
Arm® Cortex®-M55 Processor
Revision: r0p2

Technical Reference Manual

Copyright © 2019, 2020 Arm Limited or its affiliates. All rights reserved.
101051_0002_02_en

Arm® Cortex®-M55 Processor
Technical Reference Manual
Copyright © 2019, 2020 Arm Limited or its affiliates. All rights reserved.

Release Information

Document History

Issue Date Confidentiality Change

0000-02 07 June 2019 Confidential First beta release for r0p0

0000-04 20 December 2019 Confidential First limited access release for r0p0

0001-05 31 March 2020 Non-Confidential First early access release for r0p1

0002-01 16 July 2020 Non-Confidential First release for r0p2

0002-02 30 October 2020 Non-Confidential Second release for r0p2

Non-Confidential Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information contained in
this document may be protected by one or more patents or pending patent applications. No part of this document may be
reproduced in any form by any means without the express prior written permission of Arm. No license, express or implied, by
estoppel or otherwise to any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use
the information for the purposes of determining whether implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE
WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, and has
undertaken no analysis to identify or understand the scope and content of, third party patents, copyrights, trade secrets, or other
rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING
OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure of
this document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof is
not exported, directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s customers is
not intended to create or refer to any partnership relationship with any other company. Arm may make changes to this document at
any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any click through or signed written
agreement covering this document with Arm, then the click through or signed written agreement prevails over and supersedes the
conflicting provisions of these terms. This document may be translated into other languages for convenience, and you agree that if
there is any conflict between the English version of this document and any translation, the terms of the English version of the
Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited (or its
subsidiaries) in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this document may be the
trademarks of their respective owners. Please follow Arm’s trademark usage guidelines at http://www.arm.com/company/policies/
trademarks.

Copyright © 2019, 2020 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

 Arm® Cortex®-M55 Processor

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

2

Non-Confidential

http://www.arm.com/company/policies/trademarks
http://www.arm.com/company/policies/trademarks

110 Fulbourn Road, Cambridge, England CB1 9NJ.

(LES-PRE-20349)

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license restrictions in
accordance with the terms of the agreement entered into by Arm and the party that Arm delivered this document to.

Unrestricted Access is an Arm internal classification.

Product Status

The information in this document is Final, that is for a developed product.

Web Address

developer.arm.com

 Arm® Cortex®-M55 Processor

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

3

Non-Confidential

https://developer.arm.com

Contents
Arm® Cortex®-M55 Processor Technical Reference
Manual

Preface
About this book 11
Feedback .. 15

Chapter 1 Introduction
1.1 Cortex®-M55 processor overview 1-17
1.2 Cortex®-M55 features 1-18
1.3 Supported standards and specifications .. 1-21
1.4 Design tasks .. 1-23
1.5 Documentation 1-24
1.6 Product revisions 1-25

Chapter 2 Technical overview
2.1 Cortex®-M55 processor components 2-27
2.2 Interfaces 2-34
2.3 Security .. 2-36
2.4 Reliability 2-37
2.5 Power intent 2-38
2.6 Cortex®-M55 implementation options 2-39

Chapter 3 Programmers model
3.1 Security states, operation, and execution modes .. 3-43

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

4

Non-Confidential

3.2 Instruction set summary 3-44
3.3 Exclusive monitor 3-45
3.4 Cortex®-M55 processor core registers summary 3-46
3.5 Architectural registers .. 3-48
3.6 Exceptions 3-49

Chapter 4 System registers
4.1 System control register summary .. 4-51
4.2 Identification register summary .. 4-55
4.3 AFSR, Auxiliary Fault Status Register 4-59
4.4 CPUID, CPUID Base Register 4-61
4.5 Cache identification register summary 4-62
4.6 REVIDR, Revision ID Register 4-66
4.7 Implementation control register summary 4-67
4.8 ACTLR, Auxiliary Control Register 4-68
4.9 ICTR, Interrupt Controller Type Register 4-71
4.10 IMPLEMENTATION DEFINED registers summary .. 4-72
4.11 Direct cache access registers .. 4-75
4.12 Error bank registers 4-81
4.13 MSCR, Memory System Control Register 4-87
4.14 PAHBCR, P-AHB Control Register .. 4-90
4.15 PFCR, Prefetcher Control Register 4-91
4.16 Power mode control registers .. 4-92
4.17 Processor configuration information registers 4-95
4.18 ID_PFR0, Processor Feature Register 0 4-100
4.19 ITCMCR and DTCMCR, TCM Control Registers 4-101
4.20 TCM security gate registers 4-103
4.21 EWIC interrupt status access registers 4-108

Chapter 5 Initialization
5.1 Initialization overview 5-112
5.2 Initializing and reprogramming the MPU .. 5-113
5.3 Initializing the EPU 5-114
5.4 Programming the SAU 5-115
5.5 Initializing the instruction and data cache .. 5-116
5.6 Enabling the branch cache 5-118
5.7 Enabling and preloading the TCM 5-119
5.8 Enabling and locking the TCM security gates 5-120
5.9 Enabling the P-AHB interface .. 5-121

Chapter 6 Power management
6.1 Power domains .. 6-123
6.2 Power states .. 6-125
6.3 Power and operating mode transitions .. 6-126
6.4 Core P-Channel and power mode selection .. 6-130
6.5 COREPACTIVE and required power mode 6-132
6.6 PDCORE low-power requirements .. 6-135
6.7 PDEPU low-power requirements 6-136
6.8 PDRAMS powerdown requirements .. 6-137
6.9 Warm reset power mode 6-138

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

5

Non-Confidential

6.10 Debug Q-Channel and PDDEBUG power domain 6-140
6.11 Q-Channel clock control 6-141
6.12 PWRDBGWAKEQACTIVE 6-142

Chapter 7 Memory model
7.1 Memory map .. 7-144
7.2 Memory types .. 7-146
7.3 Private Peripheral Bus 7-148
7.4 Unaligned accesses 7-150
7.5 Access privilege level for Device and Normal memory 7-152
7.6 Memory ordering and barriers 7-153
7.7 Execute Only Memory 7-154

Chapter 8 Memory Authentication
8.1 MAU features 8-156
8.2 Security Attribution Unit 8-157
8.3 Memory Protection Unit 8-159
8.4 Implementation Defined Attribution Unit .. 8-161
8.5 Memory regions not controlled by SAU and IDAU 8-162
8.6 Security attribution signals 8-163
8.7 TCM Gate Units 8-164
8.8 TCM and P-AHB security access control 8-165

Chapter 9 Memory system
9.1 Memory system features 9-171
9.2 Memory system faults .. 9-173
9.3 Memory system behavior 9-175
9.4 Master-AXI interface .. 9-179
9.5 Peripheral AHB interface 9-185
9.6 S-AHB interface 9-188
9.7 EPPB interface 9-191
9.8 TCM interfaces 9-192
9.9 Instruction and data cache 9-196
9.10 Store buffer .. 9-204
9.11 Internal local exclusive access monitor 9-206
9.12 M-AXI and P-AHB interaction with the global exclusive monitor 9-207
9.13 MBIST .. 9-208

Chapter 10 Reliability, Availability, and Serviceability Extension support
10.1 Cortex®-M55 processor implementation of RAS .. 10-210
10.2 ECC memory protection behavior 10-212
10.3 Interface protection behavior 10-219
10.4 RAS memory barriers .. 10-221
10.5 RAS Extension registers .. 10-222

Chapter 11 Nested Vectored Interrupt Controller
11.1 NVIC features 11-232
11.2 Registers associated with interrupt control and behavior 11-233
11.3 NVIC register summary 11-234
11.4 Software Interrupt Generation register summary 11-235
11.5 SysTick Timer register summary 11-236

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

6

Non-Confidential

Chapter 12 External coprocessors
12.1 External coprocessors features 12-238
12.2 Operation 12-239
12.3 Data transfer rates 12-240
12.4 Coprocessor instruction restrictions 12-241
12.5 Debug access to coprocessor registers usage constraints 12-242
12.6 Exceptions and context switch 12-243
12.7 Response to coprocessor errors 12-244
12.8 Hazard between load and store instructions followed by coprocessor transactions

.. 12-245

Chapter 13 Floating-point and MVE support
13.1 Floating-point and MVE operation 13-247
13.2 Floating-point and MVE register summary 13-249
13.3 FPDSCR and FPSCR register reset values 13-250
13.4 Powering down the EPU .. 13-251

Chapter 14 Debug
14.1 Debug functionality .. 14-253
14.2 D-AHB interface 14-259

Chapter 15 Performance Monitoring Unit Extension
15.1 PMU features 15-266
15.2 PMU events 15-267
15.3 PMU register summary .. 15-272

Chapter 16 Instrumentation Trace Macrocell
16.1 ITM features 16-275
16.2 ITM register summary 16-277
16.3 ITM_TPR, ITM Trace Privilege Register .. 16-279
16.4 ITM_ITCTRL, ITM Integration Mode Control Register 16-280
16.5 ITM_ITWRITE, Integration Write Register 16-281
16.6 ITM_ITREAD, Integration Read Register 16-282

Chapter 17 Data Watchpoint and Trace
17.1 DWT features 17-284
17.2 DWT debug access control 17-286
17.3 DWT comparators 17-288
17.4 Cycle counter and profiling counters 17-289
17.5 DWT register summary .. 17-290

Chapter 18 Cross Trigger Interface
18.1 CTI features 18-294
18.2 CTI register summary .. 18-296
18.3 CTI_CONTROL, CTI Control Register 18-298
18.4 CTI_INACK, CTI Interrupt Acknowledge Register 18-299
18.5 CTI_APPSET, CTI Application Channel Set Register 18-300
18.6 CTI_APPCLR, CTI Application Channel Clear Register 18-301
18.7 CTI_APPPULSE, CTI Application Channel Pulse Register 18-302
18.8 CTI_INEN<n>, n=0-5, CTI Trigger <n> to Channel Enable Register 18-303
18.9 CTI_OUTEN<n>, n=0-7, CTI Channel <n> to Trigger Enable Register 18-304

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

7

Non-Confidential

18.10 CTI_TRIGINSTATUS, CTI Trigger Input Status Register 18-306
18.11 CTI_TRIGOUTSTATUS, CTI Trigger Output Status Register 18-307
18.12 CTI_CHINSTATUS, CTI Channel Input Status Register 18-308
18.13 CTI_CHOUTSTATUS, CTI Channel Output Status Register 18-309
18.14 CTI_CHANNELGATE, CTI Channel Gate Register 18-310
18.15 CTI_ITCHOUT, Integration Test Channel Output Register 18-311
18.16 CTI_ITTRIGOUT, Integration Test Trigger Output Register 18-312
18.17 CTI_ITCHIN, Integration Test Channel Input Register 18-314
18.18 CTI_ITTRIGIN, Integration Test Trigger Input Register 18-315
18.19 CTI_ITCONTROL, Integration Mode Control Register .. 18-316
18.20 CTI_DEVARCH, Device Architecture Register .. 18-317
18.21 CTI_DEVID, Device Configuration Register .. 18-318
18.22 CTI_DEVTYPE, Device Type Identifier Register 18-319
18.23 CTI_PIDR4, Peripheral Identification Register 4 18-320
18.24 CTI_PIDR5, Peripheral Identification Register 5 18-321
18.25 CTI_PIDR6, Peripheral Identification Register 6 18-322
18.26 CTI_PIDR7, Peripheral Identification Register 7 18-323
18.27 CTI_PIDR0, Peripheral Identification Register 0 18-324
18.28 CTI_PIDR1, Peripheral Identification Register 1 18-325
18.29 CTI_PIDR2, Peripheral Identification Register 2 18-326
18.30 CTI_PIDR3, Peripheral Identification Register 3 18-327
18.31 CTI_ CIDR0, Component Identification Register 0 .. 18-328
18.32 CTI_ CIDR1, Component Identification Register 1 .. 18-329
18.33 CTI_ CIDR2, Component Identification Register 2 .. 18-330
18.34 CTI_ CIDR3, Component Identification Register 3 .. 18-331

Chapter 19 Breakpoint Unit
19.1 BPU features 19-333
19.2 BPU register summary 19-334

Appendix A External Wakeup Interrupt Controller
A.1 EWIC features Appx-A-337
A.2 EWIC register summary Appx-A-338

Appendix B Trace Port Interface Unit
B.1 TPIU features Appx-B-350
B.2 TPIU register summary .. Appx-B-353

Appendix C Signal descriptions
C.1 Clock and clock enable signals Appx-C-377
C.2 Reset signals Appx-C-378
C.3 Static configuration signals .. Appx-C-379
C.4 Reset configuration signals Appx-C-381
C.5 Cache initialization signal Appx-C-382
C.6 Instruction execution control signals .. Appx-C-383
C.7 Instruction Tightly Coupled Memory interface signals Appx-C-384
C.8 Data Tightly Coupled Memory interface signals .. Appx-C-386
C.9 M-AXI interface signals .. Appx-C-388
C.10 S-AHB interface signals Appx-C-392
C.11 P-AHB interface signals Appx-C-394
C.12 D-AHB interface signals Appx-C-396

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

8

Non-Confidential

C.13 EPPB interface signals .. Appx-C-398
C.14 External coprocessor interface signals .. Appx-C-399
C.15 Debug interface signals Appx-C-400
C.16 P-Channel and Q-Channel power control signals Appx-C-401
C.17 Q-Channel clock control signals .. Appx-C-402
C.18 Power compatibility control signals .. Appx-C-403
C.19 ITM interface signals Appx-C-404
C.20 ETM interface signals .. Appx-C-405
C.21 Trace synchronization and trigger signals Appx-C-406
C.22 CTI interface signals .. Appx-C-407
C.23 Interrupt signals Appx-C-408
C.24 WIC interface signals Appx-C-409
C.25 Event signals Appx-C-411
C.26 IDAU interface signals Appx-C-412
C.27 Miscellaneous signals .. Appx-C-413
C.28 Error interface signals .. Appx-C-417
C.29 Floating-point exception signals Appx-C-418
C.30 Test interface signals Appx-C-419
C.31 Reserved signals Appx-C-420

Appendix D UNPREDICTABLE Behaviors
D.1 Use of instructions defined in architecture variants Appx-D-422
D.2 Use of Program Counter - R15 encoding Appx-D-423
D.3 Use of Stack Pointer - as a general-purpose register R13 Appx-D-424
D.4 Register list in load and store multiple instructions Appx-D-425
D.5 Exception-continuable instructions .. Appx-D-426
D.6 Stack limit checking Appx-D-427
D.7 UNPREDICTABLE instructions within an IT block Appx-D-428
D.8 Memory access and address space .. Appx-D-429
D.9 MPU programming Appx-D-430
D.10 Miscellaneous UNPREDICTABLE instruction behavior Appx-D-431

Appendix E Revisions
E.1 Revisions Appx-E-433

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

9

Non-Confidential

Preface

This preface introduces the Arm® Cortex®-M55 Processor Technical Reference Manual.

It contains the following:
• About this book on page 11.
• Feedback on page 15.

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

10

Non-Confidential

 About this book
This manual is for the Cortex®-M55 processor. It provides reference information and contains
programming details for registers. It also describes the memory system, the interrupts, the debug
features, and other key features of the processor.

 Product revision status

The rxpy identifier indicates the revision status of the product described in this book, for example, r1p2,
where:

rx Identifies the major revision of the product, for example, r1.
py Identifies the minor revision or modification status of the product, for example, p2.

 Intended audience

This manual is written to help system designers, system integrators, verification engineers, and software
programmers who are implementing a System on Chip (SoC) device based on the Cortex®-M55
processor.

 Using this book

This book is organized into the following chapters:

Chapter 1 Introduction
This chapter provides an overview of the Cortex-M55 processor and its features.

Chapter 2 Technical overview
This chapter describes the Cortex-M55 processor components and configuration options.

Chapter 3 Programmers model
This chapter describes the Cortex-M55 processor register set, modes of operation, and provides
information on programming the Cortex-M55 processor.

Chapter 4 System registers
This chapter describes the system registers for the Cortex-M55 processor.

Chapter 5 Initialization
This chapter describes how to initialize the Cortex-M55 processor and which registers to access to
enable functionality before using the processor features.

Chapter 6 Power management
This chapter introduces Cortex-M55 processor power management concepts.

Chapter 7 Memory model
This chapter describes the Cortex-M55 processor memory model.

Chapter 8 Memory Authentication
This chapter describes the Memory Authentication Unit (MAU) responsible for controlling access
to memory.

Chapter 9 Memory system
This chapter describes the Cortex-M55 processor memory system.

Chapter 10 Reliability, Availability, and Serviceability Extension support
This chapter describes the Reliability, Availability, and Serviceability (RAS) features implemented
in the Cortex-M55 processor.

Chapter 11 Nested Vectored Interrupt Controller
This chapter describes the Nested Vectored Interrupt Controller (NVIC).

Chapter 12 External coprocessors
This chapter describes the interface and programmer's model for connecting and using external
coprocessors.

 Preface
 About this book

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

11

Non-Confidential

Chapter 13 Floating-point and MVE support
This chapter describes the Extension Processing Unit (EPU), which controls floating-point and M-
profile Vector Extension (MVE) support.

Chapter 14 Debug
This chapter describes the debug system.

Chapter 15 Performance Monitoring Unit Extension
This chapter describes the Performance Monitoring Unit (PMU) Extension.

Chapter 16 Instrumentation Trace Macrocell
This chapter describes the Instrumentation Trace Macrocell (ITM).

Chapter 17 Data Watchpoint and Trace
This chapter describes the Data Watchpoint and Trace (DWT).

Chapter 18 Cross Trigger Interface
This chapter describes the Cross Trigger Interface (CTI).

Chapter 19 Breakpoint Unit
This chapter describes the Breakpoint Unit (BPU).

Appendix A External Wakeup Interrupt Controller
This appendix describes the External Wakeup Interrupt Controller (EWIC) that can be used with
the Cortex-M55 processor.

Appendix B Trace Port Interface Unit
This appendix describes the Trace Port Interface Unit (TPIU) that can be used with the Cortex-
M55 processor.

Appendix C Signal descriptions
This appendix describes the Cortex-M55 processor signals.

Appendix D UNPREDICTABLE Behaviors
This appendix summarizes the behavior of the Cortex-M55 processor in cases where the
Armv8.1‑M architecture is UNPREDICTABLE.

Appendix E Revisions
This appendix describes the technical changes between released issues of this book.

Glossary

The Arm® Glossary is a list of terms used in Arm documentation, together with definitions for those
terms. The Arm Glossary does not contain terms that are industry standard unless the Arm meaning
differs from the generally accepted meaning.

See the Arm® Glossary for more information.

Typographic conventions

italic
Introduces special terminology, denotes cross-references, and citations.

bold
Highlights interface elements, such as menu names. Denotes signal names. Also used for terms
in descriptive lists, where appropriate.

monospace
Denotes text that you can enter at the keyboard, such as commands, file and program names,
and source code.

monospace
Denotes a permitted abbreviation for a command or option. You can enter the underlined text
instead of the full command or option name.

 Preface
 About this book

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

12

Non-Confidential

https://developer.arm.com/support/arm-glossary

monospace italic
Denotes arguments to monospace text where the argument is to be replaced by a specific value.

monospace bold
Denotes language keywords when used outside example code.

<and>
Encloses replaceable terms for assembler syntax where they appear in code or code fragments.
For example:

MRC p15, 0, <Rd>, <CRn>, <CRm>, <Opcode_2>

SMALL CAPITALS

Used in body text for a few terms that have specific technical meanings, that are defined in the
Arm® Glossary. For example, IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN, and
UNPREDICTABLE.

Timing diagrams

The following figure explains the components used in timing diagrams. Variations, when they occur,
have clear labels. You must not assume any timing information that is not explicit in the diagrams.

Shaded bus and signal areas are undefined, so the bus or signal can assume any value within the shaded
area at that time. The actual level is unimportant and does not affect normal operation.

Clock

HIGH to LOW

Transient

HIGH/LOW to HIGH

Bus stable

Bus to high impedance

Bus change

High impedance to stable bus

Figure 1 Key to timing diagram conventions

Signals

The signal conventions are:

Signal level
The level of an asserted signal depends on whether the signal is active-HIGH or active-LOW.
Asserted means:
• HIGH for active-HIGH signals.
• LOW for active-LOW signals.

Lowercase n

At the start or end of a signal name, n denotes an active-LOW signal.

 Additional reading

This book contains information that is specific to this product. See the following documents for other
relevant information.

 Preface
 About this book

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

13

Non-Confidential

Arm publications
• Arm®v8-M Architecture Reference Manual (DDI 0553)
• Arm® AMBA® 5 AHB Protocol Specification (IHI 0033)
• AMBA® APB Protocol Version 2.0 Specification (IHI 0033)
• AMBA® 4 ATB Protocol Specification (IHI 0032)
• AMBA® AXI and ACE Protocol Specification (IHI 0022)
• Arm® CoreSight™ System-on-Chip SoC-600 Technical Reference Manual (100806)
• AMBA® Low Power Interface Specification Arm® Q-Channel and P-Channel Interfaces (IHI

0068)
• Arm® Embedded Trace Macrocell Architecture Specification ETMv4 (ARM IHI 0064)
• Arm® CoreSight™ Architecture Specification v3.0 (IHI 0029)
• Arm® Debug Interface Architecture Specification, ADIv6.0 (IHI 0074)
• Arm® Reliability, Availability, and Serviceability (RAS) Specification (DDI 0587)
• Arm® CoreSight™ ETM‑M55 Technical Reference Manual (101053)
• Arm®v8.1‑M Performance Monitoring User Guide Application Note

(ARM051-799564642-251)

The following confidential book is only available to licensees:
• Arm® Cortex®-M55 Processor Integration and Implementation Manual (101052)

Other publications
• IEEE Std 1149.1-2001, Test Access Port and Boundary-Scan Architecture (JTAG)
• ANSI/IEEE Std 754-2008, IEEE Standard for Binary Floating-Point Arithmetic

 Preface
 About this book

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

14

Non-Confidential

 Feedback

 Feedback on this product

If you have any comments or suggestions about this product, contact your supplier and give:
• The product name.
• The product revision or version.
• An explanation with as much information as you can provide. Include symptoms and diagnostic

procedures if appropriate.

 Feedback on content

If you have comments on content then send an e-mail to errata@arm.com. Give:

• The title Arm Cortex-M55 Processor Technical Reference Manual.
• The number 101051_0002_02_en.
• If applicable, the page number(s) to which your comments refer.
• A concise explanation of your comments.

Arm also welcomes general suggestions for additions and improvements.
 Note

Arm tests the PDF only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the quality of the
represented document when used with any other PDF reader.

 Preface
 Feedback

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

15

Non-Confidential

mailto:errata@arm.com

Chapter 1
Introduction

This chapter provides an overview of the Cortex-M55 processor and its features.

It contains the following sections:
• 1.1 Cortex®-M55 processor overview on page 1-17.
• 1.2 Cortex®-M55 features on page 1-18.
• 1.3 Supported standards and specifications on page 1-21.
• 1.4 Design tasks on page 1-23.
• 1.5 Documentation on page 1-24.
• 1.6 Product revisions on page 1-25.

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

1-16

Non-Confidential

1.1 Cortex®-M55 processor overview
The Cortex-M55 processor is a fully synthesizable mid-range microcontroller class processor that
implements the Armv8.1‑M Mainline architecture that includes support for the M‑profile Vector
Extension (MVE). The processor also supports previous Armv8‑M architectural features.

The design is focused on compute applications such as Digital Signal Processing (DSP) and machine
learning. The Cortex-M55 processor is energy efficient and achieves high compute performance across
scalar and vector operations while maintaining low power consumption.

The following figure shows the Cortex-M55 processor in a typical system.

DMA

Processor

GPIO

SRAM

Peripherals

S-AHB

FLASH

P-AHBITCM DTCM M-AXI

External
memory

AHB matrix

Figure 1-1 Example processor system

For more information on the processor-level components, see 2.1 Cortex®-M55 processor components
on page 2-27.

1 Introduction
1.1 Cortex®-M55 processor overview

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

1-17

Non-Confidential

1.2 Cortex®-M55 features
The Cortex-M55 processor implements the Armv8.1‑M Mainline architecture and also supports previous
Armv8‑M architectural features.

For more information on Armv8‑M and Armv8.1‑M features and variants information, see the Arm®v8‑M
variants section in the Arm®v8-M Architecture Reference Manual.

 Note

• The 'Optional' column indicates a feature that can be optionally included, either by:
— Setting relevant RTL parameters. For example, if you include the Instrumentation Trace

Macrocell (ITM).
— Being optionally licensed. For example, if you optionally license ETM-Cortex-M55.

• The 'Configurable' column indicates a feature that can be configured to any permitted value by setting
relevant RTL parameters. For example, you can configure the size of the instruction and data cache to
be 4KB, 8KB, 16KB, 32KB, or 64KB.

Table 1-1 Cortex-M55 processor features

Feature Architecture
version

Always
present?

Optional? Configurable? Details

Arm PMSAv8 memory
system architecture with
memory protection

- Yes - - -

Arm FPv5 hardware
supporting scalar half, single,
and double-precision
floating-point operation that
is compliant with
IEEE754-2008

Armv8‑M onwards - Yes - Optionally licensable component

DSP Extension Armv8‑M onwards Yes - - -

DSP Debug Extension Armv8.1‑M Yes - - -

Exception model Armv8‑M onwards Yes - - See 3.6 Exceptions on page 3-49
for more information.

External Implementation
Defined Attribution Unit
(IDAU)

- Yes - - Can be used only when the
Security Extension is enabled

Level 1 (L1) instruction and
data cache.

Armv8‑M onwards - Yes Yes -

Main Extension Armv8.1‑M Yes - - Includes the 16-bit and 32-bit
Thumb instruction set

Memory Protection Unit
(MPU)

Armv8‑M onwards - Yes Yes Supports up to 16 regions each
for Secure and Non-secure
applications

1 Introduction
1.2 Cortex®-M55 features

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

1-18

Non-Confidential

Table 1-1 Cortex-M55 processor features (continued)

Feature Architecture
version

Always
present?

Optional? Configurable? Details

MVE, supporting Single
Instruction Multiple Data
(SIMD) 128-bit vector
operations

Armv8.1‑M - Yes - Supported data types are:
• Integer
• Half precision floating-point

(supported when floating-
point functionality is
included)

• Single precision floating-
point (supported when
floating-point functionality is
included)

MVE is also referred to as Arm
Helium™ technology

Support for Data
Independent Timing (DIT)
operation

Armv8.1‑M Yes - - See the Arm®v8-M Architecture
Reference Manual.

Nested Vector Interrupt
Controller (NVIC)

Armv8‑M onwards Yes - Yes Supports up to 480 external
interrupts with up to 256 priority
levels

Reliability, Availability, and
Serviceability (RAS)
Extension

Armv8.1‑M Yes - - -

Security Attribution Unit
(SAU)

Armv8‑M onwards - Yes Yes Supports up to eight Non-secure
or Non-secure Callable memory
regions

Security Extension Armv8‑M onwards - Yes - The Security Extension is an
implementation of Arm
TrustZone® technology

Unprivileged Debug
Extension (UDE)

Armv8.1‑M Yes - - -

Debug and trace features

The following table shows the debug and trace features of the processor.

Table 1-2 Debug and trace features

Feature Architecture version Always
present?

Optional? Configurable? Details

Breakpoint Unit (BPU)
and comparator support

Armv8‑M onwards - Yes Yes Four or eight comparators are
supported

Data Watchpoint and
Trace (DWT) unit and
comparator support

Armv8‑M onwards - Yes Yes Supports the Performance
Monitoring Unit (PMU). Two
or four comparators are
supported

Embedded Trace
Macrocell (ETM)

Arm (ETM) v4.5 - Yes - Optionally licensable
component.

1 Introduction
1.2 Cortex®-M55 features

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

1-19

Non-Confidential

Table 1-2 Debug and trace features (continued)

Feature Architecture version Always
present?

Optional? Configurable? Details

ITM Armv8‑M onwards - Yes -

PMU Armv8.1‑M - Yes - Present when the DWT is
included

1 Introduction
1.2 Cortex®-M55 features

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

1-20

Non-Confidential

1.3 Supported standards and specifications
The Cortex-M55 processor complies with, or implements, the relevant Arm architectural standards and
protocols.

This book complements architecture reference manuals, architecture specifications, protocol
specifications, and relevant external standards. It does not duplicate information from these sources.

Arm architecture

The Cortex-M55 processor is compliant with the Armv8.1‑M Mainline architecture and also supports
previous Armv8‑M architectural features. See 1.2 Cortex®-M55 features on page 1-18 for more
information.

Bus architecture

The Cortex-M55 processor implements AMBA 5 AXI-compliant Master AXI (M-AXI) interface for slow
on-chip or off-chip memory and devices.

It also provides external interfaces that comply with the AMBA 5 AHB protocol.

Additionally, the Cortex-M55 processor implements interfaces for CoreSight and other debug
components using the AMBA 4 APB protocol (this is the same as APB protocol version 2.0) and
ATBv1.1 part of the AMBA 4 ATB protocol.

For more information, see the:
• AMBA® AXI and ACE Protocol Specification
• Arm® AMBA® 5 AHB Protocol Specification.
• AMBA® APB Protocol Version 2.0 Specification.
• AMBA® 4 ATB Protocol Specification.

The Cortex-M55 processor also provides P-Channel and Q-Channel interfaces for power and clock
control. See the AMBA® Low Power Interface Specification Arm® Q-Channel and P-Channel Interfaces.

For more overview information on bus interfaces, see 2.2 Interfaces on page 2-34.

Debug

The debug features of the Cortex-M55 processor implement the Arm Debug Interface v6.0 architecture.

See the Arm® Debug Interface Architecture Specification, ADIv6.0.

Embedded Trace Macrocell

The trace features of the Cortex-M55 processor implement the Arm Embedded Trace Macrocell (ETM)
v4.5 architecture.

See the Arm® CoreSight™ ETM‑M55 Technical Reference Manual for more information on ETM-Cortex-
M55 which is an optional component that you can license.

Extension Processing Unit

The Extension Processing Unit (EPU) performs scalar floating-point and vector operations.

The EPU is configured to include a scalar floating-point functionality, which supports half-precision,
single-precision, and double-precision arithmetic as defined by the Arm FPv5 architecture.

The EPU implements MVE, which can support:
• Half-precision, single-precision, and double-precision floating-point.
• Integer, half-precision, and single-precision vector arithmetic.

See 2.6 Cortex®-M55 implementation options on page 2-39.

1 Introduction
1.3 Supported standards and specifications

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

1-21

Non-Confidential

The Cortex-M55 processor provides floating-point computation functionality that is included with
Floating-point and MVE, which is compliant with the ANSI/IEEE Std 754-2008, IEEE Standard for
Binary Floating-Point Arithmetic.

1 Introduction
1.3 Supported standards and specifications

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

1-22

Non-Confidential

1.4 Design tasks
The Cortex-M55 processor is delivered as synthesizable RTL that must go through implementation,
integration, and programming processes before you can use it in a product.

The following definitions describe each top-level process in the design flow:

Implementation
The implementer configures and synthesizes the RTL.

Integration
The integrator connects the Cortex-M55 processor into an SoC. This includes connecting it to a
memory system and peripherals.

Programming
The system programmer develops the software required to configure and initialize the Cortex-
M55 processor and tests the required application software.

Implementation and integration choices affect the behavior and features of the Cortex-M55 processor.

The operation of the final device depends on:

Build configuration
The implementer chooses the options that affect how the RTL source files are pre-processed.
These options usually include or exclude logic that affects one or more of the area, maximum
frequency, and features of the resulting macrocell.

Configuration inputs
The integrator configures some features of the Cortex-M55 processor by tying inputs to specific
values. These configurations affect the start-up behavior before any software configuration is
made. They can also limit the options available to the software.

Software configuration
The programmer configures the Cortex-M55 processor by programming particular values into
registers. This affects the behavior of the Cortex-M55 processor.

 Note

This manual refers to IMPLEMENTATION-DEFINED features that are applicable to build configuration options.
Reference to a feature that is included means that the appropriate build and signal configuration options
have been selected. Reference to an enabled feature means that software has also configured the feature.

1 Introduction
1.4 Design tasks

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

1-23

Non-Confidential

1.5 Documentation
The Cortex-M55 processor documentation can help you complete the top-level processes of
implementation, integration, and programming that are required to use the product correctly.

The Cortex-M55 processor documentation includes a Technical Reference Manual, an Integration and
Implementation Manual, and User Guide Reference Material.

Technical Reference Manual
The Technical Reference Manual (TRM) describes the functionality and the effects of functional
options on the behavior of the Cortex-M55 processor. It is required at all stages of the design
flow. Some behavior described in the TRM might not be relevant because of the way that the
Cortex-M55 processor is implemented and integrated. If you are programming the Cortex-M55
processor, then contact the implementer to determine:
• The build configuration of the implementation.
• What integration, if any, was performed before implementing the Cortex-M55 processor.

Integration and Implementation Manual
The Integration and Implementation Manual (IIM) describes:
• The available build configuration options and related issues in selecting them.
• How to configure the Register Transfer Level (RTL) with the build configuration options.
• How to integrate the Cortex-M55 processor into an SoC. This includes a description of the

integration kit and describes the pins that the integrator must tie off to configure the
macrocell for the required integration.

• How to implement the Cortex-M55 processor into your design. This includes Memory Built-
In Self Test (MBIST) and Design for Test (DFT) information, and information how to
perform netlist dynamic verification on the Cortex-M55 processor.

• The processes to sign off the integration and implementation of the design.

The Arm product deliverables include reference scripts and information about using them to
implement your design.

Reference methodology documentation from your EDA tools vendor and the implementation
Reference Methodology (iRM) readme.txt provided by Arm complements the IIM.

The IIM is a confidential book that is only available to licensees.

User Guide Reference Material
This document provides reference material that Arm partners can configure and include in a
User Guide for an Arm Cortex-M55 processor. Typically:
• Each chapter in this reference material might correspond to a section in the User Guide.
• Each top-level section in this reference material might correspond to a chapter in the User

Guide.

However, you can organize this material in any way, subject to the conditions of the license
agreement under which Arm supplied the material.

See the Additional reading on page 13 for more information about the books that are associated with the
Cortex-M55 processor.

1 Introduction
1.5 Documentation

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

1-24

Non-Confidential

1.6 Product revisions
The following product revisions have been released.

r0p0 First release for Beta r0p0.
First limited access release for r0p0.

r0p1 First early access release for r0p1.
r0p2 First release for r0p2.

Second release for r0p2.

1 Introduction
1.6 Product revisions

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

1-25

Non-Confidential

Chapter 2
Technical overview

This chapter describes the Cortex-M55 processor components and configuration options.

It contains the following sections:
• 2.1 Cortex®-M55 processor components on page 2-27.
• 2.2 Interfaces on page 2-34.
• 2.3 Security on page 2-36.
• 2.4 Reliability on page 2-37.
• 2.5 Power intent on page 2-38.
• 2.6 Cortex®-M55 implementation options on page 2-39.

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

2-26

Non-Confidential

2.1 Cortex®-M55 processor components
The Cortex-M55 processor has fixed and optional component blocks.

PDRAMS

MBIST
interface

TCU

LSU

PDEPU
EPU

MAU

DPU

NVIC

ICU

IRAM

DCU

DRAM

BIU

STB

AHB5
slave

AHB5
master

AXI5
master

ETM

CTI

ROM
table

IPPB

IWIC

MIU

IF
U

from
Core

Internal
regs

DAP

TPIU

ROM
table

EPPB

WIC
interface

JTAG or
SW

IDAU
interface

TCM
interface

M-AXI
interface

Trace
interface

P-AHB
interface

S-AHB
intreface

IRQ
interface

Clock and
Reset

Power
control

MCU level

Processor level

ATB4

DWT

IWIC
interface

EWIC

PDCORE

PDDEBUG

Core

ETB

ATB4
Coprocessor

interface

ITMBPU

PMU

D-AHB
PDRAMS

EWIC
interface

ITCM D0 D1D2
From
EPPB TCMD3

To I/DCU
and TCU

Configurable component

Optional component

Configurable and optional component

Figure 2-1 Cortex-M55 processor block diagram

 Note

For more information on the PDCORE, PDDEBUG, PDEPU, and PDRAMS power domains, and their
clocking, reset, and power requirements, see Chapter 6 Power management on page 6-122.

2 Technical overview
2.1 Cortex®-M55 processor components

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

2-27

Non-Confidential

The following table describes the various processor components shown in the processor block diagram.

Table 2-1 Processor components

Block Component

Processor core See 2.1.1 Cortex®-M55 processor core on page 2-29.

Extension
Processing Unit
(EPU)

The EPU performs:
• Scalar floating-point operations
• M-class Vector Extension (MVE) operations

For more information, see 2.1.2 Extension Processing Unit on page 2-29. The EPU can be optionally included.

Memory
components

The memory components are:
• Memory Authentication Unit (MAU). For more information on MAU, see Memory Authentication Unit

on page 2-30 . The MAU contains:
— Security Attribution Unit (SAU)
— TCM Gate Unit (TGU)
— Secure MPU region, MPU_S, which is always optionally configured
— Non-secure MPU region, MPU_N, which is always optionally configured

• Load Store Unit (LSU)
• TCM Control Unit (TCU)
• Data Cache Unit (DCU) and Data RAM (DRAM).
• Instruction Cache Unit (ICU) and Instruction RAM (IRAM)
• Bus Interface Unit (BIU)
• Store Buffer (STB)
• MBIST Interface Unit (MIU)

For more information on the memory system, see Memory system on page 2-31.

Interrupt
components

The interrupt components are:
• Nested Vectored Interrupt Controller (NVIC)
• External Wakeup Interrupt Controller (EWIC), which can be optionally included
• Internal Wakeup Interrupt Controller (IWIC), which can be optionally included

For more information on the interrupt-related components, see 2.1.4 Interrupt components on page 2-32.

Debug and trace
components

The debug and trace components are:
• BreakPoint unit (BPU)
• Cross Trigger Interface (CTI), which is optionally configured
• CoreSight-compliant Debug Access Port (DAP), CoreSight DAP-Lite2, which is available for download when

you license Cortex-M55 processor IP.
• Data Watchpoint and Trace (DWT) unit
• Performance Monitoring Unit (PMU), which is located in the DWT
• Embedded Trace Macrocell (ETM), which is an optional licensable component.
• Instrumentation Trace Macrocell (ITM)
• Trace Port Interface Unit (TPIU)
• CoreSight-compliant Embedded Trace Buffer (ETB) functionality support. The ETB is not delivered as a part

of the IP deliverable. The ETB is an optional licensable component which is available when you license either
the CoreSight SoC-600 or CoreSight SoC-600M. The Cortex-M55 IP deliverable has a placeholder for ETB
integration.

For more information on the debug and trace related components, see 2.1.5 Debug and trace components
on page 2-32.

2 Technical overview
2.1 Cortex®-M55 processor components

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

2-28

Non-Confidential

 Note

• If the Cortex-M55 processor is configured with minimal debug, then the ETM and ITM cannot be
included.

• If the Cortex-M55 processor is configured with reduced set or full set debug, then the ETM and ITM
are optional.

• If the Cortex-M55 processor is configured with the reduced set or the full set debug, then the BPU
and DWT are always included.

2.1.1 Cortex®-M55 processor core

The Cortex-M55 processor core has an Instruction Fetch Unit (IFU) that is closely coupled with the Data
Processing Unit (DPU).

The DPU contains the logic to:

• Decode and execute scalar integer instructions.
• Handle the register transfer operations required for exception entry and exit.

The Cortex-M55 processor core has the following features:
• An in-order four-stage integer pipeline with early completion of common arithmetic instructions.
• Two Arithmetic Logic Units (ALUs):

— One ALU for regular shift and arithmetic operations, including limited support for dual-issue.
— One ALU that can handle the SIMD operations included in the Digital Signal Processing (DSP)

Extension.
• The core can handle up to two 32-bit vector load operations in parallel, when M‑profile Vector

Extension (MVE) is configured in the Cortex-M55 processor.
• Harvard bus interfaces with vector fetch capability on the instruction side to optimize exception entry

for efficient operation of compute workloads.
— 32-bit instruction fetch data width.
— 64-bit load/store data width.

• Optimized set of integer register bank ports for energy-efficient operation.
• Integer divide unit with support for operand-dependent early termination. In this context, early

termination refers to operations that terminate sooner than the expected number of cycles for the
integer divide unit. Early termination capabilities depend on the data that enters the pipeline.

• Single cycle branch latency in most instances, without a requirement for branch prediction.
• Limited dual-issue of common 16-bit instruction pairs.
• Support for exception-continuable load and store multiple accesses.
• Instruction queue to decouple instruction fetching and instruction execution. This can also be used for

optimized vector processing when using the Low Overhead Branch (LOB) feature.
• Data prefetch to minimize the effect of AXI latency when accessing consistent patterns of cacheable

data.

 Note

The Cortex-M55 processor core works with the Extension Processing Unit (EPU), when configured to
provide full support for:
• Integer and floating-point operations included in MVE.
• Scalar half-precision, single-precision, and double-precision floating-point operations.

2.1.2 Extension Processing Unit

The Extension Processing Unit (EPU) includes support for all the instructions in the M‑profile Vector
Extension (MVE) and half, single, and double-precision scalar FPv5 architecture.

2 Technical overview
2.1 Cortex®-M55 processor components

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

2-29

Non-Confidential

The EPU has the following features:
• MVE is implemented using a 64-bit arithmetic and load/store data-path in a two beats per tick

configuration. A beat is the execution of ¼ of an MVE instruction. Instructions can overlap to allow
full utilization of the logic with a sustained bandwidth of 64-bit Multiply ACcumulate (MAC) and 64-
bit load/store per cycle. For more information on vector operation terminology, see Arm®v8-M
Architecture Reference Manual.

• Extended register file, which is optimized for efficient vector operations.
• Floating-point MAC unit capable of a throughput of up to two single-precision or four-half precision

MAC instructions every cycle when MVE is included in the Cortex-M55 processor, or one single or
half-precision MAC every cycle when only scalar floating-point is configured.

• Area optimized double-precision floating-point implementation.
• Support for Security Extension including lazy context stacking.

2.1.3 Memory components

The Cortex-M55 processor memory components consist of the Memory Authentication Unit (MAU) and
memory system interfaces.

Memory Authentication Unit

The Cortex-M55 processor Memory Authentication Unit (MAU) contains several units that control
access to the memory.

The following figure shows the MAU block diagram.

Processor

MAU

MPU

TGU

SAU

IFU LSU

TCU S-AHB

IDAU

Address

Response

Address

Address1

Response

Response0

Response1

Address Response

Figure 2-2 MAU block diagram

2 Technical overview
2.1 Cortex®-M55 processor components

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

2-30

Non-Confidential

Memory Protection Unit
The Memory Protection Unit (MPU) supports the Arm Protected Memory System Architecture
(PMSA). Therefore, the MPU provides programmable support for memory protection using
many software controllable regions. This unit defines the memory attributes that are associated
with a particular memory region and the access permissions of addresses. Memory regions can
be programmed to generate faults when accessed inappropriately, for example, by unprivileged
software, reducing the scope of incorrectly written application code. The architecture includes
fault status registers to allow an exception handler to determine the source of the fault and to
apply corrective action or notify the system.
If the Security Extension is implemented, the entire MPU logic can be split into Secure and
Non-secure MPU regions.

Security Attribution Unit
The Security Attribution Unit (SAU) defines and authenticates accesses to memory based on the
Security state of the core or the debugger. These states can be any of the following:
• Non-secure.
• Secure and Non-secure Callable.
• Secure.

TCM Gate Unit
The TCM Gate Unit (TGU) controls software and Slave AHB (S-AHB) accesses to the TCMs
based on the security attribute of the access.

Interface to the IDAU
The MAU contains an interface to the Implementation Defined Attribution Unit (IDAU), which
is present outside the core and not a part of the Cortex-M55 processor. This unit defines memory
regions as being either Secure, Non-secure, Non-secure Callable, or exempt from security
checking. The final security mapping of memory regions is a combination of the response from
the SAU and IDAU.

Memory system

The Cortex-M55 processor memory system provides the interface between the core and the caches,
external memory interfaces, and internal memory-mapped registers.

The memory system includes:

• A single interface to an Instruction Tightly Coupled Memory (ITCM) and four interfaces to Data
Tightly Coupled Memories (DTCMs), D0TCM, D1TCM, D2TCM, and D3TCM

• A Master AXI (M-AXI) interface that can be used for on-chip or off-chip memory and devices
• A Peripheral AHB (P-AHB) for access to external peripherals
• A Slave AHB (S-AHB) for system access to the TCMs
• An L1 instruction cache
• An L1 data cache
• An External PPB (EPPB) APB interface for CoreSight debug and trace components
• A STore Buffer (STB) to hold store operations when they have left the load/store pipeline and the

DPU has committed them. From the STB, a store can do any of the following:
— Request access to the cache RAM through the DCU
— Request the Bus Interface Unit (BIU) to initiate linefills
— Request the BIU to write data on the M-AXI interface

If there are several store transactions that are associated with the same 64-bit aligned doubleword, the
STB can merge these store transactions into a single transaction.

For more information, see:
• Chapter 7 Memory model on page 7-143.
• Memory system on page 2-31.

2 Technical overview
2.1 Cortex®-M55 processor components

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

2-31

Non-Confidential

2.1.4 Interrupt components

The Cortex-M55 processor interrupt components are responsible for low-latency interrupt processing and
enabling the Cortex-M55 processor to enter and wake up from low-power state.

NVIC features

The Cortex-M55 processor Nested Vectored Interrupt Controller (NVIC) is closely integrated with the
core to achieve low-latency interrupt processing.

The NVIC is responsible for:
• Maintaining the current execution priority of the Cortex-M55 processor.
• Maintaining the pending and active status of all exceptions that are supported.
• Invoking preemption when a pending exception has priority.
• Providing wakeup signals to wakeup the Cortex-M55 processor from deep sleep mode.
• Providing support to the Internal Wakeup Interrupt Controller (IWIC) and External Wakeup Interrupt

Controller (EWIC).
• Providing priority and exception information to other processor components.

The NVIC in the Cortex-M55 processor allows up to 496 exceptions, of which, 480 can be regular
external interrupts.

Wakeup Interrupt Controller

The Cortex-M55 processor supports a Wakeup Interrupt Controller (WIC) unit that allows the Cortex-
M55 processor to enter low-power state.

There are two WICs that are supported:

• An Internal Wakeup Interrupt Controller (IWIC) that is synchronous with the processor and
contained within the Cortex-M55 processor boundary.

• An External Wakeup Interrupt Controller (EWIC), which is a system-level component that can be
asynchronous to the Cortex-M55 processor.

The Cortex-M55 processor supports any of the following:
• No WIC.
• IWIC only.
• EWIC only.
• Both IWIC and EWIC.

2.1.5 Debug and trace components

The Cortex-M55 processor has optional and configurable debug and trace components.

Breakpoint Unit
A configurable Breakpoint Unit (BPU) for implementing breakpoints.

Data Watchpoint and Trace
A configurable Data Watchpoint and Trace (DWT) unit for implementing watchpoints, data
tracing, and system profiling.

Instrumentation Trace Macrocell
An optional Instrumentation Trace Macrocell (ITM) that supports printf() style debugging
using instrumentation trace.

Performance Monitoring Unit
A Performance Monitoring Unit (PMU) which enables software and debugger to gather
statistics on events taking place on the Cortex-M55 processor. These statistics can be used for
performance analysis and system debug.
The PMU is always present when the DWT is present.

2 Technical overview
2.1 Cortex®-M55 processor components

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

2-32

Non-Confidential

ROM tables
ROM tables allow debuggers to determine which CoreSight components are implemented in the
Cortex-M55 processor.

Debug and trace interfaces
These interfaces are suitable for:
• Passing on-chip data through a Trace Port Interface Unit (TPIU) to a Trace Port Analyzer

(TPA), including Serial Wire Output (SWO) mode.
• Integrating a Debug Access Port (DAP), which is a debug port that is used to control debug

functionality.
• Integrating a CoreSight Embedded Trace Buffer (ETB), which is an optional licensable

component for trace data to be written to an external SRAM.

Cross Trigger Interface
The optional Cross Trigger Interface (CTI) enables the debug logic and Embedded Trace
Macrocell (ETM) to interact with each other and with other CoreSight components.

Embedded Trace Macrocell
The optional ETM provides instruction-only trace capabilities. For more information, see the
Arm® CoreSight™ ETM‑M55 Technical Reference Manual.

2 Technical overview
2.1 Cortex®-M55 processor components

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

2-33

Non-Confidential

2.2 Interfaces
The following table summarizes the interfaces that the Cortex-M55 processor supports.

 Note

For more information on the protocols in the following table, refer to the following specifications:
• Arm® AMBA® 5 AHB Protocol Specification.
• AMBA® APB Protocol Version 2.0 Specification.
• AMBA® 4 ATB Protocol Specification.
• AMBA® AXI and ACE Protocol Specification.

Table 2-2 Interfaces

Name Protocol Width Details

Master AXI (M-AXI) AMBA 5 AXI
master interface

64-bit Provides access to memory and peripheral components in the
system.

Instruction Tightly
Coupled Memory (ITCM)
and Data Tightly Coupled
Memory (DTCM)

- • ITCM: 32-bit
• DTCM: 4

banks of 32-
bits

One ITCM interface and four DTCM interfaces to support and
high-bandwidth access from the Cortex-M55 processor and
Slave AHB (S-AHB) interface to local low-latency memory.
The size of both TCM instances is configurable, and in the
range, 4KB-16MB in powers of 2. The Cortex-M55 processor
also supports zero size TCMs.

S-AHB AMBA 5 AHB 64-bit Provides system access to the TCMs. The Direct Memory
Access (DMA) engine typically uses this interface.

Tightly coupled master
Peripheral AHB (P-AHB)
interface

AMBA 5 AHB 32-bit Provides access to system peripherals.

External Private
Peripheral Bus (EPPB)
interface

AMBA 4 APB 32-bit Used to connect to external CoreSight-compliant peripherals.

External IDAU interface - - Allows the system to define security attributes.

ITM and ETM interfaces AMBA 4 ATB 8-bit Provides tracing capability.

Coprocessor interface - 64-bit Used for closely-coupled external accelerator hardware.

Debug AHB (D-AHB)
slave interface

AMBA 5 AHB 32-bit Provides debug access to registers, memory, and peripherals.

Optional Cross Trigger
Interface (CTI) interface

- Four channels Used for debug and trace synchronization.

2 Technical overview
2.2 Interfaces

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

2-34

Non-Confidential

Table 2-2 Interfaces (continued)

Name Protocol Width Details

Power control interface P-Channel and Q-
Channel

- Optional support for a number of internal power domains
which can be enabled and disabled using the P-Channel and Q-
Channel interfaces connected to a power controller in the
system. For more information, see Chapter 6 Power
management on page 6-122 or the Arm® Cortex®-M55
Processor Integration and Implementation Manual . The Arm®

Cortex®-M55 Processor Integration and Implementation
Manual is only available to licensees.

External Wakeup Interrupt
Controller (EWIC)
interface.

- - Provides access to an optional EWIC, which is a peripheral to
the system and is suitable for sleep states where the entire
processor sub-system is powered down.

2 Technical overview
2.2 Interfaces

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

2-35

Non-Confidential

2.3 Security
Arm TrustZone technology uses the Security Extension, which supports Secure and Non-secure states on
all memory interfaces, including security gating on Tightly Coupled Memory (TCM) interfaces.

Memory and peripherals in the system can be marked as Secure, making them accessible only to code
that is running in the Secure state.

Interrupts can be marked as Secure indicating that they are handled by Secure handler code in the Secure
world.

Hardware protects all Secure resources, including firmware and sensitive data values from being visible
to Non-secure code and debug. If you are programming in Secure state, you can choose which Secure
functions can be called by Non-secure code, where the Secure functions can tightly control the
parameters of such function calls.

2 Technical overview
2.3 Security

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

2-36

Non-Confidential

2.4 Reliability
The Cortex-M55 processor reliability features include:

• L1 cache and TCM interfaces support optional internal Error Correcting Code (ECC). ECC errors are
reported to the system on an external interface.

• Reliability, Availability, and Serviceability (RAS) Extension support.
• Optional interface protection included on the M-AXI, S-AHB, P-AHB, Debug AHB (D-AHB), and

EPPB interfaces.

2 Technical overview
2.4 Reliability

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

2-37

Non-Confidential

2.5 Power intent
The Cortex-M55 processor power intent features include:

• Support for multiple power domain State Retention Power Gating (SRPG) implementation through
Unified Power Format (UPF). The UPF files are IEEE 1801-2009 compliant.

• Power control based on the Arm standard P-Channel and Q-Channel interfaces. For information on
the P-Channel and Q-Channel logic interfaces, see AMBA® Low Power Interface Specification Arm®

Q-Channel and P-Channel Interfaces.
• Support for an Internal Wakeup Interrupt Controller (IWIC) and an External Wakeup Interrupt

Controller (EWIC).

2 Technical overview
2.5 Power intent

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

2-38

Non-Confidential

2.6 Cortex®-M55 implementation options
The Cortex-M55 processor has configurable options that the chip designer can set during the
implementation and integration stages to match your functional requirements.

The following table shows the Cortex-M55 processor configurable option available at implementation
time.

Table 2-3 Cortex-M55 processor configurable options

Feature Options

Floating-point and M‑profile Vector Extension
(MVE) support

The floating-point and MVE features together specify the MVE functionality that
is supported on the Cortex-M55 processor.

Floating-point functionality can either be included or excluded.

If floating-point functionality is not included, then the MVE options can be either
of the following:
• MVE not included.
• Integer subset of MVE included.

If floating-point functionality is included, then half-precision, single-precision,
and double-precision floating-point operation is supported. The MVE options can
be any of the following:
• MVE not included.
• Integer subset of MVE included.
• Integer, half-precision, and single-precision floating-point MVE are included.

 Note

All other parameter combinations are invalid.

Inclusion of Security Extension No Security Extension present

Security Extension present

Coprocessor support No support for coprocessor hardware

Support for coprocessor hardware

Inclusion of Non-secure Memory Protection Unit
(MPU)

0 region, 4 regions, 8 regions, 12 regions, or 16 regions

Inclusion of Secure Memory Protection Unit
(MPU)

0 region, 4 regions, 8 regions, 12 regions, or 16 regions when the Security
Extension is included.

Inclusion of Security Attribution Unit (SAU) 0 region, 4 regions, or 8 regions when the Security Extension is included.

Inclusion and size of instruction cache No Instruction Cache Unit (ICU)

ICU included and the size can be 4KB, 8KB, 16KB, 32KB, or 64KB

Inclusion and size of data cache Area optimized M-AXI interface, no Data Cache Unit (DCU)

DCU included and the size can be 4KB, 8KB, 16KB, 32KB, or 64KB

Inclusion of Error Correcting Code (ECC) No ECC on caches or TCMs

ECC on all implemented caches and TCMs

Number of interrupts 1-480 interrupts. To support non-contiguous mapping, you can remove individual
interrupts.

Number of exception priority bits 3-8 priority bits.

2 Technical overview
2.6 Cortex®-M55 implementation options

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

2-39

Non-Confidential

Table 2-3 Cortex-M55 processor configurable options (continued)

Feature Options

Lowest interrupt latency interrupt numbers Specifies interrupt numbers which support the lowest interrupt latency and the
interrupt numbers which have one additional latency cycle.
• 0 indicates lowest latency.
• 1 indicates one additional latency cycle.

Disable support for individual interrupts When set to 1, support for individual interrupts is disabled, therefore, allowing a
range of non-contiguous interrupts.

Debug resources included. This feature also
controls the number of Performance Monitoring
Unit (PMU) counters that are present.

Minimal debug. No Halting debug or memory and peripheral access.

Reduced set. Two data watchpoint comparators and four breakpoint comparators.

Full set. Four data watchpoint comparators and eight breakpoint comparators.

Inclusion of Instrumentation Trace Macrocell
(ITM) and Data Watchpoint and Trace (DWT)
trace

No ITM or DWT trace

Complete ITM and DWT trace

Inclusion of Embedded Trace Macrocell (ETM) No ETM support

ETM instruction execution trace

Inclusion of Cross Trigger Interface (CTI) No CTI

CTI is included

Inclusion of Internal Wakeup Interrupt Controller
(IWIC)

No IWIC

IWIC is included

Number of IRQ lines supported by the IWIC and
EWIC

The value always includes the three internal events NMI, RXEV, Debug monitor
event, and at least one IRQ.

Inclusion of interface protection No interface protection

Interface protection is included. Interface protection provides parity bits to the bus
interface to help with fault coverage in functional safety applications.

Inclusion of ITCM security gating No ITCM security gate

ICTM security gate included

ITCM security gate block size in bytes 2(Instruction TCM Gate Unit (TGU) block size+5).

Number of ITCM security gate blocks 2Maximum number of instruction TGU blocks

Inclusion of DTCM security gating No DTCM security gate

DCTM security gate included

DTCM security gate block size in bytes 2(Data TGU block size+5)

Number of DTCM security gate blocks 2Maximum number of data TGU blocks

Reset all registers functionality Specifies whether all synchronous states or only the architecturally required states
are reset.
• Only reset states that architecture requires.
• Reset all synchronous states.

 Note

• The parameter to control inclusion of the External Wakeup Interrupt Controller (EWIC) can be
configured at the MCU level. The MCU level supports all the processor-level configuration and

2 Technical overview
2.6 Cortex®-M55 implementation options

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

2-40

Non-Confidential

contains additional configuration parameters to configure the functionality that is specific to
CoreSight components that are included in the system.

• Signal tie-offs determine the inclusion of the ITCM and DTCM.
• Additionally, there are static and reset configuration signals. For more information, see C.3 Static

configuration signals on page Appx-C-379 and C.4 Reset configuration signals on page Appx-C-381.

2 Technical overview
2.6 Cortex®-M55 implementation options

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

2-41

Non-Confidential

Chapter 3
Programmers model

This chapter describes the Cortex-M55 processor register set, modes of operation, and provides
information on programming the Cortex-M55 processor.

The Cortex-M55 programmers model is an implementation of the Main Extension architecture. For a
complete description of the programmers model, see the Arm®v8-M Architecture Reference Manual.

It contains the following sections:
• 3.1 Security states, operation, and execution modes on page 3-43.
• 3.2 Instruction set summary on page 3-44.
• 3.3 Exclusive monitor on page 3-45.
• 3.4 Cortex®-M55 processor core registers summary on page 3-46.
• 3.5 Architectural registers on page 3-48.
• 3.6 Exceptions on page 3-49.

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

3-42

Non-Confidential

3.1 Security states, operation, and execution modes
The Cortex-M55 processor supports Secure and Non-secure Security states, Thread and Handler
operating modes, and can run in either Thumb or Debug operating states. In addition, the Cortex-M55
processor can limit or exclude access to some resources by executing code in privileged or unprivileged
mode.

See the Arm®v8-M Architecture Reference Manual for more information about the modes of operation
and execution.

Security states
When the Security Extension is included in the Cortex-M55 processor, the programmers model
includes two orthogonal Security states, Secure state and Non-secure state. This means the
processor is in Secure or Non-secure state, but not both at the same time. When the Security
Extension is implemented, the Cortex-M55 processor always resets into Secure state. When the
Security Extension is not implemented, the Cortex-M55 processor resets into Non-secure state.
Each Security state includes a set of independent operating modes and supports both privileged
and unprivileged user access. Registers in the System Control Space (SCS) are banked across
Secure and Non-secure state, with the Non-secure register view available at an aliased address to
Secure state.
When the Security Extension is not included in the Cortex-M55 processor, the programmers
model includes only the Non-secure state.

Operating modes
For each Security state, the Cortex-M55 processor can operate in Thread or Handler mode. The
conditions which cause the Cortex-M55 processor to enter Thread or Handler mode are as
follows:
• The Cortex-M55 processor enters Thread mode on reset, or as a result of an exception return

to Thread mode. The Thread mode supports both privileged and unprivileged execution.
• The Cortex-M55 processor enters Handler mode as a result of an exception. The Handler

mode only supports privileged execution.

The Cortex-M55 processor can change Security state on taking an exception. For example,
when a Secure exception is taken from Non-secure state Thread or Handler mode, the Cortex-
M55 processor enters the Secure state Handler mode.

The Cortex-M55 processor can also call Secure functions from Non-secure state and Non-secure
functions from Secure state. The Security Extension includes requirements for these calls to
prevent secure data from being accessed in Non-secure state.

Operating states
The Cortex-M55 processor can operate in T32 or Debug state:
• T32 state is the state of normal execution running 16-bit and 32-bit halfword-aligned T32

instructions.
• Debug state is the state when the Cortex-M55 processor is in Halting debug.

Privileged access and unprivileged user access
Code can execute as privileged or unprivileged. Unprivileged execution limits or excludes
access to some resources appropriate to the current Security state. Privileged execution has
access to all resources available to the Security state. Handler mode is always privileged. Thread
mode can be privileged or unprivileged.

3 Programmers model
3.1 Security states, operation, and execution modes

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

3-43

Non-Confidential

3.2 Instruction set summary
The Cortex-M55 processor implements the Armv8.1‑M instruction set.

These instructions include:
• All base instructions
• All instructions in the Main Extension
• All instructions in the Digital Signal Processing (DSP) Extension
• Optionally some of the coprocessor instructions. These are:

— CDP, CDP2
— MCR, MCR2
— MCRR, MCRR2
— MRC, MRC2
— MRRC, MRRC2

• Optionally all instructions in the Security Extension
• Optionally all half-precision, single-precision, and double-precision instructions in the Floating-point

Extension
• Optionally all vector operation instructions on integer operations in the M‑profile Vector Extension

(MVE)
• Optionally all vector operation instructions on half-precision and single-precision floating-point

operations in MVE
• Optionally all the Reliability, Availability, and Serviceability (RAS) Extension instructions

For more information about these instructions, see the Arm®v8-M Architecture Reference Manual.

3 Programmers model
3.2 Instruction set summary

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

3-44

Non-Confidential

3.3 Exclusive monitor
The Cortex-M55 processor implements a local exclusive monitor contained in the Load Store Unit
(LSU). The local monitor within the Cortex-M55 processor has been constructed not to hold any physical
address, but instead treats any store-exclusive access as matching the address of the previous load-
exclusive.

This means that the implemented exclusives reservation granule is the entire memory address range. The
TCMs support a local exclusive monitor, but not shared or global exclusive monitors. This implies that
the TCMs support for exclusive requests between threads running on the Cortex-M55 processor, but not
exclusive requests between the Cortex-M55 processor and a DMA (through the S-AHB). If an exclusive
read access is carried out to a region which does not support a global monitor it must respond
accordingly with either HEXOKAY LOW or RRESP[1:0] OKAY. These responses result in the
transaction completing without setting the internal exclusive monitor. A subsequent exclusive store
instruction does not carry out any memory transactions and sets the destination register to 1 indicating
the exclusive access failed.

The external bus interfaces support a global exclusive monitor for address shared with other bus masters.

For more information about semaphores and the local exclusive monitor, see the Arm®v8-M Architecture
Reference Manual.

3 Programmers model
3.3 Exclusive monitor

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

3-45

Non-Confidential

3.4 Cortex®-M55 processor core registers summary
The Cortex-M55 processor core registers are 32 bits wide.

When the Security Extension is included, some of the registers are banked. The Secure view of these
registers is available when the processor is in Secure state. The Non-secure view is available when the
processor is in Non-secure and Secure state.

The following table shows the processor core register set summary. See the Arm®v8-M Architecture
Reference Manual for information about the Cortex-M55 processor core registers and their addresses,
access types, and reset values.

Table 3-1 Processor core register set summary

Name Description

R0-R12 R0-R12 are general-purpose registers for data operations.

MSP (R13) The stack pointer, SP, is register R13. In Thread mode, the CONTROL register indicates the stack pointer to
use, main stack pointer, MSP, or process stack pointer, PSP.

When the Security Extension is included, there are two MSP registers in the Cortex-M55 processor:

• MSP_NS for the Non-secure state.
• MSP_S for the Secure state.

When the Security Extension is included, there are two PSP registers in the Cortex-M55 processor:
• PSP_NS for the Non-secure state.
• PSP_S for the Secure state.

PSP (R13)

MSPLIM The stack limit registers limit the extent to which the MSP and PSP registers can descend respectively.

When the Security Extension is included, there are two MSPLIM registers in the Cortex-M55 processor:

• MSPLIM_NS for the Non-secure state.
• MSPLIM_S for the Secure state.

When the Security Extension is included, there are two PSPLIM registers in the Cortex-M55 processor:
• PSPLIM_NS for the Non-secure state.
• PSPLIM_S for the Secure state.

PSPLIM

LR (R14) The Link Register, LR, is register R14. It stores the return information for subroutines, function calls, and
exceptions.

PC (R15) The Program Counter, PC, is register R15. It contains the current program address.

XPSR The Program Status Register, PSR, combines:
• Application Program Status Register, APSR.
• Interrupt Program Status Register, IPSR.
• Execution Program Status Register, EPSR.

These registers provide different views of the PSR.

PRIMASK The PRIMASK register prevents activation of exceptions with configurable priority. For information about the
Exception model the Cortex-M55 processor supports, see 3.6 Exceptions on page 3-49.

There are two PRIMASK registers in the Cortex-M55 processor:
• PRIMASK_NS for the Non-secure state.
• PRIMASK_S for the Secure state.

3 Programmers model
3.4 Cortex®-M55 processor core registers summary

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

3-46

Non-Confidential

Table 3-1 Processor core register set summary (continued)

Name Description

BASEPRI The BASEPRI register defines the minimum priority for exception processing.

There are two BASEPRI registers in the Cortex-M55 processor:
• BASEPRI_NS for the Non-secure state.
• BASEPRI_S for the Secure state.

FAULTMASK The FAULTMASK register prevents activation of all exceptions except for non-maskable interrupt, NMI and
optionally Secure HardFault.

There are two FAULTMASK registers in the Cortex-M55 processor:
• FAULTMASK_NS for the Non-secure state.
• FAULTMASK_S for the Secure state.

LO_BRANCH_INFO Loop and branch tracking information. Software cannot access LO_BRANCH_INFO.

SP Current stack pointer register. SP_NS for the Non-secure state.

FPSCR Floating-point Status and Control Register

S0-S31 32 single-precision floating-point registers

D0-D15 16 double-precision floating-point registers

Q0-Q7 8 vector registers

VPR Vector Predication Status and Control Register

CONTROL The CONTROL register controls the stack that is used, and optionally the privilege level, when the Cortex-
M55 processor is in Thread mode.

There are two CONTROL registers in the Cortex-M55 processor:
• CONTROL_NS for the Non-secure state.
• CONTROL_S for the Secure state.

3 Programmers model
3.4 Cortex®-M55 processor core registers summary

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

3-47

Non-Confidential

3.5 Architectural registers
Architectural registers can be fully architectural or architectural with some IMPLEMENTATION DEFINED bit
fields.

Information on fully architectural registers that are listed in this section, see the Arm®v8-M Architecture
Reference Manual. If registers are architectural with IMPLEMENTATION DEFINED bit fields, the register
summary table in this section links registers to their associated register description.

For more information on architectural registers, see:
• 4.1 System control register summary on page 4-51.
• 4.2 Identification register summary on page 4-55.
• 4.5 Cache identification register summary on page 4-62

3 Programmers model
3.5 Architectural registers

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

3-48

Non-Confidential

3.6 Exceptions
Exceptions are handled and prioritized by the Cortex-M55 processor and the Nested Vectored Interrupt
Controller (NVIC). In addition to architecturally defined behavior, the Cortex-M55 processor
implements advanced exception and interrupt handling that reduces interrupt latency and includes
IMPLEMENTATION DEFINED behavior.

3.6.1 Exception handling and prioritization

The Cortex-M55 processor core and the Nested Vectored Interrupt Controller (NVIC) together prioritize
and handle all exceptions.

When handling exceptions:

• All exceptions are handled in Handler mode.
• Processor state is automatically stored to the stack on an exception, and automatically restored from

the stack at the end of the Interrupt Service Routine (ISR).
• The vector is fetched in parallel to the state saving, enabling efficient interrupt entry.

The Cortex-M55 processor supports tail-chaining that enables back-to-back interrupts without the
overhead of state saving and restoration.

SoC designers configure the number of interrupts and bits of interrupt priority, during implementation.
Software can choose only to enable a subset of the configured number of interrupts, and can choose how
many bits of the configured priorities to use.

When the Security Extension is included, exceptions can be programmed as either Secure or Non-secure.
When an exception is taken, the Cortex-M55 processor switches to the associated Security state. The
priority of Secure and Non-secure exceptions can be programmed independently. It is possible to
deprioritize Non-secure configurable exceptions using AIRCR.PRIS to enable Secure interrupts to take
priority. When taking and returning from an exception, the register state is always stored using the stack
pointer associated with the background Security state. When taking a Non-secure exception from Secure
state, all the register states are stacked, and then the registers are cleared to prevent Secure data being
available to the Non-secure handler. The vector table base address is banked between Secure and Non-
secure state. VTOR_S, contains the Secure vector table base address and VTOR_NS contains the Non-
secure vector table base address. These registers can be programmed by software and also initialized at
reset by the system.

If the Security Extension is not included all exceptions are Non-secure and only VTOR_NS is used to
determine the vector table base address.

Vector table entries are compatible with interworking between Arm and Thumb® instructions. This
causes bit[0] of the vector value to load into EPSR.T, on exception entry. All populated vectors in the
vector table entries must have bit[0] set. Creating a vector table entry with bit[0] clear generates an
INVSTATE (Invalid state flag) fault on the first instruction of the handler corresponding to this vector.

Input signals INITSVTOR[31:7] and INITNSVTOR[31:7] define the Secure and Non-secure vector
table base address, respectively. However, when the Security Extension is not implemented,
INITNSVTOR[31:7] defines the vector table base address.

 Note

• The Cortex-M55 processor abandons all multicycle instructions to take pending instructions.
• Load Multiple and Store Multiple operations are interruptible.

3 Programmers model
3.6 Exceptions

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

3-49

Non-Confidential

Chapter 4
System registers

This chapter describes the system registers for the Cortex-M55 processor.

It contains the following sections:
• 4.1 System control register summary on page 4-51.
• 4.2 Identification register summary on page 4-55.
• 4.3 AFSR, Auxiliary Fault Status Register on page 4-59.
• 4.4 CPUID, CPUID Base Register on page 4-61.
• 4.5 Cache identification register summary on page 4-62.
• 4.6 REVIDR, Revision ID Register on page 4-66.
• 4.7 Implementation control register summary on page 4-67.
• 4.8 ACTLR, Auxiliary Control Register on page 4-68.
• 4.9 ICTR, Interrupt Controller Type Register on page 4-71.
• 4.10 IMPLEMENTATION DEFINED registers summary on page 4-72.
• 4.11 Direct cache access registers on page 4-75.
• 4.12 Error bank registers on page 4-81.
• 4.13 MSCR, Memory System Control Register on page 4-87.
• 4.14 PAHBCR, P-AHB Control Register on page 4-90.
• 4.15 PFCR, Prefetcher Control Register on page 4-91.
• 4.16 Power mode control registers on page 4-92.
• 4.17 Processor configuration information registers on page 4-95.
• 4.18 ID_PFR0, Processor Feature Register 0 on page 4-100.
• 4.19 ITCMCR and DTCMCR, TCM Control Registers on page 4-101.
• 4.20 TCM security gate registers on page 4-103.
• 4.21 EWIC interrupt status access registers on page 4-108.

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

4-50

Non-Confidential

4.1 System control register summary
The system control registers are a combination of fully architectural and IMPLEMENTATION DEFINED 32-bit
registers and can be set to control various processor features.

The following table shows a summary of the system control registers.

For more information on the architectural registers that are listed in the following table, see the Arm®v8-
M Architecture Reference Manual.

Table 4-1 System control register summary

Address Name Type Reset value Description

0xE000ED00 CPUID RO 0x410FD222 4.4 CPUID, CPUID Base
Register on page 4-61

0xE000ED04 ICSR RW 0x00000000 Interrupt Control and State
Register

0xE000ED08 VTOR RW 0xXXXXXXX0
 Note

Bits [31:7] of VTOR_S are based on INITSVTOR[31:7]. Bits
[31:7] of VTOR_NS are based on INITNSVTOR[31:7].

The Secure version of this register does not exist if the
Security Extension is not configured and only
INITNSVTOR[31:7] exists.

Bits [6:0] are RES0.

Vector Table Offset Register

0xE000ED0C AIRCR RW 0xFA05X000
 Note

Bit [15] of this register depends on input signal
CFGBIGEND. Bits [14:0] reset to zero.

Application Interrupt and Reset
Control Register

0xE000ED10 SCR RW 0x00000000 System Control Register

0xE000ED14 CCR RW 0x00000201 Configuration and Control
Register

0xE000ED18 SHPR1 RW 0x00000000 System Handler Priority
Register 1

0xE000ED1C SHPR2 RW 0x00000000 System Handler Priority
Register 2

0xE000ED20 SHPR3 RW 0x00000000 System Handler Priority
Register 3

0xE000ED24 SHCSR RW 0x00000000 System Handler Control and
State Register

0xE000ED28 CFSR RW 0x00000000 Configurable Fault Status
Register

MMFSR RW 0x00 MemManage Fault Status
Register

0xE000ED29 BFSR RW 0x00 BusFault Status Register

4 System registers
4.1 System control register summary

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

4-51

Non-Confidential

Table 4-1 System control register summary (continued)

Address Name Type Reset value Description

0xE000ED2A UFSR RW 0x0000 UsageFault Status Register

0xE000ED2C HFSR RW 0x00000000 HardFault Status Register

0xE000ED30 DFSR RW 0x00000000

Cold reset only.

Debug Fault Status Register

0xE000ED34 MMFAR RW UNKNOWN MemManage Fault Address
Register

0xE000ED38 BFAR RW UNKNOWN BusFault Address Register

0xE000ED3C AFSR RW 0x00000000 4.3 AFSR, Auxiliary Fault Status
Register on page 4-59

0xE000ED40 ID_PFR0 RO 0x20000030
 Note

ID_PFR0[31:28] indicates support for the RAS Extension.
ID_PFR0[31:28] is 0b0010 indicating that version 1 is
implemented.

4.18 ID_PFR0, Processor
Feature Register 0
on page 4-100

0xE000ED44 ID_PFR1 RO 0x000002X0
 Note

ID_PFR1[7:4] indicates support for the Security Extension. If
the Security Extension is supported, then ID_PFR1[7:4] is
0b0011. If the Security Extension is not included, then
ID_PFR1[7:4] is 0b0000.

Processor Feature Register 1

0xE000ED48 ID_DFR0 RO 0x10X00000
 Note

ID_DFR0[23:20] indicates support for debug architecture. If
halting debug is implemented and either a reduced set or a full
set of debug resources is used, then ID_DFR0[23:20] is
0b0010. If halting debug is not supported and minimal debug
is supported, then ID_DFR0[23:20] is 0b0000.

Debug Feature Register 0

0xE000ED4C ID_AFR0 RO 0x00000000 Auxiliary Feature Register 0

0xE000ED50 ID_MMFR0 RO 0x00111040
 Note

ID_MFR0[23:20] indicates support of Auxiliary Control
registers. ID_MFR0[19:16] indicates support of TCMs.
ID_MFR0[15:12] indicates that two levels of Shareability are
implemented. ID_MFR0[11:8] indicates that the Outermost
Shareability is implemented as Non-cacheable.
ID_MFR0[7:4] indicates PMSAv8 support. All other bits are
RES0.

Memory Model Feature Register
0

4 System registers
4.1 System control register summary

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

4-52

Non-Confidential

Table 4-1 System control register summary (continued)

Address Name Type Reset value Description

0xE000ED54 ID_MMFR1 RO 0x00000000 Memory Model Feature Register
1

0xE000ED58 ID_MMFR2 RO 0x01000000
 Note

ID_MFR2[27:24] indicates that WFI can stall. All other bits
are RES0.

Memory Model Feature Register
2

0xE000ED5C ID_MMFR3 RO 0x00000011
 Note

ID_MFR3[11:8] indicates that branch prediction is not
supported. ID_MFR3[7:4] indicates that set/way maintenance
operations are supported. ID_MFR3[3:0] indicates that
address and instruction cache invalidate maintenance
operations are supported. All other bits are RES0.

Memory Model Feature Register
3

0xE000ED60 ID_ISAR0 RO 0x011X3110
 Note

ID_ISAR0[19:16] depend on whether the external coprocessor
interface is included in the processor. Setting this to 0b0100
indicates that the coprocessor interface is supported.

Instruction Set Attribute
Register 0

0xE000ED64 ID_ISAR1 RO 0x02212000 Instruction Set Attribute
Register 1

0xE000ED68 ID_ISAR2 RO 0x20232232 Instruction Set Attribute
Register 2

0xE000ED6C ID_ISAR3 RO 0x01111131 Instruction Set Attribute
Register 3

0xE000ED70 ID_ISAR4 RO 0x01310132 Instruction Set Attribute
Register 4

0xE000ED74 ID_ISAR5 RO 0x00000000 Instruction Set Attribute
Register 5

0xE000ED78 CLIDR RO 0xXXX0000X
 Note

CLIDR[31:21] and CLIDR[2:0] depend on the cache
configuration of the processor.

4.5.1 CLIDR, Cache Level ID
Register on page 4-62

0xE000ED7C CTR RO • If an instruction cache or data cache is included, then the
reset value is 0x8303C003.

• If an instruction cache or data cache is not included, then
the reset value is 0x00000000.

Cache Type Register

4 System registers
4.1 System control register summary

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

4-53

Non-Confidential

Table 4-1 System control register summary (continued)

Address Name Type Reset value Description

0xE000ED80 CCSIDR RO 0xFXXXXXXX
 Note

CCSIDR depends on the CSSELR setting and L1 cache
configuration.

4.5.3 CCSIDR, Cache Size ID
Register on page 4-64

0xE000ED84 CSSELR RW 0x00000000 4.5.2 CSSELR, Cache Size
Selection Register on page 4-63

0xE000ED88 CPACR RW 0x00000000 Coprocessor Access Control
Register

0xE000ED8C NSACR RW 0b00000000 Non-secure Access Control
Register

4 System registers
4.1 System control register summary

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

4-54

Non-Confidential

4.2 Identification register summary
The Cortex-M55 processor identification registers allow software to determine the features and
functionality that are available. Each of these registers is 32 bits wide.

The following table shows a summary of the identification registers. For more information on the
architectural registers that are listed in the following table, see the Arm®v8-M Architecture Reference
Manual.

Table 4-2 Identification register summary

Address Name Type Reset value Description

0xE000ED00 CPUID RO 0x410FD222 4.4 CPUID, CPUID Base
Register on page 4-61

0xE000ED40 ID_PFR0 RO 0x20000030
 Note

ID_PFR0[31:28] indicates support for the RAS Extension.
ID_PFR0[31:28] is 0b0010 indicating that version 1 is
implemented.

Processor Feature Register 0

0xE000ED44 ID_PFR1 RO 0x000002X0
 Note

ID_PFR1[7:4] indicates support for the Security Extension.
If the Security Extension is supported, then ID_PFR1[7:4] is
0b0001. If the Security Extension are not included, then
ID_PFR1[7:4] is 0b0000.

Processor Feature Register 1

0xE000ED48 ID_DFR0 RO 0x10X00000
 Note

ID_DFR0[23:20] indicates support for debug architecture. If
Halting debug is implemented and either a reduced set or a
full set of debug resources is used, then ID_DFR0[23:20] is
0b0010. If Halting debug is not supported and minimal
debug is supported, then ID_DFR0[23:20] is 0b0000.

Debug Feature Register 0

0xE000ED4C ID_AFR0 RO 0x00000000 Auxiliary Feature Register 0

0xE000ED50 ID_MMFR0 RO 0x00111040
 Note

ID_MFR0[23:20] indicates support of Auxiliary Control
registers. ID_MFR0[19:16] indicates support of TCMs.
ID_MFR0[15:12] indicates that two levels of Shareability
are implemented. ID_MFR0[11:8] indicates that the
Outermost Shareability is implemented as Non-cacheable.
ID_MFR0[7:4] indicates PMSAv8 support. All other bits are
RES0.

Memory Model Feature Register
0

0xE000ED54 ID_MMFR1 RO 0x00000000 Memory Model Feature Register
1

4 System registers
4.2 Identification register summary

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

4-55

Non-Confidential

Table 4-2 Identification register summary (continued)

Address Name Type Reset value Description

0xE000ED58 ID_MMFR2 RO 0x01000000
 Note

ID_MFR2[27:24] indicates that WFI can stall. All other bits
are RES0.

Memory Model Feature Register
2

0xE000ED5C ID_MMFR3 RO 0x00000011
 Note

ID_MFR3[11:8] indicates that branch prediction is not
supported. ID_MFR3[7:4] indicates that set/way
maintenance operations are supported. ID_MFR3[3:0]
indicates that address and instruction cache invalidate
maintenance operations are supported. All other bits are
RES0.

Memory Model Feature Register
3

0xE000ED60 ID_ISAR0 RO 0x011X3110
ID_ISAR0[19:16] depend on whether the external
coprocessor interface is included in the processor.
• If the external coprocessor is not included, there is no

coprocessor instruction support, except the FPU. The
value of X is 0x0.

• If the external coprocessor is included, coprocessor
instruction support is included. The value of X is 0x4.

Instruction Set Attributes
Register 0

0xE000ED64 ID_ISAR1 RO 0x02212000 Instruction Set Attributes
Register 1

0xE000ED68 ID_ISAR2 RO 0x20232232 Instruction Set Attributes
Register 2

0xE000ED6C ID_ISAR3 RO 0x01111131 Instruction Set Attributes
Register 3

0xE000ED70 ID_ISAR4 RO 0x01310132 Instruction Set Attributes
Register 4

0xE000ED74 ID_ISAR5 RO 0x00000000 Instruction Set Attributes
Register 5

0xE000ED78 CLIDR RO 0xXXX0000X
 Note

Bits CLIDR[31:21] and CLIDR[2:0] depend on the cache
configuration of the processor. For more information, see
4.5.1 CLIDR, Cache Level ID Register on page 4-62.

4.5.1 CLIDR, Cache Level ID
Register on page 4-62

0xE000ED7C CTR RO 0x8303C003 Cache Type Register

4 System registers
4.2 Identification register summary

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

4-56

Non-Confidential

Table 4-2 Identification register summary (continued)

Address Name Type Reset value Description

0xE000ED80 CCSIDR RO UNKNOWN

 Note

CCSIDR depends on the CSSELR setting and L1 cache
configuration. For more information, see 4.5.3 CCSIDR,
Cache Size ID Register on page 4-64.

4.5.3 CCSIDR, Cache Size ID
Register on page 4-64

0xE000ED84 CSSELR RW 0x00000000 4.5.2 CSSELR, Cache Size
Selection Register on page 4-63

0xE000EF40 MVFR0 RO Table 4-3 MVFR0, MVFR1, and MVFR2 reset values
on page 4-58

Media and VFP Feature Register
0

0xE000EF44 MVFR1 RO Media and VFP Feature Register
1

0xE000EF48 MVFR2 RO Media and VFP Feature Register
2

0xE000EFD0 DPIDR4 RO 0x00000004 CoreSight Peripheral ID Register
4

0xE000EFD4 DPIDR5 RO 0x00000000 CoreSight Peripheral ID Register
5

0xE000EFD8 DPIDR6 RO 0x00000000 CoreSight Peripheral ID Register
6

0xE000EFDC DPIDR7 RO 0x00000000 CoreSight Peripheral ID Register
7

0xE000EFE0 DPIDR0 RO 00000022 CoreSight Peripheral ID Register
0

0xE000EFE4 DPIDR1 RO 0x000000BD CoreSight Peripheral ID Register
1

0xE000EFE8 DPIDR2 RO 0x0000000B CoreSight Peripheral ID Register
2

0xE000EFEC DPIDR3 RO 0x00000000
 Note

Bits [7:4] and [3:0] are REVAND and CMOD respectively.

The REVAND field indicates minor errata fixes specific to
this design, for example metal fixes after implementation.

If the component is reusable IP, the CMOD field indicates
whether you have modified the behavior of the component.

These values depend on the exact revision of the silicon as
documented in Arm® CoreSight™ Architecture Specification
v3.0

.

CoreSight Peripheral ID Register
3

0xE000EFF0 DCIDR0 RO 0x0000000D CoreSight Component ID
Register 0

4 System registers
4.2 Identification register summary

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

4-57

Non-Confidential

Table 4-2 Identification register summary (continued)

Address Name Type Reset value Description

0xE000EFF4 DCIDR1 RO 0x00000090 CoreSight Component ID
Register 1

0xE000EFF8 DCIDR2 RO 0x00000005 CoreSight Component ID
Register 2

0xE000EFFC DCIDR3 RO 0x000000B1 CoreSight Component ID
Register 3

0xE000EFBC DDEVARCH RO 0x47702A04 CoreSight Device Architecture
Register

0xE000ECFC REVIDR RO 0x00000000 Revision ID register

0xE0005FC8 ERRDEVID RO 0x00000001
 Note

ERRDEVID[15:0] indicates the number of error records that
the RAS Extension implementation supports. In the Cortex-
M55 processor, this field reads 0x0001 indicating one error
record is supported.

This register is RAZ if any of the following conditions are
true:
• ECC protection is not configured.
• ECC protection is configured but not enabled

Error Record Device ID Register.
See 10.5.6 ERRDEVID, RAS
Error Record Device ID Register
on page 10-229.

4.2.1 Media and VFP Feature Register reset values, MVFR0, MVFR1, and MVFR2 reset values

The MVFR0, MVFR1, and MVFR2 register reset values depend on the M‑profile Vector Extension
(MVE) and floating-point functionality configuration. The MVE and floating-point functionality
operation is configured using the MVE and FPU configuration parameters.

For more information, see 2.6 Cortex®-M55 implementation options on page 2-39.

The following table shows the MVFR0, MVFR1, and MVFR2 reset values based on the reset
configurations.

Table 4-3 MVFR0, MVFR1, and MVFR2 reset values

Configuration MVFR0 MVFR1 MVFR2

MVE=0, FPU=0 0x00000000 0x00000000 0x00000000

MVE=1, FPU=0 0x00000001 0x00000100 0x00000000

MVE=0, FPU=1 0x10110221 0x12100011 0x00000040

MVE=1, FPU=1 0x10110221 0x12100111 0x00000040

MVE=2, FPU=1 0x10110221 0x12100211 0x00000040

4 System registers
4.2 Identification register summary

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

4-58

Non-Confidential

4.3 AFSR, Auxiliary Fault Status Register
The AFSR provides fault status information.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault. The register is set to
zero at reset. A field in the register can be cleared by writing 0b1 to the corresponding bit.
AFSR bits [31:21] are only valid if BFSR.IBUSERR is set. AFSR bits [20:10] are only valid is
BFSR.PRECISEERR is set. AFSR bits [9:0] are only valid if BFSR.IMPRECISEERR is set. If
multiple faults occur, the AFSR indicates the types of all the faults that have occurred. For more
information on BFSR, see the Arm®v8-M Architecture Reference Manual.

If the Security Extension is implemented and AIRCR.BFHFNMINS is zero, this register is
RAZ/WI from Non-secure state. Unprivileged access results in a BusFault exception

Configuration
This register is always implemented.

Attributes
A 32-bit RW register that is located at 0xE000ED3C. Non-secure alias is provided using
AFSR_NS, that is located at 0xE002ED3C. This register is not banked between Security states.
See 4.10 IMPLEMENTATION DEFINED registers summary on page 4-72 for more
information.

The following figure shows the AFSR bit assignments.

31 16 15 4 3 0282930 14 13 12 11 10 9 8 7 6 5 2 1

Reserved
FPOISON

27 26

FTGU
FECC

FMAXITYPE

25

Reserved

24

FMAXI

23

Reserved

22

FDTCM

21

FITCM

20

Reserved

19

PPOISON

18

PTGU

17

PECC

IITCM
IDTCM
IPAHB
IMAXI
IEPPB

IMAXITYPE
IECC
Reserved

PITCM
PDTCM
PPAHB
PMAXI
PEPPB

PMAXITYPE

Reserved

PIPPB

IPOISON

Figure 4-1 AFSR bit assignments

The following table describes the AFSR bit assignments.

Table 4-4 AFSR bit assignments

Bits Name Type Description

[31] Reserved - RES0

[30] FPOISON RW Fetch fault that is caused by RPOISON or TEBRx.POISON.

4 System registers
4.3 AFSR, Auxiliary Fault Status Register

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

4-59

Non-Confidential

Table 4-4 AFSR bit assignments (continued)

Bits Name Type Description

[29] FTGU - Fetch fault that is caused by TCM Gate Unit (TGU) security violation.

[28] FECC RW Fetch fault that is caused by uncorrectable Error Correcting Code (ECC) error.

[27] FMAXITYPE RW AXI response that caused the fetch fault. Only valid when AFSR.FMAXI is 1.

0b0 SLVERR

0b1 DECERR

[26:25] Reserved - RES0

[24] FMAXI RW Fetch fault on Master AXI (M-AXI) interface.

[23] Reserved - RES0

[22] FDTCM RW Fetch fault on Data Tightly Coupled Memory (DTCM) interface.

[21] FITCM RW Fetch fault on Instruction Tightly Coupled Memory (ITCM) interface.

[20] Reserved - RES0

[19] PPOISON RW Precise fault that is caused by RPOISON or TEBRx.POISON.

[18] PTGU RW Precise fault that is caused by TGU security violation.

[17] PECC RW Precise fault that is caused by uncorrectable ECC error.

[16] PMAXITYPE RW AXI response that caused the precise fault. Only valid when AFSR.PMAXI is 1.

0b0 SLVERR

0b1 DECERR

[15] PIPPB RW Precise fault on Internal Private Peripheral Bus (IPPB) interface.

[14] PEPPB RW Precise fault on External Private Peripheral Bus (EPPB) interface.

[13] PMAXI RW Precise fault on M-AXI interface.

[12] PPAHB RW Precise fault on Peripheral AHB (P-AHB) interface.

[11] PDTCM RW Precise fault on DTCM interface.

[10] PITCM RW Precise fault on ITCM interface.

[9] IPOISON RW Imprecise BusFault because of RPOISON.

[8] Reserved - RES0

[7] IECC RW Imprecise fault that is caused by uncorrectable ECC error.

[6] IMAXITYPE RW AXI response that caused the imprecise fault. Only valid when AFSR.IMAXI is 1.

0b0 SLVERR

0b1 DECERR

[5] Reserved - RES0

[4] IEPPB RW Imprecise fault on EPPB interface.

[3] IMAXI RW Imprecise fault on M-AXI interface.

[2] IPAHB RW Imprecise fault on P-AHB interface.

[1] IDTCM RW Imprecise fault on DTCM interface.

[0] IITCM RW Imprecise fault on ITCM interface.

4 System registers
4.3 AFSR, Auxiliary Fault Status Register

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

4-60

Non-Confidential

4.4 CPUID, CPUID Base Register
CPUID contains the Cortex-M55 processor part number, version, and implementation information.

Usage constraints
This register is read-only.

Configuration
This register is always implemented.

Attributes
This register is not banked between Security states. See 4.2 Identification register summary
on page 4-55 for more information.

The following figure shows the CPUID bit assignments.

Revision

31 24 23 20 19 16 15 4 3 0

PartNoArchitectureVariantImplementer

Figure 4-2 CPUID bit assignments

The following table shows the CPUID bit assignments.

Table 4-5 CPUID bit assignments

Bits Name Type Description

[31:24] Implementer RO Implementer code that Arm has assigned.

0x41 A: Arm Limited.

[23:20] Variant RO Variant number to distinguish between different product variants or major revisions of the product.
Variant is the x in the rxpy product revision identifier.

0x0 Cortex-M55 r0p2

[19:16] Architecture RO Indicates the architecture version that the Cortex-M55 processor implements.

0b1111 Armv8.1‑M with Main Extension.

[15:4] PartNo RO Part number of the Cortex-M55 processor.

0xD22 Cortex-M55

[3:0] Revision RO Revision number to distinguish between different patches of the product. Revision is the y in the rxpy
product revision identifier.

0x2 Cortex-M55 r0p2

4 System registers
4.4 CPUID, CPUID Base Register

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

4-61

Non-Confidential

4.5 Cache identification register summary
The cache identification registers are responsible for cache configuration in the processor. The fields in
these registers depend on the instruction and data cache size.

The following table lists the cache identification registers.

Table 4-6 Cache identification register summary

Address Name Type Reset value Description

0xE000ED78 CLIDR RO 0xXXX0000X
 Note

CLIDR[31:21] and CLIDR[2:0] depend on the cache
configuration of the processor. For more information, see
4.5.1 CLIDR, Cache Level ID Register on page 4-62.

4.5.1 CLIDR, Cache Level ID
Register on page 4-62

0xE000ED7C CTR RO 0x8303C003 Cache Type Register. For more
information, see the Arm®v8-M
Architecture Reference Manual

0xE000ED80 CCSIDR RO UNKNOWN

 Note

CCSIDR depends on the CSSELR setting and L1 cache
configuration. For more information, see 4.5.3 CCSIDR,
Cache Size ID Register on page 4-64.

4.5.3 CCSIDR, Cache Size ID
Register on page 4-64

0xE000ED84 CSSELR RW 0x00000000 4.5.2 CSSELR, Cache Size Selection
Register on page 4-63

4.5.1 CLIDR, Cache Level ID Register

The CLIDR identifies the type of caches that are implemented and the level of coherency and unification.
If an instruction, data cache, or both is not configured in the processor, then CLIDR is 0x00000000.

Usage constraints
This register is a read-only and is accessible in Privileged mode only.

Configuration

This register is always implemented.

Attributes
This register is not banked between Security states. See Table 4-2 Identification register
summary on page 4-55 for more information.

The following figure shows the CLIDR bit assignments.

31 3 024 23 2026272930 2

LoUU LoC LoUIS Reserved Ctype1ICB

21

Figure 4-3 CLIDR bit assignments

4 System registers
4.5 Cache identification register summary

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

4-62

Non-Confidential

The following table shows the CLIDR bit assignments.

Table 4-7 CLIDR bit assignments

Bits Name Type Description

[31:30] ICB RO Inner cache boundary. The Cortex-M55 processor supports inner Cacheability on the bus. Therefore, this
field cannot disclose any information.

0b00 Not disclosed in this mechanism.

[29:27] LoUU RO Level of Unification Uniprocessor. The L1 cache must be cleaned or invalidated when cleaning or
invalidating occurs to the point of unification. The options are:

0b000 Caches are not implemented. Therefore, cleaning and invalidation is not required.

0b001 Level 1 (L1) data cache or instruction cache is implemented. Therefore, cleaning and
invalidation are required.

[26:24] LoC RO Level of Coherency. The L1 cache must be cleaned when cleaning occurs to the point of coherency. The
options are:

0b000 Caches are not implemented. Therefore, cleaning is not required.

0b001 L1 data cache or instruction cache is implemented. Therefore, cleaning is required.

[23:21] LoUIS RO Level of Unification Inner Shareable. The L1 cache must be cleaned or invalidated when cleaning or
invalidating occurs to the point of unification for the inner Shareability domain. The options are:

0b000 Caches are not implemented. Therefore, cleaning and invalidation are not required.

0b001 L1 data cache or instruction cache is implemented. Therefore, cleaning and invalidation are
required.

[20:3] Reserved - RES0

[2:0] Ctype1 RO Level 1 (L1) cache type. The options are:

0b000 Caches are not implemented.

0b001 Only instruction cache is implemented.

0b010 Only data cache is implemented.

0b011 Both data cache and instruction cache are implemented.

4.5.2 CSSELR, Cache Size Selection Register

The CSSELR selects the cache accessed through the CCSIDR by specifying the cache level and the type
of cache (either instruction or data cache). For Cortex-M55, this can be either the L1 instruction cache or
L1 data cache.

Usage constraints
This register is read/write and is accessible in Privileged mode only.

Configurations

This register is always implemented.

Attributes
See Table 4-2 Identification register summary on page 4-55 for more information.

This register is banked between Security states. The following figure shows the CSSELR bit
assignments.

4 System registers
4.5 Cache identification register summary

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

4-63

Non-Confidential

Reserved Level

4 3 1 0

InD

31

Figure 4-4 CSSELR bit assignments

The following table shows the CSSELR bit assignments.

Table 4-8 CSSELR bit assignments

Bits Name Type Function

[31:4] Reserved - RES0

[3:1] Level RO Identifies which cache level to select.

0x0 L1 cache.

This field is RAZ/WI.

[0] InD RW Selects either L1 instruction or data cache. The options are:

0 L1 data cache.

1 L1 instruction cache.

4.5.3 CCSIDR, Cache Size ID Register

The CCSIDR provides information about the architecture of the instruction or data cache that the
CSSELR selects. If the cache corresponding to CSSELR.InD is not included in the processor, then this
register reads 0x00000000.

Usage constraints

This register is read-only and is accessible in Privileged mode only.

Configurations

This register is always implemented.

Attributes
This register is banked between Security states. The value of this register depends on the cache
that CSSELR selects. If you are setting CSSELR in a particular Security state, then Arm
recommends that you read CSSIDR in the same Security state to get the architecture information
about the selected instruction or data cache.

The following figure shows the CCSIDR bit assignments.

AssocNumSet LineSize

31 3 2 030 29 28

RA
WA

WB

121327

WT

Figure 4-5 CCSIDR bit assignments

The following table shows the CCSIDR bit assignments.

4 System registers
4.5 Cache identification register summary

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

4-64

Non-Confidential

Table 4-9 CCSIDR bit assignments

Bits Name Type Function

[31] WT RO Indicates support available for Write-Through:

0b1 Write-Through support available.

[30] WB RO Indicates support available for Write-Back:

0b1 Write-Back support available.

[29] RA RO Indicates support available for read allocation:

0b1 Read allocation support available.

[28] WA RO Indicates support available for write allocation:

0b1 Write allocation support available.

[27:13] NumSet RO Indicates the number of sets.

Cache-size dependent.

[12:3] Assoc RO Indicates associativity. The value depends on the cache that CSSELR selects.

When CSSELR.InD=1 (L1 instruction cache):

0x1 2-way set associative instruction cache.

When CSSELR.InD=0 (L1 data cache):

0x3 4-way set associative data cache.

[2:0] LineSize RO Indicates the number of words in each cache line.

0b1 Represents 32 bytes.

The LineSize field is encoded as 2 less than log(2) of the number of words in the cache line. For
example, a value of 0x0 indicates that there are four words in a cache line, that is the minimum size for
the cache. A value of 0x1 indicates that there are eight words in a cache line.

4 System registers
4.5 Cache identification register summary

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

4-65

Non-Confidential

4.6 REVIDR, Revision ID Register
The REVIDR register provides additional IMPLEMENTATION-SPECIFIC minor revision that can be interpreted
with the CPUID register.

Usage constraints
Unprivileged access results in a BusFault exception. If the Security Extension is implemented,
this register is RAZ/WI from Non-secure state.
This register is accessible through unprivileged Debug AHB (D-AHB) debug requests when
either DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

Configurations
This register is always implemented.

Attributes
This register is not banked between Security states. See 4.10 IMPLEMENTATION DEFINED
registers summary on page 4-72 for more information.

The following figure shows the REVIDR bit assignments.

31 0

IMPLEMENTATION SPECIFIC

Figure 4-6 REVIDR bit assignments

The following table describes the REVIDR bit assignments.

Table 4-10 REVIDR bit assignments

Field Name Type Description

[31:0] IMPLEMENTATION
SPECIFIC

RO IMPLEMENTATION-SPECIFIC minor revision information that can be interpreted with the
CPUID register. For more information on the CPUID register, see the Arm®v8-M
Architecture Reference Manual.

4 System registers
4.6 REVIDR, Revision ID Register

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

4-66

Non-Confidential

4.7 Implementation control register summary
Implementation control registers are architecturally defined with values that control aspects of system
implementation.

The following table shows a summary of the implementation control registers. For more information on
the architectural registers that are listed in the following table, see the Arm®v8-M Architecture Reference
Manual.

Table 4-11 Implementation control register summary

Address Name Type Reset value Description

0xE000E004 ICTR RO 0x0000000X
 Note

ICTR[3:0] depends on the number of interrupts that are
included in the processor. Bits [31:4] are zero.

4.9 ICTR, Interrupt Controller Type
Register on page 4-71

0xE000E008 ACTLR RW 0x00000000 4.8 ACTLR, Auxiliary Control Register
on page 4-68

0xE000E00C CPPWR RW 0x00000000 Coprocessor Power Control Register

4 System registers
4.7 Implementation control register summary

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

4-67

Non-Confidential

4.8 ACTLR, Auxiliary Control Register
The ACTLR contains many fields that allow software to control the processor features and functionality.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a BusFault exception.

Configuration
This register is always implemented.

Attributes
A 32-bit RW register that is located at 0xE000E008. Non-secure alias is provided using
ACTLR_NS, located at 0xE002E008. This register is banked between Security domains. See
4.10 IMPLEMENTATION DEFINED registers summary on page 4-72 for more information. At
reset, all fields in this register are set to zero.

The following figure shows the ACTLR bit assignments.

31 16 15 4 3 028 14 13 12 11 10 9 8 7 6 5 2 1

Reserved

Reserved
DISITMATBFLUSH

Reserved
DISFOLD

FPEXCODIS
DISNWAMODE

DISLO
Reserved
DISOLAPS
DISOLAP
Reserved

DISCRITAXIRUR

1727

DISCRITAXIRUW

26

Reserved

18

DISDI
DISLOLEP

Figure 4-7 ACTLR bit assignments

The following table describes the ACTLR bit assignments.

Table 4-12 ACTLR bit assignments

Bits Name Type Description

[31:28] Reserved - These bits are reserved for future use and must be treated as UNK/SBZP.

[27] DISCRITAXIRUW RW Disable-Critical-AXI-Read-Under-Write. The options are:

0 Normal operation.

1 AXI reads to Device memory and exclusive reads to shared memory are not
initiated on the M-AXI read address channel until all outstanding writes on the M-
AXI interface are complete.

Setting this bit decreases performance.

[26:18] Reserved - These bits are reserved for future use and must be treated as UNK/SBZP.

4 System registers
4.8 ACTLR, Auxiliary Control Register

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

4-68

Non-Confidential

Table 4-12 ACTLR bit assignments (continued)

Bits Name Type Description

[17:16] DISDI RW Disable dual-issue features. The options for this bit are:

0b00 Full dual-issue, if DISFOLD is set to 0.

0b01 Disable dual-issue of arithmetic instructions.

0b10 Disable lane swapping

0b11 Disable dual-issue of arithmetic instructions and lane swapping.

[15] DISCRITAXIRUR RW Disable critical AXI Read-Under-Read. The options for this bit are:

0 Normal operation.

1 AXI reads to Device memory and exclusive reads to shared memory are not
initiated on the M-AXI read address channels if there are any outstanding reads on
the M-AXI. Transactions on the M-AXI cannot be interrupted.

This bit might reduce the time that these transactions are in progress and might improve worst-
case interrupt latency. Setting this bit reduces performance.

[14:13] Reserved - These bits are reserved for future use and must be treated as UNK/SBZP.

[12] DISITMATBFLUSH RW This bit determines whether Instrumentation Trace Macrocell (ITM) or Data Watchpoint and
Trace (DWT) ATB flush is disabled. The options for this bit are:

0 Normal operation.

1 ITM or DWT ATB flush is disabled.

When disabled, the AFVALID signal (trace flush request) is ignored and the AFREADY
(trace flush ready) signal is held HIGH. This field only resets on Cold reset.

[11] DISNWAMODE RW This bit determines if no write allocate mode is disabled. The options for this bit are:

0 Normal operation.

1 No write allocate mode is disabled.

Setting this bit decreases performance. For more information on no write allocation mode, see
No Write-Allocate mode on page 9-197.

[10] FPEXCODIS RW This bit determines if floating-point exception outputs are disabled. The options for this bit are:

0 Normal operation.

1 Floating-point exception outputs are disabled.

[9:8] Reserved - These bits are reserved for future use and must be treated as UNK/SBZP.

[7] DISOLAP RW Disable overlapping of all instructions.

[6] DISOLAPS RW Disable overlapping of scalar-only instructions.

[5] Reserved - UNK/SBZP

[4] DISLO RW Disable low overhead loops. The options are:

0 Low overhead loops enabled.

1 Low overhead loops disabled.

4 System registers
4.8 ACTLR, Auxiliary Control Register

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

4-69

Non-Confidential

Table 4-12 ACTLR bit assignments (continued)

Bits Name Type Description

[3] DISLOLEP RW Disable end of loop prediction in for low overhead loops.

The options are:

0 Low overhead loop end prediction enabled

1 Low overhead loop end prediction disabled

Setting this bit decreases performance.

[2] DISFOLD RW This bit determines if dual-issue functionality is disabled. The options are:

0 Normal operation.

1 Dual-issue functionality is disabled.

Setting this bit decreases performance.

[1:0] Reserved - These bits are reserved for future use and must be treated as UNK/SBZP.

4 System registers
4.8 ACTLR, Auxiliary Control Register

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

4-70

Non-Confidential

4.9 ICTR, Interrupt Controller Type Register
The ICTR register shows the number of interrupt lines that the NVIC supports.

Usage Constraints
There are no usage constraints.

Configurations
This register is available in all processor configurations.

Attributes
See 11.3 NVIC register summary on page 11-234 for more information.

The following figure shows the ICTR bit assignments.

Reserved

31 4 3 0

INTLINESNUM

Figure 4-8 ICTR bit assignments

The following table shows the ICTR bit assignments.

Table 4-13 ICTR bit assignments

Bits Name Type Function

[31:4] - - Reserved.

[3:0] INTLINESNUM RO Total number of interrupt lines in groups of 32:

0b0000 0-32

0b0001 33-64

0b0010 65-96

0b0011 97-128

0b0100 129-160

0b0101 161-192

0b0110 193-224

0b0111 225-256

0b1000 257-288

0b1001 289-320

0b1010 321-352

0b1011 353-384

0b1100 385-416

0b1101 417-448

0b1110 449-480

 Note

The processor supports a maximum of 480 external interrupts.

4 System registers
4.9 ICTR, Interrupt Controller Type Register

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

4-71

Non-Confidential

4.10 IMPLEMENTATION DEFINED registers summary
The 32-bit IMPLEMENTATION DEFINED registers provide memory configuration and access control, error
record information, interrupt control, and processor configuration information.

The following table lists the IMPLEMENTATION DEFINED registers for the Cortex-M55 processor.

Table 4-14 IMPLEMENTATION DEFINED registers summary

Address Name Type Reset value Description

0xE0005000 ERRFR0 RO 0x00000101 10.5.1 ERRFR0, RAS Error Record Feature
Register on page 10-223

0xE0005008 ERRCTRL0 - - This register is RES0.

0xE0005010 ERRSTATUS0 RW 0xXXX000XX 10.5.2 ERRSTATUS0, RAS Error Record Primary
Status Register on page 10-223

0xE0005018 ERRADDR0 RO 0xXXXXXXXX 10.5.3 ERRADDR0 and ERRADDR20, RAS Error
Record Address Registers on page 10-225

0xE000501C ERRADDR20 RO 0xX0000000 10.5.3 ERRADDR0 and ERRADDR20, RAS Error
Record Address Registers on page 10-225

0xE0005020 ERRMISC00 - - This register is RES0.

0xE0005024 ERRMISC10 RO 0x0000000X 10.5.4 ERRMISC10, Error Record Miscellaneous
Register 10 on page 10-227

0xE0005028 ERRMISC20 - - This register is RES0.

0xE000502C ERRMISC30 - - This register is RES0.

0xE0005030 ERRMISC40 - - This register is RES0.

0xE0005034 ERRMISC50 - - This register is RES0.

0xE0005038 ERRMISC60 - - This register is RES0.

0xE000503C ERRMISC70 - - This register is RES0.

0xE0005E00 ERRGSR0 RO 0x00000000 10.5.5 ERRGSR0, RAS Fault Group Status
Register on page 10-228

0xE000ECFC REVIDR RO 0x00000000 4.6 REVIDR, Revision ID Register on page 4-66

0xE0005FC8 ERRDEVID RO 0x00000001 10.5.6 ERRDEVID, RAS Error Record Device ID
Register on page 10-229

0xE000E008 ACTLR RW 0x00000000 4.8 ACTLR, Auxiliary Control Register
on page 4-68

0xE000ED3C AFSR RW 0x00000000 4.3 AFSR, Auxiliary Fault Status Register
on page 4-59

0xE000EF04 RFSR RW 0xXXXX000X 10.5.7 RFSR, RAS Fault Status Register
on page 10-229

4 System registers
4.10 IMPLEMENTATION DEFINED registers summary

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

4-72

Non-Confidential

Table 4-14 IMPLEMENTATION DEFINED registers summary (continued)

Address Name Type Reset value Description

0xE001E000 MSCR RW If the instruction
cache and data cache
are not present, then
the reset value is
0x0000000X.

If the instruction
cache and data cache
are present, then the
reset value is
0x0000300X.

4.13 MSCR, Memory System Control Register
on page 4-87

0xE001E004 PFCR RW 0x00000061 4.15 PFCR, Prefetcher Control Register
on page 4-91

0xE001E010 ITCMCR RW 0x000000XX 4.19 ITCMCR and DTCMCR, TCM Control
Registers on page 4-101

0xE001E014 DTCMCR RW 0x000000XX

0xE001E018 PAHBCR RW 0x0000000X. 4.14 PAHBCR, P-AHB Control Register
on page 4-90

0xE001E100 IEBR0 RW 0x00000000 4.12.1 IEBR0 and IEBR1, Instruction Cache Error
Bank Register 0-1 on page 4-81

0xE001E104 IEBR1 RW 0x00000000

0xE001E110 DEBR0 RW 0x00000000 4.12.2 DEBR0 and DEBR1, Data Cache Error
Bank Register 0-1 on page 4-82

0xE001E114 DEBR1 RW 0x00000000

0xE001E120 TEBR0 RW 0x00000000 4.12.3 TEBR0 and TEBR1, TCM Error Bank
Register 0-1 on page 4-84

0xE001E124 TEBRDATA0 RO 0x00000000 Data for TCU Error Bank Register 0-1,
TEBRDATA0 and TEBRDATA1 on page 4-85

0xE001E128 TEBR1 RW 0x00000000 4.12.3 TEBR0 and TEBR1, TCM Error Bank
Register 0-1 on page 4-84

0xE001E12C TEBRDATA1 RO 0x00000000 Data for TCU Error Bank Register 0-1,
TEBRDATA0 and TEBRDATA1 on page 4-85

0xE001E200 DCADCRR RO 4.11.2 DCAICRR and DCADCRR, Direct Cache Access Read Registers
on page 4-77

0xE001E204 DCAICRR RO

0xE001E210 DCADCLR RW 0x00000000 4.11.1 DCAICLR and DCADCLR, Direct Cache
Access Location Registers on page 4-75

0xE001E214 DCAICLR RW 0x00000000

0xE001E300 CPDLPSTATE RW 0x00000333 4.16.1 CPDLPSTATE, Core Power Domain Low
Power State Register on page 4-92

0xE001E304 DPDLPSTATE RW 0x00000003 4.16.2 DPDLPSTATE, Debug Power Domain Low
Power State Register on page 4-93

0xE001E400 EVENTSPR WO 0x0000000X 4.21.1 EVENTSPR, Event Set Pending Register
on page 4-108

0xE001E480 EVENTMASKA RO 0x0000000X 4.21.2 EVENTMASKA and EVENTMASKn,
n=0-14, Wakeup Event Mask Registers
on page 4-1090xE001E484+4n EVENTMASKn RO UNKNOWN

4 System registers
4.10 IMPLEMENTATION DEFINED registers summary

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

4-73

Non-Confidential

Table 4-14 IMPLEMENTATION DEFINED registers summary (continued)

Address Name Type Reset value Description

0xE001E500 ITGU_CTRL RW 0x00000003 4.20.1 ITGU_CTRL and DTGU_CTRL, ITGU and
DTGU Control Registers on page 4-103

0xE001E504 ITGU_CFG RO 0xX0002X0X 4.20.2 ITGU_CFG and DTGU_CFG, ITGU and
DTGU Configuration Registers on page 4-104

0xE001E510+4n ITGU_LUTn • RW if 32n
+1<2Number of

ITGU blocks

• RO if 32n
+1≥2Number of

ITGU blocks

0x00000000 4.20.3 ITGU_LUTn and DTGU_LUTn, ITGU and
DTGU Look Up Table Registers on page 4-105

0xE001E600 DTGU_CTRL RW 0x00000003 4.20.1 ITGU_CTRL and DTGU_CTRL, ITGU and
DTGU Control Registers on page 4-103

0xE001E604 DTGU_CFG RO 0xX0002X0X 4.20.2 ITGU_CFG and DTGU_CFG, ITGU and
DTGU Configuration Registers on page 4-104

0xE001E610+4n DTGU_LUTn • RW if 32n
+1<2Number of

DTGU blocks

• RO if 32n
+1≥2Number of

DTGU blocks

0x00000000 4.20.3 ITGU_LUTn and DTGU_LUTn, ITGU and
DTGU Look Up Table Registers on page 4-105

0xE001E700 CFGINFOSEL WO UNKNOWN 4.17.1 CFGINFOSEL, Processor configuration
information selection register on page 4-95

0xE001E704 CFGINFORD RO UNKNOWN 4.17.2 CFGINFORD, Processor configuration
information read data register on page 4-98

 Note

The following registers are reset on Cold reset only. These reset values persist across a system reset or
Warm reset.
• 10.5.1 ERRFR0, RAS Error Record Feature Register on page 10-223.
• 10.5.4 ERRMISC10, Error Record Miscellaneous Register 10 on page 10-227.
• 10.5.3 ERRADDR0 and ERRADDR20, RAS Error Record Address Registers on page 10-225.
• 10.5.2 ERRSTATUS0, RAS Error Record Primary Status Register on page 10-223.
• 10.5.5 ERRGSR0, RAS Fault Group Status Register on page 10-228.

4 System registers
4.10 IMPLEMENTATION DEFINED registers summary

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

4-74

Non-Confidential

4.11 Direct cache access registers
The Cortex-M55 processor provides a set of registers that allows direct read access to the embedded
RAM associated with the L1 instruction and data cache. Two registers are included for each cache, one to
set the required RAM and location, and the other to read out the data.

The following table lists the direct cache access registers.

Table 4-15 Direct cache access registers

Address Name Type Reset value Description

0xE001E200 DCADCRR RO UNKNOWN 4.11.2 DCAICRR and
DCADCRR, Direct
Cache Access Read
Registers on page 4-77

0xE001E204 DCAICRR RO UNKNOWN

0xE001E210 DCADCLR RW 0x00000000 4.11.1 DCAICLR and
DCADCLR, Direct
Cache Access Location
Registers on page 4-75

0xE001E214 DCAICLR RW 0x00000000

4.11.1 DCAICLR and DCADCLR, Direct Cache Access Location Registers

The DCAICLR and DCADCLR registers are used by software to set the location to be read from the L1
instruction cache and data cache respectively.

Usage Constraints
The DCAICLR is RAZ/WI if the L1 instruction cache is not present. The DCADCLR is
RAZ/WI if the L1 data cache is not present. If the Security Extension is implemented, these
registers are RAZ/WI from the Non-secure state. Unprivileged access results in a BusFault
exception.

Configurations
These registers are always implemented.

Attributes
These registers are not banked between Security states. See 4.10 IMPLEMENTATION
DEFINED registers summary on page 4-72 for more information.

DCAICLR

The following figure shows the DCAICLR bit assignments.

4 System registers
4.11 Direct cache access registers

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

4-75

Non-Confidential

31 02930 5 4 1

WAY

Reserved SET OFFSET

2

Reserved
RAMReserved

OFFSET

OFFSET

OFFSET

OFFSET

SET

SET

SET

SET

15 14 13 12 11 10

Reserved

Reserved

Reserved

Reserved

64K
B

32K
B

16K
B

8K
B

4K
B

Figure 4-9 DCAICLR bit assignments

The following table shows the DCAICLR bit assignments.

Table 4-16 DCAICLR bit assignments

Bits Name Type Function

[31] Reserved - RES0

[30] WAY RO Cache way

[29:N+1] Reserved - Set index. The value of N depends on the cache size.

The options are:

64KB N=14

32KB N=13

16KB N=12

8KB N=11

4KB N=10

[N:5] SET RO

[4:2] OFFSET RO Data offset

[1] Reserved - RES0

[0] RAMTYPE RO RAM type

0 Tag RAM

1 Data RAM

DCADCLR

The following figure shows the DCADCLR bit assignments.

4 System registers
4.11 Direct cache access registers

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

4-76

Non-Confidential

31 02930 5 4 1

WAY

Reserved SET OFFSET

2

Reserved
RAM

OFFSET

OFFSET

OFFSET

OFFSET

SET

SET

SET

SET

14 13 12 11 10

Reserved

Reserved

Reserved

Reserved

64K
B

32K
B

16K
B

8K
B

4K
B

Figure 4-10 DCADCLR bit assignments

The following table shows the DCADCLR bit assignments.

Table 4-17 DCADCLR bit assignments

Bits Name Type Function

[31:30] WAY RO Cache way

[29:N+1] Reserved - Set index. The value of N depends on the cache size.

The options are:

64KB N=13

32KB N=12

16KB N=11

8KB N=10

4KB N=9

[N:5] SET RO

[4:2] OFFSET RO Data offset

[1] Reserved - RES0

[0] RAMTYPE RO RAM type

0 Tag RAM

1 Data RAM

4.11.2 DCAICRR and DCADCRR, Direct Cache Access Read Registers

The DCAICRR and DCADCRR registers are used by software to read the data from the L1 instruction
cache and data cache from the location that the DCAICLR and DCADCLR registers determine.

4 System registers
4.11 Direct cache access registers

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

4-77

Non-Confidential

Usage Constraints
The DCAICRR is RAZ if the L1 instruction cache is not present. The DCADCRR is RAZ if the
L1 data cache is not present.
If the Security Extension is implemented, then this register is RAZ from the Non-secure state.
Unprivileged access results in a BusFault exception.
These registers are also RAZ/WI if any of the following conditions are true:
• MSCR.ICACTIVE or MSCR.DCACTIVE is 0.
• PDRAMS is not powered up and clocked.
• The instruction or data cache is being automatically invalidated.

Configurations
These registers are always implemented.

Attributes
These registers are read-only and ignore all writes. These registers are not banked between
Security states. See 4.10 IMPLEMENTATION DEFINED registers summary on page 4-72 for
more information.

The following figure shows the DCAICRR bit assignments when reading the instruction cache tag RAM.

31 04

VALID

Reserved TAG -

TAG

TAG

TAG

TAG

Reserved

Reserved

Reserved

Reserved

64K
B

32K
B

16K
B

8K
B

4K
B

22 2120 3 2 1

-

-

-

- indicates Reserved bits

Figure 4-11 DCAICRR bit assignments when reading the instruction cache tag RAM

The following table shows the DCAICRR bit assignments when reading the instruction cache tag RAM.

Table 4-18 DCAICRR bit assignments when reading the instruction cache tag RAM

Bits Name Type Function

[31:22] - - RES0

[21] VALID RO Valid state of the instruction cache line.

[20:N] TAG RO Tag address. The number of significant bits of TAG depends on the instruction cache size.

64KB N=4

32KB N=3

16KB N=2

8KB N=1

4KB N=0

[N-1:0] - - RES0, when N is not 0.

4 System registers
4.11 Direct cache access registers

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

4-78

Non-Confidential

The following figure shows the DCADCRR bit assignments when reading the data cache tag RAM.

31 04

VALID

Reserved TAG -

TAG

TAG

TAG

Reserved

Reserved

Reserved

Reserved

64K
B

32K
B

16K
B

8K
B

4K
B

23 22 21 3 2 1

-

-

-

- indicates Reserved bits

25

STATUS

TAG

26

STATUS

STATUS

STATUS

STATUS

Figure 4-12 DCADCRR bit assignments when reading the data cache tag RAM

The following table shows the DCADCRR bit assignments when reading the data cache tag RAM.

Table 4-19 DCADCRR bit assignments when reading the data cache tag RAM

Bits Name Type Function

[31:26] Reserved - RES0

[25:23] STATUS RO Clean or dirty, transient, and outer attributes of the cache line. The attribute encoding is as follows:

0b000 • Cache line is clean.
• Cache line is transient.
• Outer attributes of the cache line are UNKNOWN

0b001 • Cache line is clean.
• Cache line is not transient.
• Outer attributes of the cache line are UNKNOWN.

0b010 • Cache line is dirty.
• Cache line is not transient.
• Outer attributes of the cache line are Non-cacheable.

0b011 • Cache line is dirty.
• Cache line is not transient.
• Outer attributes of the cache line are Write-Back, Write Allocate.

0b100 • Cache line is dirty.
• Cache line is not transient.
• Outer attributes of the cache line are Write-Back, No Write Allocate.

0b101 • Cache line is dirty.
• Cache line is not transient.
• Outer attributes of the cache line are Write-Through, Write Allocate.

0b110 • Cache line is dirty.
• Cache line is not transient.
• Outer attributes of the cache line are Write-Through, No Write Allocate.

0b111 is reserved.

4 System registers
4.11 Direct cache access registers

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

4-79

Non-Confidential

Table 4-19 DCADCRR bit assignments when reading the data cache tag RAM (continued)

Bits Name Type Function

[22] VALID RO Valid state of the data cache line entry.

[21:N] TAG RO Tag address. The number of significant bits of TAG depends on the data cache size.

64KB N=4

32KB N=3

16KB N=2

8kB N=1

4KB N=0

[N-1:0] - - RES0, when N is not 0.

The following figure shows the DCAICRR and DCADCRR bit assignments when reading the instruction
or data cache data RAM.

31 0

DATA

Figure 4-13 DCAICRR and DCADCRR bit assignments when reading the instruction or data cache
data RAM

The following table shows the DCAICRR and DCADCRR bit assignments when reading the instruction
or data cache data RAM.

Table 4-20 DCAICRR and DCADCRR bit assignments when reading the instruction or data cache data RAM

Bits Name Type Function

[31:0] DATA RO Instruction or data cache data entry, ignoring Error Correcting Code (ECC).

4 System registers
4.11 Direct cache access registers

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

4-80

Non-Confidential

4.12 Error bank registers
When the Cortex-M55 processor is configured to support Error Correcting Code (ECC) logic, these
registers record errors which occur during memory accesses to the L1 instruction and data cache and the
TCM. They also allow certain memory locations to be locked so hard errors can be contained and
corrected.

The following table lists the error bank registers.

Table 4-21 Error bank registers

Address Name Type Reset value Description

0xE001E100 IEBR0 RW 0x00000000 4.12.1 IEBR0 and
IEBR1, Instruction
Cache Error Bank
Register 0-1
on page 4-81

0xE001E104 IEBR1 RW 0x00000000

0xE001E110 DEBR0 RW 0x00000000 4.12.2 DEBR0 and
DEBR1, Data Cache
Error Bank Register 0-1
on page 4-82

0xE001E114 DEBR1 RW 0x00000000

0xE001E120 TEBR0 RW 0x00000000 4.12.3 TEBR0 and
TEBR1, TCM Error
Bank Register 0-1
on page 4-84

0xE001E124 TEBRDATA0 RO 0x00000000 Data for TCU Error
Bank Register 0-1,
TEBRDATA0 and
TEBRDATA1
on page 4-85

0xE001E128 TEBR1 RW 0x00000000 4.12.3 TEBR0 and
TEBR1, TCM Error
Bank Register 0-1
on page 4-84

0xE001E12C TEBRDATA1 RO 0x00000000 Data for TCU Error
Bank Register 0-1,
TEBRDATA0 and
TEBRDATA1
on page 4-85

4.12.1 IEBR0 and IEBR1, Instruction Cache Error Bank Register 0-1

The IEBR0 and IEBR1 registers are the two error bank registers that are included for the L1 instruction
cache. These registers are used to record errors that occur during memory accesses to the L1 instruction
cache. They also allow certain memory locations to be locked so hard errors can be contained and
corrected.

Usage Constraints
These registers are not banked between security states. If the Security Extension is implemented
and AIRCR.BFHFNMINS is zero, this register is RAZ/WI from Non-secure state, and are only
accessible from the Secure state.
These registers are only reset on Cold reset. Unprivileged access results in a BusFault exception.

4 System registers
4.12 Error bank registers

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

4-81

Non-Confidential

Configurations
These registers are RAZ/WI if the L1 instruction cache is not present or if Error Correcting
Code (ECC) is excluded.

Attributes
These registers are not banked between Security states. See 4.10 IMPLEMENTATION
DEFINED registers summary on page 4-72 for more information.

The following figure shows the IEBR0 and IEBR1 bit assignments.

31 16 15 02930 17 2 1

LOCKED
VALID

LOCATION

BANK

Reserved

SWDEF

Figure 4-14 IEBR0 and IEBR1 bit assignments

The following table shows the IEBR0 and IEBR1 bit assignments.

Table 4-22 IEBR0 and IEBR1 bit assignments

Bits Name Type Function

[31:30] SWDEF RW User-defined register field. Error detection logic sets this field to 0b00 on a new allocation and on Cold
reset.

[29:17] Reserved - RES0

[16] BANK RW Indicates which RAM bank to use.

0 Tag RAM.

1 Data RAM.

[15:2] LOCATION RW Indicates the location in the L1 instruction cache RAM.

[15] Way

[14:5] Index

[4:2] Line word offset.

[1] LOCKED RW Indicates whether the location is locked or not.

0 Location is not locked and available for hardware to allocate.

1 Software has locked the location and hardware is not allowed to allocate to this entry.

Only one IEBRn register can be locked at any time. If one of these registers is already locked, then
writing to the LOCKED bit of another is ignored. The Cold reset value is 0.

[0] VALID RW Indicates whether the entry is valid or not.

0 Entry is invalid.

1 Entry is valid.

The Cold reset value is 0.

4.12.2 DEBR0 and DEBR1, Data Cache Error Bank Register 0-1

The DEBR0 and DEBR1 registers are the two error bank registers that are included for the L1 data
cache. These registers are used to record errors that occur during memory accesses to the L1 data cache.
They also allow certain memory locations to be locked so hard errors can be contained and corrected.

4 System registers
4.12 Error bank registers

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

4-82

Non-Confidential

Usage Constraints
These registers are not banked between security states. If the Security Extension is implemented
and AIRCR.BFHFNMINS is zero, this register is RAZ/WI from Non-secure state, and are only
accessible from the Secure state.
These registers are only reset on Cold reset. Unprivileged access results in a BusFault exception.

Configurations
These registers are RAZ/WI if the L1 data cache is not present or if Error Correcting Code
(ECC) is excluded.

Attributes
These registers are not banked between Security states. See 4.10 IMPLEMENTATION
DEFINED registers summary on page 4-72 for more information.

The following figure shows the DEBR0 and DEBR1 bit assignments.

31 16 15 02930 17 2 1

LOCKED
VALID

LOCATION

BANK

Reserved

SWDEF

18

TYPE

Figure 4-15 DEBR0 and DEBR1 bit assignments

The following table shows the DEBR0 and DEBR1 bit assignments.

Table 4-23 DEBR0 and DEBR1 bit assignments

Bits Name Type Function

[31:30] SWDEF RW User-defined register field. Error detection logic sets this field to 0b00 on a new allocation and on Cold
reset.

[29:18] Reserved - RES0

[17] TYPE RW Indicates the error type.

0 Single-bit error.

1 Multi-bit error.

[16] BANK Indicates which RAM bank to use.

0 Tag RAM.

1 Data RAM.

[15:2] LOCATION Indicates the location in the data cache RAM.

[15:14] Way.

[13:5] Index.

[4:2] Line doubleword offset.

4 System registers
4.12 Error bank registers

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

4-83

Non-Confidential

Table 4-23 DEBR0 and DEBR1 bit assignments (continued)

Bits Name Type Function

[1] LOCKED RW Indicates whether the location is locked or not.

0 Location is not locked and available for hardware to allocate.

1 Software has locked the location and hardware is not allowed to allocate to this entry.

Only one DEBRn register can be locked at any time. If one of these registers is already locked, then
writing to the LOCKED bit of another is ignored. The Cold reset value is 0.

[0] VALID RW Indicates whether the entry is valid or not.

0 Entry is invalid.

1 Entry is valid.

The Cold reset value is 0.

4.12.3 TEBR0 and TEBR1, TCM Error Bank Register 0-1

The TEBR0 and TEBR1 registers record the location of errors in the TCM.

Usage Constraints
These registers are not banked between security states. If the Security Extension is implemented
and AIRCR.BFHFNMINS is zero, this register is RAZ/WI from Non-secure state, and are only
accessible from the Secure state.
These registers are only reset on Cold reset. Unprivileged access results in a BusFault exception.

Configurations
If Error Correcting Code (ECC) is excluded, these registers are RAZ/WI.

Attributes
These registers are not banked between Security states. See 4.10 IMPLEMENTATION
DEFINED registers summary on page 4-72 for more information.

The following figure shows the TEBR0 and TEBR1 bit assignments.

31 02930 2 1

LOCKED
VALID

LOCATIONBANK

POISON
Reserved

SWDEF

28 27 26 24 23

TYPE

Figure 4-16 TEBR0 and TEBR1 bit assignments

The following table shows the TEBR0 and TEBR1 bit assignments.

Table 4-24 TEBR0 and TEBR1 bit assignments

Bits Name Type Function

[31:30] SWDEF RW User-defined register field. Error detection logic sets this field to 0b00 on a new allocation and on Cold
reset.

[29] Reserved - RES0

4 System registers
4.12 Error bank registers

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

4-84

Non-Confidential

Table 4-24 TEBR0 and TEBR1 bit assignments (continued)

Bits Name Type Function

[28] POISON RW Indicates whether a BusFault is generated or not.

0 Load or non-word store (RMW) to an address that hits this TEBR accesses the corresponding
TEBRDATA register and does not get a BusFault.

1 Load to address that hits this TEBR gets a BusFault. Non-word store (RMW) to an address
that hits this TEBR aborts the write.

[27] TYPE RW Indicates the error type.

0 Single-bit error.

1 Multi-bit error.

[26:24] BANK RW Indicates which RAM bank to use.

0b000 DTCM0

0b001 DTCM1

0b010 DTCM2

0b011 DTCM3

0b100 ITCM

All other values are RES0.

[23:2] LOCATION RW Indicates the physical location in the data cache RAM.

[1] LOCKED RW Indicates whether the location is locked or not.

0 Location is not locked and available for hardware to allocate.

1 Software has locked the location and hardware is not allowed to allocate to this entry.

Only one TEBRn register can be locked at any time. If one of these registers is already locked, then
writing to the LOCKED bit of another is ignored. The Cold reset value is 0.

[0] VALID RW Indicates whether the entry is valid or not.

0 Entry is invalid.

1 Entry is valid.

If software programs both TEBRn registers with the same LOCATION and BANK field values and
VALID is set to 1, then the behavior of TCM accesses is UNPREDICTABLE. The Cold reset value is 0.

Data for TCU Error Bank Register 0-1, TEBRDATA0 and TEBRDATA1

The TEBRDATA0 and TEBRDATA1 registers provide storage for corrected data that is associated with
an error.

Usage Constraints
If the Security Extension is implemented and AIRCR.BFHFNMINS is zero, this register is
RAZ/WI from Non-secure state, and are only accessible from the Secure state.
These registers are only reset on Cold reset. Unprivileged access results in a BusFault exception.

If Error Correcting Code (ECC) is excluded, these registers are RAZ/WI.

Configurations
These registers are always implemented.

Attributes
These registers are not banked between Security states. See 4.10 IMPLEMENTATION
DEFINED registers summary on page 4-72 for more information.

4 System registers
4.12 Error bank registers

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

4-85

Non-Confidential

The following figure shows the TEBRDATA0 and TEBRDATA1 bit assignments.

31 0

DATA

Figure 4-17 TEBRDATA0 and TEBRDATA1 bit assignments

The following table shows the TEBRDATA0 and TEBRDATA1 bit assignments.

Table 4-25 TEBRDATA0 and TEBRDATA1 bit assignments

Bits Name Type Function

[31:0] DATA RO The following access this register instead of the TCM location:
• Loads and stores from software running on the processor, if the address matches the location in the

corresponding TEBR.
• Read and write transactions from the Slave AHB (S-AHB).

4 System registers
4.12 Error bank registers

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

4-86

Non-Confidential

4.13 MSCR, Memory System Control Register
The MSCR controls the memory system features specific to the Cortex-M55 processor.

Usage constraints
If Security Extension is implemented and AIRCR.BFHFNMINS is zero, this register is RAZ/WI
from the Non-secure state.

Configuration
This register is always implemented and is read-only when the data cache is not included.

Attributes
This register is not banked between Security states. See 4.10 IMPLEMENTATION DEFINED
registers summary on page 4-72 for more information.

The following figure shows the MSCR bit assignments.

31 16 15 4 3 014 13 12 11 2 117

Reserved
ECCEN
FORCEWT
EVECCFAULT

DCACTIVE
ICACTIVE

DCCLEAN

Reserved

Reserved

CPWRDN

18

Figure 4-18 MSCR bit assignments

The following table describes the MSCR bit assignments.

Table 4-26 MSCR bit assignments

Bits Name Type Description

[31:18] Reserved - RES0

[17] CPWRDN RO This bit indicates when the data and instruction caches are not accessible because they are either
being powered down or being initialized using the automatic invalidation sequence. Software that is
enabling the cache can use this bit to determine when the cache is available for use.

0 Data and instruction cache in normal operational state.

1 Data and instructions cache powered down or automatic invalidation sequence is in process.

4 System registers
4.13 MSCR, Memory System Control Register

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

4-87

Non-Confidential

Table 4-26 MSCR bit assignments (continued)

Bits Name Type Description

[16] DCCLEAN RW This bit indicates whether the data cache contains any dirty lines. The options are:

0 L1 data cache contains at least one dirty line.

1 L1 data cache does not contain any dirty lines.

It is cleared to 0 on any write to the L1 data cache that sets the dirty bit.

It is cleared to 1 at the end of any automatic L1 data cache invalidate all.

Software must only modify this register if it is restoring the state from before the core entered
powerdown with the L1 data cache in retention.

This field is not updated when a dirty line is evicted, therefore, MCSR.DCCLEAN can be 0, if the
cache is currently clean but previously contained dirty data since the last time it was automatically
invalidated.

The reset value is 0.

If the data cache is not included, this field is RAZ/WI.

[15:14] Reserved - RES0

[13] ICACTIVE RW This bit indicates whether the L1 instruction cache is active. The options are:

0 L1 instruction cache is inactive. There is no allocation or lookups. Cache maintenance
and direct cache access operations are treated as NOPs.

1 L1 instruction cache is active. This implies normal behavior.

The reset value is 1.

If the L1 instruction cache is not included, this field is RAZ/WI.

[12] DCACTIVE RW This bit indicates whether the L1 data cache is active. The options are:

0 L1 data cache is inactive. There is no allocation or lookups. Cache maintenance and
direct cache access operations are treated as NOPs.

1 L1 data cache is active. This implies normal behavior.

The reset value is 1.

If the L1 data cache is not included, this field is RAZ/WI.

[11:4] Reserved - RES0

[3] EVECCFAULT RW Enables asynchronous BusFault exceptions when data is lost on evictions. The options are:

0 Asynchronous BusFaults are not generated when evicting lines with multi-bit errors in
the data.

1 Asynchronous aborts are generated when evicting lines with multi-errors in the data.

This is intended for use in systems that do not support the AXI xPOISON signals. The reset value is
1.

If ECC is not included, this field is RAZ/WI.

4 System registers
4.13 MSCR, Memory System Control Register

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

4-88

Non-Confidential

Table 4-26 MSCR bit assignments (continued)

Bits Name Type Description

[2] FORCEWT RW Enables Forced Write-Through in the L1 data cache. The options are:

0 Force Write-Through is disabled.

1 Force Write-Through is enabled. All Cacheable memory regions are treated as Write-
Through.

The reset value is 0.

If the L1 data cache is not included, this field is RAZ/WI.

[1] ECCEN RO Indicates whether Error Correcting Code (ECC) is present and enabled. The options are:

0 ECC not present or not enabled.

1 ECC present and enabled.

The reset value depends on the ECC Verilog parameter and the external input signal INITECCEN.
For more information on ECC Verilog parameter, see the RTL configuration section in the Arm®

Cortex®-M55 Processor Integration and Implementation Manual.

If ECC is not included, this field is RAZ/WI.

[0] Reserved - RES0.

4 System registers
4.13 MSCR, Memory System Control Register

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

4-89

Non-Confidential

4.14 PAHBCR, P-AHB Control Register
The PAHBCR enables accesses to Peripheral AHB (P-AHB) interface from software running on the
processor. This register also provides information on the range of memory-mapped to the interface.

The P-AHB is always memory-mapped to a range of the Peripheral and Vendor_SYS regions of the
memory map. For more information on the memory map, see 7.1 Memory map on page 7-144.

Usage Constraints
If the Security Extension is implemented and AIRCR.BFHFNMINS is zero, this register is
RAZ/WI from Non-secure state. Unprivileged access results in a BusFault exception.

Configuration
This register is always implemented.

Attributes
See 4.10 IMPLEMENTATION DEFINED registers summary on page 4-72 for more information.

Reserved

31 3 1 0

SZ

EN

4

Figure 4-19 PAHBCR bit assignments

The following table shows the PAHBCR bit assignments.

Table 4-27 PAHBCR bit assignments

Bits Name Type Description

[31:4] - - Reserved.

[3:1] SZ RO P-AHB size. The options are:

0b000 0MB. This implies that P-AHB disabled.

0b001 64MB.

0b010 128MB.

0b011 256MB.

0b100 512MB.

Other encodings are reserved. At reset, the register field is loaded from the CFGPAHBSZ input signal. The
CFGPAHBSZ signal determines the size of the peripheral port memory region.

[0] EN RW P-AHB enable. The options are:

0 P-AHB disabled. When disabled all accesses are made to the M-AXI interface.

1 P-AHB enabled.

The reset value is derived from the INITPAHBEN signal.

This field only affects accesses in the Peripheral region of the memory map. Accesses from the Vendor_SYS
region are always enabled.

4 System registers
4.14 PAHBCR, P-AHB Control Register

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

4-90

Non-Confidential

4.15 PFCR, Prefetcher Control Register
The PFCR controls the prefetcher. This register can be used to disable the prefetcher if it is causing
issues.

Usage Constraints
If the Security Extension is implemented and AIRCR.BFHFNMINS is 0, then this register is
RAZ/WI from Non-secure state. Unprivileged access causes a BusFault exception.

Configuration
This register is always implemented and is RAZ/WI when the L1 data cache is not included.

Attributes
This register is not banked between Security states. See 4.10 IMPLEMENTATION DEFINED
registers summary on page 4-72 for more information.

The following figure shows the PFCR bit assignments.

31 4 3 07 6 1

ENABLE

Reserved MAX_LA MIN_LA

Figure 4-20 PFCR bit assignments

The following table shows the PFCR bit assignments.

Table 4-28 PFCR bit assignments

Bits Name Type Function

[31:7] Reserved - RES0

[6:4] MAX_LA RW This bit field is not used, and is RES0.

[3:1] MIN_LA RW This bit field is not used, and is RES0.

[0] ENABLE RW Prefetcher enable. The options are:

0 Prefetcher is disabled.

1 Prefetcher is enabled.

The reset value is 0b1.

4 System registers
4.15 PFCR, Prefetcher Control Register

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

4-91

Non-Confidential

4.16 Power mode control registers
The CPDLPSTATE and DPDLPSTATE registers allow software to control the required power mode of
the functional and debug logic in the Cortex-M55 processor.

The following table lists the power mode control registers.

Table 4-29 Power mode control registers

Address Name Type Reset value Description

0xE001E300 CPDLPSTATE RW 00000XX3
 Note

Bits [9:8] and [5:4] can be RAZ/WI depending on
your processor implementation. See
4.16.1 CPDLPSTATE, Core Power Domain Low
Power State Register on page 4-92 for more
information.

4.16.1 CPDLPSTATE, Core Power
Domain Low Power State Register
on page 4-92

0xE001E304 DPDLPSTATE RW 0x00000003 4.16.2 DPDLPSTATE, Debug Power
Domain Low Power State Register
on page 4-93

4.16.1 CPDLPSTATE, Core Power Domain Low Power State Register

The CPDLPSTATE register specifies the required low-power states for core (PDCORE), Extension
Processing Unit (PDEPU), and RAM (PDRAMS) power domains.

Usage Constraints
If AIRCR.BFHFNMINS is 0, then these registers are RAZ/WI from Non-secure state.
Unprivileged access results in a BusFault exception.

Configurations
This register is always implemented.

Attributes
This register is not banked between Security states. See 4.10 IMPLEMENTATION DEFINED
registers summary on page 4-72 for more information.

The following figure shows the CPDLPSTATE bit assignments.

31 4 3 010 9 8 7 6 5 2 1

Reserved

CLPSTATE
Reserved

Reserved
ELPSTATE

RLPSTATE

Figure 4-21 CPDLPSTATE bit assignments

The following table shows the CPDLPSTATE bit assignments.

4 System registers
4.16 Power mode control registers

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

4-92

Non-Confidential

Table 4-30 CPDLPSTATE bit assignments

Bits Name Type Function

[31:10] Reserved - RES0

[9:8] RLPSTATE RW Powerup state for PDRAMS power domain. This field indicates the minimum power mode that software
requests. The actual requested power mode might depend on other conditions, for example, power
domain activity. The actual transition of the power mode is performed by the P-Channel.

0b00 ON.

0b01 Reserved.

0b10 Reserved.

0b11 OFF.

 Note

This field is used only to control the Cache/No cache operating mode for the P-Channel. RAM retention
is enabled by entering either of the following power modes:
• MEM_RET (Cache).
• FULL_RET (Cache).
• LOGIC_RET (Cache).

For more information, 6.4 Core P-Channel and power mode selection on page 6-130.

If the L1 data cache and instruction cache are not present, this field is RAZ/WI.

The reset value is 0b11 on Cold reset.

[7:6] Reserved - RES0

[5:4] ELPSTATE RW Type of low-power state for PDEPU. This field indicates the minimum power mode that software
requests. The actual requested power mode might depend on other conditions, for example, power
domain activity. The actual transition of the power mode is performed by the P-Channel.

0b00 ON. PDEPU is not in low-power state.

0b01 ON, but the clock is off.

0b10 RET.

0b11 OFF.

If the Extension Processing Unit (EPU) is not present, this field is RAZ/WI.

The reset value is 0b11 on Cold reset.

[3:2] Reserved - RES0

[1:0] CLPSTATE RW Type of low-power state for PDCORE. This field indicates the minimum power mode that software
requests. The actual requested power mode might depend on other conditions, for example, power
domain activity. The actual transition of the power mode is performed by the P-Channel.

0b00 ON. PDCORE is not in low-power state.

0b01 ON, but the clock is off.

0b10 RET.

0b11 OFF.

The reset value is 0b11 on Cold reset.

4.16.2 DPDLPSTATE, Debug Power Domain Low Power State Register

The DPDLPSTATE register specifies the required low-power states for the debug (PDDEBUG) power
domain.

4 System registers
4.16 Power mode control registers

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

4-93

Non-Confidential

Usage Constraints
If the Security Extension is implemented and AIRCR.BFHFNMINS is 0, then these registers are
RAZ/WI from Non-secure state.

Configurations
This register is always implemented.

Attributes
This register is not banked between Security states. See 4.10 IMPLEMENTATION DEFINED
registers summary on page 4-72 for more information.

The following figure shows the DPDLPSTATE bit assignments.

31 02 1

Reserved

DLPSTATE

Figure 4-22 DPDLPSTATE bit assignments

The following table shows the DPDLPSTATE bit assignments.

Table 4-31 DPDLPSTATE bit assignments

Bits Name Type Function

[31:2] Reserved - RES0

[1:0] DLPSTATE RW Type of low-power state for PDDEBUG. This field indicates the minimum power mode that software
requests. The actual requested power mode might depend on other conditions, for example, power
domain activity.

0b00 ON. PDDEBUG is not in low-power state.

0b01 ON, but the clock is off.

0b10 RESERVED. Treated as ON, but clock OFF.

0b11 OFF.

The reset value is 0b11 at debug Cold reset, which is controlled by the nDBGRESET signal.

4 System registers
4.16 Power mode control registers

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

4-94

Non-Confidential

4.17 Processor configuration information registers
The CFGINFOSEL and CFGINFORD registers provide information about the configuration of the
processor including the values of all the Verilog parameters used during synthesis and input wire tie-off
signals.

See 2.6 Cortex®-M55 implementation options on page 2-39 for more information on the processor
configuration options. For more detail on the RTL parameter values, see the Arm® Cortex®-M55
Processor Integration and Implementation Manual. The Arm® Cortex®-M55 Processor Integration and
Implementation Manual is a confidential document that is available to licensees only.

The following table lists the processor configuration information registers.

Table 4-32 Processor configuration information registers

Address Name Type Reset value Description

0xE001E700 CFGINFOSEL WO UNKNOWN 4.17.1 CFGINFOSEL,
Processor configuration
information selection
register on page 4-95

0xE001E704 CFGINFORD RO UNKNOWN 4.17.2 CFGINFORD,
Processor configuration
information read data
register on page 4-98

4.17.1 CFGINFOSEL, Processor configuration information selection register

The CFGINFOSEL register selects the configuration information which can then be read back using
CFGINFORD.

Usage constraints
Unprivileged access results in a BusFault exception.

Configurations
This register is always implemented.

Attributes
This register is banked between Security states. See 4.10 IMPLEMENTATION DEFINED
registers summary on page 4-72 for more information.

The following figure shows the CFGINFOSEL bit assignments.

31 0

Configuration information selected

Figure 4-23 CFGINFOSEL bit assignments

The following table describes the CFGINFOSEL bit assignments.

Table 4-33 CFGINFOSEL bit assignments

Field Name Type Description

[31:0] Configuration information selected WO The value of this field depends on the configuration information selected.

4 System registers
4.17 Processor configuration information registers

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

4-95

Non-Confidential

The following table lists the CFGINFOSEL register value that depends on the configuration information
selected. For more information on the configuration parameters that are listed in the following table, see
2.6 Cortex®-M55 implementation options on page 2-39.

Table 4-34 Configuration parameter selection used by the CFGINFOSEL register

CFGINFOSEL value Configuration information selected

0x1 ICACHESZ

0x2 DCACHESZ

0x3 ECC

0x4 FPU

0x5 MVE

0x6 SECEXT

0x7 CPIF

0x8 MPU_NS

0x9 MPU_S

0xA SAU

0xB ITGU

0xC ITGUBLKSZ

0xD ITGUMAXBLKS

0xE DTGU

0xF DTGUBLKSZ

0x10 DTGUMAXBLKS

0x11 NUMIRQ

0x12 IRQLVL

0x20+n, where 0≤ n≤ 0xF IRQTIER[(n*32)+31:(n*32)]

0x30+n, where 0≤ n≤ 0xF IRQDIS[(n*32)+31:(n*32)]

0x40 BUSPROT

0x41 Reserved

0x42 DBGLVL

0x43 ITM

0x44 ETM

0x45 Reserved

0x46 Reserved

0x47 IWIC

0x48 WICLINES

0x49 CTI

0x4A RAR

0x4B INITL1RSTDIS

4 System registers
4.17 Processor configuration information registers

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

4-96

Non-Confidential

Table 4-34 Configuration parameter selection used by the CFGINFOSEL register (continued)

CFGINFOSEL value Configuration information selected

0x4C CFGMEMALIAS

0x4D Reserved

0x4E Reserved

0x4F Reserved

0x50 Reserved

0x51 Reserved

 Note

• INITL1RSTDIS and CFGMEMALIAS select the corresponding external input wire tie-off signal value.
• Input wire tie-off signals also affect the FPU, MVE, MPU_NS, MPU_S, and SAU values that are read. These

signals are CFGFPU, CFGMVE, MPUNSDISABLE, MPUSDISABLE, and SAUDISABLE
respectively. If the input wire tie-off disables the feature, then the configuration indicates that the
feature is not supported.

• Parameters IRQTIER and IRQDIS are selected across multiple values.

CFGINFOSEL register value examples

The following figure shows the CFGINFOSEL bit assignments when CFGMEMALIAS parameter is
selected.

31 0

CFGMEMALIAS
(0b1001100)

67

Reserved

Figure 4-24 CFGINFOSEL bit assignments showing CFGMEMALIAS

The following table describes the CFGINFOSEL bit assignments when CFGMEMALIAS parameter is
selected.

Table 4-35 CFGINFOSEL bit assignments showing CFGMEMALIAS

Field Name Type Description

[31:7] Reserved - RES0

[6:0] CFGMEMALIAS WO The value is 0x4C.

The following figure shows the CFGINFOSEL bit assignments when IRQTIER[63:32] parameter is
selected and n=1.

4 System registers
4.17 Processor configuration information registers

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

4-97

Non-Confidential

31 6 5 0

Reserved
IRQTIER

(0b100001)

Figure 4-25 CFGINFOSEL bit assignments showing IRQTIER when n=1

The following table describes the CFGINFOSEL bit assignments showing IRQTIER[63:32] when n=1.

Table 4-36 CFGINFOSEL bit assignments showing IRQTIER when n=1

Field Name Type Description

[31:6] Reserved - RES0

[5:0] IRQTIER WO The value is 0x21, indicating IRQTIER[63:32] .

4.17.2 CFGINFORD, Processor configuration information read data register

The CFGINFORD register can be used to display the configuration information that the CFGINFOSEL
register selects.

Usage constraints
Unprivileged access results in a BusFault exception.

Configurations
This register is always implemented.

Attributes
This register is banked between Security states. See 4.10 IMPLEMENTATION DEFINED
registers summary on page 4-72 for more information.

The following figure shows the CFGINFORD bit assignments.

31 0

Configuration information displayed

Figure 4-26 CFGINFORD bit assignments

The following table describes the CFGINFORD bit assignments.

Table 4-37 CFGINFORD bit assignments

Field Name Type Description

[31:0] Configuration information displayed RO The value of this field depends on the configuration information selected.

CFGINFORD register value examples

The following figure shows the CFGINFORD bit assignments when the CFGINFOSEL register selects
the CFGMEMALIAS parameter.

4 System registers
4.17 Processor configuration information registers

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

4-98

Non-Confidential

31 0

CFGMEMALIAS
(0b10000)

45

RES0

Figure 4-27 CFGINFORD bit assignments showing CFGMEMALIAS

The following table describes the CFGINFORD bit assignments when CFGMEMALIAS configuration
input signal is selected and the alias bit selected is 28.

Table 4-38 CFGINFORD bit assignments showing CFGMEMALIAS

Field Name Type Description

[31:5] Reserved - RES0

[4:0] CFGMEMALIAS RO The value that is displayed is 0b10000 to indicate that alias bit 28 has been selected.

The following figure shows the CFGINFORD bit assignments when IRQTIER parameter is selected and
n=1.

63 32

IRQTIER

Figure 4-28 CFGINFORD bit assignments showing IRQTIER when n=1

The following table describes the CFGINFOSEL bit assignments showing IRQTIER[63:32] when n=1.
For this example, we are assuming that IRQTIER[63:32] is 0 for all interrupts, indicating lowest latency
for IRQ32 to IRQ63.

Table 4-39 CFGINFORD bit assignments showing IRQTIER when n=1

Field Name Type Description

[63:32] IRQTIER RO 0x00000000

4 System registers
4.17 Processor configuration information registers

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

4-99

Non-Confidential

4.18 ID_PFR0, Processor Feature Register 0
The ID_PFR0 register contains a field that indicates the version of the Reliability, Availability, and
Serviceability (RAS) extension supported.

Usage constraints
Unprivileged access results in a BusFault exception.
This register is accessible through unprivileged Debug AHB (D-AHB) debug requests when
either DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

Configurations
This register is always implemented.

Attributes
This register is not banked between Security states. See 4.10 IMPLEMENTATION DEFINED
registers summary on page 4-72 for more information.

The following figure shows the ID_PFR0 bit assignments.

31 0

RAS

8 7

Reserved State0

28 27 4 3

State1

Figure 4-29 ID_PFR0 bit assignments

The following table describes the ID_PFR0 bit assignments.

Table 4-40 ID_PFR0 bit assignments

Field Name Type Description

[31:28] RAS RO Identifies which version of the RAS architecture is implemented.

0b0010 Version 1.

[27:8] Reserved - RES0

[7:4] State1 RO T32 instruction set support.

0b0011 T32 instruction set including Thumb-2 technology is implemented.

[3:0] State0 RO A32 instruction set support.

0b0000 A32 instruction set is not implemented.

4 System registers
4.18 ID_PFR0, Processor Feature Register 0

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

4-100

Non-Confidential

4.19 ITCMCR and DTCMCR, TCM Control Registers
The ITCMCR and DTCMCR registers enable access to the Tightly Coupled Memories (TCMs) by
software running on the processor. These registers also provide information on the physical size of the
memory connected.

Usage Constraints
If the Security Extension is implemented and AIRCR.BFHFNMINS is 0, then these registers are
RAZ/WI from Non-secure state. Unprivileged access results in a BusFault exception.
If the external input signal, LOCKTCM is asserted, these registers are read-only. For more
information on LOCKTCM, see C.27 Miscellaneous signals on page Appx-C-413.

Configuration
These registers are always implemented.

Attributes
These registers are not banked between Security states. See 4.10 IMPLEMENTATION
DEFINED registers summary on page 4-72 for more information.

The following figure shows the ITCMCR and DTCMCR bit assignments.

31 7 6 3 2 1 0

Reserved SZ

Reseved

EN

Figure 4-30 ITCMCR and DTCMCR bit assignments

The following table shows the ITCMCR and DTCMCR bit assignments.

4 System registers
4.19 ITCMCR and DTCMCR, TCM Control Registers

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

4-101

Non-Confidential

Table 4-41 ITCMCR and DTCMCR bit assignments

Bits Name Type Description

[31:7] - - Reserved.

[6:3] SZ RO TCM size indicates the size of the relevant TCM. The options are:

0b0000 No TCM implemented.

0b0011 4KB

0b0100 8KB

0b0101 16KB

0b0110 32KB

0b0111 64KB

0b1000 128KB

0b1001 256KB

0b1010 512KB

0b1011 1MB

0b1100 2MB

0b1101 4MB

0b1110 8MB

0b1111 16MB

All other encodings are reserved. The reset value is derived from the CFGITCMSZ and CFGDTCMSZ
signals.

[2:1] Reserved - RAZ/WI.

[0] EN RW TCM enable. When a TCM is disabled all accesses are made to the Master AXI (M-AXI) interface. The
options are:

0 TCM disabled.

1 TCM enabled.

The reset value is derived from the INITTCMEN signal.

This field only affects software accesses to the TCM. Accesses to the TCM from the S-AHB interface are
always enabled.

4 System registers
4.19 ITCMCR and DTCMCR, TCM Control Registers

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

4-102

Non-Confidential

4.20 TCM security gate registers
The TCM security gates that are associated with the Instruction Tightly Coupled Memory (ITCM) and
Data Tightly Coupled Memory (DTCM) are configured using the ITGU_CTRL and DTGU_CTRL
registers, respectively. Additionally, there is a set of registers with a group of blocks, ITGU_LUTn and
DTGU_LUTn. The configuration of a gate can be read from the read-only ITGU_CFG and DTGU_CFG
registers.

The following table lists the TCM security gate registers.

Table 4-42 TCM security gate registers

Address Name Type Reset value Description

0xE001E500 ITGU_CTRL RW 0x00000003 4.20.1 ITGU_CTRL and
DTGU_CTRL, ITGU and
DTGU Control Registers
on page 4-103

0xE001E504 ITGU_CFG RO UNKNOWN 4.20.2 ITGU_CFG and
DTGU_CFG, ITGU and
DTGU Configuration
Registers on page 4-104

0xE001E510+4n ITGU_LUTn • RW if 32n
+1<2Number of ITGU

blocks

• RO if 32n+1≥2Number

of ITGU blocks

0x00000000 4.20.3 ITGU_LUTn and
DTGU_LUTn, ITGU and
DTGU Look Up Table
Registers on page 4-105

0xE001E600 DTGU_CTRL RW 0x00000003 4.20.1 ITGU_CTRL and
DTGU_CTRL, ITGU and
DTGU Control Registers
on page 4-103

0xE001E604 DTGU_CFG RO UNKNOWN 4.20.2 ITGU_CFG and
DTGU_CFG, ITGU and
DTGU Configuration
Registers on page 4-104

0xE001E610+4n DTGU_LUTn • RW if 32n
+1<2Number of ITGU

blocks

• RO if 32n+1≥2Number

of ITGU blocks

0x00000000 4.20.3 ITGU_LUTn and
DTGU_LUTn, ITGU and
DTGU Look Up Table
Registers on page 4-105

4.20.1 ITGU_CTRL and DTGU_CTRL, ITGU and DTGU Control Registers

The ITGU_CTRL and DTGU_CTRL registers are the main TCM Gate Unit (TGU) control registers for
the ITCM and DTCM respectively.

Usage constraints
If the Security Extension is implemented, these registers are RAZ/WI from the Non-secure state.
Unprivileged access results in a BusFault exception. If the Security Extension is not
implemented and TCM security gating is not included in the processor, then these registers are
RAZ/WI.
If the external input signal LOCKITGU is asserted, the ITGU_CTRL register is read-only.
If the external input signal LOCKDTGU is asserted, the DTGU_CTRL register is read-only.

4 System registers
4.20 TCM security gate registers

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

4-103

Non-Confidential

Configurations
These registers are always implemented, but their behavior depends on whether the ITGU and
DTGU are present.

Attributes
These registers are not banked between Security states. For more information, see
4.10 IMPLEMENTATION DEFINED registers summary on page 4-72.

The following figure shows the ITGU_CTRL and DTGU_CTRL bit assignments.

31 02 1

DEREN
DBFEN

Reserved

Figure 4-31 ITGU_CTRL and DTGU_CTRL bit assignments

The following table describes the ITGU_CTRL and DTGU_CTRL bit assignments.

Table 4-43 ITGU_CTRL and DTGU_CTRL bit assignments

Field Name Type Description

[31:2] Reserved - -

[1] DEREN RW Enable Slave AHB (S-AHB) error response for TGU fault. The options are:

0 Error response is not enabled.

1 Error response is enabled.

[0] DBFEN RW Enable data side BusFault for TGU fault. The options are:

0 BusFault not enabled.

1 BusFault enabled.

4.20.2 ITGU_CFG and DTGU_CFG, ITGU and DTGU Configuration Registers

The ITGU_CFG and DTGU_CFG registers allow the reading of configuration values for the ITGU and
DTGU respectively.

Usage constraints
If the Security Extension is implemented, these registers are RAZ/WI from the Non-secure state.
Unprivileged access results in a BusFault exception. If the Security Extension is not
implemented and TCM security gating is not included in the processor, then these registers are
RAZ/WI.

Configurations
These registers are always implemented, but their behavior depends on whether the ITGU and
DTGU are present.

Attributes
These registers are not banked between Security states. For more information, see
4.10 IMPLEMENTATION DEFINED registers summary on page 4-72.

The following figure shows the ITGU_CFG and DTGU_CFG bit assignments.

4 System registers
4.20 TCM security gate registers

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

4-104

Non-Confidential

31 4 0

Reserved NUMBLKS BLKSZ

PRESENT

30 12 11 8 7 3

Reserved

Figure 4-32 ITGU_CFG and DTGU_CFG bit assignments

The following table describes the ITGU_CFG and DTGU_CFG bit assignments.

Table 4-44 ITGU_CFG and DTGU_CFG bit assignments

Field Name Type Description

[31] PRESENT - This field determines if the TGU is present. The options are:

0 TGU not present.

1 TGU is present

[30:12] Reserved - RES0

[11:8] NUMBLKS RO NUMBLKS=CFGxTCMSZ+4 -xTGUBLKSZ The number of TCM blocks is 2NUMBLKS . Where:
• CFGxTCMSZ is the configured TCM size.
• xTGUBLKSZ is the configured Instruction Tightly Coupled Memory Gate Unit (ITGU) or Data

Tightly Coupled Memory Gate Unit (DTGU) block size.

[7:4] Reserved - RES0

[3:0] BLKSZ RO TGU block size in bytes. This is 2BLKSZ+5 . This field is determined by the Verilog parameter
xTGUBLKSZ.

4.20.3 ITGU_LUTn and DTGU_LUTn, ITGU and DTGU Look Up Table Registers

The ITGU_LUTn and DTGU_LUTn registers allows identifying the TGU blocks as Secure or Non-
secure, where n is in the range 0-15.

Usage constraints
If the Security Extension is implemented, these registers are RAZ/WI from the Non-secure state.
Unprivileged access results in a BusFault exception.
If the Security Extension is not implemented, then TCM security gating is not included in the
processor and these registers are RAZ/WI.
If the external input signal LOCKITGU is asserted, the ITGU_LUTn register is read-only.
If the external input signal LOCKDTGU is asserted, the DTGU_LUTn register is read-only.

Configurations

The number of programmable blocks depends on the processor configuration and the physical
TCM size. This is calculated using the following formula, where x is I for ITGU and D for
DTGU:

N = 2xTGU_CFG.NUMBLKS

Accesses to register fields associated with blocks above the programmable number are treated as
RAZ/WI. For more information on the ITGU_CFG and DTGU_CFG registers and the
NUMBLKS field, see 4.20.2 ITGU_CFG and DTGU_CFG, ITGU and DTGU Configuration
Registers on page 4-104 .

Attributes
These registers are not banked between Security states. For more information, see
4.10 IMPLEMENTATION DEFINED registers summary on page 4-72.

4 System registers
4.20 TCM security gate registers

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

4-105

Non-Confidential

The following figure shows the ITGU_LUTn and DTGU_LUTn bit assignments.

31 0

BLK[32n+i]

Figure 4-33 ITGU_LUTn and DTGU_LUTn bit assignments

The following table describes the ITGU_LUTn and DTGU_LUTn bit assignments where:
• 0≤n≤15
• 0≤i≤31
• N is the number of programmable blocks: N=2xTGU_CFG.NUMBLKS

• x is I for ITGU and D for DTGU

Table 4-45 ITGU_LUTn and DTGU_LUTn bit assignments for implemented block mapping

Field Name Type Description

[31:0] BLK[32n+i] • RW for 32n+i<N
• RO for 32n+i≥N

If 32n+i<N, then the block 32n+i is implemented, and the security mapping bit options
are:

0 Block mapped as Secure

1 Block mapped as Non-secure

If 32n+i≥N, then the block 32n+i is not implemented, and the accesses are treated as
RAZ/WI.

ITGU_LUTn and DTGU_LUTn example

Consider the following example to calculate ITGU_LUTn and DTGU_LUTn, with
ITGU_CFG.NUMBLKS and DTGU_CFG.NUMBLKS set to 4.

Number of programmable blocks (N)=2xTGU_CFG.NUMBLKS

xTGU_CFG.NUMBLKS=CFGxTCMSZ+4-xTGUBLKSZ, where x can be I or D for ITCM and
DTCM respectively.
If CFGxTCMSZ is 0b011 and xTGUBLKSZ is 3, then xTGU_CFG.NUMBLKS is 4.
N=24, that is 16.

Number of xTGU_LUTn registers

Up to 16 xTGU_LUTn registers can be configured which each register supporting 32 blocks,
with n in the range 0-15. In this example, only one xTGU_LUT register is required, that is,
ITGU_LUT and DTGU_LUT, where n=0.

Calculating the BLK[32n+i], where i is the bit offset in the register and can be in the range 0-31
Since n=0 because all programmable blocks can fit into one 32-bit register, BLK is calculated
as:
BLK[(32×0)+0] to BLK[(32×0)+15]. That is, BLK[0] to BLK[15].

Bit assignments
The following figure shows the bit assignments for xTGU_LUT when n=0.

31 0

BLK[0]-BLK[15]

1516

Reserved

Figure 4-34 ITGU_LUT and DTGU_LUT bit assignments

4 System registers
4.20 TCM security gate registers

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

4-106

Non-Confidential

The following table describes the bit assignments.

Table 4-46 ITGU_LUTn and DTGU_LUTn bit assignments for implemented block mapping

Field Name Type Description

[31:16] - RO RAZ/WI.

[15:0] BLK[0] to BLK[15] RW If 32n+i<N, then the implemented block 32n+i security mapping bit options are:

0 Block mapped as Secure.
1 Block mapped as Non-secure.

4 System registers
4.20 TCM security gate registers

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

4-107

Non-Confidential

4.21 EWIC interrupt status access registers
The External Wakeup Interrupt Controller (EWIC) interrupt status access registers, EVENTSPR,
EVENTMASKA, and EVENTMASKn registers provide access to the Nested Vectored Interrupt
Controller (NVIC) state that must be used to carry out software transfers to and from the EWIC in the
system for sleep entry and exit when the automatic transfer feature is disabled.

The following table lists the EWIC interrupt status access registers.

Table 4-47 EWIC interrupt status access registers

Address Name Type Reset value Description

0xE001E400 EVENTSPR WO UNKNOWN 4.21.1 EVENTSPR,
Event Set Pending
Register on page 4-108

0xE001E480 EVENTMASKA RO UNKNOWN 4.21.2 EVENTMASKA
and EVENTMASKn,
n=0-14, Wakeup Event
Mask Registers
on page 4-109

0xE001E484+4n EVENTMASKn RO UNKNOWN

4.21.1 EVENTSPR, Event Set Pending Register

The EVENTSPR is a write-only register that is used to set pending events at wakeup that cannot be
directly set in the Nested Vectored Interrupt Controller (NVIC) using the architecture programming
model.

Usage constraints
If the Security Extension is implemented and AIRCR.BFHFNMINS is zero, this register is
RAZ/WI from the Non-secure state. Unprivileged access results in a BusFault exception.

Configurations
This register is always implemented.

Attributes
This register is not banked between Security states. For more information, see
4.10 IMPLEMENTATION DEFINED registers summary on page 4-72. The format of this
register is identical to the EWIC_PEND0 register. For more information on the EWIC_PEND0
register, see A.2.6 EWIC_PENDA and EWIC_PENDn, EWIC Pend Event Registers
on page Appx-A-342.

The following figure shows the EVENTPSR bit assignments.

31 0

Reserved

1

EDBGREQ

23

NMI
EVENT

Figure 4-35 EVENTSPR bit assignments

The following table describes the EVENTSPR bit assignments.

4 System registers
4.21 EWIC interrupt status access registers

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

4-108

Non-Confidential

Table 4-48 EVENTSPR bit assignments

Field Name Type Description

[31:3] Reserved - RES0

[2] EDBGREQ WO A write of one to this field causes the processor to behave as if an external debug request has occurred. A
write of zero is ignored.

[1] NMI WO A write of one to this field causes the processor to behave as if a non-maskable interrupt, NMI, has
occurred. A write of zero is ignored.

[0] EVENT WO A write of one to this field causes the processor to behave as if an RXEV event has occurred. A write of
zero is ignored.

4.21.2 EVENTMASKA and EVENTMASKn, n=0-14, Wakeup Event Mask Registers

The EVENTMASKA and EVENTMASKn are read-only registers that provide the events on sleep entry
which cause the processor to wake up. EVENTMASKA includes information about internal events and
the EVENTMASKn registers cover external interrupt requests (IRQ). There is one register implemented
for each of the 32 external interrupts that the External Wakeup Interrupt Controller (EWIC) supports.
The EVENTMASKA register is always implemented.

Usage constraints
If the Security Extension is implemented and AIRCR.BFHFNMINS is zero, this register is
RAZ/WI from the Non-secure state. Unprivileged access results in a BusFault exception.

Configurations
These registers are always implemented.

Attributes
These registers are not banked between Security states. See 4.10 IMPLEMENTATION
DEFINED registers summary on page 4-72 for more information.

The following figure shows the EVENTMASKA bit assignments.

31 01

EDBGREQ

Reserved

23

NMI
EVENT

Figure 4-36 EVENTMASKA bit assignments

The following table describes the EVENTMASKA bit assignments.

Table 4-49 EVENTMASKA bit assignments

Field Name Type Description

[31:3] - - Reserved, RES0

[2] EDBGREQ RO Mask for external debug request. If this bit is 0, the mask is enabled.

[1] NMI RO Mask for NMI. If this bit is 0, the mask is enabled.a

[0] Reserved - Reserved, RES0

a An NMI can be masked in certain cases where the execution priority is equal to or higher than NMI priority.

4 System registers
4.21 EWIC interrupt status access registers

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

4-109

Non-Confidential

 Note

EVENTMASKA[0] is RES0 as the wakeup sensitivity to an external event is determined by the sleep entry
instruction and not the processor state. The software transfer sequence must set the
EWIC_MASKA.EVENT register field, if the sleep entry instruction is WFE.

EWIC_MASKA.EVENT should be set to 0b0 if the sleep entry instruction is not WFE. For more
information on EWIC_MASKA, see A.2.5 EWIC_MASKA and EWIC_MASKn, EWIC Mask Registers
on page Appx-A-341 .

The following figure shows the EVENTMASKn, where n=0-14, bit assignments.

31 0

IRQ

Figure 4-37 EVENTMASKn, where 0≤n<15, bit assignments.

The following table describes the EVENTMASKn, where n=0-14, bit assignments.

Table 4-50 EVENTMASKn, where 0≤n<15, bit assignments.

Field Name Type Description

[31:0] IRQ RO Masks for interrupts (n×32) to ((n+1)×32)-1.

If any of the bits are 0, the mask is enabled for the associated interrupt. Additionally, any interrupt that the
WIC does not support is also RAZ.

4 System registers
4.21 EWIC interrupt status access registers

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

4-110

Non-Confidential

Chapter 5
Initialization

This chapter describes how to initialize the Cortex-M55 processor and which registers to access to enable
functionality before using the processor features.

It contains the following sections:
• 5.1 Initialization overview on page 5-112.
• 5.2 Initializing and reprogramming the MPU on page 5-113.
• 5.3 Initializing the EPU on page 5-114.
• 5.4 Programming the SAU on page 5-115.
• 5.5 Initializing the instruction and data cache on page 5-116.
• 5.6 Enabling the branch cache on page 5-118.
• 5.7 Enabling and preloading the TCM on page 5-119.
• 5.8 Enabling and locking the TCM security gates on page 5-120.
• 5.9 Enabling the P-AHB interface on page 5-121.

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

5-111

Non-Confidential

5.1 Initialization overview
Before your run your application, you might want to program values into registers and memory and
enable certain processor features.

This chapter describes other initialization requirements, some of which are optional depending on the
features you have implemented in the Cortex-M55 processor.

5 Initialization
5.1 Initialization overview

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

5-112

Non-Confidential

5.2 Initializing and reprogramming the MPU
The Cortex-M55 processor can be configured to include the Memory Protection Unit (MPU), which is an
optional component that is primarily used for memory region protection.

If the Security Extension is included in the Cortex-M55 processor, memory protection logic can be split
between Secure and Non-secure MPU (MPU_S and MPU_NS).

Memory protection logic can be split between Secure and Non-secure MPU (MPU_S and MPU_NS).

The MPU_CTRL.ENABLE must be set to 1 to enable the MPU.

If the Security Extension is included, then MPU_CTRL_NS is the Non-secure version of this register,
and can be used to enable the Non-secure MPU region. For more information on MPU_CTRL, see the
Arm®v8-M Architecture Reference Manual.

 Note

For more information on the MPU, see 8.3 Memory Protection Unit on page 8-159.

Reprogramming the MPU
When setting up the MPU, and if it has been previously programmed, disable unused regions to prevent
any old settings from affecting the latest MPU setup.
1. Execute a DSB instruction, to drain out any existing memory transactions.
2. Write to the MPU registers. For a complete list, see 8.3.1 Memory Protection Unit register summary

on page 8-159.
3. Execute a DSB instruction and then an ISB instruction, to ensure that all subsequent memory accesses

see the updated MPU setup.
 Remember

Additionally, if any memory is converted from Cacheable to Non-cacheable or Device, and any write has
been performed to that memory, you must perform data cache clean and invalidate operations (DCIMVAC)
each of these cachelines.

For more information on these operations, see the Arm®v8-M Architecture Reference Manual.

5 Initialization
5.2 Initializing and reprogramming the MPU

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

5-113

Non-Confidential

5.3 Initializing the EPU
The Extension Processing Unit (EPU) is disabled on reset. The core must be in privileged mode to read
from and write to the CPACR.

If the Security Extension is implemented, to allow the EPU to run Non-secure code, the NSACR must be
setup by Secure privileged software.

The following code sequence demonstrates this:

NSACR EQU 0xE000ED8C
LDR R0, =NSACR ; Read NSACR
LDR r1, [R0] ; Set bits 10-11 to allow Non-secure access to CP10 and CP11 coprocessors.
ORR R1, R1, #(0x3 << 10)
STR R1, [R0] ; Write back the modified value to the NSACR.
DSB
ISB ; Reset pipeline now the Non-secure access has been allowed to CP10 and CP11
coprocessors.

To enable the EPU, privileged software must setup the CPACR, which is demonstrated by the following
code sequence.

 Note

If the Security Extension is implemented, the CPACR is banked between Security states, this code
sequence enables the EPU for the current Security state only.

CPACR EQU 0xE000ED88
LDR R0, =CPACR ; Read CPACR
LDR r1, [R0] ; Set bits 20-23 to enable CP10 and CP11 coprocessors
ORR R1, R1, #(0xF << 20)
STR R1, [R0] ; Write back the modified value to the CPACR
DSB
ISB ; Reset pipeline now the EPU is enabled.

5 Initialization
5.3 Initializing the EPU

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

5-114

Non-Confidential

5.4 Programming the SAU
If the Security Extension is included in the processor, the Security Attribution Unit (SAU) is available.

At reset, before any SAU regions are programmed, the default internal security level is selected using the
SAU_CTRL.ALLNS register. In the Cortex-M55 processor, this register always resets to zero, setting
most of the memory (except some regions in the PPB space) to Secure, and preventing an
Implementation Defined Attribution Unit (IDAU) from overriding the security level.

However, after reset, Secure software can allow an IDAU to specify the security level for all memory
regions by disabling all the SAU regions and setting SAU_CTRL.ALLNS to one.

To enable the SAU, Secure software must:

1. Program the regions that are required into the SAU_RBAR and SAU_RLAR registers. To change an
SAU region, you must clean and invalidate any addresses from the previous configuration from the
cache.

2. Set the SAU_CTRL.ENABLE bit to 1.

For more information on these registers, see Arm®v8-M Architecture Reference Manual.

The LOCKSAU signal prevents software accesses to the SAU registers. For more information on
LOCKSAU, see C.27 Miscellaneous signals on page Appx-C-413.

 Note

For more information on the SAU and IDAU, see 8.2 Security Attribution Unit on page 8-157 and
8.4 Implementation Defined Attribution Unit on page 8-161

5 Initialization
5.4 Programming the SAU

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

5-115

Non-Confidential

5.5 Initializing the instruction and data cache
On initial powerup, the instruction and data caches are in an UNKNOWN state. Therefore, on initial
powerup, the caches must be initialized either by automatic invalidation or through software invalidation.

If you implement RAM retention without using the P-Channel, then software invalidation of caches
might be required.

If a P-Channel is not used for RAM retention, you must do either of the following:

• Set INITL1RSTDIS to an appropriate value when the cache is valid on reset
• Tie INITL1RSTDIS HIGH and invalidate software.

The caches are not accessible during the automatic invalidation sequence. Executing a DSB instruction
causes the processor to wait for the sequence to complete.

The CCR.DC and CCR.IC register bits are banked based on security, therefore each Security state must
set these bits to enable the data and instruction cache.

For more information on the CCR register, see Arm®v8-M Architecture Reference Manual.
 Note

You can optionally implement Error Correcting Code (ECC) functionality on caches by setting the ECC
RTL parameter. However, the Cortex-M55 processor does not support disabling ECC using software.
Enabling and disabling ECC is done at Cold reset by the INITECCEN signal. For more information on
INITECCEN, see C.4 Reset configuration signals on page Appx-C-381.

For more information on instruction and data caches, see 9.9 Instruction and data cache on page 9-196.

5.5.1 Enabling the instruction and data cache

The following code sequence demonstrates how to enable the instruction and data cache for the current
Security state when running in privileged mode.

CCR EQU 0xE000ED14
LDR R0, =CCR ; Read CCR
LDR r1, [R0] ; Set bits 16 and 17 to enable D-cache and I-cache
ORR R1, R1, #(0x3 << 16)
STR R1, [R0] ; Write back the modified value to the CCR
DSB
ISB ; Perform DSB and ISB to guarantee change is visible to subsequent instructions

5.5.2 Powering down the caches

To powerdown the caches:

1. Set CCR.DC and CCR.IC to 0. CPDLPSTATE.RLPSTATE must be set to 0b11.
2. If the data cache contains dirty data that must be transferred to system memory, the entire cache must

be cleaned with a set of Set/Way cache maintenance operations.

CCSIDR EQU 0xE000ED80 ; Cache size ID register address
CSSELR EQU 0xE000ED84 ; Cache size selection register address
DCCSW EQU 0xE000EF6C ; Cache maintenance op address: data cache clean by set/way
; CSSELR selects the cache visible in CCSIDR
MOV r0, #0x0 ; 0 = select “level 1 data cache”
LDR r11, =CSSELR ;
STR r0, [r11] ;
DSB ; Ensure write to CSSELR before proceeding
LDR r11, =CCSIDR ; From CCSIDR
LDR r2, [r11] ; Read data cache size information
AND r1, r2, #0x7 ; r1 = cache line size
ADD r7, r1, #0x4 ; r7 = number of words in a cache line
UBFX r4, r2, #3, #10 ; r4 = number of “ways”-1 of data cache
UBFX r2, r2, #13, #15 ; r2 = number of “set”-1 of data cache
CLZ r6, r4 ; calculate bit offset for “way” in DCISW
LDR r11, =DCCSW ; clean cache by set/way
inv_loop1 ; For each “set”
MOV r1, r4 ; r1 = number of “ways”-1
LSLS r8, r2, r7 ; shift “set” value to bit 5 of r8

5 Initialization
5.5 Initializing the instruction and data cache

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

5-116

Non-Confidential

inv_loop2 ; For each “way”
LSLS r3, r1, r6 ; shift “way” value to bit 30 in r6
ORRS r3, r3, r8 ; merge “way” and “set” value for DCISW
STR r3, [r11] ; invalidate D-cache line
SUBS r1, r1, #0x1 ; decrement “way”
BGE inv_loop2 ; End for each “way”
SUBS r2, r2, #0x1 ; Decrement “set”
BGE inv_loop1 ; End for each “set”
DSB ; Data sync barrier after invalidate cache
ISB ; Instruction sync barrier after invalidate cache

3. Set MSCR.DCACTIVE and MSCR.ICACTIVE to 0. As a result, the processor core deasserts bit 16
of the COREPACTIVE signal, which is a hint to the external power controller that PDRAMS can be
powered down.

5.5.3 Powering up the caches

To powerup the caches:

1. Set MSCR.DCACTIVE and MSCR.ICACTIVE to 1. As a result, the processor core asserts
COREPACTIVE[16], to indicate to an external power controller that PDRAMS are required to be
be powered up.

2. Set CCR.DC and CCR.IC to 1. After the external power control logic has powered up PDRAMS, the
Core Power Control (CPC) triggers an automatic invalidation of the RAMs (if INITL1RSTDIS is 0),
and after that is complete, subsequent instructions can cause allocations to and lookups in the caches.

5 Initialization
5.5 Initializing the instruction and data cache

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

5-117

Non-Confidential

5.6 Enabling the branch cache
The branch cache is disabled on reset. You must enable the branch cache to implement Low Overhead
Branch (LOB) Extension.

The processor core must be in privileged mode to read from and write to the CCR. If the Security
Extension is implemented, the CCR.LOB bit is banked so it must be enabled for each Security state that
uses the LOB Extension. For more information on CCR, see the Arm®v8-M Architecture Reference
Manual.

The following code sequence demonstrates how to enable the branch cache for the current Security state
when running in privileged mode.

CCR EQU 0xE000ED14
LDR R0, =CCR ; Read CCR
LDR r1, [R0] ; Set bits 19 to enable LOB
ORR R1, R1, #(0x8 << 16)
STR R1, [R0] ; Write back the modified value to the CCR
DSB
ISB ; Reset pipeline now LOB is enabled.

5 Initialization
5.6 Enabling the branch cache

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

5-118

Non-Confidential

5.7 Enabling and preloading the TCM
The Cortex-M55 processor can optionally include Tightly Coupled Memories (TCMs).

Enabling the TCMs

For more information, see 9.8 TCM interfaces on page 9-192.

Software must set the ITCMCR.EN and DTCMCR.EN fields to enable access to the Instruction Tightly
Coupled Memory (ITCM) and Data Tightly Coupled Memory (DTCM) respectively. For more
information on these registers, see 4.19 ITCMCR and DTCMCR, TCM Control Registers on page 4-101.

Alternatively, if the INITTCMEN[1:0] signal is asserted on Cold or Warm reset, then software does not
need to write to these registers. For more information on the INITTCMEN[1:0] signal, see C.4 Reset
configuration signals on page Appx-C-381.

Preloading the TCMs

The methods to preload the TCMs are:

Memory copy with running boot code
When boot code includes a memory copy routine that reads data from a ROM and writes it into
the appropriate TCM, you must enable the TCM to perform this operation. This bootcode must
be run from an address outside the TCM region.

DMA into TCM
You can use a Direct Memory Access (DMA) device that reads data from a ROM and writes it to
the TCMs through the Slave AHB (S-AHB) interface. This method can be used to preload the
TCM so they can be used by the processor from reset.

Using the TCM from reset
If the TCM interface is configured to enable the TCMs at reset and the reset vector address is
inside the TCM memory region, then the processor boots from TCM. The system must ensure
that the bootcode software is present in the appropriate memory region before execution starts.
This can be accomplished by either initializing the memory before reset or by transferring the
data after reset using the S-AHB interface and asserting the CPUWAIT input signal. Asserting
this signal stops the processor fetching or executing instructions after reset. When the
CPUWAIT signal is deasserted the processor starts fetching instructions from the reset vector
address in the normal way.

 Note

Asserting CPUWAIT only takes effect when the processor is under processor reset or Cold
reset, that is, nSYSRESET or nPORESET is asserted. The processor does not halt if
CPUWAIT is asserted while the processor is running.

The ITCM and DTCM can be locked from software access using the external input signal, LOCKTCM.
When this signal is asserted. it disables writes to registers that are associated with the TCM region from
software or from a debug agent connected to the processor.

• ITCMCR.
• DTCMCR.

Asserting this signal prevents changes to the TCM configuration. All writes to the registers are ignored.
 Note

When ECC is enabled, before performing a byte, halfword, or unaligned word write to a TCM location
which causes an RMW, you must initialize the location first by performing an aligned word or
doubleword write to the location. Arm recommends that all TCM locations are initialized in this manner
by boot code.

5 Initialization
5.7 Enabling and preloading the TCM

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

5-119

Non-Confidential

5.8 Enabling and locking the TCM security gates
TCM gating is enabled by tying the external input signal CFGMEMALIAS to a non-zero value.

The TCM Gate Unit (TGU) can be locked from software access using the external input signals
LOCKITGU and LOCKDTGU. When these signals are asserted the corresponding TGU registers
become read-only. This allows a TGU configuration to be programmed and then locked from further
changes by software. For more information on TCM security gating, see 8.7 TCM Gate Units
on page 8-164.

5 Initialization
5.8 Enabling and locking the TCM security gates

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

5-120

Non-Confidential

5.9 Enabling the P-AHB interface
Software can enable the Peripheral AHB (P-AHB) interface by writing to the PAHBCR.EN register.

For more information on PAHBCR, see 4.14 PAHBCR, P-AHB Control Register on page 4-90.

Alternatively, you can assert INITPAHBEN HIGH at Cold or Warm reset, to enable the P-AHB
interface. If you do this, there is no need for a software write to PAHBCR.EN. For more information on
INITPAHBEN, see C.4 Reset configuration signals on page Appx-C-381.

The P-AHB can be locked from software access using the external input signal, LOCKPAHB. When
this signal is asserted, writes to PAHBCR register from software or from a debug agent connected to the
processor are disabled and the register becomes read-only. Asserting this signal prevents changes to P-
AHB port enable status in PAHBCR.EN.

5 Initialization
5.9 Enabling the P-AHB interface

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

5-121

Non-Confidential

Chapter 6
Power management

This chapter introduces Cortex-M55 processor power management concepts.

It contains the following sections:
• 6.1 Power domains on page 6-123.
• 6.2 Power states on page 6-125.
• 6.3 Power and operating mode transitions on page 6-126.
• 6.4 Core P-Channel and power mode selection on page 6-130.
• 6.5 COREPACTIVE and required power mode on page 6-132.
• 6.6 PDCORE low-power requirements on page 6-135.
• 6.7 PDEPU low-power requirements on page 6-136.
• 6.8 PDRAMS powerdown requirements on page 6-137.
• 6.9 Warm reset power mode on page 6-138.
• 6.10 Debug Q-Channel and PDDEBUG power domain on page 6-140.
• 6.11 Q-Channel clock control on page 6-141.
• 6.12 PWRDBGWAKEQACTIVE on page 6-142.

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

6-122

Non-Confidential

6.1 Power domains
The Cortex-M55 processor can be partitioned into power domains as shown in the following figure.

MCU level

IWIC

PDEPU

Core
Power
Control

Processor level

PDCORE PDDEBUG

EWIC

Q-Channel (clock)
P-Channel (power)

CLKIN
nPORESET

nSYSRESET
Debug
Power
Control

Q-Channel (clock)
Q-Channel (power)

DBGCLK
nDBGRESET

IWICCLK
nIWICRESET

EPPB

Q-Channel (clock)

EWICCLK
nEWICRESET

PDRAMS

Figure 6-1 Cortex-M55 processor power domains

The power domains are described in the following table.

Table 6-1 Power domain description

Power Domain Description

PDCORE This contains the processor core, L1 memory system, the Cross Trigger Interface (CTI), and Nested Vectored
Interrupt Controller (NVIC).

PDEPU This contains all Extension Processing Unit (EPU) logic, that is, the floating-point and M‑profile Vector Extension
(MVE) logic.

PDRAMS This contains the L1 instruction cache and data cache RAMs.

PDDEBUG This contains most of the debug logic. It includes the Breakpoint Unit (BPU), Data Watchpoint and Trace (DWT),
Instrumentation Trace Macrocell (ITM), and Embedded Trace Macrocell (ETM).

• The Internal Wakeup Controller (IWIC) is located in a separate power domain, the IWIC power
domain, that might be on when the processor core is powered down, to allow the detection of wakeup
events.

• The MCU level in the processor deliverable includes an example External Wakeup Controller
(EWIC). The EWIC can be placed in any point in the system that is considered to be Always-on
relative to the processor domain.

• The IP deliverable that is shipped does not support any power domains at the MCU level, and the
MCU level is considered to be relatively Always-on to the processor domain. You can use the
delivered MCU and customize your system to include appropriate power domains depending on your
implementation.

6 Power management
6.1 Power domains

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

6-123

Non-Confidential

 Note

For more information on the MCU level, see the Arm® Cortex®-M55 Processor Integration and
Implementation Manual. The Arm® Cortex®-M55 Processor Integration and Implementation Manual is a
confidential document that is available to licensees only.

6 Power management
6.1 Power domains

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

6-124

Non-Confidential

6.2 Power states
The power domains in the Cortex-M55 processor can be in ON, OFF, or RET power states. The RET
power state requires the processor logic to be implemented with state retention.

The following table shows the supported power states.

Table 6-2 Supported power states

Power state Clocks running Processor logic powered Register and RAM contents retained Reset asserted

ON Yes/No Yes Yes No

RET No No Yes No

OFF No No No Yes

The following table shows the permitted Cortex-M55 processor power states for the power domains.

Table 6-3 Permitted power states for Cortex-M55 processor power domains

Power state PDCORE PDEPU PDDEBUG PDRAMS

ON Permitted Permitted Permitted Permitted

RET Permitted Permitted Not permitted Permittedb

OFF Permitted Permitted Permitted Permitted

Not all power state combinations are permitted. The combination of PDCORE, PDRAMS, and PDEPU
power states is called the power mode. PDDEBUG is independent of the other power domains. It can
either be ON or OFF, regardless of the processor power mode.

 Note

When a power domain is in the ON power state, if the clock is not running, then the domain is
considered to be in low-power state.

b Retention in the PDRAMS domain is only supported when the processor is in the MEM_RET (Cache), FULL_RET (Cache), or LOGIC_RET (Cache) power
modes.

6 Power management
6.2 Power states

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

6-125

Non-Confidential

6.3 Power and operating mode transitions
The Cortex-M55 processor power modes are based on the Arm standard modes and encodings. The
power modes are extended with operating modes, which control whether the L1 instruction and data
caches in the PDRAMS domain are enabled.

The Arm standard modes and encodings are defined in the Arm® Power Control System Architecture
specification. The Arm® Power Control System Architecture specification is a confidential document that
is only available to licensees.

An external power controller controls the processor power and operating mode through the P-Channel.
An external clock controller controls the Q-Channel allowing system-level clock gating. The P-Channel
and the clock control Q-Channel are connected to the Core Power Control (CPC) in the PDCORE
domain. The CPC manages the internal clocking and reset of the PDCORE, PDRAMS, and PDEPU
domains. It supports the clock and reset signals that are described in C.1 Clock and clock enable signals
on page Appx-C-377 and C.2 Reset signals on page Appx-C-378, and system-level clock gating. The
processor indicates the minimum required power mode according to its state and internal control
registers using the COREPACTIVE signal. For more information on COREPACTIVE, see C.16 P-
Channel and Q-Channel power control signals on page Appx-C-401 and 6.5.1 COREPACTIVE signal
encoding on page 6-133.

An external power controller controls the debug power mode through the debug domain power control
Q-Channel. The debug domain power control Q-Channel is connected to the Debug Power Control
(DPC) in the PDDEBUG domain. A clock control Q-Channel is also available to support high-level
clock gating.

Only certain transitions between power and operating modes are allowed. Figure 6-2 Permitted power
and operating modes and transitions on page 6-127 shows these permitted transitions. If an external
power controller request is made to move between two modes which are not directly connected, then the
request is denied (using COREPDENY).

Retention in the PDRAMS domain depends on the overall power and operating mode. RAM retention is
selected by entering any of the following:

• MEM_RET (Cache).
• FULL_RET (Cache).
• LOGIC_RET (Cache).

In other power modes, the PDRAMS state depends on the operating mode.

6 Power management
6.3 Power and operating mode transitions

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

6-126

Non-Confidential

Cache EPU

ON (No cache)

Cache EPU

EPU_OFF
(No cache)

Cache EPU

FUNC_RET
(No cache)

Cache EPU

LOGIC_RET
(No cache)

Cache EPU

FULL_RET
(No cache)

Cache EPU

EPU_OFF
(Cache)

Cache EPU

FUNC_RET
(Cache)

Cache EPU

LOGIC_RET
(Cache)

Cache EPU

FULL_RET
(Cache)

Cache EPU

ON (Cache)

Cache EPU

OFF

Cache EPU

MEM_RET
(Cache)

ON

RET

OFF

Cache EPU

WARM_RST

Cache EPU

MEM_RET
(No cache)

Figure 6-2 Permitted power and operating modes and transitions

When the COREPACTIVE signal indicates a required move between two modes which are not directly
connected, the external power controller must transition through one or more intermediate modes to get
to the final required power and operating mode. When only a change in PDRAMS is required even if the
change involves moving through multiple power and operating modes, the processor supports this and
indicates the required intermediate transitions using the COREPACTIVE signals. See 6.3.1 Operating
mode transitions which change PDRAMS power state on page 6-128.

The following table describes the power and operating modes that are shown in Figure 6-2 Permitted
power and operating modes and transitions on page 6-127.

Table 6-4 Power and operating mode transitions

Power and operating
mode

Description

ON (Cache) Full run mode with Extension Processing Unit (EPU) and cache powered on.

ON (No cache) Full run mode with EPU on and cache powered off.

FUNC_RET (Cache) Run mode with EPU in software transparent low-power state but EPU state is retained and cache is
powered on.

FUNC_RET (No cache) Run mode with EPU in software transparent low-power state but EPU state is retained. Cache is
powered off (if present), or cache is not present.

EPU_OFF (Cache) Run mode with EPU powered off. Save and restore of EPU state is required.

EPU_OFF (No cache) Run mode with EPU and cache powered off (if present, or the cache is not present. Save and restore of
EPU state is required.

6 Power management
6.3 Power and operating mode transitions

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

6-127

Non-Confidential

Table 6-4 Power and operating mode transitions (continued)

Power and operating
mode

Description

FULL_RET (Cache) All functional logic and cache in retention. This is software transparent powerdown.

FULL_RET (No cache) All functional logic in retention with cache powered off (if present), or the cache is not present. This is
software transparent powerdown.

LOGIC_RET (Cache) This is partially software-transparent powerdown. EPU has been powered off.

LOGIC_RET (No cache) This is partially software-transparent powerdown. EPU has been powered off. Cache is powered off (if
present), or cache is not present.

MEM_RET (Cache) All functional logic is powered off, RAMs in retention.

MEM_RET (No cache) MEM_RET (No cache) is functionally identical to OFF. The power mode and associated transitions are
included for compatibility with the Arm CoreLink™ PCK‑600 Power Control Kit PPU. The Cortex-M55
processor never requests this state using the P-Channel COREPACTIVE output signal.

OFF Powered off, Shutdown mode.

WARM_RST Warm reset.

In Table 6-4 Power and operating mode transitions on page 6-127, the No cache operating mode implies
that if your system configuration includes caches, then the cache is present, but disabled and powered
OFF. The following register bits are set to appropriate values:
• MSCR.ICACTIVE and MSCR.DCACTIVE are 0.
• CPDLPSTATE.RLPSTATE is 0b11.

 Note

• A transition from OFF to MEM_RET is allowed. Arm recommends this as being required for full
compatibility with the Arm CoreLink PCK‑600 Power Control Kit Power Policy Unit (PPU).
Transitions from MEM_RET to OFF are not allowed. The system is responsible for maintaining
power in the RAMs to ensure that processor cache content is preserved when entering MEM_RET.

• A transition from OFF to MEM_RET or MEM_RET to ON does not invalidate the cache even when
INITL1RSTDIS is set to 0.

• MEM_RET (No cache) is functionally identical to OFF. The state and associated transitions are
included for compatibility with current Arm CoreLink PCK‑600 Power Control Kit Power Policy
Unit (PPU). The Cortex-M55 processor never requests this state using the P-Channel
COREPACTIVE output signal.

• A request on the P-Channel to transition to the current power mode is always accepted.

6.3.1 Operating mode transitions which change PDRAMS power state

The processor supports transitions between operating modes where the PDRAMS domain is enabled or
disabled.

For example, if the operating mode is ON (No cache) the processor can request to enable PDRAMS.
This request results in COREPACTIVE[16] being asserted, requesting a transition to ON (Cache), but
the other bits on COREPACTIVE remain static. The transition between ON (Cache) and ON (No
cache) is called a change of operating mode.

The CoreLink PCK‑600 Power Control Kit only supports dynamic transitions between operating modes
when in the ON power mode. Therefore, when there is a request to change the operating mode (enable or
disable the cache) for other active power modes like EPU_OFF and FUNC_RET, the processor drives
COREPACTIVE to ON and the power controller transitions to ON. This allows the operating mode
transition to occur. The Core Power Control (CPC) logic includes a secondary state-machine which

6 Power management
6.3 Power and operating mode transitions

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

6-128

Non-Confidential

transitions COREPACTIVE through the ON power mode to allow the external power controller to
enable or disable PDRAMS.

For example, to transition from EPU_OFF (No cache) to EPU_OFF (Cache) the following steps need to
take place. In this example, the processor starts in EPU_OFF(No Cache) mode, with COREPACTIVE[6]
set HIGH indicating this is the current minimum required power mode. When the cache is enabled, the
following steps need to be followed for the transition to take place:
1. The CPC drives COREPACTIVE[8] and COREPACTIVE[16] HIGH.
2. The external power controller responds with COREPREQ and COREPSTATE = ON (No cache).

COREPACTIVE[16] is ignored because an operating mode transition cannot occur unless the power
mode is ON.

3. The processor transitions the power mode from EPU_OFF (No cache) to ON (No cache).
4. The CPC continues to drive COREPACTIVE[8] and COREPACTIVE[16] HIGH.
5. The external power controller responds with COREPREQ and COREPSTATE = ON (Cache), and

requests a change in operating mode in the ON power mode.
6. The processor transitions the power mode from ON (No cache) to ON (Cache).
7. The CPC deasserts COREPACTIVE[8], meaning COREPACTIVE[6] is now the highest

COREPACTIVE bit set and the minimum required power mode.
8. The external power controller responds with COREPREQ and COREPSTATE = EPU_OFF

(Cache).
9. The processor transitions the power mode from ON (Cache) to EPU_OFF (Cache) and continues to

assert COREPACTIVE[6] and COREPACTIVE[16] HIGH.
 Tip

For more information on the COREPACTIVE output signal encoding, see 6.5.1 COREPACTIVE
signal encoding on page 6-133.

6 Power management
6.3 Power and operating mode transitions

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

6-129

Non-Confidential

6.4 Core P-Channel and power mode selection
The power modes are based on the power state of the PDCORE, PDEPU, and PDRAMS domains.

The requested power mode is defined according to the lowest achievable mode based on the processor
logic state, external conditions, and the corresponding CPDLPSTATE register fields. The resulting power
mode is driven on the P-Channel COREPACTIVE output signal.

 Tip

For more information on COREPACTIVE signal encoding, see 6.5.1 COREPACTIVE signal
encoding on page 6-133.

The following table shows the resultant overall power mode that is based on the requests from each
individual processor power domain.

Table 6-5 Requested domain power states and resultant power and operating mode

Requested domain power states Resultant power and operating mode

PDCORE PDEPU PDRAMS

ON ON ON ON (Cache)

ON ON OFF ON (No cache)

ON RET ON FUNC_RET (Cache)

ON RET OFF FUNC_RET (No cache)

ON OFF ON EPU_OFF (Cache)

ON OFF OFF EPU_OFF (No cache)

RET RET/ON ON FULL_RET (Cache)

RET RET/ON OFF FULL_RET (No cache)

RET OFF ON LOGIC_RET (Cache)

RET OFF OFF LOGIC_RET (No cache)

OFF ON ON ON (Cache)

OFF ON OFF ON (No cache)

OFF RET ON FULL_RET (Cache)

OFF RET OFF FULL_RET (No cache)

OFF OFF ON MEM_RET (Cache)

OFF OFF OFF OFF

- - - WARM_RST

Some combinations of power domain states do not map directly onto a power mode:

• Requesting ON for PDEPU when PDCORE is RET always results in a power mode with the EPU in
retention.

• If PDEPU is required to be ON or RET, the selected power mode always retains EPU state.
• The lowest possible power mode is selected which matches the requested PDRAMS power state.

At Cold reset, the internal power mode is OFF and the P-Channel COREPACTIVE signal is also driven
OFF. Before fetching the reset vector or starting to execute instructions, the processor waits for the
system to request or initialize an operational state for the PDCORE domain.

6 Power management
6.4 Core P-Channel and power mode selection

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

6-130

Non-Confidential

The following power modes are supported on the P-Channel for device state initialization at reset
deassertion:
• OFF.
• MEM_RET.
• EPU_OFF.
• ON.

A period tinit is defined in device clock cycles after which the device is guaranteed to have sampled the
P-Channel COREPSTATE input signal for all possible valid reset states. For the Cortex-M55 processor,
tinit is three cycles of CLKIN.

6.4.1 P-Channel interface tie-off when P-Channel is not used

When the P-Channel is not used in the system, there are some tie-off requirements that must be met.

The following table shows the P-Channel interface tie-off when P-Channel interface is not used.

Table 6-6 P-Channel interface tie-off when P-Channel interface is not used

P-Channel signal Tie-off values when P-Channel interface is not used

COREPSTATE The value can be any of the following:
• 0b11000, indicating the power and operating mode is ON

(Cache)
• 0b10110, indicating the power and operating mode is

EPU_OFF (Cache)
• 0b01000, indicating the power and operating mode is ON

(No cache)
• 0b00110, indicating the power and operating mode is

EPU_OFF (No cache)

COREPREQ 0b0

If the P-Channel is not used in the system and the interface input signals are tied-off, the processor
transitions to ON or EPU_OFF power mode out of Cold reset and starts executing instructions.

 Note

COREPSTATE must be configured only to ON (No Cache) or EPU_OFF (No cache) if the instruction
and data caches have not been configured in the processor.

The parameters ICACHESZ[4:0] and DCACHESZ[4:0] must be set to 0b00000.

Otherwise, processor behavior is UNPREDICTABLE.

For more information on these parameters, see Arm® Cortex®-M55 Processor Integration and
Implementation Manual.

The Arm® Cortex®-M55 Processor Integration and Implementation Manual is a confidential document
available to licensees only.

6 Power management
6.4 Core P-Channel and power mode selection

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

6-131

Non-Confidential

6.5 COREPACTIVE and required power mode
The Core Power Control (CPC) unit in the PDCORE power domain determines the required minimum
power mode and drives this mode on the P-Channel COREPACTIVE output signal.

 Tip

For more information on the COREPACTIVE output signal encoding, see 6.5.1 COREPACTIVE
signal encoding on page 6-133.

The required power mode is a combination of the processor state and the CPDLPSTATE register. This
combination allows software to select the required low-power state for each power domain.

For more information on the CPDLPSTATE register, see 4.16.1 CPDLPSTATE, Core Power Domain
Low Power State Register on page 4-92.

The CPDLPSTATE register controls the three types of low-power state. The low-power states are:
• OFF
• RET.
• ON with the clock off.

 Note

If present, external coprocessors are included in the requirements for moving the PDCORE domain to
low-power state.

The CPDLPSTATE register can be used to select low power states based only on stopping the clock input
to the PDCORE domain, CLKIN. The Q-Channel that is associated with CLKIN drives the
CLKINQACTIVE signal LOW providing a hint to the system that the CLKIN Q-Channel might accept
a quiescence request, therefore, allowing the clock to be gated if:

• All the low-power requirements for the PDCORE and PDEPU domains are true apart from the value
of CPDLPSTATE.

• The CPDLPSTATE fields CLPSTATE and ELPSTATE are not 0b00.

The individual required power states are translated to one of the overall power modes that are given in
Table 6-5 Requested domain power states and resultant power and operating mode on page 6-130 and
used to drive the COREPACTIVE signal. The following table describes the COREPACTIVE and
COREPSTATE bits encoding.

Table 6-7 COREPSTATE and COREPACTIVE bits encodings

Processor
power mode

Standard
power mode

COREPSTATE[4]
(With cache)

COREPSTATE[3:0] COREPACTIVE[16]
(With cache)

COREPACTIVE
MSB

WARM_RST WARM_RST - 0b1001 - -

ON (Cache) ON 1 0b1000 1 Bit 8

ON (No cache) ON 0 0b1000 0 Bit 8

FUNC_RET
(Cache)

FUNC_RET 1 0b0111 1 Bit 7

FUNC_RET (No
cache)

FUNC_RET 0 0b0111 0 Bit 7

EPU_OFF
(Cache)

MEM_OFF 1 0b0110 1 Bit 6

6 Power management
6.5 COREPACTIVE and required power mode

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

6-132

Non-Confidential

Table 6-7 COREPSTATE and COREPACTIVE bits encodings (continued)

Processor
power mode

Standard
power mode

COREPSTATE[4]
(With cache)

COREPSTATE[3:0] COREPACTIVE[16]
(With cache)

COREPACTIVE
MSB

EPU_OFF (No
cache)

MEM_OFF 0 0b0110 0 Bit 6

FULL_RET
(Cache)

FULL_RET 1 0b0101 1 Bit 5

FULL_RET (No
cache)

FULL_RET 0 0b0101 0 Bit 5

LOGIC_RET
(Cache)

LOGIC_RET 1 0b0100 1 Bit 4

LOGIC_RET
(No cache)

LOGIC_RET 0 0b0100 0 Bit 4

MEM_RET
(Cache)

MEM_RET 1 0b0010 1 Bit 2

MEM_RET (No
cache)

MEM_RET 0 0b0010 COREPACTIVE is driven to 0.

OFF OFF - 0b0000

 Note

• COREPACTIVE[16] and COREPSTATE[4] indicates the cache state. If the cache operating mode
is requested, COREPACTIVE[16] or COREPSTATE[4] is HIGH.

• COREPACTIVE bits 0, 1, 3, 9, 10-15, and 17-20 are not used. They are always tied LOW.
• COREPSTATE values not listed in Table 6-7 COREPSTATE and COREPACTIVE bits encodings

on page 6-132 are invalid. If a system attempts to transition to one of these encodings, the P-Channel
responds with COREPDENY.

• For more information on WARM_RST, see 6.9 Warm reset power mode on page 6-138.
• Power modes WARM_RST and OFF are independent from COREPSTATE[4]. The processor

behaves identically whether this bit is 1 or 0.
• The processor uses a different name for the MEM_OFF encoding in the Arm® Power Policy Unit

Architecture Specification because the corresponding power mode affects the EPU rather than
memory, but maintains compatibility with the PPU power mode.

6.5.1 COREPACTIVE signal encoding

The following table shows the COREPACTIVE signal encoding.

Table 6-8 COREPACTIVE signal encoding

Signal bit Encoding

[20:17] Unused

[16] Indicates requirement for cache ON state

[15:9] Unused

[8] ON

[7] FUNC_RET

[6] EPU_OFF

6 Power management
6.5 COREPACTIVE and required power mode

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

6-133

Non-Confidential

Table 6-8 COREPACTIVE signal encoding (continued)

Signal bit Encoding

[5] FULL_RET

[4] LOGIC_RET

[3] Unused

[2] MEM_RET

[1] Unused

[0] OFF
 Note

Indicates that no bits are set.

6 Power management
6.5 COREPACTIVE and required power mode

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

6-134

Non-Confidential

6.6 PDCORE low-power requirements
The following conditions must be true to request a PDCORE low-power state on the COREPACTIVE
signal using the P-Channel:

• The processor is in sleep mode.
• SCR.SLEEPDEEP is set.
• WICCONTROL[0] is asserted so that DEEPSLEEP means Wakeup Interrupt Controller (WIC)

sleep.
• If External Wakeup Interrupt Controller (EWIC) is configured, any automatic WIC loading must be

completed.
• The Slave AHB (S-AHB) interface is inactive.
• The Debug AHB (D-AHB) interface is inactive.
• The core is not halted.
• CPDLPSTATE.CLPSTATE is equal to 0b10 or 0b11.
• No MBIST operation is in progress.
• The CTI is not included or disabled, or if the CTI is included and enabled, there is no valid mapping

that is set up for an external cross trigger to be passed onto the processor, or CTI integration mode is
enabled in CTI_ITCONTROL .

When the PDCORE low-power requirements are met, CPDLPSTATE.CLPSTATE selects the low-power
state.

 Note

• If the Security Extension is included in the processor:
— The input signal, CPSPRESENT[n] indicates that coprocessor n is included
— CPACR_S.CPn and CPACR_NS.CPn indicate that coprocessor n is enabled and needs power.

If the Security Extension is not included in the processor:
— The input signal, CPNSPRESENT[n] indicates that coprocessor n is included
— CPACR_NS.CPn indicates that coprocessor n is enabled and needs power.

For more information on CPACR, see the Arm®v8-M Architecture Reference Manual.
• If a coprocessor CPn that is included in the system is indicating that the state cannot be lost

(CPSPRESENT[n]&&CPPWR.SUn=0b0), then a request to powerdown in
CPDLPSTATE.CLPSTATE is converted to RET to preserve the coprocessor state. For more
information on CPPWR, see the Arm®v8-M Architecture Reference Manual.

• To request a PDCORE low-power state using clock gating only, CPDLPSTATE.CLPSTATE must be
0b01.

6 Power management
6.6 PDCORE low-power requirements

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

6-135

Non-Confidential

6.7 PDEPU low-power requirements
The following conditions must be true to request a PDEPU low-power state on the COREPACTIVE
signal using the P-Channel:

• The processor core is not halted.
• There are no scalar floating-point or M-profile Vector Extension (MVE) instructions in progress.
• CPDLPSTATE.ELPSTATE is equal to 0b10 or 0b11.

When the PDEPU low-power requirements are met, CPDLPSTATE.ELPSTATE selects the low-power
state.

 Note

• If CPPWR.SU10 is 0b0, then selecting OFF in CPDLPSTATE.ELPSTATE results in RET state being
selected to prevent the state from becoming UNKNOWN. For more information on CPPWR, see the
Arm®v8-M Architecture Reference Manual.

• To request a PDEPU low-power state using clock gating only, CPDLPSTATE.ELPSTATE must be
0b01.

6 Power management
6.7 PDEPU low-power requirements

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

6-136

Non-Confidential

6.8 PDRAMS powerdown requirements
The following conditions must be true to powerdown PDRAMS:

• MSCR.DCACTIVE is equal to 0b0. This field is ignored for transparent retention of the RAMs.
• MSCR.ICACTIVE is equal to 0b0. This field is ignored for transparent retention of the RAMs.
• CPDLPSTATE.RLPSTATE is equal to 0b11.
• No cache maintenance operation is in progress.
• Automatic cache invalidation is not in progress.
• No MBIST operation is in progress to the instruction cache or data cache.

6 Power management
6.8 PDRAMS powerdown requirements

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

6-137

Non-Confidential

6.9 Warm reset power mode
The WARM_RST power mode is used when external control logic requires the processor to be put in a
safe state for Warm reset.

Asserting nSYSRESET when the PDCORE is powered off or in a retention state, or if the EPU is
powered off or in retention state (power modes OFF, EPU_OFF, MEM_RET, LOGIC_RET, FUNC_RET,
or FULL RET) has an UNPREDICTABLE effect on the operation of the processor.

Asserting nSYSRESET when PDCORE is in an active state and not in WARM_RST state might result
in system deadlock.

Entering WARM_RST

WARM_RST can only be entered from the ON power mode. Requesting WARM_RST from any other
power mode results in COREPDENY being asserted.

The processor asserts COREPACCEPT when PDCORE is transitioning to a quiescent state, and is held
asserted until core quiescence is achieved. Therefore, it is only safe to assert nSYSRESET after the P-
Channel transition to WARM_RST is completed.

This core quiescence requires that there are no outstanding transactions on the Master-AXI (M-AXI),
Peripheral AHB (P-AHB), External Private Peripheral Bus (EPPB), Debug AHB (D-AHB) and Slave
AHB (S-AHB) interfaces. If a request is made on the S-AHB interface while the processor is in
WARM_RST power mode it is ignored. Therefore, the system is responsible for ensuring that no
accesses are made on the S-AHB slave interface until the processor leaves WARM_RST whether or not
reset is asserted in the power mode.

If a debug access is made on D-AHB while in WARM_RST it is captured on the slave interface and
pended until the power mode is switched back out of WARM_RST, at which point the access is made to
the processor. If the D-AHB access is to state which has been reset while in WARM_RST then the result
could be UNPREDICTABLE.

The processor ensures that all the outputs of the PDCORE domain are set to their reset values. Therefore,
when nSYSRESET is asserted these values do not change, which helps to prevent reset domain crossing
issues.

In particular, the AIRCR.SYSRESETREQ is cleared on entry to WARM_RST, so that the
SYSRESETREQ output signal is driven to 0 matching the reset condition.

Warm reset can always be applied safely when the processor is in a low-power sleep state with all power
domains powered-on and no requests are active on the S-AHB or D-AHB interfaces.

If your system has a P-Channel interface for power control, then it is only safe to assert nSYSRESET
when the processor is in any of the following modes:
• WARM_RST, which is advantageous because it does not require software support
• OFF
• MEM_RET

If your system does not use a P-Channel interface for power control, then Arm recommends that you
assert nSYSRESET when the processor core is in sleep mode, all the power domains are powered up,
and there are no S-AHB or D-AHB requests.

The Warm reset request does not require that any of the power domains change power state. The
combination of power states remains unchanged from when the processor entered the WARM_RST
power mode.

Exiting WARM_RST

The processor can exit WARM_RST mode, whether or not nSYSRESET has been asserted to reset the
PDCORE power domain. If no reset has occurred program execution continues from where it was before
WARM_RST was requested. The processor asserts COREPACCEPT for any request to transition from

6 Power management
6.9 Warm reset power mode

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

6-138

Non-Confidential

WARM_RST to the ON and FUNC_RET power modes. Requests to transition from WARM_RST to any
other power mode results in COREPDENY being asserted.

The WARM_RST request does not require that any of the power domains change power state. The
combination of power states when in the WARM_RST power mode will be the same as before it entered
that power mode. The COREPACTIVE output signal will remain the same value as it was before
COREPACCEPT was asserted for COREPSTATE indicating WARM_RST entry.

 Note

The Cortex-M55 processor has internal logic that deals with any metastability caused by either of the
following asynchronous resets:
• Asserting nSYSRESET while the processor core is in the WARM_RST, OFF, or MEM_RET power

modes.
• Resetting any power domain because of entry to a power state that is controlled by the P-Channel or

Q-Channel.

6 Power management
6.9 Warm reset power mode

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

6-139

Non-Confidential

6.10 Debug Q-Channel and PDDEBUG power domain
A Q-Channel interface controls the PDDEBUG power domain.

The PDDEBUG power domain logic drives the PWRDBGQACTIVE signal HIGH to indicate that the
domain is active if any of the following conditions are met:
• Trace is enabled, DEMCR.TRCENA=1.
• If configured, the Embedded Trace Macrocell (ETM) is enabled, TRCPDCR.PU=1.
• There is outstanding trace data in the ETM, Instrumentation Trace Macrocell (ITM), or Data

Watchpoint and Trace (DWT).
• There is an outstanding access to any of the registers in PDDEBUG from software or from a debug

request on Debug AHB (D-AHB).
• The BreakPoint Unit (BPU) is enabled, FP_CTRL.ENABLE=1.
• DPDLPSTATE.DLPSTATE is 0b00 or 0b01.

 Note

• Setting DPDLPSTATE.DLPSTATE to 0b01 indicates that DBGCLK can be gated when the domain
is idle. This results in the DBGCLKQACTIVE signal being set LOW when the PDDEBUG domain
is idle.

• For more information on the DPDLPSTATE register, see 4.16.2 DPDLPSTATE, Debug Power
Domain Low Power State Register on page 4-93.

• For more information on TRCPDCR, see Arm® CoreSight™ ETM‑M55 Technical Reference Manual.
• For more information on the FP_CTRL and DEMCR, see the Arm®v8-M Architecture Reference

Manual.
• For more information on the Q-Channel interface and its signals, see the AMBA® Low Power

Interface Specification Arm® Q-Channel and P-Channel Interfaces.

6 Power management
6.10 Debug Q-Channel and PDDEBUG power domain

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

6-140

Non-Confidential

6.11 Q-Channel clock control
To optimize power usage, the Cortex-M55 processor includes Q-Channel interfaces which allow the
system to gate the clocks that are associated with the PDCORE and PDDEBUG power domains at a high
level in the clock tree.

The PDCORE clock signal, CLKIN, is controlled using:

• CLKINQREQn.
• CLKINQACCEPTn.
• CLKINQDENY.
• CLKINQACTIVE.

The PDDEBUG clock signal, DBGCLK, is controlled using:

• DBGCLKQREQn.
• DBGCLKQACCEPTn.
• DBGCLKQDENY.
• DBGCLKQACTIVE.

The following rules apply for PDCORE and PDDEBUG clock signals:
• If both CLKIN and DBGCLK are running, they must be fully synchronous to each other.
• CLKINQACTIVE is asserted when PDCORE requires a clock.
• DBGCLKQACTIVE is asserted when PDDEBUG requires a clock.
• CLKIN can only be gated when its clock control Q-Channel is in the Q_STOPPED state or when the

PDCORE P-Channel is in LOGIC_RET, FULL_RET, MEM_RET, or OFF.
• DBGCLK can only be gated when its clock control Q-Channel is in Q_STOPPED state or when the

PDDEBUG power control Q-Channel is in Q_STOPPED.

6 Power management
6.11 Q-Channel clock control

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

6-141

Non-Confidential

6.12 PWRDBGWAKEQACTIVE
The PDCORE domain asserts the PWRDBGWAKEQACTIVE output signal for the following cases.

• When there is an access to a register located in the PDDEBUG domain, either from software running
on the processor or from a request on the Debug AHB (D-AHB) interface.

• When there is a request to any EPPB address which is not a part of the External Wakeup Interrupt
Controller (EWIC) address space starting from 0xE0047000.

This signal must be routed to the external power controller and used to power up the PDDEBUG domain.
The processor uses an internal signal to determine when the debug domain is active and when it is safe to
perform the access. The PWRDBGWAKEQACTIVE signal can be OR gated with the
PWRDBGQACTIVE signal to indicate to the external power controller that the PDDEBUG domain
must be activated.

6 Power management
6.12 PWRDBGWAKEQACTIVE

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

6-142

Non-Confidential

Chapter 7
Memory model

This chapter describes the Cortex-M55 processor memory model.

It contains the following sections:
• 7.1 Memory map on page 7-144.
• 7.2 Memory types on page 7-146.
• 7.3 Private Peripheral Bus on page 7-148.
• 7.4 Unaligned accesses on page 7-150.
• 7.5 Access privilege level for Device and Normal memory on page 7-152.
• 7.6 Memory ordering and barriers on page 7-153.
• 7.7 Execute Only Memory on page 7-154.

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

7-143

Non-Confidential

7.1 Memory map
The default memory map for the Cortex-M55 processor covers the range 0x00000000-0xFFFFFFFF.

Table 7-1 Default memory map

Address Range (inclusive) Region Interface

0x00000000-0x1FFFFFFF Code All accesses are performed on the Instruction Tightly Coupled Memory (ITCM) or
Master-AXI (M-AXI) interface.

0x20000000-0x3FFFFFFF SRAM All accesses are performed on the Data Tightly Coupled Memory (DTCM) or M-
AXI interface.

0x40000000-0x5FFFFFFF Peripheral • Data accesses are performed on Peripheral AHB (P-AHB) or M-AXI interface.
• Instruction accesses are performed on M-AXI.

0x60000000-0x9FFFFFFF External RAM All accesses are performed on the M-AXI interface.

0xA0000000-0xDFFFFFFF External device All accesses are performed on the M-AXI interface.

0xE0000000-0xE00FFFFF PPB • Instruction fetches are not supported.
• Reserved for system control and debug.
• Data accesses are either performed internally or on External Private Peripheral

Bus (EPPB).

0xE0100000-0xFFFFFFFF Vendor_SYS • Instruction fetches are not supported.
• 0xE0100000-0xEFFFFFFF is reserved. Vendor resources start at 0xF0000000.
• Data accesses are performed on P-AHB interface.

Security states for memory requests

The AMBA interfaces on the Cortex-M55 processor include support for indicating the security level of a
memory request for the following interfaces:

Table 7-2 Security signals used in Cortex-M55 memory interfaces

Interface AMBA standard Security signals

M-AXI AMBA 5 AXI ARPROT[1], AWPROT[1].

P-AHB AMBA 5 AHB HNONSECP

EPPB AMBA 4 APB PPROT[1]

When the Security Extension is included, the security attribute of a memory request depends on the
Security state of the processor and the regions defined in the internal Secure Attribution Unit (SAU) or
an external Implementation Defined Attribution Unit (IDAU). However, in some areas of the memory
map, the security level of data accesses are determined only by the Security state.

If the Security Extension is not included, all memory is treated as Non-secure.

See the Arm®v8-M Architecture Reference Manual for more information about the memory model.

The TCM interfaces do not include signals indicating the security level of a transaction. Instead, the
processor includes an internal security gate to support programmable regions, which conform to the
Trusted Base System Architecture (TBSA) for Armv8‑M. This security gating mechanism is described in
8.8 TCM and P-AHB security access control on page 8-165.

7 Memory model
7.1 Memory map

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

7-144

Non-Confidential

Bit-banding

This feature is not supported on the Cortex-M55 processor unless your system includes additional
hardware to perform the appropriate mapping. If bit-banding support is required, Arm recommends that
peripherals are memory mapped to alias their bits to byte, halfword, or words.

7 Memory model
7.1 Memory map

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

7-145

Non-Confidential

7.2 Memory types
Each address in the memory map has a memory type which is determined by the default memory map or
the Memory Protection Unit (MPU).

The memory types are:

Normal memory
By default, half of the memory space is classified as Normal memory. Normal memory has
many attributes, including Cacheability (Non-cacheable, Write-Through Cacheable, Write-Back
Cacheable) and Shareability (Inner Shareability and outer Shareability), that impacts how data
can be used in the system. Unaligned accesses to this memory type are allowed. However, under
software control, the processor can fault on Unaligned accesses to Normal memory.

Device memory
Device memory is not idempotent and it is generally used by peripherals.
Architecturally, memory locations that are idempotent have the following properties:
• Read accesses can be repeated with no side-effects.
• Repeated read accesses return the last value that is written to the resource being read.
• Read accesses can fetch additional memory locations with no side-effects.
• Write accesses can be repeated with no side-effects, if the contents of the location that is

accessed are unchanged between the repeated writes or as the result of an exception.
• Unaligned accesses can be supported.
• Accesses can be merged before accessing the target memory system.

For more information, see the Arm®v8-M Architecture Reference Manual.
There are restrictions on how Device memory can be ordered, merged, or speculated. These
restrictions subdivide Device memory into the following subtypes.

Gathering, G and nG
Gathering, G, is the capability to gather and merge requests together into a single
transaction. nG represents the non-Gathering attribute.

Reordering, R and nR
Reordering, R, is the capability to reorder transactions. nR represents the non-
Reordering attribute.

Early Write Acknowledgment, E and nE
Early Write Acknowledgment, E, is the capability to accept early acknowledgment of
transactions from the interconnect. nE represents the non-Early Write
Acknowledgement attribute, indicating that buffering is not permitted. For the Cortex-
M55 processor, nE Device transactions are buffered inside the processor itself. This
attribute is then passed to the external interface to ensure that the response is received
appropriately.

The Cortex-M55 processor treats the different types of Device memory identically. However, for MVE
instructions, regardless of the Gathering attribute, multiple requests might be merged into one
transaction. For Device memory:
• Data accesses are coherent for all system observers.
• All accesses must be aligned to the data type specified in the instruction. Unaligned accesses generate

an Alignment fault.

Remapping
The default memory map defines the Peripheral, External device, PPB, and Vendor_SYS regions as
Device and the rest of the memory regions as Normal.
• Normal memory can be changed to Device.
• Device memory can be changed to Normal except for the following cases.

7 Memory model
7.2 Memory types

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

7-146

Non-Confidential

— The PPB region is always Device-nGnRnE.
— The Vendor_SYS region is Device-nGnRE and can be changed to Device-nGnRnE.
— Mapping the Vendor_SYS region from Device to Normal results in UNPREDICTABLE behavior.

For more information on memory types and their attributes, see the Arm®v8-M Architecture Reference
Manual.

7 Memory model
7.2 Memory types

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

7-147

Non-Confidential

7.3 Private Peripheral Bus
The Private Peripheral Bus (PPB) memory region provides access to internal and external processor
resources.

The following table outlines what each PPB memory region provides access to.
 Note

All regions or peripherals listed in the following table contain CoreSight ID registers which are listed in
the processor ROM table when the processor is configured to include the region or peripheral.

Table 7-3 PPB memory region accesses

Address Range (inclusive) Region or peripheral PPB memory
region

0xE0000000-0xE0000FFF Instrumentation Trace Macrocell (ITM), if configured to be included IPPB

0xE0001000-0xE0001FFF Data Watchpoint and Trace (DWT), if configured to be included

0xE0002000-0xE0002FFF Breakpoint Unit (BPU), if configured to be included

0xE0003000-0xE0003FFF Performance Monitoring Unit (PMU), if configured to be included

0xE0005000-0xE0005FFF Reliability, Availability, and Serviceability (RAS) registers

0xE000E000-0xE000EFFF SCS

0xE001E000-0xE001EFFF IMPLEMENTATION DEFINED registers
 Note

The Security state of the processor controls these registers.

0xE002E000-0xE002EFFF SCS Non-secure alias

0xE003E000-0xE003EFFF IMPLEMENTATION DEFINED registers Non-secure alias
 Note

The Security state of the processor controls these registers.

7 Memory model
7.3 Private Peripheral Bus

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

7-148

Non-Confidential

Table 7-3 PPB memory region accesses (continued)

Address Range (inclusive) Region or peripheral PPB memory
region

0xE0040000-0xE0040FFF Trace Port Interface Unit (TPIU) EPPB

0xE0041000-0xE0041FFF Embedded Trace Macrocell (ETM), if configured to be included

0xE0042000-0xE0042FFF Cross Trigger Interface (CTI), if configured to be included

0xE0045000-0xE0045FFF Embedded Trace Buffer (ETB), if configured to be included

0xE0046000-0xE0046FFF Reserved

0xE0047000-0xE0047FFF External Wakeup Interrupt Controller (EWIC), if configured to be included

0xE0048000-0xE0048FFF Reserved

E0049000-E0049FFF External Private Peripheral Bus (EPPB) APB interface
 Note

Peripherals in the EPPB region can apply security checks by using the
PPROT[1] signal to determine if the access was made from Secure or Non-
secure state and respond with PSLVERR HIGH if the access is not allowed.

MCU level CoreSight ROM table
base address-(MCU level CoreSight
ROM table base address+0xFFF)

System-level ROM table
 Note

The base address of the system-level ROM table is implementation-
dependent.

0xE00FF000-0xE00FFFFF Processor ROM table

7 Memory model
7.3 Private Peripheral Bus

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

7-149

Non-Confidential

7.4 Unaligned accesses
The Cortex-M55 processor has different levels of support for loads and stores to unaligned addresses.
Unaligned accesses are less efficient than using aligned memory locations, because the processor must
perform a series of transactions to construct the necessary result.

Non-MVE accesses

For non-MVE accesses the following terminology applies:

Access size
The size of the data specified by an instruction.

Unaligned access
An access is unaligned if the access size is not aligned with address of the access.

Table 7-4 Unaligned non-MVE accesses

Behavior and
performance

Non-MVE accesses

Cortex-M55 processor
faulting behavior

Unaligned non-MVE accesses fault in the following scenarios:
• When the access is to the External Private Peripheral Bus (EPPB) region.
• When the access is to a memory region marked as Device.
• When the Unaligned trap is enabled (CCR.UNALIGN_TRP=1). For more information on the CCR

register, see the Arm®v8-M Architecture Reference Manual.
• When the access instruction is an LDM or STM.

Performance implications Unaligned non-MVE accesses might be result in multiple smaller transfers. Therefore, there is a potential
performance impact.

MVE accesses

For MVE accesses the following terminology applies:

Element size
The size of the data specified by an instruction.

Unaligned access
An access is unaligned if the element size is not aligned with the address of the access.

Table 7-5 Unaligned MVE accesses

Behavior and performance MVE accesses

Cortex-M55 processor faulting
behavior

Unaligned MVE accesses always raise a UsageFault exception.

Performance implications If an MVE transaction is not aligned to 32 bits but is still considered to be an aligned MVE
transaction, then there is a performance impact because MVE instructions always transfer 128
bits of data as multiple 32 bits data transactions.

7 Memory model
7.4 Unaligned accesses

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

7-150

Non-Confidential

VLDRB, VLDRH, VLDRW examples
To illustrate unalignment in MVE accesses, consider the following Vector Load Register
instruction examples:

Table 7-6 VLDRB, VLDRH, VLDRW examples

Syntax Alignment and faulting behavior Performance implications?

VLDRH.S16 Q0, [R1, #0] Aligned access No

VLDRB.S8 Q0, [R0, #1] Aligned access Yes

VLDRW.S32 Q0, [R2, #1] Unaligned access, UsageFault occurs -

7 Memory model
7.4 Unaligned accesses

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

7-151

Non-Confidential

7.5 Access privilege level for Device and Normal memory
The AMBA 5 AXI, AMBA 5 AHB, and AMBA 4 APB protocols include signals that allow the privilege
level of an access to be reported to the system.

The Cortex-M55 processor supports these signals across the Master AXI (M-AXI), Peripheral AHB (P-
AHB), and External Private Peripheral Bus (EPPB) interfaces for Device memory. It also supports
privilege reporting for Normal memory on P-AHB. However, accesses to Normal memory on M-AXI
can be buffered and cached so memory read and write requests and instruction fetches from both
privileged and unprivileged software can be merged. For these transactions, the AXI signals
ARPROT[0] and AWPROT[0] are always 1 indicating a privileged access. Access permission to a
region of memory can always be restricted to software running in privileged mode by using the Memory
Protection Unit (MPU).

The Instruction Tightly Coupled Memory (ITCM) and Data Tightly Coupled Memory (DTCM) interfaces
provide signals ITCMPRIV, D0TCMPRIV, D1TCMPRIV, D2TCMPRIV, and D3TCMPRIV to
indicate the privilege of all memory accesses.

For more information on these signals, see the C.7 Instruction Tightly Coupled Memory interface signals
on page Appx-C-384 and C.8 Data Tightly Coupled Memory interface signals on page Appx-C-386.

7 Memory model
7.5 Access privilege level for Device and Normal memory

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

7-152

Non-Confidential

7.6 Memory ordering and barriers
Transactions that are performed on different interfaces can be reordered relative to one another, even if
one or more of them is to Device memory.

In this context, the Internal Private Peripheral Bus (IPPB) region must be considered as a distinct
interface. Therefore, PPB accesses can be reordered relative to Device accesses performed on the
Peripheral AHB (P-AHB) or Master AXI (M-AXI).

This is consistent with the architectural memory ordering requirements as defined in the Arm®v8-M
Architecture Reference Manual based on the assumption that the same peripheral is never mapped onto
multiple interfaces.

If stricter ordering is required between two transactions to different interfaces, a DMB or DSB instruction
must be inserted between them. For transactions to the same interface, two transactions to Device
memory are always performed in program order.

TCMs are always implicitly Normal memory and any attempt to enforce stricter requirements by
changing Memory Protection Unit (MPU) attributes are ignored.

The Armv8.1‑M architecture includes the load-acquire and store-release instructions. These can be used
to implement hardware-level support for the C++11 standard library atomic operations.

ISB instructions are required to guarantee the effect of instructions during context changes because the
processor can prefetch several instructions before they are executed.

7 Memory model
7.6 Memory ordering and barriers

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

7-153

Non-Confidential

7.7 Execute Only Memory
The Cortex-M55 processor supports system level use of eXecute Only Memory (XOM) on the Master
AXI (M-AXI) and Tightly Coupled Memory (TCM) interfaces. The system integrator is responsible for
adding relevant system design logic to support use of XOM.

In an XOM configuration, memory that is designated as execute-only cannot be read directly or
indirectly by software running on the processor, or by the debugger. XOM operation requires that
software is compiled so that literals are constructed through instruction fetches rather than explicit loads
from memory. For example, using the MOVT and MOVW instructions.

XOM on the TCM interfaces is supported by the xTCMMASTER output signal which is set to 0b0000
for instruction fetches from software running on the processor. Any access to an XOM region which is
not recognized as an instruction fetch can be aborted by asserting the xTCMERR signal. XOM regions
protected in this way can never be accessed by Slave AHB (S-AHB) as a read on the slave interface will
always result in a TCM access with xTCMMASTER set to 0b0011.

XOM on the AXI interface requires that instruction fetches can be identified on the AXI interface. This
can be done by checking the AXI read ID, ARPROT[2] which is only asserted for instruction fetch
requests. The processor supports direct access to the cache RAM, therefore, access to the L1 instruction
cache must also be restricted. This can be achieved by asserting the external input signal LOCKDCAIC.

For more information on XOM, see the Arm®v8-M Architecture Reference Manual.

7 Memory model
7.7 Execute Only Memory

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

7-154

Non-Confidential

Chapter 8
Memory Authentication

This chapter describes the Memory Authentication Unit (MAU) responsible for controlling access to
memory.

It contains the following sections:
• 8.1 MAU features on page 8-156.
• 8.2 Security Attribution Unit on page 8-157.
• 8.3 Memory Protection Unit on page 8-159.
• 8.4 Implementation Defined Attribution Unit on page 8-161.
• 8.5 Memory regions not controlled by SAU and IDAU on page 8-162.
• 8.6 Security attribution signals on page 8-163.
• 8.7 TCM Gate Units on page 8-164.
• 8.8 TCM and P-AHB security access control on page 8-165.

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

8-155

Non-Confidential

8.1 MAU features
The Memory Authentication Unit (MAU) receives requests from units that perform memory accesses,
and the MAU returns responses to these units. These responses are a combination of all the responses
from the Memory Protection Unit (MPU), Security Attribution Unit (SAU), Implementation Defined
Attribution Unit (IDAU), and TCM Gate Unit (TGU). The MAU contains the following units or
interfaces to units.

• MPU. For more information, see the 8.3 Memory Protection Unit on page 8-159.
• TGU. For more information, see the 8.7 TCM Gate Units on page 8-164.
• SAU. For more information, see the 8.2 Security Attribution Unit on page 8-157.
• Interface to the IDAU. For more information, see the 8.4 Implementation Defined Attribution Unit

on page 8-161.
• Interface to the Load Store Unit (LSU) from the MAU. The LSU makes MAU lookup requests for

loads, stores, and Preload Data (PLD), linefills, evictions, stacking, and unstacking.
• Interface to the TCMs from the TGU. The TCMs make TGU requests through the Slave AHB (S-

AHB) interface for Direct Memory Accesses (DMAs), unstacking requests, instruction fetches, and
loads and stores from the processor. For more information, see the 9.8 TCM interfaces on page 9-192.

• Interface to the Instruction Fetch Unit (IFU) from the MAU. The IFU makes lookup requests for
instructions and vector fetches.

 Note

When changing security attribution of an address by either reprogramming the SAU or changing the
external IDAU mappings, cache maintenance is required.

8 Memory Authentication
8.1 MAU features

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

8-156

Non-Confidential

8.2 Security Attribution Unit
The optional Security Attribution Unit (SAU) provides security attribution for the Cortex-M55 processor.

SAU features
• The SAU is a programmable unit that determines the security of an address.
• It is only implemented if the Security Extension is included in the processor.
• The number of regions that are included in the SAU can be configured in the Cortex-M55

implementation to be 0, 4, or 8.
• The SAU is not used for Slave AHB (S-AHB) accesses.

Exemptions and faults
• The System Control Space (SCS) and all debug components are exempt from security checking.
• Accesses that violate the security settings cause a SecureFault. In this case, any potential

MemManage Fault is masked and the access on the bus is blocked.
• SecureFaults do not prevent Speculative accesses to the caches or TCMs, however, an access that

faults never updates processor state.

Enabling the SAU

The SAU_CTRL.ENABLE determines whether programming the SAU affects the security of an address.
For the Cortex-M55 processor, this value resets to 0.

8.2.1 SAU register summary

The Security Attribution Unit (SAU) has various registers that are associated with its function.

Each of these registers is 32 bits wide. The following table shows the SAU register summary. See the
Arm®v8-M Architecture Reference Manual for more information about the register addresses, access
types, and reset values. All the registers in the following table are not banked between Security states.

Table 8-1 SAU register summary

Address Name Type Reset value Description

0xE000EDD0 SAU_CTRL RW 0x00000000 SAU Control Register

0xE000EDD4 SAU_TYPE RO 0x0000000X
 Note

SAU_TYPE[3:0] depends on the number of SAU regions
included. This value can be 0, 4, or 8.

SAU Type Register

0xE000EDD8 SAU_RNR RW 0x000000XX SAU Region Number Register

0xE000EDDC SAU_RBAR RW 0xXXXXXXX0 SAU Region Base Address Register

0xE000EDE0 SAU_RLAR RW UNKNOWN SAU Region Limit Address Register

0xE000EDE4 SFSR RW 0x00000000 Secure Fault Status Register

0xE000EDE8 SFAR RW UNKNOWN Secure Fault Address Register

8.2.2 Security levels

The security level that the SAU returns is a combination of the region type that is defined in:

• The internal SAU, if configured to be included
• The associated external Implementation Defined Attribution Unit (IDAU)

The final security level uses the higher security level indicated by the SAU or IDAU.

8 Memory Authentication
8.2 Security Attribution Unit

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

8-157

Non-Confidential

When the SAU_CTRL.ENABLE is zero, the default internal security levels is selected by the
SAU_CTRL.ALLNS field. In the Cortex-M55 processor, the SAU_CTRL register resets to zero, setting
all memory (apart from some specific regions in the PPB space) to Secure, and preventing any override
of the security level by the IDAU.

The following table shows examples of how the final security level is chosen.

Table 8-2 Final security level selection examples

IDAU SAU Final security

Secure Secure, Non-secure, or Non-secure
Callable

Secure

Secure, Non-secure, or Non-secure
Callable

Secure Secure

Non-secure Callable or Non-secure Non-secure Callable Non-secure Callable

Non-secure Callable Non-secure Callable or Non-secure Non-secure Callable

Non-secure Non-secure Non-secure

For more information on the IDAU, see 8.4 Implementation Defined Attribution Unit on page 8-161.

8 Memory Authentication
8.2 Security Attribution Unit

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

8-158

Non-Confidential

8.3 Memory Protection Unit
The Cortex-M55 processor supports Arm Protected Memory System Architecture (PMSA). The Memory
Protection Unit (MPU) is an optional component that is primarily used for memory region protection.

MPU features
The MPU features include:
• Memory region protection.
• Access permissions.
• Exporting memory attributes to the system.
• The MPU is not used for Slave AHB (S-AHB) accesses.
• You can use the MPU to:

— Enforce privilege rules.
— Separate processes.
— Manage memory attributes.

Permission and access violations

MPU mismatches and permission violations invoke the MemManage Fault handler. These violations
result in MemManage Faults and the access on the bus is blocked. For more information on MemManage
Faults, see the Arm®v8-M Architecture Reference Manual. MemManage Faults do not prevent
Speculative accesses to the caches or TCMs, however, an access that faults never updates processor state.

MPU configuration

The MPU can be configured to support 0, 4, 8, 12, or 16 memory regions.

If the Security Extension is included in the Cortex-M55 processor, memory protection can be duplicated
between Secure and Non-secure MPU (MPU_S and MPU_NS).

The number of regions in the Secure and Non-secure MPU can be configured independently, and each
can be programmed to protect memory for the associated Security state.

8.3.1 Memory Protection Unit register summary

The Memory Protection Unit (MPU) has various registers that are associated with its function.

Each of these registers is 32 bits wide. If the MPU is not present in the implementation, then all of these
registers Read-As-Zero (RAZ). The following table shows the MPU register summary.

Each of these registers is 32 bits wide. The following table shows the MPU register summary.

See the Arm®v8-M Architecture Reference Manual for more information about the register addresses,
access types, and reset values. All the registers in the following table are banked between Security states.

Table 8-3 MPU register summary

Address Name Type Reset value Description

0xE000ED90 MPU_TYPE RO 0x0000xx00
 Note

MPU_TYPE[15:8] depends on the number of
MPU regions configured. This value can be 0, 4,
8, 12, or 16.

MPU Type Register

0xE000ED94 MPU_CTRL RW 0x00000000 MPU Control
Register

8 Memory Authentication
8.3 Memory Protection Unit

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

8-159

Non-Confidential

Table 8-3 MPU register summary (continued)

Address Name Type Reset value Description

0xE000ED98 MPU_RNR RW 0x000000XX MPU Region
Number Register

0xE000ED9C MPU_RBAR RW UNKNOWN MPU Region Base
Address Register

0xE000EDA0 MPU_RLAR RW UNKNOWN, bit [0] resets to 0. MPU Region Limit
Address Register

0xE000EDA4 MPU_RBAR_A1 RW UNKNOWN MPU Region Base
Address Register
Alias 1

0xE000EDA8 MPU_RLAR_A1 RW UNKNOWN MPU Region Limit
Address Register
Alias 1

0xE000EDAC MPU_RBAR_A2 RW UNKNOWN MPU Region Base
Address Register
Alias 2

0xE000EDB0 MPU_RLAR_A2 RW UNKNOWN MPU Region Limit
Address Register
Alias 2

0xE000EDB4 MPU_RBAR_A3 RW UNKNOWN MPU Region Base
Address Register
Alias 3

0xE000EDB8 MPU_RLAR_A3 RW UNKNOWN MPU Region Limit
Address Register
Alias 3

0xE000EDC0 MPU_MAIR0 RW UNKNOWN MPU Memory
Attribute Indirection
Register 0

0xE000EDC4 MPU_MAIR1 RW UNKNOWN MPU Memory
Attribute Indirection
Register 1

8 Memory Authentication
8.3 Memory Protection Unit

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

8-160

Non-Confidential

8.4 Implementation Defined Attribution Unit
The Cortex-M55 processor supports an external Implementation Defined Attribution Unit (IDAU) to
allow the system to determine the security level that is associated with any given address.

• The processor has three external interfaces for the IDAU with identical signals, properties, and
requirements.
— An interface for instruction fetches and exception vector read operations.
— Two interfaces for all other data read and write operations from load and store instructions,

register stacking on exception entry and exit, and debug memory accesses.
• The IDAU is not used for Slave AHB (S-AHB) accesses.

Security levels

The security level that the Memory Authentication Unit (MAU) returns is a combination of the region
type defined in the internal SAU, if configured to be included, and the security type from the IDAU. For
more information, see 8.2 Security Attribution Unit on page 8-157.

8.4.1 IDAU interface and backwards compatibility

Unlike previous Cortex‑M processors, the Implementation Defined Attribution Unit (IDAU) interface
protocol in the Cortex-M55 processor has a two-stage pipeline, allowing lookup, comparator, and
resulting multiplexed logic to be balanced across a register slice to balance timing according to
IMPLEMENTATION-SPECIFIC requirements.

The following figure shows how backwards compatibility can be implemented to allow for use with
existing IDAU system designs.

IDAU
IDAUADDR

IDAUNS
IDAUNSC
IDAUID

IDAUIDV
IDAUNCHK

CLK
gate

IDAUVALID

clk

Figure 8-1 Cortex-M55 IDAU interface backward compatibility

 Note

To optimize your design, Arm recommends that the external IDAU is implemented with the processor
logic to allow EDA tools to balance the timing of the IDAU logic with the internal Security Attribution
Unit (SAU).

8 Memory Authentication
8.4 Implementation Defined Attribution Unit

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

8-161

Non-Confidential

8.5 Memory regions not controlled by SAU and IDAU
The entire IPPB and EPPB region of the memory map is not controlled by the Security Attribution Unit
(SAU) and Implementation Defined Attribution Unit (IDAU). Additionally, IMPLEMENTATION-DEFINED

registers (0xE001E000-0xE001FFFF) and IMPLEMENTATION-DEFINED Non-secure alias registers
(0xE003E000-0xE003FFFF) are not controlled by the SAU and IDAU. These regions are only controlled
by the Security state of the processor.

For more information on these regions, see 7.3 Private Peripheral Bus on page 7-148.

8 Memory Authentication
8.5 Memory regions not controlled by SAU and IDAU

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

8-162

Non-Confidential

8.6 Security attribution signals
Security attribution is indicated for the Cortex-M55 interfaces on the following signals:

• Bit [1] of ARPROT and AWPROT for the Master AXI (M-AXI) interface.
• HNONSECP for the Peripheral AHB (P-AHB) interface.
• HNONSECD for the Debug AHB (D-AHB) interface.
• HNONSECS for the Slave AHB (S-AHB) interface.

Using these signals ensures that the relevant interface components prevent Non-secure transfers to
Secure memory or peripherals.

 Note

• S-AHB requests do not use the SAU and IDAU for security checking. However, HNONSECS is
taken into consideration for security access gating using the TCM Gate Unit (TGU). See
8.8.2 Security access gating using the TGU on page 8-167.

• The security attribute depends on address of the location being accessed, and not on the Cortex-M55
processor Security state that executes the load/store instructions or Debug Access Port (DAP)
Security state that generates the debug request.

• Permitted DAP accesses to Secure System Control Space (SCS) registers in the range
0xE000E000-0xE000EFFF are affected by the value of the following:
— Secure debug enabled bit in the Debug Halting Control Status Register, DHCSR.S_SDE
— Secure banked register select enable bit in Debug Security Control and Status Register,

DSCSR.SBRSELEN
— Secure banked register select bit in Debug Security Control and Status Register, DSCSR.SBRSEL
— Current security state of the processor.

Table 8-4 DAP accesses to Secure SCS registers

DHCSR.S_SDE DSCSR.SBRSELEN DSCSR.SBRSEL Current Security
state of the
processor

View of the register
accessed

0 - - - Non-secure

1 0 - Non-secure Non-secure

1 0 - Secure Secure

1 1 0 - Non-secure

1 1 1 - Secure

For more information on DHCSR and DSCSR, see the Arm®v8-M Architecture Reference Manual.

8 Memory Authentication
8.6 Security attribution signals

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

8-163

Non-Confidential

8.7 TCM Gate Units
There are two TCM Gate Units (TGUs), one for Instruction Tightly Coupled Memory (ITCM) accesses
(ITGU), and one for Data Tightly Coupled Memory (DTCM) accesses (DTGU), that are responsible for
TCM security gating and control.

For more information on how the TGUs are responsible for security access control, see 8.8 TCM and P-
AHB security access control on page 8-165.

8 Memory Authentication
8.7 TCM Gate Units

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

8-164

Non-Confidential

8.8 TCM and P-AHB security access control
The Cortex-M55 processor provides a mechanism to support further or a more fine-grained security
access control on the TCM and Peripheral AHB (P-AHB) interfaces than provided by the SAU and
IDAU.

This mechanism is compatible with the external gating mechanism described in Arm® Platform Security
Architecture Trusted Base System Architecture for Arm®v6‑M, Arm®v7‑M, and Arm®v8‑M.

To achieve additional security access control, you must use memory aliasing, configure the
Implementation Defined Attribution Unit (IDAU) or Security Attribution Unit (SAU), and implement
security gating.

Memory aliasing and IDAU and SAU configuration
Memory aliasing can be applied to the TCM and P-AHB interfaces. Memory aliasing is a
duplication of all memory-mapped components in Secure and Non-secure address regions.
These regions must be defined as Secure and Non-secure using the IDAU or SAU. For more
information, see 8.8.1 Memory aliasing and IDAU/SAU configuration on page 8-165.

For more information on the SAU and IDAU, see 8.2 Security Attribution Unit on page 8-157
and 8.4 Implementation Defined Attribution Unit on page 8-161 respectively.

Security gating
The TCM Gate Unit (TGU) provides security gating for TCM accesses only. For more
information on TGU security gating, see 8.8.2 Security access gating using the TGU
on page 8-167.

To implement memory aliasing with the TCMs, you must use the TGU to maximize the benefits
of the additional level of security that it provides.

If memory aliasing is not enabled (using the CFGMEMALIAS signal), the TGU is not used.

Accesses to the P-AHB require you to include your own external security gating logic.

 Note

Additionally, memory aliasing can be done for the AXI interface, and all gating must be implemented
externally. Therefore, the description of this behavior is outside the scope of this document. For more
information, see the Arm® Platform Security Architecture Trusted Base System Architecture for
Arm®v6‑M, Arm®v7‑M, and Arm®v8‑M.

8.8.1 Memory aliasing and IDAU/SAU configuration

In normal operation, the TCM and Peripheral AHB (P-AHB) interfaces are mapped to regions in the
memory map.

Code region Base address 0x00000000 is used for Instruction Tightly Couple Memory (ITCM).
SRAM region Base address 0x20000000 is used for Data Tightly Couple Memory (DTCM).
Peripheral region Base address 0x40000000 is used for P-AHB.

The TCM regions extend from their base to a limit that is defined by the physical size (in bytes) of the
TCM set by the input signals CFGITCMSZ and CFGDTCMSZ. The P-AHB region extends from the
base to its region size (in bytes) defined by the CFGPAHBSZ input signal.

Memory aliasing is enabled by tying the external input signal CFGMEMALIAS[4:0] to a non-zero
value. The aliased address bit can be set from bit [24] to bit [28] using the CFGMEMALIAS[4:0]
signal. The address bit that is used for memory alias is determined by the following options:

• 0b00001, indicating that the alias bit is bit[24].
• 0b00010, indicating that the alias bit is bit[25].
• 0b00100, indicating that the alias bit is bit[26].

8 Memory Authentication
8.8 TCM and P-AHB security access control

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

8-165

Non-Confidential

• 0b01000, indicating that the alias bit is bit[27].
• 0b10000, indicating that the alias bit is bit[28].

This results in:

• A second CODE and SRAM address region mapped to the ITCM and DTCM respectively.
• A second region in the Peripheral region to be mapped to the P-AHB interface.

0b00000 indicates that there is no memory aliasing. Setting the address bit to any other value results in
UNPREDICTABLE behavior.

For example, if you are using CFGMEMALIAS[4:0] for memory aliasing and you have set
CFGMEMALIAS[4:0] to 0b10000 (bit [28] is used as the alias bit), CFGPAHBSZ should correspond
to the actual size of the P-AHB region (in bytes):

• The base address of the P-AHB region is from 0x40000000-0x40000000+
size_in_bytes(CFGPAHBSZ)-1

• The alias address of the P-AHB region is from 0x50000000-0x50000000 +
size_in_bytes(CFGPAHBSZ)-1.

The following table demonstrates an example of memory aliasing for the ITCM, DTCM, and P-AHB
when the alias is configured for bit[28] of the address. The actual accessible TCM regions depend on the
size of the TCM configured in the processor. In the following table, the size of the P-AHB region is
limited to 256MB to avoid overlap with the alias at bit[28].

Table 8-5 Example TCM memory address aliasing

Address Target region

0x00000000-0x00FFFFFF ITCM

0x10000000-0x10FFFFFF ITCM alias

0x20000000-0x20FFFFFF DTCM

0x30000000-0x30FFFFFF DTCM alias

0x40000000-0x4FFFFFFF P-AHB

0x50000000-0x5FFFFFFF P-AHB alias

 Note

Base and alias regions can overlap in the Peripheral region because the P-AHB interface can be mapped
to the entire 512MB. However, Arm recommends that you avoid doing this because the behavior is
UNPREDICTABLE. The aliasing logic only affects the target interface for P-AHB and TCM and it does not
change the actual address. External security logic on this interface must mask the address accordingly to
map the two aliased addresses to the same physical peripheral.

IDAU/SAU configuration for security access control

When memory aliasing is enabled, the Implementation Defined Attribution Unit (IDAU) or Security
Attribution Unit (SAU) must be set up to map the two alias regions for each interface. This allows one
region to be mapped as Secure and the other region to be mapped as Non-secure. This Secure and Non-
secure mapping guarantees that software can access any given physical address in the TCM or P-AHB
through external address mapping as either Secure or Non-secure regions.

For more information on setting up the IDAU using the relevant IDAU signals, see C.26 IDAU interface
signals on page Appx-C-412.

The following figure shows an example configuration of memory aliasing and IDAU configuration in the
SRAM region and the DTCM using bit [28] of the address.

8 Memory Authentication
8.8 TCM and P-AHB security access control

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

8-166

Non-Confidential

...

...

0x30003000-0X30003FFF
0x30002000-0X30002FFF
0x30000000-0X30001FFF

0x20003000-0X20003FFF
0x20002000-0X20002FFF
0x20000000-0x20001FFF

Secure
alias

Non-
secure
alias

IDAU SRAM region

TGU security
gating logic

Non-secure alias

Secure alias

Processor address

TCM RAM address

0x00002001

0x00003FFF
0x0000301F

0x00001000
...

Lookup table
...

...

Software access or
S-AHB access to

TCM region

Secure alias SRAM region
Non-secure alias SRAM
region

Figure 8-2 Example security alias and gating configuration on the DTCM

8.8.2 Security access gating using the TGU

The TCM Gate Unit (TGU) is a security gate that allows the security attribute of a Tightly Coupled
Memory (TCM) access to be checked against the security mapping for the address.

There are two optional TGUs, one for the Instruction Tightly Coupled Memory (ITCM) and one for the
Data Tightly Coupled Memory (DTCM).

Each TCM is divided into blocks and a TGU lookup table is used to lookup the security mapping for an
address. This is done in either of the following ways:
• For software accesses, the security mapping from the TGU lookup table is checked against the

security attribute from the Security Attribution Unit (SAU) and Implementation Defined Attribution
Unit (IDAU).

• For S-AHB accesses, the security mapping from the TGU lookup table is checked against the
HNONSECS input signal which provides security level information for S-AHB accesses.

8.8.3 TGU configuration

Each TCM Gate Unit (TGU) is configured using the xTGU, xTGUBLKSZ, and xTGUMAXBLKS parameters.

 Note

In this section, xTGU refers to Instruction TCM Gate Unit (ITGU) and Data TCM Gate Unit (DTGU).

The xTGU parameter configures the inclusion of the ITGU or DTGU, the xTGUBLKSZ parameter
determines the block size, and xTGUMAXBLKS determines the maximum number of available blocks
(which in turn defines the number of physical registers included in the TGU logic). The processor
supports up to a maximum of 512 blocks for each TGU.

The xTGUMAXBLKS parameter is provided to allow a single processor implementation to support security
gating across multiple different TCM size configurations using the external input signals CFGITCMSZ
and CFGDTCMSZ.

 Important

You must configure xTGUMAXBLKS and xTGUBLKSZ to match the required range of TCM size. A TGU
configuration is valid if both of the conditions in the following table are met.

8 Memory Authentication
8.8 TCM and P-AHB security access control

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

8-167

Non-Confidential

Table 8-6 TGU configuration conditional validity

Condition Formula

Block size * Maximum number of blocks = Maximum physical
size of the TCM

xTGUBLKSZ + xTGUMAXBLKS = CFGxTCMSZmax + 4.

Block size < Minimum physical size of the TCM xTGUBLKSZ < CFGxTCMSZmin + 4

This ensures that there are enough blocks to cover the largest TCM size and that at least two blocks cover
the minimum TCM size. If these parameters are configured incorrectly, the TGU behavior becomes
UNPREDICTABLE.

For a given processor implementation and integration, reading the xTGU_CFG.NUMBLKS and
xTGU_CFG.BLKSZ register bitfields determines the number of available blocks in the lookup table and
the block size respectively. For more information on these registers, see 4.20.2 ITGU_CFG and
DTGU_CFG, ITGU and DTGU Configuration Registers on page 4-104 .

When TCM gating is enabled, the Code and SRAM region of the processor memory map is aliased so
that two regions map onto the same physical TCM address. These two regions should be mapped to
different security levels. The security level attributed to the logical address used by software is always
used to control the TGU. The two alias regions always map to the same physical address in the TCM
memory.

The following table shows an example configuration where the processor ITGU is configured with 1KB
blocks and supports a maximum ITCM size of 64KB and a minimum ITCM size of 4KB. In this case,
ITGUMAXBLKS must be configured to 0b0110 or 64 blocks.

Table 8-7 Example TGU configuration for 1KB block size

ITCM size CFGITCMSZ ITGUBLKSZ ITGUMAXBLKS ITGU_CFG.NUMBLKS ITGU_CFG.BLKSZ

4KB 0b0011 0b0101 0b0110 0b0010 0b0101

8KB 0b0100 0b0101 0b0110 0b0011 0b0101

16KB 0b0101 0b0101 0b0110 0b0100 0b0101

32KB 0b0110 0b0101 0b0110 0b0101 0b0101

64KB 0b0111 0b0101 0b0110 0b0110 0b0101

TGU block lookup table

Each block entry in the lookup table can be accessed by software using the xTGU_LUTn registers. Each
register contains up to 32 block entries. For a valid block, the entry bit determines the required security
level. All blocks reset to 0, therefore, at reset, all TCM memory is considered as Secure.

Any unused block entries in the lookup table, due to the configuration, do not affect the operation of the
security gate and the corresponding xTGU_LUTn bitfield is RAZ/WI when accessed by software.

TGU enable and locking

TCM gating is enabled by tying the external input signal CFGMEMALIAS to a non-zero value.

The TGU can be locked from software access using the external input signals LOCKITGU and
LOCKDTGU. When these signals are asserted the corresponding TGU registers become read-only. This
allows a TGU configuration to be programmed and then locked from further changes by software.

8 Memory Authentication
8.8 TCM and P-AHB security access control

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

8-168

Non-Confidential

8.8.4 Security check and fault response

Accesses to a memory region that the TGU protects only proceed if the security level of the request
matches the programmed security of the block. At reset, all blocks are Secure.

• Read requests on the external TCM interfaces are always Speculative, regardless of whether the
access passes the security check in the TGU. Data from the RAM is always ignored if the check fails
and the processor state is never updated.

• If the security check fails, write requests are always ignored and never carried out on the TCM
interface.

The result of a security check mismatch in the TGU depends on the type of the access and the
configuration of the ITGU_CTRL or DTGU_CTRL registers. The access is either ignored or generates a
fault:
• A security check mismatch on an instruction fetch always results in a BusFault. The fault is recorded

in AFSR.FTGU.
• If ITGU_CTRL.DBFEN or DTGU_CTRL.DBFEN is set, a security check mismatch on a data read

or write results in a precise BusFault. The fault is recorded in AFSR.PTGU. If ITGU_CTRL.DBFEN
or DTGU_CTRL.DBFEN is not set, no exception is raised.

• If ITGU_CTRL.DBGEN or DTGU_CTRL.DBEN is set, then a security check mismatch on a debug
request causes HRESP to be asserted on the Debug AHB (D-AHB) interface. AFSR.PTGU is not
updated on a security check mismatch from a debug request.

• If ITGU_CTRL.DEREN or DTGU_CTRL.DEREN is set, a security check mismatch on a read or
write to the TCM from the S-AHB signals an error on the interface. For all mismatched read
accesses, zero is returned to prevent any leaks of Secure data.

 Note

If a data read access on the TCM returns an error on the interface (ITCMERR or DTCMERR input
signal is asserted) for an address which fails the TGU security check and ITGU_CTRL.DBFEN or
DTGU_CTRL.DBFEN is not set, then the overall behavior is RAZ/WI instead of raising a BusFault.
This is consistent with a security fault response from the Memory Authentication Unit (MAU).

8 Memory Authentication
8.8 TCM and P-AHB security access control

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

8-169

Non-Confidential

Chapter 9
Memory system

This chapter describes the Cortex-M55 processor memory system.

It contains the following sections:
• 9.1 Memory system features on page 9-171.
• 9.2 Memory system faults on page 9-173.
• 9.3 Memory system behavior on page 9-175.
• 9.4 Master-AXI interface on page 9-179.
• 9.5 Peripheral AHB interface on page 9-185.
• 9.6 S-AHB interface on page 9-188.
• 9.7 EPPB interface on page 9-191.
• 9.8 TCM interfaces on page 9-192.
• 9.9 Instruction and data cache on page 9-196.
• 9.10 Store buffer on page 9-204.
• 9.11 Internal local exclusive access monitor on page 9-206.
• 9.12 M-AXI and P-AHB interaction with the global exclusive monitor on page 9-207.
• 9.13 MBIST on page 9-208.

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

9-170

Non-Confidential

9.1 Memory system features
The Cortex-M55 processor memory system is an interface between the processor core and the cache
RAMs, external memory interfaces and memory-mapped registers.

 Note

For more information on how these units and interfaces interact with each other, see the Figure 2-1
 Cortex-M55 processor block diagram on page 2-27.

Load Store Unit
The Load Store Unit (LSU) receives load and store accesses from the Data Processing Unit
(DPU) and distributes these requests to the correct unit and returns any data or responses to the
DPU. The LSU contains the Peripheral Interface Unit (PIU) which handles all the loads and
stores to internal and external peripherals.

Peripheral Interface Unit
The Peripheral Interface Unit (PIU) is responsible for the handling of stores to peripheral units
EPPB, IPPB, and P-AHB. The PIU coordinates the following accesses to the peripheral busses.
• Loads from the LSU
• Stores from the STB

TCM Control Unit
The TCM Control Unit (TCU) arbitrates requests between the LSU and Instruction Fetch Unit
(IFU), accesses the TCMs, and returns any data or responses to the requesting unit. The TCU
contains a write queue for Slave-AHB (S-AHB) writes and a read prefetcher to improve the
performance of 32-bit and 64-bit incrementing reads.
The TCU contains a small buffer for software stores to the TCM.

Tightly Coupled Memories
The Cortex-M55 processor has two TCM memory types, the Instruction Tightly Coupled
Memory (ITCM) and Data Tightly Coupled Memory (DTCM). There is one ITCM interface and
four DTCM interfaces (D0TCM, D1TCM, D2TCM, and D3TCM respectively).
All the TCM interfaces are 39 bits wide (32 bits for data and 7 bits for Error Correcting Code
(ECC)).
ECC generation and correction logic can optionally be included for each TCM interface and an
ECC error indication interface.

Memory accesses to the TCM, required for fetching instructions and for data transfer
instructions, are performed if the address is in an enabled TCM region. Accesses that are not
serviced by the TCM region are passed through the Master-AXI (M-AXI) interface or one of the
peripheral interfaces.

Data Cache Unit
The Data Cache Unit (DCU) contains a four-way set-associative data cache and handles all
accesses to this cache. These accesses include loads, stores, cache maintenance operations,
evictions, and ECC error detection and correction.
The DCU can be configured to include logic to detect and process ECC errors.

Instruction Cache Unit
The Instruction Cache Unit (ICU) contains a two-way set-associative instruction cache, and it
accepts instruction fetch requests from the IFU and returns data from either the instruction
cache, the linefill buffer, or the BIU.
The ICU can be configured to include logic to detect and process ECC errors.

9 Memory system
9.1 Memory system features

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

9-171

Non-Confidential

Store Buffer
The Store Buffer (STB) has five 64-bit slots that buffer stores to the AXI bus.
• For Cacheable stores, the STB sends a lookup request to the DCU to see if the target address

is in the cache. If it is, then the data is written directly to the cache. If the target address is
not in the cache and the access has a Write-Allocate hint, then the DCU makes a linefill
request to the Bus Interface Unit (BIU) and writes the data into the BIU linefill buffer. If the
target address is not in the cache and it does not have a Write-Allocate hint, then the store is
written out to the AXI bus.

• For Non-cacheable data, the data is written to the BIU write buffer.
• Write-Through stores are written out to the AXI bus even if they have been written into the

cache.

Bus Interface Unit
The BIU contains one 32-byte write buffer and two 32-byte linefill buffers.
The BIU coordinates the following accesses to the M-AXI interface.
• Loads from the LSU.
• Stores from the STB.
• Evictions from the DCU.
• Fetches from the IFU.
• Linefills triggered by PLD instructions.
• Speculative linefills triggered by the data prefetcher.

Non-cacheable loads go directly to the AXI bus. Stores are buffered internally with the intention
of being combined in a burst on the AXI. Cacheable Read-Allocate loads and Cacheable Write-
Allocate stores trigger linefills and the data from the AXI bus is buffered in the linefill buffer
until the line is complete and it can be allocated in the DCU.

The linefill buffers also buffer load data from Non-cacheable bursts.

MBIST Interface Unit
The MBIST Interface Unit (MIU) provides the Memory Built-In Self Test (MBIST) interface.
The MBIST interface supports production MBIST.

M-AXI interface
The M-AXI interface is 64 bits wide and connects to the external memory system.

Peripheral-AHB interface
The PIU includes a 32-bit Peripheral-AHB (P-AHB) interface for accessing external
peripherals.

Slave-AHB interface
The S-AHB interface is 64 bits wide and allows system accesses in and out of the TCMs.

PPB interfaces
The PIU includes the Internal Private Peripheral Bus (IPPB) interface to access internal PPB
registers, and the External PPB (EPPB) APB interface to access external PPB registers.

9 Memory system
9.1 Memory system features

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

9-172

Non-Confidential

9.2 Memory system faults
Memory system faults can occur on instruction fetches and data accesses.

Faults can occur on instruction fetches for the following reasons:

• Memory Protection Unit (MPU) MemManage fault.
• Security Attribution Unit (SAU) or Implementation Defined Attribution Unit (IDAU) SecureFault.
• BusFaults that are caused by an external AXI slave error (SLVERR), an external AXI decode error

(DECERR), or corrupted transactions (RPOISON).
• TCM external error.
• Uncorrectable Error Correcting Code (ECC) errors in the TCM.
• Breakpoints and vector catch events.
• TCM Gate Unit (TGU) faults.

Faults can occur on data accesses for the following reasons:
• MPU MemManage fault.
• Alignment UsageFault.
• SAU or IDAU SecureFault.
• BusFaults that are caused by an external AXI slave error (SLVERR), an external AXI decode error

(DECERR), or corrupted read data (RPOISON).
• BusFaults because of errors on the External Private Peripheral Bus (EPPB) APB interface.
• External AHB error from the Peripheral-AHB (P-AHB) interface.
• TCM external error.
• Uncorrectable ECC errors in the TCM or L1 data cache.
• Watchpoints.
• M‑profile Vector Extension (MVE) transactions, stacking, or unstacking to the PPB space.
• TGU faults.
• Unprivileged accesses to system registers which only privileged code can access.

9.2.1 Classes of fault

Faults can be classified as MemManage Faults, BusFaults, SecureFaults, and UsageFaults.

MemManage faults

The Memory Protection Unit (MPU) can generate a fault for various reasons.

For more information on MemManage Faults, see Permission and access violations on page 8-159 .

Bus faults

A memory access or instruction fetch performed through the Master-AXI (M-AXI) interface can generate
different types of responses:

• Slave error (SLVERR).
• Decode error (DECERR).

AXI bus errors cause precise or imprecise BusFaults. Additionally, if the AMBA 5 AXI signal,
RPOISON, is asserted, an AXI read can generate a BusFault.

A memory access performed through the Peripheral AHB (P-AHB) interface can generate a single error
response. The processor manages this in the same way as a response of SLVERR from the AXI interface.

Whether a memory or instruction fetch access on the TCM interface can be performed or not relies on
the TCM Gate Unit (TGU), if implemented. Depending on the programming of the TGU, TGU faults can
generate errors.

• For loads or stores, errors cause synchronous BusFaults.
• For read and write accesses from the Slave AHB (S-AHB) interface, an error causes an AHB slave

error response on HRESPS. For writes, only TCM interface errors on ITCMERR or DTCMERR
result in an imprecise error response on S-AHB through SAHBWABORT.

9 Memory system
9.2 Memory system faults

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

9-173

Non-Confidential

Synchronous BusFaults are generated in the following cases

• Instruction fetches.
• Data loads.
• Stores that generate a TGU fault.
• Stores to PPB that cause a privilege violation.
• M‑profile Vector Extension (MVE) stores and stacking to the PPB space.
• Uncorrectable Error Correcting Code (ECC) errors.

Asynchronous BusFaults are generated in the following cases:
• All stores except those that generate synchronous BusFaults.
• Dirty linefills that cause an AXI bus error.
• Unprivileged access to registers that can be accessed by privileged code only.

SecureFaults

If accesses do not pass the security attribution checks that the Memory Authentication Unit (MAU)
performs, then a SecureFault is raised.

For more information on security attribution, see Memory Authentication Unit on page 2-30.

 Note

In most of the memory regions, debugger accesses are subject to validation and attribution. That is, the
final Security state of an access on the Master AXI (M-AXI), indicated on ARPROT[1] and
AWPROT[1] signals, the Peripheral AHB (P-AHB) interface, indicated on HNONSECP signal, or the
External Private Peripheral Bus (EPPB) APB interface, indicated on PPROT[1] signal, is set by the
Security Attribution Unit (SAU) in the same way as software generated accesses. The SAU blocks
memory accesses which do not have the required permissions. For example, accesses to memory marked
as Secure in the SAU when DHCSR.S_SDE is 0 or HNONSECD is HIGH. This results in an error
response on the Debug AHB (D-AHB) interface, but unlike accesses that originate from software, a
SecureFault is not raised.

Usage faults

UsageFault exceptions occur in the following cases:

• Any unaligned access when CCR.UNALIGN_TRP is set results in an UNALIGNED UsageFault
exception. For more information on CCR, see the Arm®v8-M Architecture Reference Manual.

• Unaligned accesses to Device memory regions are not supported and result in an UNALIGNED
UsageFault exception.

• Unaligned accesses from an instruction that does not support unaligned accesses result in an
UNALIGNED UsageFault exception. For more information on these instructions, see the Alignment
behavior section in the Arm®v8-M Architecture Reference Manual

• For M‑profile Vector Extension (MVE) operations, a load or store access is considered unaligned if
the address is not aligned to the specified element size. Using an address for an MVE load or store
which is not aligned to the element size results in an UNALIGNED UsageFault being raised. For
more information on MVE and elements, see the Arm®v8-M Architecture Reference Manual.

• Accessing a coprocessor that does not exist results in a NOCP UsageFault.

 Note

For more information on external coprocessors, see Chapter 12 External coprocessors on page 12-237.
Additionally, for more usage restriction information, see 12.4 Coprocessor instruction restrictions
on page 12-241.

9 Memory system
9.2 Memory system faults

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

9-174

Non-Confidential

9.3 Memory system behavior
The behavior of the memory system depends on the type attribute of the memory that is being accessed.
Only Normal, cacheable memory regions can be cached in the RAMs.

The following points and the table that follows summarize the memory types and their associated
memory system behavior:

• The memory system supports all memory types specified in the Arm®v8-M Architecture Reference
Manual.

• For the data cache, all Shareable transactions are forced to be Non-cacheable because the Cortex-
M55 processor must be data coherent with other observers in the Shareability domain. On the data
side, if a transaction is marked as Non-shareable, then caching can occur if the data cache is enabled
(CCR.DC=1) and active (MSCR.DCACTIVE=1). For more information on CCR, see the Arm®v8-M
Architecture Reference Manual. For more information on MSCR, see 4.13 MSCR, Memory System
Control Register on page 4-87.

• For the instruction cache, transactions marked as Shareable Cacheable are not forced to be Non-
cacheable because the instruction cache cannot be dirty and its contents are always consistent with
the external memory. Unless, the external memory changes, in which case, the instruction cache is
invalidated. Therefore, caching occurs irrespective of the Shareability attribute. On the instruction
side, caching can occur if, the instruction cache is enabled (CCR.IC=1) and active
(MSCR.ICACTIVE=1). For more information on CCR, see the Arm®v8-M Architecture Reference
Manual. For more information on MSCR, see 4.13 MSCR, Memory System Control Register
on page 4-87. The processor caches Shareable Cacheable instruction fetches, therefore, instruction
cache software maintenance is always required for self-modifying code because only data access
coherency is supported.

• The store buffer supports all stores to Master-AXI (M-AXI). It also handles the special behavior
required for no Write-Allocate mode.

• All Shareable exclusive transactions to the M-AXI and Peripheral AHB (P-AHB) interfaces are
marked as exclusive.

• All Non-shareable exclusive transactions to the M-AXI and P-AHB interfaces are not marked as
exclusive.

• Only Normal memory is considered idempotent. For more information on the properties of
idempotent Normal memory, see the Normal memory section Arm®v8-M Architecture Reference
Manual.

• For exclusive accesses to Non-shared memory only the internal exclusive monitor is updated and
checked. Exclusive accesses to Shared memory are checked using the internal and external monitor
that uses the external memory interface M-AXI or P-AHB.

The following table summarizes the processor memory types and associated behavior for data accesses.

Table 9-1 Memory types and associated behavior for data accesses

Memory
type

Device memory attributes Shareability Cacheability Restartable Exclusives
handled

Normal - Shared No Cacheability Yes Internal and external

- Non-shared Only if memory attributes
are Cacheable and the
cache is present, enabled,
and activec.

Yes Internal only

c For more information on cache activity, see 9.9.6 Accessing the caches on page 9-200

9 Memory system
9.3 Memory system behavior

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

9-175

Non-Confidential

Table 9-1 Memory types and associated behavior for data accesses (continued)

Memory
type

Device memory attributes Shareability Cacheability Restartable Exclusives
handled

Device Gathering, G and non-Gathering,
nG

Yes No No Internal and external

Reordering, R and Non-
Reordering, nR

Yes No No

Early Write Acknowledgment, E
and No Early Write
Acknowledgment, nE

Yes No No

 Note

• The Cortex-M55 processor can merge accesses to Normal memory, but not to Device memory.
• An external interconnect can merge accesses to Normal memory, but must not merge accesses to

Device memory.
• M-profile Vector Extension (MVE) instructions to Device memory might merge multiple accesses

from the same micro-operation into one transaction, regardless of whether that memory has the
Gathering attribute or not.

9.3.1 Speculative accesses

The Cortex-M55 processor performs Speculative accesses to increase performance. The Armv8‑M and
Armv8.1‑M architecture permit Speculative accesses. System designers must not assume that the scope
of the speculation is fixed or definitively specified.

The following list describes some of the examples where Speculative accesses can occur:

• Speculative instruction fetches can be initiated to any Normal, executable memory address. This can
occur regardless of whether the fetched instruction gets executed or, in rare cases, whether the
memory address contains any valid program instruction.

• Speculative data reads can be initiated to any Normal, read/write, or read-only memory address. In
some rare cases, this can occur regardless of whether there is any instruction that causes the data read.

• Speculative cache linefills can be initiated to any Cacheable memory address regardless of whether
there is any instruction that causes the cache linefill.

• Speculative reads that target a TCM region can be initiated on any of the five TCM interfaces,
regardless of which TCM interface the memory region is mapped to, or whether that address is
mapped to any TCM interface.

However, Speculative accesses do not occur in the following cases:
• Speculative instruction fetches on the Master AXI (M-AXI) interface are never made to memory

addresses in an Execute Never region.
• Speculative data cache linefills on the Master AXI (M-AXI) interface are never made to Non-

cacheable memory addresses.
• Speculative data reads and Speculative cache linefills are never made to Device memory addresses.
• Speculative reads are never made on the Peripheral AHB (P-AHB) and External Private Peripheral

Bus (EPPB) interfaces.
• Speculative writes are never made.

 Note

Memory regions that are mapped to the TCM are always treated as Normal Memory and therefore are
always subject to speculation.

9 Memory system
9.3 Memory system behavior

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

9-176

Non-Confidential

Considerations for system design

The system designer must ensure that the system is robust enough to handle Speculative accesses, and all
executable and Normal type memory regions are safe to access.

Preventing Speculative accesses

Speculative accesses do not cause any processor faults. The processor is aware whether an
access is Speculative, and ignores any error response that the system signals because of the
Speculative access. However, the system in which the processor is integrated in cannot
distinguish between Speculative accesses and Non-speculative accesses. Therefore, the system
designer is required to ensure that the system is robust enough to handle Speculative accesses,
regardless of whether they are initiated to unexpected memory addresses.

Alternatively, if there are memory regions that are not mapped to the TCMs and to which
Speculative access should not be initiated, Arm recommends setting those regions to have the
following attributes with the Memory Protection Unit (MPU):
• Device
• Execute-never

Speculative accesses are never initiated on the Master AXI (M-AXI) or Peripheral AHB (P-
AHB) interfaces to Device execute-never memory regions. The External Private Peripheral Bus
(EPPB) is always treated as Device execute-never memory, and therefore, Speculative accesses
are never initiated.

The TCMs are always treated as Normal memory. Therefore, they are always subject to
speculation.

MPU violation behavior
On the M-AXI, P-AHB, or EPPB interfaces, an MPU violation is guaranteed to cause a fault
and the access is not initiated on the interface. On the TCM interface, an MPU violation is
guaranteed to cause a fault. However, a read access is still initiated, and in this case, the
processor ignores the read data that is returned from the TCM.

9.3.2 Access privilege level for Device and Normal memory

The AMBA 5 AXI, AMBA 5 AHB, and AMBA 4 APB protocols all include signals which allow the
privilege level of an access to be reported to the system. The Cortex-M55 processor supports these
signals across the Master AXI (M-AXI), Peripheral AHB (P-AHB), and External Private Peripheral Bus
(EPPB) interfaces for Device memory.

The Cortex-M55 processor also supports privilege reporting for Normal memory on P-AHB. However,
M-AXI accesses to Normal memory can be buffered and cached so memory read and write requests and
instruction fetches from both privileged and unprivileged software can be merged. All M-AXI accesses
to Normal memory are marked as privileged. For all M-AXI transactions, the AXI signals ARPROT[0]
and AWPROT[0] are always 1 indicating a privileged access. Access permission to a region of memory
can always be restricted to software running in privileged mode by using the Memory Protection Unit
(MPU).

The following table shows the processor mode and privilege level values of the read channel protection
signal. The security attributes of the transaction are stored in bit 1 of the ARPROT and AWPROT
signal.

Table 9-2 Cortex-M55 processor mode and read and write channel protection signal privilege information

Processor mode Memory type Value

- Normal Cacheable Always marked as Privileged

- Normal Non-cacheable

9 Memory system
9.3 Memory system behavior

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

9-177

Non-Confidential

Table 9-2 Cortex-M55 processor mode and read and write channel protection signal privilege information (continued)

Processor mode Memory type Value

Unprivileged Device Unprivileged

Privileged Privileged

The instruction and data TCM interfaces provide signals ITCMPRIV and D*TCMPRIV to indicate the
privilege of all memory accesses.

For more information on how security attributes are generated and determined, see Memory
Authentication Unit on page 2-30 .

9 Memory system
9.3 Memory system behavior

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

9-178

Non-Confidential

9.4 Master-AXI interface
The Master-AXI (M-AXI) interface is a single 64-bit AMBA 5 AXI interface for on-chip or off-chip
memory and devices. The interface serves the memory regions that the TCM, Peripheral AHB (P-AHB),
Internal Private Peripheral Bus (IPPB), and External Private Peripheral Bus (EPPB) interfaces do not
cover.

The M-AXI interface can have either of the following configurations:

• High performance configuration.
• Area optimized configuration.

Both M-AXI configurations provide a store-buffer that supports data merging, reordering, and
forwarding for Normal memory to minimize the number of AXI write transactions that are sent out to the
system.

 Note

Implementing the L1 data cache results in the high-performance M-AXI configuration. When the L1 data
cache is not present, the M-AXI defaults to the area optimized configuration.

9.4.1 High performance M-AXI configuration

The high performance M-AXI configuration supports extensive buffering and multiple outstanding AXI
transactions to optimize memory system performance, even in the presence of large latencies.

This configuration includes a 4-way set associative L1 data cache that supports:
• Read-allocation.
• Write-allocation.
• Write-Back.
• Write-Through.
• Transient.

The cache supports automatic data prefetching that can be used for compute tasks that require large data
sets that the TCMs cannot accommodate.

High performance configuration M-AXI attributes and transactions

The high performance configuration is designed to be used with a native AXI system with high memory
bandwidth and support for multiple outstanding transactions. The following table shows the AXI
attributes and transactions that the high performance M-AXI configuration supports.

Table 9-3 High performance configuration M-AXI attributes and transactions

AXI attribute Value Details

Write issuing capability 39 • 15 writes to Device memory.
• 24 writes to Normal memory, that can be evictions, write bursts, or single writes.

Read issuing capability 5 • 2 data linefills, including linefills that the data prefetcher requests.
• 2 Non-cacheable data reads.
• 1 instruction fetch or instruction linefill.

Write ID capability 4 • 1 reserved for Device memory.
• 1 reserved for Normal Non-cacheable writes and exclusive writes.
• 1 reserved for Normal cacheable writes.
• 1 reserved for cache line evictions.

9 Memory system
9.4 Master-AXI interface

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

9-179

Non-Confidential

Table 9-3 High performance configuration M-AXI attributes and transactions (continued)

AXI attribute Value Details

Read ID capability 4 • 1 reserved for Normal Non-cacheable and Device memory.
• 2 reserved for data cache linefills.
• 1 reserved for instruction fetch or instruction linefill.

Combined issuing capability 48 • 39 outstanding writes.
• 9 reads from data linefills, Non-cacheable reads, and instructions fetches.

Only a subset of all possible AXI transactions can be generated. These are:
• For Normal, Cacheable memory:

— WRAP4 64-bit reads, for load, data prefetch and store linefills, and instruction linefills.
— INCR4 64-bit writes, for evictions.
— INCR N 64-bit or smaller writes with N=1-4 for combined individual no-write allocate stores or if

in no Write-Allocate mode.
— INCR N 64-bit reads with N=1-4, for instruction fetches when the L1 instruction cache is

disabled.
• For Normal, Non-cacheable memory:

— INCR N 64-bit reads with N=1-4 for load multiplies and vector loads.
— INCR N 64-bit writes with N=1-4 for combined individual stores and store multiples.
— INCR N 64-bit reads with N=1-4 for instruction fetches.
— INCR 1 reads of any size, for individual loads.

• For Device memory:
— INCR 1 32-bit reads for individual load and load multiples.
— INCR N 32-bit writes with N=1-2 for store multiple and store doubles.
— INCR 1 8-bit, 16-bit reads and writes for individual subword loads and stores.

• INCR 1 8-bit, 16-bit, and 32-bit exclusive reads and writes for shared exclusives.
• No FIXED bursts are used.
• Write bursts to Normal memory can use the following optimizations that are allowed on AXI but

have implications for bridging to AHB.
— Entire beats with no strobes set.
— Non-contiguous strobes per beat.

 Note

• INCR is an incrementing burst, where the address for each transfer in the burst is an increment of the
address for the previous transfer.

• WRAP is a wrapping burst that is similar to an incrementing burst, except the address wraps around
to a lower address if an upper address limit is reached.

• FIXED bursts, which are not used, have the same address for every transfer in the burst.
• For more information on burst types, see the AMBA® AXI and ACE Protocol Specification.

Data prefetching

In the high performance Master-AXI (M-AXI) configuration, the Cortex-M55 processor looks at linefill
addresses for L1 data cache misses. It does this to identify patterns that indicate a data stream that the
software is accessing.

The data prefetcher uses the pattern information to predict where linefills might be required. It also
attempts to fetch the data from the system into the L1 data cache before the data is required. This feature
improves the overall performance of the processor by hiding load latency from the instructions that are
executing on the processor.

The prefetcher can only detect streams with a constant stride. Only strides of -2, -1, +1, and +2 are
supported. To reduce area and power, a prefetch stream cannot cross a 4KB prefetch granule boundary.

9 Memory system
9.4 Master-AXI interface

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

9-180

Non-Confidential

For more information on how to control the prefetcher, see 4.15 PFCR, Prefetcher Control Register
on page 4-91.

9.4.2 Area optimized M-AXI configuration

The area optimized Master AXI (M-AXI) configuration supports reduced buffering and minimizes the
number of outstanding AXI transactions to support a low-cost memory system without the significant
area impact of a L1 data cache.

The performance for this configuration is expected to be significantly lower than the configuration
described in 9.4.1 High performance M-AXI configuration on page 9-179, and this configuration is
optimized for area alone, where practical.

Area optimized configuration M-AXI attributes and transactions

The area optimized configuration is intended to be integrated into a low-cost AXI system or bridged to
AHB and is suitable for connection to a low-bandwidth memory system. For example, off-chip memory.
The following table shows the AXI attributes and transactions that the area optimized M-AXI
configuration supports.

Table 9-4 Area optimized configuration M-AXI attributes and transactions

AXI attribute Value Details

Write issuing capability 32 • 15 writes to Device memory.
• 17 writes to Normal memory.

Read issuing capability 3 • 2 data reads.
• 1 instruction fetch or instruction linefill.

Write ID capability 3 • 1 reserved for Device memory.
• 1 reserved for Normal memory Non-cacheable writes and exclusive writes.
• 1 reserved for Normal cacheable writes.

Read ID capability 2 • 1 reserved for Normal Non-cacheable and Device memory.
• 1 reserved for instruction fetch or instruction linefill.

Combined issuing capability 35 • 32 outstanding writes.
• 3 reads from data and instructions fetches.

Only a subset of all possible AXI transactions can be generated. These are:
• For Normal memory:

— WRAP4 64-bit reads, for instruction linefills, if a L1 instruction cache is included.
— INCR N 64-bit reads with N=1-4 for individual loads and load multiples.
— INCR 1 8-bit, 16-bit, and 32-bit reads for individual loads.
— INCR N 64-bit writes with N=1-4 for combined individual stores and store multiples.
— INCR N 64-bit reads with N=1-4, for Non-cacheable instruction fetches or all instruction fetches

with no L1 instruction cache.
• For Device memory:

— INCR 1 32-bit reads for double load multiple instructions.
— INCR 1 8-bit, 16-bit, and 32-bit reads for individual loads.
— INCR N 32-bit writes with N=1-2 for individual stores and store multiples.
— INCR 1 8-bit, 16-bit, and 32-bit writes for individual stores.

• INCR 1 8-bit, 16-bit, and 32-bit exclusive reads and writes for shared exclusives.
• No FIXED bursts are used.
• Write bursts to Normal memory can use the following optimizations that are allowed on AXI but

have implications for bridging to AHB.
— Entire beats with no strobes set.
— Non-contiguous strobes per beat.

9 Memory system
9.4 Master-AXI interface

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

9-181

Non-Confidential

 Note

• INCR is an incrementing burst, where the address for each transfer in the burst is an increment of the
address for the previous transfer.

• WRAP is a wrapping burst that is similar to an incrementing burst, except the address wraps around
to a lower address if an upper address limit is reached.

• FIXED bursts, which are not used, have the same address for every transfer in the burst.
• For more information on burst types, see the AMBA® AXI and ACE Protocol Specification.

9.4.3 Bridging to AHB

The high performance Master AXI (M-AXI) configuration is optimized for a native AXI system and not
for AHB. The AHB protocol only allows one outstanding transaction. Therefore, this implies
serialization of all outstanding transactions that the M-AXI can support. For acceptable levels of
performance, Arm recommends that at least two AHB interfaces are used in this configuration, one for
instructions and one for data.

The area optimized M-AXI configuration can be bridged to a single AHB interface if the resulting
performance is acceptable.

Both M-AXI configurations support the following features that need special consideration when bridging
to AHB:

Sparse write strobes
AHB does not support write strobes and therefore must split AXI beats with sparse write strobes
into smaller AHB transactions. This implies that AHB write bursts can be used only when the
bridge is capable of buffering an entire AXI burst and evaluating the strobes before deciding
how to perform the AHB access.

To avoid this issue, the processor provides a sparse write strobe signal. Transactions can use this
signal to allow AXI bursts that do not use sparse strobes to be identified before all the write data
is provided. Therefore, these accesses can be performed as AHB bursts efficiently. This signal is
guaranteed to be valid, but in some cases it might be asserted for transactions that do not have
sparse strobes.

Exclusive accesses
AMBA AHB protocols prior to AMBA 5 AHB do not support exclusive accesses. Arm
recommends all AHB infrastructure used with the Cortex-M55 processor is based on
AMBA 5 AHB.

The Arm CoreLink AXI5 to AHB5 XHB-500 bridge, which is included in the Arm
Corstone-300 Foundation IP, can be used with Cortex-M55, and also supports the sparse write
strobes signal.

9.4.4 Write response

It is a requirement of the systems using the AMBA 5 AXI protocol that the slave does not return a write
response until it has received the write address.

9.4.5 Memory system implications for AXI accesses

The attributes of the memory being accessed can affect an AXI access.

The memory system can cache any cacheable Normal memory address that has either the Read-Allocate
or Write-Allocate hint.

9 Memory system
9.4 Master-AXI interface

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

9-182

Non-Confidential

However, Device is always Non-cacheable and Outer Shareable. Normal Non-cacheable memory can
also be Outer Shareable and any unaligned access to Device memory generates an UNALIGNED
UsageFault exception and therefore does not cause an AXI transfer.

 Note

Memory regions marked as Non-Cacheable Normal must not be used to access read-sensitive peripherals
in a system. This is because read transactions to these regions from the processor can be repeated
multiple times if the originating load instruction is interrupted.

9.4.6 Master-AXI interface transfers

The Master-AXI (M-AXI) interface does not generate the following types of transactions:

• An AXI slave device connected to the M-AXI interface must be capable of handling every kind of
transaction that the AMBA® AXI and ACE Protocol Specification permits, except where there is an
explicit statement in this chapter that such a transaction is not generated. You must not infer any
additional restrictions from the example tables given.

• Non-cacheable load instructions might not result in an AXI transfer if they forward from an internal
buffer.

• Non-cacheable store instructions always result in an AXI transfer, but multiple stores might get
merged into one AXI transaction.

• If the processor is powered up, the buffered write response ready signals, BREADY is always
asserted. You must not make any other assumptions about the AXI handshaking signals, except that
they conform to the AMBA® AXI and ACE Protocol Specification.

9 Memory system
9.4 Master-AXI interface

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

9-183

Non-Confidential

Restrictions on AXI transfers

The Master-AXI (M-AXI) interface applies restrictions to the AXI transactions it generates.

These restrictions are:
• A burst never transfers more than 32 bytes.
• The burst length is never more than four transfers.
• The maximum length of a Device write burst is two transfers. Device reads are always a single

transfer.
• No transaction ever crosses a 32-byte boundary in memory.
• FIXED bursts are never used.
• The write address channel always issues INCR type bursts, and never WRAP or FIXED.
• If the transfer size is 8 or 16 bits then the burst length is always one transfer.
• The transfer size is never greater than 64 bits, because it is a 64-bit AXI bus.
• Instruction fetches are always a 64-bit transfer size, and never locked or exclusive.
• Exclusive accesses are always to addresses that are aligned for the transfer size.
• Only exclusive accesses to shared memory result in exclusive accesses on the M-AXI. Exclusive

accesses to non-shared memory are marked as non-exclusive accesses on the bus.
• For high-performance M-AXI configurations, to observe the maximum number of outstanding

accesses, the M-AXI interface must be very slow so that the following sequence can be performed
before any write response for an access in the sequence occurs:
1. Execute a DSB instruction.
2. Trigger seven evictions through cache maintenance operations. This requires prior allocation of

seven cache lines into the data cache and making these cache lines dirty with store transactions.
3. Perform seven data cache clean operations, that is, one to each of the cache lines.
4. Execute 15 byte stores to Device memory.
5. Execute seven byte stores to Cacheable, No-write Allocate memory. Each store must be to a

separate cache line.
6. Execute 10 byte stores to Non-cacheable memory. Each store must be to a separate cache line.
7. Perform two PLD instructions to Read-Allocate Cacheable memory. Each PLD instruction must be

to separate cache lines. Neither cache line must be already in the cache.
8. Perform an unaligned word load transaction from Non-cacheable memory so the load transaction

crosses a doubleword boundary.
9. Trigger an instruction side fetch from an address that is Cacheable and not already in the

instruction cache.
10. Execute a DSB instruction.

• For area-optimized M-AXI configurations, to observe the maximum number of outstanding accesses,
the M-AXI interface must be very slow so that the following sequence can be performed before any
write response for an access in the sequence occurs:
1. Execute a DSB instruction.
2. Execute 15 byte stores to Device memory.
3. Execute 10 byte stores to Non-cacheable memory. Each store must be to a separate cache line.
4. Perform an unaligned word load transaction from Non-cacheable memory so the load transaction

crosses a doubleword boundary.
5. Trigger an instruction side fetch from an address that is Cacheable and not already in the

instruction cache.
6. Execute a DSB instruction.

9 Memory system
9.4 Master-AXI interface

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

9-184

Non-Confidential

9.5 Peripheral AHB interface
The Peripheral AHB (P-AHB) interface is a single 32-bit wide interface that conforms to the
AMBA 5 AHB protocol. It is designed for deterministic, data-only access to fast on-chip peripherals.

9.5.1 P-AHB interface transfers

For each clock cycle, the Peripheral AHB (P-AHB) interface supports one aligned 32-bit access or any 8-
bit or 16-bit access that can fit inside an aligned 32-bit access. Unaligned accesses that cross a 32-bit
boundary are split into multiple accesses.

Memory region type
By default, the memory regions mapped to the P-AHB interface are Device, however, it is
possible to map regions as Normal using the Memory Protection Unit (MPU). Although Normal
memory is supported on the P-AHB interface, Normal memory-specific optimization is not
allowed. This implies that the interface is generally unsuitable for high-bandwidth requirements,
and for such a requirement, the Tightly Coupled Memory (TCM) or Master AXI (M-AXI)
interface must be used instead.

Unaligned request support
The P-AHB can accommodate unaligned requests to Normal memory by breaking down the
request into a set of aligned transactions that is suitable for its protocol. In most cases, the
number of accesses to complete an unaligned write is greater than an equivalent read because if
required, Normal memory can be excessively read, but the P-AHB interface does not support
partial writes.Table 9-5 Unaligned memory access timing on page 9-186 lists the number of
individual read and write transactions that are generated for the unaligned transactions.

Instruction execution and vector fetches support
Instruction execution and vector fetches are not supported on this interface. The P-AHB is
targeted at on-chip peripherals only. Instruction and vector fetches to P-AHB are sent on the M-
AXI interface.

Transactions supported
New transactions cannot be started on the bus until all outstanding transactions are completed.
This implies all transactions to this interface are in-order. Loads can only start on the bus after
all buffered writes are drained.
The P-AHB does not support burst transactions. This implies that, the P-AHB interface only
uses one transfer and all bursts are single.
The P-AHB does not support Speculative accesses, write merging, and forwarding of buffered
store data for reads. No transaction ever crosses a 4-byte boundary in memory. The transfer type
is never SEQUENTIAL.
Exclusive accesses are supported in the P-AHB interface, and these accesses are always to
addresses that are aligned for the transfer size. Exclusive transactions are only generated for
Shareable memory regions.
The P-AHB interface can also break down sparse reads and writes that are associated with the
M‑profile Vector Extension (MVE) Load and Store instructions.
Multiple write transactions can be buffered more than once, therefore, more than one imprecise
BusFault exception can be raised because of external errors. The exceptions are always raised in
the same order of the store instructions which generated the transactions.

9 Memory system
9.5 Peripheral AHB interface

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

9-185

Non-Confidential

The following table assumes that only non-MVE write accesses are considered. For unaligned MVE
writes, the number of accesses changes depending on the element size and predicate mask. For more
information, see the Arm®v8-M Architecture Reference Manual.

Table 9-5 Unaligned memory access timing

Access size Address offset Number of read accesses Number of write accesses

Word +1 2 3

+2 2 2

+3 2 3

Halfword +1 1 2

+3 2 2

 Note

Arm recommends that the P-AHB is reserved for low-latency peripherals and all others are integrated on
the M-AXI interface. This allows:
• Better overall processor execution performance in the presence of frequent stores to high-latency

peripherals.
• Better Quality of Service (QoS) to P-AHB peripherals in interrupt handlers that do not make frequent

accesses to high-latency peripherals on the M-AXI.

9.5.2 P-AHB interface configuration

The Peripheral AHB (P-AHB) interface covers two ranges in the processor memory map, that is, the
Peripheral region and the Vendor_SYS region.

Peripheral region
Base address is fixed at 0x40000000. The P-AHB region starts at the base address and has a size
determined by PAHBCR.SZ, which is configured using the input signal CFGPAHBSZ.

Vendor_SYS region
The address range is 0xE0100000-0xFFFFFFFF.

Mapping the Vendor_SYS region of the memory map to the P-AHB interface allows existing AHB-based
peripherals designed for M-profile systems to be reused in Cortex-M55-based designs.

Mapping the Vendor_SYS region of the memory map to the P-AHB interface provides additional,
always-enabled, address space for direct connection to AHB-based slaves, for example, re-used
peripherals from existing Cortex‑M systems.

The following parameters can be controlled for the P-AHB:

Size

The external input signal CFGPAHBSZ controls the size of the Peripheral region mapped to the
P-AHB interface. This signal can only be changed at Cold reset. A maximum of 0.5GB is
supported. This implies that the P-AHB interface is present entirely in the Peripheral region and
can cover it completely. The Vendor_SYS region size is not configurable.

Enable

The external input signal INITPAHBEN controls the P-AHB enable state at reset. During
runtime, the P-AHB Peripheral region can be enabled and disabled using the PAHBCR register.
Only privileged software can modify this register.

Also, if the Security Extension is implemented and AIRCR.BFHFNMINS is zero, this register is
RAZ/WI from Non-secure state. The Vendor_SYS region is always enabled.

9 Memory system
9.5 Peripheral AHB interface

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

9-186

Non-Confidential

Alias

The P-AHB interface supports the ability to alias two logical addresses in the Peripheral region
onto the P-AHB interface. This feature is used with an external security gate to support fine-
grain Secure and Non-secure regions in the Peripheral region. The alias bit in the logical address
can be configured from bit[24] to bit[28] using the external input signal CFGMEMALIAS.
This signal can only be changed at reset.

Data accesses to the P-AHB Peripheral region are performed on the Master AXI (M-AXI) interface when
the P-AHB interface is disabled. Accesses to the Peripheral region above the P-AHB size limit is also
performed on the M-AXI interface.

Instruction accesses made to the Peripheral region, where executable, are always performed on the M-
AXI interface. For code portability, Arm recommends that the P-AHB region is programmed as Execute
Never (XN) in the Memory Protection Unit (MPU) to prevent instruction execution. This is consistent
with the default memory map. The Vendor_SYS region is permanently XN.

9.5.3 P-AHB considerations

Normal memory is supported on the Peripheral AHB (P-AHB) interface. However, no Normal-specific
optimizations are made. This means the interface is generally not suitable for high-bandwidth
requirements, and the Tightly Coupled Memory (TCM) or Master AXI (M-AXI) interfaces must be used
instead.

Instruction execution and vector fetches are not supported on this interface. The P-AHB is targeted at on-
chip peripherals only.

The amount of buffering resource is intentionally limited to provide a balance between load access
latency and store throughput. The implications of this limited buffering are:
• Individual stores to the P-AHB interface are visible to the Device memory in minimal and

deterministic time relative to the store instruction being executed. This is relevant, for example, when
an interrupt handler must perform a critical device access.

• There is limited hiding of store latency from the pipeline. This means that high-latency peripherals
can stall the pipeline on a store instruction for extended periods of time. However, it affects the
overall processor execution performance.

• Loads to the P-AHB interface are inherently higher latency than stores and must wait for all buffered
stores to drain before they can be started on the bus. The limited buffering means that this latency is
minimized but can still be significant for high-latency peripherals. The pipeline cannot flush a load
that has started on the bus. Therefore, interrupt latency is affected by wait-states on loads. However,
loads that have not yet started on the bus can be safely flushed. Therefore, the impact of load wait-
states on interrupt latency is limited to the wait-states on a single access.

• Load access throughput is limited. There is no support for bursts on load multiples and no support for
pipelined loads in general.

• Store throughput is acceptable for zero wait state systems, but it is degraded when wait states are
used.

9 Memory system
9.5 Peripheral AHB interface

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

9-187

Non-Confidential

9.6 S-AHB interface
The 64-bit Slave-AHB (S-AHB) interface provides system access to the Tightly Coupled Memories
(TCMs). Typically, a Direct Memory Access (DMA) controller uses this interface to transfer data in and
out of the processor for software computation. It includes arbitration logic to support simultaneous
system and processor TCM access requests. The S-AHB interface implements the AMBA 5 AHB
protocol.

If there is no contention with software access to TCM and the TCM uses zero wait states, then write
buffering and the read prefetcher allows the S-AHB interface to indefinitely sustain back-to-back write
and read transactions.

Write buffering

Writes are buffered in the S-AHB interface to improve system performance and to provide storage for
splitting 64-bit writes into two separate 32-bit transactions to the TCM interfaces.

Read access latency is inherently larger than write access latency because the AHB interface can only
support a single outstanding transaction. To minimize this latency, reads can overtake buffered writes.
However, if there is a data dependency between a read and a buffered write, then hazarding logic stalls
the read and attempts to drain the buffer until there are no longer any dependencies. Writes are always
carried out in-order and hazarding is performed at byte granularity.

Additional hazarding is included to fully serialize read accesses to the TCM from the S-AHB interface
and software running on the processor. This allows both masters to access the TCM coherently. For more
information on how data can be shared between software running on the processor and system-level
devices that are connected on the S-AHB interface, see 9.8.5 System access to TCM through the S-AHB
DMA interface on page 9-194.

Read prefetcher
The S-AHB interface also supports a read prefetcher to improve the performance of the processor while
reading bursts of data from the TCM to the system. The prefetcher supports the following 64-bit and 32-
bit read transfers:
• INCR.
• INCR4.
• INCR8.
• INCR16.

If there is no contention or wait states on the TCM banks being accessed, the prefetcher generates
internal transactions so that read data can be returned on consecutive clock cycles on the S-AHB
interface.

 Note

• The S-AHB interface supports an extension to the AHB5 protocol using byte-lane strobe signals to
efficiently handle data with non-contiguous write-data in a beat, similar to that supported on AMBA
AXI interfaces. This allows for efficient bridging from an AXI-based DMA controller.

• All S-AHB accesses are treated as being the same endianness as memory. No data swizzling is
performed for reads or writes.

• The S-AHB interface can be used even if the processor is in sleep mode.

9.6.1 S-AHB memory map

The memory map that is presented on the Slave-AHB (S-AHB) interface is consistent with the memory
map that is presented to software running on the processor. Only the Tightly Coupled Memory (TCM)
address range can be accessed. Any other addresses cause an AHB fault response.

9 Memory system
9.6 S-AHB interface

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

9-188

Non-Confidential

The following table shows the S-AHB memory map.

Table 9-6 S-AHB memory map

Start address End address Bits [3:2] on the system address bus,
HADDRS[3:2]

TCM accesses TCM index

0x00000000 0x00000000+ ITCM size - ITCM HADDRS[n:2]d

0x20000000 0x20000000+ DTCM size 00 D0TCM HADDRS[n:4]

0x20000000 0x20000000+ DTCM size 01 D1TCM HADDRS[n:4]

0x20000000 0x20000000+ DTCM size 10 D2TCM HADDRS[n:4]

0x20000000 0x20000000+ DTCM size 11 D3TCM HADDRS[n:4]

• A read or write request on the S-AHB interface to the SRAM region is mapped to 32-bit accesses to
two separate DTCM instances according to HADDRS[3:2].

• The processor downsizes 64-bit S-AHB accesses to the CODE region into 32 bits for ITCM accesses.
A 64-bit S-AHB write transfer to ITCM are converted into two individual 32-bit buffered writes to
ITCM and 64-bit S-AHB reads are converted into two ITCM serial reads that are combined into one
64-bit value for transferring over the S-AHB interface.

 Note

• The TCM enable fields that are defined in the TCM control registers, ITCMCR and DTCMCR, do
not affect S-AHB accesses.

• If Security gating is enabled on the TCM interface, the address ranges are aliased in the same manner
as defined for software access.

9.6.2 S-AHB transfers

The Slave AHB (S-AHB) interface has certain conditions that require consideration.

• The Cortex-M55 processor does not support S-AHB transactions that are directly dependent on
software memory transactions. This means that the system must not introduce any dependencies
which imply that a software memory access cannot complete until a corresponding S-AHB
transaction completes. Therefore, no loopback arrangements from processor master ports to the S-
AHB interface are supported because these arrangements might cause deadlock. This restriction does
not prevent arrangements where software memory-mapped accesses are used, for example, on the
Master AXI (M-AXI) or Peripheral AHB (P-AHB) interface, to request an external agent to perform
transactions on the S-AHB. The only requirement is that there is no dependency introduced in the
system between the control access that initiates the transaction and the transaction itself.

• S-AHB transactions cannot perform Memory Protection Unit (MPU) lookups.
• There is no internal distinction between unprivileged and privileged S-AHB accesses. The system is

entirely responsible for providing TCM protection functionality for S-AHB accesses as required. This
can be carried out by performing a privilege check in either of the following areas:
— When the system memory agent has been requested for the access. This is entirely system defined

and no specific hardware support is provided.
— When the S-AHB access is performed on the TCM interface. In this case, the hardware performs

the TCM access at the privilege level of the S-AHB request.
• The S-AHB does not support exclusive or locked accesses and S-AHB writes do not affect the state

of the internal exclusive access monitor, making it unsuitable for systems requiring concurrency
controls between the S-AHB and software.

The security level for S-AHB transactions is indicated by the HNONSECS signal on the interface. This
signal indicates the fully attributed security level. That is, after any system-level Implementation Defined
Attribution Unit (IDAU), S-AHB accesses are not passed through or checked against the processor

d The value of n depends on the configured TCM size.

9 Memory system
9.6 S-AHB interface

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

9-189

Non-Confidential

IDAU or Security Attribution Unit (SAU). The TCM security gate can be used to control access to the
TCM based on the transaction security level.

 Note

• INCR is an incrementing burst, where the address for each transfer in the burst is an increment of the
address for the previous transfer.

• For more information on burst types, see the Arm® AMBA® 5 AHB Protocol Specification.

For more information on TCM security gating, see 8.8 TCM and P-AHB security access control
on page 8-165.

9.6.3 S-AHB interface arbitration

In normal operation, there is enough bandwidth across the four Data Tightly Coupled Memory (DTCM)
interfaces to allow accesses from software and the Slave AHB (S-AHB) interface to sustain their
maximum throughput and the Instruction Tightly Coupled Memory (ITCM) is normally only used for
instruction fetch. This means contention for resource should be rare and so the S-AHB is usually the
lowest priority with no impact on the performance of data transfer from the system to the TCM.

However, there might be cases when a source makes large numbers of accesses to the same TCM bank.
To prevent the S-AHB interface from getting less bandwidth, the priority of a request on the interface is
automatically boosted when there is contention with a software access. When this occurs, a round robin
scheme is used to share the bandwidth to a TCM bank roughly equally between S-AHB accesses and
software accesses. This also allows the TCM bandwidth to be split evenly between software and S-AHB
transactions if contention occurs.

9.6.4 S-AHB availability and low power states

The following conditions are required for the S-AHB to accept transactions:

• The processor power domain (PDCORE) is active and not in reset.
• CLKIN is running.

The S-AHB sub-system and the TCMs are in a separate internal clock domain to the rest of the
processor. However, they are in the same reset and power domains. Therefore, S-AHB transactions can
be performed without the main internal processor clock running. This allows TCM data transfers to be
offloaded to a low-power system agent while the processor is in any of its sleep modes. The TCM clock
is gated inside the processor to minimize the power used when no transactions are in progress from either
the processor or S-AHB. Asserting HTRANSS automatically starts the clock if it is gated and the clock
is stopped after all outstanding transactions have completed. For more information on HTRANSS, see
C.10 S-AHB interface signals on page Appx-C-392

 Note

From a system perspective, you are responsible to ensure that CLKIN is running when a transaction is
started on S-AHB by considering the requirements of any master components which can access the slave
interface, for example a DMA, and enabling system level clock gating accordingly. This might mean
overriding the current CLKINQACTIVE state if the processor is in sleep and so not requesting CLKIN.

9 Memory system
9.6 S-AHB interface

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

9-190

Non-Confidential

9.7 EPPB interface
The External Private Peripheral Bus (EPPB) interface is a 32-bit AMBA 4 APB interface designed for
integration with CoreSight debug and trace components.

It is used for data accesses to the memory region 0xE0040000-0xE00FEFFF. Instruction accesses to this
region cause a fault, and are permanently disabled in the Armv8.1‑M architecture.

The interface is not intended for general peripheral usage and has both higher latency and lower average
throughput than the Master AXI (M-AXI) or Peripheral AHB (P-AHB) interfaces. Additionally, it has the
following limitations that make it unsuitable for general-purpose use:

• Only little-endian accesses are supported. This indicates that the processor endianness is ignored.
• All accesses are treated as Device transactions.
• Only aligned accesses are supported. Unaligned accesses to the EPPB interface cause an

UNALIGNED UsageFault.
• Exclusive accesses are not supported.
• Only Privileged accesses are supported. Unprivileged accesses take a BusFault exception.

Arm recommends that all non-debug peripherals are integrated on the M-AXI or P-AHB interface.

The EPPB interface can perform debugger-initiated transactions during processor reset. The EPPB
interface can also be extended to support interface protection between the processor and the interconnect.
For more information on interface protection, see 10.3 Interface protection behavior on page 10-219.

For more information, see 14.2.4 Debug during reset and before code execution commences
on page 14-263.

Additionally, for more information on EPPB peripherals, see 7.3 Private Peripheral Bus on page 7-148.

The EPPB interface is also used to transfer Nested Vectored Interrupt Controller (NVIC) state to an
External Wakeup Interrupt Controller (EWIC) on sleep entry and exit. For more information on EWIC
sleep entry and exit, see the Arm® Cortex®-M55 Processor Integration and Implementation Manual.

 Note

The Arm® Cortex®-M55 Processor Integration and Implementation Manual is a confidential document
that is only available to Cortex-M55 processor IP licensees.

9 Memory system
9.7 EPPB interface

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

9-191

Non-Confidential

9.8 TCM interfaces
The Tightly Coupled Memory (TCM) interfaces are tightly coupled into the processor for optimum
performance from fast on-chip memory.

The Cortex-M55 processor supports two separate interface groups:

ITCM
Single 32-bit interface that is intended for instruction memory based on SRAM or potentially
flash memory with system prefetch or acceleration.

DTCM
Four 32-bit interfaces intended for use with data memory that is expected to be based on SRAM.
The Cortex-M55 processor performs address filtering that is based on bits[3:2] of the address.
• Addresses with bit[3:2]=0b00 are performed on the D0TCM interface.
• Addresses with bit[3:2]=0b01 are performed on the D1TCM interface.
• Addresses with bit[3:2]=0b10 are performed on the D2TCM interface.
• Addresses with bit[3:2]=0b11 are performed on the D3TCM interface.

This configuration requires that the DTCM RAM is logically arranged into four separate address
banks. This allows:
• Up to 128 bits of total bandwidth for software reads and writes, and Direct Memory Access

(DMA) traffic through the Slave AHB (S-AHB) interface with a probabilistic reduction of
contention. This is essential for compute performance because the Cortex-M55 processor
can sustain a data throughput of 64 bits per cycle using the M-class Vector Extension (MVE)
instructions.

• A 64-bit bandwidth for contiguous accesses that are 32-bit aligned from the software and
DMA. A 64-bit bandwidth for contiguous accesses is essential for both overall performance
and interrupt latency.

• Dual-issuing of 32-bit (or lower) aligned read or write transactions to the DTCM from
software, where the two addresses do not contend. The MVE scatter gather load/store
instructions can generate these operations.

 Note

• The Cortex-M55 processor does not provide software control over address filtering.
• All TCM interfaces support wait and error response from external memory. For systems where

functional safety or Reliability, Availability, and Serviceability (RAS) are required, the Cortex-M55
processor also optionally supports a Single Error Correction and Double Error Detection (SECDED)
scheme that is based on the Error Correcting Code (ECC) for all accesses in the ITCM and DTCM
regions.

9.8.1 TCM configuration

The TCM interface has fixed and configurable parameters.

The base address of each TCM is fixed:

ITCM
0x00000000. This is the base address of the Code region.

DTCM
0x20000000. This is the base address of the SRAM region.

The following parameters can be separately controlled for each of the TCMs:

9 Memory system
9.8 TCM interfaces

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

9-192

Non-Confidential

Size External configuration input signals control the size of each TCM region. These signals can
only be changed at Cold reset. A maximum of 16MB for each TCM is supported. This implies
that the ITCM and DTCM are present entirely in the Code and SRAM regions of the memory
map respectively.

Enable An external input signal controls the TCM enable state at reset. During runtime the TCM can
be enabled and disabled using the ITCMCR and DTCMCR registers. Only privileged software
can modify these registers. If the Security Extension is implemented and AIRCR.BFHFNMINS
is zero, these registers are RAZ/WI from Non-secure state.

Alias The TCM controller can alias two logical addresses in the Code and SRAM regions onto the
ITC and DTCM interface respectively. This feature is used with the TCM security gate to
support fine-grain Secure and Non-secure regions in TCM memory. The alias bit in the logical
address can be configured from bit[24] to bit[28] using the external input signal
CFGMEMALIAS. This signal can only be changed at Cold reset.

 Note

• For more information on ITCMCR and DTCMCR registers, see 4.19 ITCMCR and DTCMCR, TCM
Control Registers on page 4-101.

• For more information on AIRCR, see the Arm®v8-M Architecture Reference Manual.
• Address aliasing and security gating are described in 8.8 TCM and P-AHB security access control

on page 8-165.

9.8.2 TCM transactions

TCM regions are implicitly Normal, Non-shareable, Non-cacheable memory.

For TCM memory regions, the Cortex-M55 processor:

• Ignores the Memory Protection Unit (MPU) memory type attributes that software assigns. The MPU
protection settings are always considered.

• Initiates Speculative reads. You must not assume that the scope of this speculation is fixed, or that it
can be definitively specified. For example, speculation might occur:
— For instruction prefetching, depending on the recent execution stream.
— For data reads that are performed before the Security or MPU protection settings are evaluated.

Although the access might be performed speculatively, an abort is subsequently raised if required
by the Security or MPU protection settings.

— For data reads in branch shadows.
• Buffers data on writes. Read transactions always hazard against outstanding buffered write

transactions to the same address. Writes transactions are never Speculative.

This behavior makes TCMs unsuitable for peripherals or any memory that has implications for read
transactions. Devices of this type must be integrated on the Peripheral AHB (P-AHB) or Master-AXI (M-
AXI) interfaces. These interfaces support the Device memory type. Additionally, the following accesses
are performed on the M-AXI interface instead of the TCM interfaces:
• Accesses to TCM regions when the relevant TCM is disabled.
• Accesses to the Code and SRAM regions above the TCM size limit, regardless of the TCM enable.

For code portability to other Arm processors or systems, Arm recommends that TCM regions are always
defined as Normal, Non-shareable memory in the MPU.

This is consistent with the default memory map attributes which apply when the MPU is either disabled
or not implemented.

9.8.3 Booting from TCM

The Cortex-M55 processor provides support for booting from volatile TCM memory that must be
initialized at reset. 

9 Memory system
9.8 TCM interfaces

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

9-193

Non-Confidential

The TCMs can be enabled out of reset without software programming. When the CPUWAIT signal that
stalls the core is HIGH out of reset, it prevents the processor from executing any software at the reset
vector. This allows the TCMs to be loaded by the system before the processor performs any TCM
accesses. When the TCM loading sequence is complete, this signal can be deasserted to allow the
processor to boot up. The Slave AHB (S-AHB) Direct Memory Access (DMA) interface is functional
when the CPUWAIT signal that stalls the core is asserted out of reset and can therefore service
transactions that the system initiates to load the TCMs. This avoids the need for external hardware on the
TCM interface for boot-time initialization.

 Note

Asserting CPUWAIT prevents the processor from reading the stack pointer (SP) or initial program
counter (PC) from the reset vector. Therefore, it is safe to load the vector table, code, and data into the
TCM. Alternatively, the external input signals INITSVTOR and INITNSVTOR can be used to set the
vector table address in non-volatile memory.

When ECC is enabled, before performing a byte, halfword, or unaligned word write to a TCM location
which causes an RMW, you must initialize the location first by performing an aligned word or
doubleword write to the location. Arm recommends that all TCM locations are initialized in this manner
by boot code.

9.8.4 Integration with flash memory

The Cortex-M55 processor can support the use of flash memory connected to Tightly Coupled Memory
(TCM). The Instruction Tightly Coupled Memory (ITCM) interface is most suitable for this arrangement.

The system must take into account the fetch bandwidth requirements for efficient code execution by the
processor. The processor can consume up to 32 bits of instruction data per cycle using both 32-bit Thumb
and 16-bit Thumb instructions, because the 16-bit Thumb instructions can be dual-issued. The overall
bandwidth is specific to your application but for general-purpose products, it must be assumed that 32
bits per cycle might be required. The instruction memory system needs to sustain this for maximum
performance. Arm recommends that if flash memory is integrated on the ITCM, some system cache or
Flash accelerator is used to meet these fetch bandwidth requirements.

Alternatively, flash memory can be integrated on the Master AXI (M-AXI) and the processor can be
configured to include an L1 instruction cache.

9.8.5 System access to TCM through the S-AHB DMA interface

The 64-bit Slave-AHB (S-AHB) interface provides system access to the Tightly Coupled Memory (TCM)
even when the Cortex-M55 processor is running.

Typically, this feature is used with a Direct Memory Access (DMA) controller to transfer data to and
from the processor for compute applications. Arbitration between processor access from software and S-
AHB requests to TCM is fully supported with no requirement for external TCM interface logic. For more
information on this arbitration logic, see 9.6.3 S-AHB interface arbitration on page 9-190.

There is no hardware support for concurrency control between software and S-AHB access to TCM.
Particularly, software exclusive accesses to TCM are only subject to the internal exclusive monitor which
does not take S-AHB accesses into consideration. This implies that the system must not perform S-AHB
accesses to any regions of TCM memory that are used with software exclusive accesses. However, it is
possible in software to share data coherently between the executing thread and the S-AHB interface. The
processor makes the following hardware guarantees to share data coherently:
• Appropriate writes to the TCM by software and S-AHB are never repeated. Store double instructions,

floating-point store multiple instructions storing double-precision values, M‑profile Vector Extension
(MVE) stores, and unaligned single stores can be repeated on exception return. Therefore, these

9 Memory system
9.8 TCM interfaces

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

9-194

Non-Confidential

transactions are exempt from this guarantee and unsuitable for software synchronization. The
processor guarantees that no single-copy-atomic access is repeated.

• Software and S-AHB writes to the TCM have a single point of serialization which is the TCM
Control Unit (TCU). This means that when a write is observable by one master, it is guaranteed to be
observable by the other.

• When a write on the S-AHB interface is accepted, the processor assumes responsibility for the
coherent observation of that data. Any read by any master interface that is initiated after the S-AHB
write completed returns the updated data.

 Note

• TCMs are implicitly Normal memory, therefore, write buffering is permitted.
• All TCU buffers are drained before the processor enters a low-power sleep state.

The following table shows an example software sequence for message passing between coherent
components in a system.

Table 9-7 Example software sequence for message passing between coherent components in a system

Data generator Data consumer

STR <data> LDR <valid>

STL <valid> : Store-release LOOP until <valid> set

LDA <data> : Load acquire

The S-AHB interface always performs writes in-order, and therefore, it does not need a barrier when
generating data into the TCM.

Interrupt-based synchronization is also possible in the Cortex-M55 processor when the S-AHB is the
data generator. In this model, an interrupt is generated when the last data transfer completes on the
external interface. The first instruction in the Interrupt Service Routine (ISR) is guaranteed to observe
any data items that are stored before or on this transfer. In this case, the completion of the last S-AHB
access is used to indicate global observability instead of performing a software read of the location and
waiting until it has been updated.

For more information on the S-AHB interface, see 9.6 S-AHB interface on page 9-188.

9 Memory system
9.8 TCM interfaces

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

9-195

Non-Confidential

9.9 Instruction and data cache
The Cortex-M55 processor supports optional, internal L1 Harvard caches for high performance operation
using on-chip or external memory.

Only the Master-AXI (M-AXI) interface accesses can be cached. TCM and Peripheral AHB (P-AHB)
interface transactions or accesses cannot be cached.

To enable software to appropriately deal with different levels of cache, the cache maintenance operations
can perform up to the following points:

Point of Unification (PoU)
This is the point at which the instruction and data caches can see the same copy of a memory
location. For the Cortex-M55 processor:
• When either an L1 data cache or an instruction cache is included, the PoU is always at the

system level, therefore, cache maintenance operations by address always act on the L1
cache. This is indicated by CLIDR.LoUU and CLIDR.LoUIS bitfields. This implies that the
data and instruction cache accesses are unified at the system level.

• When the data cache and instruction cache are excluded, the CLIDR.LoUU and
CLIDR.LoUIS bits are 0b000.

Point of Coherency (PoC)
This is the point at which all components that can access memory can see the same copy of a
memory location. For the Cortex-M55 processor:
• When either an L1 data cache or instruction cache is included, the PoC is always at the

system level, therefore, cache maintenance operations by address always act on the L1
cache. This is indicated by CLIDR.LoC bit field. This implies that data accesses are coherent
at the system level or beyond the system level.

• When the L1 data cache and instruction cache are excluded, the CLIDR.LoC bit is 0b000.

For more information on the CLIDR register, see 4.5.1 CLIDR, Cache Level ID Register on page 4-62.

Each cache can be independently configured within the following range:
• 4KB
• 8KB
• 16KB
• 32KB
• 64KB

Both the L1 instruction cache and data caches store the valid bits for each cache line in RAM. The
Cortex-M55 processor provides a hardware mechanism to invalidate the cache at reset. This mechanism
can be disabled to maintain valid cache state across reset, for example, where the RAM supports data
retention and the processor logic is reset after powerup.

The automatic invalidation sequence can take a large number of cycles and executes independently of the
instructions that are running on the processor. While the automatic invalidation sequence is in progress,
any cache maintenance operation is treated as a NOP and instructions and data accesses do not look up in
the cache. A DSB instruction waits for all automatic cache invalidate sequences to complete.

Software can also be used to perform a complete invalidation before enabling the data cache on reset.
The L1 instruction cache can be invalidated by a single instruction but the L1 data cache needs a loop
iterating through all entries.

The architecture specifies the cache maintenance operations which can be used by software. The Cortex-
M55 processor includes memory-mapped registers that allow software to examine the content of the
cache tag and data RAMs directly. This can be used for profiling or debugging the cache content. See
4.11 Direct cache access registers on page 4-75 for more information. The Direct Cache Access registers
are only accessible in Secure state. Therefore, there is no requirement to restrict cache readability. The
processor supports direct access to the cache RAM, therefore, access to the L1 instruction cache must

9 Memory system
9.9 Instruction and data cache

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

9-196

Non-Confidential

also be restricted. This can be achieved by asserting the external input signal LOCKDCAIC. For more
information on LOCKDCAIC, see C.27 Miscellaneous signals on page Appx-C-413.

Dirty data must be written back to external memory before the processor and RAM are powered down
because the L1 data cache supports write-back operation.

All cache RAMs are standard single-ported RAMs and can be generated using standard RAM compilers.

9.9.1 L1 data cache

The Cortex-M55 processor L1 data cache has the following features:

• It is a four-way set-associative cache.
• It has a cache line size of 32 bytes.
• It supports the following inner memory attributes and allocation hints for Non-shareable memory:

— Write-Back and Write-Through Cacheable.
— Read-Allocate and No Read-Allocate.
— Write-Allocate and No Write-Allocate.
— Transient and Non-transient. Clean cache lines that are associated with Transient memory are

prioritized for eviction over lines that are associated with Non-transient memory.

Allocation into the L1 data cache depends on inner memory attributes only.
• The outer and inner memory attributes are exported on the Master AXI (M-AXI) interface to support

further system-level caching.
• The Shareability attribute forces the region to be treated as Non-cacheable, regardless of the inner

memory attributes. This enables maintaining coherency at the system-level.

Software or a debugger might use the direct cache access registers to read the contents of RAM arrays.
The data cache is logically organized into two sets of RAM arrays. The dimensions of these RAM arrays
vary with the cache size and the inclusion of Error Correcting Code (ECC) logic.

Table 9-8 Data cache RAM organization

Array Number of
cache
instances

Data
stored

Write
granularity

Array width
excluding ECC
(bits)

Array width
including ECC
(bits)

Array depth
(number of entries)

4KB 64KB 4KB 64KB 4KB 64KB

Tag 4 Tag, valid,
line status

RAM word 26 22 33 29 32 512

Data 8 Data Byte 32 32 39 39 128 2048

No Write-Allocate mode

When a memory region is marked as Cacheable Write-Allocate, it normally allocates a cache line on a
write miss. However, there are some situations where allocating on writes is undesirable, such as
executing the C standard library memset() function to clear a large block of memory to a known value.

Writing large blocks of data like this can pollute the cache with unnecessary data. It can also waste power
and performance if a linefill must be performed only to discard the linefill data because the entire line
was subsequently written by the memset().

To prevent this, the Cortex-M55 data cache includes logic to automatically disable data cache allocation
on a write miss when streaming behavior is detected. When in this mode, writes are buffered and then
written directly out to the external system through the Master-AXI (M-AXI) interface even if they are
cacheable.

9 Memory system
9.9 Instruction and data cache

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

9-197

Non-Confidential

No Write-Allocate mode is enabled when the data cache detects that three consecutive linefills have been
overwritten by write data before being allocated to the cache. When enabled, the processor remains in No
Write-Allocate mode until either:
• A linefill is allocated where a store has not overwritten a read from the M-AXI interface.
• A linefill is started on an address which hazards on a buffered write or an outstanding write to the M-

AXI interface, indicating that it is unlikely to be related to the write data stream.

No Write-Allocate mode can be disabled by setting the ACTLR.DISNWAMODE to 1.

For more information on ACTLR, see 4.8 ACTLR, Auxiliary Control Register on page 4-68 .

9.9.2 L1 instruction cache

The Cortex-M55 processor L1 instruction cache has the following features.

• It is a two-way set-associative cache.
• It has a cache line size of 32 bytes.
• It does not allow writes to be performed, except for allocations.
• It only supports Read-Allocate for Inner Cacheable memory. Write-Allocate, Write-Back, Write-

Through, and Transient attribute hints are ignored. Allocation into the L1 data cache depends on inner
memory attributes only.

• Outer and inner memory attributes are exported on the Master-AXI (M-AXI) interface to support
further system-level caching.

• The Shareability attribute is ignored for instruction side accesses.
• The Inner Cacheability attributes are always respected.

Debug accesses from the Debug AHB (D-AHB) slave interface on the processor cannot read information
from the instruction cache.

Software or a debugger must use the direct cache access registers to read the contents of RAM arrays.
The instruction cache is logically organized into two sets of RAM arrays. The dimensions of these RAM
arrays vary with the cache size and the inclusion of Error Correcting Code (ECC) logic.

Table 9-9 Instruction cache RAM organization

Array Number of
cache
instances

Data stored Write
granularity

Array width
excluding ECC
(bits)

Array width
including ECC
(bits)

Array depth
(number of entries)

4KB 64KB 4KB 64KB 4KB 64KB

Tag 2 Tag and valid RAM word 22 18 28 24 64 1024

Data 2 Instructions RAM word 32 32 38 38 512 8192

9.9.3 Cache maintenance operations

All cache maintenance operations are performed through word stores to the Private Peripheral Bus
(PPB) space using the relevant PPB architectural registers.

The following table lists the cache maintenance operations that are associated with the relevant cache
type.

Table 9-10 Cache maintenance operations

Operation L1 cache type Register

Invalidate all Instruction cache ICIALLU

Invalidate by address Instruction cache and data cache ICIMVAU, DCIMVAC

Invalidate by set/way Data cache only DCISW

Clean by address Data cache only DCCMVAU, DCCMVAC

9 Memory system
9.9 Instruction and data cache

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

9-198

Non-Confidential

Table 9-10 Cache maintenance operations (continued)

Operation L1 cache type Register

Clean by set/way Data cache only DCCSW

Clean and invalidate by address Data cache only DCCIMVAC

Clean and invalidate by set/way Data cache only DCCISW

Cache maintenance operations require software to use barriers carefully to guarantee intended operation:

• A DMB instruction is required to guarantee that a cache maintenance operation does not affect previous
memory accesses.

• A DSB instruction is required to guarantee completion of all outstanding cache maintenance
operations and to guarantee that outstanding cache maintenance operations do not affect any
subsequent memory accesses.

• An ISB instruction is required to guarantee that the effects of all completed cache maintenance
operations are visible to subsequent instruction fetches.

For more information on these barrier instructions, see the Arm®v8-M Architecture Reference Manual.

Cache maintenance is required when changing security attribution of an address by either reprogramming
the Security Attribution Unit (SAU) or changing the external Implementation Defined Attribution Unit
(IDAU) mappings.

Cache maintenance operations are supported in both Secure and Non-secure state. Software operating in
Non-secure state cannot change secure data. Therefore, the behavior of some operations in Non-secure
state is:
• Data Cache Line Invalidate by Set/Way (DCISW) is promoted to Data Cache Line Clean and

Invalidate by Set/Way (DCCISW)
• Data Cache Line Invalidate by Address to Point of Coherency (PoC) (DCIMVAC) is promoted to

Data Cache Line Clean and Invalidate by Address to PoC (DCCIMVAC).
• Data Cache Line Invalidate by Address to Point of Unification (PoU) (DCIMVAU) is promoted to

Data Cache Line Clean and Invalidate by Address to PoU (DCCIMVAU).

The Non-secure invalidate operations are only promoted if the processor is configured with the Secure
extension.

There are no data cache maintenance operations that operate on the entire cache. However, the processor
provides a mechanism to automatically invalidate the cache at reset to initialize the structure before use.

Software can implement operations across the entire data cache by using the set/way operations to iterate
across all the sets and ways of the cache.

For more information on cache maintenance operations, see the Arm®v8-M Architecture Reference
Manual.

9.9.4 Automatic cache invalidation at reset

If the L1 caches move from an unpowered to a powered state, the caches are automatically invalidated.
Automatic invalidation is also initiated when the RAM power domain is powered up when the core
power domain is already active. For example, if the cache is re-enabled after it was shutdown to save
power when not in use.

A small counter starts at the bottom of the caches and invalidates one line at a time. Until the automatic
invalidation completes, any cache maintenance operation is treated as a NOP, no cache lookup or allocate
is performed, and all data accesses to Normal Cacheable memory are effectively treated as Non-
cacheable.

The automatic invalidation does not occur on transition to, or from, a cache retention state when
controlled by the P-Channel interface. Automatic cache invalidation at reset can be disabled through the
INITL1RSTDIS top-level input signal. Tying INITL1RSTDIS to 1, allows cache state to be maintained

9 Memory system
9.9 Instruction and data cache

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

9-199

Non-Confidential

across reset. This can be used when the processor integration does not support power control using the P-
Channel interface and the cache RAM supports state retention.

The invalidation sequence executes independently of the instructions running on the processor and is
significantly more efficient that the equivalent software sequence. The instruction and data cache are
invalidated in parallel with all cache ways invalidated simultaneously (two instruction cache lines and
four data cache lines per cycle).

 Note

• While the automatic invalidation sequence is in progress, any cache maintenance operation is treated
as a NOP and instruction and data accesses do not look up in the cache.

• If a DSB instruction is executed while the automatic invalidation sequence is in progress the
instruction stalls the processor until the sequence is completed. The DSB can be interrupted if an
exception of sufficient priority is pended and the automatic invalidation sequence continues. For
more information on the instruction, see the Arm®v8-M Architecture Reference Manual.

The L1 data cache supports write-back operation. Therefore, dirty data must be written back to external
memory before the processor and RAM are powered down. The processor provides register fields
MSCR.DCACTIVE and MSCR.DCCLEAN to carry out this procedure.

For more information on MSCR, see 4.13 MSCR, Memory System Control Register on page 4-87.

9.9.5 Cache coherency

The Cortex-M55 processor does not support hardware coherency for the L1 instruction and data caches.
Coherency can only be maintained at the system level.

The following table summarizes the cache coherency usage models that the L1 data cache supports. The
L1 instruction cache always follows the programmed Cacheability attributes and it is unaffected by the
Shareable attribute that is defined in MPU_RBAR.SH for the MPU region that is associated with an
address. For more information on MPU_RBAR, see the Arm®v8-M Architecture Reference Manual.

Further levels of caches are also supported.

For more information on further levels of caches, see 9.9.7 System cache support on page 9-201.

Table 9-11 Coherency usage models available on the Cortex-M55 processor

MPU_RBAR.SH Scenario description for L1 data cache

0b10, 0b11 • All shareable locations are treated as inner Non-cacheable.
• Programmed inner Cacheability attributes are ignored.
• The L1 data cache is transparent to software for these locations. Therefore, no software maintenance is

required to maintain coherency.

0b00 • Programmed inner Cacheability attributes are considered.
• Data is not shared with other agents. Therefore, coherency issues do not exist.

 Note

The L1 instruction cache always considers the programmed Cacheability attributes and the Shareability
attribute defined in MPU_RBAR.SH does not affect it.

9.9.6 Accessing the caches

If the Cortex-M55 processor has been configured to include an instruction or data cache, the CCR and
MSCR registers are responsible for controlling access to the caches.

The following register bits are responsible for cache access:

9 Memory system
9.9 Instruction and data cache

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

9-200

Non-Confidential

• CCR.DC and CCR.IC are cache enable bits for the instruction cache and data cache respectively. If
these bits are set to 0, then cache allocation is not allowed. Loads and stores can lookup and hit in the
cache. Cache maintenance operations and direct cache accesses work normally.

• MSCR.DCACTIVE and MSCR.ICACTIVE control cache access for the instruction cache and data
cache respectively. If these bits are set to 0, then load and stores do not lookup or hit in the cache, and
cache maintenance operations and direct cache accesses do not access the cache. These bits also serve
as a hint to the system to indicate that power can be removed from the cache.

The following table describes the different cache access scenarios.

Table 9-12 Cache access scenarios

CCR MSCR Cache access behavior

CCR.DC and CCR.IC are
set to 1

MSCR.DCACTIVE and
MSCR.ICACTIVE are set to 1

Normal operating mode. Unless PDCORE goes OFF resulting
in PDRAMS going to RET, the caches are powered up and
cache accesses can perform allocation and lookup.

CCR.DC and CCR.IC are
set to 0

MSCR.DCACTIVE and
MSCR.ICACTIVE are set to 1

Cache lookups are allowed, but cache allocation is not
permitted. This behavior is used to clean the cache before
powering down.

CCR.DC and CCR.IC are
set to 0 or 1

MSCR.DCACTIVE and
MSCR.ICACTIVE are set to 0

The caches are not being used, and they can be powered down.
The CCR.DC and CCR.IC bits are ignored.

 Note

• For more information on CCR, see the Arm®v8-M Architecture Reference Manual.
• For more information on MSCR, see 4.13 MSCR, Memory System Control Register on page 4-87.
• For more information on PDCORE and PDRAMS, see 6.1 Power domains on page 6-123.

9.9.7 System cache support

The following table shows the two optional levels of cache that the architecture implicitly defines.

Table 9-13 System cache levels supported by Armv8.1-M and Cortex-M55

Cache
level

Implemented by Controlled by

L1 Internal processor caches Inner Cacheability attributes

System
level (L2)

External L2 cache
controller integrated on the
Master AXI (M-AXI)
interface.

Outer Cacheability attributes
 Note

The Outer Cacheability attributes are exported, and the L2 cache controller uses the
ARCACHE and AWCACHE signals to determine these attributes. For more information
on these signals see, C.9 M-AXI interface signals on page Appx-C-388. The ARINNER
and AWINNER signals, which define the Inner Cacheability attributes can be used as hints
for the L2 cache controller to optimize allocation or caching policy. The ARINNER and
AWINNER signals can be used for debugging and monitoring purposes.

9.9.8 Direct cache access

The Cortex-M55 processor provides a mechanism to read the embedded RAM that the L1 data and
instruction caches use through IMPLEMENTATION DEFINED system registers. This functionality is useful to
investigate data coherency issues.

9 Memory system
9.9 Instruction and data cache

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

9-201

Non-Confidential

There are four direct cache access registers:
• The read registers, DCADCRR and DCAICRR, for the L1 data and instruction cache respectively.
• The location registers, DCADCLR and DCAICLR, for the L1 data and instruction cache respectively.

Direct cache access registers are only accessible from the Secure privileged state, unless the processor
core is configured without the Security Extension.

 Note

• For more information on DCADCRR and DCAICRR, see 4.11.2 DCAICRR and DCADCRR, Direct
Cache Access Read Registers on page 4-77.

• For more information on DCADCLR and DCAICLR, see 4.11.1 DCAICLR and DCADCLR, Direct
Cache Access Location Registers on page 4-75.

Reading a cache location
To read a cache location, the following steps must be performed in order:
1. The cache location to be read is written to the appropriate location register.
2. A read is then performed to the corresponding read register. This returns the data from that cache

RAM location.

The location that is specified must be a physical RAM address. The processor translates the cache way
into the appropriate RAM bank. The logical cache way and the physical RAM bank can be different
because of the internal organization of the cache.

Example code sequence for reading an instruction cache location

DCAICLR EQU 0xE001E214 ; Direct Cache Access Instruction cache Location Register
address
DCAICRR EQU 0xE001E204 ; Direct Cache Access Instruction cache Read Register address

MOV R3, 0x0 ; Start building the value to write into the DCAICLR
 ; Bit[0]==0b0, to target the tag RAM
LSL R0, #5
ORR R3, R0 ; Put the cache index into bits[14:5] of DCAICLR

LSL R1, #31
ORR R3, R1 ; Put the way into bit[31] of DCAICLR

LDR R11, =DCAICLR
STR R3, [R11] ; Write the location into DCAICLR

LDR R11, =DCAICRR
LDR R4, [R11] ; Read DCAICRR, R4 will be updated with the contents of the
Instruction cache tag
 ; at the supplied index and way

ECC errors

Direct accesses ignores all Error Correcting Code (ECC) errors and cannot be used to read the ECCs in
the RAMs.

Accessing a cache location

For details on the encoding of the DCADCRR and DCAICRR registers, see 4.11.2 DCAICRR and
DCADCRR, Direct Cache Access Read Registers on page 4-77.

When the data RAM is specified in either the DCADCLR[0] or DCAICLR[0], the data offset field
determines the word that is read which is in DCAxCLR[5:1].

When the tag RAM is specified in DACDCLR[0] or DCAICLR[0], the tag encoding that is written to
DCADCRR or DCAICRR for the data and instruction cache respectively is shown in the following
tables. Unused fields in the data register are written as zero.

9 Memory system
9.9 Instruction and data cache

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

9-202

Non-Confidential

Table 9-14 DCADCRR data format for data cache tag RAM reads

Cache size Status bits Valid bit Tag bits

4KB [25:23] [22] [21:0]

8KB [25:23] [22] [21:1]

16KB [25:23] [22] [21:2]

32KB [25:23] [22] [21:3]

64KB [25:23] [22] [21:4]

Table 9-15 DCAICRR data format for instruction cache tag RAM reads

Cache size Valid bit Tag bits

4KB [21] [20:0]

8KB [21] [20:1]

16KB [21] [20:2]

32KB [21] [20:3]

64KB [21] [20:4]

The STATUS bits in the data cache tag RAM contain information regarding:

• The clean/dirty status.
• Armv8.1‑M transient attribute for a valid cache line.
• Outer attributes for a valid cache line.

For more information on the STATUS bits, see 4.11.2 DCAICRR and DCADCRR, Direct Cache Access
Read Registers on page 4-77.

The following table describes the information that is stored in a state-dependent format.

Table 9-16 Data cache tag RAM status encoding

Status encoding Line Clean/Dirty Line Transient Outer attributes

0b000 Clean Yes UNKNOWN

0b001 Clean No UNKNOWN

0b010 Dirty No Non-cacheable

0b011 Dirty No Write-Back, Write-Allocate

0b100 Dirty No Write-Back, No Write-Allocate

0b101 Dirty No Write-Through, Write-Allocate

0b110 Dirty No Write-Through, No Write-Allocate

 Note

• 0b111 is reserved.
• Outer attributes are only valid for lines allocated to Inner write-back memory regions when they are

made dirty by a write.
• Only clean lines can be distinguished as transient. When a line has been written as dirty, it is evicted

from the cache by a subsequent line-fill with the same priority as other non-transient lines.

9 Memory system
9.9 Instruction and data cache

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

9-203

Non-Confidential

9.10 Store buffer
The memory system includes a Store Buffer (STB) to hold data before it is written to the cache RAMs or
passed to the Master-AXI (M-AXI) interface. All store instructions to Normal memory regions that are
not the TCM, PPB, or Peripheral-AHB (P-AHB) interface must pass through the STB.

The STB has five identical slots which hold the address, up to 64 bits of data, and other attributes of store
transactions.

9.10.1 Store buffer merging

The Store Buffer (STB) has merging capabilities. If a previous write access has updated an entry, other
write accesses on the same doubleword can merge into this entry. Merging is only possible for stores to
Normal memory.

Merging is not possible if:
• The access is to Device memory.
• The first access leaves the STB, either on the AXI or to the cache, before the second access reaches

the STB.
• There is an attribute or security mismatch.
• Either access is a Store-Exclusive.
• The second access is a Store-Release.

9.10.2 Store buffer behavior

The Store Buffer (STB) directs cacheable write requests to the cache controller and Master-AXI (M-AXI)
interface blocks.

Cache controller for cacheable write hits
The store buffer sends a cache lookup to check that the cache hits in the specified line, and if so,
the store buffer merges its data into the cache when the entry is drained.

M-AXI interface
For Non-cacheable, and Cacheable No Write-Allocate stores that miss in the L1 data cache, a
write access is performed on the M-AXI interface.
For Cacheable Write-Allocate stores that miss in the data cache, a linefill is started using either
of the two linefill buffers. The store data is sent to the linefill buffer first, and then the AXI data
is merged.

9.10.3 Store buffer ordering

The Store Buffer (STB) has ordering capabilities and must maintain ordering between some stores.

The STB ordering is compulsory for the following stores:
• All Device stores must occur in order with respect to other Device accesses.
• Stores after a load-acquire must occur after the load-acquire.
• Stores before a store-release must occur before the store-release.

9.10.4 Store buffer draining

The Store Buffer (STB) is drained of all stores to Device memory before a load is performed from Device
memory.

Slots that are Non-mergeable drain quickly because there is no benefit in being present in the STB.
Mergeable slots might wait for future stores to merge into them and reduce the number of cache writes
required.

A store buffer entry is drained if:
• There is a cache maintenance operation pending.
• There is a store that cannot enter the STB because of the current contents of the STB.

9 Memory system
9.10 Store buffer

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

9-204

Non-Confidential

• There is a DSB, DMB, ESB, WFI, or WFE instruction.
• There are debug events.

9 Memory system
9.10 Store buffer

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

9-205

Non-Confidential

9.11 Internal local exclusive access monitor
The Cortex-M55 processor implements an internal local exclusive access monitor that does not tag
addresses. This implies that the reservation granule is the entire memory.

The following figure shows the operation of the internal local exclusive monitor, including all
IMPLEMENTATION DEFINED options.

Exclusive accessOpen
access

LoadExcl
LoadExcl

StoreCLREX
StoreExcl

CLREX
StoreExcl

Store

Figure 9-1 Operation of internal exclusive access monitor

• LoadExcl are exclusive load instructions to addresses associated with the Tightly Coupled Memory
(TCM), Master AXI (M-AXI), and Peripheral AHB (P-AHB) interfaces which are either Non-
shareable or Shareable when the system supports a global exclusive monitor.

• Exclusive Load instructions which access addresses in the PPB region, including the Internal Private
Peripheral Bus (IPPB) registers and the External Private Peripheral Bus (EPPB) interface do not
update the internal exclusive monitor.

• Exclusive Load instructions do not update the internal exclusive monitor if these instructions are in
Shareable memory addresses associated with the M-AXI and P-AHB interfaces where a global
exclusive monitor is not supported.

• Exclusive Store instructions (StoreExcl) always clear the internal exclusive monitor.
• Slave AHB (S-AHB) accesses to TCM do not affect the internal local exclusive access monitor. There

is no hardware support for concurrency control between software and S-AHB to TCM.
• Memory Built-In Self Test (MBIST) and Debug AHB (D-AHB) accesses do not affect the internal

local exclusive access monitor.
• Exception entry and return are architecturally defined to clear the local exclusive access monitor.

9 Memory system
9.11 Internal local exclusive access monitor

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

9-206

Non-Confidential

9.12 M-AXI and P-AHB interaction with the global exclusive monitor
The Master AXI (M-AXI) and Peripheral AHB (P-AHB) interfaces support systems that include a global
exclusive monitor by using the interface signals that conform to the AMBA 5 AXI and AMBA 5 AHB
protocols respectively.

Accesses associated with load and store exclusive instructions are only handled as exclusive on the M-
AXI and P-AHB interfaces if they are either of the following:

• Device memory.
• Normal memory marked as Shareable in the associated Memory Protection Unit (MPU) region.

Exclusive accesses to Normal Shareable memory are always treated as Shareable Non-cacheable by the
processor.

Only the internal exclusive access monitor handles accesses to Non-shareable memory.

If an Exclusive read access is carried out to a region that does not support a global exclusive monitor, the
slave must respond in either of the following ways:
• An OKAY response for AXI.
• The HEXOKAYP response must be deasserted for P-AHB.

These responses do not result in the processor taking an exception, but they do ensure that the STREX
does not pass. This kind of livelock behavior can be trapped using a Watchdog unit.

 Note

The default memory map includes only Non-shareable Normal memory regions. Therefore, Cortex-M55
processor configurations without an MPU can only generate external exclusive load and store operations
from Device memory in either the Peripheral region, External Device region or Vendor_SYS region. For
more information on the memory map, see 7.1 Memory map on page 7-144

9 Memory system
9.12 M-AXI and P-AHB interaction with the global exclusive monitor

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

9-207

Non-Confidential

9.13 MBIST
The Cortex-M55 processor supports the production Memory Built-In Self-Test (MBIST) use model.

This allows memory testing during manufacture. This use model requires that a production MBIST
controller is inserted into the processor and connected to the internal MBIST interface. This can be
automatically carried out by EDA tools using configuration information that is delivered with the
processor.

 Note

The Cortex-M55 processor does not support an external MBIST interface.

9 Memory system
9.13 MBIST

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

9-208

Non-Confidential

Chapter 10
Reliability, Availability, and Serviceability Extension
support

This chapter describes the Reliability, Availability, and Serviceability (RAS) features implemented in the
Cortex-M55 processor.

It contains the following sections:
• 10.1 Cortex®-M55 processor implementation of RAS on page 10-210.
• 10.2 ECC memory protection behavior on page 10-212.
• 10.3 Interface protection behavior on page 10-219.
• 10.4 RAS memory barriers on page 10-221.
• 10.5 RAS Extension registers on page 10-222.

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

10-209

Non-Confidential

10.1 Cortex®-M55 processor implementation of RAS
The Cortex-M55 processor implements the Reliability, Availability, and Serviceability (RAS) features to
ensure correct operation in environments where functional safety and high-availability are critical. The
RAS Extension is always included in the Cortex-M55 processor, however most of the features are only
supported when Error Correcting Code (ECC) is configured and enabled.

The Cortex-M55 processor standardizes the software interface for fault detection and analysis by
supporting the RAS Extension. The RAS features supported are Error Correcting Code (ECC) for the L1
instruction cache and data cache, and TCMs.

Errors are reported to the system through:
• Output signals on the processor. For more information, see C.28 Error interface signals

on page Appx-C-417
• Error bank registers which can be used to mitigate hard errors that cannot be corrected by writing

back to the RAM. For more information, see 4.12 Error bank registers on page 4-81.
• The architectural registers that are defined by the RAS Extension. For more information, see

10.5 RAS Extension registers on page 10-222

Supported RAS architectural features
The RAS architecture contains:
• An Error Synchronization Barrier (ESB) instruction.
• An implicit ESB operation that is inserted after exception entry, exception return, and lazy stacking.

This feature is enabled by setting AIRCR.IESB. For more information on AIRCR, see the Arm®v8-M
Architecture Reference Manual.

• Two ID registers, ERRDEVID and ID_PFR0. For more information on these registers, see the
Arm®v8-M Architecture Reference Manual.

• A fault status register, RFSR, that is dedicated to RAS events. For more information on:
— RAS events, see 10.1.1 Cortex®-M55 RAS events on page 10-210.
— RFSR, see 10.5.7 RFSR, RAS Fault Status Register on page 10-229.

• A summary register indicating the nodes that have detected RAS events, ERRGSR. For more
information on this register, see 10.5.5 ERRGSR0, RAS Fault Group Status Register on page 10-228.
A node is a unit that can detect RAS events, and for Cortex-M55, a node is the entire processor.
Therefore, all RAS events are logged in the same location and the processor supports a single error
record.

• Each node has one set of Error Record Registers that can store information about the last RAS event
that the node has detected.

The RAS Error Record Registers are independent of the Error Bank Registers, although they have
some common behavior. Either or both of the register types can be used by system software that is
handling errors. However, for compatibility across other devices and systems that implement the RAS
Extension, the RAS programmers' model must be considered. The RAS Error Record Registers are
described in 10.5 RAS Extension registers on page 10-222 and the Error Bank Registers are described
in 4.12 Error bank registers on page 4-81.

 Tip

For a complete description of RAS error types and the information on RAS errors that are
produced at the node, see the Arm® Reliability, Availability, and Serviceability (RAS) Specification.

This section contains the following subsection:
• 10.1.1 Cortex®-M55 RAS events on page 10-210.

10.1.1 Cortex®-M55 RAS events

The Reliability, Availability, and Serviceability (RAS) Extension provides a standard model for recording
and reporting errors which might occur during the operation of a system.

10 Reliability, Availability, and Serviceability Extension support
10.1 Cortex®-M55 processor implementation of RAS

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

10-210

Non-Confidential

In the Cortex-M55 processor, the following are considered as RAS events:
• L1 instruction cache Error Correcting Code (ECC) errors.
• L1 data cache ECC errors.
• TCM ECC errors.

 Note

For more information on how these RAS events are detected and handled in the Cortex-M55 processor,
see 10.2 ECC memory protection behavior on page 10-212 to get an overview on how instruction cache,
data cache, and TCM ECC errors are handled.

10 Reliability, Availability, and Serviceability Extension support
10.1 Cortex®-M55 processor implementation of RAS

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

10-211

Non-Confidential

10.2 ECC memory protection behavior
Error Correcting Code (ECC) memory protection is optional. At implementation, you can configure the
Cortex-M55 processor to include ECC or not using the Verilog parameter, ECC. At Cold reset, if the
Cortex-M55 processor is configured with ECC, you can control whether ECC is enabled or not using the
static configuration signal INITECCEN. INITECCEN must only be changed when the processor is
powered down and in Cold or Warm reset.

ECC memory protection includes the following protection features:
• Data protection
• Address decoder protection, which involves detecting some of the errors that might occur because of

a failure in the address decoder in a RAM instance
• White noise protection, which involves protection against faults in the RAM that might also result in

no entry being selected and therefore, resulting in reading either all zeros or all ones

 Note

In the case when a fault in a RAM address decoder circuit results in the wrong RAM entry being selected
(typically contains data and ECC that are self-consistent), address decoder protection is not supported
and an ECC error is not generated. In this case, the wrong data is read from the RAM.

10.2.1 ECC schemes and error type terminology

The Cortex-M55 processor supports two Error Correcting Code (ECC) schemes to detect errors.

ECC schemes

SECDED
Single Error Correct Double Error Detect (SECDED) is used on the L1 data cache and TCM
RAMs. The SECDED scheme also provides information on how to correct the error.

DED
Double Error Detect (DED) is used on the L1 instruction cache RAMs. The DED scheme
detects single bit and double bit errors. The instruction cache does not need a correction
mechanism or scheme because the contents must always be consistent with external memory.
Therefore, you can always invalidate the instruction cache RAM to correct its contents.

In the Cortex-M55 processor, the ECC schemes can also support detection of some multi-bit errors where
more than two bits are incorrect. Where possible, RAM location information is included in the ECC code
to allow fault detection in the RAM decoder logic.

Error type terminology

The following error type terminology is used in this manual in the context of ECC:

Single-bit error
An error where only one bit of the data or ECC code is incorrect. These errors can usually be
corrected.

 Note

If an error bit is located in an ECC code field that is associated with the RAM location, this
indicates that the read has been carried out from the wrong address in the block. These errors are
multi-bit errors because the incorrect line has been read and all of the data is wrong.

Multi-bit error
An error in which more than one bit of data or ECC code is incorrect, or a single-bit error is
reported in an ECC code field that is associated with the RAM location.

10 Reliability, Availability, and Serviceability Extension support
10.2 ECC memory protection behavior

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

10-212

Non-Confidential

Corrected error (CE)
An ECC error that is detected by hardware and that hardware can correct. These are:
• Single bit errors, which can be corrected inline by flipping the faulty bit.
• All errors which can be corrected by refetching the data from external memory. This

includes all instruction cache errors and all data cache errors when the cache line can be
guaranteed to be clean.

For more information on Corrected errors (CEs), see Arm® Reliability, Availability, and
Serviceability (RAS) Specification.

Uncorrected error (UE)
An ECC error that cannot be corrected or deferred. These are multi-bit errors:
• From the TCMs.
• In an L1 dirty data cache data RAM where it is not guaranteed that the cache line is clean.

This includes the case where the ECC indicates that the RAM location is incorrect.
• In an L1 dirty data cache tag RAM where it is not guaranteed that the cache is clean. This

includes the case where the ECC indicates that the RAM location is incorrect.

For more information on Uncorrected errors (UEs), see Arm® Reliability, Availability, and
Serviceability (RAS) Specification.

10.2.2 Enabling ECC

If configured in the processor, Error Correcting Code (ECC) is enabled at reset using the input signal
INITECCEN.

For more information on INITECCEN, see C.4 Reset configuration signals on page Appx-C-381. For
more information on MSCR, see 4.13 MSCR, Memory System Control Register on page 4-87.

If ECC is enabled out of reset, the L1 cache must be invalidated before it is enabled to avoid spurious
ECC errors being detected because of a mismatch between the data and ECC in the RAM. Automatic
instruction and data cache invalidation can be enabled at reset by tying the input signal INITL1RSTDIS
LOW. For more information on INITL1RSTDIS, see C.4 Reset configuration signals
on page Appx-C-381. For more information on automatic cache invalidation, see 9.9.4 Automatic cache
invalidation at reset on page 9-199 .

 Note

Software can determine whether ECC is configured and enabled by reading MSCR.ECCEN. However,
software cannot enable ECC.

10.2.3 Error detection and processing

The Cortex-M55 processor core is responsible for error detection and processing. Multiple errors can
occur simultaneously, therefore, the processor prioritizes the error processing based on the source.

The following figure shows the prioritization of error processing that occurs in the order of decreasing
priority.

10 Reliability, Availability, and Serviceability Extension support
10.2 ECC memory protection behavior

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

10-213

Non-Confidential

Multi-bit or RAM
location TCM

errors

Single-bit TCM
errors

Multi-bit or RAM
location data

cache tag errors

Single-bit data
cache tag errors

Multi-bit or RAM
location data

cache data errors

Single bit data
cache data errors

Instruction cache
tag errors

Instruction cache
data errors

Highest priority

Lowest priority

Figure 10-1 Error processing prioritization

The errors in the Data Tightly Coupled Memory (DTCM) always have higher priority than the errors in
the Instruction Tightly Coupled Memory (ITCM).

Error processing in the L1 data and instruction cache

The cache tag and data RAMs are read during various operations that the Cortex-M55 processor carries
out.

The following table lists these operations.

Table 10-1 L1 cache RAM access classes

Access type RAM block read Notes

Instruction fetch Instruction tag and data
RAM

Two tag banks and up to two data banks

Load request Data tag and data RAM 4 tag banks and up to four data banks

Dirty line eviction Data RAM Entire line is read in parallel

Store buffer address read Data tag RAM Four tag banks

10 Reliability, Availability, and Serviceability Extension support
10.2 ECC memory protection behavior

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

10-214

Non-Confidential

Table 10-1 L1 cache RAM access classes (continued)

Access type RAM block read Notes

Store buffer data read Data data RAM Only used for Read-Modify-Write (RMW). RMW is used when the processor
writes a partial word when ECC is enabled. Store operations to a cache line,
which are less that 64 bits of data must read the data RAM to construct the
ECC to write back. This is based on the combination of the current and new
data. This read operation can result in an error being detected in the data RAM.

Data cache maintenance Tag RAM and data RAM Tag RAM read for address-based and clean operations.

Data RAM read for clean evictions.

The error processing operations are:

Instruction fetch
All Error Correcting Code (ECC) errors on instruction fetches are processed by invalidating the
tag RAM and refetching the line from external memory.

Corrected errors in the L1 data cache for load and store operations
Corrected errors (CE) in the L1 data cache that are detected on load, store, and cache
maintenance operations are processed by cleaning (if required) and invalidating the location.
For load operations, the data is corrected by replaying, which is refetching and executing the
instruction, causing a data cache miss on the invalidated location and reading the correct data
from external memory.
Store operations to Write-Allocate memory request a linefill after the error has been processed
and then merge the write data into the line as it is allocated to the cache. Store operations to a
line in the cache which write less than 64 bits of data must read the data RAM to construct the
ECC to write-back, based on a combination of the current and new data. This read operation can
result in an error being detected in the data RAM.

Cache maintenance operations

Data cache maintenance operations which operate on an address read all four tag RAMs to
check for a match. Instruction cache maintenance operations which operate on an address read
two tag RAMs to check for a match. Therefore, they can potentially detect multiple errors
unrelated to the requested location. The operation automatically cleans and invalidates all
detected errors in sequence. Cache maintenance invalidate by set/way location carried out by
Non-secure code always reads the tag because it might contain a dirty line associated with a
Secure address, and therefore, it must be cleaned to prevent data loss before being invalidated.
The behavior of cache maintenance operations in Non-secure state is described in 9.9.3 Cache
maintenance operations on page 9-198.

Dirty line eviction
In all cases where a line is evicted, the data RAM associated with the entire line is read out of
the cache. Any error detected in this read is corrected inline before being written back to the
external memory through the Master AXI (M-AXI) interface. If a multi-bit error is detected in
the data, the line is marked as poisoned and an imprecise BusFault is raised if
MSCR.EVECCFAULT is set.

Multiple errors are processed according to the priority listed in 10.2.3 Error detection and processing
on page 10-213 . Errors during load operations are handled by replaying the instruction, therefore, it is
possible for errors found in multiple cache ways to not be processed if the original lookup is not
repeated. For example, if the replayed load is interrupted.

10 Reliability, Availability, and Serviceability Extension support
10.2 ECC memory protection behavior

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

10-215

Non-Confidential

If data is lost because of a multi-bit ECC error, then an Imprecise BusFault is generated under the
following conditions:
• If a data cache eviction is performed, and a multi-bit error is detected in the data RAM and

MSCR.EVECCFAULT is set.
• If a data cache line is invalidated because of a multi-bit error detected in the Tag RAM, and

MSCR.DCCLEAN is not set.

Although loads do not directly cause BusFaults, they cause ECC maintenance behavior that triggers a
BusFault if data is lost. Additionally, if any load sees an ECC error the pipe is flushed, and the load
cannot progress until the ECC maintenance has finished. This guarantees that the core does not consume
erroneous data until an Imprecise BusFault has been generated.

A multi-bit error on the data cache tag when MSCR.DCCLEAN is asserted is always correctable as the
corresponding cache line cannot contain any dirty data.

A multi-bit error on the data cache data when MSCR.EVECCFAULT is deasserted is considered
Deferred (DE), because when that line is evicted, it is marked as poisoned. MSCR.EVECCFAULT being
deasserted implies that the system supports poisoning.

Any other case of multi-bit errors in the data cache is considered Uncorrected.

Error processing in the TCMs

Error detection and correction are carried out on each of the individual TCMS, that is, ITCM, D0TCM,
D1TCM, D2TCM, and D3TCM. Accesses to each of the interfaces are treated in the following way:

• Correctable errors detected during instruction fetch and load operations result in the read being
repeated either by refetching the instruction address or replaying the load instruction. The corrected
data is written back to the TCM.

• Correctable errors from read requests on the Slave AHB (S-AHB) are corrected inline and returned to
the system on completion of the transaction.

• Write requests to the TCM with an access size smaller than a complete word or with non-contiguous
bytes from S-AHB or M‑profile Vector Extension (MVE) operations must carry out a Read-Modify-
Write (RMW) sequence to the TCM. Correctable errors detected during the sequence are corrected
inline before the complete store word is written back to the TCM. Uncorrectable errors that are
detected on the read phase of an RMW sequence cause the write phase to be abandoned, and the
address is marked as poisoned in the error bank register. If the location is read again, a precise
BusFault is raised.

• When ECC is enabled, an instruction fetch or load operations might raise a precise BusFault
exception, if an Uncorrected error (UE) is detected.

 Note

When ECC is enabled, before performing a byte, halfword, or unaligned word write to a TCM location
which causes an RMW, you must initialize the location first by performing an aligned word or
doubleword write to the location. Arm recommends that all TCM locations are initialized in this manner
by boot code.

10.2.4 Error reporting

Error reporting is done using both registers and output signals.

Corrected errors

Corrected errors (CE) are always transparent to program flow. For more information on Corrected errors
(CEs), see Arm® Reliability, Availability, and Serviceability (RAS) Specification.

Uncorrected errors

Uncorrected errors (UEs) can result in a precise or imprecise BusFault. If an exception occurs, the source
of the error can be determined using the AFSR and RFSR.

10 Reliability, Availability, and Serviceability Extension support
10.2 ECC memory protection behavior

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

10-216

Non-Confidential

An imprecise BusFault is raised when a UE is found in the data cache data RAM during an eviction. If
the system supports poisoning, clearing MSCR.EVECCFAULT disables this error. An imprecise
BusFault is also raised when a UE is found in the data cache tag RAM and MCSR.DCCLEAN is not set
and this type of BusFault cannot be disabled. For more information on Uncorrected errors (UEs), see
Arm® Reliability, Availability, and Serviceability (RAS) Specification.

Errors detected on accesses to the TCMs never result in an imprecise BusFault.

Errors on the L1 instruction cache, L1 data cache, and TCMs

Errors detected in the L1 instruction cache, L1 data cache, and TCMs are reported on the following
external error interface output signals:

• DMEV0
• DMEV1
• DMEV2
• DMEL0[2:0]
• DMEL1[2:0]
• DMEI0[25:0]
• DMEI1[25:0]

Up to two errors can be reported on the same cycle. If multiple simultaneous errors occur, the priority
scheme for reporting is followed. The reporting priority is described in 10.2.3 Error detection and
processing on page 10-213. If up to two errors occur, the location and error class is indicated in DMELn
and DMEIn respectively, and DMEVn is asserted. If more than two errors occur, then only information
about the two highest priority errors are reported and DMEV2 is asserted to indicate further information
is not available.

For more information on the error interface signals, see C.28 Error interface signals
on page Appx-C-417

 Note

A particular ECC error might be reported multiple times on the DME bus.

Error bank registers

The processor includes internal error bank registers which do the following:

• Record the two most recent errors detected.
• Isolate the system from hard errors in the RAM which cannot be corrected by invalidating or

overwriting with correct data.

Two error bank registers are included for each source of errors:
• IEBR0 and IEBR1 for the L1 instruction cache.
• DEBR0 and DEBR1 for the L1 data cache.
• TEBR0, TEBR1, TEBRDATA0, and TEBRDATA1 that are shared across the ITCM and DTCM.

Error bank behavior

When an error bank contains a valid entry, any errors detected from the associated RAM address are
ignored.

L1 instruction and data cache

For the L1 instruction and data cache, the RAM addresses are masked on a cache lookup and no
longer used for allocating a line on a miss, isolating the processor from any potential hard errors
in the RAM which could cause incorrect behavior even if corrected data is written from external
memory.

10 Reliability, Availability, and Serviceability Extension support
10.2 ECC memory protection behavior

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

10-217

Non-Confidential

TCMs

For TCMs, each TCM error bank contains a 32-bit data register TEBRDATAn. When a single-
bit TCM fault is detected and the error bank is allocated, the corrected data is written to the data
register and the TCM memory. Any subsequent read returns the result directly from
TEBRDATAn. Writes to an address associated with a valid TCM Error bank is written to both
the TEBRDATAn and the TCM RAM to maintain consistency if the error bank is reallocated or
cleared by software. If a multi-bit error is detected on a read from the TCM RAM, the error
bank TEBRn.POISON field is set. When this field has been set any subsequent read requests to
the TCM which matches the error bank address, it will result in an error. A precise BusFault will
be raised for a load request from the processor and HRESP is asserted on a read on the Slave
AHB (S-AHB) interface.

Write accesses from store instructions or S-AHB to TCM that match an error bank register with
TEBRn.POISON set do not raise a fault. The TEBRn.POISON field is cleared by an aligned 32-
bit write to the address associated with the TCM error bank register. The behavior of the poison
feature in the TCM error bank register allows hard multi-bit errors to be patched by software.
For example:
1. Load from the TCM at an address detects a multi-bit Error Correcting Code (ECC) error.

TEBRn is allocated, TEBRn.POISON is set, and a fault is raised.
2. Patch write data of 32 bits is stored to the TCM at that address. TEBRDATAn and TCM

memory are updated and TEBRn.POISON is cleared.
3. Subsequent read and write transactions to that address are completed as expected.

If this sequence is applied, the failing TCM RAM entry is isolated and normal execution can
continue when the write is applied, even when the error is Hard and so cannot be cleared by a
patch directly to the RAM. Between steps 1 and 2, read and write transactions with size less
than a word continue to raise a fault because the address has not been patched.

The error bank registers are updated when an ECC error from the associated RAM controller has been
processed and remains valid until either a subsequent error is detected and processed, or a direct software
write to the bank is carried out to clear the data.

Invalid error banks are always allocated in preference to valid error banks. If both error banks contain
valid data new errors are allocated using a round-robin approach. Error banks can be locked from being
overwritten by writing to the LOCKED field in the error bank register.

The error bank registers are only cleared on Cold reset and retain their content on system reset.

10.2.5 Address decoder protection and white noise protection

The Cortex-M55 processor includes address decoder protection and white noise protection.

Address decoder protection
Address decoder protection detects some of the errors that might occur because of a failure in
the address decoder in a RAM instance. A fault in a RAM address decoder circuit might result
in the wrong RAM entry being selected, which typically contains data and ECC that are self-
consistent. Therefore, an ECC error on the data is not generated in this case, but the wrong data
is read from the RAM.

White noise protection
A fault in a RAM might result in no entry being selected, which might result in reading either all
zeros or all ones. Protection against such faults is white noise protection.

10 Reliability, Availability, and Serviceability Extension support
10.2 ECC memory protection behavior

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

10-218

Non-Confidential

10.3 Interface protection behavior
The Cortex-M55 processor includes parity-based interface protection on the Master AXI (M-AXI),
Peripheral AHB (P-AHB), External Private Peripheral Bus (EPPB) master interfaces and Slave AHB (S-
AHB), and Debug AHB (D-AHB), APB slave interfaces.

This feature is configured at implementation time by setting the configuration parameter BUSPROT. Each
interface includes side-channels on the control and data signals providing point-to-point protection
between the processor and the interconnect. Odd parity is used to protect signals, with all data and
address signals supported on an 8-bit granularity. The interface protection is designed to be used together
with other processor and system level features to provide functional safe operation.

Interface protection on AXI is a super-set of the data check feature. RDATACHK and WDATACHK are
considered part of the interface protection signal group. If interface protection is not configured in the
processor, RDATACHK is unused and WDATACHK is tied to 0. For more information on these
signals, see:
• C.9.1 M-AXI interface protection signals on page Appx-C-390.
• C.11.1 P-AHB interface protection signals on page Appx-C-394.
• C.13.1 EPPB interface protection signals on page Appx-C-398.
• C.10.1 S-AHB interface protection signals on page Appx-C-392.
• C.12 D-AHB interface signals on page Appx-C-396.

Parity is only checked for each signal on the interface when the signal is valid.

Table 10-2 Parity checking conditions

Interface Parity checking conditions

M-AXI For each channel (AR, AW, R, W, and B):

VALID and READY are always checked.

Channel payload signals are checked when VALID && READY.

P-AHB HTRANSP and HREADYP are always checked.

HADDRP, HBURSTP, HWRITEP, HSIZEP, HNONSECP, HEXCLP, HMASTERP, and HPROTP are checked
when HTRANSP!=IDLE.

HWDATAP is checked in data phase for write transfer.

HRDATAP is checked in data phase for read transfer.

HRESPP and HEXOKAYP are checked in data phase.

EPPB PSEL is always checked.

PADDR, PPROT, PWRITE, PENABLE are checked when PSEL == 1.

PREADY is checked when PSEL && PENABLE.

PWDATA and PSTRB are checked when PSEL && PWRITE.

PRDATA is checked when PSEL && PREADY && !PWRITE.

PSLVERR is checked when PSEL && PENABLE && PREADY.

10 Reliability, Availability, and Serviceability Extension support
10.3 Interface protection behavior

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

10-219

Non-Confidential

Table 10-2 Parity checking conditions (continued)

Interface Parity checking conditions

S-AHB HREADY, HREADYOUTS, HTRANSS, and HSELS are always checked.

HADDRS, HBURSTS, HWRITES, HSIZES, HNONSECS, and HPROTS are checked when HTRANSS != IDLE.

HWDATAS and HWSTRBS are checked in data phase for write transfer.

HRDATAS is checked in data phase for read transfer when HREADYOUTS ==1.

HRESPS is checked in data phase.

D-AHB HTRANSD and HREADYD are always checked.

HADDRD, HBURSTD, HWRITED, HSIZED, HNONSECD, and HPROTD are checked when HTRANSD!=IDLE.

HWDATAD is checked in data phase for write transfer.

HRDATAD is checked in data phase for read transfer.

HRESPD is checked in data phase.

Parity errors detected on the input signals on the interfaces are indicated to the system by a single-cycle
pulse on the processor output signal, DBE. For more information on this signal, see C.28 Error interface
signals on page Appx-C-417.

10 Reliability, Availability, and Serviceability Extension support
10.3 Interface protection behavior

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

10-220

Non-Confidential

10.4 RAS memory barriers
The Reliability, Availability, and Serviceability (RAS) extension supports the Error Synchronization
Barrier (ESB) instruction.

When this instruction is executed, all outstanding errors which have been detected but not reported are
visible to the software running on the system. In the Cortex-M55 processor, this instruction behaves in
the same way as the Data Synchronization Barrier (DSB) instruction. When executed, all outstanding
requests in the memory system are completed before the ESB instruction completes and any required
BusFault exceptions are raised.

The RAS architecture supports another Error Synchronization Barrier (ESB) operation, which is
implicit, that is, the Implicit Error Synchronization Barrier (IESB) operation. This feature is enabled by
setting the AIRCR.IESB bit. When enabled, a barrier is inserted after the end of any register stacking or
unstacking sequence associated with exception entry, exit, or floating-point register lazy stacking.
Execution is halted in the processor until all outstanding transactions, including the stacking sequence
have completed and any errors have been reported. The implicit barrier allows software to isolate an
error during context switches, with RAS events always being reported in the old context.

 Caution

Use IESB carefully because waiting for outstanding transactions to complete on exception entry can
increase interrupt latency, particularly if an AXI access associated with the interrupted context takes
many cycles to complete. The feature is disabled by default, with AIRCR.IESB set to 0 out of reset.

For more information on AIRCR, see the Arm®v8-M Architecture Reference Manual.

10 Reliability, Availability, and Serviceability Extension support
10.4 RAS memory barriers

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

10-221

Non-Confidential

10.5 RAS Extension registers
The Cortex-M55 processor implements the Reliability, Availability, and Serviceability (RAS) features to
ensure correct operation in environments where functional safety and high-availability are critical. The
RAS features can be controlled using the RAS Extension registers.

The following table lists the RAS Extension registers.

Table 10-3 RAS Extension registers

Address Name Type Reset value Description

0xE0005000 ERRFR0 RO 0x00000101
 Note

0x00000000, if the processor is not
configured with Error Correcting Code
(ECC).

10.5.1 ERRFR0, RAS Error Record Feature
Register on page 10-223

0xE0005008 ERRCTRL0 - - This register is RES0.

0xE0005010 ERRSTATUS0 RW UNKNOWN 10.5.2 ERRSTATUS0, RAS Error Record Primary
Status Register on page 10-223

0xE0005018 ERRADDR0 RO UNKNOWN 10.5.3 ERRADDR0 and ERRADDR20, RAS Error
Record Address Registers on page 10-225

0xE000501C ERRADDR20 RO UNKNOWN 10.5.3 ERRADDR0 and ERRADDR20, RAS Error
Record Address Registers on page 10-225

0xE0005020 ERRMISC00 - - This register is RES0.

0xE0005024 ERRMISC10 RO UNKNOWN 10.5.4 ERRMISC10, Error Record Miscellaneous
Register 10 on page 10-227

0xE0005028 ERRMISC20 - - This register is RES0.

0xE000502C ERRMISC30 - - This register is RES0.

0xE0005030 ERRMISC40 - - This register is RES0.

0xE0005034 ERRMISC50 - - This register is RES0.

0xE0005038 ERRMISC60 - - This register is RES0.

0xE000503C ERRMISC70 - - This register is RES0.

0xE0005E00 ERRGSR0 RO 0x00000000 10.5.5 ERRGSR0, RAS Fault Group Status
Register on page 10-228

0xE0005FC8 ERRDEVID RO 0x00000001
 Note

0x00000000, if the processor is not
configured with ECC.

10.5.6 ERRDEVID, RAS Error Record Device ID
Register on page 10-229

0xE000EF04 RFSR RW UNKNOWN 10.5.7 RFSR, RAS Fault Status Register
on page 10-229

10 Reliability, Availability, and Serviceability Extension support
10.5 RAS Extension registers

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

10-222

Non-Confidential

10.5.1 ERRFR0, RAS Error Record Feature Register

The Reliability, Availability, and Serviceability (RAS) ERRFR0 register describes the RAS features that
are supported.

Usage constraints
If the Security Extension is implemented and AIRCR.BFHFNMINS is zero, this register is
RAZ/WI from the Non-secure state.
If the processor is not configured with ECC, this register is RAZ/WI.
Unprivileged access results in a BusFault exception.

Configurations
This register is always implemented.

Attributes
This register is not banked between Security states. See 4.10 IMPLEMENTATION DEFINED
registers summary on page 4-72 for more information.

The following figure shows the ERRFR0 bit assignments.

31 02 1

Reserved

10 9 8 7

UE Reserved ED

Figure 10-2 ERRFR0 bit assignments

The following table describes the ERRFR0 bit assignments.

Table 10-4 ERRFR0 bit assignments

Field Name Type Description

[31:10] Reserved - RES0

[9:8] UE RO Enable Uncorrected error (UE) reporting as an external abort.

0b01 External abort response for uncorrected errors enabled.

This field indicates that uncorrectable errors cause BusFault exceptions.

[7:2] Reserved - RES0

[1:0] ED RO Error reporting and logging.

0b01 Reporting and logging always enabled.

This field indicates that logging and reporting of errors cannot be disabled.

10.5.2 ERRSTATUS0, RAS Error Record Primary Status Register

The Armv8.1‑M Reliability, Availability, and Serviceability (RAS) ERRSTATUS0 register contains
information about the Reliability, Availability, and Serviceability (RAS) event that is currently logged in
record 0.

Usage constraints
If the Security Extension is implemented and AIRCR.BFHFNMINS is zero, this register is
RAZ/WI from the Non-secure state.
If the processor is not configured with ECC, this register is RAZ/WI.
Unprivileged access results in a BusFault exception.

Configurations
This register is always implemented.

10 Reliability, Availability, and Serviceability Extension support
10.5 RAS Extension registers

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

10-223

Non-Confidential

Attributes
The register is not banked between Security states. The read/write behavior depends on the
individual fields. See 4.10 IMPLEMENTATION DEFINED registers summary on page 4-72 for
more information.

The following figure shows the ERRSTATUS0 bit assignments.

31 0282930 8 7

Reserved

Reserved

27 26 19

UET SERR

20212225 24 23

CE

DE
MV
OF
ER
UE
V
AV

Figure 10-3 ERRSTATUS0 bit assignments

The following table describes the ERRSTATUS0 bit assignments.

Table 10-5 ERRSTATUS0 bit assignments

Field Name Type Description

[31] AV RW Address valid.

0b0 ERRADDR0 is not valid.

0b1 ERRADDR0 is valid.

ERRADDR0 is valid only if:
• A precise BusFault caused the RAS event.
• A TCM Error Correcting Code (ECC) error caused the RAS event.

This bit is write-one-to-clear.

[30] V RW Status valid.

0b0 ERRSTATUS0 is not valid.

0b1 ERRSTATUS0 is valid.

This field is set to 1 on any RAS event.

[29] UE RW Uncorrected errors (UEs).

0b0 No uncorrectable errors detected.

0b1 At least one uncorrectable error is detected.

This bit is write-one-to-clear.

[28] ER RW Error reported.

0b0 No BusFault caused by RAS event has occurred.

0b1 BusFault caused by RAS event has occurred.

This bit is write-one-to-clear.

10 Reliability, Availability, and Serviceability Extension support
10.5 RAS Extension registers

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

10-224

Non-Confidential

Table 10-5 ERRSTATUS0 bit assignments (continued)

Field Name Type Description

[27] OF RW Overflow.

0b0 At most one RAS event has occurred since the last time ERRSTATUS0.V was cleared.

0b1 At least two RAS events have occurred since the last time ERRSTATUS.V was cleared. These
events might have occurred at the same time.

This bit is write-one-to-clear.

[26] MV RW Miscellaneous registers valid.

0b0 ERRMISC0 is not valid.

0b1 ERRMISC0 is valid.

This field is set to 1 on any RAS event.

This bit is write-one-to-clear.

[25:24] CE RW Corrected errors.

0b00 Corrected errors (CEs) have not been detected.

0b10 At least one Corrected error (CE) has been detected.

This bit is write-one-to-clear.

[23] DE RW Deferred errors.

0b0 No errors were deferred.

0b1 At least one error was deferred.

This bit is write-one-to-clear.

[22] Reserved - RES0.

[21:20] UET RW Uncorrectable error type.

0b00 Uncorrectable error, Uncontainable error (UC). This is for any uncorrectable error that caused
an asynchronous BusFault

0b11 Uncorrectable error, Recoverable error (UER). This is for an uncorrectable error that caused a
synchronous BusFault

These bits are write-one-to-clear (0b11)

[19:8] Reserved - RES0

[7:0] SERR RW Architecturally-defined primary error code.

0 No error.

2 TCM ECC error.

6 L1 data cache or instruction cache data RAM ECC error.

7 L1 data cache or instruction cache tag RAM ECC error.

The Cortex-M55 processor does not use the other values of this field.

10.5.3 ERRADDR0 and ERRADDR20, RAS Error Record Address Registers

The Reliability, Availability, and Serviceability (RAS) ERRADDR0 and ERRADDR20 registers contain
information about the address of the Reliability, Availability, and Serviceability (RAS) event in record 0.

10 Reliability, Availability, and Serviceability Extension support
10.5 RAS Extension registers

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

10-225

Non-Confidential

Usage constraints
If the Security Extension is implemented and AIRCR.BFHFNMINS is zero, this register is
RAZ/WI from the Non-secure state.
If the processor is not configured with ECC, this register is RAZ/WI.
Unprivileged access results in a BusFault exception.
This register ignores writes if ERRSTATUS0.AV is set to 1.

Configurations
These registers are always implemented.

Attributes
These registers are not banked between Security states. See 4.10 IMPLEMENTATION
DEFINED registers summary on page 4-72 for more information.

The following figure shows the ERRADDR0 bit assignments.

31 0

PADDR

Figure 10-4 ERRADDR0 bit assignments

The following table describes the ERRADDR0 bit assignments.

Table 10-6 ERRADDR0 bit assignments

Field Name Type Description

[31:0] PADDR RW Address of the RAS event. This is the address associated with the memory access that observed Error
Correcting Code (ECC) error. This field is not valid if ERRADDR20.AI is 0b1.

The following figure shows the ERRADDR20 bit assignments.

31 0

RES0

RES1
AI
SI
Reserved

30 29 28

Figure 10-5 ERRADDR20 bit assignments

The following table describes the ERRADDR20 bit assignments.

Table 10-7 ERRADDR20 bit assignments

Field Name Type Description

[31] Reserved - RES0

[30] SI RO Security information incorrect.

0b1 NS bit is not valid.

The security information is never guaranteed to be correct.

10 Reliability, Availability, and Serviceability Extension support
10.5 RAS Extension registers

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

10-226

Non-Confidential

Table 10-7 ERRADDR20 bit assignments (continued)

Field Name Type Description

[29] AI RO Address incorrect.

0b0 PADDR is valid.

0b1 PADDR is not valid.

PADDR is valid only if:
• The RAS event was a precise BusFault.
• The RAS event was associated with a TCM ECC error.

 Note

If software clears ERRSTATUS.AV, then ERRADDR20.AI is set to 0b1 to invalidate the address.

[28] Reserved - RES1

[27:0] Reserved - RES0

10.5.4 ERRMISC10, Error Record Miscellaneous Register 10

The ERRMISC10 register is an IMPLEMENTATION DEFINED error syndrome register for the event in record 0.

Usage constraints
If the Security Extension is implemented and AIRCR.BFHFNMINS is zero, this register is
RAZ/WI from the Non-secure state.
If the processor is not configured with Error Correcting Code (ECC), this register is RAZ/WI.
Unprivileged access results in a BusFault exception.

Configurations
This register is always implemented.

Attributes
This register is not banked between Security states. See 4.10 IMPLEMENTATION DEFINED
registers summary on page 4-72 for more information.

The following figure shows the ERRMISC10 bit assignments.

31 0

Reserved TYPE

12

Figure 10-6 ERRMISC10 bit assignments

10 Reliability, Availability, and Serviceability Extension support
10.5 RAS Extension registers

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

10-227

Non-Confidential

The following table describes the ERRMISC10 bit assignments.

Table 10-8 ERRMISC10 bit assignments

Field Name Type Description

[31:2] Reserved - RES0

[1:0] TYPE RO Indicates the type of Reliability, Availability, and Serviceability (RAS) event logged.

0b00 L1 instruction cache ECC.

0b01 L1 data cache ECC.

0b10 TCM ECC found by load or store executed by the processor.

0b11 TCM ECC found by access from Slave AHB (S-AHB).

 Note

In the Cortex-M55 processor, only ERRMISC10 is implemented. ERRMISC00 and ERRMISC20-
ERRMISC70 are RES0.

10.5.5 ERRGSR0, RAS Fault Group Status Register

The ERRGSR0 register summarizes the valid error records. The Cortex-M55 processor only supports
one error record, therefore, only one bit of ERRGSR is active.

Usage constraints
If the Security Extension is implemented and AIRCR.BFHFNMINS is zero, this register is
RAZ/WI from the Non-secure state.
If the processor is not configured with Error Correcting Code (ECC), this register is RAZ/WI.
Unprivileged access results in a BusFault exception.

Configurations
This register is always implemented.

Attributes
This register is not banked between Security states. See 4.10 IMPLEMENTATION DEFINED
registers summary on page 4-72 for more information.

The following figure shows the ERRGSR0 bit assignments.

31 0

Reserved

ERR0

1

Figure 10-7 ERRGSR0 bit assignments

The following table describes the ERRGSR0 bit assignments.

Table 10-9 ERRGSR0 bit assignments

Field Name Type Description

[31:1] Reserved - RES0

[0] ERR0 RO Error record 0 is valid.

10 Reliability, Availability, and Serviceability Extension support
10.5 RAS Extension registers

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

10-228

Non-Confidential

10.5.6 ERRDEVID, RAS Error Record Device ID Register

The Reliability, Availability, and Serviceability (RAS) ERRDEVID register contains the number of error
records that an implementation supports. The Cortex-M55 processor supports a single error record with
index 0 if Error Correcting Code (ECC) is configured or there are no error records.

Usage constraints
Unprivileged access results in a BusFault exception.
This register is accessible through unprivileged Debug AHB (D-AHB) debug requests when
either DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

Configurations
This register is always implemented.

Attributes
This register is not banked between Security states. See 4.10 IMPLEMENTATION DEFINED
registers summary on page 4-72 for more information.

The following figure shows the ERRDEVID bit assignments.

31 0

Reserved NUM

16 15

Figure 10-8 ERRDEVID bit assignments

The following table describes the ERRDEVID bit assignments.

Table 10-10 ERRDEVID bit assignments

Field Name Type Description

[31:16] Reserved - RES0

[15:0] NUM RO Maximum Error Record Index+1

0x0001 If ECC is configured, then one error record with index 0.

0x0000 If ECC is not configured, then there are no error record registers.

10.5.7 RFSR, RAS Fault Status Register

The RFSR reports the fault status of Reliability, Availability, and Serviceability (RAS) related faults from
Error Correcting Code (ECC) errors that are detected in the L1 instruction cache, data cache, and TCM.

Usage constraints
If the Security Extension is implemented and AIRCR.BFHFNMINS is zero, this register is
RAZ/WI from Non-secure state.
If the processor is not configured with Error Correcting Code (ECC), this register is RAZ/WI.
Unprivileged access results in a BusFault exception.

Configurations
This register is always implemented.

Attributes
This is register are not banked between Security states. See 4.10 IMPLEMENTATION
DEFINED registers summary on page 4-72 for more information.

The following figure shows the RFSR bit assignments.

10 Reliability, Availability, and Serviceability Extension support
10.5 RAS Extension registers

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

10-229

Non-Confidential

31 16 15 0

ReservedIS

30

VALID

1

UET

2

Figure 10-9 RFSR bit assignments

The following table describes the RFSR bit assignments.

Table 10-11 RFSR bit assignments

Bit Name Type Description

[31] Valid RW Indicates whether the register is valid.

[30:16] IS RW IMPLEMENTATION-DEFINED syndrome. Indicates the type of RAS exception that has occurred.

0x0 L1 instruction cache ECC.

0x1 L1 data cache ECC.

0x2 TCM ECC.

[15:2] Reserved - RES0.

[1:0] UET RW Error type.

0b00 Uncontainable error (UC). RAS exception is imprecise.

0b11 Recoverable error (UER). RAS exception is precise.

For more information on error types, see the 10.2.1 ECC schemes and error type terminology
on page 10-212.

10 Reliability, Availability, and Serviceability Extension support
10.5 RAS Extension registers

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

10-230

Non-Confidential

Chapter 11
Nested Vectored Interrupt Controller

This chapter describes the Nested Vectored Interrupt Controller (NVIC).

It contains the following sections:
• 11.1 NVIC features on page 11-232.
• 11.2 Registers associated with interrupt control and behavior on page 11-233.
• 11.3 NVIC register summary on page 11-234.
• 11.4 Software Interrupt Generation register summary on page 11-235.
• 11.5 SysTick Timer register summary on page 11-236.

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

11-231

Non-Confidential

11.1 NVIC features
The Cortex-M55 processor Nested Vectored Interrupt Controller (NVIC) is closely integrated with the
core to achieve low-latency interrupt processing.

The NVIC is responsible for:
• Maintaining the current execution priority of the Cortex-M55 processor.
• Maintaining the pending and active status of all exceptions that are supported.
• Invoking preemption when a pending exception has priority.
• Providing wakeup signals to wakeup the Cortex-M55 processor from deep sleep mode.
• Providing support to the Internal Wakeup Interrupt Controller (IWIC) and External Wakeup Interrupt

Controller (EWIC).
• Providing priority and exception information to other processor components.

The NVIC in the Cortex-M55 processor allows up to 496 exceptions, of which, 480 can be regular
external interrupts.

11 Nested Vectored Interrupt Controller
11.1 NVIC features

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

11-232

Non-Confidential

11.2 Registers associated with interrupt control and behavior
Registers associated with interrupt control and interrupt behavior are found in the following categories.

Table 11-1 Interrupt control and behavior registers

Register summary Registers Description

System control block • ICSR
• AIRCR
• SHPR1-3

4.1 System control register summary
on page 4-51

Implementation control block ICTR 4.7 Implementation control register
summary on page 4-67

Software Interrupt Generation STIR 11.4 Software Interrupt Generation register
summary on page 11-235

SysTick Timer • SYST_CSR
• SYST_RVR
• SYST_CVR
• SYST_CALIB

11.5 SysTick Timer register summary
on page 11-236

11 Nested Vectored Interrupt Controller
11.2 Registers associated with interrupt control and behavior

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

11-233

Non-Confidential

11.3 NVIC register summary
The Nested Vectored Interrupt Controller (NVIC) registers can be accesses through the Internal Private
Peripheral Bus (IPPB) interface. Each of the NVIC registers is 32 bits wide.

The NVIC_ISERn, NVIC_ICERn, NVIC_ISPRn, NVIC_ICPRn, NVIC_IABRn, and NVIC_IPRn
registers are not banked between Security states. If an interrupt is configured as Secure in the
NVIC_ITNSn register, any access to the corresponding NVIC_ISERn, NVIC_ICERn, NVIC_ISPRn,
NVIC_ICPRn, NVIC_IABRn, or NVIC_IPRn registers from Non-secure are treated as RAZ/WI.

For more information on the NVIC registers listed in the following table, see Arm®v8-M Architecture
Reference Manual.

Table 11-2 NVIC register summary

Address offset Name Type Reset value Description

0xE000E100-0xE000E13C NVIC_ISER0-
NVIC_ISER15

RW 0x00000000 Interrupt Set-Enable Registers

0xE000E180-0xE000E1BC NVIC_ICER0-
NVIC_ICER15

RW 0x00000000 Interrupt Clear-Enable Registers

0xE000E200-0xE000E23C NVIC_ISPR0-
NVIC_ISPR15

RW 0x00000000 Interrupt Set-Pending Registers

0xE000E280-0xE000E2BC NVIC_ICPR0-
NVIC_ICPR15

RW 0x00000000 Interrupt Clear-Pending Registers

0xE000E300-0xE000E33C NVIC_IABR0-
NVIC_IABR15

RO 0x00000000 Interrupt Active Bit Register

0xE000E380-0xE000E3BC NVIC_ITNS0-
NVIC_ITNS15

RW 0x00000000 Interrupt Target Non-secure Registers
 Note

These registers are Secure only. They are RAZ/WI
when accessed from Non-secure state.

0xE000E400-0xE000E5DC NVIC_IPR0-
NVIC_IPR119

RW 0x00000000 Interrupt Priority Registers

11 Nested Vectored Interrupt Controller
11.3 NVIC register summary

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

11-234

Non-Confidential

11.4 Software Interrupt Generation register summary
The following table shows the architecturally defined Software Interrupt Generation register.

Table 11-3 Software Interrupt Generation register summary

Address offset Name Type Reset value Description

0xE000EF00 STIR WO 0x00000000 Software Triggered Interrupt Register. For more information, see Arm®v8-M
Architecture Reference Manual.

11 Nested Vectored Interrupt Controller
11.4 Software Interrupt Generation register summary

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

11-235

Non-Confidential

11.5 SysTick Timer register summary
The following table shows the architecturally defined SysTick Timer registers.

 Note

For more information on the architectural registers listed in the following table, see the Arm®v8-M
Architecture Reference Manual.

Table 11-4 SysTick Timer register summary

Address offset Name Type Reset value Description

0xE000E010 SYST_CSR RW 0x00000000 SysTick Control and Status Register

0xE000E014 SYST_RVR RW 0x00000000 SysTick Reload Value Register

0xE000E018 SYST_CVR RW 0x00000000 SysTick Current Value Register

0xE000E01C SYST_CALIB RO 0x00000000 SysTick Calibration Value Register

11 Nested Vectored Interrupt Controller
11.5 SysTick Timer register summary

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

11-236

Non-Confidential

Chapter 12
External coprocessors

This chapter describes the interface and programmer's model for connecting and using external
coprocessors.

It contains the following sections:
• 12.1 External coprocessors features on page 12-238.
• 12.2 Operation on page 12-239.
• 12.3 Data transfer rates on page 12-240.
• 12.4 Coprocessor instruction restrictions on page 12-241.
• 12.5 Debug access to coprocessor registers usage constraints on page 12-242.
• 12.6 Exceptions and context switch on page 12-243.
• 12.7 Response to coprocessor errors on page 12-244.
• 12.8 Hazard between load and store instructions followed by coprocessor transactions

on page 12-245.

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

12-237

Non-Confidential

12.1 External coprocessors features
The Cortex-M55 processor supports an external coprocessor interface which allows the integration of
tightly coupled accelerator hardware with the processor. The programmers model allows software to
communicate with the hardware by using architectural coprocessor instructions.

The external coprocessor interface:
• Supports low-latency data transfer from the processor to and from the accelerator components.
• Provides a mechanism for you to extend the capabilities of the Cortex-M55 processor.
• Supports up to eight separate coprocessors, CP0-CP7, depending on your implementation. The

remaining coprocessor numbers, CP8-CP15, are reserved. CP10 and CP11 are always reserved for
floating-point or M‑profile Vector Extension (MVE) functionality. For more information, see the
Arm®v8-M Architecture Reference Manual. The Cortex-M55 processor system can configure which
coprocessor is included in Secure and Non-secure states.

12 External coprocessors
12.1 External coprocessors features

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

12-238

Non-Confidential

12.2 Operation
The external coprocessor interface provides control and data channels for up to eight separate
coprocessors. The external devices are provided with information about privilege and Security state of
the processor with the instruction type and associate register and operation fields that the architecture
defines. The following instruction types are supported:

• Register transfer from the Cortex-M55 processor to the coprocessor MCR, MCRR, MCR2, MCRR2.
• Register transfer from the coprocessor to the Cortex-M55 processor MRC, MRRC, MRC2, MRRC2.
• Data processing instructions CDP, CDP2.

The interface provides a handshake mechanism to indicate to the coprocessor that an instruction has been
committed in the processor and can no longer be interrupted. Additionally, it can stall the processor in a
way that it can always be interrupted (BUSYWAIT) and to indicate that an error has occurred while
waiting for an UNDEFINSTR UsageFault.

 Note

• The regular and extension forms of the coprocessor instructions for example, MCR and MCRR2, have the
same functionality but different encodings. The two encoding values differ by a single bit, bit [12].
For more information, see the Arm®v8-M Architecture Reference Manual.

• The MRC and MRC2 instructions support the transfer of APSR.NZVC flags when the processor register
field is set to PC, for example Rt == 0xF.

12 External coprocessors
12.2 Operation

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

12-239

Non-Confidential

12.3 Data transfer rates
The following table lists the ideal data transfer rates for the coprocessor interface. This means that the
coprocessor responds to an instruction immediately and does not BUSYWAIT. The ideal data transfer
rates are sustainable if the corresponding coprocessor instructions are executed consecutively.

Table 12-1 Ideal data transfer rates for the coprocessor interface

Instructions Direction Ideal data rate

MCR, MCR2 Processor to coprocessor 32 bits per cycle

MRC, MRC2 Coprocessor to processor 32 bits per cycle

MCRR, MCRR2 Processor to coprocessor 64 bits per cycle

MRRC, MRRC2 Coprocessor to processor 64 bits per cycle

12 External coprocessors
12.3 Data transfer rates

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

12-240

Non-Confidential

12.4 Coprocessor instruction restrictions
The following restrictions apply when the Cortex-M55 processor uses coprocessor instructions:

• The LDC(2) or STC(2) instructions are not supported. If these are included in software with the
<coproc> field set to a value between 0-7 and the coprocessor is present and enabled in the
appropriate fields in the CPACR or NSACR, the Cortex-M55 processor always attempts to take an
Undefined instruction (UNDEFINSTR) UsageFault exception.

• The processor register fields for data transfer instructions must not include the stack pointer (Rt =
0xD), this encoding is UNPREDICTABLE in the Armv8.1‑M architecture and results in an UNDEFINSTR
UsageFault exception in the Cortex-M55 processor if the coprocessor is present and enabled in the
CPACR or NSACR.

• If any coprocessor instruction is executed when the corresponding coprocessor is either not present or
disabled in the CPACR or NSACR, the Cortex-M55 processor always attempts to take a No
coprocessor (NOCP) UsageFault exception.

For more information on the CPACR and NSACR, see the Arm®v8-M Architecture Reference Manual.

12 External coprocessors
12.4 Coprocessor instruction restrictions

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

12-241

Non-Confidential

12.5 Debug access to coprocessor registers usage constraints
The Cortex-M55 processor does not support a mechanism to read and write registers located in external
coprocessors.

Arm recommends that you implement a coprocessor with a dedicated AHB or APB slave interface for
the system to access the registers. If the debug view of the coprocessor is located in the PPB region of
the memory map, you can use this interface to connect to the External Private Peripheral Bus (EPPB)
interface of the Cortex-M55 processor.

If Secure debug is disabled, you must ensure the Secure information in the coprocessors is protected and
not accessible when using a Non-secure debugger.

If the debug slave interface to the coprocessor is connected to the processor Master AXI (M-AXI) or
Peripheral AHB (P-AHB) master interfaces or the EPPB interface, you can use the ARPROT[1],
AWPROT[1], HNONSEC, and PPROT[2] signals on the M-AXI and P-AHB, and APB interfaces
respectively. This is because the security level of the debug requests routed through the processor from
the D-AHB interface are subject to the debug access and authentication checks.

If the coprocessor state is memory-mapped, then software can also access the information using load and
store instructions. If your implementation uses this functionality, you must ensure the appropriate barrier
instructions are included to guarantee ordering between coprocessor instructions and load/store
operations to the same state.

12 External coprocessors
12.5 Debug access to coprocessor registers usage constraints

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

12-242

Non-Confidential

12.6 Exceptions and context switch
The Cortex-M55 processor does not include support for automatic save and restore of coprocessor
registers on entry and exit to exceptions, unlike the internal processor integer and floating-point registers.
Any coprocessor state that must be maintained across a context switch must be carried out by the
software that is aware of the coprocessor requirements.

You must ensure that when the coprocessor contains Secure data, it cannot be accessed by software
running in a Non-secure exception handler.

12 External coprocessors
12.6 Exceptions and context switch

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

12-243

Non-Confidential

12.7 Response to coprocessor errors
The coprocessor must not rely on a synchronous exception that is taken when asserting a CPERROR
response to a coprocessor transaction, because the UNDEFINSTR UsageFault might be preempted by a
higher priority interrupt in the Cortex-M55 processor. There is no guarantee that there are no side effects
from the erroneous instruction.

12 External coprocessors
12.7 Response to coprocessor errors

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

12-244

Non-Confidential

12.8 Hazard between load and store instructions followed by coprocessor
transactions

A possible hazard exists when a load and store instruction is followed by coprocessor transactions.

To decouple the data side TCMWAIT input signal from the CPVALID output signal, a coprocessor
instruction following a load or store instruction the processor always stalls for a clock cycle after the load
or store completes.

This does not add any additional stall cycles to the data hazard that is already included in the most
common case where the result of a load is consumed by a coprocessor data transfer instruction.

12 External coprocessors
12.8 Hazard between load and store instructions followed by coprocessor transactions

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

12-245

Non-Confidential

Chapter 13
Floating-point and MVE support

This chapter describes the Extension Processing Unit (EPU), which controls floating-point and M-profile
Vector Extension (MVE) support.

It contains the following sections:
• 13.1 Floating-point and MVE operation on page 13-247.
• 13.2 Floating-point and MVE register summary on page 13-249.
• 13.3 FPDSCR and FPSCR register reset values on page 13-250.
• 13.4 Powering down the EPU on page 13-251.

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

13-246

Non-Confidential

13.1 Floating-point and MVE operation
The Extension Processing Unit (EPU) can be configured to perform floating-point and M‑profile Vector
Extension (MVE) operations.

Scalar floating-point operation
The Cortex-M55 processor can be configured to provide scalar half, single, and double-
precision floating-point operation. The floating-point operation is an implementation of the
scalar half, single, and double-precision variants of the Floating-point Extension, FPv5
architecture. Configuring the processor to include floating-point supports all half, single, and
double-precision data-processing instructions and data types described in the Arm®v8-M
Architecture Reference Manual.
The processor supports scalar half, single, and double-precision add, subtract, multiply, divide,
multiply and accumulate, and square root operations. The floating-point functionality that the
processor supports also provides conversions between fixed-point and floating-point data
formats, and floating-point constant instructions.

M-profile Vector Extension operation
The Cortex-M55 processor can be configured to provide MVE operation. The MVE
functionality that is supported depends on the inclusion of floating-point functionality.
• If floating-point functionality is not included, the processor can be configured to any of the

following:
— Not include MVE.
— Include the integer subset of MVE only (MVE-I). MVE-I operates on 8-bit, 16-bit, and

32-bit data types.

• If floating-point functionality is included, the processor can be configured to any of the
following:
— Not include MVE.
— Include the integer subset of MVE only (MVE-I). MVE-I operates on 8-bit, 16-bit, and

32-bit data types.
— Include the integer, half-precision, and single-precision floating-point MVE (MVE-F).

MVE-F operates on half-precision and single-precision floating-point values. MVE-F
also includes support for MVE-I.

Vector instructions operate on a fixed vector width of 128 bits. The lane width of an operation to
be performed is specified by the instruction that is being executed. And an element refers to the
data that is put into a lane. Multiple lanes can be executed per beat. There are four beats per
vector instruction.

For more information on the MVE extension and terminology, see Arm®v8-M Architecture
Reference Manual.

 Note

• The Cortex-M55 processor provides floating-point computation functionality included with the MVE
and Floating-point Extension, which is compliant with the ANSI/IEEE Std 754-2008, IEEE Standard
for Binary Floating-Point Arithmetic.

• The scalar Floating-point Extension can be implemented with or without M‑profile Vector Extension -
floating-point (MVE-F).

13.1.1 EPU views of the register bank

The Extension Processing Unit (EPU) provides an extension register file with registers that can be
viewed as:

• Thirty-two 32-bit single-word registers, S0-S31.
• Sixteen 64-bit doubleword registers, D0-D15.

13 Floating-point and MVE support
13.1 Floating-point and MVE operation

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

13-247

Non-Confidential

• Eight 128-bit vector registers, Q0-Q7.
• A combination of registers from these views.

13.1.2 Modes of operation

The Cortex-M55 processor supports the following modes of operation:

• Flush to-zero
• Half-precision flush to-zero
• Default NaN

For more information on these modes, see the Arm®v8-M Architecture Reference Manual.

13.1.3 Compliance with the IEEE 754 standard

The Cortex-M55 processor provides floating-point computation functionality included with the MVE
and Floating-point Extension, which is compliant with the ANSI/IEEE Std 754-2008, IEEE Standard for
Binary Floating-Point Arithmetic. No support code is required to achieve this compliance.

13.1.4 Exceptions

The Extension Processing Unit (EPU) sets the cumulative exception status flag in the FPSCR register as
required for each instruction, in accordance with the FPv5 architecture. The EPU does not support
exception traps.

The processor also has six output pins, each pin reflects the status of one of the cumulative exception
flags:
• Inexact result.
• The input is denormal.
• Overflow.
• Underflow.
• Divide-by-zero.
• Invalid operation

13 Floating-point and MVE support
13.1 Floating-point and MVE operation

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

13-248

Non-Confidential

13.2 Floating-point and MVE register summary
The Extension Processing Unit (EPU) has various registers that support floating-point and M-profile
Vector Extension (MVE) operations.

The following table shows a summary of the floating-point registers. These registers are described in the
Arm®v8-M Architecture Reference Manual.

 Note

FPCCR, FPCAR, and FPDSCR are banked between Security states.

Table 13-1 Floating-point and MVE register summary

Address Name Type Reset value Description

0xE000EF34 FPCCR RW 0xC0000004 Floating-point Context Control
Register (S)

0xE000EF38 FPCAR RW 0x00000000 Floating-point Context Address
Register (S)

0xE000EF3C FPDSCR RW See 13.3 FPDSCR and FPSCR register reset values
on page 13-250

Floating-point Default Status Control
Register (S)

This register is not
memory mapped

FPSCR RW Floating-point Status and Control
Register

0xE000EF40 MVFR0 RO Table 4-3 MVFR0, MVFR1, and MVFR2 reset
values on page 4-58

Media and VFP Feature Register 0

0xE000EF44 MVFR1 RO Media and VFP Feature Register 1

0xE000EF48 MVFR2 RO Media and VFP Feature Register 2

13 Floating-point and MVE support
13.2 Floating-point and MVE register summary

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

13-249

Non-Confidential

13.3 FPDSCR and FPSCR register reset values
The following table shows the reset values for FPDSCR and FPSCR depending on inclusion and
exclusion of floating-point and M-profile Vector Extension (MVE) functionality.

Table 13-2 FPDSCR and FPSCR reset values

Register name Reset value Floating-point and MVE
configuration

FPDSCR 0x00000000 Floating-point and MVE are not included.

0x00040000 Scalar half, single, and double-precision
floating-point is included.

MVE is not included.

Floating-point is not included.

Integer subset of MVE is included.

Scalar half, single, and double-precision
floating-point is included.

Integer subset of MVE is included.

Scalar half, single, and double-precision
floating-point is included.

Integer and half and single-precision
floating-point MVE is included.

FPSCR RES0 Floating-point and MVE are not included.

0x00040000 Scalar half, single, and double-precision
floating-point is included.

MVE is not included.

Floating-point is not included.

Integer subset of MVE is included.

Scalar half, single, and double-precision
floating-point is included.

Integer subset of MVE is included.

Scalar half, single, and double-precision
floating-point is included.

Integer and half and single-precision
floating-point MVE is included.

13 Floating-point and MVE support
13.3 FPDSCR and FPSCR register reset values

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

13-250

Non-Confidential

13.4 Powering down the EPU
Depending on your implementation, the Extension Processing Unit (EPU) can be in a separate power
domain, PDEPU. The way the EPU power domain is powered down depends on whether the EPU
domain includes state retention logic.

For more information on powering down the EPU, see 6.7 PDEPU low-power requirements
on page 6-136.

13 Floating-point and MVE support
13.4 Powering down the EPU

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

13-251

Non-Confidential

Chapter 14
Debug

This chapter describes the debug system.

It contains the following sections:
• 14.1 Debug functionality on page 14-253.
• 14.2 D-AHB interface on page 14-259.

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

14-252

Non-Confidential

14.1 Debug functionality
The Cortex-M55 processor debug functionality includes Armv8‑M, Armv8.1‑M, and CoreSight features
that are designed to support debug and trace of software running on the processor.

These features include:
• A Breakpoint Unit (BPU) which can be configured to support four or eight hardware breakpoints.
• A Data Watchpoint and Trace (DWT) unit which can be configured to support two or four hardware

comparators that can match both address and data values.
• Support for the Digital Signal Processing (DSP) debug extension for analysis of signal processing

and compute-based software.
• Monitor mode exception for self-hosted debug.
• Full access to the memory map and registers through a 32-bit Debug AHB (D-AHB) interface.
• An Instrumentation Trace Macrocell (ITM) for software-driven printf debugging which can be

linked to the DWT.
• An implementation of the Performance Monitoring Unit (PMU).
• An Embedded Trace Macrocell (ETM) which supports complete instruction trace. It implements the

ETMv4.5 architecture, including support for tracing the M‑profile Vector Extension (MVE) features.
Data trace is not supported. For more information on the ETM, see the Arm® CoreSight™ ETM‑M55
Technical Reference Manual.

• Access control that prevents unauthorized debug or trace of Secure state or memory, including
support for the Unprivileged Debug Extension for fine-grain control of debug access to the processor.

 Note

• Except for debug monitor mode, all other debug and trace functionality on the Cortex-M55 processor
is optional.

• The Cortex-M55 processor is also supplied with an optional Trace Port Interface Unit (TPIU). For
more information, see Appendix B Trace Port Interface Unit on page Appx-B-349.

14.1.1 CoreSight™ discovery

Arm recommends that a debugger identifies and connects to the debug components using the CoreSight
debug infrastructure.

See the Arm® CoreSight™ System-on-Chip SoC-600 Technical Reference Manual for more information.

Arm recommends that a debugger follows the flow in the following figure to discover the components
present in the CoreSight debug infrastructure. In this case, for each CoreSight component in the
CoreSight system, a debugger reads:

• The peripheral and component ID registers.
• The DEVARCH and DEVTYPE registers.

14 Debug
14.1 Debug functionality

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

14-253

Non-Confidential

‡ Optional component.

Instrumentation trace
control

System Control Space
(SCS)

CoreSight ID

Processor CPUID

Debug control

‡ Instrumentation Trace
Macrocell (ITM)

Breakpoint control

‡ Breakpoint Unit (BPU)

Watchpoint control

‡ Data Watchpoint Unit (DWT)

‡ Embedded Trace Macrocell
(ETM)

Trace control

CoreSight
debug port

CoreSight access port

Base pointer

Processor ROM table

Pointers

CoreSight ID

CoreSight ID
DEVARCH
DEVTYPE

DEVARCH
DEVTYPE

CoreSight ID
DEVARCH
DEVTYPE

CoreSight ID

DEVARCH

DEVTYPE

CoreSight ID
DEVARCH
DEVTYPE

`

Event control

‡ Performance Monitoring Unit
(PMU)

CoreSight ID
DEVARCH
DEVTYPE

‡ Cross Trigger Interface (CTI)

CoreSight ID

CTI control

DEVARCH
DEVTYPE

Figure 14-1 CoreSight discovery

14 Debug
14.1 Debug functionality

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

14-254

Non-Confidential

To identify the Cortex-M55 processor and debug components within the CoreSight system, Arm
recommends that a debugger performs the following actions:
1. Locate and identify the Cortex-M55 processor ROM table using its CoreSight identification.
2. Follow the pointers in the Cortex-M55 processor ROM table to identify the presence of the following

components:
a. Cross Trigger Interface (CTI)
b. Embedded Trace Macrocell (ETM)
c. System Control Space (SCS)
d. Instrumentation Trace Macrocell (ITM)
e. Breakpoint Unit (BPU)
f. Data Watchpoint and Trace (DWT) unit
g. Performance Monitoring Unit (PMU)

14.1.2 Debugger actions for identifying the processor

When a debugger identifies the System Control Space (SCS) from its CoreSight identification, it can
identify the processor and its revision number from the CPUID register in the SCS at address
0xE000ED00.

A debugger cannot rely on the Cortex-M55 processor ROM table being the first ROM table encountered.
One or more system ROM tables might be included between the access port and the processor ROM
table if other CoreSight components are in the system. If a system ROM table is present, it can include a
unique identifier for the implementation.

14.1.3 Processor ROM table identification and entries

The ROM table identification registers and its values that the following table shows allow debuggers to
identify the processor and its debug capabilities.

The following table shows the CoreSight components that the Cortex-M55 processor ROM table points
to.

Table 14-1 Cortex-M55 processor ROM table components

Address Component Reset value Description

0xE00FF000 System Control Space
(SCS)

0xFFF0F003 See 14.1.4 Debug identification block
register summary on page 14-257

0xE00FF004 Data Watchpoint and
Trace (DWT)

• If DWT is configured,
0xFFF02003.

• If DWT is not implemented,
0xFFF02002

See Chapter 17 Data Watchpoint and Trace
on page 17-283

0xE00FF008 Breakpoint Unit (BPU) • If BPU is implemented,
0xFFF03003.

• If BPU is not implemented,
0xFFF03002.

See Chapter 19 Breakpoint Unit
on page 19-332

0xE00FF00C Instrumentation Trace
Macrocell (ITM)

• If ITM is implemented,
0xFFF01003.

• If ITM is not implemented,
0xFFF01002

See Chapter 16 Instrumentation Trace
Macrocell on page 16-274

0xE00FF010 Reserved 0x00000000 -

0xE00FF014 Embedded Trace
Macrocell (ETM)

• If ETM is implemented,
0xFFF42003.

• If ETM is not implemented,
0xFFF42002.

See the Arm® CoreSight™ ETM‑M55
Technical Reference Manual

14 Debug
14.1 Debug functionality

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

14-255

Non-Confidential

Table 14-1 Cortex-M55 processor ROM table components (continued)

Address Component Reset value Description

0xE00FF018 Performance
Monitoring Unit
(PMU)

• If PMU is implemented,
0xFFF03003.

• If PMU is not implemented,
0xFFF03002.

See Chapter 15 Performance Monitoring
Unit Extension on page 15-265

0xE00FF01C Cross Trigger
Interface (CTI)

• If CTI is implemented,
0xFFF43003.

• If CTI is not implemented,
0xFFF43002.

See Chapter 18 Cross Trigger Interface
on page 18-292

0xE00FF020 Reserved 0x00000000 -

0xE00FF024-0xE00FFFC8 Reserved TPIU not implemented,
0xFFF41002

-

0xE00FFFCC SYSTEM ACCESS 0x00000001 See the Arm® CoreSight™ Architecture
Specification v3.0

0xE00FFFD0-0xE00FFFEC Peripheral ID registers Table 14-2 Cortex-M55 processor ROM table identification values
on page 14-256.

0xE00FFFF0-0xE00FFFCC Component ID
registers

The Cortex-M55 processor ROM table entries point to the debug components of the processor. The offset
for each entry is the offset of that component from the ROM table base address, 0xE00FF000.

See the Arm® CoreSight™ Architecture Specification v3.0 for more information about the ROM table ID
and component registers, and access types.

Table 14-2 Cortex-M55 processor ROM table identification values

Address Name Type Reset value Description

0xE00FFFD0 PIDR4 RO 0x00000004 See Arm®v8-M Architecture Reference Manual for more information.
0xE00FFFD4 PIDR5 RO 0x00000000

0xE00FFFD8 PIDR6 RO 0x00000000

0xE00FFFDC PIDR7 RO 0x00000000

0xE00FFFE0 PIDR0 RO 0x000000D2

0xE00FFFE4 PIDR1 RO 0x000000B4

0xE00FFFE8 PIDR2 RO 0x0000000B

0xE00FFFEC PIDR3 RO 0x00000000

0xE00FFFF0 CIDR0 RO 0x0000000D

0xE00FFFF4 CIDR1 RO 0x00000010

0xE00FFFF8 CIDR2 RO 0x00000005

0xE00FFFFC CIDR3 RO 0x000000B1

These values for the Peripheral ID registers identify this as the Cortex-M55 processor ROM table. The
Component ID registers identify this as a CoreSight ROM table.

 Note

The Cortex-M55 processor ROM table only supports word-size transactions.

14 Debug
14.1 Debug functionality

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

14-256

Non-Confidential

14.1.4 Debug identification block register summary

The System Control Space (SCS) provides a set of debug identification registers which can be used for
debug-related peripheral and component identification.

The following table shows the debug identification registers and values for debugger detection. For more
information, see the Arm®v8-M Architecture Reference Manual.

Table 14-3 Debug identification values

Address offset Name Type Reset value Description

0xE000EFD0 DPIDR4 RO 0x00000004 SCS Peripheral Identification
Register 4

0xE000EFD4 DPIDR5 RO 0x00000000 SCS Peripheral Identification
Register 5

0xE000EFD8 DPIDR6 RO 0x00000000 SCS Peripheral Identification
Register 6

0xE000EFDC DPIDR7 RO 0x00000000 SCS Peripheral Identification
Register 7

0xE000EFE0 DPIDR0 RO 0x00000022 SCS Peripheral Identification
Register 0

0xE000EFE4 DPIDR1 RO 0x000000BD SCS Peripheral Identification
Register 1

0xE000EFE8 DPIDR2 RO 0x0000000B SCS Peripheral Identification
Register 2

0xE000EFEC DPIDR3 RO 0x00000000
 Note

Bits [7:4] and [3:0] are REVAND and CMOD
respectively.

The REVAND field indicates minor errata fixes specific
to this design, for example metal fixes after
implementation.

If the component is reusable IP, the CMOD field
indicates whether you have modified the behavior of the
component.

These values depend on the exact revision of the silicon
as documented in Arm® CoreSight™ Architecture
Specification v3.0

SCS Peripheral Identification
Register 3

0xE000EFF0 DCIDR0 RO 0x0000000D SCS Component Identification
Register 0

0xE000EFF4 DCIDR1 RO 0x00000090 SCS Component Identification
Register 1

0xE000EFF8 DCIDR2 RO 0x00000005 SCS Component Identification
Register 2

0xE000EFFC DCIDR3 RO 0x000000B1 SCS Component Identification
Register 3

0xE000EFBC DDEVARCH RO 0x47702A04 SCS Device Architecture Register

0xE000EFCC DDEVTYPE RO 0x00000000 SCS Device Type Register

14 Debug
14.1 Debug functionality

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

14-257

Non-Confidential

14.1.5 Debug register summary

The following table shows the debug registers, with address, name, type, reset value, and description
information for each register.

Each register is 32-bits wide. These registers are not banked between Security states or are banked
between Security states on a bit by bit basis. For more information on these registers, see the Arm®v8-M
Architecture Reference Manual

Table 14-4 Debug register summary

Address Name Type Reset value Description

0xE000ED30 DFSR RW 0x00000000

Cold reset only.

Debug Fault Status Register

0xE000EDF0 DHCSR RW 0x00000000 Debug Halting Control and Status Register

0xE000EDF4 DCRSR WO 0xXXXX00XX, bits
[15:7] are RES0

Debug Core Register Selector Register

0xE000EDF8 DCRDR RW UNKNOWN Debug Core Register Data Register

0xE000EDFC DEMCR RW 0x00000000 Debug Exception and Monitor Control
Register

0xE000EE04 DAUTHCTRL RW 0x00000000 Debug Authentication Control Register

0xE000EE08 DSCSR RW 0x00030000 Debug Security Control and Status
Register

0xE000EFB8 DAUTHSTATUS RO 0x00XX00XX Debug Authentication Status Register

14 Debug
14.1 Debug functionality

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

14-258

Non-Confidential

14.2 D-AHB interface
The 32-bit Debug AHB (D-AHB) interface implements the AMBA 5 AHB protocol. It can be used with a
CoreSight AHB-AP to provide debugger access to all processor control and debug resources, and a view
of memory that is consistent with that observed by load and store operations.

Accesses on the D-AHB interface are always little-endian.

Debugger accesses are distributed to the appropriate internal and external resource according to the
address of the request. Accesses on the D-AHB are reflected on the TCM, Master AXI (M-AXI),
Peripheral AHB (P-AHB), and External Private Peripheral Bus (EPPB) as appropriate.

14.2.1 Debug memory access

The Cortex-M55 processor implements external debug interaction through a 32-bit AMBA 5 AHB debug
interface.

This interface can be integrated with a suitable CoreSight AHB-AP interface and provides debugger
access to:

• All processor control and debug resources.
• A view of memory, which is consistent with the view that software load and store operations observe.

Accesses on the D-AHB interface always ignore the endianness attribute and do not pass through the
data swizzling logic in the processor used for load and store requests. Therefore, accesses to addresses
outside the PPB region observe data in the downstream memory endian format and accesses in the PPB
region observe data in little-endian format.
• Debug AHB (D-AHB) accesses undergo security attribution and security access checks. The debug

Security state depends on DHCSR.S_SDE and the D-AHB input signal, HNONSECD, which
indicates the security level that a debug access requests. If this signal is asserted, this indicates that
the transfer is Non-secure.

• D-AHB accesses are not checked against the Memory Protection Unit (MPU) for memory attribute
checks unless the Unprivileged Debug is enabled for a debug Security state.
— Unprivileged Debug is enabled for the secure debug state when DHCSR.S_SUIDE is set.
— Unprivileged Debug is enabled for the Non-secure debug state when DHCSR.S_NSUIDE is set.

• If unprivileged debug is enabled, then the access is always treated as unprivileged, regardless of the
value of the D-AHB signal bit HPROTD[1] and reported on the D-AHB interface.
— If the debug Security state is Secure, then the D-AHB access is subject to permission checks

based on regions that are defined in the Secure MPU.
— If the debug Security state is Non-secure, then the D-AHB access is subject to permission checks

based on regions that are defined in the Non-secure MPU.
• D-AHB accesses to the EPPB memory region (0xE0040000-0xE00FEFFF) must be marked as

privileged, HPROT[1] HIGH, unless unprivileged invasive Debug Access Port (DAP) access is
enabled by setting DAUTHCTRL.UIDAPEN for the debug security state. When
DAUTHCTRL.UIDAPEN is set all the peripherals in the EPPB region can be accessed by non-
privileged debug accesses through D-AHB except for the:
— External Wakeup Interrupt Controller (EWIC) located at 0xE0047000-0xE0047FFF.
— Reserved regions at 0xE0046000-0xE0046FFF and 0xE0048000-0xE0048FFF

These regions can only be accessed with Secure privileged requests. Any non-privileged accesses
returns an error on D-AHB.

• D-AHB accesses to the internal PPB region must be marked as privileged, unless unprivileged
invasive DAP access is enabled by setting DAUTHCTRL.UIDAPEN for the debug Security state.
— When DAUTHCTRL.UIDAPEN is set, many of the registers in the internal PPB region can be

accessed. The exceptions are those registers which are normally accessible by unprivileged code.
For example, some of the Instrumentation Trace Macrocell (ITM) registers and the STIR. For

14 Debug
14.2 D-AHB interface

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

14-259

Non-Confidential

more information on the ITM registers, see 16.2 ITM register summary on page 16-277. For more
information on STIR, see Arm®v8-M Architecture Reference Manual.

— When DAUTHCTRL.UIDAPEN is not set and the debug access is unprivileged, then almost all
accesses to the PPB registers get an error response. However, the registers which are normally
accessible by unprivileged code cannot be accessed. For example, some of the Instrumentation
Trace Macrocell (ITM) registers and the STIR. For more information on the ITM registers, see
16.2 ITM register summary on page 16-277. For more information on STIR, see Arm®v8-M
Architecture Reference Manual.

• The security of a debug transaction on one of the external interfaces is determined by all of the
following:
— The access control signals.
— The mapping of the address in the Security Attribution Unit (SAU) and Implementation Defined

Attribution Unit (IDAU).
— The internal debug state of the processor.
— The HNONSECD signal value that is associated with the D-AHB debug request.

 Note

• For more information on the DHCSR and DAUTHCTRL registers, see the Arm®v8-M Architecture
Reference Manual.

• For more information on all the AMBA 5 AHB-compliant D-AHB signals mentioned in this section,
see the Arm® AMBA® 5 AHB Protocol Specification.

14.2.2 Debugger access memory attributes and data cache access

The memory attributes associated with debugger accesses on Debug AHB (D-AHB) depend on the debug
access mode.

Unprivileged Debug is not enabled

If Unprivileged Debug is not enabled, debugger accesses are not subject to the memory attributes defined
by the Memory Protection Unit (MPU). Instead, the memory attributes used to perform a debugger
access are derived from the HPROTD signal on D-AHB. The attributes are used differently depending
on the memory region that is associated with the address.

The following table shows the behavior of debug accesses and dependency on HPROTD for both
internal and externally memory-mapped regions when Unprivileged Debug is not enabled.

14 Debug
14.2 D-AHB interface

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

14-260

Non-Confidential

Table 14-5 HPROTD attributes

Region and interface Description

CODE and SRAM
regions

TCM and Master AXI (M-
AXI) interfaces

Accesses to ITCM and DTCM
HPROTD[1] is passed through to ITCMPRIV and DTCMPRIV. HPROTD[0] is ignored.
ITCMMASTER and DTCMMASTER signals are asserted indicating a debugger access.

Accesses to M-AXI
If an access is not completed in the data cache:
• HPROTD[0] is ignored. All debugger accesses are performed with ARPROT[2] and

AWPROT[2] set to 0.
• HPROTD[6:1] is passed through to ARPROT[0], AWPROT[0], ARCACHE, and

AWCACHE.

ARMASTER and AWMASTER are asserted indicating a debugger access.

Peripheral, external
RAM/Device,
Vendor_SYS regions

M-AXI and Peripheral
AHB (P-AHB) interfaces

Accesses to P-AHB
HPROTD[0] is ignored. All debugger accesses are performed with HPROTP[0] set to 1.
HPROTD[6:1] is passed to P-AHB.
HMASTERP is asserted indicating debugger access.

Accesses to M-AXI
If an access is not completed in the data cache:
• HPROTD[0] is ignored. All debugger accesses are performed with ARPROT[2] and

AWPROT[2] set to 0.
• HPROTD[6:1] is passed through to ARPROT[0], AWPROT[0], ARCACHE, and

AWCACHE.

ARMASTER and AWMASTER are asserted indicating a debugger access.

 Note

The debugger access can complete in the data cache if the software has programmed the MPU to make
this region cacheable.

Internal Private
Peripheral Bus (IPPB)

• HPROTD[0] is ignored.
• HPROTD[1] is used for register-specific checks.
• HPROTD[6:2] is ignored.

PADDR31 is asserted indicating a debugger access.

Unprivileged D-AHB accesses to privileged registers return an ERROR response on HRESPD.

External Private
Peripheral Bus (EPPB)

• HPROT[0] is ignored.
• HPROT[1] is passed through to PPROT[0].
• PADDR31 is asserted which indicates a debugger access.

All debug read and write accesses marked as Normal cacheable and Non-shareable in HPROTD and
outside the address regions associated with ITCM and DTCM look up the data cache if it is configured in
the processor. If the address is present in the cache, for a read the data is returned without making any
request on M-AXI and for a write the cache line is updated. If the debug memory attribute is Write-
through, then the data is also be written on M-AXI. Debugger accesses never allocate lines to the cache
on a miss. Debug accesses marked as Device, Non-cacheable or Normal shareable in HPROTD do not
look up the data cache.

14 Debug
14.2 D-AHB interface

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

14-261

Non-Confidential

Unprivileged Debug is enabled

If Unprivileged Debug is enabled, the Memory Protection Unit (MPU) determines whether an access is
allowed according to the privilege set in HPROTD[1] and the memory attributes associated with the
memory access. The value HPROTD[6:2] is ignored.

Table 14-6 Memory attributes

Region and interface Description

CODE and SRAM regions

TCM and Master AXI (M-
AXI) interfaces

Accesses to ITCM and DTCM
HPROTD[1] is passed through to ITCMPRIV and DTCMPRIV.
ITCMMASTER and DTCMMASTER signals have been asserted indicating a debugger
access.

Accesses to M-AXI
If an access is not completed in the data cache:
• All debugger accesses are performed with ARPROT[2] and AWPROT[2] set to 0.
• The memory attributes are passed through to ARPROT[0], AWPROT[0], ARCACHE,

and AWCACHE.

ARMASTER and AWMASTER are asserted indicating a debugger access.

Peripheral, external RAM/
Device, Vendor_SYS regions

M-AXI and Peripheral AHB
(P-AHB) interfaces

Accesses to P-AHB
All debugger accesses are performed with HPROTP[0] set to 1.
The memory attributes are passed to P-AHB.
HMASTERP is asserted indicating debugger access.

Accesses to M-AXI
If an access is not completed in the data cache:
• All debugger accesses are performed with ARPROT[2] and AWPROT[2] set to 0.
• The memory attributes are passed through to ARPROT[0], AWPROT[0], ARCACHE,

and AWCACHE.

ARMASTER and AWMASTER are asserted indicating a debugger access.

Internal Private Peripheral
Bus (IPPB)

PADDR31 is asserted indicating a debugger access.

Unprivileged access in some registers is allowed when DAUTHCTRL.UIDAPEN is set. if
Unprivileged access is not allowed, an error response is returned on HRESPD.

External Private Peripheral
Bus (EPPB)

PADDR31 is asserted which indicates a debugger access.

14.2.3 Debug access security and attributes

Debugger accesses to memory and any memory-mapped registers are subject to the same security checks
as data accesses generated by software running on the processor, with the security attributes set as the
following:

• Request is Secure if the DHCSR.S_SDE register field is 1 indicating secure debug is enabled and
HNONSECD is LOW.

• Otherwise the request is Non-secure.

The state of DHCSR.S_SDE depends on the context of the debug request. If the processor is halted when
it was in Secure state, then DHCSR.S_SDE is 1, otherwise the value of the field depends on the secure
access control input signal. This implies access to the secure state and memory is only available if secure
invasive debug is permitted in the system.

In most of the memory regions, debugger accesses are subject to validation and attribution. This implies
that the final security state of an access on the Master AXI (M-AXI), Peripheral AHB (P-AHB), and

14 Debug
14.2 D-AHB interface

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

14-262

Non-Confidential

External Private Peripheral Bus (EPPB) interfaces are set by the Security Attribution Unit (SAU) in the
same way as software generated accesses. The SAU blocks memory accesses which do not have the
required permissions. For example, accesses to memory regions marked as Secure in the SAU if
DHCSR.S_SDE is 0 or HNONSECD is HIGH. This results in an error response on the Debug AHB (D-
AHB) interface, but unlike accesses originating from software, a SecureFault is not raised.

There are a number of address regions associated with the System Control Space (SCS) and debug
peripherals where the security state of the access is determined only by the HNONSECD signal and
DHCSR.S_SDE. For more information on these address regions, see 8.5 Memory regions not controlled
by SAU and IDAU on page 8-162.

If the security extensions are not included in the processor, DHCSR.S_SDE behaves as RAZ/WI,
therefore all debug accesses are considered to be Non-secure.

 Note

For more information on the DHCSR register, see the Arm®v8-M Architecture Reference Manual. For
more information on all the AMBA 5 AHB-compliant HNONSECD signal, see the Arm® AMBA® 5 AHB
Protocol Specification.

14.2.4 Debug during reset and before code execution commences

The Cortex-M55 processor supports access to the debug and trace resource from a debug agent
connected to the Debug AHB (D-AHB) interface when the device is in processor reset. This can be useful
for setting up the debug and trace environment before any code has executed on the processor.

The following table lists the memory regions which can be accessed during processor reset. Access
control and security level are determined in the same manner as debug accesses during code execution or
when halted based on the authentication signals and the default SAU/IDAU regions. Any component on
the EPPB, which cannot be accessed during reset, must ensure the APB PREADY and PSLVERR
signals are HIGH in response to a request from the processor.

Access to all other memory areas during processor reset is UNPREDICTABLE.

Table 14-7 Debug and trace registers accessible during processor reset

Memory address range Group Description

0xE000E000-0xE000E00F System Control and ID registers Includes the ICTR and ACTLR registers. For more information on
the ICTR register, see the Arm®v8-M Architecture Reference Manual
and for more information on the ACTLR register, see 4.8 ACTLR,
Auxiliary Control Register on page 4-68.

0xE000ED00-0xE000ED8F System Control Block (SCB) registers. For more information, see the
Arm®v8-M Architecture Reference Manual.

0xE000EDF0-0xE000EEFF Debug registers in the System Control Space (SCS). For more
information, see the Arm®v8-M Architecture Reference Manual.

0xE000EF00-0xE000EF8F Includes the STIR register. For more information, see the Arm®v8-M
Architecture Reference Manual.

0xE000E010-0xE00E01F SysTick Timer SysTick Timer registers. For more information, see the Arm®v8-M
Architecture Reference Manual.

0xE000E100-0xE000E7BF Nested Vectored Interrupt
Controller (NVIC)

11.3 NVIC register summary on page 11-234

0xE0000000-0xE0000FFF Instrumentation Trace Macrocell
(ITM)

16.2 ITM register summary on page 16-277

14 Debug
14.2 D-AHB interface

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

14-263

Non-Confidential

Table 14-7 Debug and trace registers accessible during processor reset (continued)

Memory address range Group Description

0xE0001000-0xE0001FFF Data Watchpoint and Trace
(DWT)

17.5 DWT register summary on page 17-290

0xE0002000-0xE0002FFF Breakpoint Unit (BPU) 19.2 BPU register summary on page 19-334

0xE0003000-0xE0003FFF Performance Monitoring Unit
(PMU)

Chapter 15 Performance Monitoring Unit Extension on page 15-265

0xE0041000-0xE0041FFF Embedded Trace Macrocell
(ETM)

For more information, see the Arm® CoreSight™ ETM‑M55 Technical
Reference Manual

0xE0042000-0xE0042FFF Cross Trigger Interface (CTI) 18.2 CTI register summary on page 18-296

0xE0046000-0xE0046FFF Reserved -

0xE0044000-0xE00FFFFF External Private Peripheral Bus
(EPPB)

Access directed to Cortex-M55 EPPB APB interface.

14.2.5 Advanced DSP debug capabilities

The Cortex-M55 processor supports the Digital Signal Processing (DSP) Debug Extension to provide
additional features for analyzing signal processing and compute software using the Data Watchpoint and
Trace (DWT) and Performance Monitoring Unit (PMU).

For more information on the DSP Debug Extension, see the Arm®v8-M Architecture Reference Manual
and include the following additional functionality to the processor.

The DSP debug capabilities supported are:

DWT value mask

Value matching using the DWT comparators, DWT_COMPn, is extended to use a mask register
DWT_VMASKn. This allows events to be selected based on sub-word values or arbitrary
bitfields. This is useful for analyzing data where only part of the data word is valid.

Halt request on PMU overflow

The processor can be configured to enter debug Halt when a PMU counter, which is configured
to generate an interrupt overflow. This can be used to set up a hardware watchpoint which is
triggered after a number of events have been observed in a system.

Extended PMU events

The DSP Debug Extension defines additional PMU events specific to M-profile debug and trace
operation TRCEXTOUT, CTI_TRIGOUT and DWT_CMPMATCH. For more information on
these events, see 15.2 PMU events on page 15-267.

14 Debug
14.2 D-AHB interface

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

14-264

Non-Confidential

Chapter 15
Performance Monitoring Unit Extension

This chapter describes the Performance Monitoring Unit (PMU) Extension.

It contains the following sections:
• 15.1 PMU features on page 15-266.
• 15.2 PMU events on page 15-267.
• 15.3 PMU register summary on page 15-272.

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

15-265

Non-Confidential

15.1 PMU features
The Cortex-M55 processor Data Watchpoint and Trace (DWT) implements the Performance Monitoring
Unit (PMU). This enables software to get information about events that are taking place in the processor
and can be used for performance analysis and system debug.

The PMU supports eight 16-bit event counters and one 32-bit cycle counter. Each event counter can
count one event from a list comprising both architectural and IMPLEMENTATION DEFINED events. For more
information on PMU events, see 15.2 PMU events on page 15-267. The PMU also supports a chain
function which allows the PMU to cascade two of the 16-bit counters into one 32-bit counter. Only odd
event counters support the chain feature. PMU counters increment if the appropriate bit in
PMU_CNTENSET register is set.

The Armv8.1‑M architecture specifies that operation of the PMU counters and DWT profiling counters
is mutually exclusive. The Cortex-M55 processor uses this requirement to share the state used for the
counters.

The PMU cycle counter PMU_CCNTR is an alias of the DWT_CYCCNT register. All derived functions
of the counter are available whenever either the DWT or the PMU enables the cycle counter. If the DWT
is included in the processor, DWT_CTRL.NOCYCCNT is RAZ.

Generating interrupts

If a counter is configured to generate an interrupt when it overflows, DEMCR.MON_PEND is set to 1 to
make a Debug Monitor exception pended with DFSR.PMU set to 1. The associated overflow bit
programmed by PMU_OVSSET and PMU_OVSCLR indicates which counter triggered the exception.
The interrupts are enabled if their corresponding bit programmed by PMU_INTENSET and
PMU_INTENCLR is set and DEMCR.MON_EN is 1.

Exporting trace

The PMU can export trace whenever the lower 8 bits of the counters overflow. The PMU issues an event
counter packet with the appropriate counter flag set to 1. This occurs on counter increment only, not on
software or debugger write. For each counter n, if the lower 8 bits of that counter overflows, the
associated OVn bit of the event counter packet is set. If multiple counters overflow during the same
period, multiple bits might be set.

The PMU can serve as an event source for the Cross Trigger Interface (CTI).

For more information on the registers mentioned in this section, see the Arm®v8-M Architecture
Reference Manual.

 Note

The Performance Monitoring Unit (PMU) is included if the Data Watchpoint and Trace (DWT) is
included in the processor. For more information on performance monitoring, see the Arm®v8.1‑M
Performance Monitoring User Guide Application Note.

15 Performance Monitoring Unit Extension
15.1 PMU features

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

15-266

Non-Confidential

15.2 PMU events
The following table shows the events that are generated and the numbers that the Performance
Monitoring Unit (PMU) uses to reference the events.

Table 15-1 PMU events

Event
number

Event mnemonic PMU
event
bus bit

Event name

0x0000 SW_INCR 0 Instruction architecturally executed, condition
code check pass, software increment

0x0001 L1I_CACHE_REFILL 1 L1 instruction cache linefill

0x0003 L1D_CACHE_REFILL 2 L1 data cache linefill

0x0004 L1D_CACHE 3 L1 data cache access

0x0006 LD_RETIRED 4 Instruction architecturally executed, condition
code check pass, load

0x0007 ST_RETIRED 5 Instruction architecturally executed, condition
code check pass, store

0x0008 INST_RETIRED 6 Instruction architecturally executed.

0x0009 EXC_TAKEN 7 Exception taken.

0x000A EXC_RETURN 8 Instruction architecturally executed, condition
code check pass, exception return.

0x000C PC_WRITE_RETIRED 9 Instruction architecturally executed, condition
code check pass, software change of the PC.

0x000D BR_IMMED_RETIRED 10 Instruction architecturally executed, immediate
branch.

0x000E BR_RETURN_RETIRED 11 Instruction architecturally executed, condition
code check pass, procedure return.

0x000F UNALIGNED_LDST_RETIRED 12 Instruction architecturally executed, condition
code check pass, unaligned load or store.

0x0011 CPU_CYCLES 14 Cycle.

0x0013 MEM_ACCESS 16 Data memory access.

0x0014 L1I_CACHE 17 L1 instruction cache access.

0x0015 L1D_CACHE_WB 18 L1 data cache write-back

0x0019 BUS_ACCESS 19 Any beat access to the M-AXI read interface, M-
AXI write interface and any access to P-AHB
interface

0x001A MEMORY_ERROR 20 ECC error for TCMs and caches.

0x001D BUS_CYCLES 22 Counts the number of cycles on which the M-
AXI interface is clocked.

15 Performance Monitoring Unit Extension
15.2 PMU events

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

15-267

Non-Confidential

Table 15-1 PMU events (continued)

Event
number

Event mnemonic PMU
event
bus bit

Event name

0x001E CHAIN 23 For an odd-numbered counter, increments when
an overflow occurs on the preceding even-
numbered counter on the same PE.

0x0021 BR_RETIRED 25 Instruction architecturally executed, branch.

0x0022 BR_MIS_PRED_RETIRED 26 Instruction architecturally executed,
mispredicted branch.

0x0023 STALL_FRONTEND 27 If there are no instructions available from the
fetch stage of the processor pipeline, the
processor considers the front-end of the
processor pipeline as being stalled.

0x0024 STALL_BACKEND 28 If there is an instruction available from the fetch
stage of the pipeline but it cannot be accepted by
the decode stage of the processor pipeline, the
processor considers the back-end of the
processor pipeline as being stalled.

0x0036 LL_CACHE_RD 29 L1 data cache read. For the Cortex-M55
processor, this event is the same as
L1_CACHE_RD.

0x0037 LL_CACHE_MISS_RD 30 L1 data cache read miss. For the Cortex-M55
processor, this event is the same as
L1D_CACHE_MISS_RD.

0x0039 L1D_CACHE_MISS_RD 31 L1 data cache read miss. For the Cortex-M55
processor, this event is the same as
LL_CACHE_MISS_RD.

0x003C STALL 34 No operation sent for execution.

0x0040 L1D_CACHE_RD 38 L1 data cache read. For the Cortex-M55
processor, this event is the same as
LL_CACHE_RD.

0x0100 LE_RETIRED 39 Loop end instruction architecturally executed,
entry registered in the LO_BRANCH_INFO
cache.

0x0108 LE_CANCEL 43 LO_BRANCH_INFO cache containing a valid
loop entry cleared while not in the last iteration
of the loop.

0x0114 SE_CALL_S 45 Call to secure function, resulting in security state
change.

0x0115 SE_CALL_NS 46 Call to Non-secure function, resulting in security
state change

0x0118 DWT_CMPMATCH0 47 Data Watchpoint and Trace (DWT) comparator 0
match

15 Performance Monitoring Unit Extension
15.2 PMU events

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

15-268

Non-Confidential

Table 15-1 PMU events (continued)

Event
number

Event mnemonic PMU
event
bus bit

Event name

0x0119 DWT_CMPMATCH1 48 DWT comparator 1 match

0x011A DWT_CMPMATCH2 49 DWT comparator 2 match

0x011B DWT_CMPMATCH3 50 DWT comparator 3 match

0x0200 MVE_INST_RETIRED 51 M‑profile Vector Extension (MVE) instruction
architecturally executed

0x0204 MVE_FP_RETIRED 53 MVE floating-point instruction architecturally
executed.

0x0208 MVE_FP_HP_RETIRED 55 MVE half-precision floating-point instruction
architecturally executed

0x020C MVE_FP_SP_RETIRED 57 MVE single-precision floating-point instruction
architecturally executed

0x0214 MVE_FP_MAC_RETIRED 59 MVE floating-point multiply or multiply
accumulate instruction architecturally executed

0x0224 MVE_INT_RETIRED 61 MVE integer instruction architecturally executed

0x0228 MVE_INT_MAC_RETIRED 63 MVE integer multiply or multiply-accumulate
instruction architecturally executed

0x0238 MVE_LDST_RETIRED 65 MVE load or store instruction architecturally
executed

0x023C MVE_LD_RETIRED 67 MVE load instruction architecturally executed

0x0240 MVE_ST_RETIRED 69 MVE store instruction architecturally executed

0x0244 MVE_LDST_CONTIG_RETIRED 71 MVE contiguous load or store instruction
architecturally executed

0x0248 MVE_LD_CONTIG_RETIRED 73 MVE contiguous load instruction architecturally
executed

0x024C MVE_ST_CONTIG_RETIRED 75 MVE contiguous store instruction architecturally
executed

0x0250 MVE_LDST_NONCONTIG_RETIRED 77 MVE non-contiguous load or store instruction
architecturally executed

0x0254 MVE_LD_NONCONTIG_RETIRED 79 MVE non-contiguous load instruction
architecturally executed

0x0258 MVE_ST_NONCONTIG_RETIRED 81 MVE non-contiguous store instruction
architecturally executed

0x025C MVE_LDST_MULTI_RETIRED 83 MVE memory instruction targeting multiple
registers architecturally executed

0x0260 MVE_LD_MULTI_RETIRED 85 MVE memory load instruction targeting multiple
registers architecturally executed

0x0264 MVE_ST_MULTI_RETIRED 87 MVE memory store instruction targeting
multiple registers architecturally executed

15 Performance Monitoring Unit Extension
15.2 PMU events

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

15-269

Non-Confidential

Table 15-1 PMU events (continued)

Event
number

Event mnemonic PMU
event
bus bit

Event name

0x028C MVE_LDST_UNALIGNED_RETIRED 89 MVE unaligned memory load or store instruction
architecturally executed

0x0290 MVE_LD_UNALIGNED_RETIRED 91 MVE unaligned load instruction architecturally
executed

0x0294 MVE_ST_UNALIGNED_RETIRED 93 MVE unaligned store instruction architecturally
executed

0x0298 MVE_LDST_UNALIGNED_NONCONTIG_RETIRED 95 MVE unaligned non-contiguous load or store
instruction architecturally executed

0x02A0 MVE_VREDUCE_RETIRED 97 MVE vector reduction instruction architecturally
executed

0x02A4 MVE_VREDUCE_FP_RETIRED 99 MVE floating-point vector reduction instruction
architecturally executed

0x02A8 MVE_VREDUCE_INT_RETIRED 101 MVE integer vector reduction instruction
architecturally executed

0x02B8 MVE_PRED 102 Cycles where one or more predicated beats
architecturally executed

0x02CC MVE_STALL 103 Stall cycles caused by an MVE instruction

0x02CD MVE_STALL_RESOURCE 104 Stall cycles caused by an MVE instruction
because of resource conflicts

0x02CE MVE_STALL_RESOURCE_MEM 105 resource conflicts

0x02CF MVE_STALL_RESOURCE_FP 106 Stall cycles caused by an MVE instruction
because of floating-point resource conflicts

0x02D0 MVE_STALL_RESOURCE_INT 107 Stall cycles caused by an MVE instruction
because of integer resource conflicts

0x02D3 MVE_STALL_BREAK 108 Stall cycles caused by an MVE chain break

0x02D4 MVE_STALL_DEPENDENCY 109 Stall cycles caused by MVE register dependency

0x4007 ITCM_ACCESS 110 Instruction Tightly Coupled Memory (ITCM)
access

0x4008 DTCM_ACCESS 111 Data Tightly Coupled Memory (ITCM) access

0x4010 TRCEXTOUT0 112 Embedded Trace Macrocell (ETM) external
output 0

0x4011 TRCEXTOUT1 113 ETM external output 1

0x4012 TRCEXTOUT2 114 ETM external output 2

0x4013 TRCEXTOUT3 115 ETM external output 3

0x4018 CTI_TRIGOUT4 116 Cross Trigger Interface (CTI) output trigger 4

0x4019 CTI_TRIGOUT5 117 CTI output trigger 5

0x401A CTI_TRIGOUT6 118 CTI output trigger 6

0x401B CTI_TRIGOUT7 119 CTI output trigger 7

15 Performance Monitoring Unit Extension
15.2 PMU events

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

15-270

Non-Confidential

Table 15-1 PMU events (continued)

Event
number

Event mnemonic PMU
event
bus bit

Event name

0xC000 ECC_ERR 120 One or more Error Correcting Code (ECC)
errors detected

0xC001 ECC_ERR_MBIT 121 One or more multi-bit ECC errors detected

0xC010 ECC_ERR_DCACHE 122 One or more ECC errors in the data cache

0xC011 ECC_ERR_ICACHE 123 One or more ECC errors in the instruction cache

0xC012 ECC_ERR_MBIT_DCACHE 124 One or more multi-bit ECC errors in the data
cache

0xC013 ECC_ERR_MBIT_ICACHE 125 One or more multi-bit ECC errors in the
instruction cache

0xC020 ECC_ERR_DTCM 126 One or more ECC errors in the DTCM

0xC021 ECC_ERR_ITCM 127 One or more ECC errors in the ITCM

0xC022 ECC_ERR_MBIT_DTCM 128 One or more multi-bit ECC errors in the DTCM

0xC023 ECC_ERR_MBIT_ITCM 129 One or more multi-bit ECC errors in the ITCM

0xC100 PF_LINEFILL 130 The prefetcher starts a linefill.

0xC101 PF_CANCEL 131 The prefetcher stops prefetching.

0xC102 PF_DROP_LINEFILL 132 A linefill triggered by the prefetcher has been
dropped because of lack of buffering.

0xC200 NWAMODE_ENTER 133 No-write allocate mode entry

0xC201 NWAMODE 134 Write-Allocate store is not allocated into the data
cache due to no-write-allocate mode

0xC300 SAHB_ACCESS 135 Read or write access on the S-AHB interface to
the TCM

0xC301 PAHB_ACCESS 136 Read or write access to the P-AHB write
interface

0xC302 AXI_WRITE_ACCESS 137 Any beat access to M-AXI write interface.

0xC303 AXI_READ_ACCESS 138 Any beat access to M-AXI read interface.

0xC400 DOSTIMEOUT_DOUBLE 140 Denial of Service timeout has fired twice and
caused buffers to drain to allow forward progress

0xC401 DOSTIMEOUT_TRIPLE 141 Denial of Service timeout has fired three times
and blocked the LSU to force forward progress

 Note

PMU event numbers 0-120 are architectural, and 121-141 are Cortex-M55-specific.

15 Performance Monitoring Unit Extension
15.2 PMU events

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

15-271

Non-Confidential

15.3 PMU register summary
The following table shows the Performance Monitoring Unit (PMU) registers. Each of these registers are
32 bits wide.

For more information on these registers, see the Arm®v8-M Architecture Reference Manual.

Table 15-2 PMU register summary

Address Name Type Reset value Description

0xE0003000-0xE000301C PMU_EVCNTR0-7 RW 0x0000XXXX Performance Monitoring Unit Event Counter Register

0xE000307C PMU_CCNTR RW UNKNOWN Performance Monitoring Unit Cycle Counter Register

0xE0003400-0xE000341C PMU_EVTYPER0-7 RW 0x0000XXXX Performance Monitoring Unit Event Type and Filter
Register

0xE000347C PMU_CCFILTR - - Reserved, RES0.

0xE0003C00 PMU_CNTENSET RW 0x00000000 Performance Monitoring Unit Count Enable Set Register

0xE0003C20 PMU_CNTENCLR RW 0x00000000 Performance Monitoring Unit Count Enable Clear
Register

0xE0003C40 PMU_INTENSET RW 0x00000000 Performance Monitoring Unit Interrupt Enable Set
Register

0xE0003C60 PMU_INTENCLR RW 0x00000000 Performance Monitoring Unit Interrupt Enable Clear
Register

0xE0003C80 PMU_OVSCLR RW 0x00000000 Performance Monitoring Unit Overflow Flag Status
Clear Register

0xE0003CA0 PMU_SWINC WO 0x00000000 Performance Monitoring Unit Software Increment
Register

0xE0003CC0 PMU_OVSSET RW 0x00000000 Performance Monitoring Unit Overflow Flag Status Set
Register

0xE0003E00 PMU_TYPE RO 0x00A05F08 Performance Monitoring Unit Type Register

0xE0003E04 PMU_CTRL RW 0x00000XXX Performance Monitoring Unit Control Register

0xE0003FB8 PMU_AUTHSTATUS RO 0x000000FE Performance Monitoring Unit Authentication Status
Register

0xE0003FBC PMU_DEVARCH RO 0x47700A06 Performance Monitoring Unit Device Architecture
Register

0xE0003FCC PMU_DEVTYPE RO 0x00000016 Performance Monitoring Unit Device Type Register

0xE0003FD0 PMU_PIDR4 RO 0x00000004 Performance Monitoring Unit Peripheral Identification
Register 4

0xE0003FE0 PMU_PIDR0 RO 0x00000022 Performance Monitoring Unit Peripheral Identification
Register 0

0xE0003FE4 PMU_PIDR1 RO 0x000000BD Performance Monitoring Unit Peripheral Identification
Register 1

0xE0003FE8 PMU_PIDR2 RO 0x0000000B Performance Monitoring Unit Peripheral Identification
Register 2

0xE0003FEC PMU_PIDR3 RO 0x00000000 Performance Monitoring Unit Peripheral Identification
Register 3

15 Performance Monitoring Unit Extension
15.3 PMU register summary

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

15-272

Non-Confidential

Table 15-2 PMU register summary (continued)

Address Name Type Reset value Description

0xE0003FF0 PMU_CIDR0 RO 0x0000000D Performance Monitoring Unit Component Identification
Register 0

0xE0003FF4 PMU_CIDR1 RO 0x00000090 Performance Monitoring Unit Component Identification
Register 1

0xE0003FF8 PMU_CIDR2 RO 0x00000005 Performance Monitoring Unit Component Identification
Register 2

0xE0003FFC PMU_CIDR3 RO 0x000000B1 Performance Monitoring Unit Component Identification
Register 3

15 Performance Monitoring Unit Extension
15.3 PMU register summary

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

15-273

Non-Confidential

Chapter 16
Instrumentation Trace Macrocell

This chapter describes the Instrumentation Trace Macrocell (ITM).

It contains the following sections:
• 16.1 ITM features on page 16-275.
• 16.2 ITM register summary on page 16-277.
• 16.3 ITM_TPR, ITM Trace Privilege Register on page 16-279.
• 16.4 ITM_ITCTRL, ITM Integration Mode Control Register on page 16-280.
• 16.5 ITM_ITWRITE, Integration Write Register on page 16-281.
• 16.6 ITM_ITREAD, Integration Read Register on page 16-282.

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

16-274

Non-Confidential

16.1 ITM features
The Cortex-M55 processor optionally implements the Instrumentation Trace Macrocell (ITM) which has
the following features.

• Trace data generation. This includes:
— printf style debugging using the stimulus port registers which generate instrumentation packets.
— Global and local timestamp packet generation.
— Synchronization packet generation.

• Arbitration between trace packets, that is, prioritizing multiple sources and selecting a single source
at a time.
— External Data Watchpoint and Trace (DWT) packets and internally generated packets.
— This arbitration is done using a fixed priority scheme of the order:

1. Synchronization requests.
2. Stimulus.
3. DWT.
4. Local and global timestamps.

• Buffering packets in the FIFO before sending them to a trace sink over an AMBA ATB interface,
which is typically a CoreSight Trace Port Interface Unit (TPIU).

• Trace flush requests from the ATB interface.

The ITM functionality is predominantly architecturally defined. However, there are some IMPLEMENTATION

SPECIFIC features.

For information on the architecturally-defined ITM functionality, see the Arm®v8-M Architecture
Reference Manual.

The IMPLEMENTATION SPECIFIC information for the Cortex-M55 ITM is detailed in this section.

Stimulus Ports

The ITM has 32 stimulus ports, the ITM_STIMn registers. This implies one ITM_TER register
is included and ITM_TPR[31:4] is RAZ/WI. For more information on these registers, see the
Arm®v8-M Architecture Reference Manual.

The Security Extension does not require that any configuration registers are banked. The only
requirement is that the trace is filtered appropriately. Therefore, the following apply.
• Both Security states share the same stimulus and configuration registers.
• No trace messages are generated when non-invasive debug is disabled.
• Secure trace messages are only generated when secure non-invasive debug is enabled.

DWT packets

The ITM arbitrates the various packets that are generated before inserting them into the FIFO.
The only exception to this are the global timestamps. Data Watchpoint and Trace (DWT)
packets are taken one at a time in the order that DWT arbitration determines. A bus similar to an
ATB bus is used between the DWT and ITM.

The DWT and ITM can generate ITM synchronization packets, global timestamps, and DSYNC
pulses for synchronizing the trace stream. These are generated when ITM_TCR.SYNCENA is
first enabled and then periodically generated using the DWT synchronization packet timer. For
more information on the ITM_TCR registers, see the Arm®v8-M Architecture Reference Manual.
The DSYNC pulse causes frame synchronization within the Cortex-M55 Trace Port Interface
Unit (TPIU) when connected to the DSYNC input on the unit. For more information on TPIU
frame synchronization, see the Arm® CoreSight™ Architecture Specification v3.0.

It is also possible for a downstream CoreSight trace component to control when synchronization
packets are generated by the ITM on ATB using the input SYNCREQI signal.

16 Instrumentation Trace Macrocell
16.1 ITM features

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

16-275

Non-Confidential

Local timestamp, LTS

The local timestamp counter is used to create a time delta between each LTS message.

Global timestamp, GTS
64-bit global timestamp packets can be generated from an external timer source.

Busy flag conditions
The ITM_TCR register includes BUSY status bit that indicates when the ITM is processing
events, including all internally generated and DWT packets.
For more information on the ITM_TCR register, see Arm®v8-M Architecture Reference Manual.

Stimulus disabled bit
On read transactions, the ITM_STIMn.FIFOREADY indicates whether the local stimulus FIFO
or buffer is ready to accept data. For more information on the ITM_STIMn register, see the
Arm®v8-M Architecture Reference Manual.

Processor stalling for guaranteed trace
In some cases, the processor might need to be stalled to ensure that no trace data is lost because
of FIFO overflow. This optional architectural feature can be enabled or disabled using the
ITCM_TCR.STALLENA field. Using this feature might affect processor performance.

16 Instrumentation Trace Macrocell
16.1 ITM features

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

16-276

Non-Confidential

16.2 ITM register summary
The following table shows the Instrumentation Trace Macrocell (ITM) registers whose implementation is
specific to this processor.

Other registers are described in the Arm®v8-M Architecture Reference Manual.

Depending on the implementation of your processor, the ITM registers might not be present. Any register
that is configured as not present reads as zero.

 Note

• You must enable DEMCR.TRCENA before you program or use the ITM.
• If the ITM stream requires synchronization packets, you must configure the synchronization packet

rate in the DWT.

Table 16-1 ITM register summary

Address Name Type Reset Description

0xE0000000-

0xE000007C

ITM_STIM0- ITM_STIM31 RW 0x00000002 ITM Stimulus Port Registers 0-31

0xE0000E00 ITM_TER RW 0x00000000 ITM Trace Enable Register

0xE0000E40 ITM_TPR RW 0x00000000 16.3 ITM_TPR, ITM Trace Privilege Register on page 16-279

0xE0000E80 ITM_TCR RW 0x00000000 ITM Trace Control Register

0xE0000EF0 INT_ITREAD RO 0x00000000 16.6 ITM_ITREAD, Integration Read Register on page 16-282

0xE0000EF8 INT_ITWRITE WO 0x00000000 16.5 ITM_ITWRITE, Integration Write Register on page 16-281

0xE0000F00 ITM_ITCTRL WO 0x00000000 16.4 ITM_ITCTRL, ITM Integration Mode Control Register
on page 16-280

0xE0000FBC ITM_DEVARCH RO 0x47701A01 ITM CoreSight Device Architecture Register

0xE0000FCC ITM_DEVTYPE RW 0x00000043 ITM CoreSight Device Type Register

0xE0000FD0 ITM_PIDR4 RO 0x00000004 ITM Peripheral identification registers

0xE0000FD4 ITM_PIDR5 RO 0x00000000

0xE0000FD8 ITM_PIDR6 RO 0x00000000

0xE0000FDC ITM_PIDR7 RO 0x00000000

0xE0000FE0 ITM_PIDR0 RO 0x00000022

0xE0000FE4 ITM_PIDR1 RO 0x000000BD

0xE0000FE8 ITM_PIDR2 RO 0x0000000B

0xE0000FEC ITM_PIDR3 RO 0x00000000

0xE0000FF0 ITM_CIDR0 RO 0x0000000D ITM Component identification registers

0xE0000FF4 ITM_CIDR1 RO 0x00000090

0xE0000FF8 ITM_CIDR2 RO 0x00000005

0xE0000FFC ITM_CIDR3 RO 0x000000B1

16 Instrumentation Trace Macrocell
16.2 ITM register summary

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

16-277

Non-Confidential

 Note

ITM registers are fully accessible in privileged mode.

In user mode:
• All registers can be read.
• Only the Stimulus registers and Trace Enable registers can be written, and only when the

corresponding Trace Privilege Register bit is set.
• Writes to registers other than the Stimulus registers and Trace Enable registers are invalid and they

are ignored.

When the Security Extension is included in the Cortex-M55 processor and if Secure non-invasive debug
authentication is not enabled, writes to the Stimulus registers from the software running in Secure state
are ignored.

16 Instrumentation Trace Macrocell
16.2 ITM register summary

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

16-278

Non-Confidential

16.3 ITM_TPR, ITM Trace Privilege Register
The ITM_TPR enables an operating system to control the stimulus ports that are accessible by user code.

Usage constraints
You can only write to this register in privileged mode.

Configurations
This register is available if the ITM is configured in your implementation.

Attributes
See 16.2 ITM register summary on page 16-277 for more information.

The following figure shows the ITM_TPR bit assignments.

Reserved

31 4 3 0

PRIVMASK

Figure 16-1 ITM_TPR bit assignments

The following table shows the ITM_TPR bit assignments.

Table 16-2 ITM_TPR bit assignments

Bits Name Function

[31:4] - Reserved, RES0.

[3:0] PRIVMASK Bit mask to enable tracing on ITM stimulus ports:

Bit[0] Stimulus ports [7:0].

Bit[1] Stimulus ports [15:8].

Bit[2] Stimulus ports [23:16].

Bit[3] Stimulus ports [31:24].

16 Instrumentation Trace Macrocell
16.3 ITM_TPR, ITM Trace Privilege Register

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

16-279

Non-Confidential

16.4 ITM_ITCTRL, ITM Integration Mode Control Register
The ITM_ITCTRL controls whether the trace unit is in integration mode.

Usage constraints • Accessible from the memory-mapped interface or from an external agent such as
a debugger.

• Arm recommends that you perform a debug reset after using integration mode.
This register is write only and is only accessible in privilege mode.

Configurations Available in all configurations.
Attributes See 16.2 ITM register summary on page 16-277 for more information.

The following figure shows the ITM_ITCTRL bit assignments.

31 0

IME

1

Reserved

Figure 16-2 ITM_ITCTRL bit assignments

The following table shows the ITM_ITCTRL bit assignments.

Table 16-3 ITM_ITCTRL bit assignments

Bits Name Function

[31:1] - Reserved, RES0.

[0] IME Integration mode enable bit. The possible values are:

0 The trace unit is not in integration mode.

1 The trace unit is in integration mode. This mode enables:
• A debug agent to perform topology detection.
• SoC test software to perform integration testing.

16 Instrumentation Trace Macrocell
16.4 ITM_ITCTRL, ITM Integration Mode Control Register

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

16-280

Non-Confidential

16.5 ITM_ITWRITE, Integration Write Register
ITM_ITWRITE is used for integration testing.

Usage constraints This register is write only, and all reads are ignored. When
ITM_ITCTRL.IME is not set and the processor is in privilege mode, then
you can still write to this register. However, if the processor is not in
privilege mode, then you cannot write to this register.

Configurations This register is:
• Only present in integration mode, when ITM_ITCTRL.IME is set to 1.
• Available in all configurations.

Attributes See 16.2 ITM register summary on page 16-277 for more information.

The following figure ITM_ITWRITE shows the bit assignments.

0

31 2 1 0

0Reserved

AFREADY ATVALID

Figure 16-3 ITM_ITWRITE bit assignments

The following table shows the ITM_ITWRITE bit assignments.

Table 16-4 ITM_ITWRITE bit assignments

Bits Name Function

[31:2] Reserved RES0

[1] AFREADY When ITM_ITCTRL.IME is set, the value of this bit determines the value of AFREADYI. For more information
on AFREADYI, see C.19 ITM interface signals on page Appx-C-404 .

[0] ATVALID When ITM_ITCTRL.IME is set, when this bit is read, it returns the value of ATVALIDI. For more information
on ATFVALIDI, see C.19 ITM interface signals on page Appx-C-404.

16 Instrumentation Trace Macrocell
16.5 ITM_ITWRITE, Integration Write Register

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

16-281

Non-Confidential

16.6 ITM_ITREAD, Integration Read Register
ITM_ITREAD is used for integration test.

Usage constraints This is a read-only register, and all writes are ignored. If ITM_ITCTRL.IME
has not been set at all, then ITM_ITREAD.AFVALID and
ITM_ITREAD_ATREADY bits return zero. However, in the case where
ITM_ITCTRL.IME has been set at least once before, but is currently not set,
then ITM_ITREAD.AFVALID and ITM_ITREAD.ATREADY return the
previously stored AFVALIDI and ATREADYI values respectively.

Configurations This register is:
• Only present in integration mode, when ITM_ITCTRL.IME is set to 1.
• Available in all configurations.

Attributes See 16.2 ITM register summary on page 16-277 for more information.

The following figure ITM_ITREAD shows the bit assignments.

0

31 2 1 0

0Reserved

AFVALID ATREADY

Figure 16-4 ITM_ITREAD bit assignments

The following table shows the ITM_ITREAD bit assignments.

Table 16-5 ITM_ITREAD bit assignments

Bits Name Function

[31:2] Reserved RES0

[1] AFVALID When ITM_ITCTRL.IME is set, when this bit is read, it returns the value of AFVALIDI. When
ITM_ITCTRL.IME is not set, this bit returns zero. For more information on AFVALIDI, see C.19 ITM interface
signals on page Appx-C-404.

[0] ATREADY When ITM_ITCTRL.IME is set, when this bit is read, it returns the value of ATREADYI. When
ITM_ITCTRL.IME is not set, this bit returns zero. For more information on ATREADYI, see C.19 ITM
interface signals on page Appx-C-404.

16 Instrumentation Trace Macrocell
16.6 ITM_ITREAD, Integration Read Register

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

16-282

Non-Confidential

Chapter 17
Data Watchpoint and Trace

This chapter describes the Data Watchpoint and Trace (DWT).

It contains the following sections:
• 17.1 DWT features on page 17-284.
• 17.2 DWT debug access control on page 17-286.
• 17.3 DWT comparators on page 17-288.
• 17.4 Cycle counter and profiling counters on page 17-289.
• 17.5 DWT register summary on page 17-290.

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

17-283

Non-Confidential

17.1 DWT features
The Cortex-M55 processor Data Watchpoint and Trace (DWT) unit has the following features:

• Watchpoints
• Data tracing
• Trace control signaling based on comparator match which can be used to control the optional

Embedded Trace Macrocell (ETM) and Cross Trigger Interface (CTI) if they are configured in the
processor

• Program Counter (PC) tracing
• Cycle count matching
• Additional PC sampling:

— PC sample trace output as a result of a cycle count event
— External PC sampling using a PC sample register

• Exception tracing
• Match event tracing
• Performance profiling counters
• An implementation of the Performance Monitoring Unit (PMU), sharing the event counters with the

regular Cortex‑M profiling counters. PMU events can be traced through the Instrumentation Trace
Macrocell (ITM) and can be used to raise interrupts

• Support for the Digital Signal Processing (DSP) extension

The DWT receives data transactions and instruction execution information from the processor core.
Exception information and core profiling information is also delivered to the DWT from the processor
core. The DWT comparators can be configured for two simultaneous data value comparisons.

The DWT compares instruction and data information using the comparators that are programmed
according to the debug architecture. The results of these comparisons and any profiling counter and
exception information are passed to the packet generator so it can generate, buffer, and arbitrate packets
to be sent to the ITM.

Additional functionality includes ETM triggers using the CMPMATCH signals and invasive watchpoint
debugging.

According to the architecture, all DWT debug events are asynchronous and are not recognized on the
instruction which caused the event. Therefore the DWT PC-matching functionality cannot be used to
implement breakpoints in the processor.

The Cortex-M55 processor DWT supports tracing of exceptions using an interface to the processor. The
exception state information is determined from the processor core exception control signals which
indicate the following events:

• Idle.
• Exception entry.
• Exception exit.
• Exception return.

When exception trace is enabled in DWT_CTRL.EXCTRCENA, these events cause the DWT to output
exception packets to the ITM.

 Important

Data Trace Data Address packets are generated when there is a data address range match and if the
comparator pair has been programmed accordingly. For more information on Data Trace Data Address
packets, see the Arm®v8-M Architecture Reference Manual.

When there is a data address range match where the address of the first access is below the lower limit of
the programmed address range, the Data Trace Data Address packet that is generated contains the

17 Data Watchpoint and Trace
17.1 DWT features

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

17-284

Non-Confidential

address of the first access instead of the address of the first matching access. In this case, however,
debugger tools can reconstruct the address of the first matching access by considering the following:
• A Data Trace Data Address packet has been generated, implying that there is a data address range

match.
• The data address that is stored in the Data Trace Data Address packet is lower than the programmed

lower range limit.

Therefore, the debugger tool can reconstruct the address of the first matching access to be equal to the
programmed lower limit value of the address range.

17 Data Watchpoint and Trace
17.1 DWT features

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

17-285

Non-Confidential

17.2 DWT debug access control
The Data Watchpoint and Trace (DWT) features are dependent on whether DEMCR.TRCENA is set to
enable trace and whether invasive or non-invasive debug is allowed at a given security level.

Invasive debug could possibly change the state of the processor. Non-invasive debug guarantees not to
interfere or change the state of the processor. Both invasive and non-invasive debug provide memory
access control, but there are certain restrictions on memory access control for non-invasive debug. For
more information, see the Arm®v8-M Architecture Reference Manual.

The following table lists the DWT features for the possible invasive and non-invasive debug options.

Table 17-1 DWT debug access control

DEMCR.TRCENA Invasive debug Non-invasive
debug

DWT features

0 Disabled Disabled No DWT watchpoints.

Debugger accesses are blocked, except for CoreSight ID registers.

Profiling and Performance Monitoring Unit (PMU) counters
disabled. The DWT_CYCCNT (cycle counter) is disabled.

Exception trace disabled.

All comparators are disabled. This implies that there is no data and
instruction trace.

DWT_PCSR reads 0xFFFFFFFF.

- Enabled No DWT watchpoints.

Profiling and PMU counters disabled. The DWT_CYCCNT (cycle
counter) is disabled.

Exception trace disabled.

All comparators are disabled. This implies that there is no data and
instruction trace.

DWT_PCSR reads 0xFFFFFFFF.

1 Disabled Disabled No DWT watchpoints.

Debugger accesses are blocked, except for CoreSight ID registers.

Profiling and PMU counters disabled. The DWT_CYCCNT (cycle
counter) is not disabled.

Exception trace disabled.

All comparators are disabled. This implies that there is no data and
instruction trace.

DWT_PCSR reads 0xFFFFFFFF.

Disabled Enabled No DWT watchpoints.

Profiling and PMU counters enabled.

Exception trace enabled.

All comparators are enabled. This implies that there is data and
instruction trace.

Enabled Enabled Full DWT functionality.

17 Data Watchpoint and Trace
17.2 DWT debug access control

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

17-286

Non-Confidential

 Note

For a description of DEMCR and DWT_PCSR, see the Arm®v8-M Architecture Reference Manual.

17 Data Watchpoint and Trace
17.2 DWT debug access control

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

17-287

Non-Confidential

17.3 DWT comparators
The Data Watchpoint and Trace (DWT) comparators offer various features which are adjusted based on
the number of comparators supported in the Cortex-M55 processor configuration.

The Arm debug architecture includes the facility to match on any address range by linking two
comparators together, one marking the start of the range and the other marking the end of the range.

The following table shows the two comparator configuration, also referred to as the reduced set
configuration.

Table 17-2 Two comparators configuration

Comparator
number

Instruction
address matching

Data address
matching

Cycle count
matching

Data value
matching

Supports
linking?

0 Yes Yes Yes No No

1 Yes Yes No Yes Yes

The following table shows the four comparator configuration, also referred to as the full set
configuration.

Table 17-3 Four comparators configuration

Comparator
number

Instruction
address
matching

Data address
matching

Cycle count
matching

Data value
matching

Supports
linking?

0 Yes Yes Yes No No

1 Yes Yes No No Yes

2 Yes Yes No No No

3 Yes Yes No Yes Yes

 Note

• If linking is enabled on comparator 1, then there is no support for cycle count matching.
• For more information on determining the result of a comparator match that is done using the

DWT_FUNCTION registers, see the Arm®v8-M Architecture Reference Manual.
• If the Cortex-M55 processor is configured to include the Embedded Trace Macrocell, then the DWT

can control trace start and stop functionality based on the comparator results using the CMPMATCH
event, which is programmed using the DWT_FUNCTION registers.

• DBGLVL parameter determines whether two or four DWT comparators are included.

17 Data Watchpoint and Trace
17.3 DWT comparators

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

17-288

Non-Confidential

17.4 Cycle counter and profiling counters
The Cortex-M55 DWT supports a cycle counter and profiling counters.

Cycle counter

When enabled in DWT_CTRL, the 32-bit cycle counter, DWT_CYCCNT, increments each cycle unless
the processor is in debug halt state. When the cycle counter is disabled, all functionality associated with
the cycle counter is also disabled.

If the processor includes support for the Security Extension then the DWT_CTRL.CYCDISS bit field
disables the cycle counter increment when the processor is executing secure code. This can be useful for
generating CPI measurements for Non-secure applications.

Profiling counters

The profiling counters can be configured to generate events on overflow using DWT_CTRL fields.

CPI Counter (DWT_CPICNT)

The 8-bit CPI counter is incremented for every additional cycle, that is, greater than one taken to
execute a non-load or store instruction. This counter must also be incremented for every cycle
where fetch is stalled.

Exception Overhead Counter (DWT_EXCCNT)

The 8-bit Exception Overhead Counter is incremented for every cycle associated with exception
entry and return. This includes stacking, unstacking, and preemption and tail-chaining, in cases
where additional registers must be stacked due to a change in Security state between exceptions.
Register stacking associated with floating-point lazy context saving is also included in this
counter.

Sleep Overhead Counter (DWT_SLEEPCNT)

The 8-bit Sleep Overhead Counter is incremented for every cycle associated for power saving.
For example, WFI and WFE exceptions.

Load-Store Counter (DWT_LSUCNT)

The 8-bit Load-Store Counter is incremented for every additional cycle that is greater than one
taken to execute a load-store instruction.

Fold Counter (DWT_FOLDCNT)

The 8-bit Fold Counter counts folded instructions and increments for every instruction executed
in zero cycles. All folded instructions are dual-issued. For example, for a dual-issued pair of
instructions, the counter increments by one to reflect this.

17 Data Watchpoint and Trace
17.4 Cycle counter and profiling counters

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

17-289

Non-Confidential

17.5 DWT register summary
The following table shows the Data Watchpoint and Trace (DWT) registers. Depending on the
implementation of your processor, some of these registers might not be present. Any register that is
configured as not present reads as zero.

Table 17-4 DWT register summary

Address Name Type Reset value Description

0xE0001000 DWT_CTRL RW Possible reset values are:

0x28000000 Reduced DWT with
no Instrumentation
Trace Macrocell
(ITM) trace

0x20000000 Reduced DWT with
ITM trace

0x48000000 Full DWT with no
ITM trace

0x40000000 Full DWT with ITM
trace

DWT Control Register

0xE0001004 DWT_CYCCNT RW UNKNOWN DWT Cycle Count Register

0xE0001008 DWT_CPICNT RW 0x000000XX DWT CPI Count Register

0xE000100C DWT_EXCCNT RW 0x000000XX DWT Exception Overhead Count Register

0xE0001010 DWT_SLEEPCNT RW 0x000000XX DWT Sleep Count Register

0xE0001014 DWT_LSUCNT RW 0x000000XX DWT LSU Count Register

0xE0001018 DWT_FOLDCNT RW 0x000000XX DWT Folded-instruction Count Register

0xE000101C DWT_PCSR RO UNKNOWN DWT Program Counter Sample Register

0xE0001020 DWT_COMP0 RW UNKNOWN DWT Comparator Register 0

0xE0001028 DWT_FUNCTION0 RW 0x58000000 DWT Function Register 0

0xE0001030 DWT_COMP1 RW UNKNOWN DWT Comparator Register 1

0xE0001038 DWT_FUNCTION1 RW Possible reset values are:

0xF0000000 Reduced DWT

0xD0000000 Full DWT

DWT Function Register 1

0xE0001040 DWT_COMP2 RW UNKNOWN DWT Comparator Register 2

0xE0001048 DWT_FUNCTION2 RW 0x50000000 DWT Function Register 2

0xE0001050 DWT_COMP3 RW UNKNOWN DWT Comparator Register 3

0xE0001058 DWT_FUNCTION3 RW Possible reset values are:

0x50000000 Reduced DWT

0xF0000000 Full DWT

DWT Function Register 3

17 Data Watchpoint and Trace
17.5 DWT register summary

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

17-290

Non-Confidential

Table 17-4 DWT register summary (continued)

Address Name Type Reset value Description

0xE000103C DWT_VMASK1 RW UNKNOWN DWT Comparator Value Mask Register 0-14

DWT_VMASK1 is only present when
DBGLVL=1. That is, when the processor is
configured to have reduced set debug
functionality, with two DWT and four
Breakpoint Unit (BPU) comparators.

DWT_VMASK3 is only present when
DBGLVL=2. That is, when the processor is
configured to have full set debug functionality,
with four DWT and four BPU comparators.

A maximum of one DWT_VMASK register is
implemented in any design. Only comparators
that can perform data value matching have
corresponding DWT_VMASK registers. For
more information on comparator configuration,
see 17.3 DWT comparators on page 17-288

0xE000105C DWT_VMASK3 RW

0xE0000FBC DWT_DEVARCH RO 0x47711A02 DWT Device Type Architecture register

0xE0000FCC DWT_DEVTYPE RO 0x00000000 DWT Device Type Identifier register

0xE0001FD0 DWT_PIDR4 RO 0x00000004 DWT Peripheral identification registers 0-7

0xE0001FD4 DWT_PIDR5 RO 0x00000000

0xE0001FD8 DWT_PIDR6 RO 0x00000000

0xE0001FDC DWT_PIDR7 RO 0x00000000

0xE0001FE0 DWT_PIDR0 RO 0x00000022

0xE0001FE4 DWT_PIDR1 RO 0x000000BD

0xE0001FE8 DWT_PIDR2 RO 0x0000000B

0xE0001FEC DWT_PIDR3 RO 0x00000000

0xE0001FF0 DWT_CIDR0 RO 0x0000000D DWT Component identification registers 0-3

0xE0001FF4 DWT_CIDR1 RO 0x00000090

0xE0001FF8 DWT_CIDR2 RO 0x00000005

0xE0001FFC DWT_CIDR3 RO 0x000000B1

DWT registers are described in the Arm®v8-M Architecture Reference Manual.

17 Data Watchpoint and Trace
17.5 DWT register summary

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

17-291

Non-Confidential

Chapter 18
Cross Trigger Interface

This chapter describes the Cross Trigger Interface (CTI).

It contains the following sections:
• 18.1 CTI features on page 18-294.
• 18.2 CTI register summary on page 18-296.
• 18.3 CTI_CONTROL, CTI Control Register on page 18-298.
• 18.4 CTI_INACK, CTI Interrupt Acknowledge Register on page 18-299.
• 18.5 CTI_APPSET, CTI Application Channel Set Register on page 18-300.
• 18.6 CTI_APPCLR, CTI Application Channel Clear Register on page 18-301.
• 18.7 CTI_APPPULSE, CTI Application Channel Pulse Register on page 18-302.
• 18.8 CTI_INEN<n>, n=0-5, CTI Trigger <n> to Channel Enable Register on page 18-303.
• 18.9 CTI_OUTEN<n>, n=0-7, CTI Channel <n> to Trigger Enable Register on page 18-304.
• 18.10 CTI_TRIGINSTATUS, CTI Trigger Input Status Register on page 18-306.
• 18.11 CTI_TRIGOUTSTATUS, CTI Trigger Output Status Register on page 18-307.
• 18.12 CTI_CHINSTATUS, CTI Channel Input Status Register on page 18-308.
• 18.13 CTI_CHOUTSTATUS, CTI Channel Output Status Register on page 18-309.
• 18.14 CTI_CHANNELGATE, CTI Channel Gate Register on page 18-310.
• 18.15 CTI_ITCHOUT, Integration Test Channel Output Register on page 18-311.
• 18.16 CTI_ITTRIGOUT, Integration Test Trigger Output Register on page 18-312.
• 18.17 CTI_ITCHIN, Integration Test Channel Input Register on page 18-314.
• 18.18 CTI_ITTRIGIN, Integration Test Trigger Input Register on page 18-315.
• 18.19 CTI_ITCONTROL, Integration Mode Control Register on page 18-316.
• 18.20 CTI_DEVARCH, Device Architecture Register on page 18-317.
• 18.21 CTI_DEVID, Device Configuration Register on page 18-318.
• 18.22 CTI_DEVTYPE, Device Type Identifier Register on page 18-319.
• 18.23 CTI_PIDR4, Peripheral Identification Register 4 on page 18-320.

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

18-292

Non-Confidential

• 18.24 CTI_PIDR5, Peripheral Identification Register 5 on page 18-321.
• 18.25 CTI_PIDR6, Peripheral Identification Register 6 on page 18-322.
• 18.26 CTI_PIDR7, Peripheral Identification Register 7 on page 18-323.
• 18.27 CTI_PIDR0, Peripheral Identification Register 0 on page 18-324.
• 18.28 CTI_PIDR1, Peripheral Identification Register 1 on page 18-325.
• 18.29 CTI_PIDR2, Peripheral Identification Register 2 on page 18-326.
• 18.30 CTI_PIDR3, Peripheral Identification Register 3 on page 18-327.
• 18.31 CTI_ CIDR0, Component Identification Register 0 on page 18-328.
• 18.32 CTI_ CIDR1, Component Identification Register 1 on page 18-329.
• 18.33 CTI_ CIDR2, Component Identification Register 2 on page 18-330.
• 18.34 CTI_ CIDR3, Component Identification Register 3 on page 18-331.

18 Cross Trigger Interface

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

18-293

Non-Confidential

18.1 CTI features
The Cortex-M55 processor Cross Trigger Interface (CTI) enables the processor debug logic and the
Embedded Trace Macrocell (ETM) to interact with each other and with additional CoreSight debug and
trace components in the system. This is done using trigger events across a standard interface and
protocol. This allows software running on Cortex-M55 to be debugged efficiently in both single
processor systems and larger systems containing multiple processors.

The CTI is connected to a number of trigger inputs and outputs. The Cortex-M55 CTI includes an
external CTI channel interface with four input and four output channels. The input channel must be
synchronous to CLKIN. The following figure shows the processor, ETM, CTI, and the available trigger
input and output connections.

 Note

If the processor is configured with an ETM:
• Triggers 0-3 are connected to the event input and output signals.
• Up to a maximum of three Data Watchpoint and Trace (DWT) comparators (0, 1, and 2) can trigger

events using CMPMATCH.

If the processor is not configured with an ETM, then the relevant triggers are not connected to the event
input and output signals, and they are tied LOW.

Processor

ETM

CTI

External debug request
Debug request

External restart request
Restart request

Interrupt requests

Processor halted

DWT comparator outputs

ETM event outputs

ETM event inputs

CTI input
channels

CTI output
channels

Figure 18-1 Cortex-M55 processor CTI trigger connections

18 Cross Trigger Interface
18.1 CTI features

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

18-294

Non-Confidential

The following tables show the Cortex-M55 processor CTI trigger signals assignment.

Table 18-1 Cortex-M55 processor CTI input trigger signals assignment

Signal Description Connection Acknowledge, handshake

CTITRIGIN[7] Unused ETM to CTI
 Note

If the ETM is not included, bits
[4] and [5] are unused and tied
LOW.

Pulsed
CTITRIGIN[6] Unused

CTITRIGIN[5] ETM Event Output 1

CTITRIGIN[4] ETM Event Output 0 or DWT
Comparator Output 3

CTITRIGIN[3] DWT Comparator Output 2 Processor to CTI

CTITRIGIN[2] DWT Comparator Output 1

CTITRIGIN[1] DWT Comparator Output 0

CTITRIGIN[0] Processor halted

Table 18-2 Cortex-M55 processor CTI output trigger signals assignment

Signal Description Connection Acknowledge, handshake

CTITRIGOUT[7] ETM Event Input 3 CTI to ETM
 Note

If the ETM is not included,
bits[7:4] are unused and the
output is left untied.

Pulsed

CTITRIGOUT[6] ETM Event Input 2

CTITRIGOUT[5] ETM Event Input 1

CTITRIGOUT[4] ETM Event Input 0

CTITRIGOUT[3] Interrupt Request 1 CTI to system Acknowledged by software
writing to CTIINTACK register
in the interrupt service routine.CTITRIGOUT[2] Interrupt Request 0

CTITRIGOUT[1] Processor Restart Request CTI to processor Processor restarted

CTITRIGOUT[0] Processor Debug Halt Request Acknowledged by the debugger
writing to the CTIINTACK
register.

 Note

The ETM is an optional licensable component. For more information on the ETM, see Arm® CoreSight™

ETM‑M55 Technical Reference Manual.

18 Cross Trigger Interface
18.1 CTI features

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

18-295

Non-Confidential

18.2 CTI register summary
The following table shows the Cross Trigger Interface (CTI) programmable registers, with address
offset, type, and reset value for each register.

Table 18-3 CTI register summary

Address Name Type Reset value Description

0xE0042000 CTI_CONTROL RW 0x00000000 18.3 CTI_CONTROL, CTI Control Register on page 18-298

0xE0042010 CTI_INTACK WO 0x0000000X 18.4 CTI_INACK, CTI Interrupt Acknowledge Register
on page 18-299

0xE0042014 CTI_APPSET RW 0x00000000 18.5 CTI_APPSET, CTI Application Channel Set Register
on page 18-300

0xE0042018 CTI_APPCLEAR WO 0x00000000 18.6 CTI_APPCLR, CTI Application Channel Clear Register
on page 18-301

0xE004201C CTI_APPPULSE WO 0x00000000 18.7 CTI_APPPULSE, CTI Application Channel Pulse Register
on page 18-302

0xE0042020 CTI_INEN0 RW 0x00000000 18.8 CTI_INEN<n>, n=0-5, CTI Trigger <n> to Channel Enable
Register on page 18-303

0xE0042024 CTI_INEN1 RW 0x00000000

0xE0042028 CTI_INEN2 RW 0x00000000

0xE004202C CTI_INEN3 RW 0x00000000

0xE0042030 CTI_INEN4 RW 0x00000000

0xE0042034 CTI_INEN5 RW 0x00000000

0xE0042038 CTI_INEN6 - - Reserved

0xE004203C CTI_INEN7 - -

0xE00420A0 CTI_OUTEN0 RW 0x00000000 18.9 CTI_OUTEN<n>, n=0-7, CTI Channel <n> to Trigger Enable
Register on page 18-304

0xE00420A4 CTI_OUTEN1 RW 0x00000000

0xE00420A8 CTI_OUTEN2 RW 0x00000000

0xE00420AC CTI_OUTEN3 RW 0x00000000

0xE00420B0 CTI_OUTEN4 RW 0x00000000

0xE00420B4 CTI_OUTEN5 RW 0x00000000

0xE00420B8 CTI_OUTEN6 RW 0x00000000

0xE00420BC CTI_OUTEN7 RW 0x00000000

0xE0042130 CTI_TRIGINSTATUS RO UNKNOWN 18.10 CTI_TRIGINSTATUS, CTI Trigger Input Status Register
on page 18-306

0xE0042134 CTI_TRIGOUTSTATUS RO UNKNOWN 18.11 CTI_TRIGOUTSTATUS, CTI Trigger Output Status Register
on page 18-307

0xE0042138 CTI_CHINSTATUS RO 0x0000000X 18.12 CTI_CHINSTATUS, CTI Channel Input Status Register
on page 18-308

0xE004213C CTI_CHOUTSTATUS RO 0x0000000X 18.13 CTI_CHOUTSTATUS, CTI Channel Output Status Register
on page 18-309

18 Cross Trigger Interface
18.2 CTI register summary

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

18-296

Non-Confidential

Table 18-3 CTI register summary (continued)

Address Name Type Reset value Description

0xE0042140 CTI_CHANNELGATE RW 0x0000000F 18.14 CTI_CHANNELGATE, CTI Channel Gate Register
on page 18-310

0xE0042EE4 CTI_ITCHOUT WO 0x00000000 18.15 CTI_ITCHOUT, Integration Test Channel Output Register
on page 18-311

0xE0042EE8 CTI_ITTRIGOUT WO 0x00000000 18.16 CTI_ITTRIGOUT, Integration Test Trigger Output Register
on page 18-312

0xE0042EF4 CTI_ITCHIN RO 0x00000000 18.17 CTI_ITCHIN, Integration Test Channel Input Register
on page 18-314

0xE0042EF8 CTI_ITTRIGIN RO 0x00000000 18.18 CTI_ITTRIGIN, Integration Test Trigger Input Register
on page 18-315

0xE0042F00 CTI_ITCONTROL RW 0x00000000 18.19 CTI_ITCONTROL, Integration Mode Control Register
on page 18-316

0xE0042FBC CTI_DEVARCH RO 0x47701A14 18.20 CTI_DEVARCH, Device Architecture Register on page 18-317

0xE0042FC8 CTI_DEVID RO 0x01040800 18.21 CTI_DEVID, Device Configuration Register on page 18-318

0xE0042FCC CTI_DEVTYPE RO 0x00000014 18.22 CTI_DEVTYPE, Device Type Identifier Register
on page 18-319

0xE0042FD0 CTI_PIDR4 RO 0x00000004 18.23 CTI_PIDR4, Peripheral Identification Register 4
on page 18-320

0xE0042FD4 CTI_PIDR5 RO 0x00000000 18.24 CTI_PIDR5, Peripheral Identification Register 5
on page 18-321

0xE0042FD8 CTI_PIDR6 RO 0x00000000 18.25 CTI_PIDR6, Peripheral Identification Register 6
on page 18-322

0xE0042FDC CTI_PIDR7 RO 0x00000000 18.26 CTI_PIDR7, Peripheral Identification Register 7
on page 18-323

0xE0042FE0 CTI_PIDR0 RO 0x00000022 18.27 CTI_PIDR0, Peripheral Identification Register 0
on page 18-324

0xE0042FE4 CTI_PIDR1 RO 0x000000BD 18.28 CTI_PIDR1, Peripheral Identification Register 1
on page 18-325

0xE0042FE8 CTI_PIDR2 RO 0x0000000B 18.29 CTI_PIDR2, Peripheral Identification Register 2
on page 18-326

0xE0042FEC CTI_PIDR3 RO 0x00000000 18.30 CTI_PIDR3, Peripheral Identification Register 3
on page 18-327

0xE0042FF0 CTI_CIDR0 RO 0x0000000D 18.31 CTI_ CIDR0, Component Identification Register 0
on page 18-328

0xE0042FF4 CTI_CIDR1 RO 0x00000090 18.32 CTI_ CIDR1, Component Identification Register 1
on page 18-329

0xE0042FF8 CTI_CIDR2 RO 0x00000005 18.33 CTI_ CIDR2, Component Identification Register 2
on page 18-330

0xE0042FFC CTI_CIDR3 RO 0x000000B1 18.34 CTI_ CIDR3, Component Identification Register 3
on page 18-331

18 Cross Trigger Interface
18.2 CTI register summary

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

18-297

Non-Confidential

18.3 CTI_CONTROL, CTI Control Register
The CTI_CONTROL register enables and disables the Cross Trigger Interface (CTI).

Usage constraints
Access is only allowed from privileged code. Unprivileged access results in a BusFault being
raised.

Configurations
This register is always implemented when the CTI is included.

Attributes
This is a 32-bit register. See 18.2 CTI register summary on page 18-296 for more information.

The following figure shows the CTI_CONTROL bit assignments.

31 1 0

Reserved

CTIEN

Figure 18-2 CTI_CONTROL bit assignments

The following table describes the CTI_CONTROL bit assignments.

Table 18-4 CTI_CONTROL bit assignments

Field Name Type Description

[31:1] Reserved - RES0

[0] CTIEN RW Enable control.

0 CTI disabled.

1 CTI enabled.

The reset value is 0b0.

18 Cross Trigger Interface
18.3 CTI_CONTROL, CTI Control Register

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

18-298

Non-Confidential

18.4 CTI_INACK, CTI Interrupt Acknowledge Register
The CTI_INACK register is a software acknowledge for trigger outputs. This register is a bit map that
allows selective clearing of trigger output events.

Usage constraints
Access is only allowed from privileged code. Unprivileged access results in a BusFault being
raised.

Configurations
This register is always implemented when the CTI is included.

Attributes
This is a 32-bit register. See 18.2 CTI register summary on page 18-296 for more information.

The following figure shows the CTI_INACK bit assignments.

31 0

INTACK

3

Reserved

4

Figure 18-3 CTI_INACK bit assignments

The following table describes the CTI_INACK bit assignments.

Table 18-5 CTI_INACK bit assignments

Field Name Type Description

[31:4] Reserved - RES0

[3:0] INTACK WO Acknowledges the
corresponding
CTICHOUT[3:0] output.

18 Cross Trigger Interface
18.4 CTI_INACK, CTI Interrupt Acknowledge Register

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

18-299

Non-Confidential

18.5 CTI_APPSET, CTI Application Channel Set Register
The CTI_APPSET register allows software to set any channel output. Software can use this register to
generate a channel event in place of a hardware source on a trigger input.

Usage constraints
Access is only allowed from privileged code. Unprivileged access results in a BusFault being
raised.

Configurations
This register is always implemented when the CTI is included.

Attributes
This is a 32-bit register. See 18.2 CTI register summary on page 18-296 for more information.

The following figure shows the CTI_APPSET bit assignments.

31 4 3 0

APPSETReserved

Figure 18-4 CTI_APPSET bit assignments

The following table describes the CTI_APPSET bit assignments.

Table 18-6 CTI_APPSET bit assignments

Field Name Type Description

[31:4] Reserved - RES0

[3:0] APPSET RW Sets the corresponding internal
channel flag.

0 For reads, the application
channel is inactive. For
writes, this field has no
effect.

1 For reads, the application
channel is active. For
writes, this field sets the
channel output.

The reset value is 0b0000.

18 Cross Trigger Interface
18.5 CTI_APPSET, CTI Application Channel Set Register

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

18-300

Non-Confidential

18.6 CTI_APPCLR, CTI Application Channel Clear Register
The CTI_APPCLR register allows software to clear any channel output. Software can use this register to
clear a channel event instead of a hardware source on a trigger input.

Usage constraints
Access is only allowed from privileged code. Unprivileged access results in a BusFault being
raised.

Configurations
This register is always implemented when the CTI is included.

Attributes
This is a 32-bit register. See 18.2 CTI register summary on page 18-296 for more information.

The following figure shows the CTI_APPCLR bit assignments.

31 4 3 0

Reserved

APPCLEAR

Figure 18-5 CTI_APPCLR bit assignments

The following table describes the CTI_APPCLR bit assignments.

Table 18-7 CTI_APPCLR bit assignments

Field Name Type Description

[31:4] Reserved - RES0

[3:0] APPCLEAR RW Clears the corresponding
internal channel flag.

0 This value has no effect.

1 This value clears the
channel output.

The reset value is 0b0000.

18 Cross Trigger Interface
18.6 CTI_APPCLR, CTI Application Channel Clear Register

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

18-301

Non-Confidential

18.7 CTI_APPPULSE, CTI Application Channel Pulse Register
The CTI_APPPULSE register allows software to pulse any channel output. Software can use this register
to pulse a channel event in place of a hardware source on a trigger input.

Usage constraints
Access is only allowed from privileged code. Unprivileged access results in a BusFault being
raised.

Configurations
This register is always implemented when the CTI is included.

Attributes
This is a 32-bit register. See 18.2 CTI register summary on page 18-296 for more information.

The following figure shows the CTI_APPPULSE bit assignments.

31 4 3 0

Reserved

APPPULSE

Figure 18-6 CTI_APPPULSE bit assignments

The following table describes the CTI_APPPULSE bit assignments.

Table 18-8 CTI_APPPULSE bit assignments

Field Name Type Description

[31:4] Reserved - RES0

[3:0] APPPULSE WO Pulses the channel outputs.

0 This value has no effect.

1 Pulse channel event for one
clock cycle.

18 Cross Trigger Interface
18.7 CTI_APPPULSE, CTI Application Channel Pulse Register

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

18-302

Non-Confidential

18.8 CTI_INEN<n>, n=0-5, CTI Trigger <n> to Channel Enable Register
The CTI_INEN<n> registers map trigger inputs to channels in the cross trigger system.

Usage constraints
Access is only allowed from privileged code. Unprivileged access results in a BusFault being
raised.

Configurations
This register is always implemented when the CTI is included.

Attributes
These are 32-bit registers. See 18.2 CTI register summary on page 18-296 for more information.

The following figure shows the CTI_INEN<n> bit assignments, where n=0-5.

31 4 3 0

Reserved

TRIGINEN

Figure 18-7 CTI_INEN<n> bit assignments, where n=0-5

The following table describes the CTI_INEN<n> bit assignments, where n=0-5.

Table 18-9 CTI_INEN<n> bit assignments, where n=0-5

Field Name Type Description

[31:4] Reserved - RES0

[3:0] TRIGINEN RW Trigger input to channel mapping.

0 Input trigger events are ignored by the corresponding channel.

1 When an event is received on CTITRIGIN, an event is generated on the channel corresponding to
this bit.

The reset value is 0b0000.

The following table provides more information on CTITRIGIN bit mapping.

Table 18-10 Cortex-M55 processor CTI input trigger signals assignment

Signal Description Connection Acknowledge, handshake

CTITRIGIN[7] Unused ETM to CTI
 Note

If the ETM is not included, bits
[4] and [5] are unused and tied
LOW.

Pulsed

CTITRIGIN[6] Unused

CTITRIGIN[5] ETM Event Output 1

CTITRIGIN[4] ETM Event Output 0 or DWT
Comparator Output 3

CTITRIGIN[3] DWT Comparator Output 2 Processor to CTI

CTITRIGIN[2] DWT Comparator Output 1

CTITRIGIN[1] DWT Comparator Output 0

CTITRIGIN[0] Processor halted

18 Cross Trigger Interface
18.8 CTI_INEN<n>, n=0-5, CTI Trigger <n> to Channel Enable Register

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

18-303

Non-Confidential

18.9 CTI_OUTEN<n>, n=0-7, CTI Channel <n> to Trigger Enable Register
The CTI_OUTEN<n> registers map trigger outputs to channels in the cross trigger system.

Usage constraints
Access is only allowed from privileged code. Unprivileged access results in a BusFault being
raised.

Configurations
This register is always implemented when the CTI is included.

Attributes
These are 32-bit registers. See 18.2 CTI register summary on page 18-296 for more information.

The following figure shows the CTI_OUTEN<n> bit assignments, where n=0-7.

31 4 3 0

Reserved

TRIGOUTEN

Figure 18-8 CTI_OUTEN<n> bit assignments, where n=0-7

The following table describes the CTI_OUTEN<n> bit assignments, where n=0-7.

Table 18-11 CTI_OUTEN<n> bit assignments, where n=0-7

Field Name Type Description

[31:4] Reserved - RES0

[3:0] TRIGOUTEN RW Channel to trigger enable
mapping.

0 The corresponding channel
is ignored by the output
triggers.

1 When an event occurs on
the channel corresponding
to this bit, an event is
generated on
CTITRIGOUT.

The reset value is 0b0000.

The following table provides more information on CTITRIGOUT bit mapping.

18 Cross Trigger Interface
18.9 CTI_OUTEN<n>, n=0-7, CTI Channel <n> to Trigger Enable Register

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

18-304

Non-Confidential

Table 18-12 Cortex-M55 processor CTI output trigger signals assignment

Signal Description Connection Acknowledge, handshake

CTITRIGOUT[7] ETM Event Input 3 CTI to ETM
 Note

If the ETM is not included,
bits[7:4] are unused and the
output is left untied.

Pulsed

CTITRIGOUT[6] ETM Event Input 2

CTITRIGOUT[5] ETM Event Input 1

CTITRIGOUT[4] ETM Event Input 0

CTITRIGOUT[3] Interrupt Request 1 CTI to system Acknowledged by software
writing to CTIINTACK register
in the interrupt service routine.CTITRIGOUT[2] Interrupt Request 0

CTITRIGOUT[1] Processor Restart Request CTI to processor Processor restarted

CTITRIGOUT[0] Processor Debug Halt Request Acknowledged by the debugger
writing to the CTIINTACK
register.

18 Cross Trigger Interface
18.9 CTI_OUTEN<n>, n=0-7, CTI Channel <n> to Trigger Enable Register

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

18-305

Non-Confidential

18.10 CTI_TRIGINSTATUS, CTI Trigger Input Status Register
The CTI_TRIGINSTATUS register provides the trigger input status.

Usage constraints
Access is only allowed from privileged code. Unprivileged access results in a BusFault being
raised.

Configurations
This register is always implemented when the CTI is included.

Attributes
This is a 32-bit register. See 18.2 CTI register summary on page 18-296 for more information.

The following figure shows the CTI_TRIGINSTATUS bit assignments.

31 8 7 0

Reserved TRIGINSTATUS

Figure 18-9 CTI_TRIGINSTATUS bit assignments

The following table describes the CTI_TRIGINSTATUS bit assignments.

Table 18-13 CTI_TRIGINSTATUS bit assignments

Field Name Type Description

[31:8] Reserved - RES0

[7:0] TRIGINSTATUS RO Trigger input status. One bit per
trigger.

0 Input is LOW.

1 Input is HIGH.

The reset value is UNKNOWN.

18 Cross Trigger Interface
18.10 CTI_TRIGINSTATUS, CTI Trigger Input Status Register

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

18-306

Non-Confidential

18.11 CTI_TRIGOUTSTATUS, CTI Trigger Output Status Register
The CTI_TRIGOUTSTATUS register provides the trigger output status.

Usage constraints
Access is only allowed from privileged code. Unprivileged access results in a BusFault being
raised.

Configurations
This register is always implemented when the CTI is included.

Attributes
This is a 32-bit register. See 18.2 CTI register summary on page 18-296 for more information.

The following figure shows the CTI_TRIGOUTSTATUS bit assignments.

31 07

Reserved

8

TRIGOUTSTATUS

Figure 18-10 CTI_TRIGOUTSTATUS bit assignments

The following table describes the CTI_TRIGOUTSTATUS bit assignments.

Table 18-14 CTI_TRIGOUTSTATUS bit assignments

Field Name Type Description

[31:8] Reserved - RES0

[7:0] TRIGOUTSTATUS RO Trigger output status. One bit
per trigger.

0 Output is LOW.

1 Output is HIGH.

The reset value is UNKNOWN.

18 Cross Trigger Interface
18.11 CTI_TRIGOUTSTATUS, CTI Trigger Output Status Register

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

18-307

Non-Confidential

18.12 CTI_CHINSTATUS, CTI Channel Input Status Register
The CTI_CHINSTATUS register provides the channel input status.

Usage constraints
Access is only allowed from privileged code. Unprivileged access results in a BusFault being
raised.

Configurations
This register is always implemented when the CTI is included.

Attributes
This is a 32-bit register. See 18.2 CTI register summary on page 18-296 for more information.

The following figure shows the CTI_CHINSTATUS bit assignments.

31 8 7 0

Reserved CTICHINSTATUS

Figure 18-11 CTI_CHINSTATUS bit assignments

The following table describes the CTI_CHINSTATUS bit assignments.

Table 18-15 CTI_CHINSTATUS bit assignments

Field Name Type Description

[31:4] Reserved - RES0

[3:0] CTICHINSTATUS RO Channel input status. One bit
per channel input.

0 Input is LOW.

1 Input is HIGH.

The reset value is UNKNOWN.

18 Cross Trigger Interface
18.12 CTI_CHINSTATUS, CTI Channel Input Status Register

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

18-308

Non-Confidential

18.13 CTI_CHOUTSTATUS, CTI Channel Output Status Register
The CTI_CHOUTSTATUS register provides the channel output status.

Usage constraints
Access is only allowed from privileged code. Unprivileged access results in a BusFault being
raised.

Configurations
This register is always implemented when the CTI is included.

Attributes
This is a 32-bit register. See 18.2 CTI register summary on page 18-296 for more information.

The following figure shows the CTI_CHOUTSTATUS bit assignments.

31 4 3 0

SBZ

CTICHOUTSTATUS

Figure 18-12 CTI_CHOUTSTATUS bit assignments

The following table describes the CTI_CHOUTSTATUS bit assignments.

Table 18-16 CTI_CHOUTSTATUS bit assignments

Field Name Type Description

[31:4] - - Reserved, RES0.

[3:0] CTICHOUTSTATUS RO Channel output status. One bit
per channel output.

0 Output is LOW.

1 Output is HIGH.

The reset value is UNKNOWN.

18 Cross Trigger Interface
18.13 CTI_CHOUTSTATUS, CTI Channel Output Status Register

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

18-309

Non-Confidential

18.14 CTI_CHANNELGATE, CTI Channel Gate Register
The CTI_CHANNELGATE register is the channel output gate.

Usage constraints
Access is only allowed from privileged code. Unprivileged access results in a BusFault being
raised.

Configurations
This register is always implemented when the CTI is included.

Attributes
This is a 32-bit register. See 18.2 CTI register summary on page 18-296 for more information.

The following figure shows the CTI_CHANNELGATE bit assignments.

31 4 3 0

Reserved

CTIGATEEN

Figure 18-13 CTI_CHANNELGATE bit assignments

The following table describes the CTI_CHANNELGATE bit assignments.

Table 18-17 CTI_CHANNELGATE bit assignments

Field Name Type Description

[31:4] Reserved - RES0

[3:0] CTIGATEEN RW Enables the propagation of
channel events out of the CTI.
Propagation occurs one bit per
channel.

0 Disable a channel from
propagating.

1 Enable channel
propagation.

The reset value is 0b1111.

18 Cross Trigger Interface
18.14 CTI_CHANNELGATE, CTI Channel Gate Register

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

18-310

Non-Confidential

18.15 CTI_ITCHOUT, Integration Test Channel Output Register
The CTI_ITCHOUT register is used to generate channel events.

Usage constraints
Access is only allowed from privileged code. Unprivileged access results in a BusFault being
raised.

Configurations
This register is always implemented when the CTI is included.

Attributes
This is a 32-bit register. See 18.2 CTI register summary on page 18-296 for more information.

 Note

Writes to CTI_ITCHOUT and CTI_ITTRIGOUT only take effect when integration test mode is enabled
using CTI_ITCONTROL.IME. For more information on CTI_ITCONTROL, see
18.19 CTI_ITCONTROL, Integration Mode Control Register on page 18-316.

The following figure shows the CTI_ITCHOUT bit assignments.

31 4 3 0

Reserved

CTICHOUT

Figure 18-14 CTI_ITCHOUT bit assignments

The following table describes the CTI_ITCHOUT bit assignments.

Table 18-18 CTI_ITCHOUT bit assignments

Field Name Type Description

[31:4] Reserved - RES0

[3:0] CTICHOUT WO Pulses the channel outputs.

0 No effect.

1 Pulse channel event for one
CLKIN cycle.

18 Cross Trigger Interface
18.15 CTI_ITCHOUT, Integration Test Channel Output Register

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

18-311

Non-Confidential

18.16 CTI_ITTRIGOUT, Integration Test Trigger Output Register
The CTI_ITTRIGOUT register is used to generate trigger events.

Usage constraints
Access is only allowed from privileged code. Unprivileged access results in a BusFault being
raised.

Configurations
This register is always implemented when the CTI is included.

Attributes
This is a 32-bit register. See 18.2 CTI register summary on page 18-296 for more information.

The following figure shows the CTI_ITTRIGOUT bit assignments.

31 07

Reserved

8

CTITRIGOUT

Figure 18-15 CTI_ITTRIGOUT bit assignments

The following table describes the CTI_ITTRIGOUT bit assignments.

Table 18-19 CTI_ITTRIGOUT bit assignments

Field Name Type Description

[31:8] Reserved - RES0

[7:0] CTITRIGOUT WO Set/clear trigger output signal.
Some output triggers use a
software handshake
(CTITRIGOUT[3:0]), and
others are pulsed
(CTITRIGOUT[7:4]).

The following table provides more information on CTITRIGOUT bit mapping.

Table 18-20 Cortex-M55 processor CTI output trigger signals assignment

Signal Description Connection Acknowledge, handshake

CTITRIGOUT[7] ETM Event Input 3 CTI to ETM
 Note

If the ETM is not included,
bits[7:4] are unused and the
output is left untied.

Pulsed

CTITRIGOUT[6] ETM Event Input 2

CTITRIGOUT[5] ETM Event Input 1

CTITRIGOUT[4] ETM Event Input 0

CTITRIGOUT[3] Interrupt Request 1 CTI to system Acknowledged by software
writing to CTIINTACK register
in the interrupt service routine.CTITRIGOUT[2] Interrupt Request 0

18 Cross Trigger Interface
18.16 CTI_ITTRIGOUT, Integration Test Trigger Output Register

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

18-312

Non-Confidential

Table 18-20 Cortex-M55 processor CTI output trigger signals assignment (continued)

Signal Description Connection Acknowledge, handshake

CTITRIGOUT[1] Processor Restart Request CTI to processor Processor restarted

CTITRIGOUT[0] Processor Debug Halt Request Acknowledged by the debugger
writing to the CTIINTACK
register.

18 Cross Trigger Interface
18.16 CTI_ITTRIGOUT, Integration Test Trigger Output Register

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

18-313

Non-Confidential

18.17 CTI_ITCHIN, Integration Test Channel Input Register
The CTI_ITCHIN register is used to view channel events. The integration test register includes a latch
that is set when a pulse is received on a channel input. When read, a register bit reads as 1 if the channel
has received a pulse since it was last read. The act of reading the register automatically clears the 1 to 0.
When performing integration testing it is therefore important to coordinate the setting of event latches
and reading/clearing them.

Usage constraints
Access is only allowed from privileged code. Unprivileged access results in a BusFault being
raised.

Configurations
This register is always implemented when the CTI is included.

Attributes
This is a 32-bit register. See 18.2 CTI register summary on page 18-296 for more information.

The following figure shows the CTI_ITCHIN bit assignments.

31 4 3 0

Reserved

CTICHIN

Figure 18-16 CTI_ITCHIN bit assignments

The following table describes the CTI_ITCHIN bit assignments.

Table 18-21 CTI_ITCHIN bit assignments

Field Name Type Description

[31:4] Reserved - RES0

[3:0] CTICHIN RO Reads the latched value of the
channel inputs.

The reset value is 0b0000.

18 Cross Trigger Interface
18.17 CTI_ITCHIN, Integration Test Channel Input Register

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

18-314

Non-Confidential

18.18 CTI_ITTRIGIN, Integration Test Trigger Input Register
The CTI_ITTRIGIN register is used to view trigger events.

Usage constraints
Access is only allowed from privileged code. Unprivileged access results in a BusFault being
raised.

Configurations
This register is always implemented when the CTI is included.

Attributes
This is a 32-bit register. See 18.2 CTI register summary on page 18-296 for more information.

The following figure shows the CTI_ITTRIGIN bit assignments.

31 05

Reserved

6

CTITRIGIN

Figure 18-17 CTI_ITTRIGIN bit assignments

The following table describes the CTI_ITTRIGIN bit assignments.

Table 18-22 CTI_ITTRIGIN bit assignments

Field Name Type Description

[31:6] Reserved - RES0.

[5:0] CTITRIGIN RO Reads the latched value of the trigger inputs.

The following table provides more information on CTITRIGIN bit mapping.

Table 18-23 Cortex-M55 processor CTI input trigger signals assignment

Signal Description Connection Acknowledge, handshake

CTITRIGIN[7] Unused ETM to CTI
 Note

If the ETM is not included, bits
[4] and [5] are unused and tied
LOW.

Pulsed

CTITRIGIN[6] Unused

CTITRIGIN[5] ETM Event Output 1

CTITRIGIN[4] ETM Event Output 0 or DWT
Comparator Output 3

CTITRIGIN[3] DWT Comparator Output 2 Processor to CTI

CTITRIGIN[2] DWT Comparator Output 1

CTITRIGIN[1] DWT Comparator Output 0

CTITRIGIN[0] Processor halted

18 Cross Trigger Interface
18.18 CTI_ITTRIGIN, Integration Test Trigger Input Register

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

18-315

Non-Confidential

18.19 CTI_ITCONTROL, Integration Mode Control Register
The CTI_ITCONTROL register is used to enable topology detection.

Usage constraints
Access is only allowed from privileged code. Unprivileged access results in a BusFault being
raised.

Configurations
This register is always implemented when the CTI is included.

Attributes
This is a 32-bit register. See 18.2 CTI register summary on page 18-296 for more information.

The following figure shows the CTI_ITCONTROL bit assignments.

31 1 0

RAZ/WI

IME

Figure 18-18 CTI_ITCONTROL bit assignments

The following table describes the CTI_ITCONTROL bit assignments.

Table 18-24 CTI_ITCONTROL bit assignments

Field Name Type Description

[31:1] RAZ/WI - Read-As-Zero, Writes Ignored.

[0] IME RW Integration Mode Enable. When
set, the component enters
integration mode, enabling
topology detection or
integration testing to be
performed.

The reset value is 0b0.

18 Cross Trigger Interface
18.19 CTI_ITCONTROL, Integration Mode Control Register

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

18-316

Non-Confidential

18.20 CTI_DEVARCH, Device Architecture Register
The CTI_DEVARCH register identifies the architect and architecture of the CoreSight Cross Trigger
Interface (CTI).

Usage constraints
Access is only allowed from privileged code. Unprivileged access results in a BusFault being
raised.

Configurations
This register is always implemented when the CTI is included.

Attributes
This is a 32-bit register. See 18.2 CTI register summary on page 18-296 for more information.

The following figure shows the CTI_DEVARCH bit assignments.

31 21 20 19 16 15 0

ARCHIDARCHITECT

PRESENT
REVISION

Figure 18-19 CTI_DEVARCH bit assignments

The following table describes the CTI_DEVARCH bit assignments.

Table 18-25 CTI_DEVARCH bit assignments

Field Name Type Description

[31:21] ARCHITECT RO Defines the architect of the CTI.

[31:28] Indicates the JEP106 continuation code.

[27:21] Indicates the JEP106 identification code.

Arm is the architect, therefore, this field is 0x23B.

[20] PRESENT RO Indicates the presence of this register. This field returns 0x1.

[19:16] REVISION RO Architecture revision. This field returns 0x0000.

[15:0] ARCHID RO Architecture ID. This field returns a value of 0x1A14, indicating the CoreSight CTI architecture,
version 3.0.

18 Cross Trigger Interface
18.20 CTI_DEVARCH, Device Architecture Register

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

18-317

Non-Confidential

18.21 CTI_DEVID, Device Configuration Register
The CTI_DEVID register indicates the capability of the Cross Trigger Interface (CTI).

Usage constraints
Access is only allowed from privileged code. Unprivileged access results in a BusFault being
raised.

Configurations
This register is always implemented when the CTI is included.

Attributes
This is a 32-bit register. See 18.2 CTI register summary on page 18-296 for more information.

The following figure shows the CTI_DEVID bit assignments.

31 25 24 23 20 19 16 15 8 7 5 4 0

Reserved

NUM_TRIGReservedReserved

INOUT

NUM_CH

EXT_MUX_NUM

Figure 18-20 CTI_DEVID bit assignments

The following table describes the CTI_DEVID bit assignments.

Table 18-26 CTI_DEVID bit assignments

Field Name Type Description

[31:25] Reserved - RES0.

[24] INOUT RO Indicates that the CTIGATE register also masks the channel inputs. This field returns 0b0.
18.14 CTI_CHANNELGATE, CTI Channel Gate Register on page 18-310.

[23:20] Reserved - RES0.

[19:16] NUM_CH RO The number of channels. This field returns 0b0100.

[15:8] NUM_TRIG RO Indicates the maximum number of triggers. This field returns 0b00001000.

[7:5] Reserved - RES0.

[4:0] EXT_MUX_NUM RO This field is 0b0000 indicating that there is no multiplexing.

18 Cross Trigger Interface
18.21 CTI_DEVID, Device Configuration Register

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

18-318

Non-Confidential

18.22 CTI_DEVTYPE, Device Type Identifier Register
A debugger can use the CTI_DEVTYPE register to get information about a component that has an
unrecognized part number.

Usage constraints
This register is read-only.

Configurations
This register is always implemented when the CTI is included.

Attributes
This is a 32-bit register. See 18.2 CTI register summary on page 18-296 for more information.

The following figure shows the CTI_DEVTYPE bit assignments.

31 8 7 4 3 0

MAJORSUBReserved

Figure 18-21 CTI_DEVTYPE bit assignments

The following table describes the CTI_DEVTYPE bit assignments.

Table 18-27 CTI_DEVTYPE bit assignments

Field Name Type Description

[31:8] Reserved - RES0.

[7:4] SUB RO Minor classification. Returns 0x1, indicating this component is a trigger matrix.

[3:0] MAJOR RO Major classification. Returns 0x4, indicating this component performs debug control.

18 Cross Trigger Interface
18.22 CTI_DEVTYPE, Device Type Identifier Register

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

18-319

Non-Confidential

18.23 CTI_PIDR4, Peripheral Identification Register 4
The CTI_PIDR4 register provides information about the memory size and JEP106 continuation code that
the CoreSight Cross Trigger Interface (CTI) component uses.

Usage constraints
Access is only allowed from privileged code. Unprivileged access results in a BusFault being
raised.

Configurations
This register is always implemented when the CTI is included.

Attributes
This is a 32-bit register. See 18.2 CTI register summary on page 18-296 for more information.

The following figure shows the CTI_PIDR4 bit assignments.

31 8 7 4 3 0

DES_2SIZERES0

Figure 18-22 CTI_PIDR4 bit assignments

The following table describes the CTI_PIDR4 bit assignments.

Table 18-28 CTI_PIDR4 bit assignments

Field Name Type Description

[31:8] Reserved - RES0.

[7:4] SIZE RO This field indicates the memory size that the CTI uses. This field returns 0x0 indicating that the component
uses an UNKNOWN number of 4KB blocks.

The reset value of this field is 0x0.

[3:0] DES_2 RO JEP106 continuation code. Together with CTI_PIDR2.DES_1 and CTI_PIDR1.DES_0, they indicate the
designer of the component, not the implementer, except where the two are the same.

The reset value of this field is 0x4.

18 Cross Trigger Interface
18.23 CTI_PIDR4, Peripheral Identification Register 4

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

18-320

Non-Confidential

18.24 CTI_PIDR5, Peripheral Identification Register 5
The CTI_PIDR5 register is reserved.

Usage constraints
Access is only allowed from privileged code. Unprivileged access results in a BusFault being
raised.

Configurations
This register is always implemented when the CTI is included.

Attributes
This is a 32-bit register. See 18.2 CTI register summary on page 18-296 for more information.

The following figure shows the CTI_PIDR5 bit assignments.

31 8 7 0

Reserved PIDR5

Figure 18-23 CTI_PIDR5 bit assignments

The following table describes the CTI_PIDR5 bit assignments.

Table 18-29 CTI_PIDR5 bit assignments

Field Name Type Description

[31:8] Reserved - RES0.

[7:0] PIDR5 RO RES0.

18 Cross Trigger Interface
18.24 CTI_PIDR5, Peripheral Identification Register 5

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

18-321

Non-Confidential

18.25 CTI_PIDR6, Peripheral Identification Register 6
The CTI_PIDR6 register is reserved.

Usage constraints
Access is only allowed from privileged code. Unprivileged access results in a BusFault being
raised.

Configurations
This register is always implemented when the CTI is included.

Attributes
This is a 32-bit register. See 18.2 CTI register summary on page 18-296 for more information.

The following figure shows the CTI_PIDR6 bit assignments.

31 8 7 0

Reserved PIDR6

Figure 18-24 CTI_PIDR6 bit assignments

The following table describes the CTI_PIDR6 bit assignments.

Table 18-30 CTI_PIDR6 bit assignments

Field Name Type Description

[31:8] Reserved - RES0.

[7:0] PIDR6 RO RES0.

18 Cross Trigger Interface
18.25 CTI_PIDR6, Peripheral Identification Register 6

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

18-322

Non-Confidential

18.26 CTI_PIDR7, Peripheral Identification Register 7
The CTI_PIDR7 register is reserved.

Usage constraints
Access is only allowed from privileged code. Unprivileged access results in a BusFault being
raised.

Configurations
This register is always implemented when the CTI is included.

Attributes
This is a 32-bit register. See 18.2 CTI register summary on page 18-296 for more information.

The following figure shows the CTI_PIDR7 bit assignments.

31 8 7 0

Reserved PIDR7

Figure 18-25 CTI_PIDR7 bit assignments

The following table describes the CTI_PIDR7 bit assignments.

Table 18-31 CTI_PIDR7 bit assignments

Field Name Type Description

[31:8] Reserved - RES0.

[7:0] PIDR7 RO RES0.

18 Cross Trigger Interface
18.26 CTI_PIDR7, Peripheral Identification Register 7

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

18-323

Non-Confidential

18.27 CTI_PIDR0, Peripheral Identification Register 0
The CTI_PIDR0 register indicates the Cross Trigger Interface (CTI) component part number.

Usage constraints
Access is only allowed from privileged code. Unprivileged access results in a BusFault being
raised.

Configurations
This register is always implemented when the CTI is included.

Attributes
This is a 32-bit register. See 18.2 CTI register summary on page 18-296 for more information.

The following figure shows the CTI_PIDR0 bit assignments.

31 8 7 0

Reserved PART_0

Figure 18-26 CTI_PIDR0 bit assignments

The following table describes the CTI_PIDR0 bit assignments.

Table 18-32 CTI_PIDR0 bit assignments

Field Name Type Description

[31:8] Reserved - RES0.

[7:0] PART_0 RO This field indicates the part number. When taken together with CTI_PIDR1.PART_1, it indicates the
component. The part number is selected by the designer of the component.

The reset value of this field is 0b00100010

18 Cross Trigger Interface
18.27 CTI_PIDR0, Peripheral Identification Register 0

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

18-324

Non-Confidential

18.28 CTI_PIDR1, Peripheral Identification Register 1
The CTI_PIDR1 register indicates the Cross Trigger Interface (CTI) component JEP106 continuation
code and part number.

Usage constraints
Access is only allowed from privileged code. Unprivileged access results in a BusFault being
raised.

Configurations
This register is always implemented when the CTI is included.

Attributes
This is a 32-bit register. See 18.2 CTI register summary on page 18-296 for more information.

The following figure shows the CTI_PIDR1 bit assignments.

31 8 7 0

Reserved PART_1DES_0

4 3

Figure 18-27 CTI_PIDR1 bit assignments

The following table describes the CTI_PIDR1 bit assignments.

Table 18-33 CTI_PIDR1 bit assignments

Field Name Type Description

[31:8] Reserved - RES0.

[7:4] DES_0 RO This field indicates the JEP106 identification code, bits[3:0]. Together, with CTI_PIDR4.DES_2 and
CTI_PIDR2.DES_1, they indicate the designer of the component and not the implementer, except where the
two are the same.

The reset value is 0xB.

[3:0] PART_1 RO This field indicates the part number, bits[11:8]. Taken together with CTI_PIDR0.PART_0 it indicates the
component. The part number is selected by the designer of the component.

The reset value is 0xD.

18 Cross Trigger Interface
18.28 CTI_PIDR1, Peripheral Identification Register 1

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

18-325

Non-Confidential

18.29 CTI_PIDR2, Peripheral Identification Register 2
The CTI_PIDR2 register indicates the Cross Trigger Interface (CTI) component revision number,
JEDEC value, and part of the JEP106 continuation code.

Usage constraints
Access is only allowed from privileged code. Unprivileged access results in a BusFault being
raised.

Configurations
This register is always implemented when the CTI is included.

Attributes
This is a 32-bit register. See 18.2 CTI register summary on page 18-296 for more information.

The following figure shows the CTI_PIDR2 bit assignments.

31 8 7 0

Reserved DES_1REVISION

4 3 2

JEDEC

Figure 18-28 CTI_PIDR2 bit assignments

The following table describes the CTI_PIDR2 bit assignments.

Table 18-34 CTI_PIDR2 bit assignments

Field Name Type Description

[31:8] Reserved - RES0.

[7:4] REVISION RO This field indicates the revision number of the CTI component. It is an incremental value starting at 0x0
for the first design.

The reset value is 0x0.

[3] JEDEC RO This field is always 1, indicating that a JEDEC assigned value is used.

[2:0] DES_1 RO This field is the JEP106 identification code, bits[6:4]. Together, with CTI_PIDR4.DES_2 and
CTI_PIDR1.DES_0, they indicate the designer of the component and not the implementer, except where
the two are the same.

The reset value is 0b011.

18 Cross Trigger Interface
18.29 CTI_PIDR2, Peripheral Identification Register 2

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

18-326

Non-Confidential

18.30 CTI_PIDR3, Peripheral Identification Register 3
The CTI_PIDR3 register indicates minor errata fixes of the Cross Trigger Interface (CTI) component and
if you have modified the behavior of the component.

Usage constraints
Access is only allowed from privileged code. Unprivileged access results in a BusFault being
raised.

Configurations
This register is always implemented when the CTI is included.

Attributes
This is a 32-bit register. See 18.2 CTI register summary on page 18-296 for more information.

The following figure shows the CTI_PIDR3 bit assignments.

31 8 7 0

Reserved CMODREVAND

4 3

Figure 18-29 CTI_PIDR3 bit assignments

The following table describes the CTI_PIDR3 bit assignments.

Table 18-35 CTI_PIDR3 bit assignments

Field Name Type Description

[31:8] Reserved - RES0.

[7:4] REVAND RO This field indicates minor errata fixes specific to this design, for example metal fixes after implementation.
This field is 0x0 without ECO.

[3:0] CMOD RO Customer modified. Where the component is reusable IP, this value indicates whether you have modified
the behavior of the component. This field is 0x0 without ECO.

18 Cross Trigger Interface
18.30 CTI_PIDR3, Peripheral Identification Register 3

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

18-327

Non-Confidential

18.31 CTI_ CIDR0, Component Identification Register 0
The CTI_CIDR0 register indicates the preamble.

Usage constraints
Access is only allowed from privileged code. Unprivileged access results in a BusFault being
raised.

Configurations
This register is always implemented when the CTI is included.

Attributes
This is a 32-bit register. See 18.2 CTI register summary on page 18-296 for more information.

The following figure shows the CTI_CIDR0 bit assignments.

31 8 7 0

Reserved PRMBL_0

Figure 18-30 CTI_CIDR0 bit assignments

The following table describes the CTI_CIDR0 bit assignments.

Table 18-36 CTI_CIDR0 bit assignments

Field Name Type Description

[31:8] Reserved - RES0.

[7:0] PRMBL_0 RO Preamble. This field returns 0x0D.

18 Cross Trigger Interface
18.31 CTI_ CIDR0, Component Identification Register 0

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

18-328

Non-Confidential

18.32 CTI_ CIDR1, Component Identification Register 1
The CTI_CIDR1 register indicates the component class and preamble.

Usage constraints
Access is only allowed from privileged code. Unprivileged access results in a BusFault being
raised.

Configurations
This register is always implemented when the CTI is included.

Attributes
This is a 32-bit register. See 18.2 CTI register summary on page 18-296 for more information.

The following figure shows the CTI_CIDR1 bit assignments.

31 8 7 0

Reserved PRMBL_1CLASS

4 3

Figure 18-31 CTI_CIDR1 bit assignments

The following table describes the CTI_CIDR1 bit assignments.

Table 18-37 CTI_CIDR1 bit assignments

Field Name Type Description

[31:8] Reserved - RES0.

[7:4] CLASS RO Component class. Returns 0x9, indicating this is a CoreSight component.

[3:0] PRMBL_1 RO Preamble. This field returns 0x0.

18 Cross Trigger Interface
18.32 CTI_ CIDR1, Component Identification Register 1

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

18-329

Non-Confidential

18.33 CTI_ CIDR2, Component Identification Register 2
The CTI_CIDR2 register indicates the preamble.

Usage constraints
Access is only allowed from privileged code. Unprivileged access results in a BusFault being
raised.

Configurations
This register is always implemented when the CTI is included.

Attributes
This is a 32-bit register. See 18.2 CTI register summary on page 18-296 for more information.

The following figure shows the CTI_CIDR2 bit assignments.

31 8 7 0

Reserved PRMBL_2

Figure 18-32 CTI_CIDR2 bit assignments

The following table describes the CTI_CIDR2 bit assignments.

Table 18-38 CTI_CIDR2 bit assignments

Field Name Type Description

[31:8] Reserved - RES0.

[7:0] PRMBL_2 RO Preamble. This field returns 0x05.

18 Cross Trigger Interface
18.33 CTI_ CIDR2, Component Identification Register 2

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

18-330

Non-Confidential

18.34 CTI_ CIDR3, Component Identification Register 3
The CTI_CIDR3 register indicates the preamble.

Usage constraints
Access is only allowed from privileged code. Unprivileged access results in a BusFault being
raised.

Configurations
This register is always implemented when the CTI is included.

Attributes
This is a 32-bit register. See 18.2 CTI register summary on page 18-296 for more information.

The following figure shows the CTI_CIDR3 bit assignments.

31 8 7 0

Reserved PRMBL_3

Figure 18-33 CTI_CIDR3 bit assignments

The following table describes the CTI_CIDR3 bit assignments.

Table 18-39 CTI_CIDR3 bit assignments

Field Name Type Description

[31:8] Reserved - RES0.

[7:0] PRMBL_3 RO Preamble. This field returns 0xB1.

18 Cross Trigger Interface
18.34 CTI_ CIDR3, Component Identification Register 3

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

18-331

Non-Confidential

Chapter 19
Breakpoint Unit

This chapter describes the Breakpoint Unit (BPU).

It contains the following sections:
• 19.1 BPU features on page 19-333.
• 19.2 BPU register summary on page 19-334.

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

19-332

Non-Confidential

19.1 BPU features
The Breakpoint Unit (BPU) is an implementation of the architectural Flashpoint and Breakpoint (FPB)
unit. The BPU can be configured with four or eight instruction address comparators. Each comparator
supports breakpoint functionality on all instructions that are fetched across the entire address range in
which code is located.

The BPU does not support flash patching. Flash patching allows a small programmable memory in the
system to apply patches to program memory that cannot be modified.

The BPU functionality is largely architecturally defined. The IMPLEMENTATION DEFINED functionality
includes:

Security
If the Cortex-M55 processor is configured to include the Security Extension and if invasive
debug is not enabled for the security mode that the processor was in when the breakpoint
became active, then debug events that are associated with breakpoints are blocked.

Architectural remap registers
The Cortex-M55 processor does not include the address remapping functionality for instructions
and literals. Therefore, the following architecturally defined registers have the following
behavior:
• FP_REMAP.RMPSPT is RAZ/WI.
• FP_REMAP.REMAP is Reserved.
• FP_CTRL.NUM_LIT is 0, indicating that no literal comparators are included.
• Attempting to enable Flash Patch in FP_COMPn is ignored.

Additionally, only instruction address comparators are supported.

For more information on the registers listed in this section, see the Arm®v8-M Architecture Reference
Manual.

19 Breakpoint Unit
19.1 BPU features

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

19-333

Non-Confidential

19.2 BPU register summary
The following table shows the Breakpoint Unit (BPU) registers, with address, name, type and reset
information for each register.

Depending on the implementation of your processor, some of these registers might not be present. Any
register that is configured as not present reads as zero and ignores writes.

All BPU registers are described in the Arm®v8-M Architecture Reference Manual.

Table 19-1 BPU register summary

Address Name Type Reset value Description

0xE0002000 FP_CTRL RW • If four instruction
comparators are
implemented, the
reset value is
0x10000040.

• If eight instruction
comparators are
implemented, the
rest value is
0x10000080.

Flash Patch Control Register

0xE0002004 FP_REMAP RAZ/WI - Flash Patch Remap. This register is not implemented.

0xE0002008 FP_COMP0 RW

0x00000000

Flash Patch Comparator Register 0-7
 Note

• FP_COMPn[0] is reset to 0.
• FP_COMPn[31:1] is reset to UNKNOWN.
• If only 4 breakpoints are implemented, FP_COMP4-

FP_COMP7 are RAZ/WI.

0xE000200C FP_COMP1 RW

0xE0002010 FP_COMP2 RW

0xE0002014 FP_COMP3 RW

0xE0002018 FP_COMP4 RW

0xE000201C FP_COMP5 RW

0xE0002020 FP_COMP6 RW

0xE0002024 FP_COMP7 RW

0xE0002FBC FP_DEVARCH RO 0x47701A03 FPB CoreSight Device Architecture Register

0xE0002FD0 FP_PIDR4 RO 0x00000004 Peripheral identification Register 4

0xE0002FE0 FP_PIDR0 RO 0x00000022 Peripheral identification Register 0

0xE0002FE4 FP_PIDR1 RO 0x000000BD Peripheral identification Register 1

0xE0002FE8 FP_PIDR2 RO 0x0000000B Peripheral identification Register 2

0xE0002FEC FP_PIDR3 RO 0x00000000 Peripheral identification Register 3

0xE0002FF0 FP_CIDR0 RO 0x0000000D Component identification registers

0xE0002FF4 FP_CIDR1 RO 0x00000090

0xE0002FF8 FP_CIDR2 RO 0x00000005

0xE0002FFC FP_CIDR3 RO 0x000000B1

19 Breakpoint Unit
19.2 BPU register summary

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

19-334

Non-Confidential

 Note

FP_DEVTYPE, FP_PIDR5, FP_PIDR6, and FP_PIDR7 registers are not implemented, and are RES0.

19 Breakpoint Unit
19.2 BPU register summary

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

19-335

Non-Confidential

Appendix A
External Wakeup Interrupt Controller

This appendix describes the External Wakeup Interrupt Controller (EWIC) that can be used with the
Cortex-M55 processor.

It contains the following sections:
• A.1 EWIC features on page Appx-A-337.
• A.2 EWIC register summary on page Appx-A-338.

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-A-336

Non-Confidential

A.1 EWIC features
The Cortex-M55 processor supports the External Wakeup Interrupt Controller (EWIC), which is a
peripheral to the processor and is suitable for sleep states when it is the only source of wakeup in the
system. The EWIC stores state to allow the processor to wake up from retention or powered off state.

An APB interface controls the EWIC which must be connected to the External Private Peripheral Bus
(EPPB) master interface of the processor. This interface is used to communicate all interrupt and event
status information on sleep entry and wakeup. The EWIC interface can be asynchronous to the processor
by instantiating an asynchronous clock domain crossing in the system on the APB interface.

EWIC configuration

The EWIC can be configured to support a variable number of events.

A minimum of 4 events are supported:

• External event.
• Debug request.
• Non-Maskable Interrupt, NMI.
• One interrupt.

A maximum of 483 events are supported:

• External event.
• Debug request.
• NMI.
• 480 interrupts.

Any number of events in the range 4-483 is permitted.
 Note

The EWIC can support fewer interrupts than the processor supports. Interrupts above those that the
EWIC supports cannot cause the core to exit low-power state. Therefore, higher numbered interrupts that
occur when the core is in a low-power state might be lost.

A External Wakeup Interrupt Controller
A.1 EWIC features

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-A-337

Non-Confidential

A.2 EWIC register summary
The External Wakeup Interrupt Controller (EWIC) requires memory-mapped registers that are accessed
at address 0xE0047000 onwards in the PPB region of the memory map. The registers are contained in a
CoreSight compliant 4KB block. The following table shows the EWIC registers.

Table A-1 EWIC register summary

Address Name Type Reset value Description

0xE0047000 EWIC_CR RW 0x00000000 A.2.1 EWIC_CR, EWIC Control Register
on page Appx-A-338

0xE0047004 EWIC_ASCR RW 0x00000003 A.2.2 EWIC_ASCR, EWIC Automatic Sequence
Control Register on page Appx-A-339

0xE0047008 EWIC_CLRMASK WO 0x00000000 A.2.3 EWIC_CLRMASK, EWIC Clear Mask Register
on page Appx-A-340

0xE004700C EWIC_NUMID RO 0x0000XXXX A.2.4 EWIC_NUMID, EWIC Event Number ID
Register on page Appx-A-341

0xE0047200 EWIC_MASKA RW 0x0000000X A.2.5 EWIC_MASKA and EWIC_MASKn, EWIC
Mask Registers on page Appx-A-341

0xE0047204 - 0xE004723C EWIC_MASKn RW UNKNOWN

0xE0047400 EWIC_PENDA RO 0x0000000X A.2.6 EWIC_PENDA and EWIC_PENDn, EWIC
Pend Event Registers on page Appx-A-342

0xE0047404 - 0xE004743C EWIC_PENDn RW UNKNOWN

0xE0047600 EWIC_PSR RO 0x0000XXXX A.2.7 EWIC_PSR, EWIC Pend Summary Register
on page Appx-A-344

0xE0047604-0xE0047EFC - UNK/
SBZP

- Reserved

0xE0047F00-0xE0047FFC CoreSight registers RO A.2.8 EWIC CoreSight™ register summary
on page Appx-A-345

A.2.1 EWIC_CR, EWIC Control Register

The EWIC_CR is the main External Wakeup Interrupt Controller (EWIC) control register.

Usage constraints
When the EWIC is connected to the External Private Peripheral Bus (EPPB) interface, the
Cortex-M55 processor controls access to these registers using the following constraints:
• If the Security Extension is included, then access from Non-secure software is only allowed

if AIRCR.BFHFNMINS is set to 1.
• Access is only allowed from privileged code. Unprivileged access results in a BusFault

being raised.

Configurations
This register is always implemented when the EWIC is included.

Attributes
This is a 32-bit register. See A.2 EWIC register summary on page Appx-A-338 for more
information.

The following figure shows the EWIC_CR bit assignments.

A External Wakeup Interrupt Controller
A.2 EWIC register summary

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-A-338

Non-Confidential

31 01

EN

Reserved

Figure A-1 EWIC_CR bit assignments

The following table describes the EWIC_CR bit assignments.

Table A-2 EWIC_CR bit assignments

Field Name Type Description

[31:1] - - Reserved, RES0

[0] EN RW The options are:

0 EWIC is disabled, events
are not pended, and
WAKEUP is not signaled.

1 EWIC is enabled, events
are pended, and WAKEUP
is signaled.

The reset value is 0.

A.2.2 EWIC_ASCR, EWIC Automatic Sequence Control Register

The EWIC_ASCR determines whether the processor generates APB transactions on entry and exit from
Wakeup Interrupt Controller (WIC) sleep to set up the wakeup state in the External Wakeup Interrupt
Controller (EWIC).

Usage constraints
When the EWIC is connected to the External Private Peripheral Bus (EPPB) interface, the
Cortex-M55 processor controls access to these registers using the following constraints:
• If the Security Extension is included, then access from Non-secure software is only allowed

if AIRCR.BFHFNMINS is set to 1.
• Access is only allowed from privileged code. Unprivileged access results in a BusFault

being raised.

Configurations
This register is always implemented when the EWIC is included.

Attributes
This is a 32-bit register. See A.2 EWIC register summary on page Appx-A-338 for more
information.

The following figure shows the EWIC_ASCR bit assignments.

31 01

ASPU

Reserved

2

ASPD

Figure A-2 EWIC_ASCR bit assignments

A External Wakeup Interrupt Controller
A.2 EWIC register summary

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-A-339

Non-Confidential

The following table describes the EWIC_ASCR bit assignments.

Table A-3 EWIC_ASCR bit assignments

Field Name Type Description

[31:2] - - Reserved, RES0

[1] ASPU RW The value of this bit is sent to
the processor. The processor
must use this value to decide
whether any automatic EWIC
accesses must be performed on
transitioning from a low-power
state. The options are:

0 No automatic sequence on
powerup.

1 Automatic sequence on
powerup.

The reset value is 1.

[0] ASPD RW The value of this bit is sent to
the processor. The processor
must use this value to decide
whether any automatic EWIC
accesses must be performed on
transitioning to a low-power
state. The options are:

0 No automatic sequence on
entry to a low-power state.

1 Automatic sequence on
entry to a low-power state.

The reset value is 1.

 Note

• If the automatic sequence is disabled, then software can program the unit by writing to the
EWIC_MASKA and EWIC_MASKn registers on sleep entry and reading from the EWIC_PENDn
registers on sleep exit. For more information, see A.2.5 EWIC_MASKA and EWIC_MASKn, EWIC
Mask Registers on page Appx-A-341 and A.2.6 EWIC_PENDA and EWIC_PENDn, EWIC Pend
Event Registers on page Appx-A-342.

• The value of EWIC_ASCR does not affect the operation of the EWIC itself. It only affects the control
information that is driven on the WICCONTROL signal to the Cortex-M55 processor.

• When modifying EWIC_ASCR.ASPU and EWIC_ACSR.ASPD, the resulting changes to
WICCONTROL[3:0] must be stable before software enters sleep and remain stable until software
execution resumes. Otherwise, modification of these registers can result in UNPREDICTABLE behavior.

A.2.3 EWIC_CLRMASK, EWIC Clear Mask Register

When there is a write to the EWIC_CLRMASK register, it causes EWIC_MASKA and all the
EWIC_MASKn registers to be cleared. The write data is ignored. This register is RAZ.

A External Wakeup Interrupt Controller
A.2 EWIC register summary

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-A-340

Non-Confidential

A.2.4 EWIC_NUMID, EWIC Event Number ID Register

The EWIC_NUMID register returns the total number of events that are supported in the External Wakeup
Interrupt Controller (EWIC).

Usage constraints
When the EWIC is connected to the External Private Peripheral Bus (EPPB) interface, the
Cortex-M55 processor controls access to these registers using the following constraints:
• If the Security Extension is included, then access from Non-secure software is only allowed

if AIRCR.BFHFNMINS is set to 1.
• Access is only allowed from privileged code. Unprivileged access results in a BusFault

being raised.

Configurations
This register is always implemented when the EWIC is included.

Attributes
This is a 32-bit register. See A.2 EWIC register summary on page Appx-A-338 for more
information.

The following figure shows the EWIC_NUMID bit assignments.

31 16 15 0

NUMEVENTReserved

Figure A-3 EWIC_NUMID bit assignments

The following table describes the EWIC_NUMID bit assignments.

Table A-4 EWIC_NUMID bit assignments

Field Name Type Description

[31:16] - - Reserved, RES0

[15:0] NUMEVENT RO The number of events
supported.

A.2.5 EWIC_MASKA and EWIC_MASKn, EWIC Mask Registers

The EWIC_MASKA register defines the mask for special events and the EWIC_MASKn registers for
external interrupt (IRQ) events. There is one EWIC_MASKn register implemented for every 32 external
interrupts that the External Wakeup Interrupt Controller (EWIC) supports. At least one register is always
implemented. EWIC_MASKn is at address 0xE0047204+(n×4), where n=0-14.

Usage constraints
When the EWIC is connected to the External Private Peripheral Bus (EPPB) interface, the
Cortex-M55 processor controls access to these registers using the following constraints:
• If the Security Extension is included, then access from Non-secure software is only allowed

if AIRCR.BFHFNMINS is set to 1.
• Access is only allowed from privileged code. Unprivileged access results in a BusFault

being raised.

Configurations
These registers are always implemented when the EWIC is included.

Attributes
These are 32-bit registers. See A.2 EWIC register summary on page Appx-A-338 for more
information.

A External Wakeup Interrupt Controller
A.2 EWIC register summary

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-A-341

Non-Confidential

The following figure shows the EWIC_MASKA bit assignments.

31 01

EDBGREQ

Reserved

23

NMI
EVENT

Figure A-4 EWIC_MASKA bit assignments

The following table describes the EWIC_MASKA bit assignments.

Table A-5 EWIC_MASKA bit assignments

Field Name Type Description

[31:3] - - Reserved, RES0

[2] EDBGREQ RW Mask for external debug request. If this bit is 0, the mask is enabled.

[1] NMI RW Mask for Non-Maskable Interrupt, NMI. If this bit is 0, the mask is enabled.

[0] EVENT RW Mask for Wait For Exception (WFE) wakeup event. If this bit is 0, the mask is enabled.

The following figure shows the EWIC_MASKn, where n=0-14, bit assignments.

31 0

IRQ

Figure A-5 EWIC_MASKn, where n=0-14 bit assignments

The following table describes the EWIC_MASKn, where n=0-14, bit assignments.

Table A-6 EWIC_MASKn, where n=0-14, bit assignments

Field Name Type Description

[31:0] IRQ RW Masks for external interrupts (n×32) to ((n+1)×32)-1.

If any of the bits are 0, the mask is enabled for the associated interrupt. Additionally, any interrupt that the
WIC does not support is also RAZ.

A.2.6 EWIC_PENDA and EWIC_PENDn, EWIC Pend Event Registers

These registers indicate which events have been pended. The EWIC_PENDA register is used for special
events and the EWIC_PENDn registers are used for external interrupt (IRQ) events. There is one
EWIC_PENDn register implemented for each 32 external interrupt events the EWIC supports.
EWIC_PENDA and at least one EWIC_PENDn register is always implemented.

A External Wakeup Interrupt Controller
A.2 EWIC register summary

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-A-342

Non-Confidential

Usage constraints
When the EWIC is connected to the External Private Peripheral Bus (EPPB) interface, the
Cortex-M55 processor controls access to these registers using the following constraints:
• If the Security Extension is included, then access from Non-secure software is only allowed

if AIRCR.BFHFNMINS is set to 1.
• Access is only allowed from privileged code. Unprivileged access results in a BusFault

being raised.

Configurations
These registers are always implemented when the EWIC is included. There is one
EWIC_PENDn register implemented for every 32 events that the External Wakeup Interrupt
Controller (EWIC) supports. At least one register is always implemented. EWIC_MASKn is at
address 0xE0047404+(n×4).

Attributes
These are 32-bit registers. The EWIC_PENDn registers can be written to transfer pended
interrupts in the NVIC when the processor enters sleep. EWIC_PENDA is read-only as special
events can only be pended by the system (usually during sleep). See A.2 EWIC register
summary on page Appx-A-338 for more information.

The following figure shows the EWIC_PENDA bit assignments.

31 01

EDBGREQ

Reserved

23

NMI
EVENT

Figure A-6 EWIC_PENDA bit assignments

The following table describes the EWIC_PENDA bit assignments.

Table A-7 EWIC_PENDA bit assignments

Field Name Type Description

[31:3] - - Reserved, RES0

[2] EDBGREQ RO External debug request is
pended.

[1] NMI RO Non-Maskable Interrupt, NMI,
is pended.

[0] EVENT RO Wait For Exception (WFE)
wakeup event is pended.

The following figure shows the EWIC_PENDn, where n=0-14, bit assignments.

31 0

IRQ

Figure A-7 EWIC_PENDn, where n=0-14 bit assignments

A External Wakeup Interrupt Controller
A.2 EWIC register summary

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-A-343

Non-Confidential

The following table describes the EWIC_PENDn, where n=0-14, bit assignments.

Table A-8 EWIC_PENDn, where n=0-14, bit assignments

Field Name Type Description

[31:0] IRQ RW Interrupts (n×32) to ((n+1)
×32)-1 are pended. A write of
zero to this field is ignored.

 Note

Any IRQ bit associated with an interrupt that the EWIC does not support is RAZ/WI. All EWIC_PENDn
registers are reset 0. If an event occurs when EWIC_CR.EN is set, then the corresponding bit in
EWIC_PENDn is set. All EWIC_PENDn registers are cleared if the EWIC is disabled, that is, if
EWIC_CR.EN is cleared. For more information on EWIC_CR, see A.2.1 EWIC_CR, EWIC Control
Register on page Appx-A-338.

A.2.7 EWIC_PSR, EWIC Pend Summary Register

The EWIC_PSR indicates which EWIC_PENDn registers are nonzero. This allows the processor to
efficiently determine which EWIC_PENDn registers need to be read. This can be used to improve code
efficiency in the powerup sequence.

Usage constraints
When the EWIC is connected to the External Private Peripheral Bus (EPPB) interface,
theCortex-M55 processor controls access to these registers using the following constraints:
• If the Security Extension is included, then access from Non-secure software is only allowed

if AIRCR.BFHFNMINS is set to 1.
• Access is only allowed from privileged code. Unprivileged access results in a BusFault

being raised.

Configurations
This register is always implemented when the EWIC is included.

Attributes
This is a 32-bit register. See A.2 EWIC register summary on page Appx-A-338 for more
information.

The following figure shows the EWIC_PSR bit assignments.

31 0

Reserved

16 15

NZ

1

NZA

Figure A-8 EWIC_PSR bit assignments

A External Wakeup Interrupt Controller
A.2 EWIC register summary

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-A-344

Non-Confidential

The following table describes the EWIC_PSR bit assignments.

Table A-9 EWIC_PSR bit assignments

Field Name Type Description

[31:16] - - Reserved, RES0

[15:1] NZ RO If EWIC_PSR.NZ[n+1] is set, then EWIC_PENDn is nonzero.

[0] NZA RO If EWIC_PSR.NZA set, then EWIC_PENDA is nonzero.

 Note

If any bit of EWIC_PSR is associated with an EWIC_PENDn register that is entirely RAZ/WI, then the
bit in EWIC_PSR is also RAZ/WI.

A.2.8 EWIC CoreSight™ register summary

The External Wakeup Interrupt Controller (EWIC) implements the standard CoreSight registers.

The following table describes the CoreSight registers that the EWIC implements.

Table A-10 EWIC CoreSight register summary

Address Name Type Reset value Description

0xE0047F00 EWIC_ITCTRL RO 0x00000000 Integration Mode Control Register

0xE0047F04-0xE0047F9C - - - Reserved

0xE0047FA0 EWIC_CLAIMSET RW 0x0000000F Claim Tag Set Register

0xE0047FA4 EWIC_CLAIMCLR RW 0x00000000 Claim Tag Clear Register

0xE0047FA8 EWIC_DEVAFF0 RO 0x80000000 Device Affinity Register 0

0xE0047FAC EWIC_DEVAFF1 RO 0x00000000 Device Affinity Register 1

0xE0047FB0 EWIC_LAR WO UNKNOWN Lock Access Register

0xE0047FB4 EWIC_LSR RO 0x00000000 Lock Status Register

0xE0047FB8 EWIC_AUTHSTATUS RO 0x00000000 Authentication Status Register

0xE0047FBC EWIC_DEVARCH RO 0x47700A07 Device Architecture Register

0xE0047FC0 EWIC_DEVID2 RO 0x00000000 Device Configuration Register 2

0xE0047FC4 EWIC_DEVID1 RO 0x00000000 Device Configuration Register 1

0xE0047FC8 EWIC_DEVID RO 0x00000000 Device Configuration Register

0xE0047FCC EWIC_DEVTYPE RO 0x00000000 Device Type Identifier Register

0xE0047FD0 EWIC_PIDR4 RO 0x00000004 Peripheral Identification Registers

0xE0047FD4 EWIC_PIDR5 RO 0x00000000

0xE0047FD8 EWIC_PIDR6 RO 0x00000000

0xE0047FDC EWIC_PIDR7 RO 0x00000000

0xE0047FE0 EWIC_PIDR0 RO 0x00000022

0xE0047FE4 EWIC_PIDR1 RO 0x000000BD

0xE0047FE8 EWIC_PIDR2 RO 0x0000000B

0xE0047FEC EWIC_PIDR3 RO 0x00000000

A External Wakeup Interrupt Controller
A.2 EWIC register summary

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-A-345

Non-Confidential

Table A-10 EWIC CoreSight register summary (continued)

Address Name Type Reset value Description

0xE0047FF0 EWIC_CIDR0 RO 0x0000000D Component Identification Registers

0xE0047FF4 EWIC_CIDR1 RO 0x00000090

0xE0047FF8 EWIC_CIDR2 RO 0x00000005

0xE0047FFC EWIC_CIDR3 RO 0x000000B1

 Note

For more information on these registers, see the Arm® CoreSight™ Architecture Specification v3.0. In the
Arm® CoreSight™ Architecture Specification v3.0, these register names are not prefixed with "EWIC_".

A.2.9 EWIC_CLAIMSET, EWIC Claim Tag Set Register

The EWIC_CLAIMSET register is used to set whether functionality is in use by a debug agent. All
debug agents must implement a common protocol to use these bits.

For more information on example protocols, see the Arm® CoreSight™ Architecture Specification v3.0.

Usage constraints
See A.2.8 EWIC CoreSight™ register summary on page Appx-A-345 for more information.

Configurations
This register is always implemented.

Attributes
This is a 32-bit register.

The following figure shows the EWIC_CLAIMSET bit assignments.

31 34

SETReserved

0

Figure A-9 EWIC_CLAIMSET bit assignments

The following table describes the EWIC_CLAIMSET bit assignments.

A External Wakeup Interrupt Controller
A.2 EWIC register summary

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-A-346

Non-Confidential

Table A-11 EWIC_CLAIMSET bit assignments

Field Name Type Description

[31:4] Reserved - RES0

[3:0] SET RW The options are:

Write 0 No effect.

Write 1 Set the claim tag for
bit[n].

Read 0 The claim tag that is
represented by bit[n]
is not implemented.

Read 1 The claim tag that is
represented by bit[n]
is implemented.

A.2.10 EWIC_CLAIMCLR, EWIC Claim Tag Clear Register

The EWIC_CLAIMCLR register is used to set whether functionality is in use by a debug agent. All
debug agents must implement a common protocol to use these bits.

For more information on example protocols, see the Arm® CoreSight™ Architecture Specification v3.0.

Usage constraints
See A.2.8 EWIC CoreSight™ register summary on page Appx-A-345 for more information.

Configurations
This register is always implemented.

Attributes
This is a 32-bit register.

The following figure shows the EWIC_CLAIMCLR bit assignments.

31 34

CLRReserved

0

Figure A-10 EWIC_CLAIMCLR bit assignments

The following table describes the EWIC_CLAIMCLR bit assignments.

A External Wakeup Interrupt Controller
A.2 EWIC register summary

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-A-347

Non-Confidential

Table A-12 EWIC_CLAIMCLR bit assignments

Field Name Type Description

[31:4] Reserved - RES0

[3:0] CLR RW The options are:

Write 0 No effect.

Write 1 Clear the claim tag
for bit[n].

Read 0 The claim tag that is
represented by bit[n]
is not set.

Read 1 The claim tag that is
represented by bit[n]
is set.

A External Wakeup Interrupt Controller
A.2 EWIC register summary

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-A-348

Non-Confidential

Appendix B
Trace Port Interface Unit

This appendix describes the Trace Port Interface Unit (TPIU) that can be used with the Cortex-M55
processor.

It contains the following sections:
• B.1 TPIU features on page Appx-B-350.
• B.2 TPIU register summary on page Appx-B-353.

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-B-349

Non-Confidential

B.1 TPIU features
The Cortex-M55 Trace Port Interface Unit (TPIU) is an optional component that bridges between the
on-chip trace data from the Embedded Trace Macrocell (ETM) and the Instrumentation Trace Macrocell
(ITM), with separate IDs, to a data stream.

The Cortex-M55 TPIU encapsulates IDs where required, and an external Trace Port Analyzer (TPA)
captures the data stream.

The Cortex-M55 TPIU is specially designed for low-cost debug. If your implementation requires the
additional features, like those in the CoreSight SoC-600 TPIU, your implementation can replace the
Cortex-M55 TPIU with other CoreSight components.

 Note

In this chapter, the term TPIU refers to the Cortex-M55 TPIU. For information about the CoreSight
SoC-600 TPIU and additional CoreSight features that you can add to your implementation, see the Arm®

CoreSight™ System-on-Chip SoC-600 Technical Reference Manual.

The Trace Port Interface Unit (TPIU) supports up to two ATB ports. The following table shows the
various ATB1 and ATB2 parameters configuration options.

Table B-1 ATB port parameters

ATB1 ATB2 Description

0 0 Illegal combination. If the ITM and ETM do not exist, then the TPIU is not present.

0 1 ATB port 2 is present, and Arm recommends connecting the ETM to it. In this case, the ATB interface 2 logic is
removed and gets assigned to ATB interface 1 logic.

1 0 ATB port 1 is present, and Arm recommends connecting the ITM to it.

1 1 Both ports are present, and Arm recommends that the ITM is connected to ATB port 1 and the ETM is connected to
ATB port 2.

 Note

If your system design uses the optional ETM component, the TPIU configuration supports both ITM and
ETM debug trace. See the Arm® CoreSight™ ETM‑M55 Technical Reference Manual.

The following figure shows the component layout of the TPIU when ATB1 and ATB2 are set to 1.

B Trace Port Interface Unit
B.1 TPIU features

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-B-350

Non-Confidential

ATB
Interface

assignments

ATB
Interface 1

ATB
Interface 2

Formatter Trace Out
(serializer)

APB
Interface

† ATB
Slave
Port 1

† ATB
Slave
Port 2

TRACECLKIN

TRACECLK

TRACEDATA[3:0]

TRACESWO

ABP Slave Port

† Optional Component

TPIUIDLE
FSM

Q-Channel
LPI SlaveTPIUWAKEUP

TRACECLKINQREQn

TRACECLKINQACCEPTn

TRACECLKINQDENY

TRACECLKINQACTIVE

ATCLK domain TRACECLKIN domain

Clock domain crossing

Figure B-1 TPIU block diagram

B.1.1 TPIU Formatter

The formatter inserts source ID signals into the data packet stream so that trace data can be re-associated
with its trace source. The formatter is always active when the Trace Port Mode is active.

The formatting protocol is described in the Arm® CoreSight™ Architecture Specification v3.0. You must
enable synchronization in the DWT or TPIU_PSCR to provide synchronization for the formatter.

When the formatter is enabled, if there is no data to output after a frame has been started, half-sync
packets can be inserted. Distributed synchronization from the DWT or TPIU_PSCR causes
synchronization which ensures that any partial frame is completed, and at least one full synchronization
packet is generated.

B.1.2 Serial Wire Output format

The TPIU can output trace data in a Serial Wire Output (SWO) format:

• TPIU_DEVID specifies the formats that are supported. See B.2.16 TPIU_DEVID, Device
Configuration Register on page Appx-B-365

• TPIU_SPPR specifies the SWO format in use. See the Arm®v8-M Architecture Reference Manual.

B Trace Port Interface Unit
B.1 TPIU features

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-B-351

Non-Confidential

When one of the two SWO modes is selected, you can enable the TPIU to bypass the formatter for trace
output. When the formatter is bypassed, only data on the ATB interface 1 is passed through and ATB
interface 2 data is discarded.

 Note

When operating in bypass mode, Arm recommends that in a configuration that supports an ETM and
ITM, the ITM data is passed through by connecting the ITM to the ATB Slave Port 1.

B Trace Port Interface Unit
B.1 TPIU features

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-B-352

Non-Confidential

B.2 TPIU register summary
The following table shows the Trace Port Interface Unit (TPIU) registers. Depending on the
implementation of your processor, the TPIU registers might not be present, and the CoreSight TPIU
might be present instead. Any register that is configured as not present reads as zero.

 Note

Arm recommends that the TPIU is only reprogrammed before any data has been presented on either ATB
slave port and either:
• After both ATRESETn and TRESETn have been applied.
• After a flush has been completed using FFCR.FOnMan.

If this is not followed, reprogramming can cause either momentary or permanent data corruption that
might require ATRESETn and TRESETn to be applied.

Table B-2 TPIU register summary

Address Name Type Reset Description

0xE0040000 TPIU_SSPSR RO -
 Note

The value at reset corresponds to
the MAXPORTSIZE configuration
tie off.

B.2.1 TPIU_SSPSR, Supported Port Size Register
on page Appx-B-354

0xE0040004 TPIU_CSPSR RW 0x00000001 B.2.2 TPIU_CSPSR, Current Port Size Register
on page Appx-B-355

0xE0040010 TPIU_ACPR RW 0x00000000 B.2.5 TPIU_ACPR, Asynchronous Clock Prescaler
Register on page Appx-B-357

0xE00400F0 TPIU_SPPR RW 0x00000001 B.2.3 TPIU_SPPR, Selected Pin Protocol Register
on page Appx-B-356

0xE0040300 TPIU_FFSR RO 0x00000008 B.2.6 TPIU_FFSR, Formatter and Flush Status
Register on page Appx-B-357

0xE0040304 TPIU_FFCR RW 0x00000102 B.2.7 TPIU_FFCR, Formatter and Flush Control
Register on page Appx-B-358

0xE0040308 TPIU_PSCR RW 0x00000000 B.2.4 TPIU_PSCR, Periodic Synchronization
Counter Register on page Appx-B-356

0xE0040EE8 TPIU_TRIGGER RO 0x00000000 B.2.8 TPIU_TRIGGER, TPIU TRIGGER Register
on page Appx-B-359

0xE0040EEC TPIU_ITFTTD0 RO UNKNOWN B.2.9 ITFTTD0, Integration Test FIFO Test Data 0
Register on page Appx-B-360

0xE0040EF0 TPIU_ITATBCTR2 RW 0x00000000 B.2.10 ITATBCTR2, Integration Test ATB Control
Register 2 on page Appx-B-360

0xE0040EF8 TPIU_ITATBCTR0 RO 0x00000000 B.2.12 ITATBCTR0, Integration Test ATB Control 0
Register on page Appx-B-362

0xE0040EFC TPIU_ ITFTTD1 RO UNKNOWN B.2.11 ITFTTD1, Integration Test FIFO Test Data 1
Register on page Appx-B-361

0xE0040F00 TPIU_ITCTRL RW 0x00000000 B.2.13 TPIU_ITCTRL, Integration Mode Control
on page Appx-B-362

B Trace Port Interface Unit
B.2 TPIU register summary

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-B-353

Non-Confidential

Table B-2 TPIU register summary (continued)

Address Name Type Reset Description

0xE0040FA0 TPIU_CLAIMSET RW 0x0000000F B.2.14 CLAIMSET, Claim Tag Set Register
on page Appx-B-363

0xE0040FA4 TPIU_CLAIMCLR RW 0x00000000 B.2.15 CLAIMCLR, Claim Tag Clear Register
on page Appx-B-364

0xE0040FC8 TPIU_DEVID RO 0x00000CA0/0x00000CA1 B.2.16 TPIU_DEVID, Device Configuration
Register on page Appx-B-365

0xE0040FCC TPIU_DEVTYPE RO 0x00000011 B.2.17 TPIU_DEVTYPE, Device Type Identifier
Register on page Appx-B-366

0xE0040FD0 TPIU_PIDR4 RO 0x00000004 B.2.18 TPIU_PIDR4, Peripheral Identification
Register 4 on page Appx-B-366

0xE0040FD4 TPIU_PIDR5 RO 0x00000000 B.2.19 TPIU_PIDR5, Peripheral Identification
Register 5 on page Appx-B-367

0xE0040FD8 TPIU_PIDR6 RO 0x00000000 B.2.20 TPIU_PIDR6, Peripheral Identification
Register 6 on page Appx-B-368

0xE0040FDC TPIU_PIDR7 RO 0x00000000 B.2.21 TPIU_PIDR7, Peripheral Identification
Register 7 on page Appx-B-368

0xE0040FE0 TPIU_PIDR0 RO 00000022 B.2.22 TPIU_PIDR0, Peripheral Identification
Register 0 on page Appx-B-369

0xE0040FE4 TPIU_PIDR1 RO 0x000000BD B.2.23 TPIU_PIDR1, Peripheral Identification
Register 1 on page Appx-B-370

0xE0040FE8 TPIU_PIDR2 RO 0x0000000B B.2.24 TPIU_PIDR2, Peripheral Identification
Register 2 on page Appx-B-370

0xE0040FEC TPIU_PIDR3 RO -
 Note

The value at reset is
ECOREVNUM value.

B.2.25 TPIU_PIDR3, Peripheral Identification
Register 3 on page Appx-B-371

0xE0040FF0 TPIU_CIDR0 RO 0x0000000D B.2.26 TPIU_ CIDR0, Component Identification
Register 0 on page Appx-B-372

0xE0040FF4 TPIU_CIDR1 RO 0x00000090 B.2.27 TPIU_ CIDR1, Component Identification
Register 1 on page Appx-B-372

0xE0040FF8 TPIU_CIDR2 RO 0x00000005 B.2.28 TPIU_ CIDR2, Component Identification
Register 2 on page Appx-B-373

0xE0040FFC TPIU_CIDR3 RO 0x000000B1 B.2.29 TPIU_ CIDR3, Component Identification
Register 3 on page Appx-B-373

B.2.1 TPIU_SSPSR, Supported Port Size Register

TPIU_SSPSR shows the supported sizes of the trace data port TRACEDATE[3:0]. Each bit location
represents a single port size that is supported, that is, sizes from 32 bits to 1 bit in bit location [31:0]. If a
bit is set, then that port size is supported. The supported trace port sizes are limited by the
MAXPORTSIZE signal. The maximum possible trace port size for Cortex-M55 is 4 bits.

For more information on the MAXPORTSIZE signal, see the Arm® Cortex®-M55 Processor Integration
and Implementation Manual. The Arm® Cortex®-M55 Processor Integration and Implementation Manual
is a confidential document and available to licensees only.

Usage constraints
There are no usage constraints.

B Trace Port Interface Unit
B.2 TPIU register summary

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-B-354

Non-Confidential

Configurations
Available in all configurations.

Attributes
See Table B-2 TPIU register summary on page Appx-B-353.

The following figure shows the TPIU_SSPSR bit assignments.

31 0

SSPSR

Figure B-2 TPIU_SSPSR bit assignments

The following table shows the TPIU_SSPSR bit assignments.

Table B-3 TPIU_SSPSR bit assignments

Bits Name Function

[31:0] SSPSR Supported sizes of TRACEDATA[3:0]. The possible values are:

0b0001 Maximum 1-bit trace port.
0b0011 Maximum 2-bit trace port.
0b1011 Maximum 4-bit trace port.

B.2.2 TPIU_CSPSR, Current Port Size Register

TPIU_CSPSR shows the currently selected size of the trace data port, TRACEDATA[3:0].

It has the same format as the TPIU_SSPSR register, but only one bit is set to show the currently selected
port size. If a bit that is indicated as not supported in the TPIU_SSPSR is set in the TPIU_CSPSR, it can
corrupt the output trace stream, in trace capture mode, and the trace patterns in pattern generation mode.
If more than one bit is set, the port size is internally resolved to the highest order set bit. This register
must not be modified while the trace port is still active, or without correctly stopping the formatter. If this
happens, it can result in data not being aligned to the port width.

Usage constraints
There are no usage constraints.

Configurations
Available in all configurations.

Attributes
See Table B-2 TPIU register summary on page Appx-B-353.

The following figure shows the TPIU_CSPSR bit assignments.

31 0

CSPSR

Figure B-3 TPIU_CSPSR bit assignments

The following table shows the TPIU_CSPSR bit assignments.

B Trace Port Interface Unit
B.2 TPIU register summary

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-B-355

Non-Confidential

Table B-4 TPIU_CSPSR bit assignments

Bits Name Function

[31:0] CSPSR Currently selected size of the trace data port TRACEDATA[3:0].

The possible values are:

0b0001 1-bit trace port
0b0010 2-bit trace port
0b1000 4-bit trace port

B.2.3 TPIU_SPPR, Selected Pin Protocol Register

TPIU_SPPR selects which protocol is used by the TPIU for trace output.

Usage constraints
There are no usage constraints.

Configurations
Available in all configurations.

Attributes
See Table B-2 TPIU register summary on page Appx-B-353.

The following figure shows the TPIU_SPPR bit assignments.

31 0

Reserved

2

PProtocol

Figure B-4 TPIU_SPPR bit assignments

The following table shows the TPIU_SPPR bit assignments.

Table B-5 TPIU_SPPR bit assignments

Bits Name Function

[31:2] - RES0

[1:0] PProtocol Pin protocol used for trace output.

The options are:

0x0 Parallel port
0x1 SWO Manchester
0x2 SWO NRZ (UART)

B.2.4 TPIU_PSCR, Periodic Synchronization Counter Register

TPIU_PSCR determines the reload value of the Periodic Synchronization Counter. This counter enables
the frequency of sync packets to be optimized to the trace capture buffer size.

Usage constraints
There are no usage constraints.

Configurations
Available in all configurations.

Attributes
See Table B-2 TPIU register summary on page Appx-B-353.

The following figure shows the TPIU_PSCR bit assignments.

B Trace Port Interface Unit
B.2 TPIU register summary

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-B-356

Non-Confidential

31 0

Reserved PSCount

Figure B-5 TPIU_PSCR bit assignments

The following table shows the TPIU_PSCR bit assignments.

Table B-6 TPIU_PSCR bit assignments

Bits Name Function

[31:5] - RAZ/WI

[4:0] PSCount Periodic Synchronization Count that determines the reload value of the Synchronization Counter.

The Periodic Synchronization Counter counts up to a maximum of 216 bytes, where the TPIU_PSCR.PSCount value
determines the reload value of Synchronization Counter, as 2 to the power of the programmed value.

The TPIU_PSCR.PSCount value has a range between 0b00111 and 0b10000, any attempt to program register
outside the range causes the Synchronization Counter to become disabled.

B.2.5 TPIU_ACPR, Asynchronous Clock Prescaler Register

TPIU_ACPR scales the Baud rate of the asynchronous output.

Usage constraints
There are no usage constraints.

Configurations
Available in all configurations.

Attributes
See Table B-2 TPIU register summary on page Appx-B-353.

The following figure shows the TPIU_ACPR bit assignments.

31 13 0

Reserved

12

PRESCALER

Figure B-6 TPIU_ACPR bit assignments

The following table shows the TPIU_ACPR bit assignments.

Table B-7 TPIU_ACPR bit assignments

Bits Name Function

[31:13] - Reserved. RAZ/SBZP.

[12:0] PRESCALER Divisor for TRACECLKIN is Prescaler + 1.

B.2.6 TPIU_FFSR, Formatter and Flush Status Register

TPIU_FFSR indicates the status of the TPIU formatter.

Usage constraints
There are no usage constraints.

Configurations
Available in all configurations.

B Trace Port Interface Unit
B.2 TPIU register summary

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-B-357

Non-Confidential

Attributes
See Table B-2 TPIU register summary on page Appx-B-353.

The following figure shows the TPIU_FFSR bit assignments.

31 2 0

Reserved

1

FlInProg

3

FtStopped
TCPresent
FtNonStop

4

Figure B-7 TPIU_FFSR bit assignments

The following table shows the TPIU_FFSR bit assignments.

Table B-8 TPIU_FFSR bit assignments

Bit Name Type Description

[31:4] Reserved - RES0

[3] FtNonStop RO Formatter cannot be stopped

[2] TCPresent RO This bit is always 0b0.

[1] FtStopped RO This bit is always 0b0.

[0] FlInProg RO Flush in progress. The values read can be:

0 When all the data received, before the flush is acknowledged, has been output on the trace port
1 When a flush is initiated

B.2.7 TPIU_FFCR, Formatter and Flush Control Register

TPIU_FFCR controls the TPIU formatter.

Usage constraints
There are no usage constraints.

Configurations
Available in all configurations.

Attributes
See Table B-2 TPIU register summary on page Appx-B-353.

The following figure shows the TPIU_FFCR bit assignments.

Reserved

31 9 8 7 2 1 0

Reserved

TrigIn EnFCont
ReservedReserved

FOnMan

6 5

Figure B-8 TPIU_FFCR bit assignments

The following table shows the TPIU_FFCR bit assignments.

B Trace Port Interface Unit
B.2 TPIU register summary

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-B-358

Non-Confidential

Table B-9 TPIU_FFCR bit assignments

Bit Name Type Description

[31:9] Reserved - RES0

[8] TrigIn - This bit Reads-As-One (RAO), specifying that triggers are inserted when a trigger pin is asserted.

[7] Reserved - RES0

[6] FOnMan RW Flush on manual. The options are:

0 When the flush completes. Set to 0 on a reset of the TPIU.
1 Generates a flush.

[5:2] Reserved - RES0

[1] EnFCont RW Enable continuous formatting. The options are:

0 Continuous formatting disabled.
1 Continuous formatting enabled.

[0] Reserved - RES0

The TPIU can output trace data in a Serial Wire Output (SWO) format. See B.1.2 Serial Wire Output
format on page Appx-B-351.

 Note

If TPIU_SPPR is set to select Trace Port Mode, the formatter is automatically enabled. If you then select
one of the SWO modes, TPIU_FFCR reverts to its previously programmed value.

B.2.8 TPIU_TRIGGER, TPIU TRIGGER Register

The TPIU_TRIGGER register controls the integration test TRIGGER input.

Usage constraints
There are no usage constraints.

Configurations
Available in all configurations.

Attributes
See Table B-2 TPIU register summary on page Appx-B-353.

The following figure shows the TPIU_TRIGGER bit assignments.

Reserved

31 1 0

TRIGGER input value

Figure B-9 TPIU_TRIGGER bit assignments

The following table shows the TPIU_TRIGGER bit assignments.

B Trace Port Interface Unit
B.2 TPIU register summary

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-B-359

Non-Confidential

Table B-10 TPIU_TRIGGER bit assignments

Bit Name Type Description

[31:1] Reserved - RES0

[0] TRIGGER input value RO When read, this bit returns the TRIGGER input value.

B.2.9 ITFTTD0, Integration Test FIFO Test Data 0 Register

ITFTTD0 controls trace data integration testing.

Usage constraints
You must set bit[1] of TPIU_ITCTRL to use this register. See B.2.13 TPIU_ITCTRL,
Integration Mode Control on page Appx-B-362.

Configurations
Available in all configurations.

Attributes
See Table B-2 TPIU register summary on page Appx-B-353.

The following figure shows the Integration Test FIFO Test Data 0 Register data bit assignments.

ATB Interface 1 data 2 ATB Interface 1 data 1 ATB Interface 1 data 0

31 029 2728 26 2425 23 16 15 8 7

ATB Interface 1 byte count
ATB Interface 1 ATVALID
ATB Interface 2 byte count
ATB Interface 2 ATVALID

30

Reserved

Figure B-10 ITFTTD0 bit assignments

The following table shows the ITFTTD0 bit assignments.

Table B-11 ITFTTD0 bit assignments

Bits Name Function

[31:30] - Reserved.

[29] ATB Interface 2 ATVALID input Returns the value of the ATB Interface 2 ATVALID signal.

[28:27] ATB Interface 2 byte count Number of bytes of ATB Interface 2 trace data since last read of this register.

[26] ATB Interface 1 ATVALID input Returns the value of the ATB Interface 1 ATVALID signal.

[25:24] ATB Interface 1 byte count Number of bytes of ATB Interface 1 trace data since last read of this register.

[23:16] ATB Interface 1 data 2 ATB Interface 1 trace data. The TPIU discards this data when the register is read.

[15:8] ATB Interface 1 data 1

[7:0] ATB Interface 1 data 0

B.2.10 ITATBCTR2, Integration Test ATB Control Register 2

ITATBCTR2 controls integration test.

Usage constraints
You must set bit[0] of TPIU_ITCTRL to use this register. See B.2.13 TPIU_ITCTRL,
Integration Mode Control on page Appx-B-362.

B Trace Port Interface Unit
B.2 TPIU register summary

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-B-360

Non-Confidential

Configurations
Available in all configurations.

Attributes
See Table B-2 TPIU register summary on page Appx-B-353.

The following figure shows the ITATBCTR2 bit assignments.

31 0

Reserved

1

ATREADY1S
ATREADY2S

AFVALID1S
AFVALID2S

2

Figure B-11 ITATBCTR2 bit assignments

The following table shows the ITATBCTR2 bit assignments.

Table B-12 ITATBCTR2 bit assignments

Bits Name Function

[1] AFVALID1S,
AFVALID2S

This bit sets the value of both the ATB Interface 1 and 2 AFVALID outputs, if the TPIU is in
integration test mode.

[0] ATREADY1S,
ATREADY2S

This bit sets the value of both the ATB Interface 1 and 2 ATREADY outputs, if the TPIU is in
integration test mode.

B.2.11 ITFTTD1, Integration Test FIFO Test Data 1 Register

ITFTTD1 controls trace data integration testing.

Usage constraints
You must set bit[1] of TPIU_ITCTRL to use this register. See B.2.13 TPIU_ITCTRL,
Integration Mode Control on page Appx-B-362.

Configurations
Available in all configurations.

Attributes
See Table B-2 TPIU register summary on page Appx-B-353.

The following figure shows the ITFTTD1 bit assignments.

31 30 29 28 27 26 25 24 23 16 15 8 7 0

ATB Interface 2 data 2 ATB Interface 2 data 1 ATB Interface 2 data 0

ATB Interface 1 byte count
ATB Interface 1 ATVALID input
ATB Interface 2 byte count
ATB Interface 2 ATVALID input
Reserved

Figure B-12 ITFTTD1 bit assignments

The following table shows the ITFTTD1 bit assignments.

Table B-13 ITFTTD1 bit assignments

Bits Name Function

[31:30] - Reserved.

[29] ATB Interface 2 ATVALID input Returns the value of the ATB Interface 2 ATVALID signal.

B Trace Port Interface Unit
B.2 TPIU register summary

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-B-361

Non-Confidential

Table B-13 ITFTTD1 bit assignments (continued)

Bits Name Function

[28:27] ATB Interface 2 byte count Number of bytes of ATB Interface 2 trace data since last read of this register.

[26] ATB Interface 1 ATVALID input Returns the value of the ATB Interface 1 ATVALID signal.

[25:24] ATB Interface 1 byte count Number of bytes of ATB Interface 1 trace data since last read of this register.

[23:16] ATB Interface 2 data 2 ATB Interface 2 trace data. The TPIU discards this data when the register is read.

[15:8] ATB Interface 2 data 1

[7:0] ATB Interface 2 data 0

B.2.12 ITATBCTR0, Integration Test ATB Control 0 Register

ITATBCTR0 is used for integration test.

Usage constraints
There are no usage constraints.

Configurations
Available in all configurations.

Attributes
See Table B-2 TPIU register summary on page Appx-B-353.

The following figure shows the ITATBCTR0 bit assignments.

31 0

Reserved

1

AFREADY1S
AFREADY2S

ATVALID1S
ATVALID2S

2

Figure B-13 ITATBCTR0 bit assignments

The following table shows the ITATBCTR0 bit assignments.

Table B-14 ITATBCTR0 bit assignments

Bits Name Function

[1] AFREADY1S, AFREADY2S A read of this bit returns the value of AFREADY1S OR-gated with AFVALID2S.

[0] ATVALID1S, ATVALID2S A read of this bit returns the value of ATVALID1S OR-gated with ATVALID2S.

B.2.13 TPIU_ITCTRL, Integration Mode Control

TPIU_ITCTRL specifies normal or integration mode for the TPIU.

Usage constraints
There are no usage constraints.

Configurations
Available in all configurations.

Attributes
See Table B-2 TPIU register summary on page Appx-B-353.

The following figure shows the TPIU_ITCTRL bit assignments.

B Trace Port Interface Unit
B.2 TPIU register summary

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-B-362

Non-Confidential

Reserved

31 2 1 0

Mode

Figure B-14 TPIU_ITCTRL bit assignments

The following table shows the TPIU_ITCTRL bit assignments.

Table B-15 TPIU_ITCTRL bit assignments

Bits Name Function

[31:2] - Reserved.

[1:0] Mode Specifies the current mode for the TPIU:

0b00 Normal mode.
0b01 Integration test mode.
0b10 Integration data test mode.
0b11 Reserved.

In integration data test mode, the trace output is disabled, and data can be read directly from each input port using the
integration data registers.

B.2.14 CLAIMSET, Claim Tag Set Register

The CLAIMSET register is used to set whether functionality is in use by a debug agent. All debug agents
must implement a common protocol to use these bits.

For more information on example protocols, see the Arm® CoreSight™ Architecture Specification v3.0.

Usage constraints
See B.2 TPIU register summary on page Appx-B-353 for more information.

Configurations
This register is always implemented.

Attributes
This is a 32-bit register.

The following figure shows the CLAIMSET bit assignments.

31 34

SETReserved

0

Figure B-15 CLAIMSET bit assignments

The following table describes the CLAIMSET bit assignments.

B Trace Port Interface Unit
B.2 TPIU register summary

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-B-363

Non-Confidential

Table B-16 CLAIMSET bit assignments

Field Name Type Description

[31:4] Reserved - RES0

[3:0] SET RW The options are:

Write 0 No effect.

Write 1 Set the claim tag for
bit[n].

Read 0 The claim tag that is
represented by bit[n]
is not implemented.

Read 1 The claim tag that is
represented by bit[n]
is implemented.

B.2.15 CLAIMCLR, Claim Tag Clear Register

The CLAIMCLR register is used to set whether functionality is in use by a debug agent. All debug
agents must implement a common protocol to use these bits.

For more information on example protocols, see the Arm® CoreSight™ Architecture Specification v3.0.

Usage constraints
See B.2 TPIU register summary on page Appx-B-353 for more information.

Configurations
This register is always implemented.

Attributes
This is a 32-bit register.

The following figure shows the CLAIMCLR bit assignments.

31 34

CLRReserved

0

Figure B-16 CLAIMCLR bit assignments

The following table describes the CLAIMCLR bit assignments.

B Trace Port Interface Unit
B.2 TPIU register summary

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-B-364

Non-Confidential

Table B-17 CLAIMCLR bit assignments

Field Name Type Description

[31:4] Reserved - RES0

[3:0] CLR RW The options are:

Write 0 No effect.

Write 1 Clear the claim tag
for bit[n].

Read 0 The claim tag that is
represented by bit[n]
is not set.

Read 1 The claim tag that is
represented by bit[n]
is set.

B.2.16 TPIU_DEVID, Device Configuration Register

TPIU_DEVID indicates the functions that are provided by the TPIU for use in the topology detection.

Usage constraints
There are no usage constraints.

Configurations
Available in all configurations.

Attributes
See Table B-2 TPIU register summary on page Appx-B-353.

The following figure shows the TPIU_DEVID bit assignments.

Reserved

31 12 11 10 9 8 6 5 0

NRZVALID
MANCVALID

PTINVALID
FIFOSZ

Number of trace inputs

Figure B-17 TPIU_DEVID bit assignments

The following table shows the TPIU_DEVID bit assignments.

Table B-18 TPIU_DEVID bit assignments

Bits Name Function

[31:12] - Reserved.

[11] NRZVALID Indicates support for SWO using UART/NRZ encoding.

Always RAO. The output is supported.

[10] MANCVALID Indicates support for SWO using Manchester encoding.

Always RAO. The output is supported.

[9] PTINVALID Indicates support for parallel trace port operation.

Always RAZ. Trace data and clock modes are supported.

B Trace Port Interface Unit
B.2 TPIU register summary

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-B-365

Non-Confidential

Table B-18 TPIU_DEVID bit assignments (continued)

Bits Name Function

[8:6] FIFOSZ Indicates the implemented size of the TPIU output FIFO for trace data:

0b010
Four bytes.

[5:0] Number of trace inputs Specifies the number of trace inputs:

0b000000 One input.
0b000001 Two inputs.

B.2.17 TPIU_DEVTYPE, Device Type Identifier Register

TPIU_DEVTYPE provides a debugger with information about the component when the Part Number
field is not recognized. The debugger can then report this information.

Usage Constraints
There are no usage constraints.

Configurations
Available in all configurations.

Attributes

See Table B-2 TPIU register summary on page Appx-B-353.

The following figure shows the TPIU_DEVTYPE bit assignments.

Reserved

31 78 0

Sub type

4

Major type

3

Figure B-18 TPIU_DEVTYPE bit assignments

The following table shows the TPIU_DEVTYPE bit assignments.

Table B-19 TPIU_DEVTYPE bit assignments

Bits Name Function

[31:8] - Reserved.

[7:4] Sub type 0x1 Identifies the classification of the
debug component.

[3:0] Major type 0x1 Indicates this device is a trace sink
and specifically a TPIU.

B.2.18 TPIU_PIDR4, Peripheral Identification Register 4

The TPIU_PIDR4 register provides information about the memory size and JEP106 continuation code
that the Trace Port Interface Unit (TPIU) component uses.

Usage constraints
Access is only allowed from privileged code. Unprivileged access results in a BusFault being
raised.

B Trace Port Interface Unit
B.2 TPIU register summary

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-B-366

Non-Confidential

Configurations
This register is always implemented when the TPIU is included.

Attributes
This is a 32-bit register. See 18.2 CTI register summary on page 18-296 for more information.

The following figure shows the TPIU_PIDR4 bit assignments.

31 8 7 4 3 0

DES_2SIZERES0

Figure B-19 TPIU_PIDR4 bit assignments

The following table describes the TPIU_PIDR4 bit assignments.

Table B-20 TPIU_PIDR4 bit assignments

Field Name Type Description

[31:8] Reserved - RES0.

[7:4] SIZE RO This field indicates the memory size that the TPIU uses. This field returns 0x0 indicating that the
component uses an UNKNOWN number of 4KB blocks.

The reset value of this field is 0x0.

[3:0] DES_2 RO JEP106 continuation code. Together with TPIU_PIDR2.DES_1 and TPIU_PIDR1.DES_0, they indicate the
designer of the component, not the implementer, except where the two are the same.

The reset value of this field is 0x4.

B.2.19 TPIU_PIDR5, Peripheral Identification Register 5

The TPIU_PIDR5 register is reserved.

Usage constraints
Access is only allowed from privileged code. Unprivileged access results in a BusFault being
raised.

Configurations
This register is always implemented when the TPIU is included.

Attributes
This is a 32-bit register. See B.2 TPIU register summary on page Appx-B-353 for more
information.

The following figure shows the TPIU_PIDR5 bit assignments.

31 8 7 0

Reserved PIDR5

Figure B-20 TPIU_PIDR5 bit assignments

The following table describes the TPIU_PIDR5 bit assignments.

B Trace Port Interface Unit
B.2 TPIU register summary

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-B-367

Non-Confidential

Table B-21 TPIU_PIDR5 bit assignments

Field Name Type Description

[31:8] Reserved - RES0.

[7:0] PIDR5 RO RES0.

B.2.20 TPIU_PIDR6, Peripheral Identification Register 6

The TPIU_PIDR6 register is reserved.

Usage constraints
Access is only allowed from privileged code. Unprivileged access results in a BusFault being
raised.

Configurations
This register is always implemented when the TPIU is included.

Attributes
This is a 32-bit register. See B.2 TPIU register summary on page Appx-B-353 for more
information.

The following figure shows the TPIU_PIDR6 bit assignments.

31 8 7 0

Reserved PIDR6

Figure B-21 TPIU_PIDR6 bit assignments

The following table describes the TPIU_PIDR6 bit assignments.

Table B-22 TPIU_PIDR6 bit assignments

Field Name Type Description

[31:8] Reserved - RES0.

[7:0] PIDR6 RO RES0.

B.2.21 TPIU_PIDR7, Peripheral Identification Register 7

The TPIU_PIDR7 register is reserved.

Usage constraints
Access is only allowed from privileged code. Unprivileged access results in a BusFault being
raised.

Configurations
This register is always implemented when the TPIU is included.

Attributes
This is a 32-bit register. See B.2 TPIU register summary on page Appx-B-353 for more
information.

The following figure shows the TPIU_PIDR7 bit assignments.

B Trace Port Interface Unit
B.2 TPIU register summary

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-B-368

Non-Confidential

31 8 7 0

Reserved PIDR7

Figure B-22 TPIU_PIDR7 bit assignments

The following table describes the TPIU_PIDR7 bit assignments.

Table B-23 TPIU_PIDR7 bit assignments

Field Name Type Description

[31:8] Reserved - RES0.

[7:0] PIDR7 RO RES0.

B.2.22 TPIU_PIDR0, Peripheral Identification Register 0

The TPIU_PIDR0 register indicates the TPIU component part number.

Usage constraints
Access is only allowed from privileged code. Unprivileged access results in a BusFault being
raised.

Configurations
This register is always implemented when the TPIU is included.

Attributes
This is a 32-bit register. See B.2 TPIU register summary on page Appx-B-353 for more
information.

The following figure shows the TPIU_PIDR0 bit assignments.

31 8 7 0

Reserved PART_0

Figure B-23 TPIU_PIDR0 bit assignments

The following table describes the TPIU_PIDR0 bit assignments.

Table B-24 TPIU_PIDR0 bit assignments

Field Name Type Description

[31:8] Reserved - RES0.

[7:0] PART_0 RO This field indicates the part number. When taken together with TPIU_PIDR1.PART_1, it indicates the
component. The part number is selected by the designer of the component.

The reset value of this field is 0b00100010.

B Trace Port Interface Unit
B.2 TPIU register summary

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-B-369

Non-Confidential

B.2.23 TPIU_PIDR1, Peripheral Identification Register 1

The TPIU_PIDR1 register indicates the TPIU component JEP106 continuation code and part number.

Usage constraints
Access is only allowed from privileged code. Unprivileged access results in a BusFault being
raised.

Configurations
This register is always implemented when the TPIU is included.

Attributes
This is a 32-bit register. See B.2 TPIU register summary on page Appx-B-353 for more
information.

The following figure shows the TPIU_PIDR1 bit assignments.

31 8 7 0

Reserved PART_1DES_0

4 3

Figure B-24 TPIU_PIDR1 bit assignments

The following table describes the TPIU_PIDR1 bit assignments.

Table B-25 TPIU_PIDR1 bit assignments

Field Name Type Description

[31:8] Reserved - RES0.

[7:4] DES_0 RO This field indicates the JEP106 identification code, bits[3:0]. Together, with TPIU_PIDR4.DES_2 and
TPIU_PIDR2.DES_1, they indicate the designer of the component and not the implementer, except where
the two are the same.

The reset value is 0xB.

[3:0] PART_1 RO This field indicates the part number, bits[11:8]. Taken together with TPIU_PIDR0.PART_0 it indicates the
component. The part number is selected by the designer of the component.

The reset value is 0xD.

B.2.24 TPIU_PIDR2, Peripheral Identification Register 2

The TPIU_PIDR2 register indicates the TPIU component revision number, JEDEC value, and part of the
JEP106 continuation code.

Usage constraints
Access is only allowed from privileged code. Unprivileged access results in a BusFault being
raised.

Configurations
This register is always implemented when the TPIU is included.

Attributes
This is a 32-bit register. See B.2 TPIU register summary on page Appx-B-353 for more
information.

The following figure shows the TPIU_PIDR2 bit assignments.

B Trace Port Interface Unit
B.2 TPIU register summary

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-B-370

Non-Confidential

31 8 7 0

Reserved DES_1REVISION

4 3 2

JEDEC

Figure B-25 TPIU_PIDR2 bit assignments

The following table describes the TPIU_PIDR2 bit assignments.

Table B-26 TPIU_PIDR2 bit assignments

Field Name Type Description

[31:8] Reserved - RES0.

[7:4] REVISION RO This field indicates the revision number of the TPIU component. It is an incremental value starting at 0x0
for the first design.

The reset value is 0x0.

[3] JEDEC RO This field is always 1, indicating that a JEDEC assigned value is used.

[2:0] DES_1 RO This field is the JEP106 identification code, bits[6:4]. Together, with TPIU_PIDR4.DES_2 and
TPIU_PIDR1.DES_0, they indicate the designer of the component and not the implementer, except where
the two are the same.

The reset value is 0b011.

B.2.25 TPIU_PIDR3, Peripheral Identification Register 3

The TPIU_PIDR3 register indicates minor errata fixes of the TPIU component and if you have modified
the behavior of the component.

Usage constraints
Access is only allowed from privileged code. Unprivileged access results in a BusFault being
raised.

Configurations
This register is always implemented when the TPIU is included.

Attributes
This is a 32-bit register. See B.2 TPIU register summary on page Appx-B-353 for more
information.

The following figure shows the TPIU_PIDR3 bit assignments.

31 8 7 0

Reserved CMODREVAND

4 3

Figure B-26 TPIU_PIDR3 bit assignments

The following table describes the TPIU_PIDR3 bit assignments.

B Trace Port Interface Unit
B.2 TPIU register summary

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-B-371

Non-Confidential

Table B-27 TPIU_PIDR3 bit assignments

Field Name Type Description

[31:8] Reserved - RES0.

[7:4] REVAND RO This field indicates minor errata fixes specific to this design, for example metal fixes after implementation.
In most cases this field is 0x0.

[3:0] CMOD RO Customer modified. Where the component is reusable IP, this value indicates whether you have modified
the behavior of the component. In most cases, this field is 0x0.

B.2.26 TPIU_ CIDR0, Component Identification Register 0

The TPIU_CIDR0 register indicates the preamble.

Usage constraints
Access is only allowed from privileged code. Unprivileged access results in a BusFault being
raised.

Configurations
This register is always implemented when the TPIU is included.

Attributes
This is a 32-bit register. See B.2 TPIU register summary on page Appx-B-353 for more
information.

The following figure shows the TPIU_CIDR0 bit assignments.

31 8 7 0

Reserved PRMBL_0

Figure B-27 TPIU_CIDR0 bit assignments

The following table describes the TPIU_CIDR0 bit assignments.

Table B-28 TPIU_CIDR0 bit assignments

Field Name Type Description

[31:8] Reserved - RES0.

[7:0] PRMBL_0 RO Preamble. This field returns 0x0D.

B.2.27 TPIU_ CIDR1, Component Identification Register 1

The TPIU_CIDR1 register indicates the component class and preamble.

Usage constraints
Access is only allowed from privileged code. Unprivileged access results in a BusFault being
raised.

Configurations
This register is always implemented when the TPIU is included.

Attributes
This is a 32-bit register. See B.2 TPIU register summary on page Appx-B-353 for more
information.

B Trace Port Interface Unit
B.2 TPIU register summary

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-B-372

Non-Confidential

The following figure shows the TPIU_CIDR1 bit assignments.

31 8 7 0

Reserved PRMBL_1CLASS

4 3

Figure B-28 TPIU_CIDR1 bit assignments

The following table describes the TPIU_CIDR1 bit assignments.

Table B-29 TPIU_CIDR1 bit assignments

Field Name Type Description

[31:8] Reserved - RES0.

[7:4] CLASS RO Component class. Returns 0x9, indicating this is a CoreSight component.

[3:0] PRMBL_1 RO Preamble. This field returns 0x0.

B.2.28 TPIU_ CIDR2, Component Identification Register 2

The TPIU_CIDR2 register indicates the preamble.

Usage constraints
Access is only allowed from privileged code. Unprivileged access results in a BusFault being
raised.

Configurations
This register is always implemented when the TPIU is included.

Attributes
This is a 32-bit register. See B.2 TPIU register summary on page Appx-B-353 for more
information.

The following figure shows the TPIU_CIDR2 bit assignments.

31 8 7 0

Reserved PRMBL_2

Figure B-29 TPIU_CIDR2 bit assignments

The following table describes the TPIU_CIDR2 bit assignments.

Table B-30 TPIU_CIDR2 bit assignments

Field Name Type Description

[31:8] Reserved - RES0.

[7:0] PRMBL_2 RO Preamble. This field returns 0x05.

B.2.29 TPIU_ CIDR3, Component Identification Register 3

The TPIU_CIDR3 register indicates the preamble.

B Trace Port Interface Unit
B.2 TPIU register summary

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-B-373

Non-Confidential

Usage constraints
Access is only allowed from privileged code. Unprivileged access results in a BusFault being
raised.

Configurations
This register is always implemented when the TPIU is included.

Attributes
This is a 32-bit register. See B.2 TPIU register summary on page Appx-B-353 for more
information.

The following figure shows the TPIU_CIDR3 bit assignments.

31 8 7 0

Reserved PRMBL_3

Figure B-30 TPIU_CIDR3 bit assignments

The following table describes the TPIU_CIDR3 bit assignments.

Table B-31 TPIU_CIDR3 bit assignments

Field Name Type Description

[31:8] Reserved - RES0.

[7:0] PRMBL_3 RO Preamble. This field returns 0xB1.

B Trace Port Interface Unit
B.2 TPIU register summary

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-B-374

Non-Confidential

Appendix C
Signal descriptions

This appendix describes the Cortex-M55 processor signals.

It contains the following sections:
• C.1 Clock and clock enable signals on page Appx-C-377.
• C.2 Reset signals on page Appx-C-378.
• C.3 Static configuration signals on page Appx-C-379.
• C.4 Reset configuration signals on page Appx-C-381.
• C.5 Cache initialization signal on page Appx-C-382.
• C.6 Instruction execution control signals on page Appx-C-383.
• C.7 Instruction Tightly Coupled Memory interface signals on page Appx-C-384.
• C.8 Data Tightly Coupled Memory interface signals on page Appx-C-386.
• C.9 M-AXI interface signals on page Appx-C-388.
• C.10 S-AHB interface signals on page Appx-C-392.
• C.11 P-AHB interface signals on page Appx-C-394.
• C.12 D-AHB interface signals on page Appx-C-396.
• C.13 EPPB interface signals on page Appx-C-398.
• C.14 External coprocessor interface signals on page Appx-C-399.
• C.15 Debug interface signals on page Appx-C-400.
• C.16 P-Channel and Q-Channel power control signals on page Appx-C-401.
• C.17 Q-Channel clock control signals on page Appx-C-402.
• C.18 Power compatibility control signals on page Appx-C-403.
• C.19 ITM interface signals on page Appx-C-404.
• C.20 ETM interface signals on page Appx-C-405.
• C.21 Trace synchronization and trigger signals on page Appx-C-406.
• C.22 CTI interface signals on page Appx-C-407.
• C.23 Interrupt signals on page Appx-C-408.

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-C-375

Non-Confidential

• C.24 WIC interface signals on page Appx-C-409.
• C.25 Event signals on page Appx-C-411.
• C.26 IDAU interface signals on page Appx-C-412.
• C.27 Miscellaneous signals on page Appx-C-413.
• C.28 Error interface signals on page Appx-C-417.
• C.29 Floating-point exception signals on page Appx-C-418.
• C.30 Test interface signals on page Appx-C-419.
• C.31 Reserved signals on page Appx-C-420.

C Signal descriptions

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-C-376

Non-Confidential

C.1 Clock and clock enable signals
The following table shows the Cortex-M55 processor clock and clock enable signals.

Table C-1 Clock and clock enable signals

Signal name Direction Description

CLKIN Input Primary processor clock. This is gated internally for functional units when required depending on the
operating mode of the processor.

DBGCLK Input Clock driving the majority of the debug and trace logic in the processor.

SSTCLKEN Input Synchronous enable that is used with CLKIN to derive the secure system SysTick clock.

NSSTCLKEN Input Synchronous enable that is used with CLKIN to derive the Non-secure system SysTick clock.

C Signal descriptions
C.1 Clock and clock enable signals

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-C-377

Non-Confidential

C.2 Reset signals
The following table shows the Cortex-M55 processor reset signals.

Table C-2 Reset signals

Signal name Direction Description

nPORESET Input Cold reset.

nSYSRESET Input System reset.

This signal resets non-debug logic and all memory interfaces except for the Debug-AHB (D-AHB and
External Private Peripheral Bus (EPPB) interfaces.

nDBGRESET Input Debug reset that resets all logic in the debug power domain (PDDEBUG). This reset must be asserted at
Cold reset along with nPORESET and when PDDEBUG is powered down.

C Signal descriptions
C.2 Reset signals

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-C-378

Non-Confidential

C.3 Static configuration signals
The following table shows the Cortex-M55 processor static configuration signals.

The configuration signals in the following table can only be changed at Cold reset with nPORESET
asserted. They are intended to be static configuration signals that are fixed for a given integration of the
processor.

Table C-3 Static configuration signals

Signal name Direction Description

CFGITCMSZ[3:0] Input Size of the Instruction Tightly Coupled Memory (ITCM) region encoded as:

CFGITCMSZ = 0b0000 ITCM is not implemented.

CFGITCMSZ > 0b0010 2CFGDTCMSZ-1KB

• The minimum size of Tightly Coupled Memory (TCM) is 4KB and the maximum size is
16MB. Setting CFGITCMSZ to 0b0001 or 0b0010 results in UNPREDICTABLE behavior.

• The CFGITCMSZ input signal sets the ITCM size. The ITGUMAXBLKS parameter
constraints the maximum ITCM size that can be used. Therefore, the ITGUMAXBLKS must
be set to be large enough to accommodate the anticipated ITCM size that might be used in
the system.

CFGDTCMSZ[3:0] Input Size of the Data Tightly Coupled Memory (DTCM) region encoded as:

CFGDTCMSZ = 0b0000 DTCM is not implemented.

CFGDTCMSZ > 0b0010 2CFGDTCMSZ-1KB

• The CFGDTCMSZ input signal sets the DTCM size. The DTGUMAXBLKS parameter
constraints the maximum DTCM size that can be used. Therefore, the DTGUMAXBLKS must
be set to be large enough to accommodate the anticipated DTCM size that might be used
in the system.

• The minimum size of the TCM is 4KB and the maximum size is 16MB. Setting
CFGDTCMSZ to 0b0001 or 0b0010 results in UNPREDICTABLE behavior.

CFGPAHBSZ[2:0] Input Size of the Peripheral AHB (P-AHB) peripheral port memory region.

0b000 P-AHB disabled.

0b001 64MB

0b010 128MB

0b011 256MB

0b100 512MB

Setting CFGPAHBSZ to any other value results in UNPREDICTABLE behavior.

C Signal descriptions
C.3 Static configuration signals

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-C-379

Non-Confidential

Table C-3 Static configuration signals (continued)

Signal name Direction Description

CFGMEMALIAS[4:0] Input Memory address alias bit for the ITCM, DTCM, and P-AHB regions. The address bit used for
the memory alias is determined by:

0b00001 Alias bit = 24

0b00010 Alias bit = 25

0b00100 Alias bit = 26

0b01000 Alias bit = 27

0b10000 Alias bit = 28

0b00000 No alias. TCM security gating is disabled.

Setting CFGMEMALIAS to any other value is invalid, and results in UNPREDICTABLE

behavior.

For more information on memory aliasing and IDAU/SAU configuration, see 8.8.1 Memory
aliasing and IDAU/SAU configuration on page 8-165.

CFGFPU Input If the Floating-point Unit (FPU) is configured, enables support for floating-point operation.

CFGMVE[1:0] Input If configured, enables support for M-profile Vector Extension (MVE).

0b00 No MVE.

0b01 Integer Vector MVE Instruction Set Architecture (ISA) is supported.

0b10 If CFGFPU is set to 1, integer and floating-point vector MVE ISA is supported.

If CFGFPU is set to 0, MVE is not supported.

CFGBIGEND Input This signal is used to select the data endian format.

0 Little-endian (LE).

1 Byte-invariant big-endian (BE8).

MPUNSDISABLE Input If Non-secure memory regions are configured for the Memory Protection Unit (MPU),
disables support for the Non-secure MPU region.

MPUSDISABLE Input If Secure regions are configured for the MPU, disables support for the Secure MPU region.

SAUDISABLE Input If the Security Attribution Unit (SAU) is configured, disables support.

CFGSSTCALIB[25:0] Input Secure SysTick calibration configuration:

CFGSTCALIB[23:0] TENMS

CFGSTACLIB[24] SKEW

CFGSTCALIB[25] NOREF

CFGNSSTCALIB[25:0] Input Non-secure SysTick calibration configuration:

CFGNSTCALIB[23:0] TENMS

CFGNSTCALIB[24] SKEW

CFGNSTCALIB[25] NOREF

C Signal descriptions
C.3 Static configuration signals

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-C-380

Non-Confidential

C.4 Reset configuration signals
The following table shows the Cortex-M55 processor reset configuration signals. These signals are
sampled at deassertion of Warm reset or Cold reset, and their values can change out of reset. The reset
configuration signals can be used more dynamically than the static configuration signals.

Table C-4 Reset configuration signals

Signal name Direction Description

INITSVTOR[31:7] Input This signal indicates the Secure vector table offset address out of reset, VTOR_S.TBLOFF[31:7].
For more information on VTOR_S, see the Arm®v8-M Architecture Reference Manual.

When SECEXT=0, VTOR_S and associated signals still exist but are not used, and only
VTOR_NS and its associated signals are used.

INITNSVTOR[31:7] Input This signal indicates the Non-secure vector table offset address out of reset,
VTOR_NS.TBLOFF[31:7]. For more information on VTOR_NS, see the Arm®v8-M Architecture
Reference Manual.

INITTCMEN[1:0] Input Tightly Coupled Memory (TCM) enable initialization out of reset:

Bit[0] is HIGH: Instruction Tightly Coupled Memory (ITCM) is enabled.
Bit[1] is HIGH: Data Tightly Coupled Memory (DTCM) is enabled.

This signal controls the reset value of ITCMCR.EN and DTCMCR.EN bits. For more information
on ITCMCR and DTCMCR, see the Arm® Cortex®-M55 Processor Technical Reference Manual.

INITPAHBEN Input P-AHB enable initialization out of reset:

HIGH P-AHB is enabled.
LOW P-AHB disabled.

For more information on PAHBCR, see the Arm® Cortex®-M55 Processor Technical Reference
Manual.

INITECCEN Input TCM and L1 cache Error Correcting Code (ECC) enable out of reset.

HIGH ECC is enabled.
LOW ECC is disabled.

If ECC is not configured in the processor, this signal has no effect on the processor.

ECC must not be enabled dynamically when the processor is in the Memory retention mode
(MEM_RET) power mode. This is because the L1 cache is not automatically invalidated with the
Memory retention mode power mode is switched on. This results in inconsistent ECC information
that is relative to the data that is retained in the cause. This results in an ECC error.

C Signal descriptions
C.4 Reset configuration signals

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-C-381

Non-Confidential

C.5 Cache initialization signal
The data and instruction caches can be automatically initialized when enabled at reset or if the PDRAMS
power domain is enabled during runtime. This functionality can be disabled if required using the
INITL1RSTDIS signal. The following table describes the INITL1RSTDIS signal.

Table C-5 Cache initialization signal

Signal name Direction Description

INITL1RSTDIS Input Disable L1 cache invalidation out of reset.

HIGH Disable automatic invalidation of the L1 cache.

LOW Enable automatic invalidation of the L1 cache that occurs in the following cases:
• The P-Channel is used to turn on the PDCORE domain. Power mode transitions from

OFF to ON or OFF to EPU_OFF. Invalidation does not occur on transitions from OFF to
MEM_RET or MEM_RET to ON.

• nSYSRESET is asserted when the PDRAMS are powered on, that is, when the
processor is in either of the following:
— The power modes ON (cache) or EPU_OFF (cache). Arm does not recommend that

you assert nSYSRESET when the processor is ON (Cache) or EPU_OFF (Cache)
because this can cause a system error.

— The WARM_RST power mode with PDRAMS on.
• The P-Channel is used to move the power mode from ON (no cache) to ON (cache).

 Note

• If the P-Channel is used to control the processor power mode selection, then this signal must be
tied LOW unless valid cache RAM content is required to be preserved after WARM_RST.

• If INITECCEN is HIGH, this signal must be LOW on reset unless the content of the instruction
and data cache tag RAMs is guaranteed to be valid.

For more information on the P-Channel and power modes, see Chapter 6 Power management
on page 6-122.

C Signal descriptions
C.5 Cache initialization signal

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-C-382

Non-Confidential

C.6 Instruction execution control signals
The following table shows the instruction execution control signals that must be connected in your
System on Chip (SoC) design.

Table C-6 Instruction execution control signals

Signal name Direction Description

CPUWAIT Input Stall the core out of reset.

CURRNS Output Current Security state of the Cortex-M55 processor:

HIGH Processor is in Non-secure state.

LOW Processor is in Secure state.

If the Cortex-M55 processor is not configured for Security Extension support, this signal is always
asserted.

CURRPC[31:1] Output This signal is the address of the current instruction the processor is executing.
 Note

CURRNS indicates the Security state of the executing instruction.

FAULTSTAT[42:0] Output This signal is asserted when the processor detects a fault while an exception is in progress. The
signal encodes all the following Fault Status Registers:

FAULTSTAT[42:35] SFSR[7:0]

FAULTSTAT[34] HFSR.DEBUGEVT

FAULTSTAT[33] HFSR.FORCED

FAULTSTAT[32] HFSR.VECTTBL

FAULTSTAT[31:16] UFSR

FAULTSTAT[15:8] BFSR

FAULTSTAT[7:0] MMFSR

 Note

This signal is not fully synchronous with the detection of the fault inside the processor.

C Signal descriptions
C.6 Instruction execution control signals

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-C-383

Non-Confidential

C.7 Instruction Tightly Coupled Memory interface signals
The following table shows the Cortex-M55 processor Instruction Tightly Coupled Memory (ITCM)
interface signals. If you do not use the ITCM in your SoC, you must tie all the ITCM interface input
signals to LOW.

Table C-7 ITCM interface signals

Signal name Direction Phase Description

ITCMADDR[23:2] Output Address Transfer address for reads and writes.

All ITCM accesses are 32-bit aligned. If necessary, the processor selects read data
based on the full address.

ITCMCS Output Address RAM chip select.

ITCMPRIV Output Address Privilege level of access:

0 User access.

1 Privileged access.

ITCMWR Output Address RAM write enable:

0 Read access request.

1 Write-Access request.

Valid when ITCMCS is HIGH.

ITCMBYTEWR[4:0] Output Address Byte write strobes.

n<4 Bit[n] is to indicate data bits [8n+7:8n].

n=4 Bit[n] is to indicate that Error Correcting Code (ECC) information is written
in ITCMWDATA[38:32].

This signal is valid when ITCMCS is HIGH.
 Note

If ITCMWR is 0b1, ITCMBYTEWR = 0b0.

ITCMWDATA[38:0] Output Address ITCMWDATA[31:0] Write data (32-bits).

ITCMWDATA[38:32] ECC information (7-bits).

ITCMBYTEWR defines validity of this signal on a byte-wise basis, otherwise,
memory ignores this signal.

If ECC is not configured, ITCMWDATA[38:32] can be left unconnected.

C Signal descriptions
C.7 Instruction Tightly Coupled Memory interface signals

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-C-384

Non-Confidential

Table C-7 ITCM interface signals (continued)

Signal name Direction Phase Description

ITCMMASTER[3:0] Output Address Encodes the requestor of the current access:

0b0000 Instruction fetch.

0b0001 Data that is read from software on the processor.

0b0010 Vector fetch on exception entry.

0b0011 Read from System AHB (S-AHB).

0b0100 Debugger read.

0b0101 Memory Built-In Self Test (MBIST) access.

0b1001 Data write from software on the processor, including Read Modify Write
(RMW) read access.

0b1011 Debugger write.

0b1100 ECC correction.

0b1101 Stack pointer vector fetch, indicating that the TCM access is associated
with reading the initial stack pointer from the reset vector.

0b1110 Write from S-AHB, including RMW read access.

Can be used to monitor debug requests or used to change the behavior of TCM
accesses for debug.

ITCMRDATA[38:0] Input Response ITCMRDATA[31:0] Read data (32-bits).

ITCMRDATA[38:32] ECC information (7-bits).

All data bytes are valid on the last cycle of a read response phase. The processor
ignores this signal on all other cycles.

ITCMWAIT Input Response Wait signal to extend the current response phase:

0 Complete phase.

1 Extend phase.

ITCMERR Input Response Error indication for the current transaction, valid on the last cycle of the response
phase.

0 No error.

1 Error.

C Signal descriptions
C.7 Instruction Tightly Coupled Memory interface signals

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-C-385

Non-Confidential

C.8 Data Tightly Coupled Memory interface signals
The following table shows the Cortex-M55 processor Data Tightly Coupled Memory (DTCM) interface
signals. If you are not using DTCM in your SoC, you must tie all the DTCM interface input signals to
LOW.

Table C-8 DTCM interface signals

Signal name Direction Phase Description

D*TCMADDR[23:4] Output Address Transfer address for both reads and writes.

All DTCM accesses are 32-bit aligned. The processor selects read data as required
based on the full address.

D*TCMCS Output Address RAM chip select.

D*TCMPRIV Output Address Privilege level of access:

0 User access.

1 Privileged access.

D*TCMWR Output Address RAM write enable:

0 Read access request.

1 Write access request.

Valid when D*TCMCS is HIGH.

D*TCMBYTEWR[4:0] Output Address Byte write strobes.

n<4 Bit[n] is to indicate data bits [8n+7:8n].

n=4 Bit[n] is to indicate that Error Correcting Code (ECC) information is written
in D*TCMWDATA[38:32].

This signal is valid when D*TCMCS is HIGH.
 Note

If D*TCMWR is 0, D*TCMBYTEWR is 0x0.

D*TCMWDATA[38:0] Output Address D*TCMWDATA[31:0] Write data (32-bits).

D*TCMWDATA[38:32] Error Correcting Code (ECC) information (7-bits).

D*TCMBYTEWR defines validity of this signal on a byte-wise basis, otherwise
memory ignores this signal. If ECC is not configured, D*TCMWDATA[38:32] can
be left unconnected.

C Signal descriptions
C.8 Data Tightly Coupled Memory interface signals

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-C-386

Non-Confidential

Table C-8 DTCM interface signals (continued)

Signal name Direction Phase Description

D*TCMMASTER[3:0] Output Address Encodes the requestor of the current access:

0b0000 Instruction fetch.

0b0001 Data that is read from software on the processor.

0b0010 Vector fetch on exception entry.

0b0011 Read from Slave AHB (S-AHB).

0b0100 Debugger read.

0b0101 Memory Built-In Self Test (MBIST) access.

0b1001 Data write from software on the processor, including Read Modify Write
(RMW) read access.

0b1011 Debugger write.

0b1100 ECC correction.

0b1101 Stack pointer vector fetch, indicating that the TCM access is associated
with reading the initial stack pointer from the reset vector.

0b1110 Write from S-AHB including RMW read access.

Can be used to monitor debug requests or used to change the behavior of TCM
accesses for debug.

D*TCMRDATA[38:0] Input Response D*TCMRDATA[31:0] Read data (32-bits).

D*TCMRDATA[38:32] ECC information (7-bits).

All data bytes are valid on the last cycle of a read response phase. The processor
ignores this signal on all other cycles.

D*TCMWAIT Input Response Wait signal to extend the current data phase:

0 Complete phase.

1 Extend phase.

D*TCMERR Input Response Error indication for the current transaction, valid on the last cycle of the response
phase.

LOW No error.

HIGH Error.

C Signal descriptions
C.8 Data Tightly Coupled Memory interface signals

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-C-387

Non-Confidential

C.9 M-AXI interface signals
The Master AXI (M-AXI) interface implements the standard set of AMBA 5 AXI read and write channel
signals.

The following table shows the M-AXI master interface signals. For more information on the AMBA AXI
signals, see the AMBA® AXI and ACE Protocol Specification.

Table C-9 M-AXI interface signals

Signal name Direction Description

ACLKEN Input Clock enable for the AXI port.
Supports semi-synchronous operation of the interface relative to the processor clock.

 Note

ACLKEN can be used to clock all other M-AXI signals at an integer division of the processor
clock. This includes support for timing the interface at n:1 for all other signals.

AWAKEUP Output Indicates that the master starts a transaction and sends it to the interconnect.

AWVALID Output Write address valid signal.

AWADDR[31:0] Output Write address signal.

AWBURST[1:0] Output Write burst type signal.

AWLEN[2:0] Output Write burst length signal.

AWSIZE[1:0] Output Write burst size signal.

AWLOCK Output Write lock type signal.

AWPROT[2:0] Output Write protection type signal.

AWREADY Input Write address ready signal.

AWID[1:0] Output Write request ID signal.

0b00 Writes to Normal Non-cacheable memory and all store-exclusive transactions.

0b01 Writes to cacheable memory.

0b10 Writes to Device memory.

0b11 Cache line evictions.

AWCACHE[3:0] Output Outer Cacheability attributes. For more information on the encoding of this signal, see the AMBA®

AXI and ACE Protocol Specification

.

AWINNER[3:0] Output Inner Cacheability attributes. The encoding is identical to AWCACHE[3:0]. For more information
on the encoding of AWCACHE[3:0] signal, see the AMBA® AXI and ACE Protocol Specification.

AWDOMAIN[1:0] Output Inner and outer Shareability attributes as defined in the active memory map.

0b00 Non-shareable

0b01 Reserved

0b10 Inner Shareable and Outer Shareable

0b11 System

For more information on the encoding of this signal, see the AMBA® AXI and ACE Protocol
Specification.

C Signal descriptions
C.9 M-AXI interface signals

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-C-388

Non-Confidential

Table C-9 M-AXI interface signals (continued)

Signal name Direction Description

AWSPARSE Output Transaction might use sparse writes strobes. This signal indicates a write burst which might contain
a beat which includes sparse data. That is, a beat which cannot be directly translated into an AHB
transaction. If the signal is LOW, then the burst is guaranteed to be made up of contiguous and
appropriately aligned data relative to data size.

AWMASTER Output Initiator of access.

0 Processor access.

1 Debugger access.

ARVALID Output Read address valid signal.

ARADDR[31:0] Output Read address signal.

ARBURST[1:0] Output Read burst type signal.

ARLEN[7:0] Output Read address burst length signal.

ARSIZE[1:0] Output Read burst size signal.

ARLOCK Output Read lock type signal.

ARPROT[2:0] Output Read protection type signal.

ARREADY Input Read address ready signal.

ARID[2:0] Output Read request ID signal.

0b000 All accesses to Non-cacheable and Device memory regions (including bursts).

0b010 Data cache linefills from linefill buffer 0.

0b011 Data cache linefills from linefill buffer 1.

0b100 Instruction fetch or instruction linefill.

ARCACHE[3:0] Output Outer Cacheability attributes. For more information on the encoding of this signal, see the AMBA®

AXI and ACE Protocol Specification.

ARINNER[3:0] Output Inner Cacheability attributes. The encoding is identical to ARCACHE[3:0]. For more information
on the encoding of ARCACHE[3:0] signal, see the AMBA® AXI and ACE Protocol Specification.

ARDOMAIN[1:0] Output Inner and Outer Shareability attributes as defined in the active memory map.

0b00 Non-shareable

0b01 Reserved

0b10 Inner Shareable and Outer Shareable

0b11 System

For more information on the encoding of this signal, see the AMBA® AXI and ACE Protocol
Specification.

ARMASTER Output Initiator of access.

0 Processor access.

1 Debugger access.

C Signal descriptions
C.9 M-AXI interface signals

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-C-389

Non-Confidential

Table C-9 M-AXI interface signals (continued)

Signal name Direction Description

WID[1:0] Output Write data ID signal. Used to connect to AXI3 interconnect or slaves.

Can be ignored for AXI4 or AXI5 interconnect or slaves.

0b00 Writes to Normal Non-cacheable memory and all store-exclusive transactions.

0b01 Writes to cacheable memory.

0b10 Writes to Device memory.

0b11 Cache line evictions.

WVALID Output Write data valid signal.

WLAST Output Indicates last transfer in a write burst.

WSTRB[7:0] Output Write byte lane strobes.

WDATA[63:0] Output Write data signal.

WPOISON Output Indicates that a set of data bytes has been corrupted.

WDATACHK[7:0] Output This signal can be used to detect, and potentially correct data bytes that might be corrupted.

WREADY Input Write data ready signal.

RVALID Input Read data valid signal.

RID[2:0] Input Read data ID.

0b000 All accesses to Non-cacheable and Device memory regions (including bursts).

0b010 Data cache linefills from linefill buffer 0.

0b011 Data cache linefills from linefill buffer 1.

0b100 Instruction fetch or instruction linefill.

RLAST Input Indicates last transfer in read data.

RDATA[63:0] Input Read data.

RRESP[1:0] Input Read data response.

RPOISON Input Indicates that a set of data bytes has been corrupted.

RDATACHK[7:0] Input This signal can be used to detect, and potentially correct data bytes that might be corrupted.

RREADY Output Read data ready signal.

BVALID Input Write response valid signal.

BID[1:0] Input Write response ID signal.

0b00 Writes to Normal Non-cacheable memory and all store-exclusive transactions.

0b01 Writes to cacheable memory.

0b10 Writes to Device memory.

0b11 Cache line evictions.

BRESP[1:0] Input Write response signal.

BREADY Output Write response ready signal.

C.9.1 M-AXI interface protection signals

The following table shows the M-AXI interface protection signals.

C Signal descriptions
C.9 M-AXI interface signals

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-C-390

Non-Confidential

Table C-10 M-AXI interface protection signals

Signal name Direction Description

ACLKENCHK Input Odd parity of ACLKEN.

ARVALIDCHK Output Odd parity of ARVALID.

ARREADYCHK Input Odd parity of ARREADY.

ARADDRCHK[3:0] Output Odd parity of ARADDR[31:0] at 8-bit granularity.

ARIDCHK Output Odd parity of ARID[2:0].

ARLENCHK Output Odd parity of ARLEN[3:0].

ARUSERCHK Output Odd parity of (ARINNER[3:0], ARMASTER).

ARCTLCHK0 Output Odd parity of (ARSIZE[2:0], ARBURST[1:0], ARLOCK, ARPROT[2:0]).

ARCTLCHK1 Output Odd parity of ARCACHE[3:0].

ARCTLCHK2 Output Odd parity of ARDOMAIN[1:0].

AWVALIDCHK Output Odd parity of AWVALID.

AWREADYCHK Input Odd parity of AWREADY.

AWADDRCHK[3:0] Output Odd parity of AWADDR[31:0] at 8-bit granularity.

AWIDCHK Output Odd parity of AWID[1:0].

AWLENCHK Output Odd parity of AWLEN[3:0].

AWUSERCHK Output Odd parity of (AWSPARSE, AWINNER[3:0], AWMASTER).

AWCTLCHK0 Output Odd parity of (AWSIZE[2:0], AWBURST[1:0], ARLOCK, ARPROT[2:0]).

AWCTLCHK1 Output Odd parity of (AWCACHE[3:0], AWPROT[2:0], AWLOCK).

AWCTLCHK2 Output Odd parity of AWDOMAIN[1:0].

RVALIDCHK Input Odd parity of RVALID.

RREADYCHK Output Odd parity of RREADY.

RIDCHK Input Odd parity of RID[2:0].

RLASTCHK Input Odd parity of RLAST.

RRESPCHK Input Odd parity of RRESP[1:0].

RPOISONCHK Input Odd parity of RPOISON.

WVALIDCHK Output Odd parity of WVALID.

WREADYCHK Input Odd parity of WREADY.

WSTRBCHK Output Odd parity of WSTRB[7:0].

WIDCHK Output Odd parity of WID[1:0].

WLASTCHK Output Odd parity of WLAST.

WPOISONCHK Output Odd parity of WPOISON.

BVALIDCHK Input Odd parity of BVALID.

BREADYCHK Output Odd parity of BREADY.

BIDCHK Input Odd parity of BID[2:0].

BRESPCHK Input Odd parity of BRESP[1:0].

C Signal descriptions
C.9 M-AXI interface signals

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-C-391

Non-Confidential

C.10 S-AHB interface signals
The S-AHB interface provides direct access to the processor Tightly Coupled Memory (TCM) interfaces.

The following table shows the signals for the S-AHB interface.

Table C-11 S-AHB interface signals

Signal name Direction Description

HSELS Input This signal selects access to Tightly Coupled Memory (TCM) interfaces.

HTRANSS[1:0] Input Transfer type.

HBURSTS[2:0] Input Transfer burst length.

HADDRS[31:0] Input Transfer address and selected TCM interface.

HWRITES Input Write transfer.

HSIZES[2:0] Input Transfer size.

HWDATAS[63:0] Input Write data.

HWSTRBS[7:0] Input Write data byte lane strobes.

HPROTS[6:0] Input Protection and outer memory attributes.

HNONSECS Input Security level, asserted to indicate a Non-secure transfer. For more information, see the Arm®

AMBA® 5 AHB Protocol Specification.

HREADYS Input Data phase that is associated with the previous transfer on the interconnect is complete.

The interconnect sends the signal to all AHB slaves and to the master, which started the transfer.

HREADYOUTS Output Slave ready.

HRDATAS[63:0] Output Read data.

HRESPS Output Slave response.

SAHBWABORT Output Indicates asynchronous abort for writes from TCM errors indicated on ITCMERR, D0TCMERR,
D1TCMERR, D2TCMERR, or D3TCMERR.

C.10.1 S-AHB interface protection signals

The following table shows the Slave AHB (S-AHB) interface protection signals.

Table C-12 S-AHB interface protection signals

Signal name Direction Description

HREADYCHKS Input Odd parity of HREADYS.

HREADYOUTCHKS Output Odd parity of HREADYOUTS.

HTRANSCHKS Input Odd parity of HTRANSS[1:0].

HADDRCHKS[3:0] Input Odd parity of HADDRS[31:0] at 8-bit granularity.

HRDATACHKS[7:0] Output Odd parity of HRDATAS[63:0] at 8-bit granularity.

HWDATACHKS[7:0] Input Odd parity of HWDATA[63:0] at 8-bit granularity.

HWSTRBCHKS Input Odd parity of HWSTRBS[7:0].

HPROTCHKS Input Odd parity of HPROTS[6:0].

HCTRLCHK1S Input Odd parity of (HBURSTS[2:0], HNONSECS, HWRITES, HSIZES[2:0])

C Signal descriptions
C.10 S-AHB interface signals

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-C-392

Non-Confidential

Table C-12 S-AHB interface protection signals (continued)

Signal name Direction Description

HRESPCHKS Output Odd parity of HRESPS.

HSELCHKS Input Odd parity of HSELS.

C Signal descriptions
C.10 S-AHB interface signals

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-C-393

Non-Confidential

C.11 P-AHB interface signals
The Peripheral AHB (P-AHB) interface implements the standard set of AMBA 5 AHB signals.

The following table shows the signals for the P-AHB interface.

Table C-13 P-AHB interface signals

Signal name Direction Description

HTRANSP[1:0] Output Transfer type.

HBURSTP[2:0] Output Transfer burst length.

HADDRP[31:0] Output Transfer address.

HWRITEP Output Write transfer.

HSIZEP[2:0] Output Transfer size.

HWDATAP[31:0] Output Write data.

HPROTP[6:0] Output Protection and outer memory attributes.
 Note

HPROTP[0] is always 0b1 as the interface does not support instruction fetch.

HNONSECP Output Asserted to indicate a Non-secure transfer.

HREADYP Input Slave ready.

HRDATAP[31:0] Input Read data.

HRESPP Input Slave response.

HMASTERP Output Initiator of the access:

0 Processor access.

1 Debugger access.

HEXCLP Output Exclusive request.

Address phase control signal that indicates whether an access is a result of either a:
• LDREX instruction.
• STREX instruction.

0 Non-exclusive (standard) transaction.

1 Exclusive transaction.

HEXOKAYP Input Exclusive response.

This data phase signal is sampled on HREADYC, and it indicates whether the exclusive request was
granted.

0 Exclusive access failed.

1 Exclusive access that is granted.

C.11.1 P-AHB interface protection signals

The following table shows the Peripheral AHB (P-AHB) interface protection signals.

C Signal descriptions
C.11 P-AHB interface signals

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-C-394

Non-Confidential

Table C-14 P-AHB interface protection signals

Signal name Direction Description

HREADYCHKP Input Odd parity of HREADYP.

HTRANSCHKP Output Odd parity of HTRANSP[1:0].

HADDRCHKP[3:0] Output Odd parity of HADDRP[31:0] at 8-bit granularity.

HRDATACHKP[3:0] Input Odd parity of HRDATAP[31:0] at 8-bit granularity.

HWDATACHKP[3:0] Output Odd parity of HWDATA[31:0] at 8-bit granularity.

HCTRLCHK1P Output Odd parity of (HBURSTP[2:0], HNONSECP, HWRITEP, HSIZEP[2:0])

HCTRLCHK2P Output Odd parity of (HEXCLP, HMASTERP)

HPROTCHKP Output Odd parity of HPROTS[6:0].

HRESPCHKP Input Odd parity of (HRESPP, HEXOKAYP)

C Signal descriptions
C.11 P-AHB interface signals

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-C-395

Non-Confidential

C.12 D-AHB interface signals
The following table shows the Debug AHB (D-AHB) interface signals.

Table C-15 D-AHB interface signals

Signal name Direction Description

HTRANSD[1:0] Input Indicates the type of current transfer.
 Note

HTRANSD[0] is ignored by the processor, all transactions are treated as either Non-sequential or
Idle.

HBURSTD[2:0] Input Transfer burst length. Indicates whether the transfer is part of a burst. Debug accesses are always
treated as SINGLE, and this signal is ignored.

HADDRD[31:0] Input Transfer address.

HWRITED Input Write transfer.

HSIZED[2:0] Input Transfer size. Indicates the size of the access. Accesses can be:

0b000 Byte.
0b001 Halfword.
0b010 Word.

 Note

HSIZED[2] is ignored by the processor.

HWDATAD[31:0] Input Write data. Data write bus.

HPROTD[6:0] Input Protection and outer memory attributes. Provides information on the access.
 Note

HPROTD[0] is ignored by the processor, all debug transactions are treated as data accesses.

HNONSECD Input Security level that is requested by debug access, asserted to indicate a Non-secure transfer.

The resultant security level of the debug access depends on the debug control registers in the
processor and the debug access control signals.

HREADYD Output Slave ready. When HIGH indicates that a transfer has completed on the bus. This signal is driven
LOW to extend a transfer.

HRDATAD[31:0] Output Read data.

HRESPD Output Slave response

C.12.1 D-AHB interface protection signals

The following table shows the Debug AHB (D-AHB) interface signals.

Table C-16 D-AHB interface protection signals

Signal name Direction Description

HREADYCHKD Output Odd parity of HREADYD.

HTRANSCHKD Input Odd parity of HTRANSD[1:0].

HADDRCHKD[3:0] Input Odd parity of HADDRD[31:0] at 8-bit granularity.

C Signal descriptions
C.12 D-AHB interface signals

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-C-396

Non-Confidential

Table C-16 D-AHB interface protection signals (continued)

Signal name Direction Description

HRDATACHKD[3:0] Output Odd parity of HRDATAD[31:0] at 8-bit granularity.

HWDATACHKD[3:0] Input Odd parity of HWDATAD[31:0] at 8-bit granularity.

HCTRLCHK1D Input Odd parity of (HBURSTD[2:0], HNONSECD, HWRITED, HSIZED[2:0]).

HPROTCHKD Input Odd parity of HPROTD[6:0].

HRESPCHKD Output Odd parity of HRESPD.

C Signal descriptions
C.12 D-AHB interface signals

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-C-397

Non-Confidential

C.13 EPPB interface signals
The following table shows the External Private Peripheral Bus (EPPB) APB interface signals.

Table C-17 EPPB signals

Signal name Direction Description

PSEL Output APB device select. Indicates that a data transfer is requested.

PENABLE Output APB control signal. Strobe to time all accesses. Indicates the access phase of an APB transfer.

PPROT[2:0] Output Transfer privilege and security level.

PWRITE Output Write transfer.

PSTRB[3:0] Output Write data byte strobes

PADDR[19:2] Output Transfer address.

PADDR31 Output Initiator of the transfer.

0 Processor
1 Debugger

PWDATA[31:0] Output APB 32-bit write data bus.

PREADY Input APB slave ready signal. This signal is driven LOW if the currently accessed APB device requires extra
wait states to complete the transfer.

PSLVERR Input APB slave error signal. This signal is driven HIGH if the currently accessed APB device cannot handle
the requested transfer.

PRDATA[31:0] Input APB 32-bit read data bus.

C.13.1 EPPB interface protection signals

The following table shows the External Peripheral Bus (EPPB) interface protection signals.

Table C-18 EPPB interface protection signals

Signal name Direction Description

PSELCHK Output Odd parity of PSEL.

PREADYCHK Input Odd parity of PREADY.

PENABLECHK Output Odd parity of PENABLE.

PADDRCHK[3:0] Output Odd parity, at 8-bit granularity, of (PADDR31, 0b00000000000,PADDR[19:2] ,0b00)

PRDATACHK[3:0] Input Odd parity of PRDATA[31:0] at 8-bit granularity.

PWDATACHK[3:0] Output Odd parity of PWDATA[31:0] at 8-bit granularity.

PCTRLCHK Output Odd parity of (PPROT[2:0],PWRITE)

PSTRBCHK Output Odd parity of PSTRB[3:0].

PSLVERRCHK Input Odd parity of PSLVERR.

C Signal descriptions
C.13 EPPB interface signals

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-C-398

Non-Confidential

C.14 External coprocessor interface signals
The following table lists the external coprocessor interface signals.

Table C-19 External coprocessor interface signals

Signal name Direction Description

CPRESETOUTn Output This signal is asserted when the processor PDCORE domain is in reset.

CPENABLED[7:0] Output Indicates which coprocessor is enabled in the:
• CPACR register associated with the Security state of the processor.
• NSACR register if the processor is executing in Non-secure state.

 Note

The CPACR is banked when the implementation includes the Security Extension.

CPPWRSU[7:0] Output Indicates which coprocessors are permitted to become UNKNOWN.

CPSPRESENT[7:0] Input Indicates which Secure coprocessors are present in the system.

CPNSPRESENT[7:0] Input Indicates which Non-secure coprocessors are present in the system.

CPCDP Output Coprocessor command operation.

CPMCR Output Coprocessor register transfer from processor operation.

CPMRC Output Coprocessor register transfer to processor operation.

CPSIZE Output Coprocessor size operation.

CPNUM[2:0] Output Coprocessor number request.

CPREGS[11:0] Output Operation register fields.

CPOPC[8:0] Output Operation opcode fields.

CPPRIV Output Indicates operation privilege.

CPNSATTR Output Indicates operation Security state.

CPVALID Output Indicates whether the coprocessor operation is valid.

CPREADY Input Indicates whether the coprocessor is stalled or ready.

CPERROR Input Indicates that the coprocessor is not present or the instruction is not supported.

CPWDATA[63:0] Output The coprocessor write data bus.

CPRDATA[63:0] Input The coprocessor read data bus.

C Signal descriptions
C.14 External coprocessor interface signals

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-C-399

Non-Confidential

C.15 Debug interface signals
The following table shows the debug interface signals.

 Note

For more information on debug authentication, see the section on authentication rules in the Arm®

CoreSight™ Architecture Specification v3.0.

Table C-20 Debug signals

Signal name Direction Description

HALTED Output In halting mode debug. HALTED remains asserted while the processor is in debug.

DBGRESTART Input Request for synchronized exit from halt mode. Forms a handshake with DBGRESTARTED. If
multiprocessor debug support is not required, DBGRESTART must be tied LOW.

DBGRESTARTED Output Handshake for DBGRESTART.

EDBGRQ Input External debug request. A debug agent in the system asserts this signal to request that the processor
enters Debug state.

DBGEN Input Invasive debug enable. When LOW, disables all halt-mode and invasive debug features.

NIDEN Input Non-invasive debug enable. When LOW, disables all trace and non-invasive debug features.

SPIDEN Input Secure invasive debug enable. When LOW, disables all halt mode and invasive debug features
when the processor is in Secure state.

SPNIDEN Input Secure non-invasive debug enable.

Controls access to non-invasive debug features when the processor is in Secure state and SPIDEN
is LOW.

C Signal descriptions
C.15 Debug interface signals

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-C-400

Non-Confidential

C.16 P-Channel and Q-Channel power control signals
The Cortex-M55 processor PDCORE, PDEPU, and PDRAMS power domains are controlled by a P-
Channel interface because there are multiple power modes, and each power mode is a combination of
states for these domains. The debug power domain, PDDEBUG, is controlled by a Q-Channel interface
because there are only two power modes, that is, ON and OFF.

PDCORE P-Channel interface signals
The following table shows the PDCORE, PDEPU, and PDRAMS P-Channel signals.

 Note

The core P-Channel input signal, COREPREQ, is asynchronous to CLKIN and is synchronized inside
the processor.

Table C-21 PDCORE P-Channel interface signals

Signal name Direction Description

COREPREQ Input Request to transition to power mode indicated by COREPSTATE.

COREPSTATE[4:0] Input Requested power mode.

COREPACCEPT Output Acceptance of the transition to the requested power mode.

COREPDENY Output Denial of the power mode transition request.

COREPACTIVE[20:0] Output Hint signal from processor for minimum required mode.

PDDEBUG Q-Channel interface signals
The following table shows the PDDEBUG Q-Channel interface signals.

 Note

The Q-Channel input PWRDBGQREQn signal is asynchronous to DBGCLK and is synchronized
inside the Cortex-M55 processor.

Table C-22 PDDEBUG Q-Channel interface signals

Signal name Direction Description

PWRDBGQREQn Input Debug domain quiescence request signal.

PWRDBGQACCEPTn Output Debug domain quiescence request accepted.

PWRDBGQDENY Output Debug domain quiescence request denied.

PWRDBGQACTIVE Output Debug logic active or activation request.

PWRDBGWAKEQACTIVE Output Debug request in progress. System-level power control must power up PDDEBUG
domain to complete transaction.

C Signal descriptions
C.16 P-Channel and Q-Channel power control signals

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-C-401

Non-Confidential

C.17 Q-Channel clock control signals
The CLKIN and DBGCLK, which can be gated at the system-level, is controlled by a separate Q-
Channel interface.

The following table shows the Q-Channel signals for CLKIN clock control.

 Note

The Q-Channel input CLKINQREQn signal is asynchronous to CLKIN and is synchronized inside the
Cortex-M55 processor.

Table C-23 Q-Channel for CLKIN control

Signal name Direction Description

CLKINQREQn Input Q-Channel for CLKIN control.

CLKINCLKQACCEPTn Output

CLKINQDENY Output

CLKINQACTIVE Output

The following table shows the debug Q-Channel signals for DBGCLK clock control.
 Note

The Q-Channel input DBGCLKQREQn signal is asynchronous to DBGCLK and is synchronized
inside the Cortex-M55 processor.

Table C-24 Q-Channel signals for DBGCLK control

Signal name Direction Description

DBGCLKQREQn Input Q-Channel for DBGCLK clock control.

DBGCLKQACCEPTn Output

DBGCLKQDENY Output

DBGCLKQACTIVE Output

C Signal descriptions
C.17 Q-Channel clock control signals

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-C-402

Non-Confidential

C.18 Power compatibility control signals
The following table shows the power compatibility control signals.

Table C-25 Power compatibility control signals

Signal name Direction Description

SLEEPING Output When HIGH indicates that the processor is ready to enter a low-power state.

When LOW, indicates that the processor is running or wants to leave sleep mode.

If SLEEPHOLDACKn is LOW, then the processor does not perform any fetches until
SLEEPHOLDREQn is driven HIGH.

SLEEPDEEP Output Indicates that the processor and ETM are ready to enter a low-power state and the wake up time is
not critical. Only active when SLEEPING is HIGH.

SLEEPHOLDACKn Output Acknowledge signal for SLEEPHOLDREQn. If this signal is LOW, irrespective of the
SLEEPING signal value, the processor does not advance in execution and does not perform any
memory operations.

SLEEPHOLDREQn Input Request to extend the processor sleeping state regardless of wake up events. If the processor
acknowledges this request driving SLEEPHOLDACKn LOW, this guarantees the processor
remains idle even when receiving a wake up event.

C Signal descriptions
C.18 Power compatibility control signals

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-C-403

Non-Confidential

C.19 ITM interface signals
The following table shows the ATB Instrumentation Trace Macrocell (ITM) interface signals.

Table C-26 ITM interface signals

Signal name Direction Description

AFREADYI Output Trace flush acknowledge.

AFVALIDI Input Trace flush request.

ATDATAI[7:0] Output Trace data.

ATIDI[6:0] Output Trace source ID.

ATREADYI Input Trace slave ready.

ATVALIDI Output Trace transfer valid.

SYNCREQI Input ITM trace synchronization request.

C Signal descriptions
C.19 ITM interface signals

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-C-404

Non-Confidential

C.20 ETM interface signals
The following table shows the ATB CoreSight Embedded Trace Macrocell (ETM) trace interface signals.

Table C-27 ETM interface signals

Signal name Direction Description

ATVALIDE Output Trace transfer is valid.

ATIDE[6:0] Output Trace source ID.

ATDATAE[7:0] Output Trace data.

AFREADYE Output Trace flush acknowledge.

AFVALIDE Input Trace flush request.

ATREADYE Input Trace slave is ready.

SYNCREQE Input ETM Trace synchronization request.

C Signal descriptions
C.20 ETM interface signals

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-C-405

Non-Confidential

C.21 Trace synchronization and trigger signals
The following table shows the trace synchronization and trigger interface signals

Table C-28 Trace synchronization and trigger signals

Name Type Description

TRCENA Output Status of the DEMCR.TRCENA register, indicating whether the Data Watchpoint Trace (DWT) and
Instrumentation Trace Macrocell (ITM) units are enabled (when implemented).

TPIUACTV Input TPIU data active.

TPIUBAUD Input Unsynchronized TPIU Baud indicator

DSYNC Output DWT synchronization request.

ETMTRIGOUT Output ETM trigger event output bit[0]. Indicates a trigger packet in the trace stream.

C Signal descriptions
C.21 Trace synchronization and trigger signals

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-C-406

Non-Confidential

C.22 CTI interface signals
The following table shows the Cross Trigger Interface (CTI) interface signals.

Table C-29 CTI signals

Signal name Direction Description

CTICHIN[3:0] In CTI channel input

CTICHOUT[3:0] Out CTI channel output

CTIIRQ[1:0] Out CTI interrupt request

C Signal descriptions
C.22 CTI interface signals

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-C-407

Non-Confidential

C.23 Interrupt signals
All interrupt inputs must be generated synchronously to CLKIN. Both pulse and level interrupts are
supported.

The following table shows the interrupt signals

Table C-30 Interrupt signals

Signal name Direction Description

IRQ[479:0] Input External interrupt signals. The NUMIRQ parameter configures the implemented bits of this signal.
 Note

• IRQ and NMI signals are active-HIGH and the hardware is agnostic between pulse- and level-
signaled interrupts.

• You must ensure that the IRQ and NMI signals to the processor are synchronized to CLKIN using
the appropriate circuit.

NMI Input Non-maskable interrupt

CURRPRI[7:0] Output Current interrupt priority level.

If the processor is in Handler mode for an exception with configurable priority CURRPRI indicates the
programmed priority level of the exception.

If the processor is in handler mode for an exception with negative priority CURRPRI is 0.

If the processor is in Thread mode CURRPRI is dependent on whether a base priority mask is enabled
by setting BASEPRI > 0:

BASEPRI==0 CURRPRI=0

BASEPRI > 0 CURRPRI=BASEPRI

The current exception number can be determined using the output signal INTNUM.

INTNUM[8:0] Output Interrupt number of the current execution context, from bits [8:0] of IPSR.
 Note

• When the processor is in Thread mode, INTNUM is 0.
• When the processor is in Handler mode, INTNUM is the exception number of the currently

executing exception.

C Signal descriptions
C.23 Interrupt signals

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-C-408

Non-Confidential

C.24 WIC interface signals
There are two Wakeup Interrupt Controller (WIC) units that the processor supports.

• The Internal Wakeup Interrupt Controller (IWIC) that is present inside the processor.
• The External Wakeup Interrupt Controller (EWIC) that is an external peripheral to the processor.

WIC configuration signal

The following table shows the WIC configuration signal.

Table C-31 WIC configuration signal

Signal name Direction Description

WICCONTROL[3:0] Input This signal is responsible for WIC control and configuration.

WICCONTROL[3] This bit indicates the EWIC automatic sequence on powerdown
sequence. This bit is connected to EWIC in the system.

WICCONTROL[2] This bit indicates the EWIC automatic sequence on powerup sequence.
This bit is connected to EWIC in the system.

WICCONTROL[1] This bit indicates that IWIC must be used.

WICCONTROL[0] This bit indicates that DEEPSLEEP is WIC sleep.

IWIC interface signals

The following table shows the IWIC signals.

Table C-32 IWIC signals

Signal name Direction Description

IWICCLK Input This signal is the IWIC clock.

nIWICRESET Input This is an active-LOW IWIC reset signal.

IWAKEUP Output This signal indicates the IWIC wake-up event that is detected when the processor is in WIC sleep.

IWICSENSE[482:0] Output This signal indicates which input events cause the WIC to generate the IWAKEUP signal.

The WICLINES configuration parameter determines the usable width of this signal. Therefore,
only the IWICSENSE[WICLINES-1:0] bits are implemented and the remaining bits are driven
LOW.

The mapping to input events is:

IWICSENSE[482:3] IRQ[479:0].

IWICSENSE[2] EDBGRQ.

IWICSENSE[1] NMI.

IWICSENSE[0] RXEV.

EWIC interface signal

The following table shows the EWIC signal.

C Signal descriptions
C.24 WIC interface signals

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-C-409

Non-Confidential

Table C-33 EWIC signal

Signal name Direction Description

EWAKEUP Input The processor uses this signal to drive the COREPACTIVE output signal. This signal is asserted to
indicate when a wakeup event is detected in WIC sleep. For more information on COREPACTIVE, see
C.16 P-Channel and Q-Channel power control signals on page Appx-C-401.

C Signal descriptions
C.24 WIC interface signals

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-C-410

Non-Confidential

C.25 Event signals
The following table shows the event signals.

Table C-34 Event signals

Signal name Direction Description

TXEV Output This signal is a notification of an event that the processor generates when the SEV instruction is
executed. This signal is a single-cycle pulse signal.

RXEV Input This signal is a notification of a system event.

LOCKUP Output This signal is a notification that the processor is in the architected lockup state because of an
unrecoverable exception.

EVENTBUS[140:0] Output This signal indicates the Performance Monitoring Unit (PMU) events. EVENTBUS[n] is pulsed
for a single cycle for each event, n, on the processor.

DBE[4:0] Output Detected Bus Error. A parity error has been detected from a protected interface.

Bit [4] Debug AHB (D-AHB) parity error.

Bit [3] Master AXI (M-AXI) parity error.

Bit [2] System AHB (S-AHB) parity error.

Bit [1] Peripheral AHB (P-AHB) parity error.

Bit [0] External Private Peripheral Bus (EPPB) parity error.

A single-cycle pulse on the associated bit of DBE signals an error. This signal is always 0b00000
if interface protection is not configured on the processor.

C Signal descriptions
C.25 Event signals

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-C-411

Non-Confidential

C.26 IDAU interface signals
An Implementation Defined Attribution Unit (IDAU) can control the security attributes for most of the
memory the Cortex-M55 processor addresses to a granularity of 32 bytes.

The following table shows the IDAU interface signals.

Table C-35 IDAU interface signals

Signal Name Direction Description

IDAUVALIDA Output Port A address valid

IDAUADDRA[31:5] Output Port A address

IDAUVALIDB Output Port B address valid

IDAUADDRB[31:5] Output Port B address

IDAUVALIDC Output Port C address valid

IDAUADDRC[31:5] Output Port C address

IDAUNSA Input Port A Non-secure

IDAUNSCA Input Port A Non-secure Callable

IDAUNSB Input Port B Non-secure

IDAUNSCB Input Port B Non-secure Callable

IDAUNSC Input Port C Non-secure

IDAUNSCC Input Port C Non-secure Callable

IDAUIDA[7:0] Input Port A region number

IDAUIDB[7:0] Input Port B region number

IDAUIDC[7:0] Input Port C region number

IDAUDVA Input Port A region number valid

IDAUDVB Input Port B region number valid

IDAUDVC Input Port C region number valid

IDAUNCHKA Input Port A region exempt from attribution check

IDAUNCHKB Input Port B region exempt from attribution check

IDAUNCHKC Input Port C region exempt from attribution check

C Signal descriptions
C.26 IDAU interface signals

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-C-412

Non-Confidential

C.27 Miscellaneous signals
The following table shows the miscellaneous signals. The configuration input signals are sampled at
reset.

Table C-36 Miscellaneous interface signals

Signal name Direction Description

TSVALUEB[63:0] Input Binary coded global timestamp count. This signal is synchronous to CLKIN.

TSCLKCHANGE Input This signal indicates timestamp clock ratio change.

SYSRESETREQ Output Request for functional reset. This can be done using either nSYSRESET or a combination of the
P-Channel interface and nSYSRESET.

ECOREVNUM[35:0] Input ECO revision number. The ECO revision field mappings are:

[35:32] Performance Monitoring Unit (PMU)

[31:28] Embedded Trace Macrocell (ETM).

[27:24] Cross Trigger Interface (CTI).

[23:20] ROM table.

[19:16] Instrumentation Trace Macrocell (ITM).

[15:12] System Control Space (SCS).

[11:8] Data Watchpoint and Trace (DWT).

[7:4] BreakPoint Unit (BPU).

[3:0] CPUID revision.

LOCKSVTAIRCR Input Disables writes to the following secure registers from software or from a debug agent that is
connected to the processor.

• VTOR_S.
• AIRCR.PRIS.
• AIRCR.BFHFNMINS.

Asserting this signal:
• Prevents changes to the secure vector table base address.
• Handling of secure interrupt priority.
• Handling of BusFault, HardFault, and NMI security target settings in the processor.

For more information on these registers, see the Arm®v8-M Architecture Reference Manual.

This signal can be changed dynamically.

When SECEXT=0, VTOR_S and associated signals exist but do not have any effect, and only
VTOR_NS and its associated signals exist.

LOCKNSVTOR Input Disables writes to the VTOR_NS register.

For more information on this register, see Arm®v8-M Architecture Reference Manual.

Asserting this signal prevents changes to the Non-secure vector table base address.

This signal can be changed dynamically.

When SECEXT=0, VTOR_S and associated signals exist but do not have any effect, and only
VTOR_NS and its associated signals exist.

C Signal descriptions
C.27 Miscellaneous signals

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-C-413

Non-Confidential

Table C-36 Miscellaneous interface signals (continued)

Signal name Direction Description

LOCKSMPU Input This signal disables writes to registers that are associated with the Secure Memory Protection
Unit (MPU) region from software or from a debug agent connected to the processor.
• MPU_CTRL.
• MPU_RNR.
• MPU_RBAR.
• MPU_RLAR.
• MPU_RBAR_An.
• MPU_RLAR_An.

For more information on these registers, see the Arm®v8-M Architecture Reference Manual.

Asserting this signal prevents changes to the memory regions which have been programmed in
the secure MPU. All writes to the registers are ignored.

This signal has no effect if the Cortex-M55 processor has not been configured with support for
the Security Extension, or if no Secure MPU regions have been configured.

This signal can be changed dynamically.

LOCKNSMPU Input This signal disables writes to registers that are associated with the Non-secure MPU region from
software or from a debug agent connected to the processor.
• MPU_CTRL_NS.
• MPU_RNR_NS.
• MPU_RBAR_NS.
• MPU_RLAR_NS.
• MPU_RBAR_A_NSn.
• MPU_RLAR_A_NSn.

For more information on these registers, see the Arm®v8-M Architecture Reference Manual.

Asserting this signal prevents changes to the memory regions which have been programmed in
the Non-secure MPU. All writes to the registers are ignored.

This signal has no effect if the Cortex-M55 processor has not been configured with support for
Non-secure MPU regions.

This signal can be changed dynamically.

LOCKSAU Input This signal disables writes to registers that are associated with the Security Attribution Unit
(SAU) region from software or from a debug agent connected to the processor.
• SAU_CTRL.
• SAU_RNR.
• SAU_RBAR.
• SAU_RLAR.

For more information on these registers, see the Arm®v8-M Architecture Reference Manual.

Asserting this signal prevents changes to the memory regions which have been programmed in
the SAU. All writes to the registers are ignored.

This signal has no effect if the Cortex-M55 processor has not been configured with support for
the Security Extension, or if no SAU regions have been configured.

This signal can be changed dynamically.

C Signal descriptions
C.27 Miscellaneous signals

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-C-414

Non-Confidential

Table C-36 Miscellaneous interface signals (continued)

Signal name Direction Description

LOCKTCM Input This signal disables writes to registers that are associated with the TCM region from software or
from a debug agent connected to the processor.
• ITCMCR.
• DTCMCR.

For more information on these registers, see the Arm® Cortex®-M55 Processor Technical
Reference Manual.

Asserting this signal prevents changes to the TCM configuration. All writes to the registers are
ignored.

LOCKITGU Input This signal disables writes to registers that are associated with the ITCM interface security gating
from software or from a debug agent connected to the processor.
• ITGUCTRL.
• ITGU_LUTn.

For more information on these registers, see the Arm® Cortex®-M55 Processor Technical
Reference Manual.

Asserting this signal prevents changes to the security gating configuration of the ITCM.

LOCKDTGU Input This signal disables writes to registers that are associated with the DTCM interface security
gating from software or from a debug agent connected to the processor.
• DTGUCTRL.
• DTGU_LUTn.

For more information on these registers, see the Arm® Cortex®-M55 Processor Technical
Reference Manual.

Asserting this signal prevents changes to the security gating configuration of the DTCM.

LOCKPAHB Input Disable writes to the PAHBCR register from software or from a debug agent connected to the
processor.

For more information on this register, see the Arm® Cortex®-M55 Processor Technical Reference
Manual.

Asserting this signal prevents changes to P-AHB port enable status in PAHBCR.EN.

LOCKDCAIC Input Disable access to the instruction cache direct cache access registers DCAICLR and DCAICRR.

Asserting this signal prevents direct access to the instruction cache Tag or Data RAM content.
This is required when using eXecutable Only Memory (XOM) on the AXI master interface.

When LOCKDCAIC is asserted:
• DCAICLR is RAZ/WI.
• DCAICRR is RAZ.

For more information on these registers, see the Arm® Cortex®-M55 Processor Technical
Reference Manual.

 Note

• For more information on the ITCMCR and DTCMCR registers, see 4.19 ITCMCR and DTCMCR,
TCM Control Registers on page 4-101.

• For more information on the ITGU_CTRL and ITGU_LUTn registers, see 4.20 TCM security gate
registers on page 4-103.

• For more information on DTGU_CTRL and DTGU_LUTn registers, see 4.20 TCM security gate
registers on page 4-103.

C Signal descriptions
C.27 Miscellaneous signals

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-C-415

Non-Confidential

• For more information on the PAHBCR register, see 4.14 PAHBCR, P-AHB Control Register
on page 4-90.

• For more information on the DCAICLR and DCAICRR registers, see 4.11.1 DCAICLR and
DCADCLR, Direct Cache Access Location Registers on page 4-75 and 4.11.2 DCAICRR and
DCADCRR, Direct Cache Access Read Registers on page 4-77.

C Signal descriptions
C.27 Miscellaneous signals

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-C-416

Non-Confidential

C.28 Error interface signals
The error interface reports Error Correcting Code (ECC) errors that are detected in the caches and
TCMs. The processor can report the location of up to two errors which occur simultaneously. It can also
indicate if more than two errors have occurred, but cannot provide any additional information. The
following table shows the error interface signals.

Table C-37 Error interface signals

Signal name Direction Description

DMEV0 Output This signal indicates that an error is detected. When this signal is asserted, DMEL0 and DMEI0[25:0]
are valid.

DMEV1 Output This signal indicates that at least two errors are detected. When this signal is asserted, DMEL1 and
DMEI1[25:0] are valid.

DMEV2 Output This signal indicates that at least three errors are detected. No information about errors beyond the first
two is sent.

DMEL0[2:0] Output Location of the highest priority error detected. This is a one-hot signal and the format is:

DMEL0[2] Error is found in the instruction cache.

DMEL0[1] Error found in the data cache.

DMEL0[0] Error found in the TCM.

DMEL1[2:0] Output Location of the second highest priority error detected. This is a one-hot signal and the format is:

DMEL1[2] Error is found in the instruction cache.

DMEL1[1] Error found in the data cache.

DMEL1[0] Error found in the TCM.

DMEI0[25:0] Output Information about the highest priority error detected. This format of the signal depends on the location of
the error:

Instruction cache DMEI0[14:0] is the same format as bits [16:2] in IEBR0.

Data cache DMEI0[15:0] is the same format as bits [17:2] in DEBR0.

TCM DMEI0[25:0] is the same format as bits [27:2] in TEBR0.

Unused bits of this signal are zero.

DMEI1[25:0] Output Information about the second highest priority error detected. This format of the signal depends on the
location of the error:

Instruction cache DMEI1[14:0] is the same format as bits [16:2] in IEBR1.

Data cache DMEI1[15:0] is the same format as bits [17:2] in DEBR1.

TCM DMEI1[25:0] is the same format as bits [27:2] in TEBR1.

Unused bits of this signal are zero.

C Signal descriptions
C.28 Error interface signals

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-C-417

Non-Confidential

C.29 Floating-point exception signals
The following table shows the floating-point exception signals.

The floating-point exception signals indicate mathematical errors that cause floating-point exceptions.
Using these to indicate floating-point exceptions permits such exceptions to be diagnosed independently
from software. For example, in safety-critical systems, exceptions can be routed directly to an on-chip
safety controller.

 Note

The floating-point exception signals are not related to the exception handling model. This means you can
connect the floating-point exception signals to IRQ lines as your system design requires.

Table C-38 Floating-point signals

Signal name Direction Description

FPIXC Output Masked floating-point inexact exception

FPIDC Output Masked floating-point input denormal exception

FPOFC Output Masked floating-point overflow exception

FPUFC Output Masked floating-point underflow exception

FPDZC Output Masked floating-point divide-by-zero exception

FPIOC Output Invalid operation

C Signal descriptions
C.29 Floating-point exception signals

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-C-418

Non-Confidential

C.30 Test interface signals
The following tables show the Design for Test and production Memory Built-In Self-Test (MBIST)
interface signals.

Table C-39 DFT signals

Signal name Direction Description

DFTCGEN Input Enables architectural clock gate override.

DFTRSTDISABLE[1:0] Input Disables synchronized multi-layer logic resets during scan shift.

DFTRAMHOLD Input Disable writes to the RAMs during scan shift.

nMBISTRESET Input Production MBIST reset.

Table C-40 Production MBIST interface signals

Signal name Direction Description

MBISTREQ Input Production MBIST mode request.

0 Normal operation

1 Production MBIST mode

C Signal descriptions
C.30 Test interface signals

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-C-419

Non-Confidential

C.31 Reserved signals
The following signals are reserved. Tie inputs LOW and leave outputs unconnected.

Table C-41 Reserved signals

Signal name Direction Comments

PMCTEN Input Tie LOW.

PMCTC Input Tie LOW.

PMCTE Output Leave unconnected.

PMCTF Output Leave unconnected.

C Signal descriptions
C.31 Reserved signals

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-C-420

Non-Confidential

Appendix D
UNPREDICTABLE Behaviors

This appendix summarizes the behavior of the Cortex-M55 processor in cases where the Armv8.1‑M
architecture is UNPREDICTABLE.

It contains the following sections:
• D.1 Use of instructions defined in architecture variants on page Appx-D-422.
• D.2 Use of Program Counter - R15 encoding on page Appx-D-423.
• D.3 Use of Stack Pointer - as a general-purpose register R13 on page Appx-D-424.
• D.4 Register list in load and store multiple instructions on page Appx-D-425.
• D.5 Exception-continuable instructions on page Appx-D-426.
• D.6 Stack limit checking on page Appx-D-427.
• D.7 UNPREDICTABLE instructions within an IT block on page Appx-D-428.
• D.8 Memory access and address space on page Appx-D-429.
• D.9 MPU programming on page Appx-D-430.
• D.10 Miscellaneous UNPREDICTABLE instruction behavior on page Appx-D-431.

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-D-421

Non-Confidential

D.1 Use of instructions defined in architecture variants
An instruction that is provided by one or more of the architecture extensions is either UNPREDICTABLE or
UNDEFINED in an implementation that does not include those extensions.

In the Cortex-M55 processor, all instructions that are not explicitly supported generate an UNDEFINSTR
UsageFault exception.

D UNPREDICTABLE Behaviors
D.1 Use of instructions defined in architecture variants

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-D-422

Non-Confidential

D.2 Use of Program Counter - R15 encoding
R15 is UNPREDICTABLE as a source or destination in most data processing operations. R15 is also
UNPREDICTABLE as a transfer register in certain load/store instructions. Examples of such instructions
include LDRT, LDRH, and LDRB.

In the Cortex-M55 processor, the use of R15 as a named register specifier for any source or destination
register that is indicated as UNPREDICTABLE generates an UNDEFINSTR UsageFault exception.

D UNPREDICTABLE Behaviors
D.2 Use of Program Counter - R15 encoding

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-D-423

Non-Confidential

D.3 Use of Stack Pointer - as a general-purpose register R13
R13 is defined in the Thumb instruction set so that its use is primarily as a stack pointer. R13 is normally
identified as stack pointer, SP in Thumb instructions.

In 32-bit Thumb instructions, if you use SP as a general-purpose register beyond the architecturally
defined constraints, the results are UNPREDICTABLE.

In the Cortex-M55 processor, the use of R13 as a named register specifier for any source or destination
register that is indicated as UNPREDICTABLE generates an UNDEFINSTR UsageFault exception.

In the architecture where the use of R13 as a general-purpose register is defined, bits[1:0] of the register
must be treated as SBZP. Writing a nonzero value to bits [1:0] results in UNPREDICTABLE behavior. In the
Cortex-M55 processor, bits [1:0] of R13 are always RAZ/WI.

D UNPREDICTABLE Behaviors
D.3 Use of Stack Pointer - as a general-purpose register R13

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-D-424

Non-Confidential

D.4 Register list in load and store multiple instructions
Load and Store Multiple instructions (LDM, STM, PUSH, POP VLDM, and VSTM) transfer multiple registers to
and from consecutive memory locations using an address from a base register, which can be optionally
written back when the operation is complete.

The registers are selected from a list encoded in the instruction. Some of these encodings are
UNPREDICTABLE.

In the Cortex-M55 processor:
• If the number of registers loaded is zero, then the instruction is a No Operation (NOP). If the number

of registers loaded is one, the single register is loaded.
• If R13 is specified in the list, an UNDEFINED exception occurs.
• For a Load Multiple, if PC is specified in the list and the instruction is in an IT block and is not the

final instruction, a fault is not generated. The branch is taken and the IT state is cleared.
• For a Store Multiple instruction, if PC is specified in the list, an UNDEFINED exception occurs.
• For a Load Multiple instruction, if base writeback is specified and the register to be written back is

also in the list to be loaded, the instruction performs all the loads in the specified addressing mode
and the register being written back takes the loaded value.

• For a Store Multiple instruction, if base writeback is specified and the register to be written back is
also the first register in the list to be stored, the value stored is the initial base register value. The base
register is written back with the expected updated value. If the register to be written back is not the
first register in the list, then it takes the updated value.

• For a floating-point Load or Store Multiple instruction, VLDM, VSTM VPUSH, and VPOP, if the register
list extends beyond S63 or D31, then the Cortex-M55 processor ignores all registers that are greater
than S31 or D15. If it has a writeback, then the base register becomes UNKNOWN.

D UNPREDICTABLE Behaviors
D.4 Register list in load and store multiple instructions

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-D-425

Non-Confidential

D.5 Exception-continuable instructions
To improve interrupt response and increase processing throughput, the processor can take an interrupt
during the execution of a Load Multiple or Store Multiple instruction, and continue execution of the
instruction after returning from the interrupt. During the interrupt processing, the EPSR.ICI bit holds the
continuation state of the Load Multiple or Store Multiple instruction.

In the Cortex-M55 processor, if an exception-continuable instruction is interrupted, then modification of
the EPSR.ICI bits by either the software or a debugger might generate an INVSTATE UsageFault
exception when re-execution of the interrupted instruction is attempted.

This includes the architecturally UNPREDICTABLE cases of:
• Not a register in the register list of the Load Multiple or Store Multiple instruction.
• The first register in the register list of the Load Multiple or Store Multiple instruction.

The Cortex-M55 processor also generates an INVSTATE UsageFault exception if the ICI bits are set to
any non-zero value for an integer Load Multiple instruction with the base register in the register list, and
ICI set to a greater register number than the base register. This is because these instructions are not
eligible for continuation.

D UNPREDICTABLE Behaviors
D.5 Exception-continuable instructions

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-D-426

Non-Confidential

D.6 Stack limit checking
The Armv8.1‑M architecture defines the instructions which are subject to stack limit checking when
operating on SP.

It states that it is UNKNOWN whether a stack limit check is performed on any use of the SP that was
UNPREDICTABLE in Armv7‑M and Armv6‑M. In the Cortex-M55 processor, these UNPREDICTABLE cases are
when R13 is used as a general-purpose register in instructions. In these circumstances, the processor
generates an UNDEFINSTR UsageFault exception.

D UNPREDICTABLE Behaviors
D.6 Stack limit checking

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-D-427

Non-Confidential

D.7 UNPREDICTABLE instructions within an IT block
Instructions executed in an IT block which change the PC are architecturally UNPREDICTABLE unless they
are the last instruction in the block.

In the Cortex-M55 processor:
• Conditional branch instructions (Bcond label) always generate an UNCONDITIONAL

UNDEFINSTR UsageFault exception.
• Unconditional branch instructions (B label) which are not the last instructions in the IT block

execute normally.
• Branch with link instructions (BL label) which are not the last instructions in the IT block execute

normally.
• BLX PC is always UNPREDICTABLE and generates an UNDEFINSTR UsageFault exception.
• Branch and exchange instructions (BX Rm) which are not the last instructions in the IT block execute

normally.
• Compare and Branch instruction, CBNZ and CBZ always generate an UNCONDITIONAL

UNDEFINSTR UsageFault exception.
• Table branch instructions (TBB and TBH) which are not the last instructions in the IT block execute

normally.
• An IT instruction inside another IT block always generates an UNCONDITIONAL UNDEFINSTR

UsageFault exception.
• If the Floating-point Extension is included and one of the following instructions is executed in an IT

block, the instruction generates an unconditional UNCONDITIONAL UNDEFINSTR UsageFault
exception:
— VCVTA
— VCVTN
— VCVTP
— VCVTM
— VMAXNM
— VMINNM
— VRINTA
— VRINTN
— VRINTP
— VRINTM
— VSEL

• CPS instructions always generate an UNCONDITIONAL UNDEFINSTR UsageFault exception.

D UNPREDICTABLE Behaviors
D.7 UNPREDICTABLE instructions within an IT block

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-D-428

Non-Confidential

D.8 Memory access and address space
In the Armv8.1‑M architecture, there are memory accesses that result in UNPREDICTABLE behavior in the
Cortex-M55 processor.

The following table shows the memory accesses that are UNPREDICTABLE and the Cortex-M55 processor
behavior.

Table D-1 Memory accesses and Cortex-M55 processor behavior

Memory access Cortex-M55 processor behavior

Any access to memory from a load or store instruction or an
instruction fetch, which overflows the 32-bit address space.

These kinds of accesses wrap around to addresses at the start of
memory.

For any access X, the bytes accessed by X must all have the same
memory type attribute, otherwise the behavior of the access is
UNPREDICTABLE. That is, an unaligned access that spans a
boundary between different memory types is UNPREDICTABLE.

In the Cortex-M55 processor, each part of an access to a different
32-byte aligned region is dealt with independently. If an MPU is
included in the processor, each access to a different 32-byte region
makes a new MPU lookup. If an MPU is not included, then the
behavior of the associated background region is taken into
account.

For any two memory accesses X and Y that are generated by the
same instruction, the bytes accessed by X and Y must all have the
same memory type attribute. Otherwise, the results are
UNPREDICTABLE. For example, an LDC, LDM, LDRD, STC, STM,
STRD, VSTM, VLDM, VPUSH, VPOP, VLDR, or VSTR that spans a
boundary between Normal and Device memory is
UNPREDICTABLE.

In the Cortex-M55 processor, each part of access to a different 32-
byte aligned region is dealt with independently. If an MPU is
included in the processor, each access to a different 32-byte
aligned region makes a new MPU lookup. If an MPU is not
included, then the behavior of the associated background region is
taken into account.

Any instruction fetch must only access Normal memory. If it
accesses Device memory, the result is UNPREDICTABLE. For
example, instruction fetches must not be performed to an area of
memory that contains read-sensitive devices because there is no
ordering requirement between instruction fetches and explicit
accesses.

In the Cortex-M55 processor, fetches to Device memory are sent
out to the system, indicated on the M-AXI interface as Device,
unless the memory region is marked with the Execute Never (XN)
memory attribute.

If the Security Extension is implemented, the behavior of
sequential instruction fetches that cross from Non-secure to
Secure memory and fulfill the secure entry criteria specified in the
architecture, including the presence of a Secure Gateway (SG)
instruction at the boundary of the secure memory area, is
CONSTRAINED UNPREDICTABLE.

In the Cortex-M55 processor, this results in a fault (INVEP).

D UNPREDICTABLE Behaviors
D.8 Memory access and address space

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-D-429

Non-Confidential

D.9 MPU programming
The Arm Protected Memory System Architecture (PMSA) includes many UNPREDICTABLE cases when
programming the MPU when it is included in an implementation.

In the Cortex-M55 processor:
• Setting MPU_CTRL.ENABLE to 0 and MPU_CTRL.HFNMIEA to 1 is UNPREDICTABLE. This results

in all memory accesses using the default memory map including those from Exception Handlers with
a priority less than one.

• If MPU_RNR is written with a region number greater than the number of regions defined in the
MPU, then the value used is masked by one less than the number of regions defined. For example:
— The number of regions defined is given as num_regions. The value written to MPU_RNR is given

as v.
— num_regions=8 and v=9.
— The effective region used is given as 9 & (8-1); region 1.

The number of regions available can be read from MPU_TYPE.DREGION.
• Setting MPU_RBAR.SH to 1 is UNPREDICTABLE. This encoding is treated as Non-shareable.
• The Attribute fields (MPU_ATTR) of the MPU_MAIR0 and MPU_MAIR1 registers include some

encodings which are UNPREDICTABLE.
— If MPU_ATTR[7:4]!=0 and MPU_ATTR[3:0]==0 is UNPREDICTABLE, the attributes are treated as

Normal memory, Outer non-cacheable, Inner non-cacheable.
— If MPU_ATTR[7:4]==0 and MPU_ATTR[1:0]!=0 is UNPREDICTABLE, the attributes are treated as

Device-nGnRE.
• The external AMBA 5 AHB interface signals cannot distinguish between some of the memory

attribute encodings defined by the PMSA:
— Normal transient memory is treated the same as Normal non-transient memory.
— Device memory with Gathering or Reordering attributes (G, R) are always treated as non-

Gathering and non-Reordering. Early Write Acknowledgment attributes (E, nE) are supported on
the Cortex-M55 AHB5 interfaces.

D UNPREDICTABLE Behaviors
D.9 MPU programming

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-D-430

Non-Confidential

D.10 Miscellaneous UNPREDICTABLE instruction behavior
This section documents the behavior of the Cortex-M55 processor in a number of miscellaneous
UNPREDICTABLE instruction scenarios:

• Load instructions, which specify writeback of the base register, are UNPREDICTABLE if the base register
to be written back matches the register to be loaded (Rn==Rt). In the Cortex-M55 processor, the base
register is updated to the loaded value.

• Store instructions which specify writeback of the base register are UNPREDICTABLE if the base register
to be written back matches the register to be stored (Rn==Rt). In the Cortex-M55 processor, the value
stored is the initial base register value. The base register is then written back with the expected
updated value.

• Multiply and Multiply accumulate instructions which write a 64-bit result using two registers, SMULL,
SMLAL, SMLALBB, SMLALBT, SMLALTB, SMLALTT, SMLALD, SMLALDX, SMLSLD, SMLSLDX, UMULL, and
UMAAL are UNPREDICTABLE if the two registers are the same (RdHi==RdLo). In the Cortex-M55
processor, these cases generate an UNDEFINSTR UsageFault exception.

• Floating-point instructions which transfer between two registers and either two single-precision
registers or one double-precision register, VMOV Rt, Rt2, Dm and VMOV Rt, Rt2, Sm, Sm1 are
UNPREDICTABLE if the two registers are the same (Rt==Rt2). In the Cortex-M55 processor, these cases
generate an UNDEFINSTR UsageFault exception.

D UNPREDICTABLE Behaviors
D.10 Miscellaneous UNPREDICTABLE instruction behavior

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-D-431

Non-Confidential

Appendix E
Revisions

This appendix describes the technical changes between released issues of this book.

It contains the following section:
• E.1 Revisions on page Appx-E-433.

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-E-432

Non-Confidential

E.1 Revisions
The following tables show any significant technical changes between released issues of this book.

Table E-1 Issue 0000-02

Change Location

First Beta release for r0p0 -

Table E-2 Differences between issue 0000-02 and 0000-04

Change Location

First limited access release for r0p0 -

Document structure has changed. Entire document

Extension Processing Unit chapter renamed to Floating-
point and MVE support

Chapter 13 Floating-point and MVE support on page 13-246

Memory Authentication Unit chapter renamed to
Memory Authentication

Memory Authentication Unit on page 2-30

Performance Monitoring Unit chapter renamed to
Performance Monitoring Unit Extension

Chapter 15 Performance Monitoring Unit Extension on page 15-265

MAU block diagram added 2.1.3 Memory components on page 2-30

Security section added 2.3 Security on page 2-36

Functional safety and reliability section added 2.4 Reliability on page 2-37

Power intent section added 2.5 Power intent on page 2-38

System Control chapter renamed to System registers Chapter 4 System registers on page 4-50

Implementation control register summary added 4.7 Implementation control register summary on page 4-67

• ACTLR bit 0 has changed.
• ACTLR bit 2 has changed.
• ACTLR bit 11 has changed.
• ACTLR bit 18 has changed.

4.8 ACTLR, Auxiliary Control Register on page 4-68

More information added in CPDLPSTATE register bits
4.16.1 CPDLPSTATE, Core Power Domain Low Power State Register
on page 4-92

Placement of RAS register descriptions changed in
document

10.5 RAS Extension registers on page 10-222

Placement of EWIC interrupt status access registers
changed in document

4.21 EWIC interrupt status access registers on page 4-108

Initialization chapter added Chapter 5 Initialization on page 5-111

Power mode definition table updated 6.4 Core P-Channel and power mode selection on page 6-130

• Distinction drawn between power mode and
operating mode in power management chapter

• Chapter sections restructured and more information
added

Chapter 6 Power management on page 6-122

PPB memory region accesses table updated 7.3 Private Peripheral Bus on page 7-148

E Revisions
E.1 Revisions

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-E-433

Non-Confidential

Table E-2 Differences between issue 0000-02 and 0000-04 (continued)

Change Location

Unaligned accesses information updated to distinguish
clearly between non-MVE and MVE loads and stores

7.4 Unaligned accesses on page 7-150

SFSR and SFAR registers added to SAU register
summary table

8.2.1 SAU register summary on page 8-157

Memory regions not controlled by SAU and IDAU
section updated

8.5 Memory regions not controlled by SAU and IDAU on page 8-162

Security attribution signals section updated 8.6 Security attribution signals on page 8-163

Memory system behavior section updated 9.3 Memory system behavior on page 9-175

Restrictions on AXI transfers section updated Restrictions on AXI transfers on page 9-184

Note describing types of burst transactions added
• Area optimized configuration M-AXI attributes and transactions

on page 9-181
• 9.6.2 S-AHB transfers on page 9-189

S-AHB availability and low power states section added 9.6.4 S-AHB availability and low power states on page 9-190

TCM interface protocol and Using TCM wait states
section removed from TRM and retained only in the
IIM. The IIM is a confidential document available only
to licensees

Arm® Cortex®-M55 Processor Integration and Implementation Manual

Accessing the caches section added 9.9.6 Accessing the caches on page 9-200

System cache support section updated 9.9.7 System cache support on page 9-201

DCAICRR data format for instruction cache tag RAM
reads table updated

4.11 Direct cache access registers on page 4-75

Error processing in the L1 data and instruction cache
section updated

Error processing in the L1 data and instruction cache on page 10-214

PMU events table updated 15.2 PMU events on page 15-267

M-AXI read access poisoning section removed from
TRM and retained only in the IIM. The IIM is a
confidential document available only to licensees

Arm® Cortex®-M55 Processor Integration and Implementation Manual

Cortex-M55 processor ROM table components table
updated

14.1.3 Processor ROM table identification and entries on page 14-255

DWT debug access control section updated 17.2 DWT debug access control on page 17-286

E Revisions
E.1 Revisions

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-E-434

Non-Confidential

Table E-2 Differences between issue 0000-02 and 0000-04 (continued)

Change Location

TPIU register descriptions added • B.2.14 CLAIMSET, Claim Tag Set Register on page Appx-B-363
• B.2.15 CLAIMCLR, Claim Tag Clear Register on page Appx-B-364
• B.2.16 TPIU_DEVID, Device Configuration Register

on page Appx-B-365
• B.2.17 TPIU_DEVTYPE, Device Type Identifier Register

on page Appx-B-366
• B.2.18 TPIU_PIDR4, Peripheral Identification Register 4

on page Appx-B-366
• B.2.19 TPIU_PIDR5, Peripheral Identification Register 5

on page Appx-B-367
• B.2.20 TPIU_PIDR6, Peripheral Identification Register 6

on page Appx-B-368
• B.2.21 TPIU_PIDR7, Peripheral Identification Register 7

on page Appx-B-368
• B.2.22 TPIU_PIDR0, Peripheral Identification Register 0

on page Appx-B-369
• B.2.23 TPIU_PIDR1, Peripheral Identification Register 1

on page Appx-B-370
• B.2.24 TPIU_PIDR2, Peripheral Identification Register 2

on page Appx-B-370
• B.2.25 TPIU_PIDR3, Peripheral Identification Register 3

on page Appx-B-371
• B.2.26 TPIU_ CIDR0, Component Identification Register 0

on page Appx-B-372
• B.2.27 TPIU_ CIDR1, Component Identification Register 1

on page Appx-B-372
• B.2.28 TPIU_ CIDR2, Component Identification Register 2

on page Appx-B-373
• B.2.29 TPIU_ CIDR3, Component Identification Register 3

on page Appx-B-373

UNPREDICTABLE instructions within an IT block section
updated

D.7 UNPREDICTABLE instructions within an IT block
on page Appx-D-428

Memory access and address space section updated D.8 Memory access and address space on page Appx-D-429

Power management chapter structure changed. Some
changes include:
• Permitted power mode and transitions displayed

before their descriptions.
• Core P-Channel and power mode selection section

moved.
• PDCORE, PDEPU, and PDRAMS low-power and

powerdown requirements information

Chapter 6 Power management on page 6-122

External coprocessors chapter structure changed Chapter 12 External coprocessors on page 12-237

Table E-3 Differences between issue 0000-04 and 0001-05

Change Location

First early access release for r0p1 -

Block diagram updated to include power domains 2.1 Cortex®-M55 processor components on page 2-27

E Revisions
E.1 Revisions

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-E-435

Non-Confidential

Table E-3 Differences between issue 0000-04 and 0001-05 (continued)

Change Location

Exclusive monitor section content updated to include
information about exclusive read accesses

3.3 Exclusive monitor on page 3-45

CPUID register reset value updated
• 4.1 System control register summary on page 4-51
• 4.2 Identification register summary on page 4-55
• 4.4 CPUID, CPUID Base Register on page 4-61

DCADCRR.STATUS bit encoding information added
4.11.2 DCAICRR and DCADCRR, Direct Cache Access Read Registers
on page 4-77

MSCR bit 17 defined 4.13 MSCR, Memory System Control Register on page 4-87

Initializing the EPU section updated 5.3 Initializing the EPU on page 5-114

Programming the SAU section updated 5.4 Programming the SAU on page 5-115

Initializing the instruction and data cache section updated 5.5 Initializing the instruction and data cache on page 5-116

Enabling and preloading the TCM section updated 5.7 Enabling and preloading the TCM on page 5-119

Enabling the P-AHB interface section updated 5.9 Enabling the P-AHB interface on page 5-121

Operating mode transitions which change PDRAMS power
state section updated

6.3.1 Operating mode transitions which change PDRAMS power state
on page 6-128

PDCORE low-power requirements section updated 6.6 PDCORE low-power requirements on page 6-135

PDEPU low-power requirements section updated 6.7 PDEPU low-power requirements on page 6-136

Unaligned accesses section updated 7.4 Unaligned accesses on page 7-150

Security check and fault response section updated to
include information about debug accesses

8.8.4 Security check and fault response on page 8-169

Preventing Speculative accesses information updated in
Considerations for system design section

Considerations for system design on page 9-177

Table E-4 Differences between issue 0001-05 and 0002-01

Change Location

First release for r0p2 -

Stylistic changes made to block diagram. Technical details
remain the same

2.1 Cortex®-M55 processor components on page 2-27

More information added about Security to provide more
context

2.3 Security on page 2-36

AFSR register type corrected from RW to RO 4.1 System control register summary on page 4-51

CPUID reset value updated fro r0p2 version
• 4.1 System control register summary on page 4-51
• 4.2 Identification register summary on page 4-55
• 4.4 CPUID, CPUID Base Register on page 4-61

Note added to reset value column for CPDLPSTATE register 4.16 Power mode control registers on page 4-92

CFGINFOSEL value 0x41 added as a reserved field 4.17.1 CFGINFOSEL, Processor configuration information selection
register on page 4-95

NUMBLKS field description corrected
4.20.2 ITGU_CFG and DTGU_CFG, ITGU and DTGU Configuration
Registers on page 4-104

E Revisions
E.1 Revisions

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-E-436

Non-Confidential

Table E-4 Differences between issue 0001-05 and 0002-01 (continued)

Change Location

Initializing the instruction and data cache introductory text
modified to be more precise

5.5 Initializing the instruction and data cache on page 5-116

Minor technical modifications made to Warm reset power
mode section

6.9 Warm reset power mode on page 6-138

Minor modifications in order of listing made to the PPB
memory region access table

7.3 Private Peripheral Bus on page 7-148

Note added to IDAU section 8.4 Implementation Defined Attribution Unit on page 8-161

Peripheral Interface Unit section added to Memory system
features section

9.1 Memory system features on page 9-171

Note added to ECC memory protection behavior section 10.2 ECC memory protection behavior on page 10-212

Reserved fields modified in Cortex-M55 processor ROM
table components

14.1.3 Processor ROM table identification and entries on page 14-255

Subsections about conditions when Unprivileged Debug
enabled/not enabled added

14.2.2 Debugger access memory attributes and data cache access
on page 14-260

Additional information added to description of
CFGITCMSZ[3:0] and CFGDTCMSZ[3:0]

C.3 Static configuration signals on page Appx-C-379

Added Cache initialization signal topic C.5 Cache initialization signal on page Appx-C-382

Table E-5 Differences between issue 0002-01 and issue 0002-02

Change Location

Second release for r0p2. -

Access type corrected for AFSR register and usage
constraints for clearing bit fields corrected.

• 4.1 System control register summary on page 4-51
• 4.3 AFSR, Auxiliary Fault Status Register on page 4-59

Note added on conditions when ECC is enabled.
• 5.7 Enabling and preloading the TCM on page 5-119
• Error processing in the TCMs on page 10-216

RAZ condition for ERRDEVID added to note in Reset
value column.

4.2 Identification register summary on page 4-55

TEBR0 and TEBR1 POISON bit field description updated. 4.12.3 TEBR0 and TEBR1, TCM Error Bank Register 0-1 on page 4-84

CoreLink PCK-600 information updated.
6.3.1 Operating mode transitions which change PDRAMS power state
on page 6-128

COREPREQ tie-off value corrected.
6.4.1 P-Channel interface tie-off when P-Channel is not used
on page 6-131

Example added for CFGMEMALIAS[4:0] usage. 8.8.1 Memory aliasing and IDAU/SAU configuration on page 8-165

Read issuing capability value updated, including details on
number of data linefills.

High performance configuration M-AXI attributes and transactions
on page 9-179

FPDSCR reset value updated 13.3 FPDSCR and FPSCR register reset values on page 13-250

Information about D-AHB accesses to the EPPB memory
region modified

14.2.1 Debug memory access on page 14-259

Corrected component implementation associated to address
0xE00FF010 in table.

14.1.3 Processor ROM table identification and entries on page 14-255

E Revisions
E.1 Revisions

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-E-437

Non-Confidential

Table E-5 Differences between issue 0002-01 and issue 0002-02 (continued)

Change Location

TPIU_SSPSR register description updated. B.2.1 TPIU_SSPSR, Supported Port Size Register on page Appx-B-354

TPIU_CSPSR register description updated. B.2.2 TPIU_CSPSR, Current Port Size Register on page Appx-B-355

AFREADYI and ATREADYI descriptions updated. C.19 ITM interface signals on page Appx-C-404

AFREADYE and ATREADYE descriptions updated. C.20 ETM interface signals on page Appx-C-405

E Revisions
E.1 Revisions

101051_0002_02_en Copyright © 2019, 2020 Arm Limited or its affiliates. All rights
reserved.

Appx-E-438

Non-Confidential

	Arm® Cortex®-M55 Processor Technical Reference Manual
	Table of Contents
	Preface
	About this book
	Product revision status
	Intended audience
	Using this book
	Glossary
	Typographic conventions
	Timing diagrams
	Signals

	Additional reading

	Feedback
	Feedback on this product
	Feedback on content

	1 : Introduction
	1.1 : Cortex®-M55 processor overview
	1.2 : Cortex®-M55 features
	1.3 : Supported standards and specifications
	1.4 : Design tasks
	1.5 : Documentation
	1.6 : Product revisions

	2 : Technical overview
	2.1 : Cortex®-M55 processor components
	2.1.1 : Cortex®-M55 processor core
	2.1.2 : Extension Processing Unit
	2.1.3 : Memory components
	Memory Authentication Unit
	Memory system

	2.1.4 : Interrupt components
	NVIC features
	Wakeup Interrupt Controller

	2.1.5 : Debug and trace components

	2.2 : Interfaces
	2.3 : Security
	2.4 : Reliability
	2.5 : Power intent
	2.6 : Cortex®-M55 implementation options

	3 : Programmers model
	3.1 : Security states, operation, and execution modes
	3.2 : Instruction set summary
	3.3 : Exclusive monitor
	3.4 : Cortex®-M55 processor core registers summary
	3.5 : Architectural registers
	3.6 : Exceptions
	3.6.1 : Exception handling and prioritization

	4 : System registers
	4.1 : System control register summary
	4.2 : Identification register summary
	4.2.1 : Media and VFP Feature Register reset values, MVFR0, MVFR1, and MVFR2 reset values

	4.3 : AFSR, Auxiliary Fault Status Register
	4.4 : CPUID, CPUID Base Register
	4.5 : Cache identification register summary
	4.5.1 : CLIDR, Cache Level ID Register
	4.5.2 : CSSELR, Cache Size Selection Register
	4.5.3 : CCSIDR, Cache Size ID Register

	4.6 : REVIDR, Revision ID Register
	4.7 : Implementation control register summary
	4.8 : ACTLR, Auxiliary Control Register
	4.9 : ICTR, Interrupt Controller Type Register
	4.10 : IMPLEMENTATION DEFINED registers summary
	4.11 : Direct cache access registers
	4.11.1 : DCAICLR and DCADCLR, Direct Cache Access Location Registers
	4.11.2 : DCAICRR and DCADCRR, Direct Cache Access Read Registers

	4.12 : Error bank registers
	4.12.1 : IEBR0 and IEBR1, Instruction Cache Error Bank Register 0-1
	4.12.2 : DEBR0 and DEBR1, Data Cache Error Bank Register 0-1
	4.12.3 : TEBR0 and TEBR1, TCM Error Bank Register 0-1
	Data for TCU Error Bank Register 0-1, TEBRDATA0 and TEBRDATA1

	4.13 : MSCR, Memory System Control Register
	4.14 : PAHBCR, P-AHB Control Register
	4.15 : PFCR, Prefetcher Control Register
	4.16 : Power mode control registers
	4.16.1 : CPDLPSTATE, Core Power Domain Low Power State Register
	4.16.2 : DPDLPSTATE, Debug Power Domain Low Power State Register

	4.17 : Processor configuration information registers
	4.17.1 : CFGINFOSEL, Processor configuration information selection register
	4.17.2 : CFGINFORD, Processor configuration information read data register

	4.18 : ID_PFR0, Processor Feature Register 0
	4.19 : ITCMCR and DTCMCR, TCM Control Registers
	4.20 : TCM security gate registers
	4.20.1 : ITGU_CTRL and DTGU_CTRL, ITGU and DTGU Control Registers
	4.20.2 : ITGU_CFG and DTGU_CFG, ITGU and DTGU Configuration Registers
	4.20.3 : ITGU_LUTn and DTGU_LUTn, ITGU and DTGU Look Up Table Registers
	ITGU_LUTn and DTGU_LUTn example

	4.21 : EWIC interrupt status access registers
	4.21.1 : EVENTSPR, Event Set Pending Register
	4.21.2 : EVENTMASKA and EVENTMASKn, n=0-14, Wakeup Event Mask Registers

	5 : Initialization
	5.1 : Initialization overview
	5.2 : Initializing and reprogramming the MPU
	5.3 : Initializing the EPU
	5.4 : Programming the SAU
	5.5 : Initializing the instruction and data cache
	5.5.1 : Enabling the instruction and data cache
	5.5.2 : Powering down the caches
	5.5.3 : Powering up the caches

	5.6 : Enabling the branch cache
	5.7 : Enabling and preloading the TCM
	5.8 : Enabling and locking the TCM security gates
	5.9 : Enabling the P-AHB interface

	6 : Power management
	6.1 : Power domains
	6.2 : Power states
	6.3 : Power and operating mode transitions
	6.3.1 : Operating mode transitions which change PDRAMS power state

	6.4 : Core P-Channel and power mode selection
	6.4.1 : P-Channel interface tie-off when P-Channel is not used

	6.5 : COREPACTIVE and required power mode
	6.5.1 : COREPACTIVE signal encoding

	6.6 : PDCORE low-power requirements
	6.7 : PDEPU low-power requirements
	6.8 : PDRAMS powerdown requirements
	6.9 : Warm reset power mode
	6.10 : Debug Q-Channel and PDDEBUG power domain
	6.11 : Q-Channel clock control
	6.12 : PWRDBGWAKEQACTIVE

	7 : Memory model
	7.1 : Memory map
	7.2 : Memory types
	7.3 : Private Peripheral Bus
	7.4 : Unaligned accesses
	7.5 : Access privilege level for Device and Normal memory
	7.6 : Memory ordering and barriers
	7.7 : Execute Only Memory

	8 : Memory Authentication
	8.1 : MAU features
	8.2 : Security Attribution Unit
	8.2.1 : SAU register summary
	8.2.2 : Security levels

	8.3 : Memory Protection Unit
	8.3.1 : Memory Protection Unit register summary

	8.4 : Implementation Defined Attribution Unit
	8.4.1 : IDAU interface and backwards compatibility

	8.5 : Memory regions not controlled by SAU and IDAU
	8.6 : Security attribution signals
	8.7 : TCM Gate Units
	8.8 : TCM and P-AHB security access control
	8.8.1 : Memory aliasing and IDAU/SAU configuration
	8.8.2 : Security access gating using the TGU
	8.8.3 : TGU configuration
	8.8.4 : Security check and fault response

	9 : Memory system
	9.1 : Memory system features
	9.2 : Memory system faults
	9.2.1 : Classes of fault
	MemManage faults
	Bus faults
	SecureFaults
	Usage faults

	9.3 : Memory system behavior
	9.3.1 : Speculative accesses
	Considerations for system design

	9.3.2 : Access privilege level for Device and Normal memory

	9.4 : Master-AXI interface
	9.4.1 : High performance M-AXI configuration
	High performance configuration M-AXI attributes and transactions
	Data prefetching

	9.4.2 : Area optimized M-AXI configuration
	Area optimized configuration M-AXI attributes and transactions

	9.4.3 : Bridging to AHB
	9.4.4 : Write response
	9.4.5 : Memory system implications for AXI accesses
	9.4.6 : Master-AXI interface transfers
	Restrictions on AXI transfers

	9.5 : Peripheral AHB interface
	9.5.1 : P-AHB interface transfers
	9.5.2 : P-AHB interface configuration
	9.5.3 : P-AHB considerations

	9.6 : S-AHB interface
	9.6.1 : S-AHB memory map
	9.6.2 : S-AHB transfers
	9.6.3 : S-AHB interface arbitration
	9.6.4 : S-AHB availability and low power states

	9.7 : EPPB interface
	9.8 : TCM interfaces
	9.8.1 : TCM configuration
	9.8.2 : TCM transactions
	9.8.3 : Booting from TCM
	9.8.4 : Integration with flash memory
	9.8.5 : System access to TCM through the S-AHB DMA interface

	9.9 : Instruction and data cache
	9.9.1 : L1 data cache
	No Write-Allocate mode

	9.9.2 : L1 instruction cache
	9.9.3 : Cache maintenance operations
	9.9.4 : Automatic cache invalidation at reset
	9.9.5 : Cache coherency
	9.9.6 : Accessing the caches
	9.9.7 : System cache support
	9.9.8 : Direct cache access

	9.10 : Store buffer
	9.10.1 : Store buffer merging
	9.10.2 : Store buffer behavior
	9.10.3 : Store buffer ordering
	9.10.4 : Store buffer draining

	9.11 : Internal local exclusive access monitor
	9.12 : M-AXI and P-AHB interaction with the global exclusive monitor
	9.13 : MBIST

	10 : Reliability, Availability, and Serviceability Extension support
	10.1 : Cortex®-M55 processor implementation of RAS
	10.1.1 : Cortex®-M55 RAS events

	10.2 : ECC memory protection behavior
	10.2.1 : ECC schemes and error type terminology
	10.2.2 : Enabling ECC
	10.2.3 : Error detection and processing
	Error processing in the L1 data and instruction cache
	Error processing in the TCMs

	10.2.4 : Error reporting
	10.2.5 : Address decoder protection and white noise protection

	10.3 : Interface protection behavior
	10.4 : RAS memory barriers
	10.5 : RAS Extension registers
	10.5.1 : ERRFR0, RAS Error Record Feature Register
	10.5.2 : ERRSTATUS0, RAS Error Record Primary Status Register
	10.5.3 : ERRADDR0 and ERRADDR20, RAS Error Record Address Registers
	10.5.4 : ERRMISC10, Error Record Miscellaneous Register 10
	10.5.5 : ERRGSR0, RAS Fault Group Status Register
	10.5.6 : ERRDEVID, RAS Error Record Device ID Register
	10.5.7 : RFSR, RAS Fault Status Register

	11 : Nested Vectored Interrupt Controller
	11.1 : NVIC features
	11.2 : Registers associated with interrupt control and behavior
	11.3 : NVIC register summary
	11.4 : Software Interrupt Generation register summary
	11.5 : SysTick Timer register summary

	12 : External coprocessors
	12.1 : External coprocessors features
	12.2 : Operation
	12.3 : Data transfer rates
	12.4 : Coprocessor instruction restrictions
	12.5 : Debug access to coprocessor registers usage constraints
	12.6 : Exceptions and context switch
	12.7 : Response to coprocessor errors
	12.8 : Hazard between load and store instructions followed by coprocessor transactions

	13 : Floating-point and MVE support
	13.1 : Floating-point and MVE operation
	13.1.1 : EPU views of the register bank
	13.1.2 : Modes of operation
	13.1.3 : Compliance with the IEEE 754 standard
	13.1.4 : Exceptions

	13.2 : Floating-point and MVE register summary
	13.3 : FPDSCR and FPSCR register reset values
	13.4 : Powering down the EPU

	14 : Debug
	14.1 : Debug functionality
	14.1.1 : CoreSight™ discovery
	14.1.2 : Debugger actions for identifying the processor
	14.1.3 : Processor ROM table identification and entries
	14.1.4 : Debug identification block register summary
	14.1.5 : Debug register summary

	14.2 : D-AHB interface
	14.2.1 : Debug memory access
	14.2.2 : Debugger access memory attributes and data cache access
	14.2.3 : Debug access security and attributes
	14.2.4 : Debug during reset and before code execution commences
	14.2.5 : Advanced DSP debug capabilities

	15 : Performance Monitoring Unit Extension
	15.1 : PMU features
	15.2 : PMU events
	15.3 : PMU register summary

	16 : Instrumentation Trace Macrocell
	16.1 : ITM features
	16.2 : ITM register summary
	16.3 : ITM_TPR, ITM Trace Privilege Register
	16.4 : ITM_ITCTRL, ITM Integration Mode Control Register
	16.5 : ITM_ITWRITE, Integration Write Register
	16.6 : ITM_ITREAD, Integration Read Register

	17 : Data Watchpoint and Trace
	17.1 : DWT features
	17.2 : DWT debug access control
	17.3 : DWT comparators
	17.4 : Cycle counter and profiling counters
	17.5 : DWT register summary

	18 : Cross Trigger Interface
	18.1 : CTI features
	18.2 : CTI register summary
	18.3 : CTI_CONTROL, CTI Control Register
	18.4 : CTI_INACK, CTI Interrupt Acknowledge Register
	18.5 : CTI_APPSET, CTI Application Channel Set Register
	18.6 : CTI_APPCLR, CTI Application Channel Clear Register
	18.7 : CTI_APPPULSE, CTI Application Channel Pulse Register
	18.8 : CTI_INEN<n>, n=0-5, CTI Trigger <n> to Channel Enable Register
	18.9 : CTI_OUTEN<n>, n=0-7, CTI Channel <n> to Trigger Enable Register
	18.10 : CTI_TRIGINSTATUS, CTI Trigger Input Status Register
	18.11 : CTI_TRIGOUTSTATUS, CTI Trigger Output Status Register
	18.12 : CTI_CHINSTATUS, CTI Channel Input Status Register
	18.13 : CTI_CHOUTSTATUS, CTI Channel Output Status Register
	18.14 : CTI_CHANNELGATE, CTI Channel Gate Register
	18.15 : CTI_ITCHOUT, Integration Test Channel Output Register
	18.16 : CTI_ITTRIGOUT, Integration Test Trigger Output Register
	18.17 : CTI_ITCHIN, Integration Test Channel Input Register
	18.18 : CTI_ITTRIGIN, Integration Test Trigger Input Register
	18.19 : CTI_ITCONTROL, Integration Mode Control Register
	18.20 : CTI_DEVARCH, Device Architecture Register
	18.21 : CTI_DEVID, Device Configuration Register
	18.22 : CTI_DEVTYPE, Device Type Identifier Register
	18.23 : CTI_PIDR4, Peripheral Identification Register 4
	18.24 : CTI_PIDR5, Peripheral Identification Register 5
	18.25 : CTI_PIDR6, Peripheral Identification Register 6
	18.26 : CTI_PIDR7, Peripheral Identification Register 7
	18.27 : CTI_PIDR0, Peripheral Identification Register 0
	18.28 : CTI_PIDR1, Peripheral Identification Register 1
	18.29 : CTI_PIDR2, Peripheral Identification Register 2
	18.30 : CTI_PIDR3, Peripheral Identification Register 3
	18.31 : CTI_ CIDR0, Component Identification Register 0
	18.32 : CTI_ CIDR1, Component Identification Register 1
	18.33 : CTI_ CIDR2, Component Identification Register 2
	18.34 : CTI_ CIDR3, Component Identification Register 3

	19 : Breakpoint Unit
	19.1 : BPU features
	19.2 : BPU register summary

	A : External Wakeup Interrupt Controller
	A.1 : EWIC features
	A.2 : EWIC register summary
	A.2.1 : EWIC_CR, EWIC Control Register
	A.2.2 : EWIC_ASCR, EWIC Automatic Sequence Control Register
	A.2.3 : EWIC_CLRMASK, EWIC Clear Mask Register
	A.2.4 : EWIC_NUMID, EWIC Event Number ID Register
	A.2.5 : EWIC_MASKA and EWIC_MASKn, EWIC Mask Registers
	A.2.6 : EWIC_PENDA and EWIC_PENDn, EWIC Pend Event Registers
	A.2.7 : EWIC_PSR, EWIC Pend Summary Register
	A.2.8 : EWIC CoreSight™ register summary
	A.2.9 : EWIC_CLAIMSET, EWIC Claim Tag Set Register
	A.2.10 : EWIC_CLAIMCLR, EWIC Claim Tag Clear Register

	B : Trace Port Interface Unit
	B.1 : TPIU features
	B.1.1 : TPIU Formatter
	B.1.2 : Serial Wire Output format

	B.2 : TPIU register summary
	B.2.1 : TPIU_SSPSR, Supported Port Size Register
	B.2.2 : TPIU_CSPSR, Current Port Size Register
	B.2.3 : TPIU_SPPR, Selected Pin Protocol Register
	B.2.4 : TPIU_PSCR, Periodic Synchronization Counter Register
	B.2.5 : TPIU_ACPR, Asynchronous Clock Prescaler Register
	B.2.6 : TPIU_FFSR, Formatter and Flush Status Register
	B.2.7 : TPIU_FFCR, Formatter and Flush Control Register
	B.2.8 : TPIU_TRIGGER, TPIU TRIGGER Register
	B.2.9 : ITFTTD0, Integration Test FIFO Test Data 0 Register
	B.2.10 : ITATBCTR2, Integration Test ATB Control Register 2
	B.2.11 : ITFTTD1, Integration Test FIFO Test Data 1 Register
	B.2.12 : ITATBCTR0, Integration Test ATB Control 0 Register
	B.2.13 : TPIU_ITCTRL, Integration Mode Control
	B.2.14 : CLAIMSET, Claim Tag Set Register
	B.2.15 : CLAIMCLR, Claim Tag Clear Register
	B.2.16 : TPIU_DEVID, Device Configuration Register
	B.2.17 : TPIU_DEVTYPE, Device Type Identifier Register
	B.2.18 : TPIU_PIDR4, Peripheral Identification Register 4
	B.2.19 : TPIU_PIDR5, Peripheral Identification Register 5
	B.2.20 : TPIU_PIDR6, Peripheral Identification Register 6
	B.2.21 : TPIU_PIDR7, Peripheral Identification Register 7
	B.2.22 : TPIU_PIDR0, Peripheral Identification Register 0
	B.2.23 : TPIU_PIDR1, Peripheral Identification Register 1
	B.2.24 : TPIU_PIDR2, Peripheral Identification Register 2
	B.2.25 : TPIU_PIDR3, Peripheral Identification Register 3
	B.2.26 : TPIU_ CIDR0, Component Identification Register 0
	B.2.27 : TPIU_ CIDR1, Component Identification Register 1
	B.2.28 : TPIU_ CIDR2, Component Identification Register 2
	B.2.29 : TPIU_ CIDR3, Component Identification Register 3

	C : Signal descriptions
	C.1 : Clock and clock enable signals
	C.2 : Reset signals
	C.3 : Static configuration signals
	C.4 : Reset configuration signals
	C.5 : Cache initialization signal
	C.6 : Instruction execution control signals
	C.7 : Instruction Tightly Coupled Memory interface signals
	C.8 : Data Tightly Coupled Memory interface signals
	C.9 : M-AXI interface signals
	C.9.1 : M-AXI interface protection signals

	C.10 : S-AHB interface signals
	C.10.1 : S-AHB interface protection signals

	C.11 : P-AHB interface signals
	C.11.1 : P-AHB interface protection signals

	C.12 : D-AHB interface signals
	C.12.1 : D-AHB interface protection signals

	C.13 : EPPB interface signals
	C.13.1 : EPPB interface protection signals

	C.14 : External coprocessor interface signals
	C.15 : Debug interface signals
	C.16 : P-Channel and Q-Channel power control signals
	C.17 : Q-Channel clock control signals
	C.18 : Power compatibility control signals
	C.19 : ITM interface signals
	C.20 : ETM interface signals
	C.21 : Trace synchronization and trigger signals
	C.22 : CTI interface signals
	C.23 : Interrupt signals
	C.24 : WIC interface signals
	C.25 : Event signals
	C.26 : IDAU interface signals
	C.27 : Miscellaneous signals
	C.28 : Error interface signals
	C.29 : Floating-point exception signals
	C.30 : Test interface signals
	C.31 : Reserved signals

	D : UNPREDICTABLE Behaviors
	D.1 : Use of instructions defined in architecture variants
	D.2 : Use of Program Counter - R15 encoding
	D.3 : Use of Stack Pointer - as a general-purpose register R13
	D.4 : Register list in load and store multiple instructions
	D.5 : Exception-continuable instructions
	D.6 : Stack limit checking
	D.7 : UNPREDICTABLE instructions within an IT block
	D.8 : Memory access and address space
	D.9 : MPU programming
	D.10 : Miscellaneous UNPREDICTABLE instruction behavior

	E : Revisions
	E.1 : Revisions

