
Arm® Architecture Reference Manual
Supplement

Reliability, Availability, and Serviceability (RAS), for Armv8-A

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
ARM DDI 0587 D.b-00bet1

Arm RAS Supplement

Release information

Date Version Changes

2021/Jan/25 D.b • Updated v8.6 Beta release.

2020/Jul/22 D.a • Initial v8.6 Beta release, with rewrite of the RAS supplement.

2019/Jul/01 C.b • Updated v8.4 release.

2018/Oct/01 C.a • Initial v8.4 EAC release.

2017/Dec/01 B.a • Updated EAC release.

2017/Sep/01 B • EAC release.

2017/Mar/01 A • First issue.

ii

Non-Confidential Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information
contained in this document may be protected by one or more patents or pending patent applications. No part of this document
may be reproduced in any form by any means without the express prior written permission of Arm. No license, express
or implied, by estoppel or otherwise to any intellectual property rights is granted by this document unless specifically
stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to
use the information for the purposes of determining whether implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR
PURPOSE WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm makes no representation with
respect to, and has undertaken no analysis to identify or understand the scope and content of, patents, copyrights, trade secrets,
or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY,
ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or
disclosure of this document complies fully with any relevant export laws and regulations to assure that this document or any
portion thereof is not exported, directly or indirectly, in violation of such export laws. Use of the word “partner” in reference
to Arm’s customers is not intended to create or refer to any partnership relationship with any other company. Arm may make
changes to this document at any time and without notice.

This document may be translated into other languages for convenience, and you agree that if there is any conflict between the
English version of this document and any translation, the terms of the English version of the Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited (or its
affiliates) in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this document may be the
trademarks of their respective owners. Please follow Arm’s trademark usage guidelines at http://www.arm.com/company/
policies/trademarks.

Copyright © 2017-2021 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

LES-PRE-20349 version 21.0

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

iii

http://www.arm.com/company/policies/trademarks
http://www.arm.com/company/policies/trademarks

Contents

Arm RAS Supplement

Arm RAS Supplement . ii
Release information . ii
Non-Confidential Proprietary Notice . iii

Preface
Document status . vii

About this book . viii
Using this book . ix
Conventions . x

Typographical conventions . x
Numbers . x
Pseudocode descriptions . x
Assembler syntax descriptions . x

Rules-based writing . xi
Content item classes . xi
Identifiers . xii
Examples . xii

Additional reading . xiii
Feedback . xiv

Feedback on this book . xiv
Progressive terminology statement . xiv

Chapter 1 Introduction to RAS
1.1 Faults, errors, and failures . 16
1.2 General taxonomy of errors . 17

1.2.1 Error detection . 17
1.2.2 Error propagation . 17
1.2.3 Infected and poisoned . 18
1.2.4 Containable and uncontainable . 18

1.3 Techniques for improving reliability, availability, and serviceability 19
1.3.1 Fault prevention and fault removal . 19
1.3.2 Error handling and recovery . 19
1.3.3 Fault handling . 20

Chapter 2 Armv8-A RAS Extension
2.1 PE error handling . 22

2.1.1 PE error detection . 22
2.1.2 PE error propagation . 23
2.1.3 Other errors . 25

2.2 Generating error exceptions . 26
2.3 Taking error exceptions . 27

2.3.1 PE error state recording in the exception syndrome 29
2.3.2 PE error state classification . 30
2.3.3 Multiple SError interrupts . 34
2.3.4 Target Exception level for External abort and SError interrupt

exceptions taken to AArch64 state . 34
2.3.5 Target mode for External abort and SError interrupt exceptions taken

to AArch32 state . 35
2.4 Error synchronization event . 36

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

iv

Contents

2.4.1 ESB and Virtual SError interrupt exceptions 39
2.4.2 Extension for synchronization at exception entry and return 40
2.4.3 Error synchronization barriers in a minimal implementation 42

2.5 Virtual SError interrupts . 43
2.6 Error records in the PE . 44

2.6.1 Error record System register view . 44

Chapter 3 RAS System Architecture
3.1 Nodes . 47

3.1.1 Multiple error records per node . 48
3.1.2 Detecting and consuming errors . 49

3.2 Standard error record . 53
3.2.1 Component error states . 53
3.2.2 Writing the error record . 57
3.2.3 Error syndrome . 61
3.2.4 Security and Virtualization . 62
3.2.5 Synchronization and error record accesses 62
3.2.6 Bridges to other architectures . 63
3.2.7 Software faults . 64
3.2.8 Other sources of error and warnings 65

3.3 Error recovery interrupt . 66
3.4 Fault handling interrupt . 67
3.5 In-band error response signaling (external aborts) 68
3.6 Critical error interrupt . 69
3.7 Standard format Corrected error counter . 70
3.8 Error recovery, fault handling, and critical error signaling 72
3.9 Error recovery reset . 74
3.10 Timestamp extension . 75
3.11 Common Fault Injection Model Extension . 76

3.11.1 Operation of the Common Fault Injection Model Extension 76

Chapter 4 RAS Extension and RAS System Architecture Registers
4.1 Memory-mapped view . 80

4.1.1 Access requirements for memory-mapped views of RAS error records 80
4.2 Reset values . 82
4.3 Error record registers, including memory mapped view 83

4.3.1 Register index . 83
4.3.2 ERR<n>ADDR, Error Record Address Register 86
4.3.3 ERR<n>CTLR, Error Record Control Register 89
4.3.4 ERR<n>FR, Error Record Feature Register 97
4.3.5 ERR<n>MISC0, Error Record Miscellaneous Register 0 105
4.3.6 ERR<n>MISC1, Error Record Miscellaneous Register 1 111
4.3.7 ERR<n>MISC2, Error Record Miscellaneous Register 2 113
4.3.8 ERR<n>MISC3, Error Record Miscellaneous Register 3 115
4.3.9 ERR<n>PFGCDN, Pseudo-fault Generation Countdown Register . . 117
4.3.10 ERR<n>PFGCTL, Pseudo-fault Generation Control Register 119
4.3.11 ERR<n>PFGF, Pseudo-fault Generation Feature Register 125
4.3.12 ERR<n>STATUS, Error Record Primary Status Register 131
4.3.13 ERRCIDR0, Component Identification Register 0 149
4.3.14 ERRCIDR1, Component Identification Register 1 150
4.3.15 ERRCIDR2, Component Identification Register 2 151
4.3.16 ERRCIDR3, Component Identification Register 3 152
4.3.17 ERRCRICR0, Critical Error Interrupt Configuration Register 0 153
4.3.18 ERRCRICR1, Critical Error Interrupt Configuration Register 1 155
4.3.19 ERRCRICR2, Critical Error Interrupt Configuration Register 2 157

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

v

Contents
Contents

4.3.20 ERRDEVAFF, Device Affinity Register 160
4.3.21 ERRDEVARCH, Device Architecture Register 164
4.3.22 ERRDEVID, Device Configuration Register 166
4.3.23 ERRERICR0, Error Recovery Interrupt Configuration Register 0 . . . 167
4.3.24 ERRERICR1, Error Recovery Interrupt Configuration Register 1 . . . 169
4.3.25 ERRERICR2, Error Recovery Interrupt Configuration Register 2 . . . 171
4.3.26 ERRFHICR0, Fault Handling Interrupt Configuration Register 0 174
4.3.27 ERRFHICR1, Fault Handling Interrupt Configuration Register 1 176
4.3.28 ERRFHICR2, Fault Handling Interrupt Configuration Register 2 178
4.3.29 ERRGSR, Error Group Status Register 181
4.3.30 ERRIIDR, Implementation Identification Register 182
4.3.31 ERRIMPDEF<n>, IMPLEMENTATION DEFINED Register <0-191> 184
4.3.32 ERRIRQCR<n>, Generic Error Interrupt Configuration Register 185
4.3.33 ERRIRQSR, Error Interrupt Status Register 186
4.3.34 ERRPIDR0, Peripheral Identification Register 0 190
4.3.35 ERRPIDR1, Peripheral Identification Register 1 191
4.3.36 ERRPIDR2, Peripheral Identification Register 2 192
4.3.37 ERRPIDR3, Peripheral Identification Register 3 194
4.3.38 ERRPIDR4, Peripheral Identification Register 4 196

Glossary

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

vi

Preface

Document status

Beta release.

Beta quality status has a particular meaning to Arm of which the recipient must be aware. At this quality level
the release will be sufficiently stable and committed for initial product development.

The recipient can expect some changes to the Beta quality released material.

In case of any apparent discrepancy or missing information, please contact Arm Limited.

vii

About this book

This manual describes the Armv8-A RAS Extension and the RAS System Architecture.

viii

Using this book

This manual is intended to be read in conjunction with [1].

ix

Conventions

Typographical conventions

The typographical conventions are:

italic

Introduces special terminology, and denotes citations.

bold

Denotes signal names, and is used for terms in descriptive lists, where appropriate.

monospace

Used for assembler syntax descriptions, pseudocode, and source code examples.

Also used in the main text for instruction mnemonics and for references to other items appearing in
assembler syntax descriptions, pseudocode, and source code examples.

SMALL CAPITALS

Used in body text for terms, such as IMPLEMENTATION DEFINED, that have specific technical
meanings described in the Arm Architecture Reference Manual.

Red text

Indicates an open issue.

Blue text

Indicates a link. This can be a cross-reference to another location within the document, or a URL
such as http://developer.arm.com.

Numbers

Numbers are normally written in decimal. Binary numbers are preceded by 0b, and hexadecimal numbers by 0x.
In both cases, the prefix and the associated value are written in a monospace font, for example 0xFFFF0000. To
improve readability, long numbers can be written with an underscore separator between every four characters,
for example 0xFFFF_0000_0000_0000. Ignore any underscores when interpreting the value of a number.

Pseudocode descriptions

This book uses a form of pseudocode to provide precise descriptions of the specified functionality. This
pseudocode is written in a monospace font. The pseudocode language is described in the Arm Architecture
Reference Manual.

Assembler syntax descriptions

This book contains numerous syntax descriptions for assembler instructions and for components of assembler
instructions. These are shown in a monospace font.

x

http://developer.arm.com

Rules-based writing

This specification consists of a set of individual content items. Content items are classified into the following
types:

• Rule
• Information
• Rationale
• Implementation note
• Software usage

Rules are normative statements. An implementation which is compliant with this specification must conform to
all of the Rules in this specification.

Rules must not be read in isolation. Where a particular feature is specified by multiple Rules, these are
grouped into sections and subsections to provide context. Where appropriate, these sections begin with a short
introduction to aid the reader.

Arm strongly recommends that implementers read all chapters and sections of this document to ensure that an
implementation is compliant.

Content items other than Rules are informative statements. These are provided purely as an aid to understanding
this specification.

Content item classes

Rule

A Rule is a statement which either

• describes the behaviour of a compliant implementation, or
• defines concepts or terminology.

A Rule is identified by the letter R.

Information

An Information statement provides additional information and guidance as an aid to understanding the
specification.

An Information statement is identified by the letter I.

Rationale

A Rationale statement explains why the specification was specified as it was.

A Rationale statement is identified by the letter X.

Implementation note

An Implementation note provides guidance on implementation of the specification.

An Implementation note is identified by the letter U.

xi

Preface
Rules-based writing

Software usage

A Software usage statement provides guidance on how software can make use of the features defined by the
specification.

A Software usage statement is identified by the letter S.

Identifiers

Each content item may have an associated identifier which is unique within the context of this specification.

When the document is prior to beta status:

• Content items are assigned numerical identifiers, in ascending order through the document (0001, 0002,
. . .).

• Identifiers are volatile: the identifier for a given content item may change between versions of the
document.

After the document reaches beta status:

• Content items are assigned random alphabetical identifiers (HJQS, PZWL, . . .).
• Identifiers are preserved: a given content item has the same identifier across versions of the document.

Examples

Below are examples showing the appearance of each type of content item.

R This is a Rule.

RX001 This is a Rule with an identifier.

X This is a Rationale statement.

I This is an Information statement.

U This is an Implementation note.

S This is a Software usage statement.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

xii

Additional reading

This section lists publications by Arm and by third parties.

See Arm Developer (http://developer.arm.com) for access to Arm documentation.

[1] Arm® Architecture Reference Manual for ARMv8-A architecture profile. (ARM DDI 0487) Arm Limited.

[2] Basic Concepts and Taxonomy of Dependable and Secure Computing. Algirdas Avižienis, Jean-Claude
Laprie, Brian Randell, and Carl Landwehr.

xiii

Feedback

Arm welcomes feedback on its documentation.

Feedback on this book

If you have comments on the content of this book, send an e-mail to errata@arm.com. Give:

• The title (Arm RAS Supplement).
• The number (ARM DDI 0587 D.b-00bet1).
• The page numbers to which your comments apply.
• The rule identifiers to which your comments apply, if applicable.
• A concise explanation of your comments.

Arm also welcomes general suggestions for additions and improvements.

Note

Arm tests PDFs only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the appearance or behavior
of any document when viewed with any other PDF reader.

Progressive terminology statement

Arm values inclusive communities.

Arm recognizes that we and our industry have used terms that can be offensive. Arm strives to lead the industry
and create change.

Previous issues of this document included terms that can be offensive. We have replaced these terms.

See Release information.

If you find offensive terms in this document, please contact terms@arm.com.

xiv

Chapter 1
Introduction to RAS

ILMHPD Reliability, Availability, Serviceability (RAS) are three aspects of the dependability of a system:

• Reliability, the continuity of correct service.
• Availability, the readiness for correct service.
• Serviceability, the ability to undergo modifications and repairs.

IHWHJM RAS techniques reduce unplanned outages because:

• Transient errors can be detected and corrected before they cause application or system failure.
• Failing components can be identified and replaced.
• Failure can be predicted ahead-of-time to allow replacement during planned maintenance.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

15

Chapter 1. Introduction to RAS
1.1. Faults, errors, and failures

1.1 Faults, errors, and failures

RNVNNC Correct service is delivered when the service implements the system function.

IQWSVK Correct service might include:

• Producing correct results.
• Producing results within the time allotted to the task.
• Not divulging secret or secure information.

For the purpose of describing the RAS Extension and RAS System Architecture, deviation from correct service
is defined using the following terms:

RNSPJY • A failure is the event of deviation from correct service. This includes data corruption, data loss, and
service loss.

RSCKWX • An error is the deviation from correct service. An incorrect value that has an error is corrupt.

RYRDDR • A fault is the cause of the error.

RJNBDX Errors that are present but not detected are latent errors or undetected errors.

ITNQPK In a system with no error detection, all errors are latent errors and are silently propagated by components until
they are either masked or cause failure.

IGRYKV The severity of a failure can range from minor to catastrophic:

• The harmful consequences of a minor failure are of a similar cost to the benefits provided by correct
service delivery.

• The harmful consequences of a catastrophic failure are orders of magnitude, or even incommensurably,
higher than the benefit provided by correct service delivery.

INMGPQ There are many sources of faults in a system, including both software and hardware faults:

• Hardware faults originate in, or affect, hardware.
• Software faults affect software, that is programs or data.

The RAS Extension and RAS System Architecture primarily address errors produced from hardware faults.
These fall into two main areas:

• Transient faults.
• Non-transient or persistent faults.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

16

Chapter 1. Introduction to RAS
1.2. General taxonomy of errors

1.2 General taxonomy of errors

1.2.1 Error detection

RFHXWP When a component accesses memory or other state, an error might be detected in that memory or state.

IWKPVR The error might be corrected or deferred by the component, or signaled to another component as either a deferred
error or a detected error.

1.2.2 Error propagation

RLRZDN A transaction occurs when a producer of the transaction passes a value or other signal to a consumer of the
transaction.

IVYCCX Transactions are part of the service provided by the producer for the consumer.

IRHGDL In many protocols and service interface definitions, a high-level transaction consists of a sequence of operations,
for instance between a Requester and a Completer.

For the purposes of this manual, the most basic form of a unidirectional transfer between a producer and
consumer is considered as a transaction.

That is, each one of the sequence of operations is considered a separate transaction. For some operations, such
as a request, the Requester is producer and the Completer is the consumer. For other operations, such as a
response, the Completer is producer and the Requester is the consumer.

RSKZZG An error is propagated by the producer of a transaction when the service interface is incorrect because of the
error. The error is propagated to the consumer.

An error is propagated by deviations from correct service, including when any of the following occurs that
would not have been permitted to occur had the fault not been activated:

RXDHGD • A corrupt value is passed from producer to consumer.

RZCNXB • A transaction or other operation occurs that should not have occurred.

RCFZKP • A transaction or other operation that should have occurred does not occur.

RMZVNK • A loss of uniprocessor semantics or any other loss of coherency in a multiprocessor coherent system is
observed.

RKCDXV • Changing the timing and/or order of transactions or other operations such that the timing and/or order of
those transactions or operations is incorrect. In this case the service interface defines acceptable timings
and/or orders for transactions and other operations.

The service interface for a transaction might include means to signal that the transaction is propagating:

RVVFYS • A detected error.

RCSVRC • A deferred error.

RBHWVX An error is silently propagated by the producer of a transaction if the consumer of the transaction cannot detect
the error and consumes an undetected error because of the transaction. This might be because of one of the
following:

• The error is present on the transaction, but was not detected by the producer. The error is silently
propagated by the producer.

• The error is present on the transaction, but was not signaled to the consumer as an error. For example, a
corrupt value was passed in the transaction with no indication that it was corrupt. The error is silently
propagated by the producer.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

17

Chapter 1. Introduction to RAS
1.2. General taxonomy of errors

RFPBYS A latent, possibly detectable, error is silently propagated by the consumer of an otherwise correct transaction if
the transaction causes the error to become undetectable.

IXYVCP For example, a partial write to a protection granule that removes poison, leaving the unchanged portion of the
location corrupt. To implement a partial write, the consumer logically reads the current value of the location,
modifies the value, and then writes the modified value back. These are internal transactions in the consumer that
silently propagate the error. In this example there was no error at the producer nor on the transaction.

Errors might be propagated by components in a system until one of the following occurs:

IYZTDY • They are masked and do not affect the outcome of the system.

The error might be masked because a corrupt value is discarded or overwritten, or the error is detected and
removed.

IVQZPT • They affect the service interface of the system and possibly cause failure. If the error has been silently
propagated to the service interface then:

– This is a Silent Data Corruption (SDC).
– The rate of such failures, measured as the number of failures per billion device-hours of operation, is

called the SDC Failure-in-Time (FIT) rate.

Alternatively, the error might have been detected, causing the system to invoke error handling and recovery.
See Error handling and recovery.

1.2.3 Infected and poisoned

RKNHWB The state of a component becomes infected when the component consumes an uncorrected error that updates
the state.

RTZBSW A value is poisoned in the state of a component if it is marked as being in error, such that a subsequent access of
the state will detect the value is so marked and is treated as a detected error.

IYBMFK Poison is used to defer an error.

1.2.4 Containable and uncontainable

RDXQRD An undetected error is uncontained at the component that failed to detect it.

RRJYRQ A silently propagated error is uncontained at the component that silently propagated it.

RGJQNR A detected uncorrected error is uncontainable at the component if it might be uncontained at the component.
A detected uncorrected error is containable at the component if it is not uncontainable at the component. If
the component cannot determine whether a detected uncorrected error is uncontainable or containable at the
component, it treats it as uncontainable at the component.

IMRDMR An error that is uncontainable at a component might be containable at the system level.

Note

Reporting an error as containable allows software to contain the error. It does not mean that hardware has
contained the error.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

18

Chapter 1. Introduction to RAS
1.3. Techniques for improving reliability, availability, and serviceability

1.3 Techniques for improving reliability, availability, and serviceability

ITPGKF Each device sets its own targets for reliability, availability, and serviceability, using various techniques to achieve
these targets, including:

• Fault prevention and fault removal.
• Error handling and recovery.
• Fault handling.

IDMKGY The level of reliability, availability, and serviceability in any implementation, and which parts of the system
include RAS, are IMPLEMENTATION DEFINED. The RAS Extension and RAS System Architecture do not
prescribe the level of reliability, availability, and serviceability in any implementation, or which parts of the
system include RAS.

1.3.1 Fault prevention and fault removal

RYLVTS Fault prevention and fault removal are two techniques for handling faults. Fault prevention and fault removal
mechanisms are IMPLEMENTATION DEFINED.

IWZTKF Fault prevention techniques are outside the scope of the architecture.

RJVLNC A fault that is removed is a corrected error and might be recorded and generate a fault handling interrupt, but it
is not propagated. This means that it is not consumed and does not cause service failure.

IWSPBC A common technique to detect and correct errors is the use of an Error Detection and Correction Code (EDAC),
more commonly referred to as simply an Error Correction Code (ECC). ECC schemes use mathematical codes
to detect and correct an error in a value in memory. The size of the value is the protection granule for the ECC
scheme.

IPBJLC The RAS Extension and RAS System Architecture do not require implementation any fault removal schemes,
including ECC.

1.3.2 Error handling and recovery

RXPLVT A fault that is not removed gives rise to an uncorrected error.

RVTXYY Error recovery is the process by which software and hardware minimize the impact of an uncorrected error.

Error recovery methods include:

IDCGYX • Deferring an error from a fault. An error is deferred by hardware if hardware can make forward progress
without consuming the error. Deferring the error means:

– The fault might become masked later (fault removal). For example, because the corrupt value is
overwritten before it is consumed.

– If the deferred error is later consumed, then the error is reported at the point of consumption. For
example, if the deferred error is consumed by a Processing element (PE) then the consumer PE
generates an error exception. This can give better results in terms of error recovery in the case where
the original producer of the data is not known when the error was deferred. For example because a
latent error was detected.

A common technique to defer an error is to replace the corrupt value with a poisoned value, for example in
memory or in a transaction.

IYLMTV • Preventing further propagation of the error, that is containing the error. In particular, preventing silent
propagation of the error.

IRFLCM • Reducing the severity of a failure by invoking a service failure mode:

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

19

Chapter 1. Introduction to RAS
1.3. Techniques for improving reliability, availability, and serviceability

– This is a Detected Uncorrected Error (DUE).
– The rate of such failures gives the DUE FIT rate.
– The type of service failure mode depends on what is acceptable to the service.

IBRDMK A software error recovery agent is typically invoked when hardware detects an error it cannot correct, defer, or
remove.

IPGXFK An error recovery agent also provides information to the operator through error logs to improve serviceability,
for example to help with the identification of a Field Replaceable Unit (FRU).

IMFPRY The RAS Extension and RAS System Architecture provide optional common programmers’ models to record
information about an error in an error record.

ICVFFN The RAS Extension describes the behavior of a PE when an error is signaled to it by the system, including
invoking a service failure mode by taking an error exception, and optional mechanisms to limit propagation of
an error.

ITLDCY The RAS Extension and RAS System Architecture do not require systems to implement error recovery
mechanisms, including poison, and do not require systems to limit the silent propagation of errors.

1.3.3 Fault handling

ISWFLQ Fault handling by software is the process by which software diagnoses and responds to faults to improve
availability.

Fault handling methods include:

IGGCDN • Predictive Failure Analysis (PFA), using information recorded by hardware to trigger pre-emptive action.

IWNHJF The RAS Extension and RAS System Architecture provide optional mechanisms to allow the reporting of errors
and warnings to a fault handling agent, and to record information about the fault in an error record. It is the
responsibility of the error recovery and fault handling processes to collate the error record data and write it to an
error log.

IFQRSQ The detailed nature of the fault handling agent is outside the scope of this architecture. Fault handling and error
recovery might be independent agents.

See also:

• Standard error record

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

20

Chapter 2
Armv8-A RAS Extension

ILNLHW The Reliability, Availability, Serviceability (RAS) Extension is identified as FEAT_RAS.

IFNVKV The RAS Extension is a mandatory extension to the Armv8.2 architecture, and it is an optional extension to the
Armv8.0 and Armv8.1 architectures.

IBQGSC ID_AA64PFR0_EL1.RAS in AArch64 state, and ID_PFR0.RAS in AArch32 state, indicate whether the RAS
Extension is implemented.

ILBKPL The RAS Extension extends the exception syndrome registers to include fields that allow the Processing element
(PE) to report a PE error state when an error exception is taken.

IDWKZS The RAS Extension adds the Error synchronization event and Error Synchronization Barrier instruction, ESB.

ITHGHB The RAS Extension defines System registers that are specific to RAS, including to access optional error records
defined by the RAS System Architecture. The System register instructions are described in [1]. The format of
the error record registers is defined in Error record System register view.

IKPYCD The FEAT_IESB feature provides controls to insert an implicit Error synchronization event at exception entry
and exception return.

IKJCLV The FEAT_RASv1p1 feature extends the RAS System registers to include support for RAS System Architecture
v1.1.

IGWRVK The FEAT_DoubleFault feature provides EL3 controls to change the routing of synchronous External abort
exceptions and treat SError interrupts as nonmaskable. FEAT_DoubleFault is defined in [1].

RYWXWL The RAS Extension does not prescribe the level of reliability, availability, and serviceability in the PE. The RAS
features that the PE includes, for example to detect, correct, contain, or defer errors, are IMPLEMENTATION
DEFINED. The RAS Extension defines a framework for building RAS features in a PE.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

21

Chapter 2. Armv8-A RAS Extension
2.1. PE error handling

2.1 PE error handling

2.1.1 PE error detection

IKRYQW When a PE accesses memory or other state, an error might be detected in that memory or state, and corrected,
deferred, or signaled to the PE as a detected error with an in-band error response.

Note

An error might also be signaled to a PE by means other than an in-band error response. See RFNVVJ.

The response from memory or other state is defined by Detecting and consuming errors in the RAS System
Architecture:

IDWWQJ • When an error is detected by a component on a read or a cache maintenance operation from the PE:

– If the error can be corrected, it is corrected and corrected data is returned.
– If the error cannot be corrected and can be deferred, it is deferred.
– Otherwise, if enabled at the component, the detected error is signaled to the PE as an in-band error

response.

The component might record the error and generate a fault handling interrupt and/or error recovery
interrupt.

IBKVQP • When an error is detected by a component consuming a write from the PE:

– If the error can be corrected, it is corrected.
– If the error cannot be corrected and can be deferred, it is deferred to the consumer. For example, by

poisoning the location being written.
– If enabled at the consumer, the detected error is signaled to the PE as an in-band error response.
– If enabled at the consumer, the consumer generates an error recovery interrupt.

IVRYFF If the component implements the RAS System Architecture, its behavior is defined by RAS System Architecture,
and depends on the nature of the error and IMPLEMENTATION DEFINED properties of the component. In each
of these cases, the component might be a part of the processor, such as a cache, or might be outside of the
processor.

The component might also report the error to a RAS System Architecture node, which records the error and
might generate one or more of a fault handling interrupt, error recovery interrupt, or critical error interrupt
depending on the features and configuration of the node.

See also Other errors.

Note

An in-band error response is sometimes referred to as an External abort. To avoid confusion with the External
abort exception, this manual uses in-band error response to describe the response to the PE for a memory
access.

See In-band error response signaling (external aborts).

RQTRKF The features that the system and PE include to detect, correct, or defer errors are IMPLEMENTATION DEFINED.

RWLTPV The size of the protection granule for any implemented error detection mechanism in memory is
IMPLEMENTATION DEFINED.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

22

Chapter 2. Armv8-A RAS Extension
2.1. PE error handling

IJJJGW A system might implement multiple error detection mechanisms with differing protection granule sizes.

RFNGVW The mechanism for clearing an error or poison from a memory protection granule is IMPLEMENTATION
DEFINED, and it is IMPLEMENTATION DEFINED whether any such mechanism exists.

Note

For some systems, a single-copy atomic write of at least the whole protection granule can reset the state of
the granule and clear any error or poison. In other systems, a DC ZVA operation might also clear the error.
However, the protection granule might be larger than the DC ZVA block size and/or the largest single-copy
atomic access that the PE can perform.

Systems might require software to stop using the protection granule, for example by not using the physical
page containing the granule, until the system can be purged of errors, for example at a system reset. The
architecture does not set any limit on the size of a protection granule and it might be larger than a translation
granule.

Any mechanism for purging the system of errors is also IMPLEMENTATION DEFINED.

2.1.2 PE error propagation

INTXKV The program-visible architectural state of the PE, referred to as the PE state, includes:

• General-purpose, SIMD&FP, and SVE registers.
• System registers.
• Special-purpose registers.
• PSTATE.

RXMBNW An error is consumed by the PE by any of the following:

• An instruction commits the corruption into the PE state.
• The error is on an instruction fetch and the corrupt instruction is committed for execution.
• The error is on a translation table walk for a committed load, store, or instruction fetch.

IHVFKW For a PE, Error propagation applies to the propagation of detected errors by the PE between the PE state, and
any other PE state or memory.

Note

Memory includes structures that cache the contents of memory, such as an instruction cache, data cache, or
TLB.

An error is propagated by the PE by one or more of the following occuring that would not have been permitted
to occur had the fault not been activated:

RDQTHR • Consumption of the corrupt value by any instruction, propagating the error to the target(s) of the instruction.
This includes:

– A store of a corrupt value.
– A write of a corrupt value to a System register, Special-purpose register, or PSTATE. Infecting a

System register state might mean that the PE generates transactions that would not otherwise be
permitted.

RJKPCK • Any operation occuring that should not have occurred, including:

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

23

Chapter 2. Armv8-A RAS Extension
2.1. PE error handling

– A load, translation table walk, or instruction fetch that would not have been permitted, including those
from hardware speculation or prefetching.

– A store to an incorrect address or a store that would not have been made or not permitted.
– A direct or indirect write to a Special-purpose or System register that would not have been made or

not permitted.
– Assertion of any signal, such as an interrupt, that would not have been asserted.

RLLKVP • Any operation not occurring that should have occurred.

RPZNNG • Causing the PE to take an imprecise exception, other than an error exception in response to the error itself.
See the section Definition of a precise exception in [1].

RPMMDF • The PE discarding data that it holds in a modified state.

RDDFXY • Any other loss of required uniprocessor semantics, ordering, or coherency.

RNQDWB The error propagated by the PE is silently propagated by the PE only if all of the following are true:

• The propagation is not part of the required operation of the PE in taking an error exception generated by
the error.

• The propagation is not part of the required operation of the PE executing an ESB instruction that
synchronizes the error.

• The error is not signaled to the consumer as a detected error or deferred error.

• Any of the following are true:

– The corrupt value is held in other than the general-purpose, SIMD&FP, or SVE registers.

– The error is propagated by an instruction in program order before either taking an error exception
generated by the error or executing an ESB instruction that synchronizes the error, and is propagated
to outside of the general-purpose, SIMD&FP, or SVE registers.

– The error is propagated other than by an instruction that consumes the corrupt value as an input
operand but otherwise behaves correctly.

Note

This means that after taking the error exception generated by the error, or an ESB, propagating an error by, for
example, storing it to memory, is not considered as silent propagation of the error by the PE.

For example, the PE takes an error exception in response to a load that returns a corrupt value to a
general-purpose register. The error is not silently propagated to outside of the general-purpose registers
before the error exception is taken. However:

• Taking the error exception causes the ESR_ELx, ELR_ELx, and SPSR_ELx registers to be updated.
This is part of the required operation of the PE.

• After taking the error exception, software stores the contents of the general-purpose register to memory,
and this is not signaled to memory as a deferred error. This happens in program order after the exception
is taken.

Neither of these actions are considered silent propagation of the error by the PE.

RDTRFQ The features that a PE includes to prevent silent propagation of an error are IMPLEMENTATION DEFINED.

INDDTS For example, an implementation might ensure that a corrupt value in a general-purpose, SIMD&FP, or SVE
register is not silently propagated, by signaling a deferred error on any write of data to any memory location so
that the memory location is poisoned.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

24

Chapter 2. Armv8-A RAS Extension
2.1. PE error handling

2.1.3 Other errors

IKRQMR The RAS Extension deals mostly with errors detected by components outside of the PE, such as memory, and
consumed by the PE.

Other errors might be detected from within the processor itself. If these are not errors in the PE state they might
be treated like errors detected by another component.

For example:

• A processor cache detects an error in the cache state that cannot be corrected. The cache can be treated
as a component outside the PE. If the error is detected in dirty cache data being evicted from the cache
when the PE makes an access, it might be deferred by the cache writing poison in the evicted cache data.
If the PE is performing a partial write that does not completely overwrite the protection granule, it might
be deferred by the cache writing poison to the cache location, and/or evicting the cache line with poison.
Deferring the error means the error is not consumed by the PE. Otherwise, the cache component generates
the in-band error response to the PE.

• A processor detects a corrupt or poisoned value being returned from memory that is not being signaled as
an in-band error response and cannot be corrected or deferred. For example in response to an non-cacheable
read or a cache refill. The interface to memory can be treated as a component outside the PE. The memory
interface component generates the in-band error response to the PE.

In each of these cases, the component reports these errors to a RAS System Architecture node that implements
error records and records the errors, and might generate one or more of a fault handling interrupt, error recovery
interrupt, or critical error interrupt depending on the features and configuration of the node.

IVNTWD An example implementation might include error detection logic within the PE state itself. When the PE
detects an error in the PE state, the instruction that uses that state consumes the error, and the PE generates an
IMPLEMENTATION DEFINED SError interrupt exception. See RFNVVJ.

In this case, the processor that implements the PE includes a RAS System Architecture node that implements
error records that record these errors.

IJRQDM An example implementation might support poisoning within the PE state. When the PE consumes a deferred
error, for example a poisoned value, from memory into the PE state, the PE state becomes poisoned. Subsequent
operations that read the poisoned value can continue to defer the error by poisoning the result of the operation.

However, if the PE attempts to execute an operation that reads the poisoned value and cannot defer the error
further, the PE generates an IMPLEMENTATION DEFINED SError interrupt exception. See RFNVVJ.

In this case, the processor that implements the PE includes a RAS System Architecture node that implements
error records that record these errors.

IJHQVK Components outside of the PE might detect errors that are not consumed by the PE. These components might
report such errors to a PE using error recovery interrupts.

RXJNNT For implementations that include the Statistical Profiling Extension, the Statistical Profiling Extension behaves
like a separate component.

IMJQQZ Errors from software faults are outside the scope of the RAS Extension.

See also:

• RAS System Architecture
• Software faults

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

25

Chapter 2. Armv8-A RAS Extension
2.2. Generating error exceptions

2.2 Generating error exceptions

RVJRKF An error exception is generated when a detected error is signaled to the PE as an in-band error response
to an architecturally-executed memory access or cache maintenance operation. This includes any explicit
data access, instruction fetch, translation table walk, or hardware update to the translation tables made by an
architecturally-executed instruction.

IPJHZS Error exception is a term used in this manual to describe a collection of exception types. See Taking error
exceptions for more information.

RMBNBH It is IMPLEMENTATION DEFINED whether an error exception can be generated for an error that is consumed by
hardware speculation or prefetching by a PE, but that is not committed to the architecturally visible state of the
PE.

RSHKJB It is IMPLEMENTATION DEFINED whether an error exception can be generated for a detected error that is
deferred.

RGVWJD It is IMPLEMENTATION DEFINED whether an error exception can be generated for a detected error that is
corrected.

RFNVVJ An SError interrupt exception can also be generated for IMPLEMENTATION DEFINED causes.

For example, when an error is detected and neither corrected nor deferred, and signaled to the PE by means
other than an in-band error response, or when an error detected by the PE in the PE state or in the result of a
calculation.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

26

Chapter 2. Armv8-A RAS Extension
2.3. Taking error exceptions

2.3 Taking error exceptions

RVXFYS If FEAT_DoubleFault is implemented, an error exception is taken as a synchronous External abort exception for
all non-speculative:

• Instruction fetches.

• Translation table walks and hardware updates of translation tables on instruction fetches.

It is IMPLEMENTATION DEFINED whether an error exception is taken as a synchronous External abort exception
or as an asynchronous SError interrupt exception for each non-speculative:

• If FEAT_DoubleFault is not implemented, instruction fetch.

• Explicit access to memory made by an instruction.

• Cache maintenance operation.

• Translation table walk or hardware update of translation tables, other than for on an instruction fetch when
FEAT_DoubleFault is implemented.

• If FEAT_MTE is implemented, access to an Allocation Tag in memory made by an instruction.

All error exceptions other than those explicitly mentioned in this rule are taken as an asynchronous SError
interrupt exception.

RWFNJG When an error exception is taken as an asynchronous SError interrupt exception, the exception is taken in finite
time.

RBCXKN When any of the following exceptions are taken, the PE records the PE error state in the exception syndrome
register:

• A synchronous External abort taken to AArch64 state.
• An SError interrupt exception taken to either AArch32 or AArch64 state.

See PE error state classification.

RTYVYR When a synchronous External abort is taken to AArch32 state, the PE does not record the PE error state.

IGGCQQ The exception type and target execution state determines the set of PE error state values the PE can record. See
PE error state recording in the exception syndrome.

IWSYXB The recorded PE error state informs software whether it can recover execution and, if so, whether any action by
the recovery software to locate and repair the error is necessary first.

INFDSM Software is only able to successfully recover execution and make progress from a restart address for the
exception by executing an Exception Return instruction to branch to the instruction at this restart address if all
of the following are true:

• The error has not been silently propagated by the PE.

• At the point when the Exception Return instruction is executed, the PE state and memory system state are
consistent with the PE having executed all of the instructions up to but not including the instruction at the
restart address, and none afterwards. That is, at least one of the following restart conditions is true:

– The error has been not architecturally consumed by the PE and infected the PE state.
– Executing the instruction at the restart address will not consume the error and will correct any corrupt

state by overwriting it with the correct value or values.

RDCKHJ On taking an error exception, the PE determines that software is able to recover execution at the point where the
exception is taken, with no additional action from software, if and only if all of the following are true:

• The error has not been silently propagated by the PE.

• The restart conditions are met because all of the following are true:

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

27

Chapter 2. Armv8-A RAS Extension
2.3. Taking error exceptions

– Either the error does not remain latent or executing the instruction at the restart address will not
consume the error and will correct any corrupt PE state.

– The restart address is the preferred return address for the exception.

• The PE has not elected to determine that software is not able to recover execution, and has not elected to
determine that software is able to recover execution if software takes action to locate and repair the error.

RJBHWY On taking an error exception, the PE determines that software is able to recover execution if software takes
action to locate and repair the error, to get the PE state and memory system state into this consistent state before
attempting recovery, if and only if all the following are true:

• The error has not been silently propagated by the PE.

• The restart conditions can be met because the restart address is the preferred return address for the
exception and at least one of the following is true:

– The error remains latent and executing the instruction at the restart address will access the corrupt
state. If the error is removed then executing the instruction at the restart address will correct any
corrupt PE state and/or corrupt memory state. For example, the instruction at the restart address is a
load that will consume the error and corrupts PE state.

– The error does not remain latent and the PE has elected to determine that software is able to recover
execution if software takes action to locate and repair the error.

– Executing the instruction at the restart address will not consume the error and the PE has elected to
determine that software is able to recover execution if software takes action to locate and repair the
error.

• The PE has not elected to determine that software is not able to recover execution.

RGJQWN On taking an error exception, the PE determines that software is not able to recover execution if and only if one
or more of the following are true:

• The error has been silently propagated by the PE.

• The restart conditions cannot be met even if software takes action to locate and repair the error. This is
because at least one of the following is true:

– The error remains latent and executing the instruction at the restart address will consume the error
and corrupt PE state. Either the error cannot be removed or executing the instruction at the restart
address will not correct any corrupt PE state.

– The restart address is not the preferred return address for the exception.

• The PE has elected to determine that software is not able to recover execution.

IXMCCR That the PE determines that software is able to recover execution if software takes action to locate and repair the
error does not mean that software can locate and repair. For example, the error in memory might be one which
cannot be located or cannot be repaired.

Note

Error recovery software might instead make the PE state and memory system state consistent with an
alternative execution of the program.

For example, if the error is located in a clean page of memory and the error exception is generated by a load
from the location infected with the error, then software might be able to repair the error by:

• Reloading the page from a backing store. This makes the memory system state consistent with the
uncorrupted view. Executing the instruction at the restart address will load the uncorrupted value into
the PE state.

• Invalidating the clean page and marking it page as inaccessible. Executing the instruction at the restart

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

28

Chapter 2. Armv8-A RAS Extension
2.3. Taking error exceptions

address will result in a Translation fault being generated when the program tries to access the page. The
target of the load will contain an UNKNOWN value, which is permitted by the architecture. The MMU
fault handler can then reload the page from the backing store, as it would for a page that has not been
previously accessed or has been paged out.

Either approach might result in the virtual address to physical address mapping for the page being changed
by software, meaning the memory system state is not consistent with the previously executed instructions.
However, the memory system state is consistent with a valid alternative view of the execution of the program
that allows software to recover execution.

IRHPPV A PE might include additional IMPLEMENTATION DEFINED mechanisms to aid software locate and repair the
error.

If software has to use IMPLEMENTATION DEFINED mechanisms to locate and repair the error, then the PE reports
that it has determined that software is not able to recover execution. The PE might use IMPLEMENTATION
DEFINED additional syndrome registers to report that software is able to recover execution if software takes
action to locate and repair the error using the IMPLEMENTATION DEFINED mechanisms.

2.3.1 PE error state recording in the exception syndrome

RWPKYM When an asynchronous SError interrupt exception is taken to AArch64 state, the PE records the PE error state
in the ESR_ELx exception syndrome register as the applicable one of:

• Uncontainable (UC).
• Unrecoverable state (UEU).
• Recoverable state (UER).
• Restartable state (UEO).
• Corrected (CE).
• Uncategorized error.
• IMPLEMENTATION DEFINED syndrome.

ISDDLL When an asynchronous SError interrupt exception is taken to AArch64 state:

• Uncategorized error is recorded by setting ESR_ELx.ISS to zero. This includes setting ESR_ELx.IDS and
ESR_ELx.DFSC to zero.

• IMPLEMENTATION DEFINED syndrome is recorded by setting ESR_ELx.IDS to 0b1. The remainder of
the ESR_ELx.ISS syndrome is IMPLEMENTATION DEFINED.

Other values for the PE error state are recorded in ESR_ELx.AET, by setting ESR_ELx.IDS to 0b0 and
ESR_ELx.DFSC to the applicable nonzero fault status code, indicating ESR_ELx.AET is valid.

RFKHHF When a synchronous External abort exception is taken to AArch64 state, the PE records the PE error state in
ESR_ELx.SET as the applicable one of:

• Uncontainable (UC).
• Recoverable state (UER).
• Restartable state (UEO).

Other values for the PE error state are not supported by synchronous External abort exceptions taken to AArch64
state.

RPWKBL When an asynchronous SError interrupt exception is taken to AArch32 state, the PE records the PE error state
in DFSR.AET or HSR.AET as appropriate, as the applicable one of:

• Uncontainable (UC).
• Unrecoverable state (UEU).
• Recoverable state (UER).
• Restartable state (UEO).

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

29

Chapter 2. Armv8-A RAS Extension
2.3. Taking error exceptions

Other values for the PE error state are not supported by asynchronous SError interrupt exceptions taken to
AArch32 state.

IQVVSM Table 2.1 summarizes the supported PE error state syndrome values for each type of error exception.

Table 2.1: Summary of error exception types and supported PE error state syndrome values

PE error state
External abort to
AArch64 state

SError interrupt
to AArch64 state

External abort to
AArch32 state

SError interrupt
to AArch32 state

Recorded in: ESR_ELx.SET ESR_ELx.AET No syndrome DFSR.AET
Uncategorized error No Yes (ISS==0) - No
IMPLEMENTATION DEFINED
syndrome

No Yes (IDS==1) - No

Uncontainable (UC) Yes (0b10) Yes (0b000) - Yes (0b00)
Unrecoverable state (UEU) No Yes (0b001) - Yes (0b01)
Recoverable state (UER) Yes (0b00) Yes (0b011) - Yes (0b11)
Restartable state (UEO) Yes (0b11) Yes (0b010) - Yes (0b10)
Deferred (DE) No No - No
Corrected (CE) No Yes (0b110) - No

2.3.2 PE error state classification

ICCKWK The PE determines which PE error state to record based on the following criteria:

• The PE error state syndrome values supported by the type of error exception being taken. See PE error
state recording in the exception syndrome.

• The following implementation-specific properties and behaviors of the PE on taking the exception:

– Whether the error has been silently propagated by the PE.

– Whether the PE determines that software is able to recover execution at the point where the exception
is taken.

– If the PE determines that software can recover execution, whether software needs locate and repair
the error before attempting to recover. If software does not locate and repair the error, then attempting
to recover execution might cause the error exception to be generated again.

– If the PE determines that software cannot recover execution, whether the error is synchronized by
Error synchronization events.

• Whether the implementation elects to record the PE error state as another state. The PE only does this
when the criteria for the other, recorded state are met. The conditions under which the PE elects to record
the PE error state as another state are IMPLEMENTATION DEFINED.

The recorded PE error state is defined by the rules in this section.

RQKZLB If and only if all of the following are true, then on taking an error exception the PE error state is recorded as
Uncontainable (UC):

• One or more of the following are true:

– The error has been silently propagated by the PE.
– The PE determines that software is not able to recover execution from the preferred return address of

the exception and the error is not synchronized by Error synchronization events.
– The PE determines that software is not able to recover execution from the preferred return address

of the exception and the error exception is taken as a synchronous External abort to AArch64 state.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

30

Chapter 2. Armv8-A RAS Extension
2.3. Taking error exceptions

(That is, the type of error exception does not support reporting the PE error state as Unrecoverable
state (UEU).)

– The implementation has elected to record the PE error state as Uncontainable (UC).

• The error exception is not taken as a synchronous External abort to AArch32 state.

• The implementation has not elected to record the PE error state as IMPLEMENTATION DEFINED syndrome
or Uncategorized error, or the type of error exception does not support reporting the PE error state as
IMPLEMENTATION DEFINED syndrome or Uncategorized error.

RQGNYD If and only if all of the following are true, then on taking an error exception the PE error state is recorded as
Unrecoverable state (UEU):

• The error has not been silently propagated by the PE.

• The error exception is taken as an SError interrupt exception.

• One or more of the following are true:

– The PE determines that software is not able to recover execution from the preferred return address of
the exception and the error is synchronized by Error synchronization events.

– The implementation has elected to record the PE error state as Unrecoverable state (UEU).

• The implementation has not elected to record the PE error state as Uncontainable (UC), IMPLEMENTATION
DEFINED syndrome, or Uncategorized error.

IFJCZP Error synchronization event defines synchronized by Error synchronization events.

RJHNVT If and only if all of the following are true, then on taking an error exception the PE error state is recorded as
Recoverable state (UER):

• The error has not been silently propagated by the PE.

• The error exception is not taken as a synchronous External abort to AArch32 state.

• The PE determines that software is able to recover execution from the preferred return address of the
exception.

• One or more of the following are true:

– The PE determines that software must take action to locate and repair the error to successfully
recover execution. This might be because the exception was taken before the error was architecturally
consumed by the PE, at the point when the PE was not be able to make correct progress without either
consuming the error or otherwise making the state of the PE unrecoverable.

– The implementation has elected to record the PE error state as Recoverable state (UER).

• The implementation has not elected to record the PE error state as Unrecoverable state (UEU),
Uncontainable (UC), IMPLEMENTATION DEFINED syndrome, or Uncategorized error.

RMBVCF If and only if all of the following are true, then on taking an error exception the PE error state is recorded as
Restartable state (UEO):

• The error has not been silently propagated by the PE.

• The error exception is not taken as a synchronous External abort to AArch32 state.

• The PE determines that software can recover execution from the preferred return address of the exception
without the need for software to take action to locate and repair the error first.

• One or more of the following are true:

– The error is an uncorrected error. This includes a deferred error.
– The error is a corrected error and the error exception is not taken as an SError interrupt taken to

AArch64 state.
– The implementation has elected to record the PE error state as Restartable state (UEO).

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

31

Chapter 2. Armv8-A RAS Extension
2.3. Taking error exceptions

• The implementation has not elected to record the PE error state as any of Recoverable state
(UER), Unrecoverable state (UEU), Uncontainable (UC), IMPLEMENTATION DEFINED syndrome, or
Uncategorized error.

RLFXRD If and only if all of the following are true, then on taking an error exception the PE error state is recorded as
Corrected (CE):

• The error has been corrected and not silently propagated by the PE.

• The error exception is taken as an SError interrupt taken to AArch64 state.

• Software can recover execution from the preferred return address of the exception. Because the error has
been corrected, software does not need to take action to locate and repair the error.

• The implementation has not elected to record the PE error state as any other type.

RNZYRP If and only if all the following are true, then on taking an error exception the PE error state is recorded as an
Uncategorized error:

• The error exception is taken as an asynchronous SError interrupt taken to AArch64 state.

• The implementation has elected to record the PE error state as an Uncategorized error.

RVHWHD If and only if all the following are true, then on taking an error exception the PE error state is recorded as an
IMPLEMENTATION DEFINED syndrome

• The error exception is taken as an asynchronous SError interrupt taken to AArch64 state.

• The implementation has elected to record the PE error state as an IMPLEMENTATION DEFINED syndrome.

ISRPJD The IMPLEMENTATION DEFINED syndrome type might provide additional IMPLEMENTATION DEFINED
syndrome recorded in the exception syndrome register. Software might be able to determine the state of
the PE from this syndrome, or other IMPLEMENTATION DEFINED syndrome registers.

IWLZRP Uncategorized error and IMPLEMENTATION DEFINED syndrome are defined for backwards compatibility with
previous versions of the architecture. Arm does not recommend use of these PE error state values in new
implementations that include other RAS features.

IVKMZB The PE error states are summarized by Figure 2.1. Figure 2.1 assumes the type of error exception supports the
resulting PE error state, never elects to record an error as a different PE error state when permitted, and does not
show Uncategorized error or IMPLEMENTATION DEFINED syndrome.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

32

Chapter 2. Armv8-A RAS Extension
2.3. Taking error exceptions

Exception taken

Error corrected?

Error deferred?

no

Exception?
yes

Exception?
yes

PE state
recoverable?

no

Silently
propagated?

no

Uncontainable
(UC)

maybe No exception

no

Corrected
(CE)

yes

no

Restartable
(UEO)

yes

Action required?

yes

Unrecoverable
(UEU)

maybe
not

Recoverable
(UER)

maybe no

Figure 2.1: PE error states

IZQRGL If the PE error state reports that software can recover execution, or that software isolation might be possible
because the error is synchronized by Error synchronization events, this does not necessarily mean that the error
can be recovered from because the error in the system might be one which does not allow software to recover
the operation. Rather, software might be able to recover if it can repair the error and continue.

For example, the component that originally detected the error and signaled it to the PE might record in a RAS
System Architecture node that the error is uncontainable at the component, meaning the system has to be shut
down to avoid catastrophic failure. The in-band error response to the PE is not required to signal the severity of
the error to the PE. The recorded PE error state refers only to the PE, not the system error state.

If the in-band error response can signal the severity of the error to the PE, the PE might use this information
to elect to report the PE error state as other than Recoverable state (UER). For example, if a processor cache
detects an uncontainable tag RAM error, the PE might report the PE error state as Uncontainable (UC), even
though the state of the PE itself is recoverable. However, this is not required, and software must not rely on this
behavior and should determine from the system whether the error is recoverable at the system level.

See also:

• PE error propagation
• Error synchronization event

2.3.2.1 Using the PE error state classification

SXSKNS When the PE error state is recorded as Uncontainable (UC):

• Software must assume that either:

– The error has been silently propagated by the PE.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

33

Chapter 2. Armv8-A RAS Extension
2.3. Taking error exceptions

– Software is not able to recover execution from the preferred return address of the exception and the
error was not synchronized by Error synchronization events.

• If the error cannot be otherwise isolated to an application or VM, or both, the system must be shut down
by software to avoid catastrophic failure.

SHYWFL When the PE error state is recorded as Unrecoverable state (UEU):

• Software can assume the error has not been silently propagated by the PE.
• Software cannot safely recover execution from the preferred return address of the exception, even if it

takes action to locate and repair the error. The state of the affected software, or both, is unrecoverable.
However, if the software includes Error synchronization events, software can use the properties of the
Error synchronization event to determine which software is affected by the error.

• The affected software cannot continue and must be isolated by software.

SLSFYM When the PE error state is recorded as Recoverable state (UER):

• The uncorrected error might remain latent in the system.

• If the exception handler takes action to locate and repair the uncorrected error, it can safely recover
execution from the preferred return address of the exception. Otherwise on restart of the affected software
the PE might attempt to consume the error again, causing a further error exception. If software cannot
locate and repair the error, the affected software must be isolated by software.

SGLPZY When the PE error state is recorded as Restartable state (UEO):

• The error might remain latent in the system.

• Software might take action to locate and repair the error before it is consumed. However, the affected
software can be safely restarted by the exception handler without software taking any action to locate and
repair the error.

For example, the error was signaled when the PE speculatively accessed corrupt data.

SGRZQS When the PE error state is recorded as IMPLEMENTATION DEFINED syndrome or Uncategorized error, if
software is not able to determine the actual state of the PE and memory, it should treat IMPLEMENTATION
DEFINED syndrome and Uncategorized error as Uncontainable (UC).

2.3.3 Multiple SError interrupts

ICPJLW Multiple physical and/or virtual SError interrupt conditions might be pending together. The architecture does
not define relative priorities for asynchronous exceptions.

RDHKQZ If multiple physical and/or virtual SError interrupt conditions are pending, it is IMPLEMENTATION DEFINED
whether the multiple pending SError interrupt conditions are taken as a single SError interrupt exception.

RJBQSC On taking an SError interrupt exception for more than one SError interrupt condition:

• If the exception is taken to AArch64 state and one or more pending SError interrupt conditions would be
reported as IMPLEMENTATION DEFINED syndrome or Uncategorized error, then the syndrome recorded in
ESR_ELx.ESS is IMPLEMENTATION DEFINED.

• Otherwise, the recorded PE error state applies recorded by combined effect of the errors.

IGNHXJ Any pending SError interrupt conditions that are not taken with other SError interrupts as a single SError
interrupt exception remains pending after the SError interrupt exception is taken.

2.3.4 Target Exception level for External abort and SError interrupt exceptions taken to
AArch64 state

INRZXZ This section is included for completeness. It repeats the definitions from [1] and so is non-normative.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

34

Chapter 2. Armv8-A RAS Extension
2.3. Taking error exceptions

The default target Exception level for SError interrupt and synchronous External abort exceptions taken to
AArch64 state is:

• EL1, if taken from EL0 or EL1.
• EL2, if taken from EL2.
• EL3, if taken from EL3.

However:

• If EL3 is implemented and SCR_EL3.EA is 0b1, all SError interrupt and synchronous external abort
exceptions are taken to EL3.

• Otherwise, if EL2 is implemented and enabled in the current Security state, then:

– If HCR_EL2.AMO is 0b1 or HCR_EL2.TGE is 0b1, all SError interrupts from EL0 and EL1 are
taken to EL2.

– If HCR_EL2.TEA is 0b1 or HCR_EL2.TGE is 0b1, all synchronous External abort exceptions from
EL0 and EL1 are taken to EL2.

2.3.5 Target mode for External abort and SError interrupt exceptions taken to AArch32 state

IBMBXM This section is included for completeness. It repeats the definitions from [1] and so is non-normative.

For SError interrupt and synchronous External abort exceptions taken to AArch32 state, the default target mode
is:

• Abort mode, if taken from EL0, EL1 or EL3, including from Secure Monitor mode.

• Hyp mode, if taken from EL2.

However:

• If EL3 is implemented and using AArch32 and SCR.EA is 0b1:

– All SError interrupt and synchronous external Data Abort exceptions are taken to Secure Monitor
mode, using vector offset 0x10.

– All synchronous external Prefetch Abort exceptions are taken to Secure Monitor mode, using vector
offset 0x0C.

• Otherwise, if EL2 is implemented and using AArch32 and the PE is in Non-secure state:

– If HCR.AMO is 0b1 or HCR.TGE is 0b1, all SError interrupts from EL0 and EL1 are taken to Hyp
mode, using vector offset 0x14.

– If HCR.TEA is 0b1 or HCR.TGE is 0b1, all synchronous External abort exceptions from EL0 and
EL1 are taken to Hyp mode, using vector offset 0x14.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

35

Chapter 2. Armv8-A RAS Extension
2.4. Error synchronization event

2.4 Error synchronization event

IYGRDP The RAS Extension defines the Error synchronization event and the ESB instruction.

RGRJVN An Error synchronization event is generated by any of the following:

• Executing an ESB instruction.

• When FEAT_IESB is implemented, and one of the following is true, taking an exception to an Exception
level, ELx, using AArch64:

– The appropriate SCTLR_ELx.IESB bit is 0b1.
– FEAT_DoubleFault is implemented, the Exception level is EL3, and SCTLR_EL3.NMEA is 0b1.

In Debug state this also applies to executing a DCPSx instruction to ELx.

• When FEAT_IESB is implemented, and one of the following is true, executing an exception return
instruction at an Exception level, ELx, using AArch64:

– The appropriate SCTLR_ELx.IESB bit is 0b1.
– FEAT_DoubleFault is implemented, the Exception level is EL3, and SCR_EL3.NMEA is 0b1.

In Debug state this also applies to executing a DRET instruction at ELx.

IPMGVM In addition to generating an Error synchronization event, the ESB instruction might additionally record and then
clear a masked pending asynchronous SError interrupt exception.

INWLTG For details of the operation and encoding of ESB, see [1].

IHQZRM The FEAT_IESB feature and SCTLR_ELx.IESB bits are described by [1]. See also Extension for
synchronization at exception entry and return.

INNXVF The FEAT_DoubleFault feature and SCR_EL3.NMEA bit are described by [1]. See also Extension for
synchronization at exception entry and return.

RYZPBD An error is synchronized by Error synchronization events if and only if all the following are true for each Error
synchronization event:

• The error is generated by an instruction on the same PE as the Error synchronization event. This includes
any memory accesses, instruction fetch, translation table walk, or hardware update to the translation tables
made by the instruction.

• If the error exception for the error is taken in program order after the Error synchronization event completes,
and either physical SError interrupt exceptions are unmasked when the Error synchronization event occurs
or the error exception is taken synchronously, then all of the following are true:

– The instruction that generated the error is in program order after the Error synchronization event.
– On completion of the Error synchronization event, the PE state and memory system state are consistent

with the PE having executed all instructions in program order before the Error synchronization event.

• If the error exception for the error is taken asynchronously as an SError interrupt, physical SError interrupt
exceptions are masked when the Error synchronization event occurs, and the SError interrupt is not pending
when the Error synchronization event completes, then all of the following are true:

– The instruction that generated the error is in program order after the Error synchronization event.
– On completion of the Error synchronization event, the PE state and memory system state are consistent

with the PE having executed all instructions in program order before the Error synchronization event.

The SError interrupt is not pending when the Error synchronization event completes if a subsequent read
of ISR_EL1.A or ISR.A returns 0b0.

• If the error exception for the error is taken asynchronously as an SError interrupt, the Error synchronization
event is generated by an ESB instruction executed when physical SError interrupt exceptions are masked,
and the ESB instruction does not set DISR_EL1.A or DISR.A to 0b1, then all of the following are true:

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

36

Chapter 2. Armv8-A RAS Extension
2.4. Error synchronization event

– The instruction that generated the error is in program order after the ESB.
– On completion of the ESB, the PE state and memory system state are consistent with the PE having

executed all instructions in program order before the ESB.

RNFKMQ Taken in program order after the Error synchronization event completes means:

• For an Error synchronization event generated by an ESB instruction, the exception is taken in program
order after the instruction.

• For an Error synchronization event generated by an exception return instruction when FEAT_IESB
implemented, the exception is taken in program order after the instruction.

• For an Error synchronization event generated by an exception entry when FEAT_IESB is implemented,
one of the following is true:

– The exception is taken in program order strictly after the first instruction of the exception handler at
the exception vector address.

– The exception is taken from the first instruction of the exception handler at the exception vector
address and the ESR_ELx.IESB syndrome bit is recorded as 0b0.

IQZSHG The definition of synchronized by Error synchronization events means that if the error that is synchronized by
Error synchronization events is generated by an instruction in program order before the Error synchronization
event, then either the error exception is taken before the Error synchronization event, or on executing the Error
synchronization event the following apply:

• If physical SError interrupt exceptions are unmasked or the error exception is taken synchronously, the
Error synchronization event ensures that the error exception is not taken in program order after the Error
synchronization event. This allows isolation of the software affected by the error.

• If physical SError interrupt exceptions are masked and the error exception is taken asynchronously:

– If the Error synchronization event was generated by an ESB, the error is recorded in DISR_EL1 or
DISR. Software can use the PE error state recorded in DISR_EL1 or DISR to determine what recovery
is possible.

– Otherwise, the error exception is pending when the Error synchronization event completes.

The SError interrupt might have been pending before or made pending by the Error synchronization event.

The definition does not mean that if the error is generated by a instruction in program order after the Error
synchronization event, then the error exception will only be taken after the Error synchronization event. The
error exception might be taken before the Error synchronization event, if the PE speculated past the Error
synchronization event and speculatively executed the instruction that generated the error. This might cause
software to generate a false failure. Error synchronization events are not speculation barriers.

ISQCFG It is implementation-specific which physical errors are synchronized by Error synchronization events. However,
the criteria for the PE error state mean that if the PE reports the PE error state as one of the following, the error
must be either explicitly or implicitly synchronized by Error synchronization events:

• Unrecoverable state (UEU).
• Recoverable state (UER).
• Restartable state (UEO).

This is because synchronized by Error synchronization events is a criterion for Unrecoverable state (UEU), and
the criteria for Recoverable state (UER) and Restartable state (UEO) satisfy the definition of synchronized by
Error synchronization events.

For other physical errors:

• An error that has been silently propagated by the PE and is not reported as either IMPLEMENTATION
DEFINED syndrome or Uncategorized error must be reported as Uncontainable (UC) and is not containable
even if synchronized by Error synchronization events. Software must assume the error has been silently
propagated even if the error is synchronized by Error synchronization events.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

37

Chapter 2. Armv8-A RAS Extension
2.4. Error synchronization event

• It is implementation-specific whether an error reported with an ESR_ELx.ESS syndrome that is
IMPLEMENTATION DEFINED syndrome or Uncategorized error is synchronized by Error synchronization
events.

• The following errors have not been consumed by the PE:

– A Deferred error.
– A Corrected error.
– An error exception from a read by hardware speculation that does not corrupt the state of the PE.

Software can recover execution from these errors regardless of whether the error is synchronized by Error
synchronization events.

• An implementation might have other IMPLEMENTATION DEFINED sources of SError interrupt, see RFNVVJ.
If an IMPLEMENTATION DEFINED SError interrupt is generated by a level-sensitive interrupt signal, it
cannot be synchronized by Error synchronization events.

IVFFYW An Error synchronization event might operate as follows:

(1) The PE ensures that any error synchronized by Error synchronization events and generated by an instruction
in program order before the Error synchronization event has caused a physical SError interrupt exception
to become pending.

(2) If a physical SError interrupt is pending for an error synchronized by Error synchronization events and
generated by an instruction in program order before the Error synchronization event, and physical SError
interrupt exceptions are not masked at the current Exception level, then the physical SError interrupt
exception is taken before completion of the Error synchronization event. The SError interrupt might have
been made pending by the Error synchronization event, or might have been pending before the Error
synchronization event.

IRDWTF The prioritization of asynchronous interrupts is IMPLEMENTATION DEFINED. This means the PE might take
another exception before an SError interrupt made pending by the Error synchronization event. In this case, the
SError interrupt remains pending.

Arm recommends the SError interrupt is prioritized over other exceptions.

RNPPGJ If an SError interrupt for an error synchronized by Error synchronization events is pending after completing
the Error synchronization event generated by an ESB instruction, and physical SError interrupt exceptions are
masked at the current Exception level, the ESB instruction performs the following steps:

(1) The pending physical SError interrupt is recorded in DISR_EL1 or DISR. This includes the PE error state
that the pending error exception would record if taken.

(2) The DISR_EL1.A bit or DISR.A bit is set to 0b1.

(3) The pending state of the physical SError interrupt is cleared.

The SError interrupt might have been made pending by the Error synchronization event, or might have been
pending before the Error synchronization event.

RBLRTM The criteria for ESB recording the PE error state in DISR_EL1 or DISR are the same as for that for recording
the PE error state in ESR_ELx or DFSR when an SError interrupt exception taken to the current execution state.

RKNWBN If an SError interrupt is taken as part of an Error synchronization event generated by an ESB instruction, the
ESB instruction address is the preferred return address of the exception.

Note

See [1] for the definition of the preferred return address for an exception.

RSFHDS On executing an ESB instruction when SError interrupt exceptions are masked, any pending SError interrupt
generated by an error that is not synchronized by Error synchronization events:

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

38

Chapter 2. Armv8-A RAS Extension
2.4. Error synchronization event

• Remains pending after completion of the Error synchronization event.
• Does not update DISR_EL1 or DISR.

ICQKXL The error recovery, fault handling, and critical error interrupts described by RAS System Architecture are
asynchronous interrupts, not errors, and so are not synchronized by Error synchronization events.

IBBGXN If multiple SError interrupt conditions are pending, an Error synchronization event synchronizes all errors that
are synchronized by Error synchronization events.

SVFHGT Software must be aware that an SError interrupt taken at an Error synchronization event or recorded in the
DISR_EL1 or DISR register by an ESB instruction might have been generated by hardware speculation of an
instruction in program order after the Error synchronization event.

2.4.1 ESB and Virtual SError interrupt exceptions

RLLLVR If all of the following are true, then an ESB instruction executed at EL0 or EL1 synchronizes a pending virtual
SError interrupt:

• EL2 is implemented and enabled in the current Security state.

• Any of the following are true:

– EL2 is using AArch64, HCR_EL2.AMO is 0b1, HCR_EL2.TGE is 0b0, and HCR_EL2.VSE is 0b1.
– EL2 is using AArch32, HCR.AMO is 0b1, HCR.TGE is 0b0, and HCR.VA is 0b1.

• The VSESR_EL2 and, if implemented, VDFSR registers are writable. See Fields in VSESR_EL2, VDFSR,
DISR(_EL1), and VDISR(_EL2).

In these cases, a virtual SError interrupt is pending, and the following occur when an ESB instruction is executed
at EL0 or EL1:

• If the virtual SError interrupt is unmasked at the current Exception level, it is taken before the completion
of the ESB instruction.

• If the virtual SError interrupt is masked at the current Exception level:

– HCR_EL2.VSE or HCR.VA cleared to 0b0.
– The virtual SError interrupt syndrome from VSESR_EL2 or VDFSR is recorded in VDISR_EL2 or

VDISR. See RHDCTW and RFLYGZ.
– VDISR_EL2.A or VDISR.A is set to 0b1 to indicate the SError interrupt was pending prior to the

execution of the ESB instruction.

RGXHYX If all of the following are true, then it is IMPLEMENTATION DEFINED whether or not an ESB instruction executed
at EL0 or EL1 synchronizes a pending virtual SError interrupt:

• EL2 is implemented and enabled in the current Security state.

• Any of the following are true:

– EL2 is using AArch64, HCR_EL2.AMO is 0b1, HCR_EL2.TGE is 0b0, and HCR_EL2.VSE is 0b1.
– EL2 is using AArch32, HCR.AMO is 0b1, HCR.TGE is 0b0, and HCR.VA is 0b1.

• The VSESR_EL2 and, if implemented, VDFSR registers are implemented as RAZ/WI. See Fields in
VSESR_EL2, VDFSR, DISR(_EL1), and VDISR(_EL2).

In these cases, a virtual SError interrupt is pending, If the ESB instruction synchronizes a pending virtual SError
interrupt in this case, then the following occur when an ESB instruction is executed at EL0 or EL1:

• If the virtual SError interrupt is unmasked at the current Exception level, it is taken before the completion
of the ESB instruction.

• If the virtual SError interrupt is masked at the current Exception level:

– HCR_EL2.VSE or HCR.VA cleared to 0b0.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

39

Chapter 2. Armv8-A RAS Extension
2.4. Error synchronization event

– The virtual SError interrupt syndrome in VDISR_EL2 or VDISR is set to zero. See RHDCTW and
RFLYGZ.

– VDISR_EL2.A or VDISR.A is set to 0b1 to indicate the SError interrupt was pending prior to the
execution of the ESB instruction.

If the ESB instruction does not synchronize a pending virtual SError interrupt, then an ESB instruction executed
at EL0 or EL1 ignores the pending virtual SError interrupt and the virtual SError interrupt stays pending.

RYVBSH If all of the following are true, then it is IMPLEMENTATION DEFINED whether or not an ESB instruction executed
at EL0 or EL1 synchronizes a pending virtual SError interrupt from an IMPLEMENTATION DEFINED source:

• EL2 is implemented and enabled in the current Security state.

• Any of the following are true:

– EL2 is using AArch64, HCR_EL2.AMO is 0b1, and HCR_EL2.TGE is 0b0.
– EL2 is using AArch32, HCR.AMO is 0b1, and HCR.TGE is 0b0.

If a virtual SError interrupt from an IMPLEMENTATION DEFINED source that is synchronized by Error
synchronization events is pending, then the following occur when an ESB instruction is executed at EL0
or EL1:

• If the virtual SError interrupt is unmasked at the current Exception level, it is taken before the completion
of the ESB instruction.

• If the virtual SError interrupt is masked at the current Exception level:

– The pending state of the virtual SError interrupt is cleared.
– The virtual SError interrupt syndrome is set to the IMPLEMENTATION DEFINED syndrome for the

virtual SError interrupt. See RYZCYX and RJQGXD.
– VDISR_EL2.A or VDISR.A is set to 0b1 to indicate the SError interrupt was pending prior to the

execution of the ESB instruction.

If a virtual SError interrupt from an IMPLEMENTATION DEFINED source that is not synchronized by Error
synchronization events is pending, then an ESB instruction executed at EL0 or EL1 ignores the pending virtual
SError interrupt and the virtual SError interrupt stays pending.

Note

RLLLVR, RGXHYX, and RYVBSH happen in parallel with the Error synchronization event for physical SError
interrupt exceptions.

2.4.2 Extension for synchronization at exception entry and return

IDYZRN The FEAT_IESB feature adds a control bit to each AArch64 SCTLR_ELx System register to insert an implicit
Error synchronization event at exception entry and exception return. For the register field descriptions, see [1].

RDPSJR The rules in this section apply when FEAT_IESB is implemented.

IWDSBL An implicit Error synchronization event has no effect on DISR_EL1 or VDISR_EL2.

RKJWNS When FEAT_DoubleFault is implemented, and the Effective value of SCR_EL3.NMEA is 0b1,
SCTLR_EL3.IESB is ignored and its Effective value is 0b1.

2.4.2.1 Synchronization on exception entry

RRNZWY For each value of ELx in EL1, EL2, EL3, if all of the following are true, then each exception that is taken to
ELx generates an Error synchronization event:

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

40

Chapter 2. Armv8-A RAS Extension
2.4. Error synchronization event

• ELx is using AArch64.
• The Effective value of SCTLR_ELx.IESB is 0b1.

RRPBWR For each value of ELx in EL1, EL2, EL3, if all of the following are true, then executing a DCPSx instruction
generates an Error synchronization event:

• The PE is in Debug state.
• ELx is using AArch64.
• The Effective value of SCTLR_ELx.IESB is 0b1.

RJQSKQ If an SError interrupt exception is taken to the Exception level ELy as a result of the Error synchronization event
generated on exception entry by the FEAT_IESB mechanism, then all the following occur:

• The PE sets the ESR_ELy.IESB bit in the SError interrupt exception syndrome to 0b1.

• The preferred return address for the SError interrupt exception is the exception vector address for the
original exception.

Note

ELy might be the same Exception level as ELx.

IFWZHV If SError interrupt exceptions are masked at ELx, any SError interrupt made pending by the Error synchronization
event stays pending.

UMMVJW The prioritization of asynchronous interrupts is IMPLEMENTATION DEFINED. This means that an implementation
might choose to behave as if the SError interrupt was taken before the implicit Error synchronization event, if
the SError interrupt was not masked, taking the SError interrupt in place of the exception.

In this case, ESR_ELy.IESB is set to 0b0 and the reported PE error state correctly indicates, for instance,
whether software can recover execution from the preferred return address for the SError interrupt in ELR_ELy.

When FEAT_DoubleFault is implemented, Arm recommends that the implicit Error synchronization event is
inserted before taking an exception to EL3.

2.4.2.2 Synchronization on exception return

RSKRCR For each value of ELx in EL1, EL2, EL3, if all of the following are true, then executing an exception return
instruction at ELx generates an Error synchronization event:

• The instruction does not generate any exception.
• ELx is using AArch64.
• The Effective value of SCTLR_ELx.IESB is 0b1.

Note

On an illegal return event the exception return instruction sets PSTATE.IL to 0b1, which causes the next
instruction to generate an Illegal State exception. The exception return instruction does not generate the
exception.

RCVPDN For each value of ELx in EL1, EL2, EL3, if all of the following are true, then executing an DRPS instruction at
ELx generates an Error synchronization event:

• The PE is in Debug state and the instruction does not generate any exception.
• ELx is using AArch64.
• The Effective value of SCTLR_ELx.IESB is 0b1.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

41

Chapter 2. Armv8-A RAS Extension
2.4. Error synchronization event

RGXQYD Any SError interrupt exception taken as part of the Error synchronization event terminates execution of the
instruction.

RLPKVM If an SError interrupt exception is taken to an Exception level, ELy, as a result of the Error synchronization
event generated on exception return by the FEAT_IESB mechanism, then all the following occur:

• The PE sets the ESR_ELy.IESB bit in the SError interrupt exception syndrome to an IMPLEMENTATION
DEFINED choice of 0b0 or 0b1.

• The preferred return address for the SError interrupt is the address of the ERET instruction.

IJZHDB If SError interrupt exceptions are masked at ELx, any SError interrupt made pending by the Error synchronization
event stays pending.

2.4.3 Error synchronization barriers in a minimal implementation

IGQQCK Error synchronization events and the ESB instruction can be implemented as no-ops if all of the following apply:

• Either there are no sources of SError interrupts, or all SError interrupts are reported as Uncategorized error
and not synchronized by Error synchronization events.

• Either EL2 is not implemented, or VSESR_EL2 and VDFSR are implemented as RAZ/WI. See Fields in
VSESR_EL2, VDFSR, DISR(_EL1), and VDISR(_EL2).

This allows for a very low cost implementation of the RAS Extension.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

42

Chapter 2. Armv8-A RAS Extension
2.5. Virtual SError interrupts

2.5 Virtual SError interrupts

ILSSCN When implemented, EL2 provides a virtual SError interrupt.

Virtual SError interrupts are generated by one of the following:

• Software sets HCR_EL2.AMO to 0b1 to enable the virtual SError interrupt mechanism and
HCR_EL2.VSE to 0b1 to inject a virtual SError interrupt. In AArch32 state these are the HCR.AMO and
HCR.VA bits respectively.

• An IMPLEMENTATION DEFINED source of virtual SError interrupts.

The RAS Extension provides:

• Mechanisms to allow a hypervisor to specify the syndrome value reported to a guest Operating System on
taking a virtual SError interrupt injected using HCR_EL2.VSE or HCR.VA.

• Support for EL0 or EL1 to isolate a virtual SError interrupt injected using the HCR_EL2.VSE or HCR.VA
mechanism as if it were a physical SError interrupt. See ESB and Virtual SError interrupt exceptions.

When the RAS Extension is implemented:

RHDCTW • When a virtual SError interrupt injected using HCR_EL2.VSE is taken to EL1 using AArch64, the PE sets
ESR_EL1.ESS to the value of the Virtual syndrome register, VSESR_EL2.

RFLYGZ • When a virtual SError interrupt injected using HCR_EL2.VSE or HCR.VA is taken to EL1 using AArch32,
DFSR.{AET,ExT} are set to values from VSESR_EL2 or VDFSR.

The remainder of DFSR is set as defined by VMSAv8-32.

RYZCYX • When a virtual SError interrupt from an IMPLEMENTATION DEFINED source is taken to EL1 using
AArch64, ESR_EL1.ESS is set to an IMPLEMENTATION DEFINED value that must report the PE error
state as either:

– An IMPLEMENTATION DEFINED syndrome. That is, ESR_EL1.ESS[24] is 0b1.

– An Uncategorized error. That is, ESR_EL1.ESS is zero.

RJQGXD • When a virtual SError interrupt from an IMPLEMENTATION DEFINED source is taken to EL1 using
AArch32, DFSR.{AET,ExT} are set to IMPLEMENTATION DEFINED values.

Note

See [1] for descriptions of VSESR_EL2 and VDFSR.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

43

Chapter 2. Armv8-A RAS Extension
2.6. Error records in the PE

2.6 Error records in the PE

IKMMPK A component that records detected errors is called a node by the RAS System Architecture. Each node
implements one or more error records.

RVNLPC It is IMPLEMENTATION DEFINED whether the processor that implements a PE implements any nodes.

RXKDRX A PE implementing the RAS Extension might implement the System register interface to nodes.

ISCVSB The System register interface to nodes is not restricted to accessing only PE nodes.

IZRKKQ When an error is recorded by a PE node, one or more of the following might be generated, according to the
configuration of the node:

• A fault handling interrupt.
• An error recovery interrupt.
• A critical error interrupt.
• An in-band error response.

See also:

• Error record System register view
• RAS System Architecture
• Nodes

2.6.1 Error record System register view

ISLVDW If the System register interface to a node is implemented, software accesses the error records of the node using
Error record System registers.

RBYLZQ The number of error records that can be accessed using the System registers is IMPLEMENTATION DEFINED,
and might be zero. The ERRIDR_EL1 and ERRIDR registers indicate the highest numbered index of the error
records that can be accessed using System registers, plus one.

INWBNQ The AArch64 Error record System registers are those registers with an ERX*_EL1 mnemonic. See Using
AArch64 System registers.

The AArch32 Error record System registers are those registers with an ERX* mnemonic. See Using AArch32
System registers.

These registers are defined in [1].

IVVMCQ The error record register contents are described by Error record registers, including memory mapped view.

RZBCFZ If FEAT_RASv1p1 is implemented, all error records accessible through System registers implement RAS
System Architecture v1.1.

SVBBNY To access an error record, software:

1. Sets the error selection register, ERRSELR_EL1.SEL or ERRSELR.SEL, to the index of the record being
accessed.

2. Accesses the error record using the ERX*_EL1 or ERX* System registers.

IWKXSB The error records accessed through the System registers might be accessible only to the PE associated with
those System registers, or they might be shared and therefore accessible to other PEs through either System
registers or as a memory-mapped component.

See also:

• Synchronization and error record accesses
• Error record registers, including memory mapped view

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

44

Chapter 2. Armv8-A RAS Extension
2.6. Error records in the PE

2.6.1.1 Fields in VSESR_EL2, VDFSR, DISR(_EL1), and VDISR(_EL2)

ISLNMV ESR_ELx, HSR, DFSR, VSESR_EL2, VDFSR, DISR_EL1, DISR, VDISR_EL2, and VDISR are error
syndrome registers that are written with either a syndrome by hardware on taking or deferring a physical SError
interrupt, or with a virtual syndrome value provided by software for a virtual SError interrupt, as applicable.

For a given implementation:

• If ESB never synchronizes any errors, then DISR_EL1.A and DISR.A might be RES0.

• The error syndrome registers are capable of storing any syndrome value that might be reported by hardware
on taking a physical error exception.

• If any of ESR_ELx[24:0], HSR[11:9], and DFSR[15:14,12] is not used and always set to zero by hardware
on taking a physical SError interrupt exception or synchronous External Abort exception, it can be RES0
in that syndrome register.

• A bit that is not used and always set to zero or always set to one by hardware on taking a physical SError
interrupt is permitted to be RES0 or RES1 respectively in the corresponding other syndrome registers. See
Table 2.2.

In Table 2.2, the bit described in the left-hand column is permitted to be RES0 or RES1 if the corresponding bit
is always set to zero or always set to one (respectively) on taking an SError interrupt in all of the registers listed
in the other columns marked Yes on that row.

Table 2.2: Permitted relaxations for bits in error syndrome registers

Bit that is permitted to be
RES0 or RES1 ESR_ELx[x], x ∈ [24:0] HSR[x], x ∈ [11:9]

DFSR[x], x ∈
[15:14,12]

VSESR_EL2[x] Yes - Yes
VDISR_EL2[x] Yes - Yes
DISR_EL1[x] Yes - -
VDFSR[x] - - Yes
VDISR[x] - - Yes
DISR[x] - Yes Yes

Note

ISLNMV means that VSESR_EL2, VDFSR, DISR_EL1, DISR, VDISR_EL2, and VDISR can be implemented
as RAZ/WI when all of the following apply:

• ESB never synchronizes any errors, including virtual System errors. That is, ESB executes as a no-op.

• ESR_ELx[24:0], HSR[11:9], and DFSR[15:14,12] are always set to zero by hardware on taking a
physical SError interrupt exception or synchronous External Abort exception. This means that the
PE error state is always reported as Uncategorized error when a physical SError interrupt is taken to
AArch64 state.

This allows for a very low cost implementation of the RAS Extension.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

45

Chapter 3
RAS System Architecture

IXKHGG The Reliability, Availability, Serviceability (RAS) System Architecture provides a framework for building RAS
features in a system. It provides a reusable component architecture for components that can detect and record
errors, and signal them to a Processing element (PE).

RDKJPB A node is a RAS System Architecture component that records an error detected or consumed by a system
component.

INTRXQ A RAS System Architecture implementation includes one or more nodes. The RAS System Architecture does
not require that all components in a system implement the RAS System Architecture or appear as a node.

IFPMKF The RAS System Architecture does not prescribe the level of reliability, availability, and serviceability in the
system. The RAS features that the system includes, for example to detect, correct, contain, or defer errors, are
IMPLEMENTATION DEFINED.

ILJWMZ The RAS features and behavior of components that do not implement the RAS System Architecture are
IMPLEMENTATION DEFINED.

IQTZCK Arm recommends that all errors are reported to a RAS System Architecture node to enable error recovery and
fault handling.

IHTDRT This section describes the behavior of RAS System Architecture nodes and other components that implement
the RAS System Architecture.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

46

Chapter 3. RAS System Architecture
3.1. Nodes

3.1 Nodes

RRDHHP A component might implement one or more nodes.

The RAS System Architecture defines the following common features for a node:

RXMFKF Error detection and correction
The level of error correction and detection implemented at a component is IMPLEMENTATION DEFINED.

A node might include the control to disable error reporting and recording of detected errors, for example
while software initializes the component.

It is IMPLEMENTATION DEFINED whether the node fully disables error detection and correction when
reporting and recording are disabled.

See Detecting and consuming errors.

RFNBYQ Fault handling interrupt
Asynchronous reporting of all or some recorded errors by an interrupt, that is, Corrected errors, Deferred
errors, and Uncorrected errors. It is IMPLEMENTATION DEFINED whether a node provides a single control
for all errors, or a first control for Corrected errors and a second control for all other detected errors.

See Fault handling interrupt.

RQQRSQ Corrected error counter
It is IMPLEMENTATION DEFINED whether a node implements a counter for counting Corrected errors.
Software might poll the error counter or initialize the counter with a threshold value and receive an
interrupt when the counter overflows. A counter overflows when incrementing the counter results in
unsigned integer overflow.

It is IMPLEMENTATION DEFINED which Corrected errors are counted.

It is IMPLEMENTATION DEFINED and might be UNPREDICTABLE whether Deferred errors and Uncorrected
errors are counted by the Corrected error counter.

See Standard format Corrected error counter.

RWFWCL Timestamps
It is IMPLEMENTATION DEFINED whether a node records a timestamp in each error record.

See Timestamp extension.

RZMMBH In-band error response (external abort)
In-band signaling of detected Uncorrected errors to the consumer of the error. It is also referred to as an
external abort. Corrected errors and Deferred errors are not reported by such means.

See In-band error response signaling (external aborts).

RVHDZW Error recovery interrupt
Asynchronous (out-of-band) reporting of recorded Uncorrected errors by an interrupt. The interrupt can
be used for error recovery, fault handling, or both. Corrected errors are not reported by this means. It
is IMPLEMENTATION DEFINED whether the node provides the control to enable Deferred errors to be
reported in this way. If the control is not provided, Deferred errors are not reported by this means.

See Error recovery interrupt.

RBJNDJ Critical Error interrupt
Critical error interrupts provide a mechanism for a node to report a critical error condition to a system
controller for error recovery.

See Critical error interrupt.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

47

Chapter 3. RAS System Architecture
3.1. Nodes

RRFNHX Records
A node implements one or more standard error records. When an error is detected or consumed, syndrome
about the error is written to an error record.

See Standard error record.

IWRWMK A node might implement some or all of these features.

RYHBGJ The first standard error record for a node contains:

• An identification register, ERR<n>FR, that describes the implemented features of the node.
• The ERR<n>CTLR register to enable or disable the features.

RJMRML A node has a single ERR<n>FR and a single ERR<n>CTLR register.

RCWWXN If the node implements multiple error records, each error record has the same features and all error records share
the controls.

Note

If a component requires multiple sets of controls, the component implements multiple nodes.

RGSGNZ For each node, it is IMPLEMENTATION DEFINED whether the fault and error reporting mechanisms apply to
both reads and writes, or whether the mechanisms can be individually controlled for reads and writes.

3.1.1 Multiple error records per node

RRMRKT Each node contains at least one error record.

IYKNTD A node might implement multiple error records for one or more of the following purposes:

• To record different types of error in different error records.
• To record errors from different components, or different FRUs accessed by a component, in different error

records.
• To record multiple errors.

UGMKHP Using a single error record is efficient for the implementation.

However, consider an example node for an SoC memory controller component that records errors detected
within both:

• An internal buffer that acts as a queue for memory accesses.
• An external memory module, that is, an external Field Replaceable Unit (FRU).

In this node, using a single error record for errors from either source might lead to the following scenarios:

(1) • A Corrected error is detected in the internal buffer and recorded in the error record.
• Before software processes the error record, an Uncorrected error is detected in the external FRU.

(2) • A Corrected error is detected in the external FRU and recorded in the error record.
• Before software processes the error record, an Uncorrected error is detected in the external FRU.

In both scenarios, the second error overwrites the syndrome for the first error, because Writing the error record
requires this. It is IMPLEMENTATION DEFINED what information, if any, is retained for the first error in the
IMPLEMENTATION DEFINED parts of the syndrome.

This means the two scenarios might be indistinguishable to software. In particular any indication of where the
Corrected error was detected in the syndrome for the first error might be overwritten by the second error. If this
is the case, software will need to treat the two scenarios identically, that is, as if there was a corrected internal
error.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

48

Chapter 3. RAS System Architecture
3.1. Nodes

However, an internal error might be considered more significant than an external FRU error. For example,
because the external FRU is field-replaceable whereas the SoC is not. Implementing separate error records for
the internal buffer and external FRU would avoid this issue.

Implementations should therefore consider the impact such choices might have on the serviceability and
availability of the system.

If a single node implements multiple error records, then all of the following are true:

RVRMSL • The error records are indexed sequentially within a group of error records starting from the first error
record for the node.

RHCXWW • For each error record other than the first error record for the node, the following are true:

– The ERR<n>FR.ED field is 0b00.
– ERR<n>FR[63:2] are RES0.
– The ERR<n>CTLR register is RES0.

RRFPVW A group of error records consists of the error records of one or more nodes.

RDBPFH A group of error records might be sparsely populated. Locations relating to unimplemented error records are
RAZ/WI, meaning that they have an ERR<n>FR register that reads as zero.

See Nodes.

ITPDYQ An example of a group of error records containing five error records owned by three nodes might be arranged as
shown in Figure 3.1:

Node: <0> <1>

<0> <1> <2>

<4>

<3> <4>Record:

Figure 3.1: A group containing five error records owned by three nodes

• Node <0> owns a single error record: <0>. ERR0FR describes the features for this node, and ERR0CTLR
contains the controls for this node.

• Node <1> owns two error records: <1> and <2>.

– ERR1FR describes the features for this node, and ERR1CTLR contains the controls for this node.
– ERR2FR.ED is 0b00 and ERR2CTLR is not implemented.

• Error record <3> is not implemented. ERR3FR.ED is 0b00, and ERR3CTLR, ERR3STATUS,
ERR3ADDR, and ERR3MISC<m> are not implemented.

• Node <4> owns a single error record: <4>. ERR4FR describes the features for this node, and ERR4CTLR
contains the controls for this node.

• If the group of error records is accessed using a memory-mapped view then ERRDEVID.NUM is 5.

• If the group of error records is accessed using System registers then ERRIDR_EL1.NUM is 5.

3.1.2 Detecting and consuming errors

RQZHDT A component detects an error when it detects that a deviation from correct service has occurred or will occur.
For example, including but not limited to when any of the following occurs that would not be permitted to occur
had the fault not been activated:

• A corrupt value has been or will be passed to a consumer.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

49

Chapter 3. RAS System Architecture
3.1. Nodes

• A transaction or other operation occurs or will occur that should not occur.

• A transaction or other operation that should occur does not occur or will not occur.

• A loss of uniprocessor semantics or any other loss of coherency in a multiprocessor coherent system is or
will be observed. See ISVZKY.

• The timing and/or order of transactions or other operations has been or will be changed.

• A latent error has become or will become undetectable. See IQXPLK.

ISVZKY Examples of a loss of uniprocessor semantics or other loss of coherency that might occur because of an error
include:

• A cache loses data that it holds in a modified state.

• A cache writes back unmodified data.

An example that should not occur is when a partial write to the protection granule of a cache location holding
poison occurs, and the cache later invalidates the line without writing back the poison value.

For example, if a cache fetches data from memory and receives poison, and subsequently, a partial write to
that location is insufficient to clean the location of the poison and the location remains poisoned, then the
cache should treat it as modified, even though it appears that the write did not modify the location. That is,
the cache should take ownership of the location and write-back poison when the location is evicted from the
cache. Otherwise if the original error was transient and later disappears from memory, the location reverts to the
unmodified value, silently propagating the error.

IQXPLK An example of a latent error becoming undetectable includes when a poison value indicating a deferred error is
lost at the interface between domains. For example, because a poison value is passed to a component that does
not support poisoning.

An example of a latent error becoming undetectable that should not occur is when a poison value is lost by
a partial write to the protection granule. In this case, the partial write should leave the protection granule
containing poison.

RLRSMZ A component consumes an error that is signaled to the component in response to a memory access, cache
maintenance operation, or other transaction initiated by the component as one of:

• An in-band error response.
• A deferred error.

RWXPDN When an error is detected or consumed by a component, the error is reported to one or more nodes.

It is IMPLEMENTATION DEFINED whether:

RVYRXT • A Requester that consumes a signaled detected error reports the consumed error.

RLRQSG • Errors are reported when a detected error is propagated between components.

RWDJGD • All corrected errors are reported.

RGVPMK • Errors detected on hardware speculation are reported.

RGCDCL It is IMPLEMENTATION DEFINED whether the node or nodes that an error is reported to are one or more of the
following:

• The same component that detected the error.

• The consumer of the transaction that consumes a detected error signaled by the producer of the transaction
which detected the error. Syndrome information might be passed with the signaled detected error to the
consumer.

• Another component that neither detected nor consumed the error. For example, a node whose purpose is
to record errors for other components. Such a node might comprise one record for each component for

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

50

Chapter 3. RAS System Architecture
3.1. Nodes

which it is recording an error, or a number of shared records, where each record identifies the originating
component, or some other arrangement.

When an error is detected or consumed by a component:

RLBHMF • If the error can be corrected:

– The error is corrected.
– Optionally, the detected error is reported to a node, the node records a Corrected error, and if

implemented and enabled, a fault handling interrupt is raised.
– If the error is detected on a read access by a consumer, corrected data is returned to the consumer.

RLMCVC • If the error cannot be corrected and can be deferred:

– The error is deferred. For example, the location being accessed is poisoned or poisoned data is
returned to the consumer.

– The error is reported to a node and the node records a Deferred error.
– If implemented and enabled, a fault handling interrupt is raised.
– If implemented and enabled, an error recovery interrupt is raised.

Note: An error cannot be deferred to a component that does not accept deferred errors.

RLKCNC • If the error cannot be corrected and cannot be deferred:

– The error is reported to a node and the node records an Uncorrected error.
– If implemented and enabled, a fault handling interrupt is raised.
– If implemented and enabled, an error recovery interrupt is raised.
– If the error is detected on an access by a consumer, and if implemented and enabled, a in-band error

response is returned to the consumer.
– If the component is unable to continue operation, it might enter a service failure mode.

INJHPF The criteria by which a component determines when it can correct or defer an error are IMPLEMENTATION
DEFINED. For example, if the error is detected in response to an access by a consumer that is incapable of
receiving a deferred error response, then it is not possible to defer the error to the consumer.

RLTBDP When an error is reported to a node, the node records syndrome information for the error in a standard error
record.

ISNNZR Arm recommends that hardware records sufficient information to:

• Determine whether error recovery is possible, if the error was not corrected by hardware.

• Allow fault analysis to find trends in the faults. This information is IMPLEMENTATION DEFINED but might
include the location of the data.

• Allow identification of a FRU.

IJNMFY The node registers might also contain control registers for error detection, correction and reporting at the
component.

IWMVTN Corrected errors can be recorded by counting each corrected error. Counting might be done by either software
or hardware. The fault handling process compares the corrected error rate with a threshold value to determine
whether to take action.

IQGNHF Standard format Corrected error counter and corrected error counter describe an optional standard hardware
mechanism for counting errors.

IGGQSR The details of any service failure mode are IMPLEMENTATION DEFINED. For example:

• A component that fetches data from memory and processes that data might halt processing and await
servicing by an application processor when it receives an in-band error response. This is a form of service
failure mode.

• When a PE takes an error exception and executes an error handler, this is also a form of service failure
mode.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

51

Chapter 3. RAS System Architecture
3.1. Nodes

The component might implement multiple functions, some of which can be in a service failure mode while
others continue to operate, or the service failure mode might affect multiple or all functions of the component.

See also:

• Standard error record
• Error recovery interrupt
• Fault handling interrupt
• In-band error response signaling (external aborts)
• Standard format Corrected error counter

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

52

Chapter 3. RAS System Architecture
3.2. Standard error record

3.2 Standard error record

RGTCQJ The RAS System Architecture defines a standard error record and a mechanism to access error records as
System registers or as a memory-mapped component.

RXGGTZ The standard error record contains:

• A status register, ERR<n>STATUS, for common status fields, such as the type and coarse characterization
of the error.

• An optional address register, ERR<n>ADDR.

• IMPLEMENTATION DEFINED status registers, referred to as ERR<n>MISC<m>. Arm recommends these
are used for:

– Identifying a FRU.
– Locating the error within the FRU.
– Optionally, a corrected error counter or counters for software to poll the rate of Corrected errors.
– Optionally, a timestamp value for when the error was recorded.

RMQPFL If RAS System Architecture v1.0 is implemented, there are two ERR<n>MISC<m> for each error record:

• ERR<n>MISC0.
• ERR<n>MISC1.

RQCKVG If RAS System Architecture v1.1 is implemented, there are 4 ERR<n>MISC<m> for each error record:

• ERR<n>MISC0.
• ERR<n>MISC1.
• ERR<n>MISC2.
• ERR<n>MISC3.

Note

The RAS System Architecture permits the implementation of ERR<n>MISC2 and ERR<n>MISC3 in
implementations of the RAS System Architecture v1.0.

RDXZPX An error record might include additional IMPLEMENTATION DEFINED controls and identification registers.

IPVYZG Error record System register view defines System registers for accessing a group of error records.

IPBJTL Memory-mapped view defines reusable formats for a memory-mapped views of error records. Use of reusable
formats by any component in the system is OPTIONAL.

IBNPZB The format of the error record registers is the same for both access mechanisms.

RWDSFZ Error records are preserved over Error Recovery reset. This allows for a diagnosis after system failure.

3.2.1 Component error states

RVWSSX When a node records an error, the component error state is recorded in the error record.

RLBBPN For a standard error record, the component error state types that can be recorded are:

• Corrected error (CE).
• Deferred error (DE).
• Uncorrected error.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

53

Chapter 3. RAS System Architecture
3.2. Standard error record

RKFPDF If and only if all of the following are true, then on recording an error, the component error state is recorded as
Corrected error (CE):

• The error was corrected.

• The error has not been silently propagated.

• The component has not entered as service failure mode and continues to operate.

• The implementation has not elected to record the component error state as Deferred error, or Uncorrected
error.

In normal circumstances, the error no longer infects the state of the component. However, in the case of a
persistent correctable fault, or other rare IMPLEMENTATION DEFINED circumstances, the error might remain
latent in the component.

RXJFMG If and only if all of the following are true, then on recording an error, the component error state is recorded as
Deferred error (DE):

• At least one of the following are true:

– The error was not corrected, and was deferred.
– The error was corrected, and the implementation elected to record the component error state as

Deferred error.

• The error has not been silently propagated.

• The error might be latent in the system.

• It is IMPLEMENTATION DEFINED whether the error continues to infect the state of the component or
whether it has been deferred to a consumer.

• The component has not entered as service failure mode and continues to operate.

• The implementation has not elected to record the component error state as Uncorrected error.

Note

A Deferred error might be recorded for an error that cannot be corrected. However, for the purposes of the
component error state taxonomy, Deferred error is classified separately from Uncorrected error.

RKJTQQ If and only if all of the following are true, then on recording an error, the component error state is recorded as
Uncorrected error:

• At least one of of the following are true:

– The error was not corrected and not deferred.
– The error might have been silently propagated.
– The component has entered as service failure mode and does not continue to operate the function that

consumed the error.
– The error was either corrected or deferred, and the implementation elected to record the component

error state as Uncorrected error.

• The error is latent in the system.

RWHGSP An Uncorrected error is recorded as one of the following sub-types:

• Uncontainable error (UC).
• Unrecoverable error (UEU).
• Recoverable error or Signaled error (UER).
• Restartable error or Latent error (UEO).

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

54

Chapter 3. RAS System Architecture
3.2. Standard error record

RPHLQQ If any of the following are true, then on recording a Uncorrected error, the component error state is recorded as
Uncontainable error (UC):

• The error might have been silently propagated by the component.

• The implementation has elected to record the error as Uncontainable error.

If the error cannot be isolated, the system must be shut down to avoid catastrophic failure.

RCTYHC If and only if all of the following are true, then on recording a Uncorrected error, the component error state is
recorded as Unrecoverable error (UEU):

• The error has not been silently propagated by the component.

• Either of the following are true:

– The component has halted operation (entered a service failure mode) of the function that consumed the
error. The component determines that software will not be able to recover operation of the function.

– The implementation has elected to record the error as Unrecoverable error.

• The implementation has not elected to record the error as Uncontainable error.

RCNBRY If and only if all of the following are true, then on recording a Uncorrected error, the component error state is
recorded as Signaled error (UER):

• The error was produced at the component.

• The error has not been silently propagated by the component.

• The error has been or might have been consumed, and was not recorded as a Deferred error.

• The implementation has not elected to record the error as Unrecoverable error, or Uncontainable error.

RFFTXZ If and only if all of the following are true, then on recording a Uncorrected error, the component error state is
recorded as Latent error (UEO):

• The error was produced at the component.

• The error has not been propagated by the component, silently or otherwise.

• The implementation has not elected to record the error as Deferred error, Unrecoverable error, or
Uncontainable error.

That is, the error was detected but not consumed, and was not recorded as a Deferred error.

Note

The producer is usually unable to determine whether a consumer has architecturally consumed the error.
An error might be recorded as Latent error if it has definitely not been propagated to any consumer, and as
Signaled error otherwise.

RQTYFD If and only if all of the following are true, then on recording a Uncorrected error, the component error state is
recorded as Recoverable error (UER):

• The error has not been silently propagated by the component.

• The component has halted operation (entered a service failure mode) of the function that consumed the
error.

• Either of the following is true:

– The component is reliant on consuming the corrupted data to continue operation of the function that
consumed the error. The component determines that software will be able to recover operation of the
function if it locates and repairs the error.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

55

Chapter 3. RAS System Architecture
3.2. Standard error record

– The implementation has elected to record the error as Recoverable error.

• The implementation has not elected to record the error as Deferred error, Unrecoverable error, or
Uncontainable error.

RCFZTH If and only if all of the following are true, then on recording a Uncorrected error, the component error state is
recorded as Restartable error (UEO):

• The error has not been silently propagated by the component.

• The component has halted operation (entered a service failure mode) of the function that consumed the
error.

• The component determines that it does not rely on the corrupted data, and so can recover operation even if
software does not locate and repair the error.

• The implementation has not elected to record the error as Deferred error, Unrecoverable error, or
Uncontainable error.

ITVJNM The component error state types are summarized by Figure 3.2. Figure 3.2 assumes the component supports the
resulting component error state and the implementation never elects to record an error as a different component
error state when permitted.

Uncorrected

Error corrected?

Error deferred?

no

Corrected
(CE)

yesSilently
propagated?

no

Uncontainable
(UC)

maybe

Deferred
(DE)

yes

State recoverable?

no

Producer or consumer?

Action required?

consumer

Propagated?
(Signaled as error)

producer

yes

Unrecoverable
(UEU)

no

Recoverable
or Signaled (UER)

yes

Restartable
or Latent (UEO)

no yes no

Figure 3.2: Component error state types

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

56

Chapter 3. RAS System Architecture
3.2. Standard error record

3.2.2 Writing the error record

RMDXXV When a new error is recorded, the node:

• Does one of the following:

– Overwrites the error record with the syndrome for the new error.
– Keeps the syndrome for the previous error.

• Modifies ERR<n>STATUS.{CE, DE, UE} to indicate the component error state. See Component error
states and priorities.

• Counts the error, if a corrected error counter is implemented and the error is of a type that the counter
counts.

RBGXQQ If counting a Deferred error or Uncorrected error causes the counter to overflow, then ERR<n>STATUS.OF is
set as it would be for a Corrected error that causes corrected error counter overflow. However, if the RAS System
Architecture requires that recording the Deferred error or Uncorrected error sets the ERR<n>STATUS.OF flag
to 0b1, then this flag is also set to 0b1 even if the error is counted and the corrected error counter does not
overflow.

3.2.2.1 Component error states and priorities

RPXCDZ The highest priority recorded component error state type is recorded in the ERR<n>STATUS.{V, CE, DE, UE,
UET} fields, as shown in Table 3.1.

In Table 3.1, V, CE, DE, UE, UET refer to fields in ERR<n>STATUS.

Table 3.1: Encoding the highest priority component error state

V CE DE UE UET
Highest priority component error state
type Mnemonic

0 UNKNOWN UNKNOWN UNKNOWN UNKNOWN None -
1 0b00 0 0 UNKNOWN None -
1 != 0b00 0 0 UNKNOWN Corrected error CE
1 X 1 0 UNKNOWN Deferred error DE
1 X X 1 0b10 Uncorrected error: Latent error or

Restartable error
UEO

1 X X 1 0b11 Uncorrected error: Signaled error or
Recoverable error

UER

1 X X 1 0b01 Uncorrected error: Unrecoverable error UEU
1 X X 1 0b00 Uncorrected error: Uncontainable error UC

IQHBGV The component error state types implemented at a node are IMPLEMENTATION DEFINED. An implementation
might only include a simplified subset of these component error state types.

A node can always elect to record:

• UEO as any of UER, UEU, or UC.
• UER as either UEU or UC.
• UEU as UC.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

57

Chapter 3. RAS System Architecture
3.2. Standard error record

3.2.2.2 Prioritizing errors, RAS System Architecture v1.0

RZPTXT When RAS System Architecture v1.0 is implemented, overwriting depends on the component error state type of
the previous highest priority error and on the component error state type of the newly recorded error, as shown
in Table 3.2.

In Table 3.2:

• Each row corresponds to the highest priority previous component error state type recorded in the error
record.

• Each column corresponds to the component error state type of the new detected error.

The row and column headings use the mnemonics from Table 3.1, and the following additional abbreviations
are used:

K Keep. Keep the previous error syndrome. It is IMPLEMENTATION DEFINED whether ERR<n>STATUS.OF
is set to 0b1 or unchanged.

O Overflow. Keep the previous error syndrome and set ERR<n>STATUS.OF to 0b1.

W Overwrite. Overwrite with the new error syndrome. It is IMPLEMENTATION DEFINED whether
ERR<n>STATUS.OF is set to 0b0 or unchanged.

CK Count and keep. Count the error if a corrected error counter is implemented, and keep the previous error
syndrome. If the counter overflows, or if no corrected error counter is implemented, it is IMPLEMENTATION
DEFINED whether ERR<n>STATUS.OF is set to 0b1 or unchanged.

CWK
Count and overwrite or keep. The behavior is IMPLEMENTATION DEFINED and described by the value of
ERR<q>FR.CEO, where <q> is the index of the first error record owned by the node:

• 0: Count the error if a corrected error counter is implemented. Keep the previous error syndrome.

• 1: Count the error. If ERR<n>STATUS.OF == 1 before the error is counted, keep the previous
syndrome. Otherwise overwrite with the new error syndrome.

If counting the error causes unsigned overflow of the counter, or if no corrected error counter is
implemented, ERR<n>STATUS.OF is set to 0b1.

CW
Count and overwrite. Count the error if a corrected error counter is implemented, and overwrite with
the new error syndrome. If a corrected error counter is implemented and counting the error causes
unsigned overflow of the counter, ERR<n>STATUS.OF is set to an UNKNOWN value. Otherwise, it is
IMPLEMENTATION DEFINED whether ERR<n>STATUS.OF is set to 0b0 or unchanged.

WO
Overwrite and overflow. Overwrite with the new error syndrome. ERR<n>STATUS.OF is set to 0b1.

Table 3.2: RAS System Architecture v1.0 rules for overwriting error records

CE DE UEO UER UEU UC

- CW W W W W W
CE CWK W W W W W
DE CK O W W W W
UEO CK K O WO WO WO
UER CK K O O WO WO
UEU CK K O O O WO
UC CK K O O O O

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

58

Chapter 3. RAS System Architecture
3.2. Standard error record

3.2.2.3 Prioritizing errors, RAS System Architecture v1.1

RPNFPB When RAS System Architecture v1.1 is implemented, overwriting depends on the component error state type of
the previous highest priority error and on the component error state type of the newly recorded error, as shown
in Table 3.3.

In Table 3.3:

• Each row corresponds to the highest priority previous component error state type recorded in the error
record.

• Each column corresponds to the component error state type of the new detected error.

The row and column headings use the mnemonics from Table 3.1, and the following additional abbreviations
are used:

W Overwrite. Overwrite with the new error syndrome. ERR<n>STATUS.OF is unchanged.
WO

Overwrite and overflow. Overwrite with the new error syndrome. ERR<n>STATUS.OF is set to 0b1.
O Overflow. Keep the previous error syndrome and set ERR<n>STATUS.OF to 0b1.

If no corrected error counter is implemented, then all of the following apply:

CW
Behaves the same as W.

CWO and CO
Behave the same as O.

Otherwise, a corrected error counter is implemented, and all of the following apply:

CW
Count and overwrite. Overwrite with the new error syndrome, and count the error. If counting the error
causes unsigned overflow of the counter, set ERR<n>STATUS.OF to 0b1.

CWO
Count, overwrite or keep, and overflow. The behavior is IMPLEMENTATION DEFINED and described by
the value of ERR<n>FR.CEO:

• 0: The behavior is the same as CO.

• 1: Count the error. If ERR<n>STATUS.OF == 1 before the error is counted, the behavior is the same
as CO. Otherwise, the behavior is the same as CW.

CO Count and overflow. Keep the previous error syndrome, and count the error. If counting the error causes
unsigned overflow of the counter, set ERR<n>STATUS.OF to 0b1.

Table 3.3: RAS System Architecture v1.1 rules for overwriting error records

CE DE UEO UER UEU UC

- CW W W W W W
CE CWO WO WO WO WO WO
DE CO O WO WO WO WO
UEO CO O O WO WO WO
UER CO O O O WO WO
UEU CO O O O O WO
UC CO O O O O O

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

59

Chapter 3. RAS System Architecture
3.2. Standard error record

3.2.2.4 Overwriting the error syndrome

RRVGRM When the node records an error in an error record and the previous syndrome is overwritten with the new error
syndrome:

• Modifies ERR<n>STATUS.{V, CE, DE, UE} to indicate the new component error state, as described by
Table 3.1:

– Fields shown as X in Table 3.1 are unchanged.
– Other ERR<n>STATUS.{V, CE, DE, UE} fields are set to the value given in Table 3.1.

If the component error state is Corrected error, then the nonzero value written to ERR<n>STATUS.CE is
IMPLEMENTATION DEFINED and depends on the properties of the Corrected error recorded.

• If the new error is a type of Uncorrected error, ERR<n>STATUS.UET is set to indicate the component
error state sub-type. See Component error states and priorities.

• The ERR<n>STATUS.{ER, PN, IERR, SERR} syndrome fields are written with the syndrome for the new
error.

• If there is an address syndrome for the new error, ERR<n>STATUS.AV is set to 0b1 and the address is
written to ERR<n>ADDR. Otherwise ERR<n>STATUS.AV is set to 0b0 and ERR<n>ADDR becomes
UNKNOWN.

• If the RAS Timestamp Extension is implemented, a timestamp is recorded in ERR<n>MISC3 and
ERR<n>STATUS.MV is set to 0b1.

• If there is other miscellaneous syndrome for the new error, it is written to the ERR<n>MISC<m> registers
and ERR<n>STATUS.MV is set to 0b1.

• If there is no additional miscellaneous syndrome for the new error written to the ERR<n>MISC<m>
registers, then it is IMPLEMENTATION DEFINED whether ERR<n>STATUS.MV is set to 0b0 or unchanged.

– If software can determine from the ERR<n>MISC<m> contents that the syndrome is not related to
the highest priority error, the ERR<n>STATUS.MV bit is unchanged.

– Otherwise the ERR<n>STATUS.MV bit is cleared to zero.

• ERR<n>STATUS.V is set to 0b1.

SXFYQK After reading an ERR<n>STATUS register, software has to write to the register to clear the valid bits in the
register to allow new errors to be recorded. During this period a new error might overwrite the syndrome for the
previously read error. To prevent this, the write, or part of the write, is ignored by hardware if fields appear to
have been updated. For more information see ERR<n>STATUS.

3.2.2.5 Keeping the previous error syndrome

RBGBBD When the previous error record is kept:

• Sets the applicable one of ERR<n>STATUS.{CE, DE, UE} to indicate the new component error state:

– If Uncorrected error, then ERR<n>STATUS.UE is set to 0b1.
– If Deferred error, then ERR<n>STATUS.DE is set to 0b1.
– If Corrected error, then the nonzero value written to ERR<n>STATUS.CE is IMPLEMENTATION

DEFINED and depends on the properties of the Corrected error recorded.

The remaining ERR<n>STATUS.{UE, DE, CE} fields are unchanged.

• ERR<n>STATUS.UET is unchanged, even if the new error is a type of Uncorrected error.

• ERR<n>STATUS.{ER, PN, IERR, SERR}, ERR<n>ADDR, and ERR<n>STATUS.AV are unchanged.

• If the RAS Timestamp Extension is implemented, the timestamp is not recorded.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

60

Chapter 3. RAS System Architecture
3.2. Standard error record

• It is IMPLEMENTATION DEFINED whether any of ERR<n>MISC<m> are updated. The contents
of ERR<n>MISC<m> are IMPLEMENTATION DEFINED. Therefore, it is possible that some of the
information about an otherwise discarded error is recorded in these registers. If data is written to any of
ERR<n>MISC<m>, then ERR<n>STATUS.MV is set to 0b1.

3.2.2.6 Detecting multiple errors

RRXQWW If multiple errors are simultaneously reported to a node, it is IMPLEMENTATION DEFINED whether the node
behaves:

• As if all errors were recorded, in any order. In this case, the prioritization rules mean that the highest
priority error is recorded in the syndrome registers. However, the final value of the syndrome registers
might depend on the logical order in which the errors were recorded.

• As if the highest priority error was recorded and one or more of the lower priority errors were not recorded.

RZJXMD If a corrected error counter is implemented, and multiple countable errors are detected simultaneously, it is
IMPLEMENTATION DEFINED and might be UNPREDICTABLE whether all the errors are counted.

3.2.3 Error syndrome

IYLHWP This section provides additional information for some of the error syndrome fields defined in the standard error
record.

3.2.3.1 Corrected error field

IBRMPK When the syndrome for a Corrected error is recorded, the node can indicate through the ERR<n>STATUS.CE
error type field one of the following:

• The component or node has determined that the error is transient, or likely to be so.
• The component or node has determined that the error is persistent, or likely to be so.
• The component or node does not support making such a determination or is unable to.

RFCQDJ The mechanism by which a component or node determines whether a Corrected error is transient or persistent is
IMPLEMENTATION DEFINED.

3.2.3.2 Poison indicator

IDTYHM If supported by a node, when the syndrome for a Deferred error or Uncorrected error is recorded, the
ERR<n>STATUS.PN syndrome field is set to indicate that a poisoned value was detected.

RPNKSH When the node records an error and overwrites the previous error syndrome, if all of the following are true the
ERR<n>STATUS.PN syndrome field is set to 0b1, and is set to 0b0 otherwise:

• The component checks a value for an error and detects the value indicates a previously deferred error. For
example, the value is a poisoned value.

• The node does one of the following:

– Records the error as an Uncorrected error. For example, because the component does one or more of:

* Enters a service failure mode.
* Signals an in-band error response to the consumer of the data.
* Propagates the value to a component that does not support poison. This is an Uncontainable error.

– If the component has deferred the error again, records the error as a Deferred error. See also Bridges
to other architectures.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

61

Chapter 3. RAS System Architecture
3.2. Standard error record

IJBDPT When a component checks a value and detects an uncorrectable error, and defers the error by generating a
poisoned value, the node records this as a Deferred error with ERR<n>STATUS.PN set to 0b0.

Therefore when software examines the error records, a ERR<n>STATUS.PN value of 0b1 indicates that the
component was propagating a previously deferred error, and so the fault did not originate in that component. An
ERR<n>STATUS.PN value of 0b0 indicates that the fault originated at the component.

IQLSMY In some Error Detection Code (EDC) schemes, a poisoned value is encoded as a reserved value, one that would
not be generated by a detectable corruption of valid data. For example, a SECDED scheme where the poisoned
value has a Hamming distance greater than 2 bits from any valid value.

For such a scheme it is IMPLEMENTATION DEFINED whether the component can distinguish a corrupt data value
from the poison value. The component might accept and store a poisoned value when an error is deferred to it,
but treat it as any other uncorrectable error when it is accessed, meaning ERR<n>STATUS.PN is set to 0b0.

3.2.4 Security and Virtualization

IBQFLD Access to the Error System register view of error record registers can be controlled using Trap exceptions. See
[1].

RVXDJW If a PE implements System register access to error records for a component that processes Secure data, then
either:

• Software has to configure the Trap exception controls to prevent Non-secure access to the error records.
• The component provides reduced functionality to Non-secure state that does not affect operation in Secure

state, or does not provide visibility of Secure data, or both.

IJTWWK The definition of Secure data is implementation-specific and depends on how the information encoded in the
data relates to the threat model for the system.

For example, in a typical system that supports both Secure and Non-secure memory, data stored in or related to
Secure memory is considered Secure data, and other data is considered Non-secure data.

RNLZMH If a memory-mapped component processes Secure data, then one of the following applies:

• The error records are visible only to Secure accesses.
• The error records have reduced visibility to Non-secure accesses, that does not affect operation in Secure

state, does not provide visibility of Secure data, or both.

RDDWHT If a memory-mapped component processes only Non-secure data, then it is IMPLEMENTATION DEFINED
whether:

• The error records are visible to both Non-secure and Secure accesses.
• It is configurable whether the error records are visible to Non-secure accesses.
• The error records are visible only to Secure accesses.

RBJKZW If the memory-mapped component includes registers to generate message signaled interrupts (MSIs) and the
component can be programmed by Non-secure accesses, the MSIs do not target Secure addresses.

3.2.5 Synchronization and error record accesses

RVKYVJ When a component reports an error to a node, the node updates the error record registers and might generate
one or more of the following:

• A fault handling interrupt.
• An error recovery interrupt.
• A critical error interrupt.
• An in-band error response.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

62

Chapter 3. RAS System Architecture
3.2. Standard error record

Each of these might generate an exception at a PE.

RVYCRY If the PE reads the error record registers at the node, after taking an exception generated by such a signal from a
node, then the read returns the updated values. This applies for both:

• Error records accessed through memory-mapped registers, only if the memory-mapped registers are
mapped as a Device type that does not permit read speculation.

• Error records accessed through System registers, only if either the exception is a Context synchronization
event or a Context synchronization event occurs in program order after taking the exception and before
reading the System registers

RNHZBG When a component reports an error to node, the node updates the error record registers in finite time, and the
update is globally observed for all observers in the system in finite time.

IJMVVD Direct reads of the System registers, including error record System registers, can occur speculatively and
out-of-order relative to other instructions executed on the same PE.

RWFPWF Direct reads and writes of the error records through the ERX*_EL1 AArch64 System registers are indirect reads
of ERRSELR_EL1.

RFZBLM Direct reads and writes of the error records through the ERX* AArch32 System registers are indirect reads of
ERRSELR.

3.2.6 Bridges to other architectures

RLWGCK A bridge is a component that passes transactions between two domains.

ILHGZM For example, between an SoC domain and a Peripheral Component Interconnect Express (PCIe) domain.

IFKKVY As described in Error propagation, a high-level transaction might consist of a sequence of operations passed
between the domains by the bridge. For the purposes of this manual, the most basic form of a unidirectional
transfer between a producer and consumer is considered as a transaction. That is, each one of the sequence of
operations is a transaction.

RZXBSX Other standards might define mechanisms for RAS error recording and handling in particular domains.

IYQMVB In the case of PCIe, the PCIe domain might implement one or more of:

• Simple error recording. Errors are recorded in the PCIe device status register.

• PCIe advanced error reporting (AER). Errors are recorded in the AER logs.

• Vendor-specific error recording. Errors are recorded in Designated-Vendor-Specific Extended Capability
(DVSEC) logs.

In each case, errors detected in the PCIe domain are recorded in the PCIe domain and not in the SoC domain.

UYTXWG For the purposes of tracking the origins of a detected error or a deferred error that has propagated between
domains, it may be useful to record when a transaction propagates a detected error or a deferred error to a
different domains.

Arm recommends that a bridge between domains, where the domains implement different error recording
mechanisms, uses a node to record when a transaction that is signaled as propagating either a detected error
or a deferred error crosses between the domains, recording the source and direction of the transaction in the
IMPLEMENTATION DEFINED syndrome for the error record. The direction is either inbound or outbound.

See also:

• Multiple error records per node

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

63

Chapter 3. RAS System Architecture
3.2. Standard error record

3.2.7 Software faults

ISSQXP Examples of software faults include:

• Access to memory or peripheral register that is not present. This includes cases where Secure and
Non-secure memory are physically aliased.

• Access to a peripheral that is not permitted at the completer. For example, a Non-secure access to a Secure
register.

• Access to a peripheral that is in an inaccessible state or other illegal access. For example, the peripheral is
powered down, or the value written is not supported.

IBYWQQ Software fault handling is outside the scope of the RAS System Architecture. Arm makes the following
recommendations for accesses that constitute a software fault:

• Accesses to a memory location that is not present can return an in-band error response when all of the
following are true:

– The location is not present due to a configuration of the physical address map that is either static or
controlled by trusted software. For example, a configuration choice made by the designer, set during
initial system configuration, or reconfigured by trusted software.

It is not because a peripheral has been unexpectedly removed or the address map has been otherwise
reconfigured. For example, when a user unplugs a peripheral, or using software controls intended to
be available to untrusted software. The split between trusted and untrusted is implementation-specific,
but, for example untrusted would typically include unprivileged software and, in systems that supports
virtualization, guest operating systems. Untrusted might or might not include Non-secure hypervisors.

– Within the aligned page that contains the not-present location, all other locations are also not present
and have the same behavior. The size of this page is the largest supported translation granule size of
all PEs in the system.

That is, there is never any legitimate reason for software to access the page containing the location, and
trusted software should set up the translation tables to prevent accesses from occurring.

• Where another standard defines a rule or sets a convention, that should be followed. For example:

– For a PCIe device, certain illegal accesses are RAO/WI or can have their behavior configured by
software.

– [1] requires that reserved accesses to a component behave as RAZ/WI. This includes reads and writes
of unallocated or unimplemented registers and writes to read-only registers, .

– [1] requires that under certain conditions accesses to certain debug registers return an error response.

For other cases, the access should do one of the following:

• Return zeros to the requester for a read and ignore writes. This is the recommended behavior for reads and
writes of unallocated or unimplemented registers, reads of write-only registers, and writes of read-only
registers.

• Return all-ones to the requester for a read and ignore writes.
• Return an IMPLEMENTATION DEFINED value to the requester for a read and ignore writes.

In some implementations this is done by the completer of the access.

In other implementations this might be done by a bridge wrapper for a component or components that do not
natively support recording a software fault. The wrapper detects and suppresses an in-band error response from
the completer and responds to the requester appropriately. Such a wrapper might be configurable and might also
record the software fault, as described by INXCDR.

If the system does not support any means to record the software fault, an in-band error response should not be
returned to the requester.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

64

Chapter 3. RAS System Architecture
3.2. Standard error record

INXCDR The system might implement a RAS System Architecture node or nodes and error records to record software
faults, for improved debuggability of the faults.

When a node and error records for recording software faults is implemented, software faults can be recorded as
an error, and reported with an in-band error response and/or a fault handling interrupt, referred to as a software
fault interrupt. Arm recommends that this is configurable through ERR<n>CTLR, allowing software to disable
the feature. (For example, if an error exception might cause an unrecoverable software state.)

When the feature is disabled, accesses should behave as recommended above.

The following ERR<n>STATUS.SERR values can be used to record software faults.

SERR Description

13 Illegal address (software fault). For example, access to unpopulated memory.
14 Illegal access (software fault). For example, byte write to word register.
15 Illegal state (software fault). For example, device not ready.
25 Error recorded by PCIe error logs. Indicates that the node has recorded an error in a PCIe

error log. This might be the PCIe device status register, AER, DVSEC, or other mechanisms
defined by PCIe.

3.2.8 Other sources of error and warnings

INWXQS Other sources of error and warning are possible in a system. Within the RAS System Architecture these are
signaled to a PE using an error recovery interrupt or fault handling interrupt.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

65

Chapter 3. RAS System Architecture
3.3. Error recovery interrupt

3.3 Error recovery interrupt

IJXHYH If an error recovery interrupt is implemented by a node, then the set of controls for enabling error recovery
interrupts is IMPLEMENTATION DEFINED. Software uses ERR<n>FR to determine what controls are
implemented.

RVYFND For a node <n>, if an error recovery interrupt is implemented, then a control for enabling the error recovery
interrupt on Deferred errors, ERR<n>CTLR.DUI, might be implemented.

RXGBJV For a node <n>, if the ERR<n>CTLR.DUI control is implemented, then the error recovery interrupt is enabled
for Deferred errors when ERR<n>CTLR.DUI is 0b1, and disabled for Deferred errors when ERR<n>CTLR.DUI
is 0b0.

RKRDFZ For a node <n>, if the ERR<n>CTLR.DUI control is not implemented, then the error recovery interrupt is
always disabled for Deferred errors.

RQSYLK For a node <n>, if an error recovery interrupt is implemented, then a control for enabling the error recovery
interrupt on Uncorrected errors, ERR<n>CTLR.UI, might be implemented.

RCBVJB For a node <n>, if the ERR<n>CTLR.UI control is implemented, then the error recovery interrupt is
enabled for Uncorrected errors when ERR<n>CTLR.UI is 0b1, and. disabled for Uncorrected errors when
ERR<n>CTLR.UI is 0b0.

RZLXWQ For a node <n>, if the ERR<n>CTLR.UI control is not implemented, then the error recovery interrupt is always
enabled for Uncorrected errors.

RBLVMZ For a node <n>, if an error recovery interrupt is not implemented, then the ERR<n>CTLR.{DUI,UI} controls
are not implemented.

RXWHZR For each implemented control, it is further IMPLEMENTATION DEFINED whether there is a single control or
separate controls for reads and writes.

RLMFJX The error recovery interrupt is generated when the node records an error, even if the error syndrome is discarded
because the error record already records a higher priority error.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

66

Chapter 3. RAS System Architecture
3.4. Fault handling interrupt

3.4 Fault handling interrupt

IDZTCG If a fault handling interrupt is implemented by a node, then the set of controls for enabling fault handling
interrupts is IMPLEMENTATION DEFINED. Software uses ERR<n>FR to determine what controls are
implemented.

RWHXMB For a node <n>, if fault handling interrupt is implemented, then the control for generating the fault handling
interrupt on corrected error events, ERR<n>CTLR.CFI, might be implemented.

RQWFKB For a node <n>, if the ERR<n>CTLR.CFI control is implemented, then the fault handling interrupt is enabled
for corrected error events when ERR<n>CTLR.CFI is 0b1 and disabled for corrected error events when
ERR<n>CTLR.CFI is 0b0.

RTSPRZ For a node <n>, if the ERR<n>CTLR.CFI control is implemented, then the ERR<n>CTLR.FI control is
implemented, and the fault handling interrupt is enabled for Deferred errors and Uncorrected errors when
ERR<n>CTLR.FI is 0b1 and disabled for Deferred errors and Uncorrected errors when ERR<n>CTLR.FI is
0b0.

RTSXMY For a node <n>, if the ERR<n>CTLR.CFI control is not implemented, then the control for generating the fault
handling interrupt on all recorded errors, ERR<n>CTLR.FI, might be implemented.

RZCKJL For a node <n>, if the ERR<n>CTLR.FI control is implemented and the ERR<n>CTLR.CFI control is not
implemented, then the fault handling interrupt is enabled for corrected error events, Deferred errors, and
Uncorrected errors when ERR<n>CTLR.FI is 0b1 and disabled for corrected error events, Deferred errors, and
Uncorrected errors when ERR<n>CTLR.FI is 0b0.

RMLJNK For a node <n>, if the ERR<n>CTLR.FI control is not implemented, then the fault handling interrupt is always
enabled for all corrected error events, Deferred errors and Uncorrected errors.

RWFNLG For a node <n>, if a fault handling interrupt is not implemented, then the ERR<n>CTLR.{CFI,FI} controls are
not implemented.

A Corrected error event is defined as follows:

RCGZMD • If the node implements a corrected error counter then all of the following are true:

– A corrected error event occurs when a counter overflows and sets a counter overflow flag to 0b1.

– It is UNPREDICTABLE whether a corrected error event occurs when a software write that sets the
counter overflow flag to 0b1.

– It is UNPREDICTABLE whether a corrected error event occurs when a counter overflows and the
overflow flag was previously set to 0b1.

RXFMTV • If the node does not implement Corrected error counters then a corrected error event occurs when the node
records an error as Corrected error.

RYZDHM For each implemented control, it is IMPLEMENTATION DEFINED whether there is a single control or separate
controls for reads and writes.

RDQWYH The fault handling interrupt is generated when the node records an error, even if the error syndrome is discarded
because the error record already records a higher priority error.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

67

Chapter 3. RAS System Architecture
3.5. In-band error response signaling (external aborts)

3.5 In-band error response signaling (external aborts)

RQTNMH For a node <n>, if support for in-band error response signaling, also referred to as external aborts, is implemented
by the node, then the control for enabling in-band error response signaling, ERR<n>CTLR.UE, might be
implemented. Software uses ERR<n>FR to determine what controls are implemented.

RBBFMC For a node <n>, if the ERR<n>CTLR.UE control is implemented, then in-band error response signaling is
enabled for Uncorrected errors when ERR<n>CTLR.UE is 0b1, and in-band error response signaling is disabled
for Uncorrected errors when ERR<n>CTLR.UE is 0b0.

RXDXWP For a node <n>, if the ERR<n>CTLR.UE control is not implemented and support for in-band error response
signaling is implemented, then in-band error response signaling is always enabled for Uncorrected errors.

RDMTCY For a node <n>, if support for in-band error response signaling is not implemented, then the ERR<n>CTLR.UE
control is not implemented.

RNKMDL For the ERR<n>CTLR.UE control, it is further IMPLEMENTATION DEFINED whether there is a single control or
separate ERR<n>CTLR.{RUE, WUE} controls for reads and writes.

RJRYXD When the node records an Uncorrected error and signals an in-band error response, it sets ERR<n>STATUS.ER
to 0b1.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

68

Chapter 3. RAS System Architecture
3.6. Critical error interrupt

3.6 Critical error interrupt

RQHJMS Support for critical error conditions and critical error interrupts at a node is IMPLEMENTATION DEFINED.
Software uses ERR<n>FR to determine what support is implemented.

RLWHDB Critical error interrupts provide a mechanism for a node to report a critical error condition to a system controller
for error recovery.

IWPFSF An example of a critical error is one where the node has entered a service failure mode which means that the
primary error recovery mechanisms cannot be used. For example, if a memory controller enters a failure mode
and stops servicing memory requests from application processors, and application processors host the primary
error recovery software, then the error has to be signaled to a secondary error controller that has its own private
resources in order to record the error.

RYQLPR For a node <n>, if the critical error interrupt is implemented, then the error recovery interrupt is implemented.

RLZVMK For a node <n>, if the critical error interrupt is implemented, then the critical error interrupt is enabled when
ERR<n>CTLR.CI is 0b1 and disabled when ERR<n>CTLR.CI is 0b0.

RJSVFW For a node <n>, if the critical error interrupt is implemented, then when a critical error condition is recorded the
node sets ERR<n>STATUS.CI to 0b1, regardless of whether the critical error interrupt is enabled or disabled.

ERR<n>STATUS.CI is set to 0b1 in addition to the other syndrome information for the error, which is handled
in the normal way.

RYMGQG For a node <n>, if the critical error interrupt is implemented and disabled, then when a critical error condition is
detected, the node records the critical error as an Uncontainable error.

IBNDZW Classifying the critical error condition as an Uncontainable error if the critical error interrupt is disabled has the
effect of causing the node to generate an error recovery interrupt.

IVSKSB For a node <n>, if the critical error interrupt is implemented and enabled, then it is IMPLEMENTATION DEFINED
how the error is classified at the node.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

69

Chapter 3. RAS System Architecture
3.7. Standard format Corrected error counter

3.7 Standard format Corrected error counter

IFQLPT The RAS System Architecture defines standard formats for a corrected error counter. Software uses ERR<n>FR
to determine whether any standard format corrected error counter is implemented by a node.

RXYFVB If a standard format corrected error counter is implemented by a node, then it is IMPLEMENTATION DEFINED
whether a single counter or a pair of counters is implemented.

RSLPQW For a node <n>, if a standard format corrected error counter is implemented, then the counter or counters are
recorded in ERR<n>MISC0.

IFYBWQ If a pair of standard format Corrected error counters are implemented by a node, this provides:

• A first (repeat) error counter to count the first error and any subsequent error detected at the same location.

• A second (other) error counter to count errors detected in other locations.

RGYPDJ If a pair of standard format Corrected error counters are implemented by a node, then an error record <n>
records a counted-fault location for the error, in one or more of:

• The ERR<n>ADDR register.
• The ERR<n>STATUS.IERR field.
• The ERR<n>STATUS.SERR field.
• The ERR<n>MISC<m> registers.

It is IMPLEMENTATION DEFINED which of these or parts thereof describe the counted-fault location.

Note

These registers might contain additional IMPLEMENTATION DEFINED fault location information that is not
considered part of the counted-fault location.

The counted-fault location recorded in error record <n> is either valid or invalid:

RJCNNX • If the counted-fault location or part of the counted-fault location is held the ERR<n>ADDR register then:

– This part is valid when ERR<n>STATUS.{V, AV} == {1, 1}.
– It is IMPLEMENTATION DEFINED whether this part of the counted-fault location is treated as valid or

invalid when ERR<n>STATUS.{V, AV} == {1, 0}.
– Otherwise, this part is invalid.

RJMVKQ • If the counted-fault location or part of the counted-fault location is held in the ERR<n>STATUS.IERR
field, this part is valid when ERR<n>STATUS.V == 0b1 and invalid otherwise.

RLTFXM • If the counted-fault location or part of the counted-fault location is held in the ERR<n>STATUS.SERR
field, this part is valid when ERR<n>STATUS.V == 0b1 and invalid otherwise.

RSLYKF • If the counted-fault location or part of the counted-fault location is held in the ERR<n>MISC<m> registers
then:

– This part is valid when ERR<n>STATUS.{V, MV} == {1, 1} and IMPLEMENTATION DEFINED parts
of the syndrome data indicate the registers contain a valid counted-fault location.

– It is IMPLEMENTATION DEFINED whether this part of the counted-fault location is treated as valid or
invalid when ERR<n>STATUS.{V, MV} == {1, 0}.

– Otherwise, this part is invalid.

RLSTYJ • If the counted-fault location is held across multiple of these registers then the counted-fault location is
valid only if all parts are valid and invalid otherwise.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

70

Chapter 3. RAS System Architecture
3.7. Standard format Corrected error counter

Note

• The counted-fault location is always invalid if ERR<n>STATUS.V is 0b0, that is, if no error has been
recorded by the error record since ERR<n>STATUS.V was last cleared to 0b0.

• The content of IMPLEMENTATION DEFINED syndrome is IMPLEMENTATION DEFINED. This permits,
but does not require, for example, the ERR<n>MISC<m> registers to contain additional valid flags
for other parts of the syndrome, or for some parts of ERR<n>MISC<m> to be be valid only for some
values of ERR<n>STATUS.{IERR,SERR}.

• For some implementations, ERR<n>ADDR is always written when an error is recorded, meaning
ERR<n>STATUS.{V, AV} == {1, 0} is never set by the hardware. Similarly, for some implementations,
ERR<n>STATUS.{V, MV} == {1, 0} is never set by the hardware. For these cases the implementation
might ignore the applicable one or ones of the AV and MV bits when determining whether the fault
counted-fault location is valid.

RJQZZT If a pair of standard format Corrected error counters are implemented by a node, then when a countable error is
recorded by error record <n>:

• The first (repeat) error counter counts an error if either of the following are true:

– The counted-fault location recorded in error record <n> is invalid.
– The error being counted is at the same location as the valid counted-fault location recorded in error

record <n>.

• The second (other) counter counts the error otherwise.

IBYGGW When the counted-fault location recorded in error record <n> is invalid, because this typically means
that ERR<n>STATUS.V is 0b0, the node typically overwrites the syndrome, meaning it captures the new
counted-fault location. Otherwise, because ERR<n>STATUS.V is 0b1 the node keeps the syndrome, meaning
the counted-fault location is unchanged.

RFYCFY If a standard format corrected error counter is implemented by a node, then if counting an error causes unsigned
overflow of the corrected error counter:

• The counter overflow flag is set to 0b1.

• A corrected error event occurs.

Note

IMPLEMENTATION DEFINED forms of counters, including other sizes, other overflow models, and other
miscellaneous syndrome register locations, might be implemented.

See also:

• Writing the error record
• Fault handling interrupt

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

71

Chapter 3. RAS System Architecture
3.8. Error recovery, fault handling, and critical error signaling

3.8 Error recovery, fault handling, and critical error signaling

IBHBCB Error recovery, fault handling, and critical error interrupts are normally routed using an interrupt controller.

RQTQBJ For an Arm Generic Interrupt Controller (GIC), if the error records of the node that generates the interrupts are
only accessible via the System registers of one or more PEs, Arm strongly recommends that the interrupt is a
Private Peripheral Interrupt (PPI) targeting that PE or one of those PEs.

RVKLWD It is IMPLEMENTATION DEFINED whether each error record has independent interrupt signals for error recovery,
fault handling, and critical error interrupts, or whether it shares any of these interrupts with other error records
and/or other nodes.

RWMQZP It is IMPLEMENTATION DEFINED whether interrupts are edge-triggered or level-sensitive.

RSVWPZ If the fault handling interrupt is level-sensitive, it is asserted by the node for an error record <n> while any of
the following apply:

• Fault handling interrupts on all Deferred errors and Uncorrected errors are enabled, the ERR<n>STATUS.V
bit is 0b1, and either or both of the ERR<n>STATUS.{DE,UE} bits are 0b1.

• Fault handling interrupts on Corrected errors are enabled and either:

– The node implements a corrected error counter, ERR<n>STATUS.V is 0b1, and the counter overflow
flag is 0b1.

– The node does not implement a corrected error counter, ERR<n>STATUS.V is 0b1, and
ERR<n>STATUS.CE is nonzero.

RVHSRJ If the error recovery interrupt is level-sensitive, it is asserted by the node for an error record <n> while any of
the following apply:

• Error recovery interrupts on Uncorrected errors are enabled, ERR<n>STATUS.V is 0b1, and
ERR<n>STATUS.UE is 0b1.

• Error recovery interrupts on Deferred errors are enabled, ERR<n>STATUS.V is 0b1, and
ERR<n>STATUS.DE is 0b1.

RKTVHF If the critical error interrupt is level-sensitive, it is asserted by the node for an error record <n> while critical
error interrupts are enabled, ERR<n>STATUS.V is 0b1, and ERR<n>STATUS.CI is 0b1.

RYPPWB If the fault handling interrupt is edge-triggered, it is generated by the node for an error record when any of the
following occur:

• Fault handling interrupts on all Deferred errors and Uncorrected errors are enabled, and an error is recorded
in the error record as either Deferred error or Uncorrected error.

• Fault handling interrupts on Corrected errors are enabled and a corrected error event occurs for the error
record.

RFLWGK If the error recovery interrupt is edge-triggered, it is generated by the node for an error record when any of the
following occur:

• Error recovery interrupts on Uncorrected errors are enabled, and an error is recorded in the error record as
Uncorrected error.

• Error recovery interrupts on Deferred errors are enabled, and an error is recorded in the error record as
Deferred error.

RFLPKB If the critical error interrupt is edge-triggered, it is generated by the node for an error record <n> when critical
error interrupts are enabled, and the node records an error setting ERR<n>STATUS.CI to 0b1.

The critical error interrupt is generated even if the ERR<n>STATUS.CI was already 0b1.

IMYKYF An enabled edge-triggered interrupt is generated even if the error syndrome is discarded because the error record
already records a higher priority error.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

72

Chapter 3. RAS System Architecture
3.8. Error recovery, fault handling, and critical error signaling

RXWMLB It is IMPLEMENTATION DEFINED whether an edge-triggered interrupt is generated by a write to a register that
enables an interrupt or otherwise creates the conditions for the interrupt in the other syndrome registers, as
defined for a level-sensitive interrupt.

RGZQWV The standard error record reserves a set of register locations for programming Message Signaled Interrupts
(MSIs). In addition, a recommended layout for these registers is provided.

RRZDWL When an error is recorded, or an interrupt becomes enabled, the state of the interrupts is updated in finite time.

See also:

• ERRIRQCR<n>, ERRERICR0, ERRERICR1, ERRERICR2, ERRCRICR0, ERRCRICR1, ERRCRICR2,
ERRFHICR0, ERRFHICR1, ERRFHICR2, and ERRIRQSR.

• Synchronization and error record accesses
• Error recovery interrupt
• Fault handling interrupt
• Critical error interrupt

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

73

Chapter 3. RAS System Architecture
3.9. Error recovery reset

3.9 Error recovery reset

IFQDBT A system comprises multiple power and logical domains, each of which might implement one or more reset
signals.

The RAS System Architecture defines two classes of reset:

RDKKYC • Cold reset is asserted to a component when it transitions from a powered off state to a powered on state.
Cold reset initializes the component to a known initial state. No state is preserved from the previous
powered off state.

RWXRXD • Error Recovery reset is an optional reset that might be applied at any other time. System Error Recovery
reset initializes the component to a known state. Unlike Cold reset, any recorded error syndrome
information is preserved over a System Error Recovery reset.

RLPJWX The way in which these resets map to other resets is IMPLEMENTATION DEFINED.

RZLZDR Any mechanisms for asserting resets are IMPLEMENTATION DEFINED.

IWFGQQ For a PE, the Error Recovery reset might be implemented by the architectural Warm reset. If Warm reset is
implemented, it preserves the error records in the PE.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

74

Chapter 3. RAS System Architecture
3.10. Timestamp extension

3.10 Timestamp extension

RBWYMJ The RAS Timestamp Extension is an optional part of RAS System Architecture v1.1.

IPZVXP The RAS Timestamp Extension provides a standard mechanism for timestamping error records.

RTRHJP For a given error record <n>, the timestamp value is recorded in ERR<n>MISC3.

IFZJMJ For a given node <n>, the RAS Timestamp Extension is implemented if ERR<n>FR.TS != 0b00.

RMHTSQ The timestamp uses either the system Generic Timer counter or an IMPLEMENTATION DEFINED timebase.

IHLDRQ For a given node <n>, the value of ERR<n>FR.TS defines which timebase is used.

RXKBJS Other than when IMPLEMENTATION DEFINED conditions apply, the following are true:

• The timebase is encoded as a plain binary number.
• The timebase is monotonically increasing at a fixed rate compared to wallclock time.

IPQCNK The IMPLEMENTATION DEFINED conditions are to allow for the timebase to violate these conditions during
initial system configuration.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

75

Chapter 3. RAS System Architecture
3.11. Common Fault Injection Model Extension

3.11 Common Fault Injection Model Extension

RCVLDN The Common Fault Injection Model Extension is an optional part of RAS System Architecture v1.1.

ITSWKX Other fault injection mechanisms are permitted. For example, if the Common Fault Injection Model Extension
is not implemented, the ERRIMPDEF<n> registers might be used for some other IMPLEMENTATION DEFINED
fault injection mechanism.

RYBSBX The Common Fault Injection Model Extension can only be implemented for error records accessed through a
memory-mapped group of error records if ERRDEVARCH.REVISION >= 0b0001.

RPTGZW The Common Fault Injection Model Extension fakes the detection of an error at a component.

RCPYFQ A faked error detection results in the node signaling the appropriate ones of the fault handling interrupt, error
recovery interrupt, and in-band error response, according to the type of injected error.

IKHPVH The data is not corrupted by the Common Fault Injection Model Extension.

RRYFQP The Common Fault Injection Model Extension supports generating a subset of the component error state types
supported by the node.

IYSQHB Arm recommends that the Common Fault Injection Model Extension supports all the component error state
types supported by the node.

IQVLPN For a given node <n>, the Common Fault Injection Model Extension is implemented if ERR<n>FR.INJ !=
0b00.

IZBZHW For a given node <n>, the Common Fault Injection Model Extension capabilities are discoverable using
ERR<n>PFGF.

IZDPWF If a node is not capable of recording an component error state type, then it does not support injecting that
component error state type.

RBQCGC For a given node <n>, the Common Fault Injection Model Extension is disabled if ERR<n>CTLR.ED is writable
and 0b0.

IYMWNF The Common Fault Injection Model Extension registers are:

• ERR<n>PFGF.
• ERR<n>PFGCTL.
• ERR<n>PFGCDN.

The Common Fault Injection Model Extension registers are not accessible from AArch32 state. However, when
accessed via ERXFR, AArch32 state can access the ERR<n>FR.INJ field described in this section.

IQFYWD Additional constraints might apply if fault injection can affect the operation of Secure state. See Security and
Virtualization.

3.11.1 Operation of the Common Fault Injection Model Extension

The behaviors in this section apply for a given node if the node implements the Common Fault Injection Model
Extension.

RVDZSG When software writes 1 to ERR<n>PFGCTL.CDNEN:

• If ERR<n>PFGCDN.CDN is nonzero, then the internal Error Generation Counter is set to
ERR<n>PFGCDN.CDN.

• If ERR<n>PFGCDN.CDN is zero, the behavior is UNPREDICTABLE and is one of:

– The Error Generation Counter is unchanged.
– The Error Generation Counter is set to zero.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

76

Chapter 3. RAS System Architecture
3.11. Common Fault Injection Model Extension

– The Error Generation Counter is set to zero and the component enters the fault injection state.

IXDWGY The current value of the Error Generation Counter is not visible to software.

RPLZMT While ERR<n>PFGCTL.CDNEN == 1 and the Error Generation Counter is nonzero, the Error Generation
Counter decrements by 1 for each cycle at an IMPLEMENTATION DEFINED clock rate.

IDMNZX The rate at which the component decrements the counter is defined by the component. For example, it might be
the native clock rate for the component, and this might not be the same as the PE clock rate. Software typically
discovers this rate from firmware.

RDDPMH When the Error Generation Counter decrements to/past zero, the component enters a fault injection state.

RYXXWT When the component is in the fault injection state, on the next access to the component, the component:

• Fakes detection of the component error state type(s) described by ERR<n>PFGCTL.
• Reports the injected error to the node.
• If error reporting and logging at the node is enabled, the node records the injected error.
• If error reporting and logging at the node is disabled, it is UNPREDICTABLE whether or not the node

records the injected error.
• Leaves fault injection state.

RXMZBB When an injected error is recorded, the node signals the appropriate ones of the fault handling interrupt, error
recovery interrupt, and in-band error response, according to the type of injected error and the control settings of
the node.

RGJXGL When an injected error is recorded, the node writes the ERR<n>STATUS.{V, UE, CE, DE, UET} fields
according to the component error state type described by ERR<n>PFGCTL.

RTSXMT If ERR<n>PFGCTL defines multiple component error state types, or none, the behavior is UNPREDICTABLE
and is one of:

• No error is injected.
• An error is injected with an UNPREDICTABLE choice of component error state.

RXLJMM It is IMPLEMENTATION DEFINED how the node updates the ERR<n>STATUS.{AV, ER, OF, MV, PN, CI, IERR,
SERR}, ERR<n>ADDR, and ERR<n>MISC<m> when recording an injected error. ERR<n>PFGF describes
the IMPLEMENTATION DEFINED options and the controls available in ERR<n>PFGCTL.

ICSSDM For many fields, the implementation has the choice to either set the syndrome register or field according to the
access that triggers the injected error, or provide finer-grained control over the field, either by a control bit if
ERR<n>PFGCTL or by not updating the register or field when the injected error is recorded meaning software
can write the injected syndrome to the register or field ahead of injecting the error.

RWMDWR For each of the ERR<n>STATUS.{CI, ER, PN} bits, the behavior is UNPREDICTABLE if all of the following are
true:

• ERR<n>PFGF defines that the value injected is controlled by the corresponding ERR<n>PFGCTL bit.

• The corresponding ERR<n>PFGCTL bit is 0b1.

• For the ER and PN bits, the definition of the ERR<n>STATUS field defines that the bit is not valid for the
component error state requested by ERR<n>PFGCTL. For the CI bit, the component error state requested
by ERR<n>PFGCTL is not one of an IMPLEMENTATION DEFINED set of permitted values for critical
error conditions.

The UNPREDICTABLE behavior is one of:

• No error is injected.
• An error is injected, but the component error state and syndrome bits do not match the requested error

type.
• The error is injected as requested, including setting the invalid bit or bits to the requested values.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

77

Chapter 3. RAS System Architecture
3.11. Common Fault Injection Model Extension

IQSLVZ This means that:

• It is IMPLEMENTATION DEFINED which component error states the CI value can be injected with.
• The PN value can be injected with a Uncorrected error or Deferred error and cannot be injected with a

Corrected error.
• The ER value can be injected with an Uncorrected error and cannot be injected with a Corrected error.
• It is IMPLEMENTATION DEFINED whether the ER value can be injected with a Deferred error.

RGGFSF If a single node has multiple error records, then only the first error record has fault injection registers.

RRBYRG If a single node has multiple error records and any of ERR<n>PFGF.{SYN, AV, MV} for the first error
record of the node are non-zero, meaning the fault injection mechanism does not update all or some of the
ERR<n>MISC<m> or fields when the injected error is recorded, then the injected fault is recorded in the first
error record. Otherwise, the injected error might be recorded in any of the multiple error records.

Note

If a single node has multiple error records and any of ERR<n>PFGF.{SYN, AV, MV} for the first error
record of the node are zero then a node might define which error record is updated or implement an
IMPLEMENTATION DEFINED control to allow this to be specified.

IBDDZZ If the node implements fault handling interrupt, error recovery interrupt, and critical error interrupt as
edge-triggered interrupts, then recording an injected error has the same behavior as recording a detected
error, for generating the edge-triggered interrupt. That is, the interrupt is generated if the interrupt is enabled for
the type of error being injected.

ITVRDH If the node implements fault handling interrupt, error recovery interrupt, and critical error interrupt as
level-sensitive interrupts, then the level of the interrupt request is a function of the values of the control
and status register fields. The behavior of the interrupt request does not depend on whether the control and
status registers were written by the node when detecting an error, or written by error injection.

RCFTGZ If the Error Generation Counter is zero and ERR<n>PFGCTL.R == 1 then:

• If ERR<n>PFGCDN.CDN is nonzero, then the internal Error Generation Counter is set to
ERR<n>PFGCDN.CDN.

• If ERR<n>PFGCDN.CDN is zero, the behavior is UNPREDICTABLE and is one of:

– The Error Generation Counter is unchanged.
– The Error Generation Counter is set to zero.
– The Error Generation Counter is set to zero and the component reenters the fault injection state.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

78

Chapter 4
RAS Extension and RAS System Architecture Registers

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

79

Chapter 4. RAS Extension and RAS System Architecture Registers
4.1. Memory-mapped view

4.1 Memory-mapped view

IMQDMJ Error record registers, including memory mapped view defines the registers for memory-mapped error records.

RHQQNS It is IMPLEMENTATION DEFINED which components in the system, if any, implement memory-mapped error
records.

RWWDBV A memory-mapped component might implement several error records in a group, relating to one or more nodes.

The Reliability, Availability, Serviceability (RAS) System Architecture defines the following reusable formats
for memory-mapped error records:

RTPFWF • Memory-mapped error record group view describes a group of error records accessed via a standard 4KB
memory-mapped peripheral.

RDHYDC • Memory-mapped single error record view describes a format for a memory-mapped component that
implements a single error record. This might be implemented as part of the control registers for a
memory-mapped component. In this format, the first register, ERR<n>FR, is at an address aligned to a
multiple of 64 bytes.

RNBFYF In Memory-mapped error record group view, ERRDEVID indicates the highest numbered index of the error
records that can be accessed.

IGFLXS For a 4KB peripheral implementing Memory-mapped error record group view, up to 24 error records can be
accessed if the Common Fault Injection Model Extension is implemented, and up to 56 otherwise. Groups
containing more records can be defined by increasing the page size for a group. This is not described by current
versions of the RAS System Architecture. For more information, contact Arm.

RYGWDK In Memory-mapped error record group view, each error record occupies a set of locations at offsets from an
error record base. This error record base is a fixed multiple of the index of the error record from the group base.

RYFCNK Memory-mapped error record group view includes a group status register, ERRGSR.

ITJYGF The Common Fault Injection Model Extension is not supported in the Memory-mapped single error record
view format.

RPCXRD The error records in a memory-mapped component might be accessible only through that component, or might
be shared and accessible through any of:

• System registers by one or more PEs.

• Other memory-mapped components in the same physical address space, including aliases with the same
group of error records.

• Other memory-mapped components in other address spaces. For example, in both Non-secure and Secure
physical address spaces.

RJFZRW Arm recommends that each memory-mapped error record is accessible at most once in any given physical
address space.

4.1.1 Access requirements for memory-mapped views of RAS error records

The requirements for a memory-mapped view of RAS error records are:

RQRLXV • Reads and writes of unallocated locations are reserved accesses.

RPPFBS • Reads and writes of locations for features that are not implemented are reserved accesses, including:

– OPTIONAL features that are not implemented.
– error records that are not implemented.

RBNKVL • Reads of WO locations are reserved accesses.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

80

Chapter 4. RAS Extension and RAS System Architecture Registers
4.1. Memory-mapped view

RWNFYH • Writes to RO locations are reserved accesses.

RRZWDM Reserved accesses are RAZ/WI. However, software must not rely on this property as the behavior of reserved
values might change in a future revision of the architecture. Software must treat reserved accesses as RES0.

RJXHNT The memory access sizes that are supported by the memory-mapped component are as described for other
memory-mapped components in [1]. It is IMPLEMENTATION DEFINED whether a word-aligned 32-bit access to
either half of a doubleword-aligned 64-bit register is supported if there is no Processing element (PE) in the
system that supports AArch32.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

81

Chapter 4. RAS Extension and RAS System Architecture Registers
4.2. Reset values

4.2 Reset values

IPQVFQ When the node records an error in an error record, depending on the type of error being recorded, it is
IMPLEMENTATION DEFINED whether some fields are set to a zero or unchanged.

In most cases, this is because one of the following applies, and it is IMPLEMENTATION DEFINED which:

• The node sets the field to zero on Cold reset, meaning the value is not required to be changed when the
first error is recorded

• The node sets the field to zero on recording the first error after Cold reset.

To allow for either implementation, software must clear these fields to zero after logging a recorded error and
performing a software reset of the error record.

For more information, see Accessibility in ERR<n>STATUS.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

82

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

4.3 Error record registers, including memory mapped view

INFQQQ This section describes the error record registers. The descriptions in this section apply whether the error record
is accessed:

• Through the indirection mechanism described in Error record System register view.

• As memory-mapped registers, as described in Memory-mapped view.

4.3.1 Register index

4.3.1.1 Using AArch32 System registers

Table 4.1: Using AArch32 System registers, System register map

Use To Access Access Description

ERXADDR ERR<n>ADDR[31:0] R/W Error Record Address Register
ERXADDR2 ERR<n>ADDR[63:32] R/W Error Record Address Register
ERXCTLR ERR<n>CTLR[31:0] R/W Error Record Control Register
ERXCTLR2 ERR<n>CTLR[63:32] R/W Error Record Control Register
ERXFR ERR<n>FR[31:0] RO Error Record Feature Register
ERXFR2 ERR<n>FR[63:32] RO Error Record Feature Register
ERXMISC0 ERR<n>MISC0[31:0] R/W Error Record Miscellaneous Register 0
ERXMISC1 ERR<n>MISC0[63:32] R/W Error Record Miscellaneous Register 0
ERXMISC2 ERR<n>MISC1[31:0] R/W Error Record Miscellaneous Register 1
ERXMISC3 ERR<n>MISC1[63:32] R/W Error Record Miscellaneous Register 1
ERXMISC4 ERR<n>MISC2[31:0] R/W Error Record Miscellaneous Register 2
ERXMISC5 ERR<n>MISC2[63:32] R/W Error Record Miscellaneous Register 2
ERXMISC6 ERR<n>MISC3[31:0] R/W Error Record Miscellaneous Register 3
ERXMISC7 ERR<n>MISC3[63:32] R/W Error Record Miscellaneous Register 3
ERXSTATUS ERR<n>STATUS[31:0] R/W Error Record Primary Status Register

4.3.1.2 Using AArch64 System registers

Table 4.2: Using AArch64 System registers, System register map

Use To Access Access Description

ERXADDR_EL1 ERR<n>ADDR R/W Error Record Address Register
ERXCTLR_EL1 ERR<n>CTLR R/W Error Record Control Register
ERXFR_EL1 ERR<n>FR RO Error Record Feature Register
ERXMISC0_EL1 ERR<n>MISC0 R/W Error Record Miscellaneous Register 0
ERXMISC1_EL1 ERR<n>MISC1 R/W Error Record Miscellaneous Register 1
ERXMISC2_EL1 ERR<n>MISC2 R/W Error Record Miscellaneous Register 2
ERXMISC3_EL1 ERR<n>MISC3 R/W Error Record Miscellaneous Register 3
ERXPFGCDN_EL1 ERR<n>PFGCDN R/W Pseudo-fault Generation Countdown Register
ERXPFGCTL_EL1 ERR<n>PFGCTL R/W Pseudo-fault Generation Control Register
ERXPFGF_EL1 ERR<n>PFGF RO Pseudo-fault Generation Feature Register
ERXSTATUS_EL1 ERR<n>STATUS R/W Error Record Primary Status Register

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

83

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

4.3.1.3 Memory-mapped error record group view

Table 4.3: RAS, error record group, memory-mapped register map

Offset Access Size Register Description

0x000+64×n RO 64 ERR<n>FR Error Record Feature Register
0x008+64×n R/W 64 ERR<n>CTLR Error Record Control Register
0x010+64×n R/W 64 ERR<n>STATUS Error Record Primary Status Register
0x018+64×n R/W 64 ERR<n>ADDR Error Record Address Register
0x020+64×n R/W 64 ERR<n>MISC0 Error Record Miscellaneous Register 0
0x028+64×n R/W 64 ERR<n>MISC1 Error Record Miscellaneous Register 1
0x030+64×n R/W 64 ERR<n>MISC2 Error Record Miscellaneous Register 2
0x038+64×n R/W 64 ERR<n>MISC3 Error Record Miscellaneous Register 3
0x800+64×n RO 64 ERR<n>PFGF Pseudo-fault Generation Feature Register
0x800+8×n R/W 64 ERRIMPDEF<n> IMPLEMENTATION DEFINED Register <n>
0x808+64×n R/W 64 ERR<n>PFGCTL Pseudo-fault Generation Control Register
0x810+64×n R/W 64 ERR<n>PFGCDN Pseudo-fault Generation Countdown Register
0xE00 RO 64 ERRGSR Error Group Status Register
0xE10 RO 32 ERRIIDR Implementation Identification Register
0xE80 R/W 64 ERRFHICR0 Fault Handling Interrupt Configuration Register 0
0xE80+8×n R/W 64 ERRIRQCR<n> Generic Error Interrupt Configuration Register
0xE88 R/W 32 ERRFHICR1 Fault Handling Interrupt Configuration Register 1
0xE8C R/W 32 ERRFHICR2 Fault Handling Interrupt Configuration Register 2
0xE90 R/W 64 ERRERICR0 Error Recovery Interrupt Configuration Register 0
0xE98 R/W 32 ERRERICR1 Error Recovery Interrupt Configuration Register 1
0xE9C R/W 32 ERRERICR2 Error Recovery Interrupt Configuration Register 2
0xEA0 R/W 64 ERRCRICR0 Critical Error Interrupt Configuration Register 0
0xEA8 R/W 32 ERRCRICR1 Critical Error Interrupt Configuration Register 1
0xEAC R/W 32 ERRCRICR2 Critical Error Interrupt Configuration Register 2
0xEF8 R/W 64 ERRIRQSR Error Interrupt Status Register
0xFA8 RO 64 ERRDEVAFF Device Affinity Register
0xFBC RO 32 ERRDEVARCH Device Architecture Register
0xFC8 RO 32 ERRDEVID Device Configuration Register
0xFD0 RO 32 ERRPIDR4 Peripheral Identification Register 4
0xFE0 RO 32 ERRPIDR0 Peripheral Identification Register 0
0xFE4 RO 32 ERRPIDR1 Peripheral Identification Register 1
0xFE8 RO 32 ERRPIDR2 Peripheral Identification Register 2
0xFEC RO 32 ERRPIDR3 Peripheral Identification Register 3
0xFF0 RO 32 ERRCIDR0 Component Identification Register 0
0xFF4 RO 32 ERRCIDR1 Component Identification Register 1
0xFF8 RO 32 ERRCIDR2 Component Identification Register 2
0xFFC RO 32 ERRCIDR3 Component Identification Register 3

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

84

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

4.3.1.4 Memory-mapped single error record view

Table 4.4: RAS, single error record, memory-mapped register map

Offset Access Size Register Description

0x000 RO 64 ERR<n>FR Error Record Feature Register
0x008 R/W 64 ERR<n>CTLR Error Record Control Register
0x010 R/W 64 ERR<n>STATUS Error Record Primary Syndrome Register
0x018 R/W 64 ERR<n>ADDR Error Record Address Register
0x020 R/W 64 ERR<n>MISC0 Error Record Miscellaneous Register 0
0x028 R/W 64 ERR<n>MISC1 Error Record Miscellaneous Register 1
0x030 R/W 64 ERR<n>MISC2 Error Record Miscellaneous Register 2
0x038 R/W 64 ERR<n>MISC3 Error Record Miscellaneous Register 3

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

85

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

4.3.2 ERR<n>ADDR, Error Record Address Register

The ERR<n>ADDR characteristics are:

Purpose
If an address is associated with a detected error, then it is written to ERR<n>ADDR when the error
is recorded. It is IMPLEMENTATION DEFINED how the recorded address maps to the software-visible
physical address. Software might have to reconstruct the actual physical addresses using the identity of the
node and knowledge of the system.

Configurations
ERR<n>ADDR is present only if all of the following are true:

• Error record <n> is implemented.
• Error record <n> includes an address associated with an error.

ERR<n>ADDR is RES0 otherwise.

ERR<q>FR describes the features implemented by the node that owns error record <n>. <q> is the index
of the first error record owned by the same node as error record <n>. If the node owns a single record,
then q = n.

Attributes
When accessed using a System register, ERR<n>ADDR is a 64-bit read/write register accessed using:

• MRC and MCR of ERXADDR for ERR<n>ADDR[31:0] when ERRSELR.SEL is set to n.
• MRC and MCR of ERXADDR2 for ERR<n>ADDR[63:32] when ERRSELR.SEL is set to n.
• MRS and MSR of ERXADDR_EL1 when ERRSELR_EL1.SEL is set to n.

When accessed as a memory-mapped register, ERR<n>ADDR is a 64-bit read/write register located at
offset 0x018 + 64×n.

4.3.2.1 Field descriptions

The ERR<n>ADDR bit assignments are:

55 32

PADDR[55:32]

59 56

RES0

6061

AI

62

SI

63

VANS

31 0

PADDR[31:0]

Figure 4.1: ERR<n>ADDR

NS, bit [63]
Non-secure attribute.

The possible values of this bit are:

0 ERR<n>ADDR.PADDR is a Secure address.
1 ERR<n>ADDR.PADDR is a Non-secure address.

This bit resets to an architecturally UNKNOWN value on a Cold reset. This bit is preserved on an Error
Recovery reset.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

86

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

SI, bit [62]
Secure Incorrect.

Indicates whether ERR<n>ADDR.NS is valid. The possible values of this bit are:

0 ERR<n>ADDR.NS is correct. That is, it matches the programmers’ view of the
Non-secure attribute for the recorded location.

1 ERR<n>ADDR.NS might not be correct, and might not match the programmers’ view
of the Non-secure attribute for the recorded location.

It is IMPLEMENTATION DEFINED whether this bit is read-only or read/write.

This bit resets to an architecturally UNKNOWN value on a Cold reset. This bit is preserved on an Error
Recovery reset.

AI, bit [61]
Address Incorrect. Indicates whether ERR<n>ADDR.PADDR is a valid physical address that is known to
match the programmers’ view of the physical address for the recorded location. The possible values of
this bit are:

0 ERR<n>ADDR.PADDR is a valid physical address. That is, it matches the
programmers’ view of the physical address for the recorded location.

1 ERR<n>ADDR.PADDR might not be a valid physical address, and might not match the
programmers’ view of the physical address for the recorded location.

It is IMPLEMENTATION DEFINED whether this bit is read-only or read/write.

This bit resets to an architecturally UNKNOWN value on a Cold reset. This bit is preserved on an Error
Recovery reset.

VA, bit [60]
Virtual Address. Indicates whether ERR<n>ADDR.PADDR field is a virtual address. The possible values
of this bit are:

0 ERR<n>ADDR.PADDR is not a virtual address.
1 ERR<n>ADDR.PADDR is a virtual address.

No context information is provided for the virtual address. When ERR<n>ADDR.VA == 0b1,
ERR<n>ADDR.{NS,SI,AI} read as {0,1,1}.

Support for this bit is optional. If this bit is not implemented and ERR<n>ADDR.PADDR field is a virtual
address, then ERR<n>ADDR.{NS,SI,AI} read as {0,1,1}.

It is IMPLEMENTATION DEFINED whether this bit is read-only or read/write.

This bit resets to an architecturally UNKNOWN value on a Cold reset. This bit is preserved on an Error
Recovery reset.

Bits [59:56]
Reserved. This field is RES0.

PADDR, bits [55:0]
Physical Address. Address of the recorded location. If the physical address size implemented by this
component is smaller than the size of this field, then high-order bits are unimplemented and either RES0
or have a fixed read-only IMPLEMENTATION DEFINED value. Low-order address bits might also be

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

87

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

unimplemented and RES0, for example, if the physical address is always aligned to the size of a protection
granule.

This field resets to an architecturally UNKNOWN value on a Cold reset. This field is preserved on an Error
Recovery reset.

4.3.2.2 Accessibility

ERR<n>ADDR ignores writes if all of the following are true:

• Any of the following are true:
– The RAS Common Fault Injection Model Extension is implemented by the node that owns this error

record and ERR<q>PFGF.AV == 0b0.
– The RAS Common Fault Injection Model Extension is not implemented by the node that owns this

error record.
• ERR<n>STATUS.AV == 0b1.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

88

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

4.3.3 ERR<n>CTLR, Error Record Control Register

The ERR<n>CTLR characteristics are:

Purpose
The error control register contains enable bits for the node that writes to this record:

• Enabling error detection and correction.
• Enabling the critical error, error recovery, and fault handling interrupts.
• Enabling in-band error response for Uncorrected errors.

For each bit, if the node does not support the feature, then the bit is RES0. The definition of each record is
IMPLEMENTATION DEFINED.

Configurations
ERR<n>CTLR is present only if all of the following are true:

• Error record <n> is implemented.
• Error record <n> is the first error record owned by a node.

ERR<n>CTLR is RES0 otherwise.

ERR<n>FR describes the features implemented by the node.

Attributes
When accessed using a System register, ERR<n>CTLR is a 64-bit read/write register accessed using:

• MRC and MCR of ERXCTLR for ERR<n>CTLR[31:0] when ERRSELR.SEL is set to n.
• MRC and MCR of ERXCTLR2 for ERR<n>CTLR[63:32] when ERRSELR.SEL is set to n.
• MRS and MSR of ERXCTLR_EL1 when ERRSELR_EL1.SEL is set to n.

When accessed as a memory-mapped register, ERR<n>CTLR is a 64-bit read/write register located at
offset 0x008 + 64×n.

4.3.3.1 Field descriptions

The ERR<n>CTLR bit assignments are:

63 32

IMPLEMENTATION DEFINED

012

UI

3

FI

456789101112

(0)

13

CI

31 14

RES0

EDUEWDUI
IMP DEFDUI

WUIWCFI
WFICFI

WUE

Figure 4.2: ERR<n>CTLR

Bits [63:32]
Reserved for IMPLEMENTATION DEFINED controls. Must permit SBZP write policy for software.

This field reads as an IMPLEMENTATION DEFINED value and writes to this field have IMPLEMENTATION
DEFINED behavior.

Bits [31:14,12]
Reserved. This field is RES0.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

89

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

CI, bit [13]
Critical error interrupt enable.

When ERR<n>FR.CI == 0b10
When enabled, the critical error interrupt is generated for a critical error condition. The possible
values of this bit are:

0 Critical error interrupt not generated for critical errors. Critical errors are treated as
Uncontained errors.

1 Critical error interrupt generated for critical errors.

This bit resets to an architecturally UNKNOWN value on a Cold reset. This bit is preserved on an Error
Recovery reset.

Otherwise
Reserved. This bit is RES0.

WDUI, bit [11]
Error recovery interrupt for deferred errors on writes enable.

When ERR<n>FR.DUI == 0b11
When enabled, the error recovery interrupt is generated for detected Deferred errors on writes.

The possible values of this bit are:

0 Error recovery interrupt not generated for deferred errors on writes.
1 Error recovery interrupt generated for deferred errors on writes.

The interrupt is generated even if the error syndrome is discarded because the error record already
records a higher priority error.

This bit resets to an architecturally UNKNOWN value on a Cold reset. This bit is preserved on an Error
Recovery reset.

Otherwise
Reserved. This bit is RES0.

DUI, bit [10]
This bit resets to an architecturally UNKNOWN value on a Cold reset. This bit is preserved on an Error
Recovery reset.

When ERR<n>FR.DUI == 0b10
Error recovery interrupt for deferred errors enable.

When ERR<n>FR.DUI == 0b10, this control applies to errors arising from both reads and writes.

When enabled, the error recovery interrupt is generated for all detected Deferred errors.

The possible values of this bit are:

0 Error recovery interrupt not generated for deferred errors.
1 Error recovery interrupt generated for deferred errors.

The interrupt is generated even if the error syndrome is discarded because the error record already
records a higher priority error.

When ERR<n>FR.DUI == 0b11
Error recovery interrupt for deferred errors on reads enable.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

90

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

When ERR<n>FR.DUI == 0b11, this bit is named RDUI.

When enabled, the error recovery interrupt is generated for detected Deferred errors on reads.

The possible values of this bit are:

0 Error recovery interrupt not generated for deferred errors on reads.
1 Error recovery interrupt generated for deferred errors on reads.

The interrupt is generated even if the error syndrome is discarded because the error record already
records a higher priority error.

WCFI, bit [9]
Fault handling interrupt for Corrected errors on writes enable.

When ERR<n>FR.CFI == 0b11
When enabled:

• If the node implements Corrected error counters for writes, then the fault handling interrupt is
generated when a counter overflows and the overflow bit for the counter is set to 0b1. For more
information, see ERR<n>MISC0.

• Otherwise, the fault handling interrupt is also generated for detected Corrected errors on writes.

The possible values of this bit are:

0 Fault handling interrupt not generated for Corrected errors on writes.
1 Fault handling interrupt generated for Corrected errors on writes.

The interrupt is generated even if the error syndrome is discarded because the error record already
records a higher priority error.

This bit resets to an architecturally UNKNOWN value on a Cold reset. This bit is preserved on an Error
Recovery reset.

Otherwise
Reserved. This bit is RES0.

CFI, bit [8]
This bit resets to an architecturally UNKNOWN value on a Cold reset. This bit is preserved on an Error
Recovery reset.

When ERR<n>FR.CFI == 0b10
Fault handling interrupt for Corrected errors enable.

When ERR<n>FR.CFI == 0b10, this control applies to errors arising from both reads and writes.

When enabled:

• If the node implements Corrected error counters, then the fault handling interrupt is generated
when a counter overflows and the overflow bit for the counter is set to 0b1. For more information,
see ERR<n>MISC0.

• Otherwise, the fault handling interrupt is also generated for all detected Corrected errors.

The possible values of this bit are:

0 Fault handling interrupt not generated for Corrected errors.
1 Fault handling interrupt generated for Corrected errors.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

91

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

The interrupt is generated even if the error syndrome is discarded because the error record already
records a higher priority error.

When ERR<n>FR.CFI == 0b11
Fault handling interrupt for Corrected errors on reads enable.

When ERR<n>FR.CFI == 0b11, this bit is named RCFI.

When enabled:

• If the node implements Corrected error counters for reads, then the fault handling interrupt is
generated when a counter overflows and the overflow bit for the counter is set to 0b1. For more
information, see ERR<n>MISC0.

• Otherwise, the fault handling interrupt is also generated for detected Corrected errors on reads.

The possible values of this bit are:

0 Fault handling interrupt not generated for Corrected errors on reads.
1 Fault handling interrupt generated for Corrected errors on reads.

The interrupt is generated even if the error syndrome is discarded because the error record already
records a higher priority error.

WUE, bit [7]
In-band Uncorrected error reporting on writes enable.

When ERR<n>FR.UE == 0b11
When enabled, responses to writes that detect an Uncorrected error that cannot be deferred are
signaled in-band as a detected Uncorrected error (External Abort).

The possible values of this bit are:

0 External Abort response for Uncorrected errors on writes disabled.
1 External Abort response for Uncorrected errors on writes enabled.

This bit resets to an architecturally UNKNOWN value on a Cold reset. This bit is preserved on an Error
Recovery reset.

Otherwise
Reserved. This bit is RES0.

WFI, bit [6]
Fault handling interrupt on writes enable.

When ERR<n>FR.FI == 0b11
When enabled:

• The fault handling interrupt is generated for detected Deferred errors and Uncorrected errors.
• If the corresponding fault handling interrupt for Corrected errors control is not implemented:

– If the node implements Corrected error counters for writes, then the fault handling interrupt is
also generated when a counter overflows and the overflow bit for the counter is set to 0b1.

– Otherwise, the fault handling interrupt is also generated for detected Corrected errors on writes.

The possible values of this bit are:

0 Fault handling interrupt on writes disabled.
1 Fault handling interrupt on writes enabled.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

92

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

The interrupt is generated even if the error syndrome is discarded because the error record already
records a higher priority error.

This bit resets to an architecturally UNKNOWN value on a Cold reset. This bit is preserved on an Error
Recovery reset.

Otherwise
Reserved. This bit is RES0.

WUI, bit [5]
Uncorrected error recovery interrupt on writes enable.

When ERR<n>FR.UI == 0b11
When enabled, the error recovery interrupt is generated for detected Uncorrected errors on writes that
are not deferred.

The possible values of this bit are:

0 Error recovery interrupt on writes disabled.
1 Error recovery interrupt on writes enabled.

The interrupt is generated even if the error syndrome is discarded because the error record already
records a higher priority error.

This bit resets to an architecturally UNKNOWN value on a Cold reset. This bit is preserved on an Error
Recovery reset.

Otherwise
Reserved. This bit is RES0.

UE, bit [4]
This bit resets to an architecturally UNKNOWN value on a Cold reset. This bit is preserved on an Error
Recovery reset.

When ERR<n>FR.UE == 0b10
In-band Uncorrected error reporting enable.

When ERR<n>FR.UE == 0b10, this control applies to errors arising from both reads and writes.

When enabled, responses to transactions that detect an Uncorrected error that cannot be deferred are
signaled in-band as a detected Uncorrected error (External Abort).

The possible values of this bit are:

0 External Abort response for Uncorrected errors disabled.
1 External Abort response for Uncorrected errors enabled.

When ERR<n>FR.UE == 0b11
In-band Uncorrected error reporting on reads enable.

When ERR<n>FR.UE == 0b11, this bit is named RUE.

When enabled, responses to reads that detect an Uncorrected error that cannot be deferred are signaled
in-band as a detected Uncorrected error (External Abort).

The possible values of this bit are:

0 External Abort response for Uncorrected errors on reads disabled.
1 External Abort response for Uncorrected errors on reads enabled.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

93

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

FI, bit [3]
This bit resets to an architecturally UNKNOWN value on a Cold reset. This bit is preserved on an Error
Recovery reset.

When ERR<n>FR.FI == 0b10
Fault handling interrupt enable.

When ERR<n>FR.FI == 0b10, this control applies to errors arising from both reads and writes.

When enabled:

• The fault handling interrupt is generated for all detected Deferred errors and Uncorrected errors.
• If the fault handling interrupt for Corrected errors control is not implemented:

– If the node implements Corrected error counters, then the fault handling interrupt is also
generated when a counter overflows and the overflow bit for the counter is set to 0b1.

– Otherwise, the fault handling interrupt is also generated for all detected Corrected errors.

The possible values of this bit are:

0 Fault handling interrupt disabled.
1 Fault handling interrupt enabled.

The interrupt is generated even if the error syndrome is discarded because the error record already
records a higher priority error.

When ERR<n>FR.FI == 0b11
Fault handling interrupt on reads enable.

When ERR<n>FR.FI == 0b11, this bit is named RFI.

When enabled:

• The fault handling interrupt is generated for detected Deferred errors and Uncorrected errors.
• If the corresponding fault handling interrupt for Corrected errors control is not implemented:

– If the node implements Corrected error counters for reads, then the fault handling interrupt is
also generated when a counter overflows and the overflow bit for the counter is set to 0b1.

– Otherwise, the fault handling interrupt is also generated for detected Corrected errors on reads.

The possible values of this bit are:

0 Fault handling interrupt on reads disabled.
1 Fault handling interrupt on reads enabled.

The interrupt is generated even if the error syndrome is discarded because the error record already
records a higher priority error.

UI, bit [2]
This bit resets to an architecturally UNKNOWN value on a Cold reset. This bit is preserved on an Error
Recovery reset.

When ERR<n>FR.UI == 0b10
Uncorrected error recovery interrupt enable.

When ERR<n>FR.UI == 0b10, this control applies to errors arising from both reads and writes.

When enabled, the error recovery interrupt is generated for all detected Uncorrected errors that are
not deferred.

The possible values of this bit are:

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

94

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

0 Error recovery interrupt disabled.
1 Error recovery interrupt enabled.

The interrupt is generated even if the error syndrome is discarded because the error record already
records a higher priority error.

When ERR<n>FR.UI == 0b11
Uncorrected error recovery interrupt on reads enable.

When ERR<n>FR.UI == 0b11, this bit is named RUI.

When enabled, the error recovery interrupt is generated for detected Uncorrected errors on reads that
are not deferred.

The possible values of this bit are:

0 Error recovery interrupt on reads disabled.
1 Error recovery interrupt on reads enabled.

The interrupt is generated even if the error syndrome is discarded because the error record already
records a higher priority error.

Bit [1]
Reserved for IMPLEMENTATION DEFINED controls. Must permit SBZP write policy for software.

This bit reads as an IMPLEMENTATION DEFINED value and writes to this bit have IMPLEMENTATION
DEFINED behavior.

ED, bit [0]
Error reporting and logging enable.

When ERR<n>FR.ED == 0b10
When disabled, the node behaves as if error detection and correction are disabled, and no errors are
recorded or signaled by the node. Arm recommends that, when disabled, correct error detection and
correction codes are written for writes, unless disabled by an IMPLEMENTATION DEFINED control for
error injection. The possible values of this bit are:

0 Error reporting disabled.
1 Error reporting enabled.

It is IMPLEMENTATION DEFINED whether the node fully disables error detection and correction when
reporting is disabled. That is, even with error reporting disabled, the node might continue to silently
correct errors. Uncorrectable errors might result in corrupt data being silently propagated by the node.

This bit resets to an IMPLEMENTATION DEFINED value on a Cold reset. This bit is preserved on an
Error Recovery reset.

Note:

If this node requires initialization after Cold reset to prevent signaling false errors, then
Arm recommends this bit is set to 0b0 on Cold reset, meaning errors are not reported from
Cold reset. This allows boot software to initialize a node without signaling errors. Software
can enable error reporting after the node is initialized. Otherwise, the Cold reset value is
IMPLEMENTATION DEFINED. If the Cold reset value is 0b1, the reset values of other controls
in this register are also IMPLEMENTATION DEFINED and should not be UNKNOWN.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

95

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

Otherwise
Reserved. This bit is RES0.

4.3.3.2 Accessibility

None.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

96

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

4.3.4 ERR<n>FR, Error Record Feature Register

The ERR<n>FR characteristics are:

Purpose
Defines whether <n> is the first record owned by a node:

• If <n> is the first error record owned by a node, then ERR<n>FR.ED != 0b00.
• If <n> is not the first error record owned by a node, then ERR<n>FR.ED == 0b00.

If <n> is the first record owned by the node, defines which of the common architecturally-defined features
are implemented by the node and, of the implemented features, which are software programmable.

Configurations
ERR<n>FR is present only if error record <n> is implemented. ERR<n>FR is RES0 otherwise.

Attributes
When accessed using a System register, ERR<n>FR is a 64-bit read-only register accessed using:

• MRC of ERXFR for ERR<n>FR[31:0] when ERRSELR.SEL is set to n.
• MRC of ERXFR2 for ERR<n>FR[63:32] when ERRSELR.SEL is set to n.
• MRS of ERXFR_EL1 when ERRSELR_EL1.SEL is set to n.

When accessed as a memory-mapped register, ERR<n>FR is a 64-bit read-only register located at offset
0x000 + 64×n.

4.3.4.1 ERR<n>FR (ERR<n>FR.ED != 0b00)

The ERR<n>FR (ERR<n>FR.ED != 0b00) bit assignments are:

47 32

IMPLEMENTATION DEFINED

484950515254 53

CE

63 55

UCDE
UEUUEO

UER

1 0

!=00

3 25 4

UI

7 6

FI

9 8

UE

11 10

CFI

14 12

CEC

1517 16

DUI

19 18

CEO

21 20

INJ

23 22

CI

25 24

TS

30 26

RES0

31

EDIMP DEFRPFRX

Figure 4.3: ERR<n>FR

Bits [63:55]
Reserved.

When ERR<n>FR.FRX == 0b1
Reserved. This field is RES0.

Otherwise
Reserved for identifying IMPLEMENTATION DEFINED controls. This field reads as an
IMPLEMENTATION DEFINED value.

CE, bits [54:53]
Corrected Error recording.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

97

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

When ERR<n>FR.FRX == 0b1
Describes the types of Corrected Error the node can record. The defined values of this field are:

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

98

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

0b00 The node does not record any type of Corrected Error.
0b01 The node can record transient or persistent Corrected Errors (Corrected Errors that

are recorded as ERR<n>STATUS.CE == 0b01 and 0b11).
0b10 The node can record of a non-specific Corrected Error (a Corrected Error that is

recorded as ERR<n>STATUS.CE == 0b10).
0b11 The node can record any type of Corrected Error.

Otherwise
Reserved for identifying IMPLEMENTATION DEFINED controls. This field reads as an
IMPLEMENTATION DEFINED value.

DE, bit [52]
Deferred Error recording.

When ERR<n>FR.FRX == 0b1
Describes whether the node can record this type of error. The defined values of this bit are:

0 The node does not record this type of error.
1 The node can record this type of error.

Otherwise
Reserved for identifying IMPLEMENTATION DEFINED controls. This bit reads as an
IMPLEMENTATION DEFINED value.

UEO, bit [51]
Latent or Restartable Error recording.

When ERR<n>FR.FRX == 0b1
Describes whether the node can record this type of error. The defined values of this bit are:

0 The node does not record this type of error.
1 The node can record this type of error.

Otherwise
Reserved for identifying IMPLEMENTATION DEFINED controls. This bit reads as an
IMPLEMENTATION DEFINED value.

UER, bit [50]
Signaled or Recoverable Error recording.

When ERR<n>FR.FRX == 0b1
Describes whether the node can record this type of error. The defined values of this bit are:

0 The node does not record this type of error.
1 The node can record this type of error.

Otherwise
Reserved for identifying IMPLEMENTATION DEFINED controls. This bit reads as an
IMPLEMENTATION DEFINED value.

UEU, bit [49]
Unrecoverable Error recording.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

99

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

When ERR<n>FR.FRX == 0b1
Describes whether the node can record this type of error. The defined values of this bit are:

0 The node does not record this type of error.
1 The node can record this type of error.

Otherwise
Reserved for identifying IMPLEMENTATION DEFINED controls. This bit reads as an
IMPLEMENTATION DEFINED value.

UC, bit [48]
Uncontainable Error recording.

When ERR<n>FR.FRX == 0b1
Describes whether the node can record this type of error. The defined values of this bit are:

0 The node does not record this type of error.
1 The node can record this type of error.

Otherwise
Reserved for identifying IMPLEMENTATION DEFINED controls. This bit reads as an
IMPLEMENTATION DEFINED value.

Bits [47:32]
Reserved for identifying IMPLEMENTATION DEFINED controls. This field reads as an IMPLEMENTATION
DEFINED value.

FRX, bit [31]
Feature Register extension.

When RAS System Architecture v1.1 is implemented
Defines whether ERR<n>FR[63:48] are architecturally defined. The defined values of this bit are:

0b0 ERR<n>FR[63:48] are IMPLEMENTATION DEFINED.
0b1 ERR<n>FR[63:48] are defined by the architecture.

Otherwise
Reserved. This bit is RES0.

Bits [30:26]
Reserved. This field is RES0.

TS, bits [25:24]
Timestamp Extension. Indicates whether, for each error record <m> owned by this node, ERR<m>MISC3
is used as the timestamp register, and, if it is, the timebase used by the timestamp. The defined values of
this field are:

0b00 The node does not support a timestamp register.
0b01 The node implements a timestamp register. The timestamp uses the same timebase as

the system Generic Timer.
Note:

For an error record which has an affinity to a PE, this is the same timer that
is visible through CNTPCT_EL0 at the highest Exception level on that PE.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

100

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

0b10 The node implements a timestamp register. The timebase for the timestamp is
IMPLEMENTATION DEFINED.

All other values are reserved.

CI, bits [23:22]
Critical error interrupt. Indicates whether the critical error interrupt and associated controls are
implemented. The defined values of this field are:

0b00 Does not support the critical error interrupt. ERR<n>CTLR.CI is RES0.
0b01 Critical error interrupt is supported and always enabled. ERR<n>CTLR.CI is RES0.
0b10 Critical error interrupt is supported and controllable using ERR<n>CTLR.CI.

All other values are reserved.

INJ, bits [21:20]
Fault Injection Extension. Indicates whether the RAS Common Fault Injection Model Extension is
implemented. The defined values of this field are:

0b00 The node does not support the RAS Common Fault Injection Model Extension.
0b01 The node implements the RAS Common Fault Injection Model Extension. See

ERR<n>PFGF for more information.

All other values are reserved.

CEO, bits [19:18]
Corrected Error overwrite.

When ERR<n>FR.CEC != 0b000
Indicates the behavior when a second Corrected error is detected after a first Corrected error has been
recorded by an error record <m> owned by the node. The defined values of this field are:

0b00 Counts Corrected errors if a counter is implemented. Keeps the previous error
syndrome. If the counter overflows, or no counter is implemented, then
ERR<m>STATUS.OF is set to 0b1.

0b01 Counts Corrected errors. If ERR<m>STATUS.OF == 0b1 before the Corrected error
is counted, then keeps the previous syndrome. Otherwise the previous syndrome is
overwritten. If the counter overflows, then ERR<m>STATUS.OF is set to 0b1.

All other values are reserved.

See Writing the error record.

Otherwise
Reserved. This field is RES0.

DUI, bits [17:16]
Error recovery interrupt for deferred errors control.

When ERR<n>FR.UI != 0b00
Indicates whether the control for enabling error recovery interrupts on deferred errors are implemented.
The defined values of this field are:

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

101

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

0b00 Does not support the control for enabling error recovery interrupts on deferred errors.
ERR<n>CTLR.DUI is RES0.

0b10 Control for enabling error recovery interrupts on deferred errors is supported and
controllable using ERR<n>CTLR.DUI.

0b11 Control for enabling error recovery interrupts on deferred errors is supported and
controllable using ERR<n>CTLR.WDUI for writes and ERR<n>CTLR.RDUI for
reads.

All other values are reserved.

Otherwise
Reserved. This field is RES0.

RP, bit [15]
Repeat counter.

When ERR<n>FR.CEC != 0b000
Indicates whether the node implements the repeat Corrected error counter in ERR<m>MISC0 for
each error record <m> owned by the node that implements the standard Corrected error counter. The
defined values of this bit are:

0 A single CE counter is implemented.
1 A first (repeat) counter and a second (other) counter are implemented. The repeat

counter is the same size as the primary error counter.

Otherwise
Reserved. This bit is RES0.

CEC, bits [14:12]
Corrected Error Counter. Indicates whether the node implements the standard Corrected error counter (CE
counter) mechanisms in ERR<m>MISC0 for each error record <m> owned by the node that can record
countable errors. The defined values of this field are:

0b000 Does not implement the standard Corrected error counter model.
0b010 Implements an 8-bit Corrected error counter in ERR<m>MISC0[39:32].
0b100 Implements a 16-bit Corrected error counter in ERR<m>MISC0[47:32].

All other values are reserved.

Note:

Implementations might include other error counter models, or might include the standard model
and not indicate this in ERR<n>FR.

CFI, bits [11:10]
Fault handling interrupt for corrected errors.

When ERR<n>FR.FI != 0b00
Indicates whether the control for enabling fault handling interrupts on corrected errors are
implemented. The defined values of this field are:

0b00 Does not support the control for enabling fault handling interrupts on corrected
errors. ERR<n>CTLR.CFI is RES0.

0b10 Control for enabling fault handling interrupts on corrected errors is supported and
controllable using ERR<n>CTLR.CFI.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

102

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

0b11 Control for enabling fault handling interrupts on corrected errors is supported and
controllable using ERR<n>CTLR.WCFI for writes and ERR<n>CTLR.RCFI for
reads.

All other values are reserved.

Otherwise
Reserved. This field is RES0.

UE, bits [9:8]
In-band uncorrected error reporting. Indicates whether the in-band uncorrected error reporting (External
Aborts) and associated controls are implemented. The defined values of this field are:

0b00 Does not support the in-band uncorrected error reporting (External Aborts).
ERR<n>CTLR.UE is RES0.

0b01 In-band uncorrected error reporting (External Aborts) is supported and always enabled.
ERR<n>CTLR.UE is RES0.

0b10 In-band uncorrected error reporting (External Aborts) is supported and controllable
using ERR<n>CTLR.UE.

0b11 In-band uncorrected error reporting (External Aborts) is supported and controllable
using ERR<n>CTLR.WUE for writes and ERR<n>CTLR.RUE for reads.

FI, bits [7:6]
Fault handling interrupt. Indicates whether the fault handling interrupt and associated controls are
implemented. The defined values of this field are:

0b00 Does not support the fault handling interrupt. ERR<n>CTLR.FI is RES0.
0b01 Fault handling interrupt is supported and always enabled. ERR<n>CTLR.FI is RES0.
0b10 Fault handling interrupt is supported and controllable using ERR<n>CTLR.FI.
0b11 Fault handling interrupt is supported and controllable using ERR<n>CTLR.WFI for

writes and ERR<n>CTLR.RFI for reads.

UI, bits [5:4]
Error recovery interrupt for uncorrected errors. Indicates whether the error handling interrupt and
associated controls are implemented. The defined values of this field are:

0b00 Does not support the error handling interrupt. ERR<n>CTLR.UI is RES0.
0b01 Error handling interrupt is supported and always enabled. ERR<n>CTLR.UI is RES0.
0b10 Error handling interrupt is supported and controllable using ERR<n>CTLR.UI.
0b11 Error handling interrupt is supported and controllable using ERR<n>CTLR.WUI for

writes and ERR<n>CTLR.RUI for reads.

Bits [3:2]
This field reads as an IMPLEMENTATION DEFINED value.

ED, bits [1:0]
Error reporting and logging. Indicates whether error record <n> is the first record owned the node, and, if
so, whether it implements the controls for enabling and disabling error reporting and logging. The defined
values of this field are:

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

103

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

0b01 Error reporting and logging always enabled. ERR<n>CTLR.ED is RES0.
0b10 Error reporting and logging is controllable using ERR<n>CTLR.ED.

All other values are reserved.

4.3.4.2 ERR<n>FR (ERR<n>FR.ED == 0b00)

The ERR<n>FR (ERR<n>FR.ED == 0b00) bit assignments are:

63 32

RES0

1 0

0 0

31 2

RES0

ED

Figure 4.4: ERR<n>FR

Bits [63:2]
Reserved. This field is RES0.

ED, bits [1:0]
Error reporting and logging. Indicates error record <n> is not the first record owned the node. The defined
values of this field are:

0b00 Error record <n> is not the first record owned by the node.

This field reads as 0b00.

4.3.4.3 Accessibility

None.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

104

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

4.3.5 ERR<n>MISC0, Error Record Miscellaneous Register 0

The ERR<n>MISC0 characteristics are:

Purpose
IMPLEMENTATION DEFINED error syndrome register. The miscellaneous syndrome registers might
contain:

• Information to locate where the error was detected.
• If the error was detected within a Field Replaceable Unit (FRU), the identity of the FRU.
• A Corrected error counter or counters.
• Other state information not present in the corresponding status and address registers.

If the node that owns error record <n> implements architecturally-defined error counters (ERR<q>FR.CEC
!= 0b000), and error record <n> can record countable errors, then ERR<n>MISC0 implements the
architecturally-defined error counter or counters.

Configurations
ERR<n>MISC0 is present only if error record <n> is implemented. ERR<n>MISC0 is RES0 otherwise.

ERR<q>FR describes the features implemented by the node that owns error record <n>. <q> is the index
of the first error record owned by the same node as error record <n>. If the node owns a single record,
then q = n.

For IMPLEMENTATION DEFINED fields in ERR<n>MISC0, writing zero returns the error record to an
initial quiescent state.

In particular, if any IMPLEMENTATION DEFINED syndrome fields might generate a Fault Handling or
Error Recovery Interrupt request, writing zero is sufficient to deactivate the Interrupt request.

Fields that are read-only, non-zero, and ignore writes are compliant with this requirement.

Note:

Arm recommends that any IMPLEMENTATION DEFINED syndrome field that can generate a Fault
Handling, Error Recovery, Critical, or IMPLEMENTATION DEFINED, interrupt request is disabled
at Cold reset and is enabled by software writing an IMPLEMENTATION DEFINED nonzero value
to an IMPLEMENTATION DEFINED field in ERR<q>CTLR.

Attributes
When accessed using a System register, ERR<n>MISC0 is a 64-bit read/write register accessed using:

• MRC and MCR of ERXMISC0 for ERR<n>MISC0[31:0] when ERRSELR.SEL is set to n.
• MRS and MSR of ERXMISC0_EL1 when ERRSELR_EL1.SEL is set to n.
• MRC and MCR of ERXMISC1 for ERR<n>MISC0[63:32] when ERRSELR.SEL is set to n.

When accessed as a memory-mapped register, ERR<n>MISC0 is a 64-bit read/write register located at
offset 0x020 + 64×n.

4.3.5.1 ERR<n>MISC0 (ERR<q>FR.CEC == 0b000)

The ERR<n>MISC0 (ERR<q>FR.CEC == 0b000) bit assignments are:

63 32

IMPLEMENTATION DEFINED

31 0

IMPLEMENTATION DEFINED

Figure 4.5: ERR<n>MISC0

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

105

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

Bits [63:0]
IMPLEMENTATION DEFINED syndrome. This field reads as an IMPLEMENTATION DEFINED value and
writes to this field have IMPLEMENTATION DEFINED behavior.

4.3.5.2 ERR<n>MISC0 (ERR<q>FR.CEC == 0b100 && ERR<q>FR.RP == 0b0)

The ERR<n>MISC0 (ERR<q>FR.CEC == 0b100 && ERR<q>FR.RP == 0b0) bit assignments are:

46 32

CEC

4763 48

IMPLEMENTATION DEFINED

OF

31 0

IMPLEMENTATION DEFINED

Figure 4.6: ERR<n>MISC0

Bits [63:48,31:0]
IMPLEMENTATION DEFINED syndrome. This field reads as an IMPLEMENTATION DEFINED value and
writes to this field have IMPLEMENTATION DEFINED behavior.

OF, bit [47]
Sticky overflow bit. Set to 1 when ERR<n>MISC0.CEC is incremented and wraps through zero. The
possible values of this bit are:

0 Counter has not overflowed.
1 Counter has overflowed.

A direct write that modifies this bit might indirectly set ERR<n>STATUS.OF to an UNKNOWN value and
a direct write to ERR<n>STATUS.OF that clears it to zero might indirectly set this bit to an UNKNOWN
value.

This bit resets to an architecturally UNKNOWN value on a Cold reset. This bit is preserved on an Error
Recovery reset.

CEC, bits [46:32]
Corrected error count. Incremented for each Corrected error. It is IMPLEMENTATION DEFINED and might
be UNPREDICTABLE whether Deferred and Uncorrected errors are counted.

This field resets to an architecturally UNKNOWN value on a Cold reset. This field is preserved on an Error
Recovery reset.

4.3.5.3 ERR<n>MISC0 (ERR<q>FR.CEC == 0b010 && ERR<q>FR.RP == 0b0)

The ERR<n>MISC0 (ERR<q>FR.CEC == 0b010 && ERR<q>FR.RP == 0b0) bit assignments are:

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

106

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

38 32

CEC

3963 40

IMPLEMENTATION DEFINED

OF

31 0

IMPLEMENTATION DEFINED

Figure 4.7: ERR<n>MISC0

Bits [63:40,31:0]
IMPLEMENTATION DEFINED syndrome. This field reads as an IMPLEMENTATION DEFINED value and
writes to this field have IMPLEMENTATION DEFINED behavior.

OF, bit [39]
Sticky overflow bit. Set to 1 when ERR<n>MISC0.CEC is incremented and wraps through zero. The
possible values of this bit are:

0 Counter has not overflowed.
1 Counter has overflowed.

A direct write that modifies this bit might indirectly set ERR<n>STATUS.OF to an UNKNOWN value and
a direct write to ERR<n>STATUS.OF that clears it to zero might indirectly set this bit to an UNKNOWN
value.

This bit resets to an architecturally UNKNOWN value on a Cold reset. This bit is preserved on an Error
Recovery reset.

CEC, bits [38:32]
Corrected error count. Incremented for each Corrected error. It is IMPLEMENTATION DEFINED and might
be UNPREDICTABLE whether Deferred and Uncorrected errors are counted.

This field resets to an architecturally UNKNOWN value on a Cold reset. This field is preserved on an Error
Recovery reset.

4.3.5.4 ERR<n>MISC0 (ERR<q>FR.CEC == 0b100 && ERR<q>FR.RP == 0b1)

The ERR<n>MISC0 (ERR<q>FR.CEC == 0b100 && ERR<q>FR.RP == 0b1) bit assignments are:

46 32

CECR

4762 48

CECO

63

OFROFO

31 0

IMPLEMENTATION DEFINED

Figure 4.8: ERR<n>MISC0

OFO, bit [63]
Sticky overflow bit, other. Set to 1 when ERR<n>MISC0.CECO is incremented and wraps through zero.
The possible values of this bit are:

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

107

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

0 Other counter has not overflowed.
1 Other counter has overflowed.

A direct write that modifies this bit might indirectly set ERR<n>STATUS.OF to an UNKNOWN value and
a direct write to ERR<n>STATUS.OF that clears it to zero might indirectly set this bit to an UNKNOWN
value.

This bit resets to an architecturally UNKNOWN value on a Cold reset. This bit is preserved on an Error
Recovery reset.

CECO, bits [62:48]
Corrected error count, other. Incremented for each countable error that is not accounted for by incrementing
ERR<n>MISC0.CECR.

This field resets to an architecturally UNKNOWN value on a Cold reset. This field is preserved on an Error
Recovery reset.

OFR, bit [47]
Sticky overflow bit, repeat. Set to 1 when ERR<n>MISC0.CECR is incremented and wraps through zero.
The possible values of this bit are:

0 Repeat counter has not overflowed.
1 Repeat counter has overflowed.

A direct write that modifies this bit might indirectly set ERR<n>STATUS.OF to an UNKNOWN value and
a direct write to ERR<n>STATUS.OF that clears it to zero might indirectly set this bit to an UNKNOWN
value.

This bit resets to an architecturally UNKNOWN value on a Cold reset. This bit is preserved on an Error
Recovery reset.

CECR, bits [46:32]
Corrected error count, repeat. Incremented for the first countable error, which also records other syndrome
for the error, and subsequently for each countable error that matches the recorded other syndrome.
Corrected errors are countable errors. It is IMPLEMENTATION DEFINED and might be UNPREDICTABLE
whether Deferred and Uncorrected errors are countable errors.

This field resets to an architecturally UNKNOWN value on a Cold reset. This field is preserved on an Error
Recovery reset.

Note:

For example, the other syndrome might include the set and way information for an error detected
in a cache. This might be recorded in the IMPLEMENTATION DEFINED ERR<n>MISC<m>
fields on a first Corrected error. ERR<n>MISC0.CECR is then incremented for each subsequent
Corrected Error in the same set and way.

Bits [31:0]
IMPLEMENTATION DEFINED syndrome. This field reads as an IMPLEMENTATION DEFINED value and
writes to this field have IMPLEMENTATION DEFINED behavior.

4.3.5.5 ERR<n>MISC0 (ERR<q>FR.CEC == 0b010 && ERR<q>FR.RP == 0b1)

The ERR<n>MISC0 (ERR<q>FR.CEC == 0b010 && ERR<q>FR.RP == 0b1) bit assignments are:

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

108

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

38 32

CECR

3946 40

CECO

4763 48

IMPLEMENTATION DEFINED

OFROFO

31 0

IMPLEMENTATION DEFINED

Figure 4.9: ERR<n>MISC0

Bits [63:48,31:0]
IMPLEMENTATION DEFINED syndrome. This field reads as an IMPLEMENTATION DEFINED value and
writes to this field have IMPLEMENTATION DEFINED behavior.

OFO, bit [47]
Sticky overflow bit, other. Set to 1 when ERR<n>MISC0.CECO is incremented and wraps through zero.
The possible values of this bit are:

0 Other counter has not overflowed.
1 Other counter has overflowed.

A direct write that modifies this bit might indirectly set ERR<n>STATUS.OF to an UNKNOWN value and
a direct write to ERR<n>STATUS.OF that clears it to zero might indirectly set this bit to an UNKNOWN
value.

This bit resets to an architecturally UNKNOWN value on a Cold reset. This bit is preserved on an Error
Recovery reset.

CECO, bits [46:40]
Corrected error count, other. Incremented for each countable error that is not accounted for by incrementing
ERR<n>MISC0.CECR.

This field resets to an architecturally UNKNOWN value on a Cold reset. This field is preserved on an Error
Recovery reset.

OFR, bit [39]
Sticky overflow bit, repeat. Set to 1 when ERR<n>MISC0.CECR is incremented and wraps through zero.
The possible values of this bit are:

0 Repeat counter has not overflowed.
1 Repeat counter has overflowed.

A direct write that modifies this bit might indirectly set ERR<n>STATUS.OF to an UNKNOWN value and
a direct write to ERR<n>STATUS.OF that clears it to zero might indirectly set this bit to an UNKNOWN
value.

This bit resets to an architecturally UNKNOWN value on a Cold reset. This bit is preserved on an Error
Recovery reset.

CECR, bits [38:32]
Corrected error count, repeat. Incremented for the first countable error, which also records other syndrome
for the error, and subsequently for each countable error that matches the recorded other syndrome.
Corrected errors are countable errors. It is IMPLEMENTATION DEFINED and might be UNPREDICTABLE
whether Deferred and Uncorrected errors are countable errors.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

109

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

This field resets to an architecturally UNKNOWN value on a Cold reset. This field is preserved on an Error
Recovery reset.

Note:

For example, the other syndrome might include the set and way information for an error detected
in a cache. This might be recorded in the IMPLEMENTATION DEFINED ERR<n>MISC<m>
fields on a first Corrected error. ERR<n>MISC0.CECR is then incremented for each subsequent
Corrected Error in the same set and way.

4.3.5.6 Accessibility

Reads from ERR<n>MISC0 return an IMPLEMENTATION DEFINED value and writes have IMPLEMENTATION
DEFINED behavior.

If the Common Fault Injection Mechanism is implemented by the node that owns this error record, and
ERR<q>PFGF.MV is 0b1, then some parts of this register are read/write when ERR<n>STATUS.MV == 0b1.
See ERR<n>PFGF.MV for more information.

For other parts of this register, or if the Common Fault Injection Mechanism is not implemented, then Arm
recommends that:

• Miscellaneous syndrome for multiple errors, such as a corrected error counter, is read/write.
• When ERR<n>STATUS.MV == 0b1, the miscellaneous syndrome specific to the most recently recorded

error ignores writes.

Note:

These recommendations allow a counter to be reset in the presence of a persistent error, while
preventing specific information, such as that identifying a FRU, from being lost if an error is detected
while the previous error is being logged.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

110

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

4.3.6 ERR<n>MISC1, Error Record Miscellaneous Register 1

The ERR<n>MISC1 characteristics are:

Purpose
IMPLEMENTATION DEFINED error syndrome register. The miscellaneous syndrome registers might
contain:

• Information to locate where the error was detected.
• If the error was detected within a FRU, the identity of the FRU.
• A Corrected error counter or counters.
• Other state information not present in the corresponding status and address registers.

Configurations
ERR<n>MISC1 is present only if error record <n> is implemented. ERR<n>MISC1 is RES0 otherwise.

ERR<q>FR describes the features implemented by the node that owns error record <n>. <q> is the index
of the first error record owned by the same node as error record <n>. If the node owns a single record,
then q = n.

For IMPLEMENTATION DEFINED fields in ERR<n>MISC1, writing zero returns the error record to an
initial quiescent state.

In particular, if any IMPLEMENTATION DEFINED syndrome fields might generate a Fault Handling or
Error Recovery Interrupt request, writing zero is sufficient to deactivate the Interrupt request.

Fields that are read-only, non-zero, and ignore writes are compliant with this requirement.

Note:

Arm recommends that any IMPLEMENTATION DEFINED syndrome field that can generate a Fault
Handling, Error Recovery, Critical, or IMPLEMENTATION DEFINED, interrupt request is disabled
at Cold reset and is enabled by software writing an IMPLEMENTATION DEFINED nonzero value
to an IMPLEMENTATION DEFINED field in ERR<q>CTLR.

Attributes
When accessed using a System register, ERR<n>MISC1 is a 64-bit read/write register accessed using:

• MRS and MSR of ERXMISC1_EL1 when ERRSELR_EL1.SEL is set to n.
• MRC and MCR of ERXMISC2 for ERR<n>MISC1[31:0] when ERRSELR.SEL is set to n.
• MRC and MCR of ERXMISC3 for ERR<n>MISC1[63:32] when ERRSELR.SEL is set to n.

When accessed as a memory-mapped register, ERR<n>MISC1 is a 64-bit read/write register located at
offset 0x028 + 64×n.

4.3.6.1 Field descriptions

The ERR<n>MISC1 bit assignments are:

63 32

IMPLEMENTATION DEFINED

31 0

IMPLEMENTATION DEFINED

Figure 4.10: ERR<n>MISC1

Bits [63:0]
IMPLEMENTATION DEFINED syndrome. This field reads as an IMPLEMENTATION DEFINED value and
writes to this field have IMPLEMENTATION DEFINED behavior.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

111

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

4.3.6.2 Accessibility

Reads from ERR<n>MISC1 return an IMPLEMENTATION DEFINED value and writes have IMPLEMENTATION
DEFINED behavior.

If the Common Fault Injection Mechanism is implemented by the node that owns this error record, and
ERR<q>PFGF.MV is 0b1, then some parts of this register are read/write when ERR<n>STATUS.MV == 0b1.
See ERR<n>PFGF.MV for more information.

For other parts of this register, or if the Common Fault Injection Mechanism is not implemented, then Arm
recommends that:

• Miscellaneous syndrome for multiple errors, such as a corrected error counter, is read/write.
• When ERR<n>STATUS.MV == 0b1, the miscellaneous syndrome specific to the most recently recorded

error ignores writes.

Note:

These recommendations allow a counter to be reset in the presence of a persistent error, while
preventing specific information, such as that identifying a FRU, from being lost if an error is detected
while the previous error is being logged.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

112

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

4.3.7 ERR<n>MISC2, Error Record Miscellaneous Register 2

The ERR<n>MISC2 characteristics are:

Purpose
IMPLEMENTATION DEFINED error syndrome register. The miscellaneous syndrome registers might
contain:

• Information to locate where the error was detected.
• If the error was detected within a FRU, the identity of the FRU.
• A Corrected error counter or counters.
• Other state information not present in the corresponding status and address registers.

Configurations
ERR<n>MISC2 is present if error record <n> is implemented. It is IMPLEMENTATION DEFINED whether
ERR<n>MISC2 is present if RAS System Architecture v1.1 is not implemented. ERR<n>MISC2 is RES0
if not present.

ERR<q>FR describes the features implemented by the node that owns error record <n>. <q> is the index
of the first error record owned by the same node as error record <n>. If the node owns a single record,
then q = n.

For IMPLEMENTATION DEFINED fields in ERR<n>MISC2, writing zero returns the error record to an
initial quiescent state.

In particular, if any IMPLEMENTATION DEFINED syndrome fields might generate a Fault Handling or
Error Recovery Interrupt request, writing zero is sufficient to deactivate the Interrupt request.

Fields that are read-only, non-zero, and ignore writes are compliant with this requirement.

If RAS System Architecture v1.1 is not implemented, Arm recommends that ERR<n>MISC2 does not
require zeroing to return the record to a quiescent state.

Note:

Arm recommends that any IMPLEMENTATION DEFINED syndrome field that can generate a Fault
Handling, Error Recovery, Critical, or IMPLEMENTATION DEFINED, interrupt request is disabled
at Cold reset and is enabled by software writing an IMPLEMENTATION DEFINED nonzero value
to an IMPLEMENTATION DEFINED field in ERR<q>CTLR.

Attributes
When accessed using a System register, ERR<n>MISC2 is a 64-bit read/write register accessed using:

• MRS and MSR of ERXMISC2_EL1 when ERRSELR_EL1.SEL is set to n.
• MRC and MCR of ERXMISC4 for ERR<n>MISC2[31:0] when ERRSELR.SEL is set to n.
• MRC and MCR of ERXMISC5 for ERR<n>MISC2[63:32] when ERRSELR.SEL is set to n.

When accessed as a memory-mapped register, ERR<n>MISC2 is a 64-bit read/write register located at
offset 0x030 + 64×n.

4.3.7.1 Field descriptions

The ERR<n>MISC2 bit assignments are:

63 32

IMPLEMENTATION DEFINED

31 0

IMPLEMENTATION DEFINED

Figure 4.11: ERR<n>MISC2

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

113

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

Bits [63:0]
IMPLEMENTATION DEFINED syndrome. This field reads as an IMPLEMENTATION DEFINED value and
writes to this field have IMPLEMENTATION DEFINED behavior.

4.3.7.2 Accessibility

Reads from ERR<n>MISC2 return an IMPLEMENTATION DEFINED value and writes have IMPLEMENTATION
DEFINED behavior.

If the Common Fault Injection Mechanism is implemented by the node that owns this error record, and
ERR<q>PFGF.MV is 0b1, then some parts of this register are read/write when ERR<n>STATUS.MV == 0b1.
See ERR<n>PFGF.MV for more information.

For other parts of this register, or if the Common Fault Injection Mechanism is not implemented, then Arm
recommends that:

• Miscellaneous syndrome for multiple errors, such as a corrected error counter, is read/write.
• When ERR<n>STATUS.MV == 0b1, the miscellaneous syndrome specific to the most recently recorded

error ignores writes.

Note:

These recommendations allow a counter to be reset in the presence of a persistent error, while
preventing specific information, such as that identifying a FRU, from being lost if an error is detected
while the previous error is being logged.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

114

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

4.3.8 ERR<n>MISC3, Error Record Miscellaneous Register 3

The ERR<n>MISC3 characteristics are:

Purpose
IMPLEMENTATION DEFINED error syndrome register. The miscellaneous syndrome registers might
contain:

• Information to locate where the error was detected.
• If the error was detected within a FRU, the identity of the FRU.
• A Corrected error counter or counters.
• Other state information not present in the corresponding status and address registers.

If the node that owns error record n supports the RAS Timestamp Extension (ERR<q>FR.TS != 0b00), then
ERR<n>MISC3 contains the timestamp value for error record n when the error was detected. Otherwise
the contents of ERR<n>MISC3 are IMPLEMENTATION DEFINED.

Configurations
ERR<n>MISC3 is present if error record <n> is implemented. It is IMPLEMENTATION DEFINED whether
ERR<n>MISC3 is present if RAS System Architecture v1.1 is not implemented. ERR<n>MISC3 is RES0
if not present.

ERR<q>FR describes the features implemented by the node that owns error record <n>. <q> is the index
of the first error record owned by the same node as error record <n>. If the node owns a single record,
then q = n.

For IMPLEMENTATION DEFINED fields in ERR<n>MISC3, writing zero returns the error record to an
initial quiescent state.

In particular, if any IMPLEMENTATION DEFINED syndrome fields might generate a Fault Handling or
Error Recovery Interrupt request, writing zero is sufficient to deactivate the Interrupt request.

Fields that are read-only, non-zero, and ignore writes are compliant with this requirement.

If RAS System Architecture v1.1 is not implemented, Arm recommends that ERR<n>MISC3 does not
require zeroing to return the record to a quiescent state.

Note:

Arm recommends that any IMPLEMENTATION DEFINED syndrome field that can generate a Fault
Handling, Error Recovery, Critical, or IMPLEMENTATION DEFINED, interrupt request is disabled
at Cold reset and is enabled by software writing an IMPLEMENTATION DEFINED nonzero value
to an IMPLEMENTATION DEFINED field in ERR<q>CTLR.

Attributes
When accessed using a System register, ERR<n>MISC3 is a 64-bit read/write register accessed using:

• MRS and MSR of ERXMISC3_EL1 when ERRSELR_EL1.SEL is set to n.
• MRC and MCR of ERXMISC6 for ERR<n>MISC3[31:0] when ERRSELR.SEL is set to n.
• MRC and MCR of ERXMISC7 for ERR<n>MISC3[63:32] when ERRSELR.SEL is set to n.

When accessed as a memory-mapped register, ERR<n>MISC3 is a 64-bit read/write register located at
offset 0x038 + 64×n.

4.3.8.1 ERR<n>MISC3 (ERR<q>FR.TS != 0b00)

The ERR<n>MISC3 (ERR<q>FR.TS != 0b00) bit assignments are:

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

115

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

63 32

TS[63:32]

31 0

TS[31:0]

Figure 4.12: ERR<n>MISC3

TS, bits [63:0]
Timestamp. Timestamp value recorded when the error was detected. Valid only if ERR<n>STATUS.V ==
0b1.

It is IMPLEMENTATION DEFINED whether this field is read-only or read/write.

This field resets to an architecturally UNKNOWN value on a Cold reset. This field is preserved on an Error
Recovery reset.

See ERR<q>FR.TS.

4.3.8.2 ERR<n>MISC3 (ERR<q>FR.TS == 0b00)

The ERR<n>MISC3 (ERR<q>FR.TS == 0b00) bit assignments are:

63 32

IMPLEMENTATION DEFINED

31 0

IMPLEMENTATION DEFINED

Figure 4.13: ERR<n>MISC3

Bits [63:0]
IMPLEMENTATION DEFINED syndrome. This field reads as an IMPLEMENTATION DEFINED value and
writes to this field have IMPLEMENTATION DEFINED behavior.

4.3.8.3 Accessibility

Reads from ERR<n>MISC3 return an IMPLEMENTATION DEFINED value and writes have IMPLEMENTATION
DEFINED behavior.

If the Common Fault Injection Mechanism is implemented by the node that owns this error record, and
ERR<q>PFGF.MV is 0b1, then some parts of this register are read/write when ERR<n>STATUS.MV == 0b1.
See ERR<n>PFGF.MV for more information.

For other parts of this register, or if the Common Fault Injection Mechanism is not implemented, then Arm
recommends that:

• Miscellaneous syndrome for multiple errors, such as a corrected error counter, is read/write.
• When ERR<n>STATUS.MV == 0b1, the miscellaneous syndrome specific to the most recently recorded

error ignores writes.

Note:

These recommendations allow a counter to be reset in the presence of a persistent error, while
preventing specific information, such as that identifying a FRU, from being lost if an error is detected
while the previous error is being logged.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

116

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

4.3.9 ERR<n>PFGCDN, Pseudo-fault Generation Countdown Register

The ERR<n>PFGCDN characteristics are:

Purpose
Generates one of the errors enabled in the corresponding ERR<n>PFGCTL register.

Configurations
ERR<n>PFGCDN is present only if all of the following are true:

• Error record <n> is implemented.
• The node implements the RAS Common Fault Injection Model Extension (ERR<n>FR.INJ != 0b00).
• Error record <n> is the first error record owned by a node.

ERR<n>PFGCDN is RES0 otherwise.

ERR<n>FR describes the features implemented by the node.

Attributes
When accessed using a System register, ERR<n>PFGCDN is a 64-bit read/write register accessed using
MRS and MSR of ERXPFGCDN_EL1 when ERRSELR_EL1.SEL is set to n.

When accessed as a memory-mapped register, ERR<n>PFGCDN is a 64-bit read/write register located at
offset 0x810 + 64×n.

4.3.9.1 Field descriptions

The ERR<n>PFGCDN bit assignments are:

63 32

RES0

31 0

CDN

Figure 4.14: ERR<n>PFGCDN

Bits [63:32]
Reserved. This field is RES0.

CDN, bits [31:0]
Countdown value.

This field is copied to Error Generation Counter when either:

• Software writes ERR<n>PFGCTL.CDNEN with 1.
• The Error Generation Counter decrements to zero and ERR<n>PFGCTL.R == 0b1.

While ERR<n>PFGCTL.CDNEN == 0b1 and the Error Generation Counter is nonzero, the counter
decrements by 1 for each cycle at an IMPLEMENTATION DEFINED clock rate. When the counter reaches 0,
one of the errors enabled in the ERR<n>PFGCTL register is generated.

This field resets to an architecturally UNKNOWN value on a Cold reset. This field is preserved on an Error
Recovery reset.

Note:

The current Error Generation Counter value is not visible to software.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

117

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

4.3.9.2 Accessibility

None.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

118

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

4.3.10 ERR<n>PFGCTL, Pseudo-fault Generation Control Register

The ERR<n>PFGCTL characteristics are:

Purpose
Enables controlled fault generation.

Configurations
ERR<n>PFGCTL is present only if all of the following are true:

• Error record <n> is implemented.
• The node implements the RAS Common Fault Injection Model Extension (ERR<n>FR.INJ != 0b00).
• Error record <n> is the first error record owned by a node.

ERR<n>PFGCTL is RES0 otherwise.

ERR<n>FR describes the features implemented by the node.

Attributes
When accessed using a System register, ERR<n>PFGCTL is a 64-bit read/write register accessed using
MRS and MSR of ERXPFGCTL_EL1 when ERRSELR_EL1.SEL is set to n.

When accessed as a memory-mapped register, ERR<n>PFGCTL is a 64-bit read/write register located at
offset 0x808 + 64×n.

4.3.10.1 Field descriptions

The ERR<n>PFGCTL bit assignments are:

63 32

RES0

0123457 6

CE

8

CI

910111229 13

RES0

30

R

31

OFDEERMVCDNEN
UCUEOPNAV
UEUUER

Figure 4.15: ERR<n>PFGCTL

Bits [63:32,29:13]
Reserved. This field is RES0.

CDNEN, bit [31]
Countdown Enable. Controls transfers from the value that is held in the ERR<n>PFGCDN into the Error
Generation Counter and enables this counter. The possible values of this bit are:

0 The Error Generation Counter is disabled.
1 The Error Generation Counter is enabled. On a write of 0b1 to this bit, the Error

Generation Counter is set to ERR<n>PFGCDN.CDN.

This bit resets to zero on a Cold reset. This bit is preserved on an Error Recovery reset.

R, bit [30]
Restart.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

119

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

When the node supports this control
Controls whether, upon reaching zero, the Error Generation Counter restarts from the
ERR<n>PFGCDN value or stops. The possible values of this bit are:

0 On reaching 0, the Error Generation Counter will stop.
1 On reaching 0, the Error Generation Counter is set to ERR<n>PFGCDN.CDN.

This bit resets to an architecturally UNKNOWN value on a Cold reset. This bit is preserved on an Error
Recovery reset.

Otherwise
Reserved. This bit is RES0.

MV, bit [12]
Miscellaneous syndrome.

When the node supports this control
The value that is written to ERR<n>STATUS.MV when an injected error is recorded. The possible
values of this bit are:

0 ERR<n>STATUS.MV is set to 0b0 when an injected error is recorded.
1 ERR<n>STATUS.MV is set to 0b1 when an injected error is recorded.

Accessing this bit has the following behavior:

• This bit reads-as-one and ignores writes if the node always records some syndrome in
ERR<n>MISC<m>, setting ERR<n>STATUS.MV to 1, when an injected error is recorded.

• Otherwise, this bit is read/write.

This bit resets to an architecturally UNKNOWN value on a Cold reset. This bit is preserved on an Error
Recovery reset.

Otherwise
Reserved. This bit is RES0.

AV, bit [11]
Address syndrome.

When the node supports this control
The value that is written to ERR<n>STATUS.AV when an injected error is recorded. The possible
values of this bit are:

0 ERR<n>STATUS.AV is set to 0b0 when an injected error is recorded.
1 ERR<n>STATUS.AV is set to 0b1 when an injected error is recorded.

Accessing this bit has the following behavior:

• This bit reads-as-one and ignores writes if the node always sets ERR<n>STATUS.AV to 0b1

when an injected error is recorded.
• Otherwise, this bit is read/write.

This bit resets to an architecturally UNKNOWN value on a Cold reset. This bit is preserved on an Error
Recovery reset.

Otherwise
Reserved. This bit is RES0.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

120

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

PN, bit [10]
Poison flag.

When the node supports this control
The value that is written to ERR<n>STATUS.PN when an injected error is recorded. The possible
values of this bit are:

0 ERR<n>STATUS.PN is set to 0b0 when an injected error is recorded.
1 ERR<n>STATUS.PN is set to 0b1 when an injected error is recorded.

This bit resets to an architecturally UNKNOWN value on a Cold reset. This bit is preserved on an Error
Recovery reset.

Otherwise
Reserved. This bit is RES0.

ER, bit [9]
Error Reported flag.

When the node supports this control
The value that is written to ERR<n>STATUS.ER when an injected error is recorded. The possible
values of this bit are:

0 ERR<n>STATUS.ER is set to 0b0 when an injected error is recorded.
1 ERR<n>STATUS.ER is set to 0b1 when an injected error is recorded.

This bit resets to an architecturally UNKNOWN value on a Cold reset. This bit is preserved on an Error
Recovery reset.

Otherwise
Reserved. This bit is RES0.

CI, bit [8]
Critical Error flag.

When the node supports this control
The value that is written to ERR<n>STATUS.CI when an injected error is recorded. The possible
values of this bit are:

0 ERR<n>STATUS.CI is set to 0b0 when an injected error is recorded.
1 ERR<n>STATUS.CI is set to 0b1 when an injected error is recorded.

This bit resets to an architecturally UNKNOWN value on a Cold reset. This bit is preserved on an Error
Recovery reset.

Otherwise
Reserved. This bit is RES0.

CE, bits [7:6]
Corrected Error generation enable.

When the node supports this control
Controls the type of Corrected Error condition that might be generated. The possible values of this
field are:

0b00 No error of this type will be generated.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

121

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

0b01 A non-specific Corrected Error, that is, a Corrected Error that is recorded as
ERR<n>STATUS.CE == 0b10, might be generated when the Error Generation
Counter decrements to zero.

0b10 A transient Corrected Error, that is, a Corrected Error that is recorded as
ERR<n>STATUS.CE == 0b01, might be generated when the Error Generation
Counter decrements to zero.

0b11 A persistent Corrected Error, that is, a Corrected Error that is recorded as
ERR<n>STATUS.CE == 0b11, might be generated when the Error Generation
Counter decrements to zero.

The set of permitted values for this field is defined by ERR<n>PFGF.CE.

This field resets to an architecturally UNKNOWN value on a Cold reset. This field is preserved on an
Error Recovery reset.

Otherwise
Reserved. This field is RES0.

DE, bit [5]
Deferred Error generation enable.

When the node supports this control
Controls whether this type of error condition might be generated. It is IMPLEMENTATION DEFINED
whether the error is generated if the data is not consumed. The possible values of this bit are:

0 No error of this type will be generated.
1 An error of this type might be generated when the Error Generation Counter

decrements to zero.

This bit resets to an architecturally UNKNOWN value on a Cold reset. This bit is preserved on an Error
Recovery reset.

Otherwise
Reserved. This bit is RES0.

UEO, bit [4]
Latent or Restartable Error generation enable.

When the node supports this control
Controls whether this type of error condition might be generated. It is IMPLEMENTATION DEFINED
whether the error is generated if the data is not consumed. The possible values of this bit are:

0 No error of this type will be generated.
1 An error of this type might be generated when the Error Generation Counter

decrements to zero.

This bit resets to an architecturally UNKNOWN value on a Cold reset. This bit is preserved on an Error
Recovery reset.

Otherwise
Reserved. This bit is RES0.

UER, bit [3]
Signaled or Recoverable Error generation enable.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

122

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

When the node supports this control
Controls whether this type of error condition might be generated. It is IMPLEMENTATION DEFINED
whether the error is generated if the data is not consumed. The possible values of this bit are:

0 No error of this type will be generated.
1 An error of this type might be generated when the Error Generation Counter

decrements to zero.

This bit resets to an architecturally UNKNOWN value on a Cold reset. This bit is preserved on an Error
Recovery reset.

Otherwise
Reserved. This bit is RES0.

UEU, bit [2]
Unrecoverable Error generation enable.

When the node supports this control
Controls whether this type of error condition might be generated. It is IMPLEMENTATION DEFINED
whether the error is generated if the data is not consumed. The possible values of this bit are:

0 No error of this type will be generated.
1 An error of this type might be generated when the Error Generation Counter

decrements to zero.

This bit resets to an architecturally UNKNOWN value on a Cold reset. This bit is preserved on an Error
Recovery reset.

Otherwise
Reserved. This bit is RES0.

UC, bit [1]
Uncontainable Error generation enable.

When the node supports this control
Controls whether this type of error condition might be generated. It is IMPLEMENTATION DEFINED
whether the error is generated if the data is not consumed. The possible values of this bit are:

0 No error of this type will be generated.
1 An error of this type might be generated when the Error Generation Counter

decrements to zero.

This bit resets to an architecturally UNKNOWN value on a Cold reset. This bit is preserved on an Error
Recovery reset.

Otherwise
Reserved. This bit is RES0.

OF, bit [0]
Overflow flag.

When the node supports this control
The value that is written to ERR<n>STATUS.OF when an injected error is recorded. The possible
values of this bit are:

0 ERR<n>STATUS.OF is set to 0b0 when an injected error is recorded.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

123

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

1 ERR<n>STATUS.OF is set to 0b1 when an injected error is recorded.

This bit resets to an architecturally UNKNOWN value on a Cold reset. This bit is preserved on an Error
Recovery reset.

Otherwise
Reserved. This bit is RES0.

4.3.10.2 Accessibility

None.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

124

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

4.3.11 ERR<n>PFGF, Pseudo-fault Generation Feature Register

The ERR<n>PFGF characteristics are:

Purpose
Defines which common architecturally-defined fault generation features are implemented.

Configurations
ERR<n>PFGF is present only if all of the following are true:

• Error record <n> is implemented.
• The node implements the RAS Common Fault Injection Model Extension (ERR<n>FR.INJ != 0b00).
• Error record <n> is the first error record owned by a node.

ERR<n>PFGF is RES0 otherwise.

ERR<n>FR describes the features implemented by the node.

Attributes
When accessed using a System register, ERR<n>PFGF is a 64-bit read-only register accessed using MRS

of ERXPFGF_EL1 when ERRSELR_EL1.SEL is set to n.

When accessed as a memory-mapped register, ERR<n>PFGF is a 64-bit read-only register located at offset
0x800 + 64×n.

4.3.11.1 Field descriptions

The ERR<n>PFGF bit assignments are:

63 32

RES0

0123457 6

CE

8

CI

910111228 13

RES0

2930

R

31

OFDEERMVSYNRES0

UCUEOPNAV
UEUUER

Figure 4.16: ERR<n>PFGF

Bits [63:31,28:13]
Reserved. This field is RES0.

R, bit [30]
Restartable. Support for Error Generation Counter restart mode. The defined values of this bit are:

0 The node does not support this feature.
1 Feature controllable.

SYN, bit [29]
Syndrome. Fault syndrome injection. The defined values of this bit are:

0 When an injected error is recorded, the node sets ERR<n>STATUS.{IERR, SERR} to
IMPLEMENTATION DEFINED values. ERR<n>STATUS.{IERR, SERR} are UNKNOWN
when ERR<n>STATUS.V == 0b0.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

125

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

1 When an injected error is recorded, the node does not update the
ERR<n>STATUS.{IERR, SERR} fields. ERR<n>STATUS.{IERR, SERR} are writable
when ERR<n>STATUS.V == 0b0.

Note:

If ERR<n>PFGF.SYN == 0b1, software can write specific values into the ERR<n>STATUS.{IERR,
SERR} fields when setting up a fault injection event. The sets of values that can be written to
these fields is IMPLEMENTATION DEFINED.

MV, bit [12]
Miscellaneous syndrome.

Additional syndrome injection. Defines whether software can control all or part of the syndrome recorded
in the ERR<n>MISC<m> registers when an injected error is recorded.

It is IMPLEMENTATION DEFINED which syndrome fields in ERR<n>MISC<m> this refers to, as some
fields might always be recorded by an error. For example, a Corrected Error counter.

The defined values of this bit are:

0 When an injected error is recorded, the node might record IMPLEMENTATION DEFINED
additional syndrome in ERR<n>MISC<m>. If any syndrome is recorded in
ERR<n>MISC<m>, then ERR<n>STATUS.MV is set to 0b1.

1 When an injected error is recorded, the node does not update all the syndrome fields in
the ERR<n>MISC<m> and does one of:

• The node does not update any fields in ERR<n>MISC<m> and sets
ERR<n>STATUS.MV to ERR<n>PFGCTL.MV.

• The node records some syndrome in ERR<n>MISC<m> and sets
ERR<n>STATUS.MV to 0b1. ERR<n>PFGCTL.MV is RAO/WI.

The syndrome fields that the node does not update are unchanged and are writable when
ERR<n>STATUS.MV == 0b0.

Note:

If ERR<n>PFGF.MV == 0b1, software can write specific values into the ERR<n>MISC<m>
registers when setting up a fault injection event. The values that can be written to these registers
are IMPLEMENTATION DEFINED.

AV, bit [11]
Address syndrome. Address syndrome injection. The defined values of this bit are:

0 When an injected error is recorded, the node either sets ERR<n>ADDR and
ERR<n>STATUS.AV for the access, or leaves these unchanged.

1 When an injected error is recorded, the node does not update ERR<n>ADDR and does
one of:

• Sets ERR<n>STATUS.AV to ERR<n>PFGCTL.AV.
• Sets ERR<n>STATUS.AV to 0b1. ERR<n>PFGCTL.AV is RAO/WI.

ERR<n>ADDR is writable when ERR<n>STATUS.AV == 0b0.

Note:

If ERR<n>PFGF.AV == 0b1, software can write a specific value into ERR<n>ADDR when
setting up a fault injection event.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

126

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

PN, bit [10]
Poison flag.

When the node supports this flag
Describes how the fault generation feature of the node sets the ERR<n>STATUS.PN status flag. The
defined values of this bit are:

0 When an injected error is recorded, it is IMPLEMENTATION DEFINED whether the
node sets ERR<n>STATUS.PN to 0b1.

1 When an injected error is recorded, ERR<n>STATUS.PN is set to
ERR<n>PFGCTL.PN.

This behavior replaces the architecture-defined rules for setting the PN bit.

Otherwise
This bit reads-as-zero.

ER, bit [9]
Error Reported flag.

When the node supports this flag
Describes how the fault generation feature of the node sets the ERR<n>STATUS.ER status flag. The
defined values of this bit are:

0 When an injected error is recorded, the node sets ERR<n>STATUS.ER according to
the architecture-defined rules for setting the ER bit.

1 When an injected error is recorded, ERR<n>STATUS.ER is set to
ERR<n>PFGCTL.ER. This behavior replaces the architecture-defined rules for
setting the ER bit.

Otherwise
This bit reads-as-zero.

CI, bit [8]
Critical Error flag.

When the node supports this flag
Describes how the fault generation feature of the node sets the ERR<n>STATUS.CI status flag. The
defined values of this bit are:

0 When an injected error is recorded, it is IMPLEMENTATION DEFINED whether the
node sets ERR<n>STATUS.CI to 0b1.

1 When an injected error is recorded, ERR<n>STATUS.CI is set to
ERR<n>PFGCTL.CI.

This behavior replaces the architecture-defined rules for setting the CI bit.

Otherwise
This bit reads-as-zero.

CE, bits [7:6]
Corrected Error generation.

When the node supports this type of error
Describes the types of Corrected Error that the fault generation feature of the node can generate. The
defined values of this field are:

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

127

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

0b00 The fault generation feature of the node cannot generate this type of error.
0b01 The fault generation feature of the node allows generation of a non-specific

Corrected Error, that is, a Corrected Error that is recorded as ERR<n>STATUS.CE
== 0b10.

0b11 The fault generation feature of the node allows generation of transient or persistent
Corrected Errors, that is, Corrected Errors that are recorded as ERR<n>STATUS.CE
== 0b01 and 0b11.

All other values are reserved.

If ERR<n>FR.FRX is 0b1 then ERR<n>FR.CE indicates whether the node supports this type of
error.

Otherwise
This field reads-as-zero.

DE, bit [5]
Deferred Error generation.

When the node supports this type of error
Describes whether the fault generation feature of the node can generate this type of error. The defined
values of this bit are:

0 The fault generation feature of the node cannot generate this type of error.
1 The fault generation feature of the node allows generation of this type of error.

If ERR<n>FR.FRX is 0b1 then ERR<n>FR.DE indicates whether the node supports this type of
error.

Otherwise
This bit reads-as-zero.

UEO, bit [4]
Latent or Restartable Error generation.

When the node supports this type of error
Describes whether the fault generation feature of the node can generate this type of error. The defined
values of this bit are:

0 The fault generation feature of the node cannot generate this type of error.
1 The fault generation feature of the node allows generation of this type of error.

If ERR<n>FR.FRX is 0b1 then ERR<n>FR.UEO indicates whether the node supports this type of
error.

Otherwise
This bit reads-as-zero.

UER, bit [3]
Signaled or Recoverable Error generation.

When the node supports this type of error
Describes whether the fault generation feature of the node can generate this type of error. The defined
values of this bit are:

0 The fault generation feature of the node cannot generate this type of error.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

128

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

1 The fault generation feature of the node allows generation of this type of error.

If ERR<n>FR.FRX is 0b1 then ERR<n>FR.UER indicates whether the node supports this type of
error.

Otherwise
This bit reads-as-zero.

UEU, bit [2]
Unrecoverable Error generation.

When the node supports this type of error
Describes whether the fault generation feature of the node can generate this type of error. The defined
values of this bit are:

0 The fault generation feature of the node cannot generate this type of error.
1 The fault generation feature of the node allows generation of this type of error.

If ERR<n>FR.FRX is 0b1 then ERR<n>FR.UEU indicates whether the node supports this type of
error.

Otherwise
This bit reads-as-zero.

UC, bit [1]
Uncontainable Error generation.

When the node supports this type of error
Describes whether the fault generation feature of the node can generate this type of error. The defined
values of this bit are:

0 The fault generation feature of the node cannot generate this type of error.
1 The fault generation feature of the node allows generation of this type of error.

If ERR<n>FR.FRX is 0b1 then ERR<n>FR.UC indicates whether the node supports this type of
error.

Otherwise
This bit reads-as-zero.

OF, bit [0]
Overflow flag.

When the node supports this flag
Describes how the fault generation feature of the node sets the ERR<n>STATUS.OF status flag. The
defined values of this bit are:

0 When an injected error is recorded, the node sets ERR<n>STATUS.OF according to
the architecture-defined rules for setting the OF bit.

1 When an injected error is recorded, ERR<n>STATUS.OF is set to
ERR<n>PFGCTL.OF. This behavior replaces the architecture-defined rules for
setting the OF bit.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

129

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

Otherwise
This bit reads-as-zero.

4.3.11.2 Accessibility

None.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

130

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

4.3.12 ERR<n>STATUS, Error Record Primary Status Register

The ERR<n>STATUS characteristics are:

Purpose
Contains status information for error record <n>, including:

• Whether any error has been detected (valid).
• Whether any detected error was not corrected, and returned to a Requester.
• Whether any detected error was not corrected and deferred.
• Whether an error record has been discarded because additional errors have been detected before the

first error was handled by software (overflow).
• Whether any error has been reported.
• Whether the other error record registers contain valid information.
• Whether the error was reported because poison data was detected or because a corrupt value was

detected by an error detection code.
• A primary error code.
• An IMPLEMENTATION DEFINED extended error code.

Within this register:

• The {AV, V, MV} bits are valid bits that define whether error record <n> registers are valid.
• The {UE, OF, CE, DE, UET} bits encode the types of error or errors recorded.
• The {CI, ER, PN, IERR, SERR} fields are syndrome fields.

Configurations
ERR<n>STATUS is present only if error record <n> is implemented. ERR<n>STATUS is RES0 otherwise.

ERR<q>FR describes the features implemented by the node that owns error record <n>. <q> is the index
of the first error record owned by the same node as error record <n>. If the node owns a single record,
then q = n.

For IMPLEMENTATION DEFINED fields in ERR<n>STATUS, writing zero returns the error record to an
initial quiescent state.

In particular, if any IMPLEMENTATION DEFINED syndrome fields might generate a Fault Handling or
Error Recovery Interrupt request, writing zero is sufficient to deactivate the Interrupt request.

Fields that are read-only, non-zero, and ignore writes are compliant with this requirement.

Note:

Arm recommends that any IMPLEMENTATION DEFINED syndrome field that can generate a Fault
Handling, Error Recovery, Critical, or IMPLEMENTATION DEFINED, interrupt request is disabled
at Cold reset and is enabled by software writing an IMPLEMENTATION DEFINED nonzero value
to an IMPLEMENTATION DEFINED field in ERR<q>CTLR.

Attributes
When accessed using a System register, ERR<n>STATUS is a 64-bit read/write register accessed using:

• MRC and MCR of ERXSTATUS for ERR<n>STATUS[31:0] when ERRSELR.SEL is set to n.
• MRS and MSR of ERXSTATUS_EL1 when ERRSELR_EL1.SEL is set to n.

When accessed as a memory-mapped register, ERR<n>STATUS is a 64-bit read/write register located at
offset 0x010 + 64×n.

4.3.12.1 ERR<n>STATUS (RAS System Architecture v1.1 is implemented)

The ERR<n>STATUS (RAS System Architecture v1.1 is implemented) bit assignments are:

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

131

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

63 32

RES0

7 0

SERR

15 8

IERR

18 16

RES0

19

CI

21 20

UET

222325 24

CE

2627282930

V

31

PNDEAV
MVUE
OFER

Figure 4.17: ERR<n>STATUS

Bits [63:32,18:16]
Reserved. This field is RES0.

AV, bit [31]
Address Valid.

When error record <n> includes an address associated with an error
The possible values of this bit are:

0 ERR<n>ADDR not valid.
1 ERR<n>ADDR contains an address associated with the highest priority error

recorded by this record.

This bit is read/write-one-to-clear.

This bit resets to zero on a Cold reset. This bit is preserved on an Error Recovery reset.

Otherwise
Reserved. This bit is RES0.

V, bit [30]
Status Register Valid. The possible values of this bit are:

0 ERR<n>STATUS not valid.
1 ERR<n>STATUS valid. At least one error has been recorded.

This bit is read/write-one-to-clear.

This bit resets to zero on a Cold reset. This bit is preserved on an Error Recovery reset.

UE, bit [29]
Uncorrected Error. The possible values of this bit are:

0 No errors have been detected, or all detected errors have been either corrected or
deferred.

1 At least one detected error was not corrected and not deferred.

When clearing ERR<n>STATUS.V to 0b0, if this bit is nonzero, then Arm recommends that software
write 0b1 to this bit to clear this bit to zero.

Accessing this bit has the following behavior:

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

132

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

• This bit is not valid and reads UNKNOWN if ERR<n>STATUS.V == 0b0.
• Otherwise, this bit is read/write-one-to-clear.

This bit resets to an architecturally UNKNOWN value on a Cold reset. This bit is preserved on an Error
Recovery reset.

ER, bit [28]
Error Reported. The possible values of this bit are:

0 No in-band error (External Abort) reported.
1 An External Abort was signaled by the component to the Requester making the access

or other transaction. This can be because any of the following are true:
• The applicable one of the ERR<q>CTLR.{WUE,RUE,UE} bits is implemented

and was set to 0b1 when an Uncorrected error was detected.
• The applicable one of the ERR<q>CTLR.{WUE,RUE,UE} bits is not

implemented and the component always reports errors.

It is IMPLEMENTATION DEFINED whether this bit can be set to 0b1 by a Deferred error.

When clearing ERR<n>STATUS.V to 0b0, if this bit is nonzero, then Arm recommends that software
write 0b1 to this bit to clear this bit to zero.

Accessing this bit has the following behavior:

• This bit is not valid and reads UNKNOWN if any of the following are true:
– All of the following are true:

* ERR<n>STATUS.UE == 0b0.
* This bit is never set to 0b1 by a Deferred error.

– All of the following are true:
* ERR<n>STATUS.{UE,DE} == {0,0}.
* This bit can be set to 0b1 by a Deferred error.

– ERR<n>STATUS.V == 0b0.
• Otherwise, this bit is read/write-one-to-clear.

This bit resets to an architecturally UNKNOWN value on a Cold reset. This bit is preserved on an Error
Recovery reset.

Note:

An External Abort signaled by the component might be masked and not generate any exception.

OF, bit [27]
Overflow.

Indicates that multiple errors have been detected. This bit is set to 0b1 when one of the following occurs:

• A Corrected error counter is implemented, an error is counted, and the counter overflows.
• ERR<n>STATUS.V was previously set to 0b1, a Corrected error counter is not implemented, and a

Corrected error is recorded.
• ERR<n>STATUS.V was previously set to 0b1, and a type of error other than a Corrected error is

recorded.

Otherwise, this bit is unchanged when an error is recorded.

If a Corrected error counter is implemented:

• A direct write that modifies the counter overflow flag indirectly might set this bit to an UNKNOWN
value.

• A direct write to this bit that clears this bit to zero might indirectly set the counter overflow flag to an
UNKNOWN value.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

133

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

The possible values of this bit are:

0 Since this bit was last cleared to zero, no error syndrome has been discarded and, if a
Corrected error counter is implemented, it has not overflowed.

1 Since this bit was last cleared to zero, at least one error syndrome has been discarded or,
if a Corrected error counter is implemented, it might have overflowed.

When clearing ERR<n>STATUS.V to 0b0, if this bit is nonzero, then Arm recommends that software
write 0b1 to this bit to clear this bit to zero.

Accessing this bit has the following behavior:

• This bit is not valid and reads UNKNOWN if ERR<n>STATUS.V == 0b0.
• Otherwise, this bit is read/write-one-to-clear.

This bit resets to an architecturally UNKNOWN value on a Cold reset. This bit is preserved on an Error
Recovery reset.

MV, bit [26]
Miscellaneous Registers Valid.

When error record <n> includes an additional information for an error
The possible values of this bit are:

0 ERR<n>MISC<m> not valid.
1 The IMPLEMENTATION DEFINED contents of the ERR<n>MISC<m> registers

contains additional information for an error recorded by this record.

This bit is read/write-one-to-clear.

This bit resets to zero on a Cold reset. This bit is preserved on an Error Recovery reset.

Note:

If the ERR<n>MISC<m> registers can contain additional information for a previously
recorded error, then the contents must be self-describing to software or a user. For example,
certain fields might relate only to Corrected errors, and other fields only to the most recent
error that was not discarded.

Otherwise
Reserved. This bit is RES0.

CE, bits [25:24]
Corrected Error. The possible values of this field are:

0b00 No errors were corrected.
0b01 At least one transient error was corrected.
0b10 At least one error was corrected.
0b11 At least one persistent error was corrected.

The mechanism by which a component or node detects whether a correctable error is transient or persistent
is IMPLEMENTATION DEFINED. If no such mechanism is implemented, then the node sets this field to
0b10 when a corrected error is recorded.

When clearing ERR<n>STATUS.V to 0b0, if this field is nonzero, then Arm recommends that software
write ones to this field to clear this field to zero.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

134

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

Accessing this field has the following behavior:

• This field is not valid and reads UNKNOWN if ERR<n>STATUS.V == 0b0.
• Otherwise, this field is read/write-ones-to-clear. Writing a value other than all-zeros or all-ones sets

this field to an UNKNOWN value.

This field resets to an architecturally UNKNOWN value on a Cold reset. This field is preserved on an Error
Recovery reset.

DE, bit [23]
Deferred Error. The possible values of this bit are:

0 No errors were deferred.
1 At least one error was not corrected and deferred.

Support for deferring errors is IMPLEMENTATION DEFINED.

When clearing ERR<n>STATUS.V to 0b0, if this bit is nonzero, then Arm recommends that software
write 0b1 to this bit to clear this bit to zero.

Accessing this bit has the following behavior:

• This bit is not valid and reads UNKNOWN if ERR<n>STATUS.V == 0b0.
• Otherwise, this bit is read/write-one-to-clear.

This bit resets to an architecturally UNKNOWN value on a Cold reset. This bit is preserved on an Error
Recovery reset.

PN, bit [22]
Poison. The possible values of this bit are:

0 Uncorrected error or Deferred error recorded because a corrupt value was detected, for
example, by an error detection code (EDC), or Corrected error recorded.

1 Uncorrected error or Deferred error recorded because a poison value was detected.

When clearing ERR<n>STATUS.V to 0b0, if this bit is nonzero, then Arm recommends that software
write 0b1 to this bit to clear this bit to zero.

Accessing this bit has the following behavior:

• This bit is not valid and reads UNKNOWN if any of the following are true:
– ERR<n>STATUS.V == 0b0.
– ERR<n>STATUS.{DE,UE} == {0,0}.

• Otherwise, this bit is read/write-one-to-clear.

This bit resets to an architecturally UNKNOWN value on a Cold reset. This bit is preserved on an Error
Recovery reset.

UET, bits [21:20]
Uncorrected Error Type. Describes the state of the component after detecting or consuming an Uncorrected
error. The possible values of this field are:

0b00 Uncorrected error, Uncontainable error (UC).
0b01 Uncorrected error, Unrecoverable error (UEU).
0b10 Uncorrected error, Latent or Restartable error (UEO).
0b11 Uncorrected error, Signaled or Recoverable error (UER).

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

135

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

When clearing ERR<n>STATUS.V to 0b0, if this field is nonzero, then Arm recommends that software
write ones to this field to clear this field to zero.

Accessing this field has the following behavior:

• This field is not valid and reads UNKNOWN if any of the following are true:
– ERR<n>STATUS.V == 0b0.
– ERR<n>STATUS.UE == 0b0.

• Otherwise, this field is read/write-ones-to-clear. Writing a value other than all-zeros or all-ones sets
this field to an UNKNOWN value.

This field resets to an architecturally UNKNOWN value on a Cold reset. This field is preserved on an Error
Recovery reset.

Note:

Software might use the information in the error record registers to determine what recovery is
necessary.

CI, bit [19]
Critical Error. Indicates whether a critical error condition has been recorded. The possible values of this
bit are:

0 No critical error condition.
1 Critical error condition.

When clearing ERR<n>STATUS.V to 0b0, if this bit is nonzero, then Arm recommends that software
write 0b1 to this bit to clear this bit to zero.

Accessing this bit has the following behavior:

• This bit is not valid and reads UNKNOWN if ERR<n>STATUS.V == 0b0.
• Otherwise, this bit is read/write-one-to-clear.

This bit resets to an architecturally UNKNOWN value on a Cold reset. This bit is preserved on an Error
Recovery reset.

IERR, bits [15:8]
IMPLEMENTATION DEFINED error code. Used with any primary error code ERR<n>STATUS.SERR value.
Further IMPLEMENTATION DEFINED information can be placed in the ERR<n>MISC<m> registers.

The implemented set of valid values that this field can take is IMPLEMENTATION DEFINED. If any value
not in this set is written to this register, then the value read back from this field is UNKNOWN.

Note:

This means that one or more bits of this field might be implemented as fixed read-as-zero or
read-as-one values.

Accessing this field has the following behavior:

• This field is not valid and reads UNKNOWN if all of the following are true:
– Any of the following are true:

* The RAS Common Fault Injection Model Extension is not implemented by the node that owns
this error record.

* ERR<q>PFGF.SYN == 0b0.
– ERR<n>STATUS.V == 0b0.

• Otherwise, this field is read/write.

This field resets to an architecturally UNKNOWN value on a Cold reset. This field is preserved on an Error
Recovery reset.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

136

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

SERR, bits [7:0]
Architecturally-defined primary error code. The primary error code might be used by a fault handling agent
to triage an error without requiring device-specific code. For example, to count and threshold corrected
errors in software, or generate a short log entry. The possible values of this field are:

0 No error.
1 IMPLEMENTATION DEFINED error.
2 Data value from (non-associative) internal memory. For example, Error Correction

Code (ECC) from on-chip SRAM or buffer.
3 IMPLEMENTATION DEFINED pin. For example, nSEI pin.
4 Assertion failure. For example, consistency failure.
5 Error detected on internal data path. For example, parity on ALU result.
6 Data value from associative memory. For example, ECC error on cache data.
7 Address/control value from associative memory. For example, ECC error on cache tag.
8 Data value from a TLB. For example, ECC error on TLB data.
9 Address/control value from a TLB. For example, ECC error on TLB tag.
10 Data value from producer. For example, parity error on write data bus.
11 Address/control value from producer. For example, parity error on address bus.
12 Data value from (non-associative) external memory. For example, ECC error in

SDRAM.
13 Illegal address (software fault). For example, access to unpopulated memory.
14 Illegal access (software fault). For example, byte write to word register.
15 Illegal state (software fault). For example, device not ready.
16 Internal data register. For example, parity on a SIMD&FP register. For a PE, all

general-purpose, stack pointer, SIMD&FP, and SVE registers are data registers.
17 Internal control register. For example, Parity on a System register. For a PE, all

registers other than general-purpose, stack pointer, SIMD&FP, and SVE registers are
control registers.

18 Error response from Completer of access. For example, error response from cache
write-back.

19 External timeout. For example, timeout on interaction with another component.
20 Internal timeout. For example, timeout on interface within the component.
21 Deferred error from Completer not supported at Requester. For example, poisoned data

received from the Completer of an access by a Requester that cannot defer the error
further.

22 Deferred error from Requester not supported at Completer. For example, poisoned data
received from the Requester of an access by a Completer that cannot defer the error
further.

23 Deferred error from Completer passed through. For example, poisoned data received
from the Completer of an access and returned to the Requester.

24 Deferred error from Requester passed through. For example, poisoned data received
from the Requester of an access and deferred to the Completer.

25 Error recorded by Peripheral Component Interconnect Express (PCIe) error logs.
Indicates that the component has recorded an error in a PCIe error log. This might be
the PCIe device status register, AER, DVSEC, or other mechanisms defined by PCIe.

26 Other internal error. For example, parity error on internal state of the component that is
not covered by another primary error code.

All other values are reserved.

The implemented set of valid values that this field can take is IMPLEMENTATION DEFINED. If any value
not in this set is written to this register, then the value read back from this field is UNKNOWN.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

137

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

Note:

This means that one or more bits of this field might be implemented as fixed read-as-zero or
read-as-one values.

Accessing this field has the following behavior:

• This field is not valid and reads UNKNOWN if all of the following are true:
– Any of the following are true:

* The RAS Common Fault Injection Model Extension is not implemented by the node that owns
this error record.

* ERR<q>PFGF.SYN == 0b0.
– ERR<n>STATUS.V == 0b0.

• Otherwise, this field is read/write.

This field resets to an architecturally UNKNOWN value on a Cold reset. This field is preserved on an Error
Recovery reset.

4.3.12.2 ERR<n>STATUS (RAS System Architecture v1.0 is implemented)

The ERR<n>STATUS (RAS System Architecture v1.0 is implemented) bit assignments are:

63 32

RES0

7 0

SERR

15 8

IERR

19 16

RES0

21 20

UET

222325 24

CE

2627282930

V

31

PNDEAV
MVUE
OFER

Figure 4.18: ERR<n>STATUS

Bits [63:32,19:16]
Reserved. This field is RES0.

AV, bit [31]
Address Valid.

When error record <n> includes an address associated with an error
The possible values of this bit are:

0 ERR<n>ADDR not valid.
1 ERR<n>ADDR contains an address associated with the highest priority error

recorded by this record.

Accessing this bit has the following behavior:

• This bit ignores writes if any of the following are true:
– All of the following are true:

* ERR<n>STATUS.UE != 0b0.
* ERR<n>STATUS.UE is not being cleared to 0b0 in the same write.

– All of the following are true:
* ERR<n>STATUS.UE == 0b0.
* ERR<n>STATUS.DE != 0b0.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

138

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

* ERR<n>STATUS.DE is not being cleared to 0b0 in the same write.
– All of the following are true:

* ERR<n>STATUS.{DE,UE} == {0,0}.
* ERR<n>STATUS.CE != 0b00.
* ERR<n>STATUS.CE is not being cleared to 0b00 in the same write.

• Otherwise, this bit is read/write-one-to-clear.

This bit resets to zero on a Cold reset. This bit is preserved on an Error Recovery reset.

Otherwise
Reserved. This bit is RES0.

V, bit [30]
Status Register Valid. The possible values of this bit are:

0 ERR<n>STATUS not valid.
1 ERR<n>STATUS valid. At least one error has been recorded.

Accessing this bit has the following behavior:

• This bit ignores writes if any of the following are true:
– All of the following are true:

* ERR<n>STATUS.UE != 0.
* ERR<n>STATUS.UE is not being cleared to 0b0 in the same write.

– All of the following are true:
* ERR<n>STATUS.DE != 0.
* ERR<n>STATUS.DE is not being cleared to 0b0 in the same write.

– All of the following are true:
* ERR<n>STATUS.CE != 0b00.
* ERR<n>STATUS.CE is not being cleared to 0b00 in the same write.

• Otherwise, this bit is read/write-one-to-clear.

This bit resets to zero on a Cold reset. This bit is preserved on an Error Recovery reset.

UE, bit [29]
Uncorrected Error. The possible values of this bit are:

0 No errors have been detected, or all detected errors have been either corrected or
deferred.

1 At least one detected error was not corrected and not deferred.

When clearing ERR<n>STATUS.V to 0b0, if this bit is nonzero, then Arm recommends that software
write 0b1 to this bit to clear this bit to zero.

Accessing this bit has the following behavior:

• This bit is not valid and reads UNKNOWN if ERR<n>STATUS.V == 0b0.
• This bit ignores writes if all of the following are true:

– ERR<n>STATUS.OF == 0b1.
– ERR<n>STATUS.OF is not being cleared to 0b0 in the same write.

• Otherwise, this bit is read/write-one-to-clear.

This bit resets to an architecturally UNKNOWN value on a Cold reset. This bit is preserved on an Error
Recovery reset.

ER, bit [28]
Error Reported. The possible values of this bit are:

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

139

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

0 No in-band error (External Abort) reported.
1 An External Abort was signaled by the component to the Requester making the access

or other transaction. This can be because any of the following are true:
• The applicable one of the ERR<q>CTLR.{WUE,RUE,UE} bits is implemented

and was set to 0b1 when an Uncorrected error was detected.
• The applicable one of the ERR<q>CTLR.{WUE,RUE,UE} bits is not

implemented and the component always reports errors.

It is IMPLEMENTATION DEFINED whether this bit can be set to 0b1 by a Deferred error.

If this bit is nonzero, then Arm recommends that software write 0b1 to this bit to clear this bit to zero,
when any of:

• Clearing ERR<n>STATUS.V to 0b0.
• Clearing ERR<n>STATUS.UE to 0b0, if this bit is never set to 0b1 by a Deferred error.
• Clearing ERR<n>STATUS.{UE,DE} to {0,0}, if this bit can be set to 0b1 by a Deferred error.

Accessing this bit has the following behavior:

• This bit is not valid and reads UNKNOWN if any of the following are true:
– All of the following are true:

* ERR<n>STATUS.UE == 0b0.
* This bit is never set to 0b1 by a Deferred error.

– All of the following are true:
* ERR<n>STATUS.{UE,DE} == {0,0}.
* This bit can be set to 0b1 by a Deferred error.

– ERR<n>STATUS.V == 0b0.
• This bit ignores writes if any of the following are true:

– All of the following are true:
* ERR<n>STATUS.UE != 0b0.
* ERR<n>STATUS.UE is not being cleared to 0b0 in the same write.

– All of the following are true:
* ERR<n>STATUS.UE == 0b0.
* ERR<n>STATUS.DE != 0b0.
* ERR<n>STATUS.DE is not being cleared to 0b0 in the same write.

– All of the following are true:
* ERR<n>STATUS.{DE,UE} == {0,0}.
* ERR<n>STATUS.CE != 0b00.
* ERR<n>STATUS.CE is not being cleared to 0b00 in the same write.

• Otherwise, this bit is read/write-one-to-clear.

This bit resets to an architecturally UNKNOWN value on a Cold reset. This bit is preserved on an Error
Recovery reset.

Note:

An External Abort signaled by the component might be masked and not generate any exception.

OF, bit [27]
Overflow.

Indicates that multiple errors have been detected. This bit is set to 0b1 when one of the following occurs:

• An Uncorrected error is detected and ERR<n>STATUS.UE == 0b1.
• A Deferred error is detected, ERR<n>STATUS.UE == 0b0 and ERR<n>STATUS.DE == 0b1.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

140

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

• A Corrected error is detected, no Corrected error counter is implemented, ERR<n>STATUS.UE ==
0b0, ERR<n>STATUS.DE == 0b0, and ERR<n>STATUS.CE != 0b00. ERR<n>STATUS.CE might
be updated for the new Corrected error.

• A Corrected error counter is implemented, ERR<n>STATUS.UE == 0b0, ERR<n>STATUS.DE ==
0b0, and the counter overflows.

It is IMPLEMENTATION DEFINED whether this bit is set to 0b1 when one of the following occurs:

• A Deferred error is detected and ERR<n>STATUS.UE == 0b1.
• A Corrected error is detected, no Corrected error counter is implemented, and either or both the

ERR<n>STATUS.UE or ERR<n>STATUS.DE bits are set to 0b1.
• A Corrected error counter is implemented, either or both the ERR<n>STATUS.UE or

ERR<n>STATUS.DE bits are set to 0b1, and the counter overflows.

It is IMPLEMENTATION DEFINED whether this bit is cleared to 0b0 when one of the following occurs:

• An Uncorrected error is detected and ERR<n>STATUS.UE == 0b0.
• A Deferred error is detected, ERR<n>STATUS.UE == 0b0 and ERR<n>STATUS.DE == 0b0.
• A Corrected error is detected, ERR<n>STATUS.UE == 0b0, ERR<n>STATUS.DE == 0b0 and

ERR<n>STATUS.CE == 0b00.

The IMPLEMENTATION DEFINED clearing of this bit might also depend on the value of the other error
status bits.

If a Corrected error counter is implemented:

• A direct write that modifies the counter overflow flag indirectly might set this bit to an UNKNOWN
value.

• A direct write to this bit that clears this bit to 0b0 might indirectly set the counter overflow flag to an
UNKNOWN value.

The possible values of this bit are:

0 If ERR<n>STATUS.UE == 0b1, then no error syndrome for an Uncorrected error has
been discarded.
If ERR<n>STATUS.UE == 0b0 and ERR<n>STATUS.DE == 0b1, then no error
syndrome for a Deferred error has been discarded.
If ERR<n>STATUS.UE == 0b0, ERR<n>STATUS.DE == 0b0, and a Corrected error
counter is implemented, then the counter has not overflowed.
If ERR<n>STATUS.UE == 0b0, ERR<n>STATUS.DE == 0b0, ERR<n>STATUS.CE
!= 0b00, and no Corrected error counter is implemented, then no error syndrome for a
Corrected error has been discarded.
Note:

This bit might have been set to 0b1 when an error syndrome was discarded
and later cleared to 0b0 when a higher priority syndrome was recorded.

1 At least one error syndrome has been discarded or, if a Corrected error counter is
implemented, it might have overflowed.

When clearing ERR<n>STATUS.V to 0b0, if this bit is nonzero, then Arm recommends that software
write 0b1 to this bit to clear this bit to zero.

Accessing this bit has the following behavior:

• This bit is not valid and reads UNKNOWN if ERR<n>STATUS.V == 0b0.
• Otherwise, this bit is read/write-one-to-clear.

This bit resets to an architecturally UNKNOWN value on a Cold reset. This bit is preserved on an Error
Recovery reset.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

141

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

MV, bit [26]
Miscellaneous Registers Valid.

When error record <n> includes an additional information for an error
The possible values of this bit are:

0 ERR<n>MISC<m> not valid.
1 The IMPLEMENTATION DEFINED contents of the ERR<n>MISC<m> registers

contains additional information for an error recorded by this record.

Accessing this bit has the following behavior:

• This bit ignores writes if any of the following are true:
– All of the following are true:

* ERR<n>STATUS.UE != 0b0.
* ERR<n>STATUS.UE is not being cleared to 0b0 in the same write.

– All of the following are true:
* ERR<n>STATUS.UE == 0b0.
* ERR<n>STATUS.DE != 0b0.
* ERR<n>STATUS.DE is not being cleared to 0b0 in the same write.

– All of the following are true:
* ERR<n>STATUS.{DE,UE} == {0,0}.
* ERR<n>STATUS.CE != 0b00.
* ERR<n>STATUS.CE is not being cleared to 0b00 in the same write.

• Otherwise, this bit is read/write-one-to-clear.

This bit resets to zero on a Cold reset. This bit is preserved on an Error Recovery reset.

Note:

If the ERR<n>MISC<m> registers can contain additional information for a previously
recorded error, then the contents must be self-describing to software or a user. For example,
certain fields might relate only to Corrected errors, and other fields only to the most recent
error that was not discarded.

Otherwise
Reserved. This bit is RES0.

CE, bits [25:24]
Corrected Error. The possible values of this field are:

0b00 No errors were corrected.
0b01 At least one transient error was corrected.
0b10 At least one error was corrected.
0b11 At least one persistent error was corrected.

The mechanism by which a component or node detects whether a correctable error is transient or persistent
is IMPLEMENTATION DEFINED. If no such mechanism is implemented, then the node sets this field to
0b10 when a corrected error is recorded.

When clearing ERR<n>STATUS.V to 0b0, if this field is nonzero, then Arm recommends that software
write ones to this field to clear this field to zero.

Accessing this field has the following behavior:

• This field is not valid and reads UNKNOWN if ERR<n>STATUS.V == 0b0.
• This field ignores writes if all of the following are true:

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

142

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

– ERR<n>STATUS.OF == 0b1.
– ERR<n>STATUS.OF is not being cleared to 0b0 in the same write.

• Otherwise, this field is read/write-ones-to-clear. Writing a value other than all-zeros or all-ones sets
this field to an UNKNOWN value.

This field resets to an architecturally UNKNOWN value on a Cold reset. This field is preserved on an Error
Recovery reset.

DE, bit [23]
Deferred Error. The possible values of this bit are:

0 No errors were deferred.
1 At least one error was not corrected and deferred.

Support for deferring errors is IMPLEMENTATION DEFINED.

When clearing ERR<n>STATUS.V to 0b0, if this bit is nonzero, then Arm recommends that software
write 0b1 to this bit to clear this bit to zero.

Accessing this bit has the following behavior:

• This bit is not valid and reads UNKNOWN if ERR<n>STATUS.V == 0b0.
• This bit ignores writes if all of the following are true:

– ERR<n>STATUS.OF == 0b1.
– ERR<n>STATUS.OF is not being cleared to 0b0 in the same write.

• Otherwise, this bit is read/write-one-to-clear.

This bit resets to an architecturally UNKNOWN value on a Cold reset. This bit is preserved on an Error
Recovery reset.

PN, bit [22]
Poison. The possible values of this bit are:

0 Uncorrected error or Deferred error recorded because a corrupt value was detected, for
example, by an error detection code (EDC), or Corrected error recorded.

1 Uncorrected error or Deferred error recorded because a poison value was detected.

If this bit is nonzero, then Arm recommends that software write 0b1 to this bit to clear this bit to zero,
when any of:

• Clearing ERR<n>STATUS.V to 0b0.
• Clearing both ERR<n>STATUS.{DE, UE} to 0b0.

Accessing this bit has the following behavior:

• This bit is not valid and reads UNKNOWN if any of the following are true:
– ERR<n>STATUS.V == 0b0.
– ERR<n>STATUS.{DE,UE} == {0,0}.

• This bit ignores writes if any of the following are true:
– All of the following are true:

* ERR<n>STATUS.UE != 0b0.
* ERR<n>STATUS.UE is not being cleared to 0b0 in the same write.

– All of the following are true:
* ERR<n>STATUS.UE == 0b0.
* ERR<n>STATUS.DE != 0b0.
* ERR<n>STATUS.DE is not being cleared to 0b0 in the same write.

– All of the following are true:

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

143

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

* ERR<n>STATUS.{DE,UE} == {0,0}.
* ERR<n>STATUS.CE != 0b00.
* ERR<n>STATUS.CE is not being cleared to 0b00 in the same write.

• Otherwise, this bit is read/write-one-to-clear.

This bit resets to an architecturally UNKNOWN value on a Cold reset. This bit is preserved on an Error
Recovery reset.

UET, bits [21:20]
Uncorrected Error Type. Describes the state of the component after detecting or consuming an Uncorrected
error. The possible values of this field are:

0b00 Uncorrected error, Uncontainable error (UC).
0b01 Uncorrected error, Unrecoverable error (UEU).
0b10 Uncorrected error, Latent or Restartable error (UEO).
0b11 Uncorrected error, Signaled or Recoverable error (UER).

If this field is nonzero, then Arm recommends that software write ones to this field to clear this field to
zero, when any of:

• Clearing ERR<n>STATUS.V to 0b0.
• Clearing ERR<n>STATUS.UE to 0b0.

Accessing this field has the following behavior:

• This field is not valid and reads UNKNOWN if any of the following are true:
– ERR<n>STATUS.V == 0b0.
– ERR<n>STATUS.UE == 0b0.

• This field ignores writes if any of the following are true:
– All of the following are true:

* ERR<n>STATUS.UE != 0b0.
* ERR<n>STATUS.UE is not being cleared to 0b0 in the same write.

– All of the following are true:
* ERR<n>STATUS.UE == 0b0.
* ERR<n>STATUS.DE != 0b0.
* ERR<n>STATUS.DE is not being cleared to 0b0 in the same write.

– All of the following are true:
* ERR<n>STATUS.{DE,UE} == {0,0}.
* ERR<n>STATUS.CE != 0b00.
* ERR<n>STATUS.CE is not being cleared to 0b00 in the same write.

• Otherwise, this field is read/write-ones-to-clear. Writing a value other than all-zeros or all-ones sets
this field to an UNKNOWN value.

This field resets to an architecturally UNKNOWN value on a Cold reset. This field is preserved on an Error
Recovery reset.

Note:

Software might use the information in the error record registers to determine what recovery is
necessary.

IERR, bits [15:8]
IMPLEMENTATION DEFINED error code. Used with any primary error code ERR<n>STATUS.SERR value.
Further IMPLEMENTATION DEFINED information can be placed in the ERR<n>MISC<m> registers.

The implemented set of valid values that this field can take is IMPLEMENTATION DEFINED. If any value
not in this set is written to this register, then the value read back from this field is UNKNOWN.

Note:

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

144

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

This means that one or more bits of this field might be implemented as fixed read-as-zero or
read-as-one values.

Accessing this field has the following behavior:

• This field is not valid and reads UNKNOWN if all of the following are true:
– Any of the following are true:

* The RAS Common Fault Injection Model Extension is not implemented by the node that owns
this error record.

* ERR<q>PFGF.SYN == 0b0.
– ERR<n>STATUS.V == 0b0.

• This field ignores writes if any of the following are true:
– All of the following are true:

* ERR<n>STATUS.UE != 0b0.
* ERR<n>STATUS.UE is not being cleared to 0b0 in the same write.

– All of the following are true:
* ERR<n>STATUS.UE == 0b0.
* ERR<n>STATUS.DE != 0b0.
* ERR<n>STATUS.DE is not being cleared to 0b0 in the same write.

– All of the following are true:
* ERR<n>STATUS.{DE,UE} == {0,0}.
* ERR<n>STATUS.CE != 0b00.
* ERR<n>STATUS.CE is not being cleared to 0b00 in the same write.

• Otherwise, this field is read/write.

This field resets to an architecturally UNKNOWN value on a Cold reset. This field is preserved on an Error
Recovery reset.

SERR, bits [7:0]
Architecturally-defined primary error code. The primary error code might be used by a fault handling agent
to triage an error without requiring device-specific code. For example, to count and threshold corrected
errors in software, or generate a short log entry. The possible values of this field are:

0 No error.
1 IMPLEMENTATION DEFINED error.
2 Data value from (non-associative) internal memory. For example, ECC from on-chip

SRAM or buffer.
3 IMPLEMENTATION DEFINED pin. For example, nSEI pin.
4 Assertion failure. For example, consistency failure.
5 Error detected on internal data path. For example, parity on ALU result.
6 Data value from associative memory. For example, ECC error on cache data.
7 Address/control value from associative memory. For example, ECC error on cache tag.
8 Data value from a TLB. For example, ECC error on TLB data.
9 Address/control value from a TLB. For example, ECC error on TLB tag.
10 Data value from producer. For example, parity error on write data bus.
11 Address/control value from producer. For example, parity error on address bus.
12 Data value from (non-associative) external memory. For example, ECC error in

SDRAM.
13 Illegal address (software fault). For example, access to unpopulated memory.
14 Illegal access (software fault). For example, byte write to word register.
15 Illegal state (software fault). For example, device not ready.
16 Internal data register. For example, parity on a SIMD&FP register. For a PE, all

general-purpose, stack pointer, SIMD&FP, and SVE registers are data registers.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

145

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

17 Internal control register. For example, Parity on a System register. For a PE, all
registers other than general-purpose, stack pointer, SIMD&FP, and SVE registers are
control registers.

18 Error response from Completer of access. For example, error response from cache
write-back.

19 External timeout. For example, timeout on interaction with another component.
20 Internal timeout. For example, timeout on interface within the component.
21 Deferred error from Completer not supported at Requester. For example, poisoned data

received from the Completer of an access by a Requester that cannot defer the error
further.

22 Deferred error from Requester not supported at Completer. For example, poisoned data
received from the Requester of an access by a Completer that cannot defer the error
further.

23 Deferred error from Completer passed through. For example, poisoned data received
from the Completer of an access and returned to the Requester.

24 Deferred error from Requester passed through. For example, poisoned data received
from the Requester of an access and deferred to the Completer.

25 Error recorded by PCIe error logs. Indicates that the component has recorded an error
in a PCIe error log. This might be the PCIe device status register, AER, DVSEC, or
other mechanisms defined by PCIe.

26 Other internal error. For example, parity error on internal state of the component that is
not covered by another primary error code.

All other values are reserved.

The implemented set of valid values that this field can take is IMPLEMENTATION DEFINED. If any value
not in this set is written to this register, then the value read back from this field is UNKNOWN.

Note:

This means that one or more bits of this field might be implemented as fixed read-as-zero or
read-as-one values.

Accessing this field has the following behavior:

• This field is not valid and reads UNKNOWN if all of the following are true:
– Any of the following are true:

* The RAS Common Fault Injection Model Extension is not implemented by the node that owns
this error record.

* ERR<q>PFGF.SYN == 0b0.
– ERR<n>STATUS.V == 0b0.

• This field ignores writes if any of the following are true:
– All of the following are true:

* ERR<n>STATUS.UE != 0b0.
* ERR<n>STATUS.UE is not being cleared to 0b0 in the same write.

– All of the following are true:
* ERR<n>STATUS.UE == 0b0.
* ERR<n>STATUS.DE != 0b0.
* ERR<n>STATUS.DE is not being cleared to 0b0 in the same write.

– All of the following are true:
* ERR<n>STATUS.{DE,UE} == {0,0}.
* ERR<n>STATUS.CE != 0b00.
* ERR<n>STATUS.CE is not being cleared to 0b00 in the same write.

• Otherwise, this field is read/write.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

146

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

This field resets to an architecturally UNKNOWN value on a Cold reset. This field is preserved on an Error
Recovery reset.

4.3.12.3 Accessibility

The {AV, V, UE, ER, OF, MV, CE, DE, PN, UET, CI} fields are write-one-to-clear, meaning writes of zero
are ignored, and a write of one or all-ones to the field clears the field to zero. The {IERR, SERR} fields
are read/write fields, although the set of implemented valid values is IMPLEMENTATION DEFINED. See also
ERR<n>PFGF.SYN.

After reading ERR<n>STATUS, software must clear the valid bits in the register to allow new errors to be
recorded. However, between reading the register and clearing the valid bits, a new error might have overwritten
the register. To prevent this error being lost by software, the register prevents updates to fields that might have
been updated by a new error.

When RAS System Architecture v1.0 is implemented:

• Writes to the {UE, DE, CE} fields are ignored if the OF bit is set and is not being cleared.
• Writes to the V bit are ignored if any of the {UE, DE, CE} fields are nonzero and are not being cleared.
• Writes to the {AV, MV} bits and {ER, PN, UET, IERR, SERR} syndrome fields are ignored if the highest

priority nonzero error status field is nonzero is not being cleared. The error status fields in priority order
from highest to lowest, are UE, DE, and CE.

When RAS System Architecture v1.1 is implemented, a write to the register is ignored if all of:

• Any of {V, UE, OF, CE, DE} fields are nonzero before the write.
• The write does not clear the nonzero {V, UE, OF, CE, DE} fields to zero by writing ones to the applicable

field or fields.

Some of the fields in ERR<n>STATUS are also defined as UNKNOWN where certain combinations of the {V,
DE, UE} status fields are zero. The rules for writes to ERR<n>STATUS allow a node to implement such a field
as a fixed read-only value.

For example, when RAS System Architecture v1.1 is implemented, a write to ERR<n>STATUS when
ERR<n>STATUS.V is 1 results in either ERR<n>STATUS.V field being cleared to zero, or ERR<n>STATUS.V
not changing. Since all fields in ERR<n>STATUS, other than {AV, V, MV}, usually read as UNKNOWN values
when ERR<n>STATUS.V is zero, this means those fields can be implemented as read-only if applicable.

To ensure correct and portable operation, when software is clearing the valid bits in the register to allow new
errors to be recorded, Arm recommends that software:

• Determine which fields to clear to zero by reading ERR<n>STATUS.
• Write ones to all the write-one-to-clear fields that are nonzero.
• Write zero to all the read/write fields.
• Write zero to all the write-one-to-clear fields that are zero.

Otherwise, these fields might not have the correct value when a new fault is recorded.

An exception is when the node supports writing to these fields as part of fault injection. See also
ERR<n>PFGF.SYN.

ERR<n>STATUS ignores writes if all of the following are true:

• Any of the following are true:
– ERR<n>STATUS.V != 0b0 and ERR<n>STATUS.V is not being cleared to 0b0 in the same write.
– ERR<n>STATUS.UE != 0b0 and ERR<n>STATUS.UE is not being cleared to 0b0 in the same write.
– ERR<n>STATUS.OF != 0b0 and ERR<n>STATUS.OF is not being cleared to 0b0 in the same write.
– ERR<n>STATUS.CE != 0b00 and ERR<n>STATUS.CE is not being cleared to 0b0 in the same

write.
– ERR<n>STATUS.DE != 0b0 and ERR<n>STATUS.DE is not being cleared to 0b0 in the same write.

• RAS System Architecture v1.1 is implemented.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

147

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

4.3.12.4 Pseudocode operation

// ERRSTATUS[] (assignment form)
// =============================
// For a system register, n = UInt(ERRSELR_EL1.SEL)

ERRSTATUS[integer n] = bits(64) w

// Generate candidate value from the written value and the previous
// (physical register) value
c = w<63:32>:(_ERRSTATUS[n]<31:19> AND NOT(w<31:19>)):Zeros(3):w<15:0>;

if HaveRASSysArchv1p1() then
// RAS System Architecture v1.1
// - ignore write if any of V/UE/DE/CE/OF is set
if !IsZero(c.<V,UE,OF,CE,DE>) then

c = _ERRSTATUS[n];
else

// RAS System Architecture v1.0
// - do not clear UE/DE/CE if OF is set
if c.OF == '1' then c.<UE,DE,CE> = _ERRSTATUS[n].<UE,DE,CE>;
// - do not clear V if any of UE/DE/CE is set
if !IsZero(c.<UE,DE,CE>) then c.V = _ERRSTATUS[n].V;
// - do not clear syndrome if not clearing highest priority error
if (c.UE != '0' ||

(_ERRSTATUS[n].UE == '0' && c.DE != '0') ||
(_ERRSTATUS[n].<UE,DE> == '00' && c.CE != '00')) then
c.<AV,ER,MV,PN,CI,UET,IERR,SERR> = _ERRSTATUS.<AV,ER,MV,PN,CI,UET,IERR,SERR>;

_ERRSTATUS[n] = c;

return;

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

148

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

4.3.13 ERRCIDR0, Component Identification Register 0

The ERRCIDR0 characteristics are:

Purpose
Provides discovery information about the component.

Configurations
It is IMPLEMENTATION DEFINED whether ERRCIDR0 is present. ERRCIDR0 is RES0 if not present.

ERRCIDR0 is implemented only as part of a memory-mapped group of error records.

Attributes
ERRCIDR0 is a 32-bit read-only memory-mapped register located at offset 0xFF0.

4.3.13.1 Field descriptions

The ERRCIDR0 bit assignments are:

7 0

0 0 0 0 1 1 0 1

31 8

RES0

PRMBL_0

Figure 4.19: ERRCIDR0

Bits [31:8]
Reserved. This field is RES0.

PRMBL_0, bits [7:0]
Component identification preamble, segment 0. This field reads as 0x0D.

4.3.13.2 Accessibility

None.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

149

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

4.3.14 ERRCIDR1, Component Identification Register 1

The ERRCIDR1 characteristics are:

Purpose
Provides discovery information about the component.

Configurations
It is IMPLEMENTATION DEFINED whether ERRCIDR1 is present. ERRCIDR1 is RES0 if not present.

ERRCIDR1 is implemented only as part of a memory-mapped group of error records.

Attributes
ERRCIDR1 is a 32-bit read-only memory-mapped register located at offset 0xFF4.

4.3.14.1 Field descriptions

The ERRCIDR1 bit assignments are:

3 0

0 0 0 0

7 4

1 1 1 1

31 8

RES0

PRMBL_1CLASS

Figure 4.20: ERRCIDR1

Bits [31:8]
Reserved. This field is RES0.

CLASS, bits [7:4]
Component class. The defined values of this field are:

0xF Generic peripheral with IMPLEMENTATION DEFINED register layout.

Other values are defined by the CoreSight Architecture.

This field reads as 0xF.

PRMBL_1, bits [3:0]
Component identification preamble, segment 1. This field reads as 0x0.

4.3.14.2 Accessibility

None.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

150

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

4.3.15 ERRCIDR2, Component Identification Register 2

The ERRCIDR2 characteristics are:

Purpose
Provides discovery information about the component.

Configurations
It is IMPLEMENTATION DEFINED whether ERRCIDR2 is present. ERRCIDR2 is RES0 if not present.

ERRCIDR2 is implemented only as part of a memory-mapped group of error records.

Attributes
ERRCIDR2 is a 32-bit read-only memory-mapped register located at offset 0xFF8.

4.3.15.1 Field descriptions

The ERRCIDR2 bit assignments are:

7 0

0 0 0 0 0 1 0 1

31 8

RES0

PRMBL_2

Figure 4.21: ERRCIDR2

Bits [31:8]
Reserved. This field is RES0.

PRMBL_2, bits [7:0]
Component identification preamble, segment 2. This field reads as 0x05.

4.3.15.2 Accessibility

None.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

151

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

4.3.16 ERRCIDR3, Component Identification Register 3

The ERRCIDR3 characteristics are:

Purpose
Provides discovery information about the component.

Configurations
It is IMPLEMENTATION DEFINED whether ERRCIDR3 is present. ERRCIDR3 is RES0 if not present.

ERRCIDR3 is implemented only as part of a memory-mapped group of error records.

Attributes
ERRCIDR3 is a 32-bit read-only memory-mapped register located at offset 0xFFC.

4.3.16.1 Field descriptions

The ERRCIDR3 bit assignments are:

7 0

1 0 1 1 0 0 0 1

31 8

RES0

PRMBL_3

Figure 4.22: ERRCIDR3

Bits [31:8]
Reserved. This field is RES0.

PRMBL_3, bits [7:0]
Component identification preamble, segment 3. This field reads as 0xB1.

4.3.16.2 Accessibility

None.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

152

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

4.3.17 ERRCRICR0, Critical Error Interrupt Configuration Register 0

The ERRCRICR0 characteristics are:

Purpose
Critical Error Interrupt configuration register.

Configurations
ERRCRICR0 is present only if all of the following are true:

• Any of the following are true:
– The Critical Error Interrupt is implemented.
– The implementation does not use the recommended layout for the ERRIRQCR<n> registers.

• Interrupt configuration registers are implemented.

ERRCRICR0 is RES0 otherwise.

ERRCRICR0 is architecturally mapped to memory-mapped register ERRIRQCR4[63:0].

ERRCRICR0 is implemented only as part of a memory-mapped group of error records.

Attributes
ERRCRICR0 is a 64-bit read/write memory-mapped register located at offset 0xEA0.

4.3.17.1 Critical Error Interrupt is implemented, recommended layout

Configurations
Defined only if all of the following are true:

• The Critical Error Interrupt is implemented.
• The implementation uses the recommended layout for the ERRIRQCR<n> registers.

The Critical Error Interrupt is implemented, recommended layout bit assignments are:

55 32

ADDR[53:30]

63 56

RES0

1 0

RES0

31 2

ADDR[29:0]

Figure 4.23: ERRCRICR0 Critical Error Interrupt is implemented, recommended layout

Bits [63:56,1:0]
Reserved. This field is RES0.

ADDR, bits [55:2]
Message Signaled Interrupt address. (ERRCRICR0.ADDR << 2) is the address that the component writes
to when signaling the Critical Error Interrupt. Bits [1:0] of the address are always zero.

The physical address size supported by the component is IMPLEMENTATION DEFINED. Unimplemented
high-order physical address bits are RES0.

This field resets to an architecturally UNKNOWN value on a reset.

4.3.17.2 IMPLEMENTATION DEFINED layout

Configurations
Defined only if the implementation does not use the recommended layout for the ERRIRQCR<n> registers.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

153

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

The IMPLEMENTATION DEFINED layout bit assignments are:

63 32

IMPLEMENTATION DEFINED

31 0

IMPLEMENTATION DEFINED

Figure 4.24: ERRCRICR0 IMPLEMENTATION DEFINED layout

Bits [63:0]
This field reads as an IMPLEMENTATION DEFINED value and writes to this field have IMPLEMENTATION
DEFINED behavior.

4.3.17.3 Accessibility

None.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

154

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

4.3.18 ERRCRICR1, Critical Error Interrupt Configuration Register 1

The ERRCRICR1 characteristics are:

Purpose
Critical Error Interrupt configuration register.

Configurations
ERRCRICR1 is present only if all of the following are true:

• Any of the following are true:
– The Critical Error Interrupt is implemented.
– The implementation does not use the recommended layout for the ERRIRQCR<n> registers.

• Interrupt configuration registers are implemented.

ERRCRICR1 is RES0 otherwise.

ERRCRICR1 is architecturally mapped to memory-mapped register ERRIRQCR5[31:0].

ERRCRICR1 is implemented only as part of a memory-mapped group of error records.

Attributes
ERRCRICR1 is a 32-bit read/write memory-mapped register located at offset 0xEA8.

4.3.18.1 Critical Error Interrupt is implemented, recommended layout

Configurations
Defined only if all of the following are true:

• The Critical Error Interrupt is implemented.
• The implementation uses the recommended layout for the ERRIRQCR<n> registers.

The Critical Error Interrupt is implemented, recommended layout bit assignments are:

31 0

DATA

Figure 4.25: ERRCRICR1 Critical Error Interrupt is implemented, recommended layout

DATA, bits [31:0]
Payload for the message signaled interrupt. This field resets to an architecturally UNKNOWN value on a
reset.

4.3.18.2 IMPLEMENTATION DEFINED layout

Configurations
Defined only if the implementation does not use the recommended layout for the ERRIRQCR<n> registers.

The IMPLEMENTATION DEFINED layout bit assignments are:

31 0

IMPLEMENTATION DEFINED

Figure 4.26: ERRCRICR1 IMPLEMENTATION DEFINED layout

Bits [31:0]
This field reads as an IMPLEMENTATION DEFINED value and writes to this field have IMPLEMENTATION
DEFINED behavior.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

155

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

4.3.18.3 Accessibility

None.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

156

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

4.3.19 ERRCRICR2, Critical Error Interrupt Configuration Register 2

The ERRCRICR2 characteristics are:

Purpose
Critical Error Interrupt control and configuration register.

Configurations
ERRCRICR2 is present only if all of the following are true:

• Any of the following are true:
– The Critical Error Interrupt is implemented.
– The implementation does not use the recommended layout for the ERRIRQCR<n> registers.

• Interrupt configuration registers are implemented.

ERRCRICR2 is RES0 otherwise.

ERRCRICR2 is architecturally mapped to memory-mapped register ERRIRQCR5[63:32].

ERRCRICR2 is implemented only as part of a memory-mapped group of error records.

Attributes
ERRCRICR2 is a 32-bit read/write memory-mapped register located at offset 0xEAC.

4.3.19.1 Critical Error Interrupt is implemented, recommended layout

Configurations
Defined only if all of the following are true:

• The Critical Error Interrupt is implemented.
• The implementation uses the recommended layout for the ERRIRQCR<n> registers.

The Critical Error Interrupt is implemented, recommended layout bit assignments are:

3 0

MemAttr

5 4

SH

6731 8

RES0

NSMSIIRQEN

Figure 4.27: ERRCRICR2 Critical Error Interrupt is implemented, recommended layout

Bits [31:8]
Reserved. This field is RES0.

IRQEN, bit [7]
Message signaled interrupt enable.

When the component supports disabling message signaled interrupts
Enables generation of message signaled interrupts. The possible values of this bit are:

0b0 Disabled.
0b1 Enabled.

This bit resets to 0b0 on a reset.

Otherwise
Message signaled interrupts are always enabled.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

157

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

This bit is RES0.

NSMSI, bit [6]
Security attribute. Defines the physical address space for message signaled interrupts.

When the component supports configuring the Security attribute for message signaled interrupts,
and the component does not allow Non-secure writes to ERRCRICR2
The possible values of this bit are:

0b0 Secure.
0b1 Non-secure.

This bit resets to an IMPLEMENTATION DEFINED value on a reset.

When the component allows Non-secure writes to ERRCRICR2
The Security attribute used for message signaled interrupts is Non-secure.

This bit is RES0.

Otherwise
The Security attribute for message signaled interrupts is IMPLEMENTATION DEFINED.

This bit is RES0.

SH, bits [5:4]
Shareability.

When the component supports configuring the Shareability domain for message signaled interrupts
Defines the Shareability domain for message signaled interrupts. The possible values of this field are:

0b00 Not shared.
0b10 Outer Shareable.
0b11 Inner Shareable.

All other values are reserved.

This field is ignored when ERRCRICR2.MemAttr specifies any of the following memory types:

• Any Device memory type.
• Normal memory, Inner Non-cacheable, Outer Non-cacheable.

All Device and Normal Inner Non-cacheable Outer Non-cacheable memory regions are always treated
as Outer Shareable.

This field resets to an architecturally UNKNOWN value on a reset.

Otherwise
The Shareability domain for message signaled interrupts is IMPLEMENTATION DEFINED.

This field is RES0.

MemAttr, bits [3:0]
Memory type.

When the component supports configuring the memory type for message signaled interrupts
Defines the memory type and attributes for message signaled interrupts. The possible values of this
field are:

0b0000 Device-nGnRnE memory.
0b0001 Device-nGnRE memory.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

158

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

0b0010 Device-nGRE memory.
0b0011 Device-GRE memory.
0b0101 Normal memory, Inner Non-cacheable, Outer Non-cacheable.
0b0110 Normal memory, Inner Write-Through, Outer Non-cacheable.
0b0111 Normal memory, Inner Write-Back, Outer Non-cacheable.
0b1001 Normal memory, Inner Non-cacheable, Outer Write-Through.
0b1010 Normal memory, Inner Write-Through, Outer Write-Through.
0b1011 Normal memory, Inner Write-Back, Outer Write-Through.
0b1101 Normal memory, Inner Non-cacheable, Outer Write-Back.
0b1110 Normal memory, Inner Write-Through, Outer Write-Back.
0b1111 Normal memory, Inner Write-Back, Outer Write-Back.

All other values are reserved.

This field resets to an architecturally UNKNOWN value on a reset.

Note:

This is the same format as the VMSAv8-64 stage 2 memory region attributes.

Otherwise
The memory type used for message signaled interrupts is IMPLEMENTATION DEFINED.

This field is RES0.

4.3.19.2 IMPLEMENTATION DEFINED layout

Configurations
Defined only if the implementation does not use the recommended layout for the ERRIRQCR<n> registers.

The IMPLEMENTATION DEFINED layout bit assignments are:

31 0

IMPLEMENTATION DEFINED

Figure 4.28: ERRCRICR2 IMPLEMENTATION DEFINED layout

Bits [31:0]
This field reads as an IMPLEMENTATION DEFINED value and writes to this field have IMPLEMENTATION
DEFINED behavior.

4.3.19.3 Accessibility

None.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

159

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

4.3.20 ERRDEVAFF, Device Affinity Register

The ERRDEVAFF characteristics are:

Purpose
For a group of error records that has affinity with a single PE or a group of PEs, ERRDEVAFF is a copy of
MPIDR_EL1 or part of MPIDR_EL1:

• If the group of error records has affinity with a single PE, the affinity level is 0, ERRDEVAFF reads
the same value as MPIDR_EL1, and ERRDEVAFF.F0V reads-as-one to indicate affinity level 0.

• If the group of error records has affinity with a group of PEs, the affinity level is 1, 2, or 3, parts of
ERRDEVAFF reads the same value as parts of MPIDR_EL1, and the rest of ERRDEVAFF indicates
the level.

For example, if the group of PEs is a subset of the PEs at affinity level 1 then all of the following are true:

• All the PEs in the group have the same values in MPIDR_EL1.{Aff3,Aff2}, and these values are
equal to ERRDEVAFF.{Aff3,Aff2}.

• ERRDEVAFF.Aff1 is nonzero and not 0x80, and ERRDEVAFF.{Aff0,F0V} read-as-zero, to
indicate at least affinity level 1. The subset of PEs at level 1 that the group of error records has
affinity with is indicated by the least-significant set bit in ERRDEVAFF.Aff1. In this example, if
ERRDEVAFF.Aff1[2:0] is 0b100, then the group of error records has affinity with the up-to 8 PEs
that have MPIDR_EL1.Aff1[7:3] == ERRDEVAFF.Aff1[7:3].

If RAS System Architecture v1.1 is not implemented, ERRDEVAFF can only describe a group of error
records that is affine with a single PE or all the PEs at an affinity level.

Configurations
ERRDEVAFF is present only if the group of error records has affinity with a PE or cluster of PEs.
ERRDEVAFF is RES0 otherwise.

ERRDEVAFF is implemented only as part of a memory-mapped group of error records.

Attributes
ERRDEVAFF is a 64-bit read-only memory-mapped register located at offset 0xFA8.

4.3.20.1 Field descriptions

The ERRDEVAFF bit assignments are:

39 32

Aff3

63 40

RES0

7 0

Aff0

15 8

Aff1

23 16

Aff2

2429 25

RES0

30

U

31

MTF0V

Figure 4.29: ERRDEVAFF

Bits [63:40,29:25]
Reserved. This field is RES0.

Aff3, bits [39:32]
PE affinity level 3. The MPIDR_EL1.Aff3 field, viewed from the highest Exception level of the associated
PE or PEs.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

160

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

F0V, bit [31]
Indicates that the ERRDEVAFF.Aff0 field is valid. The defined values of this bit are:

0b0 ERRDEVAFF.Aff0 is not valid, and the PE affinity is above level 0 or a subset of level 0.
0b1 ERRDEVAFF.Aff0 is valid, and the PE affinity is at level 0.

U, bit [30]
Uniprocessor.

When ERRDEVAFF.F0V == 0b1
The MPIDR_EL1.U bit, viewed from the highest Exception level of the associated PE.

Otherwise
Reserved. This bit is UNKNOWN.

MT, bit [24]
Multithreaded.

When ERRDEVAFF.F0V == 0b1
The MPIDR_EL1.MT bit, viewed from the highest Exception level of the associated PE.

Otherwise
Reserved. This bit is UNKNOWN.

Aff2, bits [23:16]
PE affinity level 2.

When affine with a PE or PEs at affinity level 2 or below
The MPIDR_EL1.Aff2 field, viewed from the highest Exception level of the associated PE or PEs.

When affine with a sub-set of PEs at affinity level 2
Defines part of the MPIDR_EL1.Aff2 field, viewed from the highest Exception level of the associated
PEs. The defined values of this field are:

0bxxxxxxx1 ERRDEVAFF.Aff2[7:1] is the value of MPIDR_EL1.Aff2[7:1], viewed from the
highest Exception level of the associated PEs.

0bxxxxxx10 ERRDEVAFF.Aff2[7:2] is the value of MPIDR_EL1.Aff2[7:2], viewed from the
highest Exception level of the associated PEs.

0bxxxxx100 ERRDEVAFF.Aff2[7:3] is the value of MPIDR_EL1.Aff2[7:3], viewed from the
highest Exception level of the associated PEs.

0bxxxx1000 ERRDEVAFF.Aff2[7:4] is the value of MPIDR_EL1.Aff2[7:4], viewed from the
highest Exception level of the associated PEs.

0bxxx10000 ERRDEVAFF.Aff2[7:5] is the value of MPIDR_EL1.Aff2[7:5], viewed from the
highest Exception level of the associated PEs.

0bxx100000 ERRDEVAFF.Aff2[7:6] is the value of MPIDR_EL1.Aff2[7:6], viewed from the
highest Exception level of the associated PEs.

0bx1000000 ERRDEVAFF.Aff2[7] is the value of MPIDR_EL1.Aff2[7], viewed from the
highest Exception level of the associated PEs.

Otherwise
Indicates whether the PE affinity is at level 3. The defined values of this field are:

0x80 PE affinity is at level 3.

All other values are reserved.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

161

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

Aff1, bits [15:8]
PE affinity level 1.

When affine with a PE or PEs at affinity level 1 or below
The MPIDR_EL1.Aff1 field, viewed from the highest Exception level of the associated PE or PEs.

When affine with a sub-set of PEs at affinity level 1
Defines part of the MPIDR_EL1.Aff1 field, viewed from the highest Exception level of the associated
PEs. The defined values of this field are:

0bxxxxxxx1 ERRDEVAFF.Aff1[7:1] is the value of MPIDR_EL1.Aff1[7:1], viewed from the
highest Exception level of the associated PEs.

0bxxxxxx10 ERRDEVAFF.Aff1[7:2] is the value of MPIDR_EL1.Aff1[7:2], viewed from the
highest Exception level of the associated PEs.

0bxxxxx100 ERRDEVAFF.Aff1[7:3] is the value of MPIDR_EL1.Aff1[7:3], viewed from the
highest Exception level of the associated PEs.

0bxxxx1000 ERRDEVAFF.Aff1[7:4] is the value of MPIDR_EL1.Aff1[7:4], viewed from the
highest Exception level of the associated PEs.

0bxxx10000 ERRDEVAFF.Aff1[7:5] is the value of MPIDR_EL1.Aff1[7:5], viewed from the
highest Exception level of the associated PEs.

0bxx100000 ERRDEVAFF.Aff1[7:6] is the value of MPIDR_EL1.Aff1[7:6], viewed from the
highest Exception level of the associated PEs.

0bx1000000 ERRDEVAFF.Aff1[7] is the value of MPIDR_EL1.Aff1[7], viewed from the
highest Exception level of the associated PEs.

Otherwise
Indicates whether the PE affinity is at level 2. The defined values of this field are:

0x00 PE affinity is above level 2 or a subset of level 2.
0x80 PE affinity is at level 2.

Aff0, bits [7:0]
PE affinity level 0.

When affine with a PE at affinity level 0
The MPIDR_EL1.Aff0 field, viewed from the highest Exception level of the associated PE.

When affine with a sub-set of PEs at affinity level 0
Defines part of the MPIDR_EL1.Aff0 field, viewed from the highest Exception level of the associated
PEs. The defined values of this field are:

0bxxxxxxx1 ERRDEVAFF.Aff0[7:1] is the value of MPIDR_EL1.Aff0[7:1], viewed from the
highest Exception level of the associated PEs.

0bxxxxxx10 ERRDEVAFF.Aff0[7:2] is the value of MPIDR_EL1.Aff0[7:2], viewed from the
highest Exception level of the associated PEs.

0bxxxxx100 ERRDEVAFF.Aff0[7:3] is the value of MPIDR_EL1.Aff0[7:3], viewed from the
highest Exception level of the associated PEs.

0bxxxx1000 ERRDEVAFF.Aff0[7:4] is the value of MPIDR_EL1.Aff0[7:4], viewed from the
highest Exception level of the associated PEs.

0bxxx10000 ERRDEVAFF.Aff0[7:5] is the value of MPIDR_EL1.Aff0[7:5], viewed from the
highest Exception level of the associated PEs.

0bxx100000 ERRDEVAFF.Aff0[7:6] is the value of MPIDR_EL1.Aff0[7:6], viewed from the
highest Exception level of the associated PEs.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

162

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

0bx1000000 ERRDEVAFF.Aff0[7] is the value of MPIDR_EL1.Aff0[7], viewed from the
highest Exception level of the associated PEs.

Otherwise
Indicates whether the PE affinity is at level 1. The defined values of this field are:

0x00 PE affinity is above level 1 or a subset of level 1.
0x80 PE affinity is at level 1.

4.3.20.2 Accessibility

None.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

163

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

4.3.21 ERRDEVARCH, Device Architecture Register

The ERRDEVARCH characteristics are:

Purpose
Provides discovery information for the component.

Configurations
ERRDEVARCH is implemented only as part of a memory-mapped group of error records.

Attributes
ERRDEVARCH is a 32-bit read-only memory-mapped register located at offset 0xFBC.

4.3.21.1 Field descriptions

The ERRDEVARCH bit assignments are:

11 0

1 0 1 0 0 0 0 0 0 0 0 0

15 12

0 0 0 0

19 16

REVISION

20

1

31 21

0 1 0 0 0 1 1 1 0 1 1

ARCHPARTARCHVERPRESENTARCHITECT

Figure 4.30: ERRDEVARCH

ARCHITECT, bits [31:21]
Architect. Defines the architect of the component. Bits [31:28] are the JEP106 continuation code (JEP106
bank ID, minus 1) and bits [27:21] are the JEP106 ID code. The defined values of this field are:

0x23B JEP106 continuation code 0x4, ID code 0x3B. Arm Limited.

Other values are defined by the JEDEC JEP106 standard.

This field reads as 0x23B.

PRESENT, bit [20]
DEVARCH Present. Defines that the DEVARCH register is present. The defined values of this bit are:

0b0 Device Architecture information not present.
0b1 Device Architecture information present.

This bit reads as 0b1.

REVISION, bits [19:16]
Revision. Defines the architecture revision of the component. The defined values of this field are:

0b0000 RAS System Architecture v1.0.
0b0001 RAS System Architecture v1.1. As 0b0000 and also:

• Simplifies ERR<n>STATUS.
• Adds support for additional ERR<n>MISC<m> registers.
• Adds support for the optional RAS Timestamp Extension.
• Adds support for the optional RAS Common Fault Injection Model Extension.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

164

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

All other values are reserved.

ARCHVER, bits [15:12]
Architecture Version. Defines the architecture version of the component. The defined values of this field
are:

0b0000 RAS System Architecture v1.

All other values are reserved.

ARCHVER and ARCHPART are also defined as a single field, ARCHID, so that ARCHVER is
ARCHID[15:12].

This field reads as 0b0000.

ARCHPART, bits [11:0]
Architecture Part. Defines the architecture of the component. The defined values of this field are:

0xA00 RAS System Architecture.

ARCHVER and ARCHPART are also defined as a single field, ARCHID, so that ARCHPART is
ARCHID[11:0].

This field reads as 0xA00.

4.3.21.2 Accessibility

None.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

165

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

4.3.22 ERRDEVID, Device Configuration Register

The ERRDEVID characteristics are:

Purpose
Provides discovery information for the component.

Configurations
ERRDEVID is implemented only as part of a memory-mapped group of error records.

Attributes
ERRDEVID is a 32-bit read-only memory-mapped register located at offset 0xFC8.

4.3.22.1 Field descriptions

The ERRDEVID bit assignments are:

15 0

IMPLEMENTATION DEFINED

31 16

RES0

NUM

Figure 4.31: ERRDEVID

Bits [31:16]
Reserved. This field is RES0.

NUM, bits [15:0]
Highest numbered index of the error records in this group, plus one. Each implemented record is owned
by a node. A node might own multiple records.

This manual describes a group of error records accessed via a standard 4KB memory-mapped peripheral.
For a 4KB peripheral, up to 24 error records can be accessed if the Common Fault Injection Model is
implemented, and up to 56 otherwise.

This field reads as an IMPLEMENTATION DEFINED value.

4.3.22.2 Accessibility

None.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

166

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

4.3.23 ERRERICR0, Error Recovery Interrupt Configuration Register 0

The ERRERICR0 characteristics are:

Purpose
Error Recovery Interrupt configuration register.

Configurations
ERRERICR0 is present only if all of the following are true:

• Any of the following are true:
– The Error Recovery Interrupt is implemented.
– The implementation does not use the recommended layout for the ERRIRQCR<n> registers.

• Interrupt configuration registers are implemented.

ERRERICR0 is RES0 otherwise.

ERRERICR0 is architecturally mapped to memory-mapped register ERRIRQCR2[63:0].

ERRERICR0 is implemented only as part of a memory-mapped group of error records.

Attributes
ERRERICR0 is a 64-bit read/write memory-mapped register located at offset 0xE90.

4.3.23.1 Error Recovery Interrupt is implemented, recommended layout

Configurations
Defined only if all of the following are true:

• The Error Recovery Interrupt is implemented.
• The implementation uses the recommended layout for the ERRIRQCR<n> registers.

The Error Recovery Interrupt is implemented, recommended layout bit assignments are:

55 32

ADDR[53:30]

63 56

RES0

1 0

RES0

31 2

ADDR[29:0]

Figure 4.32: ERRERICR0 Error Recovery Interrupt is implemented, recommended layout

Bits [63:56,1:0]
Reserved. This field is RES0.

ADDR, bits [55:2]
Message Signaled Interrupt address. (ERRERICR0.ADDR << 2) is the address that the component writes
to when signaling the Error Recovery Interrupt. Bits [1:0] of the address are always zero.

The physical address size supported by the component is IMPLEMENTATION DEFINED. Unimplemented
high-order physical address bits are RES0.

This field resets to an architecturally UNKNOWN value on a reset.

4.3.23.2 IMPLEMENTATION DEFINED layout

Configurations
Defined only if the implementation does not use the recommended layout for the ERRIRQCR<n> registers.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

167

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

The IMPLEMENTATION DEFINED layout bit assignments are:

63 32

IMPLEMENTATION DEFINED

31 0

IMPLEMENTATION DEFINED

Figure 4.33: ERRERICR0 IMPLEMENTATION DEFINED layout

Bits [63:0]
This field reads as an IMPLEMENTATION DEFINED value and writes to this field have IMPLEMENTATION
DEFINED behavior.

4.3.23.3 Accessibility

None.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

168

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

4.3.24 ERRERICR1, Error Recovery Interrupt Configuration Register 1

The ERRERICR1 characteristics are:

Purpose
Error Recovery Interrupt configuration register.

Configurations
ERRERICR1 is present only if all of the following are true:

• Any of the following are true:
– The Error Recovery Interrupt is implemented.
– The implementation does not use the recommended layout for the ERRIRQCR<n> registers.

• Interrupt configuration registers are implemented.

ERRERICR1 is RES0 otherwise.

ERRERICR1 is architecturally mapped to memory-mapped register ERRIRQCR3[31:0].

ERRERICR1 is implemented only as part of a memory-mapped group of error records.

Attributes
ERRERICR1 is a 32-bit read/write memory-mapped register located at offset 0xE98.

4.3.24.1 Error Recovery Interrupt is implemented, recommended layout

Configurations
Defined only if all of the following are true:

• The Error Recovery Interrupt is implemented.
• The implementation uses the recommended layout for the ERRIRQCR<n> registers.

The Error Recovery Interrupt is implemented, recommended layout bit assignments are:

31 0

DATA

Figure 4.34: ERRERICR1 Error Recovery Interrupt is implemented, recommended layout

DATA, bits [31:0]
Payload for the message signaled interrupt. This field resets to an architecturally UNKNOWN value on a
reset.

4.3.24.2 IMPLEMENTATION DEFINED layout

Configurations
Defined only if the implementation does not use the recommended layout for the ERRIRQCR<n> registers.

The IMPLEMENTATION DEFINED layout bit assignments are:

31 0

IMPLEMENTATION DEFINED

Figure 4.35: ERRERICR1 IMPLEMENTATION DEFINED layout

Bits [31:0]
This field reads as an IMPLEMENTATION DEFINED value and writes to this field have IMPLEMENTATION
DEFINED behavior.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

169

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

4.3.24.3 Accessibility

None.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

170

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

4.3.25 ERRERICR2, Error Recovery Interrupt Configuration Register 2

The ERRERICR2 characteristics are:

Purpose
Error Recovery Interrupt control and configuration register.

Configurations
ERRERICR2 is present only if all of the following are true:

• Any of the following are true:
– The Error Recovery Interrupt is implemented.
– The implementation does not use the recommended layout for the ERRIRQCR<n> registers.

• Interrupt configuration registers are implemented.

ERRERICR2 is RES0 otherwise.

ERRERICR2 is architecturally mapped to memory-mapped register ERRIRQCR3[63:32].

ERRERICR2 is implemented only as part of a memory-mapped group of error records.

Attributes
ERRERICR2 is a 32-bit read/write memory-mapped register located at offset 0xE9C.

4.3.25.1 Error Recovery Interrupt is implemented, recommended layout

Configurations
Defined only if all of the following are true:

• The Error Recovery Interrupt is implemented.
• The implementation uses the recommended layout for the ERRIRQCR<n> registers.

The Error Recovery Interrupt is implemented, recommended layout bit assignments are:

3 0

MemAttr

5 4

SH

6731 8

RES0

NSMSIIRQEN

Figure 4.36: ERRERICR2 Error Recovery Interrupt is implemented, recommended layout

Bits [31:8]
Reserved. This field is RES0.

IRQEN, bit [7]
Message signaled interrupt enable.

When the component supports disabling message signaled interrupts
Enables generation of message signaled interrupts. The possible values of this bit are:

0b0 Disabled.
0b1 Enabled.

This bit resets to 0b0 on a reset.

Otherwise
Message signaled interrupts are always enabled.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

171

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

This bit is RES0.

NSMSI, bit [6]
Security attribute. Defines the physical address space for message signaled interrupts.

When the component supports configuring the Security attribute for message signaled interrupts,
and the component does not allow Non-secure writes to ERRERICR2
The possible values of this bit are:

0b0 Secure.
0b1 Non-secure.

This bit resets to an IMPLEMENTATION DEFINED value on a reset.

When the component allows Non-secure writes to ERRERICR2
The Security attribute used for message signaled interrupts is Non-secure.

This bit is RES0.

Otherwise
The Security attribute for message signaled interrupts is IMPLEMENTATION DEFINED.

This bit is RES0.

SH, bits [5:4]
Shareability.

When the component supports configuring the Shareability domain for message signaled interrupts
Defines the Shareability domain for message signaled interrupts. The possible values of this field are:

0b00 Not shared.
0b10 Outer Shareable.
0b11 Inner Shareable.

All other values are reserved.

This field is ignored when ERRERICR2.MemAttr specifies any of the following memory types:

• Any Device memory type.
• Normal memory, Inner Non-cacheable, Outer Non-cacheable.

All Device and Normal Inner Non-cacheable Outer Non-cacheable memory regions are always treated
as Outer Shareable.

This field resets to an architecturally UNKNOWN value on a reset.

Otherwise
The Shareability domain for message signaled interrupts is IMPLEMENTATION DEFINED.

This field is RES0.

MemAttr, bits [3:0]
Memory type.

When the component supports configuring the memory type for message signaled interrupts
Defines the memory type and attributes for message signaled interrupts. The possible values of this
field are:

0b0000 Device-nGnRnE memory.
0b0001 Device-nGnRE memory.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

172

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

0b0010 Device-nGRE memory.
0b0011 Device-GRE memory.
0b0101 Normal memory, Inner Non-cacheable, Outer Non-cacheable.
0b0110 Normal memory, Inner Write-Through, Outer Non-cacheable.
0b0111 Normal memory, Inner Write-Back, Outer Non-cacheable.
0b1001 Normal memory, Inner Non-cacheable, Outer Write-Through.
0b1010 Normal memory, Inner Write-Through, Outer Write-Through.
0b1011 Normal memory, Inner Write-Back, Outer Write-Through.
0b1101 Normal memory, Inner Non-cacheable, Outer Write-Back.
0b1110 Normal memory, Inner Write-Through, Outer Write-Back.
0b1111 Normal memory, Inner Write-Back, Outer Write-Back.

All other values are reserved.

This field resets to an architecturally UNKNOWN value on a reset.

Note:

This is the same format as the VMSAv8-64 stage 2 memory region attributes.

Otherwise
The memory type used for message signaled interrupts is IMPLEMENTATION DEFINED.

This field is RES0.

4.3.25.2 IMPLEMENTATION DEFINED layout

Configurations
Defined only if the implementation does not use the recommended layout for the ERRIRQCR<n> registers.

The IMPLEMENTATION DEFINED layout bit assignments are:

31 0

IMPLEMENTATION DEFINED

Figure 4.37: ERRERICR2 IMPLEMENTATION DEFINED layout

Bits [31:0]
This field reads as an IMPLEMENTATION DEFINED value and writes to this field have IMPLEMENTATION
DEFINED behavior.

4.3.25.3 Accessibility

None.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

173

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

4.3.26 ERRFHICR0, Fault Handling Interrupt Configuration Register 0

The ERRFHICR0 characteristics are:

Purpose
Fault Handling Interrupt configuration register.

Configurations
ERRFHICR0 is present only if all of the following are true:

• Any of the following are true:
– The Fault Handling Interrupt is implemented.
– The implementation does not use the recommended layout for the ERRIRQCR<n> registers.

• Interrupt configuration registers are implemented.

ERRFHICR0 is RES0 otherwise.

ERRFHICR0 is architecturally mapped to memory-mapped register ERRIRQCR0[63:0].

ERRFHICR0 is implemented only as part of a memory-mapped group of error records.

Attributes
ERRFHICR0 is a 64-bit read/write memory-mapped register located at offset 0xE80.

4.3.26.1 Fault Handling Interrupt is implemented, recommended layout

Configurations
Defined only if all of the following are true:

• The Fault Handling Interrupt is implemented.
• The implementation uses the recommended layout for the ERRIRQCR<n> registers.

The Fault Handling Interrupt is implemented, recommended layout bit assignments are:

55 32

ADDR[53:30]

63 56

RES0

1 0

RES0

31 2

ADDR[29:0]

Figure 4.38: ERRFHICR0 Fault Handling Interrupt is implemented, recommended layout

Bits [63:56,1:0]
Reserved. This field is RES0.

ADDR, bits [55:2]
Message Signaled Interrupt address. (ERRFHICR0.ADDR << 2) is the address that the component writes
to when signaling the Fault Handling Interrupt. Bits [1:0] of the address are always zero.

The physical address size supported by the component is IMPLEMENTATION DEFINED. Unimplemented
high-order physical address bits are RES0.

This field resets to an architecturally UNKNOWN value on a reset.

4.3.26.2 IMPLEMENTATION DEFINED layout

Configurations
Defined only if the implementation does not use the recommended layout for the ERRIRQCR<n> registers.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

174

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

The IMPLEMENTATION DEFINED layout bit assignments are:

63 32

IMPLEMENTATION DEFINED

31 0

IMPLEMENTATION DEFINED

Figure 4.39: ERRFHICR0 IMPLEMENTATION DEFINED layout

Bits [63:0]
This field reads as an IMPLEMENTATION DEFINED value and writes to this field have IMPLEMENTATION
DEFINED behavior.

4.3.26.3 Accessibility

None.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

175

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

4.3.27 ERRFHICR1, Fault Handling Interrupt Configuration Register 1

The ERRFHICR1 characteristics are:

Purpose
Fault Handling Interrupt configuration register.

Configurations
ERRFHICR1 is present only if all of the following are true:

• Any of the following are true:
– The Fault Handling Interrupt is implemented.
– The implementation does not use the recommended layout for the ERRIRQCR<n> registers.

• Interrupt configuration registers are implemented.

ERRFHICR1 is RES0 otherwise.

ERRFHICR1 is architecturally mapped to memory-mapped register ERRIRQCR1[31:0].

ERRFHICR1 is implemented only as part of a memory-mapped group of error records.

Attributes
ERRFHICR1 is a 32-bit read/write memory-mapped register located at offset 0xE88.

4.3.27.1 Fault Handling Interrupt is implemented, recommended layout

Configurations
Defined only if all of the following are true:

• The Fault Handling Interrupt is implemented.
• The implementation uses the recommended layout for the ERRIRQCR<n> registers.

The Fault Handling Interrupt is implemented, recommended layout bit assignments are:

31 0

DATA

Figure 4.40: ERRFHICR1 Fault Handling Interrupt is implemented, recommended layout

DATA, bits [31:0]
Payload for the message signaled interrupt. This field resets to an architecturally UNKNOWN value on a
reset.

4.3.27.2 IMPLEMENTATION DEFINED layout

Configurations
Defined only if the implementation does not use the recommended layout for the ERRIRQCR<n> registers.

The IMPLEMENTATION DEFINED layout bit assignments are:

31 0

IMPLEMENTATION DEFINED

Figure 4.41: ERRFHICR1 IMPLEMENTATION DEFINED layout

Bits [31:0]
This field reads as an IMPLEMENTATION DEFINED value and writes to this field have IMPLEMENTATION
DEFINED behavior.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

176

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

4.3.27.3 Accessibility

None.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

177

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

4.3.28 ERRFHICR2, Fault Handling Interrupt Configuration Register 2

The ERRFHICR2 characteristics are:

Purpose
Fault Handling Interrupt control and configuration register.

Configurations
ERRFHICR2 is present only if all of the following are true:

• Any of the following are true:
– The Fault Handling Interrupt is implemented.
– The implementation does not use the recommended layout for the ERRIRQCR<n> registers.

• Interrupt configuration registers are implemented.

ERRFHICR2 is RES0 otherwise.

ERRFHICR2 is architecturally mapped to memory-mapped register ERRIRQCR1[63:32].

ERRFHICR2 is implemented only as part of a memory-mapped group of error records.

Attributes
ERRFHICR2 is a 32-bit read/write memory-mapped register located at offset 0xE8C.

4.3.28.1 Fault Handling Interrupt is implemented, recommended layout

Configurations
Defined only if all of the following are true:

• The Fault Handling Interrupt is implemented.
• The implementation uses the recommended layout for the ERRIRQCR<n> registers.

The Fault Handling Interrupt is implemented, recommended layout bit assignments are:

3 0

MemAttr

5 4

SH

6731 8

RES0

NSMSIIRQEN

Figure 4.42: ERRFHICR2 Fault Handling Interrupt is implemented, recommended layout

Bits [31:8]
Reserved. This field is RES0.

IRQEN, bit [7]
Message signaled interrupt enable.

When the component supports disabling message signaled interrupts
Enables generation of message signaled interrupts. The possible values of this bit are:

0b0 Disabled.
0b1 Enabled.

This bit resets to 0b0 on a reset.

Otherwise
Message signaled interrupts are always enabled.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

178

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

This bit is RES0.

NSMSI, bit [6]
Security attribute. Defines the physical address space for message signaled interrupts.

When the component supports configuring the Security attribute for message signaled interrupts,
and the component does not allow Non-secure writes to ERRFHICR2
The possible values of this bit are:

0b0 Secure.
0b1 Non-secure.

This bit resets to an IMPLEMENTATION DEFINED value on a reset.

When the component allows Non-secure writes to ERRFHICR2
The Security attribute used for message signaled interrupts is Non-secure.

This bit is RES0.

Otherwise
The Security attribute for message signaled interrupts is IMPLEMENTATION DEFINED.

This bit is RES0.

SH, bits [5:4]
Shareability.

When the component supports configuring the Shareability domain for message signaled interrupts
Defines the Shareability domain for message signaled interrupts. The possible values of this field are:

0b00 Not shared.
0b10 Outer Shareable.
0b11 Inner Shareable.

All other values are reserved.

This field is ignored when ERRFHICR2.MemAttr specifies any of the following memory types:

• Any Device memory type.
• Normal memory, Inner Non-cacheable, Outer Non-cacheable.

All Device and Normal Inner Non-cacheable Outer Non-cacheable memory regions are always treated
as Outer Shareable.

This field resets to an architecturally UNKNOWN value on a reset.

Otherwise
The Shareability domain for message signaled interrupts is IMPLEMENTATION DEFINED.

This field is RES0.

MemAttr, bits [3:0]
Memory type.

When the component supports configuring the memory type for message signaled interrupts
Defines the memory type and attributes for message signaled interrupts. The possible values of this
field are:

0b0000 Device-nGnRnE memory.
0b0001 Device-nGnRE memory.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

179

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

0b0010 Device-nGRE memory.
0b0011 Device-GRE memory.
0b0101 Normal memory, Inner Non-cacheable, Outer Non-cacheable.
0b0110 Normal memory, Inner Write-Through, Outer Non-cacheable.
0b0111 Normal memory, Inner Write-Back, Outer Non-cacheable.
0b1001 Normal memory, Inner Non-cacheable, Outer Write-Through.
0b1010 Normal memory, Inner Write-Through, Outer Write-Through.
0b1011 Normal memory, Inner Write-Back, Outer Write-Through.
0b1101 Normal memory, Inner Non-cacheable, Outer Write-Back.
0b1110 Normal memory, Inner Write-Through, Outer Write-Back.
0b1111 Normal memory, Inner Write-Back, Outer Write-Back.

All other values are reserved.

This field resets to an architecturally UNKNOWN value on a reset.

Note:

This is the same format as the VMSAv8-64 stage 2 memory region attributes.

Otherwise
The memory type used for message signaled interrupts is IMPLEMENTATION DEFINED.

This field is RES0.

4.3.28.2 IMPLEMENTATION DEFINED layout

Configurations
Defined only if the implementation does not use the recommended layout for the ERRIRQCR<n> registers.

The IMPLEMENTATION DEFINED layout bit assignments are:

31 0

IMPLEMENTATION DEFINED

Figure 4.43: ERRFHICR2 IMPLEMENTATION DEFINED layout

Bits [31:0]
This field reads as an IMPLEMENTATION DEFINED value and writes to this field have IMPLEMENTATION
DEFINED behavior.

4.3.28.3 Accessibility

None.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

180

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

4.3.29 ERRGSR, Error Group Status Register

The ERRGSR characteristics are:

Purpose
Shows the status for the records in the group.

Configurations
ERRGSR is implemented only as part of a memory-mapped group of error records.

This manual describes a group of error records accessed via a standard 4KB memory-mapped peripheral.
For a 4KB peripheral, up to 24 error records can be accessed if the Common Fault Injection Model is
implemented, and up to 56 otherwise.

Attributes
ERRGSR is a 64-bit read-only memory-mapped register located at offset 0xE00.

4.3.29.1 Field descriptions

The ERRGSR bit assignments are:

55 32

S[55:32]

63 56

RES0

31 0

S[31:0]

Figure 4.44: ERRGSR

Bits [63:56]
Reserved. This field is RES0.

S[m], bit [m], for m = 0 to 55
The status for error record <m>. A read-only copy of ERR<m>STATUS.V.

When error record <m> is implemented, and error record <m> supports this type of reporting
The defined values of this bit are:

0 No error.
1 One or more errors.

If the Common Fault Injection Model is implemented, up-to 24 records can be implemented meaning
bits [55:24] are RES0.

Otherwise
Reserved. This bit is RES0.

4.3.29.2 Accessibility

None.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

181

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

4.3.30 ERRIIDR, Implementation Identification Register

The ERRIIDR characteristics are:

Purpose
Defines the implementer of the component.

Configurations
It is IMPLEMENTATION DEFINED whether ERRIIDR is present. ERRIIDR is RES0 if not present.

ERRIIDR is implemented only as part of a memory-mapped group of error records.

Attributes
ERRIIDR is a 32-bit read-only memory-mapped register located at offset 0xE10.

4.3.30.1 Field descriptions

The ERRIIDR bit assignments are:

6 0

IMP DEF

7

(0)

11 8

IMP DEF

15 12

IMP DEF

19 16

IMP DEF

31 20

IMPLEMENTATION DEFINED

Implementer[6:0]Implementer[10:7]RevisionVariantProductID

Figure 4.45: ERRIIDR

ProductID, bits [31:20]
Part number, bits [11:0]. The part number is selected by the designer of the component.

Matches the {ERRPIDR1.PART_1,ERRPIDR0.PART_0} fields, if ERRPIDR0 and ERRPIDR1 are also
present.

This field reads as an IMPLEMENTATION DEFINED value.

Variant, bits [19:16]
Component major revision.

ERRIIDR.Variant defines either a variant of the component defined by ERRIIDR.ProductID, or the major
revision of the component.

When defining a major revision, ERRIIDR.Variant and ERRIIDR.Revision together form the revision
number of the component, with ERRIIDR.Variant being the most significant part and ERRIIDR.Revision
the least significant part. When a component is changed, ERRIIDR.Variant or ERRIIDR.Revision
is increased to ensure that software can differentiate the different revisions of the component. If
ERRIIDR.Variant is increased then ERRIIDR.Revision should be set to 0b0000.

Matches the ERRPIDR2.REVISION field, if ERRPIDR2 is also present.

This field reads as an IMPLEMENTATION DEFINED value.

Revision, bits [15:12]
Component minor revision.

When a component is changed:

• If ERRIIDR.Variant and ERRIIDR.Revision together form the revision number of the component
then:

– ERRIIDR.Variant or ERRIIDR.Revision is increased to ensure that software can differentiate the
different revisions of the component.

– If Variant is increased then Revision should be set to 0b0000.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

182

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

• Otherwise, ERRIIDR.Revision is increased to ensure that software can differentiate the different
revisions of the component.

Matches the ERRPIDR3.REVAND field, if ERRPIDR3 is also present.

This field reads as an IMPLEMENTATION DEFINED value.

Implementer, bits [11:8,6:0]
JEDEC-assigned JEP106 identification code. ERRIIDR[11:8] is the JEP106 bank identifier minus 1 and
ERRIIDR[6:0] is the JEP106 identification code for the designer of the component. The code identifies
the designer of the component, which might not be not the same as the implementer of the device
containing the component. To obtain a number, or to see the assignment of these codes, contact JEDEC
http://www.jedec.org.

ERRIIDR[11:8] matches ERRPIDR4.DES_2 and ERRIIDR[6:0] match the {ERRPIDR2.DES_1,ERRPIDR1.DES_0}
fields, if ERRPIDR{1,2,4} are also present.

This field reads as an IMPLEMENTATION DEFINED value.

Note:

For a component designed by Arm Limited, the JEP106 bank is 5, and the JEP106 identification
code is 0x3B, meaning ERRIIDR[11:0] has the value 0x43B.

Zero is not a valid JEP106 identification code, meaning a value of zero for ERRIIDR indicates
this register is not implemented.

Bit [7]
Reserved. This bit is RES0.

4.3.30.2 Accessibility

None.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

183

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

4.3.31 ERRIMPDEF<n>, IMPLEMENTATION DEFINED Register <0-191>

The ERRIMPDEF<0-191> characteristics are:

Purpose
IMPLEMENTATION DEFINED RAS extensions.

Configurations
ERRIMPDEF<n> is present if all of the following are true:

• The RAS Common Fault Injection Model Extension is not implemented.
• ERRDEVID.NUM <= 32.

It is IMPLEMENTATION DEFINED whether ERRIMPDEF<n> is present.

ERRIMPDEF<n> is RES0 if not present.

Attributes
ERRIMPDEF<n> is a 64-bit read/write memory-mapped register located at offset 0x800 + 8×n.

4.3.31.1 Field descriptions

The ERRIMPDEF<0-191> bit assignments are:

63 32

IMPLEMENTATION DEFINED

31 0

IMPLEMENTATION DEFINED

Figure 4.46: ERRIMPDEF<n>

Bits [63:0]
This field reads as an IMPLEMENTATION DEFINED value and writes to this field have IMPLEMENTATION
DEFINED behavior.

4.3.31.2 Accessibility

None.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

184

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

4.3.32 ERRIRQCR<n>, Generic Error Interrupt Configuration Register

The ERRIRQCR<0-15> characteristics are:

Purpose
The ERRIRQCR<n> registers are reserved for IMPLEMENTATION DEFINED interrupt configuration
registers.

The architecture provides a recommended layout for the ERRIRQCR<n> registers. These registers are
named:

• ERRFHICR0, ERRFHICR1, and ERRFHICR2 for the fault handling interrupt controls.
• ERRERICR0, ERRERICR1, and ERRERICR2 for the error recovery interrupt controls.
• ERRCRICR0, ERRCRICR1, and ERRCRICR2 for the critical error interrupt controls.
• ERRIRQSR for the status register.

This section describes the generic, IMPLEMENTATION DEFINED, format.

Configurations
ERRIRQCR<n> is present only if the interrupt configuration registers are implemented. ERRIRQCR<n>
is RES0 otherwise.

ERRIRQCR<n> is implemented only as part of a memory-mapped group of error records.

Attributes
ERRIRQCR<n> is a 64-bit read/write memory-mapped register located at offset 0xE80 + 8×n.

4.3.32.1 Field descriptions

The ERRIRQCR<0-15> bit assignments are:

63 32

IMPLEMENTATION DEFINED

31 0

IMPLEMENTATION DEFINED

Figure 4.47: ERRIRQCR<n>

Bits [63:0]
IMPLEMENTATION DEFINED controls. The content of these registers is IMPLEMENTATION DEFINED.

This field reads as an IMPLEMENTATION DEFINED value and writes to this field have IMPLEMENTATION
DEFINED behavior.

4.3.32.2 Accessibility

None.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

185

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

4.3.33 ERRIRQSR, Error Interrupt Status Register

The ERRIRQSR characteristics are:

Purpose
Interrupt status register.

Configurations
ERRIRQSR is present only if interrupt configuration registers are implemented. ERRIRQSR is RES0
otherwise.

ERRIRQSR is architecturally mapped to memory-mapped register ERRIRQCR15.

ERRIRQSR is implemented only as part of a memory-mapped group of error records.

Attributes
ERRIRQSR is a 64-bit read/write memory-mapped register located at offset 0xEF8.

4.3.33.1 Recommended layout

Configurations
Defined only if the implementation uses the recommended layout for the ERRIRQCR<n> registers.

The recommended layout bit assignments are:

63 32

RES0

01234531 6

RES0

FHICRIERR
FHIERRCRI
ERIERIERR

Figure 4.48: ERRIRQSR recommended layout

Bits [63:6]
Reserved. This field is RES0.

CRIERR, bit [5]
Critical Error Interrupt error.

When the Critical Error Interrupt is implemented
The possible values of this bit are:

0b0 Critical Error Interrupt write has not returned an error since this bit was last cleared
to zero.

0b1 Critical Error Interrupt write has returned an error since this bit was last cleared to
zero.

This bit is read/write-one-to-clear.

This bit resets to an architecturally UNKNOWN value on a reset.

Otherwise
Reserved. This bit is RES0.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

186

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

CRI, bit [4]
Critical Error Interrupt write in progress.

When the Critical Error Interrupt is implemented
The defined values of this bit are:

0b0 Critical Error Interrupt write not in progress.
0b1 Critical Error Interrupt write in progress.

Software must not disable an interrupt whilst the write is in progress.

This bit is read-only.

Note:

This bit does not indicate whether an interrupt is active, but rather whether a write triggered
by the interrupt is in progress.

To determine whether an interrupt is active, software must examine the individual
ERR<n>STATUS registers.

Otherwise
Reserved. This bit is RES0.

ERIERR, bit [3]
Error Recovery Interrupt error.

When the Error Recovery Interrupt is implemented
The possible values of this bit are:

0b0 Error Recovery Interrupt write has not returned an error since this bit was last
cleared to zero.

0b1 Error Recovery Interrupt write has returned an error since this bit was last cleared to
zero.

This bit is read/write-one-to-clear.

This bit resets to an architecturally UNKNOWN value on a reset.

Otherwise
Reserved. This bit is RES0.

ERI, bit [2]
Error Recovery Interrupt write in progress.

When the Error Recovery Interrupt is implemented
The defined values of this bit are:

0b0 Error Recovery Interrupt write not in progress.
0b1 Error Recovery Interrupt write in progress.

Software must not disable an interrupt whilst the write is in progress.

This bit is read-only.

Note:

This bit does not indicate whether an interrupt is active, but rather whether a write triggered
by the interrupt is in progress.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

187

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

To determine whether an interrupt is active, software must examine the individual
ERR<n>STATUS registers.

Otherwise
Reserved. This bit is RES0.

FHIERR, bit [1]
Fault Handling Interrupt error.

When the Fault Handling Interrupt is implemented
The possible values of this bit are:

0b0 Fault Handling Interrupt write has not returned an error since this bit was last
cleared to zero.

0b1 Fault Handling Interrupt write has returned an error since this bit was last cleared to
zero.

This bit is read/write-one-to-clear.

This bit resets to an architecturally UNKNOWN value on a reset.

Otherwise
Reserved. This bit is RES0.

FHI, bit [0]
Fault Handling Interrupt write in progress.

When the Fault Handling Interrupt is implemented
The defined values of this bit are:

0b0 Fault Handling Interrupt write not in progress.
0b1 Fault Handling Interrupt write in progress.

Software must not disable an interrupt whilst the write is in progress.

This bit is read-only.

Note:

This bit does not indicate whether an interrupt is active, but rather whether a write triggered
by the interrupt is in progress.

To determine whether an interrupt is active, software must examine the individual
ERR<n>STATUS registers.

Otherwise
Reserved. This bit is RES0.

4.3.33.2 IMPLEMENTATION DEFINED layout

Configurations
Defined only if the implementation does not use the recommended layout for the ERRIRQCR<n> registers.

The IMPLEMENTATION DEFINED layout bit assignments are:

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

188

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

63 32

IMPLEMENTATION DEFINED

31 0

IMPLEMENTATION DEFINED

Figure 4.49: ERRIRQSR IMPLEMENTATION DEFINED layout

Bits [63:0]
This field reads as an IMPLEMENTATION DEFINED value and writes to this field have IMPLEMENTATION
DEFINED behavior.

4.3.33.3 Accessibility

None.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

189

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

4.3.34 ERRPIDR0, Peripheral Identification Register 0

The ERRPIDR0 characteristics are:

Purpose
Provides discovery information about the component.

Configurations
It is IMPLEMENTATION DEFINED whether ERRPIDR0 is present. ERRPIDR0 is RES0 if not present.

ERRPIDR0 is implemented only as part of a memory-mapped group of error records.

Attributes
ERRPIDR0 is a 32-bit read-only memory-mapped register located at offset 0xFE0.

4.3.34.1 Field descriptions

The ERRPIDR0 bit assignments are:

7 0

IMP DEF

31 8

RES0

PART_0

Figure 4.50: ERRPIDR0

Bits [31:8]
Reserved. This field is RES0.

PART_0, bits [7:0]
Part number, bits [7:0].

The part number is selected by the designer of the component. The designer chooses whether to use a
12-bit or a 16-bit part number:

• If a 12-bit part number is used, it is stored in ERRPIDR1.PART_1 and ERRPIDR0.PART_0. There
are 8 bits, ERRPIDR2.REVISION and ERRPIDR3.REVAND, available to define the revision of the
component.

• If a 16-bit part number is used, it is stored in ERRPIDR2.PART_2, ERRPIDR1.PART_1 and
ERRPIDR0.PART_0. There are 4 bits, ERRPIDR3.REVISION, available to define the revision
of the component.

This field reads as an IMPLEMENTATION DEFINED value.

4.3.34.2 Accessibility

None.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

190

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

4.3.35 ERRPIDR1, Peripheral Identification Register 1

The ERRPIDR1 characteristics are:

Purpose
Provides discovery information about the component.

Configurations
It is IMPLEMENTATION DEFINED whether ERRPIDR1 is present. ERRPIDR1 is RES0 if not present.

ERRPIDR1 is implemented only as part of a memory-mapped group of error records.

Attributes
ERRPIDR1 is a 32-bit read-only memory-mapped register located at offset 0xFE4.

4.3.35.1 Field descriptions

The ERRPIDR1 bit assignments are:

3 0

IMP DEF

7 4

IMP DEF

31 8

RES0

PART_1DES_0

Figure 4.51: ERRPIDR1

Bits [31:8]
Reserved. This field is RES0.

DES_0, bits [7:4]
Designer, JEP106 identification code, bits [3:0]. ERRPIDR1.DES_0 and ERRPIDR2.DES_1 together
form the JEDEC-assigned JEP106 identification code for the designer of the component. The parity bit in
the JEP106 identification code is not included. The code identifies the designer of the component, which
might not be not the same as the implementer of the device containing the component. To obtain a number,
or to see the assignment of these codes, contact JEDEC http://www.jedec.org.

This field reads as an IMPLEMENTATION DEFINED value.

Note:

For a component designed by Arm Limited, the JEP106 identification code is 0x3B.

PART_1, bits [3:0]
Part number, bits [11:8].

The part number is selected by the designer of the component. The designer chooses whether to use a
12-bit or a 16-bit part number:

• If a 12-bit part number is used, it is stored in ERRPIDR1.PART_1 and ERRPIDR0.PART_0. There
are 8 bits, ERRPIDR2.REVISION and ERRPIDR3.REVAND, available to define the revision of the
component.

• If a 16-bit part number is used, it is stored in ERRPIDR2.PART_2, ERRPIDR1.PART_1 and
ERRPIDR0.PART_0. There are 4 bits, ERRPIDR3.REVISION, available to define the revision
of the component.

This field reads as an IMPLEMENTATION DEFINED value.

4.3.35.2 Accessibility

None.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

191

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

4.3.36 ERRPIDR2, Peripheral Identification Register 2

The ERRPIDR2 characteristics are:

Purpose
Provides discovery information about the component.

Configurations
It is IMPLEMENTATION DEFINED whether ERRPIDR2 is present. ERRPIDR2 is RES0 if not present.

ERRPIDR2 is implemented only as part of a memory-mapped group of error records.

Attributes
ERRPIDR2 is a 32-bit read-only memory-mapped register located at offset 0xFE8.

4.3.36.1 The component uses a 12-bit part number

Configurations
Defined only if the component uses a 12-bit part number.

The the component uses a 12-bit part number bit assignments are:

2 0

IMP DEF

3

1

7 4

IMP DEF

31 8

RES0

DES_1REVISION
JEDEC

Figure 4.52: ERRPIDR2 the component uses a 12-bit part number

Bits [31:8]
Reserved. This field is RES0.

REVISION, bits [7:4]
Component major revision. ERRPIDR2.REVISION and ERRPIDR3.REVAND together form the
revision number of the component, with ERRPIDR2.REVISION being the most significant part and
ERRPIDR3.REVAND the least significant part. When a component is changed, ERRPIDR2.REVISION
or ERRPIDR3.REVAND are increased to ensure that software can differentiate the different revisions
of the component. If ERRPIDR2.REVISION is increased then ERRPIDR3.REVAND should be set to
0b0000.

This field reads as an IMPLEMENTATION DEFINED value.

JEDEC, bit [3]
JEDEC-assigned JEP106 implementer code is used. This bit reads as 0b1.

DES_1, bits [2:0]
Designer, JEP106 identification code, bits [6:4]. ERRPIDR1.DES_0 and ERRPIDR2.DES_1 together
form the JEDEC-assigned JEP106 identification code for the designer of the component. The parity bit in
the JEP106 identification code is not included. The code identifies the designer of the component, which
might not be not the same as the implementer of the device containing the component. To obtain a number,
or to see the assignment of these codes, contact JEDEC http://www.jedec.org.

This field reads as an IMPLEMENTATION DEFINED value.

Note:

For a component designed by Arm Limited, the JEP106 identification code is 0x3B.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

192

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

4.3.36.2 The component uses a 16-bit part number

Configurations
Defined only if the component uses a 16-bit part number.

The the component uses a 16-bit part number bit assignments are:

2 0

IMP DEF

3

1

7 4

IMP DEF

31 8

RES0

DES_1PART_2
JEDEC

Figure 4.53: ERRPIDR2 the component uses a 16-bit part number

Bits [31:8]
Reserved. This field is RES0.

PART_2, bits [7:4]
Part number, bits [15:12].

The part number is selected by the designer of the component. The designer chooses whether to use a
12-bit or a 16-bit part number:

• If a 12-bit part number is used, it is stored in ERRPIDR1.PART_1 and ERRPIDR0.PART_0. There
are 8 bits, ERRPIDR2.REVISION and ERRPIDR3.REVAND, available to define the revision of the
component.

• If a 16-bit part number is used, it is stored in ERRPIDR2.PART_2, ERRPIDR1.PART_1 and
ERRPIDR0.PART_0. There are 4 bits, ERRPIDR3.REVISION, available to define the revision
of the component.

This field reads as an IMPLEMENTATION DEFINED value.

JEDEC, bit [3]
JEDEC-assigned JEP106 implementer code is used. This bit reads as 0b1.

DES_1, bits [2:0]
Designer, JEP106 identification code, bits [6:4]. ERRPIDR1.DES_0 and ERRPIDR2.DES_1 together
form the JEDEC-assigned JEP106 identification code for the designer of the component. The parity bit in
the JEP106 identification code is not included. The code identifies the designer of the component, which
might not be not the same as the implementer of the device containing the component. To obtain a number,
or to see the assignment of these codes, contact JEDEC http://www.jedec.org.

This field reads as an IMPLEMENTATION DEFINED value.

Note:

For a component designed by Arm Limited, the JEP106 identification code is 0x3B.

4.3.36.3 Accessibility

None.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

193

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

4.3.37 ERRPIDR3, Peripheral Identification Register 3

The ERRPIDR3 characteristics are:

Purpose
Provides discovery information about the component.

Configurations
It is IMPLEMENTATION DEFINED whether ERRPIDR3 is present. ERRPIDR3 is RES0 if not present.

ERRPIDR3 is implemented only as part of a memory-mapped group of error records.

Attributes
ERRPIDR3 is a 32-bit read-only memory-mapped register located at offset 0xFEC.

4.3.37.1 The component uses a 12-bit part number

Configurations
Defined only if the component uses a 12-bit part number.

The the component uses a 12-bit part number bit assignments are:

3 0

IMP DEF

7 4

IMP DEF

31 8

RES0

CMODREVAND

Figure 4.54: ERRPIDR3 the component uses a 12-bit part number

Bits [31:8]
Reserved. This field is RES0.

REVAND, bits [7:4]
Component minor revision. ERRPIDR2.REVISION and ERRPIDR3.REVAND together form the
revision number of the component, with ERRPIDR2.REVISION being the most significant part and
ERRPIDR3.REVAND the least significant part. When a component is changed, ERRPIDR2.REVISION
or ERRPIDR3.REVAND are increased to ensure that software can differentiate the different revisions
of the component. If ERRPIDR2.REVISION is increased then ERRPIDR3.REVAND should be set to
0b0000.

This field reads as an IMPLEMENTATION DEFINED value.

CMOD, bits [3:0]
Customer Modified.

Indicates the component has been modified.

A value of 0b0000 means the component is not modified from the original design.

Any other value means the component has been modified in an IMPLEMENTATION DEFINED way.

For any two components with the same Unique Component Identifier:

• If the value of the CMOD fields of both components equals zero, the components are identical.
• If the CMOD fields of both components have the same non-zero value, it does not necessarily mean

that they have the same modifications.
• If the value of the CMOD field of either of the two components is non-zero, they might not be

identical, even though they have the same Unique Component Identifier.

This field reads as an IMPLEMENTATION DEFINED value.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

194

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

4.3.37.2 The component uses a 16-bit part number

Configurations
Defined only if the component uses a 16-bit part number.

The the component uses a 16-bit part number bit assignments are:

3 0

IMP DEF

7 4

IMP DEF

31 8

RES0

CMODREVISION

Figure 4.55: ERRPIDR3 the component uses a 16-bit part number

Bits [31:8]
Reserved. This field is RES0.

REVISION, bits [7:4]
Component revision. When a component is changed, ERRPIDR3.REVISION is increased to ensure that
software can differentiate the different revisions of the component.

This field reads as an IMPLEMENTATION DEFINED value.

CMOD, bits [3:0]
Customer Modified.

Indicates the component has been modified.

A value of 0b0000 means the component is not modified from the original design.

Any other value means the component has been modified in an IMPLEMENTATION DEFINED way.

For any two components with the same Unique Component Identifier:

• If the value of the CMOD fields of both components equals zero, the components are identical.
• If the CMOD fields of both components have the same non-zero value, it does not necessarily mean

that they have the same modifications.
• If the value of the CMOD field of either of the two components is non-zero, they might not be

identical, even though they have the same Unique Component Identifier.

This field reads as an IMPLEMENTATION DEFINED value.

4.3.37.3 Accessibility

None.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

195

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

4.3.38 ERRPIDR4, Peripheral Identification Register 4

The ERRPIDR4 characteristics are:

Purpose
Provides discovery information about the component.

Configurations
It is IMPLEMENTATION DEFINED whether ERRPIDR4 is present. ERRPIDR4 is RES0 if not present.

ERRPIDR4 is implemented only as part of a memory-mapped group of error records.

Attributes
ERRPIDR4 is a 32-bit read-only memory-mapped register located at offset 0xFD0.

4.3.38.1 Field descriptions

The ERRPIDR4 bit assignments are:

3 0

IMP DEF

7 4

IMP DEF

31 8

RES0

DES_2SIZE

Figure 4.56: ERRPIDR4

Bits [31:8]
Reserved. This field is RES0.

SIZE, bits [7:4]
Size of the component.

The distance from the start of the address space used by this component to the end of the component
identification registers.

A value of 0b0000 means one of the following is true:

• The component uses a single 4KB block.
• The component uses an IMPLEMENTATION DEFINED number of 4KB blocks.

Any other value means the component occupies 2ERRPIDR4.SIZE 4KB blocks.

Using this field to indicate the size of the component is deprecated. This field might not correctly indicate
the size of the component. Arm recommends that software determine the size of the component from the
Unique Component Identifier fields, and other IMPLEMENTATION DEFINED registers in the component.

This field reads as an IMPLEMENTATION DEFINED value.

DES_2, bits [3:0]
Designer, JEP106 continuation code. This is the JEDEC-assigned JEP106 bank identifier for the designer
of the component, minus 1. The code identifies the designer of the component, which might not be not
the same as the implementer of the device containing the component. To obtain a number, or to see the
assignment of these codes, contact JEDEC http://www.jedec.org.

This field reads as an IMPLEMENTATION DEFINED value.

Note:

For a component designed by Arm Limited, the JEP106 bank is 5, meaning this field has the
value 0x4.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

196

Chapter 4. RAS Extension and RAS System Architecture Registers
4.3. Error record registers, including memory mapped view

4.3.38.2 Accessibility

None.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

197

Glossary

Asynchronous exception

Asynchronous exceptions are also known as interrupts. In the Armv8 architecture, an asynchronous exception is
one for which any of the following apply:

• The exception is not generated as a result of direct execution or attempted execution of the instruction
stream.

• The return address presented to the exception handler is not guaranteed to indicate the instruction that
caused the exception.

• The exception is imprecise.

Availability

Readiness for correct service.

Baseboard Management Controller

A PE dedicated to system control and monitoring.

BIST

Built-in self-test

Built-in self-test

A mechanism that permits a machine to test itself.

Catastrophic failure

A failure with harmful consequences that are orders of magnitude, or even incommensurably, higher than the
benefit provided by correct service delivery.

CE

Correctable or Corrected Error

Completer

An agent in a computing system that responds to and completes a memory transaction initiated by a Requester.

Contained or containable error

An error that is not uncontained or uncontainable.

Containment

Limiting or preventing the silent propagation of an error. Arm recommends that the scope to which an error is
contained is specified.

Correctable or Corrected Error

An error that is detected by hardware and that hardware can correct / has corrected.

DECTED

Double error correct, triple error detect EDAC. This can detect a single, double or triple bit error and correct a
single or double bit error in a protection granule.

Deferred error

An error that has not been silently propagated but does not require immediate action at the producer. The error
might have passed from the producer to a consumer.

198

Glossary

Detected error

An error that has been detected and signaled to a consumer.

Detected Uncorrected Error

A detected error that has not been be corrected and causes failure.

Device memory

Memory locations where an access to the location can cause side-effects, or where the value returned for a load
can vary depending on the number of loads performed. Typically, the Device memory attributes are used for
memory-mapped peripherals and similar locations.

Double fault

A second error that is detected when the PE is in the process of handling a first error condition.

DUE

Detected Uncorrected Error

DUE FIT rate

The FIT rate for failures from a DUE.

ECC

Error Correction Code

EDAC

Error Detection and Correction Code

EDC

Error Detection Code

Error

Deviation from correct service or a correct value.

Error Correction Code or Error Detection and Correction Code

A code capable of detecting and correcting a number of errors.

Error Detection Code

A code capable of detecting, but not correcting, errors.

Error log

Historical data recorded about errors, usually by software.

Error propagation

Passing an error from a producer to a consumer.

Error record

Data recorded about an error, usually by hardware.

Error synchronization event

One of:

• Executing an ESB instruction.

• Taking an exception to an Exception level using AArch64, FEAT_IESB is implemented, and either:

– The appropriate SCTLR_ELx.IESB bit is 0b1.
– FEAT_DoubleFault is implemented, the Exception level is EL3, and SCTLR_EL3.NMEA is 0b1.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

199

Glossary

• Executing an Exception Return instruction at an Exception level using AArch64, FEAT_IESB is
implemented, and either:

– The appropriate SCTLR_ELx.IESB bit is 0b1.
– FEAT_DoubleFault is implemented, the Exception level is EL3, and SCR_EL3.NMEA is 0b1.

Exception

An exception handles an event. For example, an exception could handle an external interrupt or an undefined
instruction.

External abort

Either:

• An in-band error that is generated as a response to a transaction. The name derives from the specific case
of an abort generated by a memory system that is external to a PE, but the concept can apply to other
interfaces.

• A type of exception in the Arm architecture, generated when consuming an in-band error response.

Fail-safe

A failure mode in which the PE and other system components switch to backup mechanisms that keep processing
instructions and data to allow either a safe shutdown or restart of the system, or to continue processing critical
functions, or both.

Fail-secure

A failure mode in which the PE and other system components fail but the system is secured to allow either a
safe shutdown or restart of the system, or to continue processing critical functions without exposing secret data,
or both.

Fail-signaled

A failure mode in which the PE signals to the system that it has failed. It might continue to process instructions,
but the system must ignore its output, or treat all outputs as detected errors.

Fail-silent

Failure mode in which the PE and all other system components (such as DMAs) stop processing instructions. A
watchdog process will detect the failure and restart the system with an Error Recovery reset.

Failure

The event of deviation from correct service.

Failure-in-Time

The number of expected failures per billion hours of operation.

Fault

The cause of an error.

Fault injection

The deliberate injection of faults into a system for testing.

Fault prevention

Designing a system to avoid faults.

Fault removal

Logic or other mechanisms for detecting faults and correcting or bypassing their effect.

Field Replaceable Unit

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

200

Glossary

A component or unit in a system that can be replaced without return to base.

FIT

Failure-in-Time

FRU

Field Replaceable Unit

General-purpose registers

The registers that the base instructions use for processing:

• In AArch32 state the general-purpose registers are R0-R14.
• In AArch64 state the general-purpose registers are R0-R30.

Generic Interrupt Controller

Arm system architecture interrupt controller for IRQ and FIQ interrupt exceptions.

GIC

Generic Interrupt Controller

Hardware fault

A fault that originates in, or affects, hardware.

Imprecise exception

An exception that is not precise.

Infected

Being in error.

Interrupt

In a PE context, an asynchronous exception. There are three interrupt exceptions: IRQ, FIQ and SError. IRQ
and FIQ are always precise. In a system architecture context, an asynchronous event sent to a PE or GIC for
processing as an interrupt exception.

Isolation

Limiting the impact of an error only to components that actually try to use corrupted data.

Latent error or latent fault

An error that is present in a system but not yet detected.

MBIST

Memory BIST

Minor failure

A failure with harmful consequences that are of a similar cost to the benefits that are provided by correct service
delivery.

MSI

Message Signaled Interrupt

Normal memory

Used for bulk memory operations. Hardware might speculatively read these locations.

PCIe

Peripheral Component Interconnect Express

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

201

Glossary

PE

Processing element

Peripheral Component Interconnect Express (PCI Express or PCIe)

A high-speed serial computer expansion bus standard maintained and developed by the PCI Special Interest
Group.

Persistent fault

A fault that is not transient.

PFA

Predictive Failure Analysis

Poisoned

State that has been marked as being in error so that subsequent consumption of the state will be treated as a
detected error.

PPI

Private Peripheral Interrupt

Precise exception

An exception where the exception handler receives the state of the PE and the state of the memory system
consistent with the PE having executed all of the instructions up to, but not including, the point in the instruction
stream where the exception was taken. The state of the PE and the state of the memory do not include instructions
that occurred after this point.

Predictive Failure Analysis

Mechanisms to analyze errors and predict future failures.

Processing element (PE)

The abstract machine defined in the Armv8 architecture, as documented in an Arm Architecture Reference
Manual. A PE implementation compliant with the Armv8 architecture conforms with the behaviors described in
the corresponding Arm Architecture Reference Manual.

Propagated

See Error propagation.

Protection granule

A quantum of memory for which an EDC or ECC provides detection or correction. For example, a 72/64
SECDED ECC scheme has a 64-bit protection granule.

RAS

Reliability, Availability, Serviceability

Recoverable error

A contained error that must be corrected to allow the correct operation of the system or smaller parts of the
system to continue.

Reliability

Continuity of correct service.

Requester

An agent in a computing system that initiates memory transactions.

Restartable error

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

202

Glossary

A contained error that does not immediately impact correct operation. Usually this means correct operation of
the system, but it can also be used in other contexts to describe correct operation of a smaller part.

SDC

Silent Data Corruption

SDC FIT rate

The FIT rate for failures because of SDC.

SDEC

Single device error correction EDAC. This can detect and correct multiple clustered errors in a protection
granule, such as the types of errors that might be seen if a protection granule is striped across multiple devices
and multiple errors come from a single device.

SECDED

Single error correct, double error detect EDAC. This can detect a single or double bit error and correct a single
bit error in a protection granule.

SED

Single error detect EDC. This can detect a single bit error in a protection granule.

SError Interrupt

An asynchronous interrupt in the Armv8 architecture.

Service failure mode

A mode entered to reduce the severity of an error.

Serviceability

The ability to undergo modifications and repairs.

Silent Data Corruption

An error that is not detected by hardware or software.

Silently propagated

An error that is passed from place to place without being signaled as a detected error.

Software fault

A fault that originates in and affects software.

Synchronous exception

In the Armv8 architecture, an exception for which all of the following apply:

• The exception is generated as a result of direct execution or attempted execution of an instruction.
• The return address presented to the exception handler is guaranteed to indicate the instruction that caused

the exception.
• The exception is precise.

Synchronous External Abort

A synchronous exception in the Armv8 architecture.

System Control Processor

A PE dedicated to system control and monitoring.

Transient fault

A fault that is not persistent.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

203

Glossary

Uncontained or uncontainable error

An error that has been, or might have been, silently propagated.

Undetected error or undetected fault

See Latent error or latent fault.

Unrecoverable error

A contained error that is not recoverable. Continued correct operation is generally not possible. Usually this
means correct operation of the system, but it can also be used in other contexts to describe correct operation of a
smaller part. Systems might use high-level recovery techniques to work around an unrecoverable yet contained
error in a component so that the system recovers from the error.

ARM DDI 0587
D.b-00bet1

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

204

	Arm RAS Supplement
	Release information
	Non-Confidential Proprietary Notice

	Contents
	Preface
	Document status
	About this book
	Using this book
	Conventions
	Typographical conventions
	Numbers
	Pseudocode descriptions
	Assembler syntax descriptions

	Rules-based writing
	Content item classes
	Rule
	Information
	Rationale
	Implementation note
	Software usage

	Identifiers
	Examples

	Additional reading
	Feedback
	Feedback on this book
	Progressive terminology statement

	1 Introduction to RAS
	1.1 Faults, errors, and failures
	1.2 General taxonomy of errors
	1.2.1 Error detection
	1.2.2 Error propagation
	1.2.3 Infected and poisoned
	1.2.4 Containable and uncontainable

	1.3 Techniques for improving reliability, availability, and serviceability
	1.3.1 Fault prevention and fault removal
	1.3.2 Error handling and recovery
	1.3.3 Fault handling

	2 Armv8-A RAS Extension
	2.1 PE error handling
	2.1.1 PE error detection
	2.1.2 PE error propagation
	2.1.3 Other errors

	2.2 Generating error exceptions
	2.3 Taking error exceptions
	2.3.1 PE error state recording in the exception syndrome
	2.3.2 PE error state classification
	2.3.2.1 Using the PE error state classification

	2.3.3 Multiple SError interrupts
	2.3.4 Target Exception level for External abort and SError interrupt exceptions taken to AArch64 state
	2.3.5 Target mode for External abort and SError interrupt exceptions taken to AArch32 state

	2.4 Error synchronization event
	2.4.1 ESB and Virtual SError interrupt exceptions
	2.4.2 Extension for synchronization at exception entry and return
	2.4.2.1 Synchronization on exception entry
	2.4.2.2 Synchronization on exception return

	2.4.3 Error synchronization barriers in a minimal implementation

	2.5 Virtual SError interrupts
	2.6 Error records in the PE
	2.6.1 Error record System register view
	2.6.1.1 Fields in VSESR_EL2, VDFSR, DISR(_EL1), and VDISR(_EL2)

	3 RAS System Architecture
	3.1 Nodes
	3.1.1 Multiple error records per node
	3.1.2 Detecting and consuming errors

	3.2 Standard error record
	3.2.1 Component error states
	3.2.2 Writing the error record
	3.2.2.1 Component error states and priorities
	3.2.2.2 Prioritizing errors, RAS System Architecture v1.0
	3.2.2.3 Prioritizing errors, RAS System Architecture v1.1
	3.2.2.4 Overwriting the error syndrome
	3.2.2.5 Keeping the previous error syndrome
	3.2.2.6 Detecting multiple errors

	3.2.3 Error syndrome
	3.2.3.1 Corrected error field
	3.2.3.2 Poison indicator

	3.2.4 Security and Virtualization
	3.2.5 Synchronization and error record accesses
	3.2.6 Bridges to other architectures
	3.2.7 Software faults
	3.2.8 Other sources of error and warnings

	3.3 Error recovery interrupt
	3.4 Fault handling interrupt
	3.5 In-band error response signaling (external aborts)
	3.6 Critical error interrupt
	3.7 Standard format Corrected error counter
	3.8 Error recovery, fault handling, and critical error signaling
	3.9 Error recovery reset
	3.10 Timestamp extension
	3.11 Common Fault Injection Model Extension
	3.11.1 Operation of the Common Fault Injection Model Extension

	4 RAS Extension and RAS System Architecture Registers
	4.1 Memory-mapped view
	4.1.1 Access requirements for memory-mapped views of RAS error records

	4.2 Reset values
	4.3 Error record registers, including memory mapped view
	4.3.1 Register index
	4.3.1.1 Using AArch32 System registers
	4.3.1.2 Using AArch64 System registers
	4.3.1.3 Memory-mapped error record group view
	4.3.1.4 Memory-mapped single error record view

	4.3.2 ERR<n>ADDR, Error Record Address Register
	4.3.2.1 Field descriptions
	4.3.2.2 Accessibility

	4.3.3 ERR<n>CTLR, Error Record Control Register
	4.3.3.1 Field descriptions
	4.3.3.2 Accessibility

	4.3.4 ERR<n>FR, Error Record Feature Register
	4.3.4.1 ERR<n>FR (ERR<n>FR.ED != 0b00)
	4.3.4.2 ERR<n>FR (ERR<n>FR.ED == 0b00)
	4.3.4.3 Accessibility

	4.3.5 ERR<n>MISC0, Error Record Miscellaneous Register 0
	4.3.5.1 ERR<n>MISC0 (ERR<q>FR.CEC == 0b000)
	4.3.5.2 ERR<n>MISC0 (ERR<q>FR.CEC == 0b100 && ERR<q>FR.RP == 0b0)
	4.3.5.3 ERR<n>MISC0 (ERR<q>FR.CEC == 0b010 && ERR<q>FR.RP == 0b0)
	4.3.5.4 ERR<n>MISC0 (ERR<q>FR.CEC == 0b100 && ERR<q>FR.RP == 0b1)
	4.3.5.5 ERR<n>MISC0 (ERR<q>FR.CEC == 0b010 && ERR<q>FR.RP == 0b1)
	4.3.5.6 Accessibility

	4.3.6 ERR<n>MISC1, Error Record Miscellaneous Register 1
	4.3.6.1 Field descriptions
	4.3.6.2 Accessibility

	4.3.7 ERR<n>MISC2, Error Record Miscellaneous Register 2
	4.3.7.1 Field descriptions
	4.3.7.2 Accessibility

	4.3.8 ERR<n>MISC3, Error Record Miscellaneous Register 3
	4.3.8.1 ERR<n>MISC3 (ERR<q>FR.TS != 0b00)
	4.3.8.2 ERR<n>MISC3 (ERR<q>FR.TS == 0b00)
	4.3.8.3 Accessibility

	4.3.9 ERR<n>PFGCDN, Pseudo-fault Generation Countdown Register
	4.3.9.1 Field descriptions
	4.3.9.2 Accessibility

	4.3.10 ERR<n>PFGCTL, Pseudo-fault Generation Control Register
	4.3.10.1 Field descriptions
	4.3.10.2 Accessibility

	4.3.11 ERR<n>PFGF, Pseudo-fault Generation Feature Register
	4.3.11.1 Field descriptions
	4.3.11.2 Accessibility

	4.3.12 ERR<n>STATUS, Error Record Primary Status Register
	4.3.12.1 ERR<n>STATUS (RAS System Architecture v1.1 is implemented)
	4.3.12.2 ERR<n>STATUS (RAS System Architecture v1.0 is implemented)
	4.3.12.3 Accessibility
	4.3.12.4 Pseudocode operation

	4.3.13 ERRCIDR0, Component Identification Register 0
	4.3.13.1 Field descriptions
	4.3.13.2 Accessibility

	4.3.14 ERRCIDR1, Component Identification Register 1
	4.3.14.1 Field descriptions
	4.3.14.2 Accessibility

	4.3.15 ERRCIDR2, Component Identification Register 2
	4.3.15.1 Field descriptions
	4.3.15.2 Accessibility

	4.3.16 ERRCIDR3, Component Identification Register 3
	4.3.16.1 Field descriptions
	4.3.16.2 Accessibility

	4.3.17 ERRCRICR0, Critical Error Interrupt Configuration Register 0
	4.3.17.1 Critical Error Interrupt is implemented, recommended layout
	4.3.17.2 implementation defined layout
	4.3.17.3 Accessibility

	4.3.18 ERRCRICR1, Critical Error Interrupt Configuration Register 1
	4.3.18.1 Critical Error Interrupt is implemented, recommended layout
	4.3.18.2 implementation defined layout
	4.3.18.3 Accessibility

	4.3.19 ERRCRICR2, Critical Error Interrupt Configuration Register 2
	4.3.19.1 Critical Error Interrupt is implemented, recommended layout
	4.3.19.2 implementation defined layout
	4.3.19.3 Accessibility

	4.3.20 ERRDEVAFF, Device Affinity Register
	4.3.20.1 Field descriptions
	4.3.20.2 Accessibility

	4.3.21 ERRDEVARCH, Device Architecture Register
	4.3.21.1 Field descriptions
	4.3.21.2 Accessibility

	4.3.22 ERRDEVID, Device Configuration Register
	4.3.22.1 Field descriptions
	4.3.22.2 Accessibility

	4.3.23 ERRERICR0, Error Recovery Interrupt Configuration Register 0
	4.3.23.1 Error Recovery Interrupt is implemented, recommended layout
	4.3.23.2 implementation defined layout
	4.3.23.3 Accessibility

	4.3.24 ERRERICR1, Error Recovery Interrupt Configuration Register 1
	4.3.24.1 Error Recovery Interrupt is implemented, recommended layout
	4.3.24.2 implementation defined layout
	4.3.24.3 Accessibility

	4.3.25 ERRERICR2, Error Recovery Interrupt Configuration Register 2
	4.3.25.1 Error Recovery Interrupt is implemented, recommended layout
	4.3.25.2 implementation defined layout
	4.3.25.3 Accessibility

	4.3.26 ERRFHICR0, Fault Handling Interrupt Configuration Register 0
	4.3.26.1 Fault Handling Interrupt is implemented, recommended layout
	4.3.26.2 implementation defined layout
	4.3.26.3 Accessibility

	4.3.27 ERRFHICR1, Fault Handling Interrupt Configuration Register 1
	4.3.27.1 Fault Handling Interrupt is implemented, recommended layout
	4.3.27.2 implementation defined layout
	4.3.27.3 Accessibility

	4.3.28 ERRFHICR2, Fault Handling Interrupt Configuration Register 2
	4.3.28.1 Fault Handling Interrupt is implemented, recommended layout
	4.3.28.2 implementation defined layout
	4.3.28.3 Accessibility

	4.3.29 ERRGSR, Error Group Status Register
	4.3.29.1 Field descriptions
	4.3.29.2 Accessibility

	4.3.30 ERRIIDR, Implementation Identification Register
	4.3.30.1 Field descriptions
	4.3.30.2 Accessibility

	4.3.31 ERRIMPDEF<n>, implementation defined Register <0-191>
	4.3.31.1 Field descriptions
	4.3.31.2 Accessibility

	4.3.32 ERRIRQCR<n>, Generic Error Interrupt Configuration Register
	4.3.32.1 Field descriptions
	4.3.32.2 Accessibility

	4.3.33 ERRIRQSR, Error Interrupt Status Register
	4.3.33.1 Recommended layout
	4.3.33.2 implementation defined layout
	4.3.33.3 Accessibility

	4.3.34 ERRPIDR0, Peripheral Identification Register 0
	4.3.34.1 Field descriptions
	4.3.34.2 Accessibility

	4.3.35 ERRPIDR1, Peripheral Identification Register 1
	4.3.35.1 Field descriptions
	4.3.35.2 Accessibility

	4.3.36 ERRPIDR2, Peripheral Identification Register 2
	4.3.36.1 The component uses a 12-bit part number
	4.3.36.2 The component uses a 16-bit part number
	4.3.36.3 Accessibility

	4.3.37 ERRPIDR3, Peripheral Identification Register 3
	4.3.37.1 The component uses a 12-bit part number
	4.3.37.2 The component uses a 16-bit part number
	4.3.37.3 Accessibility

	4.3.38 ERRPIDR4, Peripheral Identification Register 4
	4.3.38.1 Field descriptions
	4.3.38.2 Accessibility

	Glossary

