
ALPH
A

Arm® Firmware Framework for M 1.1Extensions

Document number: AES 0039
Release Quality: Alpha
Issue Number: 0
Confidentiality: Non-confidential
Date of Issue: 15/12/2020

Copyright © 2020, Arm Limited. All rights reserved.

ALPHA RELEASE
This is a proposed set of updates to the DEN 0063 Arm® Platform Security Architecture Firmware Framework1.0 specification.
This is an initial ALPHA release in order to enable wider review and feedback on the changes proposed tobe included in the v1.1 specification.
At this quality level, none of the changes and interfaces defined are stable enough for productdevelopment.
Abstract
This manual is part of the Arm Platform Security Architecture family of specifications. It defines a standardprogramming environment and firmware interfaces for implementing and accessing security serviceswithin a device’s Root of Trust.

ALPH
A

Contents
About this document v

Release information v
Arm Non-Confidential Document Licence (“Licence”) vi
References viii
Terms and abbreviations viii
Conventions xiiiTypographical conventions xiiiNumbers xiii
Current status and anticipated changes xiii
Feedback xiiiFeedback on this book xiii

1 Introduction 15
1.1 Objectives for version 1.1 15
1.2 Compatibility 16
1.3 Overview of new features 161.3.1 Secure Functions 161.3.2 Stateless RoT Services 171.3.3 Memory-mapped IOVECS 171.3.4 Support for peripheral drivers 171.3.5 Miscellaneous improvements 18
2 Framework features and permitted configurations 19
2.1 Changes to the Programming API 192.1.1 Firmware framework version 192.1.2 Discovering framework feature availability 19
2.2 Permitted configurations of FF-M version 1.1 21
3 Secure Functions 22
3.1 Background & rationale 22
3.2 The Secure Function model 223.2.1 Overview of the SFN model 223.2.2 Secure Partition execution 23
AES 00391.1 Extensions Alpha (Issue 0) Copyright© 2020, Arm Limited or its affiliates. All rights reserved.Non-confidential Page i

ALPH
A

3.2.3 Scheduling Secure Partitions 243.2.4 Processing RoT Service messages 253.2.5 Interrupts 263.2.6 Doorbell 27
3.3 Implementation options 27
3.4 Selecting a Secure Partition model 27
3.5 Changes to the Programming API 273.5.1 Manifest changes 273.5.2 Secure Partition API changes 29
4 Stateless Root of Trust services 31
4.1 Background and rationale 31
4.2 Programming model 314.2.1 Overview of stateless RoT Services 324.2.2 RoT Service identification 324.2.3 RoT Service versioning 324.2.4 Requesting stateless RoT Services 334.2.5 Processing RoT Service messages 334.2.6 Programmer Error 344.2.7 Comparison of service types 34
4.3 Selecting the RoT Service type 35
4.4 Changes to the Programming API 354.4.1 Manifest changes 364.4.2 Client API changes 374.4.3 Secure Partition API changes 37
5 Memory-mapped IOVECs 39
5.1 Background and rationale 39
5.2 Programming model 405.2.1 Implementation flexibility 405.2.2 Typical deployment scenarios 405.2.3 RoT Service configuration 415.2.4 Accessing client input and output vectors 415.2.5 Interaction with the isolation model 42
5.3 Changes to the Programming API 425.3.1 Discovering MM-IOVEC availability 425.3.2 Enabling the MM-IOVEC API 425.3.3 Mapping RoT Service IO vectors 435.3.4 Changes to existing Secure Partition APIs 47

AES 00391.1 Extensions Alpha (Issue 0) Copyright© 2020, Arm Limited or its affiliates. All rights reserved.Non-confidential Page ii

ALPH
A

6 Enhancements for Secure Partition peripheral drivers 49
6.1 Background and rationale 496.1.1 Bounded interrupt response time 496.1.2 Managing interrupts 506.1.3 Accessing MMIO registers 50
6.2 Programming model 506.2.1 Definitions 506.2.2 Impact of Isolation 516.2.3 Impact of Concurrency 516.2.4 Interrupt model 516.2.5 FLIH Execution model 546.2.6 Secure Partition execution model 55
6.3 Changes to the Programming API 556.3.1 Manifest changes 556.3.2 Secure Partition API changes for FLIH 566.3.3 Secure Partition API changes for interrupt control 586.3.4 Register access functions for MMIO 61
6.4 Writing Secure Partition peripheral drivers 646.4.1 Programming patterns using FLIH 64
7 Miscellaneous changes 67
7.1 RoT Service terminology and requirements 677.1.1 The meaning of ‘Root of Trust Service’ 677.1.2 PSA RoT Services and Secure Partitions 68
7.2 Availability of the PSA Lifecycle API in NSPE 70
7.3 Relaxation of memory access rules for Constant data 707.3.1 Changes to the specification 71
7.4 Replace the term ‘reverse handle’ with ‘rhandle’ 71
7.5 Symbolic definition of Secure Partition resources 727.5.1 stack_size (attribute) 727.5.2 heap_size (attribute) 72
A Summary of manifest attributes 73
A.1 Secure Partition object 73A.1.1 Required attributes 73A.1.2 Optional attributes 73A.1.3 Example 74
A.2 Service object 75A.2.1 Required attributes 75A.2.2 Optional attributes 75A.2.3 Example 76
AES 00391.1 Extensions Alpha (Issue 0) Copyright© 2020, Arm Limited or its affiliates. All rights reserved.Non-confidential Page iii

ALPH
A

A.3 Named Region object 76A.3.1 Required attributes 76A.3.2 Example 76
A.4 Numbered Region object 77A.4.1 Required attributes 77A.4.2 Example 77
A.5 IRQ object 77A.5.1 Required attributes 77A.5.2 Optional attributes 78A.5.3 Example 78
A.6 Typed string attributes 78A.6.1 c_macro 78A.6.2 c_symbol 78A.6.3 hex_string 78
B Migrating Secure Partitions to version 1.1 79
B.1 Using an unmodified version 1.0 Secure Partition 79
B.2 Update the manifest to version 1.1 79B.2.1 Manifest changes 79B.2.2 Source code changes 80
B.3 Using version 1.1 features 80B.3.1 Using the SFN model 80B.3.2 Using a stateless RoT Service 81B.3.3 Using MM-IOVEC 82B.3.4 Using FLIH 83
C Comparison between FF-M and TF-M frameworks 85
C.1 Background 85C.1.1 The IPC model 85C.1.2 The Library model 86
C.2 Analysis 86C.2.1 One or two architectures? 86C.2.2 Scaling and Flexibility 87
D Implementing session-less RoT Services 89
D.1 Background 89
D.2 Analysis 91
D.3 Framework options 93

AES 00391.1 Extensions Alpha (Issue 0) Copyright© 2020, Arm Limited or its affiliates. All rights reserved.Non-confidential Page iv

ALPH
A

About this document
Release information
The change history table lists the changes that have been made to this document.
Date Version Confidentiality Change
December 2020 1.1 Alpha 0 Non-confidential Initial release of the 1.1 Extensionsspecification

AES 00391.1 Extensions Alpha (Issue 0) Copyright© 2020, Arm Limited or its affiliates. All rights reserved.Non-confidential Page v

ALPH
A

Arm® Firmware Framework for M
Copyright © 2020, Arm Limited or its affiliates. All rights reserved. The copyright statement reflects thefact that some draft issues of this document have been released, to a limited circulation.

Arm Non-Confidential Document Licence (“Licence”)
This Licence is a legal agreement between you and Arm Limited (“Arm”) for the use of Arm’s intellectual property (including,without limitation, any copyright) embodied in the document accompanying this Licence (“Document”). Arm licenses itsintellectual property in the Document to you on condition that you agree to the terms of this Licence. By using or copying theDocument you indicate that you agree to be bound by the terms of this Licence.
“Subsidiary” means any company the majority of whose voting shares is now or hereafter owner or controlled, directly orindirectly, by you. A company shall be a Subsidiary only for the period during which such control exists.
This Document is NON-CONFIDENTIAL and any use by you and your Subsidiaries (“Licensee”) is subject to the terms of thisLicence between you and Arm.
Subject to the terms and conditions of this Licence, Arm hereby grants to Licensee under the intellectual property in theDocument owned or controlled by Arm, a non-exclusive, non-transferable, non-sub-licensable, royalty-free, worldwide licence to:

(i) use and copy the Document for the purpose of designing and having designed products that comply with the Document;
(ii) manufacture and have manufactured products which have been created under the licence granted in (i) above; and
(iii) sell, supply and distribute products which have been created under the licence granted in (i) above.

Licensee hereby agrees that the licences granted above shall not extend to any portion or function of a product that is not itselfcompliant with part of the Document.
Except as expressly licensed above, Licensee acquires no right, title or interest in any Arm technology or any intellectual propertyembodied therein.
THE DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NOWARRANTIES, EXPRESS, IMPLIEDOR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, SATISFACTORYQUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE DOCUMENT. Arm maymake changes to the Document at any time and without notice. For the avoidance of doubt, Arm makes no representation withrespect to, and has undertaken no analysis to identify or understand the scope and content of, third party patents, copyrights,trade secrets, or other rights.
NOTWITHSTANDING ANYTHING TO THE CONTRARY CONTAINED IN THIS LICENCE, TO THE FULLEST EXTENTPERMITTED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES, IN CONTRACT, TORT OR OTHERWISE, INCONNECTIONWITH THE SUBJECT MATTER OF THIS LICENCE (INCLUDINGWITHOUT LIMITATION) (I) LICENSEE’S USE OFTHE DOCUMENT; AND (II) THE IMPLEMENTATION OF THE DOCUMENT IN ANY PRODUCT CREATED BY LICENSEE UNDERTHIS LICENCE). THE EXISTENCE OF MORE THAN ONE CLAIM OR SUIT WILL NOT ENLARGE OR EXTEND THE LIMIT.LICENSEE RELEASES ARM FROM ALL OBLIGATIONS, LIABILITY, CLAIMS OR DEMANDS IN EXCESS OF THIS LIMITATION.
This Licence shall remain in force until terminated by Licensee or by Arm. Without prejudice to any of its other rights, if Licenseeis in breach of any of the terms and conditions of this Licence then Arm may terminate this Licence immediately upon givingwritten notice to Licensee. Licensee may terminate this Licence at any time. Upon termination of this Licence by Licensee or byArm, Licensee shall stop using the Document and destroy all copies of the Document in its possession. Upon termination of thisLicence, all terms shall survive except for the licence grants.
Any breach of this Licence by a Subsidiary shall entitle Arm to terminate this Licence as if you were the party in breach. Anytermination of this Licence shall be effective in respect of all Subsidiaries. Any rights granted to any Subsidiary hereunder shallautomatically terminate upon such Subsidiary ceasing to be a Subsidiary.
The Document consists solely of commercial items. Licensee shall be responsible for ensuring that any use, duplication ordisclosure of the Document complies fully with any relevant export laws and regulations to assure that the Document or anyportion thereof is not exported, directly or indirectly, in violation of such export laws.
This Licence may be translated into other languages for convenience, and Licensee agrees that if there is any conflict between theEnglish version of this Licence and any translation, the terms of the English version of this Licence shall prevail.
The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited (or itssubsidiaries) in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this document may be the
AES 00391.1 Extensions Alpha (Issue 0) Copyright© 2020, Arm Limited or its affiliates. All rights reserved.Non-confidential Page vi

ALPH
A

trademarks of their respective owners. No licence, express, implied or otherwise, is granted to Licensee under this Licence, to usethe Arm trade marks in connection with the Document or any products based thereon. Visit Arm’s website athttps://www.arm.com/company/policies/trademarks for more information about Arm’s trademarks.
The validity, construction and performance of this Licence shall be governed by English Law.
Copyright © 2020, Arm Limited or its affiliates. All rights reserved.

Arm Limited. Company 02557590 registered in England.
110 Fulbourn Road, Cambridge, England CB1 9NJ.

Arm document reference: LES-PRE-21585 version 4.0

AES 00391.1 Extensions Alpha (Issue 0) Copyright© 2020, Arm Limited or its affiliates. All rights reserved.Non-confidential Page vii

https://www.arm.com/company/policies/trademarks

ALPH
A

References
This document refers to the following documents.
Ref Document Number Title
[FF-M] DEN 0063 Arm® Platform Security Architecture Firmware Framework.https://pages.arm.com/psa-resources-ff.html
[PSA-SM] DEN 0079 PSA Security Model. https://pages.arm.com/psa-resources-sm.html
[PSA-TB] DEN 0072 PSA Trusted Boot and Firmware Update.https://pages.arm.com/psa-resources-tbfu.html
[TF-M] trustedfirmware.org, Trusted Firmware-M.https://git.trustedfirmware.org/trusted-firmware-m.git/about/
[GP-ROT] GlobalPlatform, Root of Trust Definitions and Requirements, v1.1,June 2018. https://globalplatform.org/wp-content/uploads/2018/07/GP_RoT_Definitions_and_Requirements_v1.1_PublicRelease-2018-06-28.pdf
[PSA-ITS] IHI 0087 PSA Storage API. https://pages.arm.com/psa-apis.html
[PSA-CRYPT] IHI 0086 PSA Cryptography API. https://pages.arm.com/psa-apis.html

Terms and abbreviations
This document uses the following terms and abbreviations.
Term Meaning
Application firmware The main application firmware for the platform, typically comprising aReal-Time OS (RTOS) and application tasks.
Application Root ofTrust This is the security domain in which additional security services areimplemented. See PSA Security Model [PSA-SM] for details.
Application RoT Service This is a Secure Partition RoT Service within the Application Root of Trustdomain.
Confused deputyattack This is a specific type of privilege escalation exploit, in which a privilegedcomponent acts on behalf of an unprivileged attacker without correctlyvalidating the request.
Connection-based RoTService This is the type of an Secure Partition RoT Service which uses a connectionwhen making requests. These provide a set of operations that have someshared resources or state managed by the RoT Service. See Stateless Root ofTrust services on page 31.

In version 1.0, all Secure Partition RoT Services are connection-based.
See also stateless RoT Service.

AES 00391.1 Extensions Alpha (Issue 0) Copyright© 2020, Arm Limited or its affiliates. All rights reserved.Non-confidential Page viii

https://pages.arm.com/psa-resources-ff.html
https://pages.arm.com/psa-resources-sm.html
https://pages.arm.com/psa-resources-tbfu.html
https://git.trustedfirmware.org/trusted-firmware-m.git/about/
https://globalplatform.org/wp-content/uploads/2018/07/GP_RoT_Definitions_and_Requirements_v1.1_PublicRelease-2018-06-28.pdf
https://globalplatform.org/wp-content/uploads/2018/07/GP_RoT_Definitions_and_Requirements_v1.1_PublicRelease-2018-06-28.pdf
https://globalplatform.org/wp-content/uploads/2018/07/GP_RoT_Definitions_and_Requirements_v1.1_PublicRelease-2018-06-28.pdf
https://pages.arm.com/psa-apis.html
https://pages.arm.com/psa-apis.html

ALPH
A

Table 2 (continued)
Term Meaning
connection handle A handle that is used to make requests to a connection-based RoT Service.

The handle value is returned by a successful connection to aconnection-based RoT Service.
See also stateless handle.

First-level interrupthandling (FLIH) This is a form of interrupt handling that is carried out immediately when theinterrupt exception takes place.
This can be a traditional, privileged interrupt handler, or a deprivilegedinterrupt handler.

FLIH See First-level interrupt handling.
FLIH context The execution context within the Secure Partition that is used to run a FLIHFunctions. See also FLIH Execution model on page 54.
FLIH function A function that is used to perform First-level interrupt handling for aninterrupt. An FLIH function runs in FLIH context.
I/O vector (iovec) An object that holds a memory reference. I/O vectors are used to passparameters from a client to a Secure Partition RoT Service. Input parametersare passed as a psa_invec, and output parameters as a psa_outvec.
IMPLEMENTATION DEFINED Behavior that is not defined by the this specification, but is defined anddocumented by individual implementations.

Firmware developers can choose to depend on IMPLEMENTATION DEFINEDbehavior, but must be aware that their code might not be portable to anotherimplementation.
InterProcessCommunication (IPC) The Firmware Framework for M specifies an IPC mechanism to provide acommunication channel for requests between isolated firmware partitions.
iovec See I/O vector.
IPC See InterProcess Communication.
IPC model The programming model and communication framework for Secure Partitionsthat is defined in version 1.0 of Arm® Platform Security Architecture FirmwareFramework [FF-M]. Each Secure Partition is programmed like a C program topoll for messages and other events, and respond to them.

See also Secure Function model and Library model.
JOP See Jump-oriented programming.
Jump-orientedprogramming (JOP) This is a computer security exploit technique that allows an attacker toexecute code in the presence of security defenses, for example executablespace protection and code signing.

AES 00391.1 Extensions Alpha (Issue 0) Copyright© 2020, Arm Limited or its affiliates. All rights reserved.Non-confidential Page ix

ALPH
A

Table 2 (continued)
Term Meaning
Library model This is a simple programming model and communication framework forsecurity services that is implemented in version 1.0 of the TrustedFirmware-M [TF-M] project.

The Library model is not compliant with Arm® Platform Security ArchitectureFirmware Framework [FF-M], but it has informed the extensions that areproposed in this document. See Comparison between FF-M and TF-Mframeworks on page 85.
See also IPC model and Secure Function model.

MPU Memory Protection Unit
Non-secure ProcessingEnvironment (NSPE) This is the security domain outside of the Secure Processing Environment. It isthe Application domain, typically containing the application firmware andhardware.
NSPE See Non-secure Processing Environment.
Panic An abnormal termination of an execution context in response to the invaliduse of a programming interface.
Partition manifest Metadata about a Partition describing the runtime resources and anyassignment of privilege.
PROGRAMMER ERROR An error that is caused by the misuse of a programming interface.

A PROGRAMMER ERROR is in the caller of the interface, but it is detected by theimplementer of the interface.
PSA Platform Security Architecture
PSA Immutable Root ofTrust The hardware, code and data that cannot be modified followingmanufacturing. See PSA Security Model [PSA-SM] for details.
PSA Root of Trust This defines the most trusted security domain within a PSA system. See PSASecurity Model [PSA-SM] for details.
PSA RoT Service This is an RoT Service within the PSA Root of Trust domain.

It is IMPLEMENTATION DEFINED whether a PSA RoT Service is a Secure PartitionRoT Service.
PSA Updatable Root ofTrust The Root of Trust firmware that can be updated following manufacturing. SeePSA Security Model [PSA-SM] for details.
Return-orientedprogramming (ROP) This is a computer security exploit technique that allows an attacker toexecute code in the presence of security defenses, for example executablespace protection and code signing.

AES 00391.1 Extensions Alpha (Issue 0) Copyright© 2020, Arm Limited or its affiliates. All rights reserved.Non-confidential Page x

ALPH
A

Table 2 (continued)
Term Meaning
rhandle A value that is associated with a specific Secure Partition RoT Serviceconnection by the RoT Service implementation. This value can be used to linka client connection with data or resources managed by the Secure Partition.

In version 1.0, this was referred to as a reverse handle. See Replace the term‘reverse handle’ with ‘rhandle’ on page 71.
Root of Trust (RoT) This is the minimal set of software, hardware and data that is implicitlytrusted in the platform — there is no software or hardware at a deeper levelthat can verify that the Root of Trust is authentic and unmodified. See Root ofTrust Definitions and Requirements [GP-ROT].
Root of Trust Service(RoT Service) A set of related security operations that are provided and protected within aRoot of Trust.

See also Secure Partition Root of Trust Service.
ROP See Return-oriented programming.
RoT See Root of Trust.
RoT Service See Root of Trust Service.
Second-level interrupthandling (SLIH) This is a form of interrupt handling that is deferred until after the interruptexception. This handling occurs within a thread context, and is subject tonormal scheduling.

See First-level interrupt handling.
Secure Function (SFN) A callback function in a Secure Partition that handles requests for a singleRoot of Trust Service. SFNs are used to implement RoT Services for SecurePartitions that are using the SFN model.
Secure Function model(SFN model) The programming model and communication framework for SecurePartitions that is defined in version 1.1 of Arm® Platform Security ArchitectureFirmware Framework [FF-M]. Each security service is a C function that isinvoked as a callback from the framework, in response to a call from a clientfunction. See Secure Functions on page 22.

See also IPC model and Library model.
Secure Partition An execution environment with protected runtime state within the SecureProcessing Environment.

A Secure Partition is a container for the implementation of one or moreSecure Partition RoT Services or one or more secure peripheral drivers.
A Secure Partition must either use the IPC model or the SFN model forimplementation of RoT Services.
Multiple Secure Partitions are allowed in a platform.

Secure PartitionManager (SPM) Part of the Firmware Framework that is responsible for isolating software inPartitions, managing the execution of software within Partitions, andproviding IPC between Partitions.

AES 00391.1 Extensions Alpha (Issue 0) Copyright© 2020, Arm Limited or its affiliates. All rights reserved.Non-confidential Page xi

ALPH
A

Table 2 (continued)
Term Meaning
Secure Partition Rootof Trust Service (SecurePartition RoT Service)

A Root of Trust Service that is implemented in a Secure Partition. Multiple RoTServices can coexist in a single Secure Partition.
A Secure Partition RoT Service uses either the SFN model or IPC modelcommunication framework to receive service requests from clients.

Secure Partition RoTService See Secure Partition Root of Trust Service.
Secure Partition threadcontext The main execution context within the Secure Partition.

∙ For a Secure Partition that is using the IPC model, this is the SecurePartition thread.
∙ For a Secure Partition that is using the SFN model, this is any SecureFunction within the Secure Partition.

Secure ProcessingEnvironment (SPE) This is the security domain that includes the PSA Root of Trust and theApplication Root of Trust domains.
Service ID (SID) Service Identification. The identifier used for a PSA RoT Service or anApplication RoT Service.
SFN See Secure Function.
SFN model See Secure Function model.
SID See Service ID.
SLIH See Second-level interrupt handling.
SPE See Secure Processing Environment.
SPM See Secure Partition Manager.
stateless handle A handle that is used to make requests to a stateless RoT Service.

The handle value is a compile-time constant which is defined by theframework implementation.
See also connection handle.

Stateless RoT Service This a type of Secure Partition RoT Service which does not need connections.These provide a set of standalone operations, and do not need a connectionto manage resources or state between separate RoT Service requests. SeeStateless Root of Trust services on page 31.
See also connection-based RoT Service.

Trusted Boot Trusted Boot is technology to provide a chain of trust for all the componentsduring boot. See PSA Trusted Boot and Firmware Update [PSA-TB].

AES 00391.1 Extensions Alpha (Issue 0) Copyright© 2020, Arm Limited or its affiliates. All rights reserved.Non-confidential Page xii

ALPH
A

Conventions
Typographical conventions
The typographical conventions are:
italic Introduces special terminology, and denotes citations.
monospace Used for assembler syntax descriptions, pseudocode, and source code examples.

Also used in the main text for instruction mnemonics and for references to other itemsappearing in assembler syntax descriptions, pseudocode, and source code examples.
SMALL CAPITALSUsed for some common terms such as IMPLEMENTATION DEFINED.

Used for a few terms that have specific technical meanings, and are included in the Termsand abbreviations.
Red text Indicates an open issue.
Blue text Indicates a link. This can be

∙ A cross-reference to another location within the document
∙ A URL, for example http://infocenter.arm.com

Numbers
Numbers are normally written in decimal. Binary numbers are preceded by 0b, and hexadecimal numbersby 0x.
In both cases, the prefix and the associated value are written in a monospace font, for example 0xFFFF0000.To improve readability, long numbers can be written with an underscore separator between every fourcharacters, for example 0xFFFF_0000_0000_0000. Ignore any underscores when interpreting the value of anumber.

Current status and anticipated changes
This document is at Alpha quality status which has a particular meaning to Arm of which the recipientmust be aware. An Alpha quality specification is made for the purpose of consultation, review andobtaining partner feedback. All aspects of the architecture remain SUBJECT TO CHANGE and it is notcommitted for product development. In particular instruction encodings and register field positions andvalues are not final. Some features may be removed, and new features may be added, however newfeatures of substantial complexity will not be added without prior consultation. In case of any apparentdiscrepancy or missing information, please contact Arm Limited.

Feedback
Arm welcomes feedback on its documentation.
Feedback on this book
If you have comments on the content of this book, send an e-mail to arm.psa-feedback@arm.com. Give:
AES 00391.1 Extensions Alpha (Issue 0) Copyright© 2020, Arm Limited or its affiliates. All rights reserved.Non-confidential Page xiii

http://infocenter.arm.com
mailto:arm.psa-feedback@arm.com

ALPH
A

∙ The title (Arm® Firmware Framework for M).
∙ The number and issue (AES 0039 1.1 Extensions Alpha (Issue 0)).
∙ The page numbers to which your comments apply.
∙ The rule identifiers to which your comments apply, if applicable.
∙ A concise explanation of your comments.

Arm also welcomes general suggestions for additions and improvements.

AES 00391.1 Extensions Alpha (Issue 0) Copyright© 2020, Arm Limited or its affiliates. All rights reserved.Non-confidential Page xiv

ALPH
A

1 Introduction
This document introduces a set of updates and extensions to the Arm® Platform Security ArchitectureFirmware Framework [FF-M] specification, designed to build on the capabilities provided in version 1.0.
When the proposed extensions are sufficiently stable to be classed as Beta, they will be integrated into theFF-M version 1.1 specification.
These extensions have been developed in conjunction with the Trusted Firmware-M [TF-M] project, whichis developing a reference implementation of the PSA firmware specifications.
A version 1.1 compliant implementation must include all features defined in FF-M version 1.1 that are notdescribed as being optional. See Framework features and permitted configurations on page 19.
Note
This version of the document includes Rationale commentary that provides background informationrelating to the design decisions that led to the current set of proposals. This enables the reader tounderstand the wider context and alternative approaches that have been considered.
The rationale is presented in green boxes, as this note is.

1.1 Objectives for version 1.1
There are three primary drivers for providing an update to version 1.0 of [FF-M]:

∙ A need for a security framework specification that can target a smaller, simpler system architecture.This kind of framework is demonstrated by the Library model in the Trusted Firmware-M [TF-M]project.
Ideally, there is continuity between this light-weight framework and the version 1.0 FirmwareFramework, making it easier to migrate RoT Service code between the different types of framework.

∙ The development of Secure Partition RoT Services using the version 1.0 Framework has highlightedsome optimization challenges for individual services or entire systems.
Improving efficiency for these use cases involves some reduction in flexibility or security mitigation.The extensions to the Framework defined in this proposal allow these trade-offs to be made at theappropriate level by the service developers and system integrators.

∙ The mechanism for handling secure interrupts within a Secure Partition in [FF-M] version 1.0 doesnot support low latency and bounded interrupt response time. Secure peripherals requiring thisbehavior can only be implemented within the SPM using an IMPLEMENTATION DEFINED mechanism inversion 1.0.
System robustness and security can be improved if low latency interrupt handling for theseperipherals can execute within the Secure Partition context.

AES 00391.1 Extensions Alpha (Issue 0) Copyright© 2020, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 15

ALPH
A

1.2 Compatibility
We have considered adopting the existing [TF-M] Library model as the light-weight framework for thisspecification. However, the design of the Library model in TF-M is not compatible with the [FF-M]interfaces, and is not compliant with all of the requirements for the Firmware Framework. A more detailedanalysis of these two frameworks is provided in Comparison between FF-M and TF-M frameworks onpage 85.
Instead, this proposal provides a suite of extensions to [FF-M] version 1.0 that together enable thecreation of a framework implementation which shares the design and efficiency characteristics of theTF-M Library model. Some of these extensions also provide opportunities for improving the efficiency ofSecure Partition RoT Services that use the version 1.0 framework interfaces.
The C language interfaces defined by version 1.1 of [FF-M] are backward compatible with version 1.0.Secure Partition source code that is written for version 1.0 will work on a version 1.1 framework thatprovides support for the IPC model defined in version 1.0. See also Framework features and permittedconfigurations on page 19.
The JSON schema for the manifest source files for version 1.1 is not directly compatible with version 1.0.To use any of the version 1.1 features, a Secure Partition manifest file will need to declare
"psa_framework_version": 1.1, and make the necessary changes required by the version 1.1 manifestdefinition. SeeMigrating Secure Partitions to version 1.1 on page 79.
Framework implementations that support Secure Partitions using the IPC model must support SecurePartition manifest files that declare "psa_framework_version": 1.0, and implement these Secure Partitionsas defined in version 1.0 of [FF-M].

1.3 Overview of new features
The definition of the new and updated features for the Firmware Framework assumes familiarity withversion 1.0 of [FF-M].
1.3.1 Secure Functions
This extension introduces the SFN model, which is an additional programming model for Secure Partitions.The existing programming model in version 1.0 is now referred to as the IPC model.
When the SFN model is selected for a Secure Partition, each of the RoT Services within the SecurePartition provides a handler function, referred to as a Secure Function (SFN). The SFN is invoked by theframework to process messages for the RoT Service.
For this kind of Secure Partition, the developer does not provide a signal handling loop. Instead, the SFNsare called directly by the framework, with the message as a parameter. The message is completed usingthe return value from the SFN.
The framework does not have to provide a dedicated execution context i.e (thread/stack) for a partitionusing the SFN model, as long as the isolation rules are satisfied for the implemented isolation level.
See Secure Functions on page 22.

AES 00391.1 Extensions Alpha (Issue 0) Copyright© 2020, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 16

ALPH
A

1.3.2 Stateless RoT Services
This extension introduces the option for a Secure Partition RoT Service to be a stateless RoT Service, as analternative to a connection-based RoT Service which is defined in version 1.0. This enables a much moreefficient implementation of RoT Services that do not make use of the connection-related features of theversion 1.0 interface.
When a Secure Partition RoT service is declared to be stateless in a Secure Partition manifest, the RoTService does not use connections:

∙ Clients cannot connect to the service using psa_connect().
∙ The service does not receive any connection or disconnection messages.
∙ Client’s invoke the service using a special handle value in a call to psa_call(), which is received bythe service as a request message.

Both connection-based RoT Services and stateless RoT Services can be used with either the IPC model orthe SFN model.
See Stateless Root of Trust services on page 31.
1.3.3 Memory-mapped IOVECS
This extension introduces the ability for Secure Partition RoT Service code to map client input and outputbuffer parameters into the Secure Partition, enabling direct access to the client memory. This is ofparticular efficiency concern in small systems where the following are true:

∙ The memory protection implemented in the framework already permits the SPE to access all of theclient memory.
∙ The footprint/runtime cost of transferring the client data to the SPE is prohibitive for the use case.This might be because the RoT Service can operate on the data “in place” in the NSPE, or isimplemented using hardware that can directly address the client memory.

However, direct access to client memory introduces security risks which the version 1.0 API prevents bydesign, and direct access to client memory may be complex on some systems, and impossible on others.
Support for this feature is optional, allowing each implementation to select a balance between efficiency,complexity and security that is appropriate for the system and use case.
SeeMemory-mapped IOVECs on page 39.
1.3.4 Support for peripheral drivers
This extension adds a number of improvements for implementing secure peripheral drivers in SecurePartitions:

∙ First-level interrupt handling (FLIH) is a de-privileged, low-latency, interrupt handling capability forSecure Partitions. This enables Secure Partitions to be used for peripheral drivers that require secureinterrupts to be handled within a bounded time.
∙ An API for managing interrupts supports FLIH and fills a gap in the version 1.0 API.

AES 00391.1 Extensions Alpha (Issue 0) Copyright© 2020, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 17

ALPH
A

∙ Accessors for MMIO registers ensure more portability between implementations and systemarchitectures.
See Enhancements for Secure Partition peripheral drivers on page 49.
1.3.5 Miscellaneous improvements
This extension includes clarifications and relaxations to terminology and APIs in the version 1.0specification as described inMiscellaneous changes on page 67.

AES 00391.1 Extensions Alpha (Issue 0) Copyright© 2020, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 18

ALPH
A

2 Framework features and permitted configurations
The version 1.1 extensions defines some features that are optional for implementations of the framework,and also permits some of the original version 1.0 features to be optional.
To enable the development of portable code that uses this framework, some feature discovery APIs aredefined. These make it possible for a Secure Partition RoT Service to select the appropriate API for theframework that it is being built for. See Discovering framework feature availability.
Optional features and APIs provide flexibility, enabling a framework implementor to optimize theframework for the specific system and use case. However, a flexible feature-set increases the complexityof Secure Partition RoT Service code that is portable between different framework implementations.
This document defines a permitted set of framework configurations, to balance these competingrequirements. A framework must match one of the permitted configurations to be compliant with version1.1 of FF-M. See Permitted configurations of FF-M version 1.1 on page 21.

2.1 Changes to the Programming API
2.1.1 Firmware framework version
PSA_FRAMEWORK_VERSION (macro)
This existing API is modified for version 1.1
An implementation of version 1.1 must report the value 0x0101.
psa_framework_version (function)
This existing API is modified for version 1.1
An implementation of version 1.1 must return the value 0x0101.
2.1.2 Discovering framework feature availability
Discovery mechanisms are introduced for optional features and features with varying levels of support.The discovery APIs are provided in a new header file psa/framework_feature.h.
An implementation of version 1.1 must provide an instance of psa/framework_feature.h, and include allrequired API elements.
The following pre-processor symbols are defined, to enable compile-time code variation:

∙ PSA_FRAMEWORK_ISOLATION_LEVEL

∙ PSA_FRAMEWORK_HAS_MM_IOVEC

To use these symbols in Secure Partition source code, include the psa/framework_feature.h header file.

AES 00391.1 Extensions Alpha (Issue 0) Copyright© 2020, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 19

ALPH
A

Note:
Pre-processor symbols are also defined for each Secure Partition, which indicate the communicationmodel specified in the Secure Partition manifest file. These value of these macros depends on the
model attribute in the Secure Partition manifest. See Secure Functions on page 22.

PSA_FRAMEWORK_ISOLATION_LEVEL (macro)
A pre-processor symbol that declares the isolation level implemented by the framework.
#define PSA_FRAMEWORK_ISOLATION_LEVEL /* implementation-defined value */

This macro must be defined by a version 1.1 implementation.
The IMPLEMENTATION DEFINED value of this macro indicates the isolation level, which is a value between 1 and
3.
See Arm® Platform Security Architecture Firmware Framework [FF-M] §3.1.3 Protection Domains for thedefinition of the three isolation levels.
PSA_FRAMEWORK_HAS_MM_IOVEC (macro)
A pre-processor symbol that declares the compile-time availability of the MM-IOVEC API.
#define PSA_FRAMEWORK_HAS_MM_IOVEC /* implementation-defined status */

This macro must be defined by a version 1.1 implementation that provides MM-IOVEC functionality.
We recommend that this macro is defined as 0 by a version 1.1 implementation that does not provideMM-IOVEC functionality. This improves portability of Secure Partition RoT Service code which uses thefeature.
The IMPLEMENTATION DEFINED value of this macro indicates the availability of the MM-IOVEC feature:
0 The MM-IOVEC API is not provided by the implementation
1 The MM-IOVEC API is provided by the implementation

SeeMemory-mapped IOVECs on page 39.
Usage
In portable code, PSA_FRAMEWORK_HAS_MM_IOVEC is used to select code that uses the MM-IOVEC feature forparameter access, instead of the psa-read() and psa_write() functions. For example:
#include "psa/framework_feature.h"

...

#if PSA_FRAMEWORK_HAS_MM_IOVEC
// use psa_map_invec() and psa_map_outvec() to access parameters

(continues on next page)

AES 00391.1 Extensions Alpha (Issue 0) Copyright© 2020, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 20

ALPH
A
(continued from previous page)

#else
// use psa_read() and psa_write() to access parameters

#endif

2.2 Permitted configurations of FF-M version 1.1
Version 1.1 introduces some optional features, and also makes a feature of version 1.0 optional for newimplementations.
The following features are optional for a version 1.1 implementation:

∙ Support for the IPC model.
∙ Support for the SFN model.
∙ Support for MM-IOVEC.
∙ Support for Secure Partitions within the PSA Root of Trust.

See the following sections for more details on these features:
∙ Secure Functions on page 22
∙ Memory-mapped IOVECs on page 39
∙ PSA RoT Services and Secure Partitions on page 68

An implementation is compliant with version 1.1 of FF-M if it implements all of the required features andAPIs, and meets the following constraints on the optional features and APIs:
∙ At least one of the SFN model and IPC model must be supported.
∙ If both of the SFN model and the IPC model are supported by the implementation, then theframework must support a hybrid system which includes Secure Partitions with different models.
∙ The framework support for MM-IOVEC is not constrained by this specification. Each implementationmakes an appropriate decision based on technical and security criteria.
∙ The framework support for PSA RoT Secure Partitions is not constrained by this specification. Eachimplementation makes an appropriate decision based on technical and security criteria.

AES 00391.1 Extensions Alpha (Issue 0) Copyright© 2020, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 21

ALPH
A

3 Secure Functions
This extension introduces the SFN model, which is an additional programming model for Secure Partitions.The existing programming model in version 1.0 is now referred to as the IPC model.

3.1 Background & rationale
The programming model in version 1.0 provides a significant level of control for the Secure Partitiondeveloper. The Secure Partition can process signals in any order, and can defer responding to a messagewhile continuing to process other signals. To provide this control, the framework has to maintain adedicated execution context for each Secure Partition.
Many RoT Services do not require this level of execution control. However, the programming model inversion 1.0 prevents an implementation from reducing these overheads, even in constrained systems thatonly require limited isolation.
The Trusted Firmware-M [TF-M] project provides an implementation of [FF-M], and refers to thisprogramming model as the IPC model.
TF-M also provides a much simpler abstraction for secure services. The programming model is basedaround a set of secure service functions, each of which handles requests from a corresponding client-sidefunction. TF-M refers to this service programming model as the Library model. This programming modelenables a very efficient framework implementation when the services all run within a single SPEprotection domain.
The Secure Function model reuses the concept of RoT Service callback functions from the TF-M Librarymodel, and integrates this into the FF-M Secure Partition architecture.
If all Secure Partitions use the SFN model, then the implementation is able to significantly reduce theframework overhead for systems that do not require high levels of isolation.

3.2 The Secure Function model
The Secure Function model (SFN model) is introduced as an alternative programming model for code withina Secure Partition. Each Secure Partition must either use the IPC model, which has the APIs andprogramming model defined in [FF-M] version 1.0, or the Secure Function model, which uses a modifiedAPI and manifest definition as defined in version 1.1.
3.2.1 Overview of the SFN model
The SFN model is a simpler programming model for developing Secure Partition RoT Services, incomparison with the IPC model. However, it is still suitable for many types of RoT Service.
The SFN model impacts some of the interfaces used to implement the service within the Secure Partition,while the Client API is identical for both models.
In a Secure Partition using the SFN model:

AES 00391.1 Extensions Alpha (Issue 0) Copyright© 2020, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 22

ALPH
A

∙ Secure services are implemented as Secure Functions (SFN) that are called by the framework whenthe client makes a request to the service.
∙ Each RoT Service within the Secure Partition has its own SFN.
∙ The framework calls an SFN in response to a client call to psa_connect(), psa_call(), or psa_close()for that RoT Service.
∙ The SFN is called with a psa_msg_t object that describes the client request, including the sameinformation as this object provides in the IPC model.
∙ The SFN accesses client parameters in the same way as the IPC model, using the psa_read() and

psa_write() APIs.
∙ The SFN return value is used as the response to the client message, instead of using psa_reply().

The following sections provide more specific changes to the programming model that is described in[FF-M] version 1.0 §3 Secure Processing Environment programming model.
3.2.2 Secure Partition execution
Execution of Secure Partitions for the IPC model is described in [FF-M] §3.2.3 Secure Partition execution.
In the SFN model, the Secure Partition is made up of a collection of callback functions:

∙ One optional initialization function, which is declared as the entry_init symbol in the SecurePartition manifest. See Secure Partition initialization function on page 24.
∙ A set of Secure Functions (SFN), one for every RoT Service that is defined in the Secure Partitionmanifest. The name of each SFN is based on the RoT Service name attribute provided in the manifest.

The framework implementation is responsible for invoking these callback functions in response to systemstartup or client calls to psa_connect(), psa_call() and psa_close() for an RoT Service within the SecurePartition.
An SFN becomes active when the framework calls it in response to a client request, and remains activeuntil the SFN returns. At most one SFN within a Secure Partition can be active at the same time. That is,while an SFN is active, no other SFN in the same Secure Partition will execute. This results insingle-threaded behavior within the Secure Partition, which is also provided by the IPC model.
The SFN model still uses Secure Partition signals for interrupts and the Secure Partition doorbell feature.To query the signal state or block until a specific signal is asserted, an SFN calls psa_wait(). If the SFNblocks while waiting, this prevents all other SFNs in that Secure Partition from running: see SchedulingSecure Partitions on page 24. If there is no active SFN, an asserted interrupt or doorbell signal does nottrigger code execution within the Secure Partition. The FLIH extension provides an alternative mechanismfor an interrupt to be handled within a Secure Partition using the SFN model, see Interrupts on page 26.
In the SFN model, the framework determines the order in which SFNs are called, when more than one hasan outstanding message.

Implementation note
The framework does not have to provide a dedicated execution context i.e (thread/stack) for apartition using the SFN model, as long as isolation rules are satisfied.

AES 00391.1 Extensions Alpha (Issue 0) Copyright© 2020, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 23

ALPH
A

Secure Partition initialization function
A Secure Partition using the SFN model can optionally provide an initialization function that is declared inthe manifest file using the entry_init attribute.
The initialization function has the following signature:
psa_status_t «entry_init»(void);

where «entry_init» is the value of the entry_init attribute.
This function is called prior to any other function in the Secure Partition, and can be used to performinitialization that is required before requests are made to the Secure Partition RoT Services. The SecurePartition initialization function is permitted to use the client API to call RoT Services in other SecurePartitions.
If the initialization function returns PSA_SUCCESS, the framework will enable all of the RoT Services for theSecure Partition.
If the initialization function returns any other status code, the framework will not call any Secure Functionwithin the Secure Partition.
The effect on the system of an initialization function reporting an error is IMPLEMENTATION DEFINED. If theframework does not halt or restart the system, a client that attempts to connect or call to any RoT Servicein the Secure Partition will receive the error PSA_ERROR_CONNECTION_REFUSED.

Note:
The initialization function must return, unlike entry_point in a Secure Partition using the IPC model.If the Secure Partition initialization is partially successful, then the recommended approach is asfollows:

∙ The initialization function returns PSA_SUCCESS, which enables the RoT Service SFNs.
∙ Individual RoT Services that cannot operate can respond with an appropriate error status whenclients try to connect to or use the RoT Service.

Rationale
The choice to have the initialization function return an error status, rather than panic on a critical failure,allows the framework implementation more flexibility in how to handle Secure Partition initializationerrors.

3.2.3 Scheduling Secure Partitions
The framework can allow different Secure Partitions to interleave execution. In particular, an SFN fromone Secure Partition can run concurrently with an SFN from a different Secure Partition. This capability is
IMPLEMENTATION DEFINED, as it is in version 1.0.
The definitions in [FF-M] version 1.0 §3.2.4 Scheduling Secure Partitions are updated or extended as follows:

∙ An SFN is pending if a client has made a request to the RoT Service, but the framework has not yetcalled the SFN.
AES 00391.1 Extensions Alpha (Issue 0) Copyright© 2020, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 24

ALPH
A

∙ An SFN is active if the framework has called the SFN, but the SFN has not yet returned from the call.
∙ A Secure Partition using the SFN model is idle after the Secure Partition initialization function hasbeen run and are no active or pending SFNs.
∙ A running Secure Partition using the SFN model becomes idle if the SFN returns and there are nopending SFNs.
∙ A running Secure Partition using the SFN model becomes ready-to-run if the SFN returns and there isat least one pending SFN. At this point the framework can select this Secure Partition to continuerunning or schedule a different ready-to-run Secure Partition.
∙ An idle Secure Partition becomes ready-to-run if one of the SFNs in the Secure Partition becomespending.
∙ When a ready-to-run Secure Partition that is using the SFN model is selected for execution, it willeither resume execution of an active SFN, if there is one, or the framework will select one of thepending SFNs to make active and start execution of that SFN.

3.2.4 Processing RoT Service messages
When a Secure Partition is using the SFN model, the connection, disconnection and request messages do notcause a Secure Partition signal to be asserted. Instead, the Secure Function (SFN) for the RoT Service isinvoked by the framework, with the message details provided as a parameter to the SFN.
The SFN must have the following signature:
psa_status_t «name»_sfn(const psa_msg_t* msg);

where «name» is the name of the RoT Service defined in the Secure Partition manifest.
A SFN processes the delivered message using the psa_read(), psa_write(), psa_skip(), and
psa_set_rhandle() functions. These functions operate the same way in both the SFN and IPC models.
When processing is complete, the return value from the SFN is used as the reply status for the message.
A SFN cannot use the psa_get() or psa_reply() functions, as this functionality is performed by theframework.
The behavior of the framework is otherwise identical for both IPC and SFN models:

∙ The RoT Service will receive connection, disconnection and request messages. See Stateless Root ofTrust services on page 31 for an extension that eliminates connection and disconnection messages forservices that do not need them.
∙ The handling of error responses, particularly PSA_ERROR_PROGRAMMER_ERROR.
∙ The use of psa_read(), psa_write(), psa_skip(), and psa_set_rhandle() functions to process messages.
∙ An SFN can use psa_wait() to wait for interrupt signals that are defined in the manifest, or theSecure Partition doorbell signal.

Implementation note
Conceptually, for a single service named SERVICE1 in a Secure Partition manifest, the frameworkbehaves as if it was the following IPC model entry point:

AES 00391.1 Extensions Alpha (Issue 0) Copyright© 2020, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 25

ALPH
A

void sp_main(void)
{

psa_msg_t msg;

for (;;)
{

psa_wait(SERVICE1_SIGNAL, PSA_BLOCK);
if (psa_get(SERVICE1_SIGNAL, &msg) == PSA_SUCCESS)

psa_reply(msg.handle, service1_sfn(&msg));
}

}

This example can be extended in the obvious way for Secure Partitions with more than one RoTService.
In practice, the framework can choose to implement this very differently. For example, by running
service1_sfn() directly on a common execution stack.
Warning: It is not recommended that an implementation copy this approach directly:

∙ It requires the RoT Services to have signals allocated that are visible to the Secure Partition.
∙ It requires that the Secure Partition is able to invoke the psa_get() and psa_reply()functions, which are defined to respond with a PROGRAMMER ERROR when used in a SecurePartition that is using the SFN model.

3.2.5 Interrupts
The definition of interrupts is the same for Secure Partitions using either the IPC model or the SFN model.
Interrupts in the SFN model behave the same way as interrupts sources in the IPC model, by allocating asignal value and causing a Secure Partition signal to be set when the interrupt occurs. To respond to aninterrupt in the SFN model, an SFN must call psa_wait() to query or block for the interrupt signal. The SFNmust call psa_eoi() to clear the signal when received, after interrupt processing is complete.
This permits an SFN to initiate a hardware operation and then wait for it to complete, without blocking theCPU.

Note:
Unlike the IPC model, a Secure Partition using the SFN model cannot respond to an interrupt signalunless it has an active SFN which calls psa_wait().

The Enhancements for Secure Partition peripheral drivers on page 49 extension in this update provides anadditional mechanism for responding to interrupts.

AES 00391.1 Extensions Alpha (Issue 0) Copyright© 2020, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 26

ALPH
A

3.2.6 Doorbell
The Secure Partition doorbell behaves the same way as in the IPC model, by causing the doorbell SecurePartition signal to be set when the notification is sent. The only way to respond to a doorbell in the SFNmodel is for an SFN to call psa_wait() to poll or block for the doorbell signal. The SFN must call psa_clear()to clear the signal.

3.3 Implementation options
Both the SFN model and the IPC model are optional in an implementation of version 1.1 of the FirmwareFramework, but at least one of them must be supported.
See Permitted configurations of FF-M version 1.1 on page 21 for the list of compliant configurations of all ofthe optional features in version 1.1.
If the framework supports Secure Partitions within the PSA Root of Trust, then the framework is permittedto only support a subset of the communication models for this type of Secure Partition. See also PSA RoTServices and Secure Partitions on page 68.
The framework defines pre-processor symbols that enable code to determine the model that is used for aspecific Secure Partition. This makes it simpler to develop RoT Service code that can be built into a SecurePartition using either the IPC model or the SFN model. See the Secure Partition manifest model attribute.

3.4 Selecting a Secure Partition model
The SFN model is recommended for a Secure Partition unless you have any of the following requirements:

1. The ability to defer completion of an RoT Service message, while continuing to service othermessages.
2. The ability to respond asynchronously to a doorbell or interrupt signal. This is often required inconjunction with requirement #1.
3. Control over the order in which RoT Service signals are processed.

Note that requirement 2 could be met instead using the Enhancements for Secure Partition peripheral driverson page 49 extension.

3.5 Changes to the Programming API
The changes to [FF-M] §4 Programming API are described in the following sections:

∙ Manifest changes
∙ Secure Partition API changes on page 29

3.5.1 Manifest changes
model (attribute)
New attribute at the top level of a Secure Partition manifest.

AES 00391.1 Extensions Alpha (Issue 0) Copyright© 2020, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 27

ALPH
A

Properties: Required, Unique.
This attribute declares which programming model is used in this Secure Partition. This attribute must takeone fot eh following values:

"IPC" The Secure Partition uses the IPC model
"SFN" The Secure Partition uses the SFN model

A manifest file that defines "psa_framework_version": 1.0 is implicitly using the IPC model.
The implementation reports an error if the selected model is not support by the framework.
Rationale
Defining this as an optional attribute which defaults to "IPC" is a possible alternative. Although this wouldmake migration of a manifest from v1.0 to v1.1 easier, it is better for the manifest to be explicit about theselection of programming model, and not depend on the reader knowing the default behavior.
The Secure Partition header file, psa_manifest/«manifest-filename».h, must include the definitions of
«name»_MODEL_IPC and «name»_MODEL_SFN, where «name» is the value of the name attribute in the SecurePartition manifest.
If the Secure Partition uses the IPC model, the following definitions are used:
#define «name»_MODEL_IPC 1
#define «name»_MODEL_SFN 0

If the Secure Partition uses the SFN model, the following definitions are used:
#define «name»_MODEL_IPC 0
#define «name»_MODEL_SFN 1

entry_point (attribute)
This existing attribute is only required for a Secure Partition using the IPC model. It must not be present ina Secure Partition using the SFN model, which uses the optional entry_init attribute instead.
entry_init (attribute)
New attribute at the top level of a Secure Partition manifest.
Properties: Optional, Unique.
This attribute indicates an optional entry point for an initialization function within a Secure Partition that isusing the SFN model. This attribute must not be present in a Secure Partition using the IPC model, see
entry_point.
If defined, the value of entry_init must be the C identifier of a function with the signature:

AES 00391.1 Extensions Alpha (Issue 0) Copyright© 2020, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 28

ALPH
A

psa_status_t «entry_init»(void);

C++ source files must use the extern "C" keyword if necessary.
Rationale
Reusing the existing entry_point attribute is not ideal, because these functions have different properties:
entry_init is optional, and it must return.

services (attribute)
The definition of RoT Services in the manifest is modified for the SFN model.
Service signals
In the SFN model, the implementation does not allocate a Secure Partition signal for each service, anddoes not define the identifier «name»_SIGNAL in the psa_manifest/«manifest-filename».h header file.
Service handlers
For a Secure Partition that uses the SFN model, each RoT Service has a Secure Function that implementsthe service. This function has the following prototype:
psa_status_t «name»_sfn(const psa_msg_t* msg);

The C identifier used for an SFN is constructed by adding the suffix _sfn to a lowercase version of the RoTService’s name attribute.
The Secure Partition header file, psa_manifest/«manifest-filename».h, must include the prototypedefinition of each RoT Service SFN.
The service developer defines the SFN using this identifier in their source code.
3.5.2 Secure Partition API changes
In a Secure Partition using the SFN model, there are no RoT Service signal identifiers defined by theframework in the Secure Partition header file.
psa_get (function)
This existing function is constrained to be used only in Secure Partitions using the IPC model.
It is a PROGRAMMER ERROR to call psa_get() in a Secure Partition that is using the SFN model.

Implementation note
This behavior naturally results from the existing requirement that the caller provides the signal valuefor exactly one RoT Service, and signal values are not defined for RoT Services in a Secure Partitionusing the SFN model.

AES 00391.1 Extensions Alpha (Issue 0) Copyright© 2020, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 29

ALPH
A

psa_reply (function)
This existing function is constrained to be used only in Secure Partitions using the IPC model.
It is a PROGRAMMER ERROR to call psa_reply() in a Secure Partition that is using the SFN model.
Instead, the message response status is provided to the framework as the return value from the SecureFunction.

AES 00391.1 Extensions Alpha (Issue 0) Copyright© 2020, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 30

ALPH
A

4 Stateless Root of Trust services
This extension introduces the option for a Secure Partition RoT Service to be a stateless RoT Service, as analternative to a connection-based RoT Service which is defined in version 1.0. This enables much moreefficient implementation of Secure Partition RoT Services that do not make use of the connection-relatedfeatures of the version 1.0 interface.
Stateless RoT Services are a required feature in an implementation of version 1.1.

4.1 Background and rationale
Many RoT Service APIs provide standalone operations that do not require any non-volatile state orresources to be maintained by the RoT Service itself, or do not expose any kind of context or session to thecaller of the API. For example, each function in the PSA Storage API [PSA-ITS] works atomically on thestored data.
To implement these functions as a Secure Partition RoT Service using the [FF-M] version 1.0 API, the clientside implementation of the service must use one of the following techniques:

1. In every function, use psa_connect() to connect to the RoT Service, use psa_call() to request theoperation, and then use psa_close() to release the connection handle.
2. Use psa_connect() to create a connection to the RoT Service once, and then store the connectionhandle for reuse by all the other service functions.

The first technique has a significant runtime overhead as it requires three calls to the SPM and the RoTService for every operation.
The second technique removes that overhead, but requires a reliable way for the client code to use aglobal or static variable to hold the connection handle.
The client code for an RoT Service might be used in an NSPE application, or in a Secure Partition. In manyinstances, the RoT Service will have multiple clients within a single system. Separate clients should notshare a single connection, as this conflicts with client identification and with client isolation requirements.
The result is that using a shared connection variable will not always have the right isolation and securityproperties for the service, depending on the framework implementation.
This analysis indicates that the version 1.0 framework is not sufficient to enable portable and efficientimplementation of standalone RoT Service operations.
The appendix, Implementing session-less RoT Services on page 89, provides a more detailed analysis of thischallenge, and the approach to solving it for version 1.1.

4.2 Programming model
In version 1.1, each Secure Partition RoT Service is either connection-based or stateless.
All Secure Partition RoT Services in version 1.0 were connection-based, the description in this chapterfocusses on the definition and behavior of stateless RoT Services.
AES 00391.1 Extensions Alpha (Issue 0) Copyright© 2020, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 31

ALPH
A

4.2.1 Overview of stateless RoT Services
The service type is defined in the Secure Partition manifest file when defining the RoT Service. A singleSecure Partition can contain both types of RoT Service.
Stateless RoT Services do not use connections:

∙ There is no call to psa_connect() or psa_close() by the client.
∙ There is no corresponding connection and disconnection message delivered to the RoT Service.
∙ The RoT Service cannot use the rhandle functionality.

Requests to the service are made by calling psa_call() using a fixed handle value for the RoT Service. Theidentifier name for the stateless RoT Service handle is defined by this specification, but the value of thathandle is IMPLEMENTATION DEFINED.
4.2.2 RoT Service identification
A connection-based RoT Service defines an RoT Service ID (SID). A client of the service uses this SID in acall to psa_connect(), before issuing requests to the service using the handle returned by psa-connect().See the services attribute in [FF-M] §4.1.1.
A stateless RoT Service does not require a client to call to psa_connect(), and the client does not use theSID to identify the service. Instead the client uses a special stateless handle for the RoT Service in the callto psa_call().
The stateless handle is declared by the framework in the psa_manifest/sid.hmanifest header file, alongsidethe SID. The stateless handle value is constructed by the framework in an IMPLEMENTATION DEFINED way.
The SID must still be defined for a stateless RoT Service. The SID can be used in a call to psa_version().
Rationale
The use of an IMPLEMENTATION DEFINED value for the stateless handle permits the framework to optimize therouting of the request to the Rot Service, and also incorporate information to validate the version of theRoT Service.
The alternative approach would be to define a different function that includes the SID, RoT Service versionand all of the request parameters. This cannot be optimized as effectively, because the SID value is definedby the RoT Service developer.
See stateless_handle for details on the specification and definition of the stateless handle for a statelessRoT Service.
4.2.3 RoT Service versioning
The version policy must still be enforced by the implementation when clients use a stateless handle tosend a request to a stateless RoT Service.
The mechanism used to validate the version of a stateless RoT Service is IMPLEMENTATION DEFINED.

AES 00391.1 Extensions Alpha (Issue 0) Copyright© 2020, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 32

ALPH
A

Implementation note
For example, the following techniques can be used, depending on the implementation design:

∙ If the implementation builds all of the clients, services and frameworks together, then theversion is assumed to match between the RoT Service client code and the RoT Serviceimplementation code.
∙ The framework encodes the service version into the stateless handle value, along with thestateless handle index.This enables the version expected by the client, which is compiled into the stateless handlevalue when the client was built, to be checked against the version running in theimplementation when psa_call() is invoked. The implementation might cache the last statelesshandle value used in order to elide the version checking on every call using a stateless handle.

4.2.4 Requesting stateless RoT Services
A client sends a request to a stateless RoT Service by using the stateless handle, defined in the
psa_manifest/sid.h manifest header file, with the psa_call() function.
All other parameters to a stateless RoT Service request are identical to the connection-based RoT Servicesdefined in version 1.0. See Requesting Services in [FF-M] §3.3.2. Using RoT Services.
4.2.5 Processing RoT Service messages
Processing messages for connection-based RoT Services is described in [FF-M] §3.3.3. Processing RoTService messages.
A stateless RoT Service does not receive a connection or disconnection message for any client.

Note:
A stateless RoT Service has no direct means to detect that a client has terminated or restarted.
In comparison, a connection-based RoT Service will receive a disconnection message from theframework if a client exits without explicitly closing the connection, or if the framework terminatesthe connection due to PROGRAMMER ERROR.

A stateless RoT Service only receives request messages from the framework, that correspond to a clientcalling psa_call(). The message type value is always >=0.
A stateless RoT Service cannot use the rhandle functionality that is available to connection-based RoTServices. The rhandle value in the message is always NULL, and the RoT Service must not call
psa_set_rhandle().
Except for the unavailable rhandle functionality, a stateless RoT Service processes the request message inthe same way as a connection-based RoT Service.

AES 00391.1 Extensions Alpha (Issue 0) Copyright© 2020, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 33

ALPH
A

Rationale
The main use case for a stateless RoT Service is to replace the use of temporary connections in everyrequest to the RoT Service.
One side effect of using a temporary connection for these use cases, is that the RoT Service cannoteffectively use the connection’s rhandle, because the connection itself is transient.
This makes the rhandle functionality redundant for this type of RoT Service.

4.2.6 Programmer Error
If a PROGRAMMER ERROR occurs when a request is sent to a stateless RoT Service, or during processing of therequest, there is no connection to terminate.
However, the response to the caller is the same as defined in [FF-M] §3.5.2. Programmer error:

∙ If the source of the PROGRAMMER ERROR is a Secure Partition, the SPM must panic the Secure Partitionin response to a PROGRAMMER ERROR.
∙ If the source of the PROGRAMMER ERROR is in the NSPE, the NSPE implementation of the Client APImust implement one of the following behaviors:

— Terminate the NSPE task or execution context that is the source of the PROGRAMMER ERROR.
— Return PSA_ERROR_PROGRAMMER_ERROR to the NSPE task that called psa_call().

If client execution continues after a PROGRAMMER ERROR, the client can make another call to the samestateless RoT Service using the stateless handle.
4.2.7 Comparison of service types

Table 4 Comparison of connection-based and stateless services
Action/item Connection-based RoT Service Stateless RoT Service
Connection Explicit call to psa_connect() with theservice SID and version from

psa_manifest/sid.h.
Implicit.
Calling psa_connect() with a statelessservice SID is a PROGRAMMER ERROR.

Connectionmessage Delivered to the service for each call to
psa_connect(). The service can accept orrefuse the connection.

Not used.

rhandle Calling psa_set_rhandle() on a connectionor request message will set the rhandlevalue, which will be returned in the rhandlemember of any future messages receivedon that connection.

Calling psa_set_rhandle() is a PROGRAMMER
ERROR.
The rhandle value in a received message isalways NULL.

Makingrequests Call psa-call() using a connection handlethat was returned by a successful call to
psa_connect().

Call psa_call() using a stateless handle thatis defined by the framework in thegenerated psa_manifest/sid.h header file.
AES 00391.1 Extensions Alpha (Issue 0) Copyright© 2020, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 34

ALPH
A

Table 4 (continued)
Action/item Connection-based RoT Service Stateless RoT Service
Requestmessages Delivered to service with type and iovecsfrom client, and rhandle value from a callto psa_set_rhandle() on a prior message.

Delivered to service with type and iovecsfrom client, and rhandle is NULL.
PROGRAMMER
ERROR

Replying to a message with
PSA_ERROR_PROGRAMMER_ERROR will terminatethe connection, causing a disconnectionmessage to be received.
The client call might not return, or mightreturn the error code leaving theconnection in an error state.

A client call which is replied with
PSA_ERROR_PROGRAMMER_ERROR might notreturn, or might return the error code.

Disconnection Calling psa_close() with a connectionhandle will explicitly disconnect theconnection.
Connections can be disconnected by theservice by responding to a message with
PSA_ERROR_PROGRAMMER_ERROR.
Connections might be disconnected by theframework when the client terminates.

Calling psa_close() with a stateless handleis a PROGRAMMER ERROR.
The service is not informed if a clientterminates.

Disconnectionmessages Delivered to the service when theconnection is closed for any reason. Not used.

4.3 Selecting the RoT Service type
Both connection-based RoT Services and stateless RoT Services can be used with either the IPC model orthe SFN model. See Secure Functions on page 22.
It is recommended to define a Secure Partition RoT Service as stateless, if it consists entirely of stand-alonefunctions. This avoids the need for transient connections, and the performance overhead that these incur.
If the API exposes some form of context to the client, and this can be used to manage a connectionhandle, it is recommended that the RoT Service is connection-based. Using a connection does not requireone of the limited number of stateless handle indexes in the framework.
If the RoT Service manages volatile state for the client, it is recommended that the RoT Service isconnection-based. This allows the RoT Service implementation to utilise the rhandle functionality tomanage resources for the client.

4.4 Changes to the Programming API
The changes to [FF-M] §4 Programming API are described in the following sections:

∙ Manifest changes on page 36
∙ Client API changes on page 37
∙ Secure Partition API changes on page 37

AES 00391.1 Extensions Alpha (Issue 0) Copyright© 2020, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 35

ALPH
A

4.4.1 Manifest changes
connection_based (attribute)
This is a required attribute for service definitions in a Secure Partition manifest that is using
"psa_framework_version": 1.1.
connection_based is a boolean attribute, and can take the value true or false:

true The service is a connection-based service
false The service is stateless service

stateless_handle (attribute)
This is an optional attribute for service definitions in the Secure Partition manifest which define a statelessRoT Service. A connection-based RoT Service must not have a stateless_handle attribute.
If specified, stateless_handle must either be "auto" or a small positive number between 1 and an
IMPLEMENTATION DEFINED maximum value.
The stateless_handle specifies a stateless handle index, which is used by the implementation to constructthe stateless handle value for this RoT Service.
If the manifest defines a stateless_handle to be "auto", the implementation allocates a stateless handleindex for this service. This is also the default behavior if there is no stateless_handle attribute specified fora stateless RoT Service.
The implementation must support at least 32 stateless handle indexes.
The stateless handle index for a stateless RoT Service must be unique within the system, whether theindex is defined in the manifest or allocated by the implementation.
The implementation defines a macro for the stateless handle in psa_manifest/sid.h, of the following form:
#define «name»_HANDLE ((psa_handle_t) «stateless_handle_value»)

where «name» is the name of the service and the «stateless_handle_value» is constructed by theimplementation, using the stateless handle index.
This stateless handle is used by a client when making requests to the service.

Implementation note
The stateless_handle attribute has the following JSON definition:
"stateless_handle": {

"description": "Optional: The index for a stateless handle for this service.",
"anyOf": [
{ "$ref": "#/definitions/positive_integer_or_hex_string" },
{ "const": "auto" }
]

}

AES 00391.1 Extensions Alpha (Issue 0) Copyright© 2020, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 36

ALPH
A

4.4.2 Client API changes
psa_connect (function)
This existing function is constrained to be used only for connection-based RoT Services.
The sid passed to psa_connect() must be the SID of a connection-based RoT Service.
Calling psa_connect() with the SID of a stateless RoT Service is a PROGRAMMER ERROR.
The handle returned by a successful call to psa_connect() is a connection handle.
psa_call (function)
This existing function works with both stateless and connection-based RoT Services.
The type of handle passed to psa_call() depends on the type of RoT Service being requested:

∙ For a stateless RoT Service, handlemust be a stateless handle that is defined in the psa_manifest/sid.hfile.
∙ For a connection-based RoT Service, handle must be a connection handle that was returned by aprevious call to psa_connect().

psa_close (function)
This existing function is constrained to be used only for connection-based RoT Services.
The handle passed to psa_close() must either be the null handle, or a connection handle returned by aprevious call to psa_connect().
Passing a stateless handle to psa_close() is a PROGRAMMER ERROR.
4.4.3 Secure Partition API changes
psa_msg_t (type)
This existing type behaves differently for stateless RoT Services.
The rhandle member of the psa_msg_t object received by a stateless RoT Service is always NULL.
psa_set_rhandle (function)
This existing function is constrained to be used only for connection-based RoT Services.
Calling psa_set_rhandle() on a message for a stateless RoT Service is a PROGRAMMER ERROR and will notreturn.
Replying to a request message with PSA_ERROR_PROGRAMMER_ERROR
Replying to a message for a stateless RoT Service with PSA_ERROR_PROGRAMMER_ERROR has no effect on theservice, as there is no connection to terminate abnormally. This has the same effect on the client as for aconnection-based service.

AES 00391.1 Extensions Alpha (Issue 0) Copyright© 2020, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 37

ALPH
A

Note:
The API for replying to a message depends on the Secure Partition model:

∙ In a Secure Partition that is using the IPC model, call psa_reply() with the message status.
∙ In a Secure Partition that is using the SFN model, return from the Secure Function with themessage status.

See Secure Functions on page 22.

AES 00391.1 Extensions Alpha (Issue 0) Copyright© 2020, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 38

ALPH
A

5 Memory-mapped IOVECs
This extension introduces the ability for Secure Partition RoT Service code to map the client input and outputbuffer parameters into the Secure Partition, enabling direct access to the buffer memory in the client.
Direct access to parameter data in the client is of value, especially in small systems, where the overhead ofcopying buffers of data into the Secure Processing Environment could be prohibitive.
This extension is calledMemory mapped iovecs (MM-IOVEC), in reference to the input and output vectorsused to pass parameters to an RoT Service.
The new APIs defined in this section are optional in an implementation of version 1.1. The new featurediscovery APIs enable portable Secure Partition RoT Service code to use the MM-IOVEC functionality insystems that support MM-IOVEC. See Discovering framework feature availability on page 19.

5.1 Background and rationale
The Secure Partition API in Arm® Platform Security Architecture Firmware Framework [FF-M] provides nodirect access from a Secure Partition RoT Service to the client input and output vectors. Instead, RoTServices have to read from an input vector into their own memory, and write to an output vector fromtheir own memory, using the provided Secure Partition API.
This approach is aligned with the design goals for version 1.0:

∙ It enables the framework to be implemented on systems where the SPE cannot directly access someor all of the NSPE memory. For example, in a System-on-Chip where the NSPE is using a 40-bitphysical address space and the SPE is running on a 32-bit CPU that can only address a 32-bit addressspace.
∙ It prevents many common errors in secure service implementation, that frequently lead toexploitable vulnerabilities. The API design prevents services from introducing double-fetch, bufferoverflow, alignment and access validation failure vulnerabilities — mitigating these is done by theframework implementation.
∙ It discourages passing a pointer within the input vector, which then points to other data in the client.This technique will not work if the SPE cannot access NSPE memory, or if the client and the RoTService are configured with different memory address translation.

The Library model in the Trusted Firmware-M [TF-M] project provides a much simpler framework fordeveloping security services, in which a security service is provided with pointers to the client parameters.This is better suited to constrained devices, as directly accessing client memory does not require theservice to copy an input vector into the security service memory before using it.
The threat model that is used by FF-M assumes that the attacker can execute arbitrary code in the NSPE.This requires that the service developer consider the threats that are posed by the attacker being incontrol of the location and content of the client input and output vectors passed to the service:

∙ The memory location of the vector might not be within the client’s accessible memory.

AES 00391.1 Extensions Alpha (Issue 0) Copyright© 2020, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 39

ALPH
A

∙ The memory location of the vector might not be accessible by the RoT Service, or have the correctaccess permissions.
∙ Reading the same memory address twice might not produce the same result.
∙ The pointer might not be aligned in the expected way, that is, the natural structure alignmentprovided by the C compiler.
∙ Incorrect service code can cause a read or write outside of the supplied buffer.

In practice, writing services securely in the Library model requires that the developers copy most inputvectors from the client into their own memory to mitigate these risks — eliminating the apparent benefit ofdirect access to the memory.
However, The following use cases can benefit significantly from being able to directly read input vectorsand write output vectors in the client memory:

∙ Processing of large data buffers, for example, by cryptographic algorithms.
∙ Transferring data through multiple Secure Partitions, potentially processed at each step. Direct clientmemory access would avoid the need to have additional copies of data at each stage in the chain.

5.2 Programming model
The version 1.0 APIs for accessing client input and output vectors, psa_read() and psa_write(), arerequired for a version 1.1 implementation.
MM-IOVEC is an additional mechanism for accessing the content of client input and output vectors to theSecure Partition RoT Service. Direct mapping of client input and output vectors into the Secure Partitionprovides a memory and runtime optimization for larger buffers, but reduces mitigation for commonsecurity vulnerabilities, and can reduce the effective isolation provided by the framework.
A Secure Partition RoT Service cannot mix the use of the existing read and write functions with theMM-IOVEC functions when accessing an input or output vector. This avoids complex interactionsbetween these different access mechanisms, and simplifies the implementation.
5.2.1 Implementation flexibility
Support for MM-IOVEC is optional in an implementation of the framework. There are various reasons foran implementation to exclude support for MM-IOVEC, for example:

∙ Direct mapping of client memory can be inefficient, or even impossible, for otherwise compliantimplementations of [FF-M].
∙ Direct access to client memory might be denied by the security requirements for the system.

The MM-IOVEC discovery API provides a mechanism for Secure Partition RoT Service developers todetermine if the implementation supports MM-IOVEC. This enables compile-time variation of RoT Servicecode to select the best access mechanism. See Discovering framework feature availability on page 19.
5.2.2 Typical deployment scenarios
The MM-IOVEC API and the discovery API is designed to support the following frameworkimplementation scenarios:
AES 00391.1 Extensions Alpha (Issue 0) Copyright© 2020, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 40

ALPH
A

1. A system that cannot or must not permit security services to have direct access to client memory.This can be a result of technical limitations of the platform, or security requirements for the product.
The framework implementation reports that the MM-IOVEC functionality is not present, and theMM-IOVEC APIs are not provided by the implementation.

2. A constrained system that uses isolation level 1, where all code within the SPE can access data in theSPE and NSPE.
The framework implementation provides an implementation of the MM-IOVEC functionality.
There is little cost to the framework to provide direct access to client input and output vectors,because the memory access is already permitted. The MM-IOVEC interface is simple to implementand has no runtime failure modes.

3. A more complex system that can dynamically create mappings for client input and output vectorswhen requested through the MM-IOVEC API.
The framework implementation can provide an implementation of the MM-IOVEC functionality, if itguarantees that any mapping request will succeed.
If it is not possible to guarantee that the mapping can be created for a valid MM-IOVE request, thenthe implementation does not provide MM-IOVEC functionality. For example, if the mapping wouldrequire dynamic allocation of memory, or the use of another limited, shared resource.

5.2.3 RoT Service configuration
Direct access to client memory can provide a powerful way to escalate an attack against an RoT Service. Toreduce the attack surface for Secure Partition RoT Services that do not use MM-IOVEC, a Secure PartitionRoT Service must explicitly enable the functionality using the mm_iovec attribute within the servicespecification in the Secure Partition manifest file. See Enabling the MM-IOVEC API on page 42.
The mm_iovec attribute has no effect if the framework does not support MM-IOVEC.
5.2.4 Accessing client input and output vectors
If the implementation supports MM-IOVEC, a Secure Partition RoT Service which has enabled MM-IOVECcan use either MM-IOVEC or the existing psa_read() and psa_write() functions to access each input oroutput vector.
Once an input or output vector has been accessed using the psa_read(), psa-skip(), or psa_skip() function,the vector cannot be mapped using MM-IOVEC functions.
Similarly, once an input or output vector has been mapped using an MM-IOVEC function, the vectorcannot be accessed using the psa_read(), psa_skip(), or psa_write() functions.
It is a PROGRAMMER ERROR to try and map a zero-length input or output vector.
The framework unmaps an input or output vector either in response to an unmapping call from the RoTService, or automatically when message processing is completed.
An explicit unmapping call is required for output vectors when the RoT Service has written data into theoutput vector, to report the number of bytes written to the client. If no unmapping call is made, outputvectors will report that no data has been written to the client.
Explicitly unmapping other input and output vectors is optional. In some framework implementations, thiscan release framework resources that are required to create the mapping.
AES 00391.1 Extensions Alpha (Issue 0) Copyright© 2020, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 41

ALPH
A

5.2.5 Interaction with the isolation model
In an implementation that provides a high level of isolation, MM-IOVEC provides a mechanism that canconflict with the isolation rules. For example:

∙ In a system using isolation level 3, a Secure Partitions is not permitted to access another SecurePartition’s Private data. MM-IOVEC can provide a mechanism for one Secure Partition to access theother’s Private data.
∙ In a system that implements isolation rule I6 (see [FF-M] §3.1.5), only the SPM is permitted to accessmemory in another protection domain when required. MM-IOVEC can provide access from a SecurePartition directly to client memory.

Access to an input or output vector’s buffer for the duration of the call is expected by the client, so thisdoes not itself present a new attack surface. However, the mechanisms that an implementation uses tomap input and output vectors can be imprecise. That is, the mapping mechanism can provide more accessthan is strictly required. Hardware limitations that can impact mapping precision include the followingexamples:
∙ The Memory Protection Unit (MPU) used to control access has size and alignment constraints, sothat all regions must start and end on 32-byte boundaries. Other memory mapping techniques canhave much larger alignment requirements, such as the 4096-byte pages in the Armv7-A virtualmemory architecture.
∙ The MPU used to control access cannot provide write-only permission, so any existing data in anoutput vector can be read by the RoT Service.

It is IMPLEMENTATION DEFINED how such imprecise mappings are handled by the implementation. The decisionto permit imprecise mappings depends on the security requirements for the system, and the nature of theadditional access.
An implementation that provides MM-IOVEC functionality must document its behavior when an input oroutput vector mapping is imprecise.

5.3 Changes to the Programming API
5.3.1 Discovering MM-IOVEC availability
See Discovering framework feature availability on page 19.
5.3.2 Enabling the MM-IOVEC API
A new manifest attribute is introduced in version 1.1 manifest files. The implementation must accept thisattribute in a manifest file, whether or not the framework implements MM_IOVEC.
To use this API in a Secure Partition RoT Service, the service definition in the Secure Partition manifest filemust include the attribute mm_iovec, with the value "enable".
mm_iovec (attribute)
This is an optional attribute for service definitions in a Secure Partition manifest that is using
"psa_framework_version": 1.1.
AES 00391.1 Extensions Alpha (Issue 0) Copyright© 2020, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 42

ALPH
A

mm_iovec takes one of the following values:
"enable" If the framework supports MM-IOVEC, then the MM-IOVEC APIs are enabled formessages to the RoT Service.
"disable" If the framework supports MM-IOVEC, then using the MM-IOVEC APIs for messages tothe RoT Service is a PROGRAMMER ERROR.

This is the default value if the mm_iovec attributes is not specified.

5.3.3 Mapping RoT Service IO vectors
The MM-IOVEC Secure Partition API, for mapping and unmapping Secure Partition RoT Service input andoutput vectors. The following API elements are added to psa/service.h:

∙ psa_map_invec()

∙ psa_unmap_invec()

∙ psa_map_outvec()

∙ psa_unmap_outvec()

psa_map_invec (function)
Map a client input vector for direct access by a Secure Partition RoT Service.
const void * psa_map_invec(psa_handle_t msg_handle,

uint32_t invec_idx);

Parameters
msg_handle Handle for the client’s message.
invec_idx Index of the input vector to map. Must be less than PSA_MAX_IOVEC.

Returns: const void *

A pointer to the input vector data.
Programmer Error
The call is a PROGRAMMER ERROR if one or more of the following are true:

∙ MM-IOVEC has not been enabled for the RoT Service that received the message.
∙ msg_handle is invalid.
∙ msg_handle does not refer to a request message.
∙ invec_idx >= PSA_MAX_IOVEC

∙ The input vector has length zero.
∙ The input vector has already been mapped using psa_map_invec().
∙ The input vector has already been accessed using psa_read() or psa_skip().

A PROGRAMMER ERROR will panic the caller.
AES 00391.1 Extensions Alpha (Issue 0) Copyright© 2020, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 43

ALPH
A

Availability
The API is optional in version 1.1. Use PSA_FRAMEWORK_HAS_MM_IOVEC to determine the availability of thisfunction.
To call this function, the MM-IOVEC functionality must be enabled for the RoT Service using the mm_iovecattribute in the Secure Partition manifest file.
Description
This function will provide a mapping of a non-zero length client input vector in the RoT Service addresscontext, allowing the service to read the vector data directly.
Warning: Using this API exposes the RoT Service to vulnerabilities caused by invalid assumptionsabout the input vector data, or errors in the RoT Service code. For example:

∙ Reading the same memory address twice can produce different results.
∙ The pointer can be incorrectly aligned for the data type being accessed.
∙ Incorrect RoT Service code can cause an undetected read outside of the client input vector.

It is a PROGRAMMER ERROR to call this function if the length of the input vector is zero.
The RoT Service must not read more data than specified by the input vector size. The input vector size isprovided in the corresponding in_size[] element in the request’s psa_msg_t object.
When the RoT Service has finished processing the input vector, it can remove the mapping by calling
psa_unmap_invec() with the same message handle and input vector index.
When the message processing is completed, the framework removes all input vector mappings for thatmessage.
psa_unmap_invec (function)
Unmap a previously mapped client input vector from a Secure Partition RoT Service.
void psa_unmap_invec(psa_handle_t msg_handle,

uint32_t invec_idx);

Parameters
msg_handle Handle for the client’s message.
invec_idx Index of the input vector to unmap. Must be less than PSA_MAX_IOVEC.

Returns: void
Programmer Error
The call is a PROGRAMMER ERROR if one or more of the following are true:

∙ msg_handle is invalid.
∙ msg_handle does not refer to a request message.
∙ invec_idx >= PSA_MAX_IOVEC

AES 00391.1 Extensions Alpha (Issue 0) Copyright© 2020, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 44

ALPH
A

∙ The input vector has not been mapped by a call to psa_map_invec().
∙ The input vector has already been unmapped by a call to psa_unmap_invec().

A PROGRAMMER ERROR will panic the caller.
Availability
The API is optional in version 1.1. Use PSA_FRAMEWORK_HAS_MM_IOVEC to determine the availability of thisfunction.
To call this function, the MM-IOVEC functionality must be enabled for the RoT Service using the mm_iovecattribute in the Secure Partition manifest file.
Description
This function will remove a previously successful mapping of a client input vector from the RoT Serviceaddress context.
Following this call, the RoT Service must not read from the input vector memory.
If psa_unmap_invec() is not called for an input vector that has been mapped, the framework will remove themapping automatically when the message is completed.
psa_map_outvec (function)
Map a client output vector for direct access by a Secure Partition RoT Service.
void * psa_map_outvec(psa_handle_t msg_handle,

uint32_t outvec_idx);

Parameters
msg_handle Handle for the client’s message.
outvec_idx Index of the output vector to map. Must be less than PSA_MAX_IOVEC.

Returns: void *

A pointer to the output vector data.
Programmer Error
The call is a PROGRAMMER ERROR if one or more of the following are true:

∙ MM-IOVEC has not been enabled for the RoT Service that received the message.
∙ msg_handle is invalid.
∙ msg_handle does not refer to a request message.
∙ outvec_idx >= PSA_MAX_IOVEC

∙ The output vector has length zero.
∙ The output vector has already been mapped using psa_map_outvec().
∙ The output vector has already been accessed using psa_write().

A PROGRAMMER ERROR will panic the caller.

AES 00391.1 Extensions Alpha (Issue 0) Copyright© 2020, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 45

ALPH
A

Availability
The API is optional in version 1.1. Use PSA_FRAMEWORK_HAS_MM_IOVEC to determine the availability of thisfunction.
To call this function, the MM-IOVEC functionality must be enabled for the RoT Service using the mm_iovecattribute in the Secure Partition manifest file.
Description
This function will provide a mapping of a non-zero length client output vector in the RoT Service addresscontext, allowing the service to write the output vector data directly.
Warning: Using this API exposes the RoT Service to vulnerabilities caused by invalid assumptionsabout the output vector data, or errors in the RoT Service code. For example:

∙ Reading the same memory address twice can produce different results.
∙ The pointer can be incorrectly aligned for the data type being accessed.
∙ Incorrect RoT Service code can cause an undetected read or write outside of the client outputvector.

It is a PROGRAMMER ERROR to call this function if the length of the output vector is zero.
The RoT Service must not write more data than specified by the output vector size. The output vector sizeis provided in the corresponding out_size[] element in the request’s psa_msg_t object.
When the RoT Service has finished processing the output vector, it can remove the mapping and reportthe number of bytes written by calling psa_unmap_outvec() with the same message handle, output vectorindex, and the number of bytes written.
When the message processing is completed, the framework removes all output vector mappings for thatmessage. Any output vectors that are still mapped will report that zero bytes have been written.
psa_unmap_outvec (function)
Unmap a previously mapped client output vector from a Secure Partition RoT Service.
void psa_unmap_outvec(psa_handle_t msg_handle,

uint32_t outvec_idx,
size_t len);

Parameters
msg_handle Handle for the client’s message.
outvec_idx Index of the output vector to unmap. Must be less than

PSA_MAX_IOVEC.
len The number of bytes written to the output vector. This must be lessthan or equal to the size of the output vector.

AES 00391.1 Extensions Alpha (Issue 0) Copyright© 2020, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 46

ALPH
A

Returns: void
Programmer Error
The call is a PROGRAMMER ERROR if one or more of the following are true:

∙ msg_handle is invalid.
∙ msg_handle does not refer to a request message.
∙ outvec_idx >= PSA_MAX_IOVEC

∙ len is greater than the output vector size.
∙ The output vector has not been mapped by a successful call to psa_map_outvec().
∙ The output vector has already been unmapped by a call to psa_unmap_outvec().

A PROGRAMMER ERROR will panic the caller.
Availability
The API is optional in version 1.1. Use PSA_FRAMEWORK_HAS_MM_IOVEC to determine the availability of thisfunction.
To call this function, the MM-IOVEC functionality must be enabled for the RoT Service using the mm_iovecattribute in the Secure Partition manifest file.
Description
This function will remove a previously successful mapping of a client output vector from the RoT Serviceaddress context, and update the caller’s psa_outvec structure with the number of bytes written to theoutput vector.
Following this call, the service must not write to the output vector memory.
If psa_unmap_outvec() is not called for an output vector that has been mapped, the framework will removethe mapping automatically when the message is completed. In this situation, the caller’s psa_outvecstructure is updated to state that zero bytes have been written to the output vector.

Note:
The API makes it possible for the RoT Service to write more bytes to the mapped output vector thanit claims in the call to psa_unmap_outvec(), or to write less bytes than reported. When using
psa_write(), the bytes in the buffer up to the number reported in the caller’s psa_outvec are writtenby the RoT Service, and those after that point are typically unmodified.
However, [FF-M] makes no guarantee that buffer contents after psa_outvec::len are unmodified by
psa_call(). PSA Cryptography API [PSA-CRYPT] §5.2.3 specifically says this region content is“unspecified”.

5.3.4 Changes to existing Secure Partition APIs
psa_read (function)
This existing function cannot be used after an input vector has been mapped using MM-IOVEC.
It is a PROGRAMMER ERROR to call psa_read() for an input vector that has been mapped using psa_map_invec().
AES 00391.1 Extensions Alpha (Issue 0) Copyright© 2020, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 47

ALPH
A

psa_skip (function)
This existing function cannot be used after an input vector has been mapped using MM-IOVEC.
It is a PROGRAMMER ERROR to call psa_skip() for an input vector that has been mapped using psa_map_invec().
psa_write (function)
This existing function cannot be used after an output vector has been mapped using MM-IOVEC.
It is a PROGRAMMER ERROR to call psa_write() for an output vector that has been mapped using
psa_map_outvec().

AES 00391.1 Extensions Alpha (Issue 0) Copyright© 2020, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 48

ALPH
A

6 Enhancements for Secure Partition peripheral drivers
This extension adds the following support for implementing secure peripheral drivers in Secure Partitions:

∙ First-level interrupt handling (FLIH) is a de-privileged, low-latency, interrupt handling capability forSecure Partitions. This enables Secure Partitions to be used for peripheral drivers that require secureinterrupts to be handled within a bounded time.
∙ An API for managing interrupts supports FLIH and fills a gap in the version 1.0 API.
∙ Accessors for MMIO registers ensure more portability between implementations and systemarchitectures.

These features are required in an implementation of version 1.1 of FF-M.
Note:
This extension does not provide a standard framework for running secure interrupt handlers inprivileged modes - this remains an implementation-specific option, and is not recommended ingeneral for systems that provide high levels of isolation.

6.1 Background and rationale
Arm® Platform Security Architecture Firmware Framework [FF-M] version 1.0 provides some support forhandling interrupts within a Secure Partition.
However, the API presents two significant issues for implementing peripheral drivers in many use cases:

∙ The signal-based mechanism in version 1.0 makes it difficult to write drivers that need interrupts tobe handled in a bounded time. Interrupt handling code runs within a Secure Partition thread, which issubject to delays due to scheduling of other threads and due to completion of current activity withinthe Secure Partition thread.
∙ The simple interface in v1.0 assumes that the Secure Partition will not need to manage the interrupt,except via the peripheral’s own memory-mapped register interface. This assumption is not alwaysvalid, and requires the framework implementation to provide an implementation specific API for this.

6.1.1 Bounded interrupt response time
The [FF-M] version 1.0 API was designed to be simple and easy to use securely. It avoided concurrentexecution within the Secure Partition by requiring the interrupt handling to run within the executionthread of the Secure Partition.
Working around the limitations of this API for lower-latency and bounded response time interruptrequirements is painful, complex, and error-prone.
Framework support for handling interrupts within a bounded response time is necessary to enable driversfor such peripherals to be written as Secure Partitions. This would enable more peripheral driver code tobe run in a Secure Partition, reducing the risk of vulnerabilities in the PSA Root of Trust.
AES 00391.1 Extensions Alpha (Issue 0) Copyright© 2020, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 49

ALPH
A

6.1.2 Managing interrupts
The [FF-M] version 1.0 API made assumptions about how peripherals behaved with respect to generationof interrupts. Specifically, for each interrupt that can be generated by the peripheral:

∙ There is a mechanism which can be used to disable and enable the interrupt at source. Typically, thisis a control register provided by the peripheral.
∙ The peripheral resets with the interrupt disabled.

Together these requirements would allow a Secure Partition to manage an interrupt source with just theMMIO register interface to the device, without needing any way to control the interrupt’s handling at theInterrupt Controller.
In reality, not all peripherals meet these requirements at design time, and sometimes peripheral hardwarehas implementation defects that can generate spurious interrupts. FF-M needs to accommodate realperipherals - this requires changes to the interrupt model, and the addition of interfaces to supportmanaging the interrupts within the framework.
6.1.3 Accessing MMIO registers
In some systems, accessing a memory-mapped peripheral register is not possible using normal memoryread and write operations. For example:

∙ The alignment requirements for access to a memory-mapped peripheral register can be stricter thanthose for access to normal memory locations.
∙ The system cannot provide direct access to all requested MMIO regions due to limitations of thememory protection hardware.

To ensure correctness and code portability for drivers that access MMIO registers, the framework needs toprovide access functions that implement any system-specific requirements related to the register access.

6.2 Programming model
6.2.1 Definitions
To distinguish between different approaches to handling interrupts, the following terms are used withinthis document:
First-level interrupt handling (FLIH):A type of interrupt handling which is carried immediately when an interrupt exceptiontakes place. The handling occurs within an exception context, and might be privileged ordeprivileged.
Second-level interrupt handling (SLIH):A type of interrupt handling that is deferred until after the interrupt exception. Thishandling occurs within a thread context, and is subject to normal scheduling.
FLIH function:A function that is used to perform First-level interrupt handling for a specific interrupt withina Secure Partition. An FLIH function runs in an FLIH context.

AES 00391.1 Extensions Alpha (Issue 0) Copyright© 2020, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 50

ALPH
A

Secure Partition thread context:The main execution context within a Secure Partition.
∙ For a Secure Partition that is using the IPC model, this is the Secure Partition thread.
∙ For a Secure Partition that is using the SFN model, this is any Secure Function withinthe Secure Partition.

FLIH context:The execution context within a Secure Partition that is used to run a FLIH Functions. Seealso FLIH Execution model on page 54.
The interrupt model in [FF-M] version 1.0 is equivalent to Second-level interrupt handling as defined in theversion 1.1 Extensions.
This extension to the framework enables a Secure Partition developer to provide First-level interrupthandling code within the Secure Partition.
6.2.2 Impact of Isolation
If a Secure Partition developer is able to provide code that runs as part of FLIH, then the isolationprinciples of PSA Security Model [PSA-SM] and [FF-M] require that this code runs with the same access toresources as the other code within the Secure Partition. That is, the FLIH function must execute within thesame protection domain as the Secure Partition to which it belongs.
At isolation levels 2 or 3, this can require a context switch to run the FLIH function in a deprivileged state,outside of the protection domain containing the SPM.
Although bounded, the latency of a deprivileged FLIH function can still be inadequate for some use cases,which require that the interrupt is handled inside the SPM to meet very strict latency requirements. Avulnerability in this type of interrupt handler would put the entire PSA Root of Trust at risk.
This document does not define a standard framework for interrupt handling within the SPM. Provision ofsupport for this is IMPLEMENTATION DEFINED.
6.2.3 Impact of Concurrency
FLIH functions, even when run within the Secure Partition protection domain, can run concurrently orinterleaved with the execution of the Secure Partition thread context. This introduces the possibility of adata-race when two execution contexts access the same Secure Partition private data. For example, thesetwo contexts can be the Secure Partition thread context and an FLIH function, or two FLIH functions withdifferent priorities.
FLIH functions must be written to be data-race free in relation to other FLIH functions and code runningin the Secure Partition thread context. Preventing data races requires support from the framework, eitherin the form of atomic data access functions or a mechanism that enables the developer to construct criticalsections within the code.
6.2.4 Interrupt model
This section defines the interrupt model that is provided by the framework for Secure Partition devicedrivers. The model supports the provision of both FLIH and SLIH within a Secure Partition.

AES 00391.1 Extensions Alpha (Issue 0) Copyright© 2020, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 51

ALPH
A

Rationale
This interrupt model is defined so that framework implementers and Secure Partition driver developershave a common understanding of the interfaces that support interrupt management and handling. Thisplatform-independent model can ensure that the behavior is consistent across different hardware systemsand implemented isolation levels.

Note:
This interrupt model borrows terminology from real system architectures. However, this is anabstract model, and the elements, states and transitions described with these terms will notnecessarily align with the same concepts as used in a real system implementation.

Each interrupt that might be handled by a Secure Partition is identified by a source - which is specified inthe Secure Partition manifest. This identifies the logical origin of the interrupt. The interrupt source isidentified by a number or a name, and this is resolved in an IMPLEMENTATION DEFINED manner.
The interrupt source can generate an interrupt at any time, usually subject to configuration and operationalprogramming of the source peripheral. An interrupt is asserted if its source is generating the interrupt.
Interrupts arrive at the Interrupt Controller (IC), typically attached to (or part of) the CPU. The IC isresponsible for filtering the interrupt inputs, determining if the CPU should be interrupted, triggering anappropriate exception and identifying which interrupt the CPU should process.
Each interrupt has an associated enabled status, maintained by the IC. This enabled status is independentof any configuration control on the source peripheral. An asserted interrupt will have no effect if it is notalso enabled. The Secure Partition API provides functions for setting and clearing the enabled status of aninterrupt, see Secure Partition API changes for interrupt control on page 58.
When an enabled and asserted interrupt is selected for handling by the CPU following an interruptexception, the interrupt becomes active and interrupt handling begins immediately. An active interruptcannot cause another interrupt exception until the interrupt has been deactivated by end of interrupt (EOI)processing, which also marks the end of interrupt handling.
After system reset, on initial entry into Secure Partition thread context, the Secure Partition interrupts are allinactive. The initial interrupt enabled status is determined by the psa_framework_version attribute in theSecure Partition manifest file. See Secure Partition execution model on page 55.
The two mechanisms available for handling an interrupt in a Secure Partition are First-level interrupthandling (FLIH) or Second-level interrupt handling (SLIH).
First-level interrupt handling
This type of interrupt handling is suitable for use cases where the response to the interrupt has a latencyrequirement that cannot be met using SLIH.
FLIH uses a callback function in the Secure Partition for the FLIH. The FLIH function runs in a specialexecution context:

∙ An FLIH function can interrupt the Secure Partition thread context.
∙ Higher priority interrupts can preempt an FLIH function.

AES 00391.1 Extensions Alpha (Issue 0) Copyright© 2020, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 52

ALPH
A

∙ An FLIH function can only use a small subset of the Secure Partition APIs.
See FLIH Execution model on page 54.
On return from the FLIH function, the interrupt handling is finished and the interrupt is deactivated.
The framework will also set the Secure Partition interrupt signal, depending on the value returned by theFLIH function. The Secure Partition signal will then result in the scheduling of the Secure Partition threadcontext. When the Secure Partition thread context runs in response to the signal, it must clear the signalby calling psa_reset_signal(). Some example usage patterns for FLIH are described in Programmingpatterns using FLIH on page 64.
Rationale
A distinct API is proposed for clearing the signal when using FLIH for the following reasons:

∙ This is not end-of-interrupt processing, as that already occurred at the end of the FLIH function.
∙ The programming pattern for clearing the signal when using FLIH is different from the pattern whenusing SLIH. Using a distinct API name makes it easier to review and maintain the code correctly.
∙ The required behavior is most like clearing the doorbell signal, which currently uses the API

psa_clear().

Second-level interrupt handling
This type of interrupt handling is suitable for use cases where there is no time limit for both responding tothe interrupt, and for processing the related data.
SLIH defers all interrupt handling to the Secure Partition thread context. This is achieved by the frameworksetting the Secure Partition interrupt signal during the interrupt exception and then returning to normalscheduling operation.
The end-of-interrupt occurs when the Secure Partition thread context calls psa_eoi(), which clears theinterrupt signal and deactivates the interrupt.
The SLIH runs within the Secure Partition thread context:

∙ The SLIH can use all Secure Partition APIs, including calls that can block or complete messages.
∙ The SLIH is sequential with respect to other code within the same Secure Partition.
∙ The SLIH runs at the Secure Partition execution priority, and can be interrupted or preempted.

Second-level interrupt handling is the only mechanism available in the [FF-M] version 1.0 API.
Implementation note
In this model, the interrupt remains active until the Secure Partition calls psa_eoi(). In many systems,this does not map directly onto the underlying interrupt state:

∙ The SLIH runs within the Secure Partition thread context at a normal scheduling priority, ratherthan in an interrupt context at elevated execution priority.

AES 00391.1 Extensions Alpha (Issue 0) Copyright© 2020, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 53

ALPH
A

∙ Interrupt exceptions are not masked when executing in Secure Partition thread context.However, until the SLIH runs, the source peripheral can continue to assert the interrupt. Theframework must ensure that this does not result in continuous interrupt exceptions.
In some systems, the behavior required by SLIH might be supported by the interrupt controller. Inother systems, the behavior can be implemented by the framework disabling the interrupt beforeexiting the interrupt exception, and then enabling the interrupt again when psa_eoi() is called.

6.2.5 FLIH Execution model
The FLIH function is executed as soon as possible after the interrupt occurs, only being delayed by higherpriority exceptions and interrupts. This contrasts with the detection of an interrupt signal in SecurePartition thread context when using SLIH.
The FLIH function preempts any existing Secure Partition thread context, as well as any lower priority FLIHfunctions.
An FLIH function can be preempted by a higher priority exception, including other Secure Partitioninterrupts and FLIH functions. FLIH functions can nest, with handling completed in LIFO order, but notinterleave in an arbitrary manner. An FLIH function cannot be preempted by a Secure Partition threadcontext. Interrupt priorities are not defined in this specification, but can be provided by an IMPLEMENTATION
DEFINED interface.
The FLIH function executes within the target Secure Partition protection domain and memory context. Thatis, the FLIH function has the same access to memory resources as the other code in its Secure Partition.
The execution stack and context on which the FLIH function runs is IMPLMENTATION DEFINED.

Implementation note
The possible implementation options for the FLIH execution context depend on the isolation leveland Secure Partition model:

∙ If the Secure Partition is in the same protection domain as the SPM, then the FLIH function canrun directly on the processor’s interrupt stack, as it is not necessary to deprivilege the FLIH.
∙ If the FLIH function cannot run on the SPM stack, the implementation can run the FLIHfunction on the Secure Partition’s main stack or on a dedicated FLIH stack.

The FLIH function must follow the appropriate procedure call standard (ABI) for the system’s architecture.This permits the framework to invoke the the FLIH function as a standard C function without specialregister state management.
An FLIH function has access to a very limited subset of the Secure Partition API:

∙ The interrupt control functions, see Secure Partition API changes for interrupt control on page 58.
∙ The MMIO accessor functions, see Register access functions for MMIO on page 61.
∙ psa_panic()

Attempting to call any other Secure Partition function from within an FLIH function is a PROGRAMMER ERROR.Responding to request messages can only happen in the Secure Partition thread context. End-of-interruptprocessing occurs on return from the FLIH function, prior to resuming the interrupted execution.
AES 00391.1 Extensions Alpha (Issue 0) Copyright© 2020, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 54

ALPH
A

An FLIH function uses its return value to indicate to the SPM how to complete the FLIH processing:
PSA_FLIH_NO_SIGNAL The framework does not set the interrupt signal
PSA_FLIH_SIGNAL The framework sets the interrupt signal

6.2.6 Secure Partition execution model
In [FF-M] version 1.0, the framework enables all Secure Partition interrupts before first entry to the SecurePartition code.
For version 1.1, the initial state of interrupts depends on the framework version that is specified in theSecure Partition manifest file:

Framework version Initial interrupt state
"psa_framework_version": 1.0 The framework enables all interrupts in the Secure Partition
"psa_framework_version": 1.1 The framework disables all interrupts in the Secure Partition

For an interrupt that is initially disabled, the Secure Partition enables the interrupt explicitly with a call to
psa_irq_enable(). For example, this can be done in the Secure Partition entry_point or entry_init functionafter initializing the interrupt’s source peripheral.
The PSA_FRAMEWORK_VERSION pre-processor macro can be used to identify the framework version, if theSecure Partition code can be built for different versions of the framework.

6.3 Changes to the Programming API
The changes to [FF-M] §4 Programming API are described in the following sections:

∙ Manifest changes
∙ Secure Partition API changes for FLIH on page 56
∙ Secure Partition API changes for interrupt control on page 58

6.3.1 Manifest changes
The irq Secure Partition manifest attribute is redefined to align its approach to naming with the serviceattributes, and to specify the type of interrupt handler.
name (attribute)
This is a required attribute for irq definitions in a Secure Partition manifest that is using
"psa_framework_version": 1.1.
This attribute replaces the use of the signal attribute.
The name attribute is use to construct the C identifiers for API elements used in managing the interrupt.

AES 00391.1 Extensions Alpha (Issue 0) Copyright© 2020, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 55

ALPH
A

The implementation defines a macro for the interrupt signal in psa_manifest/«manifest-filename».h, of thefollowing form:
#define «name»_SIGNAL /* implementation-defined value */

For an interrupt that specifies the handling attribute as "FLIH", a FLIH function must be provided in theSecure Partition. This function has the following prototype:
psa_flih_result_t «name»_flih(void);

The C identifier used for an FLIH function is constructed by adding the suffix _flih to a lowercase versionof the interrupt’s name attribute.
The Secure Partition header file, psa_manifest/«manifest-filename».h, must include the prototypedefinition of each FLIH function.
handling (attribute)
This is a required attribute for irq definitions in a Secure Partition manifest that is using
"psa_framework_version": 1.1.
This attribute specifies the interrupt handling mechanism that is used for the interrupt. It must have one ofthe following values:
"SLIH" Select the SLIH mechanism. This is the v1.0 interrupt handling model.
"FLIH" Select the FLIH mechanism.

Rationale
Making the selection of interrupt handling mechanism explicit in the manifest source file is beneficial forlong term understanding and maintenance of the Secure Partition source.
The proposed definition is preferred over one that supports a default value which is compatible withversion 1.0, or using a boolean attribute to specify the FLIH mechanism.

6.3.2 Secure Partition API changes for FLIH
The following API elements are added to psa/service.h:

∙ psa_flih_result_t

∙ PSA_FLIH_NO_SIGNAL

∙ PSA_FLIH_SIGNAL

∙ psa_reset_signal()

psa_flih_result_t (type)
The type of the return value from an FLIH function.

AES 00391.1 Extensions Alpha (Issue 0) Copyright© 2020, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 56

ALPH
A

typedef uint32_t psa_flih_result_t;

PSA_FLIH_NO_SIGNAL (macro)
Following an FLIH function, do not set the interrupt signal.
#define PSA_FLIH_NO_SIGNAL ((psa_flih_result_t) 0)

PSA_FLIH_SIGNAL (macro)
Following an FLIH function, set the interrupt signal.
#define PSA_FLIH_SIGNAL ((psa_flih_result_t) 1)

psa_reset_signal (function)
Reset the signal for an interrupt that is using FLIH handling.
void psa_reset_signal(psa_signal_t irq_signal);

Parameters
irq_signal The interrupt signal to be reset.

This must have a single bit set, corresponding to a currently assertedsignal for an interrupt that is defined to use FLIH handling.
Returns: void
Programmer Error
The call is a PROGRAMMER ERROR if one or more of the following are true:

∙ irq_signal is not a signal for an interrupt that is specified with FLIH handling in the Secure Partitionmanifest.
∙ irq_signal indicates more than one signal.
∙ irq_signal is not currently asserted.

A PROGRAMMER ERROR will panic the caller.
Description
For an interrupt that is using the FLIH mechanism, the Secure Partition thread context calls
psa_reset_signal() to clear a signal that was set by an FLIH Function returning PSA_FLIH_SIGNAL.
To avoid the risk of missing a subsequent signal from the FLIH, the Secure Partition thread context shouldcall psa_reset_signal() before processing the data provided by the FLIH. See Programming patterns usingFLIH on page 64 for examples of how this function can be used.

AES 00391.1 Extensions Alpha (Issue 0) Copyright© 2020, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 57

ALPH
A

psa_eoi (function)
This existing function is constrained to be used only for interrupts that are using SLIH handling.
The irq_signal passed to psa_eoi() must be the signal for an interrupt that was specified with SLIHhandling in the Secure Partition manifest.
Calling psa_eoi() with the signal of an interrupt with FLIH handling is a PROGRAMMER ERROR.
6.3.3 Secure Partition API changes for interrupt control
The following API elements are added to psa/service.h:

∙ psa_irq_status_t

∙ psa_irq_is_enabled()

∙ psa_irq_enable()

∙ psa_irq_disable()

∙ psa_irq_restore()

psa_irq_status_t (type)
A type used to temporarily store a previous interrupt state.
typedef /* implementation-defined type */ psa_irq_status_t;

This is an unsigned integral type, of IMPLEMENTATION DEFINED width.
A value of type psa_irq_status_t is used in the psa_irq_restore() function to restore a previous interruptstate returned by psa_irq_disable().
psa_irq_is_enabled (function)
Query the enabled status of an interrupt.
uint32_t psa_irq_is_enabled(psa_signal_t irq_signal);

Parameters
irq_signal The signal for the interrupt to be queried.

This must have a single bit set, which must be the signal value for aninterrupt in the calling Secure Partition.
Returns: uint32_t

0 The interrupt is disabled.
1 The interrupt is enabled.

AES 00391.1 Extensions Alpha (Issue 0) Copyright© 2020, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 58

ALPH
A

Programmer Error
The call is a :PROGRAMMER ERROR if one or more of the following are true:

∙ irq_signal is not an interrupt signal.
∙ irq_signal indicates more than one signal.

A PROGRAMMER ERROR will panic the caller.
psa_irq_enable (function)
Enable an interrupt.
void psa_irq_enable(psa_signal_t irq_signal);

Parameters
irq_signal The signal for the interrupt to be enabled.

This must have a single bit set, which must be the signal value for aninterrupt in the calling Secure Partition.
Returns: void
Programmer Error
The call is a :PROGRAMMER ERROR if one or more of the following are true:

∙ irq_signal is not an interrupt signal.
∙ irq_signal indicates more than one signal.

A PROGRAMMER ERROR will panic the caller.
Description

Note:
Each interrupt must be explicitly enabled in a Secure Partition that specifies
"psa_framework_version": 1.1 in the manifest file. See Secure Partition execution model on page 55.

psa_irq_disable (function)
Disable an interrupt.
psa_irq_status_t psa_irq_disable(psa_signal_t irq_signal);

Parameters
irq_signal The signal for the interrupt to be disabled.

This must have a single bit set, which must be the signal value for aninterrupt in the calling Secure Partition.

AES 00391.1 Extensions Alpha (Issue 0) Copyright© 2020, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 59

ALPH
A

Returns: psa_irq_status_t
The state of the interrupt prior to being disabled by this call.
The value of the saved interrupt state is IMPLEMENTATION DEFINED.
Programmer Error
The call is a :PROGRAMMER ERROR if one or more of the following are true:

∙ irq_signal is not an interrupt signal.
∙ irq_signal indicates more than one signal.

A PROGRAMMER ERROR will panic the caller.
Description
The return value from this call records the state of the interrupt prior to the call in an IMPLEMENTATION
DEFINED value. This can be used by the caller to restore the previous interrupt state by passing this value ina call to psa_irq_restore().
Usage
In Secure Partitions that use FLIH functions, the developer can use the interrupt control functions toimplement critical sections for code which accesses shared data.
In the simpler case where data is shared between the Secure Partition thread context and the FLIH functionfor an interrupt, the thread context can surround the critical code with calls to disable and enabled theinterrupt. For example, for an interrupt named IRQ1:
psa_irq_disable(IRQ1_SIGNAL);
// manipulate data shared with IRQ1 ...
psa_irq_enable(IRQ1_SIGNAL);

In a more complex Secure Partition device driver, there can be more than one FLIH function of differentpriorities. As the Secure Partition thread context and two FLIH functions can all execute concurrently, thecritical sections can nest, and an inner critical section must not enable an interrupt before the outer criticalsection finishes. The psa_irq_restore() function can be used to implemented nested critical sections.
For example, to allow both the Secure Partition thread context and the FLIH function for IRQ1 to mask
IRQ2, the following code can be used:
psa_irq_status_t irq2_state = psa_irq_disable(IRQ2_SIGNAL);
// manipulate data shared with IRQ2 ...
psa_irq_restore(IRQ2_SIGNAL, irq2_state);

psa_irq_restore (function)
Restore an interrupt to a previously saved state.
void psa_irq_restore(psa_signal_t irq_signal,

psa_irq_status_t saved_status);

AES 00391.1 Extensions Alpha (Issue 0) Copyright© 2020, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 60

ALPH
A

Parameters
irq_signal The signal for the interrupt to restore.

This must have a single bit set, which must be the signal value for aninterrupt in the calling Secure Partition.
saved_status The previously saved state for the interrupt.

Returns: void
Programmer Error
The call is a :PROGRAMMER ERROR if one or more of the following are true:

∙ irq_signal is not an interrupt signal.
∙ irq_signal indicates more than one signal.
∙ saved_status is not recognized by the implementation as a valid interrupt status.

A PROGRAMMER ERROR will panic the caller.
Description
psa_irq_restore() is used in conjunction with psa_irq_disable() to implemented critical sections of codewhere a specific interrupt must be disabled. See psa_irq_disable() for an example of how it can be used.
6.3.4 Register access functions for MMIO
The following API elements are added to psa/service.h:

∙ psa_mmio_read8()

∙ psa_mmio_read16()

∙ psa_mmio_read32()

∙ psa_mmio_write8()

∙ psa_mmio_write16()

∙ psa_mmio_write32()

These functions can all be used in Secure Partition thread context and in FLIH context.
psa_mmio_read8 (function)
Read an 8-bit memory-mapped peripheral register.
uint8_t psa_mmio_read8(uintptr_t addr);

Parameters
addr The memory address of the MMIO register to read.

Returns: uint8_t
The value of the register at addr.

AES 00391.1 Extensions Alpha (Issue 0) Copyright© 2020, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 61

ALPH
A

Programmer Error
It is a PROGRAMMER ERROR to call this API if addr refers to a memory location that is not accessible to theSecure Partition.
If the framework implementation detects a PROGRAMMER ERROR, this function will not return.
psa_mmio_read16 (function)
Read a 16-bit memory-mapped peripheral register.
uint16_t psa_mmio_read16(uintptr_t addr);

Parameters
addr The memory address of the MMIO register to read.

Returns: uint16_t
The value of the register at addr.
Programmer Error
It is a PROGRAMMER ERROR to call this API if addr refers to a memory location that is not accessible to theSecure Partition.
If the framework implementation detects a PROGRAMMER ERROR, this function will not return.
psa_mmio_read32 (function)
Read a 32-bit memory-mapped peripheral register.
uint32_t psa_mmio_read32(uintptr_t addr);

Parameters
addr The memory address of the MMIO register to read.

Returns: uint32_t
The value of the register at addr.
Programmer Error
It is a PROGRAMMER ERROR to call this API if addr refers to a memory location that is not accessible to theSecure Partition.
If the framework implementation detects a PROGRAMMER ERROR, this function will not return.
psa_mmio_write8 (function)
Write to an 8-bit memory-mapped peripheral register.
void psa_mmio_write8(uintptr_t addr,

uint8_t value);

AES 00391.1 Extensions Alpha (Issue 0) Copyright© 2020, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 62

ALPH
A

Parameters
addr The memory address of the MMIO register to write.
value The value to write to the register at addr.

Returns: void
Programmer Error
It is a PROGRAMMER ERROR to call this API if addr refers to a memory location that is not accessible to theSecure Partition.
If the framework implementation detects a PROGRAMMER ERROR, this function will not return.
psa_mmio_write16 (function)
Write to a 16-bit memory-mapped peripheral register.
void psa_mmio_write16(uintptr_t addr,

uint16_t value);

Parameters
addr The memory address of the MMIO register to write.
value The value to write to the register at addr.

Returns: void
Programmer Error
It is a PROGRAMMER ERROR to call this API if addr refers to a memory location that is not accessible to theSecure Partition.
If the framework implementation detects a PROGRAMMER ERROR, this function will not return.
psa_mmio_write32 (function)
Write to a 32-bit memory-mapped peripheral register.
void psa_mmio_write32(uintptr_t addr,

uint32_t value);

Parameters
addr The memory address of the MMIO register to write.
value The value to write to the register at addr.

Returns: void
Programmer Error
It is a PROGRAMMER ERROR to call this API if addr refers to a memory location that is not accessible to theSecure Partition.
If the framework implementation detects a PROGRAMMER ERROR, this function will not return.

AES 00391.1 Extensions Alpha (Issue 0) Copyright© 2020, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 63

ALPH
A

6.4 Writing Secure Partition peripheral drivers
It is recommended that SLIH is used for handling interrupts, if there is no time bound for both respondingto the interrupt, and for processing the related data.
This is for the following reasons:

1. FLIH adds concurrent execution to the Secure Partition. Concurrent execution introduces a categoryof programming risks that are otherwise absent, and this demands more effort from the developer toensure correctness.
2. The FLIH function cannot use most of the Secure Partition API. To manage a request messagefollowing an FLIH function, the interrupt signal must be used to hand-over execution to the SecurePartition thread context. This splitting of the interrupt response adds further complexity to the SecurePartition.

FLIH can be used when there is a requirement for interrupt response that cannot be met using SLIH. Inthis case, the developer has to mitigate the additional risks that arise from concurrent execution of theFLIH function and the Secure Partition thread context.
There are two distinct patterns that can be used when an FLIH function sets the interrupt signal to handover to the Secure Partition thread context, depending on whether the FLIH function must be available torun again immediately or not.
6.4.1 Programming patterns using FLIH
FLIH supports two use case scenarios:

∙ Continuous FLIH execution
∙ Hand-off between FLIH and Secure Partition thread context on page 65

Continuous FLIH execution
The FLIH function needs to be able to run continuously, even after signalling the Secure Partition threadcontext to process some data. For example, a peripheral that is producing a continuous stream of output.
In this case, the interrupt must remain enabled when the FLIH function returns which allows the FLIH torun again immediately. In particular, the FLIH can interrupt the Secure Partition thread context which isresponding to the signal. The interaction between the FLIH and Secure Partition thread contexts requirescareful design, as these contexts can run concurrently and there must be no race conditions on shareddata.
To demonstrate this pattern, here is an example of the FLIH function and associated Secure Partitionthread code, for an interrupt which is defined with "name": "IRQ2". Shared data is handled carefully toavoid race conditions. In this simple example, only the FLIH writes to the shared irq2_status variable,which is sized and aligned to ensure atomic reads and writes.
static uint32_t irq2_status;

psa_flih_result_t irq2_flih(void)
{

// Process the interrupt

(continues on next page)

AES 00391.1 Extensions Alpha (Issue 0) Copyright© 2020, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 64

ALPH
A
(continued from previous page)

// and update the status value
irq2_status = ...;
return PSA_FLIH_SIGNAL;

}

The Secure Partition thread context responds to the signal and can report the current counter value:
...

psa_signal_t s = psa_wait(PSA_WAIT_ANY, PSA_BLOCK);
if (s & IRQ2_SIGNAL)
{

// Reset the signal before reading the shared data to avoid
// missing a status update
psa_reset_signal(IRQ2_SIGNAL);
// Read the FLIH result data
handle_status_change(irq2_status);

}

...

In this pattern, the signal is reset before the shared data is processed. This prevents the following racecondition:
1. The FLIH runs, updates the shared data, and sets the signal.
2. The Secure Partition thread context detects the signal, and reads the shared data.
3. The FLIH interrupts the thread context, updates the shared data, and sets the signal.
4. The thread context resumes, and resets the signal.

At this point, the signal is clear, but the last update of the shared data #3 by the FLIH function has notbeen read by the Secure Partition thread context because the signal was cleared at #4.
Hand-off between FLIH and Secure Partition thread context
A low latency interrupt response is not required once the Secure Partition thread context has beensignalled. For example, at the end of a sequence of write operations to a peripheral.
In this case, the interrupt can be disabled, either at source or using the Secure Partition API, at the end ofthe FLIH function. This allows the Secure Partition thread context to process the result of the FLIHfunction without being interrupted by the FLIH, avoiding data races. The Secure Partition thread contextmust enable the interrupt again to allow the FLIH function to run again.
To demonstrate this pattern, here is an example of the FLIH function and associated Secure Partitionthread code, for an interrupt which is defined with "name": "IRQ1". The FLIH function should end bydisabling the interrupt and signalling the Secure Partition:
static uint32_t irq1_status;

psa_flih_result_t irq1_flih(void)
{

(continues on next page)

AES 00391.1 Extensions Alpha (Issue 0) Copyright© 2020, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 65

ALPH
A
(continued from previous page)

// Process the interrupt
// and write the result to Secure Partition memory
irq1_status = ...;
psa_irq_disable(IRQ1_SIGNAL);
return PSA_FLIH_SIGNAL;

}

The Secure Partition thread context responds to the signal and re-enables the interrupt if required:
...

psa_signal_t s = psa_wait(PSA_WAIT_ANY, PSA_BLOCK);
if (s & IRQ1_SIGNAL)
{

// Read the FLIH result data.
// There is no race condition as the interrupt is disabled
handle_status_change(irq1_status);
// Reset signal before enabling the interrupt
psa_reset_signal(IRQ1_SIGNAL);
psa_irq_enable(IRQ1_SIGNAL);

}

...

In this pattern, the signal must be reset before the interrupt is re-enabled, but there is no race condition onaccess to the shared data because the FLIH function cannot run again while the interrupt is disabled.

AES 00391.1 Extensions Alpha (Issue 0) Copyright© 2020, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 66

ALPH
A

7 Miscellaneous changes
The following additional relaxations and clarifications are made for version 1.1:

∙ RoT Service terminology and requirements
∙ Availability of the PSA Lifecycle API in NSPE on page 70
∙ Relaxation of memory access rules for Constant data on page 70
∙ Replace the term ‘reverse handle’ with ‘rhandle’ on page 71
∙ Symbolic definition of Secure Partition resources on page 72

7.1 RoT Service terminology and requirements
In Arm® Platform Security Architecture Firmware Framework [FF-M] version 1.0, the term Root of TrustService (RoT Service) is not consistently used to mean precisely the same thing. This leads to someconfusion within the specification, in particular, there are conflicting statements about the requirementsfor the deployment and isolation of PSA RoT Services.
The following changes are made for version 1.1:

∙ Distinct terminology introduced and used for the different meanings of ‘RoT Service’.
∙ Resolve the inconsistent description of PSA RoT Services.
∙ Provide clear rules for the deployment and isolation of PSA RoT Services and the use of SecurePartitions within the PSA Root of Trust.

7.1.1 The meaning of ‘Root of Trust Service’
When ‘Root of Trust Service’ is used in version 1.0 text it could mean one of the following:

1. The general concept of a security service within a Root of Trust. This is the concept described in Rootof Trust Definitions and Requirements [GP-ROT] as a Root of Trust Security Service.
2. A security service within the PSA Root of Trust or Application Root of Trust, as defined in FF-M.
3. A PSA RoT Service or Application RoT Service, which is implemented within a Secure Partition using theAPIs defined in FF-M.

Changes to the specification
∙ Definition 1 is infrequently used. In version 1.1, any use of ‘RoT Service’ with this intended meaningwill be referenced to its definition in [GP-ROT].
∙ Definition 3 is a subset of definition 2. For example, PSA RoT Services that are implemented directlywithin the Secure Partition Manager (SPM) would match definition 2, but not definition 3.
In version 1.1, the term ‘RoT Service’ is used for definition 2, and the term Secure Partition RoT Serviceis introduced for definition 3. The term ‘RoT Service’ can be used for definition 3 if the context isclearly related to a Secure Partition RoT Service.

AES 00391.1 Extensions Alpha (Issue 0) Copyright© 2020, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 67

ALPH
A

7.1.2 PSA RoT Services and Secure Partitions
The purpose of FF-M is to provide a common programming and runtime model for writing isolatedsecurity services, which can be deployed into different implementations of the framework, on differenttypes of underlying system architecture. This programming model is provided in FF-M in the definition ofSecure Partitions and the APIs for communication between a client and a Secure Partition RoT Service.
The Secure Partition programming model is essential for RoT Services that are not provided by theimplementation of the framework. When an RoT Service is provided by the framework implementation,there is more flexibility in how it is deployed. For example:

∙ A PSA RoT Service, such as PSA Cryptography API [PSA-CRYPT], is defined as a C programming API.Although the service implementation must be protected within the PSA Root of Trust, the service isnot required to be implemented within a Secure Partition using the FF-M framework APIs.
This is illustrated in Figure 4 of [FF-M] §3, where the PSA RoT Services are shown within the PSARoot of Trust, with an IMPLEMENTATION DEFINED interface to the SPM.

∙ A PSA RoT Service does not need to be isolated from the SPM, which is required for Application RoTServices at isolation level 2 or 3. Application RoT Services must be deployed in a Secure Partition.
Isolation level 3, defined in [FF-M] §3.1.3, places the PSA RoT Services within the same PSA Root ofTrust protection domain as the SPM. Secure Partitions within the Application Root of Trust must beprotected from each other and isolated from the SPM.

A framework is still permitted to use the Secure Partition model and interfaces for PSA RoT Services,where this is advantageous for the implementation. In this case, the implementation retains the followingflexibility for these PSA RoT Secure Partitions:
∙ The framework is permitted to restrict the communication models to a subset of those available forApplication RoT Secure Partitions.
∙ The framework is not required to isolate a PSA RoT Secure Partition from the SPM by using a SecurePartition protection domain.

Changes to the specification
Clarifying the scope of the isolation architecture
In §2.1, the following paragraph:

Each Secure Partition is a single thread of execution and is the smallest unit of isolation. If thestrongest isolation level is implemented, every Secure Partition is isolated from every otherSecure Partition.
This is modified to the following:

Each Secure Partition is a single thread of execution and is the smallest unit of isolation definedby this specification. If the strongest isolation level is implemented, every Secure Partition isisolated from every other Secure Partition.
Additional text will be added to §2.3 to describe the flexibility for frameworks to implement isolationwithin the protection domains defined by FF-M. This matches with the recommendation to use isolationwithin the NSPE to provide increased robustness and resilience.

AES 00391.1 Extensions Alpha (Issue 0) Copyright© 2020, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 68

ALPH
A

Clarifying the RoT Service definition
In §2.4, the following text describes the deployment of RoT Services:

PSA RoT Services that permit access from the NSPE, and all Application RoT Services, must beimplemented in a Secure Partition. These services must be accessed using the PSA Secure IPCframework that is defined in this specification. This provides a consistent and portablemechanism for implementing and accessing the service from both Secure Partitions and fromthe NSPE.
PSA RoT Services that are only available to the SPE can either be implemented using the IPCframework as already described, or in an implementation defined manner within the SPM andPSA Root of Trust.

This is replaced with the following text:
Application RoT Services must be implemented in a Secure Partition within the ApplicationRoot of Trust.
The framework is permitted to implement PSA RoT Services either within a Secure Partition, orin an IMPLEMENTATION DEFINED way. At Isolation level 2 or 3, the PSA RoT Services must beimplemented within the PSA Root of Trust protection domain.
An RoT Service implemented within a Secure Partition must be accessed using the FF-Mcommunication API that is defined in this specification. This provides a consistent and portablemechanism for implementing and accessing the service from both Secure Partitions and fromthe NSPE.
PSA RoT Services that are only available to the SPE can either be implemented using the IPCframework as already described, or in an IMPLEMENTATION DEFINED manner within the SPM andPSA Root of Trust.

Clarifying the protection domains definition
In §3.1.3, in the definition of Isolation level 3, references to ‘Secure Partition’ are replaced by ‘ApplicationRoT Secure Partition’.
This clarifies that the Secure Partition protection domains at isolation level 3 do not include SecurePartitions that the framework can optionally use within the PSA Root of Trust.
Relaxation of the Secure Partition type attribute
The type attribute in the Secure Partition manifest is relaxed. Support for the "PSA-ROT" value is optional inversion 1.1.
If the implementation does not support Secure Partitions within the PSA Root of Trust, then the followingrules apply:

∙ PSA RoT Services are integrated into the PSA Root of Trust in an IMPLEMENTATION DEFINED manner.
∙ The implementation reports an error if a Secure Partition manifest specifies type: "PSA-ROT". The

type attribute is still required in manifests for a Secure Partitions in the Application Root of Trust.
If the implementation permits Secure Partitions within the PSA Root of Trust, then the following rulesapply:

∙ PSA RoT Services can be integrated into the PSA Root of Trust using a combination of SecurePartitions and IMPLEMENTATION DEFINED mechanisms.
AES 00391.1 Extensions Alpha (Issue 0) Copyright© 2020, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 69

ALPH
A

∙ PSA RoT Services that are deployed in a Secure Partition must use the FF-M communicationframework.
∙ For Secure Partitions in the PSA Root of Trust, the implementation is permitted to support a differentset of communication models than for Secure Partitions in the Application Root of Trust. Forexample, the framework might require the use of the SFN model for a PSA RoT Secure Partition, butsupport both models for an Application RoT Secure Partition.

7.2 Availability of the PSA Lifecycle API in NSPE
In [FF-M] version 1.0, Table 15 in §4 Programming API specifies the availability of the APIs defined in thatspecification and by the PSA RoT Service API specifications.
In version 1.0, the RoT Lifecycle API is only available to callers in the SPE.
For version 1.1, this API is also available to the NSPE.
This information provided by this API is not difficult to provide to the NSPE, and disclosing the informationdoes not pose a security risk.

7.3 Relaxation of memory access rules for Constant data
The memory access rules in [FF-M] version 1.0, §3.1.2 prohibit an implementation from making Constantdata executable. From rule I1 in Table 3:

Table 7 Excerpt from Permitted access methods for memory assets in version 1.0
IDAccess rule Rationale
I1Only Code isexecutable Preventing execution of writable data mitigates the primarybuffer-overrun attack vector.

Preventing execution of read-only data reduces the attack surfaceavailable for Return-Oriented Programming (ROP) and Jump-OrientedProgramming (JOP) attacks.

This is challenging for systems that implement higher levels of isolation, and increased isolation betweenprotection domains, such as the optional rule I4 or I6 from §3.1.5. These implementations requiresignificantly more resources in the memory protection hardware for an increased number of different assetmemory regions that require different access permissions.
However, isolation rules like I4 and I6 significantly reduce or eliminate the visibility of Constant data assetsacross protection domains. This provides a significant mitigation against using the data for ROP or JOPattacks, by reducing the availability of suitable executable gadgets for the attack. As a consequence, theprohibition on allowing execute access to Constant data adds only a small additional mitigation for systemsthat implement stronger isolation rules.
For version 1.1:

∙ Isolation rule I1 is relaxed to only cover execution of Private Data.

AES 00391.1 Extensions Alpha (Issue 0) Copyright© 2020, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 70

ALPH
A

∙ A new, optional isolation rule I7 is introduced to cover execution of Constant data.
7.3.1 Changes to the specification
Rule I1 in Table 3 is changed to the following:

Table 8 Update for Permitted access methods for memory assets in version 1.1
ID Access rule Rationale
I1 Private data is notexecutable Preventing execution of writable data mitigates the primary buffer-overrunattack vector.

The summary table that follows Table 3 is also updated:
Table 9 Updated Summary of asset access rules in version 1.1

Asset class
Access method Code Constant data Private data
Read Yes Yes Yes
Write No No Yes
Execute Yes IMPLEMENTATION DEFINED a No

a We recommend that Constant data is not executable. See rule I7 in Optional isolation rules.
Rule I7 is added to Table 5 as follows:

Table 10 Addition to Optional isolation rules in version 1.1
ID Optional isolation rule Rationale
I7 Constant data is notexecutable Preventing execution of read-only data reduces the attack surface availablefor Return-Oriented Programming (ROP) and Jump-Oriented Programming(JOP) attacks.

This rule is recommended for an implementation that has a lower level ofisolation. In particular, for systems where the Code and Constant data arevisible to all protection domains.
This rule provides less benefit in an implementation that already restrictsthe visibility of Constant data between protection domains. For example,rule I4 or I6 already provide most of the mitigation that is provided by I7.

7.4 Replace the term ‘reverse handle’ with ‘rhandle’
In version 1.1, the new terms stateless handle and connection handle specify handles for different types ofRoT Service. The existing term null handle also defines a specific value of the same psa_handle_t type.

AES 00391.1 Extensions Alpha (Issue 0) Copyright© 2020, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 71

ALPH
A

However, the version 1.0 term ‘reverse handle’ is not an RoT Service handle or a message handle. Thissimilarity in naming is misleading, and the rhandle feature does not require the value to be treated like ahandle.
In this document, and in future FF-M specifications, the ‘reverse handle’ functionality will be referred to asthe rhandle feature.

7.5 Symbolic definition of Secure Partition resources
7.5.1 stack_size (attribute)
This existing attribute has an extended definition for v1.1.
The value of stack_size must indicate the stack memory usage of the Secure Partition.
If the value of the stack_size attribute is a decimal or hexadecimal value, this is used as the stackrequirement in bytes.
In version 1.0, no other type of value is permitted.
In version 1.1, a non-numerical value is resolved in in IMPLEMENTATION DEFINED manner. This permits animplementation to support the use of symbolic constants that reference an external definition.

Implementation note:
The implementation of the framework is not required to provide dedicated stack in situations wherethe isolation rules do not require this.
For example, in a system providing isolation level 1, the framework can use a single execution stackfor all Secure Partitions that are using the SFN model. This stack would have to be large enough forthe deepest chain of calls between these Secure Partitions.

7.5.2 heap_size (attribute)
This existing attribute has an extended definition for v1.1.
The value of heap_size must indicate the heap memory usage of the Secure Partition.
If the value of the heap_size attribute is a decimal or hexadecimal value, this is used as the heaprequirement in bytes.
In version 1.0, no other type of value is permitted.
In version 1.1, a non-numerical value is resolved in in IMPLEMENTATION DEFINED manner. This permits animplementation to support the use of symbolic constants that reference an external definition.

Implementation note:
The implementation of the framework is not required to provide dedicated heap resources insituations where the isolation rules do not require this.

AES 00391.1 Extensions Alpha (Issue 0) Copyright© 2020, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 72

ALPH
A

Appendix A: Summary of manifest attributes
This appendix is a summary of objects and attributes used in the Secure Partition manifest file.
The Secure Partition manifest file is a JSON file consisting of a single Secure Partition object.

A.1 Secure Partition object
A.1.1 Required attributes

Table 11 Required Secure Partition attributes
Name Type Description
psa_framework_version enum: 1.0 or 1.1 Version of the Firmware Framework for M specificationthis manifest conforms to.
name string: c_macro Alphanumeric C macro for referring to a partition.
type enum:

"APPLICATION-ROT" or
"PSA-ROT"

Whether the partition is unprivileged or part of thetrusted computing base.
v1.1: support for "PSA-ROT" is optional.

priority enum: "LOW",
"NORMAL", or "HIGH" Partition task priority.

model enum: "IPC" or "SFN" The communication model that this Secure Partitionuses.
New in v1.1.

entry_point string: c_symbol C symbol name of an IPC model partition’s entry point.
v1.0: required
v1.1: required for IPC model.

stack_size integer or string Secure Partition thread context’s stack size.
v1.0: integer or hex_string
v1.1: integer, hex_string, or symbolic string

A.1.2 Optional attributes

AES 00391.1 Extensions Alpha (Issue 0) Copyright© 2020, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 73

ALPH
A

Table 12 Optional Secure Partition attributes
Name Type Description Default
description string Human readable description. null
entry_init string: c_symbol C symbol name of an SFN model partition’soptional initialization function.

New in v1.1: optional for SFN model
null

heap_size integer or string Secure Partition’s heap size.
v1.0: integer or hex_string
v1.1: integer, hex_string, or symbolic string

0

mmio_regions array of NamedRegion andNumbered Regionobjects

List of Memory-Mapped IO region objectswhich the partition has access to. null

services array of Serviceobjects List of RoT Service objects which thepartition implements. null
irqs array of IRQ objects List of IRQ objects which the partitionimplements. null
dependencies array of string List of RoT Service names which thepartition code depends on and is permittedto access.

null

A.1.3 Example
This is an example Secure Partition object for a SFN model Secure Partition:
{

"description": "My Secure Partition",
"psa_framework_version": 1.1,
"name": "MY_SP",
"type": "APPLICATION-ROT",
"priority": "NORMAL",
"model": "SFN",
"entry_init": "my_sp_init",
"stack_size": "0x800",
"services": [

{
"description": "My example stateless RoT Service",
"name": "MY_ROT_SERVICE",
"sid": "0x00022001",
"version": 2,
"version_policy": "RELAXED",
"non_secure_clients": true,
"connection_based": false, (continues on next page)

AES 00391.1 Extensions Alpha (Issue 0) Copyright© 2020, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 74

ALPH
A
(continued from previous page)

"stateless_handle": "auto",
"mm_iovec": "disable"

},
{

"description": "My second RoT Service",
"name": "MY_OTHER_ROT_SERVICE",
"sid": "0x00022002",
"version": 1,
"version_policy": "RELAXED",
"non_secure_clients": true,
"connection_based": true,
"mm_iovec": "enable"

}
],
"dependencies": [

"PSA_CRYPTO",
"PSA_TRUSTED_STORAGE"

]
}

A.2 Service object
A.2.1 Required attributes

Table 13 Required Service attributes
Name Type Description
name string: c_macro RoT Service name.

This is used as a prefix for the RoT Service SID, signal,version and SFN symbols.
sid integer or hex_string The integer value of the RoT Service ID
non_secure_clients boolean Indicate whether the RoT Service is exposed tonon-secure clients.
connection_based boolean Specify the type of service, use true to indicate aconnection-based RoT Service, or false to indicate astateless RoT Service.

New in v1.1
A.2.2 Optional attributes

Table 14 Optional Service attributes
Name Type Description Default
description string Human readable description. null

AES 00391.1 Extensions Alpha (Issue 0) Copyright© 2020, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 75

ALPH
A

Table 14 (continued)
Name Type Description Default
version integer Version number of the RoT Service interface. 1

version_policy enum: "STRICT" or
"RELAXED"

Version policy to apply on connections tothe RoT Service. "STRICT"

stateless_handle integer, hex_stringor "auto" The index for the stateless handle in astateless RoT Service. The framework willallocate the index if "auto" is specified.
New in v1.1: optional for a stateless RoTService

"auto"

mm_iovec enum: "enable" or
"disable"

Enable the MM-IOVEC functionality for thisRoT Service.
New in v1.1

"disable"

A.2.3 Example
{

"description": "My example stateless RoT Service",
"name": "MY_ROT_SERVICE",
"sid": "0x00022001",
"version": 2,
"version_policy": "RELAXED",
"non_secure_clients": true,
"connection_based": false,
"stateless_handle": "auto",
"mm_iovec": "disable"

}

A.3 Named Region object
A.3.1 Required attributes

Table 15 Required Named Region attributes
Name Type Description
name string: c_macro Alphanumeric C macro for referring to the region.
permission enum: "READ-ONLY"or "READ-WRITE" Access permissions for the region.

A.3.2 Example
{

"name": "CRYPTOCELL_312",
(continues on next page)

AES 00391.1 Extensions Alpha (Issue 0) Copyright© 2020, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 76

ALPH
A
(continued from previous page)

"permission": "READ-WRITE"
}

A.4 Numbered Region object
A.4.1 Required attributes

Table 16 Required Numbered Region attributes
Name Type Description
base string: hex_string The base address of the region.
size string: hex_string Size in bytes of the region.
permission enum: "READ-ONLY"or "READ-WRITE" Access permissions for the region.

A.4.2 Example
{

"base": "0x20004000",
"size": "0x1000",
"permission": "READ-WRITE"

}

A.5 IRQ object
A.5.1 Required attributes

Table 17 Required IRQ attributes
Name Type Description
source string Interrupt line number or name for registering to ISRtable entry and enable/disable the specific IRQ oncereceived.
signal string: c_macro Alphanumeric C macro for referring to the IRQ’s signalvalue.

Not valid in v1.1: replaced by irq.name attribute.

AES 00391.1 Extensions Alpha (Issue 0) Copyright© 2020, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 77

ALPH
A

Table 17 (continued)
Name Type Description
name string: c_macro Interrupt name.

This is used as a prefix for the interrupt signal and FLIHfunction symbols.
New in v1.1: this replaces the use of the irq.signalattribute.

handling enum: "FLIH" or
"SLIH"

The handling pattern for the interrupt.
New in v1.1

A.5.2 Optional attributes
Table 18 Optional IRQ attributes

Name Type Description Default
description string Human readable description. null

A.5.3 Example
{

"description": "The secure timer interrupt",
"name": "S_TIMER",
"source": "SECURE_TIMER",
"handling": "FLIH"

}

A.6 Typed string attributes
A.6.1 c_macro
An alphanumeric string that is used to construct C pre-processor symbols.
The string is all uppercase, must start with a letter, and can contain underscore characters.
A.6.2 c_symbol
An alphanumeric string that is used to construct C identifiers.
The string must start with a letter, and can contain underscore characters.
A.6.3 hex_string
The hexadecimal representation of a 32-bit, non-zero, unsigned integer.
The string starts with "0x", followed by between one and eight hexadecimal digits.

AES 00391.1 Extensions Alpha (Issue 0) Copyright© 2020, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 78

ALPH
A

Appendix B: Migrating Secure Partitions to version 1.1
The version 1.1 framework APIs are compatible with the version 1.0 API. However, when a SecurePartition manifest specifies that it is using framework version 1.1, there are some necessary, incompatiblechanges that must be made to the manifest.
This section provides a guide to the changes that you need to make when migrating a Secure Partitiondeveloped for version 1.0 onto a framework that implements version 1.1.

B.1 Using an unmodified version 1.0 Secure Partition
If the framework supports the IPC model, and you do not need to take advantage of any of the newfeatures in version 1.1, then an existing version 1.0 Secure Partition will work without modification in thenew framework.
Otherwise, you will need to make some changes to your code.

Note:
It is possible to use the same source code (but not manifest files) for both version 1.0 and version 1.1Secure Partitions. The PSA_FRAMEWORK_VERSION pre-processor macro enables appropriate code to beselected to match the framework.

B.2 Update the manifest to version 1.1
The first step when you want to use one or more of the version 1.1 features is to update the SecurePartition to version 1.1.
B.2.1 Manifest changes

1. Update the psa_framework_version attribute to version 1.1:
- "psa_framework_version": 1.0,
+ "psa_framework_version": 1.1,

2. Add the model attribute at the top level of the manifest, specifying the IPC model:
+ "model": "IPC",

3. For each RoT Service, add the connection-based attribute within the service specification, with thevalue true:
+ "connection-based": true,

4. For each interrupt, within the irq specification:
AES 00391.1 Extensions Alpha (Issue 0) Copyright© 2020, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 79

ALPH
A

∙ Replace the signal attribute within the irq specification, with a name attribute.
∙ Add the handling attribute, with the value "SLIH".

- "signal": "MY_IRQ_SIG",
+ "name": "MY_IRQ",
+ "handling": "SLIH",

B.2.2 Source code changes
In a Secure Partition that uses version 1.1, some changes are needed to code dealing with interrupts:

1. The symbolic name of the interrupt is defined differently, and uses of these symbols will need to beupdated in the source code.
∙ In version 1.0, the name is «signal», where «signal» is the value of the interrupt’s signalattribute in the manifest.
∙ In version 1.1, the name is «name»_SIGNAL. where «name» is the value of the interrupt’s nameattribute in the manifest.

2. Interrupts are initially disabled in a version 1.1 Secure Partition. Explicit calls to psa_irq_enable()need to be made for each interrupt during Secure Partition initialisation, or when programming theperipheral interrupt.

B.3 Using version 1.1 features
After migrating the Secure Partition to version 1.1, the following sections summarize the changes requiredto use the new features in existing Secure Partition and RoT Service code.
B.3.1 Using the SFN model
To use the SFN model in a Secure Partition, the following changes need to be made to a Secure Partitionusing the IPC model. See also Secure Functions on page 22.

1. Change the model attribute at the top level of the Secure Partition manifest, specifying the SFNmodel:
- "model": "IPC",
+ "model": "SFN",

2. Remove the entry_point attribute from the manifest, optionally replacing it with an entry_initattribute if your Secure Partition requires initialization before any of the RoT Service SFNs are called.
Either:
- "entry_point": "my_sp_main",

or:
- "entry_point": "my_sp_main",
+ "entry_init": "my_sp_init",

AES 00391.1 Extensions Alpha (Issue 0) Copyright© 2020, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 80

ALPH
A

3. If initialization is required, refactor the initialization code from the version 1.0 entry point functioninto the version 1.1 entry initialization function.
After initialization, the entry_init function returns the following values:

∙ Return PSA_SUCCESS if initialization succeeds.
∙ Return PSA_SUCCESS if initialization is partially successful, and you want some SFNs to receivemessages. RoT Services that are non-operational must respond to connection requests with

PSA_ERROR_CONNECTION_REFUSED.
∙ Return an error status if the initialization failed, and no SFNs within the Secure Partition mustbe called.

4. Add a Secure Function (SFN) to process messages for each RoT Service specified in the manifest.Each SFN will have the following prototype:
psa_status_t «name»_sfn(const psa_msg_t* msg);

where «name» is the service’s name attribute from the manifest in lowercase.
Refactor the message handling code for each RoT Service into the SFNs:

∙ Each SFN will receive connection, request and disconnection messages for that RoT Service.
∙ The reply to the message occurs when the SFN returns, using the return value as the responsestatus to the client.

B.3.2 Using a stateless RoT Service
To change a connection-based RoT Service into a stateless RoT Service, the following changes need to bemade. See also Stateless Root of Trust services on page 31.

1. Change the connection-based attribute in the service specification in the manifest, to false:
- "connection-based": true,
+ "connection-based": false,

2. Optionally, specify the stateless handle index used to construct the stateless handle for the RoTService. For example, to allocate the index 1:
+ "stateless_handle": 1,

By default, the implementation will allocate this value for the RoT Service.
3. Rework the Secure Partition code that handles messages for the RoT Service:

∙ Remove code that handles connection and disconnection messages. You can assume (or assert)that every message received for that RoT Service is a request message.
∙ Ensure that the Secure Partition does not call psa_set_rhandle() on a message for that RoTService.

4. Rework all of the client calls to the RoT Service:
∙ Remove calls to psa_connect() and psa_close().
∙ Replace the connection handle used in calls to psa_call() with the stateless handle. The statelesshandle has the name «name»_HANDLE where «name» is the service’s name attribute from themanifest.

AES 00391.1 Extensions Alpha (Issue 0) Copyright© 2020, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 81

ALPH
A

B.3.3 Using MM-IOVEC
To use memory mapped iovecs in an RoT Service, the following changes need to be made. See alsoMemory-mapped IOVECs on page 39.

1. Check that the framework you are using supports MM-IOVEC, or consider implementing thechanges conditionally in your code using the PSA_FRAMEWORK_HAS_MM_IOVEC pre-processor macro.
2. Enable MM-IOVEC for the RoT Service, by adding the mm_iovec attribute to the service specificationin the manifest file, and giving it the value "enable":

+ "mm_iovec": "enable",

3. Rework the RoT Service code which reads input vectors and writes output vectors. Only do this forvectors where this provides a significant reduction in memory usage or improvement in performance,without introducing memory-safety vulnerabilities.
∙ Replace the use of psa_read() to copy data from a client input vector, with calls to

psa_map_invec(), and optionally psa_unmap_invec(). For example:
size_t len;

- uint8_t buffer[BUF_SIZE];
-
- n = psa_read(msg.handle, INBUF_IDX, &buffer, sizeof(buffer));
- // use the data in buffer[0..len]
+ const uint8_t *vec;
+
+ len = msg.in_size[INBUF_IDX];
+ if (len > 0) {
+ vec = psa_map_invec(msg.handle, INBUF_IDX);
+ // use the data in vec[0..len]
+ } // leave the framework to unmap the vector

To make the code portable to implementations that do not support MM-IOVEC, use
PSA_FRAMEWORK_HAS_MM_IOVEC to conditionally include the appropriate code. For example:

size_t len;
+#if PSA_FRAMEWORK_HAS_MM_IOVEC
+ const uint8_t *vec;
+
+ len = msg.in_size[INBUF_IDX];
+ if (len > 0) {
+ vec = psa_map_invec(msg.handle, INBUF_IDX);
+ // use the data in vec[0..len]
+ }
+#else

uint8_t buffer[BUF_SIZE];

len = psa_read(msg.handle, INBUF_IDX, &buffer, sizeof(buffer));
// use the data in buffer[0..n]

+#endif

∙ Replace the use of psa_write() to copy data into a client output vector, with calls to
psa_map_outvec() and psa_unmap_outvec(). For example:

AES 00391.1 Extensions Alpha (Issue 0) Copyright© 2020, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 82

ALPH
A

size_t len;
- uint8_t buffer[BUF_SIZE];
-
- // construct the output data in buffer[0..BUF_SIZE],
- // and set len to the output size
- psa_write(msg.handle, OUTBUF_IDX, &buffer, len);
+ uint8_t *vec;
+ size_t sz;
+
+ sz = msg.out_size[OUTBUF_IDX];
+ if (sz > 0) {
+ vec = psa_map_outvec(msg.handle, OUTBUF_IDX);
+ // construct the output data in vec[0..sz],
+ // and set len to the output size
+ psa_unmap_outvec(msg.handle, OUTBUF_IDX, len);
+ }

To make the code portable to implementations that do not support MM-IOVEC, use
PSA_FRAMEWORK_HAS_MM_IOVEC to conditionally include the appropriate code.

B.3.4 Using FLIH
To use First-level interrupt handling instead of SLIH for a Secure Partition interrupt, the following changesneed to be made. See also Enhancements for Secure Partition peripheral drivers on page 49.

1. Change the handling attribute in the irq specification in the manifest, specifying "FLIH" handling:
- "handling": "SLIH",
+ "handling": "FLIH",

2. Add an FLIH function to the Secure Partition with the following signature:
psa_flih_result_t «name»_flih(void);

where «name» is the interrupt’s name attribute from the manifest in lowercase.
3. Rework the interrupt handling code:

∙ Any interaction with the peripheral that has low-latency requirements must be moved into theFLIH function.
∙ Any interaction with other Secure Partitions, or with the message processing APIs must remainin the Secure Partition thread context.
∙ If all of the handling code has been moved into the FLIH function, then:

— The FLIH function returns PSA_FLIH_NO_SIGNAL.
— The call to psa_eoi() for this interrupt is removed.

∙ If the FLIH function requires that further processing is done in the Secure Partition threadcontext, then:
— The FLIH function returns PSA_FLIH_SIGNAL.
— The call to psa_eoi() is replaced with a call to psa_reset_signal() from the Secure Partitionthread context.

∙ If the interrupt is still enabled when the FLIH function returns the value PSA_FLIH_SIGNAL, then
AES 00391.1 Extensions Alpha (Issue 0) Copyright© 2020, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 83

ALPH
A

the Secure Partition thread context must handle potential race conditions when it access anydata shared with the FLIH function.
— We recommend that the Secure Partition thread context calls psa_reset_signal() first,before processing the data.
— The Secure Partition thread context can use psa_irq_disable() and psa_irq_enable() tocreate a critical section, if this is necessary to safely update data shared with the FLIHfunction.

4. Review read and write access to peripheral MMIO registers, and consider using the Register accessfunctions for MMIO on page 61 instead.

AES 00391.1 Extensions Alpha (Issue 0) Copyright© 2020, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 84

ALPH
A

Appendix C: Comparison between FF-M and TF-Mframeworks
This appendix provides a more detailed analysis of the existing frameworks, comparing their strengths andweaknesses in different system use cases. This analysis provides the rationale for the addition described inSecure Functions on page 22.

C.1 Background
C.1.1 The IPC model
Version 1.0 of Arm® Platform Security Architecture Firmware Framework [FF-M] describes a programmingmodel, communication framework and API that is based around one or more secure execution contextscalled Secure Partitions.
Each Secure Partition is programmed like an individual C program or task — polling for messages and otherevents, and responding to them. The communication API presents session-based connections to secureservices, on which structured, synchronous requests are made by clients.
The communication broker (the SPM) in this framework also acts as a secure client identity provider,enabling more complex resource ownership and access control designs to be implemented with secureservices.
Secure services are able to connect and makes requests as the client of other secure services, utilizing thesame communication framework.
This overall design is typically referred to as the IPC model within the Trusted Firmware-M [TF-M]documentation.
This architecture diagram provides an overview of the components within the design:

AES 00391.1 Extensions Alpha (Issue 0) Copyright© 2020, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 85

ALPH
A

PSA Root of TrustApplication Root of Trust

Secure Partition Manager

Secure PartitionSecure PartitionSecure Partition

Application

PSA RoT
Service

PSA RoT
Service

Application
RoT Service

OS libraries

Non-secure processing
environment (NSPE)

Secure processing environment (SPE)

Secure
isolation

Secure IPC
Secure

interrupts
OS kernel

Application
Firmware

Application
RoT Service

Application
RoT Service

Isolation boundaries

Platform
services

Figure 1 Elements of the FF-M v1.0 Architecture

C.1.2 The Library model
Version 1.0 of the Trusted Firmware-M [TF-M] project introduced a much simpler abstraction for secureservices. The programming model is based around a set of secure service functions, each of which handlesrequests from a corresponding client-side function. The secure service functions are run as callbacks fromthe framework, and the framework is in control of the execution context and sequence in which secureservice handlers run.
There is no concept of a connection in this framework. Each request to a secure service runs as anindividual function call.
The constrained systems that this framework is designed for typically have a single non-secure client andsingle protected domain containing secure services. There is no real requirement for a client identity.
Secure services that require the use of other secure services can typically just call the underlyingfunctionality directly, as there is no need to cross a protection boundary.
This communication framework is referred to as the Library model within the TF-M documentation.

C.2 Analysis
C.2.1 One or two architectures?
The IPC model provides significant control for a service developer to manage execution within eachSecure Partition. The API permits the deferred completion of requests, and the ability to process multiplemessages from different clients simultaneously within a single Secure Partition execution thread. Theoverall programming model is easier to reason about when integrating multiple Secure Partitions, whichtogether enable concurrent handling of different secure services, in an implementation that provides ahigh isolation level. The API design requires that request data has to be copied between the client andservice, mitigating many memory-safety vulnerabilities.

AES 00391.1 Extensions Alpha (Issue 0) Copyright© 2020, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 86

ALPH
A

The Library model is simple to describe, and leads to a simple implementation in a system with twoprotection domains, where each secure service function must complete execution before another canstart. Direct access to client memory is assumed by the API (parameter buffers are passed by address),which prevents the API being used in systems demanding higher isolation.
The IPC model is well suited for more complex systems and product designs, and the Library model iseffective for simpler systems. However, there are two main challenges with the current situation:

∙ System and product requirements are not binary: there is a spectrum of system complexity andproduct security needs. For systems that fall in between the two points addressed by the FF-M IPCmodel and the TF-M Library model, there is no framework that is a good fit for the system.
∙ It is difficult to describe the two models and APIs in a single architecture, due to their currentdifferences. Providing a single architecture which could span these use cases would enableframework implementations to be a better fit for more systems.

C.2.2 Scaling and Flexibility
The challenges with constructing a unified framework architecture, that includes both the IPC model andthe Library model stem from the current frameworks’ inability to scale effectively.
Scaling the IPC model
The IPC model does not scale down efficiently:

∙ Simple stateless or one-shot secure operations require a connection. Creating a temporaryconnection significantly increases the runtime cost; there is not always a good place to stash aconnection handle.
∙ Simple secure services still require boilerplate code in the Secure Partition to handle signals anddispatch requests to their respective service handlers.
∙ The thread-based programming model requires that the framework manages extra executioncontexts, and switching between them to process requests, even for an implementation that onlyprovides isolation level 1.

Scaling the Library model
The Library model does not scale up efficiently or safely:

∙ Adding more protection domains breaks the assumptions that enabled simplicity with just twodomains:
— Secure service functions must be run in a separate isolation domain and execution context tothe SPM or framework.
— Client identity is required as there can be more than one client for a service, and the servicemust respect the isolation of the client domains.
— Calls between secure services cannot be direct function calls, and might need to be managed bythe SPM to cross an isolation boundary.
— Secure services cannot be run on a single SPE execution stack.

AES 00391.1 Extensions Alpha (Issue 0) Copyright© 2020, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 87

ALPH
A

Although an isolation level 2 design could be constructed by implementing the two-domainarchitecture between each pair of protection domains that need to communicate, this is not a simpledesign. The emergent, complex behavior of this system is derived from the implementation decisionsinstead of being defined by the framework architecture.
∙ Concurrent secure service execution either requires:

— Grouping secure service functions, where secure service functions within the same group arerun sequentially (that is, without concurrency), but secure service functions in different groupscan interrupt or interleave with each other.
— Allowing any secure service function to interrupt or interleave with execution of others.

Both approaches require additional execution contexts (in particular, they prevent the re-use of themessage dispatcher’s stack), even with isolation level 1.
Both also present the main risk of concurrent execution: shared data. Mitigating the risks of shareddata, without isolating the concurrent contexts, requires synchronization primitives and increases thedifficulty of ensuring that secure services are error-free.

∙ Mitigation of common memory-safety errors in secure services requires changing the API.
Even when the request broker validates the client memory parameters, providing direct access toclient memory leaves the secure service vulnerable to double-fetch bugs, data alignment errors,buffer overruns, and permits pointer-chasing using unvalidated memory addresses passed as data.
The current API requires that every secure service implementation must be code reviewed carefullyto mitigate against these vulnerabilities. In contrast, the API for the IPC model places mitigation forthese risks within the framework implementation, and not in every single secure service.

AES 00391.1 Extensions Alpha (Issue 0) Copyright© 2020, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 88

ALPH
A

Appendix D: Implementing session-less RoT Services
This appendix examines the options for optimizing Secure Partition RoT Service requests, when the RoTService operations do not make any use of the session-based features of the version 1.0 API.
This analysis provides the rationale for the Stateless Root of Trust services on page 31 extension.

D.1 Background
A client of a Root of Trust Service accesses the service with RoT Service API. A simple approach toimplementing the RoT Service API is to wrap this around calls to the FF-M Client API.
In general, there are two typical usages for an RoT Service API:

∙ Session-based API usage.
∙ Session-less API usage.

Implementing a session-based API
Session-based API usage needs an initial process to establish the session, and subsequent operations arebased on this session.
An FF-M connection handle can be embedded in the session instance object, and psa_connect() can becalled during the session setup operation. The performance overhead of psa_connect() is diluted in thiscase, since there are multiple subsequent session operations for each call to psa_connect().
Here is a simplified example of an RoT Service API implementation that takes this approach:
int32_t RoTServiceA_Open(uint32_t *p_hsession)
{

psa_handle_t handle;

handle = psa_connect(ROT_SERVICE_A_SID, ROT_SERVICE_A_VERSION);
if (!PSA_HANDLE_IS_VALID(handle) {

return PSA_HANDLE_TO_ERROR(handle);
}

/*
* Here is the simplest scenario.
* In practice, the session object has other members as well as the connection handle.
*/

*p_hsession = (uint32_t)handle;

return (int32_t)PSA_SUCCESS;
}

int32_t RoTServiceA_Control1(uint32_t hsession)
{

(continues on next page)

AES 00391.1 Extensions Alpha (Issue 0) Copyright© 2020, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 89

ALPH
A
(continued from previous page)

return (int32_t)psa_call((psa_handle_t)hsession,
PSA_IPC_CALL,
NULL, 0, NULL, 0);

}

int32_t RoTServiceA_Control2(uint32_t hsession)
{

return (int32_t)psa_call((psa_handle_t)hsession,
PSA_IPC_CALL + 1,
NULL, 0, NULL, 0);

}

void RoTServiceA_Close(uint32_t hsession)
{

psa_close((psa_handle_t)hsession);
}

Implementing a session-less API
Implementing a session-less API efficiently using the FF-M API is more challenging. This type of API doesnot have an explicit session, and has no session setup operation.
In the FF-M version 1.0 framework, a connection is mandatory for accessing services. This requires theclient to maintain a handle while accessing an RoT Service.
Here is a simplified example of a session-less RoT Service API implementation using the FF-M Client API:
psa_status_t RoTServiceB(void)
{

psa_handle_t handle;
psa_status_t status;

handle = psa_connect(ROT_SERVICE_B_SID, ROT_SERVICE_B_VERSION);
if (!PSA_HANDLE_IS_VALID(handle) {

return PSA_HANDLE_TO_ERROR(handle);
}

status = psa_call(handle, PSA_IPC_CALL, NULL, 0, NULL, 0);

psa_close(handle);

return status;
}

There are two aspects of this approach that affect the runtime performance of the RoTServiceB() API:
∙ If RoTServiceB() is a frequently called API, the accumulated duration for calling psa_connect() and

psa_close() is significant.
∙ There is a SID-lookup process within psa_connect() which is difficult to optimize, because each RoTService ID is allocated by the RoT Service developer.

To improve the performance for calling session-less secure services, the following approaches can beconsidered:
AES 00391.1 Extensions Alpha (Issue 0) Copyright© 2020, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 90

ALPH
A

∙ Increase the SID lookup performance.
∙ Increase the performance of the individual framework calls.
∙ Reduce the number of calls to psa_connect() and psa_close().

Increasing the performance of individual framework functions is a framework implementation issue. In thefollowing analysis, we consider how to eliminate calls to these framework functions for session-less RoTService APIs.

D.2 Analysis
Before analyzing options, we consider the mechanisms for integrating an RoT Service API. Typically, theclient needs to integrate the object files which contain the RoT Service API implementation. Here are thecommon scenarios:

1. There is no isolation between clients, the same object is shared by all clients.
2. There is isolation between clients, and the object is shared as read-only between clients. Forexample, this is what [TF-M] does with its Secure Partition Runtime Library (SPRTL) within the SPE.
3. There is isolation between clients, and the object is duplicated and linked with each client that usesthe API.

For the example implementations of RoTServiceA and RoTServiceB above, the source compiles to objectcode with no writable data. This allows the framework to use any of the three mechanisms for integratingthe RoT Service API with Secure Partition client code.
Optimizing RoTServiceB()
If the developer of RoTServiceB() wants to avoid always calling psa_connect() and psa_close(), one obviousapproach is to save the connection handle somewhere, and reuse this for subsequent requests.
For example, RoTServiceB() could be rewritten as follows:
static psa_handle_t saved_handle_b;

psa_status_t RoTServiceB(void)
{

psa_handle_t handle;

handle = saved_handle_b;
if (handle == PSA_NULL_HANDLE) {

handle = psa_connect(ROT_SERVICE_B_SID, ROT_SERVICE_B_VERSION);
if (!PSA_HANDLE_IS_VALID(handle) {

return PSA_HANDLE_TO_ERROR(handle);
saved_handle_b = handle;

}

return psa_call(handle, PSA_IPC_CALL, NULL, 0, NULL, 0);
}

If this handle is saved in a global area, it has the following effects:

AES 00391.1 Extensions Alpha (Issue 0) Copyright© 2020, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 91

ALPH
A

∙ A non-const variable is needed to save the handle, and the object will contain a read-write datasection.
∙ There are multiple clients that could call the API, but the framework assumes that each connectionhas at most one outstanding request. There is also no specified behavior if one task calls psa_close()on a handle that is currently used by another task in a call to psa_call().
So each client should have its own connection handle, and multiple handles need to be saved. Whenused from a Secure Partition, the RoT Service API can allocate memory in the Secure Partition or relyon separate handle variables being allocated by the framework (if the framework use mechanism 3above). For NPSE clients, this approach requires knowledge of the NSPE runtime environment,resulting in a non-portable RoT Service API.

∙ Even in a system where the same connection handle can be used by all clients, it is not possible tostore this handle in a location that all clients can read in systems which implement higher levels ofisolation. It is also a security risk for a trusted service to use a shared connection handle that couldbe tampered with by malicious code.
These disadvantages make this approach problematic. An alternative is to delegate the handle storage tothe system using an abstracted API which avoids explicit use of shared global variables (especially NSPEclients):
psa_status_t RoTServiceB(void)
{

psa_handle_t handle;

handle = GET_ROT_HANDLE(CLIENT_ID);
if (!PSA_HANDLE_IS_VALID(handle)) {

handle = psa_connect(ROT_SERVICE_B_SID, ROT_SERVICE_B_VERSION);
if (!PSA_HANDLE_IS_VALID(handle) {

return PSA_HANDLE_TO_ERROR(handle);
}
SET_ROT_HANDLE(CLIENT_ID, handle);

}

return psa_call(handle, PSA_IPC_CALL, NULL, 0, NULL, 0);
}

The disadvantages with this approach include:
∙ This involves an abstracted API within the RoT Service API library implementation. Ideally, the RoTService API library should not have system dependencies, but now the SPE and NSPE need toimplement the GET_ROT_HANDLE() and SET_ROT_HANDLE() functionality.
∙ In a simple system without memory management API, a custom allocating implementation isrequired.
∙ Need mechanisms to retrieve the caller’s client ID to let abstract API find corresponding handle forthis client.

Conclusion
None of these approaches work in a portable way, or they introduce new APIs that have to be made towork on each implementation into which the RoT Service is integrated.
AES 00391.1 Extensions Alpha (Issue 0) Copyright© 2020, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 92

ALPH
A

To make a useful improvement for session-less APIs, support is required from the Firmware Frameworkitself.

D.3 Framework options
Idea 1: Fixed handle values
Idea: What will happen if the handle value is decided and known by clients at build time?
Then the situation would change as we do not need to store the handle after connection, since the handlevalue is already known.
The notes in [FF-M] §3.3.4 describe a connection handle allocation strategy in which different SecurePartitions can use the same handle value for different connections. This suggests that it is possible to makeeach client have their own connection to an RoT Service, using the same, fixed handle value.
An RoT Service API that follows the session-less pattern can work using this type of connection.
psa_call() can be invoked directly with this handle value, if the handle is connected implicitly to the RoTService by the framework. The resulting implementation of RoTServiceB() would look like this:
psa_status_t RoTServiceB(void)
{

return psa_call(ROT_SERVICE_B_FIXED_HANDLE, PSA_IPC_CALL, NULL, 0, NULL, 0);
}

Ideally, the framework automatically makes the fixed handle ready for use before the client runs, or whenthe client first calls psa_call() with this handle. If the client has to explicitly ensure this handle isconnected, this would reintroduce many of the client logic challenges that we want to solve.
Idea 2: No connection at all
Idea: Are there other opportunities for optimizing the framework for session-less RoT Service APIs?
The typical code for a session-less RoT Service API (see original RoT ServiceB) creates transientconnections for each and every request. As a result, the RoT Service implementation cannot make use ofthe rhandle feature of the Secure Partition API for these calls, and does not do anything during theconnection and disconnection messages that it receives.
If all of the requests for the RoT Service use the same pattern, then the framework can eliminate all of thefollowing activities without affecting the functionality of the RoT Service:

∙ The client explicitly connecting to the RoT service using psa_connect().
∙ The framework delivering connection or disconnection messages to the RoT Service.
∙ The RoT Service using the rhandle feature.

If all of this functionality is removed for a session-less RoT Service, this enables a simpler frameworkdesign for this type of service.
Conclusion
Although there are scenarios in which only one of these ideas is needed for an RoT Service, providing thisflexibility adds complexity to the understanding of the features and the framework design and
AES 00391.1 Extensions Alpha (Issue 0) Copyright© 2020, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 93

ALPH
A

implementation. Combining these two ideas results in a simpler feature that provides substantial benefitfor a large number of RoT Services and enables efficient framework implementation. This is what has beendone in Stateless Root of Trust services on page 31.
An existing RoT Service which includes a mixture of session-less type APIs and session-based APIs can stilltake advantage of stateless RoT Services when migrating to version 1.1. This is achieved by defining twoRoT Services in the Secure Partition manifest, where one is connection-based and one is stateless, andusing the appropriate handle in different parts of the RoT Service API.

AES 00391.1 Extensions Alpha (Issue 0) Copyright© 2020, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 94

	About this document
	Release information
	Arm Non-Confidential Document Licence (“Licence”)
	References
	Terms and abbreviations
	Conventions
	Typographical conventions
	Numbers

	Current status and anticipated changes
	Feedback
	Feedback on this book

	1 Introduction
	1.1 Objectives for version 1.1
	1.2 Compatibility
	1.3 Overview of new features
	1.3.1 Secure Functions
	1.3.2 Stateless RoT Services
	1.3.3 Memory-mapped IOVECS
	1.3.4 Support for peripheral drivers
	1.3.5 Miscellaneous improvements

	2 Framework features and permitted configurations
	2.1 Changes to the Programming API
	2.1.1 Firmware framework version
	PSA_FRAMEWORK_VERSION (macro)
	psa_framework_version (function)

	2.1.2 Discovering framework feature availability
	PSA_FRAMEWORK_ISOLATION_LEVEL (macro)
	PSA_FRAMEWORK_HAS_MM_IOVEC (macro)

	2.2 Permitted configurations of FF-M version 1.1

	3 Secure Functions
	3.1 Background & rationale
	3.2 The Secure Function model
	3.2.1 Overview of the SFN model
	3.2.2 Secure Partition execution
	Secure Partition initialization function

	3.2.3 Scheduling Secure Partitions
	3.2.4 Processing RoT Service messages
	3.2.5 Interrupts
	3.2.6 Doorbell

	3.3 Implementation options
	3.4 Selecting a Secure Partition model
	3.5 Changes to the Programming API
	3.5.1 Manifest changes
	model (attribute)
	entry_point (attribute)
	entry_init (attribute)
	services (attribute)

	3.5.2 Secure Partition API changes
	psa_get (function)
	psa_reply (function)

	4 Stateless Root of Trust services
	4.1 Background and rationale
	4.2 Programming model
	4.2.1 Overview of stateless RoT Services
	4.2.2 RoT Service identification
	4.2.3 RoT Service versioning
	4.2.4 Requesting stateless RoT Services
	4.2.5 Processing RoT Service messages
	4.2.6 Programmer Error
	4.2.7 Comparison of service types

	4.3 Selecting the RoT Service type
	4.4 Changes to the Programming API
	4.4.1 Manifest changes
	connection_based (attribute)
	stateless_handle (attribute)

	4.4.2 Client API changes
	psa_connect (function)
	psa_call (function)
	psa_close (function)

	4.4.3 Secure Partition API changes
	psa_msg_t (type)
	psa_set_rhandle (function)
	Replying to a request message with PSA_ERROR_PROGRAMMER_ERROR

	5 Memory-mapped IOVECs
	5.1 Background and rationale
	5.2 Programming model
	5.2.1 Implementation flexibility
	5.2.2 Typical deployment scenarios
	5.2.3 RoT Service configuration
	5.2.4 Accessing client input and output vectors
	5.2.5 Interaction with the isolation model

	5.3 Changes to the Programming API
	5.3.1 Discovering MM-IOVEC availability
	5.3.2 Enabling the MM-IOVEC API
	mm_iovec (attribute)

	5.3.3 Mapping RoT Service IO vectors
	psa_map_invec (function)
	psa_unmap_invec (function)
	psa_map_outvec (function)
	psa_unmap_outvec (function)

	5.3.4 Changes to existing Secure Partition APIs
	psa_read (function)
	psa_skip (function)
	psa_write (function)

	6 Enhancements for Secure Partition peripheral drivers
	6.1 Background and rationale
	6.1.1 Bounded interrupt response time
	6.1.2 Managing interrupts
	6.1.3 Accessing MMIO registers

	6.2 Programming model
	6.2.1 Definitions
	6.2.2 Impact of Isolation
	6.2.3 Impact of Concurrency
	6.2.4 Interrupt model
	First-level interrupt handling
	Second-level interrupt handling

	6.2.5 FLIH Execution model
	6.2.6 Secure Partition execution model

	6.3 Changes to the Programming API
	6.3.1 Manifest changes
	name (attribute)
	handling (attribute)

	6.3.2 Secure Partition API changes for FLIH
	psa_flih_result_t (type)
	PSA_FLIH_NO_SIGNAL (macro)
	PSA_FLIH_SIGNAL (macro)
	psa_reset_signal (function)
	psa_eoi (function)

	6.3.3 Secure Partition API changes for interrupt control
	psa_irq_status_t (type)
	psa_irq_is_enabled (function)
	psa_irq_enable (function)
	psa_irq_disable (function)
	psa_irq_restore (function)

	6.3.4 Register access functions for MMIO
	psa_mmio_read8 (function)
	psa_mmio_read16 (function)
	psa_mmio_read32 (function)
	psa_mmio_write8 (function)
	psa_mmio_write16 (function)
	psa_mmio_write32 (function)

	6.4 Writing Secure Partition peripheral drivers
	6.4.1 Programming patterns using FLIH
	Continuous FLIH execution
	Hand-off between FLIH and Secure Partition thread context

	7 Miscellaneous changes
	7.1 RoT Service terminology and requirements
	7.1.1 The meaning of ‘Root of Trust Service’
	Changes to the specification

	7.1.2 PSA RoT Services and Secure Partitions
	Changes to the specification

	7.2 Availability of the PSA Lifecycle API in NSPE
	7.3 Relaxation of memory access rules for Constant data
	7.3.1 Changes to the specification

	7.4 Replace the term ‘reverse handle’ with ‘rhandle’
	7.5 Symbolic definition of Secure Partition resources
	7.5.1 stack_size (attribute)
	7.5.2 heap_size (attribute)

	A Summary of manifest attributes
	A.1 Secure Partition object
	A.1.1 Required attributes
	A.1.2 Optional attributes
	A.1.3 Example

	A.2 Service object
	A.2.1 Required attributes
	A.2.2 Optional attributes
	A.2.3 Example

	A.3 Named Region object
	A.3.1 Required attributes
	A.3.2 Example

	A.4 Numbered Region object
	A.4.1 Required attributes
	A.4.2 Example

	A.5 IRQ object
	A.5.1 Required attributes
	A.5.2 Optional attributes
	A.5.3 Example

	A.6 Typed string attributes
	A.6.1 c_macro
	A.6.2 c_symbol
	A.6.3 hex_string

	B Migrating Secure Partitions to version 1.1
	B.1 Using an unmodified version 1.0 Secure Partition
	B.2 Update the manifest to version 1.1
	B.2.1 Manifest changes
	B.2.2 Source code changes

	B.3 Using version 1.1 features
	B.3.1 Using the SFN model
	B.3.2 Using a stateless RoT Service
	B.3.3 Using MM-IOVEC
	B.3.4 Using FLIH

	C Comparison between FF-M and TF-M frameworks
	C.1 Background
	C.1.1 The IPC model
	C.1.2 The Library model

	C.2 Analysis
	C.2.1 One or two architectures?
	C.2.2 Scaling and Flexibility
	Scaling the IPC model
	Scaling the Library model

	D Implementing session-less RoT Services
	D.1 Background
	D.2 Analysis
	D.3 Framework options

