Arm® Firmware Framework for M 1.1
Extensions

Document number: AES 0039
Release Quality: Alpha

Issue Number: 0
Confidentiality: Non-confidential
Date of Issue: 15/12/2020
Copyright © 2020, Arm Limited. All rights reserved.
ALPHA RELEASE

This is a proposed set of updates to the DEN 0063 Arm® Platform Security Architecture Firmware Framework
1.0 specification.

This is an initial ALPHA release in order to enable wider review and feedback on the changes proposed to
be included in the v1.1 specification.

At this quality level, none of the changes and interfaces defined are stable enough for product
development.

Abstract

This manual is part of the Arm Platform Security Architecture family of specifications. It defines a standard
programming environment and firmware interfaces for implementing and accessing security services
within a device’s Root of Trust.

Contents

About this document

Release information

Arm Non-Confidential Document Licence (“Licence”)
References

Terms and abbreviations

Conventions
Typographical conventions
Numbers

Current status and anticipated changes

Feedback
Feedback on this book

1 Introduction

11
1.2

1.3
131
1.3.2
1.3.3
1.34
1.3.5

Objectives for version 1.1
Compatibility

Overview of new features
Secure Functions

Stateless Rol Services
Memory-mapped IOVECS
Support for peripheral drivers
Miscellaneous improvements

2 Framework features and permitted configurations

21
211
2.1.2

2.2

Changes to the Programming API
Firmware framework version
Discovering framework feature availability

Permitted configurations of FF-M version 1.1

3 Secure Functions

3.1

3.2
3.21
3.2.2

AES 0039

Background & rationale

The Secure Function model
Overview of the SFN model
Secure Partition execution

Copyright © 2020, Arm Limited or its affiliates. All rights reserved.

1.1 Extensions Alpha (Issue 0) Non-confidential

Vi
viii
viii
xiii
xiii
xiii
Xiii
Xiii
xiii
15
15
16

16
16
17
17
17
18

19

19
19
19

21

22
22

22
22
23

Page i

3.2.3
3.24
3.2.5
3.2.6

3.3
34

3.5
3.5.1
3.5.2

Scheduling Secure Partitions
Processing RoT Service messages
Interrupts

Doorbell

Implementation options
Selecting a Secure Partition model

Changes to the Programming API
Manifest changes
Secure Partition APl changes

4 Stateless Root of Trust services

4.1

4.2
4.2.1
422
4.2.3
424
4.2.5
4.2.6
4.2.7

4.3

4.4
441
4.4.2
443

Background and rationale

Programming model

Overview of stateless RoTl Services
RoT Service identification

RoT Service versioning

Requesting stateless RoT Services
Processing RoT Service messages
Programmer Error

Comparison of service types

Selecting the RoT Service type

Changes to the Programming API
Manifest changes

Client API changes

Secure Partition APl changes

5 Memory-mapped IOVECs

5.1

5.2
521
5.2.2
523
524
5.25

5.3
53.1
53.2
5.3.3
534

AES 0039
1.1 Extensions Alpha (Issue 0)

Background and rationale

Programming model

Implementation flexibility

Typical deployment scenarios

RoT Service configuration

Accessing client input and output vectors
Interaction with the isolation model

Changes to the Programming API
Discovering MM-IOVEC availability
Enabling the MM-IOVEC API

Mapping RoT Service 10 vectors

Changes to existing Secure Partition APIs

Copyright © 2020, Arm Limited or its affiliates. All rights reserved.
Non-confidential

24
25
26
27

27
27

27
27
29

31
31

31
32
32
32
33
33
34
34

35

35
36
37
37

39
39

40
40
40
41
41
42

42
42
42
43
47

Page ii

6 Enhancements for Secure Partition peripheral drivers

6.1
6.1.1
6.1.2
6.1.3

6.2
6.2.1
6.2.2
6.2.3
6.2.4
6.2.5
6.2.6

6.3
6.3.1
6.3.2
6.3.3
6.3.4

64
64.1

Background and rationale
Bounded interrupt response time
Managing interrupts

Accessing MMIO registers

Programming model

Definitions

Impact of Isolation

Impact of Concurrency

Interrupt model

FLIH Execution model

Secure Partition execution model

Changes to the Programming API

Manifest changes

Secure Partition API changes for FLIH

Secure Partition API changes for interrupt control
Register access functions for MMIO

Writing Secure Partition peripheral drivers
Programming patterns using FLIH

7 Miscellaneous changes

7.1
7.11
7.1.2

7.2

7.3
7.3.1

7.4

7.5
7.5.1
7.5.2

RoT Service terminology and requirements
The meaning of ‘Root of Trust Service’
PSA RoT Services and Secure Partitions

Availability of the PSA Lifecycle API in NSPE

Relaxation of memory access rules for Constant data
Changes to the specification

Replace the term ‘reverse handle’ with ‘rhandle’

Symbolic definition of Secure Partition resources
stack_size (attribute)
heap_size (attribute)

A Summary of manifest attributes

Al
Al1l
Al2
A1l13

A2
A21
A2.2
A23

AES 0039

Secure Partition object
Required attributes
Optional attributes
Example

Service object
Required attributes
Optional attributes
Example

Copyright © 2020, Arm Limited or its affiliates. All rights reserved.

1.1 Extensions Alpha (Issue 0) Non-confidential

49

49
49
50
50

50
50
51
51
51
54
55

55
55
56
58
61

64
64

67

67
67
68

70

70
71

71

72
72
72

73

73
73
73
74

75
75
75
76

Page iii

A3 Named Region object
A.3.1 Required attributes
A.3.2 Example

A4 Numbered Region object
A.4.1 Required attributes
A.4.2 Example

A5 IRQ object
A.5.1 Required attributes
A.5.2 Optional attributes
A.5.3 Example

A.6 Typed string attributes
A.6.1 c_macro
A.6.2 c_symbol
A.6.3 hex_string

B Migrating Secure Partitions to version 1.1

B.1 Using an unmodified version 1.0 Secure Partition

B.2 Update the manifest to version 1.1
B.2.1 Manifest changes
B.2.2 Source code changes

B.3 Using version 1.1 features
B.3.1 Using the SFN model
B.3.2 Using a stateless Rol Service
B.3.3 Using MM-IOVEC
B.3.4 Using FLIH

C Comparison between FF-M and TF-M frameworks

Ci1 Background
C.1.1 TheIPC model
C.1.2 The Library model

C2 Analysis
C.2.1 One or two architectures?
C.2.2 Scaling and Flexibility

D Implementing session-less RoT Services

D.1 Background

D.2 Analysis

D.3 Framework options

AES 0039 Copyright © 2020, Arm Limited or its affiliates. All rights reserved.

1.1 Extensions Alpha (Issue 0) Non-confidential

76
76
76

77
77
77

77
77
78
78

78
78
78
78

79

79

79
79
80

80
80
81
82
83

85

85
85
86

86
86
87
89
89
91
93

Page iv

About this document

Release information

The change history table lists the changes that have been made to this document.

Date Version Confidentiality Change

December 2020 1.1 Alpha O Non-confidential Initial release of the 1.1 Extensions
specification

AES 0039 Copyright © 2020, Arm Limited or its affiliates. All rights reserved. Page v
1.1 Extensions Alpha (Issue 0) Non-confidential

Arm® Firmware Framework for M

Copyright © 2020, Arm Limited or its affiliates. All rights reserved. The copyright statement reflects the
fact that some draft issues of this document have been released, to a limited circulation.

Arm Non-Confidential Document Licence (“Licence”)

This Licence is a legal agreement between you and Arm Limited (“Arm”) for the use of Arm’s intellectual property (including,
without limitation, any copyright) embodied in the document accompanying this Licence (“Document”). Arm licenses its
intellectual property in the Document to you on condition that you agree to the terms of this Licence. By using or copying the
Document you indicate that you agree to be bound by the terms of this Licence.

“Subsidiary” means any company the majority of whose voting shares is now or hereafter owner or controlled, directly or
indirectly, by you. A company shall be a Subsidiary only for the period during which such control exists.

This Document is NON-CONFIDENTIAL and any use by you and your Subsidiaries (“Licensee”) is subject to the terms of this
Licence between you and Arm.

Subject to the terms and conditions of this Licence, Arm hereby grants to Licensee under the intellectual property in the
Document owned or controlled by Arm, a non-exclusive, non-transferable, non-sub-licensable, royalty-free, worldwide licence to:

(i) use and copy the Document for the purpose of designing and having designed products that comply with the Document;
(ii) manufacture and have manufactured products which have been created under the licence granted in (i) above; and

(i) sell, supply and distribute products which have been created under the licence granted in (i) above.

Licensee hereby agrees that the licences granted above shall not extend to any portion or function of a product that is not itself
compliant with part of the Document.

Except as expressly licensed above, Licensee acquires no right, title or interest in any Arm technology or any intellectual property
embodied therein.

THE DOCUMENT IS PROVIDED “AS IS". ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES, EXPRESS, IMPLIED
OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, SATISFACTORY
QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE DOCUMENT. Arm may
make changes to the Document at any time and without notice. For the avoidance of doubt, Arm makes no representation with
respect to, and has undertaken no analysis to identify or understand the scope and content of, third party patents, copyrights,
trade secrets, or other rights.

NOTWITHSTANDING ANYTHING TO THE CONTRARY CONTAINED IN THIS LICENCE, TO THE FULLEST EXTENT
PERMITTED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES, IN CONTRACT, TORT OR OTHERWISE, IN
CONNECTION WITH THE SUBJECT MATTER OF THIS LICENCE (INCLUDING WITHOUT LIMITATION) (I) LICENSEE’S USE OF
THE DOCUMENT; AND (Il) THE IMPLEMENTATION OF THE DOCUMENT IN ANY PRODUCT CREATED BY LICENSEE UNDER
THIS LICENCE). THE EXISTENCE OF MORE THAN ONE CLAIM OR SUIT WILL NOT ENLARGE OR EXTEND THE LIMIT.
LICENSEE RELEASES ARM FROM ALL OBLIGATIONS, LIABILITY, CLAIMS OR DEMANDS IN EXCESS OF THIS LIMITATION.

This Licence shall remain in force until terminated by Licensee or by Arm. Without prejudice to any of its other rights, if Licensee
is in breach of any of the terms and conditions of this Licence then Arm may terminate this Licence immediately upon giving
written notice to Licensee. Licensee may terminate this Licence at any time. Upon termination of this Licence by Licensee or by
Arm, Licensee shall stop using the Document and destroy all copies of the Document in its possession. Upon termination of this
Licence, all terms shall survive except for the licence grants.

Any breach of this Licence by a Subsidiary shall entitle Arm to terminate this Licence as if you were the party in breach. Any
termination of this Licence shall be effective in respect of all Subsidiaries. Any rights granted to any Subsidiary hereunder shall
automatically terminate upon such Subsidiary ceasing to be a Subsidiary.

The Document consists solely of commercial items. Licensee shall be responsible for ensuring that any use, duplication or
disclosure of the Document complies fully with any relevant export laws and regulations to assure that the Document or any
portion thereof is not exported, directly or indirectly, in violation of such export laws.

This Licence may be translated into other languages for convenience, and Licensee agrees that if there is any conflict between the
English version of this Licence and any translation, the terms of the English version of this Licence shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited (or its
subsidiaries) in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this document may be the

AES 0039 Copyright © 2020, Arm Limited or its affiliates. All rights reserved. Page vi
1.1 Extensions Alpha (Issue 0) Non-confidential

trademarks of their respective owners. No licence, express, implied or otherwise, is granted to Licensee under this Licence, to use
the Arm trade marks in connection with the Document or any products based thereon. Visit Arm’s website at
https:/www.arm.com/company/policies/trademarks for more information about Arm’s trademarks.

The validity, construction and performance of this Licence shall be governed by English Law.

Copyright © 2020, Arm Limited or its affiliates. All rights reserved.

Arm Limited. Company 02557590 registered in England.
110 Fulbourn Road, Cambridge, England CB1 9NJ.

Arm document reference: LES-PRE-21585 version 4.0

AES 0039 Copyright © 2020, Arm Limited or its affiliates. All rights reserved. Page vii
1.1 Extensions Alpha (Issue 0) Non-confidential

https://www.arm.com/company/policies/trademarks

References

This document refers to the following documents.

Ref Document Number Title

[FF-M] DEN 0063 Arm® Platform Security Architecture Firmware Framework.
https:/pages.arm.com/psa-resources-ff.html

[PSA-SM] DEN 0079 PSA Security Model. https:/pages.arm.com/psa-resources-sm.html

[PSA-TB] DEN 0072 PSA Trusted Boot and Firmware Update.
https:/pages.arm.com/psa-resources-tbfu.html

[TF-M] trustedfirmware.org, Trusted Firmware-M.
https:/git.trustedfirmware.org/trusted-firmware=m.git/about/

[GP-ROT] GlobalPlatform, Root of Trust Definitions and Requirements, v1.1,

June 2018. https:/globalplatform.org/wp-content/uploads/
2018/07/GP_RoT_Definitions,and_Requirements_v1.1_
PublicRelease-2018-06-28pdf

[PSA-ITS] IHI 0087 PSA Storage API. https:/pages.arm.com/psa-apis.html
[PSA- IHI 0086 PSA Cryptography API. https://pages.arm.com/psa-apis.html
CRYPT]

Terms and abbreviations

This document uses the following terms and abbreviations.

Term Meaning

Application firmware The main application firmware for the platform, typically comprising a
Real-Time OS (RTOS) and application tasks.

Application Root of This is the security domain in which additional security services are

Trust implemented. See PSA Security Model [PSA-SM] for details.

Application RoT Service This is a Secure Partition RoT Service within the Application Root of Trust
domain.

Confused deputy This is a specific type of privilege escalation exploit, in which a privileged

attack component acts on behalf of an unprivileged attacker without correctly

validating the request.

Connection-based RoT This is the type of an Secure Partition RoT Service which uses a connection

Service when making requests. These provide a set of operations that have some
shared resources or state managed by the RoT Service. See Stateless Root of
Trust services on page 31.

In version 1.0, all Secure Partition RoT Services are connection-based.
See also stateless RoT Service.

AES 0039 Copyright © 2020, Arm Limited or its affiliates. All rights reserved. Page viii
1.1 Extensions Alpha (Issue 0) Non-confidential

https://pages.arm.com/psa-resources-ff.html
https://pages.arm.com/psa-resources-sm.html
https://pages.arm.com/psa-resources-tbfu.html
https://git.trustedfirmware.org/trusted-firmware-m.git/about/
https://globalplatform.org/wp-content/uploads/2018/07/GP_RoT_Definitions_and_Requirements_v1.1_PublicRelease-2018-06-28.pdf
https://globalplatform.org/wp-content/uploads/2018/07/GP_RoT_Definitions_and_Requirements_v1.1_PublicRelease-2018-06-28.pdf
https://globalplatform.org/wp-content/uploads/2018/07/GP_RoT_Definitions_and_Requirements_v1.1_PublicRelease-2018-06-28.pdf
https://pages.arm.com/psa-apis.html
https://pages.arm.com/psa-apis.html

Term

connection handle

First-level interrupt
handling (FLIH)

FLIH
FLIH context

FLIH function

1/0 vector (iovec)

IMPLEMENTATION DEFINED

InterProcess
Communication (IPC)

jovec
IPC
IPC model

JOP

Jump-oriented
programming (JOP)

AES 0039

1.1 Extensions Alpha (Issue 0)

Table 2 (continued)
Meaning

A handle that is used to make requests to a connection-based RoT Service.

The handle value is returned by a successful connection to a
connection-based RoTl Service.

See also stateless handle.

This is a form of interrupt handling that is carried out immediately when the
interrupt exception takes place.

This can be a traditional, privileged interrupt handler, or a deprivileged
interrupt handler.

See First-level interrupt handling.

The execution context within the Secure Partition that is used to run a FLIH
Functions. See also FLIH Execution model on page 54.

A function that is used to perform First-level interrupt handling for an
interrupt. An FLIH function runs in FLIH context.

An object that holds a memory reference. 1/O vectors are used to pass
parameters from a client to a Secure Partition RoT Service. Input parameters
are passed asa psa_invec, and output parameters as a psa_outvec.

Behavior that is not defined by the this specification, but is defined and
documented by individual implementations.

Firmware developers can choose to depend on IMPLEMENTATION DEFINED
behavior, but must be aware that their code might not be portable to another
implementation.

The Firmware Framework for M specifies an IPC mechanism to provide a
communication channel for requests between isolated firmware partitions.

See 1/0 vector.
See InterProcess Communication.

The programming model and communication framework for Secure Partitions
that is defined in version 1.0 of Arm® Platform Security Architecture Firmware
Framework [FF-M]. Each Secure Partition is programmed like a C program to
poll for messages and other events, and respond to them.

See also Secure Function model and Library model.
See Jump-oriented programming.

This is a computer security exploit technique that allows an attacker to
execute code in the presence of security defenses, for example executable
space protection and code signing.

Copyright © 2020, Arm Limited or its affiliates. All rights reserved.
Non-confidential

Page ix

Table 2 (continued)
Term Meaning

Library model This is a simple programming model and communication framework for
security services that is implemented in version 1.0 of the Trusted
Firmware-M [TF-M] project.
The Library model is not compliant with Arm® Platform Security Architecture
Firmware Framework [FF-M], but it has informed the extensions that are
proposed in this document. See Comparison between FF-M and TF-M
frameworks on page 85.

See also IPC model and Secure Function model.

MPU Memory Protection Unit

Non-secure Processing This is the security domain outside of the Secure Processing Environment. It is

Environment (NSPE) the Application domain, typically containing the application firmware and
hardware.

NSPE See Non-secure Processing Environment.

Panic An abnormal termination of an execution context in response to the invalid

use of a programming interface.

Partition manifest Metadata about a Partition describing the runtime resources and any
assighment of privilege.
PROGRAMMER ERROR An error that is caused by the misuse of a programming interface.

A PROGRAMMER ERROR is in the caller of the interface, but it is detected by the
implementer of the interface.

PSA Platform Security Architecture

PSA Immutable Root of The hardware, code and data that cannot be modified following

Trust manufacturing. See PSA Security Model [PSA-SM] for details.

PSA Root of Trust This defines the most trusted security domain within a PSA system. See PSA
Security Model [PSA-SM] for details.

PSA RoT Service This is an RoT Service within the PSA Root of Trust domain.
It is IMPLEMENTATION DEFINED Whether a PSA RoT Service is a Secure Partition
RoT Service.

PSA Updatable Root of The Root of Trust firmware that can be updated following manufacturing. See

Trust PSA Security Model [PSA-SM] for details.
Return-oriented This is a computer security exploit technique that allows an attacker to
programming (ROP) execute code in the presence of security defenses, for example executable

space protection and code signing.

AES 0039 Copyright © 2020, Arm Limited or its affiliates. All rights reserved. Page x
1.1 Extensions Alpha (Issue 0) Non-confidential

Term

rhandle

Root of Trust (RoT)

Root of Trust Service
(RoT Service)

ROP
RoT
RoT Service

Second-level interrupt
handling (SLIH)

Secure Function (SFN)

Secure Function model
(SFN model)

Secure Partition

Secure Partition
Manager (SPM)

AES 0039

1.1 Extensions Alpha (Issue 0)

Table 2 (continued)
Meaning

A value that is associated with a specific Secure Partition RoT Service
connection by the RoT Service implementation. This value can be used to link
a client connection with data or resources managed by the Secure Partition.

In version 1.0, this was referred to as a reverse handle. See Replace the term
‘reverse handle’ with ‘rhandle’ on page 71.

This is the minimal set of software, hardware and data that is implicitly
trusted in the platform — there is no software or hardware at a deeper level
that can verify that the Root of Trust is authentic and unmodified. See Root of
Trust Definitions and Requirements [GP-ROT].

A set of related security operations that are provided and protected within a
Root of Trust.
See also Secure Partition Root of Trust Service.

See Return-oriented programming.
See Root of Trust.
See Root of Trust Service.

This is a form of interrupt handling that is deferred until after the interrupt
exception. This handling occurs within a thread context, and is subject to
normal scheduling.

See First-level interrapt handling.

A callback function in a Secure Partition that handles requests for a single
Root of Trust Service. SFNs are used to implement RoT Services for Secure
Partitions that are using the SFN model.

The programming model and communication framework for Secure
Partitions that is defined in version 1.1 of Arm® Platform Security Architecture
Firmware Framework [FF-M]. Each security service is a C function that is
invoked as a callback from the framework, in response to a call from a client
function. See Secure Functions on page 22.

See also IPC model and Library model.
An execution environment with protected runtime state within the Secure
Processing Environment.

A Secure Partition is a container for the implementation of one or more
Secure Partition RoT Services or one or more secure peripheral drivers.

A Secure Partition must either use the IPC model or the SFN model for
implementation of RoT Services.

Multiple Secure Partitions are allowed in a platform.
Part of the Firmware Framework that is responsible for isolating software in

Partitions, managing the execution of software within Partitions, and
providing IPC between Partitions.

Copyright © 2020, Arm Limited or its affiliates. All rights reserved.
Non-confidential

Page xi

Term

Secure Partition Root
of Trust Service (Secure
Partition RoT Service)

Secure Partition RoT
Service

Secure Partition thread
context

Secure Processing
Environment (SPE)

Service ID (SID)

SFN

SFN model
SID

SLIH

SPE

SPM

stateless handle

Stateless RoT Service

Trusted Boot

AES 0039

1.1 Extensions Alpha (Issue 0)

Table 2 (continued)

Meaning

A Root of Trust Service that is implemented in a Secure Partition. Multiple RoT
Services can coexist in a single Secure Partition.

A Secure Partition RoT Service uses either the SFN model or IPC model
communication framework to receive service requests from clients.

See Secure Partition Root of Trust Service.

The main execution context within the Secure Partition.

e For a Secure Partition that is using the IPC model, this is the Secure
Partition thread.

e For a Secure Partition that is using the SEN model, this is any Secure
Function within the Secure Partition.

This is the security domain that includes the PSA Root of Trust and the
Application Root of Trust domains.

Service ldentification. The identifier used for a PSA RoT Service or an
Application RoT Service.

See Securé Function.

See Secure Function model.

See Service ID.

See Second-level interrupt.handling.
See Secure Processing Environment.
See Secure Partition Manager.

A handle that is used to make requests to a stateless RoTl Service.

The handle value is a compile-time constant which is defined by the
framework implementation.

See also connection handle.

This a type of Secure Partition RoT Service which does not need connections.
These provide a set of standalone operations, and do not need a connection
to manage resources or state between separate Rol Service requests. See
Stateless Root of Trust services on page 31.

See also connection-based RoT Service.

Trusted Boot is technology to provide a chain of trust for all the components

during boot. See PSA Trusted Boot and Firmware Update [PSA-TB].

Copyright © 2020, Arm Limited or its affiliates. All rights reserved.
Non-confidential

Page xii

Conventions

Typographical conventions
The typographical conventions are:

italic Introduces special terminology, and denotes citations.

monospace Used for assembler syntax descriptions, pseudocode, and source code examples.
Also used in the main text for instruction mnemonics and for references to other items
appearing in assembler syntax descriptions, pseudocode, and source code examples.
SMALL CAPITALS
Used for some common terms such as IMPLEMENTATION DEFINED.
Used for a few terms that have specific technical meanings, and are included in the Terms
and abbreviations.
Red text Indicates an open issue.
Blue text Indicates a link. This can be

e A cross-reference to another location within the document
e A URL, for example http:/infocenter.arm.com

Numbers

Numbers are normally written in decimal. Binary numbers are preceded by Ob, and hexadecimal numbers
by ox.

In both cases, the prefix and the associated value are written in a monospace font, for example oxFFFFoo0o.
To improve readability, long numbers can be written with an underscore separator between every four
characters, for example oxFFFF_0000_0000_0000. Ignore any underscores when interpreting the value of a
number.

Current status and anticipated changes

This document is at Alpha quality status which has a particular meaning to Arm of which the recipient
must be aware. An Alpha quality specification is made for the purpose of consultation, review and
obtaining partner feedback. All aspects of the architecture remain SUBJECT TO CHANGE and it is not
committed for product development. In particular instruction encodings and register field positions and
values are not final. Some features may be removed, and new features may be added, however new
features of substantial complexity will not be added without prior consultation. In case of any apparent
discrepancy or missing information, please contact Arm Limited.

Feedback

Arm welcomes feedback on its documentation.

Feedback on this book

If you have comments on the content of this book, send an e-mail to arm.psa-feedback@arm.com. Give:

AES 0039 Copyright © 2020, Arm Limited or its affiliates. All rights reserved. Page xiii
1.1 Extensions Alpha (Issue 0) Non-confidential

http://infocenter.arm.com
mailto:arm.psa-feedback@arm.com

The title (Arm® Firmware Framework for M).

The number and issue (AES 0039 1.1 Extensions Alpha (Issue 0)).

The page numbers to which your comments apply.

The rule identifiers to which your comments apply, if applicable.

A concise explanation of your comments.

Arm also welcomes general suggestions for additions and improvements.

AES 0039 Copyright © 2020, Arm Limited or its affiliates. All rights reserved. Page xiv
1.1 Extensions Alpha (Issue 0) Non-confidential

1 Introduction

This document introduces a set of updates and extensions to the Arm® Platform Security Architecture
Firmware Framework [FF-M] specification, designed to build on the capabilities provided in version 1.0.

When the proposed extensions are sufficiently stable to be classed as Beta, they will be integrated into the
FF-M version 1.1 specification.

These extensions have been developed in conjunction with the Trusted Firmware-M [TF-M] project, which
is developing a reference implementation of the PSA firmware specifications.

A version 1.1 compliant implementation must include all features defined in FF-M version 1.1 that are not
described as being optional. See Framework features and permitted configurations on page 19.

Note

This version of the document includes Rationale commentary that provides background information
relating to the design decisions that led to the current set of proposals. This enables the reader to
understand the wider context and alternative approaches that have been considered.

The rationale is presented in green boxes, as this note is.

1.1 Objectives for version 1.1

There are three primary drivers for providing an update to version 1.0 of [FF-M]:

e A need for a security framework specification that can target a smaller, simpler system architecture.
This kind of framework is demonstrated by the Library model in the Trusted Firmware-M [TF-M]
project.

Ideally, there is continuity between this light-weight framework and the version 1.0 Firmware
Framework, making it easier to migrate RoT Service code between the different types of framework.

e The development of Secure Partition RoT Services using the version 1.0 Framework has highlighted
some optimization challenges for individual services or entire systems.
Improving efficiency for these use cases involves some reduction in flexibility or security mitigation.
The extensions to the Framework defined in this proposal allow these trade-offs to be made at the
appropriate level by the service developers and system integrators.

e The mechanism for handling secure interrupts within a Secure Partition in [FF-M] version 1.0 does
not support low latency and bounded interrupt response time. Secure peripherals requiring this
behavior can only be implemented within the SPM using an IMPLEMENTATION DEFINED mechanism in
version 1.0.

System robustness and security can be improved if low latency interrupt handling for these
peripherals can execute within the Secure Partition context.

AES 0039 Copyright © 2020, Arm Limited or its affiliates. All rights reserved. Page 15
1.1 Extensions Alpha (Issue 0) Non-confidential

1.2 Compatibility

We have considered adopting the existing [TF-M] Library model as the light-weight framework for this
specification. However, the design of the Library model in TF-M is not compatible with the [FF-M]
interfaces, and is not compliant with all of the requirements for the Firmware Framework. A more detailed
analysis of these two frameworks is provided in Comparison between FF-M and TF-M frameworks on

page 85.

Instead, this proposal provides a suite of extensions to [FF-M] version 1.0 that together enable the
creation of a framework implementation which shares the design and efficiency characteristics of the
TF-M Library model. Some of these extensions also provide opportunities for improving the efficiency of
Secure Partition RoT Services that use the version 1.0 framework interfaces.

The C language interfaces defined by version 1.1 of [FF-M] are backward compatible with version 1.0.
Secure Partition source code that is written for version 1.0 will work on a version 1.1 framework that
provides support for the IPC model defined in version 1.0. See also Framework features and permitted
configurations on page 19.

The JSON schema for the manifest source files for version 1.1 is not directly compatible with version 1.0.
To use any of the version 1.1 features, a Secure Partition manifest file will need to declare
"psa_framework_version”: 1.1, and make the necessary changes required by the version 1.1 manifest
definition. See Migrating Secure Partitions to version 1.1 on page 79.

Framework implementations that support Secure Partitions using the IPC model must support Secure
Partition manifest files that declare "psa_framework_version”: 1.0, and implement these Secure Partitions
as defined in version 1.0 of [FF-M].

1.3 Overview of new features

The definition of the new and updated features for the Firmware Framework assumes familiarity with
version 1.0 of [FF-M].

1.3.1 Secure Functions

This extension introduces the SFN model, which is an additional programming model for Secure Partitions.
The existing programming model in version 1.0 is now referred to as the IPC model.

When the SFN model is selected for a Secure Partition, each of the RoT Services within the Secure
Partition provides a handler function, referred to as a Secure Function (SFN). The SFN is invoked by the
framework to process messages for the RoT Service.

For this kind of Secure Partition, the developer does not provide a signal handling loop. Instead, the SFNs
are called directly by the framework, with the message as a parameter. The message is completed using
the return value from the SFN.

The framework does not have to provide a dedicated execution context i.e (thread/stack) for a partition
using the SFN model, as long as the isolation rules are satisfied for the implemented isolation level.

See Secure Functions on page 22.

AES 0039 Copyright © 2020, Arm Limited or its affiliates. All rights reserved. Page 16
1.1 Extensions Alpha (Issue 0) Non-confidential

1.3.2 Stateless RoT Services

This extension introduces the option for a Secure Partition RoT Service to be a stateless RoT Service, as an
alternative to a connection-based RoT Service which is defined in version 1.0. This enables a much more
efficient implementation of RoT Services that do not make use of the connection-related features of the
version 1.0 interface.

When a Secure Partition RoT service is declared to be stateless in a Secure Partition manifest, the RoT
Service does not use connections:

e Clients cannot connect to the service using psa_connect().
e The service does not receive any connection or disconnection messages.

e Client’s invoke the service using a special handle value in a call to psa_call(), which is received by
the service as a request message.

Both connection-based RoT Services and stateless RoTl Services can be used with either the IPC model or
the SFN model.

See Stateless Root of Trust services on page 31.

1.3.3 Memory-mapped IOVECS

This extension introduces the ability for Secure Partition RoT Service code to map client input and output
buffer parameters into the Secure Partition, enabling direct access to the client memory. This is of
particular efficiency concern in small systems where the following are true:

e The memory protection implemented in the framework already permits the SPE to access all of the
client memory.

e The footprint/runtime cost of transferring the client data to the SPE is prohibitive for the use case.
This might be because the RoT Service can operate on the data “in place” in the NSPE, or is
implemented using hardware that can directly address the client memory.

However, direct access to client memory introduces security risks which the version 1.0 API prevents by
design, and direct access to client memory may be complex on some systems, and impossible on others.

Support for this feature is optional, allowing each implementation to select a balance between efficiency,
complexity and security that is appropriate for the system and use case.

See Memory-mapped IOVECs on page 39.

1.3.4 Support for peripheral drivers

This extension adds a number of improvements for implementing secure peripheral drivers in Secure
Partitions:

e First-level interrupt handling (FLIH) is a de-privileged, low-latency, interrupt handling capability for
Secure Partitions. This enables Secure Partitions to be used for peripheral drivers that require secure
interrupts to be handled within a bounded time.

e An API for managing interrupts supports FLIH and fills a gap in the version 1.0 API.

AES 0039 Copyright © 2020, Arm Limited or its affiliates. All rights reserved. Page 17
1.1 Extensions Alpha (Issue 0) Non-confidential

e Accessors for MMIO registers ensure more portability between implementations and system
architectures.

See Enhancements for Secure Partition peripheral drivers on page 49.

1.3.5 Miscellaneous improvements

This extension includes clarifications and relaxations to terminology and APIs in the version 1.0
specification as described in Miscellaneous changes on page 67.

AES 0039 Copyright © 2020, Arm Limited or its affiliates. All rights reserved. Page 18
1.1 Extensions Alpha (Issue 0) Non-confidential

2 Framework features and permitted configurations
The version 1.1 extensions defines some features that are optional for implementations of the framework,
and also permits some of the original version 1.0 features to be optional.

To enable the development of portable code that uses this framework, some feature discovery APIs are
defined. These make it possible for a Secure Partition RoTl Service to select the appropriate API for the
framework that it is being built for. See Discovering framework feature availability.

Optional features and APIs provide flexibility, enabling a framework implementor to optimize the
framework for the specific system and use case. However, a flexible feature-set increases the complexity
of Secure Partition RoT Service code that is portable between different framework implementations.

This document defines a permitted set of framework configurations, to balance these competing
requirements. A framework must match one of the permitted configurations to be compliant with version
1.1 of FF-M. See Permitted configurations of FF-M version 1.1 on page 21.

2.1 Changes to the Programming API

2.1.1 Firmware framework version
PSA_FRAMEWORK_VERSION (macro)

This existing APl is modified for version 1.1

An implementation of version 1.1 must report the value oxe101.

psa_framework_version (function)

This existing APl is modified for version 1.1

An implementation of version 1.1 must return the value oxe101.

2.1.2 Discovering framework feature availability

Discovery mechanisms are introduced for optional features and features with varying levels of support.
The discovery APlIs are provided in a new header file psa/framework_feature.h.

An implementation of version 1.1 must provide an instance of psa/framework_feature.h, and include all
required API elements.

The following pre-processor symbols are defined, to enable compile-time code variation:

® PSA_FRAMEWORK_ISOLATION_LEVEL

e PSA_FRAMEWORK_HAS_MM_IOVEC

To use these symbols in Secure Partition source code, include the psa/framework_feature.h header file.

AES 0039 Copyright © 2020, Arm Limited or its affiliates. All rights reserved. Page 19
1.1 Extensions Alpha (Issue 0) Non-confidential

Note:

Pre-processor symbols are also defined for each Secure Partition, which indicate the communication
model specified in the Secure Partition manifest file. These value of these macros depends on the
model attribute in the Secure Partition manifest. See Secure Functions on page 22.

PSA_FRAMEWORK_ISOLATION_LEVEL (macro)
A pre-processor symbol that declares the isolation level implemented by the framework.

#define PSA_FRAMEWORK_ISOLATION_LEVEL /% implementation-defined value */

This macro must be defined by a version 1.1 implementation.

The IMPLEMENTATION DEFINED value of this macro indicates the isolation level, which is a value between 1 and
3.

See Arm® Platform Security Architecture Firmware Framework [FF-M] §3.1.3 Protection Domains for the
definition of the three isolation levels.

PSA_FRAMEWORK_HAS_MM_IOVEC (macro)
A pre-processor symbol that declares the compile-time availability of the MM-IOVEC API.

#define PSA_FRAMEWORK_HAS_MM_IOVEC /* implementation-defined status =*/

This macro must be defined by a version 1.1 implementation that provides MM-IOVEC functionality.

We recommend that this macro is defined as @ by a version 1.1 implementation that does not provide
MM-IOVEC functionality. This improves portability of Secure Partition RoT Service code which uses the
feature.

The IMPLEMENTATION DEFINED value of this macro indicates the availability of the MM-IOVEC feature:

) The MM-IOVEC APl is not provided by the implementation
1 The MM-IOVEC API is provided by the implementation

See Memory-mapped IOVECs on page 39.

Usage
In portable code, PSA_FRAMEWORK_HAS_MM_IOVEC is used to select code that uses the MM-IOVEC feature for
parameter access, instead of the psa-read() and psa_write() functions. For example:

#include "psa/framework_feature.h”

#if PSA_FRAMEWORK_HAS_MM_IOVEC
// use psa_map_invec() and psa_map_outvec() to access parameters

(continues on next page)

AES 0039 Copyright © 2020, Arm Limited or its affiliates. All rights reserved. Page 20
1.1 Extensions Alpha (Issue 0) Non-confidential

(continued from previous page)
#else

// use psa_read() and psa_write() to access parameters
#endif

2.2 Permitted configurations of FF-M version 1.1

Version 1.1 introduces some optional features, and also makes a feature of version 1.0 optional for new
implementations.

The following features are optional for a version 1.1 implementation:

Support for the IPC model.

Support for the SFN model.

Support for MM-IOVEC.

Support for Secure Partitions within the PSA Root of Trust.

See the following sections for more details on these features:

e Secure Functions on page 22
e Memory-mapped IOVECs on page 39

e PSA RoT Services and Secure Partitions on page 68

An implementation is compliant with version 1.1 of FF-M if it implements all of the required features and
APIs, and meets the following constraints on the optional features and APls:

e At least one of the SFN model and IPC model must be supported.

o If both of the SFN model and the IPC model are supported by the implementation, then the
framework must support a hybrid system which includes Secure Partitions with different models.

e The framework support for MM-IOVEC is not constrained by this specification. Each implementation
makes an appropriate decision based on technical and security criteria.

e The framework support for PSA Rol Secure Partitions is not constrained by this specification. Each
implementation makes an appropriate decision based on technical and security criteria.

AES 0039 Copyright © 2020, Arm Limited or its affiliates. All rights reserved. Page 21
1.1 Extensions Alpha (Issue 0) Non-confidential

3 Secure Functions

This extension introduces the SFN model, which is an additional programming model for Secure Partitions.
The existing programming model in version 1.0 is now referred to as the IPC model.

3.1 Background & rationale

The programming model in version 1.0 provides a significant level of control for the Secure Partition
developer. The Secure Partition can process signals in any order, and can defer responding to a message
while continuing to process other signals. To provide this control, the framework has to maintain a
dedicated execution context for each Secure Partition.

Many RoT Services do not require this level of execution control. However, the programming model in
version 1.0 prevents an implementation from reducing these overheads, even in constrained systems that
only require limited isolation.

The Trusted Firmware-M [TF-M] project provides an implementation of [FF-M], and refers to this
programming model as the IPC model.

TF-M also provides a much simpler abstraction for secure services. The programming model is based
around a set of secure service functions, each of which handles requests from a corresponding client-side
function. TF-M refers to this service programming model as the Library model. This programming model
enables a very efficient framework implementation when the services all run within a single SPE
protection domain.

The Secure Function model reuses the concept of RoT Service callback functions from the TF-M Library
model, and integrates this into the FF-M Secure Partition architecture.

If all Secure Partitions use the SFN model, then the implementation is able to significantly reduce the
framework overhead for systems that do not require high levels of isolation.

3.2 The Secure Function model

The Secure Function model (SFN model) is introduced as an alternative programming model for code within
a Secure Partition. Each Secure Partition must either use the IPC model, which has the APIs and
programming model defined in [FF-M] version 1.0, or the Secure Function model, which uses a modified
API and manifest definition as defined in version 1.1.

3.2.1 Overview of the SFN model

The SFN model is a simpler programming model for developing Secure Partition RoT Services, in
comparison with the IPC model. However, it is still suitable for many types of RoT Service.

The SFN model impacts some of the interfaces used to implement the service within the Secure Partition,
while the Client API is identical for both models.

In a Secure Partition using the SFN model:

AES 0039 Copyright © 2020, Arm Limited or its affiliates. All rights reserved. Page 22
1.1 Extensions Alpha (Issue 0) Non-confidential

e Secure services are implemented as Secure Functions (SFN) that are called by the framework when
the client makes a request to the service.

e Each RoT Service within the Secure Partition has its own SFN.

e The framework calls an SFN in response to a client call to psa_connect (), psa_call(), or psa_close()
for that RoT Service.

e The SFN is called with a psa_msg_t object that describes the client request, including the same
information as this object provides in the IPC model.

e The SFN accesses client parameters in the same way as the IPC model, using the psa_read() and
psa_write() APlIs.

e The SFN return value is used as the response to the client message, instead of using psa_reply().

The following sections provide more specific changes to the programming model that is described in
[FF-M] version 1.0 §3 Secure Processing Environment programming model.

3.2.2 Secure Partition execution

Execution of Secure Partitions for the IPC model is described in [FF-M] §3.2.3 Secure Partition execution.

In the SFN model, the Secure Partition is made up of a collection of callback functions:

e One optional initialization function, which is declared as the entry_init symbol in the Secure
Partition manifest. See Secure Partition initialization function on page 24.

e A set of Secure Functions (SFN), one for every RoT Service that is defined in the Secure Partition
manifest. The name of each SFN is based on the RoT Service name attribute provided in the manifest.

The framework implementation is responsible for invoking these callback functions in response to system
startup or client calls to psa_connect (), psa_call() and psa_close() for an RoT Service within the Secure
Partition.

An SFN becomes active when the framework calls it in response to a client request, and remains active
until the SFN returns. At most one SFN within a Secure Partition can be active at the same time. That is,
while an SFN is active, no other SEN in the same Secure Partition will execute. This results in
single-threaded behavior within the Secure Partition, which is also provided by the IPC model.

The SFN model still uses Secure Partition signals for interrupts and the Secure Partition doorbell feature.
To query the signal state or block until a specific signal is asserted, an SFN calls psa_wait (). If the SFN
blocks while waiting, this prevents all other SFNs in that Secure Partition from running: see Scheduling
Secure Partitions on page 24. If there is no active SFN, an asserted interrupt or doorbell signal does not
trigger code execution within the Secure Partition. The FLIH extension provides an alternative mechanism
for an interrupt to be handled within a Secure Partition using the SFN model, see Interrupts on page 26.

In the SFN model, the framework determines the order in which SFNs are called, when more than one has
an outstanding message.

Implementation note

The framework does not have to provide a dedicated execution context i.e (thread/stack) for a
partition using the SFN model, as long as isolation rules are satisfied.

AES 0039 Copyright © 2020, Arm Limited or its affiliates. All rights reserved. Page 23
1.1 Extensions Alpha (Issue 0) Non-confidential

Secure Partition initialization function

A Secure Partition using the SFN model can optionally provide an initialization function that is declared in
the manifest file using the entry_init attribute.

The initialization function has the following signature:

psa_status_t «entry_init»(void);

where «entry_init» is the value of the entry_init attribute.

This function is called prior to any other function in the Secure Partition, and can be used to perform
initialization that is required before requests are made to the Secure Partition RoT Services. The Secure
Partition initialization function is permitted to use the client API to call Rol Services in other Secure
Partitions.

If the initialization function returns PSA_SUCCESS, the framework will enable all of the RoT Services for the
Secure Partition.

If the initialization function returns any other status code, the framework will not call any Secure Function
within the Secure Partition.

The effect on the system of an initialization function reporting an error is IMPLEMENTATION DEFINED. If the
framework does not halt or restart the system, a client that attempts to connect or call to any RoT Service
in the Secure Partition will receive the error PSA_ERROR_CONNECT ION_REFUSED.

Note:

The initialization function must return, unlike entry_point in a Secure Partition using the IPC model.
If the Secure Partition initialization is partially successful, then the recommended approach is as
follows:

e The initialization function returns PSA_SUCCESS, which enables the RoTl Service SFNs.

e Individual RoT Services that cannot operate can respond with an appropriate error status when
clients try to connect to or use the RoT Service.

Rationale

The choice to have the initialization function return an error status, rather than panic on a critical failure,
allows the framework implementation more flexibility in how to handle Secure Partition initialization
errors.

3.2.3 Scheduling Secure Partitions

The framework can allow different Secure Partitions to interleave execution. In particular, an SFN from
one Secure Partition can run concurrently with an SFN from a different Secure Partition. This capability is
IMPLEMENTATION DEFINED, as it is in version 1.0.

The definitions in [FF-M] version 1.0 §3.2.4 Scheduling Secure Partitions are updated or extended as follows:

e An SFN is pending if a client has made a request to the RoT Service, but the framework has not yet
called the SFN.

AES 0039 Copyright © 2020, Arm Limited or its affiliates. All rights reserved. Page 24
1.1 Extensions Alpha (Issue 0) Non-confidential

e An SFN is active if the framework has called the SFN, but the SFN has not yet returned from the call.

e A Secure Partition using the SFN model is idle after the Secure Partition initialization function has
been run and are no active or pending SFNs.

e A running Secure Partition using the SFN model becomes idle if the SFN returns and there are no
pending SFNs.

e A running Secure Partition using the SFN model becomes ready-to-run if the SFN returns and there is
at least one pending SFN. At this point the framework can select this Secure Partition to continue
running or schedule a different ready-to-run Secure Partition.

e An idle Secure Partition becomes ready-to-run if one of the SFNs in the Secure Partition becomes
pending.

e When a ready-to-run Secure Partition that is using the SFN model is selected for execution, it will
either resume execution of an active SFN, if there is one, or the framework will select one of the
pending SFNs to make active and start execution of that SFN.

3.2.4 Processing RoT Service messages

When a Secure Partition is using the SFN model, the connection, disconnection and request messages do not
cause a Secure Partition signal to be asserted. Instead, the Secure Function (SFN) for the RoT Service is
invoked by the framework, with the message details provided as a parameter to the SFN.

The SFN must have the following signature:

psa_status_t «name»_sfn(const psa_msg_tx msg);

where «name» is the name of the RoT Service defined in the Secure Partition manifest.

A SFN processes the delivered message using the psa_read(), psa_write(), psa_skip(), and
psa_set_rhandle() functions. These functions operate the same way in both the SFN and IPC models.

When processing is complete, the return value from the SFN is used as the reply status for the message.

A SFN cannot use the psa_get () or psa_reply() functions, as this functionality is performed by the
framework.

The behavior of the framework is otherwise identical for both IPC and SFN models:

e The RoT Service will receive connection, disconnection and request messages. See Stateless Root of
Trust services on page 31 for an extension that eliminates connection and disconnection messages for
services that do not need them.

e The handling of error responses, particularly PSA_ERROR_PROGRAMMER_ERROR.
e The use of psa_read(), psa_write(), psa_skip(), and psa_set_rhandle() functions to process messages.

e An SFN can use psa_wait() to wait for interrupt signals that are defined in the manifest, or the
Secure Partition doorbell signal.

Implementation note

Conceptually, for a single service named SERVICE1 in a Secure Partition manifest, the framework
behaves as if it was the following IPC model entry point:

AES 0039 Copyright © 2020, Arm Limited or its affiliates. All rights reserved. Page 25
1.1 Extensions Alpha (Issue 0) Non-confidential

void sp_main(void)

{
psa_msg_t msg;
for (5;)
{
psa_wait (SERVICE1_SIGNAL, PSA_BLOCK);
if (psa_get(SERVICET_SIGNAL, &msg) == PSA_SUCCESS)
psa_reply(msg.handle, servicel_sfn(&msg));
}
3

This example can be extended in the obvious way for Secure Partitions with more than one RoT
Service.

In practice, the framework can choose to implement this very differently. For example, by running
servicel_sfn() directly on a common execution stack.

Warning: It is not recommended that an implementation copy this approach directly:

e It requires the Rol Services to have signals allocated that are visible to the Secure Partition.

e |t requires that the Secure Partition is able to invoke the psa_get () and psa_reply()
functions, which are defined to respond with a PROGRAMMER ERROR When used in a Secure
Partition that is using the SFN model.

3.2.5 Interrupts

The definition of interrupts is the same for Secure Partitions using either the IPC model or the SFN model.

Interrupts in the SFN model behave the same way as interrupts sources in the IPC model, by allocating a
signal value and causing a Secure Partition signal to be set when the interrupt occurs. To respond to an
interrupt in the SFN model, an SFN must call psa_wait() to query or block for the interrupt signal. The SFN
must call psa_eoi () to clear the signal when received, after interrupt processing is complete.

This permits an SFN to initiate a hardware operation and then wait for it to complete, without blocking the
CPU.

Note:

Unlike the IPC model, a Secure Partition using the SFN model cannot respond to an interrupt signal
unless it has an active SFN which calls psa_wait().

The Enhancements for Secure Partition peripheral drivers on page 49 extension in this update provides an
additional mechanism for responding to interrupts.

AES 0039 Copyright © 2020, Arm Limited or its affiliates. All rights reserved. Page 26
1.1 Extensions Alpha (Issue 0) Non-confidential

3.2.6 Doorbell

The Secure Partition doorbell behaves the same way as in the IPC model, by causing the doorbell Secure
Partition signal to be set when the notification is sent. The only way to respond to a doorbell in the SFN
model is for an SFN to call psa_wait() to poll or block for the doorbell signal. The SFN must call psa_clear()
to clear the signal.

3.3 Implementation options

Both the SFN model and the IPC model are optional in an implementation of version 1.1 of the Firmware
Framework, but at least one of them must be supported.

See Permitted configurations of FF-M version 1.1 on page 21 for the list of compliant configurations of all of
the optional features in version 1.1.

If the framework supports Secure Partitions within the PSA Root of Trust, then the framework is permitted
to only support a subset of the communication models for this type of Secure Partition. See also PSA RoT
Services and Secure Partitions on page 68.

The framework defines pre-processor symbols that enable code to determine the model that is used for a
specific Secure Partition. This makes it simpler to develop RoT Service code that can be built into a Secure
Partition using either the IPC model or the SFN model. See the Secure Partition manifest model attribute.

3.4 Selecting a Secure Partition model

The SFN model is recommended for a Secure Partition unless you have any of the following requirements:

1. The ability to defer completion of an RoT Service message, while continuing to service other
messages.

2. The ability to respond asynchronously to a doorbell or interrupt signal. This is often required in
conjunction with requirement #1.

3. Control over the order in which RoT Service signals are processed.

Note that requirement 2 could be met instead using the Enhancements for Secure Partition peripheral drivers
on page 49 extension.

3.5 Changes to the Programming API
The changes to [FF-M] 84 Programming API are described in the following sections:

e Manifest changes

e Secure Partition APl changes on page 29

3.5.1 Manifest changes
model (attribute)

New attribute at the top level of a Secure Partition manifest.

AES 0039 Copyright © 2020, Arm Limited or its affiliates. All rights reserved. Page 27
1.1 Extensions Alpha (Issue 0) Non-confidential

Properties: Required, Unique.

This attribute declares which programming model is used in this Secure Partition. This attribute must take
one fot eh following values:

"Ipc” The Secure Partition uses the IPC model

"SEN" The Secure Partition uses the SFN model

A manifest file that defines "psa_framework_version”: 1.0 is implicitly using the IPC model.

The implementation reports an error if the selected model is not support by the framework.

Rationale

Defining this as an optional attribute which defaults to "IPC” is a possible alternative. Although this would
make migration of a manifest from v1.0 to v1.1 easier, it is better for the manifest to be explicit about the
selection of programming model, and not depend on the reader knowing the default behavior.

The Secure Partition header file, psa_manifest/«manifest-filename».h, must include the definitions of
«name»_MODEL_IPC and «name»_MODEL_SFN, where «name» is the value of the name attribute in the Secure
Partition manifest.

If the Secure Partition uses the IPC model, the following definitions are used:

#define «name»_MODEL_IPC 1
#define «name»_MODEL_SFN 0

If the Secure Partition uses the SFN model, the following definitions are used:

#define «name»_MODEL_IPC ©
#define «name»_MODEL_SFN 1

entry_point (attribute)

This existing attribute is only required for a Secure Partition using the IPC model. It must not be present in
a Secure Partition using the SFN model, which uses the optional entry_init attribute instead.

entry_init (attribute)

New attribute at the top level of a Secure Partition manifest.
Properties: Optional, Unique.

This attribute indicates an optional entry point for an initialization function within a Secure Partition that is
using the SFN model. This attribute must not be present in a Secure Partition using the IPC model, see
entry_point.

If defined, the value of entry_init must be the C identifier of a function with the signature:

AES 0039 Copyright © 2020, Arm Limited or its affiliates. All rights reserved. Page 28
1.1 Extensions Alpha (Issue 0) Non-confidential

psa_status_t «entry_init»(void);

C++ source files must use the extern "C" keyword if necessary.

Rationale

Reusing the existing entry_point attribute is not ideal, because these functions have different properties:
entry_init is optional, and it must return.

services (attribute)
The definition of RoT Services in the manifest is modified for the SFN model.

Service signals

In the SFN model, the implementation does not allocate a Secure Partition signal for each service, and
does not define the identifier «<name»_SIGNAL in the psa_manifest/«manifest-filename».h header file.

Service handlers

For a Secure Partition that uses the SFN model, each RoT Service has a Secure Function that implements
the service. This function has the following prototype:

psa_status_t «name»_sfn(const psa_msg_tx msg);
The C identifier used for an SFN is constructed by adding the suffix _sfn to a lowercase version of the RoTl
Service's name attribute.

The Secure Partition header file, psa_manifest/«manifest-filename».h, must include the prototype
definition of each RoT Service SFN.

The service developer defines the SFN using this identifier in their source code.

3.5.2 Secure Partition API changes

In a Secure Partition using the SFN model, there are no RoT Service signal identifiers defined by the
framework in the Secure Partition header file.

psa_get (function)
This existing function is constrained to be used only in Secure Partitions using the IPC model.

It is a PROGRAMMER ERROR to call psa_get() in a Secure Partition that is using the SFN model.

Implementation note

This behavior naturally results from the existing requirement that the caller provides the signal value
for exactly one RoT Service, and signal values are not defined for RoT Services in a Secure Partition
using the SFN model.

AES 0039 Copyright © 2020, Arm Limited or its affiliates. All rights reserved. Page 29
1.1 Extensions Alpha (Issue 0) Non-confidential

psa_reply (function)

This existing function is constrained to be used only in Secure Partitions using the IPC model.
It is a PROGRAMMER ERROR to call psa_reply() in a Secure Partition that is using the SFN model.

Instead, the message response status is provided to the framework as the return value from the Secure
Function.

AES 0039 Copyright © 2020, Arm Limited or its affiliates. All rights reserved. Page 30
1.1 Extensions Alpha (Issue 0) Non-confidential

4 Stateless Root of Trust services

This extension introduces the option for a Secure Partition RoT Service to be a stateless RoT Service, as an
alternative to a connection-based RoT Service which is defined in version 1.0. This enables much more
efficient implementation of Secure Partition RoT Services that do not make use of the connection-related
features of the version 1.0 interface.

Stateless RoT Services are a required feature in an implementation of version 1.1.

4.1 Background and rationale

Many RoT Service APIs provide standalone operations that do not require any non-volatile state or
resources to be maintained by the RoT Service itself, or do not expose any kind of context or session to the
caller of the API. For example, each function in the PSA Storage APl [PSA-ITS] works atomically on the
stored data.

To implement these functions as a Secure Partition RoT Service using the [FF-M] version 1.0 API, the client
side implementation of the service must use one of the following techniques:

1. In every function, use psa_connect () to connect to the RoT Service, use psa_call() to request the
operation, and then use psa_close() to release the connection handle.

2. Use psa_connect() to create a connection to the RoT Service once, and then store the connection
handle for reuse by all the other service functions.

The first technique has a significant runtime overhead as it requires three calls to the SPM and the RoT
Service for every operation.

The second technique removes that overhead, but requires a reliable way for the client code to use a
global or static variable to hold the connection handle.

The client code for an RoT Service might be used in an NSPE application, or in a Secure Partition. In many
instances, the Rol Service will have multiple clients within a single system. Separate clients should not
share a single connection, as this conflicts with client identification and with client isolation requirements.

The result is that using a shared connection variable will not always have the right isolation and security
properties for the service, depending on the framework implementation.

This analysis indicates that the version 1.0 framework is not sufficient to enable portable and efficient
implementation of standalone RoTl Service operations.

The appendix, Implementing session-less RoT Services on page 89, provides a more detailed analysis of this
challenge, and the approach to solving it for version 1.1.

4.2 Programming model

In version 1.1, each Secure Partition RoTl Service is either connection-based or stateless.

All Secure Partition RoT Services in version 1.0 were connection-based, the description in this chapter
focusses on the definition and behavior of stateless RoT Services.

AES 0039 Copyright © 2020, Arm Limited or its affiliates. All rights reserved. Page 31
1.1 Extensions Alpha (Issue 0) Non-confidential

4.2.1 Overview of stateless RoT Services

The service type is defined in the Secure Partition manifest file when defining the RoT Service. A single
Secure Partition can contain both types of RoT Service.

Stateless RoT Services do not use connections:

e There is no call to psa_connect() or psa_close() by the client.
e There is no corresponding connection and disconnection message delivered to the RoT Service.

e The RoT Service cannot use the rhandle functionality.

Requests to the service are made by calling psa_call() using a fixed handle value for the RoT Service. The
identifier name for the stateless RoT Service handle is defined by this specification, but the value of that
handle is IMPLEMENTATION DEFINED.

4.2.2 RoT Service identification

A connection-based RoT Service defines an RoT Service ID (SID). A client of the service uses this SID in a
call to psa_connect (), before issuing requests to the service using the handle returned by psa-connect().
See the services attribute in [FF-M] §4.1.1.

A stateless RoT Service does not require a client to call to psa_connect (), and the client does not use the
SID to identify the service. Instead the client uses a special stateless handle for the RoT Service in the call
to psa_call().

The stateless handle is declared by the framework in the psa_manifest/sid.h manifest header file, alongside
the SID. The stateless handle value is constructed by the framework in an IMPLEMENTATION DEFINED way.

The SID must still be defined for a stateless RoT Service. The SID can be used in a call to psa_version().

Rationale

The use of an IMPLEMENTATION DEFINED Value for the stateless handle permits the framework to optimize the
routing of the request to the Rot Service, and also incorporate information to validate the version of the
RoT Service.

The alternative approach would be to define a different function that includes the SID, RoT Service version
and all of the request parameters. This cannot be optimized as effectively, because the SID value is defined
by the RoT Service developer.

See stateless_handle for details on the specification and definition of the stateless handle for a stateless
RoT Service.

4.2.3 RoT Service versioning

The version policy must still be enforced by the implementation when clients use a stateless handle to
send a request to a stateless RoT Service.

The mechanism used to validate the version of a stateless RoT Service is IMPLEMENTATION DEFINED.

AES 0039 Copyright © 2020, Arm Limited or its affiliates. All rights reserved. Page 32
1.1 Extensions Alpha (Issue 0) Non-confidential

Implementation note

For example, the following techniques can be used, depending on the implementation design:

e If the implementation builds all of the clients, services and frameworks together, then the
version is assumed to match between the RoT Service client code and the RoT Service
implementation code.

e The framework encodes the service version into the stateless handle value, along with the
stateless handle index.

This enables the version expected by the client, which is compiled into the stateless handle
value when the client was built, to be checked against the version running in the
implementation when psa_call() is invoked. The implementation might cache the last stateless
handle value used in order to elide the version checking on every call using a stateless handle.

4.2.4 Requesting stateless RoT Services

A client sends a request to a stateless RoT Service by using the stateless handle, defined in the
psa_manifest/sid.h manifest header file, with the psa_call() function.

All other parameters to a stateless RoT Service request are identical to the connection-based RoT Services
defined in version 1.0. See Requesting Services in [FF-M] §3.3.2. Using RoT Services.

4.2.5 Processing Rol Service messages

Processing messages for connection-based RoT Services is described in [FF-M] §3.3.3. Processing RoT
Service messages.

A stateless RoT Service does not receive a connection or disconnection message for any client.

Note:
A stateless RoTl Service has no direct means to detect that a client has terminated or restarted.

In comparison, a connection-based RoT Service will receive a disconnection message from the
framework if a client exits without explicitly closing the connection, or if the framework terminates
the connection due to PROGRAMMER ERROR.

A stateless RoT Service only receives request messages from the framework, that correspond to a client
calling psa_call(). The message type value is always >=o.

A stateless RoT Service cannot use the rhandle functionality that is available to connection-based RoT
Services. The rhandle value in the message is always NULL, and the RoTl Service must not call
psa_set_rhandle().

Except for the unavailable rhandle functionality, a stateless RoT Service processes the request message in
the same way as a connection-based RoT Service.

AES 0039 Copyright © 2020, Arm Limited or its affiliates. All rights reserved. Page 33
1.1 Extensions Alpha (Issue 0) Non-confidential

Rationale

The main use case for a stateless RoT Service is to replace the use of temporary connections in every
request to the RoT Service.

One side effect of using a temporary connection for these use cases, is that the RoT Service cannot
effectively use the connection’s rhandle, because the connection itself is transient.

This makes the rhandle functionality redundant for this type of Rol Service.

4.2.6 Programmer Error

If a PROGRAMMER ERROR 0ccurs when a request is sent to a stateless RoT Service, or during processing of the
request, there is no connection to terminate.

However, the response to the caller is the same as defined in [FF-M] §3.5.2. Programmer error:

e If the source of the PROGRAMMER ERROR is a Secure Partition, the SPM must panic the Secure Partition
in response to a PROGRAMMER ERROR.

e If the source of the PROGRAMMER ERROR is in the NSPE, the NSPE implementation of the Client API
must implement one of the following behaviors:

— Terminate the NSPE task or execution context that is the source of the PROGRAMMER ERROR.
— Return PSA_ERROR_PROGRAMMER-ERROR to the NSPE task that called psa_call().

If client execution continues after a PROGRAMMER ERROR, the client can make another call to the same
stateless RoT Service using the stateless handle.

4.2.7 Comparison of service types

Action/item

Connection

Connection
message

rhandle

Making
requests

AES 0039

1.1 Extensions Alpha (Issue 0)

Table 4 Comparison of connection-based and stateless services

Connection-based RoT Service

Explicit call to psa_connect () with the
service SID and version from
psa_manifest/sid.h.

Delivered to the service for each call to
psa_connect (). The service can accept or
refuse the connection.

Calling psa_set_rhandle() on a connection
or request message will set the rhandle
value, which will be returned in the rhandle
member of any future messages received
on that connection.

Call psa-call() using a connection handle
that was returned by a successful call to
psa_connect().

Copyright © 2020, Arm Limited or its affiliates. All rights reserved.
Non-confidential

Stateless RoT Service

Implicit.
Calling psa_connect () with a stateless
service SID is a PROGRAMMER ERROR.

Not used.

Calling psa_set_rhandle() is a PROGRAMMER
ERROR.

The rhandle value in a received message is
always NULL.

Call psa_call() using a stateless handle that
is defined by the framework in the
generated psa_manifest/sid.h header file.

Page 34

Action/item

Request
messages

PROGRAMMER
ERROR

Connection-based RoT Service

Delivered to service with type and iovecs
from client, and rhandle value from a call
to psa_set_rhandle() on a prior message.

Replying to a message with
PSA_ERROR_PROGRAMMER_ERROR will terminate
the connection, causing a disconnection
message to be received.

The client call might not return, or might
return the error code leaving the
connection in an error state.

Disconnection Calling psa_close() with a connection

Disconnection
messages

handle will explicitly disconnect the
connection.

Connections can be disconnected by the
service by responding to a message with
PSA_ERROR_PROGRAMMER_ERROR.

Connections might be disconnected by the
framework when the client terminates.

Delivered to the service when the
connection is closed for any reason.

4.3 Selecting the RoT Service type

Table 4 (continued)
Stateless RoT Service

Delivered to service with type and iovecs
from client, and rhandle is NULL.

A client call which is replied with
PSA_ERROR_PROGRAMMER_ERROR might not
return, or might return the error code.

Calling psa_close() with a stateless handle
iS a PROGRAMMER ERROR.

The service is not informed if a client
terminates.

Not used.

Both connection-based RoT Services and stateless RoT Services can be used with either the IPC model or
the SFN model. See Secure Functions on page 22.

It is recommended to define a Secure Partition RoT Service as stateless, if it consists entirely of stand-alone
functions. This avoids the need for transient connections, and the performance overhead that these incur.

If the API exposes some form of context to the client, and this can be used to manage a connection
handle, it is recommended that the RoT Service is connection-based. Using a connection does not require
one of the limited number of stateless handle indexes in the framework.

If the RoT Service manages volatile state for the client, it is recommended that the RoT Service is
connection-based. This allows the RoT Service implementation to utilise the rhandle functionality to
manage resources for the client.

4.4 Changes to the Programming API

The changes to [FF-M] 84 Programming API are described in the following sections:

e Manifest changes on page 36

e Client API changes on page 37

e Secure Partition APl changes on page 37

AES 0039

1.1 Extensions Alpha (Issue 0)

Copyright © 2020, Arm Limited or its affiliates. All rights reserved.
Non-confidential

Page 35

4.4.1 Manifest changes
connection_based (attribute)

This is a required attribute for service definitions in a Secure Partition manifest that is using
"psa_framework_version”: 1.1.

connection_based is a boolean attribute, and can take the value true or false:

true The service is a connection-based service

false The service is stateless service

stateless_handle (attribute)

This is an optional attribute for service definitions in the Secure Partition manifest which define a stateless
RoT Service. A connection-based RoT Service must not have a stateless_handle attribute.

If specified, stateless_handle must either be "auto” or a small positive number between 1 and an
IMPLEMENTATION DEFINED maximum value.

The stateless_handle specifies a stateless handle index, which is used by the implementation to construct
the stateless handle value for this RoT Service.

If the manifest defines a stateless_handle to be "auto”, the implementation allocates a stateless handle
index for this service. This is also the default behavior if there is no stateless_handle attribute specified for
a stateless RoTl Service.

The implementation must support at least 32 stateless handle indexes.

The stateless handle index for a stateless RoT Service must be unique within the system, whether the
index is defined in the manifest or allocated by the implementation.

The implementation defines a macro for the stateless handle in psa_manifest/sid.h, of the following form:

#define «name»_HANDLE ((psa_handle_t) «stateless_handle_value»)

where «name» is the name of the service and the «stateless_handle_value» is constructed by the
implementation, using the stateless handle index.

This stateless handle is used by a client when making requests to the service.

Implementation note

The stateless_handle attribute has the following JSON definition:

"stateless_handle": {

"description”: "Optional: The index for a stateless handle for this service.”,
"anyOf": [
{ "$ref": "#/definitions/positive_integer_or_hex_string” 3},
{ "const”: "auto” }
]
3
AES 0039 Copyright © 2020, Arm Limited or its affiliates. All rights reserved. Page 36

1.1 Extensions Alpha (Issue 0) Non-confidential

4.4.2 Client API changes
psa_connect (function)

This existing function is constrained to be used only for connection-based RoT Services.
The sid passed to psa_connect() must be the SID of a connection-based RoT Service.
Calling psa_connect () with the SID of a stateless RoT Service is a PROGRAMMER ERROR.

The handle returned by a successful call to psa_connect() is a connection handle.

psa_call (function)
This existing function works with both stateless and connection-based RoT Services.

The type of handle passed to psa_call() depends on the type of RoT Service being requested:

e For a stateless Rol Service, handle must be a stateless handle that is defined in the psa_manifest/sid.h
file.

e For a connection-based RoT Service, handle must be a connection handle that was returned by a
previous call to psa_connect ().

psa_close (function)

This existing function is constrained to be used only for connection-based RoT Services.

The handle passed to psa_close() must either be the null handle, or a connection handle returned by a
previous call to psa_connect().

Passing a stateless handle to psa_close() is @ PROGRAMMER ERROR.

4.4.3 Secure Partition API changes

psa_msg_t (type)
This existing type behaves differently for stateless RoTl Services.

The rhandle member of the psa_msg_t object received by a stateless RoT Service is always NULL.

psa_set_rhandle (function)

This existing function is constrained to be used only for connection-based RoT Services.

Calling psa_set_rhandle() on a message for a stateless RoT Service is a PROGRAMMER ERROR and will not
return.

Replying to a request message with PSA_ERROR_PROGRAMMER_ERROR

Replying to a message for a stateless RoT Service with PSA_ERROR_PROGRAMMER_ERROR has no effect on the
service, as there is no connection to terminate abnormally. This has the same effect on the client as for a
connection-based service.

AES 0039 Copyright © 2020, Arm Limited or its affiliates. All rights reserved. Page 37
1.1 Extensions Alpha (Issue 0) Non-confidential

Note:

The API for replying to a message depends on the Secure Partition model:

e In a Secure Partition that is using the IPC model, call psa_reply() with the message status.

e In a Secure Partition that is using the SFN model, return from the Secure Function with the
message status.

See Secure Functions on page 22.

AES 0039 Copyright © 2020, Arm Limited or its affiliates. All rights reserved. Page 38
1.1 Extensions Alpha (Issue 0) Non-confidential

5 Memory-mapped IOVECs

This extension introduces the ability for Secure Partition RoT Service code to map the client input and output
buffer parameters into the Secure Partition, enabling direct access to the buffer memory in the client.

Direct access to parameter data in the client is of value, especially in small systems, where the overhead of
copying buffers of data into the Secure Processing Environment could be prohibitive.

This extension is called Memory mapped iovecs (MM-IOVEC), in reference to the input and output vectors
used to pass parameters to an RoT Service.

The new APIs defined in this section are optional in an implementation of version 1.1. The new feature
discovery APIs enable portable Secure Partition RoT Service code to use the MM-IOVEC functionality in
systems that support MM-IOVEC. See Discovering framework feature availability on page 19.

5.1 Background and rationale

The Secure Partition APl in Arm® Platform Security Architecture Firmware Framework [FF-M] provides no
direct access from a Secure Partition RoT Service to the client input and output vectors. Instead, RoT
Services have to read from an input vector into their own memory, and write to an output vector from
their own memory, using the provided Secure Partition API.

This approach is aligned with the design goals for version 1.0:

e |t enables the framework to be implemented on systems where the SPE cannot directly access some
or all of the NSPE memory. For example, in a System-on-Chip where the NSPE is using a 40-bit
physical address space and the SPE is running on a 32-bit CPU that can only address a 32-bit address
space.

e |t prevents many common errors in secure service implementation, that frequently lead to
exploitable vulnerabilities. The API design prevents services from introducing double-fetch, buffer
overflow, alighment and access validation failure vulnerabilities — mitigating these is done by the
framework implementation.

e It discourages passing a pointer within the input vector, which then points to other data in the client.
This technique will not work if the SPE cannot access NSPE memory, or if the client and the RoT
Service are configured with different memory address translation.

The Library model in the Trusted Firmware-M [TF-M] project provides a much simpler framework for
developing security services, in which a security service is provided with pointers to the client parameters.
This is better suited to constrained devices, as directly accessing client memory does not require the
service to copy an input vector into the security service memory before using it.

The threat model that is used by FF-M assumes that the attacker can execute arbitrary code in the NSPE.
This requires that the service developer consider the threats that are posed by the attacker being in
control of the location and content of the client input and output vectors passed to the service:

e The memory location of the vector might not be within the client’s accessible memory.

AES 0039 Copyright © 2020, Arm Limited or its affiliates. All rights reserved. Page 39
1.1 Extensions Alpha (Issue 0) Non-confidential

The memory location of the vector might not be accessible by the RoT Service, or have the correct
access permissions.

Reading the same memory address twice might not produce the same result.

The pointer might not be aligned in the expected way, that is, the natural structure alignment
provided by the C compiler.

Incorrect service code can cause a read or write outside of the supplied buffer.

In practice, writing services securely in the Library model requires that the developers copy most input
vectors from the client into their own memory to mitigate these risks — eliminating the apparent benefit of
direct access to the memory.

However, The following use cases can benefit significantly from beingable to directly read input vectors
and write output vectors in the client memory:
e Processing of large data buffers, for example, by cryptographic algorithms.

e Transferring data through multiple Secure Partitions, potentially processed at each step. Direct client
memory access would avoid the need to have additional copies of data at each stage in the chain.

5.2 Programming model

The version 1.0 APlIs for accessing client input and output vectors, psa_read() and psa_write(), are
required for a version 1.1 implementation.

MM-IOVEC is an additional mechanism for accessing the content of client input and output vectors to the
Secure Partition RoT Service. Direct mapping of client input and output vectors into the Secure Partition
provides a memory and runtime optimization for larger buffers, but reduces mitigation for common
security vulnerabilities, and can reduce the effective isolation provided by the framework.

A Secure Partition RoT Service cannot mix the use of the existing read and write functions with the
MM-IOVEC functions when accessing an input or output vector. This avoids complex interactions
between these different access mechanisms, and simplifies the implementation.

5.2.1 Implementation flexibility

Support for MM-IOVEC is optional in an implementation of the framework. There are various reasons for
an implementation to exclude support for MM-IOVEC, for example:

e Direct mapping of client memory can be inefficient, or even impossible, for otherwise compliant
implementations of [FF-M].

e Direct access to client memory might be denied by the security requirements for the system.

The MM-IOVEC discovery API provides a mechanism for Secure Partition RoT Service developers to
determine if the implementation supports MM-IOVEC. This enables compile-time variation of RoTl Service
code to select the best access mechanism. See Discovering framework feature availability on page 19.

5.2.2 Typical deployment scenarios
The MM-IOVEC API and the discovery APl is designed to support the following framework
implementation scenarios:

AES 0039 Copyright © 2020, Arm Limited or its affiliates. All rights reserved. Page 40
1.1 Extensions Alpha (Issue 0) Non-confidential

1. A system that cannot or must not permit security services to have direct access to client memory.
This can be a result of technical limitations of the platform, or security requirements for the product.
The framework implementation reports that the MM-IOVEC functionality is not present, and the
MM-IOVEC APIs are not provided by the implementation.

2. A constrained system that uses isolation level 1, where all code within the SPE can access data in the
SPE and NSPE.

The framework implementation provides an implementation of the MM-IOVEC functionality.

There is little cost to the framework to provide direct access to client input and output vectors,
because the memory access is already permitted. The MM-IOVEC interface is simple to implement
and has no runtime failure modes.

3. A more complex system that can dynamically create mappings for client input and output vectors
when requested through the MM-IOVEC API.
The framework implementation can provide an implementation of the MM-IOVEC functionality, if it
guarantees that any mapping request will succeed.
If it is not possible to guarantee that the mapping can be created for a valid MM-IOVE request, then
the implementation does not provide MM-IOVEC functionality. For example, if the mapping would
require dynamic allocation of memory, or the use of another limited, shared resource.

5.2.3 RoT Service configuration

Direct access to client memory can provide a powerful way to escalate an attack against an RoT Service. To
reduce the attack surface for Secure Partition RoT Services that do not use MM-IOVEC, a Secure Partition
RoT Service must explicitly enable the functionality using the mm_iovec attribute within the service
specification in the Secure Partition manifest file. See Enabling the MM-IOVEC API on page 42.

The mm_iovec attribute has.no effect if the framework does not support MM-IOVEC.

5.2.4 Accessing client input and output vectors

If the implementation supports MM-IOVEC, a Secure Partition RoT Service which has enabled MM-IOVEC
can use either MM-IOVEC or the existing psa_read() and psa_write() functions to access each input or
output vector.

Once an input or output vector has been accessed using the psa_read(), psa-skip(), or psa_skip() function,
the vector cannot be mapped using MM-IOVEC functions.

Similarly, once an input or output vector has been mapped using an MM-IOVEC function, the vector
cannot be accessed using the psa_read(), psa_skip(), or psa_write() functions.

It is a PROGRAMMER ERROR to try and map a zero-length input or output vector.

The framework unmaps an input or output vector either in response to an unmapping call from the RoT
Service, or automatically when message processing is completed.

An explicit unmapping call is required for output vectors when the Rol Service has written data into the
output vector, to report the number of bytes written to the client. If no unmapping call is made, output
vectors will report that no data has been written to the client.

Explicitly unmapping other input and output vectors is optional. In some framework implementations, this
can release framework resources that are required to create the mapping.

AES 0039 Copyright © 2020, Arm Limited or its affiliates. All rights reserved. Page 41
1.1 Extensions Alpha (Issue 0) Non-confidential

5.2.5 Interaction with the isolation model

In an implementation that provides a high level of isolation, MM-IOVEC provides a mechanism that can
conflict with the isolation rules. For example:

e In a system using isolation level 3, a Secure Partitions is not permitted to access another Secure
Partition’s Private data. MM-IOVEC can provide a mechanism for one Secure Partition to access the
other’s Private data.

e In a system that implements isolation rule 16 (see [FF-M] §3.1.5), only the SPM is permitted to access
memory in another protection domain when required. MM-IOVEC can provide access from a Secure
Partition directly to client memory.

Access to an input or output vector’s buffer for the duration of the call is expected by the client, so this
does not itself present a new attack surface. However, the mechanisms that an implementation uses to
map input and output vectors can be imprecise. That is, the mapping mechanism can provide more access
than is strictly required. Hardware limitations that can impact mapping precision include the following
examples:

e The Memory Protection Unit (MPU) used to control access has size and alignment constraints, so
that all regions must start and end on 32-byte boundaries. Other memory mapping techniques can
have much larger alignment requirements, such as the 4096-byte pages in the Armv7-A virtual
memory architecture.

e The MPU used to control access cannot provide write-only permission, so any existing data in an
output vector can be read by the RoT Service.

It is IMPLEMENTATION DEFINED how such imprecise mappings are handled by the implementation. The decision
to permit imprecise mappings depends on the security requirements for the system, and the nature of the
additional access.

An implementation that provides MM-IOVEC functionality must document its behavior when an input or
output vector mapping is imprecise.

5.3 Changes to the Programming API
5.3.1 Discovering MM-IOVEC availability

See Discovering framework feature availability on page 19.

5.3.2 Enabling the MM-IOVEC API

A new manifest attribute is introduced in version 1.1 manifest files. The implementation must accept this
attribute in a manifest file, whether or not the framework implements MM_IOVEC.

To use this API in a Secure Partition RoT Service, the service definition in the Secure Partition manifest file
must include the attribute mm_iovec, with the value "enable".

mm_iovec (attribute)

This is an optional attribute for service definitions in a Secure Partition manifest that is using

"psa_framework_version”: 1.1.

AES 0039 Copyright © 2020, Arm Limited or its affiliates. All rights reserved. Page 42
1.1 Extensions Alpha (Issue 0) Non-confidential

mm_iovec takes one of the following values:

"enable” If the framework supports MM-IOVEC, then the MM-IOVEC APIs are enabled for
messages to the RoT Service.

"disable” If the framework supports MM-IOVEC, then using the MM-IOVEC APIs for messages to
the RoT Service is a PROGRAMMER ERROR.

This is the default value if the mm_iovec attributes is not specified.

5.3.3 Mapping RoT Service 10 vectors

The MM-IOVEC Secure Partition API, for mapping and unmapping Secure Partition RoT Service input and
output vectors. The following API elements are added to psa/service.h:

® psa_map_invec()
® psa_unmap_invec()
® psa_map_outvec()

® psa_unmap_outvec()

psa_map_invec (function)
Map a client input vector for direct access by a Secure Partition RoT Service.

const void * psa_map_invec(psa_handle_t msg_handle,
uint32_t invec_idx);

Parameters
msg_handle Handle for the client’s message.
invec_idx Index of the input vector to map. Must be less than PSA_MAX_IOVEC.

Returns: const void *
A pointer to the input vector data.
Programmer Error

The call is a PROGRAMMER ERROR if one or more of the following are true:

e MM-IOVEC has not been enabled for the RoT Service that received the message.
e msg_handle is invalid.

e msg_handle does not refer to a request message.

e invec_idx >= PSA_MAX_IOVEC

e The input vector has length zero.

e The input vector has already been mapped using psa_map_invec().

e The input vector has already been accessed using psa_read() or psa_skip().

A PROGRAMMER ERROR Will panic the caller.

AES 0039 Copyright © 2020, Arm Limited or its affiliates. All rights reserved. Page 43
1.1 Extensions Alpha (Issue 0) Non-confidential

Availability

The API is optional in version 1.1. Use PSA_FRAMEWORK_HAS_MM_I0VEC to determine the availability of this
function.

To call this function, the MM-IOVEC functionality must be enabled for the RoT Service using the mm_iovec
attribute in the Secure Partition manifest file.

Description

This function will provide a mapping of a non-zero length client input vector in the RoT Service address
context, allowing the service to read the vector data directly.

Warning: Using this APl exposes the RoT Service to vulnerabilities caused by invalid assumptions
about the input vector data, or errors in the RoT Service code. For example:

e Reading the same memory address twice can produce different results.
e The pointer can be incorrectly aligned for the data type being accessed.

e Incorrect RoT Service code can cause an undetected read outside of the client input vector.

It is a PROGRAMMER ERROR to call this function if the length of the input vector is zero.

The RoT Service must not read more data than specified by the input vector size. The input vector size is
provided in the corresponding in_size[] element in the request’s psa_msg_t object.

When the RoT Service has finished processing the input vector, it can remove the mapping by calling
psa_unmap_invec() with the same message handle and input vector index.

When the message processing is completed, the framework removes all input vector mappings for that
message.

psa_unmap_invec (function)

Unmap a previously mapped client input vector from a Secure Partition RoT Service.

void psa_unmap_invec(psa_handle_t msg_handle,
uint32_t invec_idx);

Parameters
msg_handle Handle for the client’s message.
invec_idx Index of the input vector to unmap. Must be less than PSA_MAX_IOVEC.

Returns: void

Programmer Error

The call is a PROGRAMMER ERROR if one or more of the following are true:

e msg_handle is invalid.
e msg_handle does not refer to a request message.

® invec_idx >= PSA_MAX_IOVEC

AES 0039 Copyright © 2020, Arm Limited or its affiliates. All rights reserved. Page 44
1.1 Extensions Alpha (Issue 0) Non-confidential

e The input vector has not been mapped by a call to psa_map_invec().

e The input vector has already been unmapped by a call to psa_unmap_invec().

A PROGRAMMER ERROR Will panic the caller.
Availability

The API is optional in version 1.1. Use PSA_FRAMEWORK_HAS_MM_I0VEC to determine the availability of this
function.

To call this function, the MM-IOVEC functionality must be enabled for the RoT Service using the mm_iovec
attribute in the Secure Partition manifest file.

Description

This function will remove a previously successful mapping of a client input vector from the RoT Service
address context.

Following this call, the RoT Service must not read from the input vector memory.

If psa_unmap_invec() is not called for an input vector that has been mapped, the framework will remove the
mapping automatically when the message is completed.

psa_map_outvec (function)

Map a client output vector for direct access by a Secure Partition RoT Service.

void * psa_map_outvec(psa_handle_t msg_handle,
uint32_t outvec_idx);

Parameters
msg_handle Handle for the client’s message.
outvec_idx Index of the output vector to map. Must be less than PSA_MAX_IOVEC.

Returns: void *
A pointer to the output vector data.
Programmer Error

The call is a PROGRAMMER ERROR if one or more of the following are true:

e MM-IOVEC has not been enabled for the RoT Service that received the message.
e msg_handle is invalid.

e msg_handle does not refer to a request message.

e outvec_idx >= PSA_MAX_IOVEC

e The output vector has length zero.

e The output vector has already been mapped using psa_map_outvec().

e The output vector has already been accessed using psa_write().

A PROGRAMMER ERROR Will panic the caller.

AES 0039 Copyright © 2020, Arm Limited or its affiliates. All rights reserved. Page 45
1.1 Extensions Alpha (Issue 0) Non-confidential

Availability

The API is optional in version 1.1. Use PSA_FRAMEWORK_HAS_MM_I0VEC to determine the availability of this
function.

To call this function, the MM-IOVEC functionality must be enabled for the RoT Service using the mm_iovec
attribute in the Secure Partition manifest file.

Description

This function will provide a mapping of a non-zero length client output vector in the RoT Service address
context, allowing the service to write the output vector data directly.

Warning: Using this APl exposes the RoT Service to vulnerabilities caused by invalid assumptions
about the output vector data, or errors in the RoT Service code. For example:

e Reading the same memory address twice can produce different results.
e The pointer can be incorrectly aligned for the data type being accessed.

e Incorrect RoT Service code can cause an undetected read or write outside of the client output
vector.

It is a PROGRAMMER ERROR to call this function if the length of the output vector is zero.

The RoT Service must not write more data than specified by the output vector size. The output vector size
is provided in the corresponding out_size[] element in the request’s psa_msg_t object.

When the RoT Service has finished processing the output vector, it can remove the mapping and report
the number of bytes written by calling psa_unmap_outvec() with the same message handle, output vector
index, and the number of bytes written.

When the message processing is completed, the framework removes all output vector mappings for that
message. Any output vectors that are still mapped will report that zero bytes have been written.
psa_unmap_outvec (function)

Unmap a previously mapped client output vector from a Secure Partition RoT Service.

void psa_unmap_outvec(psa_handle_t msg_handle,
uint32_t outvec_idx,
size_t len);

Parameters
msg_handle Handle for the client’s message.
outvec_idx Index of the output vector to unmap. Must be less than
PSA_MAX_IOVEC.
len The number of bytes written to the output vector. This must be less
than or equal to the size of the output vector.
AES 0039 Copyright © 2020, Arm Limited or its affiliates. All rights reserved. Page 46

1.1 Extensions Alpha (Issue 0) Non-confidential

Returns: void

Programmer Error

The call is a PROGRAMMER ERROR if one or more of the following are true:

e msg_handle is invalid.

msg_handle does not refer to a request message.

outvec_idx >= PSA_MAX_IOVEC

len is greater than the output vector size.

The output vector has not been mapped by a successful call to psa_map_outvec().

The output vector has already been unmapped by a call to psa_unmap_outvec().

A PROGRAMMER ERROR Will panic the caller.
Availability

The API is optional in version 1.1. Use PSA_FRAMEWORK_HAS_MM_IOVEC to determine the availability of this
function.

To call this function, the MM-IOVEC functionality'must be enabled for the RoT Service using the mm_iovec
attribute in the Secure Partition manifest file.

Description

This function will remove a previously successful mapping of a client output vector from the RoT Service
address context, and update the caller’s psa_outvec structure with the number of bytes written to the
output vector.

Following this call, the service must not write to the output vector memory.

If psa_unmap_outvec() is not called for an output vector that has been mapped, the framework will remove
the mapping automatically when the message is. completed. In this situation, the caller’s psa_outvec
structure is updated to state that zero bytes have been written to the output vector.

Note:

The API makes it possible for the RoT Service to write more bytes to the mapped output vector than
it claims in the call to psa_unmap_outvec(), or to write less bytes than reported. When using
psa_write(), the bytes in the buffer up to the number reported in the caller’s psa_outvec are written
by the RoT Service, and those after that point are typically unmodified.

However, [FF-M] makes no guarantee that buffer contents after psa_outvec: :1en are unmodified by
psa_call(). PSA Cryptography API [PSA-CRYPT] §5.2.3 specifically says this region content is
“unspecified”.

5.3.4 Changes to existing Secure Partition APIs
psa_read (function)

This existing function cannot be used after an input vector has been mapped using MM-IOVEC.

It is a PROGRAMMER ERROR to call psa_read() for an input vector that has been mapped using psa_map_invec().

AES 0039 Copyright © 2020, Arm Limited or its affiliates. All rights reserved. Page 47
1.1 Extensions Alpha (Issue 0) Non-confidential

psa_skip (function)

This existing function cannot be used after an input vector has been mapped using MM-IOVEC.

It is a PROGRAMMER ERROR to call psa_skip() for an input vector that has been mapped using psa_map_invec().

psa_write (function)

This existing function cannot be used after an output vector has been mapped using MM-IOVEC.

It is a PROGRAMMER ERROR to call psa_write() for an output vector that has been mapped using
psa_map_outvec().

AES 0039 Copyright © 2020, Arm Limited or its affiliates. All rights reserved. Page 48
1.1 Extensions Alpha (Issue 0) Non-confidential

6 Enhancements for Secure Partition peripheral drivers

This extension adds the following support for implementing secure peripheral drivers in Secure Partitions:

e First-level interrupt handling (FLIH) is a de-privileged, low-latency, interrupt handling capability for
Secure Partitions. This enables Secure Partitions to be used for peripheral drivers that require secure
interrupts to be handled within a bounded time.

e An API for managing interrupts supports FLIH and fills a gap in the version 1.0 API.
e Accessors for MMIO registers ensure more portability between implementations and system
architectures.

These features are required in an implementation of version 1.1 of FF-M.

Note:

This extension does not provide a standard framework for running secure interrupt handlers in
privileged modes - this remains an implementation-specific option, and is not recommended in
general for systems that provide high levels of isolation.

6.1 Background and rationale

Arm® Platform Security Architecture Firmware Framework [FF-M] version 1.0 provides some support for
handling interrupts within a Secure Partition.

However, the API presents two significant issues for implementing peripheral drivers in many use cases:

e The signal-based mechanism in version 1.0 makes it difficult to write drivers that need interrupts to
be handled in a bounded time. Interrupt handling code runs within a Secure Partition thread, which is
subject to delays due to scheduling of other threads and due to completion of current activity within
the Secure Partition thread.

e The simple interface in v1.0 assumes that the Secure Partition will not need to manage the interrupt,
except via the peripheral’'s own memory-mapped register interface. This assumption is not always
valid, and requires the framework implementation to provide an implementation specific API for this.

6.1.1 Bounded interrupt response time

The [FF-M] version 1.0 API was designed to be simple and easy to use securely. It avoided concurrent
execution within the Secure Partition by requiring the interrupt handling to run within the execution
thread of the Secure Partition.

Working around the limitations of this API for lower-latency and bounded response time interrupt
requirements is painful, complex, and error-prone.

Framework support for handling interrupts within a bounded response time is necessary to enable drivers
for such peripherals to be written as Secure Partitions. This would enable more peripheral driver code to
be run in a Secure Partition, reducing the risk of vulnerabilities in the PSA Root of Trust.

AES 0039 Copyright © 2020, Arm Limited or its affiliates. All rights reserved. Page 49
1.1 Extensions Alpha (Issue 0) Non-confidential

6.1.2 Managing interrupts

The [FF-M] version 1.0 APl made assumptions about how peripherals behaved with respect to generation
of interrupts. Specifically, for each interrupt that can be generated by the peripheral:

e There is a mechanism which can be used to disable and enable the interrupt at source. Typically, this
is a control register provided by the peripheral.

e The peripheral resets with the interrupt disabled.

Together these requirements would allow a Secure Partition to manage an interrupt source with just the
MMIO register interface to the device, without needing any way to control the interrupt’s handling at the
Interrupt Controller.

In reality, not all peripherals meet these requirements at design time, and sometimes peripheral hardware
has implementation defects that can generate spurious interrupts. FF-M needs to accommodate real
peripherals - this requires changes to the interrupt model, and the addition of interfaces to support
managing the interrupts within the framework.

6.1.3 Accessing MMIO registers

In some systems, accessing a memory-mapped peripheral register is not possible using normal memory
read and write operations. For example:

e The alignment requirements for access to a memory-mapped peripheral register can be stricter than
those for access to normal memory locations.

e The system cannot provide direct access to all requested MMIO regions due to limitations of the
memory protection hardware.

To ensure correctness and code portability for drivers that access MMIO registers, the framework needs to
provide access functions that implement any system-specific requirements related to the register access.

6.2 Programming model

6.2.1 Definitions

To distinguish between different approaches to handling interrupts, the following terms are used within
this document:

First-level interrupt handling (FLIH):
A type of interrupt handling which is carried immediately when an interrupt exception
takes place. The handling occurs within an exception context, and might be privileged or
deprivileged.

Second-level interrupt handling (SLIH):

A type of interrupt handling that is deferred until after the interrupt exception. This
handling occurs within a thread context, and is subject to normal scheduling.

FLIH function:
A function that is used to perform First-level interrupt handling for a specific interrupt within
a Secure Partition. An FLIH function runs in an FLIH context.

AES 0039 Copyright © 2020, Arm Limited or its affiliates. All rights reserved. Page 50
1.1 Extensions Alpha (Issue 0) Non-confidential

Secure Partition thread context:
The main execution context within a Secure Partition.

e For a Secure Partition that is using the IPC model, this is the Secure Partition thread.

e For a Secure Partition that is using the SFN model, this is any Secure Function within
the Secure Partition.

FLIH context:
The execution context within a Secure Partition that is used to run a FLIH Functions. See
also FLIH Execution model on page 54.

The interrupt model in [FF-M] version 1.0 is equivalent to Second-level interrupt handling as defined in the
version 1.1 Extensions.

This extension to the framework enables a Secure Partition developer to provide First-level interrupt
handling code within the Secure Partition.

6.2.2 Impact of Isolation

If a Secure Partition developer is able to provide code that runs as part of FLIH, then the isolation
principles of PSA Security Model [PSA-SM] and [FF-M] require that this code runs with the same access to
resources as the other code within the Secure Partition. That.is, the FLIH function must execute within the
same protection domain as the Secure Partition to which it belongs.

At isolation levels 2 or 3, this can require a context switch to run the FLIH function in a deprivileged state,
outside of the protection domain containing the SPM.

Although bounded, the latency of a deprivileged FLIH function can still be inadequate for some use cases,
which require that the interrupt is handled inside the SPM to meet very strict latency requirements. A
vulnerability in this type of interrupt handler would put the entire PSA Root of Trust at risk.

This document does not define a standard framewaork for interrupt handling within the SPM. Provision of
support for this is IMPLEMENTATION DEFINED.

6.2.3 Impact of Concurrency

FLIH functions, even when run within the Secure Partition protection domain, can run concurrently or
interleaved with the execution of the Secure Partition thread context. This introduces the possibility of a
data-race when two execution contexts access the same Secure Partition private data. For example, these
two contexts can be the Secure Partition thread context and an FLIH function, or two FLIH functions with
different priorities.

FLIH functions must be written to be data-race free in relation to other FLIH functions and code running
in the Secure Partition thread context. Preventing data races requires support from the framework, either
in the form of atomic data access functions or a mechanism that enables the developer to construct critical
sections within the code.

6.2.4 Interrupt model

This section defines the interrupt model that is provided by the framework for Secure Partition device
drivers. The model supports the provision of both FLIH and SLIH within a Secure Partition.

AES 0039 Copyright © 2020, Arm Limited or its affiliates. All rights reserved. Page 51
1.1 Extensions Alpha (Issue 0) Non-confidential

Rationale

This interrupt model is defined so that framework implementers and Secure Partition driver developers
have a common understanding of the interfaces that support interrupt management and handling. This
platform-independent model can ensure that the behavior is consistent across different hardware systems
and implemented isolation levels.

Note:

This interrupt model borrows terminology from real system architectures. However, this is an
abstract model, and the elements, states and transitions described with these terms will not
necessarily align with the same concepts as used in a real system implementation.

Each interrupt that might be handled by a Secure Partition is identified by a source - which is specified in
the Secure Partition manifest. This identifies the logical origin of the interrupt. The interrupt source is
identified by a number or a name, and this is resolved in an IMPLEMENTATION DEFINED manner.

The interrupt source can generate an interrupt at any time, usually subject to configuration and operational
programming of the source peripheral. An interrupt is asserted if its source is generating the interrupt.

Interrupts arrive at the Interrupt Controller (IC), typically attached to (or part of) the CPU. The IC is
responsible for filtering the interrupt inputs, determining if the CPU should be interrupted, triggering an
appropriate exception and identifying which interrupt the CPU should process.

Each interrupt has an associated enabled status, maintained by the IC. This enabled status is independent
of any configuration control on the source peripheral. An asserted interrupt will have no effect if it is not
also enabled. The Secure Partition API provides functions for setting and clearing the enabled status of an
interrupt, see Secure Partition/API changes for interrupt control on page 58.

When an enabled and asserted interrupt is selected for handling by the CPU following an interrupt
exception, the interrupt becomes active and interrupt handling begins immediately. An active interrupt
cannot cause another interrupt exception until the interrupt has been deactivated by end of interrupt (EOI)
processing, which also marks the end of interrupt handling.

After system reset, on initial entry into Secure Partition thread context, the Secure Partition interrupts are all
inactive. The initial interrupt enabled status is determined by the psa_framework_version attribute in the
Secure Partition manifest file. See Secure Partition execution model on page 55.

The two mechanisms available for handling an interrupt in a Secure Partition are First-level interrupt
handling (FLIH) or Second-level interrupt handling (SLIH).

First-level interrupt handling

This type of interrupt handling is suitable for use cases where the response to the interrupt has a latency
requirement that cannot be met using SLIH.

FLIH uses a callback function in the Secure Partition for the FLIH. The FLIH function runs in a special
execution context:

e An FLIH function can interrupt the Secure Partition thread context.

e Higher priority interrupts can preempt an FLIH function.

AES 0039 Copyright © 2020, Arm Limited or its affiliates. All rights reserved. Page 52
1.1 Extensions Alpha (Issue 0) Non-confidential

e An FLIH function can only use a small subset of the Secure Partition APlIs.

See FLIH Execution model on page 54.
On return from the FLIH function, the interrupt handling is finished and the interrupt is deactivated.

The framework will also set the Secure Partition interrupt signal, depending on the value returned by the
FLIH function. The Secure Partition signal will then result in the scheduling of the Secure Partition thread
context. When the Secure Partition thread context runs in response to the signal, it must clear the signal
by calling psa_reset_signal(). Some example usage patterns for FLIH are described in Programming
patterns using FLIH on page 64.

Rationale

A distinct APl is proposed for clearing the signal when using FLIH for the following reasons:

e This is not end-of-interrupt processing, as that already occurred at the end of the FLIH function.

e The programming pattern for clearing the signal when using FLIH is different from the pattern when
using SLIH. Using a distinct APl name makes it easier to review and maintain the code correctly.

e The required behavior is most like clearing the doorbell signal, which currently uses the API
psa_clear().

Second-level interrupt handling

This type of interrupt handling is suitable for use cases where there is no time limit for both responding to
the interrupt, and for processing the related data.

SLIH defers all interrupt handling to the Secure Partition thread context. This is achieved by the framework
setting the Secure Partition interrupt signal during the interrupt exception and then returning to normal
scheduling operation.

The end-of-interrupt occurs when the Secure Partition thread context calls psa_eoi (), which clears the
interrupt signal and deactivates the interrupt.

The SLIH runs within the Secure Partition thread context:

e The SLIH can use all Secure Partition APlIs, including calls that can block or complete messages.
e The SLIH is sequential with respect to other code within the same Secure Partition.

e The SLIH runs at the Secure Partition execution priority, and can be interrupted or preempted.

Second-level interrupt handling is the only mechanism available in the [FF-M] version 1.0 API.

Implementation note

In this model, the interrupt remains active until the Secure Partition calls psa_eoi (). In many systems,
this does not map directly onto the underlying interrupt state:

e The SLIH runs within the Secure Partition thread context at a normal scheduling priority, rather
than in an interrupt context at elevated execution priority.

AES 0039 Copyright © 2020, Arm Limited or its affiliates. All rights reserved. Page 53
1.1 Extensions Alpha (Issue 0) Non-confidential

e Interrupt exceptions are not masked when executing in Secure Partition thread context.
However, until the SLIH runs, the source peripheral can continue to assert the interrupt. The
framework must ensure that this does not result in continuous interrupt exceptions.

In some systems, the behavior required by SLIH might be supported by the interrupt controller. In
other systems, the behavior can be implemented by the framework disabling the interrupt before
exiting the interrupt exception, and then enabling the interrupt again when psa_eoi () is called.

6.2.5 FLIH Execution model

The FLIH function is executed as soon as possible after the interrupt occurs, only being delayed by higher
priority exceptions and interrupts. This contrasts with the detection of an interrupt signal in Secure
Partition thread context when using SLIH.

The FLIH function preempts any existing Secure Partition thread context, as well as.any lower priority FLIH
functions.

An FLIH function can be preempted by a higher priority exception, including other Secure Partition
interrupts and FLIH functions. FLIH functions can nest, with handling completed in LIFO order, but not
interleave in an arbitrary manner. An FLIH function cannot be preempted by a Secure Partition thread
context. Interrupt priorities are not defined in this specification, but can be provided by an IMPLEMENTATION
DEFINED interface.

The FLIH function executes within the target Secure Partition protection domain and memory context. That
is, the FLIH function has the same access to memory resources as the other code in its Secure Partition.

The execution stack and context on which the FLIH function runs is IMPLMENTATION DEFINED.

Implementation note

The possible implementation options for the FLIH execution context depend on the isolation level
and Secure Partition model:

e If the Secure Partition is in the same protection domain as the SPM, then the FLIH function can
run directly on the processor’s interrupt stack, as it is not necessary to deprivilege the FLIH.

e If the FLIH function cannot run on the SPM stack, the implementation can run the FLIH
function on the Secure Partition’s main stack or on a dedicated FLIH stack.

The FLIH function must follow the appropriate procedure call standard (ABI) for the system'’s architecture.
This permits the framework to invoke the the FLIH function as a standard C function without special
register state management.

An FLIH function has access to a very limited subset of the Secure Partition API:

e The interrupt control functions, see Secure Partition APl changes for interrupt control on page 58.
e The MMIO accessor functions, see Register access functions for MMIO on page 61.
® psa_panic()
Attempting to call any other Secure Partition function from within an FLIH function is a PROGRAMMER ERROR.

Responding to request messages can only happen in the Secure Partition thread context. End-of-interrupt
processing occurs on return from the FLIH function, prior to resuming the interrupted execution.

AES 0039 Copyright © 2020, Arm Limited or its affiliates. All rights reserved. Page 54
1.1 Extensions Alpha (Issue 0) Non-confidential

An FLIH function uses its return value to indicate to the SPM how to complete the FLIH processing:

PSA_FLTH_NO_SIGNAL The framework does not set the interrupt signal

PSA_FLIH_SIGNAL The framework sets the interrupt signal

6.2.6 Secure Partition execution model

In [FF-M] version 1.0, the framework enables all Secure Partition interrupts before first entry to the Secure
Partition code.

For version 1.1, the initial state of interrupts depends on the framework version that is specified in the
Secure Partition manifest file:

Framework version Initial interrupt state

"psa_framework_version”: 1.0 The framework enables all interrupts in the Secure Partition

"psa_framework_version”: 1.1 The framework disables all interrupts in the Secure Partition

For an interrupt that is initially disabled, the Secure Partition enables the interrupt explicitly with a call to
psa_irqg_enable(). For example, this can be done in the Secure Partition entry_point or entry_init function
after initializing the interrupt’s source peripheral.

The PSA_FRAMEWORK_VERSION pre-processor macro can be used to identify the framework version, if the
Secure Partition code can be built for different versions of the framework.

6.3 Changes to the Programming API
The changes to [FF-M] 84 Programming API are described in the following sections:
e Manifest changes

e Secure Partition APl changes for FLIH on page 56

e Secure Partition'API changes for interrupt control on page 58

6.3.1 Manifest changes

The irq Secure Partition manifest attribute is redefined to align its approach to naming with the service
attributes, and to specify the type of interrupt handler.

name (attribute)

This is a required attribute for irq definitions in a Secure Partition manifest that is using
"psa_framework_version”: 1.1.

This attribute replaces the use of the signal attribute.

The name attribute is use to construct the C identifiers for API elements used in managing the interrupt.

AES 0039 Copyright © 2020, Arm Limited or its affiliates. All rights reserved. Page 55
1.1 Extensions Alpha (Issue 0) Non-confidential

The implementation defines a macro for the interrupt signal in psa_manifest/«manifest-filename».h, of the
following form:

#define «name»_SIGNAL /* implementation-defined value */

For an interrupt that specifies the handling attribute as "FLIH", a FLIH function must be provided in the
Secure Partition. This function has the following prototype:

psa_flih_result_t «name»_flih(void);
The C identifier used for an FLIH function is constructed by adding the suffix _flih to a lowercase version
of the interrupt’s name attribute.

The Secure Partition header file, psa_manifest/«manifest-filename».h, must include the prototype
definition of each FLIH function.

handling (attribute)

This is a required attribute for irq definitions in a Secure Partition manifest that is using
"psa_framework_version”: 1.1.

This attribute specifies the interrupt handling mechanism that is used for the interrupt. It must have one of
the following values:

"SLIH" Select the SLIH mechanism. This is the v1.0 interrupt handling model.
"FLIH" Select the FLIH mechanism.
Rationale

Making the selection of interrupt handling mechanism explicit in the manifest source file is beneficial for
long term understanding and maintenance of the Secure Partition source.

The proposed definition is preferred over one that supports a default value which is compatible with
version 1.0, or using a boolean attribute to specify the FLIH mechanism.

6.3.2 Secure Partition API changes for FLIH

The following APl elements are added to psa/service.h:
e psa_flih_result_t
® PSA_FLIH_NO_SIGNAL

® PSA_FLIH_SIGNAL

® psa_reset_signal()
psa_flih_result_t (type)

The type of the return value from an FLIH function.

AES 0039 Copyright © 2020, Arm Limited or its affiliates. All rights reserved. Page 56
1.1 Extensions Alpha (Issue 0) Non-confidential

typedef uint32_t psa_flih_result_t;

PSA_FLIH_NO_SIGNAL (macro)
Following an FLIH function, do not set the interrupt signal.

#define PSA_FLIH_NO_SIGNAL ((psa_flih_result_t) @)

PSA_FLIH_SIGNAL (macro)
Following an FLIH function, set the interrupt signal.

#define PSA_FLIH_SIGNAL ((psa_flih_result_t) 1)

psa_reset_signal (function)
Reset the signal for an interrupt that is using FLIH handling.

void psa_reset_signal(psa_signal_t irq_signal);

Parameters

irq_signal The interrupt signal to be reset.

This must have a single bit set, corresponding to a currently asserted
signal for an interrupt that is defined to use FLIH handling.

Returns: void
Programmer Error

The call is a PROGRAMMER ERROR if one or more of the following are true:

e irg_signalis not a signal for an interrupt that is specified with FLIH handling in the Secure Partition
manifest.

e irg_signal indicates more than one signal.

e irg_signal is not currently asserted.

A PROGRAMMER ERROR Will panic the caller.

Description

For an interrupt that is using the FLIH mechanism, the Secure Partition thread context calls
psa_reset_signal() to clear a signal that was set by an FLIH Function returning PSA_FLIH_SIGNAL.

To avoid the risk of missing a subsequent signal from the FLIH, the Secure Partition thread context should
call psa_reset_signal () before processing the data provided by the FLIH. See Programming patterns using
FLIH on page 64 for examples of how this function can be used.

AES 0039 Copyright © 2020, Arm Limited or its affiliates. All rights reserved. Page 57
1.1 Extensions Alpha (Issue 0) Non-confidential

psa_eoi (function)

This existing function is constrained to be used only for interrupts that are using SLIH handling.

The irq_signal passed to psa_eoi () must be the signal for an interrupt that was specified with SLIH
handling in the Secure Partition manifest.

Calling psa_eoi () with the signal of an interrupt with FLIH handling is a PROGRAMMER ERROR.

6.3.3 Secure Partition API changes for interrupt control
The following API elements are added to psa/service.h:

® psa_irg_status_t

® psa_irq_is_enabled()

® psa_irqg_enable()

® psa_irq_disable()

® psa_irqg_restore()

psa_irq_status_t (type)
A type used to temporarily store a previous interrupt state.

typedef /* implementation-defined type */ psa_irqg_status_t;

This is an unsigned integral type, of IMPLEMENTATION DEFINED width.

A value of type psa_irq_status_t is used in the psa_irq_restore() function to restore a previous interrupt
state returned by psa_irq_disable().

psa_irqg_is_enabled (function)

Query the enabled status of an interrupt.

uint32_t psa_irqg_is_enabled(psa_signal_t irg_signal);

Parameters

irq_signal The signal for the interrupt to be queried.

This must have a single bit set, which must be the signal value for an
interrupt in the calling Secure Partition.

Returns: uint32_t

0 The interrupt is disabled.
1 The interrupt is enabled.
AES 0039 Copyright © 2020, Arm Limited or its affiliates. All rights reserved. Page 58

1.1 Extensions Alpha (Issue 0) Non-confidential

Programmer Error

The call is a :PROGRAMMER ERROR if one or more of the following are true:

e irg_signal is not an interrupt signal.

e irg_signal indicates more than one signal.

A PROGRAMMER ERROR Will panic the caller.

psa_irqg_enable (function)
Enable an interrupt.

void psa_irqg_enable(psa_signal_t irqg_signal);

Parameters

irq_signal The signal for the interrupt to be enabled.

This must have a single bit set, which must be the signal value for an
interrupt in the calling Secure Partition.

Returns: void
Programmer Error

The call is a :PROGRAMMER ERROR if one or-more of the following are true:

e irg_signal is not an interrupt signal.

e irg_signal indicates more than one signal.

A PROGRAMMER ERROR Will panic the caller.

Description

Note:

Each interrupt must be explicitly enabled in a Secure Partition that specifies
"psa_framework_version”: 1.1 in the manifest file. See Secure Partition execution model on page 55.

psa_irq_disable (function)
Disable an interrupt.

psa_irq_status_t psa_irqg_disable(psa_signal_t irg_signal);

Parameters
irqg_signal The signal for the interrupt to be disabled.
This must have a single bit set, which must be the signal value for an
interrupt in the calling Secure Partition.
AES 0039 Copyright © 2020, Arm Limited or its affiliates. All rights reserved. Page 59

1.1 Extensions Alpha (Issue 0) Non-confidential

Returns: psa_irqg_status_t
The state of the interrupt prior to being disabled by this call.

The value of the saved interrupt state is IMPLEMENTATION DEFINED.

Programmer Error

The call is a :PROGRAMMER ERROR if one or more of the following are true:

e irg_signal is not an interrupt signal.

e irg_signal indicates more than one signal.

A PROGRAMMER ERROR Will panic the caller.

Description

The return value from this call records the state of the interrupt prior to the call in‘an IMPLEMENTATION
DEFINED value. This can be used by the caller to restore the previous interrupt state by passing this value in
a call to psa_irg_restore().

Usage

In Secure Partitions that use FLIH functions, the developer can use the interrupt control functions to
implement critical sections for code which accesses shared data.

In the simpler case where data is shared between the Secure Partition thread context and the FLIH function
for an interrupt, the thread context can surround the critical code with calls to disable and enabled the
interrupt. For example, for an interrupt named 1RQ1:

psa_irqg_disable(IRQ1_SIGNAL);
// manipulate data shared with IRQ1
psa_irqg_enable(IRQ1_SIGNAL);

In a more complex Secure Partition device driver, there can be more than one FLIH function of different
priorities. As the Secure Partition thread context and two FLIH functions can all execute concurrently, the
critical sections can nest, and an inner critical section must not enable an interrupt before the outer critical
section finishes. The psa_irg_restore() function can be used to implemented nested critical sections.

For example, to allow both the Secure Partition thread context and the FLIH function for IrRQ1 to mask
IRQ2, the following code can be used:

psa_irq_status_t irgq2_state = psa_irq_disable(IRQ2_SIGNAL);

// manipulate data shared with IRQ2 ...
psa_irqg_restore(IRQ2_SIGNAL, irqg2_state);

psa_irqg_restore (function)
Restore an interrupt to a previously saved state.

void psa_irqg_restore(psa_signal_t irq_signal,
psa_irq_status_t saved_status);

AES 0039 Copyright © 2020, Arm Limited or its affiliates. All rights reserved. Page 60
1.1 Extensions Alpha (Issue 0) Non-confidential

Parameters

irq_signal The signal for the interrupt to restore.

This must have a single bit set, which must be the signal value for an
interrupt in the calling Secure Partition.

saved_status The previously saved state for the interrupt.

Returns: void

Programmer Error

The call is a :PROGRAMMER ERROR if one or more of the following are true:

e irg_signal is not an interrupt signal.

e irg_signal indicates more than one signal.

e saved_status is not recognized by the implementation as a valid interrupt status.
A PROGRAMMER ERROR Will panic the caller.

Description

psa_irq_restore() is used in conjunction with psa_irq_disable() to implemented critical sections of code
where a specific interrupt must be disabled. See psa_irq_disable() for an example of how it can be used.

6.3.4 Register access functions for MMIO
The following API elements are added to psa/service.h:
® psa_mmio_read8()
® psa_mmio_read16()
® psa_mmio_read32()
® psa_mmio_write8()
® psa_mmio_writel6()

® psa_mmio_write32()

These functions can all be used in Secure Partition thread context and in FLIH context.

psa_mmio_read8 (function)
Read an 8-bit memory-mapped peripheral register.

uint8_t psa_mmio_read8(uintptr_t addr);

Parameters
addr The memory address of the MMIO register to read.
Returns: uint8_t

The value of the register at addr.

AES 0039 Copyright © 2020, Arm Limited or its affiliates. All rights reserved. Page 61
1.1 Extensions Alpha (Issue 0) Non-confidential

Programmer Error

It is a PROGRAMMER ERROR to call this API if addr refers to a memory location that is not accessible to the
Secure Partition.

If the framework implementation detects a PROGRAMMER ERROR, this function will not return.

psa_mmio_read16 (function)
Read a 16-bit memory-mapped peripheral register.

uint16_t psa_mmio_readl16(uintptr_t addr);

Parameters

addr The memory address of the MMIO register to read.

Returns: uint16_t

The value of the register at addr.

Programmer Error

It is a PROGRAMMER ERROR to call this API if addr refers to a memory location that is not accessible to the
Secure Partition.

If the framework implementation detects a PROGRAMMER ERROR, this function will not return.

psa_mmio_read32 (function)
Read a 32-bit memory-mapped peripheral register.

uint32_t psa_mmio_read32(uintptr_t addr);

Parameters

addr The memory address of the MMIO register to read.
Returns: uint32_t
The value of the register at addr.

Programmer Error

It is a PROGRAMMER ERROR to call this APl if addr refers to a memory location that is not accessible to the
Secure Partition.

If the framework implementation detects a PROGRAMMER ERROR, this function will not return.

psa_mmio_write8 (function)
Write to an 8-bit memory-mapped peripheral register.

void psa_mmio_write8(uintptr_t addr,
uint8_t value);

AES 0039 Copyright © 2020, Arm Limited or its affiliates. All rights reserved. Page 62
1.1 Extensions Alpha (Issue 0) Non-confidential

Parameters
addr The memory address of the MMIO register to write.
value The value to write to the register at addr.

Returns: void

Programmer Error

It is a PROGRAMMER ERROR to call this API if addr refers to a memory location that is not accessible to the
Secure Partition.

If the framework implementation detects a PROGRAMMER ERROR, this function will not return.

psa_mmio_write16 (function)
Write to a 16-bit memory-mapped peripheral register.

void psa_mmio_writel6(uintptr_t addr,
uint16_t value);

Parameters
addr The memory address of the MMIO register to write.
value The value to write to the register at addr.

Returns: void
Programmer Error

It is a PROGRAMMER ERROR to call this API if addr refers to a memory location that is not accessible to the
Secure Partition.

If the framework implementation detects a PROGRAMMER ERROR, this function will not return.

psa_mmio_write32 (function)
Write to a 32-bit memory-mapped peripheral register.

void psa_mmio_write32(uintptr_t addr,
uint32_t value);

Parameters
addr The memory address of the MMIO register to write.
value The value to write to the register at addr.

Returns: void

Programmer Error

It is a PROGRAMMER ERROR to call this API if addr refers to a memory location that is not accessible to the
Secure Partition.

If the framework implementation detects a PROGRAMMER ERROR, this function will not return.

AES 0039 Copyright © 2020, Arm Limited or its affiliates. All rights reserved. Page 63
1.1 Extensions Alpha (Issue 0) Non-confidential

6.4 Writing Secure Partition peripheral drivers

It is recommended that SLIH is used for handling interrupts, if there is no time bound for both responding
to the interrupt, and for processing the related data.

This is for the following reasons:

1. FLIH adds concurrent execution to the Secure Partition. Concurrent execution introduces a category
of programming risks that are otherwise absent, and this demands more effort from the developer to
ensure correctness.

2. The FLIH function cannot use most of the Secure Partition API. To manage a request message
following an FLIH function, the interrupt signal must be used to hand-over execution to the Secure
Partition thread context. This splitting of the interrupt response adds further complexity to the Secure
Partition.

FLIH can be used when there is a requirement for interrupt response that cannot be met using SLIH. In
this case, the developer has to mitigate the additional risks that arise from concurrent execution of the
FLIH function and the Secure Partition thread context.

There are two distinct patterns that can be used when an FLIH function sets the interrupt signal to hand
over to the Secure Partition thread context, depending on whether the FLIH function must be available to
run again immediately or not.

6.4.1 Programming patterns using FLIH

FLIH supports two use case scenarios:

e Continuous FLIH execution

e Hand-off between FLIH and Secure Partition thread context on page 65

Continuous FLIH execution

The FLIH function needs to be able to run continuously, even after signalling the Secure Partition thread
context to process some data. For example, a peripheral that is producing a continuous stream of output.

In this case, the interrupt must remain enabled when the FLIH function returns which allows the FLIH to
run again immediately. In particular, the FLIH can interrupt the Secure Partition thread context which is
responding to the signal. The interaction between the FLIH and Secure Partition thread contexts requires
careful design, as these contexts can run concurrently and there must be no race conditions on shared
data.

To demonstrate this pattern, here is an example of the FLIH function and associated Secure Partition
thread code, for an interrupt which is defined with "name”: "IRQ2". Shared data is handled carefully to
avoid race conditions. In this simple example, only the FLIH writes to the shared irq2_status variable,
which is sized and aligned to ensure atomic reads and writes.

static uint32_t irg2_status;

psa_flih_result_t irg2_flih(void)
{

// Process the interrupt
(continues on next page)

AES 0039 Copyright © 2020, Arm Limited or its affiliates. All rights reserved. Page 64
1.1 Extensions Alpha (Issue 0) Non-confidential

(continued from previous page)

// and update the status value
irg2_status = ...;
return PSA_FLIH_SIGNAL;

3

The Secure Partition thread context responds to the signal and can report the current counter value:

psa_signal_t s = psa_wait(PSA_WAIT_ANY, PSA_BLOCK);
if (s & IRQ2_SIGNAL)

{
// Reset the signal before reading the shared data to avoid
// missing a status update
psa_reset_signal (IRQ2_SIGNAL);
// Read the FLIH result data
handle_status_change(irg2_status);

}

In this pattern, the signal is reset before the shared data is processed. This prevents the following race
condition:

1. The FLIH runs, updates the shared data, and sets the signal.
2. The Secure Partition thread context detects the signal, and reads the shared data.
3. The FLIH interrupts the thread context, updates the shared data, and sets the signal.

4. The thread context resumes, and resets the signal.

At this point, the signal is clear, but the last update of the shared data #3 by the FLIH function has not
been read by the Secure Partition thread context because the signal was cleared at #4.

Hand-off between FLIH and Secure Partition thread context

A low latency interrupt response is not required once the Secure Partition thread context has been
signalled. For example, at the end of a sequence of write operations to a peripheral.

In this case, the interrupt can be disabled, either at source or using the Secure Partition API, at the end of
the FLIH function. This allows the Secure Partition thread context to process the result of the FLIH
function without being interrupted by the FLIH, avoiding data races. The Secure Partition thread context
must enable the interrupt again to allow the FLIH function to run again.

To demonstrate this pattern, here is an example of the FLIH function and associated Secure Partition
thread code, for an interrupt which is defined with "name”: "IRQ1". The FLIH function should end by
disabling the interrupt and signalling the Secure Partition:

static uint32_t irql_status;

psa_flih_result_t irql_flih(void)
{

(continues on next page)

AES 0039 Copyright © 2020, Arm Limited or its affiliates. All rights reserved. Page 65
1.1 Extensions Alpha (Issue 0) Non-confidential

(continued from previous page)

// Process the interrupt

// and write the result to Secure Partition memory
irgl_status = ...;

psa_irq_disable(IRQ1_SIGNAL);

return PSA_FLIH_SIGNAL;

The Secure Partition thread context responds to the signal and re-enables the interrupt if required:

psa_signal_t s = psa_wait(PSA_WAIT_ANY, PSA_BLOCK);

if (s & IRQ1_SIGNAL)

{
// Read the FLIH result data.
// There is no race condition as the interrupt is disabled
handle_status_change(irql_status);
// Reset signal before enabling the interrupt
psa_reset_signal (IRQT1_SIGNAL);
psa_irqg_enable(IRQT1_SIGNAL);

In this pattern, the signal must be reset before the interrupt is re-enabled, but there is no race condition on
access to the shared data because the FLIH function cannot run again while the interrupt is disabled.

AES 0039 Copyright © 2020, Arm Limited or its affiliates. All rights reserved. Page 66
1.1 Extensions Alpha (Issue 0) Non-confidential

7 Miscellaneous changes

The following additional relaxations and clarifications are made for version 1.1:

e RoT Service terminology and requirements
e Auvailability of the PSA Lifecycle APl in NSPE on page 70

Relaxation of memory access rules for Constant data on page 70

Replace the term ‘reverse handle’ with ‘rhandle’ on page 71

Symbolic definition of Secure Partition resources on page 72

7.1 RoT Service terminology and requirements

In Arm® Platform Security Architecture Firmware Framework [FF-M] version 1.0, the term Root of Trust
Service (RoT Service) is not consistently used to mean precisely the same thing. This leads to some
confusion within the specification, in particular, there are conflicting statements about the requirements
for the deployment and isolation of PSA RoT Services.

The following changes are made for version 1.1:

e Distinct terminology introduced and used for the different meanings of ‘RoT Service'.
e Resolve the inconsistent description of PSA RoT Services.

e Provide clear rules for the deployment and isolation of PSA RoT Services and the use of Secure
Partitions within the PSA Root of Trust.

7.1.1 The meaning of ‘Root of Trust Service’

When ‘Root of Trust Service’ is used in version 1.0 text it could mean one of the following:

1. The general concept of a security service within a Root of Trust. This is the concept described in Root
of Trust Definitions and Requirements [GP-ROT] as a Root of Trust Security Service.

2. A security service within the PSA Root of Trust or Application Root of Trust, as defined in FF-M.

3. A PSA RoT Service or Application RoT Service, which is implemented within a Secure Partition using the
APIs defined in FF-M.

Changes to the specification

e Definition 1 is infrequently used. In version 1.1, any use of ‘RoTl Service’ with this intended meaning
will be referenced to its definition in [GP-ROT].

e Definition 3 is a subset of definition 2. For example, PSA RoT Services that are implemented directly
within the Secure Partition Manager (SPM) would match definition 2, but not definition 3.

In version 1.1, the term ‘RoT Service’ is used for definition 2, and the term Secure Partition RoT Service
is introduced for definition 3. The term ‘RoT Service' can be used for definition 3 if the context is
clearly related to a Secure Partition RoT Service.

AES 0039 Copyright © 2020, Arm Limited or its affiliates. All rights reserved. Page 67
1.1 Extensions Alpha (Issue 0) Non-confidential

7.1.2 PSA RoT Services and Secure Partitions

The purpose of FF-M is to provide a common programming and runtime model for writing isolated
security services, which can be deployed into different implementations of the framework, on different
types of underlying system architecture. This programming model is provided in FF-M in the definition of
Secure Partitions and the APIs for communication between a client and a Secure Partition RoT Service.

The Secure Partition programming model is essential for RoT Services that are not provided by the
implementation of the framework. When an RoT Service is provided by the framework implementation,
there is more flexibility in how it is deployed. For example:

e A PSA RoT Service, such as PSA Cryptography APl [PSA-CRYPT], is defined as a C programming API.
Although the service implementation must be protected within the PSA Root of Trust, the service is
not required to be implemented within a Secure Partition using the FF-M framework APIs.

This is illustrated in Figure 4 of [FF-M] §3, where the PSA RoT Services are shown within the PSA
Root of Trust, with an IMPLEMENTATION DEFINED interface to the SPM.

e A PSA RoT Service does not need to be isolated from the SPM, which is required for Application RoT
Services at isolation level 2 or 3. Application RoT Services must be deployed in a Secure Partition.
Isolation level 3, defined in [FF-M] §3.1.3, places the PSA RoT Services within the same PSA Root of
Trust protection domain as the SPM. Secure Partitions within the Application Root of Trust must be
protected from each other and isolated from the SPM.

A framework is still permitted to use the Secure Partition model and interfaces for PSA RoT Services,
where this is advantageous for the implementation. In this case, the implementation retains the following
flexibility for these PSA RoTl Secure Partitions:

e The framework is permitted to restrict the communication models to a subset of those available for
Application RoT Secure Partitions.

e The framework is not required to isolate a PSA RoT Secure Partition from the SPM by using a Secure
Partition protection domain.

Changes to the specification

Clarifying the scope of the isolation architecture
In §2.1, the following paragraph:

Each Secure Partition is a single thread of execution and is the smallest unit of isolation. If the
strongest isolation level is implemented, every Secure Partition is isolated from every other
Secure Partition.

This is modified to the following:

Each Secure Partition is a single thread of execution and is the smallest unit of isolation defined
by this specification. If the strongest isolation level is implemented, every Secure Partition is
isolated from every other Secure Partition.

Additional text will be added to §2.3 to describe the flexibility for frameworks to implement isolation
within the protection domains defined by FF-M. This matches with the recommendation to use isolation
within the NSPE to provide increased robustness and resilience.

AES 0039 Copyright © 2020, Arm Limited or its affiliates. All rights reserved. Page 68
1.1 Extensions Alpha (Issue 0) Non-confidential

Clarifying the RoT Service definition
In §2.4, the following text describes the deployment of RoT Services:

PSA RoT Services that permit access from the NSPE, and all Application RoT Services, must be
implemented in a Secure Partition. These services must be accessed using the PSA Secure IPC
framework that is defined in this specification. This provides a consistent and portable
mechanism for implementing and accessing the service from both Secure Partitions and from
the NSPE.

PSA RoT Services that are only available to the SPE can either be implemented using the IPC
framework as already described, or in an implementation defined manner within the SPM and
PSA Root of Trust.

This is replaced with the following text:

Application RoT Services must be implemented in a Secure Partition within the Application
Root of Trust.

The framework is permitted to implement PSA RoT Services either within a Secure Partition, or
in an IMPLEMENTATION DEFINED way. At Isolation level 2 or 3, the PSA RoT Services must be
implemented within the PSA Root of Trust protection domain.

An RoT Service implemented within a Secure Partition must be accessed using the FF-M
communication API that is defined in this specification. This provides a consistent and portable
mechanism for implementing and accessing the service from both Secure Partitions and from
the NSPE.

PSA RoT Services that are only available to the SPE can either be implemented using the IPC
framework as already described, or in an IMPLEMENTATION DEFINED manner within the SPM and
PSA Root of Trust.

Clarifying the protection domains definition

In §3.1.3, in the definition of Isolation level 3, references to ‘Secure Partition’ are replaced by ‘Application
RoT Secure Partition’.

This clarifies that the Secure Partition protection domains at isolation level 3 do not include Secure
Partitions that the framework can optionally use within the PSA Root of Trust.

Relaxation of the Secure Partition type attribute

The type attribute in the Secure Partition manifest is relaxed. Support for the "PSA-ROT"” value is optional in
version 1.1.

If the implementation does not support Secure Partitions within the PSA Root of Trust, then the following
rules apply:

e PSA RoT Services are integrated into the PSA Root of Trust in an IMPLEMENTATION DEFINED manner.

e The implementation reports an error if a Secure Partition manifest specifies type: "PSA-ROT”. The
type attribute is still required in manifests for a Secure Partitions in the Application Root of Trust.

If the implementation permits Secure Partitions within the PSA Root of Trust, then the following rules
apply:

e PSA RoT Services can be integrated into the PSA Root of Trust using a combination of Secure
Partitions and IMPLEMENTATION DEFINED mechanisms.

AES 0039 Copyright © 2020, Arm Limited or its affiliates. All rights reserved. Page 69
1.1 Extensions Alpha (Issue 0) Non-confidential

e PSA RoT Services that are deployed in a Secure Partition must use the FF-M communication
framework.

e For Secure Partitions in the PSA Root of Trust, the implementation is permitted to support a different
set of communication models than for Secure Partitions in the Application Root of Trust. For
example, the framework might require the use of the SFN model for a PSA RoT Secure Partition, but
support both models for an Application RoT Secure Partition.

7.2 Availability of the PSA Lifecycle APl in NSPE

In [FF-M] version 1.0, Table 15 in §4 Programming API specifies the availability of the APIs defined in that
specification and by the PSA RoT Service API specifications.

In version 1.0, the RoT Lifecycle APl is only available to callers in the SPE.
For version 1.1, this APl is also available to the NSPE.

This information provided by this APl is not difficult to provide to the NSPE, and disclosing the information
does not pose a security risk.

7.3 Relaxation of memory access rules for Constant data

The memory access rules in [FF-M] version 1.0, §3.1.2 prohibit an implementation from making Constant
data executable. From rule 11 in Table 3:

Table 7 Excerpt from Permitted access methods for memory assets in version 1.0

ID Access rule Rationale
11 Only Code is Preventing execution of writable data mitigates the primary
executable buffer-overrun attack vector.

Preventing execution of read-only data reduces the attack surface
available for Return-Oriented Programming (ROP) and Jump-Oriented
Programming (JOP) attacks.

This is challenging for systems that implement higher levels of isolation, and increased isolation between
protection domains, such as the optional rule 14 or 16 from §3.1.5. These implementations require
significantly more resources in the memory protection hardware for an increased number of different asset
memory regions that require different access permissions.

However, isolation rules like 14 and 16 significantly reduce or eliminate the visibility of Constant data assets
across protection domains. This provides a significant mitigation against using the data for ROP or JOP
attacks, by reducing the availability of suitable executable gadgets for the attack. As a consequence, the
prohibition on allowing execute access to Constant data adds only a small additional mitigation for systems
that implement stronger isolation rules.

For version 1.1:

e Isolation rule 11 is relaxed to only cover execution of Private Data.

AES 0039 Copyright © 2020, Arm Limited or its affiliates. All rights reserved. Page 70
1.1 Extensions Alpha (Issue 0) Non-confidential

e A new, optional isolation rule 17 is introduced to cover execution of Constant data.

7.3.1 Changes to the specification
Rule 11 in Table 3 is changed to the following:

Table 8 Update for Permitted access methods for memory assets in version 1.1

ID Access rule Rationale
11 Private data is not Preventing execution of writable data mitigates the primary buffer-overrun
executable attack vector.

The summary table that follows Table 3 is also updated:

Table 9 Updated Summary of asset access rules in version 1.1

Asset class
Access method Code Constant data Private data
Read Yes Yes Yes
Write No No Yes
Execute Yes IMPLEMENTATION DEFINED @ NoO

2 We recommend that Constant data is not executable. See rule 17 in Optional isolation rules.

Rule 17 is added to Table 5 as follows:

Table 10 Addition to Optional isolation rules in version 1.1
ID Optional isolation rule Rationale

17 Constant data is not Preventing execution of read-only data reduces the attack surface available
executable for Return-Oriented Programming (ROP) and Jump-Oriented Programming
(JOP) attacks.

This rule is recommended for an implementation that has a lower level of
isolation. In particular, for systems where the Code and Constant data are
visible to all protection domains.

This rule provides less benefit in an implementation that already restricts
the visibility of Constant data between protection domains. For example,
rule 14 or 16 already provide most of the mitigation that is provided by 17.

7.4 Replace the term ‘reverse handle’ with ‘rhandle’

In version 1.1, the new terms stateless handle and connection handle specify handles for different types of
RoT Service. The existing term null handle also defines a specific value of the same psa_handle_t type.

AES 0039 Copyright © 2020, Arm Limited or its affiliates. All rights reserved. Page 71
1.1 Extensions Alpha (Issue 0) Non-confidential

However, the version 1.0 term ‘reverse handle’ is not an RoT Service handle or a message handle. This
similarity in naming is misleading, and the rhandle feature does not require the value to be treated like a
handle.

In this document, and in future FF-M specifications, the ‘reverse handle’ functionality will be referred to as
the rhandle feature.

7.5 Symbolic definition of Secure Partition resources

7.5.1 stack_size (attribute)

This existing attribute has an extended definition for v1.1.
The value of stack_size must indicate the stack memory usage of the Secure Partition.

If the value of the stack_size attribute is a decimal or hexadecimal value, this is used as the stack
requirement in bytes.

In version 1.0, no other type of value is permitted.

In version 1.1, a non-numerical value is resolved in in IMPLEMENTATION DEFINED manner. This permits an
implementation to support the use of symbolic constants that reference an external definition.

Implementation note:

The implementation of the framework is not required to provide dedicated stack in situations where
the isolation rules do not require this.

For example, in a system providing isolation level 1, the framework can use a single execution stack
for all Secure Partitions that are using the SFN model. This stack would have to be large enough for
the deepest chain of calls between these Secure Partitions.

7.5.2 heap_size (attribute)

This existing attribute has an extended definition for v1.1.
The value of heap_size must indicate the heap memory usage of the Secure Partition.

If the value of the heap_size attribute is a decimal or hexadecimal value, this is used as the heap
requirement in bytes.

In version 1.0, no other type of value is permitted.

In version 1.1, a non-numerical value is resolved in in IMPLEMENTATION DEFINED manner. This permits an
implementation to support the use of symbolic constants that reference an external definition.

Implementation note:

The implementation of the framework is not required to provide dedicated heap resources in
situations where the isolation rules do not require this.

AES 0039 Copyright © 2020, Arm Limited or its affiliates. All rights reserved. Page 72
1.1 Extensions Alpha (Issue 0) Non-confidential

Appendix A: Summary of manifest attributes

This appendix is a summary of objects and attributes used in the Secure Partition manifest file.

The Secure Partition manifest file is a JSON file consisting of a single Secure Partition object.

A.1 Secure Partition object

A.1.1 Required attributes

Name Type

psa_framework_version enum: 1.0 0r 1.1

name string: c_macro

type enum:
"APPLICATION-ROT" or
"PSA-ROT"

priority enum: "LOW",

"NORMAL", or "HIGH"

model enum: "IPC" or "SFN"
entry_point string: c_symbol
stack_size integer or string

A.1.2 Optional attributes

AES 0039 Copyright © 2020, Arm
1.1 Extensions Alpha (Issue 0)

Table 11 Required Secure Partition attributes
Description

Version of the Firmware Framework for M specification
this manifest conforms to.

Alphanumeric C macro for referring to a partition.

Whether the partition is unprivileged or part of the
trusted computing base.

v1.1: support for "PSA-ROT” is optional.

Partition task priority.

The communication model that this Secure Partition
uses.

New in v1.1.

C symbol name of an IPC model partition’s entry point.

v1.0: required
v1.1: required for IPC model.

Secure Partition thread context’s stack size.

v1.0: integer or hex_string
v1.1: integer, hex_string, or symbolic string

Limited or its affiliates. All rights reserved. Page 73
Non-confidential

Name
description

entry_init

heap_size

mmio_regions

services

irgs

dependencies

A.1.3 Example

Type
string

string: c_symbol

integer or string

array of Named
Region and
Numbered Region
objects

array of Service
objects

array of IRQ objects

array of string

Table 12 Optional Secure Partition attributes

Description

Human readable description.

Default

null

C symbol name of an SFN model partition’'s null

optional initialization function.
New in v1.1: optional for SFN model

Secure Partition’s heap size.

v1.0: integer or hex_string

v1.1: integer, hex_string, or symbolic string

List of Memory-Mapped IO region objects null

which the partition has access to.

List of RoT Service objects which the null
partition implements.

List of IRQ objects which the partition null
implements.

List of RoT Service names which the null

partition code depends on and is permitted

to access.

This is an example Secure Partition object for a SFN model Secure Partition:

{

"description”: "My Secure Partition”,
"psa_framework_version”: 1.1,

"name” :

”MY_SP“ ,

"type": "APPLICATION-ROT”,
"priority”: "NORMAL",

"model”: "SFN",

"entry_init": "my_sp_init",
"stack_size": "0x800",

"services”:

{

"description”: "My example stateless RoT Service”,

"name” :

"MY_ROT_SERVICE",

"sid": "0x00022001",
"version”: 2,
"version_policy": "RELAXED",
"non_secure_clients"”: true,
"connection_based”: false,

AES 0039

1.1 Extensions Alpha (Issue 0)

Copyright © 2020, Arm Limited or its affiliates. All rights reserved.

Non-confidential

(continues on next page)

Page 74

(continued from previous page)

"stateless_handle”: "auto”,
"mm_iovec": "disable”
Yo
{
"description”: "My second RoT Service”,
"name": "MY_OTHER_ROT_SERVICE",
"sid": "0x00022002",
"version”: 1,
"version_policy": "RELAXED",
"non_secure_clients"”: true,
"connection_based”: true,
"mm_iovec": "enable”
3
1,
"dependencies”: [
"PSA_CRYPTO",
"PSA_TRUSTED_STORAGE"
]

A.2 Service object

A.2.1 Required attributes

Name Type

name string: c.macro

sid integer or hex_string
non_secure_clients boolean
connection_based boolean

Table 13 Required Service attributes
Description

RoT Service name.

This is used as a prefix for the RoT Service SID, signal,
version and SFN symbols.

The integer value of the RoT Service ID

Indicate whether the RoT Service is exposed to
non-secure clients.

Specify the type of service, use true to indicate a
connection-based RoT Service, or false to indicate a
stateless RoT Service.

New inv1.1
A.2.2 Optional attributes
Table 14 Optional Service attributes
Name Type Description Default
description string Human readable description. null
AES 0039 Copyright © 2020, Arm Limited or its affiliates. All rights reserved. Page 75

1.1 Extensions Alpha (Issue 0)

Non-confidential

Table 14 (continued)

Name Type Description Default

version integer Version number of the RoT Service interface. 1

version_policy enum: "STRICT" or Version policy to apply on connections to "STRICT"
"RELAXED" the RoT Service.

stateless_handle integer, hex_string The index for the stateless handle in a "auto”
or "auto” stateless RoT Service. The framework will

allocate the index if "auto” is specified.
New in v1.1: optional for a stateless RoTl

Service
mm_iovec enum: "enable” or Enable the MM-IOVEC functionality for this "disable”
"disable” RoT Service.
Newinvil.1

A.2.3 Example

{
"description”: "My example stateless RoT Service”,
"name": "MY_ROT_SERVICE",
"sid": "0x00022001",
"version”: 2,
"version_policy": "RELAXED",
"non_secure_clients”: true,
"connection_based”: false,
"stateless_handle”: "auto”,
"mm_iovec": "disable”

3

A.3 Named Region object
A.3.1 Required attributes

Table 15 Required Named Region attributes

Name Type Description
name string: c_macro Alphanumeric C macro for referring to the region.
permission enum: "READ-ONLY" Access permissions for the region.

or "READ-WRITE"

A.3.2 Example

{
"name”: "CRYPTOCELL_312",

(continues on next page)

AES 0039 Copyright © 2020, Arm Limited or its affiliates. All rights reserved. Page 76
1.1 Extensions Alpha (Issue 0) Non-confidential

"permission”: "READ-WRITE"

A.4 Numbered Region object

A.4.1 Required attributes

Name Type

base string: hex_string
size string: hex_string
permission enum: "READ-ONLY"

or "READ-WRITE"

A.4.2 Example

{
"base”: "0x20004000",

"size": "0x1000",
"permission”: "READ-WRITE"

A.5 IRQ object
A.5.1 Required attributes

(continued from previous page)

Table 16 Required Numbered Region attributes
Description
The base address of the region.
Size in bytes of the region.

Access permissions for the region.

Table 17 Required IRQ attributes

Name Type Description

source string Interrupt line number or name for registering to ISR
table entry and enable/disable the specific IRQ once
received.

signal string: c_macro Alphanumeric C macro for referring to the IRQ’s signal
value.
Not valid in v1.1: replaced by irq.name attribute.

AES 0039 Copyright © 2020, Arm Limited or its affiliates. All rights reserved. Page 77

1.1 Extensions Alpha (Issue 0)

Non-confidential

Table 17 (continued)
Name Type Description

name string: c_macro Interrupt name.

This is used as a prefix for the interrupt signal and FLIH
function symbols.

New in v1.1: this replaces the use of the irq.signal

attribute.
handling enum: "FLIH" or The handling pattern for the interrupt.
“SLIH" New in v1.1
A.5.2 Optional attributes
Table 18 Optional IRQ attributes
Name Type Description Default
description string Human readable description. null

A.5.3 Example

{
"description”: "The secure timer interrupt”,
"name"”: "S_TIMER",
"source"”: "SECURE_TIMER",
"handling": "FLIH"
3

A.6 Typed string attributes

A.6.1 c_macro

An alphanumeric string that is used to construct C pre-processor symbols.

The string is all uppercase, must start with a letter, and can contain underscore characters.

A.6.2 c_symbol

An alphanumeric string that is used to construct C identifiers.

The string must start with a letter, and can contain underscore characters.

A.6.3 hex_string

The hexadecimal representation of a 32-bit, non-zero, unsigned integer.

The string starts with "ox”, followed by between one and eight hexadecimal digits.

AES 0039 Copyright © 2020, Arm Limited or its affiliates. All rights reserved. Page 78
1.1 Extensions Alpha (Issue 0) Non-confidential

Appendix B: Migrating Secure Partitions to version 1.1

The version 1.1 framework APIs are compatible with the version 1.0 API. However, when a Secure
Partition manifest specifies that it is using framework version 1.1, there are some necessary, incompatible
changes that must be made to the manifest.

This section provides a guide to the changes that you need to make when migrating a Secure Partition
developed for version 1.0 onto a framework that implements version 1.1.

B.1 Using an unmodified version 1.0 Secure Partition

If the framework supports the IPC model, and you do not need to take advantage of any of the new
features in version 1.1, then an existing version 1.0 Secure Partition will work without modification in the
new framework.

Otherwise, you will need to make some changes toyour code.

Note:

It is possible to use the same source code (but not manifest files) for both version 1.0 and version 1.1
Secure Partitions. The PSA_FRAMEWORK_VERSION pre-processor macro enables appropriate code to be
selected to match the framework.

B.2 Update the manifest to version 1.1

The first step when you want to use one or more of the version 1.1 features is to update the Secure
Partition to version 1.1.

B.2.1 Manifest changes
1. Update the psa_framework_version attribute to version 1.1:

- "psa_framework_version": 1.0,
+ "psa_framework_version”: 1.1

’

2. Add the model attribute at the top level of the manifest, specifying the IPC model:

+ "model”: "IPC",

3. For each RoT Service, add the connection-based attribute within the service specification, with the
value true:

+ "connection-based”: true,

4. For each interrupt, within the irq specification:

AES 0039 Copyright © 2020, Arm Limited or its affiliates. All rights reserved. Page 79
1.1 Extensions Alpha (Issue 0) Non-confidential

e Replace the signal attribute within the irq specification, with a name attribute.
e Add the handling attribute, with the value "SLIH".

= "signal”: "MY_IRQ_SIG",
+ "name": "MY_IRQ",
+ "handling": "SLIH",

B.2.2 Source code changes

In a Secure Partition that uses version 1.1, some changes are needed to code dealing with interrupts:

1. The symbolic name of the interrupt is defined differently, and uses of these symbols will need to be
updated in the source code.

e In version 1.0, the name is «signal», where «signal» is the value of the interrupt’s signal
attribute in the manifest.

e In version 1.1, the name is «name»_SIGNAL. where «name» is the value of the interrupt’s name
attribute in the manifest.

2. Interrupts are initially disabled in a version 1.1 Secure Partition. Explicit calls to psa_irqg_enable()
need to be made for each interrupt during Secure Partition initialisation, or when programming the
peripheral interrupt.

B.3 Using version 1.1 features

After migrating the Secure Partition to version 1.1, the following sections summarize the changes required
to use the new features in existing Secure Partition and RoT Service code.

B.3.1 Using the SFN model

To use the SFN model in a Secure Partition, the following changes need to be made to a Secure Partition
using the IPC model. See also Secure Functions on page 22.

1. Change the model attribute at the top level of the Secure Partition manifest, specifying the SFN
model:

- "model”: "IPC",
+ "model”: "SFN",

2. Remove the entry_point attribute from the manifest, optionally replacing it with an entry_init
attribute if your Secure Partition requires initialization before any of the RoT Service SFNs are called.

Either:
- "entry_point": "my_sp_main",
or:
= "entry_point”: "my_sp_main",
+ "entry_init"”: "my_sp_init"”,
AES 0039 Copyright © 2020, Arm Limited or its affiliates. All rights reserved. Page 80

1.1 Extensions Alpha (Issue 0) Non-confidential

3. If initialization is required, refactor the initialization code from the version 1.0 entry point function

into the version 1.1 entry initialization function.
After initialization, the entry_init function returns the following values:

e Return PSA_SUCCESS if initialization succeeds.

e Return PSA_SUCCESS if initialization is partially successful, and you want some SFNs to receive
messages. RoT Services that are non-operational must respond to connection requests with
PSA_ERROR_CONNECTION_REFUSED.

e Return an error status if the initialization failed, and no SFNs within the Secure Partition must
be called.

4. Add a Secure Function (SFN) to process messages for each Rol Service specified in the manifest.

Each SFN will have the following prototype:
psa_status_t «name»_sfn(const psa_msg_t* msg);

where «name» is the service's name attribute from the manifest in lowercase.
Refactor the message handling code for each RoT Service into the SFNs:

e Each SFN will receive connection, request and disconnection messages for that RoT Service.

e The reply to the message occurs when the SFN returns, using the return value as the response
status to the client.

B.3.2 Using a stateless RoT Service

To change a connection-based RoT Service into a stateless RoT Service, the following changes need to be
made. See also Stateless Root of Trust services onpage 31.

1.

Change the connection-based attribute in the service specification in the manifest, to false:

= "connection-based"”: true,
+ "connection-based”: false,

. Optionally, specify the stateless handle index used to construct the stateless handle for the RoT

Service. For example, to allocate the index 1:

i "stateless_handle"”: 1,

By default, the implementation will allocate this value for the RoT Service.

. Rework the Secure Partition code that handles messages for the RoT Service:

e Remove code that handles connection and disconnection messages. You can assume (or assert)
that every message received for that RoT Service is a request message.

e Ensure that the Secure Partition does not call psa_set_rhandle() on a message for that RoT
Service.

Rework all of the client calls to the RoT Service:

e Remove calls to psa_connect() and psa_close().

e Replace the connection handle used in calls to psa_call() with the stateless handle. The stateless
handle has the name «name»_HANDLE where «name» is the service’s name attribute from the
manifest.

AES 0039 Copyright © 2020, Arm Limited or its affiliates. All rights reserved. Page 81
1.1 Extensions Alpha (Issue 0) Non-confidential

B.3.3 Using MM-IOVEC

To use memory mapped iovecs in an RoT Service, the following changes need to be made. See also
Memory-mapped IOVECs on page 39.

1. Check that the framework you are using supports MM-IOVEC, or consider implementing the
changes conditionally in your code using the PSA_FRAMEWORK_HAS_MM_IQVEC pre-processor macro.

2. Enable MM-IOVEC for the RoT Service, by adding the mm_iovec attribute to the service specification
in the manifest file, and giving it the value "enable”:

+

"mm_iovec”: "enable",

3. Rework the RoT Service code which reads input vectors and writes output vectors. Only do this for
vectors where this provides a significant reduction in memory usage or improvement in performance,
without introducing memory-safety vulnerabilities.

AES 0039

e Replace the use of psa_read() to copy data from a client input vector, with calls to

psa_map_invec(), and optionally psa_unmap_invec(). For example:

size_t len;
- uint8_t buffer[BUF_SIZET];

- n = psa_read(msg.handle, INBUF_IDX, &buffer, sizeof(buffer));
// use the data in buffer[0..len]
const uint8_t *vec;

len = msg.in_size[INBUF_IDXT];

if (len > 0) {
vec = psa_map_invec(msg.handle, INBUF_IDX);
// use the data in vec[@..len]

} // leave the framework to unmap the vector

+ + + 4+ + + o+

To make the code portable to implementations that do not support MM-IOVEC, use
PSA_FRAMEWORK_HAS_MM_IOVEC to conditionally include the appropriate code. For example:

size_t len;
+#if PSA_FRAMEWORK_HAS_MM_IQVEC
const uint8_t *vec;

"
+

+ len = msg.in_size[INBUF_IDX];

+ if (len > 0) {

+ vec = psa_map_invec(msg.handle, INBUF_IDX);
+ // use the data in vec[0@..len]

+ 3

+#else
uint8_t buffer[BUF_SIZE];

len = psa_read(msg.handle, INBUF_IDX, &buffer, sizeof(buffer));
// use the data in buffer[@..n]
+#endif

Replace the use of psa_write() to copy data into a client output vector, with calls to
psa_map_outvec() and psa_unmap_outvec(). For example:

Copyright © 2020, Arm Limited or its affiliates. All rights reserved. Page 82

1.1 Extensions Alpha (Issue 0) Non-confidential

size_t len;
- uint8_t buffer[BUF_SIZE];

- // construct the output data in buffer[@..BUF_SIZE],
- // and set len to the output size
psa_write(msg.handle, OUTBUF_IDX, &buffer, len);
uint8_t =*vec;

size_t sz;

sz = msg.out_size[OUTBUF_IDX];

if (sz > 0) {
vec = psa_map_outvec(msg.handle, OUTBUF_IDX);
// construct the output data in vec[0..sz],
// and set len to the output size
psa_unmap_outvec(msg.handle, OUTBUF_IDX, len);

+ + + + + + + + + 4+

}

To make the code portable to implementations that do not support MM-IOVEC, use
PSA_FRAMEWORK_HAS_MM_IOVEC to conditionally include the appropriate code.

B.3.4 Using FLIH

To use First-level interrupt handling instead of SLIH for a Secure Partition interrupt, the following changes
need to be made. See also Enhancements for Secure Partition peripheral drivers on page 49.

1. Change the handling attribute in the irg specification in the manifest, specifying "FLIH” handling:

+

"handling”: "SLIH",
"handling”: "FLIH",

2. Add an FLIH function to the Secure Partition with the following signature:

psa_flih_result_t «name»_flih(void);

where «name» is the interrupt’s name attribute from the manifest in lowercase.

3. Rework the interrupt handling code:

AES 0039

Any interaction with the peripheral that has low-latency requirements must be moved into the
FLIH function.

Any interaction with other Secure Partitions, or with the message processing APls must remain
in the Secure Partition thread context.

If all of the handling code has been moved into the FLIH function, then:
— The FLIH function returns PSA_FLIH_NO_SIGNAL.
— The call to psa_eoi () for this interrupt is removed.

If the FLIH function requires that further processing is done in the Secure Partition thread
context, then:

— The FLIH function returns PSA_FLIH_SIGNAL.

— The call to psa_eoi () is replaced with a call to psa_reset_signal() from the Secure Partition
thread context.

If the interrupt is still enabled when the FLIH function returns the value PSA_FLIH_SIGNAL, then

Copyright © 2020, Arm Limited or its affiliates. All rights reserved. Page 83

1.1 Extensions Alpha (Issue 0) Non-confidential

the Secure Partition thread context must handle potential race conditions when it access any
data shared with the FLIH function.
— We recommend that the Secure Partition thread context calls psa_reset_signal() first,
before processing the data.
— The Secure Partition thread context can use psa_irq_disable() and psa_irq_enable() to
create a critical section, if this is necessary to safely update data shared with the FLIH
function.

4. Review read and write access to peripheral MMIO registers, and consider using the Register access
functions for MMIO on page 61 instead.

AES 0039 Copyright © 2020, Arm Limited or its affiliates. All rights reserved. Page 84
1.1 Extensions Alpha (Issue 0) Non-confidential

Appendix C: Comparison between FF-M and TF-M
frameworks

This appendix provides a more detailed analysis of the existing frameworks, comparing their strengths and
weaknesses in different system use cases. This analysis provides the rationale for the addition described in
Secure Functions on page 22.

C.1 Background
C.1.1 The IPC model

Version 1.0 of Arm® Platform Security Architecture Firmware Framework [FF-M] describes a programming
model, communication framework and API that is based around one or more secure execution contexts
called Secure Partitions.

Each Secure Partition is programmed like an individual C program or task — polling for messages and other
events, and responding to them. The communication API presents session-based connections to secure
services, on which structured, synchronous requests are made by clients.

The communication broker (the SPM) in this framework also acts as a secure client identity provider,
enabling more complex resource ownership and access control designs to be implemented with secure
services.

Secure services are able to connect and makes requests as the client of other secure services, utilizing the
same communication framework.

This overall design is typically referred to as the IPC model within the Trusted Firmware-M [TF-M]
documentation.

This architecture diagram provides an overview of the components within the design:

AES 0039 Copyright © 2020, Arm Limited or its affiliates. All rights reserved. Page 85
1.1 Extensions Alpha (Issue 0) Non-confidential

Non-secure processing

environment (NSPE) Secure processing environment (SPE)

Application Application Root of Trust PSA Root of Trust
(N\ | N s
Secure Partition Secure Partition Secure Partition
Application |
F'::)mware Application | PSA RoT
RoT Service . Service
| Application
RoT Service
o mmm———— ~ Application | PSA RoT
|) RoT Service Service
: 0S libraries : L) | L) 5)
N 4 — L _I

s N
Secure Partition Manager

[)
[]

! OS kernel ! Secure Secure Platform

| | Secure IPC

[] isolation interrupts services

[]

N = 4 \ J

— . e s s e - Isolation boundaries

Figure 1 Elements of the FF-M v1.0 Architecture

C.1.2 The Library model

Version 1.0 of the Trusted Firmware-M [TF-M] project introduced a much simpler abstraction for secure
services. The programming model is based around a set of secure service functions, each of which handles
requests from a corresponding client-side function. The secure service functions are run as callbacks from
the framework, and the framework is in control of the execution context and sequence in which secure
service handlers run.

There is no concept of a connection in this framework. Each request to a secure service runs as an
individual function call.

The constrained systems that this framework is designed for typically have a single non-secure client and
single protected domain containing secure services. There is no real requirement for a client identity.

Secure services that require the use of other secure services can typically just call the underlying
functionality directly, as there is no need to cross a protection boundary.

This communication framework is referred to as the Library model within the TF-M documentation.

C.2 Analysis

C.2.1 One or two architectures?

The IPC model provides significant control for a service developer to manage execution within each
Secure Partition. The API permits the deferred completion of requests, and the ability to process multiple
messages from different clients simultaneously within a single Secure Partition execution thread. The
overall programming model is easier to reason about when integrating multiple Secure Partitions, which
together enable concurrent handling of different secure services, in an implementation that provides a
high isolation level. The API design requires that request data has to be copied between the client and
service, mitigating many memory-safety vulnerabilities.

AES 0039 Copyright © 2020, Arm Limited or its affiliates. All rights reserved. Page 86
1.1 Extensions Alpha (Issue 0) Non-confidential

The Library model is simple to describe, and leads to a simple implementation in a system with two
protection domains, where each secure service function must complete execution before another can
start. Direct access to client memory is assumed by the API (parameter buffers are passed by address),
which prevents the API being used in systems demanding higher isolation.

The IPC model is well suited for more complex systems and product designs, and the Library model is
effective for simpler systems. However, there are two main challenges with the current situation:

e System and product requirements are not binary: there is a spectrum of system complexity and
product security needs. For systems that fall in between the two points addressed by the FF-M IPC
model and the TF-M Library model, there is no framework that is a good fit for the system.

e ltis difficult to describe the two models and APlIs in a single architecture, due to their current
differences. Providing a single architecture which could span these use cases would enable
framework implementations to be a better fit for more systems.

C.2.2 Scaling and Flexibility

The challenges with constructing a unified framework architecture, that includes both the IPC model and
the Library model stem from the current frameworks’ inability to scale effectively.

Scaling the IPC model

The IPC model does not scale down efficiently:

e Simple stateless or one-shot secure operations require a connection. Creating a temporary
connection significantly increases the runtime cost; there is not always a good place to stash a
connection handle.

e Simple secure services still require boilerplate code in the Secure Partition to handle signals and
dispatch requests to their respective service handlers.

e The thread-based programming model requires that the framework manages extra execution
contexts, and switching between them to process requests, even for an implementation that only
provides isolation level 1.

Scaling the Library model

The Library model does not scale up efficiently or safely:

e Adding more protection domains breaks the assumptions that enabled simplicity with just two
domains:

— Secure service functions must be run in a separate isolation domain and execution context to
the SPM or framework.

— Client identity is required as there can be more than one client for a service, and the service
must respect the isolation of the client domains.

— Calls between secure services cannot be direct function calls, and might need to be managed by
the SPM to cross an isolation boundary.

— Secure services cannot be run on a single SPE execution stack.

AES 0039 Copyright © 2020, Arm Limited or its affiliates. All rights reserved. Page 87
1.1 Extensions Alpha (Issue 0) Non-confidential

Although an isolation level 2 design could be constructed by implementing the two-domain
architecture between each pair of protection domains that need to communicate, this is not a simple
design. The emergent, complex behavior of this system is derived from the implementation decisions
instead of being defined by the framework architecture.

e Concurrent secure service execution either requires:

— Grouping secure service functions, where secure service functions within the same group are
run sequentially (that is, without concurrency), but secure service functions in different groups
can interrupt or interleave with each other.

— Allowing any secure service function to interrupt or interleave with execution of others.

Both approaches require additional execution contexts (in particular, they prevent the re-use of the
message dispatcher’s stack), even with isolation level 1.

Both also present the main risk of concurrent execution: shared data. Mitigating the risks of shared
data, without isolating the concurrent contexts, requires synchronization primitives and increases the
difficulty of ensuring that secure services are error-free.

e Mitigation of common memory-safety errors in secure services requires changing the API.

Even when the request broker validates the client memory parameters, providing direct access to
client memory leaves the secure service vulnerable to double-fetch bugs, data alignment errors,
buffer overruns, and permits pointer-chasing using unvalidated memory addresses passed as data.

The current API requires that every secure service implementation must be code reviewed carefully
to mitigate against these vulnerabilities. In contrast, the API for the IPC model places mitigation for
these risks within the framework implementation, and not in every single secure service.

AES 0039 Copyright © 2020, Arm Limited or its affiliates. All rights reserved. Page 88
1.1 Extensions Alpha (Issue 0) Non-confidential

Appendix D: Implementing session-less Rol Services

This appendix examines the options for optimizing Secure Partition RoT Service requests, when the RoT
Service operations do not make any use of the session-based features of the version 1.0 API.

This analysis provides the rationale for the Stateless Root of Trust services on page 31 extension.

D.1 Background

A client of a Root of Trust Service accesses the service with RoT Service API. A simple approach to
implementing the RoT Service API is to wrap this around calls to the FF-M Client API.

In general, there are two typical usages for an RoT Service API:

e Session-based API usage.

e Session-less APl usage.

Implementing a session-based API

Session-based APl usage needs an initial process to establish the session, and subsequent operations are
based on this session.

An FF-M connection handle can be embedded in the session instance object, and psa_connect() can be
called during the session setup operation. The performance overhead of psa_connect() is diluted in this
case, since there are multiple subsequent session operations for each call to psa_connect().

Here is a simplified example of an Rol Service APl implementation that takes this approach:

int32_t RoTServiceA_Open(uint32_t *p_hsession)

{

psa_handle_t handle;

handle = psa_connect(ROT_SERVICE_A_SID, ROT_SERVICE_A_VERSION);

if (!PSA_HANDLE_IS_VALID(handle) {

return PSA_HANDLE_TO_ERROR (handle);

3

/*

* Here is the simplest scenario.

* In practice, the session object has other members as well as the connection handle.

*/

*p_hsession = (uint32_t)handle;

return (int32_t)PSA_SUCCESS;
3
int32_t RoTServiceA_Controll(uint32_t hsession)
{

(continues on next page)

AES 0039 Copyright © 2020, Arm Limited or its affiliates. All rights reserved. Page 89

1.1 Extensions Alpha (Issue 0) Non-confidential

(continued from previous page)

return (int32_t)psa_call((psa_handle_t)hsession,
PSA_IPC_CALL,
NULL, @, NULL, 0);

3
int32_t RoTServiceA_Control2(uint32_t hsession)
{
return (int32_t)psa_call((psa_handle_t)hsession,
PSA_IPC_CALL + 1,
NULL, @, NULL, 0);
3
void RoTServiceA_Close(uint32_t hsession)
{
psa_close((psa_handle_t)hsession);
3

Implementing a session-less API

Implementing a session-less API efficiently using the FF-M APl is more challenging. This type of API does
not have an explicit session, and has no session setup operation.

In the FF-M version 1.0 framework, a connection is mandatory for accessing services. This requires the
client to maintain a handle while accessing an RoT Service.

Here is a simplified example of a session-less RoT Service APl implementation using the FF-M Client API:

psa_status_t RoTServiceB(void)

{
psa_handle_t handle;

psa_status_t status;

handle = psa_connect(ROT_SERVICE_B_SID, ROT_SERVICE_B_VERSION);
if (!PSA_HANDLE_IS_VALID(handle) {
return PSA_HANDLE_TO_ERROR(handle);

}

status = psa_call(handle, PSA_IPC_CALL, NULL, @, NULL, 0);
psa_close(handle);

return status;

}
There are two aspects of this approach that affect the runtime performance of the RoTServiceB() API:

e If RoTServiceB() is a frequently called API, the accumulated duration for calling psa_connect() and
psa_close() is significant.

e There is a SID-lookup process within psa_connect () which is difficult to optimize, because each RoT
Service ID is allocated by the RoT Service developer.

To improve the performance for calling session-less secure services, the following approaches can be
considered:

AES 0039 Copyright © 2020, Arm Limited or its affiliates. All rights reserved. Page 90
1.1 Extensions Alpha (Issue 0) Non-confidential

e Increase the SID lookup performance.
e Increase the performance of the individual framework calls.

e Reduce the number of calls to psa_connect() and psa_close().

Increasing the performance of individual framework functions is a framework implementation issue. In the
following analysis, we consider how to eliminate calls to these framework functions for session-less RoT
Service APIs.

D.2 Analysis

Before analyzing options, we consider the mechanisms for integrating an RoT Service API. Typically, the
client needs to integrate the object files which contain the RoT Service APl implementation. Here are the
common scenarios:

1. There is no isolation between clients, the same object is shared by all clients.

2. There is isolation between clients, and the object is shared as read-only between clients. For
example, this is what [TF-M] does with its Secure Partition Runtime Library (SPRTL) within the SPE.

3. There is isolation between clients, and the object is duplicated and linked with each client that uses
the API.

For the example implementations of RoTServiceA and RoTServiceB above, the source compiles to object
code with no writable data. This allows the framework to use any of the three mechanisms for integrating
the RoT Service APl with Secure Partition client code.

Optimizing RoTServiceB()

If the developer of RoTServiceB() wants to avoid always calling psa_connect () and psa_close(), one obvious
approach is to save the connection handle somewhere, and reuse this for subsequent requests.

For example, RoTServiceB() could be rewritten as follows:
static psa_handle_t saved_handle_b;

psa_status_t RoTServiceB(void)

{
psa_handle_t handle;

handle = saved_handle_b;
if (handle == PSA_NULL_HANDLE) {
handle = psa_connect(ROT_SERVICE_B_SID, ROT_SERVICE_B_VERSION);
if (!PSA_HANDLE_IS_VALID(handle) {
return PSA_HANDLE_TO_ERROR (handle);
saved_handle_b = handle;
3

return psa_call(handle, PSA_IPC_CALL, NULL, @, NULL, 0);
3

If this handle is saved in a global area, it has the following effects:

AES 0039 Copyright © 2020, Arm Limited or its affiliates. All rights reserved. Page 91
1.1 Extensions Alpha (Issue 0) Non-confidential

e A non-const variable is needed to save the handle, and the object will contain a read-write data
section.

e There are multiple clients that could call the API, but the framework assumes that each connection
has at most one outstanding request. There is also no specified behavior if one task calls psa_close()
on a handle that is currently used by another task in a call to psa_call().

So each client should have its own connection handle, and multiple handles need to be saved. When
used from a Secure Partition, the RoT Service API can allocate memory in the Secure Partition or rely
on separate handle variables being allocated by the framework (if the framework use mechanism 3
above). For NPSE clients, this approach requires knowledge of the NSPE runtime environment,
resulting in a non-portable RoT Service API.

e Even in a system where the same connection handle can be used by all clients, it is not possible to
store this handle in a location that all clients can read in systems which implement higher levels of
isolation. It is also a security risk for a trusted service to use a shared connection handle that could
be tampered with by malicious code.

These disadvantages make this approach problematic. An alternative is to delegate the handle storage to
the system using an abstracted API which avoids explicit use of shared global variables (especially NSPE
clients):

psa_status_t RoTServiceB(void)

{
psa_handle_t handle;

handle = GET_ROT_HANDLE(CLIENT_ID);
if (!PSA_HANDLE_IS_VALID(handle)) {
handle = psa_connect(ROT_SERVICE_B_SID, ROT_SERVICE_B_VERSION);
if (!PSA_HANDLE_IS_VALID(handle) {
return PSA_HANDLE_TO_ERROR(handle);

}
SET_ROT_HANDLE (CLIENT_ID, handle);

3

return psa_call(handle, PSA_IPC_CALL, NULL, @, NULL, @);
3

The disadvantages with this approach include:

e This involves an abstracted API within the RoT Service API library implementation. Ideally, the RoT
Service API library should not have system dependencies, but now the SPE and NSPE need to
implement the GET_ROT_HANDLE () and SET_ROT_HANDLE () functionality.

e In a simple system without memory management API, a custom allocating implementation is
required.

e Need mechanisms to retrieve the caller’s client ID to let abstract API find corresponding handle for
this client.
Conclusion

None of these approaches work in a portable way, or they introduce new APlIs that have to be made to
work on each implementation into which the RoT Service is integrated.

AES 0039 Copyright © 2020, Arm Limited or its affiliates. All rights reserved. Page 92
1.1 Extensions Alpha (Issue 0) Non-confidential

To make a useful improvement for session-less APIs, support is required from the Firmware Framework
itself.

D.3 Framework options
Idea 1: Fixed handle values

Idea: What will happen if the handle value is decided and known by clients at build time?

Then the situation would change as we do not need to store the handle after connection, since the handle
value is already known.

The notes in [FF-M] §3.3.4 describe a connection handle allocation strategy in which different Secure
Partitions can use the same handle value for different connections. This suggests that it is possible to make
each client have their own connection to an RoT Service, using the same, fixed handle value.

An RoT Service API that follows the session-less pattern can work using this type of connection.
psa_call() can be invoked directly with this handle value, if the handle is connected implicitly to the RoT
Service by the framework. The resulting implementation of RoTServiceB() would look like this:

psa_status_t RoTServiceB(void)

{
return psa_call(ROT_SERVICE_B_FIXED_HANDLE, PSA_IPC_CALL, NULL, @, NULL, 0);

3

Ideally, the framework automatically makes the fixed handle ready for use before the client runs, or when
the client first calls psa_call () with this handle. If the client has to explicitly ensure this handle is
connected, this would reintroduce many of the client logic challenges that we want to solve.

Idea 2: No connection at all

Idea: Are there other opportunities for optimizing the framework for session-less RoTl Service APIs?

The typical code for a session-less RoT Service API (see original RoT ServiceB) creates transient
connections for each and every request. As a result, the RoT Service implementation cannot make use of
the rhandle feature of the Secure Partition API for these calls, and does not do anything during the
connection and disconnection messages that it receives.

If all of the requests for the RoT Service use the same pattern, then the framework can eliminate all of the
following activities without affecting the functionality of the RoT Service:

e The client explicitly connecting to the RoT service using psa_connect().
e The framework delivering connection or disconnection messages to the RoT Service.

e The RoT Service using the rhandle feature.

If all of this functionality is removed for a session-less RoT Service, this enables a simpler framework
design for this type of service.

Conclusion

Although there are scenarios in which only one of these ideas is needed for an RoT Service, providing this

flexibility adds complexity to the understanding of the features and the framework design and

AES 0039 Copyright © 2020, Arm Limited or its affiliates. All rights reserved. Page 93
1.1 Extensions Alpha (Issue 0) Non-confidential

implementation. Combining these two ideas results in a simpler feature that provides substantial benefit
for a large number of RoTl Services and enables efficient framework implementation. This is what has been
done in Stateless Root of Trust services on page 31.

An existing RoT Service which includes a mixture of session-less type APIs and session-based APlIs can still
take advantage of stateless RoTl Services when migrating to version 1.1. This is achieved by defining two
RoT Services in the Secure Partition manifest, where one is connection-based and one is stateless, and
using the appropriate handle in different parts of the RoT Service API.

AES 0039 Copyright © 2020, Arm Limited or its affiliates. All rights reserved. Page 94
1.1 Extensions Alpha (Issue 0) Non-confidential

	About this document
	Release information
	Arm Non-Confidential Document Licence (“Licence”)
	References
	Terms and abbreviations
	Conventions
	Typographical conventions
	Numbers

	Current status and anticipated changes
	Feedback
	Feedback on this book

	1 Introduction
	1.1 Objectives for version 1.1
	1.2 Compatibility
	1.3 Overview of new features
	1.3.1 Secure Functions
	1.3.2 Stateless RoT Services
	1.3.3 Memory-mapped IOVECS
	1.3.4 Support for peripheral drivers
	1.3.5 Miscellaneous improvements

	2 Framework features and permitted configurations
	2.1 Changes to the Programming API
	2.1.1 Firmware framework version
	PSA_FRAMEWORK_VERSION (macro)
	psa_framework_version (function)

	2.1.2 Discovering framework feature availability
	PSA_FRAMEWORK_ISOLATION_LEVEL (macro)
	PSA_FRAMEWORK_HAS_MM_IOVEC (macro)

	2.2 Permitted configurations of FF-M version 1.1

	3 Secure Functions
	3.1 Background & rationale
	3.2 The Secure Function model
	3.2.1 Overview of the SFN model
	3.2.2 Secure Partition execution
	Secure Partition initialization function

	3.2.3 Scheduling Secure Partitions
	3.2.4 Processing RoT Service messages
	3.2.5 Interrupts
	3.2.6 Doorbell

	3.3 Implementation options
	3.4 Selecting a Secure Partition model
	3.5 Changes to the Programming API
	3.5.1 Manifest changes
	model (attribute)
	entry_point (attribute)
	entry_init (attribute)
	services (attribute)

	3.5.2 Secure Partition API changes
	psa_get (function)
	psa_reply (function)

	4 Stateless Root of Trust services
	4.1 Background and rationale
	4.2 Programming model
	4.2.1 Overview of stateless RoT Services
	4.2.2 RoT Service identification
	4.2.3 RoT Service versioning
	4.2.4 Requesting stateless RoT Services
	4.2.5 Processing RoT Service messages
	4.2.6 Programmer Error
	4.2.7 Comparison of service types

	4.3 Selecting the RoT Service type
	4.4 Changes to the Programming API
	4.4.1 Manifest changes
	connection_based (attribute)
	stateless_handle (attribute)

	4.4.2 Client API changes
	psa_connect (function)
	psa_call (function)
	psa_close (function)

	4.4.3 Secure Partition API changes
	psa_msg_t (type)
	psa_set_rhandle (function)
	Replying to a request message with PSA_ERROR_PROGRAMMER_ERROR

	5 Memory-mapped IOVECs
	5.1 Background and rationale
	5.2 Programming model
	5.2.1 Implementation flexibility
	5.2.2 Typical deployment scenarios
	5.2.3 RoT Service configuration
	5.2.4 Accessing client input and output vectors
	5.2.5 Interaction with the isolation model

	5.3 Changes to the Programming API
	5.3.1 Discovering MM-IOVEC availability
	5.3.2 Enabling the MM-IOVEC API
	mm_iovec (attribute)

	5.3.3 Mapping RoT Service IO vectors
	psa_map_invec (function)
	psa_unmap_invec (function)
	psa_map_outvec (function)
	psa_unmap_outvec (function)

	5.3.4 Changes to existing Secure Partition APIs
	psa_read (function)
	psa_skip (function)
	psa_write (function)

	6 Enhancements for Secure Partition peripheral drivers
	6.1 Background and rationale
	6.1.1 Bounded interrupt response time
	6.1.2 Managing interrupts
	6.1.3 Accessing MMIO registers

	6.2 Programming model
	6.2.1 Definitions
	6.2.2 Impact of Isolation
	6.2.3 Impact of Concurrency
	6.2.4 Interrupt model
	First-level interrupt handling
	Second-level interrupt handling

	6.2.5 FLIH Execution model
	6.2.6 Secure Partition execution model

	6.3 Changes to the Programming API
	6.3.1 Manifest changes
	name (attribute)
	handling (attribute)

	6.3.2 Secure Partition API changes for FLIH
	psa_flih_result_t (type)
	PSA_FLIH_NO_SIGNAL (macro)
	PSA_FLIH_SIGNAL (macro)
	psa_reset_signal (function)
	psa_eoi (function)

	6.3.3 Secure Partition API changes for interrupt control
	psa_irq_status_t (type)
	psa_irq_is_enabled (function)
	psa_irq_enable (function)
	psa_irq_disable (function)
	psa_irq_restore (function)

	6.3.4 Register access functions for MMIO
	psa_mmio_read8 (function)
	psa_mmio_read16 (function)
	psa_mmio_read32 (function)
	psa_mmio_write8 (function)
	psa_mmio_write16 (function)
	psa_mmio_write32 (function)

	6.4 Writing Secure Partition peripheral drivers
	6.4.1 Programming patterns using FLIH
	Continuous FLIH execution
	Hand-off between FLIH and Secure Partition thread context

	7 Miscellaneous changes
	7.1 RoT Service terminology and requirements
	7.1.1 The meaning of ‘Root of Trust Service’
	Changes to the specification

	7.1.2 PSA RoT Services and Secure Partitions
	Changes to the specification

	7.2 Availability of the PSA Lifecycle API in NSPE
	7.3 Relaxation of memory access rules for Constant data
	7.3.1 Changes to the specification

	7.4 Replace the term ‘reverse handle’ with ‘rhandle’
	7.5 Symbolic definition of Secure Partition resources
	7.5.1 stack_size (attribute)
	7.5.2 heap_size (attribute)

	A Summary of manifest attributes
	A.1 Secure Partition object
	A.1.1 Required attributes
	A.1.2 Optional attributes
	A.1.3 Example

	A.2 Service object
	A.2.1 Required attributes
	A.2.2 Optional attributes
	A.2.3 Example

	A.3 Named Region object
	A.3.1 Required attributes
	A.3.2 Example

	A.4 Numbered Region object
	A.4.1 Required attributes
	A.4.2 Example

	A.5 IRQ object
	A.5.1 Required attributes
	A.5.2 Optional attributes
	A.5.3 Example

	A.6 Typed string attributes
	A.6.1 c_macro
	A.6.2 c_symbol
	A.6.3 hex_string

	B Migrating Secure Partitions to version 1.1
	B.1 Using an unmodified version 1.0 Secure Partition
	B.2 Update the manifest to version 1.1
	B.2.1 Manifest changes
	B.2.2 Source code changes

	B.3 Using version 1.1 features
	B.3.1 Using the SFN model
	B.3.2 Using a stateless RoT Service
	B.3.3 Using MM-IOVEC
	B.3.4 Using FLIH

	C Comparison between FF-M and TF-M frameworks
	C.1 Background
	C.1.1 The IPC model
	C.1.2 The Library model

	C.2 Analysis
	C.2.1 One or two architectures?
	C.2.2 Scaling and Flexibility
	Scaling the IPC model
	Scaling the Library model

	D Implementing session-less RoT Services
	D.1 Background
	D.2 Analysis
	D.3 Framework options

