PROPBASER RW - Redistributor Properties Base Address Register

0x0078 GICR_PENDBASER RW - Redistributor LPI Pending Table Base Address
Register

0x0080 - - - Reserved
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-511
ID072617 Non-Confidential

8 Programmers’ Model
8.10 The GIC Redistributor register map
Table 8-28 shows the GIC Redistributor register map for the virtual LPI registers.

Table 8-29 on page 8-513 shows the GIC Redistributor register map for the SGI and PPI registers.

0x00A0 GICR_INVLPIRa WO - Redistributor Invalidate LPI Register

0x00A8 - - - Reserved

0x00B0 GICR_INVALLRa WO - Redistributor Invalidate All Register

0x00B8 - - - Reserved

0x00C0 GICR_SYNCRa RO - Redistributor Synchronize Register

0x00C8 - - - Reserved

0x0100 - WO IMPLEMENTATION DEFINED IMPLEMENTATION DEFINED registers

0x0108 - - - Reserved

0x0110 - WO IMPLEMENTATION DEFINED IMPLEMENTATION DEFINED registers

0x0118-0xBFFC - - - Reserved

0xC000-0xFFCC - - IMPLEMENTATION DEFINED IMPLEMENTATION DEFINED registers

0xFFD0-0xFFFC - RO IMPLEMENTATION DEFINED Reserved for ID registers, see Identification
registers on page 8-171

a. This register is IMPLEMENTATION DEFINED in implementations that include an ITS.

Table 8-27 GIC physical LPI Redistributor register map (continued)

Offset from
RD_base

Name Type Reset Description

Table 8-28 GIC virtual LPI Redistributor register map

Offset from
VLPI_base

Name Type Reset Description

0x0000 - - - Reserved

0x0040 - WO IMPLEMENTATION DEFINED IMPLEMENTATION DEFINED registers

0x0050 - - - Reserved

0x0070 GICR_VPROPBASER RW - Virtual Redistributor Properties Base Address
Register

0x0078 GICR_VPENDBASER RW - Virtual Pending Table Base Address Register

0x0080-0x037C - RW IMPLEMENTATION DEFINED IMPLEMENTATION DEFINED registers

0x0380-0xBFFC - - - Reserved

0xC000-0xFFCC - - IMPLEMENTATION DEFINED IMPLEMENTATION DEFINED registers

0xFFD0-0xFFFC - - - Reserved
8-512 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.10 The GIC Redistributor register map
Table 8-29 GIC SGI and PPI Redistributor register map

Offset from
SGI_base

Name Type Reset Description

0x0080 GICR_IGROUPR0 RW - Interrupt Group Register 0

0x0100 GICR_ISENABLER0 RW IMPLEMENTATION DEFINED Interrupt Set-Enable Register 0

0x0180 GICR_ICENABLER0 RW IMPLEMENTATION DEFINED Interrupt Clear-Enable Register 0

0x0200 GICR_ISPENDR0 RW 0xXXXX 0000 Interrupt Set-Pend Register 0

0x0280 GICR_ICPENDR0 RW 0xXXXX 0000 Interrupt Clear-Pend Register 0

0x0300 GICR_ISACTIVER0 RW 0x0000 0000 Interrupt Set-Active Register 0

0x0380 GICR_ICACTIVER0 RW 0x0000 0000 Interrupt Clear-Active Register 0

0x0400-0x041C GICR_IPRIORITYR<n> RW 0x0000 0000 Interrupt Priority Registers

0x0C00 GICR_ICFGR0 RW IMPLEMENTATION DEFINED SGI Configuration Register

0x0C04 GICR_ICFGR1 RW IMPLEMENTATION DEFINED PPI Configuration Register

0x0D00 GICR_IGRPMODR0 RW - Interrupt Group Modifier Register 0

0x0E00 GICR_NSACR RW 0x0000 0000 Non-Secure Access Control Register

0x0E04-0xBFFC - - - Reserved

0xC000-0xFFCC - - IMPLEMENTATION DEFINED IMPLEMENTATION DEFINED registers

0xFFD0-0xFFFC - - - Reserved
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-513
ID072617 Non-Confidential

8 Programmers’ Model
8.11 The GIC Redistributor register descriptions
8.11 The GIC Redistributor register descriptions
This section describes each of the GIC Redistributor registers in register name order.
8-514 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.11 The GIC Redistributor register descriptions
8.11.1 GICR_CLRLPIR, Clear LPI Pending Register

The GICR_CLRLPIR characteristics are:

Purpose

Clears the pending state of the specified LPI.

Usage constraints

This register is accessible as follows:

When written with a 32-bit write the data is zero-extended to 64 bits.

This register is mandatory in an implementation that supports LPIs and does not include an ITS. The
functionality of this register is IMPLEMENTATION DEFINED in an implementation that does include
an ITS.

Writes to this register have no effect if any of the following apply:

• GICR_CTLR.EnableLPIs == 0.

• The pINTID value specifies an unimplemented LPI.

• The pINTID value specifies an LPI that is not pending.

Configurations

A copy of this register is provided for each Redistributor.

Attributes

GICR_CLRLPIR is a 64-bit register.

Field descriptions

The GICR_CLRLPIR bit assignments are:

Bits [63:32]

Reserved, RES0.

pINTID, bits [31:0]

The INTID of the physical LPI.

Note
 The size of this field is IMPLEMENTATION DEFINED, and is specified by the GICD_TYPER.Idbits

field. Unimplemented bits are RES0.

Security disabled Secure Non-secure

WO WO WO

RES0

63 32

pINTID

31 0
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-515
ID072617 Non-Confidential

8 Programmers’ Model
8.11 The GIC Redistributor register descriptions
Accessing the GICR_CLRLPIR:

GICR_CLRLPIR can be accessed through its memory-mapped interface:

Component Frame Offset

GIC Redistributor RD_base 0x0048-0x004C
8-516 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.11 The GIC Redistributor register descriptions

UWP
DPG
DPG
DPG
8.11.2 GICR_CTLR, Redistributor Control Register

The GICR_CTLR characteristics are:

Purpose

Controls the operation of a Redistributor, and enables the signaling of LPIs by the Redistributor to
the connected PE.

Usage constraints

This register is accessible as follows:

Configurations

Some or all RW fields of this register have defined reset values.

A copy of this register is provided for each Redistributor.

Attributes

GICR_CTLR is a 32-bit register.

Field descriptions

The GICR_CTLR bit assignments are:

UWP, bit [31]

Upstream Write Pending. Read-only. Indicates whether all upstream writes have been
communicated to the Distributor.

0 The effects of all upstream writes have been communicated to the Distributor, including
any Generate SGI packets.

1 Not all the effects of upstream writes, including any Generate SGI packets, have been
communicated to the Distributor.

Bits [30:27]

Reserved, RES0.

DPG1S, bit [26]

Disable Processor selection for Group 1 Secure interrupts. When GICR_TYPER.DPGS == 1:

0 A Group 1 Secure SPI configured to use the 1 of N distribution model can select this
PE, if the PE is not asleep and if Secure Group 1 interrupts are enabled.

1 A Group 1 Secure SPI configured to use the 1 of N distribution model cannot select this
PE.

When GICR_TYPER.DPGS == 0 this bit is RAZ/WI.

Security disabled Secure Non-secure

RW RW RW

31

RES0

30 27 26 25 24

RES0

23 4 3 2 1 0

1S
1NS
0

EnableLPIs
RES0

RWP
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-517
ID072617 Non-Confidential

8 Programmers’ Model
8.11 The GIC Redistributor register descriptions
When GICD_CTLR.DS==1, this field is RAZ/WI. In GIC implementations that support two
Security states, this field is only accessible by Secure accesses, and is RAZ/WI to Non-secure
accesses.

It is IMPLEMENTATION DEFINED whether this bits affect the selection of PEs for interrupts using the
1 of N distribution model when GICD_CTLR.ARE_S==0.

When this register has an architecturally-defined reset value, if this field is implemented as an RW
field, it resets to 0.

DPG1NS, bit [25]

Disable Processor selection for Group 1 Non-secure interrupts. When GICR_TYPER.DPGS == 1:

0 A Group 1 Non-secure SPI configured to use the 1 of N distribution model can select
this PE, if the PE is not asleep and if Non-secure Group 1 interrupts are enabled.

1 A Group 1 Non-secure SPI configured to use the 1 of N distribution model cannot select
this PE.

When GICR_TYPER.DPGS == 0 this bit is RAZ/WI.

It is IMPLEMENTATION DEFINED whether this bits affect the selection of PEs for interrupts using the
1 of N distribution model when GICD_CTLR.ARE_NS==0.

When this register has an architecturally-defined reset value, if this field is implemented as an RW
field, it resets to 0.

DPG0, bit [24]

Disable Processor selection for Group 0 interrupts. When GICR_TYPER.DPGS == 1:

0 A Group 0 SPI configured to use the 1 of N distribution model can select this PE, if the
PE is not asleep and if Group 0 interrupts are enabled.

1 A Group 0 SPI configured to use the 1 of N distribution model cannot select this PE.

When GICR_TYPER.DPGS == 0 this bit is RAZ/WI.

When GICD_CTLR.DS==1, this field is always accessible. In GIC implementations that support
two Security states, this field is RAZ/WI to Non-secure accesses.

It is IMPLEMENTATION DEFINED whether this bits affect the selection of PEs for interrupts using the
1 of N distribution model when GICD_CTLR.ARE_S==0.

When this register has an architecturally-defined reset value, if this field is implemented as an RW
field, it resets to 0.

Bits [23:4]

Reserved, RES0.

RWP, bit [3]

Register Write Pending. This bit indicates whether a register write for the current Security state is
in progress or not.

0 The effect of all previous writes to the following registers are visible to all agents in the
system:

• GICR_ICENABLER0

• GICR_CTLR.DPG1S

• GICR_CTLR.DPG1NS

• GICR_CTLR.DPG0

• GICR_CTLR, which clears Enable_LPIs from 1 to 0.

1 The effect of all previous writes to the following registers are not guaranteed by the
architecture to be visible yet to the all agents in the system as the changes are still being
propagated:

• GICR_ICENABLER0

• GICR_CTLR.DPG1S
8-518 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.11 The GIC Redistributor register descriptions
• GICR_CTLR.DPG1NS

• GICR_CTLR.DPG0

• GICR_CTLR, which clears Ensble_LPIs from 1 to 0.

Bits [2:1]

Reserved, RES0.

EnableLPIs, bit [0]

In implementations where affinity routing is enabled for the Security state:

0 LPI support is disabled. Any doorbell interrupt generated as a result of a write to a
virtual LPI register must be discarded, and any ITS translation requests or commands
involving LPIs in this Redistributor are ignored.

1 LPI support is enabled.

Note
 If GICR_TYPER.LPIS == 0, this field is RES0.

If GICD_CTLR.ARE_NS is written from 1 to 0 when this bit is 1, behavior is an IMPLEMENTATION
DEFINED choice between clearing GICR_CTLR.EnableLPIs to 0 or maintaining its current value.

When affinity routing is not enabled for the Non-secure state, this bit is RES0.

When written from 0 to 1, the Redistributor loads the LPI Pending table from memory to check for
any pending interrupts.

After it has been written to 1, it is IMPLEMENTATION DEFINED whether the bit becomes RES1 or can
be cleared by to 0.

Where the bit remains programmable:

• Software must observe GICR_CTLR.RWP==0 after clearing GICR_CTLR.EnableLPIs
from 1 to 0 before writing GICR_PENDBASER or GICR_PROPBASER, otherwise
behavior is UNPREDICTABLE.

• Software must observe GICR_CTLR.RWP==0 after clearing GICR_CTLR.EnableLPIs
from 1 to 0 before setting GICR_CTLR.EnableLPIs to 1, otherwise behavior is
UNPREDICTABLE.

Note
 If one or more ITS is implemented, ARM strongly recommends that all LPIs are mapped to another

Redistributor before GICR_CTLR.EnableLPIs is cleared to 0.

When this register has an architecturally-defined reset value, if this field is implemented as an RW
field, it resets to 0.

The participation of a PE in the 1 of N distribution model for a given interrupt group is governed by the
concatenation of GICR_WAKER.ProcessorSleep, the appropriate GICR_CTLR.DPG{1, 0} bit, and the PE
interrupt group enable. The behavior options are:

PS DPG{1S, 1NS, 0} Enable PE behavior

0 0 0 The PE cannot be selected.

0 0 1 The PE can be selected.

0 1 * The PE cannot be selected.

1 * * The PE cannot be selected when GICD_CTLR.E1NWF == 0. When GICD_CTLR.E1NWF
== 1, the mechanism by which PEs are selected is IMPLEMENTATION DEFINED.
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-519
ID072617 Non-Confidential

8 Programmers’ Model
8.11 The GIC Redistributor register descriptions
If an SPI using the 1 of N distribution model has been forwarded to the PE and a write to GICR_CTLR occurs that
changes the DPG bit for the interrupt group of the SPI, the IRI must attempt to select a different target PE for the
SPI. This might have no effect on the forwarded SPI if it has already been activated.

Accessing the GICR_CTLR:

GICR_CTLR can be accessed through its memory-mapped interface:

Component Frame Offset

GIC Redistributor RD_base 0x0000
8-520 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.11 The GIC Redistributor register descriptions
8.11.3 GICR_ICACTIVER0, Interrupt Clear-Active Register 0

The GICR_ICACTIVER0 characteristics are:

Purpose

Deactivates the corresponding SGI or PPI. These registers are used when saving and restoring GIC
state.

Usage constraints

This register is accessible as follows:

When affinity routing is not enabled for the Security state of an interrupt in GICR_ICACTIVER0,
the corresponding bit is RAZ/WI and equivalent functionality is provided by
GICD_ICACTIVER<n> with n=0.

This register only applies to SGIs (bits [15:0]) and PPIs (bits [31:16]). For SPIs, this functionality
is provided by GICD_ICACTIVER<n>.

When GICD_CTLR.DS == 0, bits corresponding to Secure SGIs and PPIs are RAZ/WI to
Non-secure accesses.

Configurations

RW fields in this register reset to architecturally UNKNOWN values.

A copy of this register is provided for each Redistributor.

Attributes

GICR_ICACTIVER0 is a 32-bit register.

Field descriptions

The GICR_ICACTIVER0 bit assignments are:

Clear_active_bit<x>, bit [x], for x = 0 to 31

Removes the active state from interrupt number x. Reads and writes have the following behavior:

0 If read, indicates that the corresponding interrupt is not active, and is not active and
pending.
If written, has no effect.

1 If read, indicates that the corresponding interrupt is active, or is active and pending.
If written, deactivates the corresponding interrupt, if the interrupt is active. If the
interrupt is already deactivated, the write has no effect.

This field resets to a value that is architecturally UNKNOWN.

Security disabled Secure Non-secure

RW RW RW

Clear_active_bit<x>, bit [x], for x = 0 to 31

31 0
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-521
ID072617 Non-Confidential

8 Programmers’ Model
8.11 The GIC Redistributor register descriptions
Accessing the GICR_ICACTIVER0:

GICR_ICACTIVER0 can be accessed through its memory-mapped interface:

Component Frame Offset

GIC Redistributor SGI_base 0x0380
8-522 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.11 The GIC Redistributor register descriptions
8.11.4 GICR_ICENABLER0, Interrupt Clear-Enable Register 0

The GICR_ICENABLER0 characteristics are:

Purpose

Disables forwarding of the corresponding SGI or PPI to the CPU interfaces.

Usage constraints

This register is accessible as follows:

When affinity routing is not enabled for the Security state of an interrupt in GICR_ICENABLER0,
the corresponding bit is RAZ/WI and equivalent functionality is provided by
GICD_ICENABLER<n> with n=0.

This register only applies to SGIs (bits [15:0]) and PPIs (bits [31:16]). For SPIs, this functionality
is provided by GICD_ICENABLER<n>.

When GICD_CTLR.DS == 0, bits corresponding to Secure SGIs and PPIs are RAZ/WI to
Non-secure accesses.

Configurations

RW fields in this register reset to architecturally UNKNOWN values.

A copy of this register is provided for each Redistributor.

Attributes

GICR_ICENABLER0 is a 32-bit register.

Field descriptions

The GICR_ICENABLER0 bit assignments are:

Clear_enable_bit<x>, bit [x], for x = 0 to 31

For PPIs and SGIs, controls the forwarding of interrupt number x to the CPU interfaces. Reads and
writes have the following behavior:

0 If read, indicates that forwarding of the corresponding interrupt is disabled.
If written, has no effect.

1 If read, indicates that forwarding of the corresponding interrupt is enabled.
If written, disables forwarding of the corresponding interrupt.
After a write of 1 to this bit, a subsequent read of this bit returns 0.

This field resets to a value that is architecturally UNKNOWN.

Security disabled Secure Non-secure

RW RW RW

Clear_enable_bit<x>, bit [x], for x = 0 to 31

31 0
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-523
ID072617 Non-Confidential

8 Programmers’ Model
8.11 The GIC Redistributor register descriptions
Accessing the GICR_ICENABLER0:

GICR_ICENABLER0 can be accessed through its memory-mapped interface:

Component Frame Offset

GIC Redistributor SGI_base 0x0180
8-524 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.11 The GIC Redistributor register descriptions
8.11.5 GICR_ICFGR0, Interrupt Configuration Register 0

The GICR_ICFGR0 characteristics are:

Purpose

Determines whether the corresponding SGI is edge-triggered or level-sensitive.

Usage constraints

This register is accessible as follows:

This register is used when affinity routing is enabled.

When affinity routing is disabled for the Security state of an interrupt, the field for that interrupt is
RES0 and an implementation is permitted to make the field RAZ/WI in this case. Equivalent
functionality is provided by GICD_ICFGR<n> with n=0.

When GICD_CTLR.DS==0, a register bit that corresponds to a Group 0 or Secure Group 1 interrupt
is RAZ/WI to Non-secure accesses.

Configurations

RW fields in this register reset to architecturally UNKNOWN values.

A copy of this register is provided for each Redistributor.

Attributes

GICR_ICFGR0 is a 32-bit register.

Field descriptions

The GICR_ICFGR0 bit assignments are:

Int_config<x>, bits [2x+1:2x], for x = 0 to 15

Indicates whether the interrupt with ID 16n + x is level-sensitive or edge-triggered.

Int_config[0] (bit [2x]) is RES0.

Possible values of Int_config[1] (bit [2x+1]) are:

0 Corresponding interrupt is level-sensitive.

1 Corresponding interrupt is edge-triggered.

For SGIs, Int_config[1] is RAO/WI.

A read of this bit always returns the correct value to indicate the interrupt triggering method.

This field resets to a value that is architecturally UNKNOWN.

Security disabled Secure Non-secure

RW RW RW

Int_config<x>, bits [2x+1:2x], for x = 0 to 15

31 0
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-525
ID072617 Non-Confidential

8 Programmers’ Model
8.11 The GIC Redistributor register descriptions
Accessing the GICR_ICFGR0:

GICR_ICFGR0 can be accessed through its memory-mapped interface:

Component Frame Offset

GIC Redistributor SGI_base 0x0C00
8-526 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.11 The GIC Redistributor register descriptions
8.11.6 GICR_ICFGR1, Interrupt Configuration Register 1

The GICR_ICFGR1 characteristics are:

Purpose

Determines whether the corresponding PPI is edge-triggered or level-sensitive.

Usage constraints

This register is accessible as follows:

This register is used when affinity routing is enabled.

When affinity routing is disabled for the Security state of an interrupt, the field for that interrupt is
RES0 and an implementation is permitted to make the field RAZ/WI in this case. Equivalent
functionality is provided by GICD_ICFGR<n> with n=1.

Configurations

RW fields in this register reset to architecturally UNKNOWN values.

A copy of this register is provided for each Redistributor.

For each supported PPI, it is IMPLEMENTATION DEFINED whether software can program the
corresponding Int_config field.

Changing Int_config when the interrupt is individually enabled is UNPREDICTABLE.

Changing the interrupt configuration between level-sensitive and edge-triggered (in either
direction) at a time when there is a pending interrupt will leave the interrupt in an UNKNOWN
pending state.

Attributes

GICR_ICFGR1 is a 32-bit register.

Field descriptions

The GICR_ICFGR1 bit assignments are:

Int_config<x>, bits [2x+1:2x], for x = 0 to 15

Indicates whether the interrupt with ID 16n + x is level-sensitive or edge-triggered.

Int_config[0] (bit [2x]) is RES0.

Possible values of Int_config[1] (bit [2x+1]) are:

0 Corresponding interrupt is level-sensitive.

1 Corresponding interrupt is edge-triggered.

A read of this bit always returns the correct value to indicate the interrupt triggering method.

For PPIs, Int_config[1] is programmable unless the implementation supports two Security states
and the bit corresponds to a Group 0 or Secure Group 1 interrupt, in which case the bit is RAZ/WI
to Non-secure accesses.

This field resets to a value that is architecturally UNKNOWN.

Security disabled Secure Non-secure

RW RW RW

Int_config<x>, bits [2x+1:2x], for x = 0 to 15

31 0
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-527
ID072617 Non-Confidential

8 Programmers’ Model
8.11 The GIC Redistributor register descriptions
Accessing the GICR_ICFGR1:

GICR_ICFGR1 can be accessed through its memory-mapped interface:

Component Frame Offset

GIC Redistributor SGI_base 0x0C04
8-528 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.11 The GIC Redistributor register descriptions
8.11.7 GICR_ICPENDR0, Interrupt Clear-Pending Register 0

The GICR_ICPENDR0 characteristics are:

Purpose

Removes the pending state from the corresponding SGI or PPI.

Usage constraints

This register is accessible as follows:

When affinity routing is not enabled for the Security state of an interrupt in GICR_ICPENDR0, the
corresponding bit is RAZ/WI and equivalent functionality is provided by GICD_ICPENDR<n>
with n=0.

This register only applies to SGIs (bits [15:0]) and PPIs (bits [31:16]). For SPIs, this functionality
is provided by GICD_ICENABLER<n>.

When GICD_CTLR.DS == 0, bits corresponding to Secure SGIs and PPIs are RAZ/WI to
Non-secure accesses.

Configurations

RW fields in this register reset to architecturally UNKNOWN values.

A copy of this register is provided for each Redistributor.

Attributes

GICR_ICPENDR0 is a 32-bit register.

Field descriptions

The GICR_ICPENDR0 bit assignments are:

Clear_pending_bit<x>, bit [x], for x = 0 to 31

Removes the pending state from interrupt number x. Reads and writes have the following behavior:

0 If read, indicates that the corresponding interrupt is not pending.
If written, has no effect.

1 If read, indicates that the corresponding interrupt is pending, or active and pending.
If written, changes the state of the corresponding interrupt from pending to inactive, or
from active and pending to active. This has no effect in the following cases:

• If the interrupt is not pending and is not active and pending.

• If the interrupt is a level-sensitive interrupt that is pending or active and pending
for a reason other than a write to GICD_ISPENDR<n>. In this case, if the
interrupt signal continues to be asserted, the interrupt remains pending or active
and pending.

This field resets to a value that is architecturally UNKNOWN.

Security disabled Secure Non-secure

RW RW RW

Clear_pending_bit<x>, bit [x], for x = 0 to 31

31 0
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-529
ID072617 Non-Confidential

8 Programmers’ Model
8.11 The GIC Redistributor register descriptions
Accessing the GICR_ICPENDR0:

GICR_ICPENDR0 can be accessed through its memory-mapped interface:

Component Frame Offset

GIC Redistributor SGI_base 0x0280
8-530 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.11 The GIC Redistributor register descriptions
8.11.8 GICR_IGROUPR0, Interrupt Group Register 0

The GICR_IGROUPR0 characteristics are:

Purpose

Controls whether the corresponding SGI or PPI is in Group 0 or Group 1.

Usage constraints

This register is accessible as follows:

When affinity routing is not enabled for the Security state of an interrupt in GICR_IGROUPR0, the
corresponding bit is RES0 and equivalent functionality is provided by GICD_IGROUPR<n> with
n=0.

When GICD_CTLR.DS == 0, the register is RAZ/WI to Non-secure accesses.

Bits corresponding to unimplemented interrupts are RAZ/WI.

Note
 Implementations must ensure that an interrupt that is pending at the time of the write uses either the

old value or the new value and must ensure that the interrupt is neither lost nor handled more than
once. The effect of the change must be visible in finite time.

Configurations

RW fields in this register reset to architecturally UNKNOWN values.

This register is available in all GIC configurations. If the GIC implementation supports two Security
states, this register is Secure.

A copy of this register is provided for each Redistributor.

Attributes

GICR_IGROUPR0 is a 32-bit register.

Field descriptions

The GICR_IGROUPR0 bit assignments are:

Redistributor_group_status_bit<x>, bit [x], for x = 0 to 31

Group status bit. In this register:

• Bits [31:16] are group status bits for PPIs.

• Bits [15:0] are group status bits for SGIs.

0 When GICD_CTLR.DS==1, the corresponding interrupt is Group 0.
When GICD_CTLR.DS==0, the corresponding interrupt is Secure.

1 When GICD_CTLR.DS==1, the corresponding interrupt is Group 1.
When GICD_CTLR.DS==0, the corresponding interrupt is Non-secure Group 1.

Security disabled Secure Non-secure

RW RW RW

Redistributor_group_status_bit<x>, bit [x], for x = 0 to 31

31 0
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-531
ID072617 Non-Confidential

8 Programmers’ Model
8.11 The GIC Redistributor register descriptions
When GICD_CTLR.DS == 0, the bit that corresponds to the interrupt is concatenated with the
equivalent bit in GICR_IGRPMODR0 to form a 2-bit field that defines an interrupt group. The
encoding of this field is at GICR_IGRPMODR0.

This field resets to a value that is architecturally UNKNOWN.

The considerations for the reset value of this register are the same as those for GICD_IGROUPR<n> with n=0.

Accessing the GICR_IGROUPR0:

GICR_IGROUPR0 can be accessed through its memory-mapped interface:

Component Frame Offset

GIC Redistributor SGI_base 0x0080
8-532 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.11 The GIC Redistributor register descriptions
8.11.9 GICR_IGRPMODR0, Interrupt Group Modifier Register 0

The GICR_IGRPMODR0 characteristics are:

Purpose

When GICD_CTLR.DS==0, this register together with the GICD_IGROUPR<n> registers,
controls whether the corresponding interrupt is in:

• Secure Group 0.

• Non-secure Group 1.

• When System register access is enabled, Secure Group 1.

Usage constraints

This register is accessible as follows:

When affinity routing is not enabled for the Security state of an interrupt in GICR_IGRPMODR0,
the corresponding bit is RES0 and equivalent functionality is provided by GICD_IGRPMODR<n>
with n=0.

This register only applies to SGIs (bits [15:0]) and PPIs (bits [31:16]). For SPIs, this functionality
is provided by GICD_IGRPMODR<n>.

When GICD_CTLR.ARE_S == 0 or GICD_CTLR.DS == 1, GICR_IGRPMODR0 is RES0. An
implementation can make this register RAZ/WI in this case.

When GICD_CTLR.DS==0, the register is RAZ/WI to Non-secure accesses.

Bits corresponding to unimplemented interrupts are RAZ/WI.

Note
 Implementations must ensure that an interrupt that is pending at the time of the write uses either the

old value or the new value and must ensure that the interrupt is neither lost nor handled more than
once. The effect of the change must be visible in finite time.

Configurations

RW fields in this register reset to architecturally UNKNOWN values.

When GICD_CTLR.DS==0, this register is Secure.

A copy of this register is provided for each Redistributor.

Attributes

GICR_IGRPMODR0 is a 32-bit register.

Field descriptions

The GICR_IGRPMODR0 bit assignments are:

Security disabled Secure Non-secure

RES0 RW RW

Group_modifier_bit<x>, bit [x], for x = 0 to 31

31 0
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-533
ID072617 Non-Confidential

8 Programmers’ Model
8.11 The GIC Redistributor register descriptions
Group_modifier_bit<x>, bit [x], for x = 0 to 31

Group modifier bit. In implementations where affinity routing is enabled for the Security state of an
interrupt, the bit that corresponds to the interrupt is concatenated with the equivalent bit in
GICR_IGROUPR0 to form a 2-bit field that defines an interrupt group:

This field resets to a value that is architecturally UNKNOWN.

Accessing the GICR_IGRPMODR0:

GICR_IGRPMODR0 can be accessed through its memory-mapped interface:

Group modifier bit Group status bit Definition Short name

0 0 Secure Group 0 G0S

0 1 Non-secure Group 1 G1NS

1 0 Secure Group 1 G1S

1 1 Reserved, treated as Non-secure Group 1 -

Component Frame Offset

GIC Redistributor SGI_base 0x0D00
8-534 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.11 The GIC Redistributor register descriptions
8.11.10 GICR_IIDR, Redistributor Implementer Identification Register

The GICR_IIDR characteristics are:

Purpose

Provides information about the implementer and revision of the Redistributor.

Usage constraints

This register is accessible as follows:

Configurations

This register is available in all configurations of the GIC. If the GIC implementation supports two
Security states, this register is Common.

Attributes

GICR_IIDR is a 32-bit register.

Field descriptions

The GICR_IIDR bit assignments are:

ProductID, bits [31:24]

An IMPLEMENTATION DEFINED product identifier.

Bits [23:20]

Reserved, RES0.

Variant, bits [19:16]

An IMPLEMENTATION DEFINED variant number. Typically, this field distinguishes product variants,
or major revisions of a product.

Revision, bits [15:12]

An IMPLEMENTATION DEFINED revision number. Typically, this field distinguishes minor revisions
of a product.

Implementer, bits [11:0]

Contains the JEP106 code of the company that implemented the Redistributor:

• Bits [11:8] are the JEP106 continuation code of the implementer. For an ARM
implementation, this field is 0x4.

• Bit [7] is always 0.

• Bits [6:0] are the JEP106 identity code of the implementer. For an ARM implementation, bits
[7:0] are therefore 0x3B.

Security disabled Secure Non-secure

RO RO RO

ProductID

31 24

RES0

23 20

Variant

19 16

Revision

15 12

Implementer

11 0
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-535
ID072617 Non-Confidential

8 Programmers’ Model
8.11 The GIC Redistributor register descriptions
Accessing the GICR_IIDR:

GICR_IIDR can be accessed through its memory-mapped interface:

Component Frame Offset

GIC Redistributor RD_base 0x0004
8-536 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.11 The GIC Redistributor register descriptions
8.11.11 GICR_INVALLR, Redistributor Invalidate All Register

The GICR_INVALLR characteristics are:

Purpose

Invalidates any cached configuration data of all physical LPIs, causing the GIC to reload the
interrupt configuration from the physical LPI Configuration table at the address specified by
GICR_PROPBASER.

Usage constraints

This register is accessible as follows:

This register is mandatory in an implementation that supports LPIs and does not include an ITS. The
functionality is IMPLEMENTATION DEFINED in an implementation that does include an ITS.

Writes to this register have no effect if no physical LPIs are currently stored in the local
Redistributor cache.

Configurations

A copy of this register is provided for each Redistributor.

Attributes

GICR_INVALLR is a 64-bit register.

Field descriptions

The GICR_INVALLR bit assignments are:

Bits [63:0]

Reserved, RES0.

Note
 If any LPI has been forwarded to the PE and a valid write to GICR_INVALLR is received, the Redistributor must
ensure it reloads its properties from memory. This has no effect on the forwarded LPI if it has already been activated.

Accessing the GICR_INVALLR:

GICR_INVALLR can be accessed through its memory-mapped interface:

Security disabled Secure Non-secure

WO WO WO

RES0

63 0

Component Frame Offset

GIC Redistributor RD_base 0x00B0-0x00B4
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-537
ID072617 Non-Confidential

8 Programmers’ Model
8.11 The GIC Redistributor register descriptions
8.11.12 GICR_INVLPIR, Redistributor Invalidate LPI Register

The GICR_INVLPIR characteristics are:

Purpose

Invalidates the cached configuration data of a specified LPI, causing the GIC to reload the interrupt
configuration from the physical LPI Configuration table at the address specified by
GICR_PROPBASER.

Usage constraints

This register is accessible as follows:

When written with a 32-bit write the data is zero-extended to 64 bits.

This register is mandatory in an implementation that supports LPIs and does not include an ITS. The
functionality is IMPLEMENTATION DEFINED in an implementation that does include an ITS.

Writes to this register have no effect if either:

• The specified LPI is not currently stored in the local Redistributor.

• The pINTID field corresponds to an unimplemented LPI.

Configurations

A copy of this register is provided for each Redistributor.

Attributes

GICR_INVLPIR is a 64-bit register.

Field descriptions

The GICR_INVLPIR bit assignments are:

Bits [63:32]

Reserved, RES0.

pINTID, bits [31:0]

The INTID of the physical LPI to be cleaned.

Note
 The size of this field is IMPLEMENTATION DEFINED, and is specified by the GICD_TYPER.IDbits

field. Unimplemented bits are RES0.

Note
 If any LPI has been forwarded to the PE and a valid write to GICR_INVLPIR is received, the Redistributor must
ensure it reloads its properties from memory and apply any changes by retrieving and reforwarding the LPI as
required. This has no effect on the forwarded LPI if it has already been activated.

Security disabled Secure Non-secure

WO WO WO

RES0

63 32

pINTID

31 0
8-538 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.11 The GIC Redistributor register descriptions
Accessing the GICR_INVLPIR:

GICR_INVLPIR can be accessed through its memory-mapped interface:

Component Frame Offset

GIC Redistributor RD_base 0x00A0-0x00A4
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-539
ID072617 Non-Confidential

8 Programmers’ Model
8.11 The GIC Redistributor register descriptions
8.11.13 GICR_IPRIORITYR<n>, Interrupt Priority Registers, n = 0 - 7

The GICR_IPRIORITYR<n> characteristics are:

Purpose

Holds the priority of the corresponding interrupt for each SGI and PPI supported by the GIC.

Usage constraints

This register is accessible as follows:

These registers are used when affinity routing is enabled for the Security state of the interrupt. When
affinity routing is not enabled the bits corresponding to the interrupt are RAZ/WI and
GICD_IPRIORITYR<n> provides equivalent functionality.

These registers are used for SGIs and PPIs only. Equivalent functionality for SPIs is provided by
GICD_IPRIORITYR<n>.

These registers are byte-accessible.

When GICD_CTLR.DS == 0:

• A field that corresponds to a Group 0 or Secure Group 1 interrupt is RAZ/WI to Non-secure
accesses.

• A Non-secure access to a field that corresponds to a Non-secure Group 1 interrupt behaves
as described in Software accesses of interrupt priority on page 4-72.

Note
 Implementations must ensure that an interrupt that is pending at the time of the write uses either the

old value or the new value and must ensure that the interrupt is neither lost nor handled more than
one time. The effect of the change must be visible in finite time.

Configurations

RW fields in this register reset to architecturally UNKNOWN values.

A copy of these registers is provided for each Redistributor.

These registers are configured as follows:

• GICR_IPRIORITYR0-GICR_IPRIORITYR3 store the priority of SGIs.

• GICR_IPRIORITYR4-GICR_IPRIORITYR7 store the priority of PPIs.

Attributes

GICR_IPRIORITYR<n> is a 32-bit register.

Field descriptions

The GICR_IPRIORITYR<n> bit assignments are:

Security disabled Secure Non-secure

RW RW RW

Priority_offset_3B

31 24

Priority_offset_2B

23 16

Priority_offset_1B

15 8

Priority_offset_0B

7 0
8-540 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.11 The GIC Redistributor register descriptions
Priority_offset_3B, bits [31:24]

Interrupt priority value from an IMPLEMENTATION DEFINED range, at byte offset 3. Lower priority
values correspond to greater priority of the interrupt.

This field resets to a value that is architecturally UNKNOWN.

Priority_offset_2B, bits [23:16]

Interrupt priority value from an IMPLEMENTATION DEFINED range, at byte offset 2. Lower priority
values correspond to greater priority of the interrupt.

This field resets to a value that is architecturally UNKNOWN.

Priority_offset_1B, bits [15:8]

Interrupt priority value from an IMPLEMENTATION DEFINED range, at byte offset 1. Lower priority
values correspond to greater priority of the interrupt.

This field resets to a value that is architecturally UNKNOWN.

Priority_offset_0B, bits [7:0]

Interrupt priority value from an IMPLEMENTATION DEFINED range, at byte offset 0. Lower priority
values correspond to greater priority of the interrupt.

This field resets to a value that is architecturally UNKNOWN.

Accessing the GICR_IPRIORITYR<n>:

GICR_IPRIORITYR<n> can be accessed through its memory-mapped interface:

Component Frame Offset

GIC Redistributor SGI_base 0x0400 + 4n
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-541
ID072617 Non-Confidential

8 Programmers’ Model
8.11 The GIC Redistributor register descriptions
8.11.14 GICR_ISACTIVER0, Interrupt Set-Active Register 0

The GICR_ISACTIVER0 characteristics are:

Purpose

Activates the corresponding SGI or PPI. These registers are used when saving and restoring GIC
state.

Usage constraints

This register is accessible as follows:

When affinity routing is not enabled for the Security state of an interrupt in GICR_ISACTIVER0,
the corresponding bit is RAZ/WI and equivalent functionality is provided by
GICD_ISACTIVER<n> with n=0.

This register only applies to SGIs (bits [15:0]) and PPIs (bits [31:16]). For SPIs, this functionality
is provided by GICD_ISACTIVER<n>.

When GICD_CTLR.DS == 0, bits corresponding to Secure SGIs and PPIs are RAZ/WI to
Non-secure accesses.

Configurations

RW fields in this register reset to architecturally UNKNOWN values.

A copy of this register is provided for each Redistributor.

Attributes

GICR_ISACTIVER0 is a 32-bit register.

Field descriptions

The GICR_ISACTIVER0 bit assignments are:

Set_active_bit<x>, bit [x], for x = 0 to 31

Adds the active state to interrupt number x. Reads and writes have the following behavior:

0 If read, indicates that the corresponding interrupt is not active, and is not active and
pending.
If written, has no effect.

1 If read, indicates that the corresponding interrupt is active, or is active and pending.
If written, activates the corresponding interrupt, if the interrupt is not already active. If
the interrupt is already active, the write has no effect.
After a write of 1 to this bit, a subsequent read of this bit returns 1.

This field resets to a value that is architecturally UNKNOWN.

Security disabled Secure Non-secure

RW RW RW

Set_active_bit<x>, bit [x], for x = 0 to 31

31 0
8-542 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.11 The GIC Redistributor register descriptions
Accessing the GICR_ISACTIVER0:

GICR_ISACTIVER0 can be accessed through its memory-mapped interface:

Component Frame Offset

GIC Redistributor SGI_base 0x0300
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-543
ID072617 Non-Confidential

8 Programmers’ Model
8.11 The GIC Redistributor register descriptions
8.11.15 GICR_ISENABLER0, Interrupt Set-Enable Register 0

The GICR_ISENABLER0 characteristics are:

Purpose

Enables forwarding of the corresponding SGI or PPI to the CPU interfaces.

Usage constraints

This register is accessible as follows:

When affinity routing is not enabled for the Security state of an interrupt in GICR_ISENABLER0,
the corresponding bit is RAZ/WI and equivalent functionality is provided by
GICD_ISENABLER<n> with n=0.

This register only applies to SGIs (bits [15:0]) and PPIs (bits [31:16]). For SPIs, this functionality
is provided by GICD_ISENABLER<n>.

When GICD_CTLR.DS == 0, bits corresponding to Secure SGIs and PPIs are RAZ/WI to
Non-secure accesses.

Configurations

Some or all RW fields of this register have defined reset values.

A copy of this register is provided for each Redistributor.

Attributes

GICR_ISENABLER0 is a 32-bit register.

Field descriptions

The GICR_ISENABLER0 bit assignments are:

Set_enable_bit<x>, bit [x], for x = 0 to 31

For PPIs and SGIs, controls the forwarding of interrupt number x to the CPU interface. Reads and
writes have the following behavior:

0 If read, indicates that forwarding of the corresponding interrupt is disabled.
If written, has no effect.

1 If read, indicates that forwarding of the corresponding interrupt is enabled.
If written, enables forwarding of the corresponding interrupt.
After a write of 1 to this bit, a subsequent read of this bit returns 1.

When this register has an architecturally-defined reset value, this field resets to 0.

Security disabled Secure Non-secure

RW RW RW

Set_enable_bit<x>, bit [x], for x = 0 to 31

31 0
8-544 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.11 The GIC Redistributor register descriptions
Accessing the GICR_ISENABLER0:

GICR_ISENABLER0 can be accessed through its memory-mapped interface:

Component Frame Offset

GIC Redistributor SGI_base 0x0100
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-545
ID072617 Non-Confidential

8 Programmers’ Model
8.11 The GIC Redistributor register descriptions
8.11.16 GICR_ISPENDR0, Interrupt Set-Pending Register 0

The GICR_ISPENDR0 characteristics are:

Purpose

Adds the pending state to the corresponding SGI or PPI.

Usage constraints

This register is accessible as follows:

When affinity routing is not enabled for the Security state of an interrupt in GICR_ISPENDR0, the
corresponding bit is RAZ/WI and equivalent functionality is provided by GICD_ISPENDR<n>
with n=0.

This register only applies to SGIs (bits [15:0]) and PPIs (bits [31:16]). For SPIs, this functionality
is provided by GICD_ISPENDR<n>.

When GICD_CTLR.DS == 0, bits corresponding to Secure SGIs and PPIs are RAZ/WI to
Non-secure accesses.

Configurations

RW fields in this register reset to architecturally UNKNOWN values.

A copy of this register is provided for each Redistributor.

Attributes

GICR_ISPENDR0 is a 32-bit register.

Field descriptions

The GICR_ISPENDR0 bit assignments are:

Set_pending_bit<x>, bit [x], for x = 0 to 31

For PPIs and SGIs, adds the pending state to interrupt number x. Reads and writes have the
following behavior:

0 If read, indicates that the corresponding interrupt is not pending on this PE.
If written, has no effect.

1 If read, indicates that the corresponding interrupt is pending, or active and pending on
this PE.
If written, changes the state of the corresponding interrupt from inactive to pending, or
from active to active and pending. This has no effect in the following cases:

• If the interrupt is already pending because of a write to GICR_ISPENDR0.

• If the interrupt is already pending because the corresponding interrupt signal is
asserted. In this case, the interrupt remains pending if the interrupt signal is
deasserted.

This field resets to a value that is architecturally UNKNOWN.

Security disabled Secure Non-secure

RW RW RW

Set_pending_bit<x>, bit [x], for x = 0 to 31

31 0
8-546 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.11 The GIC Redistributor register descriptions
Accessing the GICR_ISPENDR0:

GICR_ISPENDR0 can be accessed through its memory-mapped interface:

Component Frame Offset

GIC Redistributor SGI_base 0x0200
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-547
ID072617 Non-Confidential

8 Programmers’ Model
8.11 The GIC Redistributor register descriptions
8.11.17 GICR_NSACR, Non-secure Access Control Register

The GICR_NSACR characteristics are:

Purpose

Enables Secure software to permit Non-secure software to create SGIs targeting the PE connected
to this Redistributor by writing to ICC_SGI1R_EL1, ICC_ASGI1R_EL1 or ICC_SGI0R_EL1.

See Table 8-14 on page 8-169 for more information.

Usage constraints

This register is accessible as follows:

When GICD_CTLR.DS == 1, this register is RAZ/WI.

When GICD_CTLR.DS == 0, this register is Secure, and is RAZ/WI to Non-secure accesses.

This register is used when affinity routing is enabled. When affinity routing is not enabled for the
Security state of the interrupt, GICD_NSACR<n> with n=0 provides equivalent functionality.

This register does not support PPIs.

Configurations

RW fields in this register reset to architecturally UNKNOWN values.

For a description on when a write to ICC_SGI0R_EL1, ICC_SGI1R_EL1 or ICC_ASGI1R_EL1 is
permitted to generate an interrupt see Use of control registers for SGI forwarding on page 8-169.

Attributes

GICR_NSACR is a 32-bit register.

Field descriptions

The GICR_NSACR bit assignments are:

NS_access<x>, bits [2x+1:2x], for x = 0 to 15

Configures the level of Non-secure access permitted when the SGI is in Secure Group 0 or Secure
Group 1, as defined from GICR_IGROUPR0 and GICR_IGRPMODR0. A field is provided for
each SGI. The possible values of each 2-bit field are:

00 Non-secure writes are not permitted to generate Secure Group 0 SGIs or Secure Group
1 SGIs.

01 Non-secure writes are permitted to generate a Secure Group 0 SGI.

10 As 0b01, but additionally Non-secure writes to are permitted to generate a Secure Group
1 SGI.

11 Reserved.
If the field is programmed to the reserved value, then the hardware will treat the field as
if it has been programmed to an IMPLEMENTATION DEFINED choice of the valid values.
However, to maintain the principle that as the value increases additional accesses are

Security disabled Secure Non-secure

RW RW RW

NS_access<x>, bits [2x+1:2x], for x = 0 to 15

31 0
8-548 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.11 The GIC Redistributor register descriptions
permitted ARM strongly recommends that implementations treat this value as 10. It is
IMPLEMENTATION DEFINED whether the value read back is the value programmed or the
valid value chosen.

This field resets to a value that is architecturally UNKNOWN.

Accessing the GICR_NSACR:

GICR_NSACR can be accessed through its memory-mapped interface:

Component Frame Offset

GIC Redistributor SGI_base 0x0E00
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-549
ID072617 Non-Confidential

8 Programmers’ Model
8.11 The GIC Redistributor register descriptions
8.11.18 GICR_PENDBASER, Redistributor LPI Pending Table Base Address Register

The GICR_PENDBASER characteristics are:

Purpose

Specifies the base address of the LPI Pending table, and the Shareability and Cacheability of
accesses to the LPI Pending table.

Usage constraints

This register is accessible as follows:

Having the GICR_PENDBASER OuterCache, Shareability or InnerCache fields programmed to
different values on different Redistributors with GICR_CTLR.EnableLPIs == 1 in the system is
UNPREDICTABLE.

Changing GICR_PENDBASER with GICR_CTLR.EnableLPIs == 1 is UNPREDICTABLE.

Configurations

RW fields in this register reset to architecturally UNKNOWN values.

A copy of this register is provided for each Redistributor.

Attributes

GICR_PENDBASER is a 64-bit register.

Field descriptions

The GICR_PENDBASER bit assignments are:

Bit [63]

Reserved, RES0.

PTZ, bit [62]

Pending Table Zero. Indicates to the Redistributor whether the LPI Pending table is zero when
GICR_CTLR.EnableLPIs == 1.

This field is WO, and reads as 0.

0 The LPI Pending table is not zero, and contains live data.

1 The LPI Pending table is zero. Software must ensure the LPI Pending table is zero
before this value is written.

Bits [61:59]

Reserved, RES0.

Security disabled Secure Non-secure

RW RW RW

63 62

RES0

61 59 58 56

RES0

55 52

Physical_Address

51 16

RES0

15 12 11 10 9 7

RES0

6 0

RES0
PTZ
OuterCache

InnerCache
Shareability
8-550 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.11 The GIC Redistributor register descriptions
OuterCache, bits [58:56]

Indicates the Outer Cacheability attributes of accesses to the LPI Pending table. The possible values
of this field are:

000 Memory type defined in InnerCache field. For Normal memory, Outer Cacheability is
the same as Inner Cacheability.

001 Normal Outer Non-cacheable.

010 Normal Outer Cacheable Read-allocate, Write-through.

011 Normal Outer Cacheable Read-allocate, Write-back.

100 Normal Outer Cacheable Write-allocate, Write-through.

101 Normal Outer Cacheable Write-allocate, Write-back.

110 Normal Outer Cacheable Read-allocate, Write-allocate, Write-through.

111 Normal Outer Cacheable Read-allocate, Write-allocate, Write-back.

It is IMPLEMENTATION DEFINED whether this field has a fixed value or can be programmed by
software. Implementing this field with a fixed value is deprecated.

If this field is implemented as an RW field, it resets to a value that is architecturally UNKNOWN.

Bits [55:52]

Reserved, RES0.

Physical_Address, bits [51:16]

Bits [51:16] of the physical address containing the LPI Pending table.

In implementations supporting fewer than 52 bits of physical address, unimplemented upper bits are
RES0.

This field resets to a value that is architecturally UNKNOWN.

Bits [15:12]

Reserved, RES0.

Shareability, bits [11:10]

Indicates the Shareability attributes of accesses to the LPI Pending table. The possible values of this
field are:

00 Non-shareable.

01 Inner Shareable.

10 Outer Shareable.

11 Reserved. Treated as 00.

It is IMPLEMENTATION DEFINED whether this field has a fixed value or can be programmed by
software. Implementing this field with a fixed value is deprecated.

If this field is implemented as an RW field, it resets to a value that is architecturally UNKNOWN.

InnerCache, bits [9:7]

Indicates the Inner Cacheability attributes of accesses to the LPI Pending table. The possible values
of this field are:

000 Device-nGnRnE.

001 Normal Inner Non-cacheable.

010 Normal Inner Cacheable Read-allocate, Write-through.

011 Normal Inner Cacheable Read-allocate, Write-back.

100 Normal Inner Cacheable Write-allocate, Write-through.

101 Normal Inner Cacheable Write-allocate, Write-back.

110 Normal Inner Cacheable Read-allocate, Write-allocate, Write-through.
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-551
ID072617 Non-Confidential

8 Programmers’ Model
8.11 The GIC Redistributor register descriptions
111 Normal Inner Cacheable Read-allocate, Write-allocate, Write-back.

This field resets to a value that is architecturally UNKNOWN.

Bits [6:0]

Reserved, RES0.

Accessing the GICR_PENDBASER:

GICR_PENDBASER can be accessed through its memory-mapped interface:

Component Frame Offset

GIC Redistributor RD_base 0x0078-0x007C
8-552 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.11 The GIC Redistributor register descriptions
8.11.19 GICR_PROPBASER, Redistributor Properties Base Address Register

The GICR_PROPBASER characteristics are:

Purpose

Specifies the base address of the LPI Configuration table, and the Shareability and Cacheability of
accesses to the LPI Configuration table.

Usage constraints

This register is accessible as follows:

It is IMPLEMENTATION DEFINED whether GICR_PROPBASER can be set to different values on
different Redistributors. GICR_TYPER.CommonLPIAff identifies the Redistributors that must
have GICR_PROPBASER set to the same values whenever GICR_CTLR.EnableLPIs == 1.

Setting different values in different copies of GICR_PROPBASER on Redistributors that are
required to use a common LPI Configuration table when GICR_CTLR.EnableLPIs == 1 leads to
UNPREDICTABLE behavior.

Other restrictions apply when a Redistributor caches information from GICR_PROPBASER. See
LPI Configuration tables on page 6-95 for more information.

Configurations

RW fields in this register reset to architecturally UNKNOWN values.

A copy of this register is provided for each Redistributor.

An implementation might make this register RO, for example to correspond to an LPI Configuration
table in read-only memory.

Attributes

GICR_PROPBASER is a 64-bit register.

Field descriptions

The GICR_PROPBASER bit assignments are:

Bits [63:59]

Reserved, RES0.

OuterCache, bits [58:56]

Indicates the Outer Cacheability attributes of accesses to the LPI Configuration table. The possible
values of this field are:

000 Memory type defined in InnerCache field. For Normal memory, Outer Cacheability is
the same as Inner Cacheability.

Security disabled Secure Non-secure

RW RW RW

RES0

63 59 58 56

RES0

55 52

Physical_Address

51 12 11 10 9 7 6 5

IDbits

4 0

OuterCache RES0
InnerCache
Shareability
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-553
ID072617 Non-Confidential

8 Programmers’ Model
8.11 The GIC Redistributor register descriptions
001 Normal Outer Non-cacheable.

010 Normal Outer Cacheable Read-allocate, Write-through.

011 Normal Outer Cacheable Read-allocate, Write-back.

100 Normal Outer Cacheable Write-allocate, Write-through.

101 Normal Outer Cacheable Write-allocate, Write-back.

110 Normal Outer Cacheable Read-allocate, Write-allocate, Write-through.

111 Normal Outer Cacheable Read-allocate, Write-allocate, Write-back.

It is IMPLEMENTATION DEFINED whether this field has a fixed value or can be programmed by
software. Implementing this field with a fixed value is deprecated.

If this field is implemented as an RW field, it resets to a value that is architecturally UNKNOWN.

Bits [55:52]

Reserved, RES0.

Physical_Address, bits [51:12]

Bits [51:12] of the physical address containing the LPI Configuration table.

In implementations supporting fewer than 52 bits of physical address, unimplemented upper bits are
RES0.

This field resets to a value that is architecturally UNKNOWN.

Shareability, bits [11:10]

Indicates the Shareability attributes of accesses to the LPI Configuration table. The possible values
of this field are:

00 Non-shareable.

01 Inner Shareable.

10 Outer Shareable.

11 Reserved. Treated as 00.

It is IMPLEMENTATION DEFINED whether this field has a fixed value or can be programmed by
software. Implementing this field with a fixed value is deprecated.

If this field is implemented as an RW field, it resets to a value that is architecturally UNKNOWN.

InnerCache, bits [9:7]

Indicates the Inner Cacheability attributes of accesses to the LPI Configuration table. The possible
values of this field are:

000 Device-nGnRnE.

001 Normal Inner Non-cacheable.

010 Normal Inner Cacheable Read-allocate, Write-through.

011 Normal Inner Cacheable Read-allocate, Write-back.

100 Normal Inner Cacheable Write-allocate, Write-through.

101 Normal Inner Cacheable Write-allocate, Write-back.

110 Normal Inner Cacheable Read-allocate, Write-allocate, Write-through.

111 Normal Inner Cacheable Read-allocate, Write-allocate, Write-back.

This field resets to a value that is architecturally UNKNOWN.

Bits [6:5]

Reserved, RES0.

IDbits, bits [4:0]

The number of bits of LPI INTID supported, minus one, by the LPI Configuration table starting at
Physical_Address.
8-554 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.11 The GIC Redistributor register descriptions
If the value of this field is larger than the value of GICD_TYPER.IDbits, the GICD_TYPER.IDbits
value applies.

If the value of this field is less than 0b1101, indicating that the largest INTID is less than 8192 (the
smallest LPI interrupt ID), the GIC will behave as if all physical LPIs are out of range.

This field resets to a value that is architecturally UNKNOWN.

Accessing the GICR_PROPBASER:

GICR_PROPBASER can be accessed through its memory-mapped interface:

Component Frame Offset

GIC Redistributor RD_base 0x0070-0x0074
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-555
ID072617 Non-Confidential

8 Programmers’ Model
8.11 The GIC Redistributor register descriptions
8.11.20 GICR_SETLPIR, Set LPI Pending Register

The GICR_SETLPIR characteristics are:

Purpose

Generates an LPI by setting the pending state of the specified LPI.

Usage constraints

This register is accessible as follows:

When written with a 32-bit write the data is zero-extended to 64 bits.

This register is mandatory in an implementation that supports LPIs and does not include an ITS. The
functionality is IMPLEMENTATION DEFINED in an implementation that does include an ITS.

Writes to this register have no effect if either:

• The pINTID field corresponds to an LPI that is already pending.

• The pINTID field corresponds to an unimplemented LPI.

• GICR_CTLR.EnableLPIs == 0.

Configurations

A copy of this register is provided for each Redistributor.

Attributes

GICR_SETLPIR is a 64-bit register.

Field descriptions

The GICR_SETLPIR bit assignments are:

Bits [63:32]

Reserved, RES0.

pINTID, bits [31:0]

The INTID of the physical LPI to be generated.

Note
 The size of this field is IMPLEMENTATION DEFINED, and is specified by the GICD_TYPER.IDbits

field. Unimplemented bits are RES0.

Security disabled Secure Non-secure

WO WO WO

RES0

63 32

pINTID

31 0
8-556 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.11 The GIC Redistributor register descriptions
Accessing the GICR_SETLPIR:

GICR_SETLPIR can be accessed through its memory-mapped interface:

Component Frame Offset

GIC Redistributor RD_base 0x0040-0x0044
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-557
ID072617 Non-Confidential

8 Programmers’ Model
8.11 The GIC Redistributor register descriptions
8.11.21 GICR_STATUSR, Error Reporting Status Register

The GICR_STATUSR characteristics are:

Purpose

Provides software with a mechanism to detect:

• Accesses to reserved locations.

• Writes to read-only locations.

• Reads of write-only locations.

Usage constraints

GICR_STATUSR(S) is accessible as follows:

GICR_STATUSR(NS) is accessible as follows:

This is an optional register. If the register is not implemented, the location is RAZ/WI.

Configurations

A copy of this register is provided for each Redistributor.

If the GIC implementation supports two Security states this register is Banked to provide Secure and
Non-secure copies.

Attributes

GICR_STATUSR is a 32-bit register.

Field descriptions

The GICR_STATUSR bit assignments are:

Bits [31:4]

Reserved, RES0.

WROD, bit [3]

Write to an RO location.

0 Normal operation.

Security disabled Secure Non-secure

RW RW -

Security disabled Secure Non-secure

RW - RW

RES0

31 4 3 2 1 0

RRD
WRD

RWOD
WROD
8-558 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.11 The GIC Redistributor register descriptions
1 A write to an RO location has been detected.

When a violation is detected, software must write 1 to this register to reset it.

RWOD, bit [2]

Read of a WO location.

0 Normal operation.

1 A read of a WO location has been detected.

When a violation is detected, software must write 1 to this register to reset it.

WRD, bit [1]

Write to a reserved location.

0 Normal operation.

1 A write to a reserved location has been detected.

When a violation is detected, software must write 1 to this register to reset it.

RRD, bit [0]

Read of a reserved location.

0 Normal operation.

1 A read of a reserved location has been detected.

When a violation is detected, software must write 1 to this register to reset it.

Accessing the GICR_STATUSR:

GICR_STATUSR can be accessed through its memory-mapped interface:

Component Frame Offset

GIC Redistributor RD_base 0x0010
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-559
ID072617 Non-Confidential

8 Programmers’ Model
8.11 The GIC Redistributor register descriptions
8.11.22 GICR_SYNCR, Redistributor Synchronize Register

The GICR_SYNCR characteristics are:

Purpose

Indicates completion of physical Redistributor operations.

Usage constraints

This register is accessible as follows:

Optionally, when this register is accessed, an implementation might wait until all operations are
complete before returning a value, in which case GICR_SYNCR.Busy is always 0.

This register is mandatory in an implementation that supports LPIs and does not include an ITS. The
functionality is IMPLEMENTATION DEFINED in an implementation that does include an ITS.

Configurations

A copy of this register is provided for each Redistributor.

Attributes

GICR_SYNCR is a 32-bit register.

Field descriptions

The GICR_SYNCR bit assignments are:

Bits [31:1]

Reserved, RES0.

Busy, bit [0]

Indicates completion of any Redistributor operations as follows:

0 No operations are in progress.

1 A write is in progress to one or more of the following registers:

• GICR_CLRLPIR.

• GICR_INVLPIR.

• GICR_INVALLR.

This field also indicates completion of any operations initiated by writes to GICR_PENDBASER
or GICR_PROPBASER.

Security disabled Secure Non-secure

RO RO RO

RES0

31 1 0

Busy
8-560 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.11 The GIC Redistributor register descriptions
Accessing the GICR_SYNCR:

GICR_SYNCR can be accessed through its memory-mapped interface:

Component Frame Offset

GIC Redistributor RD_base 0x00C0-0x00C4
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-561
ID072617 Non-Confidential

8 Programmers’ Model
8.11 The GIC Redistributor register descriptions
8.11.23 GICR_TYPER, Redistributor Type Register

The GICR_TYPER characteristics are:

Purpose

Provides information about the configuration of this Redistributor.

Usage constraints

This register is accessible as follows:

Configurations

A copy of this register is provided for each Redistributor.

Attributes

GICR_TYPER is a 64-bit register.

Field descriptions

The GICR_TYPER bit assignments are:

Affinity_Value, bits [63:32]

The identity of the PE associated with this Redistributor.

Bits [63:56] provide Aff3, the Affinity level 3 value for the Redistributor.

Bits [55:48] provide Aff2, the Affinity level 2 value for the Redistributor.

Bits [47:40] provide Aff1, the Affinity level 1 value for the Redistributor.

Bits [39:32] provide Aff0, the Affinity level 0 value for the Redistributor.

Bits [31:26]

Reserved, RES0.

CommonLPIAff, bits [25:24]

The affinity level at which Redistributors share a LPI Configuration table.

00 All Redistributors must share an LPI Configuration table.

01 All Redistributors with the same Aff3 value must share an LPI Configuration table.

10 All Redistributors with the same Aff3.Aff2 value must share an LPI Configuration
table.

Security disabled Secure Non-secure

RO RO RO

Affinity_Value

63 32

RES0

31 26 25 24

Processor_Number

23 8 7 6 5 4 3 2 1 0

CommonLPIAff PLPIS
VLPIS
RES0

DirectLPI
Last

DPGS
RES0
8-562 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.11 The GIC Redistributor register descriptions
11 All Redistributors with the same Aff3.Aff2.Aff1 value must share an LPI Configuration
table.

Processor_Number, bits [23:8]

A unique identifier for the PE. When GITS_TYPER.PTA == 0, an ITS uses this field to identify the
interrupt target.

When affinity routing is disabled for a Security state, this field indicates which
GICD_ITARGETSR<n> corresponds to this Redistributor.

Bits [7:6]

Reserved, RES0.

DPGS, bit [5]

Sets support for GICR_CTLR.DPG* bits.

0 GICR_CTLR.DPG* bits are not supported.

1 GICR_CTLR.DPG* bits are supported.

Last, bit [4]

Indicates whether this Redistributor is the highest-numbered Redistributor in a series of contiguous
Redistributor pages.

0 This Redistributor is not the highest-numbered Redistributor in a series of contiguous
Redistributor pages.

1 This Redistributor is the highest-numbered Redistributor in a series of contiguous
Redistributor pages.

DirectLPI, bit [3]

Indicates whether this Redistributor supports direct injection of LPIs.

0 This Redistributor does not support direct injection of LPIs. The GICR_SETLPIR,
GICR_CLRLPIR, GICR_INVLPIR, GICR_INVALLR, and GICR_SYNCR registers
are either not implemented, or have an IMPLEMENTATION DEFINED purpose.

1 This Redistributor supports direct injection of LPIs. The GICR_SETLPIR,
GICR_CLRLPIR, GICR_INVLPIR, GICR_INVALLR, and GICR_SYNCR registers
are implemented.

Bit [2]

Reserved, RES0.

VLPIS, bit [1]

Indicates whether the GIC implementation supports virtual LPIs and the direct injection of virtual
LPIs.

0 The implementation does not support virtual LPIs or the direct injection of virtual LPIs.

1 The implementation supports virtual LPIs and the direct injection of virtual LPIs.

Note
 In GICv3 implementations this field is RES0.

PLPIS, bit [0]

Indicates whether the GIC implementation supports physical LPIs.

0 The implementation does not support physical LPIs.

1 The implementation supports physical LPIs.
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-563
ID072617 Non-Confidential

8 Programmers’ Model
8.11 The GIC Redistributor register descriptions
Accessing the GICR_TYPER:

GICR_TYPER can be accessed through its memory-mapped interface:

Component Frame Offset

GIC Redistributor RD_base 0x0008-0x000C
8-564 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.11 The GIC Redistributor register descriptions
8.11.24 GICR_VPENDBASER, Virtual Redistributor LPI Pending Table Base Address Register

The GICR_VPENDBASER characteristics are:

Purpose

Specifies the base address of the memory that holds the virtual LPI Pending table for the currently
scheduled virtual machine.

Usage constraints

This register is accessible as follows:

The effect of a write to this register is not guaranteed to be visible throughout the affinity hierarchy,
as indicated by GICR_CTLR.RWP == 0.

Configurations

Some or all RW fields of this register have defined reset values.

This register is provided only in GICv4 implementations.

Attributes

GICR_VPENDBASER is a 64-bit register.

Field descriptions

The GICR_VPENDBASER bit assignments are:

Valid, bit [63]

This bit controls whether the virtual LPI Pending table is valid:

0 The virtual LPI Pending table is not valid. No vPE is scheduled.

1 The virtual LPI Pending table is valid. A vPE is scheduled.

Setting GICR_VPENDBASER.Valid == 1 when the associated CPU interface does not implement
GICv4 is UNPREDICTABLE.

Note
 Software can determine whether a PE supports GICv3 or GICv4 by reading ID_AA64PFR0_EL1.

Writing a new value to any bit of GICR_VPENDBASER, other than GICR_VPENDBASER.Valid,
when GICR_VPENDBASER.Valid==1 is UNPREDICTABLE.

When this register has an architecturally-defined reset value, this field resets to 0.

Security disabled Secure Non-secure

RW RW RW

63 62 61 60 59 58 56

RES0

55 52

Physical_Address

51 16

RES0

15 12 11 10 9 7

RES0

6 0

Valid
IDAI
PendingLast
Dirty
RES0
OuterCache

InnerCache
Shareability
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-565
ID072617 Non-Confidential

8 Programmers’ Model
8.11 The GIC Redistributor register descriptions
IDAI, bit [62]

Implementation Defined Area Invalid. Indicates whether the IMPLEMENTATION DEFINED area in the
virtual LPI Pending table is valid:

0 The IMPLEMENTATION DEFINED area is valid.

1 The IMPLEMENTATION DEFINED area is invalid and all pending interrupt information is
held in the architecturally defined part of the virtual LPI Pending table.

For more information, see LPI Pending tables on page 6-97 and Virtual LPI Configuration tables
and virtual LPI Pending tables on page 6-98.

This field resets to a value that is architecturally UNKNOWN.

PendingLast, bit [61]

Indicates whether there are pending and enabled interrupts for the last scheduled vPE.

This value is set by the implementation when GICR_VPENDBASER.Valid has been written from
1 to 0 and is otherwise UNKNOWN.

0 There are no pending and enabled interrupts for the last scheduled vPE.

1 There is at least one pending interrupt for the last scheduled vPE. It is IMPLEMENTATION
DEFINED whether this bit is set when the only pending interrupts for the last scheduled
vPE are not enabled.
ARM deprecates setting PendingLast to 1 when the only pending interrupts for the last
scheduled virtual machine are not enabled.

When the GICR_VPENDBASER.Valid bit is written from 0 to 1, then the state of this bit indicates
to the hardware whether the virtual LPI Pending table contains no pending interrupts:

• 0b0: The virtual LPI Pending table is known to be zero, and so the virtual LPI Pending table
does not need to be read by hardware to determine which pending interrupts are present.

• 0b1: The virtual LPI Pending table is not known to be zero, and so the hardware must read the
virtual LPI Pending table to determine which pending interrupts are present.

When this register has an architecturally-defined reset value, this field resets to 0.

Dirty, bit [60]

Read-only. Indicates whether there are any virtual LPIs for the last scheduled vPE that have not
completed. This field is used only when GICR_VPENDBASER.Valid==0, and is otherwise
UNKNOWN:

0 There are no uncompleted virtual LPIs for the last scheduled vPE.

1 There is at least one uncompleted virtual LPI for the last scheduled vPE.

Note
 When GICR_VPENDBASER.Valid == 0, the Redistributor must ensure any outstanding pending

virtual interrupts are cleared from the CPU interface.

Writing to GICR_VPENDBASER when GICR_VPENDBASER.Dirty==1 is UNPREDICTABLE.

When this register has an architecturally-defined reset value, this field resets to 0.

Bit [59]

Reserved, RES0.

OuterCache, bits [58:56]

Indicates the Outer Cacheability attributes of accesses to virtual LPI Pending tables of vPEs
targeting this Redistributor. The possible values of this field are:

000 Memory type defined in InnerCache field. For Normal memory, Outer Cacheability is
the same as Inner Cacheability.

001 Normal Outer Non-cacheable.

010 Normal Outer Cacheable Read-allocate, Write-through.
8-566 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.11 The GIC Redistributor register descriptions
011 Normal Outer Cacheable Read-allocate, Write-back.

100 Normal Outer Cacheable Write-allocate, Write-through.

101 Normal Outer Cacheable Write-allocate, Write-back.

110 Normal Outer Cacheable Read-allocate, Write-allocate, Write-through.

111 Normal Outer Cacheable Read-allocate, Write-allocate, Write-back.

It is IMPLEMENTATION DEFINED whether this field has a fixed value or can be programmed by
software. Implementing this field with a fixed value is deprecated.

The Cacheability, Outer Cacheability and Shareability fields are used for accesses to the virtual LPI
Pending table of resident and non-resident vPEs.

If the OuterCacheabilty attribute of the virtual LPI Pending tables that are associated with vPEs
targeting the same Redistributor are different, behavior is UNPREDICTABLE.

If this field is implemented as an RW field, it resets to a value that is architecturally UNKNOWN.

Bits [55:52]

Reserved, RES0.

Physical_Address, bits [51:16]

Bits [51:16] of the physical address containing the virtual LPI Pending table.

In implementations supporting fewer than 52 bits of physical address, unimplemented upper bits are
RES0.

This field resets to a value that is architecturally UNKNOWN.

Bits [15:12]

Reserved, RES0.

Shareability, bits [11:10]

Indicates the Shareability attributes of accesses to the virtual LPI Pending table. The possible values
of this field are:

00 Non-shareable.

01 Inner Shareable.

10 Outer Shareable.

11 Reserved. Treated as 00.

It is IMPLEMENTATION DEFINED whether this field has a fixed value or can be programmed by
software. Implementing this field with a fixed value is deprecated.

The Cacheability, Outer Cacheability and Shareability fields are used for accesses to the virtual LPI
Pending table of resident and non-resident vPEs.

If the Shareability attribute of the virtual LPI Pending tables that are associated with vPEs targeting
the same Redistributor are different, behavior is UNPREDICTABLE.

If this field is implemented as an RW field, it resets to a value that is architecturally UNKNOWN.

InnerCache, bits [9:7]

Indicates the Inner Cacheability attributes of accesses to the virtual LPI Pending table. The possible
values of this field are:

000 Device-nGnRnE.

001 Normal Inner Non-cacheable.

010 Normal Inner Cacheable Read-allocate, Write-through.

011 Normal Inner Cacheable Read-allocate, Write-back.

100 Normal Inner Cacheable Write-allocate, Write-through.

101 Normal Inner Cacheable Write-allocate, Write-back.

110 Normal Inner Cacheable Read-allocate, Write-allocate, Write-through.
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-567
ID072617 Non-Confidential

8 Programmers’ Model
8.11 The GIC Redistributor register descriptions
111 Normal Inner Cacheable Read-allocate, Write-allocate, Write-back.

The Cacheability, Outer Cacheability and Shareability fields are used for accesses to the virtual LPI
Pending table of resident and non-resident vPEs.

If the InnerCacheabilty attribute of the virtual LPI Pending tables that are associated with vPEs
targeting the same Redistributor are different, behavior is UNPREDICTABLE.

This field resets to a value that is architecturally UNKNOWN.

Bits [6:0]

Reserved, RES0.

Accessing the GICR_VPENDBASER:

GICR_VPENDBASER can be accessed through its memory-mapped interface:

Component Frame Offset

GIC Redistributor VLPI_base 0x0078-0x007C
8-568 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.11 The GIC Redistributor register descriptions
8.11.25 GICR_VPROPBASER, Virtual Redistributor Properties Base Address Register

The GICR_VPROPBASER characteristics are:

Purpose

Specifies the base address of the memory that holds the virtual LPI Configuration table for the
currently scheduled virtual machine.

Usage constraints

This register is accessible as follows:

Configurations

RW fields in this register reset to architecturally UNKNOWN values.

This register is provided in GICv4 implementations only.

Attributes

GICR_VPROPBASER is a 64-bit register.

Field descriptions

The GICR_VPROPBASER bit assignments are:

Bits [63:59]

Reserved, RES0.

OuterCache, bits [58:56]

Indicates the Outer Cacheability attributes of accesses to the LPI Configuration table. The possible
values of this field are:

000 Memory type defined in InnerCache field. For Normal memory, Outer Cacheability is
the same as Inner Cacheability.

001 Normal Outer Non-cacheable.

010 Normal Outer Cacheable Read-allocate, Write-through.

011 Normal Outer Cacheable Read-allocate, Write-back.

100 Normal Outer Cacheable Write-allocate, Write-through.

101 Normal Outer Cacheable Write-allocate, Write-back.

110 Normal Outer Cacheable Read-allocate, Write-allocate, Write-through.

111 Normal Outer Cacheable Read-allocate, Write-allocate, Write-back.

It is IMPLEMENTATION DEFINED whether this field has a fixed value or can be programmed by
software. Implementing this field with a fixed value is deprecated.

Security disabled Secure Non-secure

RW RW RW

RES0

63 59 58 56

RES0

55 52

Physical_Address

51 12 11 10 9 7 6 5

IDbits

4 0

OuterCache RES0
InnerCache
Shareability
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-569
ID072617 Non-Confidential

8 Programmers’ Model
8.11 The GIC Redistributor register descriptions
If this field is implemented as an RW field, it resets to a value that is architecturally UNKNOWN.

Bits [55:52]

Reserved, RES0.

Physical_Address, bits [51:12]

Bits [51:12] of the physical address containing the virtual LPI Configuration table.

In implementations supporting fewer than 52 bits of physical address, unimplemented upper bits are
RES0.

This field resets to a value that is architecturally UNKNOWN.

Shareability, bits [11:10]

Indicates the Shareability attributes of accesses to the LPI Configuration table. The possible values
of this field are:

00 Non-shareable.

01 Inner Shareable.

10 Outer Shareable.

11 Reserved. Treated as 00.

It is IMPLEMENTATION DEFINED whether this field has a fixed value or can be programmed by
software. Implementing this field with a fixed value is deprecated.

If this field is implemented as an RW field, it resets to a value that is architecturally UNKNOWN.

InnerCache, bits [9:7]

Indicates the Inner Cacheability attributes of accesses to the LPI Configuration table. The possible
values of this field are:

000 Device-nGnRnE.

001 Normal Inner Non-cacheable.

010 Normal Inner Cacheable Read-allocate, Write-through.

011 Normal Inner Cacheable Read-allocate, Write-back.

100 Normal Inner Cacheable Write-allocate, Write-through.

101 Normal Inner Cacheable Write-allocate, Write-back.

110 Normal Inner Cacheable Read-allocate, Write-allocate, Write-through.

111 Normal Inner Cacheable Read-allocate, Write-allocate, Write-back.

This field resets to a value that is architecturally UNKNOWN.

Bits [6:5]

Reserved, RES0.

IDbits, bits [4:0]

The number of bits of virtual LPI INTID supported, minus one.

If the value of this field is less than 0b1101, indicating that the largest INTID is less than 8192 (the
smallest LPI interrupt ID), the GIC will behave as if all virtual LPIs are out of range.

This field resets to a value that is architecturally UNKNOWN.

Accessing the GICR_VPROPBASER:

GICR_VPROPBASER can be accessed through its memory-mapped interface:

Component Frame Offset

GIC Redistributor VLPI_base 0x0070-0x0074
8-570 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.11 The GIC Redistributor register descriptions
8.11.26 GICR_WAKER, Redistributor Wake Register

The GICR_WAKER characteristics are:

Purpose

Permits software to control the behavior of the WakeRequest power management signal
corresponding to the Redistributor. Power management operations follow the rules in Power
management on page 7-150.

Usage constraints

This register is accessible as follows:

When GICD_CTLR.DS==1, this register is always accessible.

When GICD_CTLR.DS==0, this is a Secure register. This register is RAZ/WI to Non-secure
accesses.

To ensure a Redistributor is quiescent, software must write to GICR_WAKER with ProcessorSleep
== 1, then poll the register until ChildrenAsleep == 1.

Resetting the connected PE when GICR_WAKER.ProcessorSleep==0 or
GICR_WAKER.ChildresAsleep==0, can lead to UNPREDICTABLE behaviour in the IRI.

Resetting the IRI when GICR_WAKER.ProcessorSleep==0 or GICR_WAKER.ChildresAsleep==0
can lead to UNPREDICTABLE behaviour in the connected PE.

Configurations

Some or all RW fields of this register have defined reset values.

A copy of this register is provided for each Redistributor.

Attributes

GICR_WAKER is a 32-bit register.

Field descriptions

The GICR_WAKER bit assignments are:

IMPLEMENTATION DEFINED, bit [31]

IMPLEMENTATION DEFINED.

Bits [30:3]

Reserved, RES0.

Security disabled Secure Non-secure

RW RW RAZ/WI

31

RES0

30 3 2 1 0

IMP DEF IMP DEF
ProcessorSleep
ChildrenAsleep
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-571
ID072617 Non-Confidential

8 Programmers’ Model
8.11 The GIC Redistributor register descriptions
ChildrenAsleep, bit [2]

Read-only. Indicates whether the connected PE is quiescent:

0 An interface to the connected PE might be active.

1 All interfaces to the connected PE are quiescent.

When this register has an architecturally-defined reset value, this field resets to 1.

ProcessorSleep, bit [1]

Indicates whether the Redistributor can assert the WakeRequest signal:

0 This PE is not in, and is not entering, a low power state.

1 The PE is either in, or is in the process of entering, a low power state.
All interrupts that arrive at the Redistributor:

• Assert a WakeRequest signal.

• Are held in the pending state at the Redistributor, and are not communicated to
the CPU interface.

Note
 When ProcessorSleep == 1, the Redistributor must ensure that any interrupts that are

pending on the CPU interface are released.

For an implementation that is using the GIC Stream Protocol Interface:

• A Quiesce command can put the interface between the Redistributor and the CPU
interface in a quiescent state.

• A Release command can release any interrupts that are pending on the CPU
interface.

Note
 Before powering down a PE, software must set this bit to 1 and wait until ChildrenAsleep == 1.

After powering up a PE, or following a failed powerdown, software must set this bit to 0 and wait
until ChildrenAsleep == 0.

Changing ProcessorSleep from 1 to 0 when ChildrenAsleep is not 1 results in UNPREDICTABLE
behavior.

Changing ProcessorSleep from 0 to 1 when the Enable for each interrupt group in the associated
CPU interface is not 0 results in UNPREDICTABLE behavior.

When this register has an architecturally-defined reset value, this field resets to 1.

IMPLEMENTATION DEFINED, bit [0]

IMPLEMENTATION DEFINED.

Accessing the GICR_WAKER:

GICR_WAKER can be accessed through its memory-mapped interface:

Component Frame Offset

GIC Redistributor RD_base 0x0014
8-572 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.12 The GIC CPU interface register map
8.12 The GIC CPU interface register map
Table 8-30 shows the CPU interface register maps. In this table, address offsets are relative to the CPU interface
base address defined by the system memory map. Unless otherwise stated in the register description, all GIC
registers are 32-bits wide.

For a multiprocessor implementation, the GIC implements a set of CPU interface registers for each CPU interface.
ARM strongly recommends that each PE has the same CPU interface base address for the CPU interface that
connects it to the GIC. This is the private CPU interface base address for that PE. It is IMPLEMENTATION DEFINED
whether a PE can access the CPU interface registers of other PEs in the system.

Reserved register addresses are RES0.

The CPU interface registers can be accessed using the System register interface. See GIC System register access on
page 8-159 for more information.

Table 8-30 CPU interface register map

Offset Name Type Reset Description

0x0000 GICC_CTLR RW See the register description CPU Interface Control Register

0x0004 GICC_PMR RW 0x0000 0000 Interrupt Priority Mask Register

0x0008 GICC_BPR RW 0x0000 000xa Binary Point Register

0x000C GICC_IAR RO - Interrupt Acknowledge Register

0x0010 GICC_EOIR WO - End of Interrupt Register

0x0014 GICC_RPR RO - Running Priority Register

0x0018 GICC_HPPIR RO - Highest Priority Pending Interrupt Register

0x001C GICC_ABPR RW 0x0000 000xa Aliased Binary Point Register

0x0020 GICC_AIAR RO - Aliased Interrupt Acknowledge Register

0x0024 GICC_AEOIR WO - Aliased End of Interrupt Register

0x0028 GICC_AHPPIR RO - Aliased Highest Priority Pending Interrupt Register

0x002C GICC_STATUSR RW 0x0000 0000 Error Reporting Status Register, optional

0x0030-0x003C - - - Reserved

0x0040-0x00CF - - - IMPLEMENTATION DEFINED registers

0x00D0-0x00DC GICC_APR<n> RW 0x0000 0000 Active Priorities Registers

0x00E0-0x00EC GICC_NSAPR<n> RW 0x0000 0000 Non-secure Active Priorities Registers

0x00ED-0x00F8 - - - Reserved

0x00FC GICC_IIDR RO IMPLEMENTATION DEFINED CPU Interface Identification Register

0x1000 GICC_DIR WO - Deactivate Interrupt Register

a. See the register description for more information.
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-573
ID072617 Non-Confidential

8 Programmers’ Model
8.13 The GIC CPU interface register descriptions
8.13 The GIC CPU interface register descriptions
This section describes each of the GIC CPU interface registers in register name order.
8-574 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.13 The GIC CPU interface register descriptions
8.13.1 GICC_ABPR, CPU Interface Aliased Binary Point Register

The GICC_ABPR characteristics are:

Purpose

Defines the point at which the priority value fields split into two parts, the group priority field and
the subpriority field. The group priority field determines Group 1 interrupt preemption.

Usage constraints

This register is accessible as follows:

This register is used only when System register access is not enabled. When System register access
is enabled, the System registers ICC_BPR0_EL1 and ICC_BPR1_EL1 provide equivalent
functionality.

Configurations

Some or all RW fields of this register have defined reset values.

In systems that support two Security states:

• This register is an alias of the Non-secure copy of GICC_BPR.

• Non-secure accesses to this register return a shifted value of the binary point.

• If ICC_CTLR_EL3.CBPR_EL1NS == 1, Secure accesses to this register access
ICC_BPR0_EL1.

Attributes

The reset value of this register is defined as (minimum GICC_BPR.Binary_Point + 1), resulting in
a permitted range of 0x1-0x4.

Field descriptions

The GICC_ABPR bit assignments are:

Bits [31:3]

Reserved, RES0.

Binary_Point, bits [2:0]

Controls how the 8-bit interrupt priority field is split into a group priority field, that determines
interrupt preemption, and a subpriority field. The following list describes how this field determines
the interrupt priority bits assigned to the group priority field:

• Table 4-8 on page 4-68, for the processing of Group 1 interrupts in a GIC implementation that
supports interrupt grouping, when GICC_CTLR.CBPR == 0.

• Table 4-9 on page 4-68, for all other cases.

This field resets to a value that is architecturally UNKNOWN.

Security disabled Secure Non-secure

RW RW RW

RES0

31 3 2 0

Binary_Point
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-575
ID072617 Non-Confidential

8 Programmers’ Model
8.13 The GIC CPU interface register descriptions
Accessing the GICC_ABPR:

GICC_ABPR can be accessed through its memory-mapped interface:

Component Offset

GIC CPU interface 0x001C
8-576 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.13 The GIC CPU interface register descriptions
8.13.2 GICC_AEOIR, CPU Interface Aliased End Of Interrupt Register

The GICC_AEOIR characteristics are:

Purpose

A write to this register performs priority drop for the specified Group 1 interrupt and, if the
appropriate GICC_CTLR.EOImodeS or GICC_CTLR.EOImodeNS field == 0, also deactivates the
interrupt.

Usage constraints

This register is accessible as follows:

A write to this register must correspond to the most recently acknowledged Group 1 interrupt. If a
value other than the last value read from GICC_AIAR is written to this register, the effect is
UNPREDICTABLE.

This register is used only when System register access is not enabled. When System register access
is enabled:

• For AArch32 implementations, ICC_EOIR1 provides equivalent functionality.

• For AArch64 implementations, ICC_EOIR1_EL1 provides equivalent functionality.

When affinity routing is enabled for a Security state, it is a programming error to use
memory-mapped registers to access the GIC.

Configurations

When GICD_CTLR.DS==0, this register is an alias of the Non-secure view of GICC_EOIR. A
Secure access to this register is identical to a Non-secure access to GICC_EOIR.

Attributes

GICC_AEOIR is a 32-bit register.

Field descriptions

The GICC_AEOIR bit assignments are:

Bits [31:24]

Reserved, RES0.

INTID, bits [23:0]

The INTID of the signaled interrupt.

Note
 INTIDs 1020-1023 are reserved and convey additional information such as spurious interrupts.

When affinity routing is not enabled:

• Bits [23:13] are RES0.

Security disabled Secure Non-secure

WO WO WO

RES0

31 24

INTID

23 0
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-577
ID072617 Non-Confidential

8 Programmers’ Model
8.13 The GIC CPU interface register descriptions
• For SGIs, bits [12:10] identify the CPU interface corresponding to the source PE. For all
other interrupts these bits are RES0.

Accessing the GICC_AEOIR:

GICC_AEOIR can be accessed through its memory-mapped interface:

Component Offset

GIC CPU interface 0x0024
8-578 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.13 The GIC CPU interface register descriptions
8.13.3 GICC_AHPPIR, CPU Interface Aliased Highest Priority Pending Interrupt Register

The GICC_AHPPIR characteristics are:

Purpose

If the highest priority pending interrupt is in Group 1, this register provides the INTID of the highest
priority pending interrupt on the CPU interface.

Usage constraints

This register is accessible as follows:

This register is used only when System register access is not enabled. When System register access
is enabled:

• For AArch32 implementations, ICC_HPPIR1 provides equivalent functionality.

• For AArch64 implementations, ICC_HPPIR1_EL1 provides equivalent functionality.

If the highest priority pending interrupt is in Group 0, a read of this register returns the special
INTID 1023.

Interrupt identifiers corresponding to an interrupt group that is not enabled are ignored.

If the highest priority pending interrupt is a direct interrupt that is both individually enabled in the
Distributor and part of an interrupt group that is enabled in the Distributor, and the interrupt group
is disabled in the CPU interface for this PE, this register returns the special INTID 1023.

See Preemption on page 4-71 for more information about pending interrupts that are not considered
when determining the highest priority pending interrupt.

When affinity routing is enabled for a Security state, it is a programming error to use
memory-mapped registers to access the GIC.

Configurations

If GICD_CTLR.DS==0, this register is an alias of the Non-secure view of GICC_HPPIR. A Secure
access to this register is identical to a Non-secure access to GICC_HPPIR.

Attributes

GICC_AHPPIR is a 32-bit register.

Field descriptions

The GICC_AHPPIR bit assignments are:

Bits [31:24]

Reserved, RES0.

INTID, bits [23:0]

The INTID of the signaled interrupt.

Security disabled Secure Non-secure

RO RO RO

RES0

31 24

INTID

23 0
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-579
ID072617 Non-Confidential

8 Programmers’ Model
8.13 The GIC CPU interface register descriptions
Note
 INTIDs 1020-1023 are reserved and convey additional information such as spurious interrupts.

When affinity routing is not enabled:

• Bits [23:13] are RES0.

• For SGIs, bits [12:10] identify the CPU interface corresponding to the source PE. For all
other interrupts these bits are RES0.

Accessing the GICC_AHPPIR:

GICC_AHPPIR can be accessed through its memory-mapped interface:

Component Offset

GIC CPU interface 0x0028
8-580 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.13 The GIC CPU interface register descriptions
8.13.4 GICC_AIAR, CPU Interface Aliased Interrupt Acknowledge Register

The GICC_AIAR characteristics are:

Purpose

Provides the INTID of the signaled Group 1 interrupt. A read of this register by the PE acts as an
acknowledge for the interrupt.

Usage constraints

This register is accessible as follows:

When affinity routing is enabled for a Security state, it is a programming error to use
memory-mapped registers to access the GIC.

Configurations

When GICD_CTLR.DS==0, this register is an alias of the Non-secure view of GICC_IAR. A
Secure access to this register is identical to a Non-secure access to GICC_IAR.

Attributes

GICC_AIAR is a 32-bit register.

Field descriptions

The GICC_AIAR bit assignments are:

Bits [31:24]

Reserved, RES0.

INTID, bits [23:0]

The INTID of the signaled interrupt.

Note
 INTIDs 1020-1023 are reserved and convey additional information such as spurious interrupts.

When affinity routing is not enabled:

• Bits [23:13] are RES0.

• For SGIs, bits [12:10] identify the CPU interface corresponding to the source PE. For all
other interrupts these bits are RES0.

Security disabled Secure Non-secure

RO RO RO

RES0

31 24

INTID

23 0
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-581
ID072617 Non-Confidential

8 Programmers’ Model
8.13 The GIC CPU interface register descriptions
Accessing the GICC_AIAR:

GICC_AIAR can be accessed through its memory-mapped interface:

Component Offset

GIC CPU interface 0x0020-0x003C
8-582 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.13 The GIC CPU interface register descriptions
8.13.5 GICC_APR<n>, CPU Interface Active Priorities Registers, n = 0 - 3

The GICC_APR<n> characteristics are:

Purpose

Provides information about interrupt active priorities.

Usage constraints

This register is accessible as follows:

These registers are used only when System register access is not enabled. When System register
access is enabled the following registers provide equivalent functionality:

• In AArch64:

— For Group 0, ICC_AP0R<n>_EL1.

— For Group 1, ICC_AP1R<n>_EL1.

• In AArch32:

— For Group 0, ICC_AP0R<n>.

— For Group 1, ICC_AP1R<n>.

Configurations

Some or all RW fields of this register have defined reset values.

The contents of these registers are IMPLEMENTATION DEFINED with the one architectural
requirement that the value 0x00000000 is consistent with no interrupts being active.

When GICD_CTLR.DS == 0, these registers are Banked, and Non-secure accesses do not affect
Secure operation. The Secure copies of these registers hold active priorities for Group 0 interrupts,
and the Non-secure copies provide a Non-secure view of the active priorities for Group 1 interrupts.

GICC_APR1 is only implemented in implementations that support 6 or more bits of priority.
GICC_APR2 and GICC_APR3 are only implemented in implementations that support 7 bits of
priority.

When GICD_CTLR.DS==1, these registers hold the active priorities for Group 0 interrupts, and the
active priorities for Group 1 interrupts are held by the GICC_NSAPR<n> registers.

Attributes

GICC_APR<n> is a 32-bit register.

Field descriptions

The GICC_APR<n> bit assignments are:

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

When this register has an architecturally-defined reset value, this field resets to 0.

Security disabled Secure Non-secure

RW RW RW

IMPLEMENTATION DEFINED

31 0
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-583
ID072617 Non-Confidential

8 Programmers’ Model
8.13 The GIC CPU interface register descriptions
Accessing the GICC_APR<n>:

GICC_APR<n> can be accessed through its memory-mapped interface:

Component Offset

GIC CPU interface 0x00D0 + 4n
8-584 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.13 The GIC CPU interface register descriptions
8.13.6 GICC_BPR, CPU Interface Binary Point Register

The GICC_BPR characteristics are:

Purpose

Defines the point at which the priority value fields split into two parts, the group priority field and
the subpriority field.

Usage constraints

This register is accessible as follows:

This register is used only when System register access is not enabled. When System register access
is enabled this register is RAZ/WI, and the System registers ICC_BPR0_EL1 and ICC_BPR1_EL1
provide equivalent functionality.

Configurations

Some or all RW fields of this register have defined reset values.

In systems that support two Security states:

• This register is Banked.

• The Secure instance of this register determines Group 0 interrupt preemption.

• The Non-secure instance of this register determines Group 1 interrupt preemption.

In systems that support only one Security state, when GICC_CTLR.CBPR == 0, this register
determines only Group 0 interrupt preemption.

When GICC_CTLR.CBPR == 1, this register determines interrupt preemption for both Group 0 and
Group 1 interrupts.

Attributes

GICC_BPR is a 32-bit register.

Field descriptions

The GICC_BPR bit assignments are:

Bits [31:3]

Reserved, RES0.

Binary_Point, bits [2:0]

Controls how the 8-bit interrupt priority field is split into a group priority field, that determines
interrupt preemption, and a subpriority field. The following list describes how this field determines
the interrupt priority bits assigned to the group priority field:

• Table 4-8 on page 4-68, for the processing of Group 1 interrupts in a GIC implementation that
supports interrupt grouping, when GICC_CTLR.CBPR == 0.

• Table 4-9 on page 4-68, for all other cases.

Security disabled Secure Non-secure

RW RW RW

RES0

31 3 2 0

Binary_Point
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-585
ID072617 Non-Confidential

8 Programmers’ Model
8.13 The GIC CPU interface register descriptions
This field resets to a value that is architecturally UNKNOWN.

Note
 Aliasing the Non-secure GICC_BPR as GICC_ABPR in a multiprocessor system permits a PE that can make only
Secure accesses to configure the preemption setting for Group 1 interrupts by accessing GICC_ABPR.

Accessing the GICC_BPR:

GICC_BPR can be accessed through its memory-mapped interface:

Component Offset

GIC CPU interface 0x0008
8-586 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.13 The GIC CPU interface register descriptions
8.13.7 GICC_CTLR, CPU Interface Control Register

The GICC_CTLR characteristics are:

Purpose

Controls the CPU interface, including enabling of interrupt groups, interrupt signal bypass, binary
point registers used, and separation of priority drop and interrupt deactivation.

Note
 If the GIC implementation supports two Security states, independent EOI controls are provided for

accesses from each Security state. Secure accesses handle both Group 0 and Group 1 interrupts, and
Non-secure accesses handle Group 1 interrupts only.

Usage constraints

This register is accessible as follows:

This register is used only when System register access is not enabled. When System register access
is enabled:

• For AArch32 implementations, ICC_CTLR and ICC_MCTLR provide equivalent
functionality.

• For AArch64 implementations, ICC_CTLR_EL1 and ICC_CTLR_EL3 provide equivalent
functionality.

Configurations

Some or all RW fields of this register have defined reset values.

In a GIC implementation that supports two Security states:

• This register is Banked.

• The register bit assignments are different in the Secure and Non-secure copies.

Attributes

GICC_CTLR is a 32-bit register.

Field descriptions

The GICC_CTLR bit assignments are:

When GICD_CTLR.DS==0, Non-secure access:

Security disabled Secure Non-secure

RW RW RW

RES0

31 10 9 8 7 6 5

RES0

4 1 0

EnableGrp1
FIQBypDisGrp1
IRQBypDisGrp1

RES0
EOImodeNS
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-587
ID072617 Non-Confidential

8 Programmers’ Model
8.13 The GIC CPU interface register descriptions
Bits [31:10]

Reserved, RES0.

EOImodeNS, bit [9]

Controls the behavior of Non-secure accesses to GICC_EOIR, GICC_AEOIR, and GICC_DIR.

0 GICC_EOIR and GICC_AEOIR provide both priority drop and interrupt deactivation
functionality. Accesses to GICC_DIR are UNPREDICTABLE.

1 GICC_EOIR and GICC_AEOIR provide priority drop functionality only. GICC_DIR
provides interrupt deactivation functionality.

Note
 An implementation is permitted to make this bit RAO/WI.

When this register has an architecturally-defined reset value, if this field is implemented as an RW
field, it resets to 0.

Bits [8:7]

Reserved, RES0.

IRQBypDisGrp1, bit [6]

When the signaling of IRQs by the CPU interface is disabled, this field partly controls whether the
bypass IRQ signal is signaled to the PE for Group 1:

0 The bypass IRQ signal is signaled to the PE.

1 The bypass IRQ signal is not signaled to the PE.

If System register access is enabled for EL3 and ICC_SRE_EL3.DIB == 1, this field is RAO/WI.

If System register access is enabled for EL1, this field is ignored.

If an implementation does not support legacy interrupts, this bit is permitted to be RAO/WI.

See Interrupt bypass support on page 3-43 for more information.

When this register has an architecturally-defined reset value, if this field is implemented as an RW
field, it resets to 0.

FIQBypDisGrp1, bit [5]

When the signaling of FIQs by the CPU interface is disabled, this field partly controls whether the
bypass FIQ signal is signaled to the PE for Group 1:

0 The bypass FIQ signal is signaled to the PE.

1 The bypass FIQ signal is not signaled to the PE.

If System register access is enabled for EL3 and ICC_SRE_EL3.DFB == 1, this field is RAO/WI.

If System register access is enabled for EL1, this field is ignored.

If an implementation does not support legacy interrupts, this bit is permitted to be RAO/WI.

See Interrupt bypass support on page 3-43 for more information.

When this register has an architecturally-defined reset value, if this field is implemented as an RW
field, it resets to 0.

Bits [4:1]

Reserved, RES0.

EnableGrp1, bit [0]

This Non-secure field enables the signaling of Group 1 interrupts by the CPU interface to a target
PE:

0 Group 1 interrupt signaling is disabled.

1 Group 1 interrupt signaling is enabled.
8-588 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.13 The GIC CPU interface register descriptions
When this register has an architecturally-defined reset value, this field resets to 0.

When GICD_CTLR.DS==0, Secure access:

Bits [31:11]

Reserved, RES0.

EOImodeNS, bit [10]

Controls the behavior of Non-secure accesses to GICC_EOIR, GICC_AEOIR, and GICC_DIR.

0 GICC_EOIR and GICC_AEOIR provide both priority drop and interrupt deactivation
functionality. Accesses to GICC_DIR are UNPREDICTABLE.

1 GICC_EOIR and GICC_AEOIR provide priority drop functionality only. GICC_DIR
provides interrupt deactivation functionality.

Note
 An implementation is permitted to make this bit RAO/WI.

When this register has an architecturally-defined reset value, if this field is implemented as an RW
field, it resets to 0.

EOImodeS, bit [9]

Controls the behavior of Secure accesses to GICC_EOIR, GICC_AEOIR, and GICC_DIR.

0 GICC_EOIR and GICC_AEOIR provide both priority drop and interrupt deactivation
functionality. Accesses to GICC_DIR are UNPREDICTABLE.

1 GICC_EOIR and GICC_AEOIR provide priority drop functionality only. GICC_DIR
provides interrupt deactivation functionality.

Note
 An implementation is permitted to make this bit RAO/WI.

This field shares state with GICC_CTLR.EOImode.

When this register has an architecturally-defined reset value, if this field is implemented as an RW
field, it resets to 0.

IRQBypDisGrp1, bit [8]

When the signaling of IRQs by the CPU interface is disabled, this field partly controls whether the
bypass IRQ signal is signaled to the PE for Group 1:

0 The bypass IRQ signal is signaled to the PE.

RES0

31 11 10 9 8 7 6 5 4 3 2 1 0

EnableGrp0
EnableGrp1

RES0
FIQEn
CBPR

FIQBypDisGrp0
IRQBypDisGrp0
FIQBypDisGrp1
IRQBypDisGrp1

EOImodeS
EOImodeNS
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-589
ID072617 Non-Confidential

8 Programmers’ Model
8.13 The GIC CPU interface register descriptions
1 The bypass IRQ signal is not signaled to the PE.

If System register access is enabled for EL3 and ICC_SRE_EL3.DIB == 1, this field is RAO/WI.

If System register access is enabled for EL1, this field is ignored.

If an implementation does not support legacy interrupts, this bit is permitted to be RAO/WI.

See Interrupt bypass support on page 3-43 for more information.

When this register has an architecturally-defined reset value, if this field is implemented as an RW
field, it resets to 0.

FIQBypDisGrp1, bit [7]

When the signaling of FIQs by the CPU interface is disabled, this field partly controls whether the
bypass FIQ signal is signaled to the PE for Group 1:

0 The bypass FIQ signal is signaled to the PE.

1 The bypass FIQ signal is not signaled to the PE.

If System register access is enabled for EL3 and ICC_SRE_EL3.DFB == 1, this field is RAO/WI.

If System register access is enabled for EL1, this field is ignored.

If an implementation does not support legacy interrupts, this bit is permitted to be RAO/WI.

See Interrupt bypass support on page 3-43 for more information.

When this register has an architecturally-defined reset value, if this field is implemented as an RW
field, it resets to 0.

IRQBypDisGrp0, bit [6]

When the signaling of IRQs by the CPU interface is disabled, this field partly controls whether the
bypass IRQ signal is signaled to the PE for Group 0:

0 The bypass IRQ signal is signaled to the PE.

1 The bypass IRQ signal is not signaled to the PE.

If System register access is enabled for EL3 and ICC_SRE_EL3.DIB == 1, this field is RAO/WI.

If System register access is enabled for EL1, this field is ignored.

If an implementation does not support legacy interrupts, this bit is permitted to be RAO/WI.

See Interrupt bypass support on page 3-43 for more information.

When this register has an architecturally-defined reset value, if this field is implemented as an RW
field, it resets to 0.

FIQBypDisGrp0, bit [5]

When the signaling of FIQs by the CPU interface is disabled, this field partly controls whether the
bypass FIQ signal is signaled to the PE for Group 0:

0 The bypass FIQ signal is signaled to the PE.

1 The bypass FIQ signal is not signaled to the PE.

If System register access is enabled for EL3 and ICC_SRE_EL3.DIB == 1, this field is RAO/WI.

If System register access is enabled for EL1, this field is ignored.

If an implementation does not support legacy interrupts, this bit is permitted to be RAO/WI.

See Interrupt bypass support on page 3-43 for more information.

When this register has an architecturally-defined reset value, if this field is implemented as an RW
field, it resets to 0.

CBPR, bit [4]

Controls whether GICC_BPR provides common control of preemption to Group 0 and Group 1
interrupts:

0 GICC_BPR determines preemption for Group 0 interrupts only.
GICC_ABPR determines preemption for Group 1 interrupts.
8-590 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.13 The GIC CPU interface register descriptions
1 GICC_BPR determines preemption for both Group 0 and Group 1 interrupts.

This field is an alias of ICC_CTLR_EL3.CBPR_EL1NS.

In a GIC that supports two Security states, when CBPR == 1:

• A Non-secure read of GICC_BPR returns the value of Secure GICC_BPR.BinaryPoint,
incremented by 1, and saturated to 0b111.

• Non-secure writes of GICC_BPR are ignored.

When this register has an architecturally-defined reset value, this field resets to 0.

FIQEn, bit [3]

Controls whether the CPU interface signals Group 0 interrupts to a target PE using the FIQ or IRQ
signal:

0 Group 0 interrupts are signaled using the IRQ signal.

1 Group 0 interrupts are signaled using the FIQ signal.

Group 1 interrupts are signaled using the IRQ signal only.

If an implementation supports two Security states, this bit is permitted to be RAO/WI.

When this register has an architecturally-defined reset value, if this field is implemented as an RW
field, it resets to 0.

Bit [2]

Reserved, RES0.

EnableGrp1, bit [1]

This Non-secure field enables the signaling of Group 1 interrupts by the CPU interface to a target
PE:

0 Group 1 interrupt signaling is disabled.

1 Group 1 interrupt signaling is enabled.

When this register has an architecturally-defined reset value, this field resets to 0.

EnableGrp0, bit [0]

Enables the signaling of Group 0 interrupts by the CPU interface to a target PE:

0 Group 0 interrupt signaling is disabled.

1 Group 0 interrupt signaling is enabled.

When this register has an architecturally-defined reset value, this field resets to 0.

When GICD_CTLR.DS==1:

RES0

31 10 9 8 7 6 5 4 3 2 1 0

EnableGrp0
EnableGrp1

RES0
FIQEn
CBPR

FIQBypDisGrp0
IRQBypDisGrp0
FIQBypDisGrp1
IRQBypDisGrp1

EOImode
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-591
ID072617 Non-Confidential

8 Programmers’ Model
8.13 The GIC CPU interface register descriptions
Bits [31:10]

Reserved, RES0.

EOImode, bit [9]

Controls the behavior of accesses to GICC_EOIR, GICC_AEOIR, and GICC_DIR.

0 GICC_EOIR and GICC_AEOIR provide both priority drop and interrupt deactivation
functionality. Accesses to GICC_DIR are UNPREDICTABLE.

1 GICC_EOIR and GICC_AEOIR provide priority drop functionality only. GICC_DIR
provides interrupt deactivation functionality.

Note
 An implementation is permitted to make this bit RAO/WI.

This field shares state with GICC_CTLR.EOImodeS.

When this register has an architecturally-defined reset value, if this field is implemented as an RW
field, it resets to 0.

IRQBypDisGrp1, bit [8]

When the signaling of IRQs by the CPU interface is disabled, this field partly controls whether the
bypass IRQ signal is signaled to the PE for Group 1:

0 The bypass IRQ signal is signaled to the PE.

1 The bypass IRQ signal is not signaled to the PE.

If System register access is enabled for EL3 and ICC_SRE_EL3.DIB == 1, this field is RAO/WI.

If System register access is enabled for EL1, this field is ignored.

If an implementation does not support legacy interrupts, this bit is permitted to be RAO/WI.

See Interrupt bypass support on page 3-43 for more information.

When this register has an architecturally-defined reset value, if this field is implemented as an RW
field, it resets to 0.

FIQBypDisGrp1, bit [7]

When the signaling of FIQs by the CPU interface is disabled, this field partly controls whether the
bypass FIQ signal is signaled to the PE for Group 1:

0 The bypass FIQ signal is signaled to the PE.

1 The bypass FIQ signal is not signaled to the PE.

If System register access is enabled for EL3 and ICC_SRE_EL3.DFB == 1, this field is RAO/WI.

If System register access is enabled for EL1, this field is ignored.

If an implementation does not support legacy interrupts, this bit is permitted to be RAO/WI.

See Interrupt bypass support on page 3-43 for more information.

When this register has an architecturally-defined reset value, if this field is implemented as an RW
field, it resets to 0.

IRQBypDisGrp0, bit [6]

When the signaling of IRQs by the CPU interface is disabled, this field partly controls whether the
bypass IRQ signal is signaled to the PE for Group 0:

0 The bypass IRQ signal is signaled to the PE.

1 The bypass IRQ signal is not signaled to the PE.

If System register access is enabled for EL3 and ICC_SRE_EL3.DIB == 1, this field is RAO/WI.

If System register access is enabled for EL1, this field is ignored.

If an implementation does not support legacy interrupts, this bit is permitted to be RAO/WI.

See Interrupt bypass support on page 3-43 for more information.
8-592 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.13 The GIC CPU interface register descriptions
When this register has an architecturally-defined reset value, if this field is implemented as an RW
field, it resets to 0.

FIQBypDisGrp0, bit [5]

When the signaling of FIQs by the CPU interface is disabled, this field partly controls whether the
bypass FIQ signal is signaled to the PE for Group 0:

0 The bypass FIQ signal is signaled to the PE.

1 The bypass FIQ signal is not signaled to the PE.

If System register access is enabled for EL3 and ICC_SRE_EL3.DIB == 1, this field is RAO/WI.

If System register access is enabled for EL1, this field is ignored.

If an implementation does not support legacy interrupts, this bit is permitted to be RAO/WI.

See Interrupt bypass support on page 3-43 for more information.

When this register has an architecturally-defined reset value, if this field is implemented as an RW
field, it resets to 0.

CBPR, bit [4]

Controls whether GICC_BPR provides common control of preemption to Group 0 and Group 1
interrupts:

0 GICC_BPR determines preemption for Group 0 interrupts only.
GICC_ABPR determines preemption for Group 1 interrupts.

1 GICC_BPR determines preemption for both Group 0 and Group 1 interrupts.

This field is an alias of ICC_CTLR_EL3.CBPR_EL1NS.

In a GIC that supports two Security states, when CBPR == 1:

• A Non-secure read of GICC_BPR returns the value of Secure GICC_BPR.BinaryPoint,
incremented by 1, and saturated to 0b111.

• Non-secure writes of GICC_BPR are ignored.

When this register has an architecturally-defined reset value, this field resets to 0.

FIQEn, bit [3]

Controls whether the CPU interface signals Group 0 interrupts to a target PE using the FIQ or IRQ
signal:

0 Group 0 interrupts are signaled using the IRQ signal.

1 Group 0 interrupts are signaled using the FIQ signal.

Group 1 interrupts are signaled using the IRQ signal only.

If an implementation supports two Security states, this bit is permitted to be RAO/WI.

When this register has an architecturally-defined reset value, if this field is implemented as an RW
field, it resets to 0.

Bit [2]

Reserved, RES0.

EnableGrp1, bit [1]

This Non-secure field enables the signaling of Group 1 interrupts by the CPU interface to a target
PE:

0 Group 1 interrupt signaling is disabled.

1 Group 1 interrupt signaling is enabled.

When this register has an architecturally-defined reset value, this field resets to 0.
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-593
ID072617 Non-Confidential

8 Programmers’ Model
8.13 The GIC CPU interface register descriptions
EnableGrp0, bit [0]

Enables the signaling of Group 0 interrupts by the CPU interface to a target PE:

0 Group 0 interrupt signaling is disabled.

1 Group 0 interrupt signaling is enabled.

When this register has an architecturally-defined reset value, this field resets to 0.

Accessing the GICC_CTLR:

GICC_CTLR can be accessed through its memory-mapped interface:

Component Offset

GIC CPU interface 0x0000
8-594 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.13 The GIC CPU interface register descriptions
8.13.8 GICC_DIR, CPU Interface Deactivate Interrupt Register

The GICC_DIR characteristics are:

Purpose

When interrupt priority drop is separated from interrupt deactivation, a write to this register
deactivates the specified interrupt.

Usage constraints

This register is accessible as follows:

This register is used only when System register access is not enabled. When System register access
is enabled:

• For AArch32 implementations, ICC_DIR provides equivalent functionality.

• For AArch64 implementations, ICC_DIR_EL1 provides equivalent functionality.

Writes to this register have an effect only in the following cases:

• When GICD_CTLR.DS == 1, if GICC_CTLR.EOImode == 1.

• In GIC implementations that support two Security states:

— If the access is Secure and GICC_CTLR.EOImodeS == 1.

— If the access is Non-secure and GICC_CTLR.EOImodeNS == 1.

The following writes must be ignored:

• Writes to this register when the corresponding EOImode field in GICC_CTLR == 0. In
systems that support system error generation, an implementation might generate a system
error.

• Writes to this register when the corresponding EOImode field in GICC_CTLR == 0 and the
corresponding interrupt is not active. In systems that support system error generation, an
implementation might generate a system error. In implementations using the GIC Stream
Protocol Interface these writes correspond to a Deactivate for an interrupt that is not active.

If the corresponding EOImode field in GICC_CTLR is 1 and this register is written to without a
corresponding write to GICC_EOIR or GICC_AEOIR, the interrupt is deactivated but the bit
corresponding to it in the active priorities registers remains set.

When affinity routing is enabled for a Security state, it is a programming error to use
memory-mapped registers to access the GIC.

Configurations

There are no configuration notes.

Attributes

GICC_DIR is a 32-bit register.

Field descriptions

The GICC_DIR bit assignments are:

Security disabled Secure Non-secure

WO WO WO

RES0

31 24

INTID

23 0
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-595
ID072617 Non-Confidential

8 Programmers’ Model
8.13 The GIC CPU interface register descriptions
Bits [31:24]

Reserved, RES0.

INTID, bits [23:0]

The INTID of the signaled interrupt.

Note
 INTIDs 1020-1023 are reserved and convey additional information such as spurious interrupts.

When affinity routing is not enabled:

• Bits [23:13] are RES0.

• For SGIs, bits [12:10] identify the CPU interface corresponding to the source PE. For all
other interrupts these bits are RES0.

Accessing the GICC_DIR:

GICC_DIR can be accessed through its memory-mapped interface:

Component Offset

GIC CPU interface 0x1000
8-596 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.13 The GIC CPU interface register descriptions
8.13.9 GICC_EOIR, CPU Interface End Of Interrupt Register

The GICC_EOIR characteristics are:

Purpose

A write to this register performs priority drop for the specified interrupt and, if the appropriate
GICC_CTLR.EOImodeS or GICC_CTLR.EOImodeNS field == 0, also deactivates the interrupt.

Usage constraints

This register is accessible as follows:

The following writes must be ignored:

• Writes of INTIDs 1020-1023.

• Secure writes corresponding to Group 1 interrupts. In systems that support system error
generation, an implementation might generate a system error. In this case, GIC behavior is
predictable, and the highest Secure active priority (in the Secure copy of GICC_APR<n>)
will be reset if the highest active priority is Secure. System behavior is UNPREDICTABLE.

• Non-secure writes corresponding to Group 0 interrupts when GICC_CTLR.EOImodeS == 1.
In systems that support system error generation, an implementation might generate a system
error. In this case, GIC behavior is predictable, and the highest Non-secure active priority (in
the Non-secure copy of GICC_APR<n>) will be reset if the highest active priority is
Non-secure. System behavior is UNPREDICTABLE.

This register is used only when System register access is not enabled. When System register access
is enabled:

• For AArch32 implementations, ICC_EOIR0 and ICC_EOIR1 provide equivalent
functionality.

• For AArch64 implementations, ICC_EOIR0_EL1 and ICC_EOIR1_EL1 provide equivalent
functionality.

When affinity routing is enabled for a Security state, it is a programming error to use
memory-mapped registers to access the GIC.

Configurations

If GICD_CTLR.DS==0:

• This register is Common.

• GICC_AEOIR is an alias of the Non-secure view of this register.

For Secure writes when GICD_CTLR.DS==0, or for Secure and Non-secure writes when
GICD_CTLR.DS==1, the register provides functionality for Group 0 interrupts.

For Non-secure writes when GICD_CTLR.DS==1, the register provides functionality for Group 1
interrupts.

Attributes

GICC_EOIR is a 32-bit register.

Field descriptions

The GICC_EOIR bit assignments are:

Security disabled Secure Non-secure

WO WO WO
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-597
ID072617 Non-Confidential

8 Programmers’ Model
8.13 The GIC CPU interface register descriptions
Bits [31:24]

Reserved, RES0.

INTID, bits [23:0]

The INTID of the signaled interrupt.

Note
 INTIDs 1020-1023 are reserved and convey additional information such as spurious interrupts.

When affinity routing is not enabled:

• Bits [23:13] are RES0.

• For SGIs, bits [12:10] identify the CPU interface corresponding to the source PE. For all
other interrupts these bits are RES0.

For every read of a valid INTID from GICC_IAR, the connected PE must perform a matching write to GICC_EOIR.
The value written to GICC_EOIR must be the INTID from GICC_IAR. Reads of INTIDs 1020-1023 do not require
matching writes.

Note
 ARM recommends that software preserves the entire register value read from GICC_IAR, and writes that value
back to GICC_EOIR on completion of interrupt processing.

For nested interrupts, the order of writes to this register must be the reverse of the order of interrupt
acknowledgement. Behavior is UNPREDICTABLE if:

• This ordering constraint is not maintained.

• The value written to this register does not match an active interrupt, or the ID of a spurious interrupt.

• The value written to this register does not match the last valid interrupt value read from GICC_IAR.

See Interrupt lifecycle on page 4-46 for general information about the effect of writes to end of interrupt registers,
and about the possible separation of the priority drop and interrupt deactivate operations.

If GICD_CTLR.DS==0:

• GICC_CTLR.EOImodeS controls the behavior of Secure accesses to GICC_EOIR and GICC_AEOIR.

• GICC_CTLR.EOImodeNS controls the behavior of Non-secure accesses to GICC_EOIR and
GICC_AEOIR.

Accessing the GICC_EOIR:

GICC_EOIR can be accessed through its memory-mapped interface:

RES0

31 24

INTID

23 0

Component Offset

GIC CPU interface 0x0010
8-598 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.13 The GIC CPU interface register descriptions
8.13.10 GICC_HPPIR, CPU Interface Highest Priority Pending Interrupt Register

The GICC_HPPIR characteristics are:

Purpose

Provides the INTID of the highest priority pending interrupt on the CPU interface.

Usage constraints

This register is accessible as follows:

This register is used only when System register access is not enabled. When System register access
is enabled:

• For AArch32 implementations, ICC_HPPIR0 and ICC_HPPIR1 provide equivalent
functionality.

• For AArch64 implementations, ICC_HPPIR0_EL1 and ICC_HPPIR1_EL1 provide
equivalent functionality.

If the highest priority pending interrupt is in Group 0, a Non-secure read of this register returns the
special INTID 1023.

For Secure reads when GICD_CTLR.DS==0, or for Secure and Non-secure reads when
GICD_CTLR.DS==1, returns the special INTID 1022 if the highest priority pending interrupt is in
Group 1.

If no interrupts are in the pending state, a read of this register returns the special INTID 1023.

Interrupt identifiers corresponding to an interrupt group that is not enabled are ignored.

If the highest priority pending interrupt is a direct interrupt that is both individually enabled in the
Distributor and part of an interrupt group that is enabled in the Distributor, and the interrupt group
is disabled in the CPU interface for this PE, this register returns the special INTID 1023.

See Preemption on page 4-71 for more information about pending interrupts that are not considered
when determining the highest priority pending interrupt.

When affinity routing is enabled for a Security state, it is a programming error to use
memory-mapped registers to access the GIC.

Configurations

If GICD_CTLR.DS==0:

• This register is Common.

• GICC_AHPPIR is an alias of the Non-secure view of this register.

Attributes

GICC_HPPIR is a 32-bit register.

Field descriptions

The GICC_HPPIR bit assignments are:

Security disabled Secure Non-secure

RO RO RO

RES0

31 24

INTID

23 0
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-599
ID072617 Non-Confidential

8 Programmers’ Model
8.13 The GIC CPU interface register descriptions
Bits [31:24]

Reserved, RES0.

INTID, bits [23:0]

The INTID of the signaled interrupt.

Note
 INTIDs 1020-1023 are reserved and convey additional information such as spurious interrupts.

When affinity routing is not enabled:

• Bits [23:13] are RES0.

• For SGIs, bits [12:10] identify the CPU interface corresponding to the source PE. For all
other interrupts these bits are RES0.

Accessing the GICC_HPPIR:

GICC_HPPIR can be accessed through its memory-mapped interface:

Component Offset

GIC CPU interface 0x0018
8-600 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.13 The GIC CPU interface register descriptions
8.13.11 GICC_IAR, CPU Interface Interrupt Acknowledge Register

The GICC_IAR characteristics are:

Purpose

Provides the INTID of the signaled interrupt. A read of this register by the PE acts as an
acknowledge for the interrupt.

Usage constraints

This register is accessible as follows:

When GICD_CTLR.DS==1, if the highest priority pending interrupt is in Group 1, the special
INTID 1022 is returned.

In GIC implementations that support two Security states, if the highest priority pending interrupt is
in Group 0, Non-secure reads return the special INTID 1023.

In GIC implementations that support two Security states, if the highest priority pending interrupt is
in Group 1, Secure reads return the special INTID 1022.

This register is used only when System register access is not enabled. When System register access
is enabled:

• For AArch32 implementations, ICC_IAR0 and ICC_IAR1 provide equivalent functionality.

• For AArch64 implementations, ICC_IAR0_EL1 and ICC_IAR1_EL1 provide equivalent
functionality.

When affinity routing is enabled for a Security state, it is a programming error to use
memory-mapped registers to access the GIC.

Configurations

This register is available in all configurations of the GIC. If GICD_CTLR.DS==0:

• This register is Common.

• GICC_AIAR is an alias of the Non-secure view of this register.

The format of the INTID is governed by whether affinity routing is enabled for a Security state.

Attributes

GICC_IAR is a 32-bit register.

Field descriptions

The GICC_IAR bit assignments are:

Bits [31:24]

Reserved, RES0.

INTID, bits [23:0]

The INTID of the signaled interrupt.

Security disabled Secure Non-secure

RO RO RO

RES0

31 24

INTID

23 0
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-601
ID072617 Non-Confidential

8 Programmers’ Model
8.13 The GIC CPU interface register descriptions
Note
 INTIDs 1020-1023 are reserved and convey additional information such as spurious interrupts.

When affinity routing is not enabled:

• Bits [23:13] are RES0.

• For SGIs, bits [12:10] identify the CPU interface corresponding to the source PE. For all
other interrupts these bits are RES0.

A read of this register returns the INTID of the highest priority pending interrupt for the CPU interface. The read
returns a spurious INTID of 1023 if any of the following apply:

• Forwarding of interrupts by the Distributor to the CPU interface is disabled.

• Signaling of interrupts by the CPU interface to the connected PE is disabled.

• There are no pending interrupts on the CPU interface with sufficient priority for the interface to signal it to
the PE.

When the GIC returns a valid INTID to a read of this register it treats the read as an acknowledge of that interrupt.
In addition, it changes the interrupt status from pending to active, or to active and pending if the pending state of
the interrupt persists. Normally, the pending state of an interrupt persists only if the interrupt is level-sensitive and
remains asserted.

For every read of a valid INTID from GICC_IAR, the connected PE must perform a matching write to GICC_EOIR.

Note
 • ARM recommends that software preserves the entire register value read from this register, and writes that

value back to GICC_EOIR on completion of interrupt processing.

• For SPIs, although multiple target PEs might attempt to read this register at any time, only one PE can obtain
a valid INTID. See Activation on page 4-47 for more information.

Accessing the GICC_IAR:

GICC_IAR can be accessed through its memory-mapped interface:

Component Offset

GIC CPU interface 0x000C
8-602 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.13 The GIC CPU interface register descriptions
8.13.12 GICC_IIDR, CPU Interface Identification Register

The GICC_IIDR characteristics are:

Purpose

Provides information about the implementer and revision of the CPU interface.

Usage constraints

This register is accessible as follows:

Configurations

There are no configuration notes.

Attributes

GICC_IIDR is a 32-bit register.

Field descriptions

The GICC_IIDR bit assignments are:

ProductID, bits [31:20]

An IMPLEMENTATION DEFINED product identifier.

Architecture_version, bits [19:16]

The version of the GIC architecture that is implemented.

0001 GICv1.

0010 GICv2.

0011 GICv3 memory-mapped interface supported. Support for the System register interface
is discoverable from PE registers ID_PFR1 and ID_AA64PFR0_EL1.

0100 GICv4 memory-mapped interface supported. Support for the System register interface
is discoverable from PE registers ID_PFR1 and ID_AA64PFR0_EL1.

Other values are reserved.

Revision, bits [15:12]

An IMPLEMENTATION DEFINED revision number for the CPU interface.

Implementer, bits [11:0]

Contains the JEP106 code of the company that implemented the CPU interface.

• Bits [11:8] are the JEP106 continuation code of the implementer. For an ARM
implementation, this field is 0x4.

• Bit [7] is always 0.

Security disabled Secure Non-secure

RO RO RO

ProductID

31 20 19 16

Revision

15 12

Implementer

11 0

Architecture_version
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-603
ID072617 Non-Confidential

8 Programmers’ Model
8.13 The GIC CPU interface register descriptions
• Bits [6:0] are the JEP106 identity code of the implementer. For an ARM implementation, bits
[7:0] are therefore 0x3B.

Accessing the GICC_IIDR:

GICC_IIDR can be accessed through its memory-mapped interface:

Component Offset

GIC CPU interface 0x00FC
8-604 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.13 The GIC CPU interface register descriptions
8.13.13 GICC_NSAPR<n>, CPU Interface Non-secure Active Priorities Registers, n = 0 - 3

The GICC_NSAPR<n> characteristics are:

Purpose

Provides information about Group 1 interrupt active priorities.

Usage constraints

This register is accessible as follows:

Configurations

Some or all RW fields of this register have defined reset values.

The contents of these registers are IMPLEMENTATION DEFINED with the one architectural
requirement that the value 0x00000000 is consistent with no interrupts being active.

When GICD_CTLR.DS==0, these registers are RAZ/WI to Non-secure accesses.

GICC_NSAPR1 is only implemented in implementations that support 6 or more bits of priority.
GICC_NSAPR2 and GICC_NSAPR3 are only implemented in implementations that support 7 bits
of priority.

Attributes

GICC_NSAPR<n> is a 32-bit register.

Field descriptions

The GICC_NSAPR<n> bit assignments are:

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

When this register has an architecturally-defined reset value, this field resets to 0.

Accessing the GICC_NSAPR<n>:

GICC_NSAPR<n> can be accessed through its memory-mapped interface:

Security disabled Secure Non-secure

RW RW RW

IMPLEMENTATION DEFINED

31 0

Component Offset

GIC CPU interface 0x00E0 + 4n
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-605
ID072617 Non-Confidential

8 Programmers’ Model
8.13 The GIC CPU interface register descriptions
8.13.14 GICC_PMR, CPU Interface Priority Mask Register

The GICC_PMR characteristics are:

Purpose

This register provides an interrupt priority filter. Only interrupts with a higher priority than the value
in this register are signaled to the PE.

Note
 Higher interrupt priority corresponds to a lower value of the Priority field.

Usage constraints

This register is accessible as follows:

If the GIC implementation supports two Security states:

• Non-secure accesses to this register can only read or write values corresponding to the lower
half of the priority range.

• If a Secure write has programmed the register with a value that corresponds to a value in the
upper half of the priority range then:

— Any Non-secure read of the register returns 0x00, regardless of the value held in the
register.

— Non-secure writes are ignored.

See Interrupt prioritization on page 4-65 for more information.

Configurations

RW fields in this register reset to architecturally UNKNOWN values.

This register is available in all configurations of the GIC. If the GIC implementation supports two
Security states this register is Common.

Attributes

GICC_PMR is a 32-bit register.

Field descriptions

The GICC_PMR bit assignments are:

Bits [31:8]

Reserved, RES0.

Priority, bits [7:0]

The priority mask level for the CPU interface. If the priority of the interrupt is higher than the value
indicated by this field, the interface signals the interrupt to the PE.

Security disabled Secure Non-secure

RW RW RW

RES0

31 8

Priority

7 0
8-606 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.13 The GIC CPU interface register descriptions
If the GIC implementation supports fewer than 256 priority levels some bits might be RAZ/WI, as
follows:

• For 128 supported levels, bit [0] = 0b0.

• For 64 supported levels, bits [1:0] = 0b00.

• For 32 supported levels, bits [2:0] = 0b000.

• For 16 supported levels, bits [3:0] = 0b0000.

See Interrupt prioritization on page 4-65 for more information.

This field resets to a value that is architecturally UNKNOWN.

Accessing the GICC_PMR:

GICC_PMR can be accessed through its memory-mapped interface:

Component Offset

GIC CPU interface 0x0004
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-607
ID072617 Non-Confidential

8 Programmers’ Model
8.13 The GIC CPU interface register descriptions
8.13.15 GICC_RPR, CPU Interface Running Priority Register

The GICC_RPR characteristics are:

Purpose

This register indicates the running priority of the CPU interface.

Usage constraints

This register is accessible as follows:

If there is no active interrupt on the CPU interface, the idle priority value is returned.

If the GIC implementation supports two Security states, a Non-secure read of the Priority field
returns:

• 0x00 if the field value is less than 0x80.

• The Non-secure view of the Priority value if the field value is 0x80 or more.

See Interrupt prioritization on page 4-65 for more information.

Note
 Software cannot determine the number of implemented priority bits from this register.

Configurations

This register is available in all configurations of the GIC. If the GIC implementation supports two
Security states this register is Common.

Attributes

GICC_RPR is a 32-bit register.

Field descriptions

The GICC_RPR bit assignments are:

Bits [31:8]

Reserved, RES0.

Priority, bits [7:0]

The current running priority on the CPU interface. This is the group priority of the current active
interrupt.

If there are no active interrupts on the CPU interface, or all active interrupts have undergone a
priority drop, the value returned is the Idle priority.

The priority returned is the group priority as if the BPR was set to the minimum value.

Security disabled Secure Non-secure

RO RO RO

RES0

31 8

Priority

7 0
8-608 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.13 The GIC CPU interface register descriptions
Accessing the GICC_RPR:

GICC_RPR can be accessed through its memory-mapped interface:

Component Offset

GIC CPU interface 0x0014
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-609
ID072617 Non-Confidential

8 Programmers’ Model
8.13 The GIC CPU interface register descriptions
8.13.16 GICC_STATUSR, CPU Interface Status Register

The GICC_STATUSR characteristics are:

Purpose

Provides software with a mechanism to detect:

• Accesses to reserved locations.

• Writes to read-only locations.

• Reads of write-only locations.

Usage constraints

GICC_STATUSR(S) is accessible as follows:

GICC_STATUSR(NS) is accessible as follows:

This is an optional register. If the register is not implemented, the location is RAZ/WI.

If this register is implemented, GICV_STATUSR must also be implemented.

Configurations

If the GIC implementation supports two Security states this register is Banked to provide Secure and
Non-secure copies.

This register is used only when System register access is not enabled. If System register access is
enabled, this register is not updated. Equivalent functionality might be provided by appropriate traps
and exceptions.

Attributes

GICC_STATUSR is a 32-bit register.

Field descriptions

The GICC_STATUSR bit assignments are:

Bits [31:5]

Reserved, RES0.

Security disabled Secure Non-secure

RW RW -

Security disabled Secure Non-secure

RW - RW

RES0

31 5 4 3 2 1 0

RRD
WRD

RWOD
WROD

ASV
8-610 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.13 The GIC CPU interface register descriptions
ASV, bit [4]

Attempted security violation.

0 Normal operation.

1 A Non-secure access to a Secure register has been detected.

Note
 This bit is not set to 1 for registers where any of the fields are Non-secure.

WROD, bit [3]

Write to an RO location.

0 Normal operation.

1 A write to an RO location has been detected.

When a violation is detected, software must write 1 to this register to reset it.

RWOD, bit [2]

Read of a WO location.

0 Normal operation.

1 A read of a WO location has been detected.

When a violation is detected, software must write 1 to this register to reset it.

WRD, bit [1]

Write to a reserved location.

0 Normal operation.

1 A write to a reserved location has been detected.

When a violation is detected, software must write 1 to this register to reset it.

RRD, bit [0]

Read of a reserved location.

0 Normal operation.

1 A read of a reserved location has been detected.

When a violation is detected, software must write 1 to this register to reset it.

Accessing the GICC_STATUSR:

GICC_STATUSR can be accessed through its memory-mapped interface:

Component Offset

GIC CPU interface 0x002C
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-611
ID072617 Non-Confidential

8 Programmers’ Model
8.14 The GIC virtual CPU interface register map
8.14 The GIC virtual CPU interface register map

Note
 Unless explicitly defined otherwise in this section, the GICV_* registers are as defined in the GICv2 specification,
see ARM® Generic Interrupt Controller, Architecture version 2.0, Architecture Specification.

These registers provide the virtual CPU interface accessed by the virtual machine. Typically, a virtual machine is
unaware of any difference between virtual interrupts and physical interrupts. This means the programmers’ model
for handling virtual interrupts must be identical to that for handling physical interrupts. In general, these registers
have the same format as the GIC physical CPU interface registers, but they operate on the interrupt view defined
primarily by the List registers.

These registers are memory-mapped, with defined offsets from an IMPLEMENTATION DEFINED GICV_* register base
address.

Note
 The offset of each GICV_* register is the same as the offset of the corresponding register for the physical CPU
interface. For example, GICV_PMR is at offset 0x0004 from the GICV_* register base address, and GICC_PMR is
at the same offset from the GICC_* register base address.

This means that:

• The hypervisor can use the stage 2 address translations to map the virtual CPU interface accesses to the
correct physical addresses.

• Software, whether accessing the registers of a physical CPU interface or of a virtual CPU interface, uses the
same register addresses.

To enable use of 64KB pages, the GICV_* memory map must ensure that:

• The base address of the GICV_* registers is 64KB aligned.

• An alias of the GICV_* registers is provided starting at offset 0xF000 from the start of the page such that a
second copy of GICV_DIR exists at the start of the next 64KB page.

This provides support for both 4KB and 64KB pages.

Reserved register addresses are RES0.

Table 8-31 shows the GIC virtual CPU interface register map.

Table 8-31 GIC virtual CPU interface register map

Offset Name Type Reset Description

0x0000 GICV_CTLR RW See the register description VM Control Register

0x0004 GICV_PMR RW 0x0000 0000 VM Priority Mask Register

0x0008 GICV_BPR RW 0x0000 000xa VM Binary Point Register

0x000C GICV_IAR RO - VM Interrupt Acknowledge Register

0x0010 GICV_EOIR WO - VM End of Interrupt Register

0x0014 GICV_RPR RO - VM Running Priority Register

0x0018 GICV_HPPIR RO - VM Highest Priority Pending Interrupt Register

0x001C GICV_ABPR RW 0x0000 000xa VM Aliased Binary Point Register

0x0020 GICV_AIAR RO - VM Aliased Interrupt Acknowledge Register
8-612 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.14 The GIC virtual CPU interface register map
0x0024 GICV_AEOIR WO - VM Aliased End of Interrupt Register

0x0028 GICV_AHPPIR RO - VM Aliased Highest Priority Pending Interrupt
Register

0x002C GICV_STATUSR RW 0x0000 0000 VM Error Reporting Status Register, optional

0x0030-0x003C - - - Reserved

0x0040-0x00CC - - - IMPLEMENTATION DEFINED

0x00D0-0x00DC GICV_APR<n> RW 0x0000 0000 VM Active Priorities Registers

0x00E0-0x00EC - - RAZ/WI Reserved for second set of Active Priorities Registers,
as the Note in the description describes

0x00F0-0x00F8 - - - Reserved

0x00FC GICV_IIDR RO IMPLEMENTATION DEFINED VM CPU Interface Identification Register

0x0100-0x0FFC - - - Reserved

0x1000 GICV_DIR WO - VM Deactivate Interrupt Register

0x10000

0x1004-0x1FFC - - - Reserved

a. See the register description for more information.

Table 8-31 GIC virtual CPU interface register map (continued)

Offset Name Type Reset Description
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-613
ID072617 Non-Confidential

8 Programmers’ Model
8.15 The GIC virtual CPU interface register descriptions
8.15 The GIC virtual CPU interface register descriptions
This section describes each of the GIC virtual CPU interface registers in register name order.
8-614 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.15 The GIC virtual CPU interface register descriptions
8.15.1 GICV_ABPR, Virtual Machine Aliased Binary Point Register

The GICV_ABPR characteristics are:

Purpose

Defines the point at which the priority value fields split into two parts, the group priority field and
the subpriority field. The group priority field determines Group 1 interrupt preemption.

This register corresponds to GICC_ABPR in the physical CPU interface.

Note
 GICH_LR<n>.Group determines whether a virtual interrupt is Group 0 or Group 1.

Usage constraints

This register is accessible as follows:

This register is used only when System register access is not enabled. When System register access
is enabled:

• For AArch32 implementations, ICC_BPR1 provides equivalent functionality.

• For AArch64 implementations, ICC_BPR1_EL1 provides equivalent functionality.

The value contained in this register is one greater than the actual applied binary point value, as
described in Priority grouping on page 4-67.

This register is used for Group 1 interrupts when GICV_CTLR.CBPR == 0. GICV_BPR provides
equivalent functionality for Group 0 interrupts, and for Group 1 interrupts when
GICV_CTLR.CBPR == 1.

Configurations

Some or all RW fields of this register have defined reset values.

This register is available when the GIC implementation supports interrupt virtualization.

Attributes

GICV_ABPR is a 32-bit register.

Field descriptions

The GICV_ABPR bit assignments are:

Bits [31:3]

Reserved, RES0.

Binary_Point, bits [2:0]

Controls how the 8-bit interrupt priority field is split into a group priority field, that determines
interrupt preemption, and a subpriority field.

Security disabled Secure Non-secure

RW RW RW

RES0

31 3 2 0

Binary_Point
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-615
ID072617 Non-Confidential

8 Programmers’ Model
8.15 The GIC virtual CPU interface register descriptions
For information about how this field determines the interrupt priority bits assigned to the group
priority field, see Priority grouping on page 4-67.

When this register has an architecturally-defined reset value, this field resets to 0.

The Binary_Point field of this register is aliased to GICH_VMCR.VBPR1.

Accessing the GICV_ABPR:

GICV_ABPR can be accessed through its memory-mapped interface:

Component Offset

GIC Virtual CPU interface 0x001C
8-616 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.15 The GIC virtual CPU interface register descriptions
8.15.2 GICV_AEOIR, Virtual Machine Aliased End Of Interrupt Register

The GICV_AEOIR characteristics are:

Purpose

A write to this register performs a priority drop for the specified Group 1 virtual interrupt and, if
GICV_CTLR.EOImode == 0, also deactivates the interrupt.

Usage constraints

This register is accessible as follows:

This register is used only when System register access is not enabled. When System register access
is enabled:

• For AArch32 implementations, ICC_EOIR1 provides equivalent functionality.

• For AArch64 implementations, ICC_EOIR1_EL1 provides equivalent functionality.

This register is used for Group 1 interrupts only. GICV_EOIR provides equivalent functionality for
Group 0 interrupts.

When affinity routing is enabled, it is a programming error to use memory-mapped registers to
access the GIC.

Configurations

This register is available when the GIC implementation supports interrupt virtualization.

Attributes

GICV_AEOIR is a 32-bit register.

Field descriptions

The GICV_AEOIR bit assignments are:

Bits [31:25]

Reserved, RES0.

INTID, bits [24:0]

The INTID of the signaled interrupt.

Note
 INTIDs 1020-1023 are reserved and convey additional information such as spurious interrupts.

When affinity routing is not enabled:

• Bits [23:13] are RES0.

• For SGIs, bits [12:10] identify the CPU interface corresponding to the source PE. For all
other interrupts these bits are RES0.

Security disabled Secure Non-secure

WO WO WO

RES0

31 25

INTID

24 0
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-617
ID072617 Non-Confidential

8 Programmers’ Model
8.15 The GIC virtual CPU interface register descriptions
A successful EOI request means that:

• The highest priority bit in GICH_APR<n> is cleared, causing the running priority to drop.

• If the appropriate GICV_CTLR.EOImode bit == 0, the interrupt is deactivated in the corresponding List
register. If the INTID corresponds to a hardware interrupt, the interrupt is also deactivated in the Distributor.

Note
 Only Group 1 interrupts can target the hypervisor, and therefore only Group 1 interrupts are deactivated in the
Distributor.

A write to this register is UNPREDICTABLE if the INTID corresponds to a Group 0 interrupt. In addition, the following
GICv2 UNPREDICTABLE cases require specific actions:

• If highest active priority is Group 0 and the identified interrupt is in the List Registers and it matches the
highest active priority. When EL2 is using System registers and ICH_VTR_EL2.SEIS is 1, an
IMPLEMENTATION DEFINED SEI might be generated, otherwise GICv3 implementations must ignore such
writes.

• If the identified interrupt is in the List Registers, and the HW bit is 1, and the interrupt to be deactivated is
an SGI (that is, the value of Physical_ID is between 0 and 15). GICv3 implementations must perform the
deactivate operation. This means that a GICv3 implementation in legacy operation must ensure only a single
SGI is active for a PE.

• If the identified interrupt is in the List Registers, and the HW bit is 1, and the corresponding pINTID field
value is between 1020 and 1023, indicating a special purpose INTID. GICv3 implementations must not
perform a deactivate operation but must still change the state of the List register as appropriate. When EL2
is using System registers and ICH_VTR_EL2.SEIS is 1, an implementation might generate a system error.

Accessing the GICV_AEOIR:

GICV_AEOIR can be accessed through its memory-mapped interface:

Component Offset

GIC Virtual CPU interface 0x0024
8-618 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.15 The GIC virtual CPU interface register descriptions
8.15.3 GICV_AHPPIR, Virtual Machine Aliased Highest Priority Pending Interrupt Register

The GICV_AHPPIR characteristics are:

Purpose

Provides the INTID of the highest priority pending Group 1 virtual interrupt in the List registers.

This register corresponds to the physical CPU interface register GICC_AHPPIR.

Usage constraints

This register is accessible as follows:

This register is used only when System register access is not enabled. When System register access
is enabled:

• For AArch32 implementations, ICC_HPPIR1 provides equivalent functionality.

• For AArch64 implementations, ICC_HPPIR1_EL1 provides equivalent functionality.

This register is used for Group 1 interrupts only. GICV_HPPIR provides equivalent functionality
for Group 0 interrupts.

The register does not return the INTID of an interrupt that is active and pending.

When affinity routing is enabled, it is a programming error to use memory-mapped registers to
access the GIC.

Configurations

This register is available when the GIC implementation supports interrupt virtualization.

Attributes

GICV_AHPPIR is a 32-bit register.

Field descriptions

The GICV_AHPPIR bit assignments are:

Bits [31:25]

Reserved, RES0.

INTID, bits [24:0]

The INTID of the signaled interrupt.

Note
 INTIDs 1020-1023 are reserved and convey additional information such as spurious interrupts.

When affinity routing is not enabled:

• Bits [23:13] are RES0.

• For SGIs, bits [12:10] identify the CPU interface corresponding to the source PE. For all
other interrupts these bits are RES0.

Security disabled Secure Non-secure

RO RO RO

RES0

31 25

INTID

24 0
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-619
ID072617 Non-Confidential

8 Programmers’ Model
8.15 The GIC virtual CPU interface register descriptions
A read of this register returns the spurious INTID 1023 if any of the following are true:

• There are no pending interrupts of sufficiently high priority value to be signaled to the PE.

• The highest priority pending interrupt is in Group 0.

Accessing the GICV_AHPPIR:

GICV_AHPPIR can be accessed through its memory-mapped interface:

Component Offset

GIC Virtual CPU interface 0x0028
8-620 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.15 The GIC virtual CPU interface register descriptions
8.15.4 GICV_AIAR, Virtual Machine Aliased Interrupt Acknowledge Register

The GICV_AIAR characteristics are:

Purpose

Provides the INTID of the signaled Group 1 virtual interrupt. A read of this register by the PE acts
as an acknowledge for the interrupt.

This register corresponds to the physical CPU interface register GICC_AIAR.

Usage constraints

This register is accessible as follows:

This register is used only when System register access is not enabled. When System register access
is enabled:

• For AArch32 implementations, ICC_IAR1 provides equivalent functionality.

• For AArch64 implementations, ICC_IAR1_EL1 provides equivalent functionality.

This register is used for Group 1 interrupts only. GICV_IAR provides equivalent functionality for
Group 0 interrupts.

When affinity routing is enabled, it is a programming error to use memory-mapped registers to
access the GIC.

Configurations

This register is available when the GIC implementation supports interrupt virtualization.

Attributes

GICV_AIAR is a 32-bit register.

Field descriptions

The GICV_AIAR bit assignments are:

Bits [31:25]

Reserved, RES0.

INTID, bits [24:0]

The INTID of the signaled interrupt.

Note
 INTIDs 1020-1023 are reserved and convey additional information such as spurious interrupts.

When affinity routing is not enabled:

• Bits [23:13] are RES0.

• For SGIs, bits [12:10] identify the CPU interface corresponding to the source PE. For all
other interrupts these bits are RES0.

Security disabled Secure Non-secure

RO RO RO

RES0

31 25

INTID

24 0
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-621
ID072617 Non-Confidential

8 Programmers’ Model
8.15 The GIC virtual CPU interface register descriptions
The operation of this register is similar to the operation of GICV_IAR. When a vPE reads this register, the
corresponding GICH_LR<n>.Group field is checked to determine whether the interrupt is in Group 0 or Group 1:

• If the interrupt is Group 0, the spurious INTID 1023 is returned and the interrupt is not acknowledged.

• If the interrupt is Group 1, the INTID is returned. The List register entry is updated to active state, and the
appropriate bit in GICH_APR<n> is set to 1.

A read of this register returns the spurious INTID 1023 if any of the following are true:

• When the virtual CPU interface is enabled and GICH_HCR.En == 1:

— There are no pending interrupts of sufficiently high priority value to be signaled to the PE.

— The highest priority pending interrupt is in Group 0.

• Interrupt signaling by the virtual CPU interface is disabled.

Accessing the GICV_AIAR:

GICV_AIAR can be accessed through its memory-mapped interface:

Component Offset

GIC Virtual CPU interface 0x0020
8-622 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.15 The GIC virtual CPU interface register descriptions
8.15.5 GICV_APR<n>, Virtual Machine Active Priorities Registers, n = 0 - 3

The GICV_APR<n> characteristics are:

Purpose

Provides information about interrupt active priorities.

These registers correspond to the physical CPU interface registers GICC_APR<n>.

Usage constraints

This register is accessible as follows:

If System register access is not enabled for EL2, these registers access GICH_APR<n>. If System
register access is enabled for EL2, these registers access ICH_AP1R<n>_EL2. All active priority
mapped guests are held in the accessed registers, regardless of interrupt group.

Configurations

When System register access is disabled for EL2, these registers access GICH_APR<n>, and all
active priorities for virtual machines are held in GICH_APR<n> regardless of interrupt group.

When System register access is enabled for EL2, these registers access ICH_AP1R<n>_EL2, and
all active priorities for virtual machines are held in ICH_AP1R<n>_EL2 regardless of interrupt
group.

Attributes

GICV_APR<n> is a 32-bit register.

Field descriptions

The GICV_APR<n> bit assignments are:

Security disabled Secure Non-secure

RW RW RW

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10

P9

9

P8

8

P7

7

P6

6

P5

5

P4

4

P3

3

P2

2

P1

1

P0

0

P31
P30
P29
P28
P27
P26
P25
P24
P23
P22
P21
P20
P19
P18
P17
P16

P10
P11
P12
P13
P14
P15
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-623
ID072617 Non-Confidential

8 Programmers’ Model
8.15 The GIC virtual CPU interface register descriptions
P<x>, bit [x], for x = 0 to 31

Provides information about active priorities for the virtual machine.

See GICH_APR<n> and ICH_AP1R<n>_EL2 for the correspondence between priorities and bits.

Accessing the GICV_APR<n>:

GICV_APR<n> can be accessed through its memory-mapped interface:

Component Offset

GIC Virtual CPU interface 0x00D0 + 4n
8-624 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.15 The GIC virtual CPU interface register descriptions
8.15.6 GICV_BPR, Virtual Machine Binary Point Register

The GICV_BPR characteristics are:

Purpose

Defines the point at which the priority value fields split into two parts, the group priority field and
the subpriority field. The group priority field determines Group 0 interrupt preemption.

This register corresponds to GICC_BPR in the physical CPU interface.

Note
 GICH_LR<n>.Group determines whether a virtual interrupt is Group 0 or Group 1.

Usage constraints

This register is accessible as follows:

This register is used only when System register access is not enabled. When System register access
is enabled:

• For AArch32 implementations, ICC_BPR0 provides equivalent functionality.

• For AArch64 implementations, ICC_BPR0_EL1 provides equivalent functionality.

Configurations

RW fields in this register reset to architecturally UNKNOWN values.

This register is available when the GIC implementation supports interrupt virtualization.

When GICV_CTLR.CBPR == 1, this register determines interrupt preemption for both Group 0 and
Group 1 interrupts.

Attributes

GICV_BPR is a 32-bit register.

Field descriptions

The GICV_BPR bit assignments are:

Bits [31:3]

Reserved, RES0.

Binary_Point, bits [2:0]

Controls how the 8-bit interrupt priority field is split into a group priority field, that determines
interrupt preemption, and a subpriority field.

For information about how this field determines the interrupt priority bits assigned to the group
priority field, see Table 4-10 on page 4-68

This field resets to a value that is architecturally UNKNOWN.

Security disabled Secure Non-secure

RW RW RW

RES0

31 3 2 0

Binary_Point
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-625
ID072617 Non-Confidential

8 Programmers’ Model
8.15 The GIC virtual CPU interface register descriptions
The Binary_Point field of this register is aliased to GICH_VMCR.VBPR0.

Accessing the GICV_BPR:

GICV_BPR can be accessed through its memory-mapped interface:

Component Offset

GIC Virtual CPU interface 0x0008
8-626 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.15 The GIC virtual CPU interface register descriptions
8.15.7 GICV_CTLR, Virtual Machine Control Register

The GICV_CTLR characteristics are:

Purpose

Controls the behavior of virtual interrupts.

This register corresponds to the physical CPU interface register GICC_CTLR.

Usage constraints

This register is accessible as follows:

This register is used only when System register access is not enabled. When System register access
is enabled:

• For AArch32 implementations, ICC_CTLR provides equivalent functionality.

• For AArch64 implementations, ICC_CTLR_EL1 provides equivalent functionality.

Configurations

RW fields in this register reset to architecturally UNKNOWN values.

This register is available when a GIC implementation supports interrupt virtualization.

Attributes

GICV_CTLR is a 32-bit register.

Field descriptions

The GICV_CTLR bit assignments are:

Bits [31:10]

Reserved, RES0.

EOImode, bit [9]

Controls the behavior associated with the GICV_EOIR, GICV_AEOIR, and GICV_DIR registers:

0 Writes to GICV_EOIR and GICV_AEOIR perform priority drop and deactivate
interrupt operations simultaneously. Behavior on a write to GICV_DIR is
UNPREDICTABLE.

Security disabled Secure Non-secure

RW RW RW

RES0

31 10 9

RES0

8 5 4 3 2 1 0

EnableGrp0
EnableGrp1

AckCtl
FIQEn
CBPR

EOImode
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-627
ID072617 Non-Confidential

8 Programmers’ Model
8.15 The GIC virtual CPU interface register descriptions
When it has completed processing the interrupt, the virtual machine writes to
GICV_EOIR or GICV_AEOIR to deactivate the interrupt. The write updates the List
registers and causes the virtual CPU interface to signal the interrupt completion to the
physical Distributor.

1 Writes to GICV_EOIR and GICV_AEOIR perform priority drop operation only. Writes
to GICV_DIR perform deactivate interrupt operation only.
At some point during interrupt processing, the virtual machine writes to GICV_EOIR
or GICV_AEOIR. This write drops the priority of the virtual interrupt by updating its
entry in the List registers.
When it has completed processing the interrupt, the virtual machine writes to
GICV_DIR to deactivate the interrupt. The write updates the List registers and causes
the virtual CPU interface to signal the interrupt completion to the Distributor.

This field resets to a value that is architecturally UNKNOWN.

Bits [8:5]

Reserved, RES0.

CBPR, bit [4]

Controls whether GICV_BPR affects both Group 0 and Group 1 interrupts:

0 GICV_BPR affects Group 0 virtual interrupts only. GICV_ABPR affects Group 1
virtual interrupts only.

1 GICV_BPR affects both Group 0 and Group 1 virtual interrupts.

See Priority grouping on page 4-67 for more information.

This field resets to a value that is architecturally UNKNOWN.

FIQEn, bit [3]

FIQ Enable. Controls whether Group 0 virtual interrupts are presented as virtual FIQs:

0 Group 0 virtual interrupts are presented as virtual IRQs.

1 Group 0 virtual interrupts are presented as virtual FIQs.

This field resets to a value that is architecturally UNKNOWN.

AckCtl, bit [2]

ARM deprecates use of this bit. ARM strongly recommends that software is written to operate with
this bit always cleared to 0.

Acknowledge control. When the highest priority interrupt is Group 1, determines whether
GICV_IAR causes the CPU interface to acknowledge the interrupt or returns the spurious identifier
1022, and whether GICV_HPPIR returns the interrupt ID or the special identifier 1022.

0 If the highest priority pending interrupt is Group 1, a read of GICV_IAR or
GICV_HPPIR returns an interrupt ID of 1022.

1 If the highest priority pending interrupt is Group 1, a read of GICV_IAR or
GICV_HPPIR returns the interrupt ID of the corresponding interrupt.

This field resets to a value that is architecturally UNKNOWN.

EnableGrp1, bit [1]

Enables the signaling of Group 1 virtual interrupts by the virtual CPU interface to the virtual
machine:

0 Signaling of Group 1 interrupts is disabled.

1 Signaling of Group 1 interrupts is enabled.

This field resets to a value that is architecturally UNKNOWN.
8-628 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.15 The GIC virtual CPU interface register descriptions
EnableGrp0, bit [0]

Enables the signaling of Group 0 virtual interrupts by the virtual CPU interface to the virtual
machine:

0 Signaling of Group 0 interrupts is disabled.

1 Signaling of Group 0 interrupts is enabled.

This field resets to a value that is architecturally UNKNOWN.

Accessing the GICV_CTLR:

GICV_CTLR can be accessed through its memory-mapped interface:

Component Offset

GIC Virtual CPU interface 0x0000
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-629
ID072617 Non-Confidential

8 Programmers’ Model
8.15 The GIC virtual CPU interface register descriptions
8.15.8 GICV_DIR, Virtual Machine Deactivate Interrupt Register

The GICV_DIR characteristics are:

Purpose

Deactivates a specified virtual interrupt in the GICH_LR<n> List registers.

This register corresponds to the physical CPU interface register GICC_DIR.

Usage constraints

This register is accessible as follows:

This register is used only when System register access is not enabled. When System register access
is enabled:

• For AArch32 implementations, ICC_DIR provides equivalent functionality.

• For AArch64 implementations, ICC_DIR_EL1 provides equivalent functionality.

Writes to this register are valid only when GICV_CTLR.EOImode == 1. Writes to this register are
otherwise UNPREDICTABLE.

When affinity routing is enabled, it is a programming error to use memory-mapped registers to
access the GIC.

Configurations

This register is available when the GIC implementation supports interrupt virtualization.

Attributes

GICV_DIR is a 32-bit register.

Field descriptions

The GICV_DIR bit assignments are:

Bits [31:25]

Reserved, RES0.

INTID, bits [24:0]

The INTID of the signaled interrupt.

Note
 INTIDs 1020-1023 are reserved and convey additional information such as spurious interrupts.

When affinity routing is not enabled:

• Bits [23:13] are RES0.

• For SGIs, bits [12:10] identify the CPU interface corresponding to the source PE. For all
other interrupts these bits are RES0.

Security disabled Secure Non-secure

WO WO WO

RES0

31 25

INTID

24 0
8-630 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.15 The GIC virtual CPU interface register descriptions
When the virtual machine writes to this register, the specified interrupt in the List registers is changed from active
to inactive, or from active and pending to pending. If the specified interrupt is present in the List registers but is not
in either the active or active and pending states, the effect is UNPREDICTABLE. If the specified interrupt is not present
in the List registers, GICH_HCR.EOIcount is incremented, potentially generating a maintenance interrupt.

Note
 If the specified interrupt is not present in the List registers, the virtual machine cannot recover the INTID. Therefore,
the hypervisor must ensure that, when GICV_CTLR.EOImode == 1, no more than one active interrupt is transferred
from the List registers into a software list. If more than one active interrupt that is not stored in the List registers
exists, the hypervisor must handle accesses to GICV_DIR in software, typically by trapping these accesses.

If the corresponding GICH_LR<n>.HW == 1, indicating a hardware interrupt, then a deactivate request is sent to
the physical Distributor, identifying the physical INTID from the corresponding field in the List register. This effect
is identical to a Non-secure write to GICC_DIR from the PE having that physical INTID. This means that if the
corresponding physical interrupt is marked as Group 0, the request is ignored.

Note
 Interrupt deactivation using this register is based on the provided INTID, with no requirement to deactivate
interrupts in any particular order. A single register therefore deactivates both Group 0 and Group 1 interrupts.

Accessing the GICV_DIR:

GICV_DIR can be accessed through its memory-mapped interface:

Component Offset

GIC Virtual CPU interface 0x1000
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-631
ID072617 Non-Confidential

8 Programmers’ Model
8.15 The GIC virtual CPU interface register descriptions
8.15.9 GICV_EOIR, Virtual Machine End Of Interrupt Register

The GICV_EOIR characteristics are:

Purpose

A write to this register performs a priority drop for the specified Group 0 virtual interrupt and, if
GICV_CTLR.EOImode == 0, also deactivates the interrupt.

This register corresponds to the physical CPU interface register GICC_EOIR.

Usage constraints

This register is accessible as follows:

This register is used only when System register access is not enabled. When System register access
is enabled:

• For AArch32 implementations, ICC_EOIR0 provides equivalent functionality.

• For AArch64 implementations, ICC_EOIR0_EL1 provides equivalent functionality.

This register is used for Group 0 interrupts only. GICV_AEOIR provides equivalent functionality
for Group 1 interrupts.

When affinity routing is enabled, it is a programming error to use memory-mapped registers to
access the GIC.

Configurations

This register is available when the GIC implementation supports interrupt virtualization.

Attributes

GICV_EOIR is a 32-bit register.

Field descriptions

The GICV_EOIR bit assignments are:

Bits [31:25]

Reserved, RES0.

INTID, bits [24:0]

The INTID of the signaled interrupt.

Note
 INTIDs 1020-1023 are reserved and convey additional information such as spurious interrupts.

When affinity routing is not enabled:

• Bits [23:13] are RES0.

• For SGIs, bits [12:10] identify the CPU interface corresponding to the source PE. For all
other interrupts these bits are RES0.

Security disabled Secure Non-secure

WO WO WO

RES0

31 25

INTID

24 0
8-632 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.15 The GIC virtual CPU interface register descriptions
The behavior of this register depends on the setting of GICV_CTLR.EOImode:

A successful EOI request means that:

• The highest priority bit in GICH_APR<n> is cleared, causing the running priority to drop.

• If the appropriate GICV_CTLR.EOImode bit == 0, the interrupt is deactivated in the corresponding List
register GICH_LR<n>. If GICH_LR<n>.HW == 1, indicating the INTID corresponds to a hardware
interrupt, a deactivate request is also sent to the physical Distributor, identifying the physical INTID from the
corresponding field in the List register. This effect is identical to a Non-secure write to GICC_DIR from the
PE having that physical INTID. This means that if the corresponding physical interrupt is marked as Group
0, and GICD_CTLR.DS == 0, the deactivation request is ignored. See GICC_EOIR for more information.

Note
 Only Group 1 interrupts can target the hypervisor, and therefore only Group 1 interrupts are deactivated in the
Distributor.

Accessing the GICV_EOIR:

GICV_EOIR can be accessed through its memory-mapped interface:

GICV_CTLR.EOImode Behavior

0 Both the priority drop and the deactivate interrupt effects occur.

1 Only the priority drop effect occurs.

Component Offset

GIC Virtual CPU interface 0x0010
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-633
ID072617 Non-Confidential

8 Programmers’ Model
8.15 The GIC virtual CPU interface register descriptions
8.15.10 GICV_HPPIR, Virtual Machine Highest Priority Pending Interrupt Register

The GICV_HPPIR characteristics are:

Purpose

Provides the INTID of the highest priority pending Group 0 virtual interrupt in the List registers.

This register corresponds to the physical CPU interface register GICC_HPPIR.

Usage constraints

This register is accessible as follows:

This register is used only when System register access is not enabled. When System register access
is enabled:

• For AArch32 implementations, ICC_HPPIR0 provides equivalent functionality.

• For AArch64 implementations, ICC_HPPIR0_EL1 provides equivalent functionality.

This register is used for Group 0 interrupts only. GICV_AHPPIR provides equivalent functionality
for Group 1 interrupts.

When affinity routing is enabled, it is a programming error to use memory-mapped registers to
access the GIC.

Configurations

This register is available when the GIC implementation supports interrupt virtualization.

Attributes

GICV_HPPIR is a 32-bit register.

Field descriptions

The GICV_HPPIR bit assignments are:

Bits [31:25]

Reserved, RES0.

INTID, bits [24:0]

The INTID of the signaled interrupt.

Note
 INTIDs 1020-1023 are reserved and convey additional information such as spurious interrupts.

When affinity routing is not enabled:

• Bits [23:13] are RES0.

• For SGIs, bits [12:10] identify the CPU interface corresponding to the source PE. For all
other interrupts these bits are RES0.

Security disabled Secure Non-secure

RO RO RO

RES0

31 25

INTID

24 0
8-634 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.15 The GIC virtual CPU interface register descriptions
Reads of the GICC_HPPIR that do not return a valid INTID return a spurious INTID, 1022 or 1023. See Special
INTIDs on page 2-32.

If the CPU interface supports only a single Security state, the entries that apply to Secure reads describe the
behavior.

Accessing the GICV_HPPIR:

GICV_HPPIR can be accessed through its memory-mapped interface:

Highest priority pending
interrupt Group

GICV_HPPIR
read GICV_CTLR.AckCtl Returned INTID

1 Non-secure x ID of Group 1 interrupt

1 Secure 0 1022

1 Secure 1 ID of Group 1 interrupt

0 Non-secure x 1023

0 Secure x ID of Group 0 interrupt

No pending interrupts x x 1023

Component Offset

GIC Virtual CPU interface 0x0018
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-635
ID072617 Non-Confidential

8 Programmers’ Model
8.15 The GIC virtual CPU interface register descriptions
8.15.11 GICV_IAR, Virtual Machine Interrupt Acknowledge Register

The GICV_IAR characteristics are:

Purpose

Provides the INTID of the signaled Group 0 virtual interrupt. A read of this register by the PE acts
as an acknowledge for the interrupt.

This register corresponds to the physical CPU interface register GICC_IAR.

Usage constraints

This register is accessible as follows:

This register is used only when System register access is not enabled. When System register access
is enabled:

• For AArch32 implementations, ICC_IAR0 provides equivalent functionality.

• For AArch64 implementations, ICC_IAR0_EL1 provides equivalent functionality.

This register is used for Group 0 interrupts only. GICV_AIAR provides equivalent functionality for
Group 1 interrupts.

When affinity routing is enabled, it is a programming error to use memory-mapped registers to
access the GIC.

Configurations

This register is available when the GIC implementation supports interrupt virtualization.

Attributes

GICV_IAR is a 32-bit register.

Field descriptions

The GICV_IAR bit assignments are:

Bits [31:25]

Reserved, RES0.

INTID, bits [24:0]

The INTID of the signaled interrupt.

Note
 INTIDs 1020-1023 are reserved and convey additional information such as spurious interrupts.

When affinity routing is not enabled:

• Bits [23:13] are RES0.

• For SGIs, bits [12:10] identify the CPU interface corresponding to the source PE. For all
other interrupts these bits are RES0.

Security disabled Secure Non-secure

RO RO RO

RES0

31 25

INTID

24 0
8-636 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.15 The GIC virtual CPU interface register descriptions
When the virtual machine writes to this register, the virtual CPU interface acknowledges the highest priority
pending virtual interrupt and sets the state in the corresponding List register to active. The appropriate bit in the
active priorities register GICH_APR<n> is set to 1.

If GICH_LR<n>.HW == 0, indicating that the interrupt is software-triggered, then bits [12:10] of GICH_LR<n>
are returned in bits [12:10] of GICV_IAR. Otherwise bits [12:10] are RES0.

A read of this register returns the spurious INTID 1023 if either of the following is true:

• There are no pending interrupts of sufficiently high priority value to be signaled to the PE with the virtual
CPU interface enabled and GICH_HCR.En == 1.

• Interrupt signaling by the virtual CPU interface is disabled.

A read of this register returns the spurious INTID 1022 if the highest priority pending interrupt is Group 1 and
GICV_CTLR.AckCtl == 0.

Accessing the GICV_IAR:

GICV_IAR can be accessed through its memory-mapped interface:

Component Offset

GIC Virtual CPU interface 0x000C
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-637
ID072617 Non-Confidential

8 Programmers’ Model
8.15 The GIC virtual CPU interface register descriptions
8.15.12 GICV_IIDR, Virtual Machine CPU Interface Identification Register

The GICV_IIDR characteristics are:

Purpose

Provides information about the implementer and revision of the virtual CPU interface.

Usage constraints

This register is accessible as follows:

Configurations

This register is available in all configurations of the GIC. If the GIC implementation supports two
Security states this register is Common.

Attributes

GICV_IIDR is a 32-bit register.

Field descriptions

The GICV_IIDR bit assignments are:

ProductID, bits [31:20]

An IMPLEMENTATION DEFINED product identifier.

Architecture_version, bits [19:16]

The version of the GIC architecture that is implemented.

0001 GICv1.

0010 GICv2.

0011 GICv3 memory-mapped interface supported. Support for the System register interface
is discoverable from PE registers ID_PFR1 and ID_AA64PFR0_EL1.

0100 GICv4 memory-mapped interface supported. Support for the System register interface
is discoverable from PE registers ID_PFR1 and ID_AA64PFR0_EL1.

Other values are reserved.

Revision, bits [15:12]

An IMPLEMENTATION DEFINED revision number for the CPU interface.

Implementer, bits [11:0]

Contains the JEP106 code of the company that implemented the CPU interface.

• Bits [11:8] are the JEP106 continuation code of the implementer. For an ARM
implementation, this field is 0x4.

• Bit [7] is always 0.

Security disabled Secure Non-secure

RO RO RO

ProductID

31 20 19 16

Revision

15 12

Implementer

11 0

Architecture_version
8-638 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.15 The GIC virtual CPU interface register descriptions
• Bits [6:0] are the JEP106 identity code of the implementer. For an ARM implementation, bits
[7:0] are therefore 0x3B.

Accessing the GICV_IIDR:

GICV_IIDR can be accessed through its memory-mapped interface:

Component Offset

GIC Virtual CPU interface 0x00FC
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-639
ID072617 Non-Confidential

8 Programmers’ Model
8.15 The GIC virtual CPU interface register descriptions
8.15.13 GICV_PMR, Virtual Machine Priority Mask Register

The GICV_PMR characteristics are:

Purpose

This register provides a virtual interrupt priority filter. Only virtual interrupts with a higher priority
than the value in this register are signaled to the PE.

Note
 Higher interrupt priority corresponds to a lower value of the Priority field.

This register corresponds to the physical CPU interface register GICC_PMR.

Usage constraints

This register is accessible as follows:

This register is used only when System register access is not enabled. When System register access
is enabled:

• For AArch32 implementations, ICC_PMR provides equivalent functionality.

• For AArch64 implementations, ICC_PMR_EL1 provides equivalent functionality.

Configurations

RW fields in this register reset to architecturally UNKNOWN values.

This register is available when the GIC implementation supports interrupt virtualization.

The Priority field of this register is aliased to GICH_VMCR.VMPR, to enable state to be switched
easily between virtual machines during context-switching.

Attributes

GICV_PMR is a 32-bit register.

Field descriptions

The GICV_PMR bit assignments are:

Bits [31:8]

Reserved, RES0.

Priority, bits [7:0]

The priority mask level for the virtual CPU interface. If the priority of the interrupt is higher than
the value indicated by this field, the interface signals the interrupt to the PE.

If the GIC implementation supports fewer than 256 priority levels some bits might be RAZ/WI, as
follows:

• For 128 supported levels, bit [0] = 0b0.

• For 64 supported levels, bits [1:0] = 0b00.

Security disabled Secure Non-secure

RW RW RW

RES0

31 8

Priority

7 0
8-640 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.15 The GIC virtual CPU interface register descriptions
• For 32 supported levels, bits [2:0] = 0b000.

• For 16 supported levels, bits [3:0] = 0b0000.

See Interrupt prioritization on page 4-65 for more information.

This field resets to a value that is architecturally UNKNOWN.

Accessing the GICV_PMR:

GICV_PMR can be accessed through its memory-mapped interface:

Component Offset

GIC Virtual CPU interface 0x0004
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-641
ID072617 Non-Confidential

8 Programmers’ Model
8.15 The GIC virtual CPU interface register descriptions
8.15.14 GICV_RPR, Virtual Machine Running Priority Register

The GICV_RPR characteristics are:

Purpose

This register indicates the running priority of the virtual CPU interface.

This register corresponds to the physical CPU interface register GICC_RPR.

Usage constraints

This register is accessible as follows:

This register is used only when System register access is not enabled. When System register access
is enabled:

• For AArch32 implementations, ICC_RPR provides equivalent functionality.

• For AArch64 implementations, ICC_RPR_EL1 provides equivalent functionality.

Depending on the implementation, if no bits are set to 1 in GICH_APR<n>, indicating no active
virtual interrupts in the virtual CPU interface, the priority reads as 0xFF or 0xF8 to reflect the number
of supported interrupt priority bits defined by GICH_VTR.PRIbits.

Configurations

This register is available when the GIC implementation supports interrupt virtualization.

Attributes

GICV_RPR is a 32-bit register.

Field descriptions

The GICV_RPR bit assignments are:

Bits [31:8]

Reserved, RES0.

Priority, bits [7:0]

The current running priority on the virtual CPU interface. This is the group priority of the current
active interrupt.

If there are no active interrupts on the CPU interface, or all active interrupts have undergone a
priority drop, the value returned is the Idle priority.

The priority returned is the group priority as if the BPR was set to the minimum value.

Security disabled Secure Non-secure

RO RO RO

RES0

31 8

Priority

7 0
8-642 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.15 The GIC virtual CPU interface register descriptions
Accessing the GICV_RPR:

GICV_RPR can be accessed through its memory-mapped interface:

Component Offset

GIC Virtual CPU interface 0x0014
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-643
ID072617 Non-Confidential

8 Programmers’ Model
8.15 The GIC virtual CPU interface register descriptions
8.15.15 GICV_STATUSR, Virtual Machine Error Reporting Status Register

The GICV_STATUSR characteristics are:

Purpose

Provides software with a mechanism to detect:

• Accesses to reserved locations.

• Writes to read-only locations.

• Reads of write-only locations.

Usage constraints

This register is accessible as follows:

This is an optional register. If the register is implemented, GICC_STATUSR must also be
implemented. If the register is not implemented, the location is RAZ/WI.

This register is used only when System register access is not enabled. If System register access is
enabled, this register is not updated. Equivalent function might be provided by appropriate traps and
exceptions.

Configurations

In systems where this register is implemented, ARM expects that when a virtual machine is
scheduled, the hypervisor ensures that this register is cleared to 0. The hypervisor might check for
illegal accesses when the virtual machine is unscheduled.

Attributes

GICV_STATUSR is a 32-bit register.

Field descriptions

The GICV_STATUSR bit assignments are:

Bits [31:4]

Reserved, RES0.

WROD, bit [3]

Write to an RO location.

0 Normal operation.

1 A write to an RO location has been detected.

When a violation is detected, software must write 1 to this register to reset it.

Security disabled Secure Non-secure

RW RW RW

RES0

31 4 3 2 1 0

RRD
WRD

RWOD
WROD
8-644 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.15 The GIC virtual CPU interface register descriptions
RWOD, bit [2]

Read of a WO location.

0 Normal operation.

1 A read of a WO location has been detected.

When a violation is detected, software must write 1 to this register to reset it.

WRD, bit [1]

Write to a reserved location.

0 Normal operation.

1 A write to a reserved location has been detected.

When a violation is detected, software must write 1 to this register to reset it.

RRD, bit [0]

Read of a reserved location.

0 Normal operation.

1 A read of a reserved location has been detected.

When a violation is detected, software must write 1 to this register to reset it.

Accessing the GICV_STATUSR:

GICV_STATUSR can be accessed through its memory-mapped interface:

Component Offset

GIC Virtual CPU interface 0x002C
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-645
ID072617 Non-Confidential

8 Programmers’ Model
8.16 The GIC virtual interface control register map
8.16 The GIC virtual interface control register map
The GIC virtual interface control registers are management registers. Configuration software on the PE must ensure
they are accessible only by a hypervisor, or similar software.

Reserved register addresses are RES0.

Table 8-32 shows the register map for the GIC virtual interface control registers.

Note
 It is IMPLEMENTATION DEFINED whether an access to a GIC virtual interface control register using the
memory-mapped interface accesses the same state as an access using the System register interface, or whether the
two interfaces access different states.

Table 8-32 GIC virtual interface control register map

Offset Name Type Reset Description

0x0000 GICH_HCR RW 0x00000000 Hypervisor Control Register

0x0004 GICH_VTR RO IMPLEMENTATION DEFINED VGIC Type Register

0x0008 GICH_VMCR RW - Virtual Machine Control Register

0x000C - - - Reserved

0x0010 GICH_MISR RO 0x00000000 Maintenance Interrupt Status Register

0x0014-0x001C - - - Reserved

0x0020 GICH_EISR RO 0x00000000 End of Interrupt Status Register

0x0024-0x002C - - - Reserved

0x0030 GICH_ELRSR RO IMPLEMENTATION DEFINEDa Empty List Register Status Register

0x0034-0x00EC - - - Reserved

0x00F0-0x00FC GICH_APR<n> RW 0x00000000 Active Priorities Register

0x0100-0x013C GICH_LR<n> RW 0x00000000 List Registers 0-15 lower bits

a. Each bit that has a corresponding List register resets to 1, meaning that the reset value of the register depends on the
number of List registers implemented.
8-646 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.17 The GIC virtual interface control register descriptions
8.17 The GIC virtual interface control register descriptions
This section describes each of the GIC virtual interface control registers in register name order.
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-647
ID072617 Non-Confidential

8 Programmers’ Model
8.17 The GIC virtual interface control register descriptions
8.17.1 GICH_APR<n>, Active Priorities Registers, n = 0 - 3

The GICH_APR<n> characteristics are:

Purpose

These registers track which preemption levels are active in the virtual CPU interface, and indicate
the current active priority. Corresponding bits are set to 1 in this register when an interrupt is
acknowledged, based on GICH_LR<n>.Priority, and the least significant bit set is cleared on EOI.

Usage constraints

This register is accessible as follows:

These registers are used only when System register access is not enabled. When System register
access is enabled the following registers provide equivalent functionality:

• In AArch64:

— For Group 0, ICH_AP0R<n>_EL2.

— For Group 1, ICH_AP1R<n>_EL2.

• In AArch32:

— For Group 0, ICH_AP0R<n>.

— For Group 1, ICH_AP1R<n>.

Configurations

Some or all RW fields of this register have defined reset values.

This register is available when the GIC implementation supports interrupt virtualization.

The number of registers required depends on how many bits are implemented in
GICH_LR<n>.Priority:

• When 5 priority bits are implemented, 1 register is required (GICH_APR0).

• When 6 priority bits are implemented, 2 registers are required (GICH_APR0, GICH_APR1).

• When 7 priority bits are implemented, 4 registers are required (GICH_APR0, GICH_APR1,
GICH_APR2, GICH_APR3).

Unimplemented registers are RAZ/WI.

Attributes

GICH_APR<n> is a 32-bit register.

Field descriptions

The GICH_APR<n> bit assignments are:

Security disabled Secure Non-secure

RW RW RW
8-648 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.17 The GIC virtual interface control register descriptions
P<x>, bit [x], for x = 0 to 31

Active priorities. Possible values of each bit are:

0 There is no interrupt active at the priority corresponding to that bit.

1 There is an interrupt active at the priority corresponding to that bit.

The correspondence between priorities and bits depends on the number of bits of priority that are
implemented.

If 5 bits of priority are implemented (bits [7:3] of priority), then there are 32 priority groups, and the
active state of these priorities are held in GICH_APR0 in the bits corresponding to Priority[7:3].

If 6 bits of priority are implemented (bits [7:2] of priority), then there are 64 priority groups, and:

• The active state of priorities 0 - 124 are held in GICH_APR0 in the bits corresponding to
0:Priority[6:2].

• The active state of priorities 128 - 252 are held in GICH_APR1 in the bits corresponding to
1:Priority[6:2].

If 7 bits of priority are implemented (bits [7:1] of priority), then there are 128 priority groups, and:

• The active state of priorities 0 - 62 are held in GICH_APR0 in the bits corresponding to
00:Priority[5:1].

• The active state of priorities 64 - 126 are held in GICH_APR1 in the bits corresponding to
01:Priority[5:1].

• The active state of priorities 128 - 190 are held in GICH_APR2 in the bits corresponding to
10:Priority[5:1].

• The active state of priorities 192 - 254 are held in GICH_APR3 in the bits corresponding to
11:Priority[5:1].

When this register has an architecturally-defined reset value, this field resets to 0.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10

P9

9

P8

8

P7

7

P6

6

P5

5

P4

4

P3

3

P2

2

P1

1

P0

0

P31
P30
P29
P28
P27
P26
P25
P24
P23
P22
P21
P20
P19
P18
P17
P16

P10
P11
P12
P13
P14
P15
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-649
ID072617 Non-Confidential

8 Programmers’ Model
8.17 The GIC virtual interface control register descriptions
Accessing the GICH_APR<n>:

GICH_APR<n> can be accessed through its memory-mapped interface:

Component Offset

GIC Virtual interface control 0x00F0 + 4n
8-650 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.17 The GIC virtual interface control register descriptions
8.17.2 GICH_EISR, End Interrupt Status Register

The GICH_EISR characteristics are:

Purpose

Indicates which List registers have outstanding EOI maintenance interrupts.

Usage constraints

This register is accessible as follows:

This register is used only when System register access is not enabled. When System register access
is enabled:

• For AArch32 implementations, ICH_EISR provides equivalent functionality.

• For AArch64 implementations, ICH_EISR_EL2 provides equivalent functionality.

Bits corresponding to unimplemented List registers are RAZ.

Configurations

RW fields in this register reset to architecturally UNKNOWN values.

This register is available when the GIC implementation supports interrupt virtualization.

Attributes

GICH_EISR is a 32-bit register.

Field descriptions

The GICH_EISR bit assignments are:

Bits [31:16]

Reserved, RES0.

Status<n>, bit [n], for n = 0 to 15

EOI maintenance interrupt status for List register <n>:

0 GICH_LR<n> does not have an EOI maintenance interrupt.

1 GICH_LR<n> has an EOI maintenance interrupt that has not been handled.

For any GICH_LR<n> register, the corresponding status bit is set to 1 if all of the following are true:

• GICH_LR<n>.State is 0b00.

• GICH_LR<n>.HW == 0.

• GICH_LR<n>.EOI == 1.

This field resets to a value that is architecturally UNKNOWN.

Security disabled Secure Non-secure

RO RO RO

RES0

31 16

Status<n>, bit [n], for n = 0 to 15

15 0
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-651
ID072617 Non-Confidential

8 Programmers’ Model
8.17 The GIC virtual interface control register descriptions
Accessing the GICH_EISR:

GICH_EISR can be accessed through its memory-mapped interface:

Component Offset

GIC Virtual interface control 0x0020
8-652 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.17 The GIC virtual interface control register descriptions
8.17.3 GICH_ELRSR, Empty List Register Status Register

The GICH_ELRSR characteristics are:

Purpose

Indicates which List registers contain valid interrupts.

Usage constraints

This register is accessible as follows:

This register is used only when System register access is not enabled. When System register access
is enabled:

• For AArch32 implementations, ICH_ELRSR provides equivalent functionality.

• For AArch64 implementations, ICH_ELRSR_EL2 provides equivalent functionality.

Bits corresponding to unimplemented List registers are RES0.

Configurations

Some or all RW fields of this register have defined reset values.

This register is available when the GIC implementation supports interrupt virtualization.

Attributes

GICH_ELRSR is a 32-bit register.

Field descriptions

The GICH_ELRSR bit assignments are:

Bits [31:16]

Reserved, RES0.

Status<n>, bit [n], for n = 0 to 15

Status bit for List register <n>:

0 GICH_LR<n>, if implemented, contains a valid interrupt. Using this List register can
result in overwriting a valid interrupt.

1 GICH_LR<n> does not contain a valid interrupt. The List register is empty and can be
used without overwriting a valid interrupt or losing an EOI maintenance interrupt.

For any GICH_LR<n> register, the corresponding status bit is set to 1 if GICH_LR<n>.State is 0b00
and either:

• GICH_LR<n>.HW == 1.

• GICH_LR<n>.EOI == 0.

When this register has an architecturally-defined reset value, this field resets to 1.

Security disabled Secure Non-secure

RO RO RO

RES0

31 16

Status<n>, bit [n], for n = 0 to 15

15 0
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-653
ID072617 Non-Confidential

8 Programmers’ Model
8.17 The GIC virtual interface control register descriptions
Accessing the GICH_ELRSR:

GICH_ELRSR can be accessed through its memory-mapped interface:

Component Offset

GIC Virtual interface control 0x0030
8-654 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.17 The GIC virtual interface control register descriptions
8.17.4 GICH_HCR, Hypervisor Control Register

The GICH_HCR characteristics are:

Purpose

Controls the virtual CPU interface.

Usage constraints

This register is accessible as follows:

This register is used only when System register access is not enabled. When System register access
is enabled:

• For AArch32 implementations, ICH_HCR provides equivalent functionality.

• For AArch64 implementations, ICH_HCR_EL2 provides equivalent functionality.

GICH_HCR.En must be set to 1 for any virtual or maintenance interrupt to be asserted.

Configurations

RW fields in this register reset to architecturally UNKNOWN values.

This register is available when the GIC implementation supports interrupt virtualization.

Attributes

GICH_HCR is a 32-bit register.

Field descriptions

The GICH_HCR bit assignments are:

EOICount, bits [31:27]

Counts the number of EOIs received that do not have a corresponding entry in the List registers. The
virtual CPU interface increments this field automatically when a matching EOI is received. EOIs
that do not clear a bit in GICH_APR<n> do not cause an increment. If an EOI occurs when the value
of this field is 31, then the field wraps to 0.

The maintenance interrupt is asserted whenever this field is nonzero and GICH_HCR.LRENPIE ==
1.

This field resets to a value that is architecturally UNKNOWN.

Security disabled Secure Non-secure

RW RW RW

EOICount

31 27

RES0

26 8 7 6 5 4 3 2 1

En

0

UIE
LRENPIE

NPIE
VGrp0EIE
VGrp0DIE
VGrp1EIE
VGrp1DIE
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-655
ID072617 Non-Confidential

8 Programmers’ Model
8.17 The GIC virtual interface control register descriptions
Bits [26:8]

Reserved, RES0.

VGrp1DIE, bit [7]

VM Group 1 Disabled Interrupt Enable.

Enables the signaling of a maintenance interrupt while signaling of Group 1 interrupts from the
virtual CPU interface to the connected virtual machine is disabled:

0 Maintenance interrupt disabled.

1 Maintenance interrupt signaled when GICV_CTLR.EnableGrp1 == 0.

This field resets to a value that is architecturally UNKNOWN.

VGrp1EIE, bit [6]

VM Group 1 Enabled Interrupt Enable.

Enables the signaling of a maintenance interrupt while signaling of Group 1 interrupts from the
virtual CPU interface to the connected virtual machine is enabled:

0 Maintenance interrupt disabled.

1 Maintenance interrupt signaled when GICV_CTLR.EnableGrp1 == 1.

This field resets to a value that is architecturally UNKNOWN.

VGrp0DIE, bit [5]

VM Group 0 Disabled Interrupt Enable.

Enables the signaling of a maintenance interrupt while signaling of Group 0 interrupts from the
virtual CPU interface to the connected virtual machine is disabled:

0 Maintenance interrupt disabled.

1 Maintenance interrupt signaled when GICV_CTLR.EnableGrp0 == 0.

This field resets to a value that is architecturally UNKNOWN.

VGrp0EIE, bit [4]

VM Group 0 Enabled Interrupt Enable.

Enables the signaling of a maintenance interrupt while signaling of Group 0 interrupts from the
virtual CPU interface to the connected virtual machine is enabled:

0 Maintenance interrupt disabled.

1 Maintenance interrupt signaled when GICV_CTLR.EnableGrp0 == 1.

This field resets to a value that is architecturally UNKNOWN.

NPIE, bit [3]

No Pending Interrupt Enable.

Enables the signaling of a maintenance interrupt while no pending interrupts are present in the List
registers:

0 Maintenance interrupt disabled.

1 Maintenance interrupt signaled while the List registers contain no interrupts in the
pending state.

This field resets to a value that is architecturally UNKNOWN.

LRENPIE, bit [2]

List Register Entry Not Present Interrupt Enable.

Enables the signaling of a maintenance interrupt while the virtual CPU interface does not have a
corresponding valid List register for an EOI request:

0 Maintenance interrupt disabled.

1 Maintenance interrupt signaled while GICH_HCR.EOICount is not 0.
8-656 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.17 The GIC virtual interface control register descriptions
This field resets to a value that is architecturally UNKNOWN.

UIE, bit [1]

Underflow Interrupt Enable.

Enables the signaling of a maintenance interrupt when the List registers are either empty or hold
only one valid entry.

0 Maintenance interrupt disabled.

1 A maintenance interrupt is signaled if zero or one of the List register entries are marked
as a valid interrupt.

This field resets to a value that is architecturally UNKNOWN.

En, bit [0]

Enable.

Global enable bit for the virtual CPU interface.

0 Virtual CPU interface operation is disabled.

1 Virtual CPU interface operation is enabled.

When this field is 0:

• The virtual CPU interface does not signal any maintenance interrupts.

• The virtual CPU interface does not signal any virtual interrupts.

• A read of GICV_IAR or GICV_AIAR returns a spurious interrupt ID.

This field resets to a value that is architecturally UNKNOWN.

The VGrp1DIE, VGrp1EIE, VGrp0DIE, and VGrp0EIE fields permit the hypervisor to track the virtual CPU
interfaces that are enabled. The hypervisor can then route interrupts that have multiple targets correctly and
efficiently, without having to read the virtual CPU interface status.

See Maintenance interrupts on page 5-85 and GICH_MISR for more information.

Accessing the GICH_HCR:

GICH_HCR can be accessed through its memory-mapped interface:

Component Offset

GIC Virtual interface control 0x0000
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-657
ID072617 Non-Confidential

8 Programmers’ Model
8.17 The GIC virtual interface control register descriptions
8.17.5 GICH_LR<n>, List Registers, n = 0 - 15

The GICH_LR<n> characteristics are:

Purpose

These registers provide context information for the virtual CPU interface.

Usage constraints

This register is accessible as follows:

This register is used only when System register access is not enabled. When System register access
is enabled:

• For AArch32 implementations, ICH_LR<n> provides equivalent functionality.

• For AArch64 implementations, ICH_LR<n>_EL2 provides equivalent functionality.

Configurations

RW fields in this register reset to architecturally UNKNOWN values.

This register is available when the GIC implementation supports interrupt virtualization.

A maximum of 16 List registers can be provided. GICH_VTR.ListRegs defines the number
implemented. Unimplemented List registers are RAZ/WI.

Attributes

GICH_LR<n> is a 32-bit register.

Field descriptions

The GICH_LR<n> bit assignments are:

HW, bit [31]

Indicates whether this virtual interrupt is a hardware interrupt, meaning that it corresponds to a
physical interrupt. Deactivation of the virtual interrupt also causes the deactivation of the physical
interrupt corresponding to the INTID:

0 This interrupt is triggered entirely in software. No notification is sent to the Distributor
when the virtual interrupt is deactivated.

1 A hardware interrupt. A deactivate interrupt request is sent to the Distributor when the
virtual interrupt is deactivated, using GICH_LR<n>.pINTID to indicate the physical
interrupt identifier.
If GICV_CTLR.EOImode == 0, this request corresponds to a write to GICV_EOIR or
GICV_AEOIR, otherwise it corresponds to a write to GICV_DIR.

This field resets to a value that is architecturally UNKNOWN.

Security disabled Secure Non-secure

RW RW RW

31 30

State

29 28

Priority

27 23

RES0

22 20

pINTID

19 10

vINTID

9 0

HW
Group
8-658 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.17 The GIC virtual interface control register descriptions
Group, bit [30]

Indicates whether the interrupt is Group 0 or Group 1:

0 Group 0 virtual interrupt. GICV_CTLR.FIQEn determines whether it is signaled as a
virtual IRQ or as a virtual FIQ, and GICV_CTLR.EnableGrp0 enables signaling of this
interrupt to the virtual machine.

1 Group 1 virtual interrupt, signaled as a virtual IRQ. GICV_CTLR.EnableGrp1 enables
signaling of this interrupt to the virtual machine.

Note
 GICV_CTLR.CBPR controls whether GICV_BPR or GICV_ABPR determines if a pending Group

1 interrupt has sufficient priority to preempt current execution.

This field resets to a value that is architecturally UNKNOWN.

State, bits [29:28]

The state of the interrupt. This field has one of the following values:

00 Inactive

01 Pending

10 Active

11 Active and pending

The GIC updates these state bits as virtual interrupts proceed through the interrupt life cycle. Entries
in the inactive state are ignored, except for the purpose of generating virtual maintenance interrupts.

Note
 For hardware interrupts, the active and pending state is held in the Distributor rather than the virtual

CPU interface. A hypervisor must only use the active and pending state for software originated
interrupts, which are typically associated with virtual devices, or for SGIs.

This field resets to a value that is architecturally UNKNOWN.

Priority, bits [27:23]

The priority of this interrupt.

This field resets to a value that is architecturally UNKNOWN.

Bits [22:20]

Reserved, RES0.

pINTID, bits [19:10]

The function of this field depends on the value of GICH_LR<n>.HW.

When GICH_LR<n>.HW == 0:

• Bit [19] indicates whether the interrupt triggers an EOI maintenance interrupt. If this bit is 1,
then when the interrupt identified by vINTID is deactivated, an EOI maintenance interrupt is
asserted.

• Bits [18:13] are reserved, SBZ.

• If the vINTID field value corresponds to an SGI (that is, 0-15), bits [12:10] contain the
number of the requesting PE. This appears in the corresponding field of GICV_IAR or
GICV_AIAR. If the vINTID field value is not 0-15, this field must be cleared to 0.

When GICH_LR<n>.HW == 1:

• This field indicates the pINTID that the hypervisor forwards to the Distributor. This field is
only required to implement enough bits to hold a valid value for the ID configuration. Any
unused higher order bits are RAZ/WI.
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-659
ID072617 Non-Confidential

8 Programmers’ Model
8.17 The GIC virtual interface control register descriptions
• If the value of pINTID is 0-15 or 1020-1023, behavior is UNPREDICTABLE. If the value of
pINTID is 16-31, this field applies to the PPI associated with this same PE as the virtual CPU
interface requesting the deactivation.

This field resets to a value that is architecturally UNKNOWN.

vINTID, bits [9:0]

This INTID is returned to the VM when the interrupt is acknowledged through GICV_IAR. Each
valid interrupt stored in the List registers must have a unique vINTID for that virtual CPU interface.
If the value of vINTID is 1020-1023, behavior is UNPREDICTABLE.

This field resets to a value that is architecturally UNKNOWN.

Accessing the GICH_LR<n>:

GICH_LR<n> can be accessed through its memory-mapped interface:

Component Offset

GIC Virtual interface control 0x0100 + 4n
8-660 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.17 The GIC virtual interface control register descriptions
8.17.6 GICH_MISR, Maintenance Interrupt Status Register

The GICH_MISR characteristics are:

Purpose

Indicates which maintenance interrupts are asserted.

Usage constraints

This register is accessible as follows:

This register is used only when System register access is not enabled. When System register access
is enabled:

• For AArch32 implementations, ICH_MISR provides equivalent functionality.

• For AArch64 implementations, ICH_MISR_EL2 provides equivalent functionality.

A maintenance interrupt is asserted only if at least one bit is set to 1 in this register and if
GICH_HCR.En == 1.

Configurations

Some or all RW fields of this register have defined reset values.

This register is available when the GIC implementation supports interrupt virtualization.

Attributes

GICH_MISR is a 32-bit register.

Field descriptions

The GICH_MISR bit assignments are:

Bits [31:8]

Reserved, RES0.

VGrp1D, bit [7]

vPE Group 1 Disabled.

0 vPE Group 1 Disabled maintenance interrupt not asserted.

1 vPE Group 1 Disabled maintenance interrupt asserted.

This maintenance interrupt is asserted when GICH_HCR.VGrp1DIE == 1 and
GICH_VMCR.VENG1 == 0.

Security disabled Secure Non-secure

RO RO RO

RES0

31 8 7 6 5 4

NP

3 2

U

1 0

EOI
LRENP

VGrp0E
VGrp0D
VGrp1E
VGrp1D
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-661
ID072617 Non-Confidential

8 Programmers’ Model
8.17 The GIC virtual interface control register descriptions
When this register has an architecturally-defined reset value, this field resets to 0.

VGrp1E, bit [6]

vPE Group 1 Enabled.

0 vPE Group 1 Enabled maintenance interrupt not asserted.

1 vPE Group 1 Enabled maintenance interrupt asserted.

This maintenance interrupt is asserted when GICH_HCR.VGrp1EIE == 1 and
GICH_VMCR.VENG1 == 1.

When this register has an architecturally-defined reset value, this field resets to 0.

VGrp0D, bit [5]

vPE Group 0 Disabled.

0 vPE Group 0 Disabled maintenance interrupt not asserted.

1 vPE Group 0 Disabled maintenance interrupt asserted.

This maintenance interrupt is asserted when GICH_HCR.VGrp0DIE == 1 and
GICH_VMCR.VENG0 == 0.

When this register has an architecturally-defined reset value, this field resets to 0.

VGrp0E, bit [4]

vPE Group 0 Enabled.

0 vPE Group 0 Enabled maintenance interrupt not asserted.

1 vPE Group 0 Enabled maintenance interrupt asserted.

This maintenance interrupt is asserted when GICH_HCR.VGrp0EIE == 1 and
GICH_VMCR.VENG0 == 1.

When this register has an architecturally-defined reset value, this field resets to 0.

NP, bit [3]

No Pending.

0 No Pending maintenance interrupt not asserted.

1 No Pending maintenance interrupt asserted.

This maintenance interrupt is asserted when GICH_HCR.NPIE == 1 and no List register is in the
pending state.

When this register has an architecturally-defined reset value, this field resets to 0.

LRENP, bit [2]

List Register Entry Not Present.

0 List Register Entry Not Present maintenance interrupt not asserted.

1 List Register Entry Not Present maintenance interrupt asserted.

This maintenance interrupt is asserted when GICH_HCR.LRENPIE == 1 and
GICH_HCR.EOICount is nonzero.

When this register has an architecturally-defined reset value, this field resets to 0.

U, bit [1]

Underflow.

0 Underflow maintenance interrupt not asserted.

1 Underflow maintenance interrupt asserted.

This maintenance interrupt is asserted when GICH_HCR.UIE == 1 and zero or one of the List
register entries are marked as a valid interrupt.

When this register has an architecturally-defined reset value, this field resets to 0.
8-662 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.17 The GIC virtual interface control register descriptions
EOI, bit [0]

End Of Interrupt.

0 End Of Interrupt maintenance interrupt not asserted.

1 End Of Interrupt maintenance interrupt asserted.

This maintenance interrupt is asserted when at least one bit in GICH_EISR == 1.

When this register has an architecturally-defined reset value, this field resets to 0.

Note
 A List register is in the pending state only if the corresponding GICH_LR<n> value is 01, that is, pending. The active
and pending state is not included.

Accessing the GICH_MISR:

GICH_MISR can be accessed through its memory-mapped interface:

Component Offset

GIC Virtual interface control 0x0010
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-663
ID072617 Non-Confidential

8 Programmers’ Model
8.17 The GIC virtual interface control register descriptions
8.17.7 GICH_VMCR, Virtual Machine Control Register

The GICH_VMCR characteristics are:

Purpose

Enables the hypervisor to save and restore the virtual machine view of the GIC state. This register
is updated when a virtual machine updates the virtual CPU interface registers.

Usage constraints

This register is accessible as follows:

This register is used only when System register access is not enabled. When System register access
is enabled:

• For AArch32 implementations, ICH_VMCR provides equivalent functionality.

• For AArch64 implementations, ICH_VMCR_EL2 provides equivalent functionality.

Configurations

RW fields in this register reset to architecturally UNKNOWN values.

This register is available when the GIC implementation supports interrupt virtualization.

Attributes

GICH_VMCR is a 32-bit register.

Field descriptions

The GICH_VMCR bit assignments are:

VPMR, bits [31:24]

Virtual priority mask. The priority mask level for the CPU interface. If the priority of an interrupt is
higher than the value indicated by this field, the interface signals the interrupt to the PE.

This alias field is updated when a VM updates GICV_PMR.Priority.

This field resets to a value that is architecturally UNKNOWN.

VBPR0, bits [23:21]

Virtual Binary Point Register, Group 0. Defines the point at which the priority value fields split into
two parts, the Group priority field and the subpriority field. The Group priority field determines
Group 0 interrupt preemption, and also determines Group 1 interrupt preemption if
GICH_VMCR.VCBPR == 1.

Security disabled Secure Non-secure

RW RW RW

VPMR

31 24

VBPR0

23 21

VBPR1

20 18

RES0

17 10 9

RES0

8 5 4 3 2 1 0

VENG0
VENG1

VAckCtl
VFIQEn
VCBPR
VEOIM
8-664 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.17 The GIC virtual interface control register descriptions
This alias field is updated when a VM updates GICV_BPR.Binary_Point.

This field resets to a value that is architecturally UNKNOWN.

VBPR1, bits [20:18]

Virtual Binary Point Register, Group 1. Defines the point at which the priority value fields split into
two parts, the Group priority field and the subpriority field. The Group priority field determines
Group 1 interrupt preemption if GICH_VMCR.VCBPR == 0.

This alias field is updated when a VM updates GICV_ABPR.Binary_Point.

This field resets to a value that is architecturally UNKNOWN.

Bits [17:10]

Reserved, RES0.

VEOIM, bit [9]

Virtual EOImode. Possible values of this bit are:

0 A write of an INTID to GICV_EOIR or GICV_AEOIR drops the priority of the
interrupt with that INTID, and also deactivates that interrupt.

1 A write of an INTID to GICV_EOIR or GICV_AEOIR only drops the priority of the
interrupt with that INTID. Software must write to GICV_DIR to deactivate the
interrupt.

This alias field is updated when a VM updates GICV_CTLR.EOImode.

If this field is implemented as an RW field, it resets to a value that is architecturally UNKNOWN.

Bits [8:5]

Reserved, RES0.

VCBPR, bit [4]

Virtual Common Binary Point Register. Possible values of this bit are:

0 GICV_ABPR determines the preemption group for Group 1 interrupts.

1 GICV_BPR determines the preemption group for Group 1 interrupts.

This alias field is updated when a VM updates GICV_CTLR.CBPR.

This field resets to a value that is architecturally UNKNOWN.

VFIQEn, bit [3]

Virtual FIQ enable. Possible values of this bit are:

0 Group 0 virtual interrupts are presented as virtual IRQs.

1 Group 0 virtual interrupts are presented as virtual FIQs.

This alias field is updated when a VM updates GICV_CTLR.FIQEn.

This field resets to a value that is architecturally UNKNOWN.

VAckCtl, bit [2]

Virtual AckCtl. Possible values of this bit are:

0 If the highest priority pending interrupt is Group 1, a read of GICV_IAR or
GICV_HPPIR returns an INTID of 1022.

1 If the highest priority pending interrupt is Group 1, a read of GICV_IAR or
GICV_HPPIR returns the INTID of the corresponding interrupt.

This alias field is updated when a VM updates GICV_CTLR.AckCtl.

This field is supported for backwards compatibility with GICv2. ARM deprecates the use of this
field.

This field resets to a value that is architecturally UNKNOWN.
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-665
ID072617 Non-Confidential

8 Programmers’ Model
8.17 The GIC virtual interface control register descriptions
VENG1, bit [1]

Virtual interrupt enable, Group 1. Possible values of this bit are:

0 Group 1 virtual interrupts are disabled.

1 Group 1 virtual interrupts are enabled.

This alias field is updated when a VM updates GICV_CTLR.EnableGrp1.

This field resets to a value that is architecturally UNKNOWN.

VENG0, bit [0]

Virtual interrupt enable, Group 0. Possible values of this bit are:

0 Group 0 virtual interrupts are disabled.

1 Group 0 virtual interrupts are enabled.

This alias field is updated when a VM updates GICV_CTLR.EnableGrp0.

This field resets to a value that is architecturally UNKNOWN.

Note
 A List register is in the pending state only if the corresponding GICH_LR<n> value is 01, that is, pending. The active
and pending state is not included.

Accessing the GICH_VMCR:

GICH_VMCR can be accessed through its memory-mapped interface:

Component Offset

GIC Virtual interface control 0x0008
8-666 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.17 The GIC virtual interface control register descriptions
8.17.8 GICH_VTR, Virtual Type Register

The GICH_VTR characteristics are:

Purpose

Indicates the number of implemented virtual priority bits and List registers.

Usage constraints

This register is accessible as follows:

This register is used only when System register access is not enabled. When System register access
is enabled:

• For AArch32 implementations, ICH_VTR provides equivalent functionality.

• For AArch64 implementations, ICH_VTR_EL2 provides equivalent functionality.

Configurations

This register is available when the GIC implementation supports interrupt virtualization.

Attributes

GICH_VTR is a 32-bit register.

Field descriptions

The GICH_VTR bit assignments are:

PRIbits, bits [31:29]

The number of virtual priority bits implemented, minus one.

An implementation must implement at least 32 levels of virtual priority (5 priority bits).

PREbits, bits [28:26]

The number of virtual preemption bits implemented, minus one.

An implementation must implement at least 32 levels of virtual preemption priority (5 preemption
bits).

The value of this field must be less than or equal to the value of GICH_VTR.PRIbits.

IDbits, bits [25:23]

The number of virtual interrupt identifier bits supported:

000 16 bits.

001 24 bits.

All other values are reserved.

Security disabled Secure Non-secure

RO RO RO

PRIbits

31 29

PREbits

28 26

IDbits

25 23 22 21

RES0

20 5

ListRegs

4 0

SEIS
A3V
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-667
ID072617 Non-Confidential

8 Programmers’ Model
8.17 The GIC virtual interface control register descriptions
SEIS, bit [22]

SEI support. Indicates whether the virtual CPU interface supports generation of SEIs:

0 The virtual CPU interface logic does not support generation of SEIs.

1 The virtual CPU interface logic supports generation of SEIs.

A3V, bit [21]

Affinity 3 valid. Possible values are:

0 The virtual CPU interface logic only supports zero values of the Aff3 field in
ICC_SGI0R_EL1, ICC_SGI1R_EL1, and ICC_ASGI1R_EL1.

1 The virtual CPU interface logic supports nonzero values of the Aff3 field in
ICC_SGI0R_EL1, ICC_SGI1R_EL1, and ICC_ASGI1R_EL1.

Bits [20:5]

Reserved, RES0.

ListRegs, bits [4:0]

The number of implemented List registers, minus one.

Accessing the GICH_VTR:

GICH_VTR can be accessed through its memory-mapped interface:

Component Offset

GIC Virtual interface control 0x0004
8-668 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.18 The ITS register map
8.18 The ITS register map
The ITS address map consists of two separate 64KB frames starting from an IMPLEMENTATION DEFINED address
specified in ITS_base. This base address must be aligned to a 64KB boundary. The two frames are:
• The control registers. which are located at ITS_base + 0x000000.
• The interrupt translation space, which is located at ITS_base + 0x010000.

Reserved register addresses are RES0.

Table 8-33 shows the GIC register map for the ITS control registers.

Table 8-34 shows the GIC register map for the ITS translation registers.

Table 8-33 ITS control register map

Offset Name Type Reset Description

0x0000 GITS_CTLR RW See the register description ITS control register

0x0004 GITS_IIDR RO IMPLEMENTATION DEFINED ITS Identification register

0x0008 GITS_TYPER RO IMPLEMENTATION DEFINED ITS Type register

0x0010-0x001C - - - Reserved

0x0020-0x003C - - IMPLEMENTATION DEFINED IMPLEMENTATION DEFINED registers.

0x0040-0x007C - - - Reserved

0x0080 GITS_CBASER RW See the register description ITS Command Queue Descriptor

0x0088 GITS_CWRITER RW See the register description ITS Write register

0x0090 GITS_CREADR RO See the register description ITS Read register

0x0098-0x00FC - - - Reserved

0x0100-0x0138 GITS_BASER<n> RW See the register description ITS Translation Table Descriptors

0x0140-0xBFFC - - - Reserved

0xC000-0xFFCC - - IMPLEMENTATION DEFINED IMPLEMENTATION DEFINED registers.

0xFFD0-0xFFFC - RO - Reserved for ID registers, see Identification registers
on page 8-171

Table 8-34 ITS translation register map

Offset Name Type Reset Description

0x0000-0x003C - - - Reserved

0x0040 GITS_TRANSLATER WO - ITS Translation register

0x0044-0xFFFC - - - Reserved
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-669
ID072617 Non-Confidential

8 Programmers’ Model
8.19 The ITS register descriptions
8.19 The ITS register descriptions
This section describes each of the ITS registers in register name order.
8-670 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.19 The ITS register descriptions
8.19.1 GITS_BASER<n>, ITS Translation Table Descriptors, n = 0 - 7

The GITS_BASER<n> characteristics are:

Purpose

Specifies the base address and size of the ITS translation tables.

Usage constraints

This register is accessible as follows:

Configurations

Some or all RW fields of this register have defined reset values.

A copy of this register is provided for each ITS translation table.

Bits [63:32] and bits [31:0] are accessible independently.

A maximum of 8 GITS_BASER<n> registers can be provided. Unimplemented registers are RES0.

When GITS_CTLR.Enabled == 1 or GITS_CTLR.Quiescent == 0, writing this register is
UNPREDICTABLE.

Attributes

GITS_BASER<n> is a 64-bit register.

Field descriptions

The GITS_BASER<n> bit assignments are:

Valid, bit [63]

Indicates whether software has allocated memory for the translation table:

0 No memory is allocated for the translation table. The ITS discards any writes to the
interrupt translation page when either:

• GITS_BASER<n>.Type specifies any valid table entry type other than interrupt
collections, that is, any value other than 100.

• GITS_BASER<n>.Type specifies an interrupt collection and
GITS_TYPER.HCC == 0.

1 Memory is allocated to the translation table.

When this register has an architecturally-defined reset value, this field resets to 0.

Security disabled Secure Non-secure

RW RW RW

63 62 61 59

Type

58 56 55 53

Entry_Size

52 48

Physical_Address

47 12 11 10 9 8

Size

7 0

Valid
Indirect
InnerCache
OuterCache

Page_Size
Shareability
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-671
ID072617 Non-Confidential

8 Programmers’ Model
8.19 The ITS register descriptions
Indirect, bit [62]

This field indicates whether an implemented register specifies a single, flat table or a two-level table
where the first level contains a list of descriptors.

0 Single Level. The Size field indicates the number of pages used by the ITS to store data
associated with each table entry.

1 Two Level. The Size field indicates the number of pages which contain an array of
64-bit descriptors to pages that store the data associated with each table entry. A little
endian memory order model is used.

See The ITS tables on page 6-99 for more information.

This field is RAZ/WI for GIC implementations that only support flat tables. If the maximum width
of the scaling factor that is identified by GITS_BASER<n>.Type and the smallest page size that is
supported result in a single level table that requires multiple pages, then implementing this bit as
RAZ/WI is deprecated.

If this field is implemented as an RW field, it resets to a value that is architecturally UNKNOWN.

InnerCache, bits [61:59]

Indicates the Inner Cacheability attributes of accesses to the table. The possible values of this field
are:

000 Device-nGnRnE.

001 Normal Inner Non-cacheable.

010 Normal Inner Cacheable Read-allocate, Write-through.

011 Normal Inner Cacheable Read-allocate, Write-back.

100 Normal Inner Cacheable Write-allocate, Write-through.

101 Normal Inner Cacheable Write-allocate, Write-back.

110 Normal Inner Cacheable Read-allocate, Write-allocate, Write-through.

111 Normal Inner Cacheable Read-allocate, Write-allocate, Write-back.

This field resets to a value that is architecturally UNKNOWN.

Type, bits [58:56]

Read only. Specifies the type of entity that requires entries in the corresponding translation table.
The possible values of the field are:

000 Unimplemented. This register does not correspond to a translation table.

001 Devices. This register corresponds to a translation table that scales with the width of the
DeviceID. Only a single GITS_BASER<n> register reports this type.

010 vPEs. GICv4 only. This register corresponds to a translation table that scales with the
number of vPEs in the system. The translation table requires (ENTRY_SIZE * N) bytes
of memory, where N is the number of vPEs in the system. Only a single
GITS_BASER<n> register reports this type.

100 Interrupt collections. This register corresponds to a translation table that scales with the
number of interrupt collections in the system. The translation table requires
(ENTRY_SIZE * N) bytes of memory, where N is the number of interrupt collections.
Not more than one GITS_BASER<n> register will report this type.

Other values are reserved.

Note
 The minimum number of entries that an ITS must support is N+1, where N is the number of physical

PEs in the system.

This field resets to a value that is architecturally UNKNOWN.
8-672 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.19 The ITS register descriptions
OuterCache, bits [55:53]

Indicates the Outer Cacheability attributes of accesses to the table. The possible values of this field
are:

000 Memory type defined in InnerCache field. For Normal memory, Outer Cacheability is
the same as Inner Cacheability.

001 Normal Outer Non-cacheable.

010 Normal Outer Cacheable Read-allocate, Write-through.

011 Normal Outer Cacheable Read-allocate, Write-back.

100 Normal Outer Cacheable Write-allocate, Write-through.

101 Normal Outer Cacheable Write-allocate, Write-back.

110 Normal Outer Cacheable Read-allocate, Write-allocate, Write-through.

111 Normal Outer Cacheable Read-allocate, Write-allocate, Write-back.

It is IMPLEMENTATION DEFINED whether this field has a fixed value or can be programmed by
software. Implementing this field with a fixed value is deprecated.

If this field is implemented as an RW field, it resets to a value that is architecturally UNKNOWN.

Entry_Size, bits [52:48]

Read-only. Specifies the number of bytes per translation table entry, minus one.

Physical_Address, bits [47:12]

Physical Address. When Page_Size is 4KB or 16KB:

• Bits [51:48] of the base physical address are zero.

• This field provides bits[47:12] of the base physical address of the table.

• Bits[11:0] of the base physical address are zero.

• The address must be aligned to the size specified in the Page Size field. Otherwise the effect
is CONSTRAINED UNPREDICTABLE, and can be one of the following:

— Bits[X:12], where X is derived from the page size, are treated as zero.

— The value of bits[X:12] are used when calculating the address of a table access.

When Page_Size is 64KB:

• Bits[47:16] of the register provide bits[47:16] of the base physical address of the table.

• Bits[15:12] of the register provide bits[51:48] of the base physical address of the table.

• Bits[15:0] of the base physical address are 0.

In implementations that support fewer than 52 bits of physical address, any unimplemented upper
bits might be RAZ/WI.

This field resets to a value that is architecturally UNKNOWN.

Shareability, bits [11:10]

Indicates the Shareability attributes of accesses to the table. The possible values of this field are:

00 Non-shareable.

01 Inner Shareable.

10 Outer Shareable.

11 Reserved. Treated as 00.

It is IMPLEMENTATION DEFINED whether this field has a fixed value or can be programmed by
software. Implementing this field with a fixed value is deprecated.

If this field is implemented as an RW field, it resets to a value that is architecturally UNKNOWN.
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-673
ID072617 Non-Confidential

8 Programmers’ Model
8.19 The ITS register descriptions
Page_Size, bits [9:8]

The size of page that the translation table uses:

00 4KB.

01 16KB.

10 64KB.

11 Reserved. Treated as 10.

Note
 If the GIC implementation supports only a single, fixed page size, this field might be RO.

If this field is implemented as an RW field, it resets to a value that is architecturally UNKNOWN.

Size, bits [7:0]

The number of pages of physical memory allocated to the table, minus one.
GITS_BASER<n>.Page_Size specifies the size of each page.

If GITS_BASER<n>.Type == 0, this field is RAZ/WI.

If this field is implemented as an RW field, it resets to a value that is architecturally UNKNOWN.

Accessing the GITS_BASER<n>:

GITS_BASER<n> can be accessed through its memory-mapped interface:

Component Offset

GIC ITS control 0x0100 + 8n
8-674 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.19 The ITS register descriptions
8.19.2 GITS_CBASER, ITS Command Queue Descriptor

The GITS_CBASER characteristics are:

Purpose

Specifies the base address and size of the ITS command queue.

Usage constraints

This register is accessible as follows:

When GITS_CTLR.Enabled == 1 or GITS_CTLR.Quiescent == 0, writing this register is
UNPREDICTABLE.

Configurations

Some or all RW fields of this register have defined reset values.

Bits [63:32] and bits [31:0] are accessible separately.

Attributes

GITS_CBASER is a 64-bit register.

Field descriptions

The GITS_CBASER bit assignments are:

Valid, bit [63]

Indicates whether software has allocated memory for the command queue:

0 No memory is allocated for the command queue.

1 Memory is allocated to the command queue.

When this register has an architecturally-defined reset value, this field resets to 0.

Bit [62]

Reserved, RES0.

InnerCache, bits [61:59]

Indicates the Inner Cacheability attributes of accesses to the command queue. The possible values
of this field are:

000 Device-nGnRnE.

001 Normal Inner Non-cacheable.

010 Normal Inner Cacheable Read-allocate, Write-through.

Security disabled Secure Non-secure

RW RW RW

63 62 61 59

RES0

58 56 55 53 52

Physical_Address

51 12 11 10 9 8

Size

7 0

Valid
RES0
InnerCache
OuterCache
RES0

RES0
Shareability
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-675
ID072617 Non-Confidential

8 Programmers’ Model
8.19 The ITS register descriptions
011 Normal Inner Cacheable Read-allocate, Write-back.

100 Normal Inner Cacheable Write-allocate, Write-through.

101 Normal Inner Cacheable Write-allocate, Write-back.

110 Normal Inner Cacheable Read-allocate, Write-allocate, Write-through.

111 Normal Inner Cacheable Read-allocate, Write-allocate, Write-back.

This field resets to a value that is architecturally UNKNOWN.

Bits [58:56]

Reserved, RES0.

OuterCache, bits [55:53]

Indicates the Outer Cacheability attributes of accesses to the command queue. The possible values
of this field are:

000 Memory type defined in InnerCache field. For Normal memory, Outer Cacheability is
the same as Inner Cacheability.

001 Normal Outer Non-cacheable.

010 Normal Outer Cacheable Read-allocate, Write-through.

011 Normal Outer Cacheable Read-allocate, Write-back.

100 Normal Outer Cacheable Write-allocate, Write-through.

101 Normal Outer Cacheable Write-allocate, Write-back.

110 Normal Outer Cacheable Read-allocate, Write-allocate, Write-through.

111 Normal Outer Cacheable Read-allocate, Write-allocate, Write-back.

It is IMPLEMENTATION DEFINED whether this field has a fixed value or can be programmed by
software. Implementing this field with a fixed value is deprecated.

If this field is implemented as an RW field, it resets to a value that is architecturally UNKNOWN.

Bit [52]

Reserved, RES0.

Physical_Address, bits [51:12]

Bits [51:12] of the base physical address of the command queue. Bits [11:0] of the base address are
0.

In implementations supporting fewer than 52 bits of physical address, unimplemented upper bits are
RES0.

If bits [15:12] are not all zeros, behavior is a CONSTRAINED UNPREDICTABLE choice:

• Bits [15:12] are treated as if all the bits are zero. The value read back from those bits is either
the value written or zero.

• The result of the calculation of an address for a command queue read can be corrupted.

This field resets to a value that is architecturally UNKNOWN.

Shareability, bits [11:10]

Indicates the Shareability attributes of accesses to the command queue. The possible values of this
field are:

00 Non-shareable.

01 Inner Shareable.

10 Outer Shareable.

11 Reserved. Treated as 00.

It is IMPLEMENTATION DEFINED whether this field has a fixed value or can be programmed by
software. Implementing this field with a fixed value is deprecated.

If this field is implemented as an RW field, it resets to a value that is architecturally UNKNOWN.
8-676 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.19 The ITS register descriptions
Bits [9:8]

Reserved, RES0.

Size, bits [7:0]

The number of 4KB pages of physical memory allocated to the command queue, minus one.

This field resets to a value that is architecturally UNKNOWN.

The command queue is a circular buffer and wraps at Physical Address [47:0] + (4096 * (Size + 1)).

Note
 When this register is successfully written, the value of GITS_CREADR is set to zero.

Accessing the GITS_CBASER:

GITS_CBASER can be accessed through its memory-mapped interface:

Component Offset

GIC ITS control 0x0080-0x0084
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-677
ID072617 Non-Confidential

8 Programmers’ Model
8.19 The ITS register descriptions
8.19.3 GITS_CREADR, ITS Read Register

The GITS_CREADR characteristics are:

Purpose

Specifies the offset from GITS_CBASER where the ITS reads the next ITS command.

Usage constraints

This register is accessible as follows:

Configurations

This register is cleared to 0 when a value is written to GITS_CBASER.

Bits [63:32] and bits [31:0] are accessible separately.

Attributes

GITS_CREADR is a 64-bit register.

Field descriptions

The GITS_CREADR bit assignments are:

Bits [63:20]

Reserved, RES0.

Offset, bits [19:5]

Bits [19:5] of the offset from GITS_CBASER. Bits [4:0] of the offset are zero.

Bits [4:1]

Reserved, RES0.

Stalled, bit [0]

Reports whether the processing of commands is stalled because of a command error.

0 ITS command queue is not stalled because of a command error.

1 ITS command queue is stalled because of a command error.

See The ITS command interface on page 6-105 for more information.

Security disabled Secure Non-secure

RO RO RO

RES0

63 20

Offset

19 5

RES0

4 1 0

Stalled
8-678 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.19 The ITS register descriptions
Accessing the GITS_CREADR:

GITS_CREADR can be accessed through its memory-mapped interface:

Component Offset

GIC ITS control 0x0090-0x0094
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-679
ID072617 Non-Confidential

8 Programmers’ Model
8.19 The ITS register descriptions
8.19.4 GITS_CTLR, ITS Control Register

The GITS_CTLR characteristics are:

Purpose

Controls the operation of an ITS.

Usage constraints

This register is accessible as follows:

Configurations

Some or all RW fields of this register have defined reset values.

The ITS_Number (bits [7:4]) and bit [1] fields apply only in GICv4 implementations, and are RES0
in GICv3 implementations.

Attributes

GITS_CTLR is a 32-bit register.

Field descriptions

The GITS_CTLR bit assignments are:

Quiescent, bit [31]

Read-only. Indicates completion of all ITS operations when GITS_CTLR.Enabled == 0.

0 The ITS is not quiescent and cannot be powered down.

1 The ITS is quiescent and can be powered down.

For the ITS to be quiescent, there must be no transactions in progress. In addition, all operations
required to ensure that mapping data is consistent with external memory must be complete.

Note
 In distributed GIC implementations, this bit is set to 1 only after the ITS forwards any operations

that have not yet been completed to the Redistributors and receives confirmation that all such
operations have reached the appropriate Redistributor.

When GITS_CTLR.Enabled==1 the value of GITS_CTLR.Quiescent is UNKNOWN.

When this register has an architecturally-defined reset value, this field resets to 1.

Bits [30:8]

Reserved, RES0.

Security disabled Secure Non-secure

RW RW RW

31

RES0

30 8 7 4 3 2 1 0

Quiescent Enabled
ImDe

RES0
ITS_Number
8-680 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.19 The ITS register descriptions
ITS_Number, bits [7:4]

In GICv3 implementations this field is RES0.

In GICv4 implementations with more than one ITS instance, this field indicates the ITS number for
use with VMOVP.

It is IMPLEMENTATION DEFINED whether this field is programmable or RO.

If this field is programmable, changing this field when GITS_CTLR.Quiescent==0 or
GITS_CTLR.Enabled==1 is UNPREDICTABLE.

If this field is implemented as an RW field, it resets to a value that is architecturally UNKNOWN.

Bits [3:2]

Reserved, RES0.

ImDe, bit [1]

In GICv3 implementations this bit is RES0.

In GICv4 implementations this bit is RES1.

Enabled, bit [0]

Controls whether the ITS is enabled:

0 The ITS is not enabled. Writes to GITS_TRANSLATER are ignored and no further
command queue entries are processed.

1 The ITS is enabled. Writes to GITS_TRANSLATER result in interrupt translations and
the command queue is processed.

If a write to this register changes this field from 1 to 0, the ITS must ensure that both:

• Any caches containing mapping data are made consistent with external memory.

• GITS_CTLR.Quiescent == 0 until all caches are consistent with external memory.

Changing GITS_CTLR.Enabled from 0 to 1 when GITS_CTLR.Quiescent is 0 results in
UNPREDICTABLE behavior.

When this register has an architecturally-defined reset value, this field resets to 0.

Accessing the GITS_CTLR:

GITS_CTLR can be accessed through its memory-mapped interface:

Component Offset

GIC ITS control 0x0000
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-681
ID072617 Non-Confidential

8 Programmers’ Model
8.19 The ITS register descriptions
8.19.5 GITS_CWRITER, ITS Write Register

The GITS_CWRITER characteristics are:

Purpose

Specifies the offset from GITS_CBASER where software writes the next ITS command.

Usage constraints

This register is accessible as follows:

Configurations

RW fields in this register reset to architecturally UNKNOWN values.

Bits [63:32] and bits [31:0] are accessible separately.

Attributes

GITS_CWRITER is a 64-bit register.

Field descriptions

The GITS_CWRITER bit assignments are:

Bits [63:20]

Reserved, RES0.

Offset, bits [19:5]

Bits [19:5] of the offset from GITS_CBASER. Bits [4:0] of the offset are zero.

This field resets to a value that is architecturally UNKNOWN.

Bits [4:1]

Reserved, RES0.

Retry, bit [0]

Writing this bit has the following effects:

0 No effect on the processing commands by the ITS.

1 Restarts the processing of commands by the ITS if it stalled because of a command
error.

Note
 If the processing of commands is not stalled because of a command error, writing 1 to

this bit has no effect.

When read, this bit is RES0.

See The ITS command interface on page 6-105 for more information.

Security disabled Secure Non-secure

RW RW RW

RES0

63 20

Offset

19 5

RES0

4 1 0

Retry
8-682 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.19 The ITS register descriptions
If GITS_CWRITER is written with a value outside of the valid range specified by
GITS_CBASER.Physical_Address and GITS_CBASER.Size, behavior is a CONSTRAINED UNPREDICTABLE choice,
as follows:

• The command queue is considered invalid, and no further commands are processed until GITS_CWRITER
is written with a value that is in the valid range.

• The value is treated as a valid UNKNOWN value.

An implementation might choose to report a system error in an IMPLEMENTATION DEFINED manner.

Accessing the GITS_CWRITER:

GITS_CWRITER can be accessed through its memory-mapped interface:

Component Offset

GIC ITS control 0x0088-0x008C
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-683
ID072617 Non-Confidential

8 Programmers’ Model
8.19 The ITS register descriptions
8.19.6 GITS_IIDR, ITS Identification Register

The GITS_IIDR characteristics are:

Purpose

Provides information about the implementer and revision of the ITS.

Usage constraints

This register is accessible as follows:

Configurations

This register is available in all configurations of the GIC. If the GIC implementation supports two
Security states, this register is Common.

Attributes

GITS_IIDR is a 32-bit register.

Field descriptions

The GITS_IIDR bit assignments are:

ProductID, bits [31:24]

An IMPLEMENTATION DEFINED product identifier.

Bits [23:20]

Reserved, RES0.

Variant, bits [19:16]

An IMPLEMENTATION DEFINED variant number. Typically, this field distinguishes product variants,
or major revisions of a product.

Revision, bits [15:12]

An IMPLEMENTATION DEFINED revision number. Typically, this field distinguishes minor revisions
of a product.

Implementer, bits [11:0]

Contains the JEP106 code of the company that implemented the ITS:

• Bits [11:8] are the JEP106 continuation code of the implementer. For an ARM
implementation, this field is 0x4.

• Bit [7] is always 0.

• Bits [6:0] are the JEP106 identity code of the implementer. For an ARM implementation, bits
[7:0] are therefore 0x3B.

Security disabled Secure Non-secure

RO RO RO

ProductID

31 24

RES0

23 20

Variant

19 16

Revision

15 12

Implementer

11 0
8-684 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.19 The ITS register descriptions
Accessing the GITS_IIDR:

GITS_IIDR can be accessed through its memory-mapped interface:

Component Offset

GIC ITS control 0x0004
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-685
ID072617 Non-Confidential

8 Programmers’ Model
8.19 The ITS register descriptions
8.19.7 GITS_TRANSLATER, ITS Translation Register

The GITS_TRANSLATER characteristics are:

Purpose

Written by a requesting a Device to signal an interrupt for translation by the ITS.

Usage constraints

This register is accessible as follows:

16-bit access to bits [15:0] of this register must be supported. When this register is written by a
16-bit transaction, bits [31:16] are written as zero.

Implementations must ensure that:

• A unique DeviceID is provided for each requesting device, and the DeviceID is presented to
the ITS when a write to this register occurs in a manner that cannot be spoofed by any agent
capable of performing writes.

• The DeviceID presented corresponds to the DeviceID field in the ITS commands.

Writes to this register are ignored if any of the following are true:

• GITS_CTLR.Enabled == 0.

• The presented DeviceID is not mapped to an Interrupt Translation Table.

• The DeviceID is larger than the supported size.

• The DeviceID is mapped to an Interrupt Translation Table, but the EventID is outside the
range specified by MAPD.

• The EventID is mapped to an Interrupt Translation Table and the EventID is within the range
specified by MAPD, but the EventID is unmapped.

Translation requests that result from writes to this register are subject to certain ordering rules. See
Ordering of translations with the output to ITS commands on page 6-107 for more information.

Configurations

This register is at the same offset as GICD_SETSPI_NSR in the Distributor, and is at the same offset
as GICR_SETLPIR in the Redistributor.

Attributes

GITS_TRANSLATER is a 32-bit register.

Field descriptions

The GITS_TRANSLATER bit assignments are:

EventID, bits [31:0]

An identifier corresponding to the interrupt to be translated.

Security disabled Secure Non-secure

WO WO WO

EventID

31 0
8-686 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.19 The ITS register descriptions
Note
 The size of the EventID is DeviceID specific, and set when the DeviceID is mapped to an ITT (using

MAPD).

The number of EventID bits implemented is reported by GITS_TYPER.ID_bits. If a write specifies
non-zero identifiers bits outside this range behavior is a CONSTRAINED UNPREDICTABLE choice
between:

• Non-zero identifier bits outside the supported range are ignored.

• The write is ignored.

The DeviceID presented to an ITS indexes a device table. The device table maps the DeviceID to an interrupt
translation table for that device.

Accessing the GITS_TRANSLATER:

GITS_TRANSLATER can be accessed through its memory-mapped interface:

Component Offset

GIC ITS translation 0x0040
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-687
ID072617 Non-Confidential

8 Programmers’ Model
8.19 The ITS register descriptions
8.19.8 GITS_TYPER, ITS Type Register

The GITS_TYPER characteristics are:

Purpose

Specifies the features that an ITS supports.

Usage constraints

This register is accessible as follows:

Configurations

There are no configuration notes.

Attributes

GITS_TYPER is a 64-bit register.

Field descriptions

The GITS_TYPER bit assignments are:

Bits [63:38]

Reserved, RES0.

VMOVP, bit [37]

Indicates the form of the VMOVP command.

0 When moving a vPE, software must issue a VMOVP on all ITSs that have mappings for
that vPE. The ITSList and Sequence Number fields in the VMOVP command must
ensure synchronization, otherwise behavior is UNPREDICTABLE.

1 When moving a vPE, software must only issue a VMOVP on one of the ITSs that has a
mapping for that vPE. The ITSList and Sequence Number fields in the VMOVP
command are RES0.

CIL, bit [36]

Collection ID Limit.

0 ITS supports 16-bit Collection ID, GITS_TYPER.CIDbits is RES0.

1 GITS_TYPER.CIDbits indicates supported Collection ID size

Security disabled Secure Non-secure

RO RO RO

RES0

63 38 37 36

CIDbits

35 32

HCC

31 24

RES0

23 20 19 18

Devbits

17 13

ID_bits

12 8 7 4 3 2 1 0

VMOVP
CIL

Physical
Virtual

CCT
IMP DEF

ITT_entry_size
SEIS
PTA
8-688 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.19 The ITS register descriptions
In implementations that do not support Collections in external memory, this bit is RES0 and the
number of Collections supported is reported by GITS_TYPER.HCC.

CIDbits, bits [35:32]

Number of Collection ID bits.

• The number of bits of Collection ID - 1.

• When GITS_TYPER.CIL==0, this field is RES0.

HCC, bits [31:24]

Hardware Collection Count. The number of interrupt collections supported by the ITS without
provisioning of external memory.

Note
 Collections held in hardware are unmapped at reset.

Bits [23:20]

Reserved, RES0.

PTA, bit [19]

Physical Target Addresses. Indicates the format of the target address:

0 The target address corresponds to the PE number specified by
GICR_TYPER.Processor_Number.

1 The target address corresponds to the base physical address of the required
Redistributor.

See RDbase for more information.

SEIS, bit [18]

SEI support. Indicates whether the virtual CPU interface supports generation of SEIs:

0 The ITS does not support local generation of SEIs.

1 The ITS supports local generation of SEIs.

Devbits, bits [17:13]

The number of DeviceID bits implemented, minus one.

ID_bits, bits [12:8]

The number of EventID bits implemented, minus one.

ITT_entry_size, bits [7:4]

Read-only. Indicates the number of bytes per translation table entry, minus one.

See MAPD on page 6-118 for more information.

IMPLEMENTATION DEFINED, bit [3]

IMPLEMENTATION DEFINED.

CCT, bit [2]

Cumulative Collection Tables.

0 The total number of supported collections is determined by the number of collections
held in memory only.

1 The total number of supported collections is determined by number of collections that
are held in memory and the number indicated by GITS_TYPER.HCC.

If GITS_TYPER.HCC==0, or if memory backed collections are not supported (all
GITS_BASER<n>.Type != 100), this bit is RES0.
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-689
ID072617 Non-Confidential

8 Programmers’ Model
8.19 The ITS register descriptions
Virtual, bit [1]

Indicates whether the ITS supports virtual LPIs and direct injection of virtual LPIs:

0 The ITS does not support virtual LPIs or direct injection of virtual LPIs.

1 The ITS supports virtual LPIs and direct injection of virtual LPIs.

This field is RES0 in GICv3 implementations.

Physical, bit [0]

Indicates whether the ITS supports physical LPIs:

0 The ITS does not support physical LPIs.

1 The ITS supports physical LPIs.

This field is RES1, indicating that the ITS supports physical LPIs.

Accessing the GITS_TYPER:

GITS_TYPER can be accessed through its memory-mapped interface:

Component Offset

GIC ITS control 0x0008-0x000C
8-690 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.20 Pseudocode
8.20 Pseudocode
AArch64 functions shows the pseudocode for the System registers when executing in AArch64 state. The same
pseudocode can be used for the System registers when executing in AArch32 state by substituting the AArch64
register names with the equivalent AArch32 register names.

Note
 An AArch64 register name includes the lowest Exception level that can access the register as a suffix to the register
name. An AArch32 register name does not contain this suffix. For example the AArch64 Interrupt Controller
Deactivate Interrupt Register is ICC_DIR_EL1, while the AArch32 equivalent is ICC_DIR.

Functions for memory-mapped registers on page 8-704 shows the pseudocode for the memory-mapped registers.

Note
 Some variable names used the pseudocode differ from those used in the body text. For a list of the affected variables,
see Pseudocode terminology on page B-762.

8.20.1 AArch64 functions

This subsection describes the AArch64 functions. The functions are indicated by the hierarchical path names, for
example aarch64/support. The functions are:
• aarch64/support/ICC_DIR_EL1.
• aarch64/support/ICC_EOIR0_EL1 on page 8-692.
• aarch64/support/ICC_EOIR1_EL1 on page 8-693.
• aarch64/support/ICC_HPPIR0_EL1 on page 8-694.
• aarch64/support/ICC_HPPIR1_EL1 on page 8-694.
• aarch64/support/ICC_IAR0_EL1 on page 8-694.
• aarch64/support/ICC_IAR1_EL1 on page 8-695.
• aarch64/support/ICC_PMR_EL1 on page 8-695.
• aarch64/support/ICC_RPR_EL1 on page 8-696.
• aarch64/support/ICH_EISR_EL2 on page 8-696.
• aarch64/support/ICH_ELSR_EL2 on page 8-697.
• aarch64/support/VirtualReadHPPIR0 on page 8-697.
• aarch64/support/VirtualReadHPPIR1 on page 8-697.
• aarch64/support/VirtualReadIAR0 on page 8-698.
• aarch64/support/VirtualReadIAR1 on page 8-698.
• aarch64/support/VirtualWriteDIR on page 8-699.
• aarch64/support/VirtualWriteEOIR0 on page 8-700.
• aarch64/support/VirtualWriteEOIR1 on page 8-701.
• aarch64/support/CheckGroup0ForSpecialIdentifiers on page 8-703.
• aarch64/support/CheckGroup1ForSpecialIdentifiers on page 8-703.
• aarch64/support/PRIMask on page 8-704.
• aarch64/support/VRIMask on page 8-704.

aarch64/support/ICC_DIR_EL1

// ICC_DIR_EL1 - assignment form
// =============================

ICC_DIR_EL1[] = bits(64) data

 // First check if System Registers are enabled
 SystemRegisterAccessPermitted(2, TRUE);
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-691
ID072617 Non-Confidential

8 Programmers’ Model
8.20 Pseudocode
 // Check if the access is virtual
 if (HaveEL(EL2) && !IsSecure() && PSTATE.EL == EL1 &&
 (HCR_EL2.FMO == '1' || HCR_EL2.IMO == '1')) then
 VirtualWriteDIR(data); // Access the Virtual DIR register
 return;

 // Check for spurious ID. LPIs are not allowed and the access is physical
 if !InterruptIdentifierValid(data, FALSE) then
 return;

 ID = data<INTID_SIZE-1:0>;

 // Now start handling the interrupt
 if !EOImodeSet() then
 // EOI mode is not set, so don't deactivate
 IMPLEMENTATION_DEFINED "SError DIR_EOIMODE_NOT_SET";
 else
 route_fiq_to_el3 = HaveEL(EL3) && SCR_EL3.FIQ == '1';
 route_irq_to_el3 = HaveEL(EL3) && SCR_EL3.IRQ == '1';
 route_fiq_to_el2 = HaveEL(EL2) && !IsSecure() && HCR_EL2.FMO == '1';
 route_irq_to_el2 = HaveEL(EL2) && !IsSecure() && HCR_EL2.IMO == '1';
 if PSTATE.EL == EL3 then
 Deactivate(ID);
 elsif PSTATE.EL == EL2 then
 if SingleSecurityState() && IsGrp0Int(ID) && !route_fiq_to_el3 then
 Deactivate(ID);
 elsif !IsSecureInt(ID) && !IsGrp0Int(ID) && !route_irq_to_el3 then
 Deactivate(ID);
 elsif PSTATE.EL == EL1 && !IsSecure() then
 if SingleSecurityState() && IsGrp0Int(ID) && !route_fiq_to_el3 && !route_fiq_to_el2 then
 Deactivate(ID);
 elsif !IsSecureInt(ID) && !IsGrp0Int(ID) && !route_irq_to_el3 && !route_irq_to_el2 then
 Deactivate(ID);
 elsif PSTATE.EL == EL1 && IsSecure() then
 if IsGrp0Int(ID) && !route_fiq_to_el3 then
 Deactivate(ID);
 elsif (!IsGrp0Int(ID) && (!IsSecureInt(ID) || !SingleSecurityState()) &&
 !route_irq_to_el3) then
 Deactivate(ID);

 return;

aarch64/support/ICC_EOIR0_EL1

// ICC_EOIR0_EL1 - assignment form
// ===============================

ICC_EOIR0_EL1[] = bits(64) data

 eoiID = data<INTID_SIZE-1:0>;

 // First check if System Registers are enabled
 SystemRegisterAccessPermitted(0, FALSE);

 // Check if the access is virtual
 if HaveEL(EL2) && !IsSecure() && PSTATE.EL == EL1 && HCR_EL2.FMO == '1' then
 VirtualWriteEOIR0(data); // Access the Virtual EOIR0 register
 return;

 // Check for spurious ID. LPIs are allowed and the access is physical
 if !InterruptIdentifierValid(data, TRUE) then
 return;

 // Now start handling the interrupt
 // Is the highest priority G0S, G1S or G1NS
 pGroup = GetHighestActiveGroup(ICC_AP0R_EL1, ICC_AP1R_EL1NS, ICC_AP1R_EL1S);
 pPriority = GetHighestActivePriority(ICC_AP0R_EL1, ICC_AP1R_EL1NS, ICC_AP1R_EL1S);
8-692 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.20 Pseudocode
 if pGroup == IntGroup_None then
 // There are no active priorities
 if GenerateLocalSError() then
 // Reporting of locally generated SEIs is supported
 IMPLEMENTATION_DEFINED "SError EOI0_NO_INTS_ACTIVE";

 elsif pGroup == IntGroup_G0 && (!HaveEL(EL3) || SingleSecurityState() || IsSecure()) then
 // Highest priority is Group 0
 // Drop the priority
 boolean dropped = PriorityDrop[ICC_AP0R_EL1];

 if !EOImodeSet() then // If EOI mode is set, don't deactivate
 // Deactivate if the interrupt is in Group 0
 if IsGrp0Int(ID) then
 Deactivate(eoiID);

 elsif GenerateLocalSError() then // Locally generated SEIs are supported
 // Highest priority is Group 1
 IMPLEMENTATION_DEFINED "SError EOI0_HIGHEST_IS_G1";

 return;

aarch64/support/ICC_EOIR1_EL1

// ICC_EOIR1_EL1 - assignment form
// ===============================

ICC_EOIR1_EL1[] = bits(64) data

 eoiID = data<INTID_SIZE-1:0>;

 // First check if System Registers are enabled
 SystemRegisterAccessPermitted(1, FALSE);

 // Check if the access is virtual
 if HaveEL(EL2) && !IsSecure() && PSTATE.EL == EL1 && HCR_EL2.IMO == '1' then
 VirtualWriteEOIR1(data); // Access the Virtual EOIR1 register
 return;

 // Check for spurious ID. LPIs are allowed and the access is physical
 if !InterruptIdentifierValid(data, TRUE) then
 return;

 // Now start handling the interrupt
 // Is the highest priority G0S, G1S or G1NS
 pGroup = GetHighestActiveGroup(ICC_AP0R_EL1, ICC_AP1R_EL1NS, ICC_AP1R_EL1S);
 pPriority = GetHighestActivePriority(ICC_AP0R_EL1, ICC_AP1R_EL1NS, ICC_AP1R_EL1S);

 if pGroup == IntGroup_None then
 // There are no active priorities
 if GenerateLocalSError() then
 // Reporting of locally generated SEIs is supported
 IMPLEMENTATION_DEFINED "SError EOI1_NO_INTS_ACTIVE";

 elsif pGroup == IntGroup_G1NS && (IsEL3OrMon() || !IsSecure()) then
 // Highest priority is Non-Secure Group 1
 // Drop the priority
 boolean dropped = PriorityDrop[ICC_AP1R_EL1NS];

 if !EOImodeSet() then // If EOI mode is set, don't deactivate
 // Deactivate the interrupt unless it is an LPI
 if !IsLPI(eoiID) then Deactivate(eoiID);

 elsif pGroup == IntGroup_G1S && IsSecure() then
 // Highest priority is Secure Group 1 and we are secure
 // Drop the priority
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-693
ID072617 Non-Confidential

8 Programmers’ Model
8.20 Pseudocode
 boolean dropped = PriorityDrop[ICC_AP1R_EL1S];

 if !EOImodeSet() then // If EOI mode is set, don't deactivate
 // Deactivate if the interrupt is Group 1, and not an LPI
 if !IsLPI(eoiID) && !IsGrp0Int(ID) then
 if !IsSecureInt(ID) || IsSecure() then
 Deactivate(eoiID);

 elsif GenerateLocalSError() then // Locally generated SEIs are supported
 // Highest priority is Group 0 or Secure Group 1 and we are not secure
 IMPLEMENTATION_DEFINED "SError EOI1_HIGHEST_NOT_ACCESSIBLE";

 return;

aarch64/support/ICC_HPPIR0_EL1

// ICC_HPPIR0_EL1 - non-assignment form
// ====================================

bits(32) ICC_HPPIR0_EL1[]

 // First check if System Registers are enabled
 SystemRegisterAccessPermitted(0, FALSE);

 // Check if the access is virtual
 if HaveEL(EL2) && !IsSecure() && PSTATE.EL == EL1 && HCR_EL2.FMO == '1' then
 return VirtualReadHPPIR0(); // Access the Virtual HPPIR0 register

 // Now start handling the interrupt
 pendID = HighestPriorityPendingInterrupt();
 pendID = CheckGroup0ForSpecialIdentifiers(pendID);

 return ZeroExtend(pendID);

aarch64/support/ICC_HPPIR1_EL1

// ICC_HPPIR1_EL1 - non-assignment form
// ====================================

bits(32) ICC_HPPIR1_EL1[]

 // First check if System Registers are enabled
 SystemRegisterAccessPermitted(1, FALSE);

 // Check if the access is virtual
 if HaveEL(EL2) && !IsSecure() && PSTATE.EL == EL1 && HCR_EL2.IMO == '1' then
 return VirtualReadHPPIR1(); // Access the Virtual HPPIR1 register

 // Now start handling the interrupt
 pendID = HighestPriorityPendingInterrupt();
 pendID = CheckGroup1ForSpecialIdentifiers(pendID);

 return ZeroExtend(pendID);

aarch64/support/ICC_IAR0_EL1

// ICC_IAR0_EL1 - non-assignment form
// ==================================

bits(32) ICC_IAR0_EL1[]

 // First check if System Registers are enabled
 SystemRegisterAccessPermitted(0, FALSE);

 // Check if the access is virtual
 if HaveEL(EL2) && !IsSecure() && PSTATE.EL == EL1 && HCR_EL2.FMO == '1' then
8-694 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.20 Pseudocode
 return VirtualReadIAR0(); // Access the Virtual IAR0 register

 // Now start handling the interrupt
 if !CanSignalInterrupt() then
 return ZeroExtend(INTID_SPURIOUS);

 // Gets the highest priority pending and enabled interrupt
 pendID = HighestPriorityPendingInterrupt();
 pendID = CheckGroup0ForSpecialIdentifiers(pendID);

 // Check that pendID is not a special interrupt ID
 if !IsSpecial(pendID) then
 AcknowledgeInterrupt(pendID); // Set active and attempt to clear pending

 return ZeroExtend(pendID);

aarch64/support/ICC_IAR1_EL1

// ICC_IAR1_EL1 - non-assignment form
// ==================================

bits(32) ICC_IAR1_EL1[]

 // First check if System Registers are enabled
 SystemRegisterAccessPermitted(1, FALSE);

 // Check if the access is virtual
 if HaveEL(EL2) && !IsSecure() && PSTATE.EL == EL1 && HCR_EL2.IMO == '1' then
 return VirtualReadIAR1(); // Access the Virtual IAR1 register

 // Now start handling the interrupt
 if !CanSignalInterrupt() then
 return ZeroExtend(INTID_SPURIOUS);

 // Gets the highest priority pending and enabled interrupt
 pendID = HighestPriorityPendingInterrupt();
 pendID = CheckGroup1ForSpecialIdentifiers(pendID);

 // Check that pendID is not a special interrupt ID
 if !IsSpecial(pendID) then
 AcknowledgeInterrupt(pendID); // Set active and attempt to clear pending

 return ZeroExtend(pendID);

aarch64/support/ICC_PMR_EL1

// ICC_PMR_EL1[] - non-assignment form
// ===================================

bits(32) ICC_PMR_EL1[]

 // First check if System Registers are enabled
 SystemRegisterAccessPermitted(2, FALSE); // Set group to 2 so "TC" bit is checked

 if (HaveEL(EL2) && !IsSecure() && PSTATE.EL == EL1 &&
 (HCR_EL2.FMO == '1' || HCR_EL2.IMO == '1')) then
 // At least one interrupt is virtualized so return the virtual mask
 return ZeroExtend(ICH_VMCR_EL2.VPMR AND VPRIMask());

 pPriority = ICC_PMR_EL1.Priority;

 if HaveEL(EL3) && !IsSecure() && SCR_EL3.FIQ == '1' then
 // A non-secure GIC access and group 0 inaccessible to Non-secure.
 if pPriority<7> == '0' then
 // Priority is in Secure half and not visible to Non-secure
 pPriority<7:0> = Zeros();
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-695
ID072617 Non-Confidential

8 Programmers’ Model
8.20 Pseudocode
 elsif pPriority != PRIMask() then
 // Non-secure access and not idle, so physical priority must be shifted
 pPriority<7:0> = (pPriority AND PRIMask())<6:0>:'0';

 return ZeroExtend(pPriority);

// ICC_PMR_EL1[] - assignment form
// ===============================

ICC_PMR_EL1 = bits(32) data

 // First check if System Registers are enabled
 SystemRegisterAccessPermitted(2, FALSE); // Set group to 2 so "TC" bit is checked

 if (HaveEL(EL2) && !IsSecure() && PSTATE.EL == EL1 &&
 (HCR_EL2.FMO == '1' || HCR_EL2.IMO == '1')) then
 // At least one interrupt is virtualized so update the virtual mask
 ICH_VMCR_EL2.VPMR = data<7:0> AND VPRIMask();
 return;

 if HaveEL(EL3) && !IsSecure() && SCR_EL3.FIQ == '1' then
 // A Non-secure GIC access and Group 0 inaccessible to Non-secure.
 mod_write_val = ('1':data<7:1>) AND PRIMask();
 // Non-secure state can only update the Priority Mask Register if the current value is in
 // the range 0x80 to 0xFF
 if ICC_PMR_EL1.Priority<7> == '1' then
 ICC_PMR_EL1.Priority = mod_write_val;
 // Otherwise PMR is between 0x00 and 0x7F and the write is ignored
 else // A Secure GIC access
 ICC_PMR_EL1.Priority = data<7:0> AND PRIMask();

 return;

aarch64/support/ICC_RPR_EL1

// ICC_RPR_EL1 - non-assignment form
// =================================

bits(32) ICC_RPR_EL1[]

 // First check if System Registers are enabled
 SystemRegisterAccessPermitted(2, FALSE); // Set group to 2 so "TC" bit is checked

 if (HaveEL(EL2) && !IsSecure() && PSTATE.EL == EL1 &&
 (HCR_EL2.FMO == '1' || HCR_EL2.IMO == '1')) then
 // At least one interrupt is virtualized so return the virtual priority
 return ZeroExtend(GetHighestActiveVPriority(ICH_AP0R_EL2, ICH_AP1R_EL2));

 // Get physical priority.
 pPriority = GetHighestActivePriority(ICC_AP0R_EL1, ICC_AP1R_EL1NS, ICC_AP1R_EL1S);

 if HaveEL(EL3) && !IsSecure() && SCR_EL3.FIQ == '1' then
 // A Non-secure GIC access and Group 0 inaccessible to Non-secure.
 if pPriority<7> == '0' then
 // Priority is in Secure half and not visible to Non-secure
 pPriority = Zeros();
 elsif !IsOnes(pPriority) then
 // Non-secure access and not idle, so physical priority must be shifted
 pPriority<7:0> = (pPriority AND PRIMask())<6:0>:'0';

 return ZeroExtend(pPriority);

aarch64/support/ICH_EISR_EL2

// ICH_EISR_EL2 - non-assignment form
// ==================================
8-696 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.20 Pseudocode
bits(32) ICH_EISR_EL2[]
 bits(32) rval = Zeros();

 for i = 0 to NumListRegs() - 1
 if (ICH_LR_EL2[i].State == IntState_Invalid && ICH_LR_EL2[i].HW == '0' &&
 ICH_LR_EL2[i].EOI == '1') then
 rval<i> = '1';

 return rval;

aarch64/support/ICH_ELSR_EL2

// ICH_ELSR_EL2 - non-assignment form
// ==================================

bits(32) ICH_ELSR_EL2[]
 bits(32) rval = Zeros();

 for i = 0 to NumListRegs() - 1
 if (ICH_LR_EL2[i].State == IntState_Invalid &&
 (ICH_LR_EL2[i].HW == '1' || ICH_LR_EL2[i].EOI == '0')) then
 rval<i> = '1';

 return rval;

aarch64/support/VirtualReadHPPIR0

// VirtualReadHPPIR0()
// ===================

bits(32) VirtualReadHPPIR0()

 lrIndex = HighestPriorityVirtualInterrupt();

 if (GICH_VLPIR.State == IntState_Pending &&
 (lrIndex < 0 || PriorityIsHigher(GICH_VLPIR.Priority, ICH_LR_EL2[lrIndex].Priority))) then
 // A virtual LPI is the highest priority
 vID = GICH_VLPIR.VirtualID<INTID_SIZE-1:0>;
 if GICH_VLPIR.Group != '0' then
 vID = INTID_SPURIOUS;

 elsif lrIndex >= 0 then // lrIndex is valid, that is, positive
 vID = ICH_LR_EL2[lrIndex].VirtualID<INTID_SIZE-1:0>;
 if (vID != INTID_SPURIOUS && (ICH_LR_EL2[lrIndex].Group != '0' ||
 ICH_LR_EL2[lrIndex].State == IntState_Invalid)) then
 vID = INTID_SPURIOUS; // If the highest priority isn't group 0, then no interrupt

 else
 vID = INTID_SPURIOUS;

 return ZeroExtend(vID);

aarch64/support/VirtualReadHPPIR1

// VirtualReadHPPIR1()
// ===================

bits(32) VirtualReadHPPIR1()

 lrIndex = HighestPriorityVirtualInterrupt();

 if (GICH_VLPIR.State == IntState_Pending &&
 (lrIndex < 0 || PriorityIsHigher(GICH_VLPIR.Priority, ICH_LR_EL2[lrIndex].Priority))) then
 // A virtual LPI is the highest priority
 vID = GICH_VLPIR.VirtualID<INTID_SIZE-1:0>;
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-697
ID072617 Non-Confidential

8 Programmers’ Model
8.20 Pseudocode
 if GICH_VLPIR.Group != '1' then
 vID = INTID_SPURIOUS;

 elsif lrIndex >= 0 then // lrIndex is valid, that is, positive
 vID = ICH_LR_EL2[lrIndex].VirtualID<INTID_SIZE-1:0>;
 if (vID != INTID_SPURIOUS && (ICH_LR_EL2[lrIndex].Group != '1' ||
 ICH_LR_EL2[lrIndex].State == IntState_Invalid)) then
 vID = INTID_SPURIOUS; // If the highest priority isn't group 1, then no interrupt

 else
 vID = INTID_SPURIOUS;

 return ZeroExtend(vID);

aarch64/support/VirtualReadIAR0

// VirtualReadIAR0()
// =================

bits(32) VirtualReadIAR0()

 integer lrIndex = HighestPriorityVirtualInterrupt();

 if !CanSignalVirtualInterrupt() then
 return ZeroExtend(INTID_SPURIOUS);

 if (GICH_VLPIR.State == IntState_Pending &&
 (lrIndex < 0 || PriorityIsHigher(GICH_VLPIR.Priority, ICH_LR_EL2[lrIndex].Priority))) then
 // A virtual LPI is the highest priority
 vID = GICH_VLPIR.VirtualID<INTID_SIZE-1:0>;
 if GICH_VLPIR.Group == ‘0’ then
 vPriorityGroup = VPriorityGroup(GICH_VLPIR.Priority);
 ICH_AP0R_EL2<UInt(vPriorityGroup >> (7- ICH_VTR_EL2.PRIbits))> = ‘1’;
 AcknowledgeVInterrupt(GICH_VLPIR.VirtualID<INTID_SIZE-1:0>);
 GICH_VLPIR.State = IntState_Invalid; // Set the virtual LPI to Idle
 else
 vID = INTID_SPURIOUS;
 return ZeroExtend(vID);

 // lrIndex must be valid (i.e. non-negative)
 vID = ICH_LR_EL2[lrIndex].VirtualID<INTID_SIZE-1:0>;
 pID = ICH_LR_EL2[lrIndex].PhysicalID<INTID_SIZE-1:0>;

 if (vID != INTID_SPURIOUS &&
 (ICH_LR_EL2[lrIndex].Group != ‘0’ || ICH_LR_EL2[lrIndex].State == IntState_Invalid)) then
 // If the highest priority isn’t Group 0, then no interrupt
 return ZeroExtend(INTID_SPURIOUS);

 if !IsSpecial(vID) then // Check that it is not a
spurious interrupt
 ICH_LR_EL2[lrIndex].State = IntState_Active; // Set the list register
state to Active
 vPriorityGroup = VPriorityGroup(ICH_LR_EL2[lrIndex].Priority);
 ICH_AP0R_EL2<UInt(vPriorityGroup >> (7- ICH_VTR_EL2.PRIbits))> = ‘1’; // Set the corresponding
bit in APR
 else
 UNPREDICTABLE;

 setEI = ICH_LR_EL2[lrIndex].EOI == ‘1’;

 return ZeroExtend(vID);

aarch64/support/VirtualReadIAR1

// VirtualReadIAR1()
8-698 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.20 Pseudocode
// =================

bits(32) VirtualReadIAR1()

 integer lrIndex = HighestPriorityVirtualInterrupt();

 if !CanSignalVirtualInterrupt() then
 return ZeroExtend(INTID_SPURIOUS);

 if (GICH_VLPIR.State == IntState_Pending &&
 (lrIndex < 0 || PriorityIsHigher(GICH_VLPIR.Priority, ICH_LR_EL2[lrIndex].Priority))) then
 // A virtual LPI is the highest priority
 vID = GICH_VLPIR.VirtualID<INTID_SIZE-1:0>;
 if GICH_VLPIR.Group == ‘1’ then
 vPriorityGroup = VPriorityGroup(GICH_VLPIR.Priority);
 ICH_AP1R_EL2<UInt(vPriorityGroup >> (7- ICH_VTR_EL2.PRIbits))> = ‘1’;
 AcknowledgeVInterrupt(GICH_VLPIR.VirtualID<INTID_SIZE-1:0>);
 GICH_VLPIR.State = IntState_Invalid; // Set the virtual LPI to Idle
 else
 vID = INTID_SPURIOUS;
 return ZeroExtend(vID);

 // lrIndex must be valid (i.e. non-negative)
 vID = ICH_LR_EL2[lrIndex].VirtualID<INTID_SIZE-1:0>;
 pID = ICH_LR_EL2[lrIndex].PhysicalID<INTID_SIZE-1:0>;

 if ICH_LR_EL2[lrIndex].Group != ‘1’ || ICH_LR_EL2[lrIndex].State == IntState_Invalid then
 // If the highest priority isn’t Group 1, then no interrupt
 return ZeroExtend(INTID_SPURIOUS);

 if !IsSpecial(vID) then // Check that it is not a
spurious interrupt
 ICH_LR_EL2[lrIndex].State = IntState_Active; // Set the list register
state to Active
 vPriorityGroup = VPriorityGroup(ICH_LR_EL2[lrIndex].Priority);
 ICH_AP1R_EL2<UInt(vPriorityGroup >> (7- ICH_VTR_EL2.PRIbits))> = ‘1’; // Set the corresponding
bit in APR
 else
 UNPREDICTABLE;

 setEI = ICH_LR_EL2[lrIndex].EOI == ‘1’;

 return ZeroExtend(vID);

aarch64/support/VirtualWriteDIR

// VirtualWriteDIR()
// =================

VirtualWriteDIR(bits(64) data)

 // When an error is detected return to avoid unpredictable behaviour
 if ICH_VMCR_EL2.VEOIM == '0' then
 // EOI mode is not set
 if ICH_VTR_EL2.SEIS == '1' then
 // Reporting of locally generated virtual SEIs is supported
 IMPLEMENTATION_DEFINED "SError DIR_EOIMODE_NOT_SET";
 return;

 // Check for spurious ID. LPIs are not allowed and the access is virtual
 if !VirtualIdentifierValid(data, FALSE) then
 return;

 ID = data<INTID_SIZE-1:0>;
 lrIndex = FindActiveVirtualInterrupt(ID);

 if lrIndex < 0 then
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-699
ID072617 Non-Confidential

8 Programmers’ Model
8.20 Pseudocode
 // No valid list register corresponds to the EOI ID, increment EOI count
 ICH_HCR_EL2.EOIcount = ICH_HCR_EL2.EOIcount + 1;
 return;

 setEI = ICH_LR_EL2[lrIndex].EOI == '1';

 if ICH_LR_EL2[lrIndex].HW =='1' then
 // Deactivate the physical interrupt if EOI Mode is set
 pID = ICH_LR_EL2[lrIndex].PhysicalID;
 if UInt(pID) < 1020 then Deactivate(ZeroExtend(pID));

 // Clear the Active state
 if ICH_LR_EL2[lrIndex].State == IntState_ActivePending then
 ICH_LR_EL2[lrIndex].State = IntState_Pending;
 else
 ICH_LR_EL2[lrIndex].State = IntState_Invalid;

 return;

aarch64/support/VirtualWriteEOIR0

// VirtualWriteEOIR0()
// ===================

VirtualWriteEOIR0(bits(64) data)

 eoiID = data<24-1:0>;
 vPriority = GetHighestActiveVPriority(ICH_AP0R_EL2, ICH_AP1R_EL2);

 // Check the identifier is valid. LPIs are allowed and the access is virtual
 if !VirtualIdentifierValid(data, TRUE) then
 return;

 // Now perform the priority drop
 drop = VPriorityBitsSet(ICH_AP0R_EL2, ICH_AP1R_EL2);

 if !drop then
 if ICH_VTR_EL2.SEIS == '1' then
 // Reporting of locally generated virtual SEIs is supported
 IMPLEMENTATION_DEFINED "SError EOI0_HIGHEST_IS_G1";

 // It is CONSTRAINED UNPREDICTABLE whether the List Registers are
 // checked if there was no priority drop
 if ConstrainUnpredictableBool() then
 return;

 // It is IMPLEMENTATION DEFINED whether the priority is dropped before the error checks
 if boolean IMPLEMENTATION_DEFINED "Drop before checks" then
 VPriorityDrop[ICH_AP0R_EL2, ICH_AP1R_EL2] = '0';
 dropped = TRUE;
 else
 dropped = FALSE;

 // Find the matching List Register
 lrIndex = FindActiveVirtualInterrupt(eoiID);

 if lrIndex < 0 then

 if IsLPI(eoiID) then
 // It is a virtual LPI not in the List Registers
 // so just priority drop and return without incrementing EOI count
 return;
 else
 // No valid list register corresponds to the EOI ID, increment EOI count
 if drop && ICH_VMCR_EL2.VEOIM == '0' then
 ICH_HCR_EL2.EOIcount = ICH_HCR_EL2.EOIcount + 1;
8-700 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.20 Pseudocode
 return;

 // Start error checks
 // When an error is detected return to avoid unpredictable behaviour
 if ICH_LR_EL2[lrIndex].Group != '0' then
 // The EOI ID is not Group 0
 if ICH_VTR_EL2.SEIS == '1' then
 // Reporting of locally generated virtual SEIs is supported
 IMPLEMENTATION_DEFINED "SError EOI0_HIGHEST_IS_G1";
 return;

 if VPriorityGroup(ICH_LR_EL2[lrIndex].Priority, 0) != vPriority then
 // The EOI ID is not the highest priority
 if ICH_VTR_EL2.SEIS == '1' then
 // Reporting of locally generated virtual SEIs is supported
 IMPLEMENTATION_DEFINED "SError EOI0_NOT_HIGHEST_PRIORITY";

 // It is CONSTRAINED UNPREDICTABLE whether deactivation
 // is performed in the case of an error
 if ConstrainUnpredictableBool() then
 return;
 // End of error checks

 if !dropped then VPriorityDrop[ICH_AP0R_EL2, ICH_AP1R_EL2] = '0';

 if ICH_VMCR_EL2.VEOIM == '0' || IsLPI(eoiID) then
 setEI = ICH_LR_EL2[lrIndex].EOI == '1';

 // EOI mode not set, or it is an LPI and no deactivate is expected
 // so clear the active state in the List Register
 if ICH_LR_EL2[lrIndex].HW =='1' then
 // Deactivate the physical interrupt
 pID = ICH_LR_EL2[lrIndex].PhysicalID;
 if UInt(pID) < 1020 then Deactivate(ZeroExtend(pID));
 else
 // Generate a maintenance interrupt if required
 if setEI then
 //Set the appropriate EISR bit to generate a maintenance interrupt
 ICH_EISR_EL2<lrIndex> = '1';

 // Clear the Active state
 if ICH_LR_EL2[lrIndex].State == IntState_ActivePending then
 ICH_LR_EL2[lrIndex].State = IntState_Pending;
 else
 ICH_LR_EL2[lrIndex].State = IntState_Invalid;
 if ICH_LR_EL2[lrIndex].HW == '1' || !setEI then
 ICH_ELRSR_EL2<lrIndex> = '1';

 return;

aarch64/support/VirtualWriteEOIR1

// VirtualWriteEOIR1()
// ===================

VirtualWriteEOIR1(bits(64) data)

 eoiID = data<24-1:0>;
 vPriority = GetHighestActiveVPriority(ICH_AP0R_EL2, ICH_AP1R_EL2);

 // Check for spurious ID. LPIs are allowed and the access is virtual
 if !VirtualIdentifierValid(data, TRUE) then
 return;

 // Now perform the priority drop
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-701
ID072617 Non-Confidential

8 Programmers’ Model
8.20 Pseudocode
 drop = VPriorityBitsSet(ICH_AP0R_EL2, ICH_AP1R_EL2);

 if !drop then
 if ICH_VTR_EL2.SEIS == ‘1’ then
 // Reporting of locally generated virtual SEIs is supported
 IMPLEMENTATION_DEFINED “SError EOI1_HIGHEST_IS_G0”;

 // It is CONSTRAINED UNPREDICTABLE whether the List Registers are
 // checked if there was no priority drop
 if ConstrainUnpredictableBool() then
 return;

 // It is IMPLEMENTATION DEFINED whether the priority is dropped before the error checks
 if boolean IMPLEMENTATION_DEFINED “Drop before checks” then
 VPriorityDrop[ICH_AP0R_EL2, ICH_AP1R_EL2] = ‘0’;
 dropped = TRUE;
 else
 dropped = FALSE;

 // Find the matching List Register
 lrIndex = FindActiveVirtualInterrupt(eoiID);

 if lrIndex < 0 then
 if IsLPI(eoiID) then
 // It is a virtual LPI not in the List Registers
 // so just priority drop and return without incrementing EOI count
 return;
 else
 // No valid list register corresponds to the EOI ID, increment EOI count
 if drop && ICH_VMCR_EL2.VEOIM == ‘0’ then
 ICH_HCR_EL2.EOIcount = ICH_HCR_EL2.EOIcount + 1;
 return;

 // Start error checks
 // When an error is detected return to avoid unpredictable behaviour
 if ICH_LR_EL2[lrIndex].Group != ‘1’ then
 // The EOI ID is not Group 1
 if ICH_VTR_EL2.SEIS == ‘1’ then
 // Reporting of locally generated virtual SEIs is supported
 IMPLEMENTATION_DEFINED “SError EOI1_HIGHEST_IS_G0”;
 return;

 if VPriorityGroup(ICH_LR_EL2[lrIndex].Priority, 1) != vPriority then
 // The EOI ID is not the highest priority
 if ICH_VTR_EL2.SEIS == ‘1’ then
 // Reporting of locally generated virtual SEIs is supported
 IMPLEMENTATION_DEFINED “SError EOI1_NOT_HIGHEST_PRIORITY”;

 // It is CONSTRAINED UNPREDICATBLE whether deactivation
 // is performed in the case of an error
 if ConstrainUnpredictableBool() then
 return;
 // End of error checks

 if !dropped then VPriorityDrop[ICH_AP0R_EL2, ICH_AP1R_EL2] = ‘0’;

 if ICH_VMCR_EL2.VEOIM == ‘0’ || IsLPI(eoiID) then
 setEI = ICH_LR_EL2[lrIndex].EOI == ‘1’;

 // EOI mode not set, or it is an LPI and no deactivate is expected
 // so clear the active state in the List register
 if ICH_LR_EL2[lrIndex].HW ==’1’ then
 // Deactivate the physical interrupt
 pID = ICH_LR_EL2[lrIndex].PhysicalID;
 if UInt(pID) < 1020 then Deactivate(ZeroExtend(pID));
 else
 // Generate a maintenance interrupt if required
 if set EI then
8-702 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.20 Pseudocode
 // Set the appropriate EISR bit to generate a maintenance interrupt
 ICH_EISR_EL2<lrIndex. = ‘1’;

 //Clear the Active state
 if ICH_LR_EL2[lrIndex].State == IntState_ActivePending then
 ICH_LR_EL2[lrIndex].State = IntState_Pending;
 else

 ICH_LR_EL2[lrIndex].State = IntState_Invalid;
 if ICH_LR_EL2[lrIndex].HW == ‘1’ || !setEI then
 ICH_ELRSR_EL2<lrIndex> = ‘1’;

 return;

aarch64/support/CheckGroup0ForSpecialIdentifiers

// CheckGroup0ForSpecialIdentifiers()
// ==================================

bits(INTID_SIZE) CheckGroup0ForSpecialIdentifiers(bits(INTID_SIZE) pendID)

 if !IsGrp0Int(pendID) && !IsEL3OrMon() then
 // If the highest priority is Group 1, then no interrupt
 return INTID_SPURIOUS;

 if IsSecureInt(pendID) && !IsSecure() then
 // Secure interrupt not visible in Non-secure
 return INTID_SPURIOUS;

 if pendID != INTID_SPURIOUS && IsEL3OrMon() then // An interrupt is pending
 if !IsGrp0Int(pendID) then
 if IsSecureInt(pendID) then // Group 1 interrupt for the other state
 return INTID_SECURE; // Group 1 interrupt for Secure EL1 or IRQ/FIQ
 else
 return INTID_NONSECURE; // Group 1 interrupt for Non-secure
 elsif ICC_CTLR_EL3.RM == '1' then
 return INTID_SECURE; // Group 0 Secure interrupt for Secure EL1

 return pendID;

aarch64/support/CheckGroup1ForSpecialIdentifiers

// CheckGroup1ForSpecialIdentifiers()
// ==================================

bits(INTID_SIZE) CheckGroup1ForSpecialIdentifiers(bits(INTID_SIZE) pendID)

 if IsGrp0Int(pendID) && !IsEL3OrMon() then
 // If the highest priority is Group 0 and not at EL3 then no interrupt
 return INTID_SPURIOUS;

 if UInt(pendID) != INTID_SPURIOUS then // An enabled interrupt is pending
 if IsEL3OrMon() && ICC_CTLR_EL3.RM == '1' then
 if !IsGrp0Int(pendID) then // Group 1 interrupt for Non-Secure EL1
 return INTID_NONSECURE;
 else // Indicate a Group 0 interrupt is pending
 return INTID_SECURE;
 elsif !IsGrp0Int(pendID) then // IRQ is routed to EL1/2 or RM is zero
 if IsSecureInt(pendID) then // Group 1 Secure interrupt
 if !IsSecure() then
 return INTID_SPURIOUS; // Not visible in Non-secure
 elsif IsSecure() && !IsEL3OrMon() then // Group 1 Non-secure interrupt
 return INTID_SPURIOUS; // Not visible at Secure EL1
 else
 return INTID_SPURIOUS; // Group 0 interrupt

 return pendID;
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-703
ID072617 Non-Confidential

8 Programmers’ Model
8.20 Pseudocode
aarch64/support/PRIMask

// PRIMask()
// =========

bits(8) PRIMask()
 pri_bits = UInt(if HaveEL(EL3) then ICC_CTLR_EL3.PRIbits else ICC_CTLR_EL1.PRIbits);
 return Ones(pri_bits + 1):Zeros(7 - pri_bits);

aarch64/support/VRIMask

// VPRIMask()
// ==========

bits(8) VPRIMask()
 pri_bits = UInt(ICH_VTR_EL2.PRIbits);
 return Ones(pri_bits + 1):Zeros(7 - pri_bits);

8.20.2 Functions for memory-mapped registers

This subsection describes the functions that relate to the memory-mapped registers.The functions are indicated by
the hierarchical path names, for example shared/support. The functions are:
• shared/support/GICC_AIAR.
• shared/support/GICC_EOIR_NS.
• shared/support/GICC_EOIR_S on page 8-705.
• shared/support/GICC_IAR_NS on page 8-705.
• shared/support/GICC_IAR_S on page 8-705.
• shared/support/GICV_IAR on page 8-706.

shared/support/GICC_AIAR

// GICC_AIAR[] - non-assignment form
// =================================

bits(32) GICC_AIAR[integer cpu_id]

 pendID = HighestPriorityPendingInterrupt(cpu_id);

 // If the highest priority isn't enabled then no interrupt
 if (!IsGrp0Int(pendID) && GICC_CTLR.EnableGrp1NS == '0') || IsGrp0Int(pendID) then
 pendID = INTID_SPURIOUS;

 if pendID != INTID_SPURIOUS then // An enabled interrupt is pending
 if IsGrp0Int(pendID) then // Highest priority is Secure
 pendID = INTID_SPURIOUS;

 // Check that it is not a spurious interrupt
 if !IsSpecial(pendID) then
 AcknowledgeInterrupt(pendID); // Set active and attempt to clear pending

 return ZeroExtend(pendID);

shared/support/GICC_EOIR_NS

// GICC_EOIR_NS[] - assignment form
// ================================

GICC_EOIR_NS[integer cpu_id] = bits(32) data

 // Is the highest priority G0S, G1S or G1NS
 pGroup = GetHighestActiveGroup(GICC_APR0, GICC_APR1);
 pPriority = GetHighestActivePriority(GICC_APR0, GICC_APR1);
8-704 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

8 Programmers’ Model
8.20 Pseudocode
 if pGroup == IntGroup_None then // There are no active interrupts
 IMPLEMENTATION_DEFINED "SError EOI1_NO_INTS_ACTIVE";

 elsif pGroup == IntGroup_G1NS && !IsSecure() then // Non-secure Group 1
 // Drop the priority
 PriorityDrop(cpu_id, pPriority);
 // Deactivate the interrupt if EOI mode is not set
 if !EOImodeSet(cpu_id) then Deactivate(cpu_id, data<15:0>);

 else // Group 0 or Secure Group 1 and access is Non-secure
 IMPLEMENTATION_DEFINED "SError EOI1_HIGHEST_NOT_ACCESSIBLE";

 return;

shared/support/GICC_EOIR_S

// GICC_EOIR_S[] - assignment form
// ===============================

GICC_EOIR_S[integer cpu_id] = bits(32) data

 // Is the highest priority G0S, G1S or G1NS
 pGroup = GetHighestActiveGroup(GICC_APR0, GICC_APR1);
 pPriority = GetHighestActivePriority(GICC_APR0, GICC_APR1);

 if pGroup == IntGroup_None then // There are no active interrupts
 IMPLEMENTATION_DEFINED "SError EOI0_NO_INTS_ACTIVE";

 elsif pGroup == IntGroup_G0 && IsSecure() then // Group 0 and the access is Secure
 // Drop the priority
 PriorityDrop(cpu_id, pPriority);
 // Deactivate the interrupt if EOI mode is not set
 if !EOImodeSet(cpu_id) then Deactivate(cpu_id, data<15:0>);

 elsif pGroup == 'IntGroup_G0' && !IsSecure() then // Group 0 and the access is Non-secure
 if boolean IMPLEMENTATION_DEFINED "GICC_STATUSR implemented" then
 // Set the attempted security violation bit
 GICC_STATUSR.ASV = '1';

 else // Group 1
 IMPLEMENTATION_DEFINED "SError EOI0_HIGHEST_IS_G1";

 return;

shared/support/GICC_IAR_NS

// GICC_IAR_NS[] - non-assignment form
// ===================================

bits(32) GICC_IAR_NS[integer cpu_id]

 pendID = HighestPriorityPendingInterrupt(cpu_id);

 // If the highest priority isn't enabled or is for the other security state then no interrupt
 if (!IsGrp0Int(pendID) && GICC_CTLR.EnableGrp1NS == '0') || IsGrp0Int(pendID) then
 pendID = INTID_SPURIOUS;

 // Check that it is not a spurious interrupt
 if !IsSpecial(pendID) then
 AcknowledgeInterrupt(pendID); // Set active and attempt to clear pending

 return ZeroExtend(pendID);

shared/support/GICC_IAR_S

// GICC_IAR_S[] - non-assignment form
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 8-705
ID072617 Non-Confidential

8 Programmers’ Model
8.20 Pseudocode
// ==================================

bits(32) GICC_IAR_S[integer cpu_id]

 pendID = HighestPriorityPendingInterrupt(cpu_id);

 // If the highest priority isn't enabled or is for the other security state then no interrupt
 if (IsGrp0Int(pendID) && GICC_CTLR.EnableGrp0 == '0') || !IsGrp0Int(pendID) then
 pendID = INTID_SPURIOUS;

 // Check that it is not a spurious interrupt
 if !IsSpecial(pendID) then
 AcknowledgeInterrupt(pendID); // Set active and attempt to clear pending

 return ZeroExtend(pendID);

shared/support/GICV_IAR

// GICV_IAR[] - non-assignment form
// ================================

bits(32) GICV_IAR[integer cpu_id]

 lrIndex = HighestPriorityVirtualInterrupt(cpu_id);

 vID = ICH_LR_EL2[lrIndex].VirtualID<INTID_SIZE-1:0>;

 if ICH_LR_EL2[lrIndex].State == IntState_Invalid then
 vID = INTID_SPURIOUS;

 if vID != INTID_SPURIOUS then
 if ICH_LR_EL2[lrIndex].Group == '1' then
 if GICV_CTLR.AckCtl == '1' then
 rval = ICV_IAR1_EL1[cpu_id];
 else
 rval = ZeroExtend(INTID_GROUP1);
 else
 rval = ICV_IAR0_EL1[cpu_id];
 else
 rval = ZeroExtend(vID);

 return rval;
8-706 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

Chapter 9
System Error Reporting

This chapter describes GIC support for System Error reporting. It contains the following section:
• About System Error reporting on page 9-708.
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 9-707
ID072617 Non-Confidential

9 System Error Reporting
9.1 About System Error reporting
9.1 About System Error reporting
The GIC architecture provides optional support for locally-generated system error interrupts generated by the CPU
interface. This support is IMPLEMENTATION DEFINED.

Whether a CPU interface supports locally-generated system error interrupts associated with physical interrupts is
discoverable from either ICC_CTLR_EL1.SEIS or ICC_CTLR_EL3.SEIS. The GIC reports these using the
ARMv8 SError exception. The ITS can also generate system errors, see the description of the GITS_TYPER.SEIS
bit.

Whether the GIC supports locally-generated system error interrupts associated with virtual interrupts is
discoverable from ICH_VTR_EL2.SEIS. The GIC reports these using either the SError exception or the virtual
SError exception. Locally-generated System Error interrupts from Non-secure EL1 are reported:

• Using the SError exception when HCR_EL2.AMO == 0.

• Using the virtual SError exception, when HCR_EL2.AMO == 1. Where supported, a virtual SError exception
is normally taken to Non-secure EL1.

The hypervisor can intercept locally-generated system error interrupts using ICH_HCR_EL2.TSEI.

9.1.1 Pseudocode

The following pseudocode indicates whether a local system error is generated.

// GenerateLocalSError()
// =====================

boolean GenerateLocalSError()
 if HaveEL(EL3) then
 return ICC_CTLR_EL3.SEIS == ‘1’;
 else
 return ICC_CTLR_EL1.SEIS == ‘1’;
9-708 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

Chapter 10
Legacy Operation and Asymmetric Configurations

This chapter describes GIC support for legacy operation and asymmetric configurations. It contains the following
sections:
• Legacy support of interrupts and asymmetric configurations on page 10-710.
• The asymmetric configuration on page 10-714.
• Support for legacy operation of VMs on page 10-715.
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 10-709
ID072617 Non-Confidential

10 Legacy Operation and Asymmetric Configurations
10.1 Legacy support of interrupts and asymmetric configurations
10.1 Legacy support of interrupts and asymmetric configurations
Whether a GICv3 implementation includes a mechanism to support legacy operation of physical interrupts is
IMPLEMENTATION DEFINED. Where supported, this mechanism is the same as in GICv2, with the following
exceptions:

• GICC_CTLR.AckCtl is RAZ/WI, and separate registers must handle Group 0 and Group 1 physical
interrupts.

• The GICv2 configuration lockdown feature and the associated CFGSDISABLE signal are not supported.
GICD_TYPER.LSPI is RES0.

• For asymmetric operation, a routing modifier bit is used as part of the security context switch control
mechanism that handles the highest priority pending interrupt. See The asymmetric configuration on
page 10-714 for more information.

In addition, software executing in Secure state in a system that is configured for asymmetric operation is not
permitted to manage Non-secure interrupts:

— When ICC_CTLR_EL3.RM == 1, it is a requirement that GICC_CTLR.FIQen == 1 or the behavior
of Secure EL1 is UNPREDICTABLE.

• A hypervisor executing at EL2 can only control virtual interrupts for the PE that it is executing on, and cannot
control virtual interrupts on other PEs.

• The individual enables for SGIs, GICD_ISENABLER<n> where n=0, always reset to zero.

• Interrupts that belong to a group that is disabled in GICD_CTLR cannot block interrupts that belong to a
group that is enabled. This means that if the highest priority pending interrupt is in a group that is disabled,
this does not prevent the GIC from forwarding interrupts that are in a group that is enabled to the CPU
interfaces.

Note
 Secure Group 1 interrupts are treated as Group 0 interrupts during legacy operation.

In GICv3, the following restrictions apply when the Non-secure state is using affinity routing and the Secure state
is not using affinity routing:
• GICD_ITARGETSR<n> is RES0 for any SPI where affinity routing is enabled for the current Security state.

Note
 — Legacy Secure software cannot re-route Non-secure interrupts because GICD_IROUTER<n> is

inaccessible to Secure accesses, and might not be interpreted correctly.
— Legacy Secure software can change the group of the interrupt.

• The mapping between the bit positions and the affinity is IMPLEMENTATION DEFINED, and is reported by
GICR_TYPER.Processor_Number.

• If an SGI is generated in Non-secure state and GICD_CTLR.DS = 0 then a Group 0 SGI cannot be set as
pending, irrespective of the value of GICD_NSACR<n>.

• If an SGI is generated in Secure state and routed using the Targeted list model, that is
GICD_SGIR.TargetListFilter = 0b00, then the SGI must be delivered to those PEs whose number is indicated
by the appropriate bit in GICD_SGIR.CPUTargetList. The number of a particular PE is indicated in
GICR_TYPER.Processor_Number.
When GICD_SGIR.TargetListFilter == 0b01, the SGI must be delivered to all PEs except the PE that
requested the interrupt. This includes PEs with GICR_TYPER.Processor_Number >7.

Note
 Software executing in Secure state that does not use affinity routing cannot use a Non-secure alias to

GICD_SGIR to generate Non-secure SGIs, because this would result in a Non-secure write to GICD_SGIR,
and GICD_SGIR is RAZ/WI when affinity routing is enabled for the Non-secure state.
10-710 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

10 Legacy Operation and Asymmetric Configurations
10.1 Legacy support of interrupts and asymmetric configurations
When affinity routing is disabled for the Security state of an access, GICD_SGIR behaves as defined for GICv2,
with the following exceptions:
• Writing to GICD_SGIR from a PE with GICR_TYPER.Processor_Number > 7 results in one of the following

CONSTRAINED UNPREDICTABLE behaviors:
— The write is ignored.
— The originating PE ID is treated as having an UNKNOWN valid value.

• Writing to GICD_SGIR when the TargetListFilter field is 11 results in one of the following CONSTRAINED
UNPREDICTABLE behaviors:
— The write is ignored.
— The TargetListFilter field is treated as having an UNKNOWN valid value.

In GICv2, pending SGIs were banked by the originating PE and by the target PE. In GICv3 this is simplified so that
when affinity routing is enabled for a Security state, pending SGIs are only banked by the target PE:

• An originating PE ID is no longer provided when reading ICC_IAR0_EL1 or ICC_IAR1_EL1.

• A originating PE ID is no longer required when writing to an ICC_EOIR0_EL1 or ICC_EOIR1_EL1.

• Only 16 SGI pending bits are required for each Redistributor.

When the ARE bit in GICD_CTLR is set to 1 for a Security state, some Distributor registers that were banked for
each PE are changed:
• GICD_SPENDSGIR<n>is RES0. In GICv3 SGIs are not pending by originating PE and the equivalent

functionality is provided by GICR_ISPENDR0[0:15].
• GICD_CPENDSGIR<n> is RES0. In GICv3 SGIs are not pending by originating PE and the equivalent

functionality is provided by GICR_ICPENDR0.

GICD_SGIR is disabled when affinity routing is enabled for a Security state.

Writes to ICC_SGI0R_EL1, ICC_SGI1R_EL1, and ICC_ASGI1R_EL1 only generate SGIs for the other Security
state when affinity routing is enabled for both Security states:
• When the Distributor supports two Security states, that is when GICD_CTLR.DS == 0, and affinity routing

is disabled for the Secure state in the Distributor, then Non-secure writes to ICC_SGI0R_EL1 and
ICC_ASGI1R_EL1 do not set any SGIs pending.

• When the Distributor supports only a single Security state, that is when GICD_CTLR.DS == 1, then
Non-secure writes to both ICC_SGI0R_EL1 and ICC_ASGI1R_EL1 result in the generation of Group 0
SGIs.

For further information about the GICv2 architecture, see ARM® Generic Interrupt Controller, Architecture version
2.0, Architecture Specification.

10.1.1 Use of the special INTID 1022

INTID 1022 is only used for legacy operation, and is returned if all of the following conditions are true:
• The interrupt that is acknowledged is either:

— A Secure read of GICC_IAR or GICC_HPPIR.
— A Non-secure read of GICV_IAR or GICV_HPPIR.

• The highest priority pending interrupt is a Group 1 interrupt.
• For a read of GICV_IAR, GICV_CTLR.AckCtl == 0.
• The interrupt priority is sufficient for it to be signaled to the PE.

INTID 1022 indicates that there is a Group 1 interrupt of sufficient priority to be signalled to the PE, and that the
interrupt must be acknowledged by a read of GICC_AIAR or GICV_AIAR, or observed by a read of
GICC_AHPPIR or GICV_AHPPIR, as appropriate.
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 10-711
ID072617 Non-Confidential

10 Legacy Operation and Asymmetric Configurations
10.1 Legacy support of interrupts and asymmetric configurations
10.1.2 Legacy configurations

For physical interrupts, there are three possible configurations that can support legacy operation:

• GICD_CTLR.DS == 1, when the relevant ICC_SRE_EL3.SRE, ICC_SRE_EL2.SRE, and
ICC_SRE_EL1.SRE are cleared to 0. In this case the GIC supports a single address space, and the behavior
is the same as in GICv2 without the Security extensions.

• GICD_CTLR.DS == 0 and all of ICC_SRE_EL3.SRE, ICC_SRE_EL2.SRE, where implemented, and
ICC_SRE_EL1.SRE are cleared to 0. In this case the GIC supports both Secure and Non-secure address
spaces, and the behavior is the same as in GICv2 with the Security extensions.

• GICD_CTLR.DS == 0, and the system is using affinity routing for Non-secure physical interrupts. In this
case, the Secure copy of ICC_SRE_EL1.SRE is cleared to 0. This configuration supports a legacy Secure
operating system environment together with a Non-secure environment that supports affinity routing. This
configuration is referred to as an asymmetric configuration.

Legacy operation is a deprecated feature. In an implementation that does not support legacy operation the following
bits, where implemented, are RAO/WI:
• ICC_SRE_EL1.SRE.
• ICC_SRE_EL2.SRE.
• ICC_SRE_EL3.SRE.
• ICC_SRE.SRE.
• ICC_HSRE.SRE.
• ICC_MSRE.SRE.
• GICD_CTLR.ARE_NS.
• GICD_CTLR.ARE_S.

10.1.3 Legacy operation and bypass support

Interrupt bypass support during legacy operation is controlled using GICC_CTLR.

GICC_CTLR.{EnableGrp0, EnableGrp1} must have the value 0 when ICC_SRE_EL1.SRE == 1 and
GICD_CTLR.DS == 1, otherwise GICv3 behavior is UNPREDICTABLE.

The following pseudocode defines the bypass behavior for an FIQ interrupt exception.

if GICC_CTLR.FIQEn == 0 then
 if (GICC_CTLR.FIQBypDisGrp0 && GICC_CTLR.FIQBypDisGrp1) == 0 then
 use BypassFIQsource
 else
 FIQ deasserted
else
 if GICC_CTLR.EnableGrp0 == 0 then
 if GICC_CTLR.FIQBypDisGrp0 == 0 then
 use BypassFIQsource
 else
 FIQ deasserted
 else
 use GICv3 FIQ output

The following pseudocode defines the bypass behavior for an IRQ interrupt exception.

if FIQEn == 0 then
 if (GICC_CTLR.EnableGrp1 || GICC_CTLR.EnableGrp0) == 0 then
 if (GICC_CTLR.IRQBypDisGrp0 && GICC_CTLR.IRQBypDisGrp1) == 0 then
 use BypassIRQsource
 else
 IRQ deasserted
 else
 use GICv3 IRQ Output
else
 if GICC_CTLR.EnableGrp1 == 0 then
 if GICC_CTLR.IRQBypDisGrp1 == 0 then
10-712 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

10 Legacy Operation and Asymmetric Configurations
10.1 Legacy support of interrupts and asymmetric configurations
 use BypassIRQsource
 else
 IRQ Deasserted
 else
 Use GICv3 IRQ Output
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 10-713
ID072617 Non-Confidential

10 Legacy Operation and Asymmetric Configurations
10.2 The asymmetric configuration
10.2 The asymmetric configuration
In a system that implements EL3,and where EL3 is using AArch64 state, the GIC architecture supports asymmetric
configuration. A GICv3 system is configured for asymmetric operations when:
• GICD_CTLR.ARE_NS == 1.
• GICD_CTLR.ARE_S == 0.
• ICC_SRE_EL3.SRE == 1:

— The Secure monitor is using System register access.
• If Secure EL1 is using AArch64 state, ICC_SRE_EL1(S).SRE == 0. If Secure EL1 is using AArch32 state,

ICC_SRE(S).SRE == 0.
— The Secure OS uses legacy GIC support.

For execution in Non-secure AArch64 state:
• If EL2 is implemented, ICC_SRE_EL2.SRE == 1.
• If EL2 is not implemented, ICC_SRE_EL1(NS).SRE == 1.

For execution in Non-secure AArch32 state:
• If EL2 is implemented, ICC_HSRE.SRE == 1 when EL2 is executing in AArch32 state. Otherwise,

ICC_SRE_EL2 == 1.
• If EL2 is not implemented, ICC_SRE (NS).SRE== 1.

Note
 If EL2 is implemented and using the System register interface, a vPE can access the memory-mapped interface.

When EL3 is using AArch64 state
The Secure Monitor software, executing at EL3 in AArch64 state, uses the System register interface.

The Secure OS, executing at Secure EL1 in either AArch32 state or AArch64 state, uses the legacy
memory-mapped interface.

The Non-secure hypervisor or OS handling physical interrupts, executing at Non-secure EL2 or EL1
in either AArch32 state or AArch64 state, uses the System register interface.

When EL3 is using AArch32 state
Asymmetric operation is UNPREDICTABLE.

In this situation, ARM expects Group 0 interrupts to be handled by a Secure OS, and Non-secure Group 1 interrupts
to be handled by the Non-secure hypervisor or OS.

Note
 This situation is not compatible with the use of Secure Group 1 interrupts, as this concept is new in GICv3 and is
therefore not understood by legacy Secure OS code.

In an asymmetric configuration, when GICC_CTLR.FIQEn == 0, the interrupts that are described as being signaled
as FIQs in Table 4-3 on page 4-60 are signaled as IRQs.

10.2.1 Asymmetric operation and the use of ICC_CTLR_EL3.RM

ICC_CTLR_EL3.RM controls whether software executing at EL3 can acknowledge or observe Secure Group 0 and
Non-secure Group 1 interrupts as the highest priority pending interrupt.

When ICC_CTLR_EL3.RM == 1:
• Secure Group 0 interrupts return a special INTID value of 1020. This affects accesses to ICC_IAR0_EL1,

ICC_HPPIR0_EL1, ICC_IAR1_EL1, and ICC_HPPIR1_EL1.
• Non-secure Group 1 interrupts return a special INTID value of 1021. This affects accesses to

ICC_IAR0_EL1, ICC_HPPIR0_EL1, ICC_IAR1_EL1, and ICC_HPPIR1_EL1.

For more information about special INTIDs, see Special INTIDs on page 2-32.
10-714 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

10 Legacy Operation and Asymmetric Configurations
10.3 Support for legacy operation of VMs
10.3 Support for legacy operation of VMs
To support legacy operation for virtual interrupts, the GIC must support the GICV_* memory-mapped register
interface. Whether this support is provided is IMPLEMENTATION DEFINED. All VM accesses to the GICD_*
Distributor registers must trap to the hypervisor, which is responsible for running a virtual Distributor associated
with the legacy VM.

The following constraints apply to virtual interrupts that are handled as part of legacy operation:
• The GICv2 configuration lockdown feature is not supported. This means that a hypervisor must virtualize

GICD_TYPER.LSPI as a RAZ/WI bit to the scheduled legacy VM.
• A multiprocessing VM can support a maximum of eight vPEs, which is the maximum number of PEs that

are supported in GICv2. These vPEs are independently associated with the same Redistributor or with
different Redistributors.

Note
 Legacy operation for virtual interrupts supports GICV_CTLR.AckCtl. Legacy operation for physical interrupts
does not support GICC_CTLR.AckCtl.

During legacy operation, GICV_CTLR controls the signaling of interrupts by the CPU interface to the PE, as
follows:
• GICV_CTLR.EnableGrp0 bit controls the signaling of Group 0 interrupts.
• GICV_CTLR.EnableGrp1 bit controls the signaling of Group 1 interrupts.

For detailed information about the control and configuration of Group 0 and Group 1 PPI, SGI, and SPI interrupts,
and their virtualization during legacy operation, see ARM® Generic Interrupt Controller, Architecture version 2.0,
Architecture Specification.

10.3.1 Accessing GIC virtual CPU interface registers using the memory-mapped register interface

The virtual CPU interface is in the Non-secure memory map. A hypervisor uses the Non-secure stage 2 address
translations to ensure that the vPE cannot access other memory-mapped GIC registers.

Figure 10-1 on page 10-716 shows a GICv3 configuration executing in AArch64 state where:
• Affinity routing and System register access are enabled for Non-secure accesses, that is

GICD_CTLR.ARE_NS == 1 and ICC_SRE_EL2.SRE == 1.
• Virtualization is supported, that is ICH_HCR_EL2.En == 1.
• EL1 is configured to support legacy operation, that is ICC_SRE_EL1(NS).SRE == 0.
• The PE is configured to handle virtual interrupts, using HCR_EL2.{IMO, FMO}.
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. 10-715
ID072617 Non-Confidential

10 Legacy Operation and Asymmetric Configurations
10.3 Support for legacy operation of VMs
Figure 10-1 GICv3 register interfaces with legacy support

GITS_*

GICD_*

Redistributor CPU interface vCPU interface ITS

Distributor Virtual interface control

GICR_* GICR_*

ICC_* ICC_*

ICH_*

PE

HypervisorvPEa

GICV_*

PE

HypervisorvPEa

ICH_*GICV_*

a. A vPE is a virtual PE.
10-716 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

Appendix A
GIC Stream Protocol interface

This appendix describes the AXI4-Stream protocol standard message-based interface that the optional GIC Stream
Protocol interface uses. It contains the following sections:
• Overview on page A-718.
• Signals and the GIC Stream Protocol on page A-719.
• The GIC Stream Protocol on page A-722.
• Alphabetic list of command and response packet formats on page A-727.
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. A-717
ID072617 Non-Confidential

Appendix A GIC Stream Protocol interface
A.1 Overview
A.1 Overview
The GIC Stream Protocol interface describes the optional interface between the IRI and the PE, more specifically
that between the Redistributor and the associated CPU interface. The interface supports independent development
of an IRI and a PE, that includes System register support for the CPU interface. ARM recommends that a GIC
implementation uses this stream protocol interface.

A communication channel that provides a packet interface, based on the AMBA 4 AXI-4 Stream Protocol, is
required for each direction:
• From the Redistributor to the CPU interface.
• From the CPU interface to the Redistributor.

See Signals and the GIC Stream Protocol on page A-719 for more information.

A.1.1 Terminology

The direction of communication for commands is referred to as downstream or upstream, where:
• Downstream is the direction associated with a command that is initiated by a Redistributor and sent to its

associated CPU interface.
• Upstream is the direction associated with a command initiated by a CPU interface and sent to its associated

Redistributor.

Note
 This terminology can also be applied to communication within an IRI, that is between the Distributor and
Redistributor. In this case:
• An upstream transfer is a transfer from a Redistributor to the Distributor.
• A downstream transfer is a transfer from the Distributor to a Redistributor.
A-718 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

Appendix A GIC Stream Protocol interface
A.2 Signals and the GIC Stream Protocol
A.2 Signals and the GIC Stream Protocol
The GIC Stream Protocol interface is based on the unidirectional AXI4-Stream Interface. Therefore, to support
bidirectional communication, the GIC Stream Protocol interface consists of an AXI4-Stream Protocol Interface in
each direction, that is:

• A downstream AXI4-Stream Interface containing connections from one or more Redistributors to an
equivalent number of CPU interfaces. On this interface, the Redistributor is the master and the CPU interface
is the slave.

• An upstream AXI4-Stream Interface containing connections from one or more CPU interface to an
equivalent number of Redistributors. On this interface, the CPU interface is the master and the Redistributor
is the slave.

Multiple packets on an AXI4-Stream Interface cannot be interleaved, that is, only one packet can be transferred in
each direction at a given time.

Figure A-1 shows an example implementation of the GIC Stream Protocol interface.

Figure A-1 Example of a GIC Stream Protocol interface

The GIC architecture requires a GIC implementation to include a Redistributor corresponding to each connected
CPU interface, and defines an enumeration notation for identifying PEs. On any AXI4-Stream Interface, each
Redistributor must only communicate with its corresponding CPU interface.

The AMBA® 4 AXI4-Stream Protocol Specification defines a packet as a group of bytes that are transported together
across an AXI4-Stream interface.

An interconnect between an IRI and a CPU interface must ensure that the stream packet sequence is transferred over
the stream protocol interface in the same order in which it was created.

A.2.1 Signals

The interface requires a global clock, ACLK, and a reset signal, ARESETn.

For the GIC Stream Protocol, each stream interface is identified by a prefix to the AXI-4 signal names:
• Downstream signals from a Redistributor to the CPU interface are prefixed with the letters IRI.
• Upstream signals from the CPU interface to a Redistributor are prefixed with the letters ICC.

IRI

Cluster

CPU interface

PE
a.b.c.0

CPU interface

PE
a.b.c.1

CPU interface

PE
a.b.c.2

CPU interface

PE
a.b.c.3

Redistributor
a.b.c.0

Redistributor
a.b.c.1

Redistributor
a.b.c.2

Redistributor
a.b.c.3

AXI4-Stream
protocol
interface
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. A-719
ID072617 Non-Confidential

Appendix A GIC Stream Protocol interface
A.2 Signals and the GIC Stream Protocol
Table A-1 shows the GIC Stream Protocol interface from the Redistributor to the downstream CPU interface.

Table A-2 shows the GIC Stream Protocol interface from the CPU interface to the upstream Redistributor.

In Table A-1 and Table A-2:
• BN is the number associated with the most significant bit on a datapath that is required to be an integral

number of bytes wide.
• N is the value log(base2) M rounded up to the nearest integer, where M is the number of PEs supported by

the interface.
• Values of TDEST and TID must be allocated sequentially without gaps, in order of ascending affinity.

For further information about the signals used by the GIC Stream Protocol interface, and for details about
handshaking, see AMBA® 4 AXI4-Stream Protocol Specification.

A.2.2 Packet format

The GIC architecture issues packets across the GIC Stream Protocol interface where the initial half-byte of a packet
indicates the packet type.

The declared size of a packet is always a multiple of the implemented datapath width used for the stream transfer.
Where the number of bytes required by a packet is less than the overall packet size, the unused bytes are marked as
reserved and filled with the value zero.

Table A-1 Redistributor to downstream CPU interface

Signal a

a. These signals were previously prefixed with ICD in the preliminary architecture information.

Description

IRITVALID When set to 1, this signal indicates that the master is driving a valid transfer.

IRITREADY When set to 1, this signal indicates that the slave can accept a transfer in the current
cycle.

IRITDATA[BN:0] The interface data path.

IRITLAST When set to 1, this signal indicates the final transfer of a packet.

IRITDEST[N:0] When more than one PE is supported by the stream interface, this signal identifies the
target CPU interface to provide routing information for the stream.Otherwise this signal
is not required.

Table A-2 CPU interface to upstream Redistributor interface

Signal Description

ICCTVALID When set to 1, this signal indicates that the master is driving a valid transfer.

ICCTREADY When set to 1, this signal indicates that the slave can accept a transfer in the current
cycle.

ICCTDATA[BN:0] The interface data path.

ICCTLAST When set to 1, this signal indicates the final transfer of a packet.

ICCTID[N:0] When more than one PE is supported by the stream interface, this signal identifies
the originating CPU interface, to provide routing information for the stream.
Otherwise this signal is not required.
A-720 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

Appendix A GIC Stream Protocol interface
A.2 Signals and the GIC Stream Protocol
Supported INTID sizes

The GIC architecture supports 16-bit and 24-bit INTID fields. Where the INTID is an argument within a packet, the
ID length field in the packet header defines which ID format is used, as follows:
• ID length == 0 for 16-bit INTIDs.
• ID length == 1 for 24-bit INTIDs.

Note
 Reserved fields must be transmitted.

A downstream control command is used during interface initialization to inform a CPU interface whether the IRI
supports 24-bit INTIDs.

For a 24-bit INTID where bits[23:16] have the value zero, the stream interface is allowed to identify and transfer
the packet with a 16-bit INTID field.

A protocol error occurs when a PE generates a packet using a 24-bit INTID with nonzero bits[23:16] and the IRI
only supports 16-bit INTIDs.

The Downstream Control Acknowledge command from the CPU interface returns the maximum INTID lengths
supported by both the Redistributor and the CPU interface. The Redistributor and the CPU interface must not send
a command that contains an INTID exceeding this length.

When both the Redistributor and the CPU interface support an INTID length larger than 16 bits, but the value of an
INTID in a particular packet can only be encoded using 16 bits, it is permissible to send a 16-bit value, where ID
length == 0b00.

Software generation of protocol errors and packet errors

Software programming must never be permitted to cause a hardware protocol error because this might result in the
PE or GIC becoming non-operational.

Where errors exist in the values of fields within packets, this is called a packet error. Protocol and packet errors can
cause UNPREDICTABLE behavior.The manner in which these errors are reported is IMPLEMENTATION DEFINED.

Hardware generation of packet errors

If packets are sent that do not correspond to the architected format described in this specification, and the incorrect
format is not the result of software misprogramming, then the architecture makes no guarantees about the behavior
of the GIC. In such cases, the GIC can become non-operational in many ways, and this might result in the system
hanging, data corruption, or any other effect. Physical damage to the system cannot be precluded in some
implementations.

In high reliability systems, implementations might choose to report such cases using IMPLEMENTATION DEFINED
system errors, but this is outside the scope of the architecture.
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. A-721
ID072617 Non-Confidential

Appendix A GIC Stream Protocol interface
A.3 The GIC Stream Protocol
A.3 The GIC Stream Protocol
The GIC Stream Protocol supports two types of packet:
• Command packets for control actions.
• Response packets that acknowledge command packets.

Note
 The Activate and Release commands are designated as a command, but also provide a response semantic to the Set
and VSet commands. See the Activate and Release commands for more details.

Table A-3 shows a summary of the downstream Redistributor commands.

Table A-4 shows a summary of the upstream Redistributor responses.

Table A-3 Redistributor commands

Command ID
Parameters in the
first 16-bit
transfer

Data in
subsequent
transfers

Description

Clear 0x3 Bits[7:6]: ID length INTID Resets a specified pending physical interrupt.

Downstream
Control

0x8 Bit[15:12]: Length
Bits[11:4]: Identifier

Length bytes of
data

Writes data to the CPU interface.
Length must be greater than 0 and less than 9.

Quiesce 0x4 - - Requests that the CPU interface enters the quiescent state.

Set 0x1 Bits[15:8]: Priority
Bits[7:6]: ID length
Bit[5] GrpMod
Bit[4]: Group

INTID Sets the highest priority pending physical interrupt for a PE.

VClear 0x7 Bits[7:6]: ID length Virtual INTID Resets a specified pending virtual interrupt.
This command is provided in GICv4 only.

VSet 0x6 Bits[15:8]: Priority
Bits[7:6]: ID length
Bit[4]: Group

Virtual INTID Sets the highest priority pending virtual interrupt for a VM.
This command is provided in GICv4 only.

Table A-4 Redistributor responses

Response ID
Parameters in the
first 16-bit
transfer

Data in
subsequent
transfers

Description

Activate
Acknowledge

0xC Bit[4]: V - Acknowledges that the Redistributor received an Activate
command, and confirms that the effects of the activate are
visible.
A-722 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

Appendix A GIC Stream Protocol interface
A.3 The GIC Stream Protocol
All other command and response IDs are reserved. If the Redistributor receives a reserved ID, this constitutes a
protocol error, see Software generation of protocol errors and packet errors on page A-721.

Table A-5 shows a summary of all the CPU interface commands.

Deactivate
Acknowledge

0xA - - Acknowledges that the Redistributor received a
Deactivate command, and confirms that the effects of the
deactivate are visible.

Generate SGI
Acknowledge

0x9 - - Acknowledges that the Redistributor received a Generate
SGI command, and that the effects of the command are
guaranteed to become visible to other PEs.

Upstream
Control
Acknowledge

0xB - - Acknowledges receipt of an Upstream Control command,
and confirms that the effects of the write operation are
visible.

Table A-4 Redistributor responses (continued)

Response ID
Parameters in the
first 16-bit
transfer

Data in
subsequent
transfers

Description

Table A-5 CPU interface commands

Command ID Parameters in the
first 16-bit transfer

Data in
subsequent
transfers

Description

Activate 0x1 Bits[7:6]: ID length
Bit[4]: V

INTID A pending to active notification request as a result of
an interrupt acknowledge on the CPU interface.

Deactivate 0x6 Bits[10:8]: Groups
Bits[7:6]: ID length

INTID Deactivate request for a specified interrupt.

Generate SGI 0x7 Bits[59:56]: RS
Bits[15:12] SGInum
Bit[9]: RSV
Bit[8]: A3V
Bits[7]: IRM
Bit[6]: NS
Bit[5:4]: SGT

Affinity Routing
Values (A0 to A3)

Requests that the Redistributor issues an SGI.

Upstream Control 0x8 Bits[15:12]: Length
Bits[11:4]: Identifier

Length bytes of data A system control command that might, for example,
pass the configuration status to the Redistributor.
Length must be greater than 0 and less than 9.
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. A-723
ID072617 Non-Confidential

Appendix A GIC Stream Protocol interface
A.3 The GIC Stream Protocol
Table A-6 shows a summary of all the CPU interface responses.

All other command and response IDs are reserved. If the CPU interface receives a reserved ID, this constitutes a
protocol error, see Software generation of protocol errors and packet errors on page A-721.

A command packet has an equivalent handshake response packet that acknowledges the command. There are two
exceptions to this rule:
• The Clear and VClear commands are both acknowledged by a Clear Acknowledge response with a bitfield

in the header that indicates which command is acknowledged.
• The Set and VSet command packets are acknowledged by a Release response or an Activate command. This

means that the Activate command also has the semantics of a response with respect to the Set and VSet
commands. When an Activate command is used, the Redistributor acknowledges that command with an
Activate Acknowledge response. Release, Activate, and Activate Acknowledge packets all have a bitfield in
the header that indicates whether the response is to a Set or VSet command.
Responses to a Set or VSet command are dependent on system contexts and events on the CPU interface. A
Release response occurs when a pending interrupt that has been forwarded to the CPU interface cannot be
maintained as pending or activated by the CPU interface. This can occur, for example, when:
— The interrupt group of the INTID is disabled.
— The highest pending physical interrupt is updated by a Set command before it is activated.
— The highest pending virtual interrupt is updated by a VSet command before it is activated.

A.3.1 Rules associated with the downstream Redistributor commands

The following rules affect the generation of Redistributor commands:

• When GICR_WAKER.ProcessorSleep == 0, the first packet that is issued to the CPU interface must be a
Downstream Control packet. This packet communicates the number of supported Security states, together
with the physical and virtual INTID lengths that the GIC Stream Protocol interface supports.

• There can never be more than one outstanding Downstream Control command, and a Redistributor must only
generate response packets until the Downstream Control command is acknowledged.

• On receipt of a Set command, a CPU interface is required to release the previous pending physical interrupt
back to the Redistributor.

• Unless restricted by another rule in this section, two Set commands can be generated and outstanding at the
same time, and the Redistributor must be able to accept an Activate command for a physical interrupt when
a Set command is transferred.

Table A-6 CPU interface responses

Response ID
Parameters in the
first 16-bit
transfer

Data in
subsequent
transfers

Description

Clear Acknowledge 0x4 Bit [4]: V - Acknowledges that the CPU interface received a Clear
command for a specified interrupt.

Downstream
Control
Acknowledge

0xB - - Acknowledges that the CPU interface received a
Downstream Control command from the Redistributor.

Quiesce
Acknowledge

0x9 - - Acknowledges a Quiesce command, and confirms that
the Redistributor to CPU interface is in the quiescent
state.

Release 0x3 Bits[7:6] ID length
Bit[4]: V

INTID Releases control of an interrupt when the CPU interface
cannot handle the interrupt, and provides a reason for
the release.
A-724 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

Appendix A GIC Stream Protocol interface
A.3 The GIC Stream Protocol
• On receipt of a VSet command, a CPU interface is required to release the previous pending virtual interrupt
back to the Redistributor.

• A VSet command must only be generated when the Redistributor is able to accept an Activate command for
a virtual interrupt while the VSet command is being transferred.

• There can never be more than one outstanding Clear command.A Redistributor cannot generate further
packets, other than acknowledgement packets, until the Clear command is acknowledged.

• There can never be more than one outstanding VClear command. A Redistributor cannot generate further
packets, other than acknowledgement packets, until the VClear command is acknowledged.

• There can never be more than one outstanding Quiesce command, and a Redistributor must only generate
response packets until the Quiesce command is acknowledged with a Quiesce Acknowledge.

• A Redistributor must not send a VSet or VClear command to a CPU interface that does not support GICv4.
The mechanism for determining whether GICv4 is supported is IMPLEMENTATION DEFINED.

A.3.2 Rules associated with the upstream CPU interface commands

The following rules affect the generation of CPU interface commands:

• There can never be more than one outstanding Upstream Control command, and a CPU interface must wait
for an Upstream Control Acknowledge before issuing another Upstream Control command.

• There can never be more than one outstanding Deactivate command. This means that a CPU interface must
wait for a Deactivate command to be acknowledged before issuing another Deactivate command. The CPU
interface can continue to send other commands before receiving the Deactivate Acknowledge response.

• There can never be more than one outstanding Generate SGI command. This means that a CPU interface must
wait for a Generate SGI command to be acknowledged before issuing another Generate SGI command. The
CPU interface can continue to send other commands before receiving the Generate SGI Acknowledge
response.

• Before issuing a Clear Acknowledge response with the V bit set to 0, the CPU interface must issue any
Release commands that are required to move the physical interrupt specified in the Clear command to the
inactive state on the CPU interface.

• Before issuing a Clear Acknowledge response with the V bit set to 1, the CPU interface must issue any
Release commands that are required to move the virtual interrupt specified in the VClear command to the
inactive state on the CPU interface.

• Before issuing a Quiesce Acknowledge response, all other outstanding commands from the Redistributor
must be acknowledged, and a Release command must remove any pending interrupts on the CPU interface.

Priority-based routing

When ICC_CTLR_EL3.PMHE == 0, or ICC_CTLR_EL1.PMHE == 0:
• The CPU interface must not issue a Release command for a pending SPI because the priority of the SPI is

equal to or less than that indicated by ICC_PMR_EL1.

Note
 The CPU interface might still issue a Release command for a pending SPI for other reasons, such as the SPI

belonging to a group that is disabled in the CPU interface, or in response to receipt of a Clear command from
the IRI.

When ICC_CTLR_EL3.PMHE == 1 or ICC_CTLR_EL1.PMHE == 1:
• The CPU interface must issue an Upstream Control command, with the identifier 0x02, when the PE

successfully writes to ICC_PMR_EL1:
— If multiple writes to ICC_PMR_EL1 occur before the CPU interface issues the Upstream Control

command, the GIC can combine these writes into a single command.
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. A-725
ID072617 Non-Confidential

Appendix A GIC Stream Protocol interface
A.3 The GIC Stream Protocol
• The CPU interface must issue a Release command for a pending SPI with a priority that is equal to or less
than the value in ICC_PMR_EL1, if the Set command was received between the architectural execution of
the instruction that updated ICC_PMR_EL1 and the receipt of the Upstream Control Acknowledge command
that indicates that the new ICC_PMR_EL1 value has been observed.

• The CPU interface must not issue a Release command for a pending SPI with a priority that is greater than
the value in ICC_PMR_EL1 if the Set command was not received between the architectural execution of the
instruction that updated ICC_PMR_EL1 and the receipt of the Upstream Control Acknowledge that indicates
that the new ICC_PMR_EL1 value has been observed.

Note
 The CPU interface might still issue a Release command for a pending SPI for other reasons, such as the SPI

belonging to a group that is disabled in the CPU interface or in response to receipt of a Clear command from
the IRI.
A-726 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

Appendix A GIC Stream Protocol interface
A.4 Alphabetic list of command and response packet formats
A.4 Alphabetic list of command and response packet formats
This subsection lists all the command and response packet formats in alphabetical order. The heading for each
command or response subsection includes a label, ICC or IRI, that indicates the agent that generated the packet.
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. A-727
ID072617 Non-Confidential

Appendix A GIC Stream Protocol interface
A.4 Alphabetic list of command and response packet formats
A.4.1 Activate (ICC)

The CPU interface sends an Activate command when acknowledging an interrupt. When the Redistributor receives
the Activate command, it sets the interrupt to the active state. The CPU interface must send an Activate command
only when Redistributor action is required, as follows:
• For SPIs, SGIs, and PPIs, where the Redistributor must clear the pending bit for edge-triggered interrupts,

and set the active bit.
• For LPIs where the Redistributor must clear the pending bit.

The Activate command generated by the CPU interface, unlike other commands, also acts as a response to a Set or
VSet command:

• A Set or VSet command results in a Release response or Activate command in finite time. The amount of
time is determined by when the pending interrupt changes its state within the CPU interface. An Activate
command acknowledges the original Set command. The Activate command is itself acknowledged using an
Activate Acknowledge response from the Redistributor.

Figure A-2 shows the Activate command format.

Figure A-2 Activate

In Figure A-2:

• ID length indicates the number of INTID bits the Activate command includes. See Supported INTID sizes on
page A-721 for more information.

• V indicates the original command the to which the Activate command corresponds:
0 The Activate corresponds to a Set command.
1 The Activate corresponds to a VSet command.

• INTID is the value that the CPU interface returns after a valid read of ICC_IAR0_EL1, ICC_IAR1_EL1, or
GICC_IAR.

Note
 During legacy operation, the INTID that is returned for SGIs includes the source PE in the

GICC_IAR.Source_CPU_ID field.

A.4.2 Activate Acknowledge (IRI)

The Redistributor sends an Activate Acknowledge response to confirm receipt of an Activate command, and
confirms that the effects of the activate operation are visible to the Redistributor and other PEs. Figure A-3 on
page A-729 shows the Activate Acknowledge response format.

VID lengthReserved 0x0

4 3 0

0x1

INTID[31:16]a

15

INTID[15:0]

567

a. If the command includes this field, bits[31:24] are 0.

0

A-728 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

Appendix A GIC Stream Protocol interface
A.4 Alphabetic list of command and response packet formats
Figure A-3 Activate Acknowledge

In Figure A-3, V indicates the original command to which the Activate Acknowledge corresponds:
0b0 The Activate Acknowledge corresponds to a Set command.
0b1 The Activate Acknowledge corresponds to a VSet command.

Note
 There is no requirement for ActivateAcknowledge commands to be issued in the same order as the Activate
command to which they are responding.

VReserved 0x0

4 3 0

0xC

15 5
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. A-729
ID072617 Non-Confidential

Appendix A GIC Stream Protocol interface
A.4 Alphabetic list of command and response packet formats
A.4.3 Clear (IRI)

The Clear command clears the specified pending interrupt. Figure A-4 shows the Clear command format.

Figure A-4 Clear

In Figure A-4:

• ID length indicates the number of INTID bits that the Clear command includes. See Supported INTID sizes
on page A-721 for more information.

• INTID identifies the interrupt to be cleared.

The CPU interface must always respond to a Clear command with a Clear Acknowledge response where V == 0.

If the interrupt is pending in the CPU interface, the CPU interface must issue a Release response, or an Activate
response that remains outstanding for the interrupt before it issues a Clear Acknowledge command.

If the interrupt is not pending or present on the CPU interface, the Clear command has no effect. However, the CPU
interface must still issue a Clear Acknowledge response.

A.4.4 Clear Acknowledge (ICC)

The CPU interface sends a Clear Acknowledge response to acknowledge the receipt of a Clear or VClear command.
Figure A-5 shows the Clear Acknowledge response format.

Figure A-5 Clear Acknowledge

In Figure A-5, V indicates the original command to which the Clear Acknowledge corresponds:
0 The Clear Acknowledge corresponds to a Clear command.
1 The Clear Acknowledge corresponds to a VClear command.

Note
 No INTID field is required for this command because only a single Clear can be outstanding for a CPU interface at
any time.

A.4.5 Deactivate (ICC)

The Deactivate command deactivates an interrupt, provided the initiating Exception level and Security state can
access the interrupt group to which the INTID belongs. The Redistributor sends a Deactivate Acknowledge in
response to a Deactivate command. Figure A-6 on page A-731 shows the Deactivate command format.

7 6 5 4 3 0

ID length 0 0 0x3

INTID[31:16]a

15 8

Reserved 0x0

INTID[15:0]

a. If the command includes this field, bits[31:24] are 0.

000 VReserved 0x0

4 3 0

0x4

15 78 6 5
A-730 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

Appendix A GIC Stream Protocol interface
A.4 Alphabetic list of command and response packet formats
Figure A-6 Deactivate

In Figure A-6:

• Groups indicates the interrupt groups that the initiating Exception level and Security state are permitted to
modify:

Bit[10] When this bit is set to 1, Secure Group 1 interrupts can be modified.

Bit[9] When this bit is set to 1, Non-secure Group 1 interrupts can be modified.

Bit[8] When this bit is set to 1, Group 0 interrupts can be modified.

Note
 When sending a Deactivate command, at least one of the Groups bits must be set to 1. A protocol error occurs

if none of these bits are set to 1.

• ID length indicates the number of INTID bits the Deactivate command includes. See Supported INTID sizes
on page A-721 for more information. The Deactivate command applies only to SPIs, PPIs, and SGIs, each of
which has INTIDs no higher than 8192. This field must therefore be set to 0b00, indicating a 16-bit INTID.

• INTID is the 32-bit value read from the corresponding interrupt acknowledge cycle that is presented in the
write to ICC_EOIR0_EL1 or ICC_EOIR1_EL1.

Note
 There is no requirement for the CPU interface to have received the corresponding Activate Acknowledge command
before sending the Deactivate command.

When System register access is enabled for the initiating Exception level and Security state, one of the Groups bits
is set according to the rules in Groups field when System register access is enabled on page A-732.

Note
 In an implementation that supports two Security states, for Secure EL1 to be permitted to handle Group 1 interrupts,
that is, IRQs not taken to EL3, both bit[9] and bit[10] must be set to 1.

When System register access is not enabled for the initiating Exception level and Security state, the Groups field is
set according to the Security state of the initiating Exception level. That is, bit [9] is set to 1 for Non-secure write
access, and bits [10:8] are all set to 1 for Secure write access. In an implementation that supports only a single
Security state, write accesses that result in the generation of a Deactivate command are treated as Secure writes.

In an implementation that supports two Security states, Group 0 and Secure Group 1 interrupts can be modified only
from a Secure initiating Exception level. This includes EL3, regardless of the setting of SCR_EL3.NS. In an
implementation that supports only a single Security state, the Redistributor can ignore bit[10].

Note
 The Redistributor must send a Deactivate Acknowledge in response to a Deactivate command.

• If affinity routing is enabled for an interrupt group, the Redistributor must acknowledge, but otherwise
ignore, any Deactivate command with an ID in the range 1019 < INTID < 8192.

• If affinity routing is not enabled for an interrupt group, the Redistributor must acknowledge, but otherwise
ignore any Deactivate command with an ID in the range 1019 < INTID < 8192 where bits [9:4] are not 0.
That is, it might issue Deactivate packets for SGIs with a non-zero CPU number in bits[12:10] of GICC_IAR.

0 Groups ID length 0Reserved 0x0

4 3 0

0x6

15

INTID[15:0]

567812 11 10

0

ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. A-731
ID072617 Non-Confidential

Appendix A GIC Stream Protocol interface
A.4 Alphabetic list of command and response packet formats
• If affinity routing is not enabled for an interrupt group and the ID specifies an SGI, and the PE specified by
the CPU number in bits[12:10] does not support operation when affinity routing is not enabled, the
Redistributor must acknowledge but otherwise ignore the Deactivate command.

Groups field when System register access is enabled

When System register access is enabled for the initiating Exception level and Security state, the following
pseudocode describes the rules for specifying the value of the Groups field:

// DeactivateGroups_SRE()
// ======================

(boolean,boolean,boolean) DeactivateGroups_SRE(bits(2) effective_EL)
 boolean groups_G0S = FALSE;
 boolean groups_G1NS = FALSE;
 boolean groups_G1S = FALSE;

 if effective_EL == EL3 then
 groups_G0S = TRUE;
 groups_G1NS = TRUE;
 groups_G1S = GICD_CTLR.DS == ‘0’;

 elsif effective_EL == EL2 then
 // This also covers the case when the HW bit is one in a List Register
 // corresponding to a write at Non-secure EL1
 groups_G0S = (!HaveEL(EL3) || SCR_EL3.FIQ == ‘0’) && GICD_CTLR.DS == ‘1’;
 groups_G1NS = !HaveEL(EL3) || SCR_EL3.IRQ == ‘0’;

 elsif effective_EL == EL1 && IsSecure() then
 // Secure EL1
 groups_G0S = !HaveEL(EL3) || SCR_EL3.FIQ == ‘0’;
 groups_G1NS = !HaveEL(EL3) || SCR_EL3.IRQ == ‘0’;
 groups_G1S = (!HaveEL(EL3) || SCR_EL3.IRQ == ‘0’) && GICD_CTLR.DS == ‘0’;

 elsif effective_EL == EL1 && !IsSecure() then
 // Non-secure EL1
 groups_G0S = (!HaveEL(EL3) || SCR_EL3.FIQ == ‘0’) && (!HaveEL(EL2) || HCR_EL2.FMO == ‘0’) &&
GICD_CTLR.DS == ‘1’;
 groups_G1NS = (!HaveEL(EL3) || SCR_EL3.IRQ == ‘0’) && (!HaveEL(EL2) || HCR_EL2.IMO == ‘0’);

 return (groups_G1S, groups_G1NS, groups_G0S);

If the Deactivate command relates to a virtual interrupt that has a corresponding physical interrupt in the List
registers, that is ICH_LR<n>_EL2.HW is set to 1, a virtual write caused the deactivation of the physical interrupt.

The bits are set as if an equivalent write had been performed at EL2. That is, effective_EL == 2.

A.4.6 Deactivate Acknowledge (IRI)

The Redistributor sends a Deactivate Acknowledge response to confirm receipt of a Deactivate command, and to
confirm that the effects of the deactivate operation are visible to the Redistributor and other PEs. Figure A-7 shows
the Deactivate Acknowledge response format.

Figure A-7 Deactivate Acknowledge

Reserved 0x0

4 3 0

0xA

15
A-732 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

Appendix A GIC Stream Protocol interface
A.4 Alphabetic list of command and response packet formats
A.4.7 Downstream Control (IRI)

The Downstream Control command transfers a specified number of bytes of data to the CPU interface. Figure A-8
shows the Downstream Control command format.

Figure A-8 Downstream Control

In Figure A-8:

• Length indicates the number of bytes of valid data appended to the 2 byte header.

If this field specifies a number of bytes that is not exactly divisible by the interface width, as Signals and the
GIC Stream Protocol on page A-719 describes, any surplus bytes beyond this specified length in the last
transfer must be zero. The CPU interface must ignore such bytes.

• Identifier is a value that specifies the format of the data provided, and can have the values shown in
Table A-7.

Note
 Each identifier value can have a different length, but a particular identifier value must always have the same

length.

Data[Length-2]Data[Length-1]

Data[0]

Length

12 4 3 0

Identifier 0x8

15

Data[1]

11 1

SIa

a. Settings Identifier

Table A-7 Downstream Control Identifier values

Data value name Identifier
value Length Contents

Settings (configure
interface)

0x00 0x1 Data[0] holds the Redistributor global settings, and these bits have the
following meanings:
[7:6] VL. Indicates the supported vINTID length.
[5:4] PL. Indicates the supported pINTID length.
[3:2] Reserved. RES0.
[1] RSS. Indicates the value of GICD_TYPER.RSS.
[0] DS. Disable Security. Indicates the value of GICD_CTLR.DS.

Note
 Bit[0] is set to 1 if the GIC supports only a single Security state.

Reserved 0x01 - 0x7F - -

IMPLEMENTATION
DEFINED

0x80 - 0xFF - Reserved for IMPLEMENTATION DEFINED variables.
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. A-733
ID072617 Non-Confidential

Appendix A GIC Stream Protocol interface
A.4 Alphabetic list of command and response packet formats
The CPU interface must always respond to a Downstream Control command with a Downstream Control
Acknowledge response.

After the CPU interface receives a Downstream Control command where DS == 1, a packet protocol violation
occurs if it receives a subsequent Downstream Control command where DS == 0, before an intervening hardware
reset.

If a CPU interface receives an IMPLEMENTATION DEFINED value that it cannot interpret, this constitutes a protocol
error. See Software generation of protocol errors and packet errors on page A-721.

Note
 The IMPLEMENTATION DEFINED values of the Downstream Write Command must only be used where the Distributor
and the CPU interface interpret the IMPLEMENTATION DEFINED values to mean the same thing. This is typically the
case where both components have been produced as part of the same system design.

A.4.8 Downstream Control Acknowledge (ICC)

The CPU interface sends a Downstream Control Acknowledge response to confirm receipt of a Downstream
Control command. Figure A-9 shows the Downstream Control Acknowledge response format.

Figure A-9 Downstream Control Acknowledge

In Figure A-9:
• VL indicates the virtual INTID length, that is, the supported number of INTID bits.
• PL indicates the physical INTID length, that is, the supported number of INTID bits.

See Supported INTID sizes on page A-721 for more information.

VL must be set to the minimum of:
• The value of VL contained in the first Downstream Control command received after reset.
• The value that ICH_VTR_EL2.IDbits specifies.

PL must be set to the minimum of:
• The value of PL contained in the first Downstream Control command received after reset.
• The value that ICC_CTLR_EL3.IDbits or ICC_CTLR_EL1.IDbits, as appropriate, specifies.

A.4.9 Generate SGI (ICC)

The CPU interface sends a Generate SGI command to the Redistributor to generate an SGI. The Redistributor sends
a Generate SGI Acknowledge in response to a Generate SGI command. Figure A-10 on page A-735 shows the
Generate SGI command format.

VL PLReserved 0x0

4 3 0

0xB

15 7 6 58
A-734 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

Appendix A GIC Stream Protocol interface
A.4 Alphabetic list of command and response packet formats
Figure A-10 Generate SGI

In Figure A-10:

• SGInum indicates the INTID of the SGI to be generated.

• RSV (Range Selector Valid) indicates whether the RS field is valid:

0 RS is RES0.

1 RS indicates the affinities covered by Target List.

• A3V indicates whether the command includes an A3 field. When A3V is 0, the packet does not include an
A3 field, and the Redistributor must use 0 as the value of A3.When a CPU interface supports the Aff3 field
and a write to ICC_SGI0R, ICC_SGI1R or ICC_ASGI1R specifies Aff3 == 0, the resulting packet must clear
A3V to zero.

• IRM indicates the Interrupt Routing Mode to be used.When IRM is set to 1, Target List, A1, A2, and A3 are
ignored. The A3V field is RES0.

• NS indicates whether the Generate SGI command originates from Non-secure state:
0 The command originates from a Secure Execution state.
1 The command originates from a Non-secure Execution state.

• SGT specifies the register access that caused the Generate SGI command:
0b00 ICC_SGI0R_EL1.
0b01 ICC_SGI1R_EL1.
0b10 ICC_ASGI1R_EL1.
0b11 Reserved.

When the Redistributor supports two Security states and affinity routing is not enabled for the Secure state
in the Redistributor, Generate SGI commands that correspond to Non-secure writes to ICC_SGI0R_EL1 and
ICC_ASGI1R_EL1 must be acknowledged and discarded, and must not set an SGI pending.

When the Redistributor supports a single Security state, that is, GICD_CTLR.DS == 1, Generate SGI
commands that correspond to Non-secure writes to ICC_SGI0R_EL1 or ICC_ASGI1R_EL1 generate a
Group 0 SGI.

• Target List is the group of target PEs defined by the routing mode. For SGIs, the GIC routing mode defines
a group of target PEs, targetlist. This field is treated as defined in ICC_SGI0R_EL1, ICC_SGI1R_EL1, and
ICC_ASGI1R_EL1.

• A1, A2, and A3 are the affinity level values used for generating the set of target PEs. These fields are treated
in the same way as the Affinity value fields in ICC_SGI0R_EL1, ICC_SGI1R_EL1, and ICC_ASGI1R_EL1
Whether the A3 field is supported is IMPLEMENTATION DEFINED.

A1

A3V0 NS SGTIRMSGInum

4 3 0

0x7

A2

15

Target List

5671112 89

A3aReserved 0x0a

a. Whether this part of the packet is transmitted depends on the value of A3V and
RSV.

0

10

RSV

Range Selector
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. A-735
ID072617 Non-Confidential

Appendix A GIC Stream Protocol interface
A.4 Alphabetic list of command and response packet formats
Note
 In systems where the Redistributor only supports the zero value for A3, the Redistributor must acknowledge

any Generate SGI commands where A3V == 1 with a Generate SGI Acknowledge response, but must
otherwise ignore the command.

• RS (Range Selector) indicates the affinities covered by Target List. This field is treated as defined in
ICC_SGI0R_EL1, ICC_SGI1R_EL1, and ICC_ASGI1R_EL1.

A.4.10 Generate SGI Acknowledge (IRI)

The Redistributor sends a Generate SGI Acknowledge response to confirm that is has received a Generate SGI
command from the CPU interface, and that the effects of that command are guaranteed to become visible to other
PEs. Figure A-11 shows the Generate SGI Acknowledge response format.

Figure A-11 Generate SGI Acknowledge

Note
 Receipt of a Generate SGI Acknowledge response by a CPU interface does not guarantee that the corresponding
SGI pending state is set, but it does guarantee that the pending state will become set.

A.4.11 Quiesce (IRI)

The Redistributor sends a Quiesce command to request that the CPU interface enters the quiescent state.
Figure A-12 shows the Quiesce command format.

Figure A-12 Quiesce

A CPU interface is quiescent when there are no pending interrupts and all outstanding operations are complete. To
ensure quiescence, a CPU interface must:
• Respond to any outstanding Clear and VClear commands by sending a Clear Acknowledge command.
• Release any pending virtual or physical interrupts.
• Ensure it receives an acknowledge response from the Redistributor to indicate completion of all outstanding:

— Generate SGI requests.
— Activate requests.
— Deactivate requests.
— Upstream Control.

• Respond to the Quiesce commands by sending a Quiesce Acknowledge response as the final transfer.

In addition, software must ensure that the Redistributor receives no traffic after the CPU interface sends the Quiesce
Acknowledge response. Failure to adhere to this results in UNPREDICTABLE behavior. In practice, because such
timing is not predictable, software must ensure that no traffic is generated after the GICR_WAKER.ProcessorSleep
bit is set to 1, see Chapter 7 Power Management.

A CPU interface cannot receive a Quiesce command if a Downstream Control Acknowledge response is
outstanding. See Rules associated with the downstream Redistributor commands on page A-724 for more
information.

Reserved 0x0

4 3 0

0x9

15

Reserved 0x0

4 3 0

0x4

15
A-736 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

Appendix A GIC Stream Protocol interface
A.4 Alphabetic list of command and response packet formats
A.4.12 Quiesce Acknowledge (ICC)

The CPU interface sends a Quiesce Acknowledge response to confirm receipt of a Quiesce command, and to
confirm that it is quiescent. Figure A-13 shows the Quiesce Acknowledge response format.

Figure A-13 Quiesce Acknowledge

The Quiesce command acts as a form of barrier. Before sending a Quiesce Acknowledge response, the CPU
interface must be quiescent, that is, it must fulfil the requirements for quiescence specified in Quiesce (IRI) on
page A-736.

A.4.13 Release (ICC)

The CPU interface logic sends a Release response when it cannot handle a particular interrupt. Figure A-14 shows
the Release response format.

Figure A-14 Release

In Figure A-14:

• ID length indicates the number of INTID bits the Release response includes. See Supported INTID sizes on
page A-721 for more information.

• V indicates the original command to which the Release response corresponds:
0 The Release corresponds to a Set command.
1 The Release corresponds to a VSet command.

• INTID is the value that the CPU interface returns after a valid read of ICC_IAR0_EL1 or ICC_IAR1_EL1.

Note
 — During legacy operation, the INTID that is returned for SGIs includes the source PE in the

GICC_IAR.Source_CPU_ID field.

— If the INTID corresponds to an interrupt that uses the 1 of N model, the Redistributor might forward
the interrupt to a different PE or it might send the interrupt to the same PE again. See Priority-based
routing on page A-725 for information about how the PMHE field might affect the 1 of N selection.

If the CPU interface issues a Release response as a result of disabling an interrupt group, ARM recommends that it
sends the Upstream Control command that contains the revised interrupt group enable information before issuing
the Release response.

Reserved 0x0

4 3 0

0x9

15

VID length 0Reserved 0x0

4 3 0

0x3

INTID[31:16]a

15

INTID[15:0]

5678

a. If the command includes this field, bits[31:24] are 0.
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. A-737
ID072617 Non-Confidential

Appendix A GIC Stream Protocol interface
A.4 Alphabetic list of command and response packet formats
A.4.14 Set (IRI)

The Set command sets the highest priority pending interrupt for a PE. The PE has control of the interrupt and might
respond to a read of ICC_IAR0_EL1 or ICC_IAR1_EL1 with the INTID. Figure A-15 shows the Set command
format.

Figure A-15 Set

In Figure A-15:
• Priority indicates the actual priority of the interrupt, that is, the Secure, unshifted view. Bits corresponding to

unimplemented priority bits in the CPU interface are RES0.
• ID length indicates the number of INTID bits the Set command includes. See Supported INTID sizes on

page A-721 for more information.
• Mod represents the value of the GICD_IGRPMODR<n>.Group status bit for the interrupt.
• Grp represents the interrupt group, as indicated by the corresponding GICD_IGROUPR<n>.Group status bit.
• INTID is the value that the CPU interface returns after a valid read of an ICC_IAR0_EL1 or ICC_IAR1_EL1.

Note
 During legacy operation, the INTID that is returned for SGIs includes the source PE in the

GICC_IAR.Source_CPU_ID field.

If the Redistributor sends a Set command, the interrupt specified in the command replaces any outstanding highest
pending interrupt, that is, the command sets a new highest priority pending interrupt. Where a pending interrupt is
replaced, the CPU interface must Release it back to the Redistributor.

The Redistributor must:
• Ensure that no more than two Set commands that are waiting for a response are outstanding per PE at any

time.
• Send a Set command only if it can accept an Activate command where V == 0.

Note
 An implementation can guarantee this by treating the Set command as outstanding until either a Release

command is received for the Set command, or an Activate Acknowledge response is sent for the
corresponding Activate.

• Never send a Set command when any of the following conditions apply:
— The INTID is a special interrupt number, that is, 1020-1023.
— Affinity routing is enabled for an interrupt group and 1023 < INTID < 8192.
— Affinity routing is not enabled for an interrupt group, 1023 < INTID < 8192, and bits[9:4] are

non-zero. That is, the Redistributor is permitted to send Set commands for SGIs where bits[12:10] of
ICC_IAR0_EL1 or ICC_IAR1_EL1 specify the CPUID of the source PE.

— Affinity routing is not enabled for an interrupt group, and INTID > 8191
— The Set command has the same INTID as a previous Set command, unless the Redistributor has

received an Activate command or Release response.

The Redistributor must not send a SET command for an interrupt until all of the following are true:
• All previous outstanding SET commands for that interrupt have been returned through a Release or Activate

command.

ID length ModPriority

4 3 0

Grp 0x1

INTID[31:16]

15

INTID[15:0]

5678
A-738 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

Appendix A GIC Stream Protocol interface
A.4 Alphabetic list of command and response packet formats
• The interrupt is in the pending state, see Interrupt handling state machine on page 4-51.

If the interrupt group is disabled, the CPU interface cannot handle the interrupt, and must Release the interrupt.

A.4.15 Upstream Control (ICC)

This command communicates data to the Redistributor. Figure A-16 shows the Upstream Control command format.

Figure A-16 Upstream Control

In Figure A-16:

• Length indicates the number of bytes of valid data.

If this field specifies a number of bytes that is not exactly divisible by the interface width, as Signals and the
GIC Stream Protocol on page A-719 describes, any surplus bytes beyond this specified length in the last
transfer must be zero. The Redistributor must ignore such bytes.

• Identifier is a value that specifies the format of the data provided.

Table A-8 shows the possible Identifier values.

Data[0]

IdentifierLength

4 3 0

0x8

Data[1]

15 1112

Data[Length-2]Data[Length-1]

Table A-8 Upstream Control Identifier values

Data value Identifier Length Contents of Data[0] field

Physical interface
enables

0x00 0x1 This value contains the physical CPU interface enable bit values that must be
communicated to the Redistributor. Bits [2:0] of Data[0] have the following
meanings:
[2] EnableGrp1, secure. The value of the Secure copy of

ICC_IGRPEN1_EL1.Enable.
[1] EnableGrp1, Non-secure. The value of the Non-secure copy of

ICC_IGRPEN1_EL1.Enable.
[0] EnableGrp0, Secure. The value of ICC_IGRPEN0_EL1.Enable.
For PEs that do not include EL3, or when the GIC supports only a single Security
state, see the individual register descriptions for more information about the value
of these bits.
To ensure the state of the enable bits can be communicated easily to the
Redistributor after powerup, this command must be generated by any write to a
physical enable bit. If multiple writes to a physical enable bit occur before the CPU
interface issues the command, the GIC can combine these writes into a single
command.
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. A-739
ID072617 Non-Confidential

Appendix A GIC Stream Protocol interface
A.4 Alphabetic list of command and response packet formats
If a Redistributor receives an IMPLEMENTATION DEFINED value that it cannot interpret, this constitutes a protocol
error. See Software generation of protocol errors and packet errors on page A-721.

A.4.16 Upstream Control Acknowledge (IRI)

The Redistributor sends an Upstream Control Acknowledge response to confirm receipt of an Upstream Control
command, and to confirm that the effects of the write operation are visible to the Distributor. Figure A-17 on
page A-741 shows the Upstream Control Acknowledge response format.

Virtual interface
enables

0x01 0x1 This value contains the virtual CPU interface enable bit values that must be
communicated to the Redistributor. Bits [1:0] of Data[0] have the following
meanings:
[1] EnableGrp1. The value of ICH_VMCR_EL2.VENG1.
[0] EnableGrp0. The value of ICH_VMCR_EL2.VENG0.
To ensure the state of the enable bits can be communicated easily to the
Redistributor after powerup, this command must be generated by any write to a
virtual enable bit. If multiple writes to a virtual enable bit occur before the CPU
interface issues the command, the GIC can combine these writes into a single
command.
Only a CPU interface that supports GICv4 can generate this identifier.

Note
 If EL2 accesses memory-mapped registers, and uses GICH_VMCR, the VM must
access GICV_* registers. If the GIC shares state between the GICH_* registers
and the ICH_* System registers, it might communicate any change to the virtual
enable bits.

Physical priority 0x02 0x1 This value contains the current value of the Priority Mask Register (PMR):
[7:0] The value written to ICC_PMR_EL1.
The CPU interface must issue this command when the PE successfully writes to
ICC_PMR_EL1 and ICC_CTLR_EL3.PMHE bit is set to 1.
The command must be generated by any successful write that changes the value of
ICC_PMR_EL1. If multiple writes to ICC_PMR_EL1 occur before the CPU
interface issues the command, the GIC can combine these writes into a single
command.

Note
 • In GIC implementations that use this value, the Redistributor copy of the

value must reset to the idle priority, that is, 0xF8 in cases where only 5 bits
of priority are implemented.

• If the CPU interface receives a Set command with a priority lower than the
current value in ICC_PMR_EL1 before the Upstream Control
Acknowledge is received, the GIC might Release that Set command.

- 0x03 -

0x07

- Reserved.

- 0x80 -

0xFF

- IMPLEMENTATION DEFINED

Table A-8 Upstream Control Identifier values (continued)

Data value Identifier Length Contents of Data[0] field
A-740 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

Appendix A GIC Stream Protocol interface
A.4 Alphabetic list of command and response packet formats
Figure A-17 Upstream Control Acknowledge

Reserved 0x0

4 3 0

0xB

15
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. A-741
ID072617 Non-Confidential

Appendix A GIC Stream Protocol interface
A.4 Alphabetic list of command and response packet formats
A.4.17 VClear (IRI)

The VClear command resets the highest priority pending virtual interrupt.

This command is provided in GICv4 only.

Figure A-18 shows the VClear command format.

Figure A-18 VClear

In Figure A-18:

• ID length indicates the number of vINTID bits the VClear command includes. See Supported INTID sizes on
page A-721 for more information.

• vINTID identifies the virtual interrupt to be cleared.

The CPU interface must always respond to a VClear command by sending a Clear Acknowledge response where
V==1.

If the interrupt is pending in the CPU interface, the CPU interface must issue a Release response, or an Activate
response that remains outstanding for the interrupt before it issues a Clear Acknowledge command.

If the interrupt is not pending or present on the CPU interface, the VClear command has no effect. However, the
CPU interface must still issue a Clear Acknowledge response.

Note
 This command does not affect LPIs in the List registers.

A.4.18 VSet (IRI)

The Redistributor sends a VSet command to set a virtual interrupt pending for a VM. The PE has control of the
interrupt and can respond to a read of ICC_IAR0_EL1 or ICC_IAR1_EL1 with the vINTID.

This command is provided in GICv4 only.

Figure A-19 on page A-743 shows the VSet command format.

ID length 0Reserved 0x0

4 3 0

0x7

vINTID[31:16]a

15

vINTID[15:0]

5678

a. If the command includes this field, bits[31:24] are 0.

0

A-742 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

Appendix A GIC Stream Protocol interface
A.4 Alphabetic list of command and response packet formats
Figure A-19 VSet

In Figure A-19:

• Priority indicates the actual priority of the interrupt, that is, the Secure, unshifted view. Bits corresponding to
unimplemented priority bits in the CPU interface are RES0.

• ID length indicates the number of v INTID bits the VSet command includes. See Supported INTID sizes on
page A-721 for more information.

• Grp represents the interrupt group.

• vINTID is the value that the CPU interface returns after a valid read of ICC_IAR0_EL1 or ICC_IAR1_EL1.
When affinity routing is not enabled for a Security state, the CPUID field in ICC_IAR0_EL1 and
ICC_IAR1_EL1 identifies the source PE for SGIs.

The Redistributor sends a VSet command when the virtual interrupt specified by vINTID is set as pending in the
resident virtual LPI Pending table. The CPU interface must either activate the virtual interrupt by sending an
Activate command where V == 1, or Release the virtual interrupt to the Redistributor.

If the Redistributor sends a VSet command, the interrupt specified in the command always replaces any previous
interrupt, that is, the command sets a new highest priority pending interrupt. If the replaced interrupt is still valid
and pending, the CPU interface must Release it back to the Redistributor.

The Distributor must:
• Ensure no more than two VSet commands that are waiting for a response are outstanding per PE at any time.
• Send a VSet command only if it can accept an Activate command where V == 1.

Note
 An implementation can guarantee this by treating the VSet command as outstanding until either a Release

response is received for the VSet command, or an Activate Acknowledge response is sent for the
corresponding Activate command.

• Never send a VSet command when Virtual INTID < 8192.
• Send a VSet command for an interrupt after receipt of either an Activate or a Release command for that

particular interrupt.

The CPU interface must Release an interrupt, ensuring that V == 1, if it cannot handle the interrupt for either of the
following reasons:

• The interrupt group is disabled. This includes when the VM interface is disabled, that is, when
GICH_HCR.En or ICH_HCR.En, as appropriate, is cleared to 0.

• The hypervisor is not using the System register interface, that is, when either of the following applies:
— During legacy operation, when ICC_SRE_EL2.SRE == 0.
— EL2 is not present.

When the Non-secure copy of ICC_SRE_EL1.SRE == 0, it is UNPREDICTABLE whether the specified virtual
interrupt is factored into virtual priority calculations and reads of the GICV_* registers.

GrpID length 0Priority

4 3 0

0x6

vINTID[31:16]a

15

vINTID[15:0]

5678

a. If the command includes this field, bits[31:24] are 0.
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. A-743
ID072617 Non-Confidential

Appendix A GIC Stream Protocol interface
A.4 Alphabetic list of command and response packet formats
A-744 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

Appendix B
Pseudocode Definition

This appendix provides a definition of the pseudocode used in this specification, and lists the helper procedures and
support functions used by pseudocode to perform useful architecture-specific jobs. For functions that are referenced
in this specification but that are not defined in this appendix, see ARM® Architecture Reference Manual, ARMv8, for
ARMv8-A architecture profile.

This appendix contains the following sections:
• About ARM pseudocode on page B-746.
• Data types on page B-747.
• Expressions on page B-751.
• Operators and built-in functions on page B-753.
• Statements and program structure on page B-758.
• Pseudocode terminology on page B-762.
• Miscellaneous helper procedures and support functions on page B-763.
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. B-745
ID072617 Non-Confidential

Appendix B Pseudocode Definition
B.1 About ARM pseudocode
B.1 About ARM pseudocode
ARM pseudocode provides precise descriptions of some areas of the architecture. The following sections describe
the pseudocode in detail:
• Data types on page B-747.
• Expressions on page B-751.
• Operators and built-in functions on page B-753.
• Statements and program structure on page B-758.

Miscellaneous helper procedures and support functions on page B-763 describes some pseudocode helper
functions, that are used by the pseudocode functions that are described elsewhere in this document.

B.1.1 General limitations of ARM pseudocode

The pseudocode statements IMPLEMENTATION_DEFINED, SEE, UNDEFINED, and UNPREDICTABLE indicate behavior that
differs from that indicated by the pseudocode being executed. If one of them is encountered:

• Earlier behavior indicated by the pseudocode is only specified as occurring to the extent required to
determine that the statement is executed.

• No subsequent behavior indicated by the pseudocode occurs. This means that these statements terminate
pseudocode execution.

For more information, see Simple statements on page B-758.
B-746 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

Appendix B Pseudocode Definition
B.2 Data types
B.2 Data types
This section describes:
• General data type rules.
• Bitstrings.
• Integers on page B-748.
• Reals on page B-748.
• Booleans on page B-748.
• Enumerations on page B-748.
• Lists on page B-749.
• Arrays on page B-750.

B.2.1 General data type rules

ARM architecture pseudocode is a strongly-typed language. Every constant and variable is of one of the following
types:
• Bitstring.
• Integer.
• Boolean.
• Real.
• Enumeration.
• List.
• Array.

The type of a constant is determined by its syntax. The type of a variable is normally determined by assignment to
the variable, with the variable being implicitly declared to be of the same type as whatever is assigned to it. For
example, the assignments x = 1, y = '1', and z = TRUE implicitly declare the variables x, y, and z to have types
integer, bitstring of length 1, and Boolean, respectively.

Variables can also have their types declared explicitly by preceding the variable name with the name of the type.
This is most often done in function definitions for the arguments and the result of the function.

The remaining subsections describe each data type in more detail.

B.2.2 Bitstrings

A bitstring is a finite-length string of 0s and 1s. Each length of bitstring is a different type. The minimum permitted
length of a bitstring is 1.

The type name for bitstrings of length N is bits(N). A synonym of bits(1) is bit.

Bitstring constants are written as a single quotation mark, followed by the string of 0s and 1s, followed by another
single quotation mark. For example, the two constants of type bit are '0' and '1'. Spaces can be included in
bitstrings for clarity.

A special form of bitstring constant with 'x' bits is permitted in bitstring comparisons. See Equality and
non-equality testing on page B-753.

Every bitstring value has a left-to-right order, with the bits being numbered in standard little-endian order. That is,
the leftmost bit of a bitstring of length N is bit (N–1) and its right-most bit is bit 0. This order is used as the
most-significant-to-least-significant bit order in conversions to and from integers. For bitstring constants and
bitstrings derived from encoding diagrams, this order matches the way they are printed.

Bitstrings are the only concrete data type in pseudocode, in the sense that they correspond directly to the contents
of registers, memory locations, and instructions. All of the remaining data types are abstract.
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. B-747
ID072617 Non-Confidential

Appendix B Pseudocode Definition
B.2 Data types
B.2.3 Integers

Pseudocode integers are unbounded in size and can be either positive or negative. That is, they are mathematical
integers rather than what computer languages and architectures commonly call integers. Computer integers are
represented in pseudocode as bitstrings of the appropriate length, associated with suitable functions to interpret
those bitstrings as integers.

The type name for integers is integer.

Integer constants are normally written in decimal, such as 0, 15, –1234. They can also be written in C-style
hexadecimal, such as 0x55 or 0x80000000. Hexadecimal integer constants are treated as positive unless they have a
preceding minus sign. For example, 0x80000000 is the integer +231. If –231 must be written in hexadecimal, it must be
written as –0x80000000.

B.2.4 Reals

Pseudocode reals are unbounded in size and precision. That is, they are mathematical real numbers, not computer
floating-point numbers. Computer floating-point numbers are represented in pseudocode as bitstrings of the
appropriate length, associated with suitable functions to interpret those bitstrings as reals.

The type name for reals is real.

Real constants are written in decimal with a decimal point. This means 0 is an integer constant but 0.0 is a real
constant.

B.2.5 Booleans

A Boolean is a logical TRUE or FALSE value.

The type name for Booleans is boolean. This is not the same type as bit, which is a length–1 bitstring. Boolean
constants are TRUE and FALSE.

B.2.6 Enumerations

An enumeration is a defined set of symbolic constants, such as:

enumeration InstrSet {InstrSet_A32, InstrSet_T32, InstrSet_A64};

An enumeration always contains at least one symbolic constant, and a symbolic constant must not be shared
between enumerations.

Enumerations must be declared explicitly, although a variable of an enumeration type can be declared implicitly by
assigning one of the symbolic constants to it. By convention, each of the symbolic constants starts with the name of
the enumeration followed by an underscore. The name of the enumeration is its type name, or type, and the symbolic
constants are its possible constants.

Note
 A Boolean is a pre-declared enumeration that does not follow the normal naming convention and it has a special
role in some pseudocode constructs, such as if statements. This means the enumeration of a boolean is:

enumeration boolean {FALSE, TRUE};
B-748 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

Appendix B Pseudocode Definition
B.2 Data types
B.2.7 Lists

A list is an ordered set of other data items, separated by commas and enclosed in parentheses, for example:

(bits(32) shifter_result, bit shifter_carry_out)

A list always contains at least one data item.

Lists are often used as the return type for a function that returns multiple results. For example, this list at the start
of this section is the return type of the function Shift_C() that performs a standard ARM shift or rotation, when its
first operand is of type bits(32).

Some specific pseudocode operators use lists surrounded by other forms of bracketing than the (…) parentheses.
These are:

• Bitstring extraction operators, that use lists of bit numbers or ranges of bit numbers surrounded by angle
brackets <…>.

• Array indexing, that uses lists of array indexes surrounded by square brackets […].

• Array-like function argument passing, that uses lists of function arguments surrounded by square brackets
[…].

Each combination of data types in a list is a separate type, with type name given by listing the data types. This means
that the example list at the start of this section is of type (bits(32), bit). The general principle that types can be
declared by assignment extends to the types of the individual list items in a list. For example:

(shift_t, shift_n) = ('00', 0);

implicitly declares shift_t, shift_n, and (shift_t, shift_n) to be of types bits(2), integer, and (bits(2),
integer), respectively.

A list type can also be explicitly named, with explicitly named elements in the list. For example:

type ShiftSpec is (bits(2) shift, integer amount);

After this definition and the declaration:

ShiftSpec abc;

the elements of the resulting list can then be referred to as abc.shift, and abc.amount. This qualified naming of list
elements is only permitted for variables that have been explicitly declared, not for those that have been declared by
assignment only.

Explicitly naming a type does not alter what type it is. For example, after the above definition of ShiftSpec,
ShiftSpec, and (bits(2), integer) are two different names for the same type, not the names of two different types.
To avoid ambiguity in references to list elements, it is an error to declare a list variable multiple times using different
names of its type or to qualify it with list element names not associated with the name by which it was declared.

An item in a list that is being assigned to can be written as "-" to indicate that the corresponding item of the assigned
list value is discarded. For example:

(shifted, -) = LSL_C(operand, amount);

List constants are written as a list of constants of the appropriate types, for example the ('00', 0) in the earlier
example.
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. B-749
ID072617 Non-Confidential

Appendix B Pseudocode Definition
B.2 Data types
B.2.8 Arrays

Pseudocode arrays are indexed by either enumerations or integer ranges. An integer range is represented by the
lower inclusive end of the range, then .., then the upper inclusive end of the range.

For example:

// The names of the Banked core registers.

enumeration RName {RName_0usr, RName_1usr, RName_2usr, RName_3usr, RName_4usr, RName_5usr,
 RName_6usr, RName_7usr, RName_8usr, RName_8fiq, RName_9usr, RName_9fiq,
 RName_10usr, RName_10fiq, RName_11usr, RName_11fiq, RName_12usr, RName_12fiq,
 RName_SPusr, RName_SPfiq, RName_SPirq, RName_SPsvc,
 RName_SPabt, RName_SPund, RName_SPmon, RName_SPhyp,
 RName_LRusr, RName_LRfiq, RName_LRirq, RName_LRsvc,
 RName_LRabt, RName_LRund, RName_LRmon,
 RName_PC};

array bits(8) _Memory[0..0xFFFFFFFF];

Arrays are always explicitly declared, and there is no notation for a constant array. Arrays always contain at least
one element, because:
• Enumerations always contain at least one symbolic constant.
• Integer ranges always contain at least one integer.

Arrays do not usually appear directly in pseudocode. The items that syntactically look like arrays in pseudocode are
usually array-like functions such as R[i], MemU[address, size] or Elem[vector, i, size]. These functions package
up and abstract additional operations normally performed on accesses to the underlying arrays, such as register
banking, memory protection, endian-dependent byte ordering, exclusive-access housekeeping and Advanced SIMD
element processing.
B-750 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

Appendix B Pseudocode Definition
B.3 Expressions
B.3 Expressions
This section describes:
• General expression syntax.
• Operators and functions - polymorphism and prototypes on page B-752.
• Precedence rules on page B-752.

B.3.1 General expression syntax

An expression is one of the following:
• A constant.
• A variable, optionally preceded by a data type name to declare its type.
• The word UNKNOWN preceded by a data type name to declare its type.
• The result of applying a language-defined operator to other expressions.
• The result of applying a function to other expressions.

Variable names normally consist of alphanumeric and underscore characters, starting with an alphabetic or
underscore character.

Each register described in the text is to be regarded as declaring a correspondingly named bitstring variable, and
that variable has the stated behavior of the register. For example, if a bit of a register is defined as RAZ/WI, then
the corresponding bit of its variable reads as 0 and ignore writes.

An expression like bits(32) UNKNOWN indicates that the result of the expression is a value of the given type, but the
architecture does not specify what value it is and software must not rely on such values. The value produced must
not:

• Return information that cannot be accessed at the current or a lower level of privilege using instructions that
are not UNPREDICTABLE and do not return UNKNOWN values.

• Be promoted as providing any useful information to software.

Note
 Some earlier documentation describes this as an UNPREDICTABLE value. UNKNOWN values are similar to the
definition of UNPREDICTABLE, but do not indicate that the entire architectural state becomes unspecified.

Only the following expressions are assignable. This means that these are the only expressions that can be placed on
the left-hand side of an assignment.

• Variables.

• The results of applying some operators to other expressions.

The description of each language-defined operator that can generate an assignable expression specifies the
circumstances under which it does so. For example, those circumstances might require that one or more of
the expressions the operator operates is an assignable expression.

• The results of applying array-like functions to other expressions. The description of an array-like function
specifies the circumstances under which it can generate an assignable expression.

Every expression has a data type:

• For a constant, this data type is determined by the syntax of the constant.

• For a variable, there are the following possible sources for the data type:

— An optional preceding data type name.

— A data type the variable was given earlier in the pseudocode by recursive application of this rule.

— A data type the variable is being given by assignment, either by direct assignment to the variable, or
by assignment to a list of which the variable is a member.
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. B-751
ID072617 Non-Confidential

Appendix B Pseudocode Definition
B.3 Expressions
It is a pseudocode error if none of these data type sources exists for a variable, or if more than one of them
exists and they do not agree about the type.

• For a language-defined operator, the definition of the operator determines the data type.

• For a function, the definition of the function determines the data type.

B.3.2 Operators and functions - polymorphism and prototypes

Operators and functions in pseudocode can be polymorphic, producing different functionality when applied to
different data types. Each resulting form of an operator or function has a different prototype definition. For example,
the operator + has forms that act on various combinations of integers, reals, and bitstrings.

One particularly common form of polymorphism is between bitstrings of different lengths. This is represented by
using bits(N), bits(M), or similar, in the prototype definition.

B.3.3 Precedence rules

The precedence rules for expressions are:

1. Constants, variables, and function invocations are evaluated with higher priority than any operators using
their results.

2. Expressions on integers follow the normal operator precedence rules of exponentiation before multiply/divide
before add/subtract, with sequences of multiply/divides or add/subtracts evaluated left-to-right.

3. Other expressions must be parenthesized to indicate operator precedence if ambiguity is possible, but do not
have to be if all permitted precedence orders under the type rules necessarily lead to the same result. For
example, if i, j, and k are integer variables, i > 0 && j > 0 && k > 0 is acceptable, but i > 0 && j > 0 || k
> 0 is not.
B-752 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

Appendix B Pseudocode Definition
B.4 Operators and built-in functions
B.4 Operators and built-in functions
This section describes:
• Operations on generic types.
• Operations on Booleans.
• Bitstring manipulation.
• Arithmetic on page B-756.

B.4.1 Operations on generic types

The following operations are defined for all types.

Equality and non-equality testing

Any two values x and y of the same type can be tested for equality by the expression x == y and for non-equality by
the expression x != y. In both cases, the result is of type boolean.

A special form of comparison is defined with a bitstring constant that includes 'x' bits in addition to '0' and '1'
bits. The bits corresponding to the 'x' bits are ignored in determining the result of the comparison. For example, if
opcode is a 4-bit bitstring, opcode == '1x0x' is equivalent to opcode<3> == '1' && opcode<1> == '0'.

Note
 This special form is permitted in the implied equality comparisons in when parts of case … of … structures.

Conditional selection

If x and y are two values of the same type and t is a value of type boolean, then if t then x else y is an expression
of the same type as x and y that produces x if t is TRUE and y if t is FALSE.

B.4.2 Operations on Booleans

If x is a Boolean, then !x is its logical inverse.

If x and y are Booleans, then x && y is the result of ANDing them together. As in the C language, if x is FALSE, the
result is determined to be FALSE without evaluating y.

If x and y are Booleans, then x || y is the result of ORing them together. As in the C language, if x is TRUE, the result
is determined to be TRUE without evaluating y.

If x and y are Booleans, then x ^ y is the result of exclusive-ORing them together.

B.4.3 Bitstring manipulation

The following bitstring manipulation functions are defined:

Bitstring length and most significant bit

If x is a bitstring:
• The bitstring length function Len(x) returns the length of x as an integer.
• TopBit(x) is the leftmost bit of x. Using bitstring extraction, this means:

TopBit(x)= x<Len(x)–1>.

Bitstring concatenation and replication

If x and y are bitstrings of lengths N and M respectively, then x:y is the bitstring of length N+M constructed by
concatenating x and y in left-to-right order.
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. B-753
ID072617 Non-Confidential

Appendix B Pseudocode Definition
B.4 Operators and built-in functions
If x is a bitstring and n is an integer with n > 0:
• Replicate(x, n) is the bitstring of length n*Len(x) consisting of n copies of x concatenated together
• Zeros(n) = Replicate('0', n), Ones(n) = Replicate('1', n).

Bitstring extraction

The bitstring extraction operator extracts a bitstring from either another bitstring or an integer. Its syntax is
x<integer_list>, where x is the integer or bitstring being extracted from, and <integer_list> is a list of integers
enclosed in angle brackets rather than the usual parentheses. The length of the resulting bitstring is equal to the
number of integers in <integer_list>. In x<integer_list>, each of the integers in <integer_list> must be:
• >= 0

• < Len(x) if x is a bitstring.

The definition of x<integer_list> depends on whether integer_list contains more than one integer:

• If integer_list contains more than one integer, x<i, j, k,…, n> is defined to be the concatenation:

x<i> : x<j> : x<k> : … : x<n>.

• If integer_list consists of one integer i, x<i> is defined to be:

— If x is a bitstring, '0' if bit i of x is a zero and '1' if bit i of x is a one.

— If x is an integer, let y be the unique integer in the range 0 to 2^(i+1)–1 that is congruent to x modulo
2^(i+1). Then x<i> is '0' if y < 2^i and '1' if y >= 2^i.
Loosely, this definition treats an integer as equivalent to a sufficiently long two’s complement
representation of it as a bitstring.

In <integer_list>, the notation i:j with i >= j is shorthand for the integers in order from i down to j, with both
end values included. For example, instr<31:28> is shorthand for instr<31, 30, 29, 28>.

The expression x<integer_list> is assignable provided x is an assignable bitstring and no integer appears more than
once in <integer_list>. In particular, x<i> is assignable if x is an assignable bitstring and 0 <= i < Len(x).

Encoding diagrams for registers frequently show named bits or multi-bit fields. For example, the encoding diagram
for the ICC_SGI1R shows its bit<28> as IS. In such cases, the syntax ICC_SGI1R.IS is used as a more readable
synonym for ICC_SGI1R<28>.

Logical operations on bitstrings

If x is a bitstring, NOT(x) is the bitstring of the same length obtained by logically inverting every bit of x.

If x and y are bitstrings of the same length, x AND y, x OR y, and x EOR y are the bitstrings of that same length obtained
by logically ANDing, ORing, and exclusive-ORing corresponding bits of x and y together.

Bitstring count

If x is a bitstring, BitCount(x) produces an integer result equal to the number of bits of x that are ones.
B-754 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

Appendix B Pseudocode Definition
B.4 Operators and built-in functions
Testing a bitstring for being all zero or all ones

If x is a bitstring:
• IsZero(x) produces TRUE if all of the bits of x are zeros and FALSE if any of them are ones
• IsZeroBit(x) produces '1' if all of the bits of x are zeros and '0' if any of them are ones.

IsOnes(x) and IsOnesBit(x) work in the corresponding ways. This means:

IsZero(x) = (BitCount(x) == 0)
IsOnes(x) = (BitCount(x) == Len(x))
IsZeroBit(x) = if IsZero(x) then '1' else '0'
IsOnesBit(x) = if IsOnes(x) then '1' else '0'

Lowest and highest set bits of a bitstring

If x is a bitstring, and N = Len(x):

• LowestSetBit(x) is the minimum bit number of any of its bits that are ones. If all of its bits are zeros,
LowestSetBit(x) = N.

• HighestSetBit(x) is the maximum bit number of any of its bits that are ones. If all of its bits are zeros,
HighestSetBit(x) = –1.

• CountLeadingZeroBits(x) is the number of zero bits at the left end of x, in the range 0 to N. This means:

CountLeadingZeroBits(x) = N – 1 – HighestSetBit(x).

• CountLeadingSignBits(x) is the number of copies of the sign bit of x at the left end of x, excluding the sign
bit itself, and is in the range 0 to N–1. This means:

CountLeadingSignBits(x) = CountLeadingZeroBits(x<N–1:1> EOR x<N–2:0>).

Zero-extension and sign-extension of bitstrings

If x is a bitstring and i is an integer, then ZeroExtend(x, i) is x extended to a length of i bits, by adding sufficient
zero bits to its left. That is, if i == Len(x), then ZeroExtend(x, i) = x, and if i > Len(x), then:

ZeroExtend(x, i) = Replicate('0', i–Len(x)) : x

If x is a bitstring and i is an integer, then SignExtend(x, i) is x extended to a length of i bits, by adding sufficient
copies of its leftmost bit to its left. That is, if i == Len(x), then SignExtend(x, i) = x, and if i > Len(x), then:

SignExtend(x, i) = Replicate(TopBit(x), i–Len(x)) : x

It is a pseudocode error to use either ZeroExtend(x, i) or SignExtend(x, i) in a context where it is possible that
i < Len(x).

Converting bitstrings to integers

If x is a bitstring, SInt(x) is the integer whose two’s complement representation is x:

// SInt()
// ======

integer SInt(bits(N) x)
 result = 0;
 for i = 0 to N-1
 if x<i> == ‘1’ then result = result + 2^i;
 if x<N-1> == ‘1’ then result = result - 2^N;
 return result;

UInt(x) is the integer whose unsigned representation is x:

// UInt()
// ======
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. B-755
ID072617 Non-Confidential

Appendix B Pseudocode Definition
B.4 Operators and built-in functions
integer UInt(bits(N) x)
 result = 0;
 for i = 0 to N-1
 if x<i> == ‘1’ then result = result + 2^i;
 return result;

Int(x, unsigned) returns either SInt(x) or UInt(x) depending on the value of its second argument:

// Int()
// =====

integer Int(bits(N) x, boolean unsigned)
 result = if unsigned then UInt(x) else SInt(x);
 return result;

B.4.4 Arithmetic

Most pseudocode arithmetic is performed on integer or real values, with operands being obtained by conversions
from bitstrings and results converted back to bitstrings afterwards. As these data types are the unbounded
mathematical types, no issues arise about overflow or similar errors.

Unary plus, minus, and absolute value

If x is an integer or real, then +x is x unchanged, –x is x with its sign reversed, and Abs(x) is the absolute value of x.
All three are of the same type as x.

Addition and subtraction

If x and y are integers or reals, x+y and x–y are their sum and difference. Both are of type integer if x and y are both
of type integer, and real otherwise.

Addition and subtraction are particularly common arithmetic operations in pseudocode, and so it is also convenient
to have definitions of addition and subtraction acting directly on bitstring operands.

If x and y are bitstrings of the same length N, so that N = Len(x) = Len(y), then x+y and x–y are the least significant
N bits of the results of converting them to integers and adding or subtracting them. Signed and unsigned conversions
produce the same result:

x+y = (SInt(x) + SInt(y))<N–1:0>
= (UInt(x) + UInt(y))<N–1:0>

x–y = (SInt(x) – SInt(y))<N–1:0>
= (UInt(x) – UInt(y))<N–1:0>

If x is a bitstring of length N and y is an integer, x+y and x–y are the bitstrings of length N defined by x+y = x + y<N–1:0>
and x–y = x – y<N–1:0>. Similarly, if x is an integer and y is a bitstring of length M, x+y and x–y are the bitstrings of
length M defined by x+y = x<M–1:0> + y and x–y = x<M–1:0> – y.

Comparisons

If x and y are integers or reals, then x == y, x != y, x < y, x <= y, x > y, and x >= y are equal, not equal, less than,
less than or equal, greater than, and greater than or equal comparisons between them, producing Boolean results. In
the case of == and !=, this extends the generic definition applying to any two values of the same type to also act
between integers and reals.

Multiplication

If x and y are integers or reals, then x * y is the product of x and y. It is of type integer if x and y are both of type
integer, and real otherwise.

Division and modulo

If x and y are integers or reals, then x/y is the result of dividing x by y, and is always of type real.
B-756 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

Appendix B Pseudocode Definition
B.4 Operators and built-in functions
If x and y are integers, then x DIV y and x MOD y are defined by:

x DIV y = RoundDown(x/y)
x MOD y = x – y * (x DIV y)

It is a pseudocode error to use any of x/y, x MOD y, or x DIV y in any context where y can be zero.

Square root

If x is an integer or a real, Sqrt(x) is its square root, and is always of type real.

Rounding and aligning

If x is a real:
• RoundDown(x) produces the largest integer n so that n <= x

• RoundUp(x) produces the smallest integer n so that n >= x

• RoundTowardsZero(x) produces RoundDown(x) if x > 0.0, 0 if x == 0.0, and RoundUp(x) if x < 0.0.

If x and y are both of type integer, Align(x, y) = y * (x DIV y) is of type integer.

If x is of type bitstring and y is of type integer, Align(x, y) = (Align(UInt(x), y))<Len(x)–1:0> is a bitstring of
the same length as x.

It is a pseudocode error to use either form of Align(x, y) in any context where y can be 0. In practice, Align(x, y)
is only used with y a constant power of two, and the bitstring form used with y = 2^n has the effect of producing its
argument with its n low-order bits forced to zero.

Scaling

If n is an integer, 2^n is the result of raising 2 to the power n and is of type real.

If x and n are of type integer, then:
• x << n = RoundDown(x * 2^n)

• x >> n = RoundDown(x * 2^(–n)).

Maximum and minimum

If x and y are integers or reals, then Max(x, y) and Min(x, y) are their maximum and minimum respectively. Both
are of type integer if x and y are both of type integer, and real otherwise.
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. B-757
ID072617 Non-Confidential

Appendix B Pseudocode Definition
B.5 Statements and program structure
B.5 Statements and program structure
The following sections describe the control statements used in the pseudocode:
• Simple statements.
• Compound statements on page B-759.
• Comments on page B-761.

B.5.1 Simple statements

Each of the following simple statements must be terminated with a semicolon, as shown.

Assignments

An assignment statement takes the form:

<assignable_expression> = <expression>;

Procedure calls

A procedure call takes the form:

<procedure_name>(<arguments>);

Return statements

A procedure return takes the form:

return;

and a function return takes the form:

return <expression>;

where <expression> is of the type declared in the function prototype line.

UNDEFINED

This subsection describes the statement:

UNDEFINED;

This statement indicates a special case that replaces the behavior defined by the current pseudocode, apart from
behavior required to determine that the special case applies. The replacement behavior is that the Undefined
Instruction exception is taken.

UNPREDICTABLE

This subsection describes the statement:

UNPREDICTABLE;

This statement indicates a special case that replaces the behavior defined by the current pseudocode, apart from
behavior required to determine that the special case applies. The replacement behavior is UNPREDICTABLE.

SEE…

This subsection describes the statement:

SEE <reference>;
B-758 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

Appendix B Pseudocode Definition
B.5 Statements and program structure
This statement indicates a special case that replaces the behavior defined by the current pseudocode, apart from
behavior required to determine that the special case applies. The replacement behavior is that nothing occurs as a
result of the current pseudocode because some other piece of pseudocode defines the required behavior. The
<reference> indicates where that other pseudocode can be found.

It usually refers to another instruction but can also refer to another encoding or note of the same instruction.

IMPLEMENTATION_DEFINED

This subsection describes the statement:

IMPLEMENTATION_DEFINED {<text>};

This statement indicates a special case that replaces the behavior defined by the current pseudocode, apart from
behavior required to determine that the special case applies. The replacement behavior is IMPLEMENTATION
DEFINED. An optional <text> field can give more information.

B.5.2 Compound statements

Indentation normally indicates the structure in compound statements. The statements contained in structures such
as if … then … else … or procedure and function definitions are indented more deeply than the statement itself, and
their end is indicated by returning to the original indentation level or less.

Indentation is normally done by four spaces for each level.

if … then … else …

A multi-line if … then … else … structure takes the form:

if <boolean_expression> then
<statement 1>
<statement 2>
…
<statement n>

elsif <boolean_expression> then
<statement a>
<statement b>
…
<statement z>

else
<statement A>
<statement B>
…
<statement Z>

The block of lines consisting of elsif and its indented statements is optional, and multiple such blocks can be used.

The block of lines consisting of else and its indented statements is optional.

Abbreviated one-line forms can be used when there are only simple statements in the then part and in the else part,
if it is present, such as:

if <boolean_expression> then <statement 1>
if <boolean_expression> then <statement 1> else <statement A>
if <boolean_expression> then <statement 1> <statement 2> else <statement A>

Note
 In these forms, <statement 1>, <statement 2> and <statement A> must be terminated by semicolons. This and the
fact that the else part is optional are differences from the if … then … else … expression.

repeat … until …

A repeat … until … structure takes the form:
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. B-759
ID072617 Non-Confidential

Appendix B Pseudocode Definition
B.5 Statements and program structure
repeat
<statement 1>
<statement 2>
…
<statement n>

until <boolean_expression>;

while … do

A while … do structure takes the form:

while <boolean_expression> do
<statement 1>
<statement 2>
…
<statement n>

for …

A for … structure takes the form:

for <assignable_expression> = <integer_expr1> to <integer_expr2>
<statement 1>
<statement 2>
…
<statement n>

case … of …

A case … of … structure takes the form:

case <expression> of
when <constant values>

<statement 1>
<statement 2>
…
<statement n>
… more "when" groups …

otherwise
<statement A>
<statement B>
…
<statement Z>

In this structure, <constant values> consists of one or more constant values of the same type as <expression>,
separated by commas. Abbreviated one line forms of when and otherwise parts can be used when they contain only
simple statements.

If <expression> has a bitstring type, <constant values> can also include bitstring constants containing 'x' bits. For
details see Equality and non-equality testing on page B-753.

Procedure and function definitions

A procedure definition takes the form:

<procedure name>(<argument prototypes>)
<statement 1>
<statement 2>
…
<statement n>

where <argument prototypes> consists of zero or more argument definitions, separated by commas. Each argument
definition consists of a type name followed by the name of the argument.
B-760 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

Appendix B Pseudocode Definition
B.5 Statements and program structure
Note
 This first prototype line is not terminated by a semicolon. This helps to distinguish it from a procedure call.

A function definition is similar but also declares the return type of the function:

<return type> <function name>(<argument prototypes>)
<statement 1>
<statement 2>
…
<statement n>

An array-like function is similar but with square brackets:

<return type> <function name>[<argument prototypes>]
<statement 1>
<statement 2>
…
<statement n>

An array-like function also usually has an assignment prototype:

<function name>[<argument prototypes>] = <value prototypes>
<statement 1>
<statement 2>
…
<statement n>

B.5.3 Comments

Two styles of pseudocode comment exist:
• // starts a comment that is terminated by the end of the line
• /* starts a comment that is terminated by */.
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. B-761
ID072617 Non-Confidential

Appendix B Pseudocode Definition
B.6 Pseudocode terminology
B.6 Pseudocode terminology
Table B-1 lists the terms used in the body text and the terms used in pseudocode to denote the same concept,
throughout this specification.

Table B-1 Pseudocode terms

Term used in the body text Term used in pseudocode

vPE VCPU

vPEID VCPUID

pINTID pID

vINTID vID
B-762 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

Appendix B Pseudocode Definition
B.7 Miscellaneous helper procedures and support functions
B.7 Miscellaneous helper procedures and support functions
The functions described in this section are not part of the pseudocode specification. They are miscellaneous helper
procedures and functions used by pseudocode that are not described elsewhere in this document. Each has a brief
description and a pseudocode prototype, except that the prototype is omitted where it is identical to the section title.

Note
 Some variable names used the pseudocode differ from those used in the body text. For a list of the affected variables,
see Pseudocode terminology on page B-762.

B.7.1 Helper functions

The functions listed in the following sections are indicated by the hierarchical path names, for example
shared/gic/helper:

• shared/gic/helper/AcknowledgeInterrupt.
• shared/gic/helper/AcknowledgeVInterrupt.
• shared/gic/helper/AlwaysUsingSysRegs.
• shared/gic/helper/Deactivate on page B-764.
• shared/gic/helper/GetHighestActiveGroup on page B-764.
• shared/gic/helper/GetHighestActivePriority on page B-764.
• shared/gic/helper/INTID_SIZE on page B-764.
• shared/gic/helper/IntGroup on page B-764.
• shared/gic/helper/Interrupt on page B-764.
• shared/gic/helper/IsEL3OrMon on page B-764.
• shared/gic/helper/IsGrp0Int on page B-765.
• shared/gic/helper/IsSecureInt on page B-765.
• shared/gic/helper/PriorityIsHigher on page B-765.
• shared/gic/helper/SingleSecurityState on page B-765.
• shared/gic/helper/Special on page B-765.
• shared/gic/helper/SystemRegisterTrap on page B-765.

shared/gic/helper/AcknowledgeInterrupt

// AcknowledgeInterrupt()
// ==============================
// Acknowledges the INTID and sets the appropriate ICC_AP{0,1}R_EL1 active priority bit

AcknowledgeInterrupt(bits(INTID_SIZE) ID);

shared/gic/helper/AcknowledgeVInterrupt

// AcknowledgeVInterrupt()
// =======================
// Acknowledges vINTID

AcknowledgeVInterrupt(bits(INTID_SIZE) ID);

shared/gic/helper/AlwaysUsingSysRegs

// AlwaysUsingSysRegs()
// ===================
// Returns true if the PE only supports the use of System registers for handling physical interrupts

boolean AlwaysUsingSysRegs();
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. B-763
ID072617 Non-Confidential

Appendix B Pseudocode Definition
B.7 Miscellaneous helper procedures and support functions
shared/gic/helper/Deactivate

// Deactivate()
// =================
// Deactivates the INTID

Deactivate(bits(INTID_SIZE) INTID);

shared/gic/helper/GetHighestActiveGroup

// GetHighestActiveGroup()
// =======================
// Returns a value indicating the interrupt group of the highest active priority from three
// registers. Returns IntGroup_None if no active priorities.
// Note: having more than one group active at the same priority is UNPREDICTABLE.

IntGroup GetHighestActiveGroup(bits(128) ap0, bits(128) ap1ns, bits(128) ap1s)

shared/gic/helper/GetHighestActivePriority

// GetHighestActivePriority()
// ==========================
// Returns the priority of the highest active priority from three registers, expressed as an 8-bit
// unsigned binary number. Returns 0xFF if no bits are active.

bits(8) GetHighestActivePriority(bits(128) ap0, bits(128) ap1ns, bits(128) ap1s)

shared/gic/helper/INTID_SIZE

// INTID_SIZE
// ==========
// The number of interrupt ID bits implemented at the Distributor and Redistributor.
// This value is IMPLEMENTATION DEFINED and discoverable from GICD_TYPER.IDbits.

constant integer INTID_SIZE = integer IMPLEMENTATION_DEFINED “Distributor INTID size”;

shared/gic/helper/IntGroup

// IntGroup()
// ==================

enumeration IntGroup { IntGroup_None, IntGroup_G0, IntGroup_G1NS, IntGroup_G1S };
LRType GICH_VLPIR; // Holds virtual LPIs received from the Distributor

shared/gic/helper/Interrupt

// Interrupt()
// ================

constant bits(2) IntState_Invalid = ‘00’;
constant bits(2) IntState_Pending = ‘01’;
constant bits(2) IntState_Active = ‘10’;
constant bits(2) IntState_ActivePending = ‘11’;

shared/gic/helper/IsEL3OrMon

// IsEL3OrMon()
// =======================
// Returns true if EL3 is using AArch32 and in Monitor mode or
// if EL3 is using AArch64 and PSTATE.EL = 3
B-764 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

Appendix B Pseudocode Definition
B.7 Miscellaneous helper procedures and support functions
boolean IsEL3OrMon();

shared/gic/helper/IsGrp0Int

// IsGrp0Int()
// =======================
// Returns TRUE if the INTID is in Group 0

boolean IsGrp0Int(bits(INTID_SIZE) ID);

shared/gic/helper/IsSecureInt

// IsSecureInt()
// =============
// Returns true if GICD_CTLR.DS == 0 and ID
// is a Group 0 or Secure Group 1 INTID

boolean IsSecureInt(bits(INTID_SIZE) ID);

shared/gic/helper/PriorityIsHigher

// PriorityIsHigher()
// ===========================
// Returns true if the first priority is higher than the second priority.

boolean PriorityIsHigher(bits(8) first, bits(8) second);

shared/gic/helper/SingleSecurityState

// SingleSecurityState()
// ==========================

// Returns TRUE if the Distributor supports a single Security state, for example when GICD_CTLR.DS == 1.

boolean SingleSecurityState();

shared/gic/helper/Special

// IsSpecial()
// ==================

boolean IsSpecial(bits(INTID_SIZE) intID)

 return UInt(intID) >= 1020 && UInt(intID) <= 1023;

//IsLPI()
// =================

boolean IsLPI(bits(INTID_SIZE) intID)

 return UInt(intID) >= 8192;
constant bits(INTID_SIZE) INTID_SECURE = 1020<INTID_SIZE-1:0>;
constant bits(INTID_SIZE) INTID_NONSECURE = 1021<INTID_SIZE-1:0>;
constant bits(INTID_SIZE) INTID_GROUP1 = 1022<INTID_SIZE-1:0>;
constant bits(INTID_SIZE) INTID_SPURIOUS = 1023<INTID_SIZE-1:0>;
type INTID = bits(INTID_SIZE);

shared/gic/helper/SystemRegisterTrap

// SystemRegisterTrap()
// ===================
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. B-765
ID072617 Non-Confidential

Appendix B Pseudocode Definition
B.7 Miscellaneous helper procedures and support functions
SystemRegisterTrap(bits(2) target_el);

B.7.2 Support functions

This section lists the support functions that are not listed elsewhere in this specification.The functions listed in the
following sections are indicated by the hierarchical path names, for example shared/support:
• shared/support/ActivePRIBits.
• shared/support/CanSignalInterrupt.
• shared/support/CanSignalVirtualInt.
• shared/support/CanSignalVirtualInterrupt on page B-767.
• shared/support/ClearPendingState on page B-767.
• shared/support/HighestPriorityPendingInterrupt on page B-768.
• shared/support/HighestPriorityVirtualInterrupt on page B-768.
• shared/support/PRIBits on page B-768.
• shared/support/PriorityDrop on page B-768.
• shared/support/PriorityGroup on page B-769.
• shared/support/SetPendingState on page B-769.
• shared/support/SystemRegisterAccessPermitted on page B-769.

shared/support/ActivePRIBits

// ActivePRIBits()
// ===============

integer ActivePRIBits()
 pri_bits = PRIBits();
 return 2^(pri_bits - 1);

shared/support/CanSignalInterrupt

// CanSignalInterrupt()
// ====================

boolean CanSignalInterrupt()

 // Get the priority group of the current “Set” using the BPR appropriate to the group
 setPriorityGroup = GroupBits(GICC_SETR.Priority, GICC_SETR.Group);
 runningPriority = GetHighestActivePriority(ICC_AP0R_EL1, ICC_AP1R_EL1NS, ICC_AP1R_EL1S);

 // Get the priority group of highest APR using the BPR appropriate to the SET packet
 preemptionLevel = GroupBits(runningPriority<7:1>:’0’, GICC_SETR.Group);

 if (GICC_SETR.State == IntState_Pending &&
 UInt(GICC_SETR.Priority) < UInt(ICC_PMR_EL1.Priority)) then
 // The “Set” is higher priority than PMR
 if (runningPriority == 0xFF) || (setPriorityGroup<preemptionLevel) then
 return TRUE; // The Set can preempt

 return FALSE; // Can’t preempt so no interrupt

shared/support/CanSignalVirtualInt

// CanSignalVirtualInt()
// =====================

boolean CanSignalVirtualInt(bits(64) listReg)

 LRType vInt = listReg;

 // First check whether the virtual interface is enabled
B-766 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

Appendix B Pseudocode Definition
B.7 Miscellaneous helper procedures and support functions
 if ICH_HCR_EL2.En == ‘0’ then
 return FALSE;

 // Get the priority group of “vInt” using the BPR appropriate to the group
 vintPriorityGroup = VGroupBits(vInt.Priority, vInt.Group);
 runningPriority = GetHighestActivePriority(ICH_AP0R_EL2, ICH_AP1R_EL2, Zeros());

 // Get the priority group of highest APR using the BPR appropriate to the APR group
 preemptionLevel = VGroupBits(runningPriority<7:1>:’0’, vInt.Group);

 if vInt.State == IntState_Pending && UInt(vInt.Priority) < UInt(ICH_VMCR_EL2.VPMR) then
 // “vInt” is higher priority than PMR
 if (runningPriority == 0x7F) || (UInt(vintPriorityGroup) < UInt(preemptionLevel) then // The
“vInt” can preempt
 return TRUE;

 return FALSE; // Can’t preempt so no interrupt

shared/support/CanSignalVirtualInterrupt

// CanSignalVirtualInterrupt()
// ===========================

boolean CanSignalVirtualInterrupt()
 integer lrIndex = HighestPriorityVirtualInterrupt();

 if (GICH_VLPIR.State == IntState_Pending &&
 (lrIndex < 0 || PriorityIsHigher(GICH_VLPIR.Priority, ICH_LR_EL2[lrIndex].Priority))) then
 // A virtual LPI is the highest priority
 return CanSignalVirtualInt(GICH_VLPIR);

 elsif lrIndex >= 0 then
 // A list register is the highest priority
 return CanSignalVirtualInt(ICH_LR_EL2[lrIndex]);

 // There are no valid and enabled interrupts
 return FALSE;

shared/support/ClearPendingState

// ClearPendingState()
// ===================

boolean ClearPendingState(InterruptTableEntry ite)

 if ite.Type == physical_interrupt then
 CollectionTableEntry cte = ReadCollectionTable(UInt(ite.ICID));

 if (!cte.Valid) then
 return FALSE;

 bits(32) rd_base = cte.RDbase;

 ClearPendingStateLocal(GICR_PENDBASER[rd_base], ite.OutputID);

 else
 VCPUTableEntry vte = ReadVCPUTable(UInt(ite.VCPUID));

 if (!vte.Valid) then
 return FALSE;

 bits(32) rd_base = vte.RDbase;
 Address vpt = vte.VPT_base;

 ClearPendingStateLocal(vpt, ite.OutputID);
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. B-767
ID072617 Non-Confidential

Appendix B Pseudocode Definition
B.7 Miscellaneous helper procedures and support functions
 return TRUE;

shared/support/HighestPriorityPendingInterrupt

// HighestPriorityPendingInterrupt()
// =================================

bits(INTID_SIZE) HighestPriorityPendingInterrupt()
 if GICC_SETR.State != IntState_Pending then // No interrupt pending
 return INTID_SPURIOUS;

 case GICC_SETR.Group of
 when IntGroup_G1NS
 if ICC_IGRPEN1_EL1NS.Enable == ‘0’ then return INTID_SPURIOUS;
 when IntGroup_G1S
 if ICC_IGRPEN1_EL1S.Enable == ‘0’ then return INTID_SPURIOUS;
 when IntGroup_G0
 if ICC_IGRPEN0_EL1.Enable == ‘0’ then return INTID_SPURIOUS;
 otherwise // Reserved
 return INTID_SPURIOUS;

 return GICC_SETR.ID;

shared/support/HighestPriorityVirtualInterrupt

// HighestPriorityVirtualInterrupt()
// =================================
// Returns -1 if there are no pending virtual interrupts

integer HighestPriorityVirtualInterrupt()

 integer lrIndex = -1;
 bits(8) priority = Ones();

 // Find the List Register with the highest priority enabled pending interrupt
 for i = 0 to NumListRegs() - 1
 if (ICH_LR_EL2[i].State == IntState_Pending &&
 ((ICH_LR_EL2[i].Group == ‘0’ && ICH_VMCR_EL2.VENG0 == ‘1’) ||
 (ICH_LR_EL2[i].Group == ‘1’ && ICH_VMCR_EL2.VENG1 == ‘1’)) &&
 PriorityIsHigher(ICH_LR_EL2[i].Priority, priority)) || (lrindex != -1)))then
 // Found an enabled pending list register with a higher priority
 priority = ICH_LR_EL2[i].Priority;
 lrIndex = i;

 return lrIndex;

shared/support/PRIBits

// PRIBits()
// =========

integer PRIBits()
 pri_bits = UInt(if HaveEL(EL3) then ICC_CTLR_EL3.PRIbits else ICC_CTLR_EL1.PRIbits);
 return pri_bits + 1;

shared/support/PriorityDrop

// PriorityDrop
// ============
// Clears the highest active priority in the supplied register; returns FALSE if no priorities were
active.

boolean PriorityDrop[bits(128) &ap]
B-768 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

Appendix B Pseudocode Definition
B.7 Miscellaneous helper procedures and support functions
shared/support/PriorityGroup

// PriorityGroup()
// ===============
// Returns the priority group field for the minimum BPR value for the group

bits(8) PriorityGroup(bits(8) priority, IntGroup group)
 p_bits = PRIBits();

 if p_bits == 8 then
 mask = Ones(7):’0’;
 else
 mask = Ones(p_bits):Zeros(8 - p_bits);

 return (priority AND mask);

shared/support/SetPendingState

// SetPendingState()
// =================

boolean SetPendingState(InterruptTableEntry ite)

 if ite.Type == physical_interrupt then
 CollectionTableEntry cte = ReadCollectionTable(UInt(ite.ICID));

 if !cte.Valid then
 return FALSE;

 bits(32) rd_base = cte.RDbase;

 SetPendingStateLocal(GICR_PENDBASER[rd_base], ite.OutputID);

 else
 VCPUTableEntry vte = ReadVCPUTable(UInt(ite.VCPUID));

 if !vte.Valid then
 return FALSE;

 bits(32) rd_base = vte.RDbase;
 Address vpt = vte.VPT_base;

 SetVirutalPendingStateLocal(vpt, ite.OutputID);

 if (GICR_VPENDBASER[rd_base].Valid == ‘1’ &&
 GICR_VPENDBASER[rd_base].PhysicalAddress != vpt<47:16>) then
 if ite.DoorbellID != ZeroExtend(INTID_SPURIOUS, 32) then
 // Not resident so set the doorbell interrupt pending as well
 SetPendingStateLocal(GICR_PENDBASER[rd_base], ite.DoorbellID);

 return TRUE;

shared/support/SystemRegisterAccessPermitted

// SystemRegisterAccessPermitted()
// ===============================

SystemRegisterAccessPermitted(integer group, boolean dir)

 // The “group” parameter indicates which set of registers is being accessed
 // 0 FIQ (Group 0) registers
 // 1 IRQ (Group 1) registers
 // 2 Common registers
 // First check if any System Registers are enabled
 if PSTATE.EL == EL0 || (HaveEL(EL3) && ICC_SRE_EL3.SRE == ‘0’) then
 // System registers aren’t enabled.
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. B-769
ID072617 Non-Confidential

Appendix B Pseudocode Definition
B.7 Miscellaneous helper procedures and support functions
 UndefinedFault();

 // Check that whether the access is to virtual or physical state
 if HaveEL(EL2) && !IsSecure() && PSTATE.EL == EL1 then
 accessIsVirtual = ((group IN {0,2} && HCR_EL2.FMO == ‘1’) ||
 (group IN {1,2} && HCR_EL2.IMO == ‘1’));
 else
 accessIsVirtual = FALSE;

 sreEL1S = (HaveEL(EL3) && ICC_SRE_EL1S.SRE == ‘1’) || AlwaysUsingSysRegs();
 sreEL2 = HaveEL(EL2) && (ICC_SRE_EL2.SRE == ‘1’ || sreEL1S);

 // Check whether Non-secure EL1 is using system registers or not
 if HaveEL(EL2) && (HCR_EL2.FMO == ‘1’ || HCR_EL2.IMO == ‘1’ || HCR_EL2.AMO == ‘1’) then
 // EL2 is implemented and at least one interrupt exception is virtualized
 sreEL1NS = ((sreEL2 && ICC_SRE_EL1NS.SRE == ‘1’) ||
 (sreEL1S && (HCR_EL2.FMO == ‘0’ || HCR_EL2.IMO == ‘0’ || HCR_EL2.AMO == ‘0’)));
 elsif HaveEL(EL2) then
 sreEL1NS = (ICC_SRE_EL2.SRE == ‘1’ && ICC_SRE_EL1NS.SRE == ‘1’) || sreEL1S;
 else
 sreEL1NS = ICC_SRE_EL1NS.SRE == ‘1’ || sreEL1S;

 // Check if System Registers are enabled for the EL and security state
 if ((PSTATE.EL == EL2 && !IsSecure() && !sreEL2) ||
 (PSTATE.EL == EL1 && IsSecure() && ICC_SRE_EL1S.SRE == ‘0’) ||
 (PSTATE.EL == EL1 && !IsSecure() && !sreEL1NS)) then
 UndefinedFault(); // System registers aren’t enabled.

 // Check if the access should trap to the hypervisor
 if HaveEL(EL2) && !IsSecure() && PSTATE.EL == EL1 then
 if ((group == 0 && ICH_HCR_EL2.TALL0 == ‘1’) ||
 (group == 1 && ICH_HCR_EL2.TALL1 == ‘1’) ||
 (group == 2 && ICH_HCR_EL2.TC == ‘1’)) ||
 (dir == TRUE && ICH_HCR_EL2.TDIR==’1’)) then
 SystemRegisterTrap(EL2);

 // Check that access is allowed given the routing
 if (!HaveEL(EL3) ||
 (group IN {0,2} && SCR_EL3.FIQ == ‘0’) ||
 (group IN {1,2} && SCR_EL3.IRQ == ‘0’)) then
 lowestPhysicalEL = EL1;
 else
 lowestPhysicalEL = EL3;

 if !accessIsVirtual && UInt(PSTATE.EL) < UInt(lowestPhysicalEL) then
 if ELUsingAArch32(EL3) then
 UndefinedFault();
 else
 SystemRegisterTrap(EL3);

 return;
B-770 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

Glossary

Activate An interrupt is activated when its state changes either:
• From pending to active.
• From pending to active and pending.

For more information see Interrupt handling state machine on page 4-51.

Affinity level Provides an indication of relative locality in a multiprocessor system, by defining a particular level within the
system hierarchy. The affinity levels that the GIC uses correspond to those defined in the Multiprocessor Affinity
Register (MPIDR), an ARM processor system control register.

Banked register A register that has multiple instances, with the instance that is in use depending on the PE mode, Security state, or
other PE state.

For more information about register banking in the GIC see Register banking on page 8-171.

Big-endian memory
Means that, for example:

• A byte or halfword at a word-aligned address is the most significant byte or halfword in the word at that
address.

• A byte at a halfword-aligned address is the most significant byte in the halfword at that address.

CONSTRAINED UNPREDICTABLE
Where an instruction can result in UNPREDICTABLE behavior, the ARMv8 architecture specifies a narrow range of
permitted behaviors. This range is the range of CONSTRAINED UNPREDICTABLE behavior. All implementations that
are compliant with the architecture must follow the CONSTRAINED UNPREDICTABLE behavior.

Execution at Non-secure EL1 or EL0 of an instruction that is CONSTRAINED UNPREDICTABLE can be implemented
as generating a trap exception that is taken to EL2, provided that at least one instruction that is not UNPREDICTABLE
and is not CONSTRAINED UNPREDICTABLE causes a trap exception that is taken to EL2.

In body text, the term CONSTRAINED UNPREDICTABLE is shown in SMALL CAPITALS.

See also UNPREDICTABLE.
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. Glossary-771
ID072617 Non-Confidential

 Glossary

Context switch The saving and restoring of computational state when switching between different threads or processes. In this
manual, the term context switch describes any situation where the context is switched by an operating system and
might or might not include changes to the address space.

Deactivate An interrupt is deactivated when its state changes either:
• From active to inactive.
• From active and pending to pending.

For more information see Interrupt handling state machine on page 4-51.

Deprecated Something that is present in the ARM architecture for backwards compatibility. Whenever possible software must
avoid using deprecated features. Features that are deprecated but are not optional are present in current
implementations of the ARM architecture, but might not be present, or might be deprecated and OPTIONAL, in future
versions of the ARM architecture.

See also OPTIONAL.

Distributor A logical component in the GIC that receives interrupts, and determines the priority and distribution of SPIs and
SGIs. The Distributor forwards the interrupt with the highest priority to the corresponding Redistributor and CPU
interface, for priority masking and preemption handling.

See also Distributor on page 3-40.

Doubleword A 64-bit data item. Doublewords are normally at least word-aligned in ARM systems.

Endianness An aspect of the system memory mapping.

See also Big-endian memory and Little-endian memory.

Exception Handles an event. For example, an exception could handle an external interrupt or an undefined instruction.

GIC Stream Protocol interface

A optional interface between the IRI and the PE, specifically between the Redistributor and the associated CPU
interface, that conforms to the AMBA AXI4-Stream protocol. The protocol defines a set of packets that can be sent
between the CPU and the Distributor, together with ordering and flow control rules.

See also Appendix A GIC Stream Protocol interface.

Halfword A 16-bit data item. Halfwords are normally halfword-aligned in ARM systems.

IMPLEMENTATION DEFINED
Means that the behavior is not architecturally defined, but must be defined and documented by individual
implementations.

In body text, the term IMPLEMENTATION DEFINED is shown in SMALL CAPITALS.

Implementation specific

Behavior that is not architecturally defined, and might not be documented by an individual implementations. Used
when there are a number of implementation options available, and the option chosen does not affect software
compatibility.

Interrupt grouping

This is a mechanism to align interrupt handling with the ARMv8 Exception model and Security model. Interrupts
are configured as belonging to either Group 0 or Group 1. In a system with two Security states interrupts are
configured as being in Group 0, Non-secure Group 1, or Secure Group 1.

See also Interrupt grouping on page 4-58.

Interrupt Translation Service (ITS)

An optional hardware mechanism that routes LPIs to the appropriate Redistributor. Software uses a command queue
to configure an ITS.

See also The ITS on page 6-99.
Glossary-772 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

 Glossary

Little-endian memory
Means that:

• A byte or halfword at a word-aligned address is the least significant byte or halfword in the word at that
address.

• A byte at a halfword-aligned address is the least significant byte in the halfword at that address.

List registers
The List registers are a subset of the GIC virtual interface control registers that define the active and pending virtual
interrupts for the virtual CPU interface. List registers indicate whether an interrupt is in Group 0 or Group 1, and
therefore whether it is assigned to a virtual IRQ signal or virtual FIQ signal. The scheduled virtual machine accesses
these interrupt indirectly, using the virtual CPU interface.

See also List register usage resulting in UNPREDICTABLE behavior on page 5-81.

Locality-specific Peripheral interrupt (LPI)

LPIs are optional message-based interrupts that target a specific PE. They can be routed using an optional ITS. LPIs
are always Non-secure Group 1 interrupts, and have edge-triggered behavior.

See also LPIs on page 6-92.

OPTIONAL When applied to a feature of the architecture, OPTIONAL indicates a feature that is not required in an implementation
of the ARM architecture:

• If a feature is OPTIONAL and deprecated, this indicates that the feature is being phased out of the architecture.
ARM expects such a features to be included in a new implementation only if there is a known
backwards-compatibility reason for the inclusion of the feature.

A feature that is OPTIONAL and deprecated might not be present in future versions of the architecture.

• A feature that is OPTIONAL but not deprecated is, typically, a feature added to a version of the ARM
architecture after the initial release of that version of the architecture. ARM recommends that such features
are included in all new implementations of the architecture.

In body text, these meanings of the term OPTIONAL are shown in SMALL CAPITALS.

See also Deprecated.

PE See Processing element (PE).

Peripheral interrupt

An interrupt generated by the assertion of an interrupt request signal input to the GIC. The GIC architecture defines
the following types of peripheral interrupt:

Private Peripheral Interrupt (PPI)

A peripheral interrupt that targets a single, specific PE. PPIs can be either Group 0 or Group 1
interrupts, and they have edge-triggered or level-sensitive behavior.

Shared Peripheral Interrupt (SPI)

A peripheral interrupt that the Distributor can route to a specified PE or to combination of PEs. SPIs
can be either Group 0 or Group 1 interrupts, and they have edge-triggered or level-sensitive
behavior.

See also Shared Peripheral Interrupts on page 4-56.

PPI See Peripheral interrupt.

Preemption level

A preemption level is a supported group priority.

See also Preemption on page 4-71.
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. Glossary-773
ID072617 Non-Confidential

 Glossary

Priority drop A priority drop occurs when the PE signals to the GIC that the highest priority active interrupt has been handled to
the point where the priority can be dropped to the priority that the interrupt had prior to being handled.

See also Interrupt lifecycle on page 4-46.

Processing element (PE)
The abstract machine defined in the ARM architecture, as documented in an ARM Architecture Reference Manual.
A PE implementation compliant with the ARM architecture must conform with the behaviors described in the
corresponding ARM Architecture Reference Manual.

See also ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile.

Quadword A 128-bit data item. Quadwords are normally at least word-aligned in ARM systems.

RAO See Read-As-One (RAO).

RAO/WI Read-As-One, Writes Ignored.

Hardware must implement the field as Read-As-One, and must ignore writes to the field.

Software can rely on the field reading as all 1s, and on writes being ignored.

This description can apply to a single bit that reads as 1, or to a field that reads as all 1s.

See also Read-As-One (RAO).

RAZ See Read-As-Zero (RAZ).

RAZ/WI Read-As-Zero, Writes Ignored.

Hardware must implement the field as Read-As-Zero, and must ignore writes to the field.

Software can rely on the field reading as all 0s, and on writes being ignored.

This description can apply to a single bit that reads as 0, or to a field that reads as all 0s.

See also Read-As-Zero (RAZ).

Read-As-One (RAO)
Hardware must implement the field as reading as all 1s.

Software:
• Can rely on the field reading as all 1s.
• Must use a SBOP policy to write to the field.

This description can apply to a single bit that reads as 1, or to a field that reads as all 1s.

Read-As-Zero (RAZ)
Hardware must implement the field as reading as all 0s.

Software:
• Can rely on the field reading as all 0s
• Must use a SBZP policy to write to the field.

This description can apply to a single bit that reads as 0, or to a field that reads as all 0s.

Redistributor A logical component in the GIC at affinity level 0 that is part of the Interrupt Routing Infrastructure (IRI). It
connects the IRI to the CPU interface. Each PE in the system has a connected Redistributor that routes interrupts to
the appropriate PEs. Every PE in the system has a corresponding Redistributor.

See also Redistributor on page 3-41.

RES0 A reserved bit or field with Should-Be-Zero-or-Preserved (SBZP) behavior.

Note
 The following definition is consistent with that provided in the ARM® Architecture Reference Manual, ARMv8, for
ARMv8-A architecture profile, and therefore has a broad scope.
Glossary-774 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

 Glossary

This term is used for fields in register descriptions, and for fields in architecturally-defined data structures that are
held in memory, for example in translation table descriptors.

Note
 RES0 is not used in descriptions of instruction encodings.

Within the architecture, there are some cases where a register bit or bitfield:
• Is RES0 in some defined architectural context.
• Has different defined behavior in a different architectural context.

This means the definition of RES0 for register fields is:

If a bit is RES0 in all contexts

It is IMPLEMENTATION DEFINED whether:

1. The bit is hardwired to 0. In this case:
• Reads of the bit always return 0.
• Writes to the bit are ignored.

2. The bit can be written. In this case:

• An indirect write to the register sets the bit to 0.

• A read of the bit returns the last value successfully written, by either a direct or an
indirect write, to the bit.
If the bit has not been successfully written since reset, then the read of the bit returns
the reset value if there is one, or otherwise returns an UNKNOWN value.

• A direct write to the bit must update a storage location associated with the bit.

• The value of the bit must have no effect on the operation of the PE, other than
determining the value read back from the bit, unless the ARM® Architecture Reference
Manual, ARMv8, for ARMv8-A architecture profile explicitly defines additional
properties for the bit.

Whether RES0 bits or fields follow behavior 1 or behavior 2 is IMPLEMENTATION DEFINED on a
field-by-field basis.

If a bit is RES0 only in some contexts

When the bit is described as RES0:

• An indirect write to the register sets the bit to 0.

• A read of the bit must return the value last successfully written to the bit, by either a direct or
an indirect write, regardless of the use of the register when the bit was written.
If the bit has not been successfully written since reset, then the read of the bit returns the reset
value if there is one, or otherwise returns an UNKNOWN value.

• A direct write to the bit must update a storage location associated with the bit.

• While the use of the register is such that the bit is described as RES0, the value of the bit must
have no effect on the operation of the PE, other than determining the value read back from
that bit, unless the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture
profile explicitly defines additional properties for the bit.

A bit that is RES0 in a context is reserved for possible future use in that context. To preserve forward compatibility,
software:
• Must not rely on the bit reading as 0.
• Must use an SBZP policy to write to the bit.

The RES0 description can apply to bits or bitfields that are read-only, or are write-only:
• For a read-only bit, RES0 indicates that the bit reads as 0, but software must treat the bit as UNKNOWN.
• For a write-only bit, RES0 indicates that software must treat the bit as SBZ.
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. Glossary-775
ID072617 Non-Confidential

 Glossary

This RES0 description can apply to a single bit that should be written as its preserved value or as 0, or to a field that
should be written as its preserved value or as all 0s.

In body text, the term RES0 is shown in SMALL CAPITALS.

See also Read-As-Zero (RAZ), Should-Be-Zero-or-Preserved (SBZP), UNKNOWN.

RES1 A reserved bit or field with Should-Be-One-or-Preserved (SBOP) behavior.

Note
 The following definition is consistent with that provided in the ARM® Architecture Reference Manual, ARMv8, for
ARMv8-A architecture profile, and therefore has a broad scope.

This term is used for fields in register descriptions, and for fields in architecturally-defined data structures that are
held in memory, for example in translation table descriptors.

Note
 RES1 is not used in descriptions of instruction encodings.

Within the architecture, there are some cases where a register bit or bitfield:
• Is RES1 in some defined architectural context.
• Has different defined behavior in a different architectural context.

This means the definition of RES1 for register fields is:

If a bit is RES1 in all contexts

It is IMPLEMENTATION DEFINED whether:

1. The bit is hardwired to 1. In this case:
• Reads of the bit always return 1.
• Writes to the bit are ignored.

2. The bit can be written. In this case:

• An indirect write to the register sets the bit to 1.

• A read of the bit returns the last value successfully written, by either a direct or an
indirect write, to the bit.
If the bit has not been successfully written since reset, then the read of the bit returns
the reset value if there is one, or otherwise returns an UNKNOWN value.

• A direct write to the bit must update a storage location associated with the bit.

• The value of the bit must have no effect on the operation of the PE, other than
determining the value read back from the bit, unless the ARM® Architecture Reference
Manual, ARMv8, for ARMv8-A architecture profile explicitly defines additional
properties for the bit.

Whether RES1 bits or fields follow behavior 1 or behavior 2 is IMPLEMENTATION DEFINED on a
field-by-field basis.

If a bit is RES1 only in some contexts

When the bit is described as RES1:

• An indirect write to the register sets the bit to 1.

• A read of the bit must return the value last successfully written to the bit, regardless of the
use of the register when the bit was written.

Note
 As indicated in this list, this value might be written by an indirect write to the register.

If the bit has not been successfully written since reset, then the read of the bit returns the reset
value if there is one, or otherwise returns an UNKNOWN value.
Glossary-776 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

 Glossary

• A direct write to the bit must update a storage location associated with the bit.

• While the use of the register is such that the bit is described as RES1, the value of the bit must
have no effect on the operation of the PE, other than determining the value read back from
that bit, unless the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture
profile explicitly defines additional properties for the bit.

A bit that is RES1 in a context is reserved for possible future use in that context. To preserve forward compatibility,
software:
• Must not rely on the bit reading as 1.
• Must use an SBOP policy to write to the bit.

The RES1 description can apply to bits or bitfields that are read-only, or are write-only:
• For a read-only bit, RES1 indicates that the bit reads as 1, but software must treat the bit as UNKNOWN.
• For a write-only bit, RES1 indicates that software must treat the bit as SBO.

This RES1 description can apply to a single bit that should be written as its preserved value or as 1, or to a field that
should be written as its preserved value or as all 1s.

In body text, the term RES1 is shown in SMALL CAPITALS.

See also Read-As-One (RAO), Should-Be-One-or-Preserved (SBOP), UNKNOWN.

Reserved Unless otherwise stated:
• Instructions that are reserved or that access reserved registers have UNPREDICTABLE behavior.
• Bit positions described as reserved are:

— In an RW register, RES0.
— In an RO register, UNK.
— In a WO register, RES0.

SBO See Should-Be-One (SBO).

SBOP See Should-Be-One-or-Preserved (SBOP).

SBZ See Should-Be-Zero (SBZ).

SBZP See Should-Be-Zero-or-Preserved (SBZP).

Scheduled vPE A virtual PE that is currently running on a physical PE. In GICv4, the scheduled vPE is specified by
GICR_VPENDBASER.

Should-Be-One (SBO)
Hardware must ignore writes to the field.

ARM strongly recommends that software writes the field as all 1s. If software writes a value that is not all 1s, it must
expect an UNPREDICTABLE result.

This description can apply to a single bit that should be written as 1, or to a field that should be written as all 1s.

Should-Be-One-or-Preserved (SBOP)
From the introduction of the ARMv8 architecture, the description of Should-Be-One-or-Preserved (SBOP) is
superseded by RES1.

Hardware must ignore writes to the field.

If software has read the field since the PE implementing the field was last reset and initialized, it must preserve the
value of the field by writing the value that it previously read from the field. Otherwise, it must write the field as all
1s.

If software writes a value to the field that is not a value previously read for the field and is not all 1s, it must expect
an UNPREDICTABLE result.

This description can apply to a single bit that should be written as its preserved value or as 1, or to a field that should
be written as its preserved value or as all 1s.
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. Glossary-777
ID072617 Non-Confidential

 Glossary

Should-Be-Zero (SBZ)
Hardware must ignore writes to the field.

ARM strongly recommends that software write the field as all 0s. If software writes a value that is not all 0s, it must
expect an UNPREDICTABLE result.

This description can apply to a single bit that should be written as 0, or to a field that should be written as all 0s.

Should-Be-Zero-or-Preserved (SBZP)
From the introduction of the ARMv8 architecture, the description Should-Be-Zero-or-Preserved (SBZP) is
superseded by RES0.

Hardware must ignore writes to the field.

If software has read the field since the PE implementing the field was last reset and initialized, it must preserve the
value of the field by writing the value that it previously read from the field. Otherwise, it must write the field as all
0s.

If software writes a value to the field that is not a value previously read for the field and is not all 0s, it must expect
an UNPREDICTABLE result.

This description can apply to a single bit that should be written as its preserved value or as 0, or to a field that should
be written as its preserved value or as all 0s.

SGI See Software-generated interrupt (SGI).

Software-generated interrupt (SGI)

An interrupt generated by the GIC in response to software writing to an SGI register in the GIC. SGIs are typically
used for inter-processor communication. SGIs can be either Group 0 or Group 1 interrupts, and have edge-triggered
behavior.

See also Software Generated Interrupts on page 4-55.

SPI See Peripheral interrupt

Spurious interrupt

An interrupt that does not require servicing. Usually, refers to an INTID returned by a GIC to a request from a
connected PE. Returning a spurious INTID indicates that there is no pending interrupt on the CPU interface that the
requesting PE can service.

See also Special INTIDs on page 2-32.

UNDEFINED Indicates an instruction that is not architecturally defined and generates an Undefined Instruction exception. See the
ARM® Architecture Reference Manual, ARMv7-A and ARMv7-R edition or the ARM® Architecture Reference
Manual, ARMv8, for ARMv8-A architecture profile for more information.

UNK An abbreviation indicating that software must treat a field as containing an UNKNOWN value.

Hardware must implement the bit as read as 0, or all 0s for a multi-bit field. Software must not rely on the field
reading as zero.

See also UNKNOWN.

UNK/SBOP Hardware must implement the field as Read-As-One, and must ignore writes to the field.

Software must not rely on the field reading as all 1s, and except for writing back to the register it must treat the value
as if it is UNKNOWN. Software must use an SBOP policy to write to the field.

This description can apply to a single bit that should be written as its preserved value or as 1, or to a field that should
be written as its preserved value or as all 1s.

See also Read-As-One (RAO), Should-Be-One-or-Preserved (SBOP), UNKNOWN.

UNK/SBZP Hardware must implement the bit as Read-As-Zero, and must ignore writes to the field.

Software must not rely on the field reading as all 0s, and except for writing back to the register must treat the value
as if it is UNKNOWN. Software must use an SBZP policy to write to the field.
Glossary-778 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

 Glossary

This description can apply to a single bit that should be written as its preserved value or as 0, or to a field that should
be written as its preserved value or as all 0s.

See also Read-As-Zero (RAZ), Should-Be-Zero-or-Preserved (SBZP), UNKNOWN.

UNKNOWN An UNKNOWN value does not contain valid data, and can vary from moment to moment, instruction to instruction,
and implementation to implementation. An UNKNOWN value must not return information that cannot be accessed at
the current or a lower level of privilege using instructions that are not UNPREDICTABLE, are not CONSTRAINED
UNPREDICTABLE, and do not return UNKNOWN values.

An UNKNOWN value must not be documented or promoted as having a defined value or effect.

In body text, the term UNKNOWN is shown in SMALL CAPITALS.

See also CONSTRAINED UNPREDICTABLE, UNDEFINED, UNK, UNPREDICTABLE.

UNPREDICTABLE
Means the behavior cannot be relied on. UNPREDICTABLE behavior must not perform any function that cannot be
performed at the current or a lower level of privilege using instructions that are not UNPREDICTABLE.

UNPREDICTABLE behavior must not be documented or promoted as having a defined effect.

An instruction that is UNPREDICTABLE can be implemented as UNDEFINED.

In body text, the term UNPREDICTABLE is shown in SMALL CAPITALS.

Valid interrupt ID

An interrupt ID, as returned by a read of ICC_IAR0_EL1 or ICC_IAR1_EL1, that is not a spurious interrupt ID.

See also Interrupt lifecycle on page 4-46.

WI Writes Ignored. In a register that software can write to, a WI attribute applied to a bit or field indicates that the bit
or field ignores the value written by software and retains the value it had before that write.

See also RAO/WI, RAZ/WI, RES0, RES1.

Word A 32-bit data item. Words are normally word-aligned in ARM systems.
ARM IHI 0069D Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. Glossary-779
ID072617 Non-Confidential

 Glossary

Glossary-780 Copyright © 2008, 2011, 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM IHI 0069D
Non-Confidential ID072617

	ARM Generic Interrupt Controller Architecture Specification GIC architecture version 3.0 and version 4.0
	Contents
	Preface
	About this specification
	Intended audience

	Using this specification
	Conventions
	Typographic conventions
	Signals
	Numbers
	Pseudocode descriptions

	Additional reading
	ARM publications
	Other publications

	Feedback
	Feedback on this manual

	1: Introduction
	1.1 About the Generic Interrupt Controller (GIC)
	1.1.1 Changes to the GIC architecture from GICv2

	1.2 Terminology
	1.2.1 Interrupt types
	1.2.2 Interrupt states
	1.2.3 Models for handling interrupts
	1.2.4 Additional terms

	1.3 Supported configurations and compatibility
	1.3.1 Affinity routing configuration
	1.3.2 System register configuration
	1.3.3 GIC control and configuration
	1.3.4 References to the ARMv8 architectural state
	1.3.5 GICv3 with no legacy operation
	1.3.6 GICv3 with legacy operation

	2: Distribution and Routing of Interrupts
	2.1 The Distributor and Redistributors
	2.2 INTIDs
	2.2.1 Special INTIDs
	2.2.2 Implementations with mixed INTD sizes
	2.2.3 Valid interrupt ID check pseudocode

	2.3 Affinity routing
	2.3.1 Routing SPIs and SGIs by PE affinity
	2.3.2 Participating nodes
	2.3.3 Changing affinity routing enables

	3: GIC Partitioning
	3.1 The GIC logical components
	3.2 Interrupt bypass support

	4: Physical Interrupt Handling and Prioritization
	4.1 Interrupt lifecycle
	4.1.1 Physical CPU interface
	4.1.2 Interrupt handling state machine

	4.2 Locality-specific Peripheral Interrupts
	4.3 Private Peripheral Interrupts
	4.4 Software Generated Interrupts
	4.5 Shared Peripheral Interrupts
	4.6 Interrupt grouping
	4.6.1 Interrupt grouping and security
	4.6.2 Interrupt assignment to IRQ and FIQ signals
	4.6.3 Interrupt routing and System register access

	4.7 Enabling the distribution of interrupts
	4.7.1 Enabling individual interrupts
	4.7.2 Interaction of group and individual interrupt enables
	4.7.3 Effect of disabling interrupts

	4.8 Interrupt prioritization
	4.8.1 Non-secure accesses to register fields for Secure interrupt priorities
	4.8.2 Priority grouping
	4.8.3 System register access to the Active Priorities registers
	4.8.4 Preemption
	4.8.5 Priority masking
	4.8.6 Software accesses of interrupt priority
	4.8.7 Changing the priority of enabled PPIs, SGIs, and SPIs

	5: Virtual Interrupt Handling and Prioritization
	5.1 About GIC support for virtualization
	5.2 Operation overview
	5.2.1 Usage model for the List registers
	5.2.2 List register usage resulting in UNPREDICTABLE behavior

	5.3 Configuration and control of VMs
	5.3.1 Association of virtual interrupts with physical interrupts
	5.3.2 The Active Priorities registers
	5.3.3 Maintenance interrupts

	5.4 Virtual LPI support
	5.4.1 Direct injection of virtual interrupts
	5.4.2 Doorbell interrupts

	5.5 Pseudocode

	6: Locality-specific Peripheral Interrupts and the ITS
	6.1 LPIs
	6.1.1 LPI Configuration tables
	6.1.2 LPI Pending tables
	6.1.3 Virtual LPI Configuration tables and virtual LPI Pending tables

	6.2 The ITS
	6.2.1 The ITS tables
	6.2.2 Interrupt collections
	6.2.3 The Device table
	6.2.4 The Interrupt translation table
	6.2.5 The Collection table
	6.2.6 The vPE table
	6.2.7 Control and configuration of the ITS
	6.2.8 The ITS command interface
	6.2.9 Ordering of translations with the output to ITS commands
	6.2.10 Restrictions for INTID mapping rules

	6.3 ITS commands
	6.3.1 IMPLEMENTATION DEFINED sizes in ITS command parameters
	6.3.2 Command errors
	6.3.3 CLEAR
	6.3.4 DISCARD
	6.3.5 INT
	6.3.6 INV
	6.3.7 INVALL
	6.3.8 MAPC
	6.3.9 MAPD
	6.3.10 MAPI
	6.3.11 MAPTI
	6.3.12 MOVALL
	6.3.13 MOVI
	6.3.14 SYNC
	6.3.15 VINVALL
	6.3.16 VMAPI
	6.3.17 VMAPP
	6.3.18 VMAPTI
	6.3.19 VMOVI
	6.3.20 VMOVP
	6.3.21 VSYNC

	6.4 Common ITS pseudocode functions
	6.4.1 ITS helper functions

	6.5 ITS command error encodings
	6.6 ITS power management
	6.6.1 Enabling an ITS
	6.6.2 Disabling an ITS

	7: Power Management
	7.1 Power management

	8: Programmers’ Model
	8.1 About the programmers’ model
	8.1.1 GIC register names
	8.1.2 Relation between System registers and memory-mapped registers
	8.1.3 GIC memory-mapped register access
	8.1.4 Access to memory-mapped registers when System register access is enabled
	8.1.5 Execution state
	8.1.6 Observability of the effects of accesses to the GIC registers
	8.1.7 GIC System register access
	8.1.8 Access to Common registers
	8.1.9 Traps and enables for the ICC_SRE_ELx registers
	8.1.10 Use of control registers for SGI forwarding
	8.1.11 GIC Security States
	8.1.12 Register banking
	8.1.13 Identification registers
	8.1.14 CPU interface register reset domain

	8.2 AArch64 System register descriptions
	8.2.1 ICC_AP0R<n>_EL1, Interrupt Controller Active Priorities Group 0 Registers, n = 0 - 3
	8.2.2 ICC_AP1R<n>_EL1, Interrupt Controller Active Priorities Group 1 Registers, n = 0 - 3
	8.2.3 ICC_ASGI1R_EL1, Interrupt Controller Alias Software Generated Interrupt Group 1 Register
	8.2.4 ICC_BPR0_EL1, Interrupt Controller Binary Point Register 0
	8.2.5 ICC_BPR1_EL1, Interrupt Controller Binary Point Register 1
	8.2.6 ICC_CTLR_EL1, Interrupt Controller Control Register (EL1)
	8.2.7 ICC_CTLR_EL3, Interrupt Controller Control Register (EL3)
	8.2.8 Interrupt Controller Deactivate Interrupt Register
	8.2.9 ICC_EOIR0_EL1, Interrupt Controller End Of Interrupt Register 0
	8.2.10 ICC_EOIR1_EL1, Interrupt Controller End Of Interrupt Register 1
	8.2.11 ICC_HPPIR0_EL1, Interrupt Controller Highest Priority Pending Interrupt Register 0
	8.2.12 ICC_HPPIR1_EL1, Interrupt Controller Highest Priority Pending Interrupt Register 1
	8.2.13 ICC_IAR0_EL1, Interrupt Controller Interrupt Acknowledge Register 0
	8.2.14 ICC_IAR1_EL1, Interrupt Controller Interrupt Acknowledge Register 1
	8.2.15 ICC_IGRPEN0_EL1, Interrupt Controller Interrupt Group 0 Enable register
	8.2.16 ICC_IGRPEN1_EL1, Interrupt Controller Interrupt Group 1 Enable register
	8.2.17 ICC_IGRPEN1_EL3, Interrupt Controller Interrupt Group 1 Enable register (EL3)
	8.2.18 ICC_PMR_EL1, Interrupt Controller Interrupt Priority Mask Register
	8.2.19 ICC_RPR_EL1, Interrupt Controller Running Priority Register
	8.2.20 ICC_SGI0R_EL1, Interrupt Controller Software Generated Interrupt Group 0 Register
	8.2.21 ICC_SGI1R_EL1, Interrupt Controller Software Generated Interrupt Group 1 Register
	8.2.22 ICC_SRE_EL1, Interrupt Controller System Register Enable register (EL1)
	8.2.23 ICC_SRE_EL2, Interrupt Controller System Register Enable register (EL2)
	8.2.24 ICC_SRE_EL3, Interrupt Controller System Register Enable register (EL3)

	8.3 AArch64 System register descriptions of the virtual registers
	8.3.1 ICV_AP0R<n>_EL1, Interrupt Controller Virtual Active Priorities Group 0 Registers, n = 0 - 3
	8.3.2 ICV_AP1R<n>_EL1, Interrupt Controller Virtual Active Priorities Group 1 Registers, n = 0 - 3
	8.3.3 ICV_BPR0_EL1, Interrupt Controller Virtual Binary Point Register 0
	8.3.4 ICV_BPR1_EL1, Interrupt Controller Virtual Binary Point Register 1
	8.3.5 ICV_CTLR_EL1, Interrupt Controller Virtual Control Register
	8.3.6 ICV_DIR_EL1, Interrupt Controller Deactivate Virtual Interrupt Register
	8.3.7 ICV_EOIR0_EL1, Interrupt Controller Virtual End Of Interrupt Register 0
	8.3.8 ICV_EOIR1_EL1, Interrupt Controller Virtual End Of Interrupt Register 1
	8.3.9 ICV_HPPIR0_EL1, Interrupt Controller Virtual Highest Priority Pending Interrupt Register 0
	8.3.10 ICV_HPPIR1_EL1, Interrupt Controller Virtual Highest Priority Pending Interrupt Register 1
	8.3.11 ICV_IAR0_EL1, Interrupt Controller Virtual Interrupt Acknowledge Register 0
	8.3.12 ICV_IAR1_EL1, Interrupt Controller Virtual Interrupt Acknowledge Register 1
	8.3.13 ICV_IGRPEN0_EL1, Interrupt Controller Virtual Interrupt Group 0 Enable register
	8.3.14 ICV_IGRPEN1_EL1, Interrupt Controller Virtual Interrupt Group 1 Enable register
	8.3.15 ICV_PMR_EL1, Interrupt Controller Virtual Interrupt Priority Mask Register
	8.3.16 ICV_RPR_EL1, Interrupt Controller Virtual Running Priority Register

	8.4 AArch64 virtualization control System registers
	8.4.1 ICH_AP0R<n>_EL2, Interrupt Controller Hyp Active Priorities Group 0 Registers, n = 0 - 3
	8.4.2 ICH_AP1R<n>_EL2, Interrupt Controller Hyp Active Priorities Group 1 Registers, n = 0 - 3
	8.4.3 ICH_EISR_EL2, Interrupt Controller End of Interrupt Status Register
	8.4.4 ICH_ELRSR_EL2, Interrupt Controller Empty List Register Status Register
	8.4.5 ICH_HCR_EL2, Interrupt Controller Hyp Control Register
	8.4.6 ICH_LR<n>_EL2, Interrupt Controller List Registers, n = 0 - 15
	8.4.7 ICH_MISR_EL2, Interrupt Controller Maintenance Interrupt State Register
	8.4.8 ICH_VMCR_EL2, Interrupt Controller Virtual Machine Control Register
	8.4.9 ICH_VTR_EL2, Interrupt Controller VGIC Type Register

	8.5 AArch32 System register descriptions
	8.5.1 ICC_AP0R<n>, Interrupt Controller Active Priorities Group 0 Registers, n = 0 - 3
	8.5.2 ICC_AP1R<n>, Interrupt Controller Active Priorities Group 1 Registers, n = 0 - 3
	8.5.3 ICC_ASGI1R, Interrupt Controller Alias Software Generated Interrupt Group 1 Register
	8.5.4 ICC_BPR0, Interrupt Controller Binary Point Register 0
	8.5.5 ICC_BPR1, Interrupt Controller Binary Point Register 1
	8.5.6 ICC_CTLR, Interrupt Controller Control Register
	8.5.7 ICC_DIR, Interrupt Controller Deactivate Interrupt Register
	8.5.8 ICC_EOIR0, Interrupt Controller End Of Interrupt Register 0
	8.5.9 ICC_EOIR1, Interrupt Controller End Of Interrupt Register 1
	8.5.10 ICC_HPPIR0, Interrupt Controller Highest Priority Pending Interrupt Register 0
	8.5.11 ICC_HPPIR1, Interrupt Controller Highest Priority Pending Interrupt Register 1
	8.5.12 ICC_HSRE, Interrupt Controller Hyp System Register Enable register
	8.5.13 ICC_IAR0, Interrupt Controller Interrupt Acknowledge Register 0
	8.5.14 ICC_IAR1, Interrupt Controller Interrupt Acknowledge Register 1
	8.5.15 ICC_IGRPEN0, Interrupt Controller Interrupt Group 0 Enable register
	8.5.16 ICC_IGRPEN1, Interrupt Controller Interrupt Group 1 Enable register
	8.5.17 ICC_MCTLR, Interrupt Controller Monitor Control Register
	8.5.18 ICC_MGRPEN1, Interrupt Controller Monitor Interrupt Group 1 Enable register
	8.5.19 ICC_MSRE, Interrupt Controller Monitor System Register Enable register
	8.5.20 ICC_PMR, Interrupt Controller Interrupt Priority Mask Register
	8.5.21 ICC_RPR, Interrupt Controller Running Priority Register
	8.5.22 ICC_SGI0R, Interrupt Controller Software Generated Interrupt Group 0 Register
	8.5.23 ICC_SGI1R, Interrupt Controller Software Generated Interrupt Group 1 Register
	8.5.24 ICC_SRE, Interrupt Controller System Register Enable register

	8.6 AArch32 System register descriptions of the virtual registers
	8.6.1 ICV_AP0R<n>, Interrupt Controller Virtual Active Priorities Group 0 Registers, n = 0 - 3
	8.6.2 ICV_AP1R<n>, Interrupt Controller Virtual Active Priorities Group 1 Registers, n = 0 - 3
	8.6.3 ICV_BPR0, Interrupt Controller Virtual Binary Point Register 0
	8.6.4 ICV_BPR1, Interrupt Controller Virtual Binary Point Register 1
	8.6.5 ICV_CTLR, Interrupt Controller Virtual Control Register
	8.6.6 ICV_DIR, Interrupt Controller Deactivate Virtual Interrupt Register
	8.6.7 ICV_EOIR0, Interrupt Controller Virtual End Of Interrupt Register 0
	8.6.8 ICV_EOIR1, Interrupt Controller Virtual End Of Interrupt Register 1
	8.6.9 ICV_HPPIR0, Interrupt Controller Virtual Highest Priority Pending Interrupt Register 0
	8.6.10 ICV_HPPIR1, Interrupt Controller Virtual Highest Priority Pending Interrupt Register 1
	8.6.11 ICV_IAR0, Interrupt Controller Virtual Interrupt Acknowledge Register 0
	8.6.12 ICV_IAR1, Interrupt Controller Virtual Interrupt Acknowledge Register 1
	8.6.13 ICV_IGRPEN0, Interrupt Controller Virtual Interrupt Group 0 Enable register
	8.6.14 ICV_IGRPEN1, Interrupt Controller Virtual Interrupt Group 1 Enable register
	8.6.15 ICV_PMR, Interrupt Controller Virtual Interrupt Priority Mask Register
	8.6.16 ICV_RPR, Interrupt Controller Virtual Running Priority Register

	8.7 AArch32 virtualization control System registers
	8.7.1 ICH_AP0R<n>, Interrupt Controller Hyp Active Priorities Group 0 Registers, n = 0 - 3
	8.7.2 ICH_AP1R<n>, Interrupt Controller Hyp Active Priorities Group 1 Registers, n = 0 - 3
	8.7.3 ICH_EISR, Interrupt Controller End of Interrupt Status Register
	8.7.4 ICH_ELRSR, Interrupt Controller Empty List Register Status Register
	8.7.5 ICH_HCR, Interrupt Controller Hyp Control Register
	8.7.6 ICH_LR<n>, Interrupt Controller List Registers, n = 0 - 15
	8.7.7 ICH_LRC<n>, Interrupt Controller List Registers, n = 0 - 15
	8.7.8 ICH_MISR, Interrupt Controller Maintenance Interrupt State Register
	8.7.9 ICH_VMCR, Interrupt Controller Virtual Machine Control Register
	8.7.10 ICH_VTR, Interrupt Controller VGIC Type Register

	8.8 The GIC Distributor register map
	8.9 The GIC Distributor register descriptions
	8.9.1 GICD_CLRSPI_NSR, Clear Non-secure SPI Pending Register
	8.9.2 GICD_CLRSPI_SR, Clear Secure SPI Pending Register
	8.9.3 GICD_CPENDSGIR<n>, SGI Clear-Pending Registers, n = 0 - 3
	8.9.4 GICD_CTLR, Distributor Control Register
	8.9.5 GICD_ICACTIVER<n>, Interrupt Clear-Active Registers, n = 0 - 31
	8.9.6 GICD_ICENABLER<n>, Interrupt Clear-Enable Registers, n = 0 - 31
	8.9.7 GICD_ICFGR<n>, Interrupt Configuration Registers, n = 0 - 63
	8.9.8 GICD_ICPENDR<n>, Interrupt Clear-Pending Registers, n = 0 - 31
	8.9.9 GICD_IGROUPR<n>, Interrupt Group Registers, n = 0 - 31
	8.9.10 GICD_IGRPMODR<n>, Interrupt Group Modifier Registers, n = 0 - 31
	8.9.11 GICD_IIDR, Distributor Implementer Identification Register
	8.9.12 GICD_IPRIORITYR<n>, Interrupt Priority Registers, n = 0 - 254
	8.9.13 GICD_IROUTER<n>, Interrupt Routing Registers, n = 32 - 1019
	8.9.14 GICD_ISACTIVER<n>, Interrupt Set-Active Registers, n = 0 - 31
	8.9.15 GICD_ISENABLER<n>, Interrupt Set-Enable Registers, n = 0 - 31
	8.9.16 GICD_ISPENDR<n>, Interrupt Set-Pending Registers, n = 0 - 31
	8.9.17 GICD_ITARGETSR<n>, Interrupt Processor Targets Registers, n = 0 - 254
	8.9.18 GICD_NSACR<n>, Non-secure Access Control Registers, n = 0 - 63
	8.9.19 GICD_SETSPI_NSR, Set Non-secure SPI Pending Register
	8.9.20 GICD_SETSPI_SR, Set Secure SPI Pending Register
	8.9.21 GICD_SGIR, Software Generated Interrupt Register
	8.9.22 GICD_SPENDSGIR<n>, SGI Set-Pending Registers, n = 0 - 3
	8.9.23 GICD_STATUSR, Error Reporting Status Register
	8.9.24 GICD_TYPER, Interrupt Controller Type Register

	8.10 The GIC Redistributor register map
	8.11 The GIC Redistributor register descriptions
	8.11.1 GICR_CLRLPIR, Clear LPI Pending Register
	8.11.2 GICR_CTLR, Redistributor Control Register
	8.11.3 GICR_ICACTIVER0, Interrupt Clear-Active Register 0
	8.11.4 GICR_ICENABLER0, Interrupt Clear-Enable Register 0
	8.11.5 GICR_ICFGR0, Interrupt Configuration Register 0
	8.11.6 GICR_ICFGR1, Interrupt Configuration Register 1
	8.11.7 GICR_ICPENDR0, Interrupt Clear-Pending Register 0
	8.11.8 GICR_IGROUPR0, Interrupt Group Register 0
	8.11.9 GICR_IGRPMODR0, Interrupt Group Modifier Register 0
	8.11.10 GICR_IIDR, Redistributor Implementer Identification Register
	8.11.11 GICR_INVALLR, Redistributor Invalidate All Register
	8.11.12 GICR_INVLPIR, Redistributor Invalidate LPI Register
	8.11.13 GICR_IPRIORITYR<n>, Interrupt Priority Registers, n = 0 - 7
	8.11.14 GICR_ISACTIVER0, Interrupt Set-Active Register 0
	8.11.15 GICR_ISENABLER0, Interrupt Set-Enable Register 0
	8.11.16 GICR_ISPENDR0, Interrupt Set-Pending Register 0
	8.11.17 GICR_NSACR, Non-secure Access Control Register
	8.11.18 GICR_PENDBASER, Redistributor LPI Pending Table Base Address Register
	8.11.19 GICR_PROPBASER, Redistributor Properties Base Address Register
	8.11.20 GICR_SETLPIR, Set LPI Pending Register
	8.11.21 GICR_STATUSR, Error Reporting Status Register
	8.11.22 GICR_SYNCR, Redistributor Synchronize Register
	8.11.23 GICR_TYPER, Redistributor Type Register
	8.11.24 GICR_VPENDBASER, Virtual Redistributor LPI Pending Table Base Address Register
	8.11.25 GICR_VPROPBASER, Virtual Redistributor Properties Base Address Register
	8.11.26 GICR_WAKER, Redistributor Wake Register

	8.12 The GIC CPU interface register map
	8.13 The GIC CPU interface register descriptions
	8.13.1 GICC_ABPR, CPU Interface Aliased Binary Point Register
	8.13.2 GICC_AEOIR, CPU Interface Aliased End Of Interrupt Register
	8.13.3 GICC_AHPPIR, CPU Interface Aliased Highest Priority Pending Interrupt Register
	8.13.4 GICC_AIAR, CPU Interface Aliased Interrupt Acknowledge Register
	8.13.5 GICC_APR<n>, CPU Interface Active Priorities Registers, n = 0 - 3
	8.13.6 GICC_BPR, CPU Interface Binary Point Register
	8.13.7 GICC_CTLR, CPU Interface Control Register
	8.13.8 GICC_DIR, CPU Interface Deactivate Interrupt Register
	8.13.9 GICC_EOIR, CPU Interface End Of Interrupt Register
	8.13.10 GICC_HPPIR, CPU Interface Highest Priority Pending Interrupt Register
	8.13.11 GICC_IAR, CPU Interface Interrupt Acknowledge Register
	8.13.12 GICC_IIDR, CPU Interface Identification Register
	8.13.13 GICC_NSAPR<n>, CPU Interface Non-secure Active Priorities Registers, n = 0 - 3
	8.13.14 GICC_PMR, CPU Interface Priority Mask Register
	8.13.15 GICC_RPR, CPU Interface Running Priority Register
	8.13.16 GICC_STATUSR, CPU Interface Status Register

	8.14 The GIC virtual CPU interface register map
	8.15 The GIC virtual CPU interface register descriptions
	8.15.1 GICV_ABPR, Virtual Machine Aliased Binary Point Register
	8.15.2 GICV_AEOIR, Virtual Machine Aliased End Of Interrupt Register
	8.15.3 GICV_AHPPIR, Virtual Machine Aliased Highest Priority Pending Interrupt Register
	8.15.4 GICV_AIAR, Virtual Machine Aliased Interrupt Acknowledge Register
	8.15.5 GICV_APR<n>, Virtual Machine Active Priorities Registers, n = 0 - 3
	8.15.6 GICV_BPR, Virtual Machine Binary Point Register
	8.15.7 GICV_CTLR, Virtual Machine Control Register
	8.15.8 GICV_DIR, Virtual Machine Deactivate Interrupt Register
	8.15.9 GICV_EOIR, Virtual Machine End Of Interrupt Register
	8.15.10 GICV_HPPIR, Virtual Machine Highest Priority Pending Interrupt Register
	8.15.11 GICV_IAR, Virtual Machine Interrupt Acknowledge Register
	8.15.12 GICV_IIDR, Virtual Machine CPU Interface Identification Register
	8.15.13 GICV_PMR, Virtual Machine Priority Mask Register
	8.15.14 GICV_RPR, Virtual Machine Running Priority Register
	8.15.15 GICV_STATUSR, Virtual Machine Error Reporting Status Register

	8.16 The GIC virtual interface control register map
	8.17 The GIC virtual interface control register descriptions
	8.17.1 GICH_APR<n>, Active Priorities Registers, n = 0 - 3
	8.17.2 GICH_EISR, End Interrupt Status Register
	8.17.3 GICH_ELRSR, Empty List Register Status Register
	8.17.4 GICH_HCR, Hypervisor Control Register
	8.17.5 GICH_LR<n>, List Registers, n = 0 - 15
	8.17.6 GICH_MISR, Maintenance Interrupt Status Register
	8.17.7 GICH_VMCR, Virtual Machine Control Register
	8.17.8 GICH_VTR, Virtual Type Register

	8.18 The ITS register map
	8.19 The ITS register descriptions
	8.19.1 GITS_BASER<n>, ITS Translation Table Descriptors, n = 0 - 7
	8.19.2 GITS_CBASER, ITS Command Queue Descriptor
	8.19.3 GITS_CREADR, ITS Read Register
	8.19.4 GITS_CTLR, ITS Control Register
	8.19.5 GITS_CWRITER, ITS Write Register
	8.19.6 GITS_IIDR, ITS Identification Register
	8.19.7 GITS_TRANSLATER, ITS Translation Register
	8.19.8 GITS_TYPER, ITS Type Register

	8.20 Pseudocode
	8.20.1 AArch64 functions
	8.20.2 Functions for memory-mapped registers

	9: System Error Reporting
	9.1 About System Error reporting
	9.1.1 Pseudocode

	10: Legacy Operation and Asymmetric Configurations
	10.1 Legacy support of interrupts and asymmetric configurations
	10.1.1 Use of the special INTID 1022
	10.1.2 Legacy configurations
	10.1.3 Legacy operation and bypass support

	10.2 The asymmetric configuration
	10.2.1 Asymmetric operation and the use of ICC_CTLR_EL3.RM

	10.3 Support for legacy operation of VMs
	10.3.1 Accessing GIC virtual CPU interface registers using the memory-mapped register interface

	A: GIC Stream Protocol interface
	A.1 Overview
	A.1.1 Terminology

	A.2 Signals and the GIC Stream Protocol
	A.2.1 Signals
	A.2.2 Packet format

	A.3 The GIC Stream Protocol
	A.3.1 Rules associated with the downstream Redistributor commands
	A.3.2 Rules associated with the upstream CPU interface commands

	A.4 Alphabetic list of command and response packet formats
	A.4.1 Activate (ICC)
	A.4.2 Activate Acknowledge (IRI)
	A.4.3 Clear (IRI)
	A.4.4 Clear Acknowledge (ICC)
	A.4.5 Deactivate (ICC)
	A.4.6 Deactivate Acknowledge (IRI)
	A.4.7 Downstream Control (IRI)
	A.4.8 Downstream Control Acknowledge (ICC)
	A.4.9 Generate SGI (ICC)
	A.4.10 Generate SGI Acknowledge (IRI)
	A.4.11 Quiesce (IRI)
	A.4.12 Quiesce Acknowledge (ICC)
	A.4.13 Release (ICC)
	A.4.14 Set (IRI)
	A.4.15 Upstream Control (ICC)
	A.4.16 Upstream Control Acknowledge (IRI)
	A.4.17 VClear (IRI)
	A.4.18 VSet (IRI)

	B: Pseudocode Definition
	B.1 About ARM pseudocode
	B.1.1 General limitations of ARM pseudocode

	B.2 Data types
	B.2.1 General data type rules
	B.2.2 Bitstrings
	B.2.3 Integers
	B.2.4 Reals
	B.2.5 Booleans
	B.2.6 Enumerations
	B.2.7 Lists
	B.2.8 Arrays

	B.3 Expressions
	B.3.1 General expression syntax
	B.3.2 Operators and functions - polymorphism and prototypes
	B.3.3 Precedence rules

	B.4 Operators and built-in functions
	B.4.1 Operations on generic types
	B.4.2 Operations on Booleans
	B.4.3 Bitstring manipulation
	B.4.4 Arithmetic

	B.5 Statements and program structure
	B.5.1 Simple statements
	B.5.2 Compound statements
	B.5.3 Comments

	B.6 Pseudocode terminology
	B.7 Miscellaneous helper procedures and support functions
	B.7.1 Helper functions
	B.7.2 Support functions

	Glossary

