
Arm® Cortex®-R52 Processor
Revision: r1p2

Technical Reference Manual

Copyright © 2016–2019 Arm Limited or its affiliates. All rights reserved.
100026_0102_00_en



Arm® Cortex®-R52 Processor
Technical Reference Manual
Copyright © 2016–2019 Arm Limited or its affiliates. All rights reserved.

Release Information

Document History

Issue Date Confidentiality Change

0000-00 12 August 2016 Confidential First release for r0p0.

0100-00 30 March 2017 Non-Confidential First release for r1p0.

0101-00 13 September 2017 Non-Confidential First release for r1p1.

0101-01 16 February 2018 Non-Confidential Second release for r1p1.

0102-00 18 January 2019 Non-Confidential First release for r1p2.

Non-Confidential Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information contained in
this document may be protected by one or more patents or pending patent applications. No part of this document may be
reproduced in any form by any means without the express prior written permission of Arm. No license, express or implied, by
estoppel or otherwise to any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use
the information for the purposes of determining whether implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE
WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, and has
undertaken no analysis to identify or understand the scope and content of, third party patents, copyrights, trade secrets, or other
rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING
OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure of
this document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof is
not exported, directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s customers is
not intended to create or refer to any partnership relationship with any other company. Arm may make changes to this document at
any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any click through or signed written
agreement covering this document with Arm, then the click through or signed written agreement prevails over and supersedes the
conflicting provisions of these terms. This document may be translated into other languages for convenience, and you agree that if
there is any conflict between the English version of this document and any translation, the terms of the English version of the
Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited (or its
subsidiaries) in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this document may be the
trademarks of their respective owners. Please follow Arm’s trademark usage guidelines at http://www.arm.com/company/policies/
trademarks.

Copyright © 2016–2019 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

 Arm® Cortex®-R52 Processor
 

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

2

Non-Confidential

http://www.arm.com/company/policies/trademarks
http://www.arm.com/company/policies/trademarks


110 Fulbourn Road, Cambridge, England CB1 9NJ.

LES-PRE-20349

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license restrictions in
accordance with the terms of the agreement entered into by Arm and the party that Arm delivered this document to.

Unrestricted Access is an Arm internal classification.

Product Status

The information in this document is Final, that is for a developed product.

Web Address

http://www.arm.com

 Arm® Cortex®-R52 Processor
 

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3

Non-Confidential

http://www.arm.com


Contents
Arm® Cortex®-R52 Processor Technical Reference
Manual

Preface
About this book ...................................................... ......................................................  9
Feedback .................................................................................................................... 12

Chapter 1 Introduction
1.1 About the Cortex®-R52 processor ............................................................................ 1-14
1.2 Component blocks ................................................. .................................................  1-18
1.3 Interfaces ........................................................ ........................................................  1-22
1.4 Supported standards ............................................... ...............................................  1-24
1.5 Documentation .................................................... ....................................................  1-25
1.6 Design process ........................................................................................................ 1-26
1.7 Product revisions .................................................. ..................................................  1-27

Chapter 2 Programmers Model
2.1 About the programmers model ................................................................................ 2-29
2.2 Armv8-R architecture concepts ....................................... .......................................  2-31

Chapter 3 System Control
3.1 About system control ............................................... ...............................................  3-37
3.2 Register summary ................................................. .................................................  3-38
3.3 AArch32 register descriptions .................................................................................. 3-74

 
 

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

4

Non-Confidential



Chapter 4 Clocking and Resets
4.1 Clock and clock enables ........................................................................................ 4-198
4.2 Reset signals .................................................... ....................................................  4-199
4.3 Reset-related signals .............................................. ..............................................  4-202

Chapter 5 Power Management
5.1 About power management .......................................... ..........................................  5-204
5.2 Local and regional clock gating ...................................... ......................................  5-205
5.3 Architectural clock gating ........................................... ...........................................  5-206
5.4 Power gating .......................................................................................................... 5-208

Chapter 6 Initialization
6.1 Initialization ............................................................................................................ 6-213
6.2 TCM ........................................................... ...........................................................  6-214
6.3 Entering EL1 .......................................................................................................... 6-216

Chapter 7 Memory System
7.1 About the memory system .......................................... ..........................................  7-218
7.2 TCM memory .................................................... ....................................................  7-220
7.3 Level-1 caches ................................................... ...................................................  7-221
7.4 Direct access to internal memory ..................................... .....................................  7-224
7.5 AXIM interface ................................................... ...................................................  7-227
7.6 Low-latency peripheral port ......................................... .........................................  7-232
7.7 Flash interface ................................................... ...................................................  7-240
7.8 AXIS interface ........................................................................................................ 7-242
7.9 Error detection and handling ........................................ ........................................  7-244
7.10 Exclusive accesses ............................................... ...............................................  7-248
7.11 Bus timeouts .......................................................................................................... 7-249

Chapter 8 Memory Protection Unit
8.1 About the MPU ................................................... ...................................................  8-251
8.2 MPU regions .......................................................................................................... 8-252
8.3 Virtualization support .............................................. ..............................................  8-255
8.4 MPU register access .............................................. ..............................................  8-257
8.5 MPU Register summary ............................................ ............................................  8-258

Chapter 9 Generic Interrupt Controller
9.1 About the GIC ........................................................................................................ 9-260
9.2 GIC functional description .......................................... ..........................................  9-261
9.3 GIC programmers model ........................................... ...........................................  9-265

Chapter 10 Generic Timer
10.1 About the Generic Timer .......................................... ..........................................  10-346
10.2 Generic Timer functional description ................................. .................................  10-347
10.3 Generic Timer register summary .................................... ....................................  10-348

Chapter 11 Debug
11.1 About Debug ........................................................................................................ 11-350
11.2 Debug register interfaces .......................................... ..........................................  11-353
11.3 System register summary .................................................................................... 11-355
11.4 System register descriptions ................................................................................ 11-358

 
 

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

5

Non-Confidential



11.5 Memory-mapped register summary .................................. ..................................  11-362
11.6 Memory-mapped register descriptions ................................ ................................  11-366
11.7 External debug interface ...................................................................................... 11-383
11.8 ROM table ............................................................................................................ 11-386

Chapter 12 Performance Monitor Unit
12.1 About the PMU .................................................. ..................................................  12-398
12.2 PMU register summary ........................................................................................ 12-400
12.3 PMU register descriptions ......................................... .........................................  12-402
12.4 Memory-mapped register summary .................................. ..................................  12-407
12.5 Memory-mapped register descriptions ................................ ................................  12-409
12.6 Events .................................................................................................................. 12-418
12.7 Interrupts ...................................................... ......................................................  12-426
12.8 Exporting PMU events ............................................ ............................................  12-427

Chapter 13 Cross Trigger
13.1 About the cross trigger ............................................ ............................................  13-429
13.2 Trigger inputs and outputs ......................................... .........................................  13-431
13.3 Cortex®-R52 CTM ................................................................................................ 13-432
13.4 Cross trigger register summary ..................................... .....................................  13-433
13.5 Cross trigger register descriptions ................................... ...................................  13-435

Chapter 14 Embedded Trace Macrocell
14.1 About the ETM .................................................. ..................................................  14-447
14.2 ETM trace unit generation options and resources ....................... .......................  14-449
14.3 ETM Event connectivity ........................................... ...........................................  14-451
14.4 Operation ...................................................... ......................................................  14-452
14.5 Modes of operation and execution ................................... ...................................  14-456
14.6 Register summary ............................................... ...............................................  14-458
14.7 Register descriptions ............................................. .............................................  14-462

Chapter 15 Advanced SIMD and floating-point support
15.1 About the Advanced SIMD and floating-point support .................... ....................  15-528
15.2 Floating-point support .......................................................................................... 15-529
15.3 AArch32 single-precision floating point instructions ...................... ......................  15-530
15.4 Accessing the feature identification registers ........................... ...........................  15-531
15.5 Register summary ............................................... ...............................................  15-532
15.6 Register descriptions ............................................. .............................................  15-533

Appendix A Signal Descriptions
A.1 Clock and clock enable signals .................................................................... Appx-A-544
A.2 Resets .......................................................................................................... Appx-A-545
A.3 Reset-related signals ......................................... .........................................  Appx-A-546
A.4 Configuration inputs .......................................... ..........................................  Appx-A-547
A.5 Memory correcting error reporting signals ......................... .........................  Appx-A-548
A.6 Event output signals .......................................... ..........................................  Appx-A-552
A.7 MRP signals ................................................ ................................................  Appx-A-557
A.8 Bus interface signals .................................................................................... Appx-A-559
A.9 Debug and trace interface signals ............................... ...............................  Appx-A-575
A.10 Generic timer signals ......................................... .........................................  Appx-A-579
A.11 Power management signals .................................... ....................................  Appx-A-580

 
 

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

6

Non-Confidential



A.12 DFT and on-line MBIST signals ................................. .................................  Appx-A-582
A.13 GIC Distributor external messaging port signals .................... ....................  Appx-A-583
A.14 Interrupt input signals ......................................... .........................................  Appx-A-584
A.15 DCLS signals ............................................... ...............................................  Appx-A-585
A.16 Split/Lock signal ............................................. .............................................  Appx-A-586

Appendix B Cycle Timings and Interlock Behavior
B.1 About cycle timings and interlock behavior .................................................. Appx-B-588
B.2 Instructions cycle timings ...................................... ......................................  Appx-B-591
B.3 Pipeline behavior ............................................ ............................................  Appx-B-608

Appendix C Processor UNPREDICTABLE Behaviors
C.1 Use of R15 by Instruction ...................................... ......................................  Appx-C-613
C.2 UNPREDICTABLE instructions within an IT block ................... ...................  Appx-C-615
C.3 Instruction fetches from Device memory .......................... ..........................  Appx-C-616
C.4 Specific UNPREDICTABLE cases for instructions  .................. ..................  Appx-C-617
C.5 Load/Store accesses crossing MPU regions ....................... .......................  Appx-C-621
C.6 Armv8 Debug UNPREDICTABLE behaviors ....................... .......................  Appx-C-622
C.7 Other UNPREDICTABLE behaviors ............................................................ Appx-C-627

Appendix D Revisions
D.1 Revisions .................................................. ..................................................  Appx-D-629

 
 

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

7

Non-Confidential



Preface

 

This preface introduces the Arm® Cortex®-R52 Processor Technical Reference Manual.

It contains the following:
• About this book on page 9.
• Feedback on page 12.

 

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

8

Non-Confidential



 About this book
This book is for the Cortex-R52 processor.

 Product revision status

The rmpn identifier indicates the revision status of the product described in this book, for example, r1p2,
where:

rm Identifies the major revision of the product, for example, r1.
pn Identifies the minor revision or modification status of the product, for example, p2.

 Intended audience

This book is written for system designers, system integrators, and programmers who are designing or
programming a System-on-Chip (SoC) that uses the Cortex®-R52 processor.

 Using this book

This book is organized into the following chapters:

Chapter 1 Introduction
This chapter gives an introduction to the Cortex-R52 processor.

Chapter 2 Programmers Model
This chapter describes the programmers model.

Chapter 3 System Control
This chapter describes the system registers and their structure and operation.

Chapter 4 Clocking and Resets
This chapter describes clocks and resets used within the processor.

Chapter 5 Power Management
This chapter describes the power management facilities provided by the Cortex-R52 processor.

Chapter 6 Initialization
This chapter describes considerations for initializing the Cortex-R52 processor.

Chapter 7 Memory System
This chapter describes the memory system.

Chapter 8 Memory Protection Unit
This chapter describes the MPU.

Chapter 9 Generic Interrupt Controller
This chapter describes the Cortex-R52 processor implementation of the Generic Interrupt
Controller (GIC).

Chapter 10 Generic Timer
This chapter describes the Cortex-R52 processor implementation of the Arm Generic Timer.

Chapter 11 Debug
This chapter describes the Cortex-R52 processor debug registers and shows examples of how to
use them.

Chapter 12 Performance Monitor Unit
This section describes the Performance Monitor Unit (PMU) features and the registers that it
uses.

Chapter 13 Cross Trigger
This chapter describes the cross trigger logic for the Cortex-R52 processor.

Chapter 14 Embedded Trace Macrocell
This chapter describes the Embedded Trace Macrocell (ETM) for the Cortex-R52 processor.

 Preface
 About this book

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

9

Non-Confidential



Chapter 15 Advanced SIMD and floating-point support
This chapter describes the Advanced SIMD and floating-point features and registers the processor
uses.

Appendix A Signal Descriptions
This appendix describes the Cortex-R52 processor signals.

Appendix B Cycle Timings and Interlock Behavior
This appendix describes the cycle timing and interlock behavior of instructions on the Cortex-R52
processor.

Appendix C Processor UNPREDICTABLE Behaviors
This appendix describes specific Cortex-R52 processor UNPREDICTABLE behaviors of particular
interest. These UNPREDICTABLE behaviors differ from the Arm standard behavior.

Appendix D Revisions
This appendix describes the technical changes between released issues of this book.

Glossary

The Arm® Glossary is a list of terms used in Arm documentation, together with definitions for those
terms. The Arm Glossary does not contain terms that are industry standard unless the Arm meaning
differs from the generally accepted meaning.

See the Arm® Glossary for more information.

Typographic conventions

italic
Introduces special terminology, denotes cross-references, and citations.

bold
Highlights interface elements, such as menu names. Denotes signal names. Also used for terms
in descriptive lists, where appropriate.

monospace
Denotes text that you can enter at the keyboard, such as commands, file and program names,
and source code.

monospace
Denotes a permitted abbreviation for a command or option. You can enter the underlined text
instead of the full command or option name.

monospace italic
Denotes arguments to monospace text where the argument is to be replaced by a specific value.

monospace bold
Denotes language keywords when used outside example code.

<and>
Encloses replaceable terms for assembler syntax where they appear in code or code fragments.
For example:

MRC p15, 0, <Rd>, <CRn>, <CRm>, <Opcode_2>

SMALL CAPITALS

Used in body text for a few terms that have specific technical meanings, that are defined in the
Arm® Glossary. For example, IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN, and
UNPREDICTABLE.

Timing diagrams

The following figure explains the components used in timing diagrams. Variations, when they occur,
have clear labels. You must not assume any timing information that is not explicit in the diagrams.

 Preface
 About this book

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

10

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.aeg0014-/index.html


Shaded bus and signal areas are undefined, so the bus or signal can assume any value within the shaded
area at that time. The actual level is unimportant and does not affect normal operation.

Clock

HIGH to LOW

Transient

HIGH/LOW to HIGH

Bus stable

Bus to high impedance

Bus change

High impedance to stable bus

Figure 1  Key to timing diagram conventions

Signals

The signal conventions are:

Signal level
The level of an asserted signal depends on whether the signal is active-HIGH or active-LOW.
Asserted means:
• HIGH for active-HIGH signals.
• LOW for active-LOW signals.

Lowercase n

At the start or end of a signal name denotes an active-LOW signal.

 Additional reading

This book contains information that is specific to this product. See the following documents for other
relevant information.

Arm publications
• AMBA® 3 APB Protocol v1.0 Specification (IHI 0024B)
• AMBA® 4 ATB Protocol Specification ATBv1.0 and ATBv1.1 (IHI 0032).
• AMBA® AXI™ and ACE™ Protocol Specification AXI3™, AXI4™, and AXI4-Lite™, ACE and

ACE-Lite™ (IHI 0022) .
• Arm® Architecture Reference Manual Supplement Armv8, for Armv8-R architecture profile

(DDI 0568).
• Arm® Architecture Reference Manual Arm®v8, for Arm®v8-A architecture profile (DDI 0487)
• Arm® CoreSight™ Architecture Specification v2.0 (IHI 0029D)
• Arm® Embedded Trace Macrocell Architecture Specification ETMv4 (IHI 0064).
• Arm® Generic Interrupt Controller Architecture Specification GIC architecture version 3.0

and version 4.0 (IHI 0069).
• Low Power Interface Specification Arm® Q-Channel and P-Channel Interfaces (IHI 0068).

The following confidential books are only available to licensees:
• Arm® Cortex®-R52 Processor Configuration and Sign-off Guide (100027).
• Arm® Cortex®-R52 Processor Integration Manual (100028).
• Armv8 AArch32 UNPREDICTABLE behaviours (PRD03-GENC-010544).

Other publications
• IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Std 754-2008

 Preface
 About this book

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

11

Non-Confidential



 Feedback

 Feedback on this product

If you have any comments or suggestions about this product, contact your supplier and give:
• The product name.
• The product revision or version.
• An explanation with as much information as you can provide. Include symptoms and diagnostic

procedures if appropriate.

 Feedback on content

If you have comments on content then send an e-mail to errata@arm.com. Give:

• The title Arm Cortex-R52 Processor Technical Reference Manual.
• The number 100026_0102_00_en.
• If applicable, the page number(s) to which your comments refer.
• A concise explanation of your comments.

Arm also welcomes general suggestions for additions and improvements.
 Note 

Arm tests the PDF only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the quality of the
represented document when used with any other PDF reader.

 Preface
 Feedback

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

12

Non-Confidential

mailto:errata@arm.com


Chapter 1
Introduction

This chapter gives an introduction to the Cortex-R52 processor.

It contains the following sections:
• 1.1 About the Cortex®-R52 processor on page 1-14.
• 1.2 Component blocks on page 1-18.
• 1.3 Interfaces on page 1-22.
• 1.4 Supported standards on page 1-24.
• 1.5 Documentation on page 1-25.
• 1.6 Design process on page 1-26.
• 1.7 Product revisions on page 1-27.

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

1-13

Non-Confidential



1.1 About the Cortex®-R52 processor
The Cortex-R52 processor is a mid-performance, in-order, superscalar processor primarily for use in
automotive and industrial applications. It is also suited to a wide variety of other embedded applications
such as communication and storage devices.

The Cortex-R52 processor has one to four cores, each implementing a single Armv8-R compliant
processing element (PE). In the context of Cortex-R52, the PE and core are conceptually the same.

Multiple Protected Memory System Architecture (PMSA) contexts can execute on the same core using
virtualization technology to contain them. The processor enables real-time performance of different
contexts to be contained, which prevents one context from impacting the response time and determinism
of a more critical context. The processor can have redundant copies of the logic and comparator instances
for Dual-Core Lock-Step (DCLS) operation.

The following figure shows an example Cortex-R52 processor system.

Processor

Accesses to 
or from Core 
0-2 memories

Interrupts Interrupt export

GIC Distributor

Shared 
Peripherals

Shared 
RAM

System bus

Flash

C
or

eS
ig

ht
 d

eb
ug

,tr
ac

e 
an

d 
ca

lib
ra

tio
n

MRP
Debug,  Trace, 

and
RAM 

Calibration

Trace Buffer

ETM

Debug

AXIM 
interface 0

AXIM 
interface 1

AXIM 
interface 2

AXIS 
interface

LLPP 
interface 0

LLPP 
interface 1

LLPP 
interface 2

Private 
peripherals

Private 
peripherals

Private 
peripherals

Flash 
interface 0

Flash 
interface 1

Flash 
interface 2

DMA

Core 0

Level 1 cache

Tightly-Coupled 
Memory

Core 1

Level 1 cache

Tightly-Coupled 
Memory

Core 2

Level 1 cache

Tightly-Coupled 
Memory

Flash Flash RAM

Figure 1-1  Example Cortex-R52 processor system

This section contains the following subsections:
• 1.1.1 Features on page 1-14.
• 1.1.2 Interfaces on page 1-15.
• 1.1.3 Configuration options on page 1-15.

1.1.1 Features

The main features of the Cortex-R52 processor include:

• Up to four cores, each with an eight-stage in-order, superscalar pipeline with branch prediction.
• Error Correcting Code (ECC), Single Error Correct Double Error Detect (SECDED), protection for

all of the instantiated cache tag and data, and Tightly-Coupled Memory (TCM) RAMs, and the
connected flash memories.

• Optional signal integrity protection on the data, address, control and response payloads and
handshake signals, and optional interconnect protection for the main AXI Master (AXIM) interface,
AXI Slave (AXIS) interface, Low-latency Peripheral Port (LLPP) interface, and the Flash interface.

• Error reporting interface.

1 Introduction
1.1 About the Cortex®-R52 processor

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

1-14

Non-Confidential



• Power management.
• Armv8-R debug providing hardware breakpoints and watchpoints, self-hosted, and external debug. It

also enables communications between debug target and host.
• Embedded Trace Macrocell (ETM) for instruction and data trace.
• Memory Reconstruction Port (MRP) for use in emulation and calibration.
• Performance Monitor Unit (PMU) support based on the PMUv3 architecture.
• Cross Trigger Interface (CTI) for multiprocessor debugging.
• An integrated, fast-responding Generic Interrupt Controller (GIC) with virtualization.
• An online Memory Built-In Self-Test (MBIST) interface for testing memories, at boot time and at

scheduled intervals after boot time.

1.1.2 Interfaces

The Cortex-R52 processor has several external interfaces.

The following figure shows the external interfaces of the Cortex-R52 processor. The arrows indicate the
direction of signals in each interface.

Processor

Master interface

Peripheral port  

Debug APB

Clocks

Resets

Configuration
Power control

DFT

MBIST

AXI slave

AXI master

Test

Power 
management  

Debug

Generic timer

PMU events

ETM

Core [N-1:0]

Counter

Interrupts

ATBI

Debug

Debug APB 
slave

GIC Distributor

MRPMRP[N]

Redundant core control

Interrupt export  

LLPP

ATBD

Error reporting

Flash

Figure 1-2  Cortex-R52 processor interfaces

1.1.3 Configuration options

The Cortex-R52 processor has options that you can configure during the implementation and integration
stages to match your functional requirements.

The following table shows the configurable options of the processor.

1 Introduction
1.1 About the Cortex®-R52 processor

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

1-15

Non-Confidential



Table 1-1  Configuration options

Feature Options Done at

Number of cores 1-4 cores. Implementation

Lock-step Redundant logic, flops, and comparators for DCLS included or not.

DCLS configuration with 2, 4, 6, or 8 instances of the core logic, depending
on the number of cores configured.

Implementation

EL1-controlled MPU 16, 20, or 24 programmable EL2-controlled Memory Protection Unit
(MPU) regions per core.

Implementation

EL2-controlled MPU 0, 16, 20, or 24 programmable EL2-controlled MPU regions per core. Implementation

AXI bus protection No bus protection included, only signal integrity protection included, or
signal integrity and interconnect protection are included.

Implementation

RAM protection Included for all RAMs or not included. Implementation

Number of interrupts (SPIs) into the
interrupt controller

32-960 in multiples of 32, with a minimum of 32 interrupts per core. Implementation

AXIS ID bits Any non-zero number, but 5-16 preferred. Implementation

Advanced SIMD and floating-point
capabilities for each core

Single-precision floating-point only or single-precision and double-
precision floating-point and Advanced SIMD.

Implementation

Size of each of the three TCMs on
each core

0KB, 8KB-1MB (powers of 2). Implementation

TCM wait states for each core 0 or 1 wait states. Implementation

Instruction cache size for each core 4KB, 8KB, 16KB, 32KB, or excluded completely. Implementation

Data cache size for each core 4KB, 8KB, 16KB, 32KB, or excluded completely. Implementation

External device interfaces to GIC 0 or 1 external devices. Implementation

Flash ECC scheme Switches the flash memory integrity protection scheme between 64-bit ECC
and 128-bit ECC.

Implementation

Reset all registers Only required registers or all programmer-visible registers are reset in the
hardware.

Integration

TCM boot Boot with ATCM enabled and at address 0x0, or disabled at reset. Integration

Flash boot Boot with flash memory enabled or disabled at reset. Integration

Flash interface base address Base address of Flash interface region. Integration

Flash region present tie-off Flash region access to AXIM interface or Flash interface. Integration

LLPP interface base address and size Base address and size (powers of 2) of LLPP region. Integration

LLPP region present tie-off LLPP region access to AXIM interface or LLPP. Integration

TCMs base addresses Base address of TCM regions as seen by AXIS interface. Integration

Processor configurations

The Cortex-R52 processor can be configured to implement DCLS and Split/Lock configurations.

DCLS

In DCLS configurations, there is a second, redundant copy of the majority of the core logic for each core,
and a redundant copy of the shared logic.

1 Introduction
1.1 About the Cortex®-R52 processor

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

1-16

Non-Confidential



The redundant logic is driven by the same inputs as the functional logic. In particular, the redundant core
logic shares the same cache RAMs and TCMs as the functional core. Therefore, only one set of cache
RAMs and TCMs is required. The redundant logic operates in lock-step with the core, but does not
directly affect the processor behavior in any way. The processor outputs to the rest of the system and the
core outputs to the cache RAMs and TCMs are driven exclusively by the functional core.

During implementation, comparator logic can be included to compare the outputs of the redundant logic
and the functional logic. These comparators can detect a single fault that occurs in either set of logic
because of radiation or circuit failure. When used with RAM error detection schemes, the system can be
protected from faults.

If you are implementing a DCLS configuration, contact Arm for more information.

Split/Lock

In Split/Lock configuration, there must be two or four complete redundant copies of each core. The
following table shows how the cores are used in Lock mode and Split mode. In the following table:

• The number of physical cores is N.
• The number of cores used in Lock mode is LOCK_N.
• The number of cores used in Split mode is SPLIT_N.

Table 1-2  Split/Lock configuration

N LOCK_N SPLIT_N

2 1 2

4 2 4

In Lock mode, the higher order cores function as redundant copies of the lower order cores. For example,
if N is 4, only the lower order cores are logically present, that is, core 0 and core 1. Core 2 and core 3 are
the higher order cores which are logically not present, but function as redundant copies. Although
present, the inputs and outputs, cache RAMs, and TCMs belonging to the higher order cores are disabled
and must not be used in Lock mode.

In Split mode, all interfaces, cache RAMs, and TCMs associated to the number of physical cores selected
are present and enabled but redundancy checking is not possible.

Similar to DCLS, comparator logic can be included to compare the outputs of the redundant logic and
functional logic during Lock mode operation. Split mode operation disables the comparator logic.

For Split/Lock, a new input signal CFGSLSPLIT must be set to determine whether Split or Lock mode
is configured. If Lock mode is selected, all the DCLS signals must be driven in addition to
CFGSLSPLIT. If Split mode is selected, only CLKINDCLS must be driven in addition to
CFGSLSPLIT. For more information on DCLS signals, see A.15 DCLS signals on page Appx-A-585.

If you are implementing Split/Lock configuration, contact Arm for more information.

Related reference
1.2 Component blocks on page 1-18

1 Introduction
1.1 About the Cortex®-R52 processor

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

1-17

Non-Confidential



1.2 Component blocks
The following figure shows the main component blocks of a processor in a two-core configuration.

L1 
instruction 

Cache

L1 data 
cache Debug

Core 0

Flash AXIM LLPP

AXIS

Core 0 governor

L1 
instruction 

Cache

L1 data 
cache Debug

Core 1

Floating-point and 
Advanced SIMD

Core 1 governor

Generic timerClock and 
reset

CTI Debug over 
power down

GIC CPU 
interface

Governor

APB decoder APB ROM APB 
multiplexer CTM

Processor

Floating-point and 
Advanced SIMD L1 TCM L1 TCM

GIC CPU 
interface

Generic timerClock and 
reset

CTI Debug over 
power down

GIC Distributor

Flash AXIM LLPP

ETM MRP ETM MRP

On-line 
MBIST

EL1/EL2 
MPU

EL1/EL2 
MPU

Figure 1-3  Functional block diagram

This section contains the following subsections:
• 1.2.1 Instruction Fetch on page 1-18.
• 1.2.2 Advanced SIMD and floating-point support on page 1-19.
• 1.2.3 GIC Distributor on page 1-20.
• 1.2.4 GIC CPU interface on page 1-20.
• 1.2.5 Memory system on page 1-20.
• 1.2.6 Memory management on page 1-21.
• 1.2.7 Debug, trace, and test on page 1-21.

1.2.1 Instruction Fetch

The Prefetch Unit (PFU) obtains instructions from the instruction cache, TCM, or from external memory
and predicts the outcome of branches in the instruction stream and passes the instructions to the Data
Processing Unit (DPU) for processing.

The PFU fetches 64 bits per cycle from memory.

Instruction fetches in the Cortex-R52 processor are always little-endian.

The instruction queue between the fetch and decode stages decouples instruction execution from
instruction fetch. This allows instructions to continue to be executed while the fetch stages are being
flushed due to a predicted branch.

1 Introduction
1.2 Component blocks

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

1-18

Non-Confidential



The Cortex-R52 branch prediction mechanisms detect branches at an early stage in the pipeline. Also,
they redirect instruction fetching to the appropriate address immediately, rather than waiting for the
branch to reach the end of the pipeline. However, not all branches are predicted in this way.

Branch Target Address Cache
The PFU contains a 16-entry Branch Target Address Cache (BTAC) to predict the target address
of indirect branches (except for subroutine returns). The BTAC implementation is
architecturally transparent, so it does not have to be flushed on a context switch.

Branch predictor
The branch predictor is a global type that uses branch history registers and a 2048-entry pattern
history prediction table.

Return stack
The PFU includes an 8-entry call-return stack to accelerate returns from subroutine calls. For
each subroutine call, the return address is pushed onto a hardware stack. When a subroutine
return is recognized, the address held in the return stack is popped, and the PFU uses it as the
predicted return address. The return stack is architecturally transparent, so it does not have to be
flushed on a context switch.

Exception Target Address Cache
The Exception Target Address Cache (ETAC) is a structure used to reduce the best case latency
of IRQ and FIQ exceptions by caching the address of generic handler for these exceptions.
The ETAC is enabled out of reset. Writing 1 to the system register CPUACTLR.ETACDIS,
disables the ETAC.
The ETAC supports caching of Interrupt (IRQ) and Fast Interrupt (FIQ) vector entries only.
Other types of exceptions do not allocate entries no hit in the ETAC. This is because a fast
response to the IRQ and FIQ exceptions is most critical in real-time systems.
A vector is only cached in the ETAC if the vector is in a TCM. A vector located in any other
type of memory never allocates or hits in the ETAC. This is because the TCMs are the only
memories with a perfect response. Other memories can be subject to cache misses and in these
cases the savings that the ETAC offers are minimal compared to the latency of the cache miss.
The ETAC only caches the vector corresponding to the IRQ or FIQ exception if the instruction
in the vector table is a compatible instruction. Compatible instructions are all encodings of B
#immed. If the exception vector is not a compatible instruction, the ETAC does not cache that
exception.
The IRQ and FIQ exception can be taken to either Exception Level EL1 or EL2, depending on
the exception level at the time of the interrupt and the values of HCR.IMO and HCR.FMO. The
ETAC independently supports both IRQ and FIQ exceptions taken to both EL1 and EL2, which
means that there are four independent entries for each of these cases.
For more information on:
• CPUACTLR, see 3.3.19 CPU Auxiliary Control Register on page 3-90.
• HCR, see 3.3.39 Hyp Configuration Register on page 3-111.

1.2.2 Advanced SIMD and floating-point support

The Advanced SIMD and floating-point that each core supports uses NEON™ technology, a SIMD
architecture.

The Advanced SIMD and floating-point feature provides:
• Instructions for single-precision (C programming language float type) data-processing operations.
• Optional instructions for double-precision (C double type) data-processing operations.
• Combined Multiply and Accumulate instructions for increased precision (Fused MAC).
• Hardware support for conversion, addition, subtraction, multiplication with optional accumulate,

division, and square-root.
• Hardware support for denormals and all IEEE Standard 754-2008 rounding modes.
• For single-precision floating-point, there are 32 32-bit single-precision registers or 16 64-bit double-

precision registers. If the optional instructions for the double-precision and Advanced SIMD are
included, a total of 32 64-bit double-precision registers or 16 128-bit registers are available.

1 Introduction
1.2 Component blocks

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

1-19

Non-Confidential



Related reference
Chapter 15 Advanced SIMD and floating-point support on page 15-527

1.2.3 GIC Distributor

The GIC Distributor receives, prioritizes, and routes physical interrupts to the appropriate interrupt
target.

The output of the GIC Distributor is the highest priority pending interrupt for each interrupt target. An
interrupt target is either the GIC CPU interface for a core or an export port for connection to an external
device such as a Direct Memory Access (DMA) controller.

Related reference
Chapter 9 Generic Interrupt Controller on page 9-259

1.2.4 GIC CPU interface

The GIC CPU interfaces handle interrupt preemption for both physical and virtual interrupts for each
core.

The virtual part of each GIC CPU interface is divided into hypervisor registers and guest OS registers.
The hypervisor generates interrupts to the guest OS using the GIC CPU interface.

Related reference
Chapter 9 Generic Interrupt Controller on page 9-259

1.2.5 Memory system

The Cortex-R52 memory system provides different memories and interfaces depending on your
implementation.

Intended for use by contexts without strong real-time requirements, each Cortex-R52 core has a
dedicated 128-bit AXIM interface for memory, instructions and data, and peripheral access.

Also, intended for use by real-time contexts, each Cortex-R52 core can have:

• Three unified TCMs, each 8KB-1MB providing lowest-latency access for instructions and data.
• Optionally, 32-bit AXI4 LLPP interface for device data accesses to private peripherals.
• 128-bit read-only Flash interface.
• ECC protection for all TCM and flash memories providing SECDED protection.
• TCM access for DMA through the AXIS interface.
• TCM testing using the MBIST interface.

 Note 

A real-time context is also able to access the AXIM, although such an access might not be desirable
depending on the system design.

Each Cortex-R52 core has optional Harvard caches, which can be used to cache data from the Flash
interface and the AXIM interface. The cache behavior depends on the memory attributes.

Each core has:
• Store buffer with merging and forwarding (as appropriate) for stores.
• 4-way instruction cache of 4-32KB.
• Instruction linefill buffering.
• 4-way data cache of 4-32KB with Write-Through behavior.
• Data read buffers.
• ECC protection for all cache memories (including tag RAM).
• 64-bit datapath for loads and stores to caches.
• Cache maintenance operations according to Arm architecture.
• Cache memory testing using the MBIST interface.

1 Introduction
1.2 Component blocks

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

1-20

Non-Confidential



Related reference
Chapter 7 Memory System on page 7-217

1.2.6 Memory management

The Memory Protection Unit (MPU) determines the attributes for each memory location including
permissions, type, and cacheability. Two programmable MPU are provided, controlled from EL1 and
EL2 respectively.

Access permissions determine which levels of privilege are permitted to access a location and whether
write access or instruction execution are permitted. Memory type and cacheability affect how the
processor handles particular accesses, for example, if the processor permits two stores to be merged into
a single write access. These attributes and their meanings are defined by the Arm architecture.

Related reference
Chapter 8 Memory Protection Unit on page 8-250

1.2.7 Debug, trace, and test

The processor has manufacturing test facilities and each core in the processor has both invasive debug
and non-invasive debug features to support software debug.

The invasive debug features include hardware exception catching, breakpoints and watchpoints, data
transfer through a Debug Communications Channel, and single-stepping. Invasive debug modes are self-
hosted (or monitor) debug and external (or halting) debug. Invasive debug impacts the performance of
the processor, although you can schedule self-hosted debug if time permits.

The non-invasive debug features include tracing instruction execution and tracing data transfers. Each
core has its own ETM permitting all cores to be traced simultaneously subject to the available trace
bandwidth. Trace information is exported on the ATB trace buses that can be connected to a CoreSight
system for combining trace sources, buffering, and exporting them.

The processor includes a PMU that generates and can count events that occur in the core such as cache
linefills, pipeline stalls, and ECC faults. These events are also exported for use by external hardware as
appropriate.

Manufacturing test includes MBIST.

Related reference
Chapter 11 Debug on page 11-349
Chapter 13 Cross Trigger on page 13-428
Chapter 14 Embedded Trace Macrocell on page 14-446

1 Introduction
1.2 Component blocks

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

1-21

Non-Confidential



1.3 Interfaces
The Cortex-R52 processor has several external interfaces.

This section contains the following subsections:
• 1.3.1  Advanced Microcontroller Bus Architecture (AMBA) interfaces on page 1-22.
• 1.3.2 Flash interface on page 1-22.
• 1.3.3 Memory Reconstruction Port on page 1-23.
• 1.3.4 Interrupt interface on page 1-23.
• 1.3.5 MBIST interface on page 1-23.
• 1.3.6 Low Power Interface on page 1-23.

1.3.1 Advanced Microcontroller Bus Architecture (AMBA) interfaces

The processor implements the following AMBA interfaces.

AXIM

Each core of the Cortex-R52 processor has a 128-bit AXIM interface that provides high-performance
access to external memory and peripherals.

Related reference
7.5 AXIM interface on page 7-227
A.8.1 AXIM interface signals on page Appx-A-559

AXIS

Each core in the Cortex-R52 processor is connected to a common 128-bit AXIS interface. This provides
external access to the TCMs. The AXIS interface supports DMA access between an external controller
and the internal memories.

Related reference
7.8 AXIS interface on page 7-242
A.8.2 AXIS interface signals on page Appx-A-563

Advanced Peripheral Bus (APB) Debug interface

AMBA APBv3 interface is used for debugging purposes.

Related reference
Debug APB interface signals on page Appx-A-575

LLPP

Each core in the Cortex-R52 processor has an interface to a dedicated 32-bit LLPP master interface.
These ports are intended to be used for private peripherals requiring low-latency access.

Related reference
7.6 Low-latency peripheral port on page 7-232
A.8.3 LLPP interface signals on page Appx-A-567

1.3.2 Flash interface

Each core in the Cortex-R52 processor has a dedicated 128-bit read-only Flash master interface, which
can be used as an AXI4 interface. This interface is intended to provide low-latency access to flash
memories attached to the processor, enabling the processor to execute real-time tasks from a flash ROM
with caching.

1 Introduction
1.3 Interfaces

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

1-22

Non-Confidential



Related reference
7.7 Flash interface on page 7-240

1.3.3 Memory Reconstruction Port

Each core of the Cortex-R52 processor provides an MRP for reporting write accesses so that an image of
memory can be reconstructed.

The main features of the MRP interface for each core are:
• Trace information from the MRP is uncompressed.
• The MRP does not include any filtering.

Related reference
A.7 MRP signals on page Appx-A-557

1.3.4 Interrupt interface

The interrupt interface for the Cortex-R52 processor has an input port for a configurable number of
Shared Peripheral Interrupts (SPIs), from 32 to 960 (in multiples of 32), with a minimum of 32 for each
core. All SPIs can be configured to be rising edge-triggered or level-sensitive active-HIGH.

The interrupt distributor has an optional interrupt export port for routing interrupts to an external device
such as a DMA engine. The interrupt controller selects this port for routing SPIs to in the same way as it
routes interrupts to a core.

The interrupt controller also provides Private Peripheral Interrupts (PPIs) and Software Generated
Interrupts (SGIs), which are private to each core. Some PPIs are exposed as primary inputs.

Related reference
Chapter 9 Generic Interrupt Controller on page 9-259

1.3.5 MBIST interface

The MBIST interface is used for testing the RAMs during production test.

The Cortex-R52 processor allows the RAMs to be tested using the MBIST interface during normal
execution. This is known as on-line MBIST.

Contact your implementation team for more information about the MBIST interface and on-line MBIST.

1.3.6 Low Power Interface

The P-channel interfaces are used to signal power state information to an external power controller.

Related reference
Chapter 5 Power Management on page 5-203

1 Introduction
1.3 Interfaces

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

1-23

Non-Confidential



1.4 Supported standards
The processor complies with, or implements, various specifications defined by Arm.

1.4.1 Arm architecture

The Cortex-R52 processor implements the Armv8-R architecture. This includes:

• Support for AArch32 Execution state.
• Support for Exception levels, EL0, EL1, and EL2.
• Support for floating-point computation functionality that is compliant with the ANSI/IEEE Std

754-2008, IEEE Standard for Binary Floating-Point Arithmetic.

See the Arm® Architecture Reference Manual Supplement Armv8, for Armv8-R architecture profile for
more information.

1.4.2 AMBA

The Cortex-R52 processor complies with the:

• AMBA 4 Advanced eXtensible Interface (AXI) protocol for the main AXIM interface, AXIS
interface, and LLPP ports. See the AMBA® AXI™ and ACE™ Protocol Specification AXI3™, AXI4™, and
AXI4-Lite™, ACE and ACE-Lite™.

• AMBA 3 APB protocol. See the AMBA® 3 APB Protocol v1.0 Specification.
• AMBA 4 Advanced Trace Bus (ATB) protocol. See the AMBA® 4 ATB Protocol Specification

ATBv1.0 and ATBv1.1.

1.4.3 Generic Interrupt Controller architecture

The Cortex-R52 processor supports a subset of GIC architecture version 3.

See the Arm® Generic Interrupt Controller Architecture Specification GIC architecture version 3.0 and
version 4.0.

1.4.4 Generic Timer architecture

The processor implements the Arm Generic Timer architecture.

See the Arm® Architecture Reference Manual Supplement Armv8, for Armv8-R architecture profile for
more information.

1.4.5 Debug architecture

The processor implements the Armv8-R debug architecture that complies with the CoreSight
architecture.

See the following for more information:
• Arm® CoreSight™ Architecture Specification v2.0.
• Arm® Architecture Reference Manual Supplement Armv8, for Armv8-R architecture profile.

1.4.6 Embedded Trace Macrocell architecture

The processor implements the ETMv4.2 architecture.

See the Arm® Embedded Trace Macrocell Architecture Specification ETMv4.

1 Introduction
1.4 Supported standards

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

1-24

Non-Confidential



1.5 Documentation
The Cortex-R52 processor documentation is as follows:

Technical Reference Manual
The Technical Reference Manual (TRM) describes the functionality and the effects of functional
options on the behavior of the processor. It is required at all stages of the design flow. The
choices made earlier in the design flow can mean that some behavior described in the TRM is
not relevant. If you are programming the processor, additional information must be obtained
from:
• The implementer to determine the build configuration of the implementation.
• The integrator to determine the pin configuration of the device that you are using.

Configuration and Sign-off Guide
The Configuration and Sign-off Guide (CSG) describes:
• The available build configuration options and related issues in selecting them.
• How to configure the Register Transfer Level (RTL) source files with the build configuration

options.
• How to integrate RAM arrays.
• How to validate the RTL.
• How to run test vectors.
• Considerations for floor-planning.
• The processes to sign off the configured design.

The Arm product deliverables include reference scripts and information about using them to
implement your design. Reference methodology flows supplied by Arm are example reference
implementations. For EDA tool support, contact your EDA vendor.

The CSG is a confidential book that is only available to licensees.

Integration Manual

The Integration Manual (IM) describes how to integrate the processor into a SoC. It describes
the signals that the integrator must tie off to configure the macrocell for the required integration.
Some of the implementation options might affect which integration options are available.

The IM is a confidential book that is only available to licensees.

Safety Manual
The Safety Manual (SM) and other associated documents describe in detail the capabilities of
the fault detection and control features, the development process and assumptions of use as
required to support product development incorporating the processor with defined functional
safety requirements.
The SM is a confidential book that is only available to licensees.

1 Introduction
1.5 Documentation

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

1-25

Non-Confidential



1.6 Design process
The Arm processor is delivered as synthesizable RTL. Before the processor can be used in a product, it
must go through the following process:

Implementation
The implementer configures and synthesizes the RTL to produce a hard macrocell. This might
include integrating the cache RAMs into the design.

Integration
The integrator connects the configured design into a SoC. This includes connecting it to a
memory system and peripherals.

Programming
This is the last process. The system programmer develops the:
• Software to configure the Arm processor.
• Software to initialize the Arm processor.
• Application software and the SoC tests.

Each process:
• Can be performed by a different party.
• Can involve making configuration choices that affect the behavior and features of the processor.

The operation of the final device depends on:

Build configuration

The implementer chooses the options that affect how the RTL source files are preprocessed.
These options usually include or exclude logic that can affect one or more of the area, maximum
frequency, and features of the resulting macrocell.

Configuration inputs
The integrator configures some features of the processor by tying inputs to specific values.
These configurations affect the start-up behavior before any software configuration is made.
They can also limit the options available to the software.

Software configuration
The programmer configures the processor by programming particular values into registers. This
affects the behavior of the processor.

1 Introduction
1.6 Design process

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

1-26

Non-Confidential



1.7 Product revisions
This section describes the differences in functionality between product revisions.

r0p0 First release.
r1p0 Second release. For more information, see D.1 Revisions on page Appx-D-629.
r1p1 Third release. For more information, see D.1 Revisions on page Appx-D-629.
r1p2 Fourth release. For more information, see D.1 Revisions on page Appx-D-629.

1 Introduction
1.7 Product revisions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

1-27

Non-Confidential



Chapter 2
Programmers Model

This chapter describes the programmers model.

It contains the following sections:
• 2.1 About the programmers model on page 2-29.
• 2.2 Armv8-R architecture concepts on page 2-31.

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

2-28

Non-Confidential



2.1 About the programmers model
The Cortex-R52 processor implements the Armv8-R architecture. This includes:

• All the Exception levels, EL0-EL2.
• AArch32 execution state at each Exception level.
• T32 and A32 instruction sets that include:

— Floating-point operations.
— Optionally, Advanced SIMD operations.

See the Arm® Architecture Reference Manual Supplement Armv8, for Armv8-R architecture profile for
more information.

This section contains the following subsections:
• 2.1.1 Advanced SIMD and Floating-point on page 2-29.
• 2.1.2 Generic Interrupt Controller on page 2-29.
• 2.1.3 Jazelle implementation on page 2-29.
• 2.1.4 Instruction set states on page 2-29.
• 2.1.5 Memory model on page 2-30.
• 2.1.6 Security state on page 2-30.

2.1.1 Advanced SIMD and Floating-point

Advanced SIMD is a media and signal processing architecture.

Floating-point performs single-precision and double-precision floating-point operations.
 Note 

Advanced SIMD, its associated implementations, and supporting software, are commonly referred to as
NEON technology.

All Advanced SIMD and floating-point operations are part of the A32 and T32 instruction sets.

See the Arm® Architecture Reference Manual Supplement Armv8, for Armv8-R architecture profile for
more information.

2.1.2 Generic Interrupt Controller

The Cortex-R52 processor does not support the following GIC version 3 features:

• 1of N interrupt distribution.
• Locality-specific Peripheral Interrupts (LPIs).
• Interrupt Translation Service (ITS).

2.1.3 Jazelle implementation

The processor supports a trivial Jazelle® implementation. This means:

• Jazelle state is not supported.
• The BXJ instruction behaves as a BX instruction.

In the trivial Jazelle implementation, the processor does not accelerate the execution of any bytecodes,
and the Java Virtual Machine (JVM) uses software routines to execute all bytecodes. See the for more
information.

2.1.4 Instruction set states

The processor operates two instruction set states controlled by the CPSR.T bit:

A32 The processor executes 32-bit, word-aligned A32 instructions.
T32 The processor executes 16-bit and 32-bit, halfword-aligned T32 instructions.

2 Programmers Model
2.1 About the programmers model

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

2-29

Non-Confidential



2.1.5 Memory model

The Cortex-R52 processor views memory as a linear collection of bytes numbered in ascending order
from zero. For example, bytes 0-3 hold the first stored word, and bytes 4-7 hold the second stored word.

The processor can access words in memory as either:

• Big-endian format.
• Little-endian format.

See the Arm® Architecture Reference Manual Supplement Armv8, for Armv8-R architecture profile for
more information about big-endian and little-endian memory systems.

 Note 

Instructions are always little-endian.

2.1.6 Security state

The Cortex-R52 processor does not implement TrustZone® technology. It does not support the ability to
distinguish between secure and non-secure physical memories.

2 Programmers Model
2.1 About the programmers model

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

2-30

Non-Confidential



2.2 Armv8-R architecture concepts
The programmers model for the Cortex-R52 processor is mostly defined by the architecture it
implements. This manual does not include a duplicate description of the architectural programmers
model. This manual describes features and behaviors that are specific to the Cortex-R52 processor
implementation.

The following sections provide an introduction to the main architectural concepts and terminology used
throughout the rest of this document. For more details, see the Arm® Architecture Reference Manual
Supplement Armv8, for Armv8-R architecture profile.

 Note 

An understanding of the terminology defined in this section is a prerequisite for reading the remainder of
this manual.

This section contains the following subsections:
• 2.2.1 Execution state on page 2-31.
• 2.2.2 Exception levels on page 2-31.
• 2.2.3 Typical exception level usage model on page 2-32.
• 2.2.4 Exception terminology on page 2-32.
• 2.2.5 Instruction set state on page 2-32.
• 2.2.6 AArch32 execution modes on page 2-32.
• 2.2.7 Support for v8 memory types on page 2-33.
• 2.2.8 System registers on page 2-33.
• 2.2.9 General purpose registers on page 2-34.
• 2.2.10 Program status registers on page 2-34.
• 2.2.11 Data types on page 2-34.
• 2.2.12 Memory model on page 2-35.
• 2.2.13 GIC Architecture on page 2-35.

2.2.1 Execution state

The Armv8-R architecture has only one execution state, AArch32. The execution state defines the
processor execution environment, including:

• Supported register widths.
• Supported instruction sets.
• Significant aspects of:

— The execution model.
— PMSA.
— The programmers model.

2.2.2 Exception levels

The Armv8-R exception model defines Exception levels EL0-EL2, where:

• EL0 has the lowest software execution privilege, and execution at EL0 is called unprivileged
execution.

• Increased Exception levels, from 1 to 2, indicate increased software execution privilege.
• EL2 provides support for processor virtualization.

Execution can move between Armv8-R Exception levels only on taking an exception, or on returning
from an exception:

• On taking an exception, the Exception level either increases or remains the same. The Exception level
cannot decrease on taking an exception.

• On returning from an exception, the Exception level either decreases or remains the same. The
Exception level cannot increase on returning from an exception.

2 Programmers Model
2.2 Armv8-R architecture concepts

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

2-31

Non-Confidential



The Exception level that execution changes to, or remains in, on taking an exception, is called the target
Exception level of the exception, and:
• Every exception type has a target Exception level that is either:

— Implicit in the nature of the exception.
— Defined by configuration bits in the system registers.

• An exception cannot target EL0.

2.2.3 Typical exception level usage model

The architecture does not specify what software uses the different Exception levels, and such choices are
outside the scope of the architecture. However, the following is a common usage model for the Exception
levels:

EL0 Applications.
EL1 OS kernel and associated functions that are typically described as privileged.
EL2 Hypervisor.

2.2.4 Exception terminology

This section defines terms used to describe the navigation between Exception levels.

Terminology for taking an exception

An exception is generated when the processor first responds to an exceptional condition.

The processor state at this time is the state the exception is taken from. The processor state immediately
after taking the exception is the state the exception is taken to.

Terminology for returning from an exception

To return from an exception, the processor must execute an exception return instruction. The processor
state when an exception return instruction is committed for execution is the state the exception returns
from. The processor state immediately after the execution of that instruction is the state the exception
returns to.

Fast interrupts

When fast interrupts are enabled, when an interrupt is received, the processor abandons any started but
incomplete restartable memory operations. Restartable memory operations are load and store instructions
to Normal memory.

To minimize interrupt latency, Arm recommends that you do not perform multiword transfer operations
to Device memory.

2.2.5 Instruction set state

The processor instruction set state determines the instruction set that the processor executes.

The instruction sets supported in the AArch32 execution state are:

A32 This is a fixed-length instruction set that uses 32-bit instruction encodings. Before the introduction
of Armv8, it was called the Arm instruction set.

T32 This is a variable-length instruction set that uses both 16-bit and 32-bit instruction encodings.
Before the introduction of Armv8, it was called the Thumb instruction set state.

2.2.6 AArch32 execution modes

When in AArch32 state the processor can execute in one of several modes. Each mode is associated with
an Exception level. Some modes have private, banked copies of some of the general purpose registers.
Exceptions cause the processor to switch to a specific mode.

2 Programmers Model
2.2 Armv8-R architecture concepts

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

2-32

Non-Confidential



The following table shows the AArch32 processor modes, and the Exception level of each mode.

Table 2-1  AArch32 processor modes and associated Exception levels

AArch32 processor mode Exception level

User EL0

System, FIQ, IRQ, Supervisor, Abort, Undefined EL1

Hyp EL2

2.2.7 Support for v8 memory types

Armv8 provides mutually exclusive memory types. Each address in the memory map has a memory type
which is determined by the MPU.

The memory types are:

Normal This is generally used for bulk memory, both read/write and read-only.
Device This is generally used for peripherals, which might be read-sensitive or write-sensitive. The

Arm architecture restricts how accesses to Device memory may be ordered, merged, or
speculated.

The Armv8 architecture subdivides Device memory into several subtypes. These relate to the following
attributes:

G Gathering. The capability to gather and merge requests together into a single transaction.
R Reordering. The capability to reorder transactions.
E Early-acknowledge. The capability to accept early acknowledgment of transactions from the

interconnect.

The following table describes the Armv8 memory types.

Table 2-2  Armv8 memory types

Memory type Comment

GRE Similar to Normal non-cacheable, but does not permit speculative accesses.

nGRE Treated as nGnRE inside the Cortex-R52 processor, but can be reordered by the external interconnect.

nGnRE Corresponds to Device in Armv7.

nGnRnE Corresponds to Strongly Ordered in Armv7. Treated the same as nGnRE inside a Cortex-R52 processor, but reported
differently on ARCACHE or AWCACHE.

2.2.8 System registers

System registers provide control and status information. For example, a register might provide syndrome
information about an abort exception that the core has taken, or provide a control to enable or disable a
cache.

The System registers use a standard naming format, <register_name>.<bit_field_name>, to identify
specific registers and the control and status bits within a register. Bits can also be described by their
numerical position in the form <register_name>[x:y] or the generic form bits[x:y].

The System registers comprise of:
• ID registers.
• General system control registers.
• Debug registers.
• Generic Timer registers.

2 Programmers Model
2.2 Armv8-R architecture concepts

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

2-33

Non-Confidential



• Performance Monitor registers.
• GIC CPU interface registers.

Related reference
Chapter 9 Generic Interrupt Controller on page 9-259
Chapter 10 Generic Timer on page 10-345
Chapter 11 Debug on page 11-349
Chapter 12 Performance Monitor Unit on page 12-397

2.2.9 General purpose registers

The Armv8-R architecture provides access to fifteen 32-bit general purpose registers, R0-R14.

Of these, two have specialized or restricted usage:

• R13 is usually identified as SP, the stack pointer.
• R14 is usually identified as LR, the link register.

There is also a 32-bit Program Counter (PC), R15.

Some of these registers are banked. These are multiple physical registers accessed using the same
identifier and the execution mode determines which one is accessed. For example:
• In abort mode, an access to SP accesses the physical register SP_abt.
• In user mode, an access to SP accesses physical register SP_usr.

In Hypervisor mode, there is an additional, dedicated link register, ELR_hyp.

An additional set of registers is used by Advanced SIMD and floating-point instructions. These registers
can be accessed as 32-bit single-precision registers S0-S31, or as 64-bit double-precision registers D0-
D31, or 128-bit quad registers Q0-Q15, but these are different views of the same data. Data can be
transferred between the Advanced SIMD and floating-point registers and the integer registers.

2.2.10 Program status registers

The program status registers are the Current Program Status Register (CPSR), the Application Program
Status Register (APSR), and the Saved Program Status Register (SPSR).

The CPSR holds information including:

• Flags that can be set by certain instructions and that determine the behavior of other instructions.
• Status bits that reflect the current mode and other states of the processor.
• Control bits that determine, for example, interrupt masking and data endianness.

Many of the bits in the CPSR have restricted usage and can only be modified:
• In privileged modes.
• As a side-effect of an exception or exception return.

The view of the CPSR presented to applications running at Exception level EL0 is called the APSR.

Every mode that an exception can be taken to has its own SPSR. Each SPSR is used to save a copy of the
CPSR when an exception is taken, allowing it to be restored on the exception return.

2.2.11 Data types

The Armv8-R architecture core supports the following integer data types:

• Byte (8 bits).
• Halfword (16 bits).
• Word (32 bits).
• Doubleword (64 bits).

The Armv8-R architecture also supports half-precision, single-precision, and double-precision floating-
point data types.

2 Programmers Model
2.2 Armv8-R architecture concepts

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

2-34

Non-Confidential



2.2.12 Memory model

The Armv8-R architecture defines the PMSAv8 memory model that determines:

• Ordering rules and other restrictions on how memory accesses, for instructions and data, are
performed.

• Permissions and other attributes for memory accesses, and how these are determined by the MPU.

Cortex-R52 supports PMSAv8 and has no MMU or address translation capabilities. Even though the
MPU does not perform any actual translation, the function is still generically referred to as translation.
This is because the physical address is always the same as the virtual address. Virtual and physical
address refers to the address before the translation process, as generated by the instruction and after the
translation process, as visible on the bus. The virtual and physical address can be treated as synonyms for
Cortex-R52.

2.2.13 GIC Architecture

The Cortex-R52 processor supports three components of the GIC architecture: Distributor, Redistributor,
and CPU interface.

The Distributor contains the registers supporting SPIs in addition to the prioritization logic which
calculates the highest priority pending interrupt for each core. The Redistributor contains the registers
supporting PPIs and SGIs. The CPU interface tracks the current running priority and virtual interrupts. It
determines whether the core is interrupted.

Interrupts are configured to be either edge-triggered or level-sensitive. Each interrupt has programmable
enable, priority (0-31), group (0 or 1), and routing (SPIs only) configuration and a current state.

When an interrupt signal is received, it is pended. According to its configuration, a pended interrupt
might interrupt the execution of a core. Software can read the ID of the interrupt, which has the side
effect of activating it. Software can also end an interrupt, which deactivates it.

Virtual interrupts are created by hypervisor software writing to a list register in the CPU interface,
usually in response to a physical interrupt. Virtual interrupts are handled in a similar way to physical
interrupts but can only interrupt a core when it is in EL0 or EL1. When a virtual interrupt is deactivated,
it is possible to configure it in a way that when the virtual interrupt is deactivated, a corresponding
physical deactivation message also send to the GIC Distributor.

Related reference
1.4 Supported standards on page 1-24

2 Programmers Model
2.2 Armv8-R architecture concepts

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

2-35

Non-Confidential



Chapter 3
System Control

This chapter describes the system registers and their structure and operation.

It contains the following sections:
• 3.1 About system control on page 3-37.
• 3.2  Register summary on page 3-38.
• 3.3 AArch32 register descriptions on page 3-74.

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-36

Non-Confidential



3.1 About system control
The system registers provide control of the functions implemented in the processor and their status
information.

The main functions of the system registers are:
• Overall system control and configuration.
• MPU configuration and management.
• Cache configuration and management.
• System performance monitoring.
• GIC CPU interface configuration and management.

Some of the system registers can be accessed through the memory-mapped external debug interfaces.

The terms RES0, RES1, RAZ, RAZ/WI, RAO/WI, and RAZ/SBZ are described in the Arm® Architecture
Reference Manual Supplement Armv8, for Armv8-R architecture profile.

For information on the GIC registers, see Chapter 9 Generic Interrupt Controller on page 9-259 or the
Arm® Generic Interrupt Controller Architecture Specification GIC architecture version 3.0 and version
4.0.

For information on debug related system registers (coproc==0b1110), see 11.3 System register summary
on page 11-355.

Related reference
11.5 Memory-mapped register summary on page 11-362

3 System Control
3.1 About system control

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-37

Non-Confidential



3.2 Register summary
The system registers are accessed using MCR, MRC, MRRC, or MCRR instructions with (coproc==0b1111).

The system register space includes system registers and system operations. The description of the system
register space describes the permitted access, Read-Only (RO), Write-Only (WO), or Read-Write (RW),
to each register or operation.

The following table describes the column headings in the register summary tables used throughout this
section.

Table 3-1  System register field values

Heading Description

CRn System control primary register number.

Op1 Arguments to the register access instruction.

CRm

Op2

Name The name of the register or operation. Some assemblers support aliases that you can use to access the registers and
operations by name.

Reset Reset value of register.

Description Cross-reference to the register description.

This section contains the following subsections:
• 3.2.1 c0 registers on page 3-39.
• 3.2.2 c1 registers on page 3-40.
• 3.2.3 c2 registers on page 3-41.
• 3.2.4 c3 registers on page 3-41.
• 3.2.5 c4 registers on page 3-41.
• 3.2.6 c5 registers on page 3-42.
• 3.2.7 c6 registers on page 3-42.
• 3.2.8 c7 registers on page 3-43.
• 3.2.9 c7 System operations on page 3-44.
• 3.2.10 c8 System operations on page 3-46.
• 3.2.11 c9 registers on page 3-46.
• 3.2.12 c10 registers on page 3-48.
• 3.2.13 c11 registers on page 3-48.
• 3.2.14 c12 registers on page 3-48.
• 3.2.15 c13 registers on page 3-51.
• 3.2.16 c14 registers on page 3-52.
• 3.2.17 c15 registers on page 3-53.
• 3.2.18 64-bit registers on page 3-55.
• 3.2.19 AArch32 Identification registers on page 3-56.
• 3.2.20 AArch32 Memory control registers on page 3-57.
• 3.2.21 AArch32 Exception and fault handling registers on page 3-58.
• 3.2.22 AArch32 Other system control registers on page 3-59.
• 3.2.23 AArch32 Address registers on page 3-59.
• 3.2.24 AArch32 Thread registers on page 3-60.
• 3.2.25 AArch32 Performance monitor registers on page 3-60.
• 3.2.26 AArch32 Virtualization registers on page 3-60.
• 3.2.27 AArch32 GIC system registers on page 3-63.
• 3.2.28 AArch32 Generic Timer registers on page 3-67.
• 3.2.29 AArch32 Implementation defined registers on page 3-67.

3 System Control
3.2  Register summary

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-38

Non-Confidential



• 3.2.30 AArch32 Implementation defined operations on page 3-70.
• 3.2.31 AArch32 Debug registers on page 3-70.
• 3.2.32 AArch32 Reset management registers on page 3-70.
• 3.2.33 AArch32 Legacy feature registers on page 3-71.
• 3.2.34 AArch32 Cache maintenance instructions on page 3-71.
• 3.2.35 AArch32 Security registers on page 3-72.
• 3.2.36 AArch 32 PMSA-specific registers on page 3-72.

3.2.1 c0 registers

The following table shows the 32-bit system registers you can access when the value of CRn is c0.

See the Arm® Architecture Reference Manual Supplement Armv8, for Armv8-R architecture profile for
more information.

Table 3-2  c0 register summary

CRn Op1 CRm Op2 Name Access Reset Description

c0 0 c0 0 MIDR RO 0x411FD132 3.3.69 Main ID Register on page 3-155

1 CTR RO 0x8144c004 3.3.16 Cache Type Register on page 3-87

2 TCMTR RO -a 3.3.96 TCM Type Register on page 3-191

3 TLBTR RO 0x00000000 3.3.99 TLB Type Register on page 3-193

4 MPUIR RO -b 3.3.77 MPU Type Register on page 3-165

5 MPIDR RO -c 3.3.78 Multiprocessor Affinity Register on page 3-166

6 REVIDR RO 0x00000000 3.3.90 Revision ID Register on page 3-181

7 MIDR RO 0x411FD132 Alias of the Main ID Register, 3.3.69 Main ID Register
on page 3-155

c0 0 c1 0 ID_PFR0 RO 0x00000131 3.3.83 Processor Feature Register 0 on page 3-173

1 ID_PFR1 RO 0x10111001 3.3.84 Processor Feature Register 1 on page 3-174

2 ID_DFR0 RO 0x03010006 3.3.24 Debug Feature Register 0 on page 3-99

3 ID_AFR0 RO 0x00000000 3.3.5 Auxiliary Feature Register 0 on page 3-78

4 ID_MMFR0 RO 0x00211040 3.3.71 Memory Model Feature Register 0 on page 3-158

5 ID_MMFR1 RO 0x40000000 3.3.72 Memory Model Feature Register 1 on page 3-159

6 ID_MMFR2 RO 0x01200000 3.3.73 Memory Model Feature Register 2 on page 3-160

7 ID_MMFR3 RO 0xF0102211 3.3.74 Memory Model Feature Register 3 on page 3-162

a The reset value depends on how many TCMs are implemented. See 3.3.96 TCM Type Register on page 3-191.
b The reset value depends on the number of EL1-controlled MPU regions implemented.

• 16 EL1-controlled MPU regions=0x00001000
• 20 EL1-controlled MPU regions=0x00001400
• 24 EL1-controlled MPU regions=0x00001800

Bits [15:8] contain the number of regions.
c The reset value depends on the cluster and processor ID. See 3.3.78 Multiprocessor Affinity Register on page 3-166.
d The reset value is the value of the Main ID Register.

3 System Control
3.2  Register summary

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-39

Non-Confidential



Table 3-2  c0 register summary (continued)

CRn Op1 CRm Op2 Name Access Reset Description

c0 0 c2 0 ID_ISAR0 RO 0x02101110 3.3.60 Instruction Set Attribute Register 0 on page 3-143

1 ID_ISAR1 RO 0x13112111 3.3.61 Instruction Set Attribute Register 1 on page 3-145

2 ID_ISAR2 RO 0x21232142 3.3.62 Instruction Set Attribute Register 2 on page 3-146

3 ID_ISAR3 RO 0x01112131 3.3.63 Instruction Set Attribute Register 3 on page 3-148

4 ID_ISAR4 RO 0x00010142 3.3.64 Instruction Set Attribute Register 4 on page 3-150

5 ID_ISAR5 RO 0x00010001 3.3.65 Instruction Set Attribute Register 5 on page 3-151

6 ID_MMFR4 RO 0x00000010 3.3.75 Memory Model Feature Register 4 on page 3-163

c0 1 c0 0 CCSIDR RO UNK 3.3.20 Current Cache Size ID Register on page 3-93

1 CLIDR RO -g 3.3.13 Cache Level ID Register on page 3-84

7 AIDR RO 0x00000000 3.3.6 Auxiliary ID Register on page 3-78

c0 2 c0 0 CSSELR RW 0x00000000 3.3.15 Cache Size Selection Register on page 3-86

c0 4 c0 0 VPIDR RW -d 3.3.102 Virtualization Processor ID Register on page 3-195

4 HMPUIR RO -e 3.3.47 Hyp MPU Type Register on page 3-125

5 VMPIDR RW -f 3.3.101 Virtualization Multiprocessor ID Register on page 3-194

3.2.2 c1 registers

The following table shows the 32-bit system registers you can access when the value of CRn is c1.

See the Arm® Architecture Reference Manual Supplement Armv8, for Armv8-R architecture profile for
more information.

e The reset value depends on the number of EL2-controlled MPU regions.
• No El2-controlled MPU regions=0x00000000.
• 16 El2-controlled MPU regions=0x00000010.
• 20 El2-controlled MPU regions=0x00000014.
• 24 El2-controlled MPU regions=0x00000018.

Bits [7:0] contain the number of regions.
f The reset value is the value of the Multiprocessor Affinity Register.
g The reset value depends on if the Instruction and Data caches are implemented. See register description.

3 System Control
3.2  Register summary

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-40

Non-Confidential



Table 3-3  c1 register summary

CRn Op1 CRm Op2 Name Access Reset Description

c1 0 c0 0 SCTLR RW -i 3.3.92 System Control Register on page 3-183

1 ACTLR RW 0x00000000 3.3.2 Auxiliary Control Register on page 3-77

2 CPACR RW 0x00000000 3.3.1 Architectural Feature Access Control Register on page 3-76

3 ACTLR2 RW 0x00000000 3.3.3 Auxiliary Control Register 2 on page 3-77

c1 2 NSACR RO 0x00000C00 3.3.79 Non-Secure Access Control Register on page 3-167

4 c0 0 HSCTLR RW -i 3.3.53 Hyp System Control Register on page 3-132

1 HACTLR RW 0x00000000 3.3.33 Hyp Auxiliary Control Register on page 3-107

3 HACTLR2 RW 0x00000000 3.3.34 Hyp Auxiliary Control Register 2 on page 3-108

c1 0 HCR RW 0x00000002 3.3.39 Hyp Configuration Register on page 3-111

1 HDCR RW 0x00000004 3.3.42 Hyp Debug Control Register on page 3-117

2 HCPTR RW -h 3.3.31 Hyp Architectural Feature Trap Register on page 3-105

3 HSTR RW 0x00000000 3.3.54 Hyp System Trap Register on page 3-136

4 HCR2 RW 0x00000000 3.3.40 Hyp Configuration Register 2 on page 3-116

7 HACR RW 0x00000000 3.3.32 Hyp Auxiliary Configuration Register on page 3-106

3.2.3 c2 registers

The following table shows the 32-bit system register you can access when the value of CRn is c2.

Table 3-4  c2 register summary

CRn Op1 CRm Op2 Name Access Reset Description

c2 4 c0 0 VSCTLR RW 0x00000000 3.3.103 Virtualization System Control Register on page 3-195

3.2.4 c3 registers

There are no system registers with the value of CRn as c3.

3.2.5 c4 registers

The following table shows the 32-bit system registers you can access when the value of CRn is c4.

See the Arm® Architecture Reference Manual Supplement Armv8, for Armv8-R architecture profile for
more information.

h The reset value depends on the Advanced SIMD and floating-point configuration.
i The reset value depends on inputs, CFGTHUMBEXCEPTION and CFGENDIANESS.

3 System Control
3.2  Register summary

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-41

Non-Confidential



Table 3-5  c4 register summary

CRn Op1 CRm Op2 Name Access Reset Description

c4 0 c6 0 ICC_PMR,
ICV_PMR

RW 0x00000000 Interrupt Controller Interrupt Priority Mask Register
on page 9-320

Interrupt Controller Virtual Interrupt Priority Mask
Register on page 9-339

3 c5 0 DSPSR RW UNK Debug Saved Program Status Register

1 DLR RW -j Debug Link Register

3.2.6 c5 registers

The following table shows the 32-bit system registers you can access when the value of CRn is c5.

Table 3-6  c5 register summary

CRn Op1 CRm Op2 Name Access Reset Description

c5 0 c0 0 DFSR RW UNK 3.3.23 Data Fault Status Register on page 3-97

1 IFSR RW UNK 3.3.59 Instruction Fault Status Register on page 3-142

c1 0 ADFSR RW UNK 3.3.4 Auxiliary Data Fault Status Register on page 3-77

1 AIFSR RW UNK 3.3.7 Auxiliary Instruction Fault Status Register on page 3-78

4 c1 0 HADFSR RW UNK 3.3.35 Hyp Auxiliary Data Fault Status Register on page 3-108

1 HAIFSR RW UNK 3.3.36 Hyp Auxiliary Instruction Fault Status Register on page 3-110

c2 0 HSR RW UNK 3.3.52 Hyp Syndrome Register on page 3-131

3.2.7 c6 registers

The following table shows the 32-bit system registers you can access when the value of CRn is c6.

j The reset value is the value of the PC in Halting Debug state.

3 System Control
3.2  Register summary

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-42

Non-Confidential



Table 3-7  c6 register summary

CRn Op1 CRm Op2 Name Access Reset Description

c6 0 c0 0 DFAR RW UNK 3.3.22 Data Fault Address Register on page 3-96

2 IFAR RW UNK 3.3.58 Instruction Fault Address Register on page 3-141

c2 1 PRSELR RW UNK 3.3.87 Protection Region Selection Register
on page 3-178

c3 0 PRBAR RW UNK 3.3.85 Protection Region Base Address Register
on page 3-175

1 PRLAR RW UNKk 3.3.86 Protection Region Limit Address Register
on page 3-177

c8-15 0 PRBAR0-14 (even) RW UNK 3.3.85 Protection Region Base Address Register
on page 3-175

1 PRLAR0-14 (even) RW UNKk 3.3.86 Protection Region Limit Address Register
on page 3-177

4 PRBAR1-15 (odd) RW UNK 3.3.85 Protection Region Base Address Register
on page 3-175

5 PRLAR1-15 (odd) RW UNKk 3.3.86 Protection Region Limit Address Register
on page 3-177

c6 4 c0 0 HDFAR RW UNK 3.3.41 Hyp Data Fault Address Register on page 3-116

2 HIFAR RW UNK 3.3.43 Hyp Instruction Fault Address Register
on page 3-120

4 HPFAR RW UNK 3.3.44 Hyp IPA Fault Address Register on page 3-120

c1 1 HPRENR RW 0x00000000 3.3.46 Hyp MPU Region Enable Register on page 3-123

c2 1 HPRSELR RW UNK 3.3.50 Hyp Protection Region Selection Register
on page 3-128

c3 0 HPRBAR RW UNK 3.3.48 Hyp Protection Region Base Address Register
on page 3-126

1 HPRLAR RW UNKk 3.3.49 Hyp Protection Region Limit Address Register
on page 3-127

c8-15 0 HPRBAR0-14 (even) RW UNK 3.3.48 Hyp Protection Region Base Address Register
on page 3-126

1 HPRLAR0-14 (even) RW UNKk 3.3.49 Hyp Protection Region Limit Address Register
on page 3-127

4 HPRBAR1-15 (odd) RW UNK 3.3.48 Hyp Protection Region Base Address Register
on page 3-126

5 HPRLAR1-15 (odd) RW UNKk 3.3.49 Hyp Protection Region Limit Address Register
on page 3-127

3.2.8 c7 registers

The following table shows the 32-bit system register you can access when the value of CRn is c7.

k The reset value for bit[0] is 0.

3 System Control
3.2  Register summary

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-43

Non-Confidential



Table 3-8  c7 register summary

CRn Op1 CRm Op2 Name Access Reset Description

c7 0 c4 0 PAR RW UNK 3.3.81 Physical Address Register on page 3-169

3.2.9 c7 System operations

The following table shows the System operations when CRn is c7.

The following operations are fully documented in the Arm® Architecture Reference Manual Supplement
Armv8, for Armv8-R architecture profile, that is, there are no Cortex-R52-specific details.

3 System Control
3.2  Register summary

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-44

Non-Confidential



Table 3-9  c7 System operation summary

op1 CRm op2 Name Description

0 c1 0 ICIALLUIS Invalidate all instruction caches Inner Shareable to Point of Unification (PoU).

6 BPIALLIS Invalidate all entries from branch predictors Inner Shareable.

c5 0 ICIALLU Invalidate all Instruction Caches to PoU.

1 ICIMVAU Invalidate Instruction Caches by VA to PoU

4 CP15ISB Instruction Synchronization Barrier operation, this operation is deprecated in Armv8-R

6 BPIALL Invalidate all entries from branch predictors

7 BPIMVA Invalidate VA from branch predictors

c6 1 DCIMVAC Invalidate data cache line by VA to PoCl

2 DCISW Invalidate data cache line by set/way

c8 0 ATS1CPR Address Translate Stage 1 current state EL1 read

1 ATS1CPW Address Translate Stage 1 current state EL1 write

2 ATS1CUR Address Translate Stage 1 current state unprivileged read

3 ATS1CUW Address Translate Stage 1 current state unprivileged write

4 ATS12NSOPR Address Translate Stages 1 and 2 Non-secure only EL1 read

5 ATS12NSOPW Address Translate Stages 1 and 2 Non-secure only EL1 write

6 ATS12NSOUR Address Translate Stages 1 and 2 Non-secure only unprivileged read

7 ATS12NSOUW Address Translate Stages 1 and 2 Non-secure only unprivileged write

c10 1 DCCMVAC Clean data cache line by VA to PoC

2 DCCSW Clean data cache line by set/way

4 CP15DSB Data Synchronization Barrier operation, this operation is deprecated in Armv8-R

5 CP15DMB Data Memory Barrier operation, this operation is deprecated in Armv8-R

c11 1 DCCMVAU Clean data cache line by VA to PoU

c14 1 DCCIMVAC Clean and invalidate data cache line by VA to PoC

2 DCCISW Clean and invalidate data cache line by set/way

4 c8 0 ATS1HR Address Translate Stage 1 Hyp mode read

1 ATS1HW Address Translate Stage 1 Hyp mode write

l Point of Coherence (PoC) is always outside of the processor and depends on the external memory system.

3 System Control
3.2  Register summary

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-45

Non-Confidential



3.2.10 c8 System operations

System operations when CRn is c8 excute as a NOP.

3.2.11 c9 registers

The following table shows the 32-bit system registers you can access when the value of CRn is c9.

c9 includes the Performance Monitor registers. With the exception of ID fields in PMCR, PMCEID0, and
PMCEID1, the event selection values used by PMEVNTYPER, and the number of writable bits in
various registers, these registers are fully documented by the Arm® Architecture Reference Manual
Supplement Armv8, for Armv8-R architecture profile. This implies that there are no Cortex-R52-specific
details.

3 System Control
3.2  Register summary

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-46

Non-Confidential



Table 3-10  c9 register summary

CRn Op1 CRm Op2 Name Access Reset Description

c9 0 c1 0 IMP_ATCMREGIONR RW -m 3.3.94 TCM Region Registers A, B, and C
on page 3-188

1 IMP_BTCMREGIONR RW -m 3.3.94 TCM Region Registers A, B, and C
on page 3-188

2 IMP_CTCMREGIONR RW -m 3.3.94 TCM Region Registers A, B, and C
on page 3-188

c12 0 PMCR RW 0x41132000 12.3.1 Performance Monitors Control Register
on page 12-402

1 PMCNTENSET RW 0x00000000 Performance Monitors Count Enable Set Register

2 PMCNTENCLR RW 0x00000000 Performance Monitors Count Enable Clear Register

3 PMOVSR RW 0x00000000 Performance Monitor Overflow Flag Status Clear
Register

4 PMSWINC WO - Performance Monitors Software Increment Register

5 PMSELR RW 0x00000000 Performance Monitors Event Counter Selection
Register

6 PMCEID0 RO 0x6E1FFFDB 12.3.2 Performance Monitors Common Event
Identification Register 0 on page 12-404

7 PMCEID1 RO 0x0000001E 12.3.3 Performance Monitors Common Event
Identification Register 1 on page 12-405

c13 0 PMCCNTR RW 0x00000000 Performance Monitors Cycle Count Register

1 PMXEVTYPER RW 0x00000000 Performance Monitors Selected Event Type Register

2 PMXEVCNTR RW 0x00000000 Performance Monitors Selected Event Count Register

c14 0 PMUSERENR RW 0x00000000 Performance Monitors User Enable Register

1 PMINTENSET RW 0x00000000 Performance Monitors Interrupt Enable Set Register

2 PMINTENCLR RW 0x00000000 Performance Monitors Interrupt Enable Clear Register

3 PMOVSSET RW 0x00000000 Performance Monitor Overflow Flag Status Set
Register

c9 1 c1 0 IMP_CSCTLR RW 0x00000000 3.3.14 Cache Segregation Control Register
on page 3-85

1 IMP_BPCTLR RW 0x00000000 3.3.10 Branch Predictor Control Register
on page 3-80

2 IMP_MEMPROTCTLR RW - n 3.3.76 Memory Protection Control Register
on page 3-164

Related reference
Chapter 12 Performance Monitor Unit on page 12-397

m The reset value depends on implementation (TCM size), and input pins. See register description.
n The reset value depends on the signals CFGFLASHPROTEN and CFGRAMPROTEN, see register description.

3 System Control
3.2  Register summary

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-47

Non-Confidential



3.2.12 c10 registers

The following table shows the 32-bit system registers you can access when the value of CRn is c10.

See the Arm® Architecture Reference Manual Supplement Armv8, for Armv8-R architecture profile for
more information.

Table 3-11  c10 register summary

CRn Op1 CRm Op2 Name Access Reset Description

c10 0 c2 0 MAIR0 RW 0x00098AA4 3.3.70 Memory Attribute Indirection Registers 0 and 1
on page 3-156

1 MAIR1 RW 0x44E048E0 3.3.70 Memory Attribute Indirection Registers 0 and 1
on page 3-156

c3 0 AMAIR0 RW 0x00000000 3.3.8 Auxiliary Memory Attribute Indirection Register 0
on page 3-80

1 AMAIR1 RW 0x00000000 3.3.9 Auxiliary Memory Attribute Indirection Register 1
on page 3-80

4 c2 0 HMAIR0 RW 0x00000000 3.3.45 Hyp Memory Attribute Indirection Register 0 and 1
on page 3-121

1 HMAIR1 RW 0x00000000 3.3.45 Hyp Memory Attribute Indirection Register 0 and 1
on page 3-121

c3 0 HAMAIR0 RW 0x00000000 3.3.37 Hyp Auxiliary Memory Attribute Indirection Register 0
on page 3-111

1 HAMAIR1 RW 0x00000000 3.3.38 Hyp Auxiliary Memory Attribute Indirection Register 1
on page 3-111

3.2.13 c11 registers

The following table shows the 32-bit system registers you can access when the value of CRn is c11.

Table 3-12  c11 register summary

CRn Op1 CRm Op2 Name Access Reset Description

c11 0 c0 0 IMP_SLAVEPCTLR RW 0x00000001 3.3.91 Slave Port Control Register on page 3-182

3.2.14 c12 registers

The following table shows the 32-bit system registers you can access when the value of CRn is c12.

See the Arm® Generic Interrupt Controller Architecture Specification GIC architecture version 3.0 and
version 4.0 for more information.

3 System Control
3.2  Register summary

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-48

Non-Confidential



Table 3-13  c12 register summary

CRn Op1 CRm Op2 Name Access Reset Description

c12 0 c0 0 VBAR RW 0x00000000 3.3.100 Vector Base Address Register on page 3-193

1 RVBAR RO -p 3.3.89 Reset Vector Base Address Register on page 3-180

c1 0 ISR RO - o 3.3.67 Interrupt Status Register on page 3-154

c8 0 ICC_IAR0 RO 0x000003FF Interrupt Controller Interrupt Acknowledge Register 0
on page 9-313

ICV_IAR0 Interrupt Controller Virtual Interrupt Acknowledge Register 0
on page 9-332

1 ICC_EOIR0 WO UNK Interrupt Controller End Of Interrupt Register 0 on page 9-315

ICV_EOIR0 Interrupt Controller Virtual End Of Interrupt Register 0
on page 9-334

2 ICC_HPPIR0 RO 0x000003FF Interrupt Controller Highest Priority Pending Interrupt
Register 0 on page 9-316

ICV_HPPIR0 Interrupt Controller Virtual Highest Priority Pending Interrupt
Register 0 on page 9-335

3 ICC_BPR0 RW 0x00000002 Interrupt Controller Binary Point Register 0 on page 9-317

ICV_BPR0 0x00000002 Interrupt Controller Virtual Binary Point Register 0
on page 9-336

4 ICC_AP0R0 RW 0x00000000 Interrupt Controller Active Priorities Group 0 Register
on page 9-329

ICV_AP0R0 Interrupt Controller Virtual Active Priorities Group 0 Register
on page 9-343

c9 0 ICC_AP1R0 RW 0x00000000 Interrupt Controller Active Priorities Group 1 Register
on page 9-330

ICV_AP1R0 Interrupt Controller Virtual Active Priorities Group 1 Register
on page 9-343

c11 1 ICC_DIR WO UNK Interrupt Controller Deactivate Interrupt Register
on page 9-319

ICV_DIR Interrupt Controller Deactivate Virtual Interrupt Register
on page 9-338

3 ICC_RPR RO 0x000000FF Interrupt Controller Running Priority Register on page 9-321

ICV_RPR Interrupt Controller Virtual Running Priority Register
on page 9-340

o The reset value depends on if there are interrupts pending.

3 System Control
3.2  Register summary

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-49

Non-Confidential



Table 3-13  c12 register summary (continued)

CRn Op1 CRm Op2 Name Access Reset Description

c12 0 c12 0 ICC_IAR1 RO 0x000003FF Interrupt Controller Interrupt Acknowledge Register 1
on page 9-314

ICV_IAR1 Interrupt Controller Virtual Interrupt Acknowledge Register 1
on page 9-333

1 ICC_EOIR1 WO UNK Interrupt Controller End Of Interrupt Register 1 on page 9-315

ICV_EOIR1 Interrupt Controller Virtual End Of Interrupt Register 1
on page 9-334

2 ICC_HPPIR1 RO 0x000003FF Interrupt Controller Highest Priority Pending Interrupt
Register 1 on page 9-317

ICV_HPPIR1 Interrupt Controller Virtual Highest Priority Pending Interrupt
Register 1 on page 9-336

3 ICC_BPR1 RW 0x00000003 Interrupt Controller Binary Point Register 1 on page 9-318

ICV_BPR1 0x00000003 Interrupt Controller Virtual Binary Point Register 1
on page 9-337

4 ICC_CTLR RW 0x00000400 Interrupt Controller Control Register (EL1) on page 9-321

ICV_CTLR 0x00000400 Interrupt Controller Virtual Control Register on page 9-340

5 ICC_SRE RO 0x00000007 Interrupt Controller System Register Enable Register (EL1)
on page 9-322

6 ICC_IGRPEN0 RW 0x00000000 Interrupt Controller Interrupt Group 0 Enable Register
on page 9-324

ICV_IGRPEN0 Interrupt Controller Virtual Interrupt Group 0 Enable Register
on page 9-341

7 ICC_IGRPEN1 RW 0x00000000 Interrupt Controller Interrupt Group 1 Enable Register
on page 9-325

ICV_IGRPEN1 Interrupt Controller Virtual Interrupt Group 1 Enable Register
on page 9-342

4 c0 0 HVBAR RW -p 3.3.55 Hyp Vector Base Address Register on page 3-138.

2 HRMR RW 0x00000000 3.3.56 Hypervisor Reset Management Register on page 3-139

c8 0 ICH_AP0R0 RW 0x00000000 Interrupt Controller Hyp Active Priorities Group 0 Register 0
on page 9-311

3 System Control
3.2  Register summary

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-50

Non-Confidential



Table 3-13  c12 register summary (continued)

CRn Op1 CRm Op2 Name Access Reset Description

c12 4 c9 0 ICH_AP1R0 RW 0x00000000 Interrupt Controller Hyp Active Priorities Group 1 Register 0
on page 9-311

5 ICC_HSRE RO 0x0000000F Interrupt Controller System Register Enable Register (EL2)
on page 9-323

c11 0 ICH_HCR RW 0x00000000 Interrupt Controller Hyp Control Register on page 9-299

1 ICH_VTR RO 0x90180003 Interrupt Controller Hyp Control VGIC Type Register
on page 9-302

2 ICH_MISR RO 0x00000000 Interrupt Controller Hyp Maintenance Interrupt Status
Register EL2 on page 9-303

3 ICH_EISR RO 0x00000000 Interrupt Controller End of Interrupt Status Register
on page 9-305

5 ICH_ELRSR RO 0x0000000F Interrupt Controller Empty List Register Status Register
on page 9-306

7 ICH_VMCR RW 0x004C0008 Interrupt Controller Virtual Machine Control Register
on page 9-307

c12 0 ICH_LR0 RW 0x00000000 Interrupt Controller List Registers 0-3 on page 9-308

1 ICH_LR1 RW 0x00000000 Interrupt Controller List Registers 0-3 on page 9-308

2 ICH_LR2 RW 0x00000000 Interrupt Controller List Registers 0-3 on page 9-308

3 ICH_LR3 RW 0x00000000 Interrupt Controller List Registers 0-3 on page 9-308

c14 0 ICH_LRC0 RW 0x00000000 Interrupt Controller List Registers 0-3 on page 9-309

1 ICH_LRC1 RW 0x00000000 Interrupt Controller List Registers 0-3 on page 9-309

2 ICH_LRC2 RW 0x00000000 Interrupt Controller List Registers 0-3 on page 9-309

3 ICH_LRC3 RW 0x00000000 Interrupt Controller List Registers 0-3 on page 9-309

3.2.15 c13 registers

The following table shows the 32-bit wide system registers you can access when the value of CRn is c13.

See Arm® Architecture Reference Manual Supplement Armv8, for Armv8-R architecture profile for more
information.

p CFGVECTABLEx[31:5] determines the vector base address out of reset, see register description.

3 System Control
3.2  Register summary

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-51

Non-Confidential



Table 3-14  c13 register summary

CRn Op1 CRm Op2 Name Access Reset Description

c13 0 c0 0 FCSEIDR RW 0x00000000 3.3.28 FCSE Process ID Register on page 3-102

1 CONTEXTIDR RW 0x00000000 3.3.18 Context ID Register on page 3-89

2 TPIDRURW RW UNK 3.3.25 EL0 Read/Write Software Thread ID Register
on page 3-100

3 TPIDRURO RW UNK 3.3.26 EL0 Read-Only Software Thread ID Register
on page 3-101

4 TPIDRPRW RW UNK 3.3.27 EL1 Software Thread ID Register on page 3-102

4 c0 2 HTPIDR RW UNK 3.3.51 Hyp Software Thread ID Register on page 3-130

3.2.16 c14 registers

The following table shows the 32-bit system registers when the value of CRn is c14.

With the exception of the event selection values used by PMEVCNTR*, these registers are fully
documented in the Arm® Architecture Reference Manual Supplement Armv8, for Armv8-R architecture
profile. This implies that there are no Cortex-R52-specific details.

3 System Control
3.2  Register summary

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-52

Non-Confidential



Table 3-15  c14 register summary

CRn Op1 CRm Op2 Name Access Reset Description

c14 0 c0 0 CNTFRQ -q 0x00000000 Counter-timer Frequency Register

c1 0 CNTKCTL RW 0x00000000 Counter-timer Kernel Control Register

c2 0 CNTP_TVAL RW UNK Counter-timer Physical Timer RimerValue Register

1 CNTP_CTL RW - Counter-timer Physical Timer Control Register

c3 0 CNTV_TVAL RW UNK Counter-timer Virtual Timer TimerValue Register

1 CNTV_CTL RW -r Counter-timer Virtual Timer Control Register

c8 0 PMEVCNTR0 RW UNK Performance Monitors Event Count Registers

1 PMEVCNTR1 RW UNK

2 PMEVCNTR2 RW UNK

3 PMEVCNTR3 RW UNK

c12 0 PMEVTYPER0 RW UNK Performance Monitors Event Type Registers

1 PMEVTYPER1 RW UNK

2 PMEVTYPER2 RW UNK

3 PMEVTYPER3 RW UNK

c15 7 PMCCFILTR RW 0x00000000 Performance Monitors Cycle Count Filter Register

4 c1 0 CNTHCTL RW -s Counter-timer Hyp Control Register

c2 0 CNTHP_TVAL RW UNK Counter-timer Physical Timer TimerValue Register

1 CNTHP_CTL RW -r Counter-timer Hyp Physical Timer Control Register (EL2)

Related reference
Chapter 12 Performance Monitor Unit on page 12-397

3.2.17 c15 registers

The following table shows the 32-bit system registers you can access when the value of CRn is c15.

q CNTKCTL[0] or CNTKCTL[1] determine user read accessibility of CNTFRQ.
r The reset value for bit[0] is 0.
s The reset value for bit[2] is 0 and for bits[1:0] is 0b11.

3 System Control
3.2  Register summary

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-53

Non-Confidential



Table 3-16  c15 register summary

CRn Op1 CRm Op2 Name Access Reset Description

c15 0 c0 0 IMP_PERIPHPREGIONR RW - t 3.3.80 Peripheral Port Region Register
on page 3-168

1 IMP_FLASHIFREGIONR RW - u 3.3.30 Flash Interface Region Register
on page 3-104

c2 0 IMP_BUILDOPTR RO -v 3.3.11 Build Options Register on page 3-81

7 IMP_PINOPTR RO -w 3.3.82 Pin Options Register on page 3-172

1 c3 0 IMP_CBAR RO -x 3.3.17 Configuration Base Address Register
on page 3-88

1 IMP_QOSR RW 0x00000000 3.3.88 Quality Of Service Register on page 3-179

2 IMP_BUSTIMEOUTR RW 0x00000000 3.3.12 Bus Timeout Register on page 3-82

4 IMP_INTMONR RW 0x00000000 3.3.66 Interrupt Monitoring Register on page 3-153

c14 0 IMP_CDBGDCI WO UNK 3.3.68 Invalidate All Register on page 3-155

2 c0 0 IMP_ICERR0 RW 0x00000000 3.3.57 Instruction Cache Error Record Registers 0
and 1 on page 3-140

1 IMP_ICERR1 RW 0x00000000 3.3.57 Instruction Cache Error Record Registers 0
and 1 on page 3-140

c1 0 IMP_DCERR0 RW 0x00000000 3.3.21 Data Cache Error Record Registers 0 and 1
on page 3-95

1 IMP_DCERR1 RW 0x00000000 3.3.21 Data Cache Error Record Registers 0 and 1
on page 3-95

c2 0 IMP_TCMERR0 RW 0x00000000 3.3.93 TCM Error Record Register 0 and 1
on page 3-187

1 IMP_TCMERR1 RW 0x00000000 3.3.93 TCM Error Record Register 0 and 1
on page 3-187

2 IMP_TCMSYNDR0 RO 0x00000000 3.3.95 TCM Syndrome Register 0 and 1
on page 3-189

3 IMP_TCMSYNDR1 RO 0x00000000 3.3.95 TCM Syndrome Register 0 and 1
on page 3-189

c3 0 IMP_FLASHERR0 RW 0x00000000 3.3.29 Flash Error Record Registers 0 and 1
on page 3-102

1 IMP_FLASHERR1 RW 0x00000000 3.3.29 Flash Error Record Registers 0 and 1
on page 3-102

t The reset value depends on CFGLLPPBASEADDR[31:12] and CFGLLPPSIZE[3:0]. See register description.
u The reset value depends on CFGFLASHBASEADDR[31:27]. See register description.
v The reset value depends on hardware configuration. See 3.3.11 Build Options Register on page 3-81.
w The reset value depends on hardware configuration. See 3.3.82 Pin Options Register on page 3-172.
x The reset value for bits [31:21] is the value of the CFGPERIPHBASE signal. The reset value for bits [20:0] is 0b000000000000000000000.

3 System Control
3.2  Register summary

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-54

Non-Confidential



Table 3-16  c15 register summary (continued)

CRn Op1 CRm Op2 Name Access Reset Description

c15 3 c0 0 IMP_CDBGDR0 RO UNK Cache Debug Data Register 0. See 7.4 Direct access
to internal memory on page 7-224 for more
information.

1 IMP_CDBGDR1 RO UNK Cache Debug Data Register 1. See 7.4 Direct access
to internal memory on page 7-224 for more
information.

c2 0 IMP_CDBGDCT WO UNK Data Cache Tag Read Operation. See 7.4 Direct
access to internal memory on page 7-224 for more
information.

1 IMP_CDBGICT WO UNK Instruction Cache Tag Read Operation. See
7.4 Direct access to internal memory on page 7-224
for more information.

c4 0 IMP_CDBGDCD WO UNK Data Cache Data Read Operation. See 7.4 Direct
access to internal memory on page 7-224 for more
information.

1 IMP_CDBGICD WO UNK Instruction Cache Data Read Operation. See
7.4 Direct access to internal memory on page 7-224
for more information.

c15 4 c0 0 IMP_TESTR0 RO -y 3.3.97 Test Register 0 on page 3-192

1 IMP_TESTR1 WO - 3.3.98 Test Register 1 on page 3-193

3.2.18 64-bit registers

The following table shows the 64-bit non-debug system registers (coproc==0b1111), accessed by the
MCRR and MRRC instructions.

The Performance Monitor and Counter-timer registers are fully documented in the Arm® Architecture
Reference Manual Supplement Armv8, for Armv8-R architecture profile. This implies that there are no
Cortex-R52-specific details.

Table 3-17  64-bit register summary

Op1 CRm Name Access Reset Description

0 c7 PAR RW UNK 3.3.81 Physical Address Register on page 3-169

c9 PMCCNTR RW UNK Performance Monitors Cycle Count Register

c12 ICC_SGI1R WO UNK Interrupt Controller Software Generated Interrupt Group 1 Register
on page 9-327

c14 CNTPCT RO UNK Counter-timer Physical Count Register

c15 CPUACTLR 0x8A800 3.3.19 CPU Auxiliary Control Register on page 3-90

1 c12 ICC_ASGI1R WO UNK Interrupt Controller Alias Software Generated Interrupt Group 1 Register
on page 9-328

c14 CNTVCT RO UNK Counter-timer Virtual Count Register

y The reset value depends on the current interrupts. See 3.3.97 Test Register 0 on page 3-192.

3 System Control
3.2  Register summary

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-55

Non-Confidential



Table 3-17  64-bit register summary (continued)

Op1 CRm Name Access Reset Description

2 c12 ICC_SGI0R WO UNK Interrupt Controller Software Generated Interrupt Group 0 Register
on page 9-325

c14 CNTP_CVAL RW UNK Counter-timer Physical Timer CompareValue Register

3 c14 CNTV_CVAL RW UNK Counter-timer Virtual Timer CompareValue Register

4 c14 CNTVOFF RW UNK Counter-timer Virtual Offset Register

6 c14 CNTHP_CVAL RW UNK Counter-timer Hyp Physical CompareValue Register

3.2.19 AArch32 Identification registers

The following table shows the identification registers.

Table 3-18  Identification registers

Name CRn Op1 CRm Op2 Reset Access Description

MIDR c0 0 c0 0 0x411FD132 RO 3.3.69 Main ID Register on page 3-155

CTR 1 0x8144c004 RO 3.3.16 Cache Type Register on page 3-87

TCMTR 2 -z RO 3.3.96 TCM Type Register on page 3-191

TLBTR 3 0x00000000 RO 3.3.99 TLB Type Register on page 3-193

MPIDR 5 -aa RO 3.3.78 Multiprocessor Affinity Register on page 3-166

REVIDR 6 0x00000000 RO 3.3.90 Revision ID Register on page 3-181

MIDR 7 0x411FD132 RO Alias of the Main ID Register, 3.3.69 Main ID Register
on page 3-155

ID_PFR0 c0 0 c1 0 0x00000131 RO 3.3.83 Processor Feature Register 0 on page 3-173

ID_PFR1 1 0x10111001 RO 3.3.84 Processor Feature Register 1 on page 3-174

ID_DFR0 2 0x03010006 RO 3.3.24 Debug Feature Register 0 on page 3-99

ID_AFR0 3 0x00000000 RO 3.3.5 Auxiliary Feature Register 0 on page 3-78

ID_MMFR0 c0 0 c1 4 0x00211040 RO 3.3.71 Memory Model Feature Register 0 on page 3-158

ID_MMFR1 5 0x40000000 RO 3.3.72 Memory Model Feature Register 1 on page 3-159

ID_MMFR2 6 0x01200000 RO 3.3.73 Memory Model Feature Register 2 on page 3-160

ID_MMFR3 7 0xF0102211 RO 3.3.74 Memory Model Feature Register 3 on page 3-162

z The reset value depends on how many TCMs are implemented. See 3.3.96 TCM Type Register on page 3-191.
aa The reset value depends on the cluster and processor ID. See 3.3.78 Multiprocessor Affinity Register on page 3-166.

3 System Control
3.2  Register summary

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-56

Non-Confidential



Table 3-18  Identification registers (continued)

Name CRn Op1 CRm Op2 Reset Access Description

ID_ISAR0 c0 0 c2 0 0x02101110 RO 3.3.60 Instruction Set Attribute Register 0 on page 3-143

ID_ISAR1 1 0x13112111 RO 3.3.61 Instruction Set Attribute Register 1 on page 3-145

ID_ISAR2 2 0x21232142 RO 3.3.62 Instruction Set Attribute Register 2 on page 3-146

ID_ISAR3 3 0x01112131 RO 3.3.63 Instruction Set Attribute Register 3 on page 3-148

ID_ISAR4 4 0x00010142 RO 3.3.64 Instruction Set Attribute Register 4 on page 3-150

ID_ISAR5 5 0x00010001 RO 3.3.65 Instruction Set Attribute Register 5 on page 3-151

ID_MMFR4 6 0x00000010 RO 3.3.75 Memory Model Feature Register 4 on page 3-163

CCSIDR c0 1 c0 0 UNK RO 3.3.20 Current Cache Size ID Register on page 3-93

CLIDR 1 -ab RO 3.3.13 Cache Level ID Register on page 3-84

AIDR 7 0x00000000 RO 3.3.6 Auxiliary ID Register on page 3-78

CSSELR c0 2 c0 0 UNK RW 3.3.15 Cache Size Selection Register on page 3-86

VPIDR c0 4 c0 0 -ac RW 3.3.102 Virtualization Processor ID Register on page 3-195

VMPIDR 5 -ad RW 3.3.101 Virtualization Multiprocessor ID Register on page 3-194

3.2.20 AArch32 Memory control registers

The following table shows the memory control registers.

ab The reset value depends on if the Instruction and Data caches are implemented. See register description.
ac The reset value is the value of the Main ID Register.
ad The reset value is the value of the Multiprocessor Affinity Register.

3 System Control
3.2  Register summary

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-57

Non-Confidential



Table 3-19  Virtual memory control registers

Name CRn Op1 CRm Op2 Reset Access Width Description

MAIR0 c10 0 c2 0 0x00098AA4 RW 32-bit 3.3.70 Memory Attribute Indirection Registers 0 and 1
on page 3-156

MAIR1 1 0x44E048E0 RW 32-bit 3.3.70 Memory Attribute Indirection Registers 0 and 1
on page 3-156

AMAIR0 c3 0 0x00000000 RW 32-bit 3.3.8 Auxiliary Memory Attribute Indirection Register
0 on page 3-80

AMAIR1 1 0x00000000 RW 32-bit 3.3.9 Auxiliary Memory Attribute Indirection Register
1 on page 3-80

HMAIR0 4 c2 0 0x00000000 RW 32-bit 3.3.45 Hyp Memory Attribute Indirection Register 0
and 1 on page 3-121

HMAIR1 1 0x00000000 RW 32-bit 3.3.45 Hyp Memory Attribute Indirection Register 0
and 1 on page 3-121

HAMAIR0 c3 0 0x00000000 RW 32-bit 3.3.37 Hyp Auxiliary Memory Attribute Indirection
Register 0 on page 3-111

HAMAIR1 1 0x00000000 RW 32-bit 3.3.38 Hyp Auxiliary Memory Attribute Indirection
Register 1 on page 3-111

CONTEXTIDR c13 0 c0 1 0x00000000 RW 32-bit 3.3.18 Context ID Register on page 3-89

3.2.21 AArch32 Exception and fault handling registers

The following table shows the fault handling registers.

Table 3-20  Fault handling registers

Name CRn Op1 CRm Op2 Access Reset Description

DFSR c5 0 c0 0 RW UNK 3.3.23 Data Fault Status Register on page 3-97

IFSR 1 RW UNK 3.3.59 Instruction Fault Status Register on page 3-142

ADFSR c1 0 RW UNK 3.3.4 Auxiliary Data Fault Status Register on page 3-77

AIFSR 1 RW UNK 3.3.7 Auxiliary Instruction Fault Status Register on page 3-78

HADFSR 4 c1 0 RW UNK 3.3.35 Hyp Auxiliary Data Fault Status Register on page 3-108

HAIFSR 1 RW UNK 3.3.36 Hyp Auxiliary Instruction Fault Status Register on page 3-110

HSR c2 0 RW UNK 3.3.52 Hyp Syndrome Register on page 3-131

DFAR c6 0 c0 0 RW UNK 3.3.22 Data Fault Address Register on page 3-96

IFAR 2 RW UNK 3.3.58 Instruction Fault Address Register on page 3-141

HDFAR 4 c0 0 RW UNK 3.3.41 Hyp Data Fault Address Register on page 3-116

HIFAR 2 RW UNK 3.3.43 Hyp Instruction Fault Address Register on page 3-120

HPFAR 4 RW UNK 3.3.44 Hyp IPA Fault Address Register on page 3-120

3 System Control
3.2  Register summary

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-58

Non-Confidential



Table 3-20  Fault handling registers (continued)

Name CRn Op1 CRm Op2 Access Reset Description

VBAR c12 0 c0 0 RW 0x00000000 3.3.100 Vector Base Address Register on page 3-193

ISR c1 0 RO -ae 3.3.67 Interrupt Status Register on page 3-154

HVBAR 4 c0 0 RW -af 3.3.55 Hyp Vector Base Address Register on page 3-138.

The Virtualization registers include additional fault handling registers. For more information see
3.2.26 AArch32 Virtualization registers on page 3-60.

3.2.22 AArch32 Other system control registers

The following table shows the other system control registers.

Table 3-21  Other system control registers

Name CRn Op1 CRm Op2 Access Reset Description

SCTLR c1 0 c0 0 RW -ag 3.3.92 System Control Register on page 3-183

ACTLR 1 RW 0x00000000 3.3.2 Auxiliary Control Register on page 3-77

CPACR 2 RW 0x00000000 3.3.1 Architectural Feature Access Control Register on page 3-76

ACTLR2 3 RW 0x00000000 3.3.3 Auxiliary Control Register 2 on page 3-77

HSCTLR 4 c0 0 RW -ag 3.3.53 Hyp System Control Register on page 3-132

HACTLR 1 RW 0x00000000 3.3.33 Hyp Auxiliary Control Register on page 3-107

HACTLR2 3 RW 0x00000000 3.3.34 Hyp Auxiliary Control Register 2 on page 3-108

3.2.23 AArch32 Address registers

The following table shows the address translation register and operations.

See the Arm® Architecture Reference Manual Supplement Armv8, for Armv8-R architecture profile for
more information about these operations.

Table 3-22  Address translation operations

Name CRn Op1 CRm Op2 Access Reset Width Description

PAR c7 0 c4 0 RW UNK 32-bit 3.3.81 Physical Address Register on page 3-169

- 0 c7 - RW 64-bit

ae The reset value depends on if there are interrupts pending.
af CFGVECTABLEx[31:5] determines the vector base address out of reset, see register description.
ag The reset value depends on inputs, CFGTHUMBEXCEPTION and CFGENDIANESS. The value shown in Table 3-2  c0 register summary on page 3-39 assumes

that these signals are set to LOW.

3 System Control
3.2  Register summary

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-59

Non-Confidential



Table 3-22  Address translation operations (continued)

Name CRn Op1 CRm Op2 Access Reset Width Description

ATS1CPR c7 0 c8 0 WO - 32-bit Address Translate Stage 1 current state EL1 read

ATS1CPW 1 WO - 32-bit Address Translate Stage 1 current state EL1 write

ATS1CUR 2 WO - 32-bit Address Translate Stage 1 current state unprivileged read

ATS1CUW 3 WO - 32-bit Address Translate Stage 1 current state unprivileged write

ATS12NSOPR 4 WO - 32-bit Address Translate Stages 1 and 2 Non-secure only EL1 read

ATS12NSOPW 5 WO - 32-bit Address Translate Stages 1 and 2 Non-secure only EL1 write

ATS12NSOUR 6 WO - 32-bit Address Translate Stages 1 and 2 Non-secure only unprivileged
read

ATS12NSOUW 7 WO - 32-bit Address Translate Stages 1 and 2 Non-secure only unprivileged
write

ATS1HR 4 c8 0 WO - 32-bit Address Translate Stage 1 Hyp mode read

ATS1HW 1 WO - 32-bit Address Translate Stage 1 Hyp mode write

3.2.24 AArch32 Thread registers

The following table shows the miscellaneous operations.

See the Arm® Architecture Reference Manual Supplement Armv8, for Armv8-R architecture profile for
more information.

Table 3-23  Miscellaneous System instructions

Name CRn Op1 CRm Op2 Access Reset Description

TPIDRURW c13 0 c0 2 RW UNK 3.3.25 EL0 Read/Write Software Thread ID Register on page 3-100

TPIDRURO 3 RW UNK 3.3.26 EL0 Read-Only Software Thread ID Register on page 3-101

TPIDRPRW 4 RW UNK 3.3.27 EL1 Software Thread ID Register on page 3-102

HTPIDR 4 c0 2 RW UNK 3.3.51 Hyp Software Thread ID Register on page 3-130

3.2.25 AArch32 Performance monitor registers

Information about the performance monitor registers can be found in the PMU register summary.

See Table 12-1  Performance monitor registers on page 12-400.

3.2.26 AArch32 Virtualization registers

The following table shows the Virtualization registers.

See the Arm® Architecture Reference Manual Supplement Armv8, for Armv8-R architecture profile for
more information.

3 System Control
3.2  Register summary

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-60

Non-Confidential



Table 3-24  Virtualization registers

Name CRn Op1 CRm Op2 Access Reset Width Description

VPIDR c0 4 c0 0 RW -ah 32-bit 3.3.102 Virtualization Processor ID Register
on page 3-195

VMPIDR 5 RW -ai 32-bit 3.3.101 Virtualization Multiprocessor ID Register
on page 3-194

HSCTLR c1 4 c0 0 RW -aj 32-bit 3.3.53 Hyp System Control Register on page 3-132

HACTLR 1 RW 0x00000000 3.3.33 Hyp Auxiliary Control Register on page 3-107

HACTLR2 3 RW 0x00000000 32-bit 3.3.34 Hyp Auxiliary Control Register 2
on page 3-108

HCR c1 0 RW 0x00000002 32-bit 3.3.39 Hyp Configuration Register on page 3-111

HDCR 1 RW 0x00000004 32-bit 3.3.42 Hyp Debug Control Register on page 3-117

HCPTR 2 RW -ak 32-bit 3.3.31 Hyp Architectural Feature Trap Register
on page 3-105

HSTR 3 RW 0x00000000 32-bit 3.3.54 Hyp System Trap Register on page 3-136

HCR2 4 RW 0x00000000 32-bit 3.3.40 Hyp Configuration Register 2 on page 3-116

HACR 7 RW 0x00000000 32-bit 3.3.32 Hyp Auxiliary Configuration Register
on page 3-106

VSCTLR c2 4 c0 0 RW 0x00000000 32-bit 3.3.103 Virtualization System Control Register
on page 3-195

HADFSR c5 4 c1 0 RW UNK 32-bit 3.3.35 Hyp Auxiliary Data Fault Status Register
on page 3-108

HAIFSR 1 RW UNK 32-bit 3.3.36 Hyp Auxiliary Instruction Fault Status Register
on page 3-110

HSR c2 0 RW UNK 32-bit 3.3.52 Hyp Syndrome Register on page 3-131

HDFAR c6 4 c0 0 RW UNK 32-bit 3.3.41 Hyp Data Fault Address Register
on page 3-116

HIFAR 2 RW UNK 32-bit 3.3.43 Hyp Instruction Fault Address Register
on page 3-120

HPFAR 4 RW UNK 32-bit 3.3.44 Hyp IPA Fault Address Register on page 3-120

ah The reset value is the value of the Main ID Register.
ai The reset value is the value of the Multiprocessor Affinity Register.
aj The reset value depends on CFGENDIANESSx and CFGTHUMBEXCEPTIONSx.
ak The reset value depends on the floating-point and Advanced SIMD configuration.

3 System Control
3.2  Register summary

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-61

Non-Confidential



Table 3-24  Virtualization registers (continued)

Name CRn Op1 CRm Op2 Access Reset Width Description

HMAIR0 c10 4 c2 0 RW 0x00000000 32-bit 3.3.45 Hyp Memory Attribute Indirection Register 0
and 1 on page 3-121

HMAIR1 1 RW 0x00000000 32-bit 3.3.45 Hyp Memory Attribute Indirection Register 0
and 1 on page 3-121

HAMAIR0 c3 0 RW 0x00000000 32-bit 3.3.37 Hyp Auxiliary Memory Attribute Indirection
Register 0 on page 3-111

HAMAIR1 1 RW 0x00000000 32-bit 3.3.38 Hyp Auxiliary Memory Attribute Indirection
Register 1 on page 3-111

HVBAR c12 4 c0 0 RW -an 32-bit 3.3.55 Hyp Vector Base Address Register
on page 3-138

HRMR 2 RW 0x00000000 32-bit 3.3.56 Hypervisor Reset Management Register
on page 3-139

ICH_AP0R0 c8 0 RW 0x00000000 32-bit Interrupt Controller Hyp Active Priorities Group 0
Register 0 on page 9-311

ICH_AP1R0 c12 4 c9 0 RW 0x00000000 32-bit Interrupt Controller Hyp Active Priorities Group 1
Register 0 on page 9-311

ICC_HSRE 5 RW 0x0000000F 32-bit Interrupt Controller System Register Enable Register
(EL2) on page 9-323

ICH_HCR c11 0 RW 0x00000000 32-bit Interrupt Controller Hyp Control Register
on page 9-299

ICH_VTR 1 RO 0x90180003 32-bit Interrupt Controller Hyp Control VGIC Type Register
on page 9-302

ICH_MISR 2 RO 0x00000000 32-bit Interrupt Controller Hyp Maintenance Interrupt
Status Register EL2 on page 9-303

ICH_EISR 3 RO 0x00000000 32-bit Interrupt Controller End of Interrupt Status Register
on page 9-305

ICH_ELRSR 5 RO 0x0000000F 32-bit Interrupt Controller Empty List Register Status
Register on page 9-306

ICH_VMCR 7 RW 0x004C0008 32-bit Interrupt Controller Virtual Machine Control Register
on page 9-307

ICH_LR0 c12 0 RW 0x00000000 32-bit Interrupt Controller List Registers 0-3 on page 9-308

ICH_LR1 1 RW 0x00000000 32-bit Interrupt Controller List Registers 0-3 on page 9-308

ICH_LR2 2 RW 0x00000000 32-bit Interrupt Controller List Registers 0-3 on page 9-308

ICH_LR3 c12 4 c12 3 RW 0x00000000 32-bit Interrupt Controller List Registers 0-3 on page 9-308

ICH_LRC0 c14 0 RW 0x00000000 32-bit Interrupt Controller List Registers 0-3 on page 9-309

ICH_LRC1 1 RW 0x00000000 32-bit Interrupt Controller List Registers 0-3 on page 9-309

ICH_LRC2 2 RW 0x00000000 32-bit Interrupt Controller List Registers 0-3 on page 9-309

ICH_LRC3 3 RW 0x00000000 32-bit Interrupt Controller List Registers 0-3 on page 9-309

HTPIDR c13 4 c0 2 RW UNK 32-bit 3.3.51 Hyp Software Thread ID Register
on page 3-130

3 System Control
3.2  Register summary

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-62

Non-Confidential



Table 3-24  Virtualization registers (continued)

Name CRn Op1 CRm Op2 Access Reset Width Description

CNTHCTL c14 4 c1 0 RW -al 32-bit Counter-timer Hyp Control Register

CNTHP_TVAL c2 0 RW UNK 32-bit Counter-timer Physical Timer TimerValue Register

CNTHP_CTL 1 RW -am 32-bit Counter-timer Hyp Physical Timer Control Register
(EL2)

CNTVOFF - 4 c14 - RW UNK 64-bit Counter-timer Virtual Offset Register

CNTHP_CVAL 6 RW UNK 64-bit Counter-timer Hyp Physical CompareValue Register

The following table shows Hyp mode (coproc==0b1111) operations that are part of this functional group.

Table 3-25  Hyp mode (coproc==0b1111) operations

Name CRn Op1 CRm Op2 Access Reset Width Description

ATS1HR c7 4 c8 0 WO - 32-bit Address Translate Stage 1 Hyp mode read

ATS1HW 1 WO - 32-bit Address Translate Stage 1 Hyp mode write

3.2.27 AArch32 GIC system registers

The following table shows the GIC system registers.

Table 3-26  GIC system registers

Name CRn Op1 CRm Op2 Access Reset Width Description

ICC_SGI1R - 0 c12 - WO UNK 64-bit Interrupt Controller System Register Enable Register
(EL1) on page 9-322

ICC_ASGI1R 1 c12 - WO UNK 64-bit Interrupt Controller Alias Software Generated
Interrupt Group 1 Register on page 9-328

ICC_SGI0R 2 c12 - WO UNK 64-bit Interrupt Controller Software Generated Interrupt
Group 0 Register on page 9-325

ICC_PMR c4 0 c6 0 RW 0x00000000 32-bit Interrupt Controller Interrupt Priority Mask Register
on page 9-320

ICV_PMR Interrupt Controller Virtual Interrupt Priority Mask
Register on page 9-339

al The reset value for bit[2] is 0 and for bits[1:0] is 0b11.
am The reset value for bit[0] is 0.
an CFGVECTABLEx[31:5] determines the vector base address out of reset, see register description.

3 System Control
3.2  Register summary

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-63

Non-Confidential



Table 3-26  GIC system registers (continued)

Name CRn Op1 CRm Op2 Access Reset Width Description

ICC_IAR0 c12 0 c8 0 RO 0x000003FF 32-bit Interrupt Controller Interrupt Acknowledge Register 0
on page 9-313

ICV_IAR0 Interrupt Controller Virtual Interrupt Acknowledge
Register 0 on page 9-332

ICC_EOIR0 1 WO UNK 32-bit Interrupt Controller End Of Interrupt Register 0
on page 9-315

ICV_EOIR0 Interrupt Controller Virtual End Of Interrupt Register
0 on page 9-334

3 System Control
3.2  Register summary

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-64

Non-Confidential



Table 3-26  GIC system registers (continued)

Name CRn Op1 CRm Op2 Access Reset Width Description

ICC_HPPIR0 c12 0 c8 2 RO 0x000003FF 32-bit Interrupt Controller Highest Priority Pending
Interrupt Register 0 on page 9-316

ICV_HPPIR0 Interrupt Controller Virtual Highest Priority Pending
Interrupt Register 0 on page 9-335

ICC_BPR0 3 RW 0x00000003 32-bit Interrupt Controller Binary Point Register 0
on page 9-317

ICV_BPR0 0x00000002 Interrupt Controller Virtual Binary Point Register 0
on page 9-336

ICC_AP0R0 4 RW 0x00000000 32-bit Interrupt Controller Active Priorities Group 0
Register on page 9-329

ICV_AP0R0 Interrupt Controller Virtual Active Priorities Group 0
Register on page 9-343

ICC_AP1R0 c9 0 RW 0x00000000 32-bit Interrupt Controller Active Priorities Group 1
Register on page 9-330

ICV_AP1R0 Interrupt Controller Virtual Active Priorities Group 1
Register on page 9-343

ICC_DIR c11 1 WO UNK 32-bit Interrupt Controller Deactivate Interrupt Register
on page 9-319

ICV_DIR Interrupt Controller Deactivate Virtual Interrupt
Register on page 9-338

ICC_RPR 3 RO 0x000000FF 32-bit Interrupt Controller Running Priority Register
on page 9-321

ICV_RPR Interrupt Controller Virtual Running Priority Register
on page 9-340

ICC_IAR1 c12 0 RO 0x000003FF 32-bit Interrupt Controller Interrupt Acknowledge Register 1
on page 9-314

ICV_IAR1 Interrupt Controller Virtual Interrupt Acknowledge
Register 1 on page 9-333

ICC_EOIR1 1 WO UNK 32-bit Interrupt Controller End Of Interrupt Register 1
on page 9-315

ICV_EOIR1 Interrupt Controller Virtual End Of Interrupt Register
1 on page 9-334

ICC_HPPIR1 2 RO 0x000003FF 32-bit Interrupt Controller Highest Priority Pending
Interrupt Register 1 on page 9-317

ICV_HPPIR1 Interrupt Controller Virtual Highest Priority Pending
Interrupt Register 1 on page 9-336

ICC_BPR1 c12 0 c12 3 RW 0x00000004 32-bit Interrupt Controller Binary Point Register 1
on page 9-318

ICV_BPR1 0x00000003 Interrupt Controller Virtual Binary Point Register 1
on page 9-337

3 System Control
3.2  Register summary

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-65

Non-Confidential



Table 3-26  GIC system registers (continued)

Name CRn Op1 CRm Op2 Access Reset Width Description

ICC_CTLR c12 0 c12 4 RW 0x00000400 32-bit Interrupt Controller Control Register (EL1)
on page 9-321

ICV_CTLR 0x00000400 Interrupt Controller Virtual Control Register
on page 9-340

ICC_SRE 5 RW 0x00000007 32-bit Interrupt Controller System Register Enable Register
(EL1) on page 9-322

ICC_IGRPEN0 6 RW 0x00000000 32-bit Interrupt Controller Interrupt Group 0 Enable
Register on page 9-324

ICV_IGRPEN0 Interrupt Controller Virtual Interrupt Group 0 Enable
Register on page 9-341

ICC_IGRPEN1 7 RW 0x00000000 32-bit Interrupt Controller Interrupt Group 1 Enable
Register on page 9-325

ICV_IGRPEN1 Interrupt Controller Virtual Interrupt Group 1 Enable
Register on page 9-342

ICC_HSRE 4 c9 5 RW 0x0000000F 32-bit Interrupt Controller System Register Enable Register
(EL2) on page 9-323

ICH_AP0R0 4 c8 0 RW 0x00000000 32-bit Interrupt Controller Hyp Active Priorities Group 0
Register 0 on page 9-311

ICH_AP1R0 c9 0 RW 0x00000000 32-bit Interrupt Controller Hyp Active Priorities Group 1
Register 0 on page 9-311

ICH_HCR c11 0 RW 0x00000000 32-bit Interrupt Controller Hyp Control Register
on page 9-299

ICH_VTR 1 RO 0x90180003 32-bit Interrupt Controller Hyp Control VGIC Type Register
on page 9-302

ICH_MISR 2 RO 0x00000000 32-bit Interrupt Controller Hyp Maintenance Interrupt
Status Register EL2 on page 9-303

ICH_EISR 3 RO 0x00000000 32-bit Interrupt Controller End of Interrupt Status Register
on page 9-305

ICH_ELRSR 5 RO 0x0000000F 32-bit Interrupt Controller Empty List Register Status
Register on page 9-306

ICH_VMCR 7 RW 0x004C0008 32-bit Interrupt Controller Virtual Machine Control Register
on page 9-307 EL2

ICH_LR0 c12 0 RW 0x00000000 32-bit Interrupt Controller List Registers 0-3 on page 9-308

ICH_LR1 1 RW 0x00000000 32-bit Interrupt Controller List Registers 0-3 on page 9-308

ICH_LR2 2 RW 0x00000000 32-bit Interrupt Controller List Registers 0-3 on page 9-308

ICH_LR3 3 RW 0x00000000 32-bit Interrupt Controller List Registers 0-3 on page 9-308

ICH_LRC0 c14 0 RW 0x00000000 32-bit Interrupt Controller List Registers 0-3 on page 9-309

ICH_LRC1 1 RW 0x00000000 32-bit Interrupt Controller List Registers 0-3 on page 9-309

ICH_LRC2 2 RW 0x00000000 32-bit Interrupt Controller List Registers 0-3 on page 9-309

ICH_LRC3 3 RW 0x00000000 32-bit Interrupt Controller List Registers 0-3 on page 9-309

3 System Control
3.2  Register summary

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-66

Non-Confidential



3.2.28 AArch32 Generic Timer registers

For more information on generic timer registers:

See 10.3.1 AArch32 Generic Timer register summary on page 10-348.

3.2.29 AArch32 Implementation defined registers

These registers provide test features and any required configuration options specific to the Cortex-R52
processor.

In this section implementation defined is an architectural term that is used to indicate registers and
register fields which are specific to the Cortex-R52 processor.

The following table shows 32-bit and 64-bit wide implementation defined registers.

Table 3-27  Implementation defined registers

Name CRn Op1 CRm Op2 Access Reset Description

CPUACTLR - 0 c15 - RW 0x8A800 3.3.19 CPU Auxiliary Control Register
on page 3-90

MPUIR c0 0 c0 4 RO -b 3.3.77 MPU Type Register on page 3-165

AIDR 1 c0 7 RO 0x00000000 3.3.6 Auxiliary ID Register on page 3-78

HMPUIR 4 c0 4 RO -e 3.3.47 Hyp MPU Type Register on page 3-125

ACTLR c1 0 c0 1 RW 0x00000000 3.3.2 Auxiliary Control Register on page 3-77

ACTLR2 3 RW 0x00000000 3.3.3 Auxiliary Control Register 2 on page 3-77

HACTLR 4 c0 1 RW 0x00000000 3.3.33 Hyp Auxiliary Control Register
on page 3-107

HACTLR2 3 RW 0x00000000 3.3.34 Hyp Auxiliary Control Register 2
on page 3-108

HACR c1 7 RW 0x00000000 3.3.32 Hyp Auxiliary Configuration Register
on page 3-106

ADFSR c5 0 c1 0 RW UNK 3.3.4 Auxiliary Data Fault Status Register
on page 3-77

AIFSR 1 RW UNK 3.3.7 Auxiliary Instruction Fault Status Register
on page 3-78

HADFSR 4 c1 0 RW UNK 3.3.35 Hyp Auxiliary Data Fault Status Register
on page 3-108

HAIFSR 1 RW UNK 3.3.36 Hyp Auxiliary Instruction Fault Status
Register on page 3-110

3 System Control
3.2  Register summary

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-67

Non-Confidential



Table 3-27  Implementation defined registers (continued)

Name CRn Op1 CRm Op2 Access Reset Description

IMP_ATCMREGIONR c9 0 c1 0 RW -av 3.3.94 TCM Region Registers A, B, and C
on page 3-188

IMP_BTCMREGIONR 1 RW -av 3.3.94 TCM Region Registers A, B, and C
on page 3-188

IMP_CTCMREGIONR 2 RW -av 3.3.94 TCM Region Registers A, B, and C
on page 3-188

IMP_CSCTLR 1 c1 0 RW 0x00000000 3.3.14 Cache Segregation Control Register
on page 3-85

IMP_BPCTLR 1 RW 0x00000000 3.3.10 Branch Predictor Control Register
on page 3-80

IMP_MEMPROTCLR 2 RW -ao 3.3.76 Memory Protection Control Register
on page 3-164

AMAIR0 c10 0 c3 0 RW 0x00000000 3.3.8 Auxiliary Memory Attribute Indirection
Register 0 on page 3-80

AMAIR1 1 RW 0x00000000 3.3.9 Auxiliary Memory Attribute Indirection
Register 1 on page 3-80

HAMAIR0 4 c3 0 RW 0x00000000 3.3.37 Hyp Auxiliary Memory Attribute Indirection
Register 0 on page 3-111

HAMAIR1 1 RW 0x00000000 3.3.38 Hyp Auxiliary Memory Attribute Indirection
Register 1 on page 3-111

IMP_SLAVEPCTLR c11 0 c0 0 RW 0x00000001 3.3.91 Slave Port Control Register on page 3-182

ao The reset value depends on the signals CFGFLASHPROTEN and CFGRAMPROTEN, see register description.

3 System Control
3.2  Register summary

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-68

Non-Confidential



Table 3-27  Implementation defined registers (continued)

Name CRn Op1 CRm Op2 Access Reset Description

IMP_PERIPHPREGIONR c15 0 c0 0 RW - ap 3.3.80 Peripheral Port Region Register
on page 3-168

IMP_FLASHIFREGIONR 1 RW - aq 3.3.30 Flash Interface Region Register
on page 3-104

IMP_BUILDOPTR c2 0 RO -ar 3.3.11 Build Options Register on page 3-81

IMP_PINOPTR 7 RO -as 3.3.82 Pin Options Register on page 3-172

IMP_CBAR 1 c3 0 RO - at 3.3.17 Configuration Base Address Register
on page 3-88

IMP_QOSR 1 RW 0x00000000 3.3.88 Quality Of Service Register on page 3-179

IMP_BUSTIMEOUTR 2 RW 0x00000000 3.3.12 Bus Timeout Register on page 3-82

IMP_INTMONR 4 RW 0x00000000 3.3.66 Interrupt Monitoring Register on page 3-153

IMP_ICERR0 2 c0 0 RW 0x00000000 3.3.57 Instruction Cache Error Record Registers 0
and 1 on page 3-140

IMP_ICERR1 1 RW 0x00000000 3.3.57 Instruction Cache Error Record Registers 0
and 1 on page 3-140

IMP_DCERR0 c1 0 RW 0x00000000 3.3.21 Data Cache Error Record Registers 0 and 1
on page 3-95

IMP_DCERR1 1 RW 0x00000000 3.3.21 Data Cache Error Record Registers 0 and 1
on page 3-95

IMP_TCMERR0 c15 c2 0 RW 0x00000000 3.3.93 TCM Error Record Register 0 and 1
on page 3-187

IMP_TCMERR1 1 RW 0x00000000 3.3.93 TCM Error Record Register 0 and 1
on page 3-187

IMP_TCMSYNDR0 2 RO 0x00000000 3.3.95 TCM Syndrome Register 0 and 1
on page 3-189

IMP_TCMSYNDR1 3 RO 0x00000000 3.3.95 TCM Syndrome Register 0 and 1
on page 3-189

IMP_FLASHERR0 c3 0 RW 0x00000000 3.3.29 Flash Error Record Registers 0 and 1
on page 3-102

IMP_FLASHERR1 1 RW 0x00000000 3.3.29 Flash Error Record Registers 0 and 1
on page 3-102

ap The reset value depends on CFGLLPPBASEADDR[31:12] and CFGLLPPSIZE[3:0]. See register description.
aq The reset value depends on CFGFLASHBASEADDR[31:27]. See register description.
ar The reset value depends on hardware configuration. See 3.3.11 Build Options Register on page 3-81.
as The reset value depends on hardware configuration. See 3.3.82 Pin Options Register on page 3-172.
at The reset value for bits [31:21] is the value of the CFGPERIPHBASE signal. The reset value for bits [20:0] is 0b000000000000000000000.

3 System Control
3.2  Register summary

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-69

Non-Confidential



Table 3-27  Implementation defined registers (continued)

Name CRn Op1 CRm Op2 Access Reset Description

IMP_CDBGDR0 c15 3 c0 0 RO UNK Cache Debug Data Register 0. See 7.4 Direct access
to internal memory on page 7-224.

IMP_CDBGDR1 1 RO UNK Cache Debug Data Register 1. See 7.4 Direct access
to internal memory on page 7-224.

IMP_TESTR0 4 c0 0 RO -au 3.3.97 Test Register 0 on page 3-192

IMP_TESTR1 1 WO - This register is only for testing purposes.

3.2.30 AArch32 Implementation defined operations

These registers provide operations specific to the Cortex-R52 processor.

Table 3-28  Implementation defined registers

Name CRn Op1 CRm Op2 Access Reset Description

IMP_CDBGDCI c15 1 c14 0 WO UNK 3.3.68 Invalidate All Register on page 3-155.

IMP_CDBGDCT 3 c2 0 WO UNK Data Cache Tag Read Operation Register. See 7.4 Direct access to
internal memory on page 7-224.

IMP_CDBGICT 1 WO UNK Instruction Cache Tag Read Operation Register. See 7.4 Direct
access to internal memory on page 7-224.

IMP_CDBGDCD c4 0 WO UNK Data Cache Data Read Operation Register. See 7.4 Direct access to
internal memory on page 7-224.

IMP_CDBGICD 1 WO UNK Instruction Cache Data Read Operation Register. See 7.4 Direct
access to internal memory on page 7-224.

3.2.31 AArch32 Debug registers

The following table shows 32-bit wide debug registers accessed with (coproc==0b1111).

Debug registers accessed with (coproc==0b1110) are listed in 11.3 System register summary
on page 11-355.

Table 3-29  Debug registers

Name CRn Op1 CRm Op2 Access Reset Description

HDCR c1 4 c1 1 RW 0x00000004 3.3.42 Hyp Debug Control Register on page 3-117

DSPSR c4 3 c5 0 RW UNK Debug Saved Program Status Register

DLR 1 RW -aw Debug Link Register

3.2.32 AArch32 Reset management registers

The following table shows 32-bit wide reset management registers.

au The reset value for bits [31:6] is 0b00000000000000000000000000 The reset value of bits [5:0] gives the value of the current interrupts. See 3.3.97 Test Register
0 on page 3-192.

av The reset value depends on implementation (TCM size),and input pins. See register description.
aw The reset value is the value of the PC in Halting Debug state.

3 System Control
3.2  Register summary

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-70

Non-Confidential



Table 3-30  Reset management registers

Name CRn Op1 CRm Op2 Access Reset Description

RVBAR c12 0 c0 1 RO -ax 3.3.89 Reset Vector Base Address Register on page 3-180

HRMR 4 c0 2 RW 0x00000000 3.3.56 Hypervisor Reset Management Register on page 3-139

3.2.33 AArch32 Legacy feature registers

The following table shows legacy feature registers and operations.

See the Arm® Architecture Reference Manual Supplement Armv8, for Armv8-R architecture profile for
more information about these operations.

Table 3-31  Implementation defined registers

Name CRn Op1 CRm Op2 Access Reset Description

CP15ISB c7 0 c5 4 WO - Instruction Synchronization Barrier operation, this operation is
deprecated in Armv8-R

CP15DSB c10 4 WO - Data Synchronization Barrier operation, this operation is deprecated
in Armv8-R

CP15DMB 5 WO - Data Memory Barrier operation, this operation is deprecated in
Armv8-R

FCSEIDR c13 0 c0 0 RW 0x00000000 3.3.28 FCSE Process ID Register on page 3-102

3.2.34 AArch32 Cache maintenance instructions

The following table shows 32-bit wide cache maintenance instructions.

See the Arm® Architecture Reference Manual Supplement Armv8, for Armv8-R architecture profile for
more information about these operations.

ax CFGVECTABLEx[31:5] determines the vector base address out of reset, see register description.

3 System Control
3.2  Register summary

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-71

Non-Confidential



Table 3-32  Address translation operations

Name CRn Op1 CRm Op2 Access Reset Description

ICIALLUIS c7 0 c1 0 WO - Invalidate all instruction caches Inner Shareable to Point of Unification
(PoU).

BPIALLIS 6 WO - Invalidate all entries from branch predictors Inner Shareable

ICIALLU c5 0 WO - Invalidate all Instruction Caches to PoU

ICIMVAU 1 WO - Invalidate Instruction Caches by VA to PoU

BPIALL 6 WO - Invalidate all entries from branch predictors

BPIMVA 7 WO - Invalidate VA from branch predictors

DCIMVAC c6 1 WO - Invalidate data cache line by VA to PoCay

DCISW 2 WO - Invalidate data cache line by set/way

DCCMVAC c10 1 WO - Clean data cache line by VA to PoC

DCCSW 2 WO - Clean data cache line by set/way

DCCMVAU c11 1 WO - Clean data cache line by VA to PoU

DCCIMVAC c14 1 WO - Clean and invalidate data cache line by VA to PoC

DCCISW 2 WO - Clean and invalidate data cache line by set/way

3.2.35 AArch32 Security registers

The following table shows 32-bit wide security registers.

See the Arm® Architecture Reference Manual Supplement Armv8, for Armv8-R architecture profile for
more information.

Table 3-33  Security registers

Name CRn Op1 CRm Op2 Access Reset Description

NSACR c1 0 c1 2 RO 0x00000C00 3.3.79 Non-Secure Access Control Register on page 3-167

The Cortex-R52 processor does not support the ability to distinguish between secure and non-secure
physical memories. The NSACR register is included, and assigned to a functional group, for
completeness.

3.2.36 AArch 32 PMSA-specific registers

The following table shows 32-bit wide PMSA-specific registers.

ay Point of Coherence (PoC) is always outside of the processor and depends on the external memory system.

3 System Control
3.2  Register summary

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-72

Non-Confidential



Table 3-34  PMSA-specific registers

Name CRn Op1 CRm Op2 Access Reset Description

PRSELR c6 0 c2 1 RW UNK 3.3.87 Protection Region Selection Register
on page 3-178

PRBAR c3 0 RW UNK 3.3.85 Protection Region Base Address Register
on page 3-175

PRLAR 1 RW UNKaz 3.3.86 Protection Region Limit Address Register
on page 3-177

PRBAR0-14 (even) c8-15 0 RW UNK 3.3.85 Protection Region Base Address Register
on page 3-175

PRLAR0-14 (even) 1 RW UNKaz 3.3.86 Protection Region Limit Address Register
on page 3-177

PRBAR1-15 (odd) 4 RW UNK 3.3.85 Protection Region Base Address Register
on page 3-175

PRLAR1-15 (odd) 5 RW UNKaz 3.3.86 Protection Region Limit Address Register
on page 3-177

HPRENR 4 c1 1 RW 0x00000000 3.3.46 Hyp MPU Region Enable Register on page 3-123

HPRSELR c2 1 RW UNK 3.3.50 Hyp Protection Region Selection Register
on page 3-128

HPRBAR c3 0 RW UNK 3.3.48 Hyp Protection Region Base Address Register
on page 3-126

HPRLAR 1 RW UNKaz 3.3.49 Hyp Protection Region Limit Address Register
on page 3-127

HPRBAR0-14 (even) c8-15 0 RW UNK 3.3.48 Hyp Protection Region Base Address Register
on page 3-126

HPRLAR0-14 (even) 1 RW UNKaz 3.3.49 Hyp Protection Region Limit Address Register
on page 3-127

HPRBAR1-15 (odd) 4 RW UNK 3.3.48 Hyp Protection Region Base Address Register
on page 3-126

HPRLAR1-15 (odd) 5 RW UNKaz 3.3.49 Hyp Protection Region Limit Address Register
on page 3-127

az The reset value for bit[0] is 0.

3 System Control
3.2  Register summary

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-73

Non-Confidential



3.3 AArch32 register descriptions
This section describes system registers in alphabetical order based on their name.

3.2.1 c0 registers on page 3-39 to 3.2.18 64-bit registers on page 3-55 provide cross-references to
individual registers arranged by register number.

This section contains the following subsections:
• 3.3.1 Architectural Feature Access Control Register on page 3-76.
• 3.3.2 Auxiliary Control Register on page 3-77.
• 3.3.3 Auxiliary Control Register 2 on page 3-77.
• 3.3.4 Auxiliary Data Fault Status Register on page 3-77.
• 3.3.5 Auxiliary Feature Register 0 on page 3-78.
• 3.3.6 Auxiliary ID Register on page 3-78.
• 3.3.7 Auxiliary Instruction Fault Status Register on page 3-78.
• 3.3.8 Auxiliary Memory Attribute Indirection Register 0 on page 3-80.
• 3.3.9 Auxiliary Memory Attribute Indirection Register 1 on page 3-80.
• 3.3.10 Branch Predictor Control Register on page 3-80.
• 3.3.11 Build Options Register on page 3-81.
• 3.3.12 Bus Timeout Register on page 3-82.
• 3.3.13 Cache Level ID Register on page 3-84.
• 3.3.14 Cache Segregation Control Register on page 3-85.
• 3.3.15 Cache Size Selection Register on page 3-86.
• 3.3.16 Cache Type Register on page 3-87.
• 3.3.17 Configuration Base Address Register on page 3-88.
• 3.3.18 Context ID Register on page 3-89.
• 3.3.19 CPU Auxiliary Control Register on page 3-90.
• 3.3.20 Current Cache Size ID Register on page 3-93.
• 3.3.21 Data Cache Error Record Registers 0 and 1 on page 3-95.
• 3.3.22 Data Fault Address Register on page 3-96.
• 3.3.23 Data Fault Status Register on page 3-97.
• 3.3.24 Debug Feature Register 0 on page 3-99.
• 3.3.25 EL0 Read/Write Software Thread ID Register on page 3-100.
• 3.3.26 EL0 Read-Only Software Thread ID Register on page 3-101.
• 3.3.27 EL1 Software Thread ID Register on page 3-102.
• 3.3.28 FCSE Process ID Register on page 3-102.
• 3.3.29 Flash Error Record Registers 0 and 1 on page 3-102.
• 3.3.30 Flash Interface Region Register on page 3-104.
• 3.3.31 Hyp Architectural Feature Trap Register on page 3-105.
• 3.3.32 Hyp Auxiliary Configuration Register on page 3-106.
• 3.3.33 Hyp Auxiliary Control Register on page 3-107.
• 3.3.34 Hyp Auxiliary Control Register 2 on page 3-108.
• 3.3.35 Hyp Auxiliary Data Fault Status Register on page 3-108.
• 3.3.36 Hyp Auxiliary Instruction Fault Status Register on page 3-110.
• 3.3.37 Hyp Auxiliary Memory Attribute Indirection Register 0 on page 3-111.
• 3.3.38 Hyp Auxiliary Memory Attribute Indirection Register 1 on page 3-111.
• 3.3.39 Hyp Configuration Register on page 3-111.
• 3.3.40 Hyp Configuration Register 2 on page 3-116.
• 3.3.41 Hyp Data Fault Address Register on page 3-116.
• 3.3.42 Hyp Debug Control Register on page 3-117.
• 3.3.43 Hyp Instruction Fault Address Register on page 3-120.
• 3.3.44 Hyp IPA Fault Address Register on page 3-120.
• 3.3.45 Hyp Memory Attribute Indirection Register 0 and 1 on page 3-121.
• 3.3.46 Hyp MPU Region Enable Register on page 3-123.
• 3.3.47 Hyp MPU Type Register on page 3-125.
• 3.3.48 Hyp Protection Region Base Address Register on page 3-126.

3 System Control
3.3 AArch32 register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-74

Non-Confidential



• 3.3.49 Hyp Protection Region Limit Address Register on page 3-127.
• 3.3.50 Hyp Protection Region Selection Register on page 3-128.
• 3.3.51 Hyp Software Thread ID Register on page 3-130.
• 3.3.52 Hyp Syndrome Register on page 3-131.
• 3.3.53 Hyp System Control Register on page 3-132.
• 3.3.54 Hyp System Trap Register on page 3-136.
• 3.3.55 Hyp Vector Base Address Register on page 3-138.
• 3.3.56 Hypervisor Reset Management Register on page 3-139.
• 3.3.57 Instruction Cache Error Record Registers 0 and 1 on page 3-140.
• 3.3.58 Instruction Fault Address Register on page 3-141.
• 3.3.59 Instruction Fault Status Register on page 3-142.
• 3.3.60 Instruction Set Attribute Register 0 on page 3-143.
• 3.3.61 Instruction Set Attribute Register 1 on page 3-145.
• 3.3.62 Instruction Set Attribute Register 2 on page 3-146.
• 3.3.63 Instruction Set Attribute Register 3 on page 3-148.
• 3.3.64 Instruction Set Attribute Register 4 on page 3-150.
• 3.3.65 Instruction Set Attribute Register 5 on page 3-151.
• 3.3.66 Interrupt Monitoring Register on page 3-153.
• 3.3.67 Interrupt Status Register on page 3-154.
• 3.3.68 Invalidate All Register on page 3-155.
• 3.3.69 Main ID Register on page 3-155.
• 3.3.70 Memory Attribute Indirection Registers 0 and 1 on page 3-156.
• 3.3.71 Memory Model Feature Register 0 on page 3-158.
• 3.3.72 Memory Model Feature Register 1 on page 3-159.
• 3.3.73 Memory Model Feature Register 2 on page 3-160.
• 3.3.74 Memory Model Feature Register 3 on page 3-162.
• 3.3.75 Memory Model Feature Register 4 on page 3-163.
• 3.3.76 Memory Protection Control Register on page 3-164.
• 3.3.77 MPU Type Register on page 3-165.
• 3.3.78 Multiprocessor Affinity Register on page 3-166.
• 3.3.79 Non-Secure Access Control Register on page 3-167.
• 3.3.80 Peripheral Port Region Register on page 3-168.
• 3.3.81 Physical Address Register on page 3-169.
• 3.3.82 Pin Options Register on page 3-172.
• 3.3.83 Processor Feature Register 0 on page 3-173.
• 3.3.84 Processor Feature Register 1 on page 3-174.
• 3.3.85 Protection Region Base Address Register on page 3-175.
• 3.3.86 Protection Region Limit Address Register on page 3-177.
• 3.3.87 Protection Region Selection Register on page 3-178.
• 3.3.88 Quality Of Service Register on page 3-179.
• 3.3.89 Reset Vector Base Address Register on page 3-180.
• 3.3.90 Revision ID Register on page 3-181.
• 3.3.91 Slave Port Control Register on page 3-182.
• 3.3.92 System Control Register on page 3-183.
• 3.3.93 TCM Error Record Register 0 and 1 on page 3-187.
• 3.3.94 TCM Region Registers A, B, and C on page 3-188.
• 3.3.95 TCM Syndrome Register 0 and 1 on page 3-189.
• 3.3.96 TCM Type Register on page 3-191.
• 3.3.97 Test Register 0 on page 3-192.
• 3.3.98 Test Register 1 on page 3-193.
• 3.3.99 TLB Type Register on page 3-193.
• 3.3.100 Vector Base Address Register on page 3-193.
• 3.3.101 Virtualization Multiprocessor ID Register on page 3-194.
• 3.3.102 Virtualization Processor ID Register on page 3-195.
• 3.3.103 Virtualization System Control Register on page 3-195.

3 System Control
3.3 AArch32 register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-75

Non-Confidential



3.3.1 Architectural Feature Access Control Register

The CPACR controls access to the Advanced SIMD and floating-point functionality and indicates that
CP0 to CP13 are not implemented.

Usage constraints

This register is accessible as follows:

EL0 EL1 EL2

- RW RW

The CPACR has no effect on instructions executed at EL2.

Traps and enables

If HCPTR.TCPAC is set to 1, then accesses to this register from EL1 are trapped to Hyp mode.

If HSTR.T1 is set to 1, then accesses to this register from EL1 are trapped to Hyp mode.

Configurations

This register is available in all build configurations.

Attributes
CPACR is a 32-bit register.

The following figure shows the CPACR bit assignments.

31 24 23 22 21 20 19 0

RES0

cp11 cp10 RES0

30

ASEDIS

TRCDIS

29 28

RES0

Figure 3-1  CPACR bit assignments

The following table shows the CPACR bit assignments.

Table 3-35  CPACR bit assignments

Bits Name Function

[31] ASEDIS Disable Advanced SIMD Functionality:

0 Does not cause any instructions to be UNDEFINED. This is the reset value.

1 All instruction encodings that are part of Advanced SIMD, but that are not floating-point
instructions, are UNDEFINED.

[30:29] - Reserved, RES0.

[28] TRCDIS This field is RES0.

The Cortex-R52 processor does not include a System register interface to the trace macrocell registers.

3 System Control
3.3 AArch32 register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-76

Non-Confidential



Table 3-35  CPACR bit assignments (continued)

Bits Name Function

[23:22] cp11bb The value of this field is ignored. If this field is programmed with a different value to the cp10 field, then this field
is UNKNOWN on a direct read of the CPACR.

[21:20] cp10ba Defines the access rights for the Advanced SIMD and floating-point features. Possible values of the fields are:

0b00 EL0 and EL1 accesses to Advanced SIMD and floating-point registers or instructions are UNDEFINED.
This is the reset value.

0b01 Access at EL1 only. Any attempt to access Advanced SIMD and floating-point registers or
instructions from software executing at EL0 generates an Undefined Instruction exception.

0b10 Reserved.

0b11 This control permits full access to Advanced SIMD and floating-point functionality from EL0 and
EL1.

[19:0] - Reserved, RES0.

To access the CPACR:

MRC p15,0,<Rt>,c1,c0,2 ; Read CPACR into Rt
MCR p15,0,<Rt>,c1,c0,2 ; Write Rt to CPACR

3.3.2 Auxiliary Control Register

This register is always RES0.

3.3.3 Auxiliary Control Register 2

This register is always RES0.

3.3.4 Auxiliary Data Fault Status Register

The ADFSR provides fault status information for Data Abort exceptions taken to EL1 modes. This fault
status information can be used together with the DFSR to further classify faults.

Usage constraints

This register is accessible as follows:

EL0 EL1 EL2

- RW RW

Traps and enables
If HCR.TVM is set to 1, then write accesses to this register from EL1 are trapped to Hyp mode.
If HCR.TRVM is set to 1, then read accesses to this register from EL1 are trapped to Hyp mode.
If HSTR.T5 is set to 1, then accesses to this register from EL1 are trapped to Hyp mode.

Configurations

This register is available in all build configurations.

ba The Advanced SIMD and floating-point features controlled by this field are:
• Floating-point instructions.
• Advanced SIMD instructions, both integer and floating-point.
• Advanced SIMD and floating-point registers D0-D31 and their views as S0-S31 and Q0-Q15.
• FPSCR, FPSID, MVFR0, MVFR1, MVFR2, FPEXC system registers.

bb cp10 and cp11 must be programmed to the same value.

3 System Control
3.3 AArch32 register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-77

Non-Confidential



Attributes
ADFSR is a 32-bit register.

The following figure shows the ADFSR bit assignments.

RES0

31 05 4

PORT

12

TYPE

Figure 3-2  ADFSR bit assignments

The following table shows the ADFSR bit assignments.

Table 3-36  ADFSR bit assignments

Bits Name Function

[31:5] - Reserved, RES0.

[4:2] PORT Memory or port that caused the fault:

0b000 AXIM.

0b001 Flash.

0b010 LLPP.

0b011 Internal peripheral interface.

0b100 ATCM.

0b101 BTCM.

0b110 CTCM.

0b111 Overlap. This port is used if the memory port is ambiguous.

[1:0] TYPE Fault type:

0b00 No auxiliary error classification.

0b01 Error on external bus control, response signal.

0b10 Error on TCM, Cache, or bus data.

0b11 Error due to bus timeout.

To access the ADFSR:

MRC p15,0,<Rt>,c5,c1,0 ; Read ADFSR into Rt
MCR p15,0,<Rt>,c5,c1,0 ; Write Rt to ADFSR

3.3.5 Auxiliary Feature Register 0

ID_AFR0 is always RES0.

3.3.6 Auxiliary ID Register

AIDR is always RES0.

3.3.7 Auxiliary Instruction Fault Status Register

The AIFSR provides fault status information for Prefetch Abort exceptions taken to EL1 modes.

3 System Control
3.3 AArch32 register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-78

Non-Confidential



Usage constraints

This register is accessible as follows:

EL0 EL1 EL2

- RW RW

Traps and enables
If HCR.TVM is set to 1, then write accesses to this register from EL1 are trapped to Hyp mode.
If HCR.TRVM is set to 1, then read accesses to this register from EL1 are trapped to Hyp mode.
If HSTR.T5 is set to 1, then accesses to this register from EL1 are trapped to Hyp mode.

Configurations

This register is available in all build configurations.

Attributes
AIFSR is a 32-bit register.

The following figure shows the AIFSR bit assignments.

RES0

31 05 4

PORT

12

TYPE

Figure 3-3  AIFSR bit assignments

The following table shows the AIFSR bit assignments.

Table 3-37  AIFSR bit assignments

Bits Name Function

[31:5] - Reserved, RES0.

[4:2] PORT Memory port that caused the fault:

0b000 AXIM.

0b001 Flash.

0b010 LLPP.

0b100 ATCM.

0b101 BTCM.

0b110 CTCM.

0b111 Overlap. This port is used if the memory port is ambiguous.

[1:0] TYPE Fault type:

0b00 No auxiliary error classification.

0b01 Error on external bus control, response signal.

0b10 Error on TCM, Cache, or bus data.

0b11 Error due to bus timeout.

3 System Control
3.3 AArch32 register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-79

Non-Confidential



To access the AIFSR:

MRC p15,0,<Rt>,c5,c1,1 ; Read AIFSR into Rt
MCR p15,0,<Rt>,c5,c1,1 ; Write Rt to AIFSR

3.3.8 Auxiliary Memory Attribute Indirection Register 0

AMAIR0 is always RES0.

3.3.9 Auxiliary Memory Attribute Indirection Register 1

AMAIR1 is always RES0.

3.3.10 Branch Predictor Control Register

The IMP_BPCTLR provides software controls for disabling the dynamic branch prediction.

Usage constraints

This register is accessible as follows:

EL0 EL1 EL2

- RW RW

Traps and enables
If HCR.TIDCP is set to 1, then accesses to this register from EL1 are trapped to EL2.

Configurations
This register is available in all build configurations.

Attributes
IMP_BPCTLR is a 32-bit register.

The following figure shows the IMP_BPCTLR bit assignments.

RES0

31 03

DBPEL1DIS

12

DBPEL0DIS

DBPEL2DIS

Figure 3-4  IMP_BPCTLR bit assignments

The following table shows the IMP_BPCTLR bit assignments.

Table 3-38  IMP_BPCTLR bit assignments

Bits Name Function

[31:3] - Reserved, RES0.

[2] DBPEL2DIS Disable dynamic branch predictor when running at EL2.

[1] DBPEL1DIS Disable dynamic branch predictor when running at EL1.

[0] DBPEL0DIS Disable dynamic branch predictor when running at EL0.

3 System Control
3.3 AArch32 register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-80

Non-Confidential



To access the IMP_BPCTLR:

MRC p15, 1, <Rt>, c9, c1, 1 ; Read IMP_BPCTLR into Rt
MCR p15, 1, <Rt>, c9, c1, 1 ; Write Rt to IMP_BPCTLR

3.3.11 Build Options Register

The IMP_BUILDOPTR shows the values of the implementation-time build configuration options used to
configure the processor.

Usage constraints

This register is accessible as follows:

EL0 EL1 EL2

- RO RO

Traps and enables
There are no traps and enables affecting this register.

Configurations
This register is available in all build configurations.

Attributes
IMP_BUILDOPTR is a 32-bit register.

The following figure shows the IMP_BUILDOPTR bit assignments.

31 030 29 28 27 24 23 9 8 7 4 3

LOCK_STEP
BUS_PROTECTION

AXIS_ID_WIDTH NUM_CORES
NUM_GIC_EXT_DEV

RES0

20 19

RES0

26

FLASH_DATA_ECC_SCHEME

25

RES0

Figure 3-5  IMP_BUILDOPTR bit assignments

The following table shows the IMP_BUILDOPTR bit assignments.

Table 3-39  IMP_BUILDOPTR bit assignments

Bits Name Function

[31:30] LOCK_STEP Include redundant logic, flops, and comparators, for DCLS:

0 No redundant logic included.

1 DCLS configuration.

2 Split/Lock configuration.

[29:28] BUS_PROTECTION Indicates what bus protection scheme is implemented:

0 Signal integrity protection and interconnect protection not included.

1 Include signal integrity protection but do not include interconnect protection.

2 Include signal integrity protection and interconnect protection.

3 System Control
3.3 AArch32 register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-81

Non-Confidential



Table 3-39  IMP_BUILDOPTR bit assignments (continued)

Bits Name Function

[27:26] FLASH_DATA_ECC_SCHEME Flash memory interface data ECC chunk size:

1 64-bit chunks.

2 128-bit chunks.

[25:24] - Reserved, RES0.

[23:20] AXIS_ID_WIDTH Width of AXIS interface ID signals, encoded as the width minus one.

[19:9] - Reserved, RES0.

[8] NUM_GIC_EXT_DEV Indicates the number of external device interfaces to the GIC. This can be 0 or 1.

[7:4] - Reserved, RES0.

[3:0] NUM_CORES Indicates the number of cores in the Cortex-R52 processor, encoded as the number of
cores minus one.

To access the IMP_BUILDOPTR:

MRC p15, 0, <Rt>, c15, c2, 0 ; Read IMP_BUILDOPTR into Rt

3.3.12 Bus Timeout Register

The IMP_BUSTIMEOUTR provides programmable time limits for accesses to AXIM, Flash interface,
and LLPP.

Usage constraints

This register is accessible as follows:

EL0 EL1 EL2

- RW/RO RW

Accesses to IMP_BUSTIMEOUTR at EL1 are read-only (RO) when
HACTLR.BUSTIMEOUTR = 0.

Traps and enables
If HACTLR.BUSTIMEOUTR is set to 0, then write accesses to this register from EL1 are
trapped to EL2..

Configurations
This register is available in all build configurations.

Attributes
IMP_BUSTIMEOUTR is a 32-bit register.

The following figure shows the BUSTIMEOUTR bit assignments.

3 System Control
3.3 AArch32 register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-82

Non-Confidential



MAXCYCLESBY16LLPP
MAXCYCLESBY16FLASH

MAXCYCLESBY16AXIM
RES0

ABORTFLASH
ABORTLLPP

ABORTAXIM
RES0

ENABLEFLASH
ENABLELLPP

ENABLEAXIM

31 24 23 16 15 8 7 6 5 4 3 2 1 0

Figure 3-6  IMP_BUSTIMEOUTR bit assignments

The following table shows the IMP_BUSTIMEOUTR bit assignments.

Table 3-40  IMP_BUSTIMEOUTR bit assignments

Bits Name Function

[31:24] MAXCYCLESBY16FLASH Flash interface timeout value in cycles divided by 16

[23:16] MAXCYCLESBY16LLPP LLPP timeout value in cycles divided by 16

[15:8] MAXCYCLESBY16AXIM AXIM interface timeout value in cycles divided by 16

7 - Reserved, RES0

6 ABORTFLASH When Flash timeout detected, abort current and future flash accesses

5 ABORTLLPP When LLPP timeout detected, abort current and future LLPP accesses

4 ABORTAXIM When AXIM timeout detected, abort current and future AXIM accesses

3 - Reserved, RES0

2 ENABLEFLASH Timeout counter enable for Flash interface

1 ENABLELLPP Timeout counter enable for LLPP

0 ENABLEAXIM Timeout counter enable for AXIM interface

To access the IMP_BUSTIMEOUTR:

MRC p15,1,<Rt>,c15,c3,2 ; Read IMP_BUSTIMEOUTR into Rt
MCR p15,1,<Rt>,c15,c3,2 ; Write Rt to IMP_BUSTIMEOUTR

 Note 

The Flash, LLPP and AXIM interface timeout value in cycles (MAXCYCLESBYFLASH16FLASH,
MAXCYCLESBYFLASH16LLPP, and MAXCYCLESBYFLASH16AXIM) cannot be zero when the
timeout counter is enabled.

3 System Control
3.3 AArch32 register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-83

Non-Confidential



3.3.13 Cache Level ID Register

The CLIDR identifies the type of cache or caches that are implemented at each level, the Level of
Coherency, and Level of Unification for the cache hierarchy.

Usage constraints

This register is accessible as follows:

EL0 EL1 EL2

- RO RO

Traps and enables

If HCR.TID2 is set to 1, then read accesses to this register from EL1 are trapped to Hyp mode.

If HSTR.T0 is set to 1, then read accesses to this register from EL1 are trapped to Hyp mode.

Configurations
The register is available in all build configurations.

Attributes
CLIDR is a 32-bit register.

The following figure shows the CLIDR bit assignments.

LoUISICB Ctype3 Ctype2 Ctype1

31 30 29 27 26 24 23 21 20 9 8 6 5 3 2 0

LoUU LoC Ctype4Ctype5Ctype6Ctype7

111214151718

Figure 3-7  CLIDR bit assignments

The following table shows the CLIDR bit assignments.

Table 3-41  CLIDR bit assignments

Bits Name Function

[31:30] ICB Inner cache boundary:

0b00 Not disclosed in this mechanism.

[29:27] LoUU Indicates the Level of Unification Uniprocessor for the cache hierarchy:

0b001 Level 1, if either cache is implemented.

0b000 Level 0, if both instruction and data caches are not implemented.

[26:24] LoC Indicates the Level of Coherency for the cache hierarchy:

0b001 Level 1, if either cache is implemented.

0b000 Level 0, if both instruction and data caches are not implemented.

[23:21] LoUIS Indicates the Level of Unification Inner Shareable for the cache hierarchy:

0b001 Level 1, if either cache is implemented.

0b000 Level 0, if both instruction and data caches are not implemented.

[20:18] Ctype7 Indicates the type of cache if the processor implements L7 cache:

0b000 L7 cache not implemented.

3 System Control
3.3 AArch32 register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-84

Non-Confidential



Table 3-41  CLIDR bit assignments (continued)

Bits Name Function

[17:15] Ctype6 Indicates the type of cache if the processor implements L6 cache:

0b000 L6 cache not implemented.

[14:12] Ctype5 Indicates the type of cache if the processor implements L5 cache:

0b000 L5 cache not implemented.

[11:9] Ctype4 Indicates the type of cache if the processor implements L4 cache:

0b000 L4 cache not implemented.

[8:6] Ctype3 Indicates the type of cache if the processor implements L3 cache:

0b000 L3 cache not implemented.

[5:3] Ctype2 Indicates the type of cache if the processor implements L2 cache:

0b000 L2 cache is not implemented.

[2:0] Ctype1 Indicates the type of cache implemented at L1:

0b000 No cache.

0b001 Instruction cache only.

0b010 Data cache only.

0b011 Separate instruction and data caches.

To access the CLIDR:

MRC p15,1,<Rt>,c0,c0,1 ; Read CLIDR into Rt

3.3.14 Cache Segregation Control Register

The IMP_CSCTLR controls segregation of instruction and data cache ways between Flash and AXIM.

Usage constraints

This register is accessible as follows:

EL0 EL1 EL2

- RW RW

Writes to IMP_CSCTLR are only permitted before the caches have been enabled, following a
system reset. This ensures that the cache segregation controls do not change after either the data
cache or the instruction cache has been enabled even if they are subsequently disabled.

Traps and enables
If HCR.TIDCP is set to 1, then accesses to this register from EL1 are trapped to EL2.

Configurations
This register is available in all build configurations.

Attributes
IMP_CSCTLR is a 32-bit register.

The following figure shows the IMP_CSCTLR bit assignments.

3 System Control
3.3 AArch32 register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-85

Non-Confidential



RES0 IFLW RES0 DFLW

31 11 10 8 7 3 2 0

Figure 3-8  IMP_CSCTLR bit assignments

The following table shows the IMP_CSCTLR bit assignments.

Table 3-42  IMP_CSCTLR bit assignments

Bits Name Function

[31:11] - Reserved, RES0

[10:8] IFLW Instruction cache Flash ways

[7:3] - Reserved, RES0

[2:0] DFLW Data cache Flash ways

The following table shows the IFLW and DFLW field encoding.

Table 3-43  IFLW and DFLW field encoding

Value Flash ways AXIM ways

0b000 - 0-3

0b001 0 1-3

0b010 0-1 2-3

0b011 0-2 3

0b100 0-3 -

To access the IMP_CSCTLR:

MRC p15,1,<Rt>,c9,c1,0 ; Read IMP_CSCTLR into Rt
MCR p15,1,<Rt>,c9,c1,0 ; Write Rt to IMP_CSCTLR

3.3.15 Cache Size Selection Register

The CSSELR selects the current CCSIDR by specifying the required cache level and the cache type,
either instruction or data cache.

Usage constraints

This register is accessible as follows:

EL0 EL1 EL2

- RW RW

Traps and enables
If HCR.TID2 is set to 1, then accesses to this register from EL1 are trapped to Hyp mode.
If HSTR.T0 is set to 1, then accesses to this register from EL1 are trapped to Hyp mode.

Configurations
This register is available in all build configurations.

Attributes
CSSELR is a 32-bit register.

3 System Control
3.3 AArch32 register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-86

Non-Confidential



The following figure shows the CSSELR bit assignments.

InD

RES0

31 4 3 1 0

Level

Figure 3-9  CSSELR bit assignments

The following table shows the CSSELR bit assignments.

Table 3-44  CSSELR bit assignments

Bits Name Function

[31:4] - Reserved, RES0.

[3:1] Level Cache level of required cache. This field is RO:

0b000 L1.

[0] InD Instruction not Data bit:

0 Data cache.

1 Instruction cache.

To access the CSSELR:

MRC p15, 2, <Rt>, c0, c0, 0 ; Read CSSELR into Rt
MCR p15, 2, <Rt>, c0, c0, 0 ; Write Rt to CSSELR

3.3.16 Cache Type Register

The CTR provides information about the architecture of the caches.

Usage constraints

This register is accessible as follows:

EL0 EL1 EL2

- RO RO

Traps and enables

If HCR.TID2 is set to 1, then read accesses to this register from EL1 are trapped to Hyp mode.

If HSTR.T0 is set to 1, then read accesses to this register from EL1 are trapped to Hyp mode.

Configurations

This register is available in all build configurations.

Attributes
CTR is a 32-bit register.

The following figure shows the CTR bit assignments.

3 System Control
3.3 AArch32 register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-87

Non-Confidential



IminLine

31 30 28 27 24 23 20 19 16 15 14 13 4 3 0

CWG ERG DminLine L1Ip RES0RES0

RES1

Figure 3-10  CTR bit assignments

The following table shows the CTR bit assignments.

Table 3-45  CTR bit assignments

Bits Name Function

[31] - Reserved, RES1.

[30:28] - Reserved, RES0.

[27:24] CWG Cache Write-Back granule.

0x1 Cache Write-Back granule is 2 wordsbc.

[23:20] ERG Exclusives Reservation Granule. Log2 of the number of words of the maximum size of the reservation granule
that has been implemented for the Load-Exclusive and Store-Exclusive instructions.

0x4 Exclusive Reservation Granule is 16 words.

[19:16] DminLine Log2 of the number of words in the smallest cache line of all the data and unified caches that the processor
controls:

0x4 Smallest data cache line size is 16 words.

[15:14] L1lp L1 Instruction cache policy. Indicates the indexing and tagging policy for the L1 Instruction cache:

0b11 Physically Indexed Physically Tagged (PIPT).

[13:4] - Reserved, RES0.

[3:0] IminLine Log2 of the number of words in the smallest cache line of all the instruction caches that the processor controls.

0x4 Smallest instruction cache line size is 16 words.

To access the CTR:

MRC p15,0,<Rt>,c0,c0,1 ; Read CTR into Rt

3.3.17 Configuration Base Address Register

The IMP_CBAR holds the physical base address of the memory-mapped GIC Distributor registers.

Usage constraints

This register is accessible as follows:

EL0 EL1 EL2

- RO RO

Traps and enables
There are no traps and enables affecting this register.

bc In the Cortex-R52 processor caches are Write-Through and do not support modified cache lines. If software uses this field to determine DMA buffers alignment, this
value indicates that 64-bit aligned DMA buffers can be used without incurring a cache performance penalty.

3 System Control
3.3 AArch32 register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-88

Non-Confidential



Configurations

This register is available in all build configurations.

Attributes
IMP_CBAR is a 32-bit register.

The following figure shows the IMP_CBAR bit assignments.

31 0

RES0PERIPHBASE

2021

Figure 3-11  IMP_CBAR bit assignments

The following table shows the IMP_CBAR bit assignments.

Table 3-46  IMP_CBAR bit assignments

Bits Name Function

[31:21] PERIPHBASE Upper bits of base physical address of memory-mapped peripherals. These are the top bits of the base
physical address of the memory mapped peripherals memory region. The input CFGPERIPHBASE[31:21]
determines the reset value.

[20:0] - Reserved, RES0.

To access the IMP_CBAR:

MRC p15, 1, <Rt>, c15, c3, 0 ; Read IMP_CBAR into Rt

3.3.18 Context ID Register

The CONTEXTIDR identifies the current Process Identifier.

Usage constraints

This register is accessible as follows:

EL0 EL1 EL2

- RW RW

Traps and enables
If HCR.TVM is set to 1, then write accesses to this register from EL1 are trapped to Hyp mode.
If HCR.TRVM is set to 1, then read accesses to this register from EL1 are trapped to Hyp mode.
If HSTR.T13 is set to 1, then accesses to this register from EL1 are trapped to Hyp mode.

Configurations

This register is available in all build configurations.

Attributes
CONTEXTIDR is a 32-bit register.

The following figure shows the CONTEXTIDR bit assignments.

3 System Control
3.3 AArch32 register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-89

Non-Confidential



PROCID

31 0

Figure 3-12  CONTEXTIDR bit assignments

The following table shows the CONTEXTIDR bit assignments.

Table 3-47  CONTEXTIDR bit assignments

Bits Name Function

[31:0] PROCID Process Identifier. This field must be programmed with a unique value that identifies the current process.

This register resets to 0.

To access the CONTEXTIDR:

MRC p15, 0, <Rt>, c13, c0, 1 ; Read CONTEXTIDR into Rt
MCR p15, 0, <Rt>, c13, c0, 1 ; Write Rt to CONTEXTIDR

3.3.19 CPU Auxiliary Control Register

The CPUACTLR provides the implemented configuration and control options for the processor.

Usage constraints

This register is accessible as follows:

EL0 EL1 EL2

- RW/RO RW

CPUACTLR is RW from EL2, RW from EL1 when HACTLR.CPUACTLR is set, RO from
EL1 when HACTLR.CPUACTLR is clear and inaccessible from EL0.

The CPU Auxiliary Control Register can be written only when the system is idle. Arm®

Architecture Reference Manual Supplement Armv8, for Armv8-R architecture profile
recommends that you write to this register after a powerup reset, before the MPU is enabled.

 Note 

Setting many of these bits can cause significantly lower performance on your code. Therefore, it
is suggested that you do not modify this register unless directed by Arm.

Traps and enables
If HACTLR.CPUACTLR is set to 0, then write accesses to this register from EL1 are trapped to
EL2.

Configurations

This register is available in all build configurations.

Attributes

See the register summary in Table 3-17  64-bit register summary on page 3-55.

The following figure shows the CPUACTLR bit assignments.

3 System Control
3.3 AArch32 register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-90

Non-Confidential



FPDIDIS
DIDIS

WSTRNOL1ACTL
DPFSTRCTL

RES0
STRIDECTL

L1DPFCTL
RES0

DMB2DSBEN

RES0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 13 12 11 10 0

RES0 RES0

63 47 46 45 44 42 41 40 39 38 37 34 33 32

RES0

RES0

DSPECDIS        
ISPECDIS        
RES0
AXIMARBCTL        
FLASHARBCTL        
FLASHNDDIS        

RES0

9

TLACDIS

OOODIVDIS
ETACDIS

RES0
L1IPFCTL

48

FIXEDDIV

Figure 3-13  CPUACTLR bit assignments

The following table shows the CPUACTLR bit assignments.

Table 3-48  CPUACTLR bit assignments

Bits Name Function

[63:48] - Reserved, RES0.

[47] FIXEDDIV Enable fixed latency for integer divide instructions. The possible values:

0 Disable fixed latency for integer divide instructions. This is the reset value.

1 Enable fixed latency for integer divide instructions.

[46] ETACDIS Disable PFU exception target address cache. The possible values are:

0 Enable PFU exception target address cache This is the reset value.

1 Disable PFU exception target address cache.

[45] OOODIVDIS Disable out-of-order completion of divide instructions. The possible values are:

0 Enable out-of-order completion of divide instructions. This is the reset value.

1 Disable out-of-order completion of divide instructions.

[44:42] - Reserved, RES0.

[41] TLACDIS Disable the Store Unit (STU) tag lookup avoidance cache.

0 Enable STU tag lookup avoidance cache. This is the reset value.

1 Disable STU tag lookup avoidance cache.

[40] FLASHNDDIS Disable flash accesses use of non-flash-dedicated resources. The possible values are:

0 Enable flash accesses use of non-flash-dedicated resources. This is the reset value.

1 Disable flash accesses use of non-flash-dedicated resources.

3 System Control
3.3 AArch32 register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-91

Non-Confidential



Table 3-48  CPUACTLR bit assignments (continued)

Bits Name Function

[39] FLASHARBCTL Flash interface arbitration control:

0 Data side accesses have higher priority. This is the reset value.

1 Instruction side accesses have higher priority.

[38] AXIMARBCTL AXIM interface arbitration control. The possible values are:

0 Data side accesses have higher priority. This is the reset value.

1 Instruction side accesses have higher priority.

[37:34] - Reserved, RES0.

[33] ISPECDIS Disable instruction side speculative access. The possible values are:

0 Enable instruction side speculative access. This is the reset value.

1 Disable instruction side speculative access.

[32] DSPECDIS Disable data side speculative access. The possible values are:

0 Enable data side speculative access. This is the reset value.

1 Disable data side speculative access.

[31] - Reserved, RES0.

[30] FPDIDIS Disable floating-point dual issue. The possible values are:

0 Enable dual issue of Advanced SIMD and floating-point instructions. This is the reset
value.

1 Disable dual issue of Advanced SIMD and floating-point instructions.

[29] DIDIS Disable Dual Issue. The possible values are:

0 Enable Dual Issue of instructions. This is the reset value.

1 Disable Dual Issue of all instructions.

[28:27] - Reserved, RES0.

[26:25] WSTRNOL1ACTL Write streaming no-L1-allocate threshold. The possible values are:

0b00 4th consecutive streaming cache line does not allocate in the L1 cache. This is the reset
value.

0b01 64th consecutive streaming cache line does not allocate in the L1 cache.

0b10 128th consecutive streaming cache line does not allocate in the L1 cache.

0b11 Disables streaming. All Write-Allocate lines allocate in the L1 cache.

[24:21] - Reserved, RES0.

[20:19] DPFSTRCTL Number of independent data prefetch streams. The possible values are:

0b00 1 stream.

0b01 2 streams. This is the reset value.

0b10 3 streams.

0b11 4 streams.

3 System Control
3.3 AArch32 register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-92

Non-Confidential



Table 3-48  CPUACTLR bit assignments (continued)

Bits Name Function

[18] - Reserved, RES0.

[17] STRIDECTL Enable stride detection. The possible values are:

0 2 consecutive strides to trigger prefetch. This is the reset value.

1 3 consecutive strides to trigger prefetch.

[16] - Reserved, RES0.

[15:13] L1DPFCTL L1 Data prefetch control. The value of this field determines the maximum number of outstanding data
prefetches allowed in the L1 memory system, excluding those generated by software load or PLD
instructions. The possible values are:

0b000 Prefetch disabled.

0b001 1 outstanding prefetch allowed.

0b010 2 outstanding prefetches allowed.

0b011 3 outstanding prefetches allowed.

0b100 4 outstanding prefetches allowed.

0b101 5 outstanding prefetches allowed. This is the reset value.

0b110 6 outstanding prefetches allowed.

0b111 8 outstanding prefetches allowed.

[12] - Reserved, RES0.

[11] L1IPFCTL L1 Instruction prefetch control. The possible values are:

0 Prefetch disabled.

1 Prefetch enabled. This is the reset value.

[10] DMB2DSBEN Enable Data Memory Barrier behaving as Data Synchronization Barrier. The possible values are:

0 Disable Data Memory Barrier behaving as Data Synchronization Barrier. This is the reset
value.

1 Enable Data Memory Barrier behaving as Data Synchronization Barrier

[9:0] - Reserved, RES0.

To access the CPUACTLR:

MRRC p15, 0, <Rt>, <Rt2>, c15 ; Read CPU Auxiliary Control Register
MCRR p15, 0, <Rt>, <Rt2>, c15 ; Write CPU Auxiliary Control Register

3.3.20 Current Cache Size ID Register

The CCSIDR provides information about the architecture of the caches.

Usage constraints

This register is accessible as follows:

EL0 EL1 EL2

- RO RO

Traps and enables
EL1 read accesses to CCSIDR are trapped to EL2 when HCR.TID2 or HSTR.T0 is set.

3 System Control
3.3 AArch32 register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-93

Non-Confidential



Configurations

This register is available in all build configurations.

The implementation includes one CCSIDR for each cache that it can access. CSSELR selects
which Cache Size ID Register is accessible.

Attributes
CCSIDR is a 32-bit register.

The following figure shows the CCSIDR bit assignments.

WB

31 28 27 12 3 0

RA
LineSizeWT

30 29 13 2

WA

NumSets Associativity

Figure 3-14  CCSIDR bit assignments

The following table shows the CCSIDR bit assignments.

Table 3-49  CCSIDR bit assignments

Bits Name Function

[31] WT Indicates support for Write-Through:

0 Cache level does not support Write-Through.

1 Cache level supports Write-Through.

 Note 

Value 0 is returned when the instruction cache is selected.

[30] WB Indicates support for Write-Back:

0 Cache level does not support Write-Back.

[29] RA Indicates support for Read-Allocation:

1 Cache level supports Read-Allocation.

[28] WA Indicates support for Write-Allocation:

0 Cache level does not support Write-Allocation.

1 Cache level supports Write-Allocation.

 Note 

Value 0 is returned when the instruction cache is selected.

[27:13] NumSets Indicates the number of sets in cache - 1. Therefore, a value of 0 indicates 1 set in the cache. The number of
sets does not have to be a power of 2.bd

bd For more information about encoding see Table 3-50  CCSIDR encodings on page 3-95.

3 System Control
3.3 AArch32 register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-94

Non-Confidential



Table 3-49  CCSIDR bit assignments (continued)

Bits Name Function

[12:3] Associativity Indicates the associativity of cache:

0x3 The cache has four ways.

[2:0] LineSize Indicates the number of words in cache line:

0b010 16 words per line.

The following table shows the individual bit field and complete register encodings for the CCSIDR. The
CSSELR determines which CCSIDR to select.

Table 3-50  CCSIDR encodings

CSSELR Cache Size Complete register
encoding

Register bit field encoding

WT WB RA WA NumSets Associativity LineSize

0x0 L1 Data cache 4KB 0xB001E01A 1 0 1 1 0x000F 0x003 0x2

8KB 0xB003E01A 0x001F

16KB 0xB007E01A 0x003F

32KB 0xB00FE01A 0x007F

0x1 L1 Instruction cache 4KB 0x2001E01A 0 0 1 0 0x000F 0x003 0x2

8KB 0x2003E01A 0x001F

16KB 0x2007E01A 0x003F

32KB 0x201FE01A 0x007F

To access the CCSIDR:

MRC p15, 1, <Rt>, c0, c0, 0 ; Read CCSIDR into Rt

3.3.21 Data Cache Error Record Registers 0 and 1

The IMP_DCERR0 and IMP_DCERR1 registers indicate the data cache RAM and the cache index of a
detected data cache error.

Usage constraints

These registers are accessible as follows:

EL0 EL1 EL2

- RW/RO RW

These registers are accessible as RW from EL1 when HACTLR.ERR is set, RO from EL1 when
HACTLR.ERR is clear.

Traps and enables
EL1 write accesses to these registers are trapped to EL2 when HACTLR.ERR is 0.

Configurations
These registers are available on all cores configured with a data cache.

Attributes
IMP_DCERR0 and IMP_DCERR1 are 32-bit registers.

3 System Control
3.3 AArch32 register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-95

Non-Confidential



The following figure shows the IMP_DCERR0 and IMP_DCERR1 bit assignments.

31 0

RES0RAMID

1920 1011

INDEX RES0

VALID

134

Figure 3-15  IMP_DCERR0 and IMP_DCERR1 bit assignments

The following table shows the IMP_DCERR0 and IMP_DCERR1 bit assignments.

Table 3-51  IMP_DCERR0 and IMP_DCERR1 bit assignments

Bits Name Function Notes

[31:20] RAMID Indicates the RAM bank:

RAMID[11] Tag RAM, bank 3.

RAMID[10] Tag RAM, bank 2.

RAMID[9] Tag RAM, bank 1.

RAMID[8] Tag RAM, bank 0.

RAMID[7] Data RAM, bank 7.

RAMID[6] Data RAM, bank 6.

RAMID[5] Data RAM, bank 5.

RAMID[4] Data RAM, bank 4.

RAMID[3] Data RAM, bank 3.

RAMID[2] Data RAM, bank 2.

RAMID[1] Data RAM, bank 1.

RAMID[0] Data RAM, bank 0.

-

[19:11] - Reserved, RES0. -

[10:4] INDEX Data cache index. This is address bits [12:6] appropriately
masked with the cache size.

-

[3:1] - Reserved, RES0. Writes to these registers are unique. If bit[1] and bit[0]
are set to 0, and if the register holds information about
a correctable error, then the register is cleared. If bit[1]
is set to 1 and bit[0] is set to 0, then the register is
always cleared.

[0] VALID Register contents are valid.

To access the IMP_DCERR0:

MRC p15,2,<Rt>,c15,c1,0 ; Read IMP_DCERR0 into Rt
MCR p15,2,<Rt>,c15,c1,0 ; Write Rt to IMP_DCERR0

To access the IMP_DCERR1:

MRC p15,2,<Rt>,c15,c1,1 ; Read IMP_DCERR1 into Rt
MCR p15,2,<Rt>,c15,c1,1 ; Write Rt to IMP_DCERR1

3.3.22 Data Fault Address Register

The DFAR holds the faulting address that caused the last data fault (synchronous only) or a watchpoint
hit that was not taken to Hyp mode.

3 System Control
3.3 AArch32 register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-96

Non-Confidential



Usage constraints

This register is accessible as follows:

EL0 EL1 EL2

- RW RW

Traps and enables
DFAR reads and writes from EL1 are trapped to EL2 according to HCR.TRVM and HCR.TVM
respectively.

Configurations

This register is available in all build configurations.

Attributes
DFAR is a 32-bit register.

The following figure shows the DFAR bit assignments.

31 0

VA

Figure 3-16  DFAR bit assignments

The following table shows the DFAR bit assignments.

Table 3-52  DFAR bit assignments

Bits Name Function

[31:0] VA The faulting address of synchronous Data Abort exception

To access the DFAR:

MRC p15, 0, <Rt>, c6, c0, 0 ; Read DFAR into Rt
MCR p15, 0, <Rt>, c6, c0, 0 ; Write Rt to DFAR

3.3.23 Data Fault Status Register

The DFSR holds status information about the last data fault (synchronous or asynchronous) or a
watchpoint hit that was not taken to Hyp mode.

Usage constraints

This register is accessible as follows:

EL0 EL1 EL2

- RW RW

Traps and enables
DFSR reads and writes from EL1 are trapped to EL2 according to HCR.TRVM and HCR.TVM
respectively.

Configurations

This register is available in all build configurations.

3 System Control
3.3 AArch32 register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-97

Non-Confidential



Attributes
DFSR is a 32-bit register.

The following figure shows the DFSR bit assignments.

31 14 13 12 11 10 9 8 5 0

RES0

CM
ExT
WnR
RES0

Status

6

RES0

LPAE

16 15

RES0
FnV

17

Figure 3-17  DFSR bit assignments

The following table shows the DFSR bit assignments.

Table 3-53  DFSR bit assignments

Bits Name Function

[31:17] - Reserved, RES0.

[16] FnV This field is RES0.

[15:14] - Reserved, RES0.

[13] CM Cache maintenance fault. For synchronous faults, this bit indicates whether a cache maintenance operation generated
the fault:

0 Abort not caused by a cache maintenance operation.

1 Abort caused by a cache maintenance operation.

[12] ExT External abort type. This field indicates whether an AXI Decode or Slave error caused an abort:

0 External abort marked as DECERR.

1 External abort marked as SLVERR.

[11] WnR Write not Read bit. This field indicates if a write or a read access caused the abort:

0 Abort caused by a read access.

1 Abort caused by a write access.

For faults on cache maintenance operations with (coproc==0b1111), including the translation operations, this bit
always returns a value of 1.

[10] - Reserved, RES0.

[9] LPAE This field is RES1.

3 System Control
3.3 AArch32 register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-98

Non-Confidential



Table 3-53  DFSR bit assignments (continued)

Bits Name Function

[8:6] - Reserved, RES0.

[5:0] Status Fault Status bits. This field indicates the type of exception generated. Any encoding not listed is reserved.

0b000100 Translation fault, level 0.

0b001100 Permission fault, level 0.

0b010000 Synchronous external abort.

0b010001 Asynchronous external abort.

0b011000 Synchronous parity error on memory access. be

0b011001 Asynchronous parity error on memory access.be

0b100001 Alignment fault.

0b100010 Debug event.

0b110101 Unsupported Exclusive access fault.

To access the DFSR:

MRC p15, 0, <Rt>, c5, c0, 0 ; Read DFSR into Rt
MCR p15, 0, <Rt>, c5, c0, 0 ; Write Rt to DFSR

3.3.24 Debug Feature Register 0

The ID_DFR0 provides top-level information about the debug system.

Usage constraints

This register is accessible as follows:

EL0 EL1 EL2

- RO RO

Must be interpreted with the Main ID Register, MIDR.

Traps and enables
EL1 read accesses to ID_DFR0 are trapped to EL2 when HCR.TID3 or HSTR.T0 is set.

Configurations
This register is available in all build configurations.

Attributes
ID_DFR0 is a 32-bit register.

The following figure shows the ID_DFR0 bit assignments.

31 12 11 8 7 0

RES0

4 324 23 20 19 16 1528 27

PerfMon MProfDbg MMapTrc CopTrc CopDbgCopSDbgMMapDbg

Figure 3-18  ID_DFR0 bit assignments

The following table shows the ID_DFR0 bit assignments.

be Parity is the generic architectural term, this value used for memory ECC and bus protection errors which generate aborts

3 System Control
3.3 AArch32 register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-99

Non-Confidential



Table 3-54  ID_DFR0 bit assignments

Bits Name Function

[31:28] - Reserved, RES0.

[27:24] PerfMon Indicates support for performance monitor model:

0b0011 Support for Performance Monitor Unit version 3 (PMUv3) system registers.

[23:20] MProfDbg Indicates support for memory-mapped debug model for M profile processors:

0b0000 Processor does not support M profile Debug architecture.

[19:16] MMapTrc Indicates support for memory-mapped trace model:

0b0001 Support for Arm trace architecture, with memory-mapped access.

In the Trace registers, the TRCIDR0-13 give more information about the implementation.

[15:12] CopTrc Indicates support for system register based trace model:

0b0000 Processor does not support Arm trace architecture, with (coproc==0b1110) access.

[11:8] MMapDbg This field is RES0.

[7:4] CopSDbg This field is RES0.

[3:0] CopDbg Indicates support for system register based debug model:

0b0110 Processor supports v8 Debug architecture, with (coproc==0b1110) access.

To access the ID_DFR0:

MRC p15,0,<Rt>,c0,c1,2 ; Read ID_DFR0 into Rt

3.3.25 EL0 Read/Write Software Thread ID Register

The TPIDRURW register provides a location where software executing at EL0 can store thread
identifying information, for OS management purposes.

Usage constraints

This register is accessible as follows:

EL0 EL1 EL2

RW RW RW

Traps and enables
EL0 and EL1 accesses to TPIDRURW are trapped to EL2 when HSTR.T13 is set.

Configurations

This register is available in all build configurations.

Attributes
TPIDRURW is a 32-bit registers.

The following figure shows the TPIDRURW bit assignments.

3 System Control
3.3 AArch32 register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-100

Non-Confidential



Thread ID

31 0

Figure 3-19  TPIDRURW bit assignments

The following table shows the TPIDRURW bit assignments.

Table 3-55  TPIDRURW bit assignments

Bits Name Function

[31:0] Thread ID Thread identifying information stored by software running at EL0.

See the Arm® Architecture Reference Manual Supplement Armv8, for Armv8-R architecture profile for
more information.

To access the TPIDRURW:

MRC p15, 0, <Rt>, c13, c0, 2 ; Read TPIDRURW into Rt
MCR p15, 0, <Rt>, c13, c0, 2 ; Write Rt to TPIDRURW

3.3.26 EL0 Read-Only Software Thread ID Register

The TPIDRURO register provides a location where software executing at EL1 or higher can store thread
identifying information that is visible to software executing at EL0, for OS management purposes.

Usage constraints

This register is accessible as follows:

EL0 EL1 EL2

RO RW RW

Traps and enables
EL0 and EL1 accesses to TPIDRURO are trapped to EL2 when HSTR.T13 is set.

Configurations

This register is available in all build configurations.

Attributes
TPIDRURO is a 32-bit registers.

The following figure shows the TPIDRURO bit assignments.

Thread ID

31 0

Figure 3-20  TPIDRURO bit assignments

The following table shows the TPIDRURO bit assignments.

Table 3-56  TPIDRURO bit assignments

Bits Name Function

[31:0] Thread ID Thread identifying information stored by software running at EL1.

See the Arm® Architecture Reference Manual Supplement Armv8, for Armv8-R architecture profile for
more information.

3 System Control
3.3 AArch32 register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-101

Non-Confidential



To access the TPIDRURO:

MRC p15, 0, <Rt>, c13, c0, 3 ; Read TPIDRURO into Rt
MCR p15, 0, <Rt>, c13, c0, 3 ; Write Rt to TPIDRURO

3.3.27 EL1 Software Thread ID Register

The TPIDRPRW register provides a location where software executing at EL1 or higher can store thread
identifying information that is not visible to software execution at EL0. This is for OS management
purposes.

Usage constraints

This register is accessible as follows:

EL0 EL1 EL2

- RW RW

Traps and enables
EL1 accesses to TPIDRPRW are trapped to EL2 when HSTR.T13 is set.

Configurations

This register is available in all build configurations.

Attributes
TPIDRPRW is a 32-bit registers.

The following figure shows the TPIDRPRW bit assignments.

Thread ID

31 0

Figure 3-21  TPIDRPRW bit assignments

The following table shows the TPIDRPRW bit assignments.

Table 3-57  TPIDRPRW bit assignments

Bits Name Function

[31:0] Thread ID Thread identifying information stored by software running at EL1.

See the Arm® Architecture Reference Manual Supplement Armv8, for Armv8-R architecture profile for
more information.

To access the TPIDRPRW:

MRC p15, 0, <Rt>, c13, c0, 4 ; Read TPIDRPRW into Rt
MCR p15, 0, <Rt>, c13, c0, 4 ; Write Rt to TPIDRPRW

3.3.28 FCSE Process ID Register

Armv8-R obsoletes the FCSE functionality. The FCSEIDR behaves as RAZ/WI in Armv8-R.

3.3.29 Flash Error Record Registers 0 and 1

The IMP_FLASHERR0 and IMP_FLASHERR1 registers indicate the type of error and address index of
a detected flash data error.

3 System Control
3.3 AArch32 register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-102

Non-Confidential



Usage constraints

This register is accessible as follows:

EL0 EL1 EL2

- RW/RO RW

Register is accessible as RW from EL1 when HACTLR.ERR is set, RO from EL1 when
HACTLR.ERR is clear.

Traps and enables
EL1 write accesses to these registers are trapped to EL2 when HACTLR.ERR is 0.

Configurations
This register is available in all build configurations.

Attributes
IMP_FLASHERR0 and IMP_FLASHERR1 are 32-bit registers.

The following figure shows the IMP_FLASHERR0 and IMP_FLASHERR1 bit assignments.

31 0

INDEX

VALID

2829

RES0

34 12

FATAL
LATE

RES0

Figure 3-22  IMP_FLASHERR0 and IMP_FLASHERR1 bit assignments

The following table shows the IMP_FLASHERR0 and IMP_FLASHERR1 bit assignments.

Table 3-58  IMP_FLASHERR0 and IMP_FLASHERR1 bit assignments

Bits Name Function

[31:29] - Reserved, RES0.

[28:4] INDEX Index into memory. This corresponds to bits [25:1] of the access address.

[3] - Reserved, RES0.

[2] LATE Recorded error was a late error.

[1] FATAL Recorded error is fatal or correctable:

0 Correctable.

1 Fatal.

[0] VALID Register contents are valid.

To access the IMP_FLASHERR0:

MRC p15,2,<Rt>,c15,c3,0 ; Read IMP_FLASHERR0 into Rt
MCR p15,2,<Rt>,c15,c3,0 ; Write Rt to IMP_FLASHERR0

3 System Control
3.3 AArch32 register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-103

Non-Confidential



To access the IMP_FLASHERR1:

MRC p15,2,<Rt>,c15,c3,1 ; Read IMP_FLASHERR1 into Rt
MCR p15,2,<Rt>,c15,c3,1 ; Write Rt to IMP_FLASHERR1

 Note 

Writes to these registers are unique. If bit[1] and bit[0] are set to 0, and if the register holds information
about a correctable error, then the register is cleared. If bit[1] is set to 1 and bit[0] is set to 0, then the
register is always cleared.

Related reference
7.9.4 Bus protection on page 7-246

3.3.30 Flash Interface Region Register

The IMP_FLASHIFREGIONR indicates the base address of the Flash interface region. It provides
control to enable and disable the Flash interface.

Usage constraints

This register is accessible as follows:

EL0 EL1 EL2

- RW/RO RW

Accesses to IMP_FLASHIFREGIONR from EL1 are RW when HACTLR.FLASHIFREGIONR
is 1, and RO when HACTLR.FLASHIFREGIONR is 0.

Traps and enables
EL1 accesses to IMP_FLASHIFREGIONR are trapped to EL2 when HCR.TIDCP is set.

Configurations
This register is available in all build configurations.

Attributes
IMP_FLASHIFREGIONR is a 32-bit register.

The following figure shows the IMP_FLASHIFREGIONR bit assignments.

BASEADDRESS

RES0 SIZE

RES0
ENABLE

31 67 2 1 027 26

Figure 3-23  IMP_FLASHIFREGIONR bit assignments

The following table shows the IMP_FLASHIFREGIONR bit assignments.

3 System Control
3.3 AArch32 register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-104

Non-Confidential



Table 3-59  IMP_FLASHIFREGIONR bit assignments

Bits Name Function

[31:27] BASEADDRESS Indicates upper bits of the Flash interface region base address on input signals
CFGFLASHBASEADDR[31:27].

[26:7] - Reserved, RES0.

[6:2] SIZE Flash interface region size. See Table 3-60  IMP_FLASHIFREGION.SIZE supported values
on page 3-105.

[1] - Reserved, RES0.

[0] ENABLE Enable the Flash interface. At reset, set to input signal CFGFLASHENx.

The following table shows the supported Flash interface region sizes.

Table 3-60  IMP_FLASHIFREGION.SIZE supported values

SIZE value Flash interface region size

0b00000 0KB (no Flash region).

0b10010 128MB

To access the IMP_FLASHIFREGIONR:

MRC p15,0,<Rt>,c15,c0,1 ; Read IMP_FLASHIFREGIONR into Rt
MCR p15,0,<Rt>,c15,c0,1 ; Write Rt to IMP_FLASHIFREGIONR

3.3.31 Hyp Architectural Feature Trap Register

The HCPTR controls trapping to EL2 of access, at EL1 or lower, to Advanced SIMD and floating-point
functionality. It also controls access from EL2 to this functionality.

Usage constraints This register is accessible as follows:

EL0 EL1 EL2

- - RW

Traps and enables EL1 accesses to HCPTR are trapped to EL2 when HSTR.T1 is set.
Configurations This register is available in all build configurations.
Attributes HCPTR is a 32-bit register.

The following figure shows the HCPTR bit assignments.

31 0

RES0

TCP11

TCPAC
RES1

RES0
TASE

30 1516 1314 1112 910

TCP10

RES1

20 19

TTA

RES0

Figure 3-24  HCPTR bit assignments

3 System Control
3.3 AArch32 register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-105

Non-Confidential



The following table shows the HCPTR bit assignments.

Table 3-61  HCPTR bit assignments

Bits Name Function

[31] TCPAC Trap CPACR accesses. The possible values of this bit are:

0 Has no effect on CPACR accesses.

1 Trap valid EL1 CPACR accesses to EL2.

The reset value is 0.

[30:21] - Reserved, RES0.

[20] TTA Traps System register accesses to all implemented trace registers to EL2. The implementation does not include a
System register interface to the trace macrocell registers, therefore the value is RES0.

[19:16] - Reserved, RES0.

[15] TASE Trap Advanced SIMD instructions to EL2 when the value of HCPTR.TCP10 is 0. The possible values of this bit
are:

0 This control has no effect on execution of Advanced SIMD instructions.

1 When the value of HCPTR.TCP10 is 0, any attempt to execute an Advanced SIMD instruction is trapped to
EL2, unless it is trapped to EL1 by a CPACR or NSACR control. A trapped instruction generates:
• A Hyp Trap exception, if the exception is taken from EL0 to EL1.
• An Undefined Instruction exception taken to EL2, if the exception is taken from EL2.

When the value of HCPTR.TCP10 is 1, the value of this field is ignored.

The reset value is 0.

[14] - Reserved, RES0.

[13:12] - Reserved, RES1.

[11] TCP11 The value of this field is ignored. If this field is programmed with a different value to the TCP10 bit, then this field
is UNKNOWN on a direct read of the HCPTR.

[10] TCP10 Trap accesses to Advanced SIMD and floating-point functionality to EL2. The possible values of this bit are:

0 This control has no effect on accesses to Advanced SIMD and floating-point functionality.

1 Any attempted access to Advanced SIMD and floating-point functionality is trapped to EL2, unless it is trapped
to EL1 by a CPACR or NSACR control. A trapped instruction generates:
• A Hyp Trap exception, if the exception is taken from EL0 to EL1.
• An Undefined Instruction exception taken to EL2, if the exception is taken from EL2.

The reset value is 0.

[9:0] - Reserved, RES1.

To access the HCPTR:

MRC p15,4,<Rt>,c1,c1,2 ; Read HCPTR into Rt
MCR p15,4,<Rt>,c1,c1,2 ; Write Rt to HCPTR

3.3.32 Hyp Auxiliary Configuration Register

HACR register is always RES0.

3 System Control
3.3 AArch32 register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-106

Non-Confidential



3.3.33 Hyp Auxiliary Control Register

The HACTLR controls trapping to EL2 of Cortex-R52-specific system register accesses performed at
EL1.

Usage constraints

This register is accessible as follows:

EL0 EL1 EL2

- - RW

Traps and enables
EL1 accesses to HACTLR are trapped to EL2 when HSTR.T1 is set.

Configurations

This register is available in all build configurations.

Attributes
HACTLR is a 32-bit register.

The following figure shows the HACTLR bit assignments.

RES0

31 08 7 1

RES0

CPUACTLR

611 10 9121314

FLASHIFREGIONR
PERIPHPREGIONR

QOSR
BUSTIMEOUTR

RES0
INTMONR

ERR

16 15 2

CDBGDCI

TESTR1

Figure 3-25  HACTLR bit assignments

The following table shows the HACTLR bit assignments.

Table 3-62  HACTLR bit assignments

Bits Name Function

[31:16] - Reserved, RES0.

[15] TESTR1 Controls access to IMP_TESTR1 at EL0 and EL1:

0 Traps write access at EL0 and EL1.

1 Enables access at EL0 and EL1.

[14] - Reserved, RES0.

[13] ERR Controls access to IMP_DCERR0, IMP_DCERR1, IMP_ICERR0, IMP_ICERR1, IMP_TCMERR0,
IMP_TCMERR1, IMP_FLASHERR0, and IMP_FLASHERR1 registers:

0 Traps write accesses to registers at EL1.

1 Enables access to registers at EL1.

3 System Control
3.3 AArch32 register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-107

Non-Confidential



Table 3-62  HACTLR bit assignments (continued)

Bits Name Function

[12] INTMONR Controls access to IMP_INTMONR at EL1:

0 Traps write access at EL1.

1 Enables access at EL1.

[11] - Reserved, RES0.

[10] BUSTIMEOUTR Controls access to IMP_BUSTIMEOUTR at EL1:

0 Traps write access at EL1.

1 Enables access at EL1.

[9] QOSR Controls access to QOSR at EL1:

0 Traps write access at EL1.

1 Enables access at EL1.

[8] PERIPHPREGIONR Controls access to IMP_PERIPHPREGIONR at EL1:

0 Traps write access at EL1.

1 Enables access at EL1.

[7] FLASHIFREGIONR Controls access to IMP_FLASHIFREGIONR at EL1:

0 Traps write access at EL1.

1 Enables access at EL1.

[6:2] - Reserved, RES0.

[1] CDBGDCI Controls access to CDBGDCI at EL1:

0 Traps write access at EL1.

1 Enables access at EL1.

[0] CPUACTLR IMP_CPUACTLR write access control. The possible values are:

0 Traps write access at EL1.

This is the reset value.

1 The register is write accessible from EL1.

To access the HACTLR:

MRC p15,4,<Rt>,c1,c0,1 ; Read HACTLR into Rt
MCR p15,4,<Rt>,c1,c0,1 ; Write Rt to HACTLR

3.3.34 Hyp Auxiliary Control Register 2

This register is always RAZ/WI.

3.3.35 Hyp Auxiliary Data Fault Status Register

The HADFSR provides additional syndrome information for Data Abort exceptions taken to Hyp mode.

3 System Control
3.3 AArch32 register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-108

Non-Confidential



Usage constraints

This register is accessible as follows:

EL0 EL1 EL2

- - RW

Traps and enables
HADFSR reads and writes from EL1 are trapped to EL2 according to HCR.TRVM and
HCR.TVM respectively.

Configurations

This register is available in all build configurations.

Attributes
HADFSR is a 32-bit register.

The following figure shows the HADFSR bit assignments.

RES0

31 01

PORT

45 2

TYPE

Figure 3-26  HADFSR bit assignments

The following table shows the HADFSR bit assignments.

Table 3-63  HADFSR bit assignments

Bits Name Function

[31:5] - Reserved, RES0.

[4:2] PORT Memory port that caused the fault:

0b000 AXIM.

0b001 Flash.

0b010 LLPP.

0b011 Internal peripheral interface.

0b100 ATCM.

0b101 BTCM.

0b110 CTCM.

0b111 UNKNOWN (memory port is ambiguous).

[1:0] TYPE Fault type:

0b00 Other error, not because of response, ECC, or timeout.

0b01 Error on response.

0b10 ECC error on data.

0b11 Bus timeout error.

3 System Control
3.3 AArch32 register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-109

Non-Confidential



To access the HADFSR:

MRC p15,4,<Rt>,c5,c1,0 ; Read HADFSR into Rt
MCR p15,4,<Rt>,c5,c1,0 ; Write Rt to HADFSR

3.3.36 Hyp Auxiliary Instruction Fault Status Register

The HAIFSR provides additional syndrome information for Prefetch Abort exceptions taken to Hyp
mode.

Usage constraints

This register is accessible as follows:

EL0 EL1 EL2

- - RW

Traps and enables
HAIFSR reads and writes from EL1 are trapped to EL2 according to HCR.TRVM and
HCR.TVM respectively.

Configurations

This register is available in all build configurations.

Attributes
HAIFSR is a 32-bit register.

The following figure shows the HAIFSR bit assignments.

RES0

31 01

PORT

45 2

TYPE

Figure 3-27  HAIFSR bit assignments

The following table shows the HAIFSR bit assignments.

3 System Control
3.3 AArch32 register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-110

Non-Confidential



Table 3-64  HAIFSR bit assignments

Bits Name Function

[31:5] - Reserved, RES0.

[4:2] PORT Memory port that caused the fault:

0b000 AXIM.

0b001 Flash.

0b010 LLPP.

0b100 ATCM.

0b101 BTCM.

0b110 CTCM.

0b111 UNKNOWN (memory port is ambiguous).

[1:0] TYPE Fault type:

0b00 Other error, not because of response, ECC, or timeout.

0b01 Error on response.

0b10 ECC error on data.

0b11 Bus timeout error.

To access the HAIFSR:

MRC p15,4,<Rt>,c5,c1,1 ; Read HAIFSR into Rt
MCR p15,4,<Rt>,c5,c1,1 ; Write Rt to HAIFSR

3.3.37 Hyp Auxiliary Memory Attribute Indirection Register 0

The processor does not implement HAMAIR0, so this register is always RES0.

3.3.38 Hyp Auxiliary Memory Attribute Indirection Register 1

The processor does not implement HAMAIR1, so this register is always RES0.

3.3.39 Hyp Configuration Register

The HCR provides configuration controls for virtualization, including defining whether various
operations are trapped to Hyp mode.

Usage constraints

This register is accessible as follows:

EL0 EL1 EL2

- - RW

Traps and enables
EL1 accesses to HCR are trapped to EL2 when HSTR.T1 is set.

Configurations

This register is available in all build configurations.

Attributes
HCR is a 32-bit register.

The following figure shows the HCR bit assignments.

3 System Control
3.3 AArch32 register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-111

Non-Confidential



BSU

TDI1
TID2

TID3
TSC

TIDCP
TAC

TSW
TPC

TPU
TTLB

TVM
TGE

RES0

TRVM
RES0

TID0
TWE

TWI
DC

FB
VA

VI
VF
AMO

IMO
FMO

RES0
SWIO

VM

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

HCD

Figure 3-28  HCR bit assignments

The following table shows the HCR bit assignments.

Table 3-65  HCR bit assignments

Bits Name Function

[31] - Reserved, RES0.

[30] TRVM Trap Read of Virtual Memory controls.

When 1, this causes reads to the EL1 virtual memory control registers from EL1 to be trapped to EL2. The registers
for which read accesses are trapped are as follows: SCTLR, DFSR, IFSR, DFAR, IFAR, ADFSR, AIFSR, MAIR0,
MAIR1, AMAIR0, AMAIR1, CONTEXTIDR, PRSELR, PRBAR, PRBARn, PRLAR, and PRLARn.

The reset value is 0.

3 System Control
3.3 AArch32 register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-112

Non-Confidential



Table 3-65  HCR bit assignments (continued)

Bits Name Function

[29] HCD HVC instruction disable. The options are:

0 HVC instruction execution is enabled at EL2 and EL1.

1 HVC instructions are UNDEFINED at EL2 and EL1. The Undefined Instruction exception is taken to the Exception
level at which the HVC instruction is executed.

The reset value is 0.

[28] - Reserved, RES0.

[27] TGE Trap General Exceptions. If this bit is set then:

All exceptions that would be routed to EL1 are routed to EL2.
• The SCTLR.M bit is treated as 0 regardless of its actual state, other than for the purpose of reading the bit.
• The HCR.FMO, IMO, and AMO bits are treated as 1 regardless of their actual state, other than for the purpose

of reading the bits.
• All virtual interrupts are disabled.
• An exception return to EL1 is treated as an illegal exception return.

Also, if HCR.TGE is 1, the HDCR.{TDRA,TDOSA,TDA} bits are ignored and the processor behaves as if they are
set to 1, other than for the value read back from HDCR.

The reset value is 0.

[26] TVM Trap Virtual Memory controls. When 1, this causes writes to the EL1 virtual memory control registers from EL1 to
be trapped to EL2. The registers for which write accesses are trapped are as follows: SCTLR, DFSR, IFSR, DFAR,
IFAR, ADFSR, AIFSR, MAIR0, MAIR1, AMAIR0, AMAIR1, CONTEXTIDR, PRSELR, PRBAR, PRBARn,
PRLAR, and PRLARn.

The reset value is 0.

[25] TTLB This field is RES0.

[24] TPU Trap cache maintenance instructions that operate to the point of unification. When 1, this causes those instructions
executed from EL1 or EL0 that are not UNDEFINED to be trapped to EL2. This covers the following instructions:

ICIMVAU, ICIALLU, ICIALLUIS, and DCCMVAU.

The reset value is 0.

[23] TPC Trap Data Cache maintenance operations that operate to the point of coherency. When 1, this causes those
instructions executed from EL1 or EL0 that are not UNDEFINED to be trapped to EL2. This covers the following
instructions:

DCIMVAC, DCCIMVAC, and DCCMVAC.

The reset value is 0.

[22] TSW Trap Data Cache maintenance operations by Set/Way. When 1, this causes those instructions executed from EL1 that
are not UNDEFINED to be trapped to EL2. This covers the following instructions:

DCISW, DCCSW, and DCCISW.

The reset value is 0.

[21] TAC Trap ACTLR accesses. When this bit is set to 1, any valid access to the ACTLR is trapped to Hyp mode.

The reset value is 0.

3 System Control
3.3 AArch32 register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-113

Non-Confidential



Table 3-65  HCR bit assignments (continued)

Bits Name Function

[20] TIDCP Trap the following registers. When 1, this causes accesses to all MCR and MRC instructions with
(coproc==0b1111) executed from EL1, to be trapped to EL2 as follows:
• CRn is 9, Opcode1 is 0 to 7, CRm is c0, c1, c2, c5, c6, c7, c8, opcode2 is 0 to 7.
• CRn is 10, Opcode1 is 0 to 7, CRm is c0, c1, c4, c8, opcode2 is 0 to 7.
• CRn is 11, Opcode1 is 0 to 7, CRm is c0 to c8, or c15, opcode2 is 0 to 7.

Accesses to these registers from EL0 are UNDEFINED.

The reset value is 0.

[19] TSC This field is RES0.

[18] TID3 Trap ID Group 3. When 1, this causes reads to the following registers executed from EL1 to be trapped to EL2:

ID_PFR0, ID_PFR1, ID_DFR0, ID_AFR0, ID_MMFR0, ID_MMFR1, ID_MMFR2, ID_MMFR3, ID_ISAR0,
ID_ISAR1, ID_ISAR2, ID_ISAR3, ID_ISAR4, ID_ISAR5, MVFR0, MVFR1, and MVFR2. Also MRC instructions
to any of the following encodings:
• (coproc==0b1111), OPC1 is 0, CRn is 0, CRm is c3, c4, c5, c6, or c7, and Opc2 is 0 or 1.
• (coproc==0b1111), Opc1 is 0, CRn is 0, CRm is c3, and Opc2 is 2.
• (coproc==0b1111), Opc1 is 0, CRn is 0, CRm is 5, and Opc2 is 4 or 5.

The reset value is 0.

[17] TID2 Trap ID Group 2. When 1, this causes reads (or writes to CSSELR) to the following registers executed from EL1 or
EL0 if not UNDEFINED to be trapped to EL2:

CTR, CCSIDR, CLIDR, and CSSELR.

The reset value is 0.

[16] TID1 Trap ID Group 1. When 1, this causes reads to the following registers executed from EL1 to be trapped to EL2:

TCMTR, AIDR, MPUIR, TLBTR, and REVIDR.

The reset value is 0.

[15] TID0 Trap ID Group 0. When 1, this causes reads to the following registers executed from EL1 or EL0 if not UNDEFINED

to be trapped to EL2:

FPSID and Jazelle ID Register (JIDR).

The reset value is 0.

[14] TWE Trap WFE. When 1, this causes the WFE instruction executed from EL1 or EL0 to be trapped to EL2 if the
instruction would otherwise cause suspension of execution. For example, if the event register is not set.

The reset value is 0.

[13] TWI Trap WFI. When 1, this causes the WFI instruction executed from EL1 or EL0 to be trapped to EL2 if the instruction
would otherwise cause suspension of execution. For example, if there is not a pending WFI wake-up event.

The reset value is 0.

[12] DC Default cacheable. This bit is extended to enable default cacheability in PMSA mode for EL1 and EL0. When set to
1, the default memory map of a PMSA guest is substituted for Normal, Non-shareable, Inner Write-Back Write-
Allocate, Outer Write-Back Write-Allocate. Setting this bit to one does not force SCTLR.M to zero for PMSA
contexts.

The reset value is 0.

3 System Control
3.3 AArch32 register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-114

Non-Confidential



Table 3-65  HCR bit assignments (continued)

Bits Name Function

[11:10] BSU Barrier Shareability upgrade. The value in this field determines the minimum shareability domain that is applied to
any barrier executed from EL1 or EL0. The possible values are:

0b00 No effect.

0b01 Inner Shareable.

0b10 Outer Shareable.

0b11 Full System.

The reset value is 0b00.

[9] FB Force broadcast. Has no effect on Cortex-R52 because the Inner Shareable domain only contains one core.

The reset value is 0.

[8] VA Virtual Asynchronous Abort exception. When the AMO bit is set to 1, setting this bit signals a virtual Asynchronous
Abort exception to the Guest OS, when the processor is executing at EL0 or EL1.

The Guest OS cannot distinguish the virtual exception from the corresponding physical exception.

The reset value is 0.

[7] VI Virtual IRQ exception. When the IMO bit is set to 1, setting this bit signals a virtual IRQ exception to the Guest OS,
when the processor is executing at EL0 or EL1.

The Guest OS cannot distinguish the virtual exception from the corresponding physical exception.

The reset value is 0.

[6] VF Virtual FIQ exception. When the FMO bit is set to 1, setting this bit signals a virtual FIQ exception to the Guest OS,
when the processor is executing at EL0 or EL1.

The Guest OS cannot distinguish the virtual exception from the corresponding physical exception.

The reset value is 0.

[5] AMO Asynchronous Abort Mask Override. When this is set to 1, it overrides the effect of CPSR.A on physical
asynchronous aborts when the core is in EL1 or EL0 exception state, and enables virtual exception signaling by the
VA bit and VSEI input signal.

The reset value is 0.

[4] IMO IRQ Mask Override. When this is set to 1, it overrides the masking effect of CPSR.I on physical IRQ exceptions
when the core is in EL1 or EL0 exception state, and enables virtual exception signaling by the VI bit and interrupt
controller.

The reset value is 0.

[3] FMO FIQ Mask Override. When this is set to 1, it overrides the masking effect of CPSR.I on physical FIQ exceptions
when the core is in EL1 or EL0 exception state, and enables virtual exception signaling by the VF bit and interrupt
controller.

The reset value is 0.

[2] PTW This field is RES0.

3 System Control
3.3 AArch32 register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-115

Non-Confidential



Table 3-65  HCR bit assignments (continued)

Bits Name Function

[1] SWIO Set/Way Invalidation Override. When 1, this causes EL1 execution of the data cache invalidate by set/way
instruction to be treated as data cache clean and invalidate by set/way. DCISW is executed as DCCISW.

This bit is RES1.

[0] VM Enables the EL2-controlled MPU protection for EL1 and EL0 accesses.

0 EL1 and EL0 stage 2 address protection disabled, unless the HCR.DC bit is 1.

1 EL1 and EL0 stage 2 address protection and attribute coalescing enabled.

The reset value is 0.

To access the HCR:

MRC p15, 4, <Rt>, c1, c1, 0; Read Hyp Configuration Register
MCR p15, 4, <Rt>, c1, c1, 0; Write Hyp Configuration Register

3.3.40 Hyp Configuration Register 2

HCR2 register is always RES0.

3.3.41 Hyp Data Fault Address Register

The HDFAR holds the faulting address that causes a synchronous Data Abort exception to be taken to
Hyp mode.

Usage constraints

This register is accessible as follows:

EL0 EL1 EL2

- - RW

Traps and enables
EL1 accesses to HDFAR are trapped to EL2 when HSTR.T6 is set.

Configurations
This register is available in all build configurations.

Attributes
HDFAR is a 32-bit register.

Traps and Enables

EL1 accesses to HDFAR are trapped to EL2 if HSTR.T6 is set.

The following figure shows the HDFAR bit assignments.

31 0

VA

Figure 3-29  HDFAR bit assignments

The following table shows the HDFAR bit assignments.

3 System Control
3.3 AArch32 register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-116

Non-Confidential



Table 3-66  HDFAR bit assignments

Bits Name Function

[31:0] VA The faulting address of synchronous Data Abort exception

To access the HDFAR:

MRC p15, 4, <Rt>, c6, c0, 0 ; Read HDFAR into Rt
MCR p15, 4, <Rt>, c6, c0, 0 ; Write Rt to HDFAR

3.3.42 Hyp Debug Control Register

The HDCR controls the trapping to Hyp mode of accesses at EL1 or lower, to functions provided by the
debug and trace architectures and the Performance Monitor.

Usage constraints

This register is accessible as follows:

EL0 EL1 EL2

- - RW

Traps and enables
EL1 accesses to HDCR are trapped to EL2 when HSTR.T1 is set.

Configurations
This register is available in all build configurations.

Attributes

HDCR is a 32-bit register.

The following figure shows the HDCR bit assignments.

31 11 10 9 8 7 6 5 4 0

RES0 HPMN

TDOSA
TDA
TDE
HPME
TPM
TPMCR

12

TDRA

161718202122

HPMD
EPMAD

RES0 RES0

Figure 3-30  HDCR bit assignments

The following table shows the HDCR bit assignments.

Table 3-67  HDCR bit assignments

Bits Name Function

[31:22] - Reserved, RES0.

[21] EPMAD Disables external debugger access to Performance Monitor registers.

0 Access to Performance Monitors registers from external debugger is permitted.

1 Access to Performance Monitors registers from external debugger is disabled.

The reset value is 0.

3 System Control
3.3 AArch32 register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-117

Non-Confidential



Table 3-67  HDCR bit assignments (continued)

Bits Name Function

[20:18] - Reserved, RES0.

[17] HPMD Hyp performance monitors disable. This prohibits event counting in Hyp mode.

0 Event counting allowed in Hyp mode.

1 Event counting prohibited in Hyp mode.

This control applies to:
• The counters in the range between 0 to HPMN.
• If PMCR.DP is set to 1, PMCCNTR.

The higher numbered event counters are unaffected. If PMCR.DP is set to 0, PMCCNTR is unaffected.

On warm reset, the field reset to 0.

[16:12] - Reserved, RES0.

[11] TDRA Trap debug ROM address register access.

0 Has no effect on accesses to debug ROM address registers from EL1 and EL0.

1 Trap valid EL1 and EL0 access to debug ROM address registers, DBGDRAR and DBGDSAR, to Hyp
mode.

If HCR.TGE is 1 or HDCR.TDE is 1, then this bit is ignored and treated as though it is 1 other than for the value
read back from HDCR.

On warm reset, the field resets to 0.

[10] TDOSA Trap Debug OS-related register access:

0 Has no effect on accesses to debug system registers.

1 Trap valid accesses to OS-related debug system registers to Hyp mode.

Registers for which accesses are trapped are as follows:
• DBGOSLSR.
• DBGOSLAR.
• DBGOSDLR.
• DBGPRCR.

If HCR.TGE is 1 or HDCR.TDE is 1, then this bit is ignored and treated as though it is 1 other than for the value
read back from HDCR.

On warm reset, the field resets to 0.

[9] TDA Trap Debug Access:

0 Has no effect on accesses to debug system registers.

1 Trap valid accesses to debug system registers, other than the registers trapped by HDCR.TDRA and
HDCR.TDOSA, to Hyp mode.

If HCR.TGE is 1 or HDCR.TDE is 1, then this bit is ignored and treated as though it is 1 other than for the value
read back from HDCR.

On warm reset, the field resets to 0.

3 System Control
3.3 AArch32 register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-118

Non-Confidential



Table 3-67  HDCR bit assignments (continued)

Bits Name Function

[8] TDE Trap Debug Exceptions:

0 Has no effect on Debug exceptions.

1 Route Non-secure Debug exceptions to Hyp mode.

If HCR.TGE is 1, then this bit is ignored and treated as though it is 1 other than for the value read back from
HDCR.This bit resets to 0.

[7] HPME Hypervisor Performance Monitor Enable:

0 Hyp mode performance monitor counters disabled.

1 Hyp mode performance monitor counters enabled.

When this bit is set to 1, access is enabled to the performance monitors that are reserved for use from Hyp mode.
For more information, see the description of the HPMN field.

On warm reset the field resets to 0.

[6] TPM Trap Performance Monitor accesses:

0 Has no effect on performance monitor accesses.

1 Trap valid performance monitor accesses to Hyp mode.

The reset value is 0. See the Arm® Architecture Reference Manual Supplement Armv8, for Armv8-R architecture
profile for more information.

[5] TPMCR Trap Performance Monitor Control Register accesses:

0 Has no effect on PMCR accesses.

1 Trap valid PMCR accesses to Hyp mode.

The reset value is 0. See the Arm® Architecture Reference Manual Supplement Armv8, for Armv8-R architecture
profile for more information.

[4:0] HPMN Hyp Performance Monitor count. It defines the number of Performance Monitor counters that are accessible from
EL1 and EL0 modes if unprivileged access is enabled. If software is accessing Performance Monitors counter n,
then:
• If n is in the range 0 ≤ n < HPMN, the counter is accessible from EL1 and EL2, and from EL0 if unprivileged

access to the counters is enabled.
• If n is in the range HPMN ≤ n <PMCR.N, the counter is accessible only from EL2, and only if enabled by

HPME.

If this field is set to 0, then there is no access to any counters from EL0 or EL1.

If this field is set to a value larger than PMCR.N, all counters are available in EL0 or EL1.

EL2 reads of HDCR.HPMN always return the value written to HDCR.HPMN. This is regardless of whether the
value is 0 or larger than PMCR.N.

The reset value is 0x04.

To access the HDCR:

MRC p15,4,<Rt>,c1,c1,1 ; Read HDCR into Rt
MCR p15,4,<Rt>,c1,c1,1 ; Write Rt to HDCR

3 System Control
3.3 AArch32 register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-119

Non-Confidential



3.3.43 Hyp Instruction Fault Address Register

The HIFAR holds the faulting address that causes a synchronous Prefetch Abort exception to be taken to
Hyp mode.

Usage constraints

This register is accessible as follows:

EL0 EL1 EL2

- - RW

Traps and enables
EL1 accesses to HIFAR are trapped to EL2 when HSTR.T6 is set.

Configurations
This register is available in all build configurations.

Attributes
HIFAR is a 32-bit register.

The following figure shows the HIFAR bit assignments.

31 0

VA

Figure 3-31  HIFAR bit assignments

The following table shows the HIFAR bit assignments.

Table 3-68  HIFAR bit assignments

Bits Name Function

[31:0] VA The faulting address of synchronous Prefetch Abort exception

To access the HIFAR:

MRC p15, 4, <Rt>, c6, c0, 2 ; Read HIFAR into Rt
MCR p15, 4, <Rt>, c6, c0, 2 ; Write Rt to HIFAR

3.3.44 Hyp IPA Fault Address Register

The HPFAR holds the faulting address for prefetch and data aborts on a stage 2 translation taken to Hyp
mode.

Usage constraints

This register is accessible as follows:

EL0 EL1 EL2

- - RW

Traps and enables
EL1 accesses to HPFAR are trapped to EL2 when HSTR.T6 is set.

Configurations

This register is available in all build configurations.

3 System Control
3.3 AArch32 register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-120

Non-Confidential



Attributes
HPFAR is a 32-bit register.

The following figure shows the HPFAR bit assignments.

31 0

FIPA[39:12]

4 3

RES0

Figure 3-32  HPFAR bit assignments

The following table shows the HPFAR bit assignments.

Table 3-69  HPFAR bit assignments

Bits Name Function

[31:4] FIPA[39:12] Bits [31:4] of the faulting address

[3:0] - Reserved, RES0

To access the HPFAR:

MRC p15, 4, <Rt>, c6, c0, 4 ; Read HPFAR into Rt
MCR p15, 4, <Rt>, c6, c0, 4 ; Write Rt to HPFAR

3.3.45 Hyp Memory Attribute Indirection Register 0 and 1

The HMAIR0 and HMAIR1 provide memory attribute encodings corresponding to the possible
AttrIndex values in a Long-descriptor format translation table entry. This is for the EL2-controlled MPU.

Usage constraints

These registers are accessible as follows:

EL0 EL1 EL2

- - RW

Traps and enables

EL1 accesses to HMAIR0 and HMAIR1 are trapped to EL2 if HSTR.T10 is set.

Configurations

These registers are available in all build configurations.

Attributes
HMAIR0 and HMAIR1 are 32-bit registers.

The following figure shows the HMAIR0 and HMAIR1 bit assignments.

Attr7 Attr5 Attr4

31 24 23 8 7 01516

Attr6

Attr0Attr3 Attr2 Attr1HMAIR0

HMAIR1

Figure 3-33  HMAIR0 and HMAIR1 bit assignments

The following table shows HMAIR0 bit assignments.

3 System Control
3.3 AArch32 register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-121

Non-Confidential



Table 3-70  HMAIR0 bit assignments

Bits Name Definition

[31:24] Attr3 The memory attribute encoding for EL2-controlled MPU regions, which have AttrIndex set to 3.

[23:16] Attr2 The memory attribute encoding for EL2-controlled MPU regions, which have AttrIndex set to 2.

[15:8] Attr1 The memory attribute encoding for EL2-controlled MPU regions, which have AttrIndex set to 1.

[7:0] Attr0 The memory attribute encoding for EL2-controlled MPU regions, which have AttrIndex set to 0.

The following table shows HMAIR1 bit assignments.

Table 3-71  HMAIR1 bit assignments

Bits Name Definition

[31:24] Attr7 The memory attribute encoding for EL2-controlled MPU regions, which have AttrIndex set to 7.

[23:16] Attr6 The memory attribute encoding for EL2-controlled MPU regions, which have AttrIndex set to 6.

[15:8] Attr5 The memory attribute encoding for EL2-controlled MPU regions, which have AttrIndex set to 5.

[7:0] Attr4 The memory attribute encoding for EL2-controlled MPU regions, which have AttrIndex set to 4.

The following table shows the Attr<n>[7:4] bit encodings:

Table 3-72  Attr<n>[7:4] bit encodings

Attr<n>[7:4] Name

0000 Device memory. See encoding of Attr<n>[3:0] for the type of Device memory.

00RW, RW not 00 Normal Memory, Outer Write-Through transient.

0100 Normal Memory, Outer Non-cacheable.

01RW, RW not 00 Normal Memory, Outer Write-Back transient.

10RW Normal Memory, Outer Write-Through non-transient.

11RW Normal Memory, Outer Write-Back non-transient.

R = Outer Read Allocate Policy, W = Outer Write Allocate Policy.

The meaning of bits[3:0] depends on the value of bits[7:4]. The following table shows the Attr<n>[3:0]
bit encodings

Table 3-73  Attr<n>[3:0] bit encodings

Attr<n>[3:0] Meaning when Attr<n>[7:4] is 0000 Meaning when Attr<n>[7:4] is not 0000

0000 Device-nGnRnE memory UNPREDICTABLE

00RW, RW not 00 UNPREDICTABLE Normal Memory, Inner Write-Through transient

0100 Device-nGnRE memory Normal memory, Inner Non-cacheable

01RW, RW not 00 UNPREDICTABLE Normal Memory, Inner Write-Back transient

1000 Device-nGRE memory Normal Memory, Inner Write-Through non-transient (RW=00)

10RW, RW not 00 UNPREDICTABLE Normal Memory, Inner Write-Through non-transient

3 System Control
3.3 AArch32 register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-122

Non-Confidential



Table 3-73  Attr<n>[3:0] bit encodings (continued)

Attr<n>[3:0] Meaning when Attr<n>[7:4] is 0000 Meaning when Attr<n>[7:4] is not 0000

1100 Device-GRE memory Normal Memory, Inner Write-Back non-transient (RW=00)

11RW, RW not 00 UNPREDICTABLE Normal Memory, Inner Write-Back non-transient

R = Inner Read Allocate Policy, W = Inner Write Allocate Policy.

The R and W bits in some Attr<n> fields have the following meanings:

Table 3-74  R and W bit definitions

R or W Meaning

0 Do not allocate

1 Allocate

To access the HMAIR0:

MRC p15, 4, <Rt>, c10, c2, 0 ; Read HMAIR0 into Rt
MCR p15, 4, <Rt>, c10, c2, 0 ; Write Rt to HMAIR0

To access the HMAIR1:

MRC p15, 4, <Rt>, c10, c2, 1 ; Read HMAIR1 into Rt
MCR p15, 4, <Rt>, c10, c2, 1 ; Write Rt to HMAIR1
            

3.3.46 Hyp MPU Region Enable Register

The HPRENR provides direct access to the region enable (HPRLAR.EN) for regions 0 to 15 of the EL2-
controlled MPU.

Usage constraints

This register is accessible as follows:

EL0 EL1 EL2

- - RW

Traps and enables
There are no traps and enables affecting this register.

Configurations
This register is available in all build configurations.

Attributes
HPRENR, is a 32-bit register.

The following figure shows the HPRENR bit assignments when there are no EL2-controlled MPU
regions implemented.

RAZ

31 0

Figure 3-34  HPRENR, bit assignments

The following table shows the HPRENR bit assignments.

3 System Control
3.3 AArch32 register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-123

Non-Confidential



Table 3-75  HPRENR bit assignments

Bits Name Function

[31:16] - RAZ.

The following figure shows the HPRENR bit assignments when there are 16 EL2-controlled MPU
regions implemented.

RAZ ENABLES

31 16 15 0

Figure 3-35  HPRENR, bit assignments

The following table shows the HPRENR bit assignments.

Table 3-76  HPRENR bit assignments

Bits Name Function

[31:16] - RAZ.

[15:0] ENABLES Each bit, N, enables or disables the respective EL2-controlled MPU N region.

The following figure shows the HPRENR bit assignments when there are 20 EL2-controlled MPU
regions implemented.

RAZ ENABLES

31 20 19 0

Figure 3-36  HPRENR, bit assignments

The following table shows the HPRENR bit assignments.

Table 3-77  HPRENR bit assignments

Bits Name Function

[31:20] - RAZ.

[19:0] ENABLES Each bit, N, enables or disables the respective EL2-controlled MPU N region.

The following figure shows the HPRENR bit assignments when there are 24 EL2-controlled MPU
regions implemented.

RAZ ENABLES

31 24 23 0

Figure 3-37  HPRENR, bit assignments

The following table shows the HPRENR bit assignments.

3 System Control
3.3 AArch32 register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-124

Non-Confidential



Table 3-78  HPRENR bit assignments

Bits Name Function

[31:24] - RAZ.

[23:0] ENABLES Each bit, N, enables or disables the respective EL2-controlled MPU N region.

To access the HPRENR:

MRC p15,4,<Rt>,c6,c1,1 ; Read HPRENR, into Rt

MCR p15,4,<Rt>,c6,c1,1 ; Write Rt to HPRENR

3.3.47 Hyp MPU Type Register

The HMPUIR indicates the number of programmable memory regions implemented by the EL2-
controlled MPU.

Usage constraints

This register is accessible as follows:

EL0 EL1 EL2

- - RO

Traps and enables
There are no traps and enables affecting this register.

Configurations
This register is available in all build configurations.

Attributes
HMPUIR is a 32-bit register.

The following figure shows the HMPUIR bit assignments.

RES0

31 08 7

REGION

Figure 3-38  HMPUIR bit assignments

The following table shows the HMPUIR bit assignments.

Table 3-79  HMPUIR bit assignments

Bits Name Function

[31:8] - Reserved, RES0.

[7:0] REGION Indicates the number of programmable memory regions implemented by the EL2-controlled MPU, either 0, 16, 20,
or 24.

To access the HMPUIR:

MRC p15,4,<Rt>,c0,c0,4 ; Read HMPUIR into Rt

3 System Control
3.3 AArch32 register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-125

Non-Confidential



3.3.48 Hyp Protection Region Base Address Register

The Hyp Protection Region Base Address Register indicates the base address of the EL2-controlled MPU
region, and provides two mechanisms for accessing it, direct (HPRBAR<n>) and indirect (HPRBAR).
For the indirect access also see HPRSELR.

Usage constraints

This register is accessible as follows:

EL0 EL1 EL2

- - RW

Traps and enables
There are no traps and enables affecting this register.

Configurations
This register is available in all build configurations.

Attributes
HPRBAR and HPRBARn are 32-bit registers.

The following figure shows the HPRBAR bit assignments.

31 0

BASE

RES0

6 5 4 3 2 1

SH[1:0]
AP[2:1]

XN

Figure 3-39  HPRBAR bit assignments

The following table shows the HPRBAR bit assignments.

Table 3-80  HPRBAR bit assignments

Bits Name Function

[31:6] BASE Contains bits[31:6] of the lower inclusive limit of the selected EL2-controlled MPU memory region. This value is
zero extended to provide the base address to be checked against.

[5] - Reserved, RES0.

[4:3] SH[1:0] Shareability field.

[2:1] AP[2:1] Access Permission bits.

[0] XN Execute-never.

The following table shows the SH[1:0] field encoding for Normal memory.

3 System Control
3.3 AArch32 register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-126

Non-Confidential



Table 3-81  SH[1:0] field encoding for Normal memory

SH[1:0] Normal memory

0b00 Non-shareable

0b01 UNPREDICTABLE

0b10 Outer Shareable

0b11 Inner Shareable

The following table shows the AP[2:1] Data access permissions for EL2-controlled MPU.

Table 3-82  AP[2:1] Data access permissions for EL2-controlled MPU

AP[2:1] Access from EL2 Access from EL0 and EL1 Description

0b00 Read/write None Read/write, only at EL2

0b01 Read/write Read/write Read/write, at any privilege level

0b10 Read-only None Read-only, only at EL2

0b11 Read-only Read-only Read-only, at any privilege level

This register resets to an UNKNOWN value.

To access the HPRBAR:

MRC p15,4,<Rt>,c6,c3,0 ; Read HPRBAR into Rt
MCR p15,4,<Rt>,c6,c3,0 ; Write Rt to HPRBAR

Direct access is provided to HPRBAR0 to HPRBAR15. To access HPRBARn, where n is referenced as a
binary number:

MRC p15, 4, <Rt>, c6, c8+n[3:1], 4*n[0] ; Read PRBARn into Rt
MCR p15, 4, <Rt>, c6, c8+n[3:1], 4*n[0] ; Write Rt into PRBARn

3.3.49 Hyp Protection Region Limit Address Register

The Hyp Protection Region Limit Address Register indicates the limit address of the EL2-controlled
MPU region, and provides two mechanisms for accessing it, direct (HPRLARn) and indirect (HPRLAR).
For the indirect access also see HPRSELR.

Usage constraints

This register is accessible as follows:

EL0 EL1 EL2

- - RW

Traps and enables
There are no traps and enables affecting this register.

Configurations
This register is available in all build configurations.

Attributes
HPRLAR and HPRLARn are 32-bit registers.

The following figure shows the HPRLAR bit assignments.

3 System Control
3.3 AArch32 register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-127

Non-Confidential



31 0

LIMIT

6 5 4 3 2 1

AttrIndx[2:0]
EN

RES0

Figure 3-40  HPRLAR bit assignments

The following table shows the HPRLAR bit assignments.

Table 3-83  HPRLAR bit assignments

Bits Name Function

[31:6] LIMIT Contains bits[31:6] of the upper inclusive limit of the selected EL2-controlled MPU memory region. This value
is postfixed with 0x3F to provide the limit address to be checked against.

Resets to an UNKNOWN value.

[5:4] - Reserved, RES0.

[3:1] AttrIndx[2:0] Indexes a set of attributes in one of the HMAIRx registers.

Resets to an UNKNOWN value.

[0] EN Region enable.

0 Region disabled.

1 Region enabled.

This field resets to zero.

To access the HPRLAR:

MRC p15,4,<Rt>,c6,c3,1 ; Read HPRLAR into Rt
MCR p15,4,<Rt>,c6,c3,1 ; Write Rt to HPRLAR

Direct access is provided to HPRLAR0 to HPRLAR15. To access HPRLARn, where n is referenced as a
binary number:

MRC p15, 4, <Rt>, c6, c8+n[3:1], 4*n[0]+1 ; Read PRLARn into Rt
MCR p15, 4, <Rt>, c6, c8+n[3:1], 4*n[0]+1 ; Write Rt into PRLARn

3.3.50 Hyp Protection Region Selection Register

The HPRSELR indicates, and selects the current EL2-controlled MPU region, which can be indirectly
accessed using the HPRBAR and HPRLAR registers.

Usage constraints

This register is accessible as follows:

EL0 EL1 EL2

- - RW

Traps and enables
There are no traps and enables affecting this register.

3 System Control
3.3 AArch32 register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-128

Non-Confidential



Configurations
This register is available in all build configurations.

Attributes
HPRSELR is a 32-bit register.

0 or 16 EL2-controlled MPU regions

The following figure shows the HPRSELR bit assignments if 0 or 16 EL2-controlled MPU regions are
implemented.

31 0

RES0 REGION

34

Figure 3-41  HPRSELR bit assignments for 0 or 16 EL2-controlled MPU regions

The following table shows the HPRSELR bit assignments if 0 or 16 EL2-controlled MPU regions are
implemented.

Table 3-84  HPRSELR bit assignments for 0 or 16 EL2-controlled MPU regions

Bits Name Function

[31:4] - Reserved, RES0.

[3:0] REGION The number of the current region visible in HPRBAR and HPRLAR.

If a 0 region MPU is implemented, writing a value to this register has UNPREDICTABLE results.

If a 16 region MPU is implemented, writing a value to this register greater than or equal to 16 has UNPREDICTABLE

results.

20 or 24 EL2-controlled MPU regions

The following figure shows the HPRSELR bit assignments if 20 or 24 EL2-controlled MPU regions are
implemented.

31 0

RES0 REGION

5 4

Figure 3-42  HPRSELR bit assignments for 20 or 24 EL2-controlled MPU regions

The following table shows the HPRSELR bit assignments if 20 or 24 EL2-controlled MPU regions are
implemented.

3 System Control
3.3 AArch32 register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-129

Non-Confidential



Table 3-85  HPRSELR bit assignments for 20 or 24 EL2-controlled MPU regions

Bits Name Function

[31:5] - Reserved, RES0.

[4:0] REGION The number of the current region visible in HPRBAR and HPRLAR.

If a 20 region MPU is implemented, writing a value to this register greater than or equal to 20 has UNPREDICTABLE

results.

If a 24 region MPU is implemented, writing a value to this register greater than or equal to 24 has UNPREDICTABLE

results.

To access the HPRSELR:

MRC p15,4,<Rt>,c6,c2,1 ; Read HPRSELR into Rt
MCR p15,4,<Rt>,c6,c2,1 ; Write Rt to HPRSELR

3.3.51 Hyp Software Thread ID Register

The HTPIDR register provides a location where software running in Hyp mode can store thread
identifying information, which is visible to software executing at EL0 or EL1. This is for hypervisor
management purposes.

Usage constraints

This register is accessible as follows:

EL0 EL1 EL2

- - RW

Traps and enables
EL1 accesses to HTPIDR are trapped to EL2 when HSTR.T13 is set.

Configurations

This register is available in all build configurations.

Attributes
HTPIDR is a 32-bit registers.

This register is UNKNOWN on reset.

The following figure shows the HTPIDR bit assignments.

Thread ID

31 0

Figure 3-43  HTPIDR bit assignments

The following table shows the HTPIDR bit assignments.

Table 3-86  HTPIDR bit assignments

Bits Name Function

[31:0] Thread ID Thread identifying information stored by software running at this Exception level.

See the Arm® Architecture Reference Manual Supplement Armv8, for Armv8-R architecture profile for
more information.

3 System Control
3.3 AArch32 register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-130

Non-Confidential



To access the HTPIDR:

MRC p15, 4, <Rt>, c13, c0, 2 ; Read HTPIDR into Rt
MCR p15, 4, <Rt>, c13, c0, 2 ; Write Rt to HTPIDR

3.3.52 Hyp Syndrome Register

The HSR holds syndrome information for an exception taken to Hyp mode.

Usage constraints

This register is accessible as follows:

EL0 EL1 EL2

- - RW

Traps and enables
EL1 accesses to HSR are trapped to EL2 when HSTR.T5 is set.

Configurations

This register is available in all build configurations.

Attributes
HSR is a 32-bit register.

The following figure shows the HSR bit assignments.

ISS

31 26 25 24 0

EC

IL

Figure 3-44  HSR bit assignments

The following table shows the HSR bit assignments.

Table 3-87  HSR bit assignments

Bits Name Function

[31:26] EC Exception class. The exception class for the exception that is taken in Hyp mode. See Table 3-88  Exception class
encodings on page 3-132.

[25] IL Instruction length bit. Indicates the size of the instruction that has been trapped to Hyp mode. When this bit is valid,
possible values of this bit are:

0 16-bit instruction trapped.

1 32-bit instruction trapped.

This field is RES1, and not valid for the following cases:
• When the EC field is 0b000000, indicating an exception with an unknown reason.
• Prefetch Aborts.
• Data Aborts that do not have valid ISS information, or for which the ISS is not valid.
• When the EC value is 0b001110, indicating an Illegal state exception.

The IL field is not valid and is UNKNOWN on an exception from a PC alignment fault.

[24:0] ISS Instruction specific syndrome. The interpretation of this field depends on the value of the EC field. See the Arm®

Architecture Reference Manual Supplement Armv8, for Armv8-R architecture profile for more information.

3 System Control
3.3 AArch32 register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-131

Non-Confidential



Table 3-88  Exception class encodings

EC value Exception class Description

0b000000 Exceptions with an unknown reason Unknown reason.

0b000001 Exception from a WFI or WFE instruction Trapped WFI or WFE instruction.

Conditional WFE and WFI instructions that fail their condition
code check do not cause an exception.

0b000011 Exception from an MCR or MRC access Trapped MCR or MRC access with (coproc==0b1111).

0b000100 Exception from an MCRR or MRRC access Trapped MCRR or MRRC access with (coproc==0b1111).

0b000101 Exception from an MCR or MRC access Trapped MCR or MRC access with (coproc==0b1110).

0b000110 Exception from an LDC or STC access with
(coproc==0b1110).

Trapped LDC or STC access with (coproc==0b1110).

0b000111 Exception from an access to SIMD or floating-point
functionality, resulting from HCPTR

Exception from an access to SIMD or floating-point
functionality, as a result of HCPTR. Excludes exceptions
resulting from when Advanced SIMD and floating-point are
not implemented. These are reported with EC value
0b000000.

0b001000 Exception from an MCR or MRC access Trapped VMRS access for ID group traps.

0b001100 Exception from an MCRR or MRRC access Trapped MRRC or MCRR access with (coproc==0b1110).

0b001110 Exception from an Illegal state or PC alignment fault Illegal state exception taken to AArch32 state.

0b010001 Exception from HVC or SVC instruction execution SVC taken to Hyp mode.

0b010010 Exception from HVC or SVC instruction execution HVC executed.

0b100000 Exception from a Prefetch abort Prefetch Abort routed to Hyp mode.

0b100001 Exception from a Prefetch abort Prefetch Abort taken from Hyp mode.

0b100010 Exception from an Illegal state or PC alignment fault PC alignment fault exception.

0b100100 Exception from a Data abort Data Abort routed to Hyp mode.

0b100101 Exception from a Data abort Data Abort taken from Hyp mode.

To access the HSR:

MRC p15, 4, <Rt>, c5, c2, 0 ; Read HSR into Rt
MCR p15, 4, <Rt>, c5, c2, 0 ; Write Rt to HSR

3.3.53 Hyp System Control Register

The HSCTLR provides top level control of the system operation in Hyp mode.

Usage constraints

This register is accessible as follows:

EL0 EL1 EL2

- - RW

Traps and enables
EL1 accesses to HSCTLR are trapped to EL2 when HSTR.T1 is set.

3 System Control
3.3 AArch32 register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-132

Non-Confidential



Configurations

This register is available in all build configurations.

Attributes
HSCTLR is a 32-bit register.

The following figure shows the HSCTLR bit assignments.

RES0 I C A M

RES1

RES1
WXN

RES0

RES1
RES0

EE
RES0

RES1
TE

RES0

RES1
RES0

SED
ITD

RES0
CP15BEN

RES1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 13 12 11 10 9 8 7 6 5 4 3 2 1 0

FI

BR

Figure 3-45  HSCTLR bit assignments

The following table shows the HSCTLR bit assignments.

Table 3-89  HSCTLR bit assignments

Bits Name Function

[31] - Reserved, RES0.

[30] TE Thumb Exception enable. This bit controls whether exceptions taken in Hyp mode are taken in A32 or T32 state:

0 Exceptions taken in A32 state.

1 Exceptions taken in T32 state.

The input signal CFGTHUMBEXCEPTIONS defines the reset value of the TE bit.

[29:28] - Reserved, RES1.

[27:26] - Reserved, RES0.

[25] EE Exception Endianness. The value of this bit defines the value of the CPSR.E bit on an exception taken to Hyp
mode, including reset.

0 Little endian.

1 Big endian.

The input signal CFGENDIANESSx defines the reset value of the EE bit.

[24] - Reserved, RES0.

3 System Control
3.3 AArch32 register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-133

Non-Confidential



Table 3-89  HSCTLR bit assignments (continued)

Bits Name Function

[23:22] - Reserved, RES1.

[21] FI Fast Interrupts configuration enable bit:

0 All performance features enabled.

1 Fast interrupts configuration. Some performance features disabled.

Setting this bit to 1 can reduce interrupt latency in an implementation, by disabling some implementation defined
performance features. See Fast interrupts on page 2-32.

The resets value is 0.

[20] - Reserved, RES0.

[19] WXN Write permission implies XN. This bit can be used to require all memory regions with write permission from the
EL2-controlled MPU to be treated as XN:

0 EL2-controlled MPU regions with write permission are not forced to XN.

1 EL2-controlled MPU regions with write permission are forced to XN.

The reset value is 0.

[18] - Reserved, RES1.

[17] BR Background Region enable bit. When the EL2 MPU is enabled this controls how a EL2 access that does not map
to any EL2 MPU region is handled:

0 Any EL2 transaction not matching a EL2 MPU region results in a translation fault.

1 Enables the background region for accesses from EL2 that do not match a programmable EL2 MPU
region. See 8.2.2 EL2-controlled MPU background region on page 8-253.

The reset value is 0.

[16] - Reserved, RES1.

[15:13] - Reserved, RES0.

[12] I Instruction cache enable. This is an enable bit for instruction caches at EL2:

0 Instruction caches disabled at EL2.

1 Instruction caches enabled at EL2.

The field resets to 0.

[11] - Reserved, RES1.

[10:9] - Reserved, RES0.

[8] SED SETEND Disable:

0 The SETEND instruction is available at EL2.

1 The SETEND instruction is UNDEFINED.

The reset value is 0.

3 System Control
3.3 AArch32 register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-134

Non-Confidential



Table 3-89  HSCTLR bit assignments (continued)

Bits Name Function

[7] ITD IT Disable:

0 The IT instruction functionality is available at EL2.

1 All encodings of the IT instruction with hw1[3:0]!=1000 are UNDEFINED at EL2. All encodings of the
subsequent instruction with the following values for hw1 are UNDEFINED at EL2:

0x11xxxxxxxxxxxxxx All 32-bit instructions, B(2), B(1), Undefined, SVC, Load/Store multiple

0x1x11xxxxxxxxxxxx Miscellaneous 16-bit instructions

0x1x10xxxxxxxxxx ADD Rd, PC, #imm

0x01001xxxxxxxxxxx LDR Rd, [PC, #imm]

0x0101xxx1111xxx ADD(4), CMP(3), MOV, BX pc, BLX pc

0x010001xx1xxxx111 ADD(4), CMP(3), MOV

The reset value is 0.

Though the Cortex-R52 processor supports this functionality, it is deprecated in Armv8.

[6] - Reserved, RES0.

[5] CP15BEN CP15* Barrier enable. Enables use of the CP15DMB, CP15DSB, and CP15ISB barrier operations at EL2:

0 CP15* barrier operations disabled at EL2. Their encodings are UNDEFINED.

1 CP15* barrier operations enabled at EL2.

The reset value is 1.

[4:3] - Reserved, RES1.

[2] C Cache enable. This is an enable bit for data cache at EL2:

0 Data cache disabled at EL2.

1 Data cache enabled at EL2.

The field resets to 0.

[1] A Alignment check enable. This is the enable bit for Alignment fault checking:

0 Alignment fault checking disabled at EL2.

1 Alignment fault checking enabled at EL2.

The field resets to 0.

[0] M MPU enable. This is a global enable bit for the EL2-controlled MPU:

0 EL2-controlled MPU disabled.

1 EL2-controlled MPU enabled.

The field resets to 0.

To access the HSCTLR:

MRC p15,4,<Rt>,c1,c0,0 ; Read HSCTLR into Rt
MCR p15,4,<Rt>,c1,c0,0 ; Write Rt to HSCTLR

3 System Control
3.3 AArch32 register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-135

Non-Confidential



3.3.54 Hyp System Trap Register

The HSTR controls trapping to EL2 of accesses at EL1 or lower, or the system register in the coproc==
1111 encoding space.

Usage constraints

This register is accessible as follows:

EL0 EL1 EL2

- - RW

Traps and enables
EL1 accesses to HSTR are trapped to EL2 when HSTR.T1 is set.

Configurations

This register is available in all build configurations.

Attributes
HSTR is a 32-bit register.

The following figure shows the HSTR bit assignments.

31 0

RES0

12345678910111213141516

RES0
T15

T13
T12
T11
T10

T9
T8

T0
T1
T2
T3
RES0
T5
T6
T7

Figure 3-46  HSTR bit assignments

The following table shows the HSTR bit assignments.

Table 3-90  HSTR bit assignments

Bits Name Function

[31:16] - Reserved, RES0.

[15] T15 Trap primary register CRn = 15. The possible values are:

0 Has no effect on accesses to non-debug system registers.

1 Trap valid EL1 or lower accesses to primary register CRn = 15 to Hyp mode.

The reset value is 0.

[14] - Reserved, RES0.

3 System Control
3.3 AArch32 register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-136

Non-Confidential



Table 3-90  HSTR bit assignments (continued)

Bits Name Function

[13] T13 Trap primary register CRn = 13. The possible values are:

0 Has no effect on accesses to non-debug system registers.

1 Trap valid EL1 or lower accesses to primary register CRn = 13 to Hyp mode.

The reset value is 0.

[12] T12 Trap primary register CRn = 12. The possible values are:

0 Has no effect on accesses to non-debug system registers.

1 Trap valid EL1 or lower accesses to primary register CRn = 12 to Hyp mode.

The reset value is 0.

[11] T11 Trap primary register CRn = 11. The possible values are:

0 Has no effect on accesses to non-debug system registers.

1 Trap valid EL1 or lower accesses to primary register CRn = 11 to Hyp mode.

The reset value is 0.

[10] T10 Trap primary register CRn = 10. The possible values are:

0 Has no effect on accesses to non-debug system registers.

1 Trap valid EL1 or lower accesses to primary register CRn = 10 to Hyp mode.

The reset value is 0.

[9] T9 Trap primary register CRn = 9. The possible values are:

0 Has no effect on accesses to non-debug system registers.

1 Trap valid EL1 or lower accesses to primary register CRn = 9 to Hyp mode.

The reset value is 0.

[8] T8 Trap primary register CRn = 8. The possible values are:

0 Has no effect on accesses to non-debug system registers.

1 Trap valid EL1 or lower accesses to primary register CRn = 8 to Hyp mode.

The reset value is 0.

[7] T7 Trap primary register CRn = 7. The possible values are:

0 Has no effect on accesses to non-debug system registers.

1 Trap valid EL1 or lower accesses to primary register CRn = 7 to Hyp mode.

The reset value is 0.

[6] T6 Trap primary register CRn = 6. The possible values are:

0 Has no effect on accesses to non-debug system registers.

1 Trap valid EL1 or lower accesses to primary register CRn = 6 to Hyp mode.

The reset value is 0.

3 System Control
3.3 AArch32 register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-137

Non-Confidential



Table 3-90  HSTR bit assignments (continued)

Bits Name Function

[5] T5 Trap primary register CRn = 5. The possible values are:

0 Has no effect on accesses to non-debug system registers.

1 Trap valid EL1 or lower accesses to primary register CRn = 5 to Hyp mode.

The reset value is 0.

[4] - Reserved, RES0.

[3] T3 Trap primary register CRn = 3. The possible values are:

0 Has no effect on accesses to non-debug system registers.

1 Trap valid EL1 or lower accesses to primary register CRn = 3 to Hyp mode.

The reset value is 0.

[2] T2 Trap primary register CRn = 2. The possible values are:

0 Has no effect on accesses to non-debug system registers.

1 Trap valid EL1 or lower accesses to primary register CRn = 2 to Hyp mode.

The reset value is 0.

[1] T1 Trap primary register CRn = 1. The possible values are:

0 Has no effect on accesses to non-debug system registers.

1 Trap valid EL1 or lower accesses to primary register CRn = 1 to Hyp mode.

The reset value is 0.

[0] T0 Trap primary register CRn = 0. The possible values are:

0 Has no effect on accesses to non-debug system registers.

1 Trap valid EL1 or lower accesses to primary register CRn = 0 to Hyp mode.

The reset value is 0.

To access the HSTR:

MRC p15, 4, <Rt>, c1, c1, 3 ; Read HSTR into Rt
MCR p15, 4, <Rt>, c1, c1, 3 ; Write Rt to HSTR

3.3.55 Hyp Vector Base Address Register

The HVBAR holds the exception base address for any exception that is taken to Hyp mode.

Usage constraints

This register is accessible as follows:

EL0 EL1 EL2

- - RW

Traps and enables
EL1 accesses to HVBAR are trapped to EL2 when HSTR.T12 is set.

3 System Control
3.3 AArch32 register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-138

Non-Confidential



Configurations

This register is available in all build configurations.

Attributes

HVBAR is a 32-bit register.

The following figure shows the HVBAR bit assignments.

RES0

31 0

Vector Base Address

45

Figure 3-47  HVBAR bit assignments

The following table shows the HVBAR bit assignments.

Table 3-91  HVBAR bit assignments

Bits Name Function

[31:5] Vector Base Address Bits[31:5] of the base address of the exception vectors, for exceptions taken to EL2. Bits[4:0] of an
exception vector are the exception offset.

CFGVECTABLEx[31:5] determines the vector base address out of reset.

[4:0] - Reserved, RES0.

See the Arm® Architecture Reference Manual Supplement Armv8, for Armv8-R architecture profile for
more information.

To access the HVBAR:

MRC p15, 4, <Rt>, c12, c0, 0 ; Read HVBAR into Rt
MCR p15, 4, <Rt>, c12, c0, 0 ; Write Rt to HVBAR

3.3.56 Hypervisor Reset Management Register

A write to the HRMR register requests a warm reset.

Usage constraints

This register is accessible as follows:

EL0 EL1 EL2

- - RW

Traps and enables
EL1 accesses to HRMR are trapped to EL2 when HSTR.T12 is set.

Configurations

This register is available in all build configurations.

Attributes
HRMR is a 32-bit register.

The following figure shows the HRMR bit assignments.

3 System Control
3.3 AArch32 register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-139

Non-Confidential



RES0

RR
AA64

31 2 1 0

Figure 3-48  HRMR bit assignments

The following table shows the HRMR bit assignments.

Table 3-92  HRMR bit assignments

Bits Name Function

[31:2] - Reserved, RES0.

[1] RR Reset Request. Setting this bit to 1 requests a warm reset and asserts WARMRSTREQx.

[0] AA64 RAZ/WI.

To access the HRMR:

MRC p15, 4, <Rt>, c12, c0, 2 ; Read HRMR into Rt
MCR p15, 4, <Rt>, c12, c0, 2 ; Write Rt to HRMR

3.3.57 Instruction Cache Error Record Registers 0 and 1

The IMP_ICERR0 and IMP_ICERR1 registers indicate the instruction cache RAM and the cache index
of a detected instruction cache error.

Usage constraints

This register is accessible as follows:

EL0 EL1 EL2

- RW/RO RW

The IMP_ICERR0 and IMP_ICERR1 registers are accessible as RW from EL1 when
HACTLR.ERR is set, RO from EL1 when HACTLR.ERR is clear.

Traps and enables
EL1 write accesses to these registers are trapped to EL2 when HACTLR.ERR is 0.

Configurations
These registers are available in cores configured with an instruction cache.

Attributes
IMP_ICERR0 and IMP_ICERR1 are 32-bit registers.

The following figure shows IMP_ICERR0 and IMP_ICERR1 bit assignments.

31 0

RAMID

4 3 1

VALID

RES0

24 23 11 10

INDEX RES0

Figure 3-49  IMP_ICERR0 and IMP_ICERR1 bit assignments

3 System Control
3.3 AArch32 register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-140

Non-Confidential



The following table shows the IMP_ICERR0 and IMP_ICERR1 bit assignments.

Table 3-93  IMP_ICERR0 and IMP_ICERR1 bit assignments

Bits Name Function Notes

[31:24] RAMID Indicates the RAM bank:

RAMID[7] Tag RAM, bank 3.

RAMID[6] Tag RAM, bank 2.

RAMID[5] Tag RAM, bank 1.

RAMID[4] Tag RAM, bank 0.

RAMID[3] Data RAM, bank 3.

RAMID[2] Data RAM, bank 2.

RAMID[1] Data RAM, bank 1.

RAMID[0] Data RAM, bank 0.

-

[23:11] - Reserved, RES0. -

[10:4] INDEX Instruction cache index. This is address bits [12:6]
appropriately masked with the cache size.

-

[3:1] - Reserved, RES0. Writes to these registers are unique. If bit[1] and bit[0] are
set to 0, and if the register holds information about a
correctable error, then the register is cleared. If bit[1] is set
to 1 and bit[0] is set to 0, then the register is always cleared.

[0] VALID Register contents are valid.

To access the IMP_ICERR0:

MRC p15,2,<Rt>,c15,c0,0 ; Read IMP_ICERR0 into Rt
MCR p15,2,<Rt>,c15,c0,0 ; Write Rt to IMP_ICERR0

To access the IMP_ICERR1:

MRC p15,2,<Rt>,c15,c0,1 ; Read IMP_ICERR1 into Rt
MCR p15,2,<Rt>,c15,c0,1 ; Write Rt to IMP_ICERR1

3.3.58 Instruction Fault Address Register

The IFAR holds the faulting address that caused a synchronous Prefetch Abort exception.

Usage constraints

This register is accessible as follows:

EL0 EL1 EL2

- RW RW

Traps and enables
IFAR reads and writes from EL1 are trapped to EL2 according to HCR.TRVM and HCR.TVM
respectively.

Configurations

This register is available in all build configurations.

Attributes
IFAR is a 32-bit register.

The following figure shows the IFAR bit assignments.

3 System Control
3.3 AArch32 register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-141

Non-Confidential



31 0

VA

Figure 3-50  IFAR bit assignments

The following table shows the IFAR bit assignments.

Table 3-94  IFAR bit assignments

Bits Name Function

[31:0] VA The faulting address of synchronous Prefetch Abort exception

To access the IFAR:

MRC p15, 0, <Rt>, c6, c0, 2 ; Read IFAR into Rt
MCR p15, 0, <Rt>, c6, c0, 2 ; Write Rt to IFAR

3.3.59 Instruction Fault Status Register

The IFSR holds status information about the last instruction fault.

Usage constraints

This register is accessible as follows:

EL0 EL1 EL2

- RW RW

Traps and enables
IFSR reads and writes from EL1 are trapped to EL2 according to HCR.TRVM and HCR.TVM
respectively.

Configurations

This register is available in all build configurations.

Attributes
IFSR is a 32-bit register.

The following figure shows the IFSR bit assignments.

31 13 12 11 10 9 8 5 0

RES0

ExT

RES0 Status

6

RES0

LPAE

17

FnV

16 15

RES0

Figure 3-51  IFSR bit assignments

3 System Control
3.3 AArch32 register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-142

Non-Confidential



The following table shows the IFSR bit assignments.

Table 3-95  IFSR bit assignments

Bits Name Function

[31:17] - Reserved, RES0.

[16] FnV This field is RES0.

[15:13] - Reserved, RES0.

[12] ExT External abort type. This field indicates whether an AXI Decode or Slave error caused an abort:

0 External abort marked as DECERR.

1 External abort marked as SLVERR.

For aborts other than external aborts this bit always returns 0.

[11:10] - Reserved, RES0.

[9] LPAE This field is RES1.

[8:6] - Reserved, RES0.

[5:0] Status Fault Status bits. This field indicates the type of exception generated. Any encoding not listed is reserved.

0b000100 Translation fault, level 0.

0b001100 Permission fault, level 0.

0b010000 Synchronous external abort.

0b011000 Synchronous parity error on memory access.be

0b100001 Alignment fault.

0b100010 Debug event.

 Note 

If a Data Abort exception is generated by an instruction cache maintenance, the fault is reported as a
Cache Maintenance fault in the DFSR or HSR with the appropriate Fault Status code. For such
exceptions reported in the DFSR, the corresponding IFSR is UNKNOWN.

To access the IFSR:

MRC p15, 0, <Rt>, c5, c0, 1 ; Read IFSR into Rt
MCR p15, 0, <Rt>, c5, c0, 1 ; Write Rt to IFSR

3.3.60 Instruction Set Attribute Register 0

The ID_ISAR0 provides information about the instruction sets implemented by the processor.

3 System Control
3.3 AArch32 register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-143

Non-Confidential



Usage constraints

This register is accessible as follows:

EL0 EL1 EL2

- RO RO

The ID_ISAR0 must be interpreted with ID_ISAR1, ID_ISAR2, ID_ISAR3, ID_ISAR4, and
ID_ISAR5. See:
• 3.3.61 Instruction Set Attribute Register 1 on page 3-145.
• 3.3.62 Instruction Set Attribute Register 2 on page 3-146.
• 3.3.63 Instruction Set Attribute Register 3 on page 3-148.
• 3.3.64 Instruction Set Attribute Register 4 on page 3-150.
• 3.3.65 Instruction Set Attribute Register 5 on page 3-151.

Traps and enables
EL1 read accesses to ID_ISAR0 are trapped to EL2 when HCR.TID3 or HSTR.T0 is set.

Configurations

This register is available in all build configurations.

Attributes
ID_ISAR0 is a 32-bit register.

The following figure shows the ID_ISAR0 bit assignments.

31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0

RES0 Divide Debug Coproc CmpBranch Bitfield BitCount Swap

Figure 3-52  ID_ISAR0 bit assignments

The following table shows the ID_ISAR0 bit assignments.

Table 3-96  ID_ISAR0 bit assignments

Bits Name Function

[31:28] - Reserved, RES0.

[27:24] Divide Indicates the implemented Divide instructions:

0x2 • SDIV and UDIV in the T32 instruction set.
• SDIV and UDIV in the A32 instruction set.

[23:20] Debug Indicates the implemented Debug instructions:

0x1 BKPT

[19:16] Coproc Indicates the implemented system register access instructions:

0x0 None implemented, except for separately attributed by the architecture including
(coproc==0b1110), (coproc==0b1111) Advanced SIMD, and Floating-point.

[15:12] CmpBranch Indicates the implemented combined Compare and Branch instructions in the T32 instruction set:

0x1 CBNZ and CBZ.

3 System Control
3.3 AArch32 register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-144

Non-Confidential



Table 3-96  ID_ISAR0 bit assignments (continued)

Bits Name Function

[11:8] Bitfield Indicates the implemented bit field instructions:

0x1 BFC, BFI, SBFX, and UBFX.

[7:4] BitCount Indicates the implemented Bit Counting instructions:

0x1 CLZ.

[3:0] Swap Indicates the implemented Swap instructions in the A32 instruction set:

0x0 None implemented.

To access the ID_ISAR0:

MRC p15, 0, <Rt>, c0, c2, 0 ; Read ID_ISAR0 into Rt

3.3.61 Instruction Set Attribute Register 1

The ID_ISAR1 provides information about the instruction sets implemented by the processor.

Usage constraints

This register is accessible as follows:

EL0 EL1 EL2

- RO RO

The ID_ISAR1 must be interpreted with ID_ISAR0, ID_ISAR2, ID_ISAR3, ID_ISAR4 and
ID_ISAR5. See:
• 3.3.60 Instruction Set Attribute Register 0 on page 3-143.
• 3.3.62 Instruction Set Attribute Register 2 on page 3-146.
• 3.3.63 Instruction Set Attribute Register 3 on page 3-148.
• 3.3.64 Instruction Set Attribute Register 4 on page 3-150.
• 3.3.65 Instruction Set Attribute Register 5 on page 3-151.

Traps and enables
EL1 read accesses to ID_ISAR1 are trapped to EL2 when HCR.TID3 or HSTR.T0 is set.

Configurations

This register is available in all build configurations.

Attributes
ID_ISAR1 is a 32-bit register.

The following figure shows the ID_ISAR1 bit assignments.

31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0

Jazelle Interwork Immediate IfThen Extend Except_AR Except Endian

Figure 3-53  ID_ISAR1 bit assignments

The following table shows the ID_ISAR1 bit assignments.

3 System Control
3.3 AArch32 register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-145

Non-Confidential



Table 3-97  ID_ISAR1 bit assignments

Bits Name Function

[31:28] Jazelle Indicates the implemented Jazelle state instructions:

0x1 The BXJ instruction, and the J bit in the PSR.

[27:24] Interwork Indicates the implemented Interworking instructions:

0x3 • The BX instruction, and the T bit in the PSR.
• The BLX instruction. The PC loads have BX-like behavior.
• Data-processing instructions in the A32 instruction set with the PC as the destination and the S

bit clear, have BX-like behavior.

[23:20] Immediate Indicates the implemented data-processing instructions with long immediates:

0x1 • The MOVT instruction.
• The MOV instruction encodings with zero-extended 16-bit immediates.
• The T32 ADD and SUB instruction encodings with zero-extended 12-bit immediates, and other

ADD, ADR, and SUB encodings cross-referenced by the pseudocode for those encodings.

[19:16] IfThen Indicates the implemented If-Then instructions in the T32 instruction set:

0x1 The IT instructions, and the IT bits in the PSRs.

[15:12] Extend Indicates the implemented Extend instructions:

0x2 • The SXTB, SXTH, UXTB, and UXTH instructions.
• The SXTB16, SXTAB, SXTAB16, SXTAH, UXTB16, UXTAB, UXTAB16, and UXTAH instructions.

[11:8] Except_AR Indicates the implemented R profile exception-handling instructions:

0x1 The SRS and RFE instructions, and the R profile forms of the CPS instruction.

[7:4] Except Indicates the implemented exception-handling instructions in the A32 instruction set:

0x1 The LDM (exception return), LDM (user registers), and STM (user registers) instruction versions.

[3:0] Endian Indicates the implemented Endian instructions:

0x1 The SETEND instruction, and the E bit in the PSRs.

To access the ID_ISAR1:

MRC p15, 0, <Rt>, c0, c2, 1 ; Read ID_ISAR1 into Rt

3.3.62 Instruction Set Attribute Register 2

The ID_ISAR2 provides information about the instruction sets implemented by the processor.

3 System Control
3.3 AArch32 register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-146

Non-Confidential



Usage constraints

This register is accessible as follows:

EL0 EL1 EL2

- RO RO

The ID_ISAR2 must be interpreted with ID_ISAR0, ID_ISAR1, ID_ISAR3, ID_ISAR4 and
ID_ISAR5. See.
• 3.3.60 Instruction Set Attribute Register 0 on page 3-143.
• 3.3.61 Instruction Set Attribute Register 1 on page 3-145.
• 3.3.63 Instruction Set Attribute Register 3 on page 3-148.
• 3.3.64 Instruction Set Attribute Register 4 on page 3-150.
• 3.3.65 Instruction Set Attribute Register 5 on page 3-151.

Traps and enables
EL1 read accesses to ID_ISAR2 are trapped to EL2 when HCR.TID3 or HSTR.T0 is set.

Configurations

This register is available in all build configurations.

Attributes
ID_ISAR2 is a 32-bit register.

The following figure shows the ID_ISAR2 bit assignments.

31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0

MultiAccessInt

Reversal PSR_AR MultU MultS Mult MemHint LoadStore

Figure 3-54  ID_ISAR2 bit assignments

The following table shows the ID_ISAR2 bit assignments.

Table 3-98  ID_ISAR2 bit assignments

Bits Name Function

[31:28] Reversal Indicates the implemented Reversal instructions:

0x2 The REV, REV16, and REVSH instructions.

The RBIT instruction.

[27:24] PSR_AR Indicates the implemented R profile instructions to manipulate the PSR:

0x1 The MRS and MSR instructions, and the exception return forms of data-processing instructions.

 Note 

The exception return forms of the data-processing instructions are:
• In the A32 instruction set, data-processing instructions with the PC as the destination and the S bit set.
• In the T32 instruction set, the SUBS PC, LR, #N instruction.

3 System Control
3.3 AArch32 register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-147

Non-Confidential



Table 3-98  ID_ISAR2 bit assignments (continued)

Bits Name Function

[23:20] MultU Indicates the implemented advanced unsigned Multiply instructions:

0x2 The UMULL and UMLAL instructions.

The UMAAL instruction.

[19:16] MultS Indicates the implemented advanced signed Multiply instructions.

0x3 • The SMULL and SMLAL instructions.
• The SMLABB, SMLABT, SMLALBB, SMLALBT, SMLALTB, SMLALTT, SMLATB, SMLATT,

SMLAWB, SMLAWT, SMULBB, SMULBT, SMULTB, SMULTT, SMULWB, SMULWT instructions, and
the Q bit in the PSRs.

• The SMLAD, SMLADX, SMLALD, SMLALDX, SMLSD, SMLSDX, SMLSLD, SMLSLDX, SMMLA,
SMMLAR, SMMLS, SMMLSR, SMMUL, SMMULR, SMUAD, SMUADX, SMUSD, and SMUSDX
instructions.

[15:12] Mult Indicates the implemented additional Multiply instructions:

0x2 The MUL instruction.

The MLA instruction.

The MLS instruction.

[11:8] MultiAccessInt Indicates the support for interruptible multi-access instructions:

0x1 LDM and STM instructions are restartable.

[7:4] MemHint Indicates the implemented memory hint instructions:

0x4 The PLD instruction.

The PLI instruction.

The PLDW instruction.

 Note 

The Cortex-R52 processor:
• Treats the PLI instruction as a NOP.
• Triggers a cache linefill when there is a PLD or PLDW instruction unless the line is already in the cache or

the location is considered non-cacheable.

[3:0] LoadStore Indicates the implemented additional load/store instructions:

0x2 The LDRD and STRD instructions.

The Load Acquire (LDAB, LDAH, LDA, LDAEXB, LDAEXH, LDAEX, and LDAEXD) and Store Release
(STLB, STLH, STL, STLEXB, STLEXH, STLEX, and STLEXD) instructions.

To access the ID_ISAR2:

MRC p15, 0, <Rt>, c0, c2, 2 ; Read ID_ISAR2 into Rt

3.3.63 Instruction Set Attribute Register 3

The ID_ISAR3 provides information about the instruction sets implemented by the processor.

3 System Control
3.3 AArch32 register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-148

Non-Confidential



Usage constraints

This register is accessible as follows:

EL0 EL1 EL2

- RO RO

The ID_ISAR3 must be interpreted with ID_ISAR0, ID_ISAR1, ID_ISAR2, ID_ISAR4, and
ID_ISAR5. See:
• 3.3.60 Instruction Set Attribute Register 0 on page 3-143.
• 3.3.61 Instruction Set Attribute Register 1 on page 3-145.
• 3.3.62 Instruction Set Attribute Register 2 on page 3-146.
• 3.3.64 Instruction Set Attribute Register 4 on page 3-150.
• 3.3.65 Instruction Set Attribute Register 5 on page 3-151.

Traps and enables
EL1 read accesses to ID_ISAR3 are trapped to EL2 when HCR.TID3 or HSTR.T0 is set.

Configurations

This register is available in all build configurations.

Attributes
ID_ISAR3 is a 32-bit register.

The following figure shows the ID_ISAR3 bit assignments.

TabBranch

31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0

T32Copy SVC SaturateT32EE SynchPrim SIMDTrueNOP

Figure 3-55  ID_ISAR3 bit assignments

The following table shows the ID_ISAR3 bit assignments.

Table 3-99  ID_ISAR3 bit assignments

Bits Name Function

[31:28] T32EE Indicates the implemented T32EE instructions:

0x0 None implemented.

[27:24] TrueNOP Indicates support for True NOP instructions:

0x1 True NOP instructions in both the A32 and T32 instruction sets, and additional NOP-compatible hints.

[23:20] T32Copy Indicates the support for T32 non flag-setting MOV instructions:

0x1 Support for T32 instruction set encoding T1 of the MOV (register) instruction, copying from a low
register to a low register.

[19:16] TabBranch Indicates the implemented Table Branch instructions in the T32 instruction set.

0x1 The TBB and TBH instructions.

3 System Control
3.3 AArch32 register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-149

Non-Confidential



Table 3-99  ID_ISAR3 bit assignments (continued)

Bits Name Function

[15:12] SynchPrim Indicates the implemented Synchronization Primitive instructions.

0x2 • The LDREX and STREX instructions.
• The CLREX, LDREXB, STREXB, and STREXH instructions.
• The LDREXD and STREXD instructions.

[11:8] SVC Indicates the implemented SVC instructions:

0x1 The SVC instruction.

[7:4] SIMD Indicates the implemented Single Instruction Multiple Data (SIMD) instructions.

0x3 • The SSAT and USAT instructions, and the Q bit in the PSRs.
• The PKHBT, PKHTB, QADD16, QADD8, QASX, QSUB16, QSUB8, QSAX, SADD16, SADD8, SASX,

SEL, SHADD16, SHADD8, SHASX, SHSUB16, SHSUB8, SHSAX, SSAT16, SSUB16, SSUB8, SSAX,
SXTAB16, SXTB16, UADD16, UADD8, UASX, UHADD16, UHADD8, UHASX, UHSUB16, UHSUB8,
UHSAX, UQADD16, UQADD8, UQASX, UQSUB16, UQSUB8, UQSAX, USAD8, USADA8, USAT16,
USUB16, USUB8, USAX, UXTAB16, UXTB16 instructions, and the GE[3:0] bits in the PSRs.

[3:0] Saturate Indicates the implemented Saturate instructions:

0x1 The QADD, QDADD, QDSUB, QSUB and the Q bit in the PSRs.

To access the ID_ISAR3:

MRC p15, 0, <Rt>, c0, c2, 3 ; Read ID_ISAR3 into Rt

3.3.64 Instruction Set Attribute Register 4

The ID_ISAR4 provides information about the instruction sets implemented by the processor.

Usage constraints

This register is accessible as follows:

EL0 EL1 EL2

- RO RO

The ID_ISAR4 must be interpreted with ID_ISAR0, ID_ISAR1, ID_ISAR2, ID_ISAR3, and
ID_ISAR5. See:
• 3.3.60 Instruction Set Attribute Register 0 on page 3-143.
• 3.3.61 Instruction Set Attribute Register 1 on page 3-145.
• 3.3.62 Instruction Set Attribute Register 2 on page 3-146.
• 3.3.63 Instruction Set Attribute Register 3 on page 3-148.
• 3.3.65 Instruction Set Attribute Register 5 on page 3-151.

Traps and enables
EL1 read accesses to ID_ISAR4 are trapped to EL2 when HCR.TID3 or HSTR.T0 is set.

Configurations

This register is available in all build configurations.

Attributes
ID_ISAR4 is a 32-bit register.

3 System Control
3.3 AArch32 register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-150

Non-Confidential



The following figure shows the ID_ISAR4 bit assignments.

31 24 23 20 19 16 15 12 11 8 7 4 3 0

SynchPrim_frac

SWP_frac

28 27

PSR_M Barrier SMC Writeback WithShifts Unpriv

Figure 3-56  ID_ISAR4 bit assignments

The following table shows the ID_ISAR4 bit assignments.

Table 3-100  ID_ISAR4 bit assignments

Bits Name Function

[31:28] SWP_frac Indicates support for the memory system locking the bus for SWP or SWPB instructions:

0x0 SWP and SWPB instructions not implemented.

[27:24] PSR_M Indicates the implemented M profile instructions to modify the PSRs:

0x0 None implemented.

[23:20] SynchPrim_frac This field is used with the ID_ISAR3.SynchPrim field to indicate the implemented Synchronization
Primitive instructions:

0x0 • The LDREX and STREX instructions.
• The CLREX, LDREXB, LDREXH, STREXB, and STREXH instructions.
• The LDREXD and STREXD instructions.

[19:16] Barrier Indicates the supported Barrier instructions in the A32 and T32 instruction sets:

0x1 The DMB, DSB, and ISB barrier instructions.

[15:12] SMC Indicates the implemented SMC instructions:

0x0 The SMC instruction not supported.

[11:8] Writeback Indicates the support for writeback addressing modes:

0x1 Processor supports all of the writeback addressing modes defined in Armv8.

[7:4] WithShifts Indicates the support for instructions with shifts:

0x4 • Support for shifts of loads and stores over the range LSL 0-3.
• Support for other constant shift options, both on load/store and other instructions.
• Support for register-controlled shift options.

[3:0] Unpriv Indicates the implemented unprivileged instructions:

0x2 • The LDRBT, LDRT, STRBT, and STRT instructions.
• The LDRHT, LDRSBT, LDRSHT, and STRHT instructions.

To access the ID_ISAR4:

MRC p15, 0, <Rt>, c0, c2, 4 ; Read ID_ISAR4 into Rt

3.3.65 Instruction Set Attribute Register 5

The ID_ISAR5 provides information about the instruction sets that the processor implements.

3 System Control
3.3 AArch32 register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-151

Non-Confidential



Usage constraints

This register is accessible as follows:

EL0 EL1 EL2

- RO RO

The ID_ISAR5 must be interpreted with ID_ISAR0, ID_ISAR1, ID_ISAR2, ID_ISAR3, and
ID_ISAR4. See:
• 3.3.60 Instruction Set Attribute Register 0 on page 3-143.
• 3.3.61 Instruction Set Attribute Register 1 on page 3-145.
• 3.3.62 Instruction Set Attribute Register 2 on page 3-146.
• 3.3.63 Instruction Set Attribute Register 3 on page 3-148.
• 3.3.64 Instruction Set Attribute Register 4 on page 3-150.

Traps and enables
EL1 read accesses to ID_ISAR5 are trapped to EL2 when HCR.TID3 or HSTR.T0 is set.

Configurations

This register is available in all build configurations.

Attributes
ID_ISAR5 is a 32-bit register.

The following figure shows the ID_ISAR5 bit assignments.

31 12 11 8 7 0

RES0 SHA1 AES SEVLSHA2

4 316 1520 19

CRC32

Figure 3-57  ID_ISAR5 bit assignments

The following table shows the ID_ISAR5 bit assignments.

Table 3-101  ID_ISAR5 bit assignments

Bits Name Function

[31:20] - Reserved, RES0.

[19:16] CRC32 Indicates whether CRC32 instructions are implemented in AArch32 state:

0x1 CRC32 instructions are implemented.

[15:12] SHA2 Indicates whether SHA2 instructions are implemented in AArch32 state:

0x0 Cryptography Extensions are not implemented.

[11:8] SHA1 Indicates whether SHA1 instructions are implemented in AArch32 state:

0x0 Cryptography Extensions are not implemented.

[7:4] AES Indicates whether AES instructions are implemented in AArch32 state:

0x0 Cryptography Extensions are not implemented.

[3:0] SEVL Indicates whether the SEVL instruction is implemented:

0x1 SEVL implemented to send event local.

3 System Control
3.3 AArch32 register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-152

Non-Confidential



To access the ID_ISAR5:

MRC p15,0,<Rt>,c0,c2,5 ; Read ID_ISAR5 into Rt

3.3.66 Interrupt Monitoring Register

The IMP_INTMONR provides access to counters for detecting when the core has entered hypervisor
mode, but the interrupt masks in the current PSR have not been cleared within a given time limit.
IMP_INTMONR counts cycles in which interrupt masks are set for physical system errors, physical
interrupts, and physical fast interrupts, and signals a timeout on ERREVENTx[18] if a limit is exceeded.
IMP_INTMONR does not require there to be a pended interrupt being masked. IMP_INTMONR
supports two modes of operation, watchdog mode, and maximum value monitor mode. For both modes
of operation the counter increments when any of the masks are set so corresponding interrupts cannot be
taken. The counter resets to zero when all enabled interrupts can be taken. In watchdog mode, an event is
generated when the counter reaches IMP_INTMONR.MAXCYCLESBY16×16. In maximum value
monitor mode, IMP_INTMONR.MAXCYCLESBY16 holds the maximum value the counter has
reached, before resetting, divided by 16.

Usage constraints

This register is accessible as follows:

EL0 EL1 EL2

- RW/RO RW

RW from EL1 when HACTLR.INTMONR is set, RO from EL1 when HACTLR.INTMONR is
clear and inaccessible from EL0.

Traps and enables
EL1 write accesses to INTMONR are trapped to EL2 when HACTLR.INTMONR is 0.

Configurations
This register is available in all build configurations.

Attributes
IMP_INTMONR is a 32-bit register.

The following figure shows the IMP_INTMONR bit assignments.

31 0

RES0

5 4 3 2 1

ENABLEIRQ
ENABLEFIQ

MAXCYCLESBY16

16 15 8 7

ENABLESER
RES0

RES0

MODE

Figure 3-58  IMP_INTMONR bit assignments

The following table shows the IMP_INTMONR bit assignments.

3 System Control
3.3 AArch32 register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-153

Non-Confidential



Table 3-102  IMP_INTMONR bit assignments

Bits Name Function

[31:16] - Reserved, RES0.

[15:8] MAXCYCLESBY16 Maximum count divided by 16.

[7:5] - Reserved, RES0.

[4] MODE Sets the operation mode of the counter:

0 Watchdog mode

1 Maximum value monitor mode.

[3] - Reserved, RES0.

[2] ENABLESER Enable counting of cycles in which physical system errors are masked.

[1] ENABLEIRQ Enable counting of physical interrupts that cannot be taken.

[0] ENABLEFIQ Enable counting of fast interrupts that cannot be taken.

To access the IMP_INTMONR:

MRC p15, 1, <Rt>, c15, c3, 4 ; Read IMP_INTMONR into Rt
MCR p15, 1, <Rt>, c15, c3, 4 ; Write Rt to IMP_INTMONR

3.3.67 Interrupt Status Register

The ISR shows whether an IRQ, FIQ, or external abort is pending. An indicated pending abort might be
a physical abort or a virtual abort.

Usage constraints

This register is accessible as follows:

EL0 EL1 EL2

- RO RO

Traps and enables
EL1 read accesses to ISR are trapped to EL2 when HSTR.T12 is set.

Configurations

This register is available in all build configurations.

Attributes
ISR is a 32-bit register.

The following figure shows the ISR bit assignments.

31 9 8 7 6 5 0

RES0FIARES0

Figure 3-59  ISR bit assignments

The following table shows the ISR bit assignments.

3 System Control
3.3 AArch32 register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-154

Non-Confidential



Table 3-103  ISR bit assignments

Bits Name Function

[31:9] - Reserved, RES0.

[8] A External abort pending bit:

0 No pending external abort.

1 An external abort is pending.

[7] I IRQ pending bit. Indicates whether an IRQ interrupt is pending:

0 No pending IRQ.

1 An IRQ interrupt is pending.

[6] F FIQ pending bit. Indicates whether an FIQ interrupt is pending:

0 No pending FIQ.

1 An FIQ interrupt is pending.

[5:0] - Reserved, RES0.

To access the ISR:

MRC p15, 0, <Rt>, c12, c1, 0 ; Read ISR into Rt

3.3.68 Invalidate All Register

IMP_CDBGDCI is always RES0.

3.3.69 Main ID Register

The MIDR provides identification information for the processor, including an implementer code for the
device and a device ID number.

Usage constraints

This register is accessible as follows:

EL0 EL1 EL2

- RO RO

Traps and enables
EL1 accesses to MIDR are trapped to EL2 when HSTR.T0 is set.

Configurations

This register is available in all build configurations.

Attributes

MIDR is a 32-bit register.

The following figure shows the MIDR bit assignments.

VariantImplementer

31 23 20 19 16 15 4 3 0

Architecture PartNum Revision

24

Figure 3-60  MIDR bit assignments

3 System Control
3.3 AArch32 register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-155

Non-Confidential



The following table shows the MIDR bit assignments.

Table 3-104  MIDR bit assignments

Bits Name Function

[31:24] Implementer Indicates the implementer code. This value is:

0x41 Arm Limited.

[23:20] Variant Indicates the variant number of the processor. This is the major revision number n in the rn part of the rnpn
description of the product revision status. This value is:

0x1 r1p2.

[19:16] Architecture Indicates the architecture code. This value is:

0xF Defined by CPUID scheme.

[15:4] PartNum Indicates the primary part number. This value is:

0xD13 Cortex-R52 processor.

[3:0] Revision Indicates the minor revision number of the processor. This is the minor revision number n in the pn part of the
rnpn description of the product revision status. This value is:

0x2 r1p2.

To access the MIDR:

MRC p15, 0, <Rt>, c0, c0, 0 ; Read MIDR into Rt

The MIDR can be accessed through the memory-mapped interface and the external debug interface,
offset 0xD00.

3.3.70 Memory Attribute Indirection Registers 0 and 1

The MAIR0 and MAIR1 provide the memory attribute encodings corresponding to the possible AttrIndx
values in a Protection Region Limit Address Register. The register gives the value for memory accesses
from states other than Hyp mode.

Usage constraints

These registers are accessible as follows:

EL0 EL1 EL2

- RW RW

Traps and enables
EL1 write accesses to these registers are trapped to EL2 when HCR.TVM is set. EL1 read
accesses are trapped to EL2 when HCR.TRVM is set. EL1 accesses are trapped to EL2 when
HSTR.T10 is set.

Configurations

These registers are available in all build configurations.

Attributes
MAIR0 and MAIR1 are 32-bit registers.

The following figure shows the MAIR0 and MAIR1 bit assignments.

3 System Control
3.3 AArch32 register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-156

Non-Confidential



Attr7 Attr6 Attr5 Attr4

Attr3
31 24 23 16 15 8 7 0

Attr2 Attr1 Attr0MAIR0

MAIR1

Figure 3-61  MAIR0 and MAIR1 bit assignments

The following table shows the MAIR0 and MAIR1 bit assignments.

Table 3-105  MAIR0 and MAIR1 bit assignments

Bits Name Function

[7:0] Attrmbf The memory attribute encoding for an AttrIndx[2:0] entry in a Protection Region Limit Address Register, where:
• AttrIndx[2] selects the appropriate MAIR:

— Setting AttrIndx[2] to 0 selects MAIR0.
— Setting AttrIndx[2] to 1 selects MAIR1.

• AttrIndx[2:0] gives the value of <n> in Attr<n>.

The following table shows the Attr<n>[7:4] bit assignments.

Table 3-106  Attr<n>[7:4] bit assignments

Bits Description

0b0000 Device memory. See The following table for the type of Device memory.

0b00RW, RW not 00 Normal Memory, Outer Write-Through transientbg.

0b0100 Normal Memory, Outer Non-Cacheable.

0b01RW, RW not 00 Normal Memory, Outer Write-Back transientbg.

0b10RW Normal Memory, Outer Write-Through non-transient.

0b11RW Normal Memory, Outer Write-Back non-transient.

The following table shows the Attr<n>[3:0] bit assignments. The encoding of Attr<n>[3:0] depends on
the value of Attr<n>[7:4].

Table 3-107  Attr<n>[3:0] bit assignments

Bits Description when Attr<n>[7:4] is 0000 Description when Attr<n>[7:4] is not 0000

0b0000 Device-nGnRnE memory UNPREDICTABLE

0b00RW, RW not 00 UNPREDICTABLE Normal Memory, Inner Write-Through transient

0b0100 Device-nGnRE memory Normal memory, Inner Non-Cacheable

0b01RW, RW not 00 UNPREDICTABLE Normal Memory, Inner Write-Back transient

0b1000 Device-nGRE memory Normal Memory, Inner Write-Through non-transient (RW=00)

0b10RW, RW not 00 UNPREDICTABLE Normal Memory, Inner Write-Through non-transient

0b1100 Device-GRE memory Normal Memory, Inner Write-Back non-transient (RW=00)

0b11RW, RW not 00 UNPREDICTABLE Normal Memory, Inner Write-Back non-transient

bf Where m is 0-7.
bg The transient hint is ignored.

3 System Control
3.3 AArch32 register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-157

Non-Confidential



The following table shows the encoding of the R and W bits that are used, in some Attr<n> encodings in
Table 3-106  Attr<n>[7:4] bit assignments on page 3-157 and Table 3-107  Attr<n>[3:0] bit
assignments on page 3-157 to define the Read-Allocate and Write-Allocate policies respectively.

Table 3-108  Encoding of R and W bits in some Attrm fields

R or W Description

0 Do not allocate

1 Allocate

To access the MAIR0:

MRC p15, 0, <Rt>, c10, c2, 0 ; Read MAIR0 into Rt
MCR p15, 0, <Rt>, c10, c2, 0 ; Write Rt to MAIR0

To access the MAIR1:

MRC p15, 0, <Rt>, c10, c2, 1 ; Read MAIR1 into Rt
MCR p15, 0, <Rt>, c10, c2, 1 ; Write Rt to MAIR1

3.3.71 Memory Model Feature Register 0

The ID_MMFR0 provides information about the memory model and memory management support.

Usage constraints

This register is accessible as follows:

EL0 EL1 EL2

- RO RO

Must be interpreted with ID_MMFR1, ID_MMFR2, and ID_MMFR3. See:
• 3.3.72 Memory Model Feature Register 1 on page 3-159.
• 3.3.73 Memory Model Feature Register 2 on page 3-160.
• 3.3.74 Memory Model Feature Register 3 on page 3-162.

Traps and enables
EL1 read accesses to ID_MMFR0 are trapped to EL2 when HCR.TID3 or HSTR.T0 is set.

Configurations

This register is available in all build configurations.

Attributes
ID_MMFR0 is a 32-bit register.

The following figure shows the ID_MMFR0 bit assignments.

31 12 11 8 7 0

OuterShr PMSA

4 328 27 24 23 20 19 16 15

FCSE AuxReg TCM ShareLvl VMSAInnerShr

Figure 3-62  ID_MMFR0 bit assignments

The following table shows the ID_MMFR0 bit assignments.

3 System Control
3.3 AArch32 register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-158

Non-Confidential



Table 3-109  ID_MMFR0 bit assignments

Bits Name Function

[31:28] InnerShr Indicates the innermost shareability domain implemented:

0x0 Implemented as non-cacheable.

[27:24] FCSE Indicates support for Fast Context Switch Extension (FCSE):

0x0 Not supported.

[23:20] AuxReg Indicates support for Auxiliary registers:

0x2 Support for Auxiliary Fault Status Registers (AIFSR and ADFSR) and Auxiliary Control Register.

[19:16] TCM Indicates support for TCMs and associated DMAs:

0x1 TCMs and associated DMAs supported.

[15:12] ShareLvl Indicates the number of shareability levels implemented:

0x1 Two levels of shareability implemented.

[11:8] OuterShr Indicates the outermost shareability domain implemented:

0x0 Implemented as non-cacheable.

[7:4] PMSA Indicates support for a PMSA:

0x4 Support for Armv8-R base and limit PMSA.

[3:0] VMSA Indicates support for a Virtual Memory System Architecture (VMSA).

0x0 VMSA not supported.

To access the ID_MMFR0:

MRC p15,0,<Rt>,c0,c1,4 ; Read ID_MMFR0 into Rt

3.3.72 Memory Model Feature Register 1

The ID_MMFR1 provides information about the memory model and memory management support.

Usage constraints

This register is accessible as follows:

EL0 EL1 EL2

- RO RO

Must be interpreted with ID_MMFR0, ID_MMFR2, and ID_MMFR3. See:
• 3.3.71 Memory Model Feature Register 0 on page 3-158.
• 3.3.73 Memory Model Feature Register 2 on page 3-160.
• 3.3.74 Memory Model Feature Register 3 on page 3-162.

Traps and enables
EL1 read accesses to ID_MMFR1 are trapped to EL2 when HCR.TID3 or HSTR.T0 is set.

Configurations

This register is available in all build configurations.

3 System Control
3.3 AArch32 register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-159

Non-Confidential



Attributes
ID_MMFR1 is a 32-bit register.

The following figure shows the ID_MMFR1 bit assignments.

31 12 11 8 7 0

BPred

4 328 27 2423 20 19 16 15

L1TstCln L1Uni L1Hvd L1UniSW L1HvdSW L1UniVA L1HvdVA

Figure 3-63  ID_MMFR1 bit assignments

The following table shows the ID_MMFR1 bit assignments. This table should be read in conjunction
with the Arm® Architecture Reference Manual Supplement Armv8, for Armv8-R architecture profile.

Table 3-110  ID_MMFR1 bit assignments

Bits Name Function

[31:28] BPred Indicates branch predictor management requirements:

0x4 For execution correctness, branch predictor requires no flushing at any time.

[27:24] L1TstCln Indicates the supported L1 Data cache test and clean operations, for Harvard or unified cache implementation:

0x0 None supported.

[23:20] L1Uni Indicates the supported entire L1 cache maintenance operations, for a unified cache implementation:

0x0 None supported.

[19:16] L1Hvd Indicates the supported entire L1 cache maintenance operations, for a Harvard cache implementation:

0x0 None supported.

[15:12] L1UniSW Indicates the supported L1 cache line maintenance operations by set/way, for a unified cache implementation:

0x0 None supported.

[11:8] L1HvdSW Indicates the supported L1 cache line maintenance operations by set/way, for a Harvard cache implementation:

0x0 None supported.

[7:4] L1UniVA Indicates the supported L1 cache line maintenance operations by MVA, for a unified cache implementation:

0x0 None supported.

[3:0] L1HvdVA Indicates the supported L1 cache line maintenance operations by MVA, for a Harvard cache implementation:

0x0 None supported.

To access the ID_MMFR1:

MRC p15, 0, <Rt>, c0, c1, 5 ; Read ID_MMFR1 into Rt

3.3.73 Memory Model Feature Register 2

The ID_MMFR2 provides information about the implemented memory model and memory management
support.

3 System Control
3.3 AArch32 register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-160

Non-Confidential



Usage constraints

This register is accessible as follows:

EL0 EL1 EL2

- RO RO

Must be interpreted with ID_MMFR0, ID_MMFR1, and ID_MMFR3. See:
• 3.3.71 Memory Model Feature Register 0 on page 3-158.
• 3.3.72 Memory Model Feature Register 1 on page 3-159.
• 3.3.74 Memory Model Feature Register 3 on page 3-162.

Traps and enables
EL1 read accesses to ID_MMFR2 are trapped to EL2 when HCR.TID3 or HSTR.T0 is set.

Configurations

This register is available in all build configurations.

Attributes
ID_MMFR2 is a 32-bit register.

The following figure shows the ID_MMFR2 bit assignments.

31 12 11 8 7 0

HWAccFlg

4 328 27 24 23 20 19 16 15

WFIStall MemBarr UniTLB HvdTLB LL1HvdRng L1HvdBG L1HvdFG

Figure 3-64  ID_MMFR2 bit assignments

The following table shows the ID_MMFR2 bit assignments.

Table 3-111  ID_MMFR2 bit assignments

Bits Name Function

[31:28] HWAccFlg Hardware Access Flag. Indicates support for a Hardware Access flag, as part of the VMSAv7 implementation:

0x0 Not supported.

[27:24] WFIStall Wait For Interrupt Stall. Indicates the support for Wait For Interrupt (WFI) stalling:

0x1 Support for WFI stalling.

[23:20] MemBarr Memory Barrier. Indicates the supported CP15* memory barrier operations.

0x2 Supported CP15* memory barrier operations are:
• Data Synchronization Barrier (CP15DSB).
• Instruction Synchronization Barrier (CP15ISB).
• Data Memory Barrier (CP15DMB).

[19:16] UniTLB Unified TLB. Indicates the supported TLB maintenance operations, for a unified TLB implementation.

0x0 Not supported.

[15:12] HvdTLB Harvard TLB. Indicates the supported TLB maintenance operations, for a Harvard TLB implementation:

0x0 Not supported.

3 System Control
3.3 AArch32 register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-161

Non-Confidential



Table 3-111  ID_MMFR2 bit assignments (continued)

Bits Name Function

[11:8] LL1HvdRng L1 Harvard cache Range. Indicates the supported L1 cache maintenance range operations, for a Harvard cache
implementation:

0x0 Not supported.

[7:4] L1HvdBG L1 Harvard cache Background fetch. Indicates the supported L1 cache background prefetch operations, for a
Harvard cache implementation:

0x0 Not supported.

[3:0] L1HvdFG L1 Harvard cache Foreground fetch. Indicates the supported L1 cache foreground prefetch operations, for a
Harvard cache implementation:

0x0 Not supported.

To access the ID_MMFR2:

MRC p15,0,<Rt>,c0,c1,6 ; Read ID_MMFR2 into Rt

3.3.74 Memory Model Feature Register 3

The ID_MMFR3 provides information about the memory model and memory management support.

Usage constraints

This register is accessible as follows:

EL0 EL1 EL2

- RO RO

Must be interpreted with ID_MMFR0, ID_MMFR1, and ID_MMFR2. See:
• 3.3.71 Memory Model Feature Register 0 on page 3-158.
• 3.3.72 Memory Model Feature Register 1 on page 3-159.
• 3.3.73 Memory Model Feature Register 2 on page 3-160.

Traps and enables
EL1 read accesses to ID_MMFR3 are trapped to EL2 when HCR.TID3 or HSTR.T0 is set.

Configurations

This register is available in all build configurations.

Attributes
ID_MMFR3 is a 32-bit register.

The following figure shows the ID_MMFR3 bit assignments.

4 331 16 15 012 11 8 728 27

Supersec

24 23

CMemSz

20 19

CohWalk RES0 MaintBcst BPMaint CMaintSW CMaintVA

Figure 3-65  ID_MMFR3 bit assignments

The following table shows the ID_MMFR3 bit assignments. This table should be read in conjunction
with the Arm® Architecture Reference Manual Supplement Armv8, for Armv8-R architecture profile.

3 System Control
3.3 AArch32 register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-162

Non-Confidential



Table 3-112  ID_MMFR3 bit assignments

Bits Name Function

[31:28] Supersec Supersections. Indicates support for supersections:

0xF Supersections not supported.

[27:24] CMemSz Cached Memory Size. Indicates the size of physical memory supported by the processor caches:

0x0 4GB, corresponding to a 32-bit physical address range.

[23:20] CohWalk Coherent walk. Indicates whether translation table updates require a clean to the point of unification:

0x1 Updates to the translation tables do not require a clean to the point of unification to ensure visibility
by subsequent translation table walks.

[19:16] - Reserved, RES0.

[15:12] MaintBcst Maintenance broadcast. Indicates whether cache and branch predictor operations are broadcast:

0x2 Cache and branch predictor operations affect structures according to shareability and defined
behavior of instructions.

[11:8] BPMaint Branch predictor maintenance. Indicates the supported branch predictor maintenance operations.

0x2 Supported branch predictor maintenance operations.

[7:4] CMaintSW Cache maintenance by set/way. Indicates the supported cache maintenance operations by set/way.

0x1 Supported hierarchical cache maintenance operations by set/way.

[3:0] CMaintVA Cache maintenance by VA. Indicates the supported cache maintenance operations by VA.

0x1 Supported hierarchical cache maintenance operations by VA.

To access the ID_MMFR3:

MRC p15, 0, <Rt>, c0, c1, 7 ; Read ID_MMFR3 into Rt

3.3.75 Memory Model Feature Register 4

The ID_MMFR4 provides information about the implemented memory model and memory management
support.

Usage constraints

This register is accessible as follows:

EL0 EL1 EL2

- RO RO

Traps and enables
EL1 read accesses to ID_MMFR4 are trapped to EL2 when HCR.TID3 or HSTR.T0 is set.

Configurations

This register is available in all build configurations.

Attributes
ID_MMFR4 is a 32-bit register.

3 System Control
3.3 AArch32 register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-163

Non-Confidential



The following figure shows the ID_MMFR4 bit assignments.

31 8 7 4 3 0

RAZ AC2 RAZ

Figure 3-66  ID_MMFR4 bit assignments

The following table shows the ID_MMFR4 bit assignments.

Table 3-113  ID_MMFR4 bit assignments

Bits Name Function

[31:8] - Reserved, RAZ.

[7:4] AC2 Indicates the extension of the ACTLR and HACTLR registers using ACTLR2 and HACTLR2:

0b0001 ACTLR2 and HACTLR2 are implemented.

[3:0] - Reserved, RAZ.

To access the ID_MMFR4:

MRC p15, 0, <Rt>, c0, c2, 6 ; Read ID_MMFR4 into Rt

3.3.76 Memory Protection Control Register

The IMP_MEMPROTCTLR provides control to enable and disable ECC protection for the Flash
interface, L1 cache memory, and TCM memory.

Usage constraints

This register is accessible as follows:

EL0 EL1 EL2

- RW RW

Traps and enables
EL1 accesses to the IMP_MEMPROTCTLR are trapped to EL2 when HCR.TIDCP is set.

Configurations
This register is available in all build configurations.

Attributes
IMP_MEMPROTCTLR is a 32-bit register.

The following figure shows the IMP_MEMPROTCTLR bit assignments.

3 System Control
3.3 AArch32 register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-164

Non-Confidential



RES0

FLASHPROTEN
RAMPROTEN

31 2 1 03456

RES0
RAMPROTIMP

FLASHPROTIMP

Figure 3-67  IMP_MEMPROTCTLR bit assignments

The following table shows the IMP_MEMPROTCTLR bit assignments.

Table 3-114  IMP_MEMPROTCTLR bit assignments

Bits Name Function

[31:6] - Reserved, RES0.

[5] FLASHPROTIMP Flash protection implemented. Indicates the value read from the CFGFLASHPROTIMP configuration
signal. This bit is RO/WI.

[4] RAMPROTIMP RAM protection implemented. This bit is RO/WI.

[3:2] - Reserved, RES0.

[1] FLASHPROTEN Enable Flash interface protection.

0 Flash protection disabled.

1 Flash protection enabled.

Input signal CFGFLASHPROTEN defines the reset value.
 Note 

Flash protection FLASHPROTEN is always disabled when FLASHPROTIMP is 0, but is always enabled
(though not necessarily showing the value of 1) when signal integrity protection is implemented.

[0] RAMPROTEN Enable TCM and L1 cache RAM protection.

0 RAM protection disabled.

1 RAM protection enabled.

Input signal CFGRAMPROTEN defines the reset value.
 Note 

The RAMPROTEN value is ignored (the design behaves as if it is 0) when RAMPROTIMP is 0.

To access the IMP_MEMPROTCTLR:

MRC p15, 1, <Rt>, c9, c1, 2 ; Read IMP_MEMPROTCTLR into Rt

MCR p15, 1, <Rt>, c9, c1, 2 ; Write Rt to IMP_MEMPROTCTLR

3.3.77 MPU Type Register

The MPUIR indicates the number of programmable memory regions implemented by the EL1-controlled
MPU.

3 System Control
3.3 AArch32 register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-165

Non-Confidential



Usage constraints

This register is accessible as follows:

EL0 EL1 EL2

- RO RO

Traps and enables
EL1 read accessed to MPUIR are trapped to EL2 when HCR.TID1 is set.

Configurations
This register is available in all build configurations.

Attributes
MPUIR is a 32-bit register.

The following figure shows the MPUIR bit assignments.

31 0

RES0

1

nU

DREGION

16 15 8 7

IREGION

24 23

RES0

Figure 3-68  MPUIR bit assignments

The following table shows the MPUIR bit assignments.

Table 3-115  MPUIR bit assignments

Bits Name Function

[31:24] - This field is RES0.

[23:16] IREGION This field is RES0.

[15:8] DREGION Indicates the number of programmable memory regions implemented by the EL1-controlled MPU. This value
can be 16, 20, or 24.

[7:1] - This field is RES0.

[0] nU Not Unified MPU. Indicates whether the MPU implements a unified memory map.

0 Unified memory map.

To access the MPUIR:

MRC p15, 0, <Rt>, c0, c0, 4 ; Read MPUIR into Rt

3.3.78 Multiprocessor Affinity Register

The MPIDR provides core identification mechanism for scheduling purposes in a cluster.

Usage constraints

This register is accessible as follows:

EL0 EL1 EL2

- RO RO

3 System Control
3.3 AArch32 register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-166

Non-Confidential



Traps and enables
There are no traps or enables affecting this register.

Configurations

The internal MPIDR is architecturally mapped to the external EDDEVAFF0 register. The
register is available in all build configurations.

Attributes
MPIDR is a 32-bit register.

The following figure shows the MPIDR bit assignments.

31 30 29 8 7 0

U Aff2 Aff0

25 24

MT

23

Aff1RES0

16 15

M

Figure 3-69  MPIDR bit assignments

The following table shows the MPIDR bit assignments.

Table 3-116  MPIDR bit assignments

Bits Name Function

[31] M Reserved, RES1.

[30] U Indicates a single core system, as distinct from core 0 in a cluster. This value is:

0 Core is part of a cluster.

[29:25] - Reserved, RES0.

[24] MT Indicates whether the lowest level of affinity consists of logical PEs that are implemented using a multi-threading
type approach. This value is:

0 Performance of PEs at the lowest affinity level is largely independent.

[23:16] Aff2 Affinity level 2. The least significant affinity field, for this PE in the system.

Indicates the value read from the CFGMPIDRAFF2 configuration signal.

[15:8] Aff1 Affinity level 1. The intermediate affinity level field, for this PE in the system.

Indicates the value read from the CFGMPIDRAFF1 configuration signal.

[7:0] Aff0 Affinity level 0. The most significant affinity level field, for this PE in the system.

To access the MPIDR:

MRC p15, 0, <Rt>, c0, c0, 5 ; Read MPIDR into Rt

The EDDEVAFF0 can be accessed through the memory-mapped interface and the external debug
interface, offset 0xFA8.

3.3.79 Non-Secure Access Control Register

The Cortex-R52 processor does not implement TrustZone technology. Any read of the NSACR from
EL2 or from EL1 returns a value of 0x00000C00.

3 System Control
3.3 AArch32 register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-167

Non-Confidential



3.3.80 Peripheral Port Region Register

The IMP_PERIPHPREGIONR indicates the base address and size of the peripheral port region. Provides
control to enable and disable the peripheral port.

Usage constraints

This register is accessible as follows:

EL0 EL1 EL2

- RW/RO RW

Traps and enables
EL1 accesses to IMP_PERIPHPREGIONR are trapped to EL2 when HCR.TIDCP is set. EL1
writes to IMP_PERIPHPREGIONR are trapped to EL2 when HACTLR.PERIPHPREGIONR is
0.

Configurations
This register is available in all build configurations.

Attributes
IMP_PERIPHPREGIONR is a 32-bit register.

The following figure shows the IMP_PERIPHPREGIONR bit assignments.

BASEADDRESS RES0 SIZE

ENABLEEL2
ENABLEEL10

31 12 11 67 2 1 0

Figure 3-70  IMP_PERIPHPREGIONR bit assignments

The following table shows the IMP_PERIPHPREGIONR bit assignments.

Table 3-117  PERIPHPREGIONR bit assignments

Bits Name Function

[31:12] BASEADDRESS Peripheral port region base address. This value is set by the input signal CFGLLPPBASEADDR[31:12].

[11:7] - Reserved, RES0.

3 System Control
3.3 AArch32 register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-168

Non-Confidential



Table 3-117  PERIPHPREGIONR bit assignments (continued)

Bits Name Function

[6:2] SIZE Indicates the peripheral port region size:

0b00000 No peripheral port region.

0b00011 4KB.

0b00100 8KB.

0b00101 16KB.

0b00110 32KB.

0b00111 64KB.

0b01000 128KB.

0b01001 256KB.

0b01010 512KB.

0b01011 1MB.

0b01100 2MB.

0b01101 4MB.

This value is set by the input signals CFGLLPPSIZE[3:0] and CFGLLPPIMP.

[1] ENABLEEL2 Enable peripheral port at EL2. This bit resets to 0.

[0] ENABLEEL10 Enable peripheral port at EL1 and EL0. This bit resets to 0.

To access the IMP_PERIPHPREGIONR:

MRC p15, 0, <Rt>, c15, c0, 0 ; Read IMP_PERIPHPREGIONR into Rt
MCR p15, 0, <Rt>, c15, c0, 0 ; Write Rt to IMP_PERIPHPREGIONR

3.3.81 Physical Address Register

The PAR receives the Physical Address from any address translation operation. In the Cortex-R52
processor translation refers to a lookup in the MPU.

Usage constraints

This register is accessible as follows:

EL0 EL1 EL2

- RW RW

Traps and enables
EL1 accesses to PAR are trapped to EL2 when HSTR.T7 is set.

Configurations

There are two formats for this register which depends on the value of bit[0], F bit, of this
register.

This register available in all build configurations.

Attributes
Both formats of the PAR register are 64 bits.

The following table shows the PAR bit assignments common to all formats.

3 System Control
3.3 AArch32 register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-169

Non-Confidential



Table 3-118  PAR bit assignments

Bits Name Function

[0] F Indicates whether the conversion completed successfully:

0 Address translation completed successfully.

1 Address translation aborted.

To access the PAR when accessing as a 32-bit register:

      MRC p15, 0, <Rt>, c7, c4, 0 ; Read PAR[31:0] into Rt
      MCR p15, 0, <Rt>, c7, c4, 0 ; Write Rt to PAR[31:0]. PAR[63:32] are unchanged
      

To access the PAR when accessing as a 64-bit register:

      MRRC p15, 0, <Rt>, <Rt2>, c7 ; Read 64-bit PAR into Rt (low word) and Rt2 (high word)
      MCRR p15, 0, <Rt>, <Rt2>, c7 ; Write Rt (low word) and Rt2 (high word) to 64-bit PAR
      

Physical Address Register (F==0)

The following figure shows the PAR bit assignments for PAR.F==0.

63 56 55 40

PA

39

RES1

12

RES0

10 9

SH

8 7 611

F

1 0

RES0ATTR RES0

NS

Figure 3-71  PAR bit assignments for PAR.F==0

The following table shows the PAR bit assignments for PAR.F==0.

Table 3-119  PAR bit assignments for PAR.F==0

Bits Name Function

[63:56] ATTR Memory attributes for the returned output address. This field uses the same encoding as the Attr<n> fields in MAIR0
and MAIR1.

[55:40] - Reserved, RES0.

[39:12] PA Output address. The output address (OA) corresponding to the supplied input address. This field returns address
bits[31:12]. Bits[39:32] are RES0.

[11] - Reserved, RES1

[10] - Reserved, RES0.

[9] NS Non-secure:

1 No security extensions are implemented.

This is the reset value.

3 System Control
3.3 AArch32 register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-170

Non-Confidential



Table 3-119  PAR bit assignments for PAR.F==0 (continued)

Bits Name Function

[8:7] SH Shareability attribute, for the returned output address. Permitted values are:

0b00 Non-shareable.

0b10 Outer Shareable.

0b11 Inner Shareable.

The value 0b01 is reserved.
 Note 

This field returns the value 0b10 for:
• Any type of Device memory.
• Normal memory with both Inner Non-cacheable and Outer Non-cacheable attributes.

[6:1] - Reserved, RES0.

Physical Address Register (F==1)

The following figure shows the PAR bit assignments for PAR.F==1.

63

RES1

12

RES0

10 9 8 7 611

F

1 0

RES0

FSTAGE
S2WLK

RES0

FST

Figure 3-72  PAR bit assignments for PAR.F==1

The following table shows the PAR bit assignments for PAR.F==1.

Table 3-120  PAR bit assignments for PAR.F==1

Bits Name Function

[63:12] - Reserved, RES0

[11] - Reserved, RES1.

[10] - Reserved, RES0

[9] FSTAGE Indicates the translation stage at which the translation aborted:

0 Translation aborted because of a fault in the stage 1 translation.

1 Translation aborted because of a fault in the stage 2 translation.

[8] S2WLK In Cortex-R52, this field is always set to 0.

[7] - Reserved, RES0

[6:1] FST Fault status field. Values are as in the DFSR.STATUS and IFSR.STATUS fields.

3 System Control
3.3 AArch32 register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-171

Non-Confidential



3.3.82 Pin Options Register

The IMP_PINOPTR shows the tie-off values of the configuration signals used, to configure the
processor, during integration of the processor with the rest of the SoC. This information is not otherwise
visible to software.

Usage constraints

This register is accessible as follows:

EL0 EL1 EL2

- RO RO

Traps and enables
There are no traps and enables affecting this register.

Configurations
This register is available in all build configurations.

Attributes
IMP_PINOPTR is a 32-bit register.

The following figure shows the IMP_PINOPTR bit assignments.

RES0

CFGINITREG
CFGRAMPROTEN

CFGFLASHPROTEN

CFGCLUSTERUTID
CFGSLSPLIT

CFGAXISTCMBASEADDR

CFGL1CACHEINVDISx
CFGENDIANESSx

CFGTHUMBEXCEPTIONSx
RES0

CFGFLASHENx
RES0

CFGTCMBOOTx

31 24 23 22 21 20 19 18 17 16 15 7 6 5 4 3 2 1 014

CFGMRPEN

RES0

Figure 3-73  IMP_PINOPTR bit assignments

The following table shows the IMP_PINOPTR bit assignments.

Table 3-121  IMP_PINOPTR bit assignments

Bits Name Function

[31:24] CFGAXISTCMBASEADDR Value of the CFGAXISTCMBASEADDR signal.

[23] CFGSLSPLIT Value of the CFGSLSPLIT signal.

[22:21] CFGCLUSTERUTID Value of the CFGCLUSTERUTID signal.

[20:19] - Reserved, RES0.

[18] CFGFLASHPROTEN Value of the CFGFLASHPROTEN signal.

3 System Control
3.3 AArch32 register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-172

Non-Confidential



Table 3-121  IMP_PINOPTR bit assignments (continued)

Bits Name Function

[17] CFGRAMPROTEN Value of the CFGRAMPROTEN signal.

[16] CFGINITREG Value of the CFGINITREG signal.

[15] CFGMRPEN Value of the CFGMRPEN signal.

[14:7] - Reserved, RES0.

[6] CFGL1CACHEINVDISx Value of the CFGL1CACHEINVDISx signal.

[5] CFGENDIANESSx Value of the CFGENDIANESSx signal.

[4] CFGTHUMBEXCEPTIONSx Value of the CFGTHUMBEXCEPTIONSx signal.

[3] - Reserved, RES0.

[2] CFGFLASHENx Value of the CFGFLASHENx signal.

[1] - Reserved, RES0.

[0] CFGTCMBOOTx Value of the CFGTCMBOOTx signal.

To access the IMP_PINOPTR:

MRC p15, 0, <Rt>, c15, c2, 7 ; Read IMP_PINOPTR into Rt

3.3.83 Processor Feature Register 0

The ID_PFR0 provides top-level information about the instruction sets supported by the processor in
AArch32.

Usage constraints

This register is accessible as follows:

EL0 EL1 EL2

- RO RO

ID_PFR0 must be interpreted with ID_PFR1.

Traps and enables
EL1 read accesses to ID_PFR0 are trapped to EL2 when HCR.TID3 or HSTR.T0 is set.

Configurations
This register is available in all build configurations.

Attributes
ID_PFR0 is a 32-bit register.

The following figure shows the ID_PFR0 bit assignments.

31 12 11 8 7 0

RES0 State2 State1

16 15 4 3

State0State3

Figure 3-74  ID_PFR0 bit assignments

The following table shows the ID_PFR0 bit assignments.

3 System Control
3.3 AArch32 register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-173

Non-Confidential



Table 3-122  ID_PFR0 bit assignments

Bits Name Function

[31:16] - Reserved, RES0.

[15:12] State3 Indicates support for Thumb Execution Environment (T32EE) instruction set. This value is:

0x0 Processor does not support the T32EE instruction set.

[11:8] State2 Indicates support for Jazelle. This value is:

0x1 Processor supports trivial implementation of Jazelle.

[7:4] State1 Indicates support for T32 instruction set. This value is:

0x3 Processor supports T32 encoding after the introduction of Thumb-2 technology, and for all 16-bit and 32-
bit T32 basic instructions.

[3:0] State0 Indicates support for A32 instruction set. This value is:

0x1 A32 instruction set implemented.

To access the ID_PFR0:

MRC p15, 0, <Rt>, c0, c1, 0 ; Read ID_PFR0 into Rt

3.3.84 Processor Feature Register 1

The ID_PFR1 register provides information about the programmers model and architecture extensions
supported by the processor.

Usage constraints

This register is accessible as follows:

EL0 EL1 EL2

- RO RO

Must be interpreted with ID_PFR0.

Traps and enables
EL1 read accesses to ID_PFR1 are trapped to EL2 when HCR.TID3 or HSTR.T0 is set.

Configurations
This register is available in all build configurations.

Attributes
ID_PFR1 is a 32-bit register.

The following figure shows the ID_PFR1 bit assignments.

31 12 11 8 7 0

GIC CPU

4 316 15

Virtualization

20 1923242728

GenTimer MProgMod Security ProgModSec_fracVirt_frac

Figure 3-75  ID_PFR1 bit assignments

The following table shows the ID_PFR1 bit assignments.

3 System Control
3.3 AArch32 register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-174

Non-Confidential



Table 3-123  ID_PFR1 bit assignments

Bits Name Function

[31:28] GIC CPU GIC CPU support:

0x1 System register interface to the GIC CPU interface is supported.

[27:24] Virt_frac Virtualization fractional field:

0x0 No features from the Armv7 Virtualization Extensions are implemented.

[23:20] Sec_frac Security fractional field:

0x1 The VBAR register is implemented. The TTBCR register is not implemented in the Cortex-R52
processor.

[19:16] GenTimer Generic Timer support:

0x1 Generic Timer implemented.

[15:12] Virtualization Indicates support for Virtualization:

0x1 Virtualization implemented.

[11:8] MProgMod M profile programmers model support:

0x0 Not supported.

[7:4] Security Security support:

0x0 Security not implemented.

[3:0] ProgMod Indicates support for the standard programmers model for Armv4 and later. Model must support User, FIQ,
IRQ, Supervisor, Abort, Undefined and System modes:

0x1 Supported.

To access the ID_PFR1:

MRC p15, 0, <Rt>, c0, c1, 1 ; Read ID_PFR1 into Rt

3.3.85 Protection Region Base Address Register

The Protection Region Base Address Register indicates the base address of the EL-1 controlled MPU
region, and provides two mechanisms for accessing it, direct (PRBARn) and indirect (PRBAR). For the
indirect access also see PRSELR.

Usage constraints

This register is accessible as follows:

EL0 EL1 EL2

- RW RW

Traps and enables
The PRBAR is accessible from EL2, and from EL1 when VSCTLR.MSA is 0.

Configurations
This register is available in all build configurations.

3 System Control
3.3 AArch32 register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-175

Non-Confidential



Attributes
PRBAR and PRBARn are 32-bit registers.

The following figure shows the PRBAR bit assignments:

31

RES0

2 1 0

BASE

SH[1:0]
AP[2:1]

XN

3456

Figure 3-76  PRBAR bit assignments

The following table shows the PRBAR bit assignments:

Table 3-124  PRBAR bit assignments

Bits Name Function

[31:6] BASE Contains bits[31:6] of the lower inclusive limit of the selected EL1-controlled MPU memory region. This value is
zero extended to provide the base address to be checked against.

[5] - Reserved, RES0.

[4:3] SH[1:0] Shareability field.

[2:1] AP[2:1] Access Permission bits.

[0] XN Execute-never.

The following table describes the SH[1:0] field encodings for Normal memory.

Table 3-125  SH[1:0] field encoding for Normal memory

SH[1:0] Normal memory

0b00 Non-shareable

0b01 UNPREDICTABLE

0b10 Outer Shareable

0b11 Inner Shareable

The following table describes the data access permissions for EL1-controlled MPU.

Table 3-126  AP[2:1] Data access permissions for EL1-controlled MPU

AP[2:1] Access from EL1 Access from EL0

0b00 Read/write None

0b01 Read/write Read/write

0b10 Read-only None

0b11 Read-only Read-only

3 System Control
3.3 AArch32 register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-176

Non-Confidential



This register resets to an UNKNOWN value.

To access the PRBAR as selected by PRSELR:

MRC p15, 0, <Rt>, c6, c3, 0 ; Read PRBAR into Rt
MCR p15, 0, <Rt>, c6, c3, 0 ; Write Rt to PRBAR

Direct access is provided to PRBAR0 to PRBAR15. To access PRBARn, where n is referenced as a
binary number:

MRC p15, 0, <Rt>, c6, c8+n[3:1], 4*n[0] ; Read PRBARn into Rt
MCR p15, 0, <Rt>, c6, c8+n[3:1], 4*n[0] ; Write Rt into PRBARn

3.3.86 Protection Region Limit Address Register

The Protection Region Limit Address Register indicates the limit address of the EL1-controlled MPU
region, and provides two mechanisms for accessing it, direct (PRLARn) and indirect (PRLAR). For the
indirect access also see PRSELR.

Usage constraints

This register is accessible as follows:

EL0 EL1 EL2

- RW RW

Traps and enables
The PRLAR is accessible from EL2, and from EL1 when VSCTLR.MSA is 0.

Configurations
This register is available in all build configurations.

Attributes
PRLAR and PRLARn are 32-bit registers.

The following figure shows the PRLAR bit assignments:

31

RES0

1 0

LIMIT

AttrIndx[2:0]
EN

3456

Figure 3-77  PRLAR bit assignments

The following table shows PRLAR bit assignments.

Table 3-127  PRLAR bit assignments

Bits Name Function

[31:6] LIMIT Contains bits[31:6] of the upper inclusive limit of the selected EL1 MPU memory region. This value is
postfixed with 0x3F to provide the limit address to be checked against.

Resets to an UNKNOWN value.

[5:4] - Reserved, RES0.

3 System Control
3.3 AArch32 register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-177

Non-Confidential



Table 3-127  PRLAR bit assignments (continued)

Bits Name Function

[3:1] AttrIndx[2:0] Indexes a set of attributes in one of the MAIRx registers.

Resets to an UNKNOWN value.

[0] EN Region enable.

0 Region disabled.

1 Region enabled.

This field resets to zero.

To access the PRLAR:

MRC p15, 0, <Rt>, c6, c3, 1 ; Read PRLAR into Rt
MCR p15, 0, <Rt>, c6, c3, 1 ; Write Rt to PRLAR

Direct access is provided to PRLAR0 to PRLAR15. To access PRLARn, where n is referenced as a
binary number:

MRC p15, 0, <Rt>, c6, c8+n[3:1], 4*n[0]+1 ; Read PRLARn into Rt
MCR p15, 0, <Rt>, c6, c8+n[3:1], 4*n[0]+1 ; Write Rt into PRLARn

3.3.87 Protection Region Selection Register

The PRSELR indicates, and selects the current EL1-controlled MPU region registers, PRBAR, and
PRLAR.

Usage constraints

This register is accessible as follows:

EL0 EL1 EL2

- RW RW

Traps and enables
The PRSELR is accessible from EL2, and from EL1 when VSCTLR.MSA is 0.

Configurations
This register is available in all build configurations.

Attributes
PRSELR is a 32-bit register.

0 or 16 EL2-controlled MPU regions

The following figure shows the PRSELR bit assignments if 0 or 16 EL2-controlled MPU regions are
implemented.

31 0

RES0 REGION

4 3

Figure 3-78  PRSELR bit assignments for 0 or 16 EL2-controlled MPU regions

3 System Control
3.3 AArch32 register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-178

Non-Confidential



The following table shows the PRSELR bit assignments if 0 or 16 EL2-controlled MPU regions are
implemented.

Table 3-128  PRSELR bit assignments for 0 or 16 EL2-controlled MPU regions

Bits Name Function

[31:4] - Reserved, RES0.

[3:0] REGION The number of the current region visible in PRBAR and PRLAR.

If a 0 region MPU is implemented, writing a value to this register has UNPREDICTABLE results.

Writing a value to this register that is greater than or equal to 16 has UNPREDICTABLE results.

20 or 24 EL2-controlled MPU regions

The following figure shows the PRSELR bit assignments if 20 or 24 EL2-controlled MPU regions are
implemented.

31 0

RES0 REGION

5 4

Figure 3-79  PRSELR bit assignments for 20 or 24 EL2-controlled MPU regions

The following table shows the PRSELR bit assignments if 20 or 24 EL2-controlled MPU regions are
implemented.

Table 3-129  PRSELR bit assignments for 20 or 24 EL2-controlled MPU regions

Bits Name Function

[31:5] - Reserved, RES0.

[4:0] REGION The number of the current region visible in PRBAR and PRLAR.

If a 20 region MPU is implemented, writing a value to this register greater than or equal to 20 has UNPREDICTABLE

results.

If a 24 region MPU is implemented, writing a value to this register greater than or equal to 24 has UNPREDICTABLE

results.

To access the PRSELR:

MRC p15, 0, <Rt>, c6, c2, 1 ; Read PRSELR into Rt
MCR p15, 0, <Rt>, c6, c2, 1 ; Write Rt to PRSELR

3.3.88 Quality Of Service Register

The IMP_QOSR provides a programmable Quality of Service (QoS) identifier for the AXIM read and
write channels.

Usage constraints

This register is accessible as follows:

EL0 EL1 EL2

- RW/RO RW

3 System Control
3.3 AArch32 register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-179

Non-Confidential



Traps and enables
Register is accessible as RW from EL1 when HACTLR.QOSR is set, RO from EL1 when
HACTLR.QOSR is clear.

Configurations
This register is available in all build configurations.

Attributes
IMP_QOSR is a 32-bit register.

The following figure shows the IMP_QOSR bit assignments.

31 12 11 8 7 4 3 0

RES0 RES0

AWQOS[3:0]
ARQOS[3:0]

Figure 3-80  IMP_QOSR bit assignments

The following table shows the IMP_QOSR bit assignments.

Table 3-130  IMP_QOSR bit assignments

Bits Name Function

[31:12] - Reserved, RES0

[11:8] AWQOS[3:0] QoS identifier sent on the write address channel for each write transaction

[7:4] - Reserved, RES0

[3:0] ARQOS[3:0] QoS identifier sent on the read address channel for each read transaction

To access the IMP_QOSR:

MRC p15, 1, <Rt>, c15, c3, 1 ; Read IMP_QOSR into Rt
MCR p15, 1, <Rt>, c15, c3, 1 ; Write Rt to IMP_QOSR

3.3.89 Reset Vector Base Address Register

RVBAR contains the address that execution starts from after reset.

Usage constraints

This register is accessible as follows:

EL0 EL1 EL2

- - RO

Traps and enables
EL1 accesses to RVBAR are trapped to EL2 when HSTR.T12 is set.

Configurations

This register is available in all build configurations.

Attributes
RVBAR is a 32-bit register.

The following figure shows the RVBAR bit assignments.

3 System Control
3.3 AArch32 register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-180

Non-Confidential



31 1 0

Reset Address

RES1

Figure 3-81  RVBAR bit assignments

The following table shows the RVBAR bit assignments.

Table 3-131  RVBAR bit assignments

Bits Name Function

[31:1] Reset Address The Reset Address[31:1].

[31:5] This is the value of CFGVECTABLEx[31:5].

[4:1] 0b0000

[0] - Reserved, RES1.

See the Arm® Architecture Reference Manual Supplement Armv8, for Armv8-R architecture profile for
more information.

To access the RVBAR:

MRC p15, 0, <Rt>, c12, c0, 1 ; Read RVBAR into Rt

3.3.90 Revision ID Register

The REVIDR provides implementation-specific minor revision information that can be interpreted only
in conjunction with the Main ID Register.

Usage constraints

This register is accessible as follows:

EL0 EL1 EL2

- RO RO

Traps and enables
EL1 read accesses to REVIDR are trapped to EL2 when HCR.TID1 or HSTR.T0 is set.

Configurations

This register is available in all build configurations.

Attributes
REVIDR is a 32-bit register.

The following figure shows the REVIDR bit assignments.

31 01112

RES0 ID number

Figure 3-82  REVIDR bit assignments

3 System Control
3.3 AArch32 register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-181

Non-Confidential



The following table shows the REVIDR bit assignments.

Table 3-132  REVIDR bit assignments

Bits Name Function

[31:12] - Reserved, RES0.

[11:0] ID number Implementation-specific revision information. The reset value is determined by the specific Cortex-R52
implementation.

0x000 Revision code is zero.

To access the REVIDR:

MRC p15, 0, <Rt>, c0, c0, 6 ; Read REVIDR into Rt

3.3.91 Slave Port Control Register

The IMP_SLAVEPCTLR provides control to set the bus privilege level required for the AXIS to access
the TCM.

Usage constraints

This register is accessible as follows:

EL0 EL1 EL2

- RW RW

Traps and enables
EL1 accesses to the IMP_SLAVEPCTLR are trapped to EL2 when HCR.TIDCP is set.

Configurations
This register is available in all build configurations.

Attributes
IMP_SLAVEPCTLR is a 32-bit register.

The following figure shows the IMP_SLAVEPCTLR bit assignments.

31 0

RES0

TCMACCLVL

2 1

Figure 3-83  IMP_SLAVEPCTLR bit assignments

The following table shows the IMP_SLAVEPCTLR bit assignments.

3 System Control
3.3 AArch32 register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-182

Non-Confidential



Table 3-133  IMP_SLAVEPCTLR bit assignments

Bits Name Function

[31:2] - Reserved, RES0.

[1:0] TCMACCLVL Indicates the privilege level required for the AXIS to access the TCM.

0b00 No access.

0b01 Privileged access only. This is the reset value.

0b10 Reserved.

0b11 Privileged and unprivileged access.

To access the IMP_SLAVEPCTLR:

MRC p15, 0, <Rt>, c11, c0, 0 ; Read IMP_SLAVEPCTLR into Rt
MCR p15, 0, <Rt>, c11, c0, 0 ; Write Rt to IMP_SLAVEPCTLR

3.3.92 System Control Register

The SCTLR provides control of the core, including its memory system.

Usage constraints

The SCTLR is accessible as follows:

EL0 EL1 EL2

- RW RW

Some bits in the register are read-only. These bits relate to non-configurable features of an
implementation, and are provided for compatibility with previous versions of the architecture.

Traps and enables

EL1 write accesses to SCTLR are trapped to EL2 if HCR.TVM is set. EL1 read accesses to
SCTLR are trapped to EL2 if HCR.TRVM is set. EL1 accesses to this register are trapped to
EL2 if HSTR.T1 is set.

Configurations

This register is available in all build configurations.

Attributes
SCTLR is a 32-bit register.

The following figure shows the SCTLR bit assignments.

3 System Control
3.3 AArch32 register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-183

Non-Confidential



RES0 I C A M

nTWI
BR

nTWE
WXN

UWXN
FI

RES1
RES0

EE
RES0

RES1
TE

RES0

RES1
RES0

SED
ITD

RES0
CP15BEN

RES1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Figure 3-84  SCTLR bit assignments

The following table shows the SCTLR bit assignments.

Table 3-134  SCTLR bit assignments

Bits Name Function

[31] - Reserved, RES0.

[30] TE T32 Exception enable. This bit controls whether exceptions taken to EL1 are taken in A32 or T32 state:

0 Exceptions taken in A32 state.

1 Exceptions taken in T32 state.

The input CFGTHUMBEXCEPTIONSx defines the reset value of the TE bit.

[29:28] - Reserved, RES1.

[27:26] - Reserved, RES0.

[25] EE Exception Endianness bit. The value of this bit defines the value of the CPSR.E bit on taking an exception to
EL1.

0 Little endian.

1 Big endian.

The input CFGENDIANESSx defines the reset value of the EE bit.

[24] - Reserved, RES0.

[23:22] - Reserved, RES1.

[21] FI Fast Interrupts. Read-only copy of the HSCTLR.FI bit.

3 System Control
3.3 AArch32 register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-184

Non-Confidential



Table 3-134  SCTLR bit assignments (continued)

Bits Name Function

[20] UWXN Unprivileged write permission implies EL1 Execute Never (XN). This bit can be used to require all memory
regions with unprivileged write permissions to be treated as XN for accesses from software executing at EL1.

0 Regions with unprivileged write permission are not forced to be XN, this is the reset value.

1 Regions with unprivileged write permission are forced to be XN for accesses from software executing
at EL1.

[19] WXN Write permission implies XN. This bit can be used to require all EL1-controlled MPU memory regions with
write permissions to be treated as XN at EL0 and EL1.

0 EL1-controlled MPU regions with write permission are not forced to be XN, this is the reset value.

1 EL1-controlled MPU regions with write permissions are forced to be XN.

[18] nTWE Do not trap Wait for Event (WFE).

0 If a WFE instruction executed at EL0 would cause execution to be suspended, for example if the event
register is not set and there is not a pending WFE wakeup event, it is taken as an exception to EL1
using the 0x1 ESR code.

1 WFE instructions are executed as normal.

The reset value is 1.

[17] BR Background Region for EL1.

The reset value is 0.

[16] nTWI Do not trap WFI.

0 If a WFI instruction executed at EL0 would cause execution to be suspended, for example if there is
no pending WFI wakeup event, it is taken as an exception to EL1 using the 0x1 ESR code.

1 WFI instructions are executed as normal.

The reset value is 1.

[15:13] - Reserved, RES0.

[12] I Instruction cache enable bit. This is a global enable bit for instruction caches:

0 All instruction access to Normal memory from EL1 and EL0 are Non-cacheable for the instruction
cache.

1 All instruction access to Normal memory from EL1 and EL0 can be cached in the instruction.

The reset value is 0.

[11] - Reserved, RES1.

[10:9] - Reserved, RES0.

[8] SED SETEND instruction disable. Disables SETEND instructions at EL0 and EL1.

0 The SETEND instruction execution is enabled at EL0 and EL1.

1 The SETEND instructions are UNDEFINED at EL0 and EL1.

The reset value is 0.

3 System Control
3.3 AArch32 register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-185

Non-Confidential



Table 3-134  SCTLR bit assignments (continued)

Bits Name Function

[7] ITD IT Disable:

0 The IT instruction functionality is available at EL0 and EL1.

1 All encodings of the IT instruction with hw1[3:0]!=1000 are UNDEFINED at EL0 and EL1. All
encodings of the subsequent instruction with the following values for hw1 are UNDEFINED at EL0 and
EL1:

0x11xxxxxxxxxxxxxx All 32-bit instructions, B(2), B(1), Undefined, SVC, Load/Store multiple

0x1x11xxxxxxxxxxxx Miscellaneous 16-bit instructions

0x1x10xxxxxxxxxx ADD Rd, PC, #imm

0x01001xxxxxxxxxxx LDR Rd, [PC, #imm]

0x0101xxx1111xxx ADD(4), CMP(3), MOV, BX pc, BLX pc

0x010001xx1xxxx111 ADD(4), CMP(3), MOV

The reset value is 0.

Though the Cortex-R52 processor supports this functionality, it is deprecated in Armv8.

[6] - Reserved, RES0.

[5] CP15BEN CP15* Barrier enable. Enables use of the CP15DMB, CP15DSB, and CP15ISB barrier operations at EL0 and
EL1:

0 CP15* barrier operations disabled at EL0 and EL1. Their encodings are UNDEFINED.

1 CP15* barrier operations enabled at EL0 and EL1.

The reset value is 1.

[4:3] - Reserved, RES1.

[2] C Cache enable, for data caching. This is a global enable bit for data and unified caches:

0 All data access to Normal memory from EL1 and EL0 are Non-cacheable.

1 All data access to Normal memory from EL1 and EL0 can be cached at all levels of data and unified
cache.

The reset value is 0.

[1] A Alignment check enable. This is the enable bit for Alignment fault checking:

0 Alignment fault checking disabled at EL0 and EL1, this is the reset value.

1 Alignment fault checking enabled at EL0 and EL1.

[0] M EL1-controlled MPU enable.

0 EL1-controlled MPU disabled.

1 EL1-controlled MPU enabled.

The reset value is 0.

To access the SCTLR:

MRC p15, 0, <Rt>, c1, c0, 0 ; Read SCTLR into Rt
MCR p15, 0, <Rt>, c1, c0, 0 ; Write Rt to SCTLR

3 System Control
3.3 AArch32 register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-186

Non-Confidential



3.3.93 TCM Error Record Register 0 and 1

The IMP_TCMERR0 and IMP_TCMERR1 indicate the TCM and the address index of a detected TCM
error.

Usage constraints

This register is accessible as follows:

EL0 EL1 EL2

- RW/RO RW

The IMP_TCMERR0 and IMP_TCMERR1 are accessible as RW from EL1 when
HACTLR.ERR is set, RO from EL1 when HACTLR.ERR is clear.

Traps and enables
EL1 write accesses are trapped to EL2 when HACTLR.ERR is 0.

Configurations
This register is available in all build configurations.

Attributes
IMP_TCMERR0 and IMP_TCMERR1 are 32-bit registers.

The following figure shows the IMP_TCMERR0 and IMP_TCMERR1 bit assignments.

FATAL
RES0

VALID

31 24 23 21 20 4 3 2 1 0

RAMID RES0 INDEX

Figure 3-85  IMP_TCMERR0 and IMP_TCMERR1 bit assignments

The following table shows the IMP_TCMERR0 and IMP_TCMERR1 bit assignments.

Table 3-135  IMP_TCMERR0 and IMP_TCMERR1 bit assignments

Bits Name Function

[31:24] RAMID RAM bank identifier.

0x00 ATCM one bank only.

0x11 BTCM bank 0.

0x12 BTCM bank 1.

0x13 BTCM both banks.

0x21 CTCM bank 0.

0x22 CTCM bank 1.

0x23 CTCM both banks.

[23:21] - Reserved, RES0.

[20:4] INDEX Bits [19:3] of the access address.

[3:2] - Reserved, RES0.

3 System Control
3.3 AArch32 register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-187

Non-Confidential



Table 3-135  IMP_TCMERR0 and IMP_TCMERR1 bit assignments (continued)

Bits Name Function

[1] FATAL Recorded error is a fatal error.

[0] VALID Register contents are valid.

To access the IMP_TCMERR0:

MRC p15, 2, <Rt>, c15, c2, 0 ; Read IMP_TCMERR0 into Rt
MCR p15, 2, <Rt>, c15, c2, 0 ; Write Rt to IMP_TCMERR0

To access the IMP_TCMERR1:

MRC p15, 2, <Rt>, c15, c2, 1 ; Read IMP_TCMERR1 into Rt
MCR p15, 2, <Rt>, c15, c2, 1 ; Write Rt to IMP_TCMERR1

 Note 

Writes to these registers are unique. If bit[1] and bit[0] are set to 0, and if the register holds information
about a correctable error, then the register is cleared. If bit[1] is set to 1 and bit[0] is set to 0, then the
register is always cleared.

3.3.94 TCM Region Registers A, B, and C

Each of the IMP_ATCMREGIONR, IMP_BTCMREGIONR, and IMP_CTCMREGIONR registers
indicates the TCM size, and controls its base address and enable for processor core accesses.

Usage constraints

These registers are accessible as follows:

EL0 EL1 EL2

- RW RW

Traps and enables
EL1 accesses to the IMP_ATCMREGIONR, IMP_BTCMREGIONR, and
IMP_CTCMREGIONR are trapped to EL2 when HCR.TIDCP is set.

Configurations
These registers are available in all build configurations.

Attributes
IMP_ATCMREGIONR, IMP_BTCMREGIONR, and IMP_CTCMREGIONR are 32-bit
registers.

The following figure shows the IMP_ATCMREGIONR, IMP_BTCMREGIONR, and
IMP_CTCMREGIONR bit assignments.

BASEADDRESS RES0 SIZE

ENABLEEL2
ENABLEEL10

31 1213 6 2 1 0

WAITSTATES

789

RES0

Figure 3-86  IMP_ATCMREGIONR, IMP_BTCMREGIONR, and IMP_CTCMREGIONR bit assignments

3 System Control
3.3 AArch32 register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-188

Non-Confidential



The following table shows the IMP_ATCMREGIONR, IMP_BTCMREGIONR, and
IMP_CTCMREGIONR bit assignments.

Table 3-136  IMP_ATCMREGIONR, IMP_BTCMREGIONR, and IMP_CTCMREGIONR bit assignments

Bits Name Function

[31:13] BASEADDRESS Bits [31:13] of the TCM base address. These bits reset to 0.

[12:9] - Reserved, RES0.

[8] WAITSTATES Indicates the number of wait states for TCM accesses.

[7] - Reserved, RES0.

[6:2] SIZE Indicates the TCM size:

0b0000 No TCM present.

0b00100 8KB.

0b00101 16KB.

0b00110 32KB.

0b00111 64KB.

0b01000 128KB.

0b01001 256KB.

0b01010 512KB.

0b01011 1MB.

[1] ENABLEEL2 Enable TCM at EL2.

[0] ENABLEEL10 Enable TCM at EL1 and EL0.

At reset all bits are 0 apart from SIZE and WAITSTATES. If CFGTCMBOOTx is HIGH, then
IMP_ATCMREGIONR.ENABLEEL2 and IMP_ATCMREGIONR.ENABLEEL10 reset at 1.

To access the IMP_ATCMREGIONR:

MRC p15, 0, <Rt>, c9, c1, 0 ; Read IMP_ATCMREGIONR into Rt
MCR p15, 0, <Rt>, c9, c1, 0 ; Write Rt to IMP_ATCMREGIONR

To access the IMP_BTCMREGIONR:

MRC p15, 0, <Rt>, c9, c1, 1 ; Read IMP_BTCMREGIONR into Rt
MCR p15, 0, <Rt>, c9, c1, 1 ; Write Rt to IMP_BTCMREGIONR

To access the IMP_CTCMREGIONR:

MRC p15, 0, <Rt>, c9, c1, 2 ; Read IMP_CTCMREGIONR into Rt
MCR p15, 0, <Rt>, c9, c1, 2 ; Write Rt to IMP_CTCMREGIONR

 Note 

The IMP_ATCMREGIONR, IMP_BTCMREGIONR, and IMP_CTCMREGIONR register base address
and TCM enable settings have no impact on accesses that the AXIS TCM slave port makes.

3.3.95 TCM Syndrome Register 0 and 1

The IMP_TCMSYNDR0 and IMP_TCMSYNDR1 are specific to the TCMs and record the syndrome
values in case of errors.

3 System Control
3.3 AArch32 register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-189

Non-Confidential



Usage constraints

This register is accessible as follows:

EL0 EL1 EL2

- RO RO

Traps and enables
These registers are always RO.

Configurations
This register is available in all build configurations.

Attributes
IMP_TCMSYNDR0 and IMP_TCMSYNDR1 are 32-bit registers.

The following figure shows the IMP_TCMSYNDR0 and IMP_TCMSYNDR1 bit assignments.

31 15 8 0

RES0

14

BANK1 BANK0

Figure 3-87  IMP_TCMSYNDR0 and IMP_TCMSYNDR1 bit assignments

The following table shows the IMP_TCMSYNDR0 and IMP_TCMSYNDR1 bit assignments.

Table 3-137  IMP_TCMSYNDR0 and IMP_TCMSYNDR1 bit assignments

Bits Name Function

[31:15] - Reserved, RES0.

[14:8] BANK1 Syndrome for a bank 1 error.

[7:0] BANK0 Syndrome for a bank 0 error.

To access the IMP_TCMSYNDR0:

MRC p15, 2, <Rt>, c15, c2, 2 ; Read IMP_TCMSYNDR0 into Rt

To access the IMP_TCMSYNDR1:

MRC p15, 2, <Rt>, c15, c2, 3 ; Read IMP_TCMSYNDR1 into Rt

The IMP_TCMSYNDRn registers are linked to the IMP_TCMERRn registers. When a new error is
recorded in IMP_TCMERRn, the corresponding syndrome or syndromes are recorded simultaneously in
IMP_TCMSYNDRn. The fields populated within IMP_TCMSYNDRn depend on the
IMP_TCMERRn.RAMID. The following table shows the possible associations between the registers.
When software clears an error in IMP_TCMERRn, IMP_TCMSYNDRn is also cleared.

Table 3-138  IMP_TCMSYNDRn fields

IMP_TCMERRn.RAMID Errors IMP_TCMSYNDRn fields written Syndrome description

0x00 ATCM, bank 0 BANK0[7:0] 1 x 8-bit (64-bit ECC scheme)

0x11 BTCM, bank 0 BANK0[6:0] 1 x 7-bit (32-bit ECC scheme)

0x12 BTCM, bank 1 BANK1[6:0] 1 x 7-bit (32-bit ECC scheme)

0x13 BTCM, bank 0 and bank 1 BANK0[6:0], BANK1[6:0] 2 x 7-bit (32-bit ECC schemes)

3 System Control
3.3 AArch32 register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-190

Non-Confidential



Table 3-138  IMP_TCMSYNDRn fields (continued)

IMP_TCMERRn.RAMID Errors IMP_TCMSYNDRn fields written Syndrome description

0x21 CTCM, bank 0 BANK0[6:0] 1 x 7-bit (32-bit ECC scheme)

0x22 CTCM, bank 1 BANK1[6:0] 1 x 7-bit (32-bit ECC scheme)

0x23 CTCM, bank 0 and bank 1 BANK0[6:0], BANK1[6:0] 2 x 7-bit (32-bit ECC schemes)

3.3.96 TCM Type Register

The TCMTR indicates which TCMs are implemented.

Usage constraints

This register is accessible as follows:

EL0 EL1 EL2

- RO RO

Traps and enables
EL1 read accesses to TCMTR are trapped to EL2 when HCR.TID1 or HSTR.T0 is set.

Configurations
This register is available in all build configurations.

Attributes
TCMTR is a 32-bit register.

The following figure shows the TCMTR bit assignments.

RES0

31 0

CTCM

29

TCMS

28

BTCM
ATCM

3 2 1

Figure 3-88  TCMTR bit assignments

The following table shows the TCMTR bit assignments.

Table 3-139  TCMTR bit assignments

Bits Name Function

[31:29] TCMS Indicates if TCMs are implemented:

0b000 No TCMs implemented.

0b100 One or more TCMs implemented.

[28:3] - Reserved, RES0.

[2] CTCM CTCM implemented and size is non-zero.

[1] BTCM BTCM implemented and size is non-zero.

[0] ATCM ATCM implemented and size is non-zero.

3 System Control
3.3 AArch32 register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-191

Non-Confidential



The reset value is the value of the bit fields, that depends on the number of TCMs implemented.

To access the TCMTR:

MRC p15, 0, <Rt>, c0, c0, 2 ; Read TCMTR into Rt
MCR p15, 0, <Rt>, c0, c0, 2 ; Write Rt to TCMTR

3.3.97 Test Register 0

The IMP_TESTR0 test register enables easier software testing by making some parts of the hardware
directly visible to the software.

Usage constraints

This register is accessible as follows:

EL0 EL1 EL2

- RO RO

Traps and enables
There are no traps and enables affecting this register.

Configurations
This register is available in all build configurations.

Attributes
IMP_TESTR0 is a 32-bit register.

The following figure shows the IMP_TESTR0 bit assignments.

31 04 3

RES0

2 16 5

VSEI
SEI

VIRQ
IRQ

VFIQ
FIQ

Figure 3-89  IMP_TESTR0 bit assignments

The following table shows the IMP_TESTR0 bit assignments.

Table 3-140  IMP_TESTR0 bit assignments

Bits Name Function

[31:6] - Reserved, RES0.

[5] VSEI Value of the Virtual System Error Interrupt signal to the PE.

[4] SEI Value of the System Error Interrupt signal to the PE.

[3] VIRQ Value of the Virtual IRQ Interrupt signal to the PE.

[2] IRQ Value of the IRQ Interrupt signal to the PE.

3 System Control
3.3 AArch32 register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-192

Non-Confidential



Table 3-140  IMP_TESTR0 bit assignments (continued)

Bits Name Function

[1] VFIQ Value of the Virtual FIQ Interrupt signal to the PE.

[0] FIQ Value of the FIQ Interrupt signal to the PE.

To access the IMP_TESTR0:

MRC p15, 4, <Rt>, c15, c0, 0 ; Read IMP_TESTR0 into Rt

3.3.98 Test Register 1

The IMP_TESTR1 register is used for Arm testing purposes only.

3.3.99 TLB Type Register

TLBTR is always RES0.

3.3.100 Vector Base Address Register

The VBAR holds the exception base address for exceptions that are not taken to Hyp mode.

Usage constraints

This register is accessible as follows:

EL0 EL1 EL2

- RW RW

Software must program the register with the required initial value as part of the processor boot
sequence.

Traps and enables
EL1 accesses to VBAR are trapped to EL2 when HSTR.T12 is set.

Configurations

This register is available in all build configurations.

Attributes
VBAR is a 32-bit register.

The following figure shows the VBAR bit assignments.

31 04

RES0

5

Vector Base Address

Figure 3-90  VBAR bit assignments

The following table shows the VBAR bit assignments.

3 System Control
3.3 AArch32 register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-193

Non-Confidential



Table 3-141  VBAR bit assignments

Bits Name Function

[31:5] Vector Base Address Vector Base Address. Bits[31:5] of the base address of the exception vectors for exceptions taken to this
Exception level. Bits[4:0] of an exception vector are the exception offset.

[4:0] - Reserved, RES0.

The reset value for VBAR is 0x00000000.

See the Arm® Architecture Reference Manual Supplement Armv8, for Armv8-R architecture profile for
more information.

To access the VBAR:

MRC p15, 0, <Rt>, c12, c0, 0 ; Read VBAR into Rt
MCR p15, 0, <Rt>, c12, c0, 0 ; Write Rt to VBAR

3.3.101 Virtualization Multiprocessor ID Register

The VMPIDR provides the value of the Virtualization Multiprocessor ID. This is the value returned by
EL1 reads of the MPIDR.

Usage constraints

This register is accessible as follows:

EL0 EL1 EL2

- - RW

Traps and enables
EL1 accesses to VMPIDR are trapped to EL2 when HSTR.T0 is set.

Configurations

This register is available in all build configurations.

Attributes

VMPIDR is a 32-bit register.

VMPIDR resets to the value of MPIDR.

The following figure shows the VMPIDR bit assignments.

VMPIDR

31 0

Figure 3-91  VMPIDR bit assignments

The following table shows the VMPIDR bit assignments.

Table 3-142  VMPIDR bit assignments

Bits Name Function

[31:0] VMPIDR MPIDR value returned by EL1 reads of the MPIDR. The MPIDR description defines the subdivision of this value.
See 3.3.78 Multiprocessor Affinity Register on page 3-166.

3 System Control
3.3 AArch32 register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-194

Non-Confidential



To access the VMPIDR:

MRC p15,4,<Rt>,c0,c0,5 ; Read VMPIDR into Rt
MCR p15,4,<Rt>,c0,c0,5 ; Write Rt to VMPIDR

3.3.102 Virtualization Processor ID Register

The VPIDR holds the value of the Virtualization Processor ID. This is the value returned by EL1 reads of
the MIDR.

Usage constraints

This register is accessible as follows:

EL0 EL1 EL2

- - RW

Traps and enables
EL1 accesses to VPIDR are trapped to EL2 when HSTR.T0 is set.

Configurations

The register is available in all build configurations.

Attributes

VPIDR is a 32-bit register.

VPIDR resets to the value of MIDR.

The following figure shows the VPIDR bit assignments.

31 0

VPIDR

Figure 3-92  VPIDR bit assignments

The following table shows the VPIDR bit assignments.

Table 3-143  VPIDR bit assignments

Bits Name Function

[31:0] VPIDR MIDR value returned by EL1 reads of the MIDR. The MIDR description defines the subdivision of this value. See
3.3.69 Main ID Register on page 3-155.

To access the VPIDR:

MRC p15, 4, <Rt>, c0, c0, 0 ; Read VPIDR into Rt
MCR p15, 4, <Rt>, c0, c0, 0 ; Write Rt to VPIDR

3.3.103 Virtualization System Control Register

The VSCTLR holds the Virtual Machine ID (VMID).

Usage constraints

This register is accessible as follows:

EL0 EL1 EL2

- - RW

3 System Control
3.3 AArch32 register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-195

Non-Confidential



Traps and enables
There are no traps and enables affecting this register.

Configurations
This register is available in all build configurations.

Attributes
VSCTLR is a 32-bit register.

The following figure shows the VSCTLR bit assignments.

31 01

RES0

2

RES0

2324 1516

VMID

3

S2NIE
S2DMAD

MSA

Figure 3-93  VSCTLR bit assignments

The following table shows the VSCTLR bit assignments.

Table 3-144  VSCTLR bit assignments

Bits Name Function

[31:24] - Reserved, RES0.

[23:16] VMID Virtual Machine ID. This resets to zero.

[15:3] - Reserved, RES0.

[2] S2NIE EL2-controlled Normal Interrupt Enable. This permits interrupts with base-restore of all accesses executing in
EL0 or EL1 that are marked as Normal memory in the EL2-controlled MPU. This is regardless of the attributes
returned by the EL1-controlled MPU.

0 Disabled.

1 Enabled. Accesses executing in EL0 or EL1 can be interrupted.

The reset value is 0.

[1] S2DMAD EL2-controlled Device Multiple Access Disable. This causes any load or store instructions from EL0 and EL1 to
memory regions marked as Device in the EL2-controlled MPU that spans an aligned 64-bit boundary to generate
a permission fault.

0 Disabled.

1 Enabled. Multiple accesses generate Permission Faults.

The reset value is 0.

[0] MSA This field is RES0. EL1 uses PMSA memory management.

To access the VSCTLR:

MRC p15, 4, <Rt>, c2, c0, 0 ; Read VSCTLR into Rt
MCR p15, 4, <Rt>, c2, c0, 0 ; Write Rt to VSCTLR

3 System Control
3.3 AArch32 register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

3-196

Non-Confidential



Chapter 4
Clocking and Resets

This chapter describes clocks and resets used within the processor.

It contains the following sections:
• 4.1 Clock and clock enables on page 4-198.
• 4.2 Reset signals on page 4-199.
• 4.3 Reset-related signals on page 4-202.

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

4-197

Non-Confidential



4.1 Clock and clock enables
The Cortex-R52 processor has a single clock which drives all its flops and RAMs. Various inputs,
including the reset inputs, have synchronizing logic that allows them to be operated asynchronously to
the processor clock. Most of the buses have enable inputs that allow them to operate at an integer
division of the processor clock.

The single Cortex-R52 processor clock is distributed to all the cores and associated logic. Each core uses
a gated clock that can be disabled in WFI low-power mode or WFE low power mode. For more
information about these modes, see 5.3 Architectural clock gating on page 5-206.

In systems with DCLS and Split/Lock, a separate clock input is provided for the redundant logic. This
clock input must have the same frequency as and be balanced against the main clock input. In DCLS and
Split/Lock configurations, all inputs must be synchronous to the clock to prevent divergence caused by
the synchronizers.

The following table shows the clock signals.

Table 4-1  Clock signals

Signal Direction Description

CLKIN Input Main clock.

CLKINDCLS Input Redundant clock for the redundant logic in lock-step configurations.

Each of the processor bus ports can operate at an integer division of the main processor clock. This is
achieved using a clock enable input.

The following table shows the clock enable signals.

Table 4-2  Clock enable signals

Signal Direction Description

PCLKENDBG Input APB clock enable.

ACLKENMx Input AXIM interface clock enable.

ACLKENS Input AXIS interface clock enable.

ATCLKEND Input ATB clock enable for data trace.

ATCLKENI Input ATB clock enable for instruction trace and clock enable for TSVALUEB[63:0].

ACLKENFx Input Flash interface clock enable.

CNTCLKEN Input Counter clock enable CNTVALUEB.

ACLKENPx Input LLPP clock enable.

4 Clocking and Resets
4.1 Clock and clock enables

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

4-198

Non-Confidential



4.2 Reset signals
The Cortex-R52 processor has reset inputs to enable the following operations:

• Powerup reset for the entire processor or unexpected safety error.
• Reset of an individual core after shutdown.
• Warm reset of an individual core or reset after an emulated shutdown.
• Debug reset for the whole processor.
• MBIST reset.

Reset of individual cores, and not the surrounding system, is possible only when the core in question is in
a quiescent state. This is the case after a shutdown, whether emulated or not. If this function is required
at another time, for example as a periodic preventive reset for safety purposes, then the software must
first put the processor into a quiescent state which is similar to entering shutdown mode.

The following table shows the reset and reset control signals.
 Note 

If DCLS or Split/Lock is configured, all reset signals must be synchronous to the processor clock.

Table 4-3  Reset signals

Signal Direction Description

nCORERESETx Input Individual core warm reset.

0 Apply reset to core x excluding debug and trace logic.

1 Do not apply reset to the core.

nCPUPORESETx Input Individual core powerup cold reset.

0 Apply reset to core x including debug and trace logic.

1 Do not apply reset to the core.

nTOPRESET Input Top-level reset. Resets top-level functional logic.

0 Reset top-level functional logic.

1 Do not reset top-level functional logic.

nCORERESETDCLSx Input Individual redundant core warm reset. This input must be identical to nCORERESET.

0 Apply reset to the redundant copy of core x excluding debug logic.

1 Do not apply reset to the redundant core.

nCPUPORESETDCLSx Input Individual redundant core powerup cold reset. This input must be identical to
nCPUPORESET.

0 Apply reset to the redundant copy of core x including debug logic.

1 Do not apply reset to the redundant core.

nTOPRESETDCLS Input Top-level redundant logic reset. Resets all the redundant logic in the processor. This input
must be identical to nTOPRESET.

0 Apply reset to all the redundant logic.

1 Do not apply reset to all the redundant logic.

4 Clocking and Resets
4.2 Reset signals

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

4-199

Non-Confidential



Table 4-3  Reset signals (continued)

Signal Direction Description

nPRESETDBG Input APB reset:

0 Apply reset to APB and top-level debug logic.

1 Do not apply reset to APB and top-level debug logic.

nMBISTRESET Input MBIST reset.

0 Apply reset to MBIST.

1 Do not apply reset to MBIST.

In normal operation, all reset signals are deasserted.

The following table shows the various reset scenarios and associated asserted reset signals. Reset flops
use an asynchronous reset input.

Table 4-4  Reset scenarios and asserted reset signals

Signal and scenario Powerup Core powerup Core warm Debug MBIST

Core functional: nCORERESETx Yes Yes Yes No No

Core functional and debug: nCPUPORESETx Yes Yes No No No

L2 system (AXIS and GIC) nTOPRESET Yes No No No No

Debug: nPRESETDBG Yes No No Yes No

MBIST: nMBISTRESET Yes No No No Yes

On assertion, powerup reset propagates to the flops asynchronously.

All resets are synchronized for deassertion to meet timing requirements at the flops. All the reset signals
are capable of being disabled when performing logic scanning, this includes the main input
synchronizers and the synchronizers provided for each core.

In systems with DCLS, separate reset inputs are provided for the redundant logic and these are expected
to be identical in behavior to the main reset inputs. The only exception to this condition is if a fault
occurs, in which case they are not identical in behavior.

When the Cortex-R52 processor leaves reset, it automatically invalidates the instruction and data caches
and prevents any lookups occurring until this process completes. While the automatic cache invalidate
operation is in progress, the core does not use the cache. This can impact core performance for a short
time after reset. The automatic cache invalidate also has the effect of initializing the ECC syndrome
values of the RAMs.

Reset assertion sequence
All reset signals are asserted at the same time during powerup cold reset. If you perform reset outside of
initial powerup then the order of signal assertion does not matter.

 Important 

You must ensure that the processor is quiescent before asserting resets.

Reset deassertion sequence

If you are deasserting the reset signals synchronously, then all the reset signals can be deasserted on the
same clock cycle. If you are deasserting the reset signals asynchronously and the internal reset
synchronizers are responsible for synchronizing the reset, then Arm recommends that you deassert the

4 Clocking and Resets
4.2 Reset signals

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

4-200

Non-Confidential



nTOPRESET signal before deasserting the other reset signals. This ensures that the top-level logic is
out of reset before the processor cores come out of reset.

4 Clocking and Resets
4.2 Reset signals

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

4-201

Non-Confidential



4.3 Reset-related signals
Each core has two reset request outputs which it can assert to request a warm reset. Whether these signals
are factored into the reset inputs is determined by the reset control logic external to the Cortex-R52
processor.

The following table shows the reset-related signals.

Table 4-5  Reset-related signals

Signal Direction Description

WARMRSTREQx Output Warm core reset request.

DBGRSTREQx Output Request for reset from external debug logic.

CPUHALTx Input Core waits out of reset before taking reset exception and fetching instructions.

CFGINITREG Input Program-visible registers initialized to fixed value out of reset.

CFGL1CACHEINVDISx Input Automatic post-reset L1 cache invalidate disable.

WARMRSTREQx is asserted when software writes 1 to HRMR.RR. DBGRSTREQx is asserted when
the debugger writes 1 to the EDPRCR.CWRR.

4 Clocking and Resets
4.3 Reset-related signals

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

4-202

Non-Confidential



Chapter 5
Power Management

This chapter describes the power management facilities provided by the Cortex-R52 processor.

It contains the following sections:
• 5.1 About power management on page 5-204.
• 5.2 Local and regional clock gating on page 5-205.
• 5.3 Architectural clock gating on page 5-206.
• 5.4 Power gating on page 5-208.

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

5-203

Non-Confidential



5.1 About power management
The processor provides features to reduce both dynamic and static power dissipation.

These features include:
• Local and regional clock gates with automatic controls built into the design for reducing dynamic

power.
• Architectural clock gating for each core. This is used in WFI low-power state, and WFE low-power

state to further reduce dynamic power when the core is idle.
• Control mechanisms and partitioning to support power gating of individual cores to reduce static

power.

5 Power Management
5.1 About power management

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

5-204

Non-Confidential



5.2 Local and regional clock gating
The processor has been designed to enable synthesis tools to automatically infer clock gates for groups of
flip flops. These gates disable the clock and therefore reduce the dynamic power that is consumed by the
flip flops and logic local to the clock gate.

Explicit clock gates in the design enable the clock for a larger region of logic to be disabled when idle,
which further reduces dynamic power consumption. These regional clock gates are automatically
controlled by logic in the processor according to the current activity.

5 Power Management
5.2 Local and regional clock gating

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

5-205

Non-Confidential



5.3 Architectural clock gating
The WFI and the WFE instructions are features of the Armv8-R architecture that put the core in a low-
power state. These instructions typically disable the clocks in the core while keeping the core powered
up.

This eliminates most of the dynamic power consumption in the core. This is a form of standby mode,
which is called WFI low-power state or WFE low-power state depending on whether it was entered using
WFI or WFE respectively.

WFI low-power state is part of a core powerdown sequence.

This section contains the following subsections:
• 5.3.1 WFI low-power state on page 5-206.
• 5.3.2 WFE low-power state on page 5-206.
• 5.3.3 Event communication using WFE and SEV instructions on page 5-207.
• 5.3.4 CLREXMON request and acknowledge signaling on page 5-207.

5.3.1 WFI low-power state

A core enters into WFI low-power state by executing the WFI instruction.

When executing the WFI instruction, the core waits for all instructions in the core to retire before entering
the WFI low-power state. The WFI instruction ensures that all explicit memory accesses that occurred
before the WFI instruction in program order, have retired. For example, the WFI instruction ensures that
the following instructions receive the required data or responses from the memory system:

• Load instructions.
• Cache maintenance operations.
• Store-Exclusive instructions.

In addition, the WFI instruction ensures that store instructions have retired from the pipeline and
completed. The definition of completed is:

• Stores have written to the end point as required by the memory attribute.
• Response is known (either okay or error).

While the core is in WFI low-power state, the core automatically disables its clocks using clock gating
when it is not handling an incoming transaction. The clocks in the core are temporarily enabled without
causing the core to exit WFI low-power state, when any of the following are ongoing:
• An APB access to the debug or trace registers residing in the core power domain.
• An AXIS interface access to one of the TCMs in the core.

The core exits from WFI low-power state when it is reset or when a WFI wake-up event, for example an
interrupt, occurs. See the Arm® Architecture Reference Manual Supplement Armv8, for Armv8-R
architecture profile for information about the various WFI wake-up events.

When it is in WFI low-power state, STANDBYWFIx for that core is asserted. This assertion only
indicates that the core has stopped executing instructions. STANDBYWFIx continues to assert even if
the clocks in the core are temporarily enabled because of an AXIS or APB access.

5.3.2 WFE low-power state

A core enters into WFE low-power state by executing the WFE instruction.

When executing the WFE instruction, the core waits for all instructions in the core to complete before
entering WFE low-power state. The WFE instruction ensures that all explicit memory accesses that
occurred before the WFE instruction in program order, have completed.

While the core is in WFE low-power state, the core automatically disables its clocks using clock gating
when it is not handling an incoming transaction. The clocks in the core are temporarily enabled without
causing the core to exit WFE low-power state, when any of the following events are ongoing:

5 Power Management
5.3 Architectural clock gating

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

5-206

Non-Confidential



• An APB access to the debug or trace registers residing in the core power domain.
• An AXIS interface access to one of the TCMs in the core.

The core exits from WFE low-power state when it is reset or when a WFE wake-up event occurs. An
example of a WFE wake-up event is an event that is generated by a SEV instruction on another core. See
the Arm® Architecture Reference Manual Supplement Armv8, for Armv8-R architecture profile for
information about the various WFE wake-up events.

A Cortex-R52 core also exits from WFE low-power state when one of the following occurs:
• The EVENTI input signal asserts.
• The CLREXMONREQ input signal asserts.

When it is in WFE low-power state, STANDBYWFEx for that core is asserted. This assertion only
indicates that the core has stopped executing instructions. STANDBYWFEx remains asserted even if the
clocks in the core are temporarily enabled because of an AXIS access or an APB access.

5.3.3 Event communication using WFE and SEV instructions

The EVENTI signal enables an external agent to participate in the WFE and SEV event communication.

When the EVENTI signal is asserted, it sends an event message to all the cores in the processor. This is
similar to executing an SEV instruction on one core in the processor. This enables the external agent to
signal to the core that it has, for example, released a semaphore and that the core can leave the WFE low-
power state. The EVENTI input signal must remain HIGH for at least one CLKIN cycle to be visible by
the cores.

The external agent can determine that at least one of the cores in the processor has executed an SEV
instruction by checking the EVENTO signal. When any of the cores in the processor execute a SEV
instruction, an event is signaled to all the cores in the processor, and the EVENTO signal is asserted.
This signal is asserted HIGH for three CLKIN cycles when any of the cores executes an SEV instruction.

5.3.4 CLREXMON request and acknowledge signaling

The CLREXMONREQ input can be used by the system to signal to the Cortex-R52 processor that an
external global exclusive monitor has been cleared. It also acts as WFE wake-up event to all the cores in
the processor.

5 Power Management
5.3 Architectural clock gating

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

5-207

Non-Confidential



5.4 Power gating
The Cortex-R52 processor is designed to allow individual cores within the cluster to be powered down.
Powering down removes most of the dynamic and static power consumption that is associated with the
core.

This feature requires that the processor is implemented with the appropriate power domains and clamps,
and integrated into an SoC with an appropriate power controller. Therefore, some of the details of the
core powerdown are specific to the device you are using. For power domains that can be implemented in
the Cortex-R52 processor, see 5.4.1 Power domains on page 5-208.

Before a core can be powered down, the software running on it must put it into a suitable state. This
might involve saving data that is stored in the registers or TCMs into system memory, which remains
powered. The software must execute a WFI instruction to stop the pipeline and drain the bus masters.
Finally the power controller must use the Cortex-R52 Low-Power Interface (LPI) to ensure that the core
is quiescent and cannot be woken up, before removing the power.

The Cortex-R52 LPI provides hint signals to the power controller. These hint signals indicate when an
incoming interrupt or debug request is received, the core should be powered up. After power is restored
to the core, the core must be reset. The boot software of the core can either restart it from cold, or restore
the state that was previously saved. The Cortex-R52 core cannot retain any state itself. If you require any
state to be restored after powerdown, the software must do this.

This section contains the following subsections:
• 5.4.1 Power domains on page 5-208.
• 5.4.2 Cortex-R52 LPI on page 5-209.
• 5.4.3 Powerdown sequence on page 5-210.
• 5.4.4 Powerup sequence on page 5-210.
• 5.4.5 Debug over powerdown on page 5-211.
• 5.4.6 Powerdown of the cluster on page 5-211.

5.4.1 Power domains

The Cortex-R52 processor has two hierarchical power domains PDCPUx and PDTOP.

PDTOP is the top-level power domain and includes:

• GIC distributor, Debug APB slave, CTM, and CTIs.
• AXIS interface.
• MBIST logic.
• Timers.

PDCPU is the power domain for each core and includes:
• Core x.
• L1 instruction and cache RAMs and TCM RAMs.
• Core-level debug logic.
• ETM logic.

The following figure shows an example of the processor domains that are embedded in a SoC power
domain.

5 Power Management
5.4 Power gating

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

5-208

Non-Confidential



Processor
PDTOP

Core 0
PDCPU0

Core 1
PDCPU1

ETM

Core RAM

Core 2
PDCPU2

Core 3
PDCPU3

Governor

TimersDebug, 
CTM, CTI

ETM

Core RAM

ETM

Core RAM

ETM

Core RAM

GIC 
Distributor

AXI-slave 
interface

MBIST 
logic

Figure 5-1  Processor power domains

5.4.2 Cortex-R52 LPI

Each Cortex-R52 core has its own P-channel LPI. Each LPI operates independently of each other. The
LPI can be used by a power controller to request that the core enters a state in which it can be safely
powered down. The LPI also provides hint information about when a power down request is likely to be
successful and when a powerup might be required.

See Low Power Interface Specification Arm® Q-Channel and P-Channel Interfaces.

Each P-channel can request one of two states:

RUN (COREPSTATEx=0)
Normal operation of the core is available, including servicing of transactions that are received
through the AXIS interface and APB transactions to core domain debug registers. The core can
enter and exit WFI low-power state or WFE low-power state while it is in RUN state.

SHUTDOWN (COREPSTATEx=1)

The core is not executing instructions, or servicing interrupts or transactions, that are received
through the AXIS interface and APB transactions to core domain debug registers. In this state, a
transaction that is received by the AXIS interface is given an error response. A transaction that
is received by the APB interface or a core domain debug register is given an error response
unless emulated powerdown has been enabled.

Each P-channel provides activity hints on two bits of COREPACTIVEx:

Bit[1]
In RUN state, this bit is asserted if the core is either:
• Executing instructions.
• Has outstanding transactions.
• Is available to handle an interrupt.
• Is servicing a transaction that is received through the AXIS interface or an APB transaction

to a core domain debug register.
• Is servicing an APB transaction to a core domain debug register unless emulated powerdown

is enabled.

In SHUTDOWN state, this bit becomes asserted if there is an incoming interrupt which would
normally be routed to the core, or if there is a debug powerup request.

5 Power Management
5.4 Power gating

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

5-209

Non-Confidential



Bit[0]

Asserted if the debug no powerdown (DBGPRCR.CORENPDRQ) or debug powerup request
(EDPRCR.COREPURQ, TRCPDCR.PU) functions are set. This indicates to the power
controller that any powerdown must be emulated.

 Note 

When the core is in SHUTDOWN state, an error response is given for either:
• A transaction that is received by the AXIS interface for the core.
• A transaction that is received by the debug-APB interface for a core domain debug register, except

when emulated powerdown is enabled.

Such transactions are not blocked and do not cause any of the activity hints to become asserted.

5.4.3 Powerdown sequence

To powerdown a core, the software running on that core must use the following procedure:

Procedure
1. If necessary, save the state of the core to system memory that is not powered down.

This must include any data that is stored in the TCMs which you do not want to lose.
2. Disable the interrupt enable bits in the ICC_IGRPEN0 and ICC_IGRPEN1 registers. Set the GIC

distributor wake-up request for the core using the GICR_WAKER register. Read the GICR_WAKER
to confirm that the ChildrenAsleep bit indicates that the interface is quiescent.

3. Execute an Instruction Synchronization Barrier (ISB) to ensure that all the changes outlined in steps 1
and 2 have completed.

4. Program the power control logic in the SoC, as appropriate, for core powerdown.
5. Execute a WFI instruction.
In response to the request made in step 4, the power controller:
1. Waits until COREPACTIVEx[1] goes LOW.
2. Makes a request on the LPI for SHUTDOWN state.
3. When the request is successful, power down the corresponding core power domain, including

asserting the clamps.
 Note 

After COREPACTIVEx[1] goes LOW, the only stimulus that can prevent a SHUTDOWN state request
being successful is an incoming System Error Interrupt (SEI) or Virtual System Error Interrupt (VSEI).
After handling such an SEI or VSEI, software must either execute a WFI, so that the core can shut
down, or restart the core as described in 5.4.4 Powerup sequence on page 5-210. The restart of the core
must include clearing the GIC distributor wake request. When the SHUTDOWN request has been
accepted by the core, no stimulus can cause it to restart other than a reset.

5.4.4 Powerup sequence

If COREPACTIVEx[1] goes HIGH, or for any other SoC-specific reason, the power-controller must
powerup the core using the following procedure:

Procedure
1. Assert nCPUPORESETx and nCORERESETx LOW.
2. Restore power to the corresponding core power domain, including releasing the clamps.
3. Make a request on the LPI for RUN state. The request is accepted after reset has been deasserted.
4. Deassert nCPUPORESETx and nCORERESETx.

The core takes a reset exception and starts execution of the reset handler. Software must initialize the
core as normal, including initializing registers as required and clearing the GIC distributor wake request

5 Power Management
5.4 Power gating

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

5-210

Non-Confidential



using the GICR_WAKER register. If necessary, software must restore the state of the core which was
saved before the powerdown.

5.4.5 Debug over powerdown

When a core is powered down normally, the state of the core domain debug registers is lost including any
programmed breakpoints or watchpoints. When a core leaves powerdown, EDPRSR.SPD reads 1,
indicating that the state of the core domain debug registers has been lost.

To enable debug of software associated with power control, the processor has features which enable
emulated power down. In an emulated power down scenario, the software sequence for powering down
and powering up the core is the same as described in 5.4.3 Powerdown sequence on page 5-210 and
5.4.4 Powerup sequence on page 5-210. However, the power controller behaves differently so that debug
state is not lost.

The debugger can request that all powerdown operations are emulated by setting
DBGPRCR.CORENPDRQ for the core or cores. This causes the COREPACTIVEx[0] output signal to
be asserted, which the power controller must take as an indication to follow different powerdown and
powerup sequences.

To perform an emulated powerdown the power controller must:

1. Wait until COREPACTIVEx[1] goes LOW.
2. Make a request on the LPI for SHUTDOWN state.

 Note 

The power controller must not assert the clamps or remove power from the core.

When performing a powerup after an emulated powerdown the power controller must:
1. Assert nCORERESETx LOW.
2. Make a request on the LPI for RUN state.
3. Deassert nCORERESETx.

When a core is in emulated powerdown, the effect of accesses to the debug registers is the same as in a
normal run state. When a core leaves emulated powerdown, EDPRSR.SPD reads 0, indicating that the
state of the core domain debug registers has not been lost.

5.4.6 Powerdown of the cluster

The Cortex-R52 processor does not include any features to assist with powerdown of the complete
processor cluster.

It is the responsibility of the SoC to ensure that, in addition to powerdown of the individual cores, the
interfaces to the AXIS, debug APB, and interrupts are idle if required by the system. Therefore, the
software and hardware sequences for shutting down the cluster are specific to the SoC you are using.

5 Power Management
5.4 Power gating

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

5-211

Non-Confidential



Chapter 6
Initialization

This chapter describes considerations for initializing the Cortex-R52 processor.

It contains the following sections:
• 6.1 Initialization on page 6-213.
• 6.2 TCM on page 6-214.
• 6.3 Entering EL1 on page 6-216.

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

6-212

Non-Confidential



6.1 Initialization
The Cortex-R52 processor provides a mechanism for initializing all programmer-visible registers out of
reset, including those which do not have an architecturally defined reset value.

Most of the architectural registers in the Cortex-R52 processor, such as r0-r14 and s0-s31, and d0-d31
when Advanced SIMD is included, have an UNKNOWN value after reset. Because of this, you must
initialize these for all modes before they are used, using an immediate-MOV instruction, or a PC-relative
load instruction.

The Current Program Status Register (CPSR) and some system register fields are given a known value
on reset, see the Arm® Architecture Reference Manual Supplement Armv8, for Armv8-R architecture
profile for more information.

In addition, before you run an application, you might want to:
• Program particular values into various registers, for example, Stack Pointers.
• Enable various features, for example, error correction.
• Program particular values into memory, for example, the TCMs.

The Cortex-R52 processor provides a mechanism for initializing all programmer-visible registers to a
fixed value out of reset. After reset, the registers have a fixed value. This mechanism is controlled by
CFGINITREG.

This section contains the following subsections:
• 6.1.1 MPU on page 6-213.
• 6.1.2 Floating-point Unit on page 6-213.
• 6.1.3 Caches on page 6-213.

6.1.1 MPU

Before you can use an MPU, you must program and enable at least one of the regions, and enable it in
the SCTLR or HSCTLR.

Do not enable the MPU unless at least one MPU region is programmed and active. If the MPU is
enabled, before using the TCM you must program MPU regions to cover the TCM regions to give access
permissions to them.

6.1.2 Floating-point Unit

You must enable the Advanced SIMD or Floating-point Unit (FPU) before floating-point instructions
can be executed.

Enable the FPU as follows:
• Enable access to the FPU in the 3.3.1 Architectural Feature Access Control Register on page 3-76.
• Enable the FPU by setting the EN bit in the FPEXC register.

6.1.3 Caches

If the Cortex-R52 processor has been built with instruction or data caches, they are automatically
invalidated before they are used by the processor, unless CFGL1CACHEINVDISx is tied HIGH.

This operation can never report any ECC errors.

6 Initialization
6.1 Initialization

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

6-213

Non-Confidential



6.2 TCM
You can use TCMs either for instructions or data. You can also configure the Cortex-R52 processor to
use the ATCM from reset.

This section contains the following subsections:
• 6.2.1 Preloading TCMs on page 6-214.
• 6.2.2 Preloading TCMs with ECC on page 6-214.
• 6.2.3 Using TCMs from reset on page 6-215.

6.2.1 Preloading TCMs

You can write data to the TCMs using either store instructions or the AXIS interface.

Depending on the method you choose, you might require:
• Particular hardware on the SoC that you are using, such as a DMA engine.
• Boot code.
• A debugger connected to the processor.

The methods to preload TCMs include:

Memory copy with running boot code
The boot code includes a memory copy routine that reads data from an external memory, and
writes it into the appropriate TCM. You must enable the TCM to do this, and it might be
necessary to give the TCM one base address while the copy is occurring, and a different base
address when the application is being run.

Copy data from the Debug Communications Channel
The boot code includes a routine to read data from the Debug Communications Channel (DCC)
and write it into the TCM. The debug host feeds the data for this operation into the DCC by
writing to the appropriate registers on the processor APB debug interface.

Execute code in debug halt state
The debug host puts the Cortex-R52 processor into debug halt state and then feeds instructions
into it through the Instruction Transfer Register (EDITR). The Cortex-R52 processor executes
these instructions, as an alternative to using boot code in either of the two methods previously
described.

DMA into TCM
The SoC includes a DMA device that reads data from a ROM, and writes it to the TCMs
through the AXIS interfaces.

6.2.2 Preloading TCMs with ECC

The error code bits in the TCM RAM, if present, are not initialized by the Cortex-R52 processor. Before
a RAM location is read with ECC enabled, the error code bits must be initialized.

To update a TCM location without detecting an error, either the ECC checking must be disabled or the
write must be of the same width and aligned to the data chunk that the error scheme protects as described
in this section.

You can use the CFGTCMBOOTx signal to enable the ATCM when leaving reset, and the
CFGRAMPROTEN signal to enable TCM (and cache) ECC when leaving reset. When the core is
running, the TCM ECC can be enabled and disabled using the 3.3.76 Memory Protection Control
Register on page 3-164.

You can initialize the TCM RAM with error checking turned on or off, according to the following rules.
• If the AXIS interface is used to initialize a TCM with ECC enabled, AXI slave transactions must start

at 128-bit aligned addresses, writing continuous blocks of memory and all bytes in the block enabled.
• If initialization is done by running code on the Cortex-R52 processor, this is best done by a loop of

stores that write to the whole of the TCM memory as follows:

6 Initialization
6.2 TCM

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

6-214

Non-Confidential



— For BTCM or CTCM use Store Word (STR), Store Two Words (STRD), or Store Multiple Words
(STM) instructions to 32-bit aligned addresses.

— For ATCM use STRD, or STM with a 64-bit aligned address.

 Note 

You can use the alignment-checking features of the Cortex-R52 processor to help you ensure that
memory accesses are 32-bit aligned, but there is no checking for 64-bit alignment. If you are using STRD
or STM, an alignment fault is generated if the address is not 32-bit aligned. For the same behavior with
STR instructions, enable strict-alignment-checking by setting the A-bit in the 3.3.92 System Control
Register on page 3-183 or 3.3.53 Hyp System Control Register on page 3-132.

6.2.3 Using TCMs from reset

The Cortex-R52 processor has a primary input for each core which when asserted prevents the core from
starting to execute instructions out of reset. This enables the TCMs to be preloaded before the core boots.
If an external debug request is made before this input is deasserted, then the core enters debug halt state
before executing any instructions.

You can use the CFGTCMBOOTx signal to enable the ATCM from reset. This enables you to configure
the processor to boot from TCM but, to do this, the TCM must first be preloaded with the boot code.

The CPUHALTx input can be asserted while the processor is in reset to prevent the processor from
fetching and executing instructions after coming out of reset. While the processor is halted in this way,
the TCMs can be preloaded with the appropriate data. When the CPUHALTx input is deasserted, the
processor starts fetching instructions from the reset vector address in the normal way.

 Note 

When CPUHALTx has been deasserted to start the processor fetching, it must not be asserted again
except when the core is under core warm or powerup reset.

6 Initialization
6.2 TCM

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

6-215

Non-Confidential



6.3 Entering EL1
The Cortex-R52 processor always boots into Hyp mode (EL2).

If you do not need to use EL2 you can program the processor and switch to EL1 so that it can never
return to EL2 except by means of a reset. This involves setting all exceptions to be taken at EL1 and
disabling HVC and the EL2-controlled MPU.

To enter EL1:
• Program the HACTLR register because it defaults to only allowing EL2 accesses. HACTLR controls

whether EL1 can access memory region registers and CPUACTLR.
• Program the SPSR before entering EL1.
• Other registers default to allowing accesses at EL1 from reset.
• Set VBAR to the correct location for the vector table.
• Disable the HVC instruction by setting HCR.HCD to 1.
• Set ELR to point to the entry point of the EL1 code and call ERET.

6 Initialization
6.3 Entering EL1

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

6-216

Non-Confidential



Chapter 7
Memory System

This chapter describes the memory system.

It contains the following sections:
• 7.1 About the memory system on page 7-218.
• 7.2 TCM memory on page 7-220.
• 7.3 Level-1 caches on page 7-221.
• 7.4 Direct access to internal memory on page 7-224.
• 7.5 AXIM interface on page 7-227.
• 7.6 Low-latency peripheral port on page 7-232.
• 7.7 Flash interface on page 7-240.
• 7.8 AXIS interface on page 7-242.
• 7.9 Error detection and handling on page 7-244.
• 7.10 Exclusive accesses on page 7-248.
• 7.11 Bus timeouts on page 7-249.

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

7-217

Non-Confidential



7.1 About the memory system
The memory system controls access to internal RAM, caches, external memory, and the peripheral port.

The memory system consists of:

• Memory private to each core:
— An optional L1 instruction cache.
— An optional L1 data cache.
— Optional TCMs.

• Interfaces private to each core:
— An optional LLPP master interface that conforms to AXI4 (32-bit data bus).
— An optional Flash interface that conforms to AXI4, but has some additional features (these

features do not have to be used).
— An AXIM interface that conforms to AXI4 (128-bit data bus).

• An AXIS interface that conforms to AXI4 providing external access to TCMs in all cores (128-bit
data bus).

The following figure shows the memory system and external interfaces.

Processor

Core[3]
Core[2]

Core[1]
Core[0]

Data side Instruction 
side

AXIS

TCM interface

LLPP

Data cache Instruction 
cache

Flash AXIM

ATCM BTCM CTCM

Figure 7-1  Memory system block diagram

The core has Harvard memory architecture, meaning that the core has independent paths to access
instructions and data. The instruction side fetches instructions. The data side reads and writes data. The
core can make concurrent accesses from the instruction side and data side.

The TCM provides fast access memory. The TCM is unified, meaning that it can hold both instructions
and data. The TCM interface controls access to the TCM. The TCM interface includes a full crossbar
switch that allows concurrent access from the three masters (instruction side, data side, and AXIS) to
TCM (A, B, and C). If one or more masters attempt to access the same TCM, the TCM interface
arbitrates between the requests on a fixed priority scheme with Quality of Service (QoS) mechanisms.
TCM provides the most deterministic timing for memory accesses.

7 Memory System
7.1 About the memory system

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

7-218

Non-Confidential



Where access timing determinism is less critical but fast access is still required, the instruction cache and
data cache can be used. All stores that the data side generates that target the AXIM interface are written
to external memory through the AXIM interface, and are either updated or allocated in the data cache.
TCM and LLPP transactions are never allocated into the data cache. On cache misses, linefill requests
are made to either the Flash or AXIM interfaces. The data cache always has Write-Through behavior.

The AXIM interface is the main interface to external memory or device systems. The Flash interface
provides access to an external read-only memory controller, such as flash memory. The LLPP interface
provides access to external peripherals or small specialized memory systems. The AXIS interface
provides external access to the TCM. Accesses through the AXIS interface contend for TCM access
cycles so they might reduce the determinism of TCM memory.

The memory system includes a local monitor for exclusive accesses. Exclusive load and store
instructions can be used, for example, LDREX, STREX, to provide inter-process synchronization and
semaphores. They can provide inter-process synchronization and semaphores using appropriate external
memory monitoring logic. See the Arm® Architecture Reference Manual Supplement Armv8, for Armv8-R
architecture profile.

All instruction side and data side accesses are looked up in the memory map that is defined by the MPU.
It returns access permissions before the instruction side or data side makes an access to external memory.
If the access is permitted, the MPU provides the memory attributes for the transaction.

 Note 

Except for TCM overlap with flash, if present and enabled, it is illegal to perform an access which hits
more than one region out of the ATCM, BTCM, and CTCM regions. Also, if present, it is illegal to
perform an access which hits more than one region out of the LLPP, Flash, and internal peripheral
regions.

Related reference
7.2 TCM memory on page 7-220
7.5 AXIM interface on page 7-227
7.6 Low-latency peripheral port on page 7-232
7.7 Flash interface on page 7-240

7 Memory System
7.1 About the memory system

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

7-219

Non-Confidential



7.2 TCM memory
TCMs are unified, provide fast access, and have the most deterministic memory access timing.

TCMs are private to the core. The size of each TCM is independently implemented as either 0KB, 8KB,
16KB, 32KB, 64KB, 128KB, 256KB, 512KB, or 1MB. A size of 0KB indicates that the TCM is not
implemented.

Each TCM can be implemented with a wait state meaning that all accesses to that TCM incur an extra
cycle of latency. If some, but not all, TCMs have wait cycles implemented, the performance of the TCMs
might differ from each other.

If the primary input, CFGTCMBOOTx, is asserted at reset, the ATCM is enabled, and the base address
is 0x00000000. Other TCMs are disabled and their base addresses are UNKNOWN.

The base address of each TCM and whether it is enabled can be programmed by writing to the respective
TCM region register (IMP_ATCMREGIONR, IMP_BTCMREGIONR, IMP_CTCMREGIONR).
Separate enables are provided for software running at EL2 and software running at EL1 or EL0. The
TCM base address must be size-aligned. The size of each TCM is indicated in the corresponding TCM
region register. If a TCM is disabled for the current Exception level, then accesses to its address region
are performed through either the AXIM interface, the Flash interface, or the LLPP interface according to
the configuration of the Flash interface.

Writes to TCM region registers, from EL1, can be trapped to the hypervisor, running at EL2, by setting
the register bit HCR.TIDCP=1.

The TCMs can be accessed through the AXIS interface.

TCM attributes and permissions

Enabled TCMs always behave as Non-cacheable Non-shareable Normal memory. This is irrespective of
the memory type attributes defined in the MPU for a memory region containing addresses that are held in
the TCM. Access permissions for TCM accesses are the same as the permission attributes that the MPU
assigns to the same address.

7 Memory System
7.2 TCM memory

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

7-220

Non-Confidential



7.3 Level-1 caches
Optional instruction and data caches are independently implemented in the core.

Instruction cache
The features of the instruction cache include:
• The instruction cache, when present, is implemented as either 4KB, 8KB, 16KB, or 32KB

and is organized as four-way set associative with 64-byte lines.
• Instruction fetches from Flash or AXIM interfaces can be cached in the instruction cache,

according to the cacheability attributes, the cache segregation policy, and how the settings to
control the caches are programmed.

• When the instruction flow is sequential, the cache can automatically prefetch the next line
from memory. The PFU requests non-sequential lines early using its branch prediction
structures.

• Prefetching behavior is controlled by CPUACTLR.L1IPFCTL.

Data cache
The features of the data cache include:
• The data cache, when present, is implemented as either 4KB, 8KB, 16KB, or 32KB and is

organized as four-way set associative with 64-byte lines.
• Data reads from Flash or AXIM interfaces can be cached in the data cache depending on the

attributes set within the MPU, the cache segregation policy, and how the settings to control
the caches are programmed.

• When two or three accesses in the pipeline both miss in the data cache, the memory system
can initiate linefills for them all. This so-called miss-under-miss behavior allows the cache to
have up to three linefills outstanding at the same time.

• There are 4 data prefetchers for the AXIM interface that look for patterns in cacheable
accesses and prefetches within 4KB regions. There are no data prefetchers for the Flash
interface.

The Cortex-R52 processor is not coherent and the inner shareability domain consists of an individual
Cortex-R52 core. The Cortex-R52 processor does not cache data that is marked as shareable, and all
cache maintenance instructions are performed locally. This means that instruction cache maintenance
operations are not broadcast to any other core. The outer shareability domain is external to the Cortex-
R52 processor, and is therefore system-dependent.

In the Cortex-R52 processor instruction side and data side accesses have an independent path to access
main memory. As a result the point of coherency exists external to the processor, and is therefore system-
dependent.

The write behavior for the data cache is always Write-Through caching. Locations that are marked as
Write-Back Cacheable are treated as Write-Through. Caching of Write-Back and Write-Through regions
is subject to any Read-Allocate or Write-Allocate hints being set. Locations that are marked as Inner or
Outer Shareable are treated as Non-cacheable, regardless of their cacheability attributes. The data cache
does not use the Transient allocation hint. Any regions that are marked as transient are treated as Non-
transient.

This section contains the following subsections:
• 7.3.1 Cache segregation on page 7-221.
• 7.3.2 Data cache invalidation on page 7-222.
• 7.3.3 Write streaming mode on page 7-223.

7.3.1 Cache segregation

L1 instruction and data caches segregate allocations from the Flash or AXIM interface into separate
cache ways. IMP_CSCTLR.IFLW and IMP_CSCTLR.DFLW control the number of ways that are
allocated to each interface for the instruction cache and data cache respectively. Updates to the cache
segregation controls are only permitted before the caches have ever been enabled, following a system
reset, otherwise the update is ignored.

7 Memory System
7.3 Level-1 caches

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

7-221

Non-Confidential



7.3.2 Data cache invalidation

The EDCCR enables overlay of the flash and AXIM memory with RAM and modification of the RAM
content.

The following figure shows the state machine of data cache invalidation.

Idle

Wait

Active

Data cache 
invalidate 
completes

Data cache invalidate is active. 
New accesses are non-cacheable.  

EDCCR[1] and EDCCR[0] are both read as 1
Data cache guaranteed not to contain any selected 

data
All accesses are non-cacheable

DCIACK == 0

Out of reset
Data cache invalidate is inactive

Copy/modify
data to overlay

RAM

ADCIREQ=1, FDCIREQ=1,
 or ADCIREQ and FDCIREQ=1

Enable 
overlay 
muxing

ADCIREQ and FDCIREQ=0

DCIACK==1

Debug host actions Processor behavior

EDCCR[0], EDCCR[2], or both are written to 1

EDCCR reads as 0.

EDCCR[0] and EDCCR[2] are written to 0

Figure 7-2  Data cache invalidation state machine

Idle
Out of reset, the state machine is in the Idle state. Reads from EDCCR is 0, indicating that data
cache invalidation is inactive.

Wait
When EDCCR[0], EDCCR[2], or both are written to 1:
• A request is sent for the memory system to invalidate all data cache lines containing flash

data (EDCCR[0] is written to 1), AXIM data (EDCCR[2] is written to 1), or both
(EDCCR[0] and EDCCR[2] are written to 1). This is indicated as ADCIREQ=1,
FDCIREQ=1, or ADCIREQ=1 and FDCIREQ=1.

• DCIACK=0.
• New flash, AXI, or both flash and AXI accesses are non-cacheable.
• The state machine is in the Wait state, where reads from EDCCR return 1, indicating that the

cache does not allocate new cache lines and the invalidation of old cache lines is in progress.

Active
When the memory system completes the data cache invalidation request:
• DCIACK=1, indicating that cache invalidation is complete.
• The state machine is in the Active state.
• EDCCR[0] and EDCCR[1] both read as 1.
• The data cache does not contain the invalidated data type.
• All flash, AXI, or both flash and AXI accesses are non-cacheable.

7 Memory System
7.3 Level-1 caches

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

7-222

Non-Confidential



 Note 

• When EDCCR[0] and EDCCR[2] are written to 0, the state machine returns to the Idle state and flash
or AXIM addresses are cacheable.

• When the state machine is not in the Idle state, writes of 1 to EDCCR are ignored.
• When the state machine is not in Active state, writes of 0 to EDCCR are ignored.

For more information on EDCCR, see 11.6.1 External Debug Calibration Control Register
on page 11-366

7.3.3 Write streaming mode

A cache line is allocated to the L1 cache based on the allocation hints configured in the MPU
programming.

However, there are some situations where allocating on writes is not required. For example, when
executing the C standard library memset() function to clear a large block of memory to a known value.
Writes of large blocks of data can pollute the cache with unnecessary data. It can also waste power and
performance if a linefill must be performed only to discard the linefill data because the entire line was
subsequently written by the memset().

To counter this, the core includes logic to detect when the core has written a full cache line before the
linefill completes. If this situation is detected on a configurable number of consecutive linefills, then it
switches into write streaming mode. This is sometimes referred to as read allocate mode.

When in write streaming mode, loads behave as normal, and can still cause linefills, and writes still
lookup the cache, but if they miss, then they write out to the bus rather than starting a linefill.

CPUACTLR.WSTRNOL1ACTL configures the write streaming mode threshold. For more information
on CPUACTLR, see 3.3.19 CPU Auxiliary Control Register on page 3-90.

 Note 

More than the specified number of linefills might be observed on master interface, before the core detects
that the specified number of full cache lines have been written and switches to write streaming mode.
The core continues in write streaming mode until it detects either a cacheable write burst that is not a full
cache line, or there is a load from the same line that is currently being written to the bus.

7 Memory System
7.3 Level-1 caches

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

7-223

Non-Confidential



7.4 Direct access to internal memory
The Cortex-R52 processor provides a mechanism to read the internal memory used by the L1 cache
through IMPLEMENTATION DEFINED system registers. This functionality can be useful when investigating
issues where the coherency between the data in the cache and data in system memory is broken.

During processor execution, the appropriate memory block and location are selected using a number of
write-only CP15 registers and the data is read from read-only CP15 registers as shown in the following
table. These operations are available only in EL2. In all other modes, executing the CP15 instruction
results in an Undefined Instruction exception.

Table 7-1  CP15 registers used to access internal memory

Function Access CP15 operation Rd Data

Cache Debug Data Register 0 RO MRC p15, 3, <Rd>, c15, c0, 0 Data

Cache Debug Data Register 1 RO MRC p15, 3, <Rd>, c15, c0, 1 Data

Data Cache Tag Read Operation Register WO MCR p15, 3, <Rd>, c15, c2, 0 Set/Way

Instruction Cache Tag Read Operation Register WO MCR p15, 3, <Rd>, c15, c2, 1 Set/Way

Data Cache Data Read Operation Register WO MCR p15, 3, <Rd>, c15, c4, 0 Set/Way/Offset

Instruction Cache Data Read Operation Register WO MCR p15, 3, <Rd>, c15, c4, 1 Set/Way/Offset

7.4.1 Data cache tag and data encoding

The Cortex-R52 processor data cache consists of a 4-way set-associative structure.

The number of sets in each way depends on the configured size of the cache. The encoding, set in Rd in
the appropriate MCR instruction, used to locate the required cache data entry for tag and data memory is
shown in the following table. It is very similar for both the tag and data RAM access. Data RAM access
includes an additional field to locate the appropriate doubleword in the cache line.

Table 7-2  Data cache tag and data location encoding

Bit field of Rd Description

[31:30] Cache way

[29:13] Unused

[12:6], [11:6], [10:6], or [9:6] Set index

[5:3] Data offset, Data Register only

[2:0] Unused

Table 7-3  Index encoding depending on cache size

Cache size Index

32KB [12:6]

16KB [11:6]

8KB [10:6]

4KB [9:6]

7 Memory System
7.4 Direct access to internal memory

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

7-224

Non-Confidential



Data cache data reads return 64 bits of data with bits [31:0] placed in Cache Debug Data Register 0 and
[63:32] placed in Cache Debug Data Register 1. Data cache tag reads return up to 23 bits of data placed
in Cache Debug Data Register 0.

Table 7-4  Data cache tag data format

Register Bit field Description

Cache Debug Data Register 0 [22] Valid

[21:0] Tag bits (4KB cache)

[21:1] Tag bits (8KB cache)

[21:2] Tag bits (16KB cache)

[21:3] Tag bits (32KB cache)

7.4.2 Instruction cache tag and data encoding

The Cortex-R52 processor consists of a 4-way set-associative structure. The number of sets in each way
depends on the configured size of the cache. The encoding, set in Rd in the appropriate MCR instruction,
used to locate the required cache data entry for tag and data memory is shown in the following table. It is
similar for both data and tag RAM access. Data RAM accesses include an additional field to locate the
appropriate doubleword in the cache line.

Table 7-5  Instruction cache tag and data location encoding

Bit field of Rd Description

[31:30] Cache Way

[29:13] Unused

[12:6], [11:6], [10:6], or [9:6] Set index

[5:3] Data offset, Data Register only

[2:0] Unused

Table 7-6  Index encoding depending on cache size

Cache size Index

32KB [12:6]

16KB [11:6]

8KB [10:6]

4KB [9:6]

Instruction cache data reads return 64 bits of data with bits [31:0] placed in Cache Debug Data Register 0
and bits [63:32] placed in Cache Debug Data Register 1. In T32 state, these two fields can represent any
combination of 16-bit and partial or full 32-bit instructions. Instruction cache tag reads return up to 23
bits of data placed in Cache Debug Data Register 0.

7 Memory System
7.4 Direct access to internal memory

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

7-225

Non-Confidential



Table 7-7  Instruction cache tag data format

Register Bit field Description

Cache Debug Data Register 0 [22] Valid

[21:0] Tag bits (4KB cache)

[21:1] Tag bits (8KB cache)

[21:2] Tag bits (16KB cache)

[21:3] Tag bits (32KB cache)

7 Memory System
7.4 Direct access to internal memory

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

7-226

Non-Confidential



7.5 AXIM interface
The AXIM interface is the main interface to external memory and peripherals. Each core has its own
AXIM interface that is used only for accesses from that core.

The AXIM interface implements the AXI4 protocol, having 128-bit data width.

The AXIM interface receives requests from the instruction side and data side. You can configure whether
data or instruction accesses have the highest priority in the case of contention, by setting
CPUACTLR.AXIMARBCTL. The AXIM interface can have bus protection.

7.5.1 AXIM interface attributes

This section describes the AXIM interface attributes.

The following table shows the AXI4 master interface attributes for one core.

Table 7-8  AXI4 master interface attributes

Attribute Value Comments

Write issuing
capability

3 Each core can issue a maximum of three write requests.

Read issuing
capability

11 Each core can issue eight outstanding data side and three outstanding instruction side AXIM read
requests.

Exclusive thread
capability

1 Each core can have one Exclusive access sequence in progress.

Write ID capability 3 The maximum number of different AXIDMx values that a master interface can generate for all active
write transactions at any one time.

Device memory can have more than one outstanding transaction with the same AXI ID.

For Normal memory, stores use the same ID only when there are multiple stores with the same
address. This maintains ordering between the stores which would otherwise generate a Write-after-
Write (WAW) hazard.

Write ID width 3 -

Read ID capability 11 The maximum number of different ARIDMx values that a master interface can generate for all active
read transactions at any one time. The ID encodes the source of the memory transaction as
Exclusivebh, data side Device, instruction side Normal, or data side Normal.

There can be one data side Device request. Transactions to Normal memory use a unique AXI ID for
every outstanding transaction.

The Cortex-R52 processor treats all Device regions of memory as Execute-never (XN), regardless of
the programmed value of XN.

Read ID width 4 -

Related reference
7.5.4 AXIM transaction IDs on page 7-229

7.5.2 AXIM interface transfers

The AXIM conforms to the AXI4 specification, but it does not generate all the AXI transaction types that
the specification permits. This section describes the types of AXI transactions that the AXIM generates.

bh The attributes indicate non-Reordering Device requests (Device nGnRnE or nGnRE).

7 Memory System
7.5 AXIM interface

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

7-227

Non-Confidential



If you are designing an AXIS to work only with the Cortex-R52 AXIM, you can take advantage of these
restrictions and the interface attributes to simplify the slave.

All WRAP bursts fetch a complete cache line starting with the critical word first. A burst does not cross a
cache line boundary.

The cache linefill fetch length is always 64 bytes.

For Write-Back or Write-Through (Inner cacheable) transfers the supported transfers are:

• WRAP 4 128-bit for read transfers.
• INCR N (N:1-4) 8-bit, 16-bit, 32-bit, 64-bit, and 128-bit for data side read transfers.
• INCR 1 8-bit, 16-bit, 32-bit, and 64-bit for exclusive read transfers.
• INCR 1 8-bit, 16-bit, 32-bit, and 64-bit for write transfers.
• INCR N (N:1-4) 128-bit for write transfers.
• INCR 1 8-bit, 16-bit, 32-bit and 64-bit for exclusive write transfers.

For Non-cacheable transactions:

• INCR N (N:1-4) 128-bit for data side read transfers.
• INCR N (N:1-4) 128-bit for write transfers.
• INCR 1 8-bit, 16-bit, 32-bit, and 64-bit for write transfers.
• INCR 1 8-bit, 16-bit, 32-bit, 64-bit for data side read transfers.
• INCR N (N:1-3) 128-bit for instruction side read transfers.
• WRAP 1 128-bit for instruction side read transfers.
• INCR 1 8-bit, 16-bit, 32-bit, 64-bit for exclusive write transfers.
• INCR 1 8-bit, 16-bit, 32-bit, 64-bit for exclusive read transfers.

For Device transactions:

• INCR 1 8-bit, 16-bit, 32-bit, 64-bit for data side read transfers.
• INCR N (N:1-4) 128-bit for write transfers.
• INCR 1 8-bit, 16-bit, 32-bit, and 64-bit for write transfers.
• INCR 1 8-bit, 16-bit, 32-bit, 64-bit for exclusive read transfers.
• INCR 1 8-bit, 16-bit, 32-bit, 64-bit for exclusive write transfers.

The following points apply to AXI transactions:
• WRAP bursts are only 128-bit and request a 4-beat burst.
• INCR 1 can be any size up to 128-bits for read or write.
• INCR burst, more than one transfer, are only 128-bit.
• No transaction is marked as FIXED.
• Write transfers with none, some, or all byte strobes low can occur.

 Note 

These restrictions are not generic and you must not infer any other restrictions.

7.5.3 AXIM data prefetchers

The Cortex-R52 processor contains four independent data prefetchers, which look for patterns in the
addresses of linefills.

The CPUACTLR register contains the DPFSTRCTL field which controls the number of enabled
independent data prefetch streams between 1 and 4.

The data prefetcher uses patterns in the addresses of linefills to predict where future linefills are likely to
be needed, and speculatively fetches them. A correct speculative fetch can significantly increase
performance, particularly if the memory system has a high latency. The CPUACTLR register contains a
STRIDECTL field which controls the number of consecutive linefills for a particular pattern, between 2
or 3, that must be seen before a data prefetcher can be started.

7 Memory System
7.5 AXIM interface

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

7-228

Non-Confidential



It can be advantageous to limit the total number of linefills initiated by the data prefetchers so that some
of the linefill resources are available to non-prefetch requests. The CPUACTLR register contains a
L1DPFCTL field which allows the number of linefills initiated by all data prefetchers to be limited in the
range 0 to 8, where 0 indicates that the data prefetchers disabled.

7.5.4 AXIM transaction IDs

The following table shows the identifier encoding for the AXIM read address and read response
channels.

Table 7-9  AXIM read address and read response channel identifiers

ARIDMx
Encoding

Transaction type Description

0b0000 Exclusive accesses Exclusive (LDREX). There can be one Exclusive sequence outstanding.

0b0010 Device accesses (data side) Device-type data read. There can be one data side Device request using this
ID.

0b01xx Normal requests (instruction
side)

Instruction fetch. There can be three instruction side Normal requests each
using a unique ID.

0b1xxx Normal requests (data side) Normal-type data read. There can be eight data side Normal requests each
using a unique ID.

The following table shows the identifier encoding for AXIM write address and write response channels.

Table 7-10  AXIM write address and write response channel identifiers

AWIDMx Encoding Transaction type Description

0b000 Exclusive accesses Exclusive (STREX). There can be one Exclusive outstanding.

0b011 Non-reorderable Device
accesses

Device-type write. There can be three Device requests outstanding using the
same ID.

0b1xx Normal requests Normal-type. There can be three Normal requests outstanding and each
might have a unique ID.

The following tables show the encoding for the ARCACHEMx and AWCACHEMx fields. The
Assigned attributes column indicates the memory type given by the MPU. A transaction uses a Default
row, if it does not fall into one of the other categories. For example, if an access is exclusive without
Device attributes, then the Default row is used. Otherwise, the appropriate Device attribute row is used.

Table 7-11  AXIM ARCACHEMx encodings

ARCACHEMx Memory type Assigned attributes

0b0000 Device Non-Bufferable Device nGnRnE

0b0001 Device Bufferable Device nGnRE, nGRE, or GRE

0b0011 Normal Non-cacheable Bufferable Default

0b1110 Write-Through Read-Allocate Normal outer Write-Through

0b1111 Write-Back Read-Allocate Normal outer Write-Back

7 Memory System
7.5 AXIM interface

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

7-229

Non-Confidential



Table 7-12  AXIM AWCACHEMx encodings

AWCACHEMx Memory type Assigned attributes

0b0000 Device Non-Bufferable Device nGnRnE

0b0001 Device Bufferable Device nGnRE, nGRE, or GRE

0b0011 Normal Non-cacheable Bufferable Default

0b1110 Write-Through Write-Allocate Normal outer Write-Through

0b1111 Write-Back Write-Allocate Normal outer Write-Back

7.5.5 AXI privilege information

The AXIM interface provides information about the privilege level of an access on the
ARPROTMx[2:0] and AWPROTMx[2:0] signals.

Accesses might be cached or merged together and the resulting transaction can have both privileged and
user data combined.

The following table shows the processor privilege level and associated ARPROTMx[2:0] and
AWPROTMx[2:0] values. Cacheable read requests are always marked privileged. Non-cacheable read
requests take on the privilege of the instruction that requested the read. Stores to Normal and Device
GRE memories are always marked privileged, but Device nGRE and Exclusive stores indicate the
privilege of the instruction that requested the store.

Table 7-13  Processor mode and ARPROTMx and AWPROTMx values

Processor mode Type of access Value of ARPROTMx or
AWPROTMx

EL0, EL1, EL2 Cacheable, Non-shareable read access Privileged access

EL0 Device or Normal Non-cacheable read access Unprivileged access

EL1, EL2 Privileged access

EL0, EL1, EL2 Cacheable, Non-shareable write access Privileged access

EL0 Device write Unprivileged access

EL1, EL2 Privileged access

EL0 Normal Non-cacheable write, except for STREX, STREXB, STREXH, and
STREXD to shareable memory

Privileged access

EL0 Normal Non-cacheable write for STREX, STREXB, STREXH, and
STREXD to shareable memory

Unprivileged access

EL1, EL2 Normal Non-cacheable write Privileged access

 Note 

All transactions are marked as Secure (AxPROTMx[1]=0).

7.5.6 AXIM QoS and user signals

This section describes the AXIM QoS and user signals.

7 Memory System
7.5 AXIM interface

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

7-230

Non-Confidential



Quality of Service

The AXIM outputs the QoS identifiers that are programmed in IMP_QOSR.AWQOS, for writes and
IMP_QOSR.ARQOS, for reads. ARQOSMx and AWQOSMx are the AXIM QoS signals that read and
write the quality of service identifier.

User signals

A valid VMID is only guaranteed for Device memory accesses. A valid VMID value is unavailable for
Normal memory accesses. ARVMIDMx and AWVMIDMx are the AXIM VMID signals that read and
write the VMID.

7.5.7 AXIM interface timeout

The AXIM includes a timeout mechanism to detect transactions that fail to complete within a
programmable time limit.

A transaction fails to complete if an address or write data beat is not accepted, or a response is not
received.

If timeout detection is enabled, the response to a timeout occurrence is:
• For each timeout occurrence, the originating core asserts output signal ERREVENTx[13].
• If transaction abort is enabled, the transaction failing to complete is aborted and the memory system

treats the AXIM as broken. All subsequent transactions targeting the AXIM are aborted.

The timeout duration is determined by setting the IMP_BUSTIMEOUTR.MAXCYCLESBY16AXIM
field. To enable the timeout detection, set IMP_BUSTIMEOUTR.ENABLEAXIM. To enable the
transaction abort, set IMP_BUSTIMEOUTR.ABORTAXIM.

7 Memory System
7.5 AXIM interface

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

7-231

Non-Confidential



7.6 Low-latency peripheral port
The LLPP is designed as a dedicated path to access private peripherals, but not restricted to them.

The LLPP implements the AXI4 protocol and has a 32-bit data width.

Each core has an interface to an LLPP. Accesses made through the LLPP are optimized for low-latency
and are not cached. The LLPP is not optimal for Normal memory accesses. Accesses are always treated
as non-Gathering, non-Reordering, with no Early Write Acknowledgement.

Because the LLPP uses the AXI4 protocol it is possible to connect all the peripheral ports from the
processor to the same, shared memory system. However, this configuration is likely to incur a latency
penalty. The LLPP can also be connected to memory instead of peripherals. This configuration is not
optimal because the interface always applies Device-nGnRnE gathering, ordering, and write
acknowledgment rules. An LLPP region that is marked as Normal memory allows unaligned and
speculative memory accesses. Otherwise it follows Device-nGnRnE gathering, ordering, and write
acknowledgement rules.

An example of connecting small amounts of shared memory to the LLPPs might be to store shared
semaphores (with the appropriate exclusive monitor).

The LLPP address range and size is indicated in the IMP_PERIPHPREGIONR. It is set from the
configuration signals CFGLLPPBASEADDR and CFGLLPPSIZE and is the same for all cores in a
cluster. The LLPP region size is between 4KB and 4MB in powers of two. CFGLLPPIMP indicates if
the LLPP interface is implemented. This signal must be tied low if the system does not use the LLPP,
otherwise it must be tied high.

The LLPP is disabled at reset. IMP_PERIPHPREGIONR.ENABLEEL2 controls whether the LLPP is
enabled for access at EL2 and IMP_PERIPHPREGIONR.ENABLEEL10 controls whether the LLPP is
enabled for access at EL0 and EL1.

If the LLPP is implemented and enabled, data accesses to an address in the LLPP region are performed
through the LLPP. If the LLPP is implemented and not enabled, data accesses to the LLPP region
generate a synchronous external abort. If the LLPP is not implemented, then data accesses to the LLPP
region are performed through other parts of the memory system.

If the LLPP is implemented, instruction accesses to an address in the LLPP region cause a synchronous
external abort. If the LLPP is not implemented, instruction accesses are performed through other parts of
the memory system.

The LLPP supports exclusive accesses, generating the appropriate exclusive transactions for all access
sizes smaller than or equal to 32 bits. A load or store exclusive double operation that is performed
through the LLPP generates a synchronous external abort.

There is no internal mechanism for one core to access peripherals attached to peripheral port on another
core.

The AXIS interface does not have access to the LLPP.

The LLPP interface supports bus protection.

The following table shows LLPP attributes.

Table 7-14  LLPP attributes

Attribute Value Comments

Write issuing capability 8 Each core can issue a maximum of eight write requests.

Read issuing capability 2 Each core can issue two LLPP read requests.

Exclusive thread capability 1 Each core can have one Exclusive access sequence in progress.

Write ID capability 1 All writes use the same ID.

7 Memory System
7.6 Low-latency peripheral port

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

7-232

Non-Confidential



Table 7-14  LLPP attributes (continued)

Attribute Value Comments

Write ID width 1 -

Read ID capability 1 All reads use the same ID.

Read ID width 1 -

LLPP transfers

The LLPP only issues INCR bursts of length one, and transfers of up to 32 bits per transfer. The LLPP
read-channel can post two 32-bit outstanding transactions when a single instruction requests 64 bits of
data from a 64-bit aligned location. The LLPP does not post two read transactions on the bus for two
separate instructions or for data within two separate 64-bit aligned locations. The LLPP write-channel
generates up to eight 32-bit transactions on the bus from one or more instructions. All transactions use
the same ID to ensure that responses are received in the same order the transactions were issued.

7.6.1 LLPP Memory attributes

The LLPP uses the ARCACHEPx and AWCACHEPx signals to indicate the memory attributes of
transactions.

The following table shows the encoding that is used for the ARCACHEPx and AWCACHEPx signals
of the LLPP master interface. Because the LLPP is optimized for peripherals, all accesses propagate
Device Non-bufferable attributes, regardless of the attributes that are returned by the MPU. All other
encodings are unused.

Table 7-15  ARCACHEPx and AWCACHEPx encodings

Encoding Meaning

0b0000 Device Non-bufferable

7.6.2 LLPP AXI transfer restrictions

The LLPP conforms to the AXI4 specification, but it does not generate all the AXI transaction types that
the specification permits.

This section describes the types of AXI transactions that the LLPP generates. If you are designing an
AXIS to work only with the Cortex-R52 LLPP, you can take advantage of these restrictions and the
interface attributes to simplify the slave.

This section also contains tables that show some examples of the types of AXI burst that the core
generates. However, because a particular type of transaction is not shown here does not mean that the
core does not generate such a transaction.

An AXI4 slave device that is connected to the LLPP must be capable of handling every kind of
transaction that the AXI4 specification permits, except where there is an explicit statement in this chapter
that such a transaction is not generated. You must not infer any additional restrictions from the example
tables given.

Restrictions on AXI peripheral transfers describes restrictions on the type of transfers that the LLPP
generates. If a core exists and is powered up, BREADYPx and RREADYPx are always asserted. You
must not make any assumptions about the AXI handshaking signals, except that they conform to the
AXI4 Protocol Specification.

Restrictions on AXI peripheral transfers
The LLPP applies the following restrictions to the AXI transactions it generates:
• A burst never transfers more than four bytes.
• The burst length is never more than one transfer.

7 Memory System
7.6 Low-latency peripheral port

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

7-233

Non-Confidential



• No transaction ever crosses a 4-byte boundary in memory.
• All transactions are incrementing (INCR) bursts.
• All transactions are secure data accesses.
• Transactions to Device memory are always to addresses that are aligned to the transfer size.
• Exclusive accesses are always to addresses that are aligned to the transfer size.

LLPP Device transactions

A load or store instruction to or from Device memory always generates AXI transactions of the same
size as the instruction implies.

The following table shows the values of ARADDRPx, ARBURSTPx, ARSIZEPx, and ARLENPx for
LDRB from bytes 0-3 in Device memory.

Table 7-16  LDRB transfers

Address[1:0] ARADDRPx[7:0] ARBURSTPx ARSIZEPx ARLENPx

0x0 (byte 0) 0x00 INCR 8-bit 1 data transfer

0x1 (byte 1) 0x01 INCR 8-bit 1 data transfer

0x2 (byte 2) 0x02 INCR 8-bit 1 data transfer

0x3 (byte 3) 0x03 INCR 8-bit 1 data transfer

The following table shows the values of ARADDRPx, ARBURSTPx, ARSIZEPx, and ARLENPx for
LDRH from halfwords 0-1 in Device memory.

Table 7-17  LDRH transfers

Address[1:0] ARADDRPx ARBURSTPx ARSIZEPx ARLENPx

0x0 (halfword 0) 0x00 INCR 16-bit 1 data transfer

0x2 (halfword 1) 0x02 INCR 16-bit 1 data transfer

The following table shows the values of ARADDRPx, ARBURSTPx, ARSIZEPx, and ARLENPx for
an LDR or an LDM that transfers one register, an LDM1, in Device memory.

Table 7-18  LDR or LDM transfers

Address[1:0] ARADDRPx AWBURSTPx ARSIZEPx ARLENPx

0x0 (word 0) 0x00 INCR 32-bit 1 data transfer

The following table shows the values of ARADDRPx, ARBURSTPx, ARSIZEPx, and ARLENPx for
an LDM that transfers five registers, an LDM5, in Device memory.

All accesses using LDM, STM, LDRD, or STRD instructions to Device memory occur as one or multiple 32-
bit transactions.

7 Memory System
7.6 Low-latency peripheral port

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

7-234

Non-Confidential



Table 7-19  LDM transfers

Address[2:0] ARADDRPx ARBURSTPx ARSIZEPx ARLENPx

0x0 (word 0) 0x00 INCR 32-bit 1 data transfer

0x04 INCR 32-bit 1 data transfer

0x08 INCR 32-bit 1 data transfer

0x0C INCR 32-bit 1 data transfer

0x10 INCR 32-bit 1 data transfer

0x4 (word 1) 0x04 INCR 32-bit 1 data transfer

0x08 INCR 32-bit 1 data transfer

0x0C INCR 32-bit 1 data transfer

0x10 INCR 32-bit 1 data transfer

0x14 INCR 32-bit 1 data transfer

The following table shows the values of AWADDRPx, AWBURSTPx, AWSIZEPx, AWLENPx, and
WSTRBPx for an STRB from bytes 0-3 in Device memory.

Table 7-20  STRB transfers

Address[1:0] AWADDRPx AWBURSTPx AWSIZEPx AWLENPx WSTRBPx

0x0 (byte 0) 0x00 INCR 8-bit 1 data transfer 0b0001

0x1 (byte 1) 0x01 INCR 8-bit 1 data transfer 0b0010

0x2 (byte 2) 0x02 INCR 8-bit 1 data transfer 0b0100

0x3 (byte 3) 0x03 INCR 8-bit 1 data transfer 0b1000

The following table shows the values of AWADDRPx, AWBURSTPx, AWSIZEPx, AWLENPx, and
WSTRBPx for an STRB from halfwords 0-1 in Device memory.

Table 7-21  STRH transfers

Address[1:0] AWADDRPx AWBURSTPx AWSIZEPx AWLENPx WSTRBPx

0x0 (halfword 0) 0x00 INCR 16-bit 1 data transfer 0b0011

0x2 (halfword 1) 0x02 INCR 16-bit 1 data transfer 0b1100

The following table shows the values of AWADDRPx, AWBURSTPx, AWSIZEPx, AWLENPx, and
WSTRBPx for an STR or an STM that transfers one register, an STM1, to Device memory.

Table 7-22  STR or STM transfers

Address[1:0] AWADDRPx AWBURSTPx AWSIZEPx AWLENPx WSTRBPx

0x0 (word 0) 0x00 INCR 32-bit 1 data transfer 0b1111

7 Memory System
7.6 Low-latency peripheral port

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

7-235

Non-Confidential



The following table shows the values of AWADDRPx, AWBURSTPx, AWSIZEPx, AWLENPx, and
WSTRBPx for an STM that writes five registers, an STM5, to Device memory.

Table 7-23  STM transfers

Address[2:0] AWADDRPx AWBURSTPx AWSIZEPx AWLENPx WSTRBPx

0x0 (word 0) 0x00 INCR 32-bit 1 data transfer 0b1111

0x04 INCR 32-bit 1 data transfer 0b1111

0x08 INCR 32-bit 1 data transfer 0b1111

0x0C INCR 32-bit 1 data transfer 0b1111

0x10 INCR 32-bit 1 data transfer 0b1111

0x4 (word 1) 0x04 INCR 32-bit 1 data transfer 0b1111

0x08 INCR 32-bit 1 data transfer 0b1111

0x0C INCR 32-bit 1 data transfer 0b1111

0x10 INCR 32-bit 1 data transfer 0b1111

0x14 INCR 32-bit 1 data transfer 0b1111

 Note 

• A load of a halfword from Device memory addresses 0x1 or 0x3 generates an alignment fault.
• A load of a word from Device memory addresses 0x1, 0x2, or 0x3 generates an alignment fault.
• A load-multiple from Device memory addresses 0x1, 0x2, 0x3, 0x5, 0x6, or 0x7 generates an

alignment fault.
• A store of a halfword from Device memory addresses 0x1, or 0x3 generates an alignment fault.
• A store of a word to Device memory addresses 0x1, 0x2, or 0x3 generates an alignment fault.
• A store-multiple to Device memory address 0x1, 0x2, 0x3, 0x5, 0x6, or 0x7 generates an alignment

fault.

LLPP Normal reads

Load instructions accessing Normal memory generate transactions on the LLPP that are not necessarily
the same size as the instruction implies.

An LLPP Normal read might generate more than one bus transaction to obtain the required data.

The tables in this section give examples of the types of AXI transactions that might result from various
load instructions, accessing various addresses in Normal memory. They are provided as examples only,
and are not an exhaustive description of the AXI transactions.

The following table shows possible values of ARADDRP, ARBURSTP, ARSIZEP, and ARLENP for
an LDRH from bytes 0-7 in Normal memory.

Table 7-24  LDRH transfers

Address[2:0] ARADDRP ARBURSTP ARSIZEP ARLENP

0x0 (halfword 0) 0x00 INCR 16-bit 1 data transfer

0x1 0x00 INCR 32-bit 1 data transfer

0x2 (halfword 1) 0x02 INCR 16-bit 1 data transfer

7 Memory System
7.6 Low-latency peripheral port

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

7-236

Non-Confidential



Table 7-24  LDRH transfers (continued)

Address[2:0] ARADDRP ARBURSTP ARSIZEP ARLENP

0x3 0x00 INCR 32-bit 1 data transfer

0x04 INCR 32-bit 1 data transfer

0x4 (halfword 2) 0x04 INCR 16-bit 1 data transfer

0x5 0x04 INCR 32-bit 1 data transfer

0x6 (halfword 3) 0x06 INCR 16-bit 1 data transfer

0x7 0x04 INCR 32-bit 1 data transfer

0x08 INCR 32-bit 1 data transfer

The following table shows possible values of ARADDRP, ARBURSTP, ARSIZEP, and ARLENP for
an LDR to Normal memory.

Table 7-25  LDR transfers

Address[2:0] ARADDRP ARBURSTP ARSIZEP ARLENP

0x0 (word 0) 0x00 INCR 32-bit 1 data transfer

0x1 0x00 INCR 32-bit 1 data transfer

0x04 INCR 32-bit 1 data transfer

0x2 0x00 INCR 32-bit 1 data transfer

0x04 INCR 32-bit 1 data transfer

0x3 0x00 INCR 32-bit 1 data transfer

0x04 INCR 32-bit 1 data transfer

0x4 (word 1) 0x04 INCR 32-bit 1 data transfer

0x5 0x04 INCR 32-bit 1 data transfer

0x08 INCR 32-bit 1 data transfer

0x6 0x04 INCR 32-bit 1 data transfer

0x08 INCR 32-bit 1 data transfer

0x7 0x04 INCR 32-bit 1 data transfer

0x08 INCR 32-bit 1 data transfer

The following table shows possible values of ARADDRP, ARBURSTP, ARSIZEP, and ARLENP for
an LDM that transfers five registers, an LDM5, to Normal memory.

7 Memory System
7.6 Low-latency peripheral port

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

7-237

Non-Confidential



Table 7-26  LDM transfers

Address[2:0] ARADDRP ARBURSTP ARSIZEP ARLENP

0x0 (word 0) 0x00 INCR 32-bit 1 data transfer

0x04 INCR 32-bit 1 data transfer

0x08 INCR 32-bit 1 data transfer

0x0C INCR 32-bit 1 data transfer

0x10 INCR 32-bit 1 data transfer

0x4 (word 1) 0x04 INCR 32-bit 1 data transfer

0x08 INCR 32-bit 1 data transfer

0x0C INCR 32-bit 1 data transfer

0x10 INCR 32-bit 1 data transfer

0x1C INCR 32-bit 1 data transfer

LLPP Normal writes

Store instructions accessing Normal memory generate transactions on the LLPP that are not necessarily
the same size as the instruction implies.

An LLPP Normal write might generate more than one bus transaction to write the required data.

The LLPP asserts byte-lane strobes, WSTRBPx[3:0], to ensure that only the bytes that were written by
the instruction are updated.

The tables in this section give examples of the types of AXI transaction that might result from various
store instructions, accessing various addresses in Normal memory. They are provided as examples only,
and are not an exhaustive description of the AXI transactions.

The following table shows the values of AWADDRP, AWBURSTP, AWSIZEP, and AWLENP for an
STRH to Normal memory.

Table 7-27  STRH transfers

Address[2:0] AWADDRP AWBURSTP AWSIZEP AWLENP WSTRBP

0x0 (halfword 0) 0x00 Incr 32-bit 1 data transfer 0b0011

0x1 0x00 Incr 32-bit 1 data transfer 0b0110

0x2 (halfword 1) 0x00 Incr 32-bit 1 data transfer 0b1100

0x3 0x00 Incr 32-bit 1 data transfer 0b1000

0x04 Incr 32-bit 1 data transfer 0b0001

0x4 (halfword 2) 0x04 Incr 32-bit 1 data transfer 0b0011

0x5 0x04 Incr 32-bit 1 data transfer 0b0110

0x6 (halfword 3) 0x04 Incr 32-bit 1 data transfer 0b1100

0x7 0x04 Incr 32-bit 1 data transfer 0b1000

0x08 Incr 32-bit 1 data transfer 0b0001

The following table shows the values of AWADDRP, ARBURSTP, AWSIZEP, and AWLENP for an
STR to Normal memory.

7 Memory System
7.6 Low-latency peripheral port

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

7-238

Non-Confidential



Table 7-28  STR transfers

Address[2:0] AWADDRP AWBURSTP AWSIZEP AWLENP WSTRBP

0x0 (word 0) 0x00 Incr 32-bit 1 data transfer 0b1111

0x1 0x00 Incr 32-bit 1 data transfer 0b1110

0x04 Incr 32-bit 1 data transfer 0b0001

0x2 0x00 Incr 32-bit 1 data transfer 0b1100

0x04 Incr 32-bit 1 data transfer 0b0011

0x3 0x00 Incr 32-bit 1 data transfer 0b1000

0x04 Incr 32-bit 1 data transfer 0b0111

0x4 (word 1) 0x04 Incr 32-bit 1 data transfer 0b1111

0x5 0x04 Incr 32-bit 1 data transfer 0b1110

0x08 Incr 32-bit 1 data transfer 0b0001

0x6 0x04 Incr 32-bit 1 data transfer 0b1100

0x08 Incr 32-bit 1 data transfer 0b0011

0x7 0x04 Incr 32-bit 1 data transfer 0b1000

0x08 Incr 32-bit 1 data transfer 0b0111

7.6.3 LLPP timeout

The LLPP includes a timeout mechanism to detect transactions that fail to complete (that is, an address
or write data beat is not accepted, or a response is not received) within a programmable time limit.

If timeout detection is enabled, the response to a timeout occurrence is:
• For each timeout occurrence, the originating core asserts output signal ERREVENTx[15].
• If timeout abort is enabled, the transaction failing to complete is aborted and the memory system

treats the LLPP as broken. All subsequent transactions targeting the LLPP are aborted.

The timeout duration is determined by setting the IMP_BUSTIMEOUTR.MAXCYCLESBY16LLPP
field and enabled by setting IMP_BUSTIMEOUTR.ENABLELLPP. Timeout abort is enabled by setting
IMP_BUSTIMEOUTR.ABORTLLPP.

7 Memory System
7.6 Low-latency peripheral port

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

7-239

Non-Confidential



7.7 Flash interface
The Flash interface provides low-latency access to external read-only memory. Writes to the read-only
Flash port abort.

The Flash interface conforms to the AXI4 specification and is a 128-bit read-only master interface. It
receives requests from the instruction side and data side. You can configure whether data or instruction
accesses have the highest priority in the case of contention, by setting CPUACTLR.FLASHARBCTL.
Data and instructions read from the Flash interface can be cached in the L1 caches. Flash data allocations
can be invalidated under control of an external debugger. There can be up to four outstanding Flash
linefill requests in progress. Across Flash and AXIM ports, the Cortex-R52 processor can track a
maximum of eight linefills.

CFGFLASHIMP indicates if the Flash interface is implemented. If the Flash interface is implemented
and not enabled, accesses falling within the Flash region generate a synchronous external abort. If the
Flash interface is not implemented, accesses falling within the Flash region are performed through other
parts of the memory system. The base address is set from the CFGFLASHBASEADDR[31:27]
configuration signals. The Flash interface base address is indicated in IMP_FLASHIFREGIONR. Each
core has a separate IMP_FLASHIFREGIONR which also holds the Flash interface enable bit. Whether
the Flash interface is enabled at reset is implemented individually for each core, and set by the
CFGFLASHENx configuration signals.

The Flash region size is 128MB.

The following features are not permitted by AXI4 and the system controls whether they are used.

• The interface can accept received data in the same cycle as the read address is valid. Each core can
issue four Flash read requests.

• The Flash interface includes a late error input signal, LATEERRFx. The late error signal allows the
Flash controller to signal a correctable error and cause the core to discard the data and, if necessary,
repeat the transaction.

The following table shows the different types of Flash read requests.

Table 7-29  Flash Read Requests

Access type Cacheable Bursts Transaction size

Read Non-cacheable Single 128-bit

Non-cacheable Burst, Increment (incr) 128-bit

Cacheable Burst, Wrapping (wrap) 128-bit

The following table shows the Flash interface attributes.

Table 7-30  Flash interface attributes

Attribute Value Comments

Read issuing capability 4 Each core can issue four outstanding Flash read requests.

Read ID capability 2 The ID encodes the source of the memory transaction as instruction side or data side access.

Read ID width 1 -

7 Memory System
7.7 Flash interface

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

7-240

Non-Confidential



The following table describes the list of IDs for the Flash interface.

Table 7-31  IDs for the Flash interface

ID Description

0 For data side access

1 For instruction side access

 Note 

The AXIS interface of the processor must not appear in the memory map of the Flash interface.

7.7.1 Flash interface timeout

A transaction fails to complete if an address is not accepted, or a response is not received.

If timeout detection is enabled, the response to a timeout occurrence is:
• For each timeout occurrence, the originating core asserts output signal ERREVENTx[14].
• If transaction abort is enabled, the transaction failing to complete is aborted and the memory system

treats the Flash interface as broken. All subsequent transactions targeting the Flash interface are
aborted.

The timeout duration is determined by setting the IMP_BUSTIMEOUTR.MAXCYCLESBY16FLASH
field and enabled by setting IMP_BUSTIMEOUTR.ENABLEFLASH. Transaction abort is enabled by
setting IMP_BUSTIMEOUTR.ABORTFLASH.

7 Memory System
7.7 Flash interface

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

7-241

Non-Confidential



7.8 AXIS interface
The AXIS interface is shared between all cores in the processor. It provides external access to TCM
memory. The AXIS can have bus protection.

The AXIS address space is a 16MB region located at a base address set by configuration input signals
CFGAXISTCMBASEADDR[31:24], providing access to all TCM memory within the processor. The
base address set by the configuration input signals CFGAXISTCMBASEADDR[31:24] must match the
address the AXIS port in the system memory map. The 16MB region is divided into four 4MB blocks,
one for each core. Each 4MB block is subdivided into four 1MB regions. TCMs (A, B, and C) within a
core are mapped to the first three 1MB regions.

The memory map is the same regardless of the number of cores configured, and the sizes and number of
TCMs present. Regions associated with cores that are not present generate a DECERR response. If a
TCM is accessed outside its configured range, or an unoccupied 1MB region is accessed, a DECERR
response is generated.

For each core, access control checks can be enabled for AXIS transactions by programming
IMP_SLAVEPCTLR.TCMACCLVL. Access control allows either all transactions or only privileged
transactions to access the TCM. If a transaction is not permitted, the AXIS generates an SLVERR
response.

When an external agent or core attempts to write to the TCMs through the AXIS interface and the
affected core is in the process of handling a DMB, the write to the AXIS interface is scheduled to be
performed before outstanding writes from the core to the same TCM. If the two writes are to the same
TCM line and some of the bytes overlap, the MRP output is adjusted to show the resulting memory
contents and the AXIS write is signaled as having been reordered on MRPATTRx.

The following figure shows how each TCM is mapped into AXIS address space.

core 1

ATCM

BTCM

CTCM

unoccupied

core 2

core 3

16MB

4MB

4MB

4MB

Base address

4MB core 0

Figure 7-3  AXIS TCM mapping

7.8.1 Accessing TCM with ECC

When TCM implements ECC, the ECC code is generated within the core before writing to the TCM.

If the core detects an error on reads or writes the behavior is:

7 Memory System
7.8 AXIS interface

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

7-242

Non-Confidential



Writes
• If a write to TCM requires a read-modify-write, and a correctable error is detected when

reading the TCM, the ECC is recalculated.
• If a write to TCM requires a read-modify-write, and a non-correctable error is detected when

reading the TCM, a SLVERR response is returned.

Reads
• For a correctable error, the core corrects the data and returns corrected data with OKAY

response.
• For a non-correctable error, a SLVERR response is returned.

7.8.2 AXIS characteristics

This section describes the capabilities and attributes of the AXIS interface.

The AXIS implements a subset of the AXI transactions, the Accelerator Coherency Port Interface
Restrictions, that are described in AMBA® AXI™ and ACE™ Protocol Specification AXI3™, AXI4™, and
AXI4-Lite™ ACE and ACE-Lite™

The AWLENS[7:0] and ARLENS[7:0] signals specify the number of data transfers which occur within
each burst. In the following signal names, m stands for R or W. The AXIS interface supports two burst
lengths:

• 16-bytes, AmLENS[7:0] = 0x00, AmADDRS[3:0] = 0b0000
• 64-bytes, AmLENS[7:0] = 0x03, AmADDRS[5:0] = 0b000000

For all other combinations of AmLENS and AmADDRS, AXIS generates an error SLVERR.

For AXIS write bursts:

• 16-byte write bursts are permitted to have any combination of valid bytes.
• 64-byte write bursts must have all bytes valid.

The AXIS interface does not support:
• Exclusive transactions, therefore, AmLOCK is not used.
• Memory type and cacheability, therefore, AmCACHE is not used.
• Security Extensions, therefore, AmPROT[1] is not used.
• Data and instruction transaction signaling, therefore, AmPROT[2] is not used.
• QoS is not supported, therefore, AmQOS is not used.
• Multiple address region signaling is not supported, therefore, AmREGION is not used.

The transaction ID width is configurable, with a minimum value of 1 bit.

The following table shows the AXIS interface attributes.

Table 7-32  AXIS interface attributes

Attribute Value Comments

Write interleave depth 1 All write data must be presented to the AXIS interface in order

Read data reorder depth 1 The AXIS interface returns all read data in order, even if the bursts have different IDs

Write acceptance capability 12 The maximum number of outstanding write transactions that a slave can accept

Read acceptance capability 12 The maximum number of outstanding read transactions that a slave can accept

7 Memory System
7.8 AXIS interface

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

7-243

Non-Confidential



7.9 Error detection and handling
This section describes the various error detection and handling features present in the memory system.

The Cortex-R52 processor memories can store ECC for detecting errors in data read from the RAM.
Buses can optionally have redundant signals for detecting errors in the transmitted or received signals, or
detecting errors in the function of the interconnect.

Error types

ECC codes are computed and checked for a group of data bits which is referred to as a chunk. A RAM
location or bus signal may comprise one or more chunks. For example, the Flash read data bus is 128-
bits wide but, if configured with 64-bit ECC chunks, separate ECC codes are used for the upper 64 bits
of data and the lower 64 bits of data.

A single-bit error refers to a data chunk, including the corresponding ECC code, in which one bit only
has the incorrect value. A double-bit error refers to a data chunk, including the corresponding ECC code
in which two bits have the incorrect value.

The following figure shows the error detection and correction scheme.

0

0

0

0

0

Parity: one error per 
byte detected

64-bit ECC: one error 
per doubleword 

corrected

64-bit ECC: two 
errors per 

doubleword detected

32-bit ECC: one error 
per word corrected

32-bit ECC: two 
errors per word 

detected

Figure 7-4  Error detection and correction scheme

An error in a RAM is described as a soft error when the RAM location contains an error, but that location
can be over-written in the normal way. An error in a RAM is described as a hard error when the RAM
has a fault, and that location cannot be over-written, meaning that data written to it are not read. In this
document RAM errors are soft errors unless indicated otherwise.

Read-modify write

The smallest unit of data that the processor can write is a byte. However, ECC schemes can be computed
on data chucks which are larger than this. To write any data to a RAM protected with ECC requires the
error code for that data to be recomputed and rewritten. If the entire data chunk is not written, for
example, a halfword, 16 bits, is written to address 0x4 of a RAM with a 32-bit ECC chunk, the error
code must be computed partly from the data being written, and partly from data already stored in the
RAM. In this example, the halfword in the RAM is at address 0x6. To compute the error code for such a
write, the processor must first read data from the RAM, then merge the data to be written with it to
compute the error code, then write the data to the RAM along with the new error code. This process is
referred to as read-modify-write.

7 Memory System
7.9 Error detection and handling

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

7-244

Non-Confidential



This section contains the following subsections:
• 7.9.1 TCM error detection and correction on page 7-245.
• 7.9.2 Cache memory ECC on page 7-245.
• 7.9.3 ECC error reporting on page 7-246.
• 7.9.4 Bus protection on page 7-246.
• 7.9.5 Flash data ECC on page 7-247.

7.9.1 TCM error detection and correction

The TCMs have ECC logic, which can detect and correct single-bit errors and detect double-bit errors in
data read from the RAM. The RAMs implemented for the TCMs must be wide enough to store the ECC
codes for ECC to be used, otherwise ECC must not be enabled.

The ATCM uses a 64-bit ECC chunk, while the BTCM and CTCM use 32-bit ECC chunks. The core
always automatically performs read-modify-write operations as appropriate for the ECC scheme.

At reset, CFGRAMPROTEN enables all RAM (TCM and cache) ECC protection. Software can enable
and disable ECC protection by writing to register bit IMP_MEMPROTCTLR.RAMPROTEN.

When a correctable error is detected on a read, the correction is written back to the RAM and the relevant
instruction is flushed and then replayed. Single-bit hard errors are handled by TCM ECC logic to prevent
repetitively correcting the error.

When a double-bit error is detected in a TCM, the following error response occurs:

Table 7-33  Error response

Access type Response

Core read - Data Synchronous Data Abort

Core read - Instruction Prefetch Abort

Core write Asynchronous Data Abort

AXIS read SLVERR response on bus

Because double-bit errors cannot be corrected, the TCM does not update the RAM location containing
the double-bit error. As a result, subsequent accesses to the same RAM location might observe the same
error.

7.9.2 Cache memory ECC

The caches have ECC logic which can detect and correct single-bit and double-bit errors in data or tags
that are read from the RAM. The RAMs implemented for the caches must be wide enough to store the
ECC codes for ECC to be used, otherwise ECC must not be enabled.

The instruction cache uses a 64-bit ECC chunk for data, while the data cache uses 32-bit ECC chunks.
The tags in both caches use an ECC chunk which is the full size of the tag. The core always
automatically performs read-modify-write operations as necessary for the data cache.

At reset, CFGRAMPROTEN enables all RAM (cache and TCM) ECC protection. Software can enable
and disable ECC protection by writing to register bit IMP_MEMPROTCTLR.RAMPROTEN.

Errors that are detected in the instruction and data cache are always correctable by invalidating the cache,
flushing the core pipeline, refetching and executing the failed instruction. This is feasible because the
caches implement Write-Through caching and can never hold dirty data. This behavior allows the failing
cache line to be read from main, or Flash memory.

Single-bit and double-bit hard errors are handled by cache logic to prevent repeatedly correcting the
same error.

7 Memory System
7.9 Error detection and handling

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

7-245

Non-Confidential



7.9.3 ECC error reporting

Each core includes two record registers each for the instruction cache, data cache, TCMs, and Flash
interface.

When a correctable ECC error is detected the location of the error is recorded in an empty record
register, which is then marked as valid. When a non-correctable ECC error is detected, the location of the
error is recorded in an empty record register, or a record register containing a correctable error.

Record registers become empty only by a software write to the register.

Detected error events are signaled to the system using the global ERREVENT bus or the per-core
ERREVENTx buses. If both record registers are full, the loss of correctable error information is
indicated on ERREVENTx[16] signal, for correctable errors and ERREVENTx[17] signal for non-
correctable errors.

Related reference
3.3.57 Instruction Cache Error Record Registers 0 and 1 on page 3-140
3.3.21 Data Cache Error Record Registers 0 and 1 on page 3-95
3.3.93 TCM Error Record Register 0 and 1 on page 3-187
3.3.29 Flash Error Record Registers 0 and 1 on page 3-102

7.9.4 Bus protection

The AXIM interface, the LLPP, the Flash interface, and the AXIS interface, optionally, implement ECC
protection for signal integrity.

ECC, when implemented, protects:

Payload data
The core checks and corrects read data and generates ECC codes for write data. The ECC chunk
size, for data, depends on the interface:
• The AXIM ECC chunk size is 64 bits.
• The LLPP ECC chunk size is 32 bits.
• The Flash interface is configurable for 64-bit or 128-bit ECC chunk.
• The AXIS ECC chunk size is 64 bits.

Payload address, control, and response signals
The core checks response signals received from the bus and generates ECC codes for address
and control signals sent to the bus. The ECC chunk size is 32 bits for addresses and no more
than 32 bits for control and response payload signals.

Parity protection of handshake signals
The AXIM interface, the LLPP, the Flash interface, and the AXIS bus, optionally, implement
parity protection of handshake signals for signal integrity. The core checks handshake signals
that are received from the bus, and generates parity bits for handshake signals that are sent to the
bus.

Interconnect protection

The AXIM interface, the LLPP, the Flash interface, and the AXIS bus, optionally, implement
interconnect protection. The core checks read data and write response beats received, and
generates additional information for address, control, and write data beats that are sent to the
bus.

All single-bit errors in data read from the AXIM interface, the LLPP, the Flash interface, and the AXIS
bus interface are correctable, that is, the function of the software is unchanged by such errors, although
the timing of operation might be affected.

All double-bit errors in data read from each interface are uncorrectable. Single and double-bit errors in
response signals received on the LLPP are uncorrectable. Uncorrectable errors either generate an external

7 Memory System
7.9 Error detection and handling

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

7-246

Non-Confidential



abort or the LLPP ignores these transactions. All errors generate events as described in 12.6 Events
on page 12-418.

7.9.5 Flash data ECC

Data read from the Flash interface has ECC protection regardless of whether or not signal integrity
protection is implemented. If signal integrity protection is implemented, the Flash data ECC forms part
of the bus protection scheme. Errors are recorded in the Flash Error Record Registers. Read-modify-
write is not required because the Flash interface is read-only.

Flash data protection is enabled at reset by CFGFLASHPROTEN. Software can enable and disable
flash data protection by writing to the IMP_MEMPROTCTLR.FLASHPROTEN bit. If signal integrity
protection is implemented, ECC protection on data is always performed, irrespective of the state of
FLASHPROTEN.

The Flash interface can also receive correctable errors signaled by the external controller. These are
known as late errors and cause the core to refetch and execute the instruction. Late errors never generate
aborts. Late errors are recorded in the Flash Error Record Registers.

7 Memory System
7.9 Error detection and handling

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

7-247

Non-Confidential



7.10 Exclusive accesses
Each core has a local exclusive monitor supporting Load-Exclusive and Store-Exclusive instructions.

The local monitor enables the TCMs or Non-shareable memory to be used for semaphores between
processes running on the same core. The local monitor is not available for use with other cores or
external masters accessing the TCMs through the AXIS. The local monitor exclusive granule size is 512-
bits.

A Load-Exclusive instruction marks a 512-bit memory region as exclusive. A Store-Exclusive passes the
local exclusive monitor check if it accesses the same 512-bit memory region and returns the exclusive
monitor to the open access state. If a Store-Exclusive accesses an address outside the marked 512-bit
region, then the Store-Exclusive instruction fails the exclusive monitor check and the monitor is returned
to the open access state.

If a non-exclusive store is attempted when the monitor is in the exclusive access state, then the local
exclusive monitor state is not affected, regardless of the address being accessed. If a Load-Exclusive is
executed while the local exclusive monitor is already in the exclusive access state, the monitor remains in
the exclusive access state, but the marked 512-bit address region is updated.

The local monitor also acts as a filter for Shareable exclusive accesses before they are sent to the global
exclusive monitor. A Load-Exclusive to shareable memory sets the local monitor when it retires cleanly.
A subsequent Store-Exclusive to shareable memory checks the local monitor before being propagated
externally. If it fails, the store is not propagated externally and the Store-Exclusive immediately retires
with an exclusive failure. This filtering behavior is possible because a failed local exclusive monitor
check implies that the global exclusive monitor check would also fail.

The Flash interface is read-only, there exclusives are not supported. The LLPP interface is 32-bits wide,
therefore, doubleword exclusives are not supported.

Exclusives to Outer Shareable memory on the AXIM or LLPP are performed as exclusive transactions
on the bus and require an external global exclusive monitor to support exclusives. Device and Normal
Non-cacheable memory is treated as Outer Shareable, and therefore also requires a global exclusive
monitor on the AXIM and LLPP interfaces to support exclusives.

The AXIS interface does not support exclusives.

7 Memory System
7.10 Exclusive accesses

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

7-248

Non-Confidential



7.11 Bus timeouts
The memory system has three distinct bus timeouts. For more information, see:

• 7.6.3 LLPP timeout on page 7-239.
• 7.7.1 Flash interface timeout on page 7-241.
• 7.5.7 AXIM interface timeout on page 7-231.

7 Memory System
7.11 Bus timeouts

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

7-249

Non-Confidential



Chapter 8
Memory Protection Unit

This chapter describes the MPU.

It contains the following sections:
• 8.1 About the MPU on page 8-251.
• 8.2 MPU regions on page 8-252.
• 8.3 Virtualization support on page 8-255.
• 8.4 MPU register access on page 8-257.
• 8.5 MPU Register summary on page 8-258.

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

8-250

Non-Confidential



8.1 About the MPU
The Cortex-R52 processor has two programmable MPUs, controlled from EL1 and EL2. Each MPU
allows the 4GB memory address range to be subdivided into regions.

Each memory region is defined by a base address, limit address, access permissions, and memory
attributes.

For more information on the MPU, see the Arm® Architecture Reference Manual Supplement Armv8, for
Armv8-R architecture profile.

For data accesses, the MPU checks that the type of access (read or write) to a region is allowed for the
current translation regime. For instruction accesses, the MPU checks access is allowed in the region, and
that the translation regime allows execution. For both data and instruction accesses, if access is allowed,
the MPU assigns the memory attributes defined for the region. If access is not allowed, a permission
fault is taken. A translation fault is taken for the following reasons:
• If an access hits in more than one region in one of the MPUs.
• If an access does not hit in any MPU region and the background region cannot be used (based on the

MPU configuration and current privilege level).

As a result of pipelined operation, the processor tries to predict program flow and future data accesses,
and so it fetches data and instructions ahead of their use. These transactions are known as speculative
transactions unless or until the pipeline completes execution of the corresponding instruction. This might
result in the processor generating addresses either outside permitted regions, or not having privilege to
attempt the access. In these cases, speculative accesses are prevented from generating bus transactions by
the MPU but do not raise a translation or permission fault.

Each processor core has an EL1-controlled MPU with 16, 20, or 24 programmable regions, and an EL2-
controlled MPU which optionally supports 0, 16, 20, or 24 programmable regions. When the EL2-
controlled MPU and virtualization are enabled, all transactions using the EL0/EL1 translation regime
perform a lookup in both MPUs. The resulting attributes are combined so that the least permissive
attributes are taken. These two stages of protection allow the hypervisor to retain control over the
EL0/EL1 translation regime and therefore enables support for virtualization. When software executes
using the EL2 translation regime, only the EL2-controlled MPU is used.

8 Memory Protection Unit
8.1 About the MPU

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

8-251

Non-Confidential



8.2 MPU regions
A region is a contiguous range of addresses starting at a base address, extending up to and including a
limit address.

The base address is configured by PRBAR (HPBAR for EL2-controlled MPU) and the limit address is
configured by PRLAR (HPRLAR for EL2-controlled MPU). The base address is aligned on a 64-byte
boundary and the limit address is aligned to the byte below a 64-byte boundary. Both base and limit
addresses are inclusive, meaning that an address within a region is given by:

PRBAR.BASE:0b000000 <= address <= PRLAR.LIMIT:0b111111

Where : is a bit concatenation operator.

The minimum size for a region is 64 bytes.

PRBAR and PRLAR also hold the access permissions (PRBAR.AP), shareability (PRBAR.SH), the
Execute-never bit (PRBAR.XN), and memory attribute index (PRLAR.AttrIndx).

Memory attributes are determined by indexing the Memory Attribute Indirection Registers (MAIRx) with
PRLAR.AttrIndx.

A region is enabled or disabled by setting or clearing the region enable bit (PRLAR.EN). In the EL2-
controlled MPU, regions can also be enabled or disabled by writing to the Hypervisor MPU Region
Enable Register (HPRENR).

8.2.1 EL1-controlled MPU background region

The EL1-controlled MPU background region is used as a default memory map when the MPU is
disabled (SCTLR.M=0).

When the MPU is enabled, the background region can be enabled by setting SCTLR.BR. In this case,
accesses from the EL1 translation regime that do not hit any programmable regions use the background
region. Accesses from the EL0 translation regime are faulted when the MPU is enabled.

EL1-controlled MPU background region, instruction access

The following table shows the EL1-controlled MPU background region for instruction access.

Table 8-1  EL1-controlled MPU background region - instruction access

Address range Instruction caching (SCTLR.I) Execute-never (XN)

Enabled Disabled

0x00000000–0x7FFFFFFF Normal, Non-shareable, Write-Through
Cacheable

Normal, Shareable, Non-cacheable Execution permitted

0x80000000–0xFFFFFFFF - - Execute-never

EL1-controlled MPU background region, data access

The following table shows the EL1-controlled MPU background region for data access.

Table 8-2  EL1-controlled MPU background region - data access

Address range Data caching (SCTLR.C)

Enabled Disabled

0x00000000–0x3FFFFFFF Normal, Non-shareable, Write-Back, Write-Allocate Cacheable Normal, Shareable, Non-cacheable

0x40000000–0x5FFFFFFF Normal, Non-shareable, Write-Through Cacheable Normal, Shareable, Non-cacheable

8 Memory Protection Unit
8.2 MPU regions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

8-252

Non-Confidential



Table 8-2  EL1-controlled MPU background region - data access (continued)

Address range Data caching (SCTLR.C)

Enabled Disabled

0x60000000–0x7FFFFFFF Normal, Shareable, Non-cacheable Normal, Shareable, Non-cacheable

0x80000000–0xBFFFFFFF Device-nGnRE Device-nGnRE

0xC0000000–0xFFFFFFFF Device-nGnRnE Device-nGnRnE

8.2.2 EL2-controlled MPU background region

The EL2-controlled background region is used as a default memory map for all accesses when the EL2-
controlled MPU is disabled (HCTLR.M=0).

It can also be used for EL2 accesses that do not hit any programmable regions, when the EL2-controlled
MPU is enabled, by setting the background region enable (HCTLR.BR=1). When the EL2-controlled
MPU is enabled, accesses from the EL0/EL1 translation regime that do not hit in the EL2 programmable
regions generate a translation fault. This is a result of a two-stage translation.

The following table shows the EL2-controlled MPU background region, for instruction access.

Table 8-3  EL2-controlled MPU background region - instruction access

Address range Instruction caching (HSCTLR.I) Execute-never (XN)

Enabled Disabled

0x00000000–0x7FFFFFFF Normal, Non-shareable, Write-Through
Cacheable

Normal, Shareable, Non-cacheable Execution permitted

0x80000000–0xFFFFFFFF - - Execute-never

The following table shows the EL2-controlled MPU background region, for data access.

Table 8-4  EL2-controlled MPU background region - data access

Address range Data caching (HSCTLR.C)

Enabled Disabled

0x00000000–0x3FFFFFFF Normal, Non-shareable, Write-Back, Write-Allocate Cacheable Normal, Shareable, Non-cacheable

0x40000000–0x5FFFFFFF Normal, Non-shareable, Write-Through Cacheable Normal, Shareable, Non-cacheable

0x60000000–0x7FFFFFFF Normal, Shareable, Non-cacheable Normal, Shareable, Non-cacheable

0x80000000–0xBFFFFFFF Device-nGnRE Device-nGnRE

0xC0000000–0xFFFFFFFF Device-nGnRnE Device-nGnRnE

8.2.3 Default cacheability

When default cacheability is enabled (HCR.DC=1), transactions using the EL1-controlled MPU
background region have Normal, Inner Write-Back, Outer Write-Back, Non-Shareable attributes applied
with both Read-Allocate and Write-Allocate hints enabled. Instruction accesses that hit in the
background region when HCR.DC=1 are always executable.

The default attributes are the most permissive, meaning that when combined with any attribute from the
EL2-controlled MPU the resulting attribute is the same as the EL2-controlled MPU attribute. This allows
the EL2-controlled MPU to effectively make the EL1-controlled MPU transparent to transactions from
the EL1 translation regime that hit in the background region. When HCR.DC=1, all translations from the

8 Memory Protection Unit
8.2 MPU regions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

8-253

Non-Confidential



EL0/EL1 translation regime perform a two-stage MPU lookup and the processor behaves as if HCR.VM
is set.

8 Memory Protection Unit
8.2 MPU regions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

8-254

Non-Confidential



8.3 Virtualization support
To support virtualization, two stages of MPU lookup are performed.

Virtualization allows processes running at EL1 and EL0 (typically one or more guest operating systems
and their applications) to be managed by processes running at EL2 (typically a single hypervisor).

The EL1-controlled MPU checks transactions from processes running at EL0 or EL1 and is programmed
by processes running at EL1 or EL2. The EL2-controlled MPU also checks transactions executed from
the EL0/EL1 translation regime when virtualization is enabled, and is programmed by software at EL2.
Transactions executed under the EL2 translation regime uses the EL2-controlled MPU only.

When virtualization is enabled (HCR.VM=1) and the EL2-controlled MPU is enabled (HSCTLR.M=1),
transactions permitted by the EL1-controlled MPU are checked by the EL2-controlled MPU as part of a
two stage lookup. If both MPUs permit the transaction, memory attributes from stage 1 are combined
with attributes from the matching region in stage 2 and the stricter of the two sets of attributes are
applied to the transaction.

8.3.1 Combining MPU memory attributes

When a two-stage lookup is performed, the memory type, cacheability, and shareability attributes from
each MPU are combined.

Combining the memory type attribute

The following table shows how the memory type assignments are combined as part of a two-stage
lookup.

Table 8-5  Combining the memory type assignments

Assignment in EL1-controlled MPU Assignment in EL2-controlled MPU Resultant type

Device-nGnRnE Any Device-nGnRnE

Device-nGnRE Device-nGnRnE Device-nGnRnE

Not Device-nGnRnE Device-nGnRE

Device-nGRE Device-nGnRnE Device-nGnRnE

Device-nGnRE Device-nGnRE

Not (Device-nGnRnE or Device-nGnRE) Device-nGRE

Device-GRE Device-nGnRnE Device-nGnRnE

Device-nGnRE Device-nGnRE

Device-nGRE Device-nGRE

Device-GRE or Normal Device-GRE

Normal Any type of Device Device type assigned at stage 2

Normal Normal

Combining the cacheability attribute

The following table shows how the cacheability assignments are combined as part of a two-stage lookup.

8 Memory Protection Unit
8.3 Virtualization support

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

8-255

Non-Confidential



Table 8-6  Combining the cacheability assignments

Assignment in EL1-controlled MPU Assignment in EL2-controlled MPU Resultant cacheability

Non-cacheable Any Non-cacheable

Any Non-cacheable Non-cacheable

Write-Through Cacheable Write-Through or Write-Back Cacheable Write-Through Cacheable

Write-Through or Write-Back Cacheable Write-Through Cacheable Write-Through Cacheable

Write-Back Cacheable Write-Back Cacheable Write-Back Cacheable

Combining the shareability attribute

The following table shows how the shareability assignments are combined as part of a two-stage lookup.

Table 8-7  Combining the shareability assignments

Assignment in EL1-controlled MPU Assignment in EL2-controlled MPU Resultant cacheability

Outer Shareable Any Outer Shareable

Inner Shareable Outer Shareable Outer Shareable

Inner Shareable Inner Shareable

Non-shareable Inner Shareable

Non-shareable Outer Shareable Outer Shareable

Inner Shareable Inner Shareable

Non-shareable Non-shareable

8 Memory Protection Unit
8.3 Virtualization support

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

8-256

Non-Confidential



8.4 MPU register access
The MPU base and limit registers can be accessed indirectly or directly.

Indirectly
A region is selected by writing to the PRSELR (HPRSELR for EL2 MPU). The selected region
is programmed by writing to the PRBAR and PRLAR (HPRBAR and HPRLAR for EL2 MPU).

Directly

The base and limit registers, for region n, are directly accessed by encoding the region number
into CRm and opcode2 of the following system register access instructions:

CRm = 0b1rrr, where rrr = region_number[3:1].

To access base registers:

op2 = 0b000, for even-numbered regions.

op2 = 0b100, for odd-numbered regions.

To access limit registers:

op2 = 0b001, for even-numbered regions.

op2 = 0b101, for odd-numbered regions.

Writing base and limit registers:

PRBAR0-PRBAR15 MCR p15, 0, <Rt>, c6, CRm, op2
PRLAR0-PRLAR15 MCR p15, 0, <Rt>, c6, CRm, op2
HPRBAR0-HPRBAR15 MCR p15, 4, <Rt>, c6, CRm, op2
HPRLAR0-HPRLAR15 MCR p15, 4, <Rt>, c6, CRm, op2

PRBAR16-PRBAR24 MCR p15, 1, <Rt>, c6, CRm, op2
PRLAR16-PRLAR24 MCR p15, 1, <Rt>, c6, CRm, op2
HPRBAR16-HPRBAR24 MCR p15, 5, <Rt>, c6, CRm, op2
HPRLAR16-HPRLAR24 MCR p15, 5, <Rt>, c6, CRm, op2

Reading base and limit registers:

PRBAR0-PRBAR15 MRC p15, 0, <Rt>, c6, CRm, op2
PRLAR0-PRLAR15 MRC p15, 0, <Rt>, c6, CRm, op2
HPRBAR0-HPRBAR15 MRC p15, 4, <Rt>, c6, CRm, op2
HPRLAR0-HPRLAR15 MRC p15, 4, <Rt>, c6, CRm, op2

PRBAR16-PRBAR24 MRC p15, 1, <Rt>, c6, CRm, op2
PRLAR16-PRLAR24 MRC p15, 1, <Rt>, c6, CRm, op2
HPRBAR16-HPRBAR24 MRC p15, 5, <Rt>, c6, CRm, op2
HPRLAR16-HPRLAR24 MRC p15, 5, <Rt>, c6, CRm, op2

8 Memory Protection Unit
8.4 MPU register access

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

8-257

Non-Confidential



8.5 MPU Register summary
The following table is a summary of registers affecting the MPU. All registers are accessible through
(coproc==0b1111).

Table 8-8  MPU Register summary (coproc==0b1111)

Name CRn Op1 CRm Op2 Reset Description

PRSELR c6 0 c2 1 UNK 3.3.87 Protection Region Selection Register on page 3-178

PRBAR c6 0 c3 0 UNK 3.3.85 Protection Region Base Address Register on page 3-175

PRLAR c6 0 c3 1 UNKbi 3.3.86 Protection Region Limit Address Register on page 3-177

HPRBAR c6 4 c3 0 UNK 3.3.48 Hyp Protection Region Base Address Register on page 3-126

HPRLAR c6 4 c3 1 UNKbi 3.3.49 Hyp Protection Region Limit Address Register on page 3-127

HPRSELR c6 4 c2 1 UNK 3.3.50 Hyp Protection Region Selection Register on page 3-128

HPRENR c6 4 c1 1 0x00000000 3.3.46 Hyp MPU Region Enable Register on page 3-123

HMPUIR c0 4 c0 4 -e 3.3.47 Hyp MPU Type Register on page 3-125

MPUIR c0 0 c0 4 -b 3.3.77 MPU Type Register on page 3-165

Table 8-9  MPU Register direct access summary (coproc==0b1111)

Name CRn Op1 CRm Op2 Reset Description

PRBAR0-14 (even) c6 0 c8-15 0 UNK 3.3.85 Protection Region Base Address Register on page 3-175

PRBAR1-15 (odd) c6 0 c8-15 4 UNK 3.3.85 Protection Region Base Address Register on page 3-175

PRBAR16-24 (even) c6 1 c8-12 0 UNK 3.3.85 Protection Region Base Address Register on page 3-175

PRBAR17-23 (odd) c6 1 c8-11 4 UNK 3.3.85 Protection Region Base Address Register on page 3-175

PRLAR0-14 (even) c6 0 c8-15 0 UNKbi 3.3.86 Protection Region Limit Address Register on page 3-177

PRLAR1-15 (odd) c6 0 c8-15 4 UNKbi 3.3.86 Protection Region Limit Address Register on page 3-177

PRLAR16-24 (even) c6 1 c8-12 0 UNKbi 3.3.86 Protection Region Limit Address Register on page 3-177

PRBAR17-23 (odd) c6 1 c8-11 4 UNKbi 3.3.86 Protection Region Limit Address Register on page 3-177

HPRBAR0-14 (even) c6 4 c8-15 0 UNK 3.3.48 Hyp Protection Region Base Address Register on page 3-126

HPRBAR1-15 (odd) c6 4 c8-15 4 UNK 3.3.48 Hyp Protection Region Base Address Register on page 3-126

HPRBAR16-24 (even) c6 5 c8-12 0 UNK 3.3.48 Hyp Protection Region Base Address Register on page 3-126

HPRBAR17-23 (odd) c6 5 c8-11 4 UNK 3.3.48 Hyp Protection Region Base Address Register on page 3-126

HPRLAR0-14 (even) c6 4 c8-15 0 UNKbi 3.3.49 Hyp Protection Region Limit Address Register on page 3-127

HPRLAR1-15 (odd) c6 4 c8-15 4 UNKbi 3.3.49 Hyp Protection Region Limit Address Register on page 3-127

HPRLAR16-24 (even) c6 5 c8-12 0 UNKbi 3.3.49 Hyp Protection Region Limit Address Register on page 3-127

HPRLAR17-23 (odd) c6 5 c8-11 4 UNKbi 3.3.49 Hyp Protection Region Limit Address Register on page 3-127

bi The reset value for bit[0] is 0.

8 Memory Protection Unit
8.5 MPU Register summary

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

8-258

Non-Confidential



Chapter 9
Generic Interrupt Controller

This chapter describes the Cortex-R52 processor implementation of the Generic Interrupt Controller
(GIC).

It contains the following sections:
• 9.1 About the GIC on page 9-260.
• 9.2 GIC functional description on page 9-261.
• 9.3 GIC programmers model on page 9-265.

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

9-259

Non-Confidential



9.1 About the GIC
The GIC is a resource for supporting and managing interrupts in a cluster system. It supports interrupt
prioritization, interrupt routing to a core or export port, interrupt preemption, and interrupt virtualization.

The Cortex-R52 processor implements one internal GIC Distributor for the processor and one GIC CPU
interface per core. The GIC Distributor contains one GIC Redistributor per core. The GIC Distributor
and the GIC CPU interface are described in the Arm® Generic Interrupt Controller Architecture
Specification GIC architecture version 3.0 and version 4.0.

This chapter describes only features that are specific to the Cortex-R52 processor implementation.

9 Generic Interrupt Controller
9.1 About the GIC

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

9-260

Non-Confidential



9.2 GIC functional description
The GIC Distributor receives wired interrupts from peripherals (SPIs) and from the cores (PPIs).

The GIC Distributor arbitrates the interrupts that are routed to each core to determine the Highest
Priority Pending Interrupt (HPPI) which is then communicated to the GIC CPU interface. Activations,
deactivations, and software generated interrupts from the core pass through the GIC CPU interface to
update the state of the GIC Distributor. The GIC Distributor contains memory-mapped configuration and
status registers. The GIC Distributor contains one Redistributor for each interrupt target. A Redistributor
is mainly responsible for containing the registers for PPIs and SGIs.

The GIC CPU interface comprises a part that handles physical interrupts and a part that handles virtual
interrupts. The GIC CPU interface contains configuration and status registers that are accessible as
system registers. An interrupt is configured as either a Group 0 interrupt or a Group 1 interrupt. Group 0
interrupts are signaled with FIQ and Group 1 interrupts are signaled with IRQ.

The GIC CPU interface part that handles physical interrupts receives the HPPI from the GIC Distributor.
It performs preemption calculation and signals FIQ or IRQ to the core. Activations, deactivations, and
software generated interrupts from the core are passed back through the CPU interface to the Distributor.

The GIC CPU interface part that handles virtual interrupts can contain up to four virtual interrupts, the
highest priority of which is used to generate a virtual FIQ or virtual IRQ to the core.

 Note 

When multiple SPIs with equal priority are sent to the processor, then the interrupt with the lowest ID is
selected first.

This section contains the following subsections:
• 9.2.1 GIC Distributor memory map on page 9-261.
• 9.2.2 Interrupt sources on page 9-263.
• 9.2.3 Optional export interface on page 9-263.

9.2.1 GIC Distributor memory map

The GIC Distributor registers are memory-mapped, with a physical base address specified by
CFGPERIPHBASE[31:21].

The CFGPERIPHBASE value is sampled during reset into CBAR for each core in the device.

The GIC Distributor registers are grouped into 64KB pages. There is one page for the GIC Distributor
(GICD_*) registers and two pages per core for the GICR registers. All the GIC Redistributor (GICR_*)
registers are accessible to all the Cortex-R52 cores.

Ensure that the memory region used for the GIC Distributor is configured as Device nGnRnE.

The following table shows the GIC Distributor memory map of a Cortex-R52 processor. It lists the
address offsets for the 64KB pages relative to the CFGPERIPHBASE base address. If an interrupt
export interface is implemented, it is the last target in the memory map after the core targets.

Table 9-1  Cortex-R52 processor GIC memory map

Offset range from CFGPERIPHBASE[31:21] GIC block

0x000000-0x00FFFF Distributor Registers (GICD_*).

0x010000-0x0FFFFF Reserved.

0x100000-0x10FFFF Redistributor Registers (GICR_*) for Control target 0.

0x110000-0x11FFFF Redistributor Registers (GICR_*) for SGIs and PPIs target 0.

0x120000-0x12FFFF Redistributor Registers (GICR_*) for Control target 1.

9 Generic Interrupt Controller
9.2 GIC functional description

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

9-261

Non-Confidential



Table 9-1  Cortex-R52 processor GIC memory map (continued)

Offset range from CFGPERIPHBASE[31:21] GIC block

0x130000-0x13FFFF Redistributor Registers (GICR_*) for SGIs and PPIs target 1.

0x140000-0x14FFFF Redistributor Registers (GICR_*) for Control target 2.

0x150000-0x15FFFF Redistributor Registers (GICR_*) for SGIs and PPIs target 2.

0x160000-0x16FFFF Redistributor Registers (GICR_*) for Control target 3.

0x170000-0x17FFFF Redistributor Registers (GICR_*) for SGIs and PPIs target 3.

0x180000-0x18FFFF Redistributor Registers (GICR_*) for Control target 4.

0x190000-0x19FFFF Redistributor Registers (GICR_*) for SGIs target 4.

The following table shows the mapping of target IDs to cores and export ports depending on the Cortex-
R52 processor.

In the following table, x indicates the number of cores.
 Note 

The export port is optional. If an export port is excluded in the configuration, the following table has the
same entries but without the export port fields.

Table 9-2  Cortex-R52 processor target ID mapping

Target ID x=1 x=2 x=3 x=4

0 Core 0 Core 0 Core 0 Core 0

1 Export port Core 1 Core 1 Core 1

2 - Export port Core 2 Core 2

3 - - Export port Core 3

4 - - - Export port

Related reference
3.3.17 Configuration Base Address Register on page 3-88

9 Generic Interrupt Controller
9.2 GIC functional description

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

9-262

Non-Confidential



9.2.2 Interrupt sources

The GIC Distributor receives the following interrupt types:

Private Peripheral Interrupts (PPIs)
A wired interrupt generated by a peripheral that is specific to a single core. There are 16 PPIs,
INTID16-INTID31, per core. The export interface does not support PPIs. Unallocated PPIs the
core does not need are made available as extra interrupt inputs at the Cortex-R52 processor top
level. Unallocated PPIs can be configured to be either rising-edge triggered or active-LOW
level-sensitive. Assigned PPIs from the core peripherals have fixed configuration of level-
sensitive.

The following table shows the PPI assignments.
 Note 

PPI INTIDs 16-21, 28, 29, and 31 are not allocated and are made available as top-level ports on Cortex-
R52.

Table 9-3  PPI assignments

INTID PPI

30 Non-secure physical timer interrupt

27 Virtual timer interrupt

26 Hypervisor timer interrupt

25 Virtual CPU Interface Maintenance interrupt

24 Cross Trigger Interface interrupt

23 Performance Monitor Counter Overflow interrupt

22 Debug Communications Channel interrupt

Shared Peripheral Interrupts (SPIs)
A wired interrupt generated by a peripheral that is routed to one specific core. Routing is
configured by software programming the routing information for that SPI. Up to 960 SPIs are
configurable. The SPIs are identified as INTID32-INTID991. SPIs are made available as
Cortex-R52 processor top-level inputs. Each SPI can be configured to be either rising-edge
triggered or active-HIGH level-sensitive. SPI[0] corresponds to INTID32 through to SPI[30]
corresponds to INTID991.
For each of the cores in a processor, 32 unique SPIs are routed to that core using low latency
hardware. The same SPIs route to all other cores using normal latency hardware. For core x,
INTID(32x+32) to INTID(32x+63) are low latency, where x=0, 1, 2, or 3. For example, for core
1, INTID64-INTID95 are low latency.

Software Generated Interrupts (SGIs)
SGIs are generated by writing to an SGI generation system register in the GIC CPU interface.
There are 16 SGIs, INTID0-INTID15, that can be generated for each core. An SGI has edge-
triggered properties. The software triggering of the interrupt is equivalent to the edge transition
of the interrupt signal on a peripheral input.

9.2.3 Optional export interface

The GIC Distributor provides an optional export interface to allow an external device to be a target to
which interrupts can be routed in the same way as to a core. The following figure shows the HPPI from
the GIC Distributor to the export interface and the interrupt ACTIVATIONs, DEACTIVATIONs, and
SGIs from the export interface. The operation of the export interface is the same as for the GIC CPU
interface with the exception that WAKE_INFO is only relevant to CPU cores.

9 Generic Interrupt Controller
9.2 GIC functional description

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

9-263

Non-Confidential



The target number for the export interface is derived from the number of cores and the number of GIC
external devices. To route an SPI to the export interface, you must configure the corresponding
GICD_IROUTERn register with the target number of the export interface. These SPIs must have their
priority, group, and edge or level trigger type configured using the GICD registers as per the standard SPI
configuration.

When these SPIs are enabled, the corresponding interrupt group or groups are enabled and the
ProcessorSleep bit is 0 for the export interface. The GIC Distributor presents the HPPI to the external
device over the export interface. The external device normally responds by activating and then
deactivating the SPI. For edge triggered SPIs, it is possible to simultaneously activate and deactivate an
interrupt. For level sensitive SPIs, activation is followed by some action by the external device to cause
deassertion of the corresponding interrupt signal. The external device then performs deactivation.
External devices can also pass SGIs to a core by passing a message to the GIC Distributor. PPIs are not
supported for external devices connected to the export interface.

The GIC Distributor does not provide a memory mapped bus interface for the export interface, that is,
one of the cores has the responsibility for configuring the GIC Distributor on behalf of the external
device.

The following figure is a block diagram of the GIC.

GIC Distributor
GIC CPU Interface

(per CPU core)
HPPI

ACTIVATION, DEACTIVATION,
SGI, WAKE_INFOSPIs

PPIs

Memory mapped interface 
from all cores System Register 

interface from 
corresponding 

core

IRQ
FIQ

HPPI
ACTIVATION 

DEACTIVATIO
N

SGI

Export 
Interface

Arbiter

Interrupt prioritisation and 
routing, pending and active 

state for each physical 
interrupt

GIC CPU interface
(per core) vIRQ

vFIQ

Interrupt pre-emption, active 
priority levels and all state 

for virtual interrupts

Figure 9-1  GIC block diagram

9 Generic Interrupt Controller
9.2 GIC functional description

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

9-264

Non-Confidential



9.3 GIC programmers model
In this section, the Distributor Registers (GICD) and Redistributor Registers (GICR) describe the
memory-mapped registers of the GIC Distributor. The GICR are part of the Cortex-R52 GIC Distributor.
The redistributor registers are per core.

In this section, Hypervisor Control System Registers (ICH), CPU interface Registers (ICC), and Virtual
CPU interface Registers (ICV) describe the system registers of the GIC CPU interface.

This section contains the following subsections:
• 9.3.1 Distributor Registers (GICD) on page 9-265.
• 9.3.2 Redistributor Registers (GICR) on page 9-281.
• 9.3.3 Hypervisor Control System Registers on page 9-298.
• 9.3.4 CPU Interface Registers on page 9-312.
• 9.3.5 Virtual CPU Interface Registers on page 9-331.

9.3.1 Distributor Registers (GICD)

This section describes the implemented GICD registers in the Cortex-R52 processor. The following table
summarizes the GICD registers.

Table 9-4  Distributor Registers (GICD) summary

Offset Name Type Reset Description

0x0000 GICD_CTLR RW 0x00000050 Distributor Control Register on page 9-266.

0x0004 GICD_TYPER RO 0x0248001E Interrupt Controller Type Register on page 9-268.

0x0008 GICD_IIDR RO 0x0101243B Distributor Implementer Identification Register
on page 9-269.

0x0084-0x00F8 GICD_IGROUPR1-30 RW 0x00000000bk Interrupt Group Registers 1-30 on page 9-270.

0x0104-0x0178 GICD_ISENABLER1-30 RW 0x00000000bk Interrupt Set-Enable Registers 1-30 on page 9-270.

0x0184-0x01F8 GICD_ICENABLER1-30 RW 0x00000000bk Interrupt Clear-Enable Registers 1-30 on page 9-271.

0x0204-0x0278 GICD_ISPENDR1-30 RW 0x00000000bk Interrupt Set-Pending Registers 1-30 on page 9-272.

0x0284-0x02F8 GICD_ICPENDR1-30 RW 0x00000000bk Interrupt Clear-Pending Registers 1-30 on page 9-273.

0x0304-0x0378 GICD_ISACTIVER1-30 RW 0x00000000bk Interrupt Set-Active Registers 1-30 on page 9-274.

0x0384-0x03F8 GICD_ICACTIVER1-30 RW 0x00000000bk Interrupt Clear-Active Registers 1-30 on page 9-275.

0x0420-0x07DF GICD_IPRIORITYR8-247 RW 0x00000000bk Interrupt Priority Registers 8-247 on page 9-276.

0x0C08-0x0CF4 GICD_ICFGR2-61 RW 0x00000000bk Interrupt Configuration Registers 2-61 on page 9-277.

0x6100-0x7EF8 GICD_IROUTER32-991 RW - bj Interrupt Routing Registers 32-991 on page 9-278.

0xFFE0 GICD_PIDR0 RO 0x00000092 Identification Registers 0-7 on page 9-279.

0xFFE4 GICD_PIDR1 RO 0x000000B4 Identification Registers 0-7 on page 9-279.

0xFFE8 GICD_PIDR2 RO 0x0000003B Identification Registers 0-7 on page 9-279.

0xFFEC GICD_PIDR3 RO 0x00000000 Identification Registers 0-7 on page 9-279.

0xFFD0 GICD_PIDR4 RO 0x00000044 Identification Registers 0-7 on page 9-279.

0xFFD4 GICD_PIDR5 RO 0x00000000 Identification Registers 0-7 on page 9-279.

bj Reset value depends on Cortex-R52 top-level affinity configuration. This value is replicated across the group of registers.

9 Generic Interrupt Controller
9.3 GIC programmers model

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

9-265

Non-Confidential



Table 9-4  Distributor Registers (GICD) summary (continued)

Offset Name Type Reset Description

0xFFD8 GICD_PIDR6 RO 0x00000000 Identification Registers 0-7 on page 9-279.

0xFFDC GICD_PIDR7 RO 0x00000000 Identification Registers 0-7 on page 9-279.

0xFFF0 GICD_CIDR0 RO 0x0000000D Component Identification Registers 0-3 on page 9-280.

0xFFF4 GICD_CIDR1 RO 0x000000F0 Component Identification Registers 0-3 on page 9-280.

0xFFF8 GICD_CIDR2 RO 0x00000005 Component Identification Registers 0-3 on page 9-280.

0xFFFC GICD_CIDR3 RO 0x000000B1 Component Identification Registers 0-3 on page 9-280.

 Note 

The following correspondence applies:
• GICD_IGROUPR1[0] corresponds to INTID32 through to GICD_IGROUPR30[31] corresponds to

INTID991.
• GICD_ISENABLER1[0] corresponds to INTID32 through to GICD_ISENABLER30[31]

corresponds to INTID991.
• GICD_ICENABLER1[0] corresponds to INTID32 through to GICD_ICENABLER30[31]

corresponds to INTID991.
• GICD_ISPENDR1[0] corresponds to INTID32 through to GICD_ISPENDR30[31] corresponds to

INTID991.
• GICD_ICPENDR1[0] corresponds to INTID32 through to GICD_ICPENDR30[31] corresponds to

INTID991.
• GICD_ISACTIVE1[0] corresponds to INTID32 through to GICD_ISACTIVE30[31] corresponds to

INTID991.
• GICD_ICACTIVE1[0] corresponds to INTID32 through to GICD_ICACTIVE30[31] corresponds to

INTID991.
• GICD_IPRIORITYR8[7:0] corresponds to INTID32 through to GICD_IPRIORITYR247[31:24]

corresponds to INTID991.
• GICD_ICFGR2[1:0] corresponds to INTID32 through to GICD_ICFGR61[31:30] corresponds to

INTID991.
• GICD_IROUTER32 corresponds to INTID32 through to GICD_IROUTER991 corresponds to

INTID991.

Distributor Control Register

The GICD_CTLR register independently enables interrupt group 0 and group 1 from the GIC Distributor
to the GIC CPU interfaces.

Usage constraints This register is read/write.
Traps and enables There are no traps and enables affecting this register.
Configurations This register is available in all configurations.
Attributes GICD_CTLR is a 32-bit register.

The following figure shows the GICD_CTLR bit assignments.

bk This reset value is replicated across the group of the registers.

9 Generic Interrupt Controller
9.3 GIC programmers model

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

9-266

Non-Confidential



RES0 RES0

RWP
EINWF

DS
RES0

ARE
EnableGrp1

EnableGrp0

31 30 8 7 6 5 4 3 2 1 0

Figure 9-2  GICD_CTLR bit assignments

The following table shows the GICD_CTLR bit assignments.

Table 9-5  GICD_CTLR bit assignments

Bits Name Function

[31] RWP Register Write Pending. This read-only bit indicates whether a register write is in progress or not:

0 The effect of all previous writes to the following registers are visible to the GIC CPU interface.

1 The effect of all previous writes to the following registers are not guaranteed to be visible to the GIC CPU
interface because the changes are still being propagated.

Registers:
• GICD_CTLR[1:0] – the clearing of Group Enables.
• GICD_ICENABLERn. The clearing of enable state for SPIs.

No other updates to register fields are tracked by this field.

[30:8] - Reserved, RES0.

[7] EINWF Enable 1 of N Wakeup functionality:

RAZ/WI 1 of N interrupt distribution. Not supported.

[6] DS Disable Security:

RAO/WI Security is not supported.

[5] - Reserved, RES0.

[4] ARE Affinity Routing Enable:

RAO/WI Only supports GICv3 software access to the GIC Distributor.

[3:2] - Reserved, RES0.

[1] EnableGrp1 Enable Group 1 interrupts from the GIC Distributor to the GIC CPU interfaces:

0 Group 1 interrupts are disabled. This is the reset value.

1 Group 1 interrupts are enabled.

[0] EnableGrp0 Enable Group 0 interrupts from the Distributor to the GIC CPU interfaces:

0 Group 0 interrupts are disabled. This is the reset value.

1 Group 0 interrupts are enabled.

GICD_CTLR can be accessed through its memory-mapped interface:

9 Generic Interrupt Controller
9.3 GIC programmers model

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

9-267

Non-Confidential



Table 9-6  GICD_CTLR access information

Component Offset Reset

GIC Distributor 0x0000 0x00000050

Interrupt Controller Type Register

The GICD_TYPER provides information about the configuration of the GIC Distributor.

Usage constraints This register is read-only.
Traps and enables There are no traps and enables affecting this register.
Configurations This register is available in all configurations.
Attributes GICD_TYPER is a 32-bit register.

The following figure shows the GICD_TYPER bit assignments.

RES0 IDBits

MBIS
LPIS

DVIS
A3V

SecurityExtn
CPUNumber

ITLinesNumber

31 25 24 23 19 18 17 16 15 11 10 9 8 7 5 4 026

No1N

RES0RES0

Figure 9-3  GICD_TYPER bit assignments

The following table shows the GICD_TYPER bit assignments.

Table 9-7  GICD_TYPER bit assignments

Bits Name Function

[31:26] - Reserved, RES0.

[25] No1N Indicates whether the GIC Distributor supports 1 of N SPIs:

1 1 of N SPI interrupts are not supported.

[24] A3V Indicates whether the GIC Distributor supports nonzero values of Affinity level 3:

0 The Distributor only supports zero values of Affinity level 3.

[23:19] IDBits Indicates the number of INTID bits that the GIC Distributor supports, minus one:

0b01001 INTID is 10 bits.

[18] DVIS Indicates whether the GIC Distributor supports Direct Virtual LPI injection:

0 Direct Virtual LPI injection is not supported.

[17] LPIS Indicates whether the GIC Distributor supports Locality-specific Peripheral Interrupts (LPIs):

0 LPIs are not supported.

[16] MBIS Indicates whether the GIC Distributor supports Message-Based Interrupts Supported:

0 Message-Based Interrupts Supported are not supported.

[15:11] - Reserved, RES0.

9 Generic Interrupt Controller
9.3 GIC programmers model

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

9-268

Non-Confidential



Table 9-7  GICD_TYPER bit assignments (continued)

Bits Name Function

[10] SecurityExtn Indicates whether the GIC Distributor supports two Security states:

0 Single Security state supported.

[9:8] - Reserved, RES0.

[7:5] CPUNumber Indicates the number of cores that can be used as interrupt targets when GICD_CTLR.ARE is 0:

0b000 Not supported.

[4:0] ITLinesNumber Indicates the number of SPI INTIDs that the GIC Distributor supports. The valid values for this field range
from 1 to 30, depending on the number of SPIs configured for Cortex-R52:

Valid interrupt INTID range is 0 to 32*(ITLinesNumber + 1) - 1.

GICD_TYPER can be accessed through its memory-mapped interface.

Table 9-8  GICD_TYPER access information

Component Offset Reset

GIC Distributor 0x0004 0x0248001E

Distributor Implementer Identification Register

The GICD_IIDR provides information about the implementer and revision of the Distributor. The
revision and variant fields must be read with the MIDR.

Usage constraints This register is read-only.
Traps and enables There are no traps and enables affecting this register.
Configurations This register is available in all configurations.
Attributes GICD_IIDR is a 32-bit register.

The following figure shows the GICD_IIDR bit assignments.

RevisionProductID RES0 Variant Implementer

31 24 23 20 19 16 15 12 11 0

Figure 9-4  GICD_IIDR bit assignments

The following table shows the GICD_IIDR bit assignments.

Table 9-9  GICD_IIDR bit assignments

Bits Name Function

[31:24] ProductID 0x01, Cortex-R52 GIC.

[23:20] - Reserved, RES0

[19:16] Variant 0x1

[15:12] Revision 0x2

[11:0] Implementer 0x43B, Arm Limited.

9 Generic Interrupt Controller
9.3 GIC programmers model

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

9-269

Non-Confidential



GICD_IIDR can be accessed through its memory-mapped interface.

Table 9-10  GICD_IIDR access information

Component Offset Reset

GIC Distributor 0x0008 0x0101243B

Related reference
3.3.69 Main ID Register on page 3-155

Interrupt Group Registers 1-30

The GICD_IGROUPR1-30 registers control whether the corresponding SPI is in Group 0 or Group 1.
Each register contains the group bits for 32 SPIs.

Usage constraints These registers are read/write.
Traps and enables There are no traps and enables affecting these registers.
Configurations These registers are available in all configurations.

The number of implemented GICD_IGROUP registers is determined by
GICD_TYPER.ITLinesNumber.
GICD_IGROUPR registers that are not implemented are RAZ/WI.

Attributes GICD_IGROUPR1-30 are 32-bit registers.

The following figure shows the GICD_IGROUPR1-30 bit assignments.

Group bits

31 0

Figure 9-5  GICD_IGROUPR1-30 bit assignments

The following table shows the GICD_IGROUPR1-30 bit assignments.

Table 9-11  GICD_IGROUPR1-30 bit assignments

Bits Name Function

[31:0] Group bits Controls whether the corresponding SPI is in Group 0 or Group 1:

0 The corresponding SPI is in Group 0. This is the reset value.

1 The corresponding SPI is in Group 1.

GICD_IGROUPR1-30 can be accessed through its memory-mapped interface.

Table 9-12  GICD_IGROUPR1-30 access information

Component Offset Reset

GIC Distributor 0x0084-0x00F8 0x00000000

Interrupt Set-Enable Registers 1-30

The GICD_ISENABLER1-30 registers enable forwarding of the corresponding SPI from the Distributor
to the CPU interfaces. Each register contains the set-enable bits for 32 SPIs.

Usage constraints These registers are read/write.
Traps and enables There are no traps and enables affecting these registers.

9 Generic Interrupt Controller
9.3 GIC programmers model

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

9-270

Non-Confidential



Configurations These registers are available in all configurations.
The number of implemented GICD_ISENABLER registers is determined by
GICD_TYPER.ITLinesNumber.
GICD_ISENABLER registers that are not implemented are RAZ/WI.

Attributes GICD_ISENABLER1-30 are 32-bit registers.

The following figure shows the GICD_ISENABLER1-30 bit assignments.

Set-enable bits

31 0

Figure 9-6  GICD_ISENABLER1-30 bit assignments

The following table shows the GICD_ISENABLER1-30 bit assignments.

Table 9-13  GICD_ISENABLER1-30 bit assignments

Bits Name Function

[31:0] Set-enable bits For each bit:

Reads
0 Indicates forwarding of SPI is disabled. This is the reset value.

1 Indicates forwarding of SPI is enabled.

Writes
0 No effect.

1 Enables forwarding of SPI.

GICD_ISENABLER1-30 can be accessed through its memory-mapped interface.

Table 9-14  GICD_ISENABLER1-30 access information

Component Offset Reset

GIC Distributor 0x0104-0x0178 0x00000000

Interrupt Clear-Enable Registers 1-30

The GICD_ICENABLER1-30 registers disable forwarding of the corresponding SPI to the CPU
interfaces. Each register contains the clear-enable bits for 32 SPIs.

Usage constraints These registers are read/write.

Traps and enables There are no traps and enables affecting these registers.
Configurations These registers are available in all configurations of the GIC Distributor.

The number of implemented GICD_ICENABLER registers is determined by
GICD_TYPER.ITLinesNumber.
GICD_ICENABLER registers that are not implemented are RAZ/WI.

Attributes GICD_ICENABLER1-30 are 32-bit registers.

The following figure shows the GICD_ICENABLER1-30 bit assignments.

9 Generic Interrupt Controller
9.3 GIC programmers model

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

9-271

Non-Confidential



Clear-enable bits

31 0

Figure 9-7  GICD_ICENABLER1-30 bit assignments

The following table shows the GICD_ICENABLER1-30 bit assignments.

Table 9-15  GICD_ICENABLER1-30 bit assignments

Bits Name Function

[31:0] Clear-enable bits For each bit:

Reads
0 Indicates forwarding of SPI is disabled. This is the reset value.

1 Indicates forwarding of SPI is enabled.

Writes
0 No effect.

1 Disables forwarding of SPI.

GICD_ICENABLER1-30 can be accessed through its memory-mapped interface.

Table 9-16  GICD_ICENABLER1-30 access information

Component Offset Reset

GIC Distributor 0x0184-0x01F8 0x00000000

Interrupt Set-Pending Registers 1-30

The GICD_ISPENDR1-30 registers set the pending bit for the corresponding SPI. Each register contains
the set-pending bits for 32 SPIs.

Usage constraints These registers are read/write.

Traps and enables There are no traps and enables affecting these registers.
Configurations These registers are available in all configurations of the GIC Distributor.

The number of implemented GICD_ISPENDR registers is determined by
GICD_TYPER.ITLinesNumber.

GICD_ISPENDR registers that are not implemented are RAZ/WI.

Attributes GICD_ISPENDR1-30 are 32-bit registers.

The following figure shows the GICD_ISPENDR1-30 bit assignments.

Set-pending bits

31 0

Figure 9-8  GICD_ISPENDR1-30 bit assignments

The following table shows the GICD_ISPENDR1-30 bit assignments.

9 Generic Interrupt Controller
9.3 GIC programmers model

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

9-272

Non-Confidential



Table 9-17  GICD_ISPENDR1-30 bit assignments

Bits Name Function

[31:0] Set-pending bits For each bit:

Reads
0 Indicates SPI is not pending.

1 Indicates SPI is pending.

Writes
0 No effect.

1 Sets the pending bit.

The reset value is 0.

GICD_ISPENDR1-30 can be accessed through its memory-mapped interface.

Table 9-18  GICD_ISPENDR1-30 access information

Component Offset Reset

GIC Distributor 0x0204-0x0278 0x00000000

Interrupt Clear-Pending Registers 1-30

The GICD_ICPENDR1-30 registers clear the pending bit for the corresponding SPI. Each register
contains the clear-pending bits for 32 SPIs.

Usage constraints These registers are read/write.
Traps and enables There are no traps and enables affecting these registers.
Configurations These registers are available in all configurations of the GIC Distributor.

The number of implemented GICD_ICPENDR registers is determined by
GICD_TYPER.ITLinesNumber.

GICD_ICPENDR registers that are not implemented are RES0.

Attributes GICD_ICPENDR1-30 are 32-bit registers.

The following figure shows the GICD_ICPENDR1-30 bit assignments.

Clear-pending bits

31 0

Figure 9-9  GICD_ICPENDR1-30 bit assignments

The following table shows the GICD_ICPENDR1-30 bit assignments.

9 Generic Interrupt Controller
9.3 GIC programmers model

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

9-273

Non-Confidential



Table 9-19  GICD_ICPENDR1-30 bit assignments

Bits Name Function

[31:0] Clear-pending bits For each bit:

Reads
0 SPI is not pending.

1 SPI is pending.

Writes
0 No effect.

1 Clears the pending bit.

GICD_ICPENDR1-30 can be accessed through its memory-mapped interface.

Table 9-20  GICD_ICPENDR1-30 access information

Component Offset Reset

GIC Distributor 0x0284-0x02F8 0x00000000

Interrupt Set-Active Registers 1-30

The GICD_ISACTIVER1-30 registers set the active bit for the corresponding SPI. Each register contains
the set-active bits for 32 SPIs.

Usage constraints These registers are read/write.
Traps and enables There are no traps and enables affecting these registers.
Configurations These registers are available in all configurations.

The number of implemented GICD_ISACTIVER registers is determined by
GICD_TYPER.ITLinesNumber.
GICD_ISACTIVER registers that are not implemented are RAZ/WI.

Attributes GICD_ISACTIVER1-30 are 32-bit registers.

The following figure shows the GICD_ISACTIVER1-30 bit assignments.

Set-active bits

31 0

Figure 9-10  GICD_ISACTIVER1-30 bit assignments

The following table shows the GICD_ISACTIVER1-30 bit assignments.

9 Generic Interrupt Controller
9.3 GIC programmers model

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

9-274

Non-Confidential



Table 9-21  GICD_ISACTIVER1-30 bit assignments

Bits Name Function

[31:0] Set-active bits For each bit:

Reads
0 SPI is not active.

1 SPI is active.

Writes
0 No effect.

1 Sets the active bit.

The reset value is 0.

GICD_ISACTIVER1-30 can be accessed through its memory-mapped interface.

Table 9-22  GICD_ISACTIVER1-30 access information

Component Offset Reset

GIC Distributor 0x0304-0x0378 0x00000000

Interrupt Clear-Active Registers 1-30

The GICD_ICACTIVER1-30 registers clear the active bit for the corresponding SPI. Each register
contains the clear-active bits for 32 SPIs.

Usage constraints These registers are read/write.
Traps and enables There are no traps and enables affecting these registers.
Configurations These registers are available in all configurations.

The number of implemented GICD_ICACTIVER registers is determined by
GICD_TYPER.ITLinesNumber.

GICD_ICACTIVER registers that are not implemented are RAZ/WI.

Attributes GICD_ICACTIVER1-30 are 32-bit registers.

The following figure shows the GICD_ICACTIVER1-30 bit assignments.

Clear-active bits

31 0

Figure 9-11  GICD_ICACTIVER1-30 bit assignments

The following table shows the GICD_ICACTIVER1-30 bit assignments.

9 Generic Interrupt Controller
9.3 GIC programmers model

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

9-275

Non-Confidential



Table 9-23  GICD_ICACTIVER1-30 bit assignments

Bits Name Function

[31:0] Clear-active bits For each bit:

Reads
0 SPI is not active.

1 SPI is active.

Writes
0 No effect.

1 Clears the active bit.

GICD_ICACTIVER1-30 can be accessed through its memory-mapped interface.

Table 9-24  GICD_ICACTIVER1-30 access information

Component Offset Reset

GIC Distributor 0x0384-0x03F8 0x00000000

Interrupt Priority Registers 8-247

The GICD_IPRIORITYR8-247 registers provide a 5-bit priority field for each SPI supported by the GIC.
This field stores the priority of the corresponding SPI.

Usage constraints These registers are read/write.

These registers are byte-accessible.

Traps and enables There are no traps and enables affecting these registers.
Configurations These registers are available in all configurations of the GIC.

The number of implemented GICD_IPRIORITYR8-247 registers is (8×
(GICD_TYPER.ITLinesNumber)).

GICD_IPRIORITYR8-247 registers that are not implemented are RAZ/WI.

Attributes GICD_IPRIORITYR8-247 are 32-bit registers.

Each register holds four priority fields as shown in the following figure, where PRI_Nn is the priority
corresponding to the SPI with ID INTIDn.

PRI_N991

RAZ/WI

PRI_N990 PRI_N989 PRI_N988IPR247

PRI_N4n+3 PRI_N4n+2 PRI_N4n+1 PRI_N4nIPRn

PRI_N35 PRI_N34 PRI_N33 PRI_N32IPR8

. .
 .

. .
 .

. .
 .

. .
 .

2627 1819 1011 331 2324 1516 78 2 0

RAZ/WI RAZ/WI RAZ/WI

RAZ/WI RAZ/WI RAZ/WI RAZ/WI

RAZ/WIRAZ/WIRAZ/WIRAZ/WI

Figure 9-12  GICD_IPRIORITYR8-247 priority fields

The following table shows the GICD_IPRIORITYR8-247 bit assignments.

9 Generic Interrupt Controller
9.3 GIC programmers model

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

9-276

Non-Confidential



Table 9-25  GICD_IPRIORITYR8-247 bit assignments

Bits Namebl Function

[31:27] Priority, byte offset 3 Each priority field holds a priority value, 0-31. The lower the value, the higher the priority of the
corresponding interrupt.

[26:24] - Reserved, RAZ/WI.

[23:19] Priority, byte offset 2 Each priority field holds a priority value, 0-31. The lower the value, the higher the priority of the
corresponding interrupt.

[18:16] - Reserved, RAZ/WI.

[15:11] Priority, byte offset 1 Each priority field holds a priority value, 0-31. The lower the value, the higher the priority of the
corresponding interrupt.

[10:8] - Reserved, RAZ/WI.

[7:3] Priority, byte offset 0 Each priority field holds a priority value, 0-31. The lower the value, the higher the priority of the
corresponding interrupt.

[2:0] - Reserved, RAZ/WI.

For INTIDm, when DIV and MOD are the integer division and modulo operations:
• The corresponding GICD_IPRIORITYRn number, n, is given by n = m DIV 4, where m=32 to 991.
• The address offset of the required GICD_IPRIORITYRn is (0x400 + (4×n)).
• The byte offset of the required Priority field in this register is m MOD 4, where:

— Byte offset 0 refers to register bits[7:3].
— Byte offset 1 refers to register bits[15:11].
— Byte offset 2 refers to register bits[23:19].
— Byte offset 3 refers to register bits[31:27].

GICD_IPRIORITYR8-247 can be accessed through its memory-mapped interface.

Table 9-26  GICD_IPRIORITYR8-247 access information

Component Offset Reset

GIC Distributor 0x0420-0x07DF 0x00000000

Interrupt Configuration Registers 2-61

The GICD_ICFGR2-61 registers provide a 2-bit Int_config field for each interrupt supported by the GIC.
This field determines whether the corresponding interrupt is rising edge-triggered or active-HIGH level-
sensitive.

Usage constraints These registers are read/write.
Traps and enables There are no traps and enables affecting these registers.
Configurations These registers are available in all configurations.

The number of implemented GICD_ICFGR2-61 registers is
GICD_TYPER.ITLinesNumber x 2.

GICD_ICFGR2-61 registers that are not implemented are RAZ/WI.

Attributes GICD_ICFGR2-61 are 32-bit registers.

The following figure shows the GICD_ICFGR2-61 bit assignments.

bl Each field holds the priority value for a single interrupt. This section describes how the INTID value determines the GICD_IPRIORITYRn register number and the
byte offset of the priority field in that register.

9 Generic Interrupt Controller
9.3 GIC programmers model

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

9-277

Non-Confidential



31 3 01

Field number, F

47811121516192023242728 25691013141718212225262930

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Int_config fields
See the bit assignment table for more information about the properties of each Int_config[1:0] field

Figure 9-13  GICD_ICFGR2-61 bit assignments

The following table shows the GICD_ICFGR2-61 bit assignments.

Bits Name Function

[2F+1:2F] Int_config, field F For Int_config[1], the most significant bit, bit [2F+1], the encoding is:

0 Corresponding interrupt is active-HIGH level-sensitive. This is the reset value.

1 Corresponding interrupt is rising edge-triggered.

Int_config[0], the least significant bit, bit [2F], is RES0.

For INTIDm, when DIV and MOD are the integer division and modulo operations:
• The corresponding GICD_ICFGRn number, n, is given by n = m DIV 16, where m=32 to 991.
• The offset of the required GICD_ICFGRn is (0xC00 + (4×n)).
• The required Int_config field in this register, F, is given by F = m MOD 16, where field 0 refers to

register bits[1:0], field 1 refers to bits[3:2], up to field 15 that refers to bits[31:30].

GICD_ICFGR2-61 can be accessed through its memory-mapped interface.

Table 9-27  GICD_ICFGR2-61 access information

Component Offset Reset

GIC Distributor 0x0C08-0x0CF4 0x00000000

Interrupt Routing Registers 32-991

The GICD_IROUTER32-991 registers provide routing information for the SPI with GICD_IROUTERn
corresponding to INTIDn.

Usage constraints These registers are read/write.
Traps and enables There are no traps and enables affecting these registers.
Configurations These registers are available in all configurations of the GIC.

The number of implemented GICD_IROUTER32-991 registers is
GICD_TYPER.ITLinesNumber x 32. One 64-bit register per SPI.

GICD_IROUTER32-991 registers that are not implemented are RAZ/WI.

Attributes GICD_IROUTER32-991 are 64-bit registers.

The following figure shows the GICD_IROUTER32-991 bit assignments.

9 Generic Interrupt Controller
9.3 GIC programmers model

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

9-278

Non-Confidential



RES0 Aff2 Aff1 Aff0

Interrupt_Routing_Mode

31 30 24 23 16 15 8 7 0

RES0 Aff3

63 40 39 32

Figure 9-14  GICD_IROUTER32-991 bit assignments

The following table shows the GICD_IROUTER32-991 bit assignments.

Table 9-28  GICD_IROUTER32-991 bit assignments

Bits Name Function

[63:40] - Reserved, RES0.

[39:32] Aff3 Affinity level 3. This field is not used:

0 This is the reset value.

[31] Interrupt_Routing_Mode Defines how SPIs are routed in an affinity hierarchy:

RAZ/WI 1 of N distribution of SPIs is not supported.

[30:24] - Reserved, RES0.

[23:16] Aff2 Affinity level 2. This field is read-only and reads returns the Cortex-R52 top-level configuration
value CFGMPIDRAFF2[7:0].

[15:8] Aff1 Affinity level 1. This field is read-only and reads returns the Cortex-R52 top-level configuration
value CFGMPIDRAFF1[7:0].

[7:0] Aff0 Affinity level 0.
• The number of implemented LSBs is defined as

Aff0[CEILING(LOG2(NUM_TARGET))-1:0] with remaining bits 0.
• When NUM_TARGET is 1, all bits are 0. NUM_TARGET is the total number of targets

including cores and export ports.
• Supported values for Aff0 are defined by the GICR_TYPER.
• Aff0 fields of all redistributors which are numbered contiguously from 0 to NUM_TARGET-1.

GICD_IROUTER32-991 can be accessed through its memory-mapped interface.

Table 9-29  GICD_IROUTER32-991 access information

Component Offset Reset

GIC Distributor 0x6100-0x7EF8 0x0000000000000000

Identification Registers 0-7

The GICD_PIDR0-7 registers provide the peripheral identification information.

Usage constraints These registers are read only.

Traps and enables There are no traps and enables affecting these registers.
Configurations These registers are available in all configurations.
Attributes GICD_PIDR0-7 are 32-bit registers.

9 Generic Interrupt Controller
9.3 GIC programmers model

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

9-279

Non-Confidential



The following figure shows the GICD_PIDR0-7 bit assignments.

RES0 Component IDn

31 8 7 0

Figure 9-15  GICD_PIDR0-7 bit assignments

The following table shows the GICD_PIDR0-7 bit assignments.

Table 9-30  GICD_PIDR4-7 bit assignments

Bits Name Function

[31:8] - Reserved, RES0.

[7:0] - Component IDn

GICD_PIDR0-7 can be accessed through its memory-mapped interface.

Table 9-31  GICD_PIDR0-7 access information

Component Register Offset Reset value

GIC Distributor GICD_PIDR0 0xFFE0 0x00000092

GICD_PIDR1 0xFFE4 0x000000B4

GICD_PIDR2 0xFFE8 0x0000003B

GICD_PIDR3 0xFFEC 0x00000000

GICD_PIDR4 0xFFD0 0x00000044

GICD_PIDR5 0xFFD4 0x00000000

GICD_PIDR6 0xFFD8 0x00000000

GICD_PIDR7 0xFFDC 0x00000000

Component Identification Registers 0-3

The GICD_CIDR0-3 registers provide the component identification information.

Usage constraints These registers are read-only.

Traps and enables There are no traps and enables affecting these registers.
Configurations These registers are available in all configurations.
Attributes GICD_CIDR0-3 are 32-bit registers.

The following figure shows the GICD_CIDR0-3 bit assignments.

RES0 Component IDn

31 8 7 0

Figure 9-16  GICD_CIDR0-3 bit assignments

The following table shows the GICD_CIDR0-3 bit assignments.

9 Generic Interrupt Controller
9.3 GIC programmers model

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

9-280

Non-Confidential



Table 9-32  GICD_CIDR0-3 bit assignments

Bits Name Function

[31:8] - Reserved, RES0

[7:0] - Component IDn

GICD_CIDR0-3 can be accessed through its memory-mapped interface.

Table 9-33  GICD_CIDR0-3 reset values

Component Register Offset Reset value

GIC Distributor GICD_CIDR0 0xFFF0 0x0000000D

GICD_CIDR1 0xFFF4 0x000000F0

GICD_CIDR2 0xFFF8 0x00000005

GICD_CIDR3 0xFFFC 0x000000B1

9.3.2 Redistributor Registers (GICR)

The Redistributor is a component that provides the interface from the Distributor to a core to forward all
interrupts that are in the physical domain. The following two tables summarize the Redistributor registers
in both the Control and SGI/PPI pages.

Table 9-34  Redistributor Registers (GICR) for Control summary

Offset Name Type Reset Description

0x0000 GICR_CTLR RO 0x00000000 Redistributor Control Register on page 9-283

0x0004 GICR_IIDR RO 0x0101243B Redistributor Implementer Identification
Register on page 9-284

0x0008-0x000C GICR_TYPER RO 0x0000000000000000 For core0 in a
two core
system.

0x0000000100000110 For core1 in a
two core
system.

Redistributor Type Register on page 9-285

0x0014 GICR_WAKER RW 0x00000006 Redistributor Wake Register on page 9-286

0xFFE0 GICR_PIDR0 RO 0x00000093 Redistributor Identification Registers 0-7
on page 9-287

0xFFE4 GICR_PIDR1 RO 0x000000B4 Redistributor Identification Registers 0-7
on page 9-287

0xFFE8 GICR_PIDR2 RO 0x0000003B Redistributor Identification Registers 0-7
on page 9-287

0xFFEC GICR_PIDR3 RO 0x00000000 Redistributor Identification Registers 0-7
on page 9-287

0xFFD0 GICR_PIDR4 RO 0x00000044 Redistributor Identification Registers 0-7
on page 9-287

0xFFD4 GICR_PIDR5 RO 0x00000000 Redistributor Identification Registers 0-7
on page 9-287

9 Generic Interrupt Controller
9.3 GIC programmers model

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

9-281

Non-Confidential



Table 9-34  Redistributor Registers (GICR) for Control summary (continued)

Offset Name Type Reset Description

0xFFD8 GICR_PIDR6 RO 0x00000000 Redistributor Identification Registers 0-7
on page 9-287

0xFFDC GICR_PIDR7 RO 0x00000000 Redistributor Identification Registers 0-7
on page 9-287

0xFFF0 GICR_CIDR0 RO 0x0000000D Redistributor Component Identification
Registers 0-3 on page 9-288

0xFFF4 GICR_CIDR1 RO 0x000000F0 Redistributor Component Identification
Registers 0-3 on page 9-288

0xFFF8 GICR_CIDR2 RO 0x00000005 Redistributor Component Identification
Registers 0-3 on page 9-288

0xFFFC GICR_CIDR3 RO 0x000000B1 Redistributor Component Identification
Registers 0-3 on page 9-288

Table 9-35  Redistributor Registers (GICR) for SGIs and PPIs summary

Offset Name Type Reset Description

0x0080 GICR_IGROUPR0 RW 0x00000000 Interrupt Group Register 0 on page 9-289

0x0100 GICR_ISENABLER0 RW 0x00000000 Interrupt Set-Enable Register 0 on page 9-289

0x0180 GICR_ICENABLER0 RW 0x00000000 Interrupt Clear-Enable Register 0 on page 9-290

0x0200 GICR_ISPENDR0 RW 0x00000000 Interrupt Set-Pending Register 0 on page 9-291

0x0280 GICR_ICPENDR0 RW 0x00000000 Interrupt Clear-Pending Register 0 on page 9-292

0x0300 GICR_ISACTIVER0 RW 0x00000000 Interrupt Set-Active Register 0 on page 9-293

0x0380 GICR_ICACTIVER0 RW 0x00000000 Interrupt Clear-Active Register 0 on page 9-294

0x0400-0x041C GICR_IPRIORITYR0-7 RW 0x00000000 Interrupt Priority Registers 0-7 on page 9-295

0x0C00 GICR_ICFGR0 RO 0xAAAAAAAA Interrupt Configuration Register 0 on page 9-297

0x0C04 GICR_ICFGR1 RW 0x00000000 Interrupt Configuration Register 1 on page 9-297

 Note 

The following correspondence applies:
• GICR_IGROUPR0[0] corresponds to INTID0 through to GICR_IGROUPR0[31] corresponds to

INTID31.
• GICR_ISENABLER0[0] corresponds to INTID0 through to GICR_ISENABLER0[31] corresponds

to INTID31.
• GICR_ICENABLER0[0] corresponds to INTID0 through to GICR_ICENABLER0[31] corresponds

to INTID31.
• GICR_ISPENDR0[0] corresponds to INTID0 through to GICR_ISPENDR0[31] corresponds to

INTID31.
• GICR_ICPENDR0[0] corresponds to INTID0 through to GICR_ICPENDR0[31] corresponds to

INTID31.
• GICR_ISACTIVER0[0] corresponds to INTID0 through to GICR_ISACTIVER0[31] corresponds to

INTID31.
• GICR_ICACTIVER0[0] corresponds to INTID0 through to GICR_ICACTIVER0[31] corresponds to

INTID31.

9 Generic Interrupt Controller
9.3 GIC programmers model

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

9-282

Non-Confidential



• GICR_IPRIORITYR0[7:0] corresponds to INTID0 through to GICR_IPRIORITYR7[31:24]
corresponds to INTID31.

• GICR_ICFGR0[1:0] corresponds to INTID0 through to GICR_ICFGR0[31:30] corresponds to
INTID31.

• GICR_ICFGR1[1:0] corresponds to INTID0 through to GICR_ICFGR1[31:30] corresponds to
INTID31.

PPIs correspond to INTID16 to INTID31. SGIs correspond to INTID0 to INTID15.

Redistributor Control Register

The GICR_CTLR register controls the operation of a Redistributor.

Usage constraints This register is read-only.
Traps and enables There are no traps and enables affecting this register.
Configurations A copy of this register is provided for each Redistributor.
Attributes GICR_CTLR is a 32-bit register.

The following figure shows the GICR_CTLR bit assignments.

RES0 RES0

DPG0
DPG1NS

DPG1S

UWP RWP

31 30 27 26 25 24 23 4 3 2 1 0

RES0
Enable_LPIs

Figure 9-17  GICR_CTLR bit assignments

The following table shows the GICR_CTLR bit assignments.

Table 9-36  GICR_CTLR bit assignments

Bits Name Function

[31] UWP Read-only. Indicates whether upstream writes are pending:

0 No upstream writes pending.

[30:27] - Reserved, RES0.

[26] DPG1S Relates to 1 of N distribution which is not supported, RAZ/WI.

[25] DPG1NS Relates to 1 of N distribution which is not supported, RAZ/WI.

[24] DPG0 Relates to 1 of N distribution which is not supported, RAZ/WI.

[23:4] - Reserved, RES0.

[3] RWP Register Write Pending. This read-only bit indicates whether a GICR_ICENABLERn write is in progress or
not:

0 The effect of all previous writes to GICR_ICENABLERn are visible to the GIC CPU interface.

1 The effect of all previous writes to GICR_ICENABLERn are not guaranteed to be visible to the GIC CPU
interface because the changes are still being propagated:

• GICR_ICENABLERn. The clearing of enable state for PPIs and SGIs.

9 Generic Interrupt Controller
9.3 GIC programmers model

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

9-283

Non-Confidential



Table 9-36  GICR_CTLR bit assignments (continued)

Bits Name Function

[2:1] - Reserved, RES0.

[0] Enable LPIs This bit controls whether physical LPIs are enabled:

RES0 LPIs are not supported.

GICR_CTLR can be accessed through its memory-mapped interface.

Table 9-37  GICR_CTLR access information

Component Offset Reset

GIC Redistributor 0x0000 0x00000000

Redistributor Implementer Identification Register

The GICR_IIDR provides information about the implementer and revision of the Redistributor.

Usage constraints This register is read-only.
This register returns the same value as GICD_IIDR.

Traps and enables There are no traps and enables affecting this register.
Configurations A copy of this register is provided for each Redistributor.
Attributes GICR_IIDR is a 32-bit register.

The following figure shows the GICR_IIDR bit assignments.

RevisionProductID RES0 Variant Implementer

31 24 23 20 19 16 15 12 11 0

Figure 9-18  GICR_IIDR bit assignments

The following table shows the GICR_IIDR bit assignments.

Table 9-38  GICR_IIDR bit assignments

Bits Name Function

[31:24] ProductID 0x01 Cortex-R52 GIC

[23:20] - Reserved, RES0

[19:16] Variant 0x1

[15:12] Revision 0x2

[11:0] Implementer 0x43B Arm Limited

GICR_IIDR can be accessed through its memory-mapped interface.

Table 9-39  GICR_IIDR access information

Component Offset Reset

GIC Redistributor 0x0004 0x0101243B

9 Generic Interrupt Controller
9.3 GIC programmers model

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

9-284

Non-Confidential



Redistributor Type Register

The GICR_TYPER register provides information about the configuration of the Redistributor.

Usage constraints This register is read-only.
Traps and enables There are no traps and enables affecting this register.
Configurations A copy of this register is provided for each Redistributor.
Attributes GICR_TYPER is a 64-bit register.

The following figure shows the GICR_TYPER bit assignments.

RES0

Aff3 Aff2 Aff1 Aff0

63 56 55 48 47 40 39 32

RES0 Processor Number

DPGS

DirectLPI
Last

PLPIS

31 24 23 8 7 6 55 4 2 1 03

RES0
VLPIS

CommonLPIAff

26 25

Figure 9-19  GICR_TYPER bit assignments

The following table shows the GICR_TYPER bit assignments.

Table 9-40  GICR_TYPER bit assignments

Bits Name Function

[63:56] Aff3 Affinity level 3, not used. 0x00

[55:48] Aff2 Affinity level 2, not used. 0x00

[47:40] Aff1 Affinity level 1, not used. 0x00

[39:32] Aff0 Affinity level 0. The target ID of the Redistributor. Targets are contiguously numbered 0 to
NUM_TARGET-1. NUM_TARGET is the total number of cores and export ports. For a two core system with
an export port, this would be core0=0, core1=1, export=2

[31:26] - Reserved, RES0.

[25:24] CommonLPIAff Relates to LPIs which are not supported. 0x00

[23:8] Processor Number A unique identifier for the core. The same as Aff0, unused MSBs zero padded.

[7:6] - Reserved, RES0.

[5] DPGS Sets support for GICR_CTLR.DPG* bits:

0 GICR_CTLR.DPG* bits are not supported.

9 Generic Interrupt Controller
9.3 GIC programmers model

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

9-285

Non-Confidential



Table 9-40  GICR_TYPER bit assignments (continued)

Bits Name Function

[4] Last Indicates whether this Redistributor is the last numbered Redistributor in a series of contiguous
Redistributor pages:

0 This Redistributor is not the last Redistributor in a series of contiguous Redistributors.

1 This Redistributor is the last Redistributor in a series of contiguous Redistributors.

In a processor configured with an interrupt export port, this bit is set for the Redistributor associated with
the export port. Otherwise, in a system with n cores, this bit is set for the Redistributor associated with
core n-1.

[3] DirectLPI Indicates whether this Redistributor supports direct injection of LPIs:

0 This Redistributor does not support direct injection of LPIs.

[2] - Reserved, RES0.

[1] VLPIS 0 Virtual LPIs not supported.

[0] PLPIS Indicates whether the GIC implementation supports physical LPIs:

0 Physical LPIs are not supported.

GICR_TYPER can be accessed through its memory-mapped interface.

Table 9-41  GICR_TYPER access information

Component Offset Reset

GIC Redistributor 0x0008-0x000C 0x0000000000000000 For core0 in a two core system.

0x0000000100000110 For core1 in a two core system.

Redistributor Wake Register

The GICR_WAKER register permits software to quiesce the interface between the GIC Distributor and
GIC CPU interface before a target enters the processor sleep state. Exit from the processor sleep state is
caused by a pending interrupt for that target.

Usage constraints This register is read/write.

Traps and enables There are no traps and enables affecting this register.
Configurations A copy of this register is provided for each Redistributor.
Attributes GICR_WAKER is a 32-bit register.

The following figure shows the GICR_WAKER bit assignments.

RES0

ChildrenAsleep

31 3 2 01

ProcessorSleep
RES0

Figure 9-20  GICR_WAKER bit assignments

9 Generic Interrupt Controller
9.3 GIC programmers model

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

9-286

Non-Confidential



The following table shows the GICR_WAKER bit assignments.

Table 9-42  GICR_WAKER bit assignments

Bits Name Function

[31:3] - Reserved, RES0.

[2] ChildrenAsleep Indicates whether the connected target is quiescent:

0 All interfaces to the connected target are not quiescent.

1 All interfaces to the connected target are quiescent. This is the reset value.

[1] ProcessorSleep Instructs the Redistributor that the target is entering the processor sleep state. On writing 1, the Redistributor
quiesces the interface to the GIC CPU interface. When an interrupt for the target is pending and it is in
processor sleep state, a request is made to power up the target:

0 Writing 0 indicates that the target is not in Processor Sleep state. This is done during
initialization.

1 Writing 1 indicates that the target is entering Processor Sleep state. This is the reset value.

[0] - Reserved, RES0.

GICR_WAKER can be accessed through its memory-mapped interface.

Table 9-43  GICR_WAKER access information

Component Offset Reset

GIC Redistributor 0x0014 0x00000006

Redistributor Identification Registers 0-7

The GICR_PIDR0-7 registers provide the Peripheral identification information.

Usage constraints These registers are read-only.

Traps and enables There are no traps and enables affecting these registers.
Configurations A copy of this register is provided for each Redistributor.
Attributes GICR_PIDR0-7 are 32-bit registers.

The following figure shows the GICR_PIDR0-7 bit assignments.

RES0 Component IDn

31 8 7 0

Figure 9-21  GICR_PIDR0-7 bit assignments

The following table shows the GICR_PIDR0-7 bit assignments.

Table 9-44  GICR_PIDR0-7 bit assignments

Bits Name Function

[31:8] - Reserved, RES0.

[7:0] - Component ID.

9 Generic Interrupt Controller
9.3 GIC programmers model

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

9-287

Non-Confidential



GICR_PIDR0-7 can be accessed through its memory-mapped interface.

Table 9-45  GICR_PIDR0-7 reset values

Component Register Offset Reset value

GIC Redistributor GICR_PIDR0 0xFFE0 0x00000093

GICR_PIDR1 0xFFE4 0x000000B4

GICR_PIDR2 0xFFE8 0x0000003B

GICR_PIDR3 0xFFEC 0x00000000

GICR_PIDR4 0xFFD0 0x00000044

GICR_PIDR5 0xFFD4 0x00000000

GICR_PIDR6 0xFFD8 0x00000000

GICR_PIDR7 0xFFDC 0x00000000

Redistributor Component Identification Registers 0-3

The GICR_CIDR0-3 registers provide the component identification information.

Usage constraints These registers are read-only.

Traps and enables There are no traps and enables affecting these registers.
Configurations A copy of this register is provided for each Redistributor.
Attributes GICR_CIDR0-3 are 32-bit registers.

The following figure shows the GICR_CIDR0-3 bit assignments.

RES0 Component IDn

31 8 7 0

Figure 9-22  GICR_CIDR0-3 bit assignments

The following table shows the GICR_CIDR0-3 bit assignments.

Table 9-46  GICR_CIDR0-3 bit assignments

Bits Name Function

[31:8] - Reserved, RES0

[7:0] - Component IDn

GICR_CIDR0-3 can be accessed through its memory-mapped interface.

Table 9-47  GICR_CIDR0-3 reset values

Component Register Offset Reset value

GIC Redistributor GICR_CIDR0 0xFFF0 0x0000000D

GICR_CIDR1 0xFFF4 0x000000F0

GICR_CIDR2 0xFFF8 0x00000005

GICR_CIDR3 0xFFFC 0x000000B1

9 Generic Interrupt Controller
9.3 GIC programmers model

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

9-288

Non-Confidential



Interrupt Group Register 0

The GICR_IGROUPR0 register controls whether the corresponding SGI or PPI is in Group 0 or Group
1.

Usage constraints This register is read/write.
Traps and enables There are no traps and enables affecting this register.
Configurations A copy of this register is provided for each Redistributor.
Attributes GICR_IGROUPR0 is a 32-bit register.

The following figure shows the GICR_IGROUPR0 bit assignments.

PPIs SGIs

31 16 15 0

Figure 9-23  GICR_IGROUPR0 bit assignments

The following table shows the GICR_IGROUPR0 bit assignments.

Table 9-48  GICR_IGROUPR0 bit assignments

Bits Name Function

[31:16] PPIs Controls the group for the corresponding PPIs:

0 The PPI is in Group 0. This is the reset value.

1 The PPI is in Group 1.

[15:0] SGIs Controls the group for the corresponding SGIs:

0 The SGI is in Group 0. This is the reset value.

1 The SGI is in Group 1.

GICR_IGROUPR0 can be accessed through its memory-mapped interface.

Table 9-49  GICR_IGROUPR0 access information

Component Offset Reset

GIC Redistributor 0x0080 0x00000000

Interrupt Set-Enable Register 0

The GICR_ISENABLER0 register enables forwarding of the corresponding SGI or PPI from the
Distributor to the CPU interfaces.

Usage constraints This register is read/write.
Traps and enables There are no traps and enables affecting this register.
Configurations A copy of this register is provided for each Redistributor.
Attributes GICR_ISENABLER0 is a 32-bit register.

The following figure shows the GICR_ISENABLER0 bit assignments.

PPIs SGIs

31 16 15 0

Figure 9-24  GICR_ISENABLER0 bit assignments

9 Generic Interrupt Controller
9.3 GIC programmers model

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

9-289

Non-Confidential



The following table shows the GICR_ISENABLER0 bit assignments.

Table 9-50  GICR_ISENABLER0 bit assignments

Bits Name Function

[31:16] PPIs Enables forwarding of the corresponding PPIs:

Reads
0 Indicates forwarding of PPI is disabled. This is the reset value.

1 Indicates forwarding of PPI is enabled.

Writes
0 No effect.

1 Enables forwarding of PPI.

[15:0] SGIs Enables forwarding of the corresponding SGIs:

Reads
0 Indicates forwarding of SGI is disabled. This is the reset value.

1 Indicates forwarding of SGI is enabled.

Writes
0 No effect.

1 Enables forwarding of SGI.

GICR_ISENABLER0 can be accessed through its memory-mapped interface.

Table 9-51  GICR_ISENABLER0 access information

Component Offset Reset

GIC Redistributor 0x0100 0x00000000

Interrupt Clear-Enable Register 0

The GICR_ICENABLER0 register disables forwarding of the corresponding SGI or PPI to the CPU
interfaces.

Usage constraints This register is read/write.

Traps and enables There are no traps and enables affecting this register.
Configurations A copy of this register is provided for each Redistributor.
Attributes GICR_ICENABLER0 is a 32-bit register.

The following figure shows the GICR_ICENABLER0 bit assignments.

PPIs SGIs

31 16 15 0

Figure 9-25  GICR_ICENABLER0 bit assignments

The following table shows the GICR_ICENABLER0 bit assignments.

9 Generic Interrupt Controller
9.3 GIC programmers model

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

9-290

Non-Confidential



Table 9-52  GICR_ICENABLER0 bit assignments

Bits Name Function

[31:16] PPIs Disables forwarding of the corresponding PPIs:

Reads
0 Indicates forwarding of PPI is disabled. This is the reset value.

1 Indicates forwarding of PPI is enabled.

Writes
0 No effect.

1 Disables forwarding of PPI.

[15:0] SGIs Disables forwarding of the corresponding SGIs:

Reads
0 Indicates forwarding of SGI is disabled. This is the reset value.

1 Indicates forwarding of SGI is enabled.

Writes
0 No effect.

1 Disables forwarding of SGI.

GICR_ICENABLER0 can be accessed through its memory-mapped interface.

Table 9-53  GICR_ICENABLER0 access information

Component Offset Reset

GIC Redistributor 0x0180 0x00000000

Interrupt Set-Pending Register 0

The GICR_ISPENDR0 register sets the pending bit for SGIs and PPIs.

Usage constraints This register is read/write.

Traps and enables There are no traps and enables affecting this register.
Configurations A copy of this register is provided for each Redistributor.
Attributes GICR_ISPENDR0 is a 32-bit register.

The following figure shows the GICR_ISPENDR0 bit assignments.

PPIs SGIs

31 16 15 0

Figure 9-26  GICR_ISPENDR0 bit assignments

The following table shows the GICR_ISPENDR0 bit assignments.

9 Generic Interrupt Controller
9.3 GIC programmers model

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

9-291

Non-Confidential



Table 9-54  GICR_ISPENDR0 bit assignments

Bits Name Function

[31:16] PPIs Sets the PPI pending bits:

Reads
0 Indicates that the PPI is not pending. This is the reset value.

1 Indicates that the PPI is pending.

Writes
0 No effect.

1 Sets the PPI pending bit.

[15:0] SGIs Sets the SGI pending bits:

Reads
0 Indicates that the SGI is not pending. This is the reset value.

1 Indicates that the SGI is pending.

Writes
0 No effect.

1 Sets the SGI pending bit.

GICR_ISPENDR0 can be accessed through its memory-mapped interface.

Table 9-55  GICR_ISPENDR0 access information

Component Offset Reset

GIC Redistributor 0x0200 0x00000000

Interrupt Clear-Pending Register 0

The GICR_ICPENDR0 register clears the pending SGI or PPI bit.

Usage constraints This register is read/write.
Traps and enables There are no traps and enables affecting this register.
Configurations A copy of this register is provided for each Redistributor.
Attributes GICR_ICPENDR0 is a 32-bit register.

The following figure shows the GICR_ICPENDR0 bit assignments.

PPIs SGIs

31 16 15 0

Figure 9-27  GICR_ICPENDR0 bit assignments

The following table shows the GICR_ICPENDR0 bit assignments.

9 Generic Interrupt Controller
9.3 GIC programmers model

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

9-292

Non-Confidential



Table 9-56  GICR_ICPENDR0 bit assignments

Bits Name Function

[31:16] PPIs Clears the pending bit for the corresponding PPI:

Reads
0 Indicates that the PPI is pending. This is the reset value.

1 Indicates that the PPI is not pending.

Writes
0 No effect.

1 Sets the PPI pending bit.

[15:0] SGIs Clears the pending bit for the corresponding SGI:

Reads
0 Indicates that the SGI is pending. This is the reset value.

1 Indicates that the SGI is not pending.

Writes
0 No effect.

1 Sets the SGI pending bit.

GICR_ICPENDR0 can be accessed through its memory-mapped interface.

Table 9-57  GICR_ICPENDR0 access information

Component Offset Reset

GIC Redistributor 0x0280 0x00000000

Interrupt Set-Active Register 0

The GICR_ISACTIVER0 register sets the active bit for SGIs and PPIs.

Usage constraints This register is read/write.
Traps and enables There are no traps and enables affecting this register.
Configurations A copy of this register is provided for each Redistributor.
Attributes GICR_ISACTIVER0 is a 32-bit register.

The following figure shows the GICR_ISACTIVER0 bit assignments.

PPIs SGIs

31 16 15 0

Figure 9-28  GICR_ISACTIVER0 bit assignments

The following table shows the GICR_ISACTIVER0 bit assignments.

9 Generic Interrupt Controller
9.3 GIC programmers model

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

9-293

Non-Confidential



Table 9-58  GICR_ISACTIVER0 bit assignments

Bits Name Function

[31:16] PPIs Sets the active bit for the corresponding PPI:

Reads
0 Indicates that the PPI is not active. This is the reset value.

1 Indicates that the PPI is active.

Writes
0 No effect.

1 Sets the PPI active bit.

[15:0] SGIs Sets the active bit for the corresponding SGI:

Reads
0 Indicates that the SGI not active. This is the reset value.

1 Indicates that the SGI is active.

Writes
0 No effect.

1 Sets the SGI active bit.

GICR_ISACTIVER0 can be accessed through its memory-mapped interface.

Table 9-59  GICR_ISACTIVER0 access information

Component Offset Reset

GIC Redistributor 0x0300 0x00000000

Interrupt Clear-Active Register 0

The GICR_ICACTIVER0 register clears the active bit for the corresponding SGI or PPI.

Usage constraints This register is read/write.
Traps and enables There are no traps and enables affecting this register.
Configurations A copy of this register is provided for each Redistributor.
Attributes GICR_ICACTIVER0 is a 32-bit register.

The following figure shows the GICR_ICACTIVER0 bit assignments.

PPIs SGIs

31 16 15 0

Figure 9-29  GICR_ICACTIVER0 bit assignments

The following table shows the GICR_ICACTIVER0 bit assignments.

9 Generic Interrupt Controller
9.3 GIC programmers model

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

9-294

Non-Confidential



Table 9-60  GICR_ICACTIVER0 bit assignments

Bits Name Function

[31:16] PPIs Clears the active bit for the corresponding PPI:

Reads
0 Indicates that the PPI is not active. This is the reset value.

1 Indicates that the PPI is active.

Writes
0 No effect.

1 Clears the PPI active bit.

[15:0] SGIs Clears the active bit for the corresponding SGI:

Reads
0 Indicates that the SGI is not active. This is the reset value.

1 Indicates that the SGI is active.

Writes
0 No effect.

1 Clears the SGI active bit.

GICR_ICACTIVER0 can be accessed through its memory-mapped interface.

Table 9-61  GICR_ICACTIVER0 access information

Component Offset Reset

GIC Redistributor 0x0380 0x00000000

Interrupt Priority Registers 0-7

The GICR_IPRIORITYR0-7 registers provide a 5-bit priority field for each SGI and PPI. This field
stores the priority of the corresponding interrupt.

Usage constraints These registers are read/write.

These registers are byte-accessible.

Traps and enables There are no traps and enables affecting these registers.
Configurations A copy of these registers is provided for each Redistributor.

Attributes GICR_IPRIORITYR0-7 are 32-bit registers.

Each register holds four priority fields as shown in the following figure.

9 Generic Interrupt Controller
9.3 GIC programmers model

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

9-295

Non-Confidential



PRI31

RAZ/WI

IPR7

PRI_N4n+3 PRI_N4n+2 PRI_N4n+1 PRI_N4nIPRn

PRI3IPR0

. .
 .

. .
 .

. .
 .

. .
 .

2627 1819 1011 331 2324 1516 78 2 0

PRI30 PRI29 PRI28

PRI2 PRI1 PRI0

RAZ/WI RAZ/WI RAZ/WI

RAZ/WI RAZ/WI RAZ/WI RAZ/WI

RAZ/WI RAZ/WI RAZ/WI RAZ/WI

Figure 9-30  GICR_IPRIORITYR0-7 priority fields

 Note 

PRIn corresponds to INTIDn.

The following table shows the GICR_IPRIORITYR0-7 bit assignments.

Table 9-62  GICR_IPRIORITYR0-7 bit assignments

Bits Namebm Function

[31:27] Priority, byte offset 3 Each priority field holds a priority value, 0-31. The lower the value, the higher the priority of the
corresponding interrupt.

[26:24] - Reserved, RES0.

[23:19] Priority, byte offset 2 Each priority field holds a priority value, 0-31. The lower the value, the higher the priority of the
corresponding interrupt.

[18:16] - Reserved, RES0.

[15:11] Priority, byte offset 1 Each priority field holds a priority value, 0-31. The lower the value, the higher the priority of the
corresponding interrupt.

[10:8] - Reserved, RES0.

[7:3] Priority, byte offset 0 Each priority field holds a priority value, 0-31. The lower the value, the higher the priority of the
corresponding interrupt.

[2:0] - Reserved, RES0.

For INTIDm, when DIV and MOD are the integer division and modulo operations:
• The corresponding GICR_IPRIORITYRn number, n, is given by n = m DIV 4, where m=0 to 31.
• The offset of the required GICR_IPRIORITYRn is (0x400 + (4×n)).
• The byte offset of the required Priority field in this register is m MOD 4, where:

— Byte offset 0 refers to register bits[7:3].
— Byte offset 1 refers to register bits[15:11].
— Byte offset 2 refers to register bits[23:19].
— Byte offset 3 refers to register bits[31:27].

GICR_IPRIORITYR0-7 can be accessed through its memory-mapped interface.

bm Each field holds the priority value for a single interrupt. This section describes how the INTID value determines the GICR_IPRIORITYR0-7 register number and the
byte offset of the priority field in that register.

9 Generic Interrupt Controller
9.3 GIC programmers model

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

9-296

Non-Confidential



Table 9-63  GICR_IPRIORITYR0-7 access information

Component Offset Reset

GIC Redistributor 0x0400-0x041C 0x00000000

Interrupt Configuration Register 0

The GICR_ICFGR0 register provides a 2-bit Int_config field for each SGI supported by the GIC
Distributor. All SGIs behave as edge-triggered interrupts and therefore this register is read only.

 Note 

Fields 0-15 correspond to SGIs 0-15.

Usage constraints This register is read only.

Traps and enables There are no traps and enables affecting this register.
Configurations A copy of this register is provided for each Redistributor.
Attributes GICR_ICFGR0 is a 32-bit register.

The following figure shows the GICR_ICFGR0 bit assignments.

31 3 01

Field number, F

47811121516192023242728 25691013141718212225262930

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Int_config fields
See the bit assignment table for more information about the properties of each Int_config[1:0] field

Figure 9-31  GICR_ICFGR0 bit assignments

The following table shows the GICR_ICFGR0 bit assignments.

Table 9-64  GICR_ICFGR0 bit assignments

Bits Name Function

[31:0] Int_config Read only bits.

Reset: 0xAAAAAAAA

GICR_ICFGR0 can be accessed through its memory-mapped interface.

Table 9-65  GICR_ICFGR0 access information

Component Offset Reset

GIC Redistributor 0x0C00 0xAAAAAAAA

Interrupt Configuration Register 1

The GICR_ICFGR1 register provides a 2-bit Int_config field for each PPI supported by the GIC
Distributor. Some PPIs are level-sensitive and their corresponding fields are read-only and they are read
as 0b00.

9 Generic Interrupt Controller
9.3 GIC programmers model

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

9-297

Non-Confidential



 Note 

Fields 0-15 correspond to PPIs 16-31. Fields 0-5, 12, 13, and 15 are programmable, 6-11 and 14 are read-
only because they are assigned to core peripherals that have a fixed level-sensitive configuration. For
more information, see 9.2.2 Interrupt sources on page 9-263.

Usage constraints This register is read only.

Traps and enables There are no traps and enables affecting this register.
Configurations A copy of this register is provided for each Redistributor.
Attributes GICR_ICFGR1 is a 32-bit register.

The following figure shows the GICR_ICFGR1 bit assignments.

31 3 01

Field number, F

47811121516192023242728 25691013141718212225262930

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Int_config fields
See the bit assignment table for more information about the properties of each Int_config[1:0] field

Figure 9-32  GICR_ICFGR1 bit assignments

The following table shows the GICR_ICFGR1 bit assignments.

Table 9-66  GICR_ICFGR1 bit assignments

Bits Name Function

[2F+1:2F] Int_config, field F For Int_config[1], the most significant bit, bit [2F+1], the encoding is:

0 Corresponding interrupt is Active-LOW level-sensitive. This is the reset value.

1 Corresponding interrupt is rising edge-triggered.

Int_config[0], the least significant bit, bit [2F], is RES0.

The reset value is 0b00.

GICR_ICFGR1 can be accessed through its memory-mapped interface.

Table 9-67  GICR_ICFGR1 access information

Component Offset Reset

GIC Redistributor 0x0C04 0x00000000

9.3.3 Hypervisor Control System Registers

This section describes the implemented Hypervisor Control System registers within each core which are
allocated to the (coproc==0b1111) space. The following table summarizes the Hypervisor Control
System registers.

9 Generic Interrupt Controller
9.3 GIC programmers model

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

9-298

Non-Confidential



Table 9-68  Hypervisor Control System Registers summary

Name CRn Op1 CRm Op2 Type Reset Description

ICH_HCR c12 4 c11 0 RW 0x00000000 Interrupt Controller Hyp Control Register on page 9-299

ICH_VTR 1 RO 0x90180003 Interrupt Controller Hyp VGIC Type Register on page 9-302

ICH_VMCR 7 RW 0x004C0008 Interrupt Controller Virtual Machine Control Register
on page 9-307

ICH_MISR 2 RO 0x00000000 Interrupt Controller Hyp Maintenance Interrupt Status Register EL2
on page 9-303

ICH_EISR 3 RO 0x00000000 Interrupt Controller End of Interrupt Status Register on page 9-305

ICH_ELRSR 5 RO 0x0000000F Interrupt Controller Empty List Register Status Register
on page 9-306

ICH_AP0R0 c12 4 c8 0 RW 0x00000000 Interrupt Controller Hyp Active Priorities Group 0 Register 0
on page 9-311

ICH_AP1R0 c12 4 c9 0 RW 0x00000000 Interrupt Controller Hyp Active Priorities Group 1 Register 0
on page 9-311

ICH_LR0 c12 4 c12 0 RW 0x00000000 Interrupt Controller List Registers 0-3 on page 9-308

ICH_LR1 1 RW 0x00000000 Interrupt Controller List Registers 0-3 on page 9-308

ICH_LR2 2 RW 0x00000000 Interrupt Controller List Registers 0-3 on page 9-308

ICH_LR3 3 RW 0x00000000 Interrupt Controller List Registers 0-3 on page 9-308

ICH_LRC0 c12 4 c14 0 RW 0x00000000 Interrupt Controller List Registers 0-3 on page 9-309

ICH_LRC1 1 RW 0x00000000 Interrupt Controller List Registers 0-3 on page 9-309

ICH_LRC2 2 RW 0x00000000 Interrupt Controller List Registers 0-3 on page 9-309

ICH_LRC3 3 RW 0x00000000 Interrupt Controller List Registers 0-3 on page 9-309

 Note 

Writing to ICH_AP0R0 and ICH_AP0R1 with any value other than the last read value of the register (or
0x00000000 when there are no Group 0 active priorities) might result in UNPREDICTABLE behavior of the
interrupt prioritization system.

Interrupt Controller Hyp Control Register

The ICH_HCR register controls the environment for guest operating systems.

Usage constraints This register is read/write, and is only accessible at EL2.

Traps and enables If HSTR.T12 is set to 1, then accesses to this register from EL1 are trapped to Hyp
mode.

Configurations This register is available in all build configurations.

Attributes ICH_HCR is a 32-bit register.

The following figure shows the ICH_HCR bit assignments.

9 Generic Interrupt Controller
9.3 GIC programmers model

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

9-299

Non-Confidential



EOIcount RES0

TSEI
TALL1

TALL0
TC

RES0
VGrp1DIE

VGrp1EIE
VGrp0DIE

VGrp0EIE
NPIE

LRENPIE
UIE

En

31 27 26 14 13 12 11 10 9 8 7 6 5 4 3 2 1 015

TDIR

Figure 9-33  ICH_HCR bit assignments

The following table shows the ICH_HCR bit assignments.

Table 9-69  ICH_HCR bit assignments

Bits Name Function

[31:27] EOIcount This field increments when a successful write to a virtual EOIR or DIR register results in a virtual interrupt
deactivation.

Although not possible under correct operation, if an End of Interrupt (EOI) occurs when the value of this field is
31, this field wraps to 0.

The maintenance interrupt, INTID25, is asserted whenever this field is non-zero and the LRENPIE bit is set to 1.

[26:15] - Reserved, RES0.

[14] TDIR Trap virtual EL1 writes to ICC_DIR:

0 Virtual EL1 writes of ICC_DIR are not trapped to EL2, unless trapped by other mechanisms.

1 Virtual EL1 writes of ICC_DIR are trapped to EL2.

[13] TSEI This field is RES0.

[12] TALL1 Trap all virtual EL1 accesses to ICC_* System registers for Group 1 interrupts to EL2.

0 Virtual EL1 accesses to ICC_* registers for Group 1 interrupts proceed as normal. This is the reset
value.

1 Any virtual EL1 accesses to ICC_* registers for Group 1 interrupts trap to EL2.

This affects accesses to ICC_IAR1, ICC_EOIR1, ICC_HPPIR1, ICC_BPR1, ICC_AP1R0, and
ICC_IGRPEN1.

9 Generic Interrupt Controller
9.3 GIC programmers model

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

9-300

Non-Confidential



Table 9-69  ICH_HCR bit assignments (continued)

Bits Name Function

[11] TALL0 Trap all virtual EL1 accesses to ICC_* System registers for Group 0 interrupts to EL2.

0 Virtual EL1 accesses to ICC_* registers for Group 0 interrupts proceed as normal. This is the reset
value.

1 Any virtual EL1 accesses to ICC_* registers for Group 0 interrupts trap to EL2.

This affects accesses to ICC_IAR0, ICC_EOIR0, ICC_HPPIR0, ICC_BPR0, ICC_AP0R0, and
ICC_IGRPEN0.

[10] TC Trap all virtual EL1 accesses to System registers that are common to Group 0 and Group 1 to EL2.

0 Virtual EL1 accesses to common registers proceed as normal. This is the reset value.

1 Any virtual EL1 accesses to common registers trap to EL2.

This affects accesses to ICC_SGI0R, ICC_SGI1R, ICC_ASGI1R, ICC_CTLR, ICC_DIR, ICC_PMR, and
ICC_RPR.

[9:8] - Reserved, RES0.

[7] VGrp1DIE VM Group 1 Disabled Interrupt Enable:

0 Maintenance interrupt disabled. This is the reset value.

1 Maintenance interrupt enabled when virtual ICC_IGRPEN1.Enable is 0.

[6] VGrp1EIE VM Group 1 Enabled Interrupt Enable:

0 Maintenance interrupt disabled. This is the reset value.

1 Maintenance interrupt enabled when virtual ICC_IGRPEN1.Enable is 1.

[5] VGrp0DIE VM Group 0 Disabled Interrupt Enable:

0 Maintenance interrupt disabled. This is the reset value.

1 Maintenance interrupt enabled when virtual ICC_IGRPEN0.Enable is 0.

[4] VGrp0EIE VM Group 0 Enabled Interrupt Enable:

0 Maintenance interrupt disabled. This is the reset value.

1 Maintenance interrupt enabled when virtual ICC_IGRPEN0.Enable is 1.

[3] NPIE No Pending Interrupt Enable. Enables the signaling of a maintenance interrupt while no pending interrupts are
present in the List registers:

0 Maintenance interrupt disabled. This is the reset value.

1 Maintenance interrupt enabled while the List registers contain no interrupts in the pending state.

[2] LRENPIE List Register Entry Not Present Interrupt Enable. Enables the signaling of a maintenance interrupt while the
virtual CPU interface does not have a corresponding valid List register entry for an EOI request:

0 Maintenance interrupt disabled. This is the reset value.

1 Maintenance interrupt is enabled while the EOIcount field is not 0.

9 Generic Interrupt Controller
9.3 GIC programmers model

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

9-301

Non-Confidential



Table 9-69  ICH_HCR bit assignments (continued)

Bits Name Function

[1] UIE Underflow Interrupt Enable. Enables the signaling of a maintenance interrupt when the List registers are empty,
or hold only one valid entry:

0 Maintenance interrupt disabled. This is the reset value.

1 Maintenance interrupt is enabled if none, or only one, of the List register entries is marked as a valid
interrupt.

[0] En Enable. Global enable bit for the virtual CPU interface:

0 Virtual CPU interface operation disabled. This is the reset value.

1 Virtual CPU interface operation enabled.

When this field is set to 0:
• The virtual CPU interface does not signal any maintenance interrupts.
• The virtual CPU interface does not signal any virtual interrupts.
• A virtual access to an interrupt acknowledge register returns a spurious interrupt ID.

To access ICH_HCR:

MRC p15,4,<Rt>,c12,c11,0 ; Read ICH_HCR into Rt
MCR p15,4,<Rt>,c12,c11,0 ; Write Rt to ICH_HCR

Interrupt Controller Hyp Control VGIC Type Register

The ICH_VTR register describes the number of implemented virtual priority bits and List registers.

Usage constraints This register is read-only, and is only available from EL2.
Traps and enables If HSTR.T12 is set to 1, then accesses to this register from EL1 are trapped to Hyp

mode.
Configurations This register is available in all build configurations.

Attributes ICH_VTR is a 32-bit register.

The following figure shows the ICH_VTR bit assignments.

RES0 ListRegs

A3V
SEIS

IDbits
PREbits

PRIbits

31 29 28 26 25 23 22 21 20 5 4 019

nV4
TDS

18

Figure 9-34  ICH_VTR bit assignments

The following table shows the ICH_VTR bit assignments.

9 Generic Interrupt Controller
9.3 GIC programmers model

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

9-302

Non-Confidential



Table 9-70  ICH_VTR bit assignments

Bits Name Function

[31:29] PRIbits The number of virtual priority bits implemented, minus one.

0x4. 5 priority bits.

[28:26] PREbits The number of virtual preemption bits implemented, minus one.

All bits can form the priority group field and be used for preemption.

0x4. 5 preemption bits.

[25:23] IDbits The number of virtual interrupt identifier bits supported:

0b000 16 bits.

[22] SEIS SEI Support. Indicates whether the virtual CPU interface supports generation of SEIs:

0 The virtual CPU interface logic does not support generation of SEIs.

[21] A3V Affinity 3 Valid:

0 The virtual CPU interface logic only supports zero values of Affinity 3 in SGI generation System
registers.

[20] nV4 GICv4 direct injection of virtual interrupts:

1 The CPU interface logic does not support direct injection of virtual interrupts.

[19] TDS Separate trapping EL1 writes to ICC_DIR supported:

1 ICH_HCR.TDIR supported.

[18:5] - Reserved, RES0.

[4:0] ListRegs The number of implemented List registers, minus one:

0x03 Four List registers.

To access ICH_VTR:

MRC p15,4,<Rt>,c12,c11,1 ; Read ICH_VTR into Rt
MCR p15,4,<Rt>,c12,c11,1 ; Write Rt to ICH_VTR

Interrupt Controller Hyp Maintenance Interrupt Status Register EL2

The ICH_MISR register indicates which maintenance interrupts are asserted.

Usage constraints

This register is read only, and is only available at EL2.

Traps and enables
If HSTR.T12 is set to 1, then accesses to this register from EL1 are trapped to Hyp mode.

Configurations

This register is available in all build configurations.

Attributes
ICH_MISR is a 32-bit register.

The following figure shows the ICH_MISR bit assignments.

9 Generic Interrupt Controller
9.3 GIC programmers model

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

9-303

Non-Confidential



RES0

VGrp0D
VGrp0E

NP
LRENP

EOI

31 5 4 0

VGrp1E
VGrp1D

123678

U

Figure 9-35  ICH_MISR bit assignments

The following table shows the ICH_MISR bit assignments.

Table 9-71  ICH_MISR bit assignments

Bits Name Function

[31:8] - Reserved, RES0.

[7] VGrp1D vPE Group 1 Disabled:

0 vPE Group 1 Disabled maintenance interrupt not asserted.

1 vPE Group 1 Disabled maintenance interrupt asserted.

This maintenance interrupt is asserted when ICH_HCR.VENG1 is 1 and ICH_VMCR.VMGrp1En is 0.

This bit resets to 0.

[6] VGrp1E vPE Group 1 Enabled:

0 vPE Group 1 Enabled maintenance interrupt not asserted.

1 vPE Group 1 Enabled maintenance interrupt asserted.

This maintenance interrupt is asserted when ICH_HCR.VENG1 is 1 and ICH_VMCR.VMGrp1En is 1.

This bit resets to 0.

[5] VGrp0D vPE Group 0 Disabled:

0 vPE Group 0 Disabled maintenance interrupt not asserted.

1 vPE Group 0 Disabled maintenance interrupt asserted.

This maintenance interrupt is asserted when ICH_HCR.VENG0 is 1 and ICH_VMCR.VMGrp0En is 0.

This bit resets to 0.

[4] VGrp0E vPE Group 0 Enabled:

0 vPE Group 0 Enabled maintenance interrupt not asserted.

1 vPE Group 0 Enabled maintenance interrupt asserted.

This maintenance interrupt is asserted when ICH_HCR.VENG0 is 1 and ICH_VMCR.VMGrp0En is 1.

This bit resets to 0.

9 Generic Interrupt Controller
9.3 GIC programmers model

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

9-304

Non-Confidential



Table 9-71  ICH_MISR bit assignments (continued)

Bits Name Function

[3] NP NoPending:

0 NoPending maintenance interrupt not asserted.

1 NoPending interrupt asserted.

This maintenance interrupt is asserted when ICH_HCR.NPIE is 1 and no List register is in pending state.

This bit resets to 0.

[2] LRENP List Register Entry Not Present:

0 List Register Entry Not Present maintenance interrupt not asserted.

1 List Register Entry Not Present maintenance interrupt asserted.

This maintenance interrupt is asserted when ICH_HCR.LRENPIE is 1 and ICH_HCR.EOIcount is non-zero.

This bit resets to 0.

[1] U Underflow:

0 Underflow maintenance interrupt not asserted.

1 Underflow maintenance interrupt asserted.

This maintenance interrupt is asserted when ICH_HCR.UIE is 1 and zero or one of the List register entries are
marked as a valid interrupt, that is, if the corresponding ICH_LR<n>.State bits do not equal 0x0.

This bit resets to 0.

[0] EOI End Of Interrupt.

0 End Of Interrupt maintenance interrupt not asserted.

1 End Of Interrupt maintenance interrupt asserted.

This maintenance interrupt is asserted when at least one bit in ICH_EISR is 1.

This bit resets to 0.

To access ICH_MISR:

MRC p15,4,<Rt>,c12,c11,2 ; Read ICH_MISR into Rt
MCR p15,4,<Rt>,c12,c11,2 ; Write Rt to ICH_MISR

Interrupt Controller End of Interrupt Status Register

The ICH_EISR register indicates which List registers have outstanding EOI maintenance interrupts.

Usage constraints

This register is read only, and is only available at EL2.

Traps and enables
If HSTR.T12 is set to 1, then accesses to this register from EL1 are trapped to Hyp mode.

Configurations

This register is available in all build configurations.

Attributes
ICH_EISR is a 32-bit register.

The following figure shows the ICH_EISR bit assignments.

9 Generic Interrupt Controller
9.3 GIC programmers model

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

9-305

Non-Confidential



RES0

Status<n>, bit[n], 
for n = 0 to 3

31 4 03

Figure 9-36  ICH_EISR bit assignments

The following table shows the ICH_EISR bit assignments.

Table 9-72  ICH_EISR bit assignments

Bits Name Function

[31:4] - Reserved, RES0.

[3:0] Status<n> Status<n>, bit[n], for n = 0 to 3.

EOI maintenance interrupt status bit for List register <n>:

0 List register <n>, ICH_LR<n>, does not have an EOI maintenance interrupt.

1 List register <n>, ICH_LR<n>, has an EOI maintenance interrupt that has not been handled.

For any ICH_LR<n>, the corresponding status bit is set to 1 if all of the following are true:
• ICH_LRC<n>. State is 0b00.
• ICH_LRC<n>. HW is 0.
• ICH_LRC<n>. EOI (bit [9]) is 1, indicating that when the interrupt corresponding to that List register is

deactivated, a maintenance interrupt is asserted.

These bits reset to 0.

To access ICH_EISR:

MRC p15,4,<Rt>,c12,c11,3 ; Read ICH_EISR into Rt
MCR p15,4,<Rt>,c12,c11,3 ; Write Rt to ICH_EISR

Interrupt Controller Empty List Register Status Register

The ICH_ELRSR register indicates which List registers contain valid interrupts.

Usage constraints This register is read only, and is only available at EL2.

Traps and enables If HSTR.T12 is set to 1, then accesses to this register from EL1 are trapped to Hyp
mode.

Configurations This register is available in all build configurations.

Attributes ICH_ELRSR is a 32-bit register.

The following figure shows the ICH_ELRSR bit assignments.

RES0

Status<n>, bit[n], 
for n = 0 to 3

31 4 03

Figure 9-37  ICH_ELRSR bit assignments

9 Generic Interrupt Controller
9.3 GIC programmers model

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

9-306

Non-Confidential



The following table shows the ICH_ELRSR bit assignments.

Table 9-73  ICH_ELRSR bit assignments

Bits Name Function

[31:4] - Reserved, RES0.

[3:0] Status<n> Status<n>, bit[n], for n = 0 to 3.

Status bit for List register <n>, ICH_LR<n>:

0 List register ICH_LR<n>,contains a valid interrupt.

1 List register ICH_LR<n>, does not contain a valid interrupt. The List register is empty and can be used
without overwriting a valid interrupt or losing an EOI maintenance interrupt.

For any List register<n>, the corresponding status bit is set to 1 if ICH_LRC<n>.State is 0b00 and either
ICH_LRC<n>.HW is 1 or ICH_LRC<n>.EOI (bit [9]) is 0.

To access ICH_ELRSR:

MRC p15,4,<Rt>,c12,c11,5 ; Read ICH_ELRSR into Rt
MCR p15,4,<Rt>,c12,c11,5 ; Write Rt to ICH_ELRSR

Interrupt Controller Virtual Machine Control Register

The ICH_VMCR register enables the hypervisor to save and restore the virtual machine view of the GIC
state.

Usage constraints This register is read/write, and is only available at EL2.

Traps and enables If HSTR.T12 is set to 1, then accesses to this register from EL1 are trapped to Hyp
mode.

Configurations This register is available in all build configurations.

Attributes ICH_VMCR is a 32-bit register.

The following figure shows the ICH_VMCR bit assignments.

RES0

VCBPR
VFIQEn

VAckCtl
VENG1

VENG0

31 5 4 01238

U

27 26 24 23 21 20 18 17 10

VPMR VBPR0 VBPR1 RES0

9

RES0

VEOIM

Figure 9-38  ICH_VMCR bit assignments

The following table shows the ICH_VMCR bit assignments.

9 Generic Interrupt Controller
9.3 GIC programmers model

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

9-307

Non-Confidential



Table 9-74  ICH_VMCR bit assignments

Bits Name Function

[31:27] VPMR Virtual Priority Mask.

This field is an alias of ICV_PMR.Priority.

[26:24] - Reserved, RES0.

[23:21] VBPR0 Virtual Binary Point Register, Group 0.

This field is an alias of ICV_BPR0.BinaryPoint.

[20:18] VBPR1 Virtual Binary Point Register, Group 1.

This field is an alias of ICV_BPR1.BinaryPoint.

[17:10] - Reserved, RES0.

[9] VEOIM Virtual EOI mode.

This bit is an alias of ICV_CTLR.EOImode.

[8:5] - Reserved, RES0.

[4] VCBPR Virtual Common Binary Point Register.

This bit is an alias of ICV_CTLR.CBPR.

[3] VFIQEn This field is RES1.

[2] VAckCtl This field is RES0.

[1] VENG1 Virtual Group 1 interrupt enable.

This bit is an alias of ICV_IGRPEN1.Enable.

[0] VENG0 Virtual Group 0 interrupt enable.

This bit is an alias of ICV_IGRPEN0.Enable.

To access ICH_VMCR:

MRC p15,4,<Rt>,c12,c11,7 ; Read ICH_VMCR into Rt
MCR p15,4,<Rt>,c12,c11,7 ; Write Rt to ICH_VMCR

Interrupt Controller List Registers 0-3

The ICH_LR0-3 registers provide interrupt context information for the virtual CPU interface.

Usage constraints This register is read/write, and is only available at EL2.

Traps and enables If HSTR.T12 is set to 1, then accesses to this register from EL1 are trapped to Hyp
mode.

Configurations This register is available in all build configurations.

Attributes ICH_LR0-3 are 32-bit registers.

The following figure shows the ICH_LR0-3 bit assignments.

9 Generic Interrupt Controller
9.3 GIC programmers model

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

9-308

Non-Confidential



vINTID

16 031 15

RES0

Figure 9-39  ICH_LR0-3 bit assignments

The following table shows the ICH_LR0-3 bit assignments.

Table 9-75  ICH_LR0-3 bit assignments

Bits Name Function

[31:16] - Reserved, RES0

[15:0] vINTID Virtual INTID of the interrupt.

To access ICH_LR0:

MRC p15,4,<Rt>,c12,c12,0 ; Read ICH_LR0 into Rt
MCR p15,4,<Rt>,c12,c12,0 ; Write Rt to ICH_LR0

To access ICH_LR1:

MRC p15,4,<Rt>,c12,c12,1 ; Read ICH_LR1 into Rt
MCR p15,4,<Rt>,c12,c12,1 ; Write Rt to ICH_LR1

To access ICH_LR2:

MRC p15,4,<Rt>,c12,c12,2 ; Read ICH_LR2 into Rt
MCR p15,4,<Rt>,c12,c12,2 ; Write Rt to ICH_LR2

To access ICH_LR3:

MRC p15,4,<Rt>,c12,c12,3 ; Read ICH_LR3 into Rt
MCR p15,4,<Rt>,c12,c12,3 ; Write Rt to ICH_LR3

Interrupt Controller List Registers 0-3

The ICH_LRC0-3 registers provide interrupt context information for the virtual CPU interface.

Usage constraints This register is read/write, and is only available at EL2.

Traps and enables If HSTR.T12 is set to 1, then accesses to this register from EL1 are trapped to Hyp
mode.

Configurations This register is available in all build configurations.

Attributes ICH_LRC0-3 are 32-bit registers.

If HW is 0, the following figure shows the ICH_LRC0-3 bit assignments.

EOI

10 031 9

RES0

30 29 28 27 24 23

Priority

19 18

RES0

State
HW

Group

RES0

8

Figure 9-40  ICH_LRC0-3 bit assignments

If HW is 1, the following figure shows the ICH_LRC0-3 bit assignments.

9 Generic Interrupt Controller
9.3 GIC programmers model

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

9-309

Non-Confidential



10 031 9

RES0

30 29 28 27 24 23

Priority

19 18

RES0

State
HW

Group

pINTID

Figure 9-41  ICH_LRC0-3 bit assignments

The following table shows the ICH_LRC0-3 bit assignments.

Table 9-76  ICH_LRC0-3 bit assignments

Bits Name Function

[31:30] State The state of the interrupt:

0b00 Inactive

0b01 Pending

0b10 Active

0b11 Pending and active.

[29] HW Indicates whether this virtual interrupt maps directly to a hardware interrupt, meaning that it
corresponds to a physical interrupt. Deactivation of the virtual interrupt also causes the
deactivation of the physical interrupt with the INTID that the pINTID field indicates.

0 The interrupt is triggered entirely by software.

1 The interrupt maps directly to a hardware interrupt.

[28] Group Indicates the group for this virtual interrupt.

0 This is a Group 0 virtual interrupt.

1 This is a Group 1 virtual interrupt.

[27:24] - Reserved, RES0.

[23:19] Priority The priority of this interrupt.

[18:10] - Reserved, RES0.

[9:0] If HW is 0, then:

[9] EOI

[8:0] -

If HW is 0, then:

[9] End of Interrupt. If this bit is 1, then when the interrupt identified by the vINTID is
deactivated, an EOI maintenance interrupt is asserted.

[8:0] Reserved, RES0

If HW is 1, then:

[9:0] pINTID

If HW is 1, then:

[9:0] Physical INTID for hardware interrupts.

To access ICH_LRC0:

MRC p15,4,<Rt>,c12,c14,0 ; Read ICH_LRC0 into Rt
MCR p15,4,<Rt>,c12,c14,0 ; Write Rt to ICH_LRC0

9 Generic Interrupt Controller
9.3 GIC programmers model

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

9-310

Non-Confidential



To access ICH_LRC1:

MRC p15,4,<Rt>,c12,c14,1 ; Read ICH_LRC1 into Rt
MCR p15,4,<Rt>,c12,c14,1 ; Write Rt to ICH_LRC1

To access ICH_LRC2:

MRC p15,4,<Rt>,c12,c14,2 ; Read ICH_LRC2 into Rt
MCR p15,4,<Rt>,c12,c14,2 ; Write Rt to ICH_LRC2

To access ICH_LRC3:

MRC p15,4,<Rt>,c12,c14,3 ; Read ICH_LRC3 into Rt
MCR p15,4,<Rt>,c12,c14,3 ; Write Rt to ICH_LRC3

Interrupt Controller Hyp Active Priorities Group 0 Register 0

The ICH_AP0R0 register provides information about Group 0 active priorities for EL2. This register is
an alias of ICV_AP0R0.

Usage constraints This register is read/write, and is only available at EL2.

Traps and enables If HSTR.T12 is set to 1, then accesses to this register from EL1 are trapped to Hyp
mode.

Configurations This register is available in all build configurations.

Attributes ICH_AP0R0 is a 32-bit register.

The following figure shows the ICH_AP0R0 bit assignments.

Active Priorities

31 0

Figure 9-42  ICH_AP0R0 bit assignments

The following table shows the ICH_AP0R0 bit assignments.

Table 9-77  ICH_AP0R0 bit assignments

Bits Name Function

[n] P<n> P<n>, bit[n], for n = 0 to 31.

Provides the access to the virtual active priorities for Group 0 interrupts. Possible values of each bit are:

0 There is no Group 0 interrupt active at priority n.

1 There is a Group 0 interrupt active at priority n.

To access ICH_AP0R0:

MRC p15,4,<Rt>,c12,c8,0 ; Read ICH_AP0R0 into Rt
MCR p15,4,<Rt>,c12,c8,0 ; Write Rt to ICH_AP0R0

Interrupt Controller Hyp Active Priorities Group 1 Register 0

The ICH_AP1R0 register provides information about Group 1 active priorities for EL2. This register is
an alias of ICV_AP1R0.

Usage constraints This register is read/write, and is only available at EL2.

Traps and enables If HSTR.T12 is set to 1, then accesses to this register from EL1 are trapped to Hyp
mode.

Configurations This register is available in all build configurations.

9 Generic Interrupt Controller
9.3 GIC programmers model

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

9-311

Non-Confidential



Attributes ICH_AP1R0 is a 32-bit register.

The following figure shows the ICH_AP1R0 bit assignments.

Active Priorities

31 0

Figure 9-43  ICH_AP1R0 bit assignments

The following table shows the ICH_AP1R0 bit assignments.

Table 9-78  ICH_AP1R0 bit assignments

Bits Name Function

[n] P<n> P<n>, bit[n], for n = 0 to 31.

Group 1 interrupt active priorities. Possible values of each bit are:

0 There is no Group 1 interrupt active at priority n.

1 There is a Group 1 interrupt active at priority n.

To access ICH_AP1R0:

MRC p15,4,<Rt>,c12,c9,0 ; Read ICH_AP1R0 into Rt
MCR p15,4,<Rt>,c12,c9,0 ; Write Rt to ICH_AP1R0

9.3.4 CPU Interface Registers

The following table summarizes the CPU interface registers within each core which are allocated to the
(coproc==0b1111) space.

Table 9-79  CPU Interface Registers summary

Name CRn Op1 CRm Op2 Type Reset Description

ICC_IAR0 c12 0 c8 0 RO 0x000003FF Interrupt Controller Interrupt Acknowledge Register 0
on page 9-313

ICC_IAR1 0 c12 0 RO 0x000003FF Interrupt Controller Interrupt Acknowledge Register 1
on page 9-314

ICC_EOIR0 0 c8 1 WO UNK Interrupt Controller End Of Interrupt Register 0 on page 9-315

ICC_EOIR1 0 c12 1 WO UNK Interrupt Controller End Of Interrupt Register 1 on page 9-315

ICC_HPPIR0 0 c8 2 RO 0x000003FF Interrupt Controller Highest Priority Pending Interrupt Register 0
on page 9-316

ICC_HPPIR1 0 c12 2 RO 0x000003FF Interrupt Controller Highest Priority Pending Interrupt Register 1
on page 9-317

ICC_BPR0 0 c8 3 RW 0x00000002 Interrupt Controller Binary Point Register 0 on page 9-317

ICC_BPR1 0 c12 3 RW 0x00000003 Interrupt Controller Binary Point Register 1 on page 9-318

ICC_DIR 0 c11 1 WO UNK Interrupt Controller Deactivate Interrupt Register on page 9-319

ICC_PMR c4 0 c6 0 RW 0x00000000 Interrupt Controller Interrupt Priority Mask Register
on page 9-320

9 Generic Interrupt Controller
9.3 GIC programmers model

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

9-312

Non-Confidential



Table 9-79  CPU Interface Registers summary (continued)

Name CRn Op1 CRm Op2 Type Reset Description

ICC_RPR c12 0 c11 3 RO 0x000000FF Interrupt Controller Running Priority Register on page 9-321

ICC_CTLR 0 c12 4 RW 0x00000400 Interrupt Controller Control Register (EL1) on page 9-321

ICC_SRE 0 c12 5 RW 0x00000007 Interrupt Controller System Register Enable register (EL1)
on page 9-322

ICC_HSRE 4 c9 5 RO 0x0000000F Interrupt Controller System Register Enable register (EL2)
on page 9-323

ICC_IGRPEN0 0 c12 6 RW 0x00000000 Interrupt Controller Interrupt Group 0 Enable register
on page 9-324

ICC_IGRPEN1 0 c12 7 RW 0x00000000 Interrupt Controller Interrupt Group 1 Enable register
on page 9-325

ICC_SGI0R - 2 c12 - WO UNK Interrupt Controller Software Generated Interrupt Group 0
Register on page 9-325

ICC_SGI1R - 0 c12 - WO UNK Interrupt Controller Software Generated Interrupt Group 1
Register on page 9-327

ICC_ASGI1R - 1 c12 - WO UNK Interrupt Controller Alias Software Generated Interrupt Group 1
Register on page 9-328

ICC_AP0R0 c12 0 c8 4 RW 0x00000000 Interrupt Controller Active Priorities Group 0 Register
on page 9-329

ICC_AP1R0 0 c9 0 RW 0x00000000 Interrupt Controller Active Priorities Group 1 Register
on page 9-330

 Note 

Writing to ICC_AP0R0 and ICC_AP0R1 with any value other than the last read value of the register (or
0x00000000 when there are no Group 0 active priorities) might result in UNPREDICTABLE behavior of the
interrupt prioritization system.

Interrupt Controller Interrupt Acknowledge Register 0

The ICC_IAR0 register contains the INTID of the signaled Group 0 interrupt. When the core reads this
INTID, it acts as an acknowledge for the interrupt. In normal operation, the corresponding active priority
bit of group 0 is set and the interrupt is activated.

Usage constraints This register is read-only.

Traps and enables If HSTR.T12 is set to 1, then read accesses to this register from EL1 are trapped to
Hyp mode.
If ICH_HCR.TALL0 is set to 1, then read accesses to this register from EL1 are
trapped to EL2.

Configurations This register is available in all build configurations.

Attributes ICC_IAR0 is a 32-bit register.

The following figure shows the ICC_IAR0 bit assignments.

9 Generic Interrupt Controller
9.3 GIC programmers model

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

9-313

Non-Confidential



RES0

31 010 9

INTID

Figure 9-44  ICC_IAR0 bit assignments

The following table shows the ICC_IAR0 bit assignments.

Table 9-80  ICC_IAR0 bit assignments

Bits Name Function

[31:10] - Reserved, RES0.

[9:0] INTID The INTID of the signaled interrupt.

To access ICC_IAR0:

MRC p15,0,<Rt>,c12,c8,0 ; Read ICC_IAR0 into Rt
MCR p15,0,<Rt>,c12,c8,0 ; Write Rt to ICC_IAR0

Interrupt Controller Interrupt Acknowledge Register 1

The ICC_IAR1 register contains the INTID of the signaled Group 1 interrupt. When the core reads this
INTID, it acts as an acknowledge for the interrupt. In normal operation, the corresponding active priority
bit of group 1 is set and the interrupt is activated.

Usage constraints This register is read-only.

Traps and enables If HSTR.T12 is set to 1, then read accesses to this register from EL1 are trapped to
Hyp mode.
If ICH_HCR.TALL1 is set to 1, then read accesses to this register from EL1 are
trapped to EL2.

Configurations This register is available in all build configurations.

Attributes ICC_IAR1 is a 32-bit register.

The following figure shows the ICC_IAR1 bit assignments.

RES0

31 010 9

INTID

Figure 9-45  ICC_IAR1 bit assignments

The following table shows the ICC_IAR1 bit assignments.

Table 9-81  ICC_IAR1 bit assignments

Bits Name Function

[31:10] - Reserved, RES0.

[9:0] INTID The INTID of the signaled interrupt.

To access ICC_IAR1:

MRC p15,0,<Rt>,c12,c12,0 ; Read ICC_IAR1 into Rt
MCR p15,0,<Rt>,c12,c12,0 ; Write Rt to ICC_IAR1

9 Generic Interrupt Controller
9.3 GIC programmers model

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

9-314

Non-Confidential



Interrupt Controller End Of Interrupt Register 0

A core can write to the ICC_EOIR0 register to inform the CPU interface that it has completed the
processing of the specified Group 0 interrupt. In normal operation, the highest priority set group 0
priority bit is cleared and additionally the interrupt is deactivated if ICC_CTLR.EOImode == 0.

Usage constraints This register is write-only.

Traps and enables If HSTR.T12 is set to 1, then write accesses to this register from EL1 are trapped to
Hyp mode.
If ICH_HCR.TALL0 is set to 1, then write accesses to this register from EL1 are
trapped to EL2.

Configurations This register is available in all build configurations.

Attributes ICC_EOIR0 is a 32-bit register.

The following figure shows the ICC_EOIR0 bit assignments.

RES0

31 010 9

INTID

Figure 9-46  ICC_EOIR0 bit assignments

The following table shows the ICC_EOIR0 bit assignments.

Table 9-82  ICC_EOIR0 bit assignments

Bits Name Function

[31:10] - Reserved, RES0.

[9:0] INTID The INTID from the corresponding ICC_IAR0 access.

To access ICC_EOIR0:

MRC p15,0,<Rt>,c12,c8,1 ; Read ICC_EOIR0 into Rt
MCR p15,0,<Rt>,c12,c8,1 ; Write Rt to ICC_EOIR0

Interrupt Controller End Of Interrupt Register 1

A core can write to the ICC_EOIR1 register to inform the CPU interface that it has completed the
processing of the specified Group 1 interrupt. In normal operation, the highest priority set group 1
priority bit is cleared and additionally the interrupt is deactivated if ICC_CTLR.EOIMode = 0.

Usage constraints This register is write-only.

Traps and enables If HSTR.T12 is set to 1, then write accesses to this register from EL1 are trapped to
Hyp mode.
If ICH_HCR.TALL1 is set to 1, then write accesses to this register from EL1 are
trapped to EL2.

Configurations This register is available in all build configurations.

Attributes ICC_EOIR1 is a 32-bit register.

The following figure shows the ICC_EOIR1 bit assignments.

9 Generic Interrupt Controller
9.3 GIC programmers model

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

9-315

Non-Confidential



RES0

31 010 9

INTID

Figure 9-47  ICC_EOIR1 bit assignments

The following table shows the ICC_EOIR1 bit assignments.

Table 9-83  ICC_EOIR1 bit assignments

Bits Name Function

[31:10] - Reserved, RES0.

[9:0] INTID The INTID from the corresponding ICC_IAR1 access.

To access ICC_EOIR1:

MRC p15,0,<Rt>,c12,c12,1 ; Read ICC_EOIR1 into Rt
MCR p15,0,<Rt>,c12,c12,1 ; Write Rt to ICC_EOIR1

Interrupt Controller Highest Priority Pending Interrupt Register 0

The ICC_HPPIR0 register indicates the highest priority pending Group 0 interrupt on the CPU interface
without changing the state of the GIC.

Usage constraints This register is read-only without changing the state of the GIC.

Traps and enables If HSTR.T12 is set to 1, then read accesses to this register from EL1 are trapped to
Hyp mode.
If ICH_HCR.TALL0 is set to 1, then read accesses to this register from EL1 are
trapped to EL2.

Configurations This register is available in all build configurations.

Attributes ICC_HPPIR0 is a 32-bit register.

The following figure shows the ICC_HPPIR0 bit assignments.

RES0

31 010 9

INTID

Figure 9-48  ICC_HPPIR0 bit assignments

The following table shows the ICC_HPPIR0 bit assignments.

Table 9-84  ICC_HPPIR0 bit assignments

Bits Name Function

[31:10] - Reserved, RES0.

[9:0] INTID The INTID of the highest priority pending Group 0 interrupt on the CPU interface.

To access ICC_HPPIR0:

MRC p15,0,<Rt>,c12,c8,2 ; Read ICC_HPPIR0 into Rt
MCR p15,0,<Rt>,c12,c8,2 ; Write Rt to ICC_HPPIR0

9 Generic Interrupt Controller
9.3 GIC programmers model

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

9-316

Non-Confidential



Interrupt Controller Highest Priority Pending Interrupt Register 1

The ICC_HPPIR1 register indicates the highest priority pending Group 1 interrupt on the CPU interface
without changing the state of the GIC.

Usage constraints This register is read-only.

Traps and enables If HSTR.T12 is set to 1, then read accesses to this register from EL1 are trapped to
Hyp mode.
If ICH_HCR.TALL1 is set to 1, then read accesses to this register from EL1 are
trapped to EL2.

Configurations This register is available in all build configurations.

Attributes ICC_HPPIR1 is a 32-bit register.

The following figure shows the ICC_HPPIR1 bit assignments.

RES0

31 010 9

INTID

Figure 9-49  ICC_HPPIR1 bit assignments

The following table shows the ICC_HPPIR1 bit assignments.

Table 9-85  ICC_HPPIR1 bit assignments

Bits Name Function

[31:10] - Reserved, RES0.

[9:0] INTID The INTID of the highest priority pending Group 1 interrupt on the CPU interface.

To access ICC_HPPIR1:

MRC p15,0,<Rt>,c12,c12,2 ; Read ICC_HPPIR1 into Rt
MCR p15,0,<Rt>,c12,c12,2 ; Write Rt to ICC_HPPIR1

Interrupt Controller Binary Point Register 0

The ICC_BPR0 register defines the point at which the priority value fields split into two parts, the group
priority field and the subpriority field. The group priority field determines Group 0 interrupt preemption.

Usage constraints This register is read/write.

Traps and enables If HSTR.T12 is set to 1, then accesses to this register from EL1 are trapped to Hyp
mode.
If ICH_HCR.TALL0 is set to 1, then accesses to this register from EL1 are trapped
to EL2.

Configurations This register is available in all build configurations.

Attributes ICC_BPR0 is a 32-bit register.

The following figure shows the ICC_BPR0 bit assignments.

9 Generic Interrupt Controller
9.3 GIC programmers model

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

9-317

Non-Confidential



BinaryPoint

31 3 2 0

RES0

Figure 9-50  ICC_BPR0 bit assignments

The following table shows the ICC_BPR0 bit assignments.

Table 9-86  ICC_BPR0 bit assignments

Bits Name Function

[31:3] - Reserved, RES0.

[2:0] BinaryPoint This value controls how the 5-bit interrupt priority field is split into a group priority field, that determines
interrupt preemption, and a subpriority field. See Table 9-87  ICC_BPR0 relationship between binary point value
and group priority, subpriority fields on page 9-318.

The reset value is 0x2.

Table 9-87  ICC_BPR0 relationship between binary point value and group priority, subpriority fields

BinaryPoint value Group priority field Subpriority field Field with binary point

2 [7:3] - ggggg.

3 [7:4] [3] gggg.s

4 [7:5] [4:3] ggg.ss

5 [7:6] [5:3] gg.sss

6 [7] [6:3] g.ssss

7 No preemption [7:3] .sssss

To access ICC_BPR0:

MRC p15,0,<Rt>,c12,c8,3 ; Read ICC_BPR0 into Rt
MCR p15,0,<Rt>,c12,c8,3 ; Write Rt to ICC_BPR0

Interrupt Controller Binary Point Register 1

The ICC_BPR1 register defines the point at which the priority value fields split into two parts, the group
priority field and the subpriority field. The group priority field determines Group 1 interrupt preemption.

Usage constraints This register is read/write.

Traps and enables If HSTR.T12 is set to 1, then accesses to this register from EL1 are trapped to Hyp
mode.
If ICH_HCR.TALL1 is set to 1, then accesses to this register from EL1 are trapped
to EL2.

Configurations This register is available in all build configurations.

Attributes ICC_BPR1 is a 32-bit register.

The following figure shows the ICC_BPR1 bit assignments.

9 Generic Interrupt Controller
9.3 GIC programmers model

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

9-318

Non-Confidential



BinaryPoint

31 3 2 0

RES0

Figure 9-51  ICC_BPR1 bit assignments

The following table shows the ICC_BPR1 bit assignments.

Table 9-88  ICC_BPR1 bit assignments

Bits Name Function

[31:3] - Reserved, RES0.

[2:0] BinaryPoint This value controls how the 5-bit interrupt priority field is split into a group priority field, that determines
interrupt preemption, and a subpriority field. See Table 9-89  ICC_BPR1 relationship between binary point value
and group priority, subpriority fields on page 9-319.

The reset value is 0x3.

Table 9-89  ICC_BPR1 relationship between binary point value and group priority, subpriority fields

BinaryPoint value Group priority field Subpriority field Field with binary point

3 [7:3] - ggggg.

4 [7:4] [3] gggg.s

5 [7:5] [4:3] ggg.ss

6 [7:6] [5:3] gg.sss

7 [7] [6:3] g.ssss

To access ICC_BPR1:

MRC p15,0,<Rt>,c12,c12,3 ; Read ICC_BPR1 into Rt
MCR p15,0,<Rt>,c12,c12,3 ; Write Rt to ICC_BPR1

Interrupt Controller Deactivate Interrupt Register

When interrupt priority drop is separated from interrupt deactivation, ICC_CTLR.EOIMode=1, a write to
the ICC_DIR register deactivates the specified interrupt.

Usage constraints This register is write-only.

Traps and enables If HSTR.T12 is set to 1, then write accesses to this register from EL1 are trapped to
Hyp mode.
If ICH_HCR.TC is set to 1, then write accesses to this register from EL1 are
trapped to EL2.
If ICH_HCR.TDIR is set to 1, then write accesses to this register from EL1 are
trapped to EL2.

Configurations This register is available in all build configurations.

Attributes ICC_DIR is a 32-bit register.

The following figure shows the ICC_DIR bit assignments.

9 Generic Interrupt Controller
9.3 GIC programmers model

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

9-319

Non-Confidential



RES0

31 010 9

INTID

Figure 9-52  ICC_DIR bit assignments

The following table shows the ICC_DIR bit assignments.

Table 9-90  ICC_DIR bit assignments

Bits Name Function

[31:10] - Reserved, RES0.

[9:0] INTID The INTID of the interrupt to be deactivated.

To access ICC_DIR:

MRC p15,0,<Rt>,c12,c11,1 ; Read ICC_DIR into Rt
MCR p15,0,<Rt>,c12,c11,1 ; Write Rt to ICC_DIR

Interrupt Controller Interrupt Priority Mask Register

The ICC_PMR register provides an interrupt priority filter. Only interrupts with higher priority than the
value in this register are signaled to the core.

Usage constraints This register is read/write.

Traps and enables If ICH_HCR.TC is set to 1, then accesses to this register from EL1 are trapped to
EL2.

Configurations This register is available in all build configurations.

Attributes ICC_PMR is a 32-bit register.

The following figure shows the ICC_PMR bit assignments.

PriorityRES0

31 08 7 23

RAZ/WI

Figure 9-53  ICC_PMR bit assignments

The following table shows the ICC_PMR bit assignments.

Table 9-91  ICC_PMR bit assignments

Bits Name Function

[31:8] - Reserved, RES0.

[7:3] Priority The priority mask level for the CPU interface. If the priority of an interrupt is higher than the value indicated by this
field, the interface signals the interrupt to the core. Lower values have higher priority.

[2:0] - RAZ/WI.

To access ICC_PMR:

MRC p15,0,<Rt>,c4,c6,0 ; Read ICC_PMR into Rt
MCR p15,0,<Rt>,c4,c6,0 ; Write Rt to ICC_PMR

9 Generic Interrupt Controller
9.3 GIC programmers model

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

9-320

Non-Confidential



Interrupt Controller Running Priority Register

The ICC_RPR register indicates the Running priority, the highest active priority across Groups 0 and 1,
of the CPU interface.

Usage constraints This register is read only.

Traps and enables If HSTR.T12 is set to 1, then read accesses to this register from EL1 are trapped to
Hyp mode.
If ICH_HCR.TC is set to 1, then read accesses to this register from EL1 are trapped
to EL2.

Configurations This register is available in all build configurations.

Attributes ICC_RPR is a 32-bit register.

The following figure shows the ICC_RPR bit assignments.

PriorityRES0

31 08 7

Figure 9-54  ICC_RPR bit assignments

The following table shows the ICC_RPR bit assignments.

Table 9-92  ICC_RPR bit assignments

Bits Name Function

[31:8] - Reserved, RES0.

[7:0] Priority The current running priority. Returns the value 0xFF when ICC_AP0R0 and ICC_AP1R0 are both 0x0. Otherwise
returns the index in bits [7:3] of the lowest set bit from ICC_AP0R0 and ICC_AP1R0.

To access ICC_RPR:

MRC p15,0,<Rt>,c12,c11,3 ; Read ICC_RPR into Rt
MCR p15,0,<Rt>,c12,c11,3 ; Write Rt to ICC_RPR

Interrupt Controller Control Register (EL1)

The ICC_CTLR register controls aspects of the behavior of the GIC CPU interface and provides
information about the features implemented.

Usage constraints This register is read/write.

Traps and enables If HSTR.T12 is set to 1, then accesses to this register from EL1 are trapped to Hyp
mode.
If ICH_HCR.TC is set to 1, then accesses to this register from EL1 are trapped to
EL2.

Configurations This register is available in all build configurations.

Attributes ICC_CTLR is a 32-bit register.

The following figure shows the ICC_CTLR bit assignments.

9 Generic Interrupt Controller
9.3 GIC programmers model

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

9-321

Non-Confidential



RES0

A3V
SEIS

IDbits
PRIbits

RES0
PMHE

EOImode
CBPR

31 16 15 14 13 11 10 8 7 6 5 2 1 0

RES0

Figure 9-55  ICC_CTLR bit assignments

The following table shows the ICC_CTLR bit assignments.

Table 9-93  ICC_CTLR bit assignments

Bits Name Function

[31:16] - Reserved, RES0.

[15] A3V Affinity 3 Valid. Read-only and writes are ignored:

0 The CPU interface logic only supports zero values of Affinity 3 in SGI generation system registers.

[14] SEIS SEI support. Read-only and writes are ignored. Indicates whether the CPU interface supports local generation of
SEIs:

0 The CPU interface logic does not support local generation of SEIs.

[13:11] IDbits Indicates the number of physical interrupt identifier bits supported:

0b000 16 interrupt identifier bits are supported.

[10:8] PRIbits Indicates the number of priority bits implemented, minus one

0b100 Five priority bits are supported.

[7] - Reserved, RES0.

[6] PMHE This field is RES0.

[5:2] - Reserved, RES0.

[1] EOImode Controls whether a write to an ICC_EOIR0 and ICC_EOIR1 also deactivates the interrupt.

[0] CBPR Controls whether the ICC_BPR0 is used for interrupt preemption of both Group 0 and Group 1 interrupts.

To access ICC_CTLR:

MRC p15,0,<Rt>,c12,c12,4 ; Read ICC_CTLR into Rt
MCR p15,0,<Rt>,c12,c12,4 ; Write Rt to ICC_CTLR

Interrupt Controller System Register Enable Register (EL1)

The ICC_SRE register indicates that system registers are used to access the GIC CPU interface and that
interrupt bypass is not supported.

Usage constraints This register is read/write.

9 Generic Interrupt Controller
9.3 GIC programmers model

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

9-322

Non-Confidential



Traps and enables If HSTR.T12 is set to 1, then accesses to this register from EL1 are trapped to Hyp
mode.

Configurations This register is available in all build configurations.

Attributes ICC_SRE is a 32-bit register.

The following figure shows the ICC_SRE bit assignments.

RES0

DIB
DFB

SRE

31 3 2 1 0

Figure 9-56  ICC_SRE bit assignments

The following table shows the ICC_SRE bit assignments.

Table 9-94  ICC_SRE bit assignments

Bits Name Function

[31:3] - Reserved, RES0.

[2] DIB Disable IRQ bypass:

RAO/WI IRQ bypass is not supported.

[1] DFB Disable FIQ bypass:

RAO/WI FIQ bypass is not supported.

[0] SRE System register enable:

RAO/WI System registers are used to access the GIC CPU interface.

To access ICC_SRE:

MRC p15,0,<Rt>,c12,c12,5 ; Read ICC_SRE into Rt
MCR p15,0,<Rt>,c12,c12,5 ; Write Rt to ICC_SRE

Interrupt Controller System Register Enable Register (EL2)

The ICC_HSRE register controls whether the system register interface or the memory-mapped interface
to the GIC CPU interface is used for EL2.

Usage constraints This register is read-only.

Traps and enables If HSTR.T12 is set to 1, then accesses to this register from EL1 are trapped to Hyp
mode.

Configurations This register is available in all build configurations.

Attributes ICC_HSRE is a 32-bit register.

The following figure shows the ICC_HSRE bit assignments.

9 Generic Interrupt Controller
9.3 GIC programmers model

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

9-323

Non-Confidential



RES0

Enable
DIB

DFB
SRE

31 4 3 2 1 0

Figure 9-57  ICC_HSRE bit assignments

The following table shows the ICC_HSRE bit assignments.

Table 9-95  ICC_HSRE bit assignments

Bits Name Function

[31:4] - Reserved, RES0.

[3] Enable Enables lower Exception level access to ICC_HSRE:

RAO/WI Lower exception levels can read ICC_SRE.

[2] DIB Disable IRQ bypass:

RAO/WI IRQ bypass is not supported.

[1] DFB Disable FIQ bypass:

RAO/WI FIQ bypass is not supported.

[0] SRE System register enable:

RAO/WI System registers are used to access the GIC CPU interface.

To access ICC_HSRE:

MRC p15,4,<Rt>,c12,c9,5 ; Read ICC_HSRE into Rt
MCR p15,4,<Rt>,c12,c9,5 ; Write Rt to ICC_HSRE

Interrupt Controller Interrupt Group 0 Enable Register

The ICC_IGRPEN0 register controls whether Group 0 interrupts are enabled.

Usage constraints This register is read/write.

Traps and enables If HSTR.T12 is set to 1, accesses to the register from EL1 are trapped to Hyp mode.
If ICH_HCR.TALL0 is set to 1, then accesses to this register from EL1 are trapped
to EL2.

Configurations This register is available in all build configurations.

Attributes ICC_IGRPEN0 is a 32-bit register.

The following figure shows the ICC_IGRPEN0 bit assignments.

RES0

31 01

Enable

Figure 9-58  ICC_IGRPEN0 bit assignments

The following table shows the ICC_IGRPEN0 bit assignments.

9 Generic Interrupt Controller
9.3 GIC programmers model

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

9-324

Non-Confidential



Table 9-96  ICC_IGRPEN0 bit assignments

Bits Name Function

[31:1] - Reserved, RES0.

[0] Enable Enables Group 0 interrupts:

0 Group 0 interrupts are disabled. This is the reset value.

1 Group 0 interrupts are enabled.

To access ICC_IGRPEN0:

MRC p15,0,<Rt>,c12,c12,6 ; Read ICC_IGRPEN0 into Rt
MCR p15,0,<Rt>,c12,c12,6 ; Write Rt to ICC_IGRPEN0

Interrupt Controller Interrupt Group 1 Enable Register

The ICC_IGRPEN1 register controls whether Group 1 interrupts are enabled.

Usage constraints This register is read/write.

Traps and enables If HSTR.T12 is set to 1, then accesses to this register from EL1 are trapped to Hyp
mode.
If ICH_HCR.TALL1 is set to 1, then accesses to this register from EL1 are trapped
to EL2.

Configurations This register is available in all build configurations.

Attributes ICC_IGRPEN1 is a 32-bit register.

The following figure shows the ICC_IGRPEN1 bit assignments.

RES0

31 01

Enable

Figure 9-59  ICC_IGRPEN1 bit assignments

The following table shows the ICC_IGRPEN1 bit assignments.

Table 9-97  ICC_IGRPEN1 bit assignments

Bits Name Function

[31:1] - Reserved, RES0.

[0] Enable Enables Group 1 interrupts:

0 Group 1 interrupts are disabled. This is the reset value.

1 Group 1 interrupts are enabled.

To access ICC_IGRPEN1:

MRC p15,0,<Rt>,c12,c12,7 ; Read ICC_IGRPEN1 into Rt
MCR p15,0,<Rt>,c12,c12,7 ; Write Rt to ICC_IGRPEN1

Interrupt Controller Software Generated Interrupt Group 0 Register

The ICC_SGI0R register is used to request Group 0 SGIs according to the GICR_IGROUPR
configuration.

9 Generic Interrupt Controller
9.3 GIC programmers model

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

9-325

Non-Confidential



Usage constraints This register is write-only.
When IRM=0, unused affinity bits must be written as zeros or the Generate SGI
request is not sent.

Traps and enables If HCR.FMO is set to 1, then write accesses to this register from EL1 are trapped to
EL2.
If HCR.IMO is set to 1, then write accesses to this register from EL1 are trapped to
EL2.
If HSTR.T12 is set to 1, then write accesses to this register from EL1 are trapped to
Hyp mode.
If ICH_HCR.TC is set to 1, then write accesses to this register from EL1 are
trapped to EL2.

Configurations This register is available in all build configurations.

Attributes ICC_SGI0R is a 64-bit register.

The following figure shows the ICC_SGI0R bit assignments.

RES0 Aff3 RES0 Aff2

IRM

63 56 55 48 47 41 40 39 32

RES0 INTID Aff1 TargetList

31 28 27 24 23 16 15 0

RES0

5 4

Figure 9-60  ICC_SGI0R bit assignments

The following table shows the ICC_SGI0R bit assignments.

Table 9-98  ICC_SGI0R bit assignments

Bits Name Function

[63:56] - Reserved, RES0.

[55:48] Aff3 The Affinity level 3 value of the affinity path of the cluster for which SGI interrupts are generated.

If the IRM bit is 1, this field is RES0.

[47:41] - Reserved, RES0.

[40] IRM Interrupt Routing Mode. Determines how the generated interrupts are distributed to cores:

0 Interrupts routed to the cores specified by Aff3.Aff2.Aff1.<target list>.

1 Interrupts routed to all cores in the system, excluding "self".

[39:32] Aff2 The affinity 2 value of the affinity path of the cluster for which SGI interrupts are generated.

If the IRM bit is 1, this field is RES0.

[31:28] - Reserved, RES0.

[27:24] INTID The interrupt ID of the SGI.

[23:16] Aff1 The affinity 1 value of the affinity path of the cluster for which SGI interrupts are generated.

If the IRM bit is 1, this field is RES0.

9 Generic Interrupt Controller
9.3 GIC programmers model

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

9-326

Non-Confidential



Table 9-98  ICC_SGI0R bit assignments (continued)

Bits Name Function

[15:5] - Reserved, RES0.

[4:0] TargetList Target List. The set of cores for which SGI interrupts are generated. Each bit corresponds to the core within a
cluster with an Affinity 0 value equal to the bit number.

If the IRM bit is 1, this field is RES0.

To access ICC_SGI0R:

MCRR p15,2,<Rt>,<Rt2>,c12 ; Write Rt to ICC_SGI0R[31:0] and Rt2 to ICC_SGI0R[63:32]

Interrupt Controller Software Generated Interrupt Group 1 Register

The ICC_SGI1R register is used to request Group 0 and 1 SGIs according to the configuration of
GICR_IGROUPR configuration.

Use this register to generate an SGI regardless of GICR_IGROUPR0[INTID] for the targets.

Usage constraints This register is write-only. When IRM=0, unused affinity bits must be written as
zeros or the Generate SGI request is not sent.

Traps and enables If HCR.FMO is set to 1, then write accesses to this register from EL1 are trapped to
EL2.
If HCR.IMO is set to 1, then write accesses to this register from EL1 are trapped to
EL2.
If HSTR.T12 is set to 1, then write accesses to this register from EL1 are trapped to
Hyp mode.
If ICH_HCR.TC is set to 1, then write accesses to this register from EL1 are
trapped to EL2.

Configurations This register is available in all build configurations.

Attributes ICC_SGI1R is a 64-bit register.

The following figure shows the ICC_SGI1R bit assignments.

RES0 Aff3 RES0 Aff2

IRM

63 56 55 48 47 41 40 39 32

RES0 INTID Aff1 TargetList

31 28 27 24 23 16 15 0

RES0

5 4

Figure 9-61   ICC_SGI1R bit assignments

The following table shows the ICC_SGI1R bit assignments.

Table 9-99  ICC_SGI1R bit assignments

Bits Name Function

[63:56] - Reserved, RES0.

[55:48] Aff3 The affinity 3 value of the affinity path of the cluster for which SGI interrupts are generated.

If the IRM bit is 1, this field is RES0.

9 Generic Interrupt Controller
9.3 GIC programmers model

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

9-327

Non-Confidential



Table 9-99  ICC_SGI1R bit assignments (continued)

Bits Name Function

[47:41] - Reserved, RES0.

[40] IRM Interrupt Routing Mode. Determines how the generated interrupts are distributed to cores:

0 Interrupts routed to the cores specified by Aff3.Aff2.Aff1.<target list>.

1 Interrupts routed to all cores in the system, excluding "self".

[39:32] Aff2 The affinity 2 value of the affinity path of the cluster for which SGI interrupts are generated.

If the IRM bit is 1, this field is RES0.

[31:28] - Reserved, RES0.

[27:24] INTID The interrupt ID of the SGI.

[23:16] Aff1 The affinity 1 value of the affinity path of the cluster for which SGI interrupts are generated.

If the IRM bit is 1, this field is RES0.

[15:5] - Reserved, RES0.

[4:0] TargetList Target List. The set of cores for which SGI interrupts are generated. Each bit corresponds to the core within a
cluster with an Affinity 0 value equal to the bit number.

If the IRM bit is 1, this field is RES0.

To access ICC_SGI1R:

MCRR p15,0,<Rt>,<Rt2>,c12 ; Write Rt to ICC_SGI1R[31:0] and Rt2 to ICC_SGI1R[63:32]

Interrupt Controller Alias Software Generated Interrupt Group 1 Register

The ICC_ASGI1R generates Group 0 SGIs, if GICR_IGROUPR0[INTID] is configured to 0 for that
target. This register has identical behavior to ICC_SGI0R.

Usage constraints This register is write-only.
When IRM=0, unused affinity bits must be written as zeros or the Generate SGI
request is not sent.

Traps and enables If HCR.FMO is set to 1, then write accesses to this register from EL1 are trapped to
EL2.
If HCR.IMO is set to 1, then write accesses to this register from EL1 are trapped to
EL2.
If HSTR.T12 is set to 1, then write accesses to this register from EL1 are trapped to
Hyp mode.
If ICH_HCR.TC is set to 1, then write accesses to this register from EL1 are
trapped to EL2.

Configurations This register is available in all build configurations.

Attributes ICC_ASGI1R is a 64-bit register.

The following figure shows the ICC_ASGI1R bit assignments.

9 Generic Interrupt Controller
9.3 GIC programmers model

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

9-328

Non-Confidential



RES0 Aff3 RES0 Aff2

IRM

63 56 55 48 47 41 40 39 32

RES0 INTID Aff1 TargetList

31 28 27 24 23 16 15 0

RES0

5 4

Figure 9-62  ICC_ASGI1R bit assignments

The following table shows the ICC_ASGI1R bit assignments.

Table 9-100  ICC_ASGI1R bit assignments

Bits Name Function

[63:56] - Reserved, RES0.

[55:48] Aff3 The affinity 3 value of the affinity path of the cluster for which SGI interrupts are generated.

If the IRM bit is 1, this field is RES0.

[47:41] - Reserved, RES0.

[40] IRM Interrupt Routing Mode. Determines how the generated interrupts are distributed to cores:

0 Interrupts routed to the cores specified by Aff3.Aff2.Aff1.<target list>.

1 Interrupts routed to all cores in the system, excluding "self".

[39:32] Aff2 The affinity 2 value of the affinity path of the cluster for which SGI interrupts are generated.

If the IRM bit is 1, this field is RES0.

[31:28] - Reserved, RES0.

[27:24] INTID The interrupt ID of the SGI.

[23:16] Aff1 The affinity 1 value of the affinity path of the cluster for which SGI interrupts are generated.

If the IRM bit is 1, this field is RES0.

[15:5] - Reserved, RES0.

[4:0] TargetList Target List. The set of cores for which SGI interrupts are generated. Each bit corresponds to the core within a
cluster with an Affinity 0 value equal to the bit number.

If the IRM bit is 1, this field is RES0.

To access ICC_ASGI1R:

MCRR p15,1,<Rt>,<Rt2>,c12 ; Write Rt to ICC_ASGI1R[31:0] and Rt2 to ICC_ASGI1R[63:32]

Interrupt Controller Active Priorities Group 0 Register

The ICC_AP0R0 register provides information about Group 0 active priorities.

Usage constraints This register is read/write.

Traps and enables If HSTR.T12 is set to 1, then accesses to this register from EL1 are trapped to Hyp
mode.
If ICH_HCR.TALL0 is set to 1, then accesses to this register from EL1 are trapped
to EL2.

9 Generic Interrupt Controller
9.3 GIC programmers model

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

9-329

Non-Confidential



Configurations This register is available in all build configurations.

Attributes ICC_AP0R0 is a 32-bit register.

The following figure shows the ICC_AP0R0 bit assignments.

Active Priorities

31 0

Figure 9-63  ICC_AP0R0 bit assignments

The following table shows the ICC_AP0R0 bit assignments.

Table 9-101  ICC_AP0R0 bit assignments

Bits Name Function

[n] P<n> P<n>, bit[n], for n = 0 to 31.

Provides the access to the virtual active priorities for Group 0 interrupts. Possible values of each bit are:

0 There is no Group 0 interrupt active at the priority corresponding to that bit.

1 There is a Group 0 interrupt active at the priority corresponding to that bit.

To access ICC_AP0R0:

MRC p15,0,<Rt>,c12,c8,4 ; Read ICC_AP0R0 into Rt
MCR p15,0,<Rt>,c12,c8,4 ; Write Rt to ICC_AP0R0

Interrupt Controller Active Priorities Group 1 Register

The ICC_AP1R0 register provides information about Group 1 active priorities.

Usage constraints This register is read/write.

Traps and enables If HSTR.T12 is set to 1, then accesses to this register from EL1 are trapped to Hyp
mode.
If ICH_HCR.TALL1 is set to 1, then accesses to this register from EL1 are trapped
to EL2.

Configurations This register is available in all build configurations.

Attributes ICC_AP1R0 is a 32-bit register.

The following figure shows the ICC_AP1R0 bit assignments.

Active Priorities

31 0

Figure 9-64  ICC_AP1R0 bit assignments

The following table shows the ICC_AP1R0 bit assignments.

9 Generic Interrupt Controller
9.3 GIC programmers model

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

9-330

Non-Confidential



Table 9-102  ICC_AP1R0 bit assignments

Bits Name Function

[31:16] - Reserved, RES0.

[n] P<n> P<n>, bit[n], for n = 0 to 31.

Group 1 interrupt active priorities. Possible values of each bit are:

0 There is no Group 1 interrupt active at the priority corresponding to that bit.

1 There is a Group 1 interrupt active at the priority corresponding to that bit.

To access ICC_AP1R0:

MRC p15,0,<Rt>,c12,c9,0 ; Read ICC_AP1R0 into Rt
MCR p15,0,<Rt>,c12,c9,0 ; Write Rt to ICC_AP1R0

9.3.5 Virtual CPU Interface Registers

The following table summarizes the virtual CPU interface System registers.

Accesses at EL1 to Group 0 registers are virtual when HCR.FMO == 1.

Virtual accesses to the following Group 0 ICC_* registers access the ICV_* equivalents:

• Accesses to ICC_AP0R0 access ICV_AP0R0.
• Accesses to ICC_BPR0 access ICV_BPR0.
• Accesses to ICC_EOIR0 access ICV_EOIR0.
• Accesses to ICC_HPPIR0 access ICV_HPPIR0.
• Accesses to ICC_IAR0 access ICV_IAR0.
• Accesses to ICC_IGRPEN0 access ICV_IGRPEN0.

Accesses at EL1 to Group 1 registers are virtual when HCR.IMO == 1.

Virtual accesses to the following Group 1 ICC_* registers access the ICV_* equivalents:

• Accesses to ICC_AP1R0 access ICV_AP1R0.
• Accesses to ICC_BPR1 access ICV_BPR1.
• Accesses to ICC_EOIR1 access ICV_EOIR1.
• Accesses to ICC_HPPIR1 access ICV_HPPIR1.
• Accesses to ICC_IAR1 access ICV_IAR1.
• Accesses to ICC_IGRPEN1 access ICV_IGRPEN1.

Accesses at EL1 to the common registers are virtual when either HCR.IMO == 1 or HCR.FMO == 1, or
both.

Virtual accesses to the following Common ICC_* registers access the ICV_* equivalents:

• Accesses to ICC_RPR access ICV_RPR.
• Accesses to ICC_CTLR access ICV_CTLR.
• Accesses to ICC_DIR access ICV_DIR.
• Accesses to ICC_PMR access ICV_PMR.

A virtual write to ICC_SGI0R, ICC_SGI1R, or ICC_ASGI1R traps to EL2.

Software executing at EL2 can access some ICV_* register state using ICH_VMCR and ICH_VTR as
follows:
• ICV_PMR.Priority aliases ICH_VMCR.VPMR.
• ICV_BPR0.BinaryPoint aliases ICH_VMCR.VBPR0.
• ICV_BPR1.BinaryPoint aliases ICH_VMCR.VBPR1.
• ICV_CTLR.EOImode aliases ICH_VMCR.VEOIM.
• ICV_CTLR.CBPR aliases ICH_VMCR.VCBPR.

9 Generic Interrupt Controller
9.3 GIC programmers model

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

9-331

Non-Confidential



• ICV_IGRPEN0 aliases ICH_VMCR.VENG0.
• ICV_IGRPEN1 aliases ICH_VMCR.VENG1.
• ICV_CTLR.PRIbits aliases ICH_VTR.PRIbits.

The following table shows the virtual CPU interface registers.

Table 9-103  Virtual CPU Interface Registers summary

Name CRn Op1 CRm Op2 Type Reset Description

ICV_IAR0 c12 0 c8 0 RO 0x000003ff Interrupt Controller Virtual Interrupt Acknowledge Register 0
on page 9-332

ICV_IAR1 0 c12 0 RO 0x000003ff Interrupt Controller Virtual Interrupt Acknowledge Register 1
on page 9-333

ICV_EOIR0 0 c8 1 WO UNK Interrupt Controller Virtual End Of Interrupt Register 0
on page 9-334

ICV_EOIR1 0 c12 1 WO UNK Interrupt Controller Virtual End Of Interrupt Register 1
on page 9-334

ICV_HPPIR0 0 c8 2 RO 0x000003ff Interrupt Controller Virtual Highest Priority Pending Interrupt
Register 0 on page 9-335

ICC_HPPIR1 0 c12 2 RO 0x000003ff Interrupt Controller Virtual Highest Priority Pending Interrupt
Register 1 on page 9-336

ICV_BPR0 0 c8 3 RW 0x00000002 Interrupt Controller Virtual Binary Point Register 0
on page 9-336

ICV_BPR1 0 c12 3 RW 0x00000003 Interrupt Controller Virtual Binary Point Register 1
on page 9-337

ICV_DIR 0 c11 1 WO UNK Interrupt Controller Deactivate Virtual Interrupt Register
on page 9-338

ICV_PMR c4 0 c6 0 RW 0x00000000 Interrupt Controller Virtual Interrupt Priority Mask Register
on page 9-339

ICV_RPR c12 0 c11 3 RO 0x000000ff Interrupt Controller Virtual Running Priority Register
on page 9-340

ICV_CTLR 0 c12 4 RW 0x00000400 Interrupt Controller Virtual Control Register on page 9-340

ICV_IGRPEN0 0 c12 6 RW 0x00000000 Interrupt Controller Virtual Interrupt Group 0 Enable Register
on page 9-341

ICV_IGRPEN1 0 c12 7 RW 0x00000000 Interrupt Controller Virtual Interrupt Group 1 Enable Register
on page 9-342

ICV_AP0R0 0 c8 4 RW 0x00000000 Interrupt Controller Virtual Active Priorities Group 0 Register
on page 9-343

ICV_AP1R0 0 c9 0 RW 0x00000000 Interrupt Controller Virtual Active Priorities Group 1 Register
on page 9-343

Interrupt Controller Virtual Interrupt Acknowledge Register 0

Software reads the ICV_IAR0 register to obtain the INTID of the signaled virtual Group 0 interrupt. This
read acts as an acknowledge for the interrupt.

Usage constraints This register is read-only, and is only available at EL1.

9 Generic Interrupt Controller
9.3 GIC programmers model

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

9-332

Non-Confidential



Traps and enables If HSTR.T12 is set to 1, then read accesses to this register from EL1 are trapped to
Hyp mode.
If ICH_HCR.TALL0 is set to 1, then read accesses to this register from EL1 are
trapped to EL2.

Configurations This register is available in all build configurations.

Attributes ICV_IAR0 is a 32-bit register.

The following figure shows the ICV_IAR0 bit assignments.

RES0

31 0

INTID

1516

Figure 9-65  ICV_IAR0 bit assignments

The following table shows the ICV_IAR0 bit assignments.

Table 9-104  ICV_IAR0 bit assignments

Bits Name Function

[31:16] - Reserved, RES0.

[15:0] INTID The INTID of the signaled virtual interrupt.

To access ICV_IAR0:

MRC p15,0,<Rt>,c12,c8,0 ; Read ICV_IAR0 into Rt
MCR p15,0,<Rt>,c12,c8,0 ; Write Rt to ICV_IAR0

Interrupt Controller Virtual Interrupt Acknowledge Register 1

Software reads the ICV_IAR1 register to obtain the INTID of the signaled virtual Group 1 interrupt. This
read acts as an acknowledge for the interrupt.

Usage constraints This register is read-only, and is only available at EL1.

Traps and enables If HSTR.T12 is set to 1, then read accesses to this register from EL1 are trapped to
Hyp mode.
If ICH_HCR.TALL1 is set to 1, then read accesses to this register from EL1 are
trapped to EL2.

Configurations This register is available in all build configurations.

Attributes ICV_IAR1 is a 32-bit register.

The following figure shows the ICV_IAR1 bit assignments.

RES0

31 0

INTID

1516

Figure 9-66  ICV_IAR1 bit assignments

The following table shows the ICV_IAR1 bit assignments.

9 Generic Interrupt Controller
9.3 GIC programmers model

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

9-333

Non-Confidential



Table 9-105  ICV_IAR1 bit assignments

Bits Name Function

[31:16] - Reserved, RES0.

[15:0] INTID The INTID of the signaled interrupt.

To access ICV_IAR1:

MRC p15,0,<Rt>,c12,c12,0 ; Read ICV_IAR1 into Rt
MCR p15,0,<Rt>,c12,c12,0 ; Write Rt to ICV_IAR1

Interrupt Controller Virtual End Of Interrupt Register 0

Software writes to the ICV_EOIR0 register to inform the CPU interface that it has completed the
processing of the specified virtual Group 0 interrupt.

Usage constraints This register is write-only.

Traps and enables If HSTR.T12 is set to 1, then write accesses to this register from EL1 are trapped to
Hyp mode.
If ICH_HCR.TALL0 is set to 1, then write accesses to this register from EL1 are
trapped to EL2.

Configurations This register is available in all build configurations.

Attributes ICV_EOIR0 is a 32-bit register.

The following figure shows the ICV_EOIR0 bit assignments.

RES0

31 0

INTID

1516

Figure 9-67  ICV_EOIR0 bit assignments

The following table shows the ICV_EOIR0 bit assignments.

Table 9-106  ICV_EOIR0 bit assignments

Bits Name Function

[31:16] - Reserved, RES0.

[15:0] INTID The INTID from the corresponding ICV_IAR0 access.

To access ICV_EOIR0:

MRC p15,0,<Rt>,c12,c8,1 ; Read ICV_EOIR0 into Rt
MCR p15,0,<Rt>,c12,c8,1 ; Write Rt to ICV_EOIR0

Interrupt Controller Virtual End Of Interrupt Register 1

Software writes to the ICV_EOIR1 register to inform the CPU interface that it has completed the
processing of the specified virtual Group 1 interrupt.

Usage constraints This register is write-only.

Traps and enables If HSTR.T12 is set to 1, then write accesses to this register from EL1 are trapped to
Hyp mode.
If ICH_HCR.TALL1 is set to 1, then write accesses to this register from EL1 are
trapped to EL2.

9 Generic Interrupt Controller
9.3 GIC programmers model

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

9-334

Non-Confidential



Configurations This register is available in all build configurations.

Attributes ICV_EOIR1 is a 32-bit register.

The following figure shows the ICV_EOIR1 bit assignments.

RES0

31 0

INTID

1516

Figure 9-68  ICV_EOIR1 bit assignments

The following table shows the ICV_EOIR1 bit assignments.

Table 9-107  ICV_EOIR1 bit assignments

Bits Name Function

[31:16] - Reserved, RES0.

[15:0] INTID The INTID from the corresponding ICC_IAR1 access.

To access ICV_EOIR1:

MRC p15,0,<Rt>,c12,c12,1 ; Read ICV_EOIR1 into Rt
MCR p15,0,<Rt>,c12,c12,1 ; Write Rt to ICV_EOIR1

Interrupt Controller Virtual Highest Priority Pending Interrupt Register 0

The ICV_HPPIR0 register indicates the highest priority pending virtual Group 0 interrupt on the virtual
CPU interface.

Usage constraints This register is read-only, and is only available at EL1.

Traps and enables If HSTR.T12 is set to 1, then read accesses to this register from EL1 are trapped to
Hyp mode.
If ICH_HCR.TALL0 is set to 1, then read accesses to this register from EL1 are
trapped to EL2.

Configurations This register is available in all build configurations.

Attributes ICV_HPPIR0 is a 32-bit register.

The following figure shows the ICV_HPPIR0 bit assignments.

RES0

31 0

INTID

1516

Figure 9-69  ICV_HPPIR0 bit assignments

The following table shows the ICV_HPPIR0 bit assignments.

Table 9-108  ICV_HPPIR0 bit assignments

Bits Name Function

[31:16] - Reserved, RES0.

[15:0] INTID The INTID of the highest priority pending virtual interrupt.

9 Generic Interrupt Controller
9.3 GIC programmers model

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

9-335

Non-Confidential



To access ICV_HPPIR0:

MRC p15,0,<Rt>,c12,c8,2 ; Read ICV_HPPIR0 into Rt
MCR p15,0,<Rt>,c12,c8,2 ; Write Rt to ICV_HPPIR0

Interrupt Controller Virtual Highest Priority Pending Interrupt Register 1

The ICV_HPPIR1 register indicates the highest priority pending virtual Group 1 interrupt on the virtual
CPU interface.

Usage constraints This register is read-only, and is only available at EL1.

Traps and enables If HSTR.T12 is set to 1, then read accesses to this register from EL1 are trapped to
Hyp mode.
If ICH_HCR.TALL1 is set to 1, then read accesses to this register from EL1 are
trapped to EL2.

Configurations This register is available in all build configurations.

Attributes ICV_HPPIR1 is a 32-bit register.

The following figure shows the ICV_HPPIR1 bit assignments.

RES0

31 0

INTID

1516

Figure 9-70  ICV_HPPIR1 bit assignments

The following table shows the ICV_HPPIR1 bit assignments.

Table 9-109  ICV_HPPIR1 bit assignments

Bits Name Function

[31:16] - Reserved, RES0.

[15:0] INTID The INTID of the highest priority pending virtual interrupt.

To access ICV_HPPIR1:

MRC p15,0,<Rt>,c12,c12,2 ; Read ICV_HPPIR1 into Rt
MCR p15,0,<Rt>,c12,c12,2 ; Write Rt to ICV_HPPIR1

Interrupt Controller Virtual Binary Point Register 0

The ICV_BPR0 register defines the point at which the priority value fields split into two parts, the group
priority field and the subpriority field. The group priority field determines virtual Group 0 interrupt
preemption.

Usage constraints This register is read/write, and is only available at EL1.

Traps and enables If HSTR.T12 is set to 1, then accesses to this register from EL1 are trapped to Hyp
mode.
If ICH_HCR.TALL0 is set to 1, then accesses to this register from EL1 are trapped
to EL2.

Configurations This register is available in all build configurations.

Attributes ICV_BPR0 is a 32-bit register.

The following figure shows the ICV_BPR0 bit assignments.

9 Generic Interrupt Controller
9.3 GIC programmers model

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

9-336

Non-Confidential



BinaryPoint

31 3 2 0

RES0

Figure 9-71  ICV_BPR0 bit assignments

The following table shows the ICV_BPR0 bit assignments.

Table 9-110  ICV_BPR0 bit assignments

Bits Name Function

[31:3] - Reserved, RES0.

[2:0] BinaryPoint This value controls how the 5-bit interrupt priority field is split into a group priority field, that determines
interrupt preemption, and a subpriority field. See Table 9-111  ICV_BPR0 relationship between binary point
value and group priority, subpriority fields on page 9-337.

The reset value is 0x2.

Table 9-111  ICV_BPR0 relationship between binary point value and group priority, subpriority fields

Binary point value Group priority field Subpriority field Field with binary point

2 [7:3] - ggggg.

3 [7:4] [3] gggg.s

4 [7:5] [4:3] ggg.ss

5 [7:6] [5:3] gg.sss

6 [7] [6:3] g.ssss

7 No preemption [7:3] .sssss

To access ICV_BPR0:

MRC p15,0,<Rt>,c12,c8,3 ; Read ICV_BPR0 into Rt
MCR p15,0,<Rt>,c12,c8,3 ; Write Rt to ICV_BPR0

Interrupt Controller Virtual Binary Point Register 1

The ICV_BPR1 register defines the point at which the priority value fields split into two parts, the group
priority field and the subpriority field. The group priority field determines virtual Group 1 interrupt
preemption.

Usage constraints This register is read/write, and is only available at EL1.

Traps and enables If HSTR.T12 is set to 1, then accesses to this register from EL1 are trapped to Hyp
mode.
If ICH_HCR.TALL1 is set to 1, then accesses to this register from EL1 are trapped
to EL2.

Configurations This register is available in all build configurations.

Attributes ICV_BPR1 is a 32-bit register.

The following figure shows the ICV_BPR1 bit assignments.

9 Generic Interrupt Controller
9.3 GIC programmers model

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

9-337

Non-Confidential



BinaryPoint

31 3 2 0

RES0

Figure 9-72  ICV_BPR1 bit assignments

The following table shows the ICV_BPR1 bit assignments.

Table 9-112  ICV_BPR1 bit assignments

Bits Name Function

[31:3] - Reserved, RES0.

[2:0] BinaryPoint This value controls how the interrupt priority field is split into a group priority field, that determines interrupt
preemption, and a subpriority field. See Table 9-113  ICV_BPR1 relationship between binary point value and
group priority, subpriority fields on page 9-338.

The reset value is 0x3.

Table 9-113  ICV_BPR1 relationship between binary point value and group priority, subpriority fields

Binary point value Group priority field Subpriority field Field with binary point

3 [7:3] - ggggg.

4 [7:4] [3] gggg.s

5 [7:5] [4:3] ggg.ss

6 [7:6] [5:3] gg.sss

7 [7] [6:3] g.ssss

To access ICV_BPR1:

MRC p15,0,<Rt>,c12,c12,3 ; Read ICV_BPR1 into Rt
MCR p15,0,<Rt>,c12,c12,3 ; Write Rt to ICV_BPR1

Interrupt Controller Deactivate Virtual Interrupt Register

When interrupt priority drop is separated from interrupt deactivation, a write to the ICV_DIR register
deactivates the specified virtual interrupt.

Usage constraints This register is write-only, and is only available at EL1.

Traps and enables If HSTR.T12 is set to 1, then write accesses to this register from EL1 are trapped to
Hyp mode.
If ICH_HCR.TC is set to 1, then write accesses to this register from EL1 are
trapped to EL2.
If ICH_HCR.TDIR is set to 1, then write accesses to this register from EL1 are
trapped to EL2.

Configurations This register is available in all build configurations.

Attributes ICV_DIR is a 32-bit register.

The following figure shows the ICV_DIR bit assignments.

9 Generic Interrupt Controller
9.3 GIC programmers model

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

9-338

Non-Confidential



RES0

31 0

INTID

1516

Figure 9-73  ICV_DIR bit assignments

The following table shows the ICV_DIR bit assignments.

Table 9-114  ICV_DIR bit assignments

Bits Name Function

[31:16] - Reserved, RES0.

[15:0] INTID The INTID of the interrupt to be deactivated.

To access ICV_DIR:

MRC p15,0,<Rt>,c12,c11,1 ; Read ICV_DIR into Rt
MCR p15,0,<Rt>,c12,c11,1 ; Write Rt to ICV_DIR

Interrupt Controller Virtual Interrupt Priority Mask Register

The ICV_PMR register provides a virtual interrupt priority filter. Only virtual interrupts with higher
priority than the value in this register are signaled to the core.

Usage constraints This register is read/write, and is only available at EL1.

Traps and enables If ICH_HCR.TC is set to 1, then accesses to this register from EL1 are trapped to
EL2.

Configurations This register is available in all build configurations.

Attributes ICV_PMR is a 32-bit register.

The following figure shows the ICV_PMR bit assignments.

PriorityRES0

31 08 7 23

RAZ/WI

Figure 9-74  ICV_PMR bit assignments

The following table shows the ICV_PMR bit assignments.

Table 9-115  ICV_PMR bit assignments

Bits Name Function

[31:8] - Reserved, RES0.

[7:3] Priority The priority mask level for the CPU interface. If the priority of an interrupt is higher than the value indicated by this
field, the interface signals the interrupt to the core.

[2:0] - RAZ/WI.

To access ICV_PMR:

MRC p15,0,<Rt>,c4,c6,0 ; Read ICV_PMR into Rt
MCR p15,0,<Rt>,c4,c6,0 ; Write Rt to ICV_PMR

9 Generic Interrupt Controller
9.3 GIC programmers model

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

9-339

Non-Confidential



Interrupt Controller Virtual Running Priority Register

The ICV_RPR register indicates the running priority of the virtual CPU interface.

Usage constraints This register is read only, and is only available at EL1.

Traps and enables If HSTR.T12 is set to 1, then read accesses to this register from EL1 are trapped to
Hyp mode.
If ICH_HCR.TC is set to 1, then read accesses to this register from EL1 are trapped
to EL2.

Configurations This register is available in all build configurations.

Attributes ICV_RPR is a 32-bit register.

The following figure shows the ICV_RPR bit assignments.

PriorityRES0

31 08 7

Figure 9-75  ICV_RPR bit assignments

The following table shows the ICV_RPR bit assignments.

Table 9-116  ICV_RPR bit assignments

Bits Name Function

[31:8] - Reserved, RES0.

[7:0] Priority The current running priority. Returns 0xFF when ICV_AP0R0 and ICV_AP1R0 are both 0x0. Otherwise returns the
index in bits [7:3] of the lowest set bit from ICV_AP0R0 and ICV_AP1R0.

To access ICV_RPR:

MRC p15,0,<Rt>,c12,c11,3 ; Read ICV_RPR into Rt
MCR p15,0,<Rt>,c12,c11,3 ; Write Rt to ICV_RPR

Interrupt Controller Virtual Control Register

The ICV_CTLR register controls aspects of the behavior of the GIC virtual CPU interface and provides
information about the features implemented.

Usage constraints This register is read/write.

Traps and enables If HSTR.T12 is set to 1, then accesses to this register from EL1 are trapped to Hyp
mode.
If ICH_HCR.TC is set to 1, then accesses to this register from EL1 are trapped to
EL2.

Configurations This register is available in all build configurations.

Attributes ICV_CTLR is a 32-bit register.

The following figure shows the ICV_CTLR bit assignments.

9 Generic Interrupt Controller
9.3 GIC programmers model

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

9-340

Non-Confidential



RES0

SEIS
IDbits

PRIbits
EOImode

CBPR

31 14 13 10 8 7 2 1 015

A3V

16

RES0

11

Figure 9-76  ICV_CTLR bit assignments

The following table shows the ICV_CTLR bit assignments.

Table 9-117  ICV_CTLR bit assignments

Bits Name Function

[31:16] - Reserved, RES0.

[15] A3V Affinity 3 Valid. Read-only and writes are ignored:

0 The virtual CPU interface logic only supports zero values of Affinity 3 in SGI generation system
registers.

[14] SEIS SEI support. Read-only and writes are ignored. Indicates whether the virtual CPU interface supports local
generation of SEIs:

0 The virtual CPU interface logic does not support local generation of SEIs.

[13:11] IDbits Indicates the number of physical interrupt identifier bits supported. Read-only and writes are ignored:

0b000 16 interrupt identifier bits are supported.

[10:8] PRIbits Indicates the number of priority bits implemented, minus one. Read-only and writes are ignored:

0b100 Five priority bits are supported.

[7:2] - Reserved, RES0.

[1] EOImode Controls whether a write to an End of Interrupt register also deactivates the interrupt.

[0] CBPR Controls whether ICV_BPR1 is used for interrupt preemption of both Group 0 and Group 1 interrupts.

To access ICV_CTLR:

MRC p15,0,<Rt>,c12,c12,4 ; Read ICV_CTLR into Rt
MCR p15,0,<Rt>,c12,c12,4 ; Write Rt to ICV_CTLR

Interrupt Controller Virtual Interrupt Group 0 Enable Register

The ICV_IGRPEN0 register controls if virtual Group 0 interrupts are enabled.

Usage constraints This register is read/write.

9 Generic Interrupt Controller
9.3 GIC programmers model

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

9-341

Non-Confidential



Traps and enables If HSTR.T12 is set to 1, then accesses to this register from EL1 are trapped to Hyp
mode.
If ICH_HCR.TALL0 is set to 1, then accesses to this register from EL1 are trapped
to EL2.

Configurations This register is available in all build configurations.

Attributes ICV_IGRPEN0 is a 32-bit register.

The following figure shows the ICV_IGRPEN0 bit assignments.

RES0

31 01

Enable

Figure 9-77  ICV_IGRPEN0 bit assignments

The following table shows the ICV_IGRPEN0 bit assignments.

Table 9-118  ICV_IGRPEN0 bit assignments

Bits Name Function

[31:1] - Reserved, RES0.

[0] Enable Enables virtual Group 0 interrupts:

0 Group 0 interrupts are disabled. This is the reset value.

1 Group 0 interrupts are enabled.

To access ICV_IGRPEN0:

MRC p15,0,<Rt>,c12,c12,6 ; Read ICV_IGRPEN0 into Rt
MCR p15,0,<Rt>,c12,c12,6 ; Write Rt to ICV_IGRPEN0

Interrupt Controller Virtual Interrupt Group 1 Enable Register

The ICV_IGRPEN1 register controls if virtual Group 1 interrupts are enabled.

Usage constraints This register is read/write.

Traps and enables If HSTR.T12 is set to 1, then accesses to this register from EL1 are trapped to Hyp
mode.
If ICH_HCR.TALL1 is set to 1, then accesses to this register from EL1 are trapped
to EL2.

Configurations This register is available in all build configurations.

Attributes ICV_IGRPEN1 is a 32-bit register.

The following figure shows the ICV_IGRPEN1 bit assignments.

RES0

31 01

Enable

Figure 9-78  ICV_IGRPEN1 bit assignments

The following table shows the ICV_IGRPEN1 bit assignments.

9 Generic Interrupt Controller
9.3 GIC programmers model

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

9-342

Non-Confidential



Table 9-119  ICV_IGRPEN1 bit assignments

Bits Name Function

[31:1] - Reserved, RES0.

[0] Enable Enables virtual Group 1 interrupts:

0 Group 1 interrupts are disabled. This is the reset value.

1 Group 1 interrupts are enabled.

To access ICV_IGRPEN1:

MRC p15,0,<Rt>,c12,c12,7 ; Read ICV_IGRPEN1 into Rt
MCR p15,0,<Rt>,c12,c12,7 ; Write Rt to ICV_IGRPEN1

Interrupt Controller Virtual Active Priorities Group 0 Register

The ICV_AP0R0 register provides information about virtual Group 0 active priorities. This register is an
alias of ICH_AP0R0.

Usage constraints This register is read/write.

Traps and enables If HSTR.T12 is set to 1, then accesses to this register from EL1 are trapped to Hyp
mode.
If ICH_HCR.TALL0 is set to 1, then accesses to this register from EL1 are trapped
to EL2.

Configurations This register is available in all build configurations.

Attributes ICV_AP0R0 is a 32-bit register.

The following figure shows the ICV_AP0R0 bit assignments.

Active Priorities

31 0

Figure 9-79  ICV_AP0R0 bit assignments

The following table shows the ICV_AP0R0 bit assignments.

Table 9-120  ICV_AP0R0 bit assignments

Bits Name Function

[n] P<n> P<n>, bit[n], for n = 0 to 31.

Provides the access to the virtual active priorities for Group 0 interrupts. Possible values of each bit are:

0 There is no Group 0 interrupt active at the priority corresponding to that bit.

1 There is a Group 0 interrupt active at the priority corresponding to that bit.

To access ICV_AP0R0:

MRC p15,0,<Rt>,c12,c8,4 ; Read ICV_AP0R0 into Rt
MCR p15,0,<Rt>,c12,c8,4 ; Write Rt to ICV_AP0R0

Interrupt Controller Virtual Active Priorities Group 1 Register

The ICV_AP1R0 register provides information about virtual Group 1 active priorities. This register is an
alias of ICH_AP1R0.

9 Generic Interrupt Controller
9.3 GIC programmers model

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

9-343

Non-Confidential



Usage constraints This register is read/write.

Traps and enables If HSTR.T12 is set to 1, then accesses to this register from EL1 are trapped to Hyp
mode.
If ICH_HCR.TALL1 is set to 1, then accesses to this register from EL1 are trapped
to EL2.

Configurations This register is available in all build configurations.

Attributes ICV_AP1R0 is a 32-bit register.

The following figure shows the ICV_AP1R0 bit assignments.

Active Priorities

31 0

Figure 9-80  ICV_AP1R0 bit assignments

The following table shows the ICV_AP1R0 bit assignments.

Table 9-121  ICV_AP1R0 bit assignments

Bits Name Function

[n] P<n> P<n>, bit[n], for n = 0 to 31.

Group 1 interrupt active priorities. Possible values of each bit are:

0 There is no Group 1 interrupt active at the priority corresponding to that bit.

1 There is a Group 1 interrupt active at the priority corresponding to that bit.

To access ICV_AP1R0:

MRC p15,0,<Rt>,c12,c9,0 ; Read ICV_AP1R0 into Rt
MCR p15,0,<Rt>,c12,c9,0 ; Write Rt to ICV_AP1R0

9 Generic Interrupt Controller
9.3 GIC programmers model

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

9-344

Non-Confidential



Chapter 10
Generic Timer

This chapter describes the Cortex-R52 processor implementation of the Arm Generic Timer.

It contains the following sections:
• 10.1 About the Generic Timer on page 10-346.
• 10.2 Generic Timer functional description on page 10-347.
• 10.3 Generic Timer register summary on page 10-348.

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

10-345

Non-Confidential



10.1 About the Generic Timer
The Generic Timer can schedule events and trigger interrupts based on an incrementing counter value. It
provides:

• Generation of timer events as PPIs.
• Generation of event streams.

The Cortex-R52 processor Generic Timer is compliant with the Arm® Architecture Reference Manual
Supplement Armv8, for Armv8-R architecture profile.

This chapter describes only features that are specific to the Cortex-R52 processor implementation.

10 Generic Timer
10.1 About the Generic Timer

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

10-346

Non-Confidential



10.2 Generic Timer functional description
The Cortex-R52 processor provides a set of timer registers within each core of the cluster.

The timers are:
• An EL1 physical timer.
• An EL2 physical timer.
• A virtual timer.

The Cortex-R52 processor does not include the system counter. This resides in the SoC. The system
counter value is distributed to the Cortex-R52 processor with a synchronous binary encoded 64-bit bus,
CNTVALUEB[63:0].

Because CNTVALUEB is generated from a system counter which typically operates at a slower
frequency than the main processor CLKIN, the CNTCLKEN input is provided as a clock enable for the
CNTVALUEB bus. This allows a multicycle path to be applied to the CNTVALUEB[63:0] bus.
CNTCLKEN is registered inside the Cortex-R52 processor before being used as a clock enable for the
CNTVALUEB[63:0] registers. The following figure shows the interface.

Processor

Clock gate

CNTCLKEN 
register

Architectural 
counter 
registers

CNTVALUEB[63:0]

CNTCLKEN

Figure 10-1  Architectural counter interface

The value on the CNTVALUEB[63:0] bus is required to be stable whenever the internally registered
version of the CNTCLKEN clock enable is asserted. CNTCLKEN must be synchronous and balanced
with CLK and must toggle at integer ratios of the processor CLK.

See Chapter 4 Clocking and Resets on page 4-197 for more information about CNTCLKEN.

Each timer provides an interrupt as a PPI to the core.

10 Generic Timer
10.2 Generic Timer functional description

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

10-347

Non-Confidential



10.3 Generic Timer register summary
Within each core, a set of Generic Timer registers are allocated to the (coproc==0b1111) space.

This section contains the following subsection:
• 10.3.1 AArch32 Generic Timer register summary on page 10-348.

10.3.1 AArch32 Generic Timer register summary

The following table shows the AArch32 Generic Timer registers.

The following registers are fully documented in the Arm® Architecture Reference Manual Supplement
Armv8, for Armv8-R architecture profile. This implies that there are no Cortex-R52-specific details.

Table 10-1  AArch32 Generic Timer registers

Name CRn Op1 CRm Op2 Reset Width Description

CNTFRQ c14 0 c0 0 UNK 32-bit Counter-timer Frequency register

CNTPCT - 0 c14 - UNK 64-bit Counter-timer Physical Count register

CNTKCTL c14 0 c1 0 0x00000000 32-bit Counter-timer Kernel Control register

CNTP_TVAL c2 0 UNK 32-bit Counter-timer Physical Timer TimerValue register

CNTP_CTL 1 -bn 32-bit Counter-timer Physical Timer Control register

CNTV_TVAL c3 0 UNK 32-bit Counter-timer Virtual Timer TimerValue register

CNTV_CTL 1 -bn 32-bit Counter-timer Virtual Timer Control register

CNTVCT - 1 c14 - UNK 64-bit Counter-timer Virtual Count register

CNTP_CVAL - 2 UNK 64-bit Counter-timer Physical Timer CompareValue register

CNTV_CVAL - 3 UNK 64-bit Counter-timer Virtual Timer CompareValue register

CNTVOFF - 4 UNK 64-bit Counter-timer Virtual Offset register

CNTHCTL c14 4 c1 0 -bo 32-bit Counter-timer Hyp Control register

CNTHP_TVAL - c2 0 UNK 32-bit Counter-timer Hyp Physical Timer TimerValue register

CNTHP_CTL c14 1 -bn 32-bit Counter-timer Hyp Physical Timer Control register

CNTHP_CVAL - 6 c14 - UNK 64-bit Counter-timer Hyp Physical CompareValue register

bn The reset value for bit[0] is 0.
bo The reset value for bit[2] is 0 and for bits[1:0] is 0b11.

10 Generic Timer
10.3 Generic Timer register summary

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

10-348

Non-Confidential



Chapter 11
Debug

This chapter describes the Cortex-R52 processor debug registers and shows examples of how to use
them.

It contains the following sections:
• 11.1  About Debug on page 11-350.
• 11.2 Debug register interfaces on page 11-353.
• 11.3 System register summary on page 11-355.
• 11.4 System register descriptions on page 11-358.
• 11.5 Memory-mapped register summary on page 11-362.
• 11.6 Memory-mapped register descriptions on page 11-366.
• 11.7 External debug interface on page 11-383.
• 11.8 ROM table on page 11-386.

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

11-349

Non-Confidential



11.1 About Debug
The Cortex-R52 processor supports two methods of invasive debugging, external debug, and self-hosted
debug. This section provides a brief introduction to these methods and outlines the main components that
constitute a conventional invasive debug system.

This section contains the following subsections:
• 11.1.1 External debug on page 11-350.
• 11.1.2 Self-hosted debug on page 11-351.
• 11.1.3 The debug model on page 11-351.

11.1.1 External debug

External debug is a conventional setup for debug, in which the debugger is external to the core that is
being debugged. The debugger might be either hosted on another core within the Cortex-R52 processor,
or running external to Cortex-R52. For example, the debugger might be hosted on a workstation
connected using JTAG to a development system containing the Cortex-R52 processor.

External debug is useful for hardware bring-up of a Cortex-R52 processor-based system, that is,
debugging during development when a system is first powered up and not all of the software
functionality is available.

The following figure shows a typical external debug system.

Debug host computer running suitable debugger tool.Debug
host

For example, DSTREAM adapter.

Development system containing Arm processor.Debug
target

Protocol
converter

Figure 11-1  Typical external debug system

 Note 

In addition to the components shown in Figure 11-1  Typical external debug system on page 11-350,
there is a debug unit that assists in debugging software on the processor.

Debug host

The debug host is a computer, for example a personal computer, running a software debugger such as the
DS-5 Debugger. The debug host enables you to issue high-level commands such as setting a breakpoint
at a certain location, or examining the contents of a memory address.

11 Debug
11.1  About Debug

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

11-350

Non-Confidential



Protocol converter

The debug host sends messages to the debug target using an interface such as Ethernet. However, the
debug target typically implements a different interface protocol such as JTAG or SWD. A device such as
DSTREAM is required to convert between the two protocols.

Debug target

The debug target is the lowest level of the system. An example of a debug target is a development system
with a test chip or a silicon part with a Cortex-R52 processor.

The debug target implements system support for the protocol converter to access the Cortex-R52 debug
unit using the AMBA APB slave interface.

The Cortex-R52 debug unit

The processor debug unit assists in debugging software running on the processor.

The debug unit enables you to:
• Stop program execution.
• Examine and alter process and system control state.
• Examine and alter memory and input/output peripheral state.
• Restart the processor.

The Cortex-R52 processor presents a single debug-APB slave port and the debug registers for each core
are accessible through that port. For the list of debug registers, see 11.4 System register descriptions
on page 11-358.

The ETM, CTI, PMU, and a ROM table to describe the registers are also available on this port. For a
high-level memory map of this port, see 11.7 External debug interface on page 11-383.

Related reference
Chapter 12 Performance Monitor Unit on page 12-397
Chapter 13 Cross Trigger on page 13-428
Chapter 14 Embedded Trace Macrocell on page 14-446

11.1.2 Self-hosted debug

In self-hosted debug, the core being debugged within the Cortex-R52 processor hosts debug monitor
software itself. Hardware watchpoints and breakpoints generate debug exceptions on debug events.

For more information, see 11.1.3 The debug model on page 11-351 and Watchpoint debug events
on page 11-352 for more information. These exceptions are handled by the debug monitor that typically
resides alongside the operating system kernel or the hypervisor.

Self-hosted debug is useful in situations in which the Cortex-R52 processor has been deployed in a
developed system, where there is no direct access to the Cortex-R52 processor debug hardware. Self-
hosted debug supports:
• Task debugging.
• OS and kernel debugging.
• Hypervisor debuggingbp

For details on self-hosted debug, see Arm® Architecture Reference Manual Supplement Armv8, for
Armv8-R architecture profile.

11.1.3 The debug model

The debug logic of the processor is responsible for generating debug events. Debug events include events
such as a breakpoint unit matching the address of an instruction against the address stored in its registers.

The Cortex-R52 processor responds to a debug event in one of the following ways:

bp Self-hosted debug support for Hypervisor code is limited to software breakpoint instructions.

11 Debug
11.1  About Debug

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

11-351

Non-Confidential



• Enters a special Debug state.
• Takes a debug exception.
• Pends the debug event, for action later.
• Ignores the debug event.

Debug exceptions are the basis of self-hosted debug. Debug state is the basis of the external debug.

The conversion of debug events into exceptions or entry into Debug state depends on the configuration
of the debug logic and the type of debug event. For example, in the case of breakpoint instructions
(BKPT), the processor must assume the instruction has replaced an actual program instruction, and always
takes an exception.

A debug event can be either:

• A software debug event.
• An external halting debug event.

When the Cortex-R52 processor is programmed for external debug, also known as halting debug, a
software debug event causes entry into a special Debug state. External halting debug events always cause
entry into the Cortex-R52 Debug state regardless of how the Cortex-R52 processor is programmed. In
Debug state:
• The processor does not fetch instructions from memory, but from a special instruction transfer

register.
• Data transfer registers are used to move register and memory contents between the debug host and

the debug target.

The debug event that causes this entry into Debug state is known as a halting debug event.

For more information on the debug model, see Arm® Architecture Reference Manual Supplement Armv8,
for Armv8-R architecture profile.

Watchpoint debug events

In the Cortex-R52 processor, watchpoint debug events are always synchronous. Store exclusive
instructions generate a watchpoint debug event even when the check for the control of the exclusive
monitor fails.

Under normal operating conditions, the following do not generate watchpoint exceptions:
• Instruction cache maintenance instructions.
• Address translation instructions.
• Preload instructions.
• All data cache maintenance instructions, except DCIMVAC.

For watchpoint debug events, the value reported in DFAR is guaranteed to be no lower than the address
of the watchpointed location rounded down to a multiple of 16 bytes.

Debug OS Lock

Debug OS Lock is set by the powerup reset, nCPUPORESETx.

For normal behavior of debug events and debug register accesses, Debug OS Lock must be cleared. For
more information, see the Arm® Architecture Reference Manual Supplement Armv8, for Armv8-R
architecture profile.

11 Debug
11.1  About Debug

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

11-352

Non-Confidential



11.2 Debug register interfaces
This section describes the debug architecture and debug events of the processor.

The processor implements the Armv8-R Debug architecture and debug events as described in the Arm®

Architecture Reference Manual Supplement Armv8, for Armv8-R architecture profile.

The debug architecture defines a set of debug registers. The debug register interfaces provide access to
these registers from:
• Software running on the processor.
• An external debugger.

This section contains the following subsections:
• 11.2.1 Processor interfaces on page 11-353.
• 11.2.2 Breakpoints and watchpoints on page 11-353.
• 11.2.3 Effects of resets on debug registers on page 11-353.
• 11.2.4 External register access permissions on page 11-354.

11.2.1 Processor interfaces

System register access allows the processor to directly access certain debug registers. The external debug
interface allows both external and self-hosted debug agents to access debug registers.

Access to the debug registers is partitioned as follows:

Debug registers
This interface is System register based and memory-mapped. You can access the debug register
map using the APB slave port.

Performance monitor
This interface is System register based and memory-mapped. You can access the performance
monitor registers using the APB slave port.

Trace registers
This interface is memory-mapped. You can access the trace registers using the APB slave port.

Related reference
11.3 System register summary on page 11-355
11.5 Memory-mapped register summary on page 11-362
Chapter 12 Performance Monitor Unit on page 12-397
Chapter 14 Embedded Trace Macrocell on page 14-446

11.2.2 Breakpoints and watchpoints

Each core in the processor supports eight hardware breakpoint register pairs, eight hardware watchpoint
register pairs, and a standard Debug Communication Channel (DCC).

Two of the breakpoint register pairs can be configured to match against one of both of context ID and
VMID. Each watchpoint can be linked to one of these two breakpoints to enable a memory request to be
trapped in a given process context.

11.2.3 Effects of resets on debug registers

Each core has the following reset signals that affect the debug registers:

nCPUPORESETx
These primary, Cold reset signals initialize the core logic including debug, the performance
monitor logic, and the ETM.

nCORERESETx
These primary, Warm reset signals initialize the core logic including some of the debug and
performance monitor logic.

11 Debug
11.2 Debug register interfaces

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

11-353

Non-Confidential



nPRESETDBG
This is an external debug reset signal that initializes the shared debug APB, CTI, and Cross
Trigger Matrix (CTM) logic. This signal has no impact on the functionality for the rest of the
processor.

11.2.4 External register access permissions

Whether or not access is permitted to a register depends on:

• If the processor is powered up.
• The state of the OS Lock, OS Double Lock, and Software Lock.
• The state of the debug authentication inputs to the processor.

The behavior that is specific to each register and the type of access to the register is not described in this
document. For a detailed description of these features and their effects on the registers, see the Arm®

Architecture Reference Manual Supplement Armv8, for Armv8-R architecture profile.

The register descriptions provided in this section describe whether each register is read/write or read-
only.

11 Debug
11.2 Debug register interfaces

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

11-354

Non-Confidential



11.3 System register summary
The following table summarizes the debug control registers that are accessible from the internal
(coproc==0b1110) interface.

These registers are accessed by the MCR, MRC instructions. See the Arm® Architecture Reference Manual
Supplement Armv8, for Armv8-R architecture profile.

The table also shows the offset address for the registers that are also accessible from the memory-
mapped interface and the external debug interface. See 11.5 Memory-mapped register summary
on page 11-362 for a complete list of registers accessible from the memory-mapped and the external
debug interface. With the exception of ID and configuration values in some read-only registers, all these
registers are fully described in the Arm® Architecture Reference Manual Supplement Armv8, for Armv8-R
architecture profile. This implies that there are no Cortex-R52-specific details.

Table 11-1  AArch32 debug register summary

Offset CRn op1 CRm op2 Name Type Width Description

- c0 0 c0 0 DBGDIDR RO 32-bit 11.4.1 Debug ID Register on page 11-358

- 2 DBGDTRRXext RW 32-bit Debug Data Transfer Register, Receive, External View  

0x400 4 DBGBVR0 RW 32-bit Debug Breakpoint Value Register 0 

0x408 5 DBGBCR0 RW 32-bit Debug Breakpoint Control Register 0

0x800 6 DBGWVR0 RW 32-bit Debug Watchpoint Value Register 0 

0x808 7 DBGWCR0 RW 32-bit Debug Watchpoint Control Registers 0

- c0 7 c0 0 JIDR RO 32-bit Legacy Jazelle ID Register

- c0 0 c1 0 DBGDSCRint RO 32-bit Debug Status and Control Register, Internal View 

0x410 4 DBGBVR1 RW 32-bit Debug Breakpoint Value Register 1 

0x418 5 DBGBCR1 RW 32-bit Debug Breakpoint Control Register 1

0x810 6 DBGWVR1 RW 32-bit Debug Watchpoint Value Register 1 

0x818 7 DBGWCR1 RW 32-bit Debug Watchpoint Control Registers 1

- c0 0 c2 0 DBGDCCINT RW 32-bit Debug Comms Channel Interrupt Enable Register 

- 2 DBGDSCRext RW 32-bit Debug Status and Control Register, External View 

0x420 4 DBGBVR2 RW 32-bit Debug Breakpoint Value Register 2 

0x428 5 DBGBCR2 RW 32-bit Debug Breakpoint Control Register 2

0x820 6 DBGWVR2 RW 32-bit Debug Watchpoint Value Register 2 

0x828 7 DBGWCR2 RW 32-bit Debug Watchpoint Control Registers 2

- c0 0 c3 2 DBGDTRTXext RW 32-bit Debug Data Transfer Register, Transmit, External View 

0x430 4 DBGBVR3 RW 32-bit Debug Breakpoint Value Register 3 

0x438 5 DBGBCR3 RW 32-bit Debug Breakpoint Control Register 3

0x830 6 DBGWVR3 RW 32-bit Debug Watchpoint Value Register 3 

0x828 7 DBGWCR3 RW 32-bit Debug Watchpoint Control Registers 3

11 Debug
11.3 System register summary

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

11-355

Non-Confidential



Table 11-1  AArch32 debug register summary (continued)

Offset CRn op1 CRm op2 Name Type Width Description

0x440 c0 0 c4 4 DBGBVR4 RW 32-bit Debug Breakpoint Value Register 4 

0x448 5 DBGBCR4 RW 32-bit Debug Breakpoint Control Register 4

0x830 6 DBGWVR4 RW 32-bit Debug Watchpoint Value Register 4 

0x828 7 DBGWCR4 RW 32-bit Debug Watchpoint Control Register 4

0x08C c0 0 c5 0 DBGDTRTXint WO 32-bit Debug Data Transfer Register, Transmit, Internal View 

0x080 0 DBGDTRRXint RO 32-bit Debug Data Transfer Register, Receive, Internal View 

0x450 4 DBGBVR5 RW 32-bit Debug Breakpoint Value Register 5 

0x458 5 DBGBCR5 RW 32-bit Debug Breakpoint Control Register 5

0x830 6 DBGWVR5 RW 32-bit Debug Watchpoint Value Register 5 

0x828 7 DBGWCR5 RW 32-bit Debug Watchpoint Control Register 5

- c0 0 c6 0 DBGWFAR RW 32-bit Debug Watchpoint Fault Address Registerbq.

0x098 2 DBGOSECCR RW 32-bit Debug OS Lock Exception Catch Control Register 

0x450 4 DBGBVR6 RW 32-bit Debug Breakpoint Value Register 6 

0x458 5 DBGBCR6 RW 32-bit Debug Breakpoint Control Register 6

0x830 6 DBGWVR6 RW 32-bit Debug Watchpoint Value Register 6 

0x828 7 DBGWCR6 RW 32-bit Debug Watchpoint Control Register 6

- c0 0 c7 0 DBGVCR RW 32-bit Debug Vector Catch Register 

0x450 4 DBGBVR7 RW 32-bit Debug Breakpoint Value Register 7 

0x458 5 DBGBCR7 RW 32-bit Debug Breakpoint Control Register 7

0x830 6 DBGWVR7 RW 32-bit Debug Watchpoint Value Register 7 

0x828 7 DBGWCR7 RW 32-bit Debug Watchpoint Control Register 7

- c1 0 c0 0 DBGDRAR RO 32-bit Debug ROM Address Register 

0x300 4 DBGOSLAR WO 32-bit Debug OS Lock Access Register 

c1 7 c0 0 JOSCR RW 32bit Legacy Jazelle OS Control Register

- c1 0 c1 4 DBGOSLSR RO 32-bit Debug OS Lock Status Register 

- c3 4 DBGOSDLR RW 32-bit Debug OS Double Lock Register 

0x310 c4 4 DBGPRCR RW 32-bit Debug Power/Reset Control Register 

0x444 c6 1 DBGBXVR6 RW 32-bit Debug Breakpoint Extended Value Register 6 

0x444 c7 1 DBGBXVR7 RW 32-bit Debug Breakpoint Extended Value Register 7 

- c2 0 c0 0 DBGDSAR RO 32-bit Debug Self Address Register

- JMCR RW 32-bit Legacy Jazelle Main Configuration Register.

bq Previously returned information about the address of the instruction that accessed a watchpoint address. This register is now deprecated and is RES0.

11 Debug
11.3 System register summary

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

11-356

Non-Confidential



Table 11-1  AArch32 debug register summary (continued)

Offset CRn op1 CRm op2 Name Type Width Description

- c7 0 c0 7 DBGDEVID2 RO 32-bit Debug Device ID Register 2

- c1 DBGDEVID1 RO 32-bit 11.4.3 Debug Device ID Register 1 on page 11-360

- c2 DBGDEVID RO 32-bit 11.4.2  Debug Device ID Register on page 11-359

0xFA0 c8 6 DBGCLAIMSET RW 32-bit Debug Claim Tag Set Register 

0xFA4 c9 DBGCLAIMCLR RW 32-bit Debug Claim Tag Clear Register 

0xFB8 c14 DBGAUTHSTATUS RO 32-bit Debug Authentication Status Register 

11 Debug
11.3 System register summary

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

11-357

Non-Confidential



11.4 System register descriptions
This section describes some of the debug registers available through the internal (coproc==0b1110)
interface, where these have Cortex-R52-specific values.

For a list of all the registers available through the internal interface, see 11.3 System register summary
on page 11-355.

This section contains the following subsections:
• 11.4.1 Debug ID Register on page 11-358.
• 11.4.2  Debug Device ID Register on page 11-359.
• 11.4.3 Debug Device ID Register 1 on page 11-360.

11.4.1 Debug ID Register

The DBGDIDR specifies the version of the Debug architecture that is implemented and some features of
the debug implementation.

Usage constraints This register is read-only. For a summary of the conditions which affect whether
access to this register is permitted, see 11.2.4 External register access permissions
on page 11-354. For a detailed description see Arm® Architecture Reference Manual
Supplement Armv8, for Armv8-R architecture profile.

Traps and enables If DBGDSCRext.UDCCdis is set to 1, then read accesses to this register from EL0
are trapped to UNDEFINED.
If HDCR.TDA is set to 1, then read accesses to this register from EL0 and EL1 are
trapped to Hyp mode.

Configurations Available in all processor build configurations.

Attributes DBGDIDR is a 32-bit register.

The following figure shows the DBGDIDR bit assignments.

31 28 27 24 23 20 19 16 15 14 13 12 11 0

WRPs BRPs CTX_CMPs Version RES0

SE_imp
RES0

RES1
nSUHD_imp

Figure 11-2  DBGDIDR bit assignments

The following table shows the DBGDIDR bit assignments.

Table 11-2  DBGDIDR bit assignments

Bits Name Function

[31:28] WRPs The number of Watchpoint Register Pairs (WRPs) implemented. The number of implemented WRPs is one
more than the value of this field. The value is:

0x7 The processor implements 8 WRPs.

[27:24] BRPs The number of Breakpoint Register Pairs (BRPs) implemented. The number of implemented BRPs is one
more than the value of this field. The value is:

0x7 The processor implements 8 BRPs.

11 Debug
11.4 System register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

11-358

Non-Confidential



Table 11-2  DBGDIDR bit assignments (continued)

Bits Name Function

[23:20] CTX_CMPs The number of BRPs that can be used for Context matching. This is one more than the value of this field. The
value is:

0x1 The processor implements two Context matching breakpoints, breakpoints 6 and 7.

[19:16] Version The Debug architecture version.

0x6 The processor implements Armv8 Debug architecture.

[15] - Reserved, RES1.

[14] nSUHD_imp Secure User Halting Debug not implemented bit. The value is:

0 The processor does not implement Secure User Halting Debug.

[13] - Reserved, RES0.

[12] SE_imp Security Extensions implemented bit. The value is:

0 The processor does not implement Security Extensions.

[11:0] - Reserved, RES0.

To access the DBGDIDR:

MRC p14, 0, <Rt>, c0, c0, 0; Read DBGDIDR into Rt

11.4.2 Debug Device ID Register

The DBGDEVID specifies the version of the Debug architecture that is implemented and some features
of the debug implementation.

Usage constraints This register is read-only. For a summary of the conditions which affect whether
access to this register is permitted, see 11.2.4 External register access permissions
on page 11-354. For a detailed description see Arm® Architecture Reference Manual
Supplement Armv8, for Armv8-R architecture profile.

Traps and enables If HDCR.TDA is set to 1, then read accesses to this register from EL1 are trapped
to Hyp mode.

Configurations Available in all processor build configurations.
Attributes DBGDEVID is a 32-bit register.

The following figure shows the DBGDEVID bit assignments.

CIDMask

31 4 3 0

PCsample

28 27 24 23 20 19 16 15 12 11 8 7

AuxRegs DoubleLock VirtExtns VectorCatch

BPAddrMask WPAddrMask

Figure 11-3  DBGDEVID bit assignments

The following table shows the DBGDEVID bit assignments.

11 Debug
11.4 System register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

11-359

Non-Confidential



Table 11-3  DBGDEVID bit assignments

Bits Name Function

[31:28] CIDMask Specifies the level of support for the Context ID matching breakpoint masking capability. This value is:

0x0 Context ID masking is not implemented.

[27:24] AuxRegs Specifies support for the Debug External Auxiliary Control Register. This value is:

0x0 The processor does not support Debug External Auxiliary Control Register.

[23:20] DoubleLock Specifies support for the Debug OS Double Lock Register. This value is:

0x1 The processor supports Debug OS Double Lock Register.

[19:16] VirExtns Specifies whether EL2 is implemented. This value is:

0x1 The processor implements EL2.

[15:12] VectorCatch Defines the form of the vector catch event implemented. This value is:

0x0 The processor implements address matching form of vector catch.

[11:8] BPAddrMask Indicates the level of support for the instruction address matching breakpoint masking capability. This value
is:

0xF Breakpoint address masking not implemented. DBGBCRn[28:24] are RES0.

[7:4] WPAddrMask Indicates the level of support for the data address matching watchpoint masking capability. This value is:

0x1 Watchpoint address mask implemented.

[3:0] PCsample Indicates the level of support for Program Counter sampling using debug registers 40 and 43. This value is:

0x3 EDPCSR, EDCIDSR, and EDVIDSR are implemented as debug registers 40, 41, and 42.

To access the DBGDEVID:

MRC p14, 0, <Rt>, c7, c2, 7; Read DBGDEVID into Rt

11.4.3 Debug Device ID Register 1

The DBGDEVID1 adds to the information given by the DBGDIDR by describing other features of the
debug implementation.

Usage constraints

This register is read-only. For a summary of the conditions which affect whether access to this
register is permitted, see 11.2.4 External register access permissions on page 11-354. For a
detailed description see Arm® Architecture Reference Manual Supplement Armv8, for Armv8-R
architecture profile.

Traps and enables
If HDCR.TDA is set to 1, then read accesses to this register from EL1 are trapped to Hyp mode.

Configurations

Available in all processor build configurations.

Attributes
DBGDEVID1 is a 32-bit register.

The following figure shows the DBGDEVID1 bit assignments.

11 Debug
11.4 System register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

11-360

Non-Confidential



RES0

31 04 3

PCSROffset

Figure 11-4  DBGDEVID1 bit assignments

The following table shows the DBGDEVID1 bit assignments.

Table 11-4  DBGDEVID1 bit assignments

Bits Name Function

[31:4] - Reserved, RES0.

[3:0] PCSROffset Indicates the offset applied to PC samples returned by reads of EDPCSR. The value is:

0x2 EDPCSR samples have no offset applied and do not sample the instruction set state.

To access the DBGDEVID1:

MRC p14, 0, <Rt>, c7, c1, 7 ; Read DBGDEVID1 into Rt

11 Debug
11.4 System register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

11-361

Non-Confidential



11.5 Memory-mapped register summary
The Cortex-R52 processor includes support for memory-mapped access to the external debug interface.
This access capability is referred to as the memory-mapped external debug interface.

 Note 

The value of PADDRDBG31 and the CoreSight Software lock restrict write accesses to the debug
registers through the memory-mapped external debug interface. When PADDRDBG31 is driven LOW,
the CoreSight software lock must be used to unlock write permissions for the debug registers. When
PADDRDBG31 is driven HIGH, the software lock does not restrict the write access permissions of the
debug registers. The software lock is controlled with the Lock Access register.

The following table shows the offset address for the registers that are accessible from the memory-
mapped external debug interface. It also shows the CRn, op1, CRm, and op2 for the registers that are
also accessible through the internal (coproc==0b1110) interface.

Table 11-5  Memory-mapped debug register summary

Offset CRn op1 CRm op2 Name Type Width Description

0x020 - - - - EDESR RW 32-bit External Debug Event Status Register 

0x024 EDECR RW 32-bit External Debug Execution Control Register 

0x030 EDWARlo RO 32-bit External Debug Watchpoint Address Register, low word 

0x034 EDWARhi RO 32-bit External Debug Watchpoint Address Register, high word 

0x034 DBGDTRRX_EL0 RO 32bit Debug Data Transfer Register, Receive

0x084 EDITR WO 32-bit External Debug Instruction Transfer Register 

0x088 EDSCR RW 32-bit External Debug Status and Control Register 

0x08C DBGDTRTX_EL0 RO 32-bit Debug Data Transfer Register, Transmit

0x090 EDRCR WO 32-bit External Debug Reserve Control Register 

0x098 EDECCR RW 32-bit External Debug Exception Catch Control Register 

0x0A0 EDPCSRlo RO 32-bit External Debug Program Counter Sample Register, low
word 

0x0A4 EDCIDSR RO 32-bit External Debug Context ID Sample Register 

0x0A8 EDVIDSR RO 32-bit External Debug Virtual Context Sample Register 

0x0AC EDPCSRhi RO 32-bit External Debug Program Counter Sample Register, high
word 

0x300 c1 0 c0 4 DBGOSLAR WO 32-bit Debug OS Lock Access Register 

0x310 - - - - EDPRCR RW 32-bit External Debug Power/Reset Control Register 

0x314 EDPRSR RO 32-bit External Debug Processor Status Register 

11 Debug
11.5 Memory-mapped register summary

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

11-362

Non-Confidential



Table 11-5  Memory-mapped debug register summary (continued)

Offset CRn op1 CRm op2 Name Type Width Description

0x400 c0 0 c0 4 DBGBVR0 RW 32-bit Debug Breakpoint Value Register 0 

0x408 5 DBGBCR0 RW 32-bit Debug Breakpoint Control Register 0

0x410 c1 4 DBGBVR1 RW 32-bit Debug Breakpoint Value Register 1 

0x418 5 DBGBCR1 RW 32-bit Debug Breakpoint Control Register 1

0x420 c2 4 DBGBVR2 RW 32-bit Debug Breakpoint Value Register 2 

0x428 5 DBGBCR2 RW 32-bit Debug Breakpoint Control Register 2

0x430 c3 4 DBGBVR3 RW 32-bit Debug Breakpoint Value Register 3 

0x438 5 DBGBCR3 RW 32-bit Debug Breakpoint Control Register 3

0x440 c4 4 DBGBVR4 RW 32-bit Debug Breakpoint Value Register 4 

0x448 5 DBGBCR4 RW 32-bit Debug Breakpoint Control Register 4

0x450 c5 4 DBGBVR5 RW 32-bit Debug Breakpoint Value Register 5 

0x458 5 DBGBCR5 RW 32-bit Debug Breakpoint Control Register 5

0x460 c6 4 DBGBVR6 RW 32-bit Debug Breakpoint Value Register 6 

0x464 1 DBGBVR6 RW 32-bit Debug Breakpoint Extended Value Register 6

0x468 5 DBGBCR6 RW 32-bit Debug Breakpoint Control Register 6

0x470 c7 4 DBGBVR7 RW 32-bit Debug Breakpoint Value Register 7 

0x474 1 DBGBVR7 RW 32-bit Debug Breakpoint Extended Value Register 7

0x478 5 DBGBCR7 RW 32-bit Debug Breakpoint Control Register 7

0x800 c0 0 c0 6 DBGWVR0 RW 32-bit Debug Watchpoint Value Register 0 

0x808 7 DBGWCR0 RW 32-bit Debug Watchpoint Control Register 0

0x810 c1 6 DBGWVR1 RW 32-bit Debug Watchpoint Value Register 1 

0x818 7 DBGWCR1 RW 32-bit Debug Watchpoint Control Register 1

0x820 c2 6 DBGWVR2 RW 32-bit Debug Watchpoint Value Register 2 

0x828 7 DBGWCR2 RW 32-bit Debug Watchpoint Control Register 2

0x830 c3 6 DBGWVR3 RW 32-bit Debug Watchpoint Value Register 3 

0x838 7 DBGWCR3 RW 32-bit Debug Watchpoint Control Register 3

0x840 c4 6 DBGWVR4 RW 32-bit Debug Watchpoint Value Register 4 

0x848 7 DBGWCR4 RW 32-bit Debug Watchpoint Control Register 4

0x850 c5 6 DBGWVR5 RW 32-bit Debug Watchpoint Value Register 5 

0x858 7 DBGWCR5 RW 32-bit Debug Watchpoint Control Register 5

0x860 c6 6 DBGWVR6 RW 32-bit Debug Watchpoint Value Register 6 

0x868 7 DBGWCR6 RW 32-bit Debug Watchpoint Control Register 6

0x870 c7 6 DBGWVR7 RW 32-bit Debug Watchpoint Value Register 7 

0x878 7 DBGWCR7 RW 32-bit Debug Watchpoint Control Register 7

11 Debug
11.5 Memory-mapped register summary

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

11-363

Non-Confidential



Table 11-5  Memory-mapped debug register summary (continued)

Offset CRn op1 CRm op2 Name Type Width Description

0xC00 - - - - EDCCR RW 32-bit 11.6.1 External Debug Calibration Control Register
on page 11-366

0xD00 - - - - MIDR RO 32-bit 3.3.69 Main ID Register on page 3-155

0xD20 EDPFR[63:32] RO 32-bit 11.6.8 External Debug Processor Feature Register
on page 11-380

0xD24 EDPFR[31:0] RO 32-bit 11.6.8 External Debug Processor Feature Register
on page 11-380

0xD28 EDDFR[63:32] RO 32-bit 11.6.9 External Debug Feature Register on page 11-381

0xD2C EDDFR[31:0] RO 32-bit 11.6.9 External Debug Feature Register on page 11-381

0xD60 EDAA32PFR[63:32] RO 32-bit 11.6.7 External Debug AArch32 Processor Feature
Register on page 11-378

0xD64 EDAA32PFR[31:0] RO 32-bit 11.6.7 External Debug AArch32 Processor Feature
Register on page 11-378

0xFA0 c7 0 c8 6 DBGCLAIMSET RW 32-bit Debug Claim Tag Set Register 

0xFA4 c9 DBGCLAIMCLR RW 32-bit Debug Claim Tag Clear Register 

0xFB8 c14 DBGAUTHSTATUS RO 32-bit Debug Authentication Status Register 

0xFA8 - - - - EDDEVAFF0 RO 32-bit 3.3.78 Multiprocessor Affinity Register on page 3-166

0xFAC EDDEVAFF1 RO 32-bit External Debug Device Affinity Register 1. br

0xFB0 EDLAR WO 32-bit External Debug Lock Access Register 

0xFB4 EDLSR RO 32-bit External Debug Lock Status Register 

0xFBC EDDEVARCH RO 32-bit External Debug Device Architecture Register 

0xFC0 EDDEVID2 RO 32-bit External Debug Device ID Register 2

0xFC4 EDDEVID1 RO 32-bit 11.6.4 External Debug Device ID Register 1
on page 11-369

0xFC8 EDDEVID RO 32-bit 11.6.3 External Debug Device ID Register 0
on page 11-368

0xFCC EDDEVTYPE RO 32-bit External Debug Device Type Register 

br This register is RES0.

11 Debug
11.5 Memory-mapped register summary

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

11-364

Non-Confidential



Table 11-5  Memory-mapped debug register summary (continued)

Offset CRn op1 CRm op2 Name Type Width Description

0xFD0 - - - - EDPIDR4 RO 32-bit External Debug Peripheral Identification Register 4
on page 11-374

0xFE0 EDPIDR0 RO 32-bit External Debug Peripheral Identification Register 0
on page 11-371

0xFE4 EDPIDR1 RO 32-bit External Debug Peripheral Identification Register 1
on page 11-371

0xFE8 EDPIDR2 RO 32-bit External Debug Peripheral Identification Register 2
on page 11-372

0xFEC EDPIDR3 RO 32-bit External Debug Peripheral Identification Register 3
on page 11-373

0xFF0 EDCIDR0 RO 32-bit External Debug Component Identification Register 0
on page 11-375

0xFF4 EDCIDR1 RO 32-bit External Debug Component Identification Register 1
on page 11-376

0xFF8 EDCIDR2 RO 32-bit External Debug Component Identification Register 2
on page 11-377

0xFFC EDCIDR3 RO 32-bit External Debug Component Identification Register 3
on page 11-378

11 Debug
11.5 Memory-mapped register summary

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

11-365

Non-Confidential



11.6 Memory-mapped register descriptions
This section describes some of the Cortex-R52 processor memory-mapped debug registers, where these
are Cortex-R52-specific or have Cortex-R52-specific values.

For those registers not described in this chapter, see Arm® Architecture Reference Manual Supplement
Armv8, for Armv8-R architecture profile.

For a list of all the registers available through the external debug interface, see 11.5 Memory-mapped
register summary on page 11-362.

This section contains the following subsections:
• 11.6.1 External Debug Calibration Control Register on page 11-366.
• 11.6.2 External Debug Reserve Control Register on page 11-367.
• 11.6.3 External Debug Device ID Register 0 on page 11-368.
• 11.6.4 External Debug Device ID Register 1 on page 11-369.
• 11.6.5 External Debug Peripheral Identification Registers on page 11-370.
• 11.6.6 External Debug Component Identification Registers on page 11-375.
• 11.6.7 External Debug AArch32 Processor Feature Register on page 11-378.
• 11.6.8 External Debug Processor Feature Register on page 11-380.
• 11.6.9 External Debug Feature Register on page 11-381.

11.6.1 External Debug Calibration Control Register

The EDCCR register is used to invalidate data, read from the Flash or AXIM interface, that has been
cached in the Cortex-R52 data cache.

Usage constraints This register is accessible through the external debug interface, and is read/write.
For a summary of the calibration conditions which affect whether access to this
register is permitted, see 11.2.4 External register access permissions
on page 11-354.

Traps and enables There are no traps and enables affecting this register.
Configurations Available in all processor build configurations.

Attributes EDCCR is a 32-bit register.

The following figure shows the EDCCR bit assignments.

RES0

31 02 1

DCIACK
FDCIREQ

3

ADCIREQ

Figure 11-5  EDCCR bit assignments

The following table shows the EDCCR bit assignments.

11 Debug
11.6 Memory-mapped register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

11-366

Non-Confidential



Table 11-6  EDCCR bit assignments

Bits Name Function

[31:3] - Reserved, RES0.

[2] ADCIREQ For writes to this register:

0 Enables AXIM cache allocation

1 Invalidate cached data from the AXIM interface.

Reads from this register is RES0.

[1] DCIACK Indicates when cache invalidation has completed. This bit is RO.

1 Cache invalidation is complete.

0 Cache is not yet invalidated.

Writes are ignored.

[0] FDCIREQ For writes to this register:

0 Enables Flash cache allocation.

1 Invalidate cached data from the Flash interface.

Reads from this register indicate the state:

0 Cache allocation for AXIM and Flash is enabled.

1 Data cache invalidation for AXIM, Flash, or both has been requested. New accesses are not allocated for the
requested type.

EDCCR can be accessed through the external debug interface:

Table 11-7  EDCCR access information

Component Offset

Debug 0xC00

For more information on data cache invalidation, see 7.3.2 Data cache invalidation on page 7-222.

11.6.2 External Debug Reserve Control Register

The EDRCR is used to cancel bus requests and clear sticky bits in the EDSCR.

Usage constraints This register is accessible through the external debug interface, and is write-only.
For a summary of the conditions which affect whether access to this register is
permitted, see 11.2.4 External register access permissions on page 11-354. For a
detailed description see Arm® Architecture Reference Manual Supplement Armv8,
for Armv8-R architecture profile.

Traps and enables There are no traps and enables affecting this register.
Configurations Available in all processor build configurations.
Attributes EDRCR is a 32-bit register.

The following figure shows the EDRCR bit assignments.

11 Debug
11.6 Memory-mapped register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

11-367

Non-Confidential



RES0

31 02 1

CBRRQ
CSPA

4 35

CSE

RES0

Figure 11-6  EDRCR bit assignments

The following table shows the EDRCR bit assignments.

Table 11-8  EDRCR bit assignments

Bits Name Function

[31:5] - Reserved, RES0.

[4] CBRRQ Allow imprecise entry to Debug state. The actions on writing to this bit are:

0 No action.

1 Allow imprecise entry to Debug state, for example by canceling pending bus accesses.

Setting this bit to 1 allows a debugger to request imprecise entry to Debug state. An External Debug Request debug
event must be pending before the debugger sets this bit to 1.

[3] CSPA Clear Sticky Pipeline Advance. This bit is used to clear the EDSCR.PipeAdv bit to 0. The possible values are:

0 No action.

1 Clear the EDSCR.PipeAdv bit to 0.

[2] CSE Clear Sticky Error. Used to clear the EDSCR cumulative error bits to 0. The possible values are:

0 No action.

1 Clear the EDSCR.{TXU, RXO, ERR} bits, and, if the processor is in Debug state, the EDSCR.ITO bit, to 0.

[1:0] - Reserved, RES0.

EDRCR can be accessed through the external debug interface:

Table 11-9  EDRCR access information

Component Offset

Debug 0x090

11.6.3 External Debug Device ID Register 0

The EDDEVID provides extra information for external debuggers about features of the debug
implementation.

Usage constraints

This register is accessible through the external debug interface, and is read-only. For a summary
of the conditions which affect whether access to this register is permitted, see 11.2.4 External
register access permissions on page 11-354. For a detailed description, see Arm® Architecture
Reference Manual Supplement Armv8, for Armv8-R architecture profile.

11 Debug
11.6 Memory-mapped register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

11-368

Non-Confidential



Traps and enables
There are no traps and enables affecting this register.

Configurations
Available in all processor build configurations.

Attributes
EDDEVID is a 32-bit register.

The following figure shows the EDDEVID bit assignments.

RES0

31 028 27 24 23 34

AuxRegs RES0 PC Sample

Figure 11-7  EDDEVID bit assignments

The following table shows the EDDEVID bit assignments.

Table 11-10  EDDEVID bit assignments

Bits Name Function

[31:28] - Reserved, RES0.

[27:24] AuxRegs Indicates support for auxiliary registers. The possible values are:

0x1 External Debug Auxiliary Control Register, EDACR, is implemented.

[23:4] - Reserved, RES0.

[3:0] PC Sample Indicates the level of sample-based profiling support using external debug registers 40 through 43. The value is:

0x3 EDPCSR, EDCIDSR, and EDVIDSR are implemented.

EDDEVID can be accessed through the external debug interface:

Table 11-11  EDDEVID access information

Component Offset

Debug 0xFC8

11.6.4 External Debug Device ID Register 1

The EDDEVID1 provides extra information for external debuggers about features of the debug
implementation.

Usage constraints

This register is accessible through the external debug interface, and is read-only. For a summary
of the conditions which affect whether access to this register is permitted, see 11.2.4 External
register access permissions on page 11-354. For a detailed description, see Arm® Architecture
Reference Manual Supplement Armv8, for Armv8-R architecture profile.

Traps and enables
There are no traps and enables affecting this register.

Configurations
The EDDEVID1 is in the Debug power domain, and is available in all processor build
configurations.

11 Debug
11.6 Memory-mapped register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

11-369

Non-Confidential



Attributes
EDDEVID1 is a 32-bit register.

The following figure shows the EDDEVID1 bit assignments.

RES0

31 04 3

PCSROFFSET

Figure 11-8  EDDEVID1 bit assignments

The following table shows the EDDEVID1 bit assignments.

Table 11-12  EDDEVID1 bit assignments

Bits Name Function

[31:4] - Reserved, RES0.

[3:0] PCSROffset Indicates the offset applied to PC samples returned by reads of EDPCSR. The value is:

0x2 EDPCSR samples have no offset applied and do not sample the instruction set state.

EDDEVID1 can be accessed through the external debug interface:

Table 11-13  EDDEVID1 access information

Component Offset

Debug 0xFC4

11.6.5 External Debug Peripheral Identification Registers

The External Debug Peripheral Identification Registers provide information to identify an external debug
component.

The External Debug Peripheral Identification Registers provide standard information required for all
components that conform to the Arm® Debug Interface Architecture Specification ADIv5.0 to ADIv5.2.
For the Cortex-R52 processor, there is a set of five registers as listed, in address order, in the following
table.

Table 11-14  Summary of the External Debug Peripheral Identification Registers

Register Value Offset

EDPIDR4 0x04 0xFD0

EDPIDR0 0x13 0xFE0

EDPIDR1 0xBD 0xFE4

EDPIDR2 0x3B 0xFE8

EDPIDR3 0x00 0xFEC

Only bits[7:0] of each External Debug Peripheral ID Register are used, with bits[31:8] RAZ.

11 Debug
11.6 Memory-mapped register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

11-370

Non-Confidential



The External Debug Peripheral ID registers are:
• External Debug Peripheral Identification Register 0 on page 11-371.
• External Debug Peripheral Identification Register 1 on page 11-371.
• External Debug Peripheral Identification Register 2 on page 11-372.
• External Debug Peripheral Identification Register 3 on page 11-373.
• External Debug Peripheral Identification Register 4 on page 11-374.

External Debug Peripheral Identification Register 0

The EDPIDR0 provides information to identify an external debug component.

Usage constraints

This register is accessible through the external debug interface, and is read-only. For a summary
of the conditions which affect whether access to this register is permitted, see 11.2.4 External
register access permissions on page 11-354. For a detailed description, see Arm® Architecture
Reference Manual Supplement Armv8, for Armv8-R architecture profile.

Traps and enables
There are no traps and enables affecting this register.

Configurations
Available in all processor build configurations.

Attributes
EDPIDR0 is a 32-bit register.

The following figure shows the EDPIDR0 bit assignments.

RES0

31 08 7

Part_0

Figure 11-9  EDPIDR0 bit assignments

The following table shows the EDPIDR0 bit assignments.

Table 11-15  EDPIDR0 bit assignments

Bits Name Function

[31:8] - Reserved, RES0.

[7:0] Part_0 0x13 Least significant byte of the debug part number.

EDPIDR0 can be accessed through the external debug interface:

Table 11-16  EDPIDR0 access information

Component Offset

Debug 0xFE0

External Debug Peripheral Identification Register 1

The EDPIDR1 provides information to identify an external debug component.

11 Debug
11.6 Memory-mapped register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

11-371

Non-Confidential



Usage constraints

This register is accessible through the external debug interface, and is read-only. For a summary
of the conditions which affect whether access to this register is permitted, see 11.2.4 External
register access permissions on page 11-354. For a detailed description, see Arm® Architecture
Reference Manual Supplement Armv8, for Armv8-R architecture profile.

Traps and enables
There are no traps and enables affecting this register.

Configurations
Available in all processor build configurations.

Attributes
EDPIDR1 is a 32-bit register.

The following figure shows the EDPIDR1 bit assignments.

RES0

31 08 7 34

Part_1Des_0

Figure 11-10  EDPIDR1 bit assignments

The following table shows the EDPIDR1 bit assignments.

Table 11-17  EDPIDR1 bit assignments

Bits Name Function

[31:8] - Reserved, RES0.

[7:4] DES_0 0xB Arm Limited. This is the least significant nibble of JEP106 ID code.

[3:0] Part_1 0xD Most significant nibble of the debug part number.

EDPIDR1 can be accessed through the external debug interface:

Table 11-18  EDPIDR1 access information

Component Offset

Debug 0xFE4

External Debug Peripheral Identification Register 2

The EDPIDR2 provides information to identify an external debug component.

Usage constraints

This register is accessible through the external debug interface, and is read-only. For a summary
of the conditions which affect whether access to this register is permitted, see 11.2.4 External
register access permissions on page 11-354. For a detailed description, see Arm® Architecture
Reference Manual Supplement Armv8, for Armv8-R architecture profile.

Traps and enables
There are no traps and enables affecting this register.

Configurations
Available in all processor build configurations.

11 Debug
11.6 Memory-mapped register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

11-372

Non-Confidential



Attributes
EDPIDR2 is a 32-bit register.

The following figure shows the EDPIDR2 bit assignments.

RES0

31 08 7 34

Revision

JEDEC

Des_1

Figure 11-11  EDPIDR2 bit assignments

The following table shows the EDPIDR2 bit assignments.

Table 11-19  EDPIDR2 bit assignments

Bits Name Function

[31:8] - Reserved, RES0.

[7:4] Revision 0x3

[3] JEDEC 0b1 RAO. Indicates a JEP106 identity code is used.

[2:0] DES_1 0b011 Arm Limited. This is the most significant nibble of JEP106 ID code.

EDPIDR2 can be accessed through the external debug interface:

Table 11-20  EDPIDR2 access information

Component Offset

Debug 0xFE8

External Debug Peripheral Identification Register 3

The EDPIDR3 provides information to identify an external debug component.

Usage constraints

This register is accessible through the external debug interface, and is read-only. For a summary
of the conditions which affect whether access to this register is permitted, see 11.2.4 External
register access permissions on page 11-354. For a detailed description, see Arm® Architecture
Reference Manual Supplement Armv8, for Armv8-R architecture profile.

Traps and enables
There are no traps and enables affecting this register.

Configurations
Available in all processor build configurations.

Attributes
EDPIDR3 is a 32-bit register.

The following figure shows the EDPIDR3 bit assignments.

11 Debug
11.6 Memory-mapped register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

11-373

Non-Confidential



RES0

31 08 7

CMOD

34

REVAND

Figure 11-12  EDPIDR3 bit assignments

The following table shows the EDPIDR3 bit assignments.

Table 11-21  EDPIDR3 bit assignments

Bits Name Function

[31:8] - Reserved, RES0.

[7:4] REVAND 0x0 Part minor revision.

[3:0] CMOD 0x0 Customer modified.

EDPIDR3 can be accessed through the external debug interface:

Table 11-22  EDPIDR3 access information

Component Offset

Debug 0xFEC

External Debug Peripheral Identification Register 4

The EDPIDR4 provides information to identify an external debug component.

Usage constraints

This register is accessible through the external debug interface, and is read-only. For a summary
of the conditions which affect whether access to this register is permitted, see 11.2.4 External
register access permissions on page 11-354. For a detailed description, see Arm® Architecture
Reference Manual Supplement Armv8, for Armv8-R architecture profile.

Traps and enables
There are no traps and enables affecting this register.

Configurations
Available in all processor build configurations.

Attributes
EDPIDR4 is a 32-bit register.

The following figure shows the EDPIDR4 bit assignments.

RES0

31 08 7

DES_2Size

Figure 11-13  EDPIDR4 bit assignments

The following table shows the EDPIDR4 bit assignments.

11 Debug
11.6 Memory-mapped register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

11-374

Non-Confidential



Table 11-23  EDPIDR4 bit assignments

Bits Name Function

[31:8] - Reserved, RES0.

[7:4] Size 0x0 4KB. Size of the component.

[3:0] DES_2 0x4 Arm Limited. This is the least significant nibble JEP106 continuation code.

EDPIDR4 can be accessed through the external debug interface:

Table 11-24  EDPIDR4 access information

Component Offset

Debug 0xFD0

11.6.6 External Debug Component Identification Registers

There are four read-only External Debug Component Identification Registers, Debug Component ID0
through Debug Component ID3. The following table shows these registers.

Table 11-25  Summary of the External Debug Component Identification Registers

Register Value Offset

Component ID0 0x0D 0xFF0

Component ID1 0x90 0xFF4

Component ID2 0x05 0xFF8

Component ID3 0xB1 0xFFC

The External Debug Component Identification Registers identify Debug as an Arm Debug Interface v5
component. The External Debug Component ID registers are:
• External Debug Component Identification Register 0 on page 11-375.
• External Debug Component Identification Register 1 on page 11-376.
• External Debug Component Identification Register 2 on page 11-377.
• External Debug Component Identification Register 3 on page 11-378.

External Debug Component Identification Register 0

The EDCIDR0 provides information to identify an external debug component.

Usage constraints

This register is accessible through the external debug interface, and is read-only. For a summary
of the conditions which affect whether access to this register is permitted, see 11.2.4 External
register access permissions on page 11-354. For a detailed description, see Arm® Architecture
Reference Manual Supplement Armv8, for Armv8-R architecture profile.

Traps and enables
There are no traps and enables affecting this register.

Configurations
Available in all processor build configurations.

Attributes
EDCIDR0 is a 32-bit register.

The following figure shows the EDCIDR0 bit assignments.

11 Debug
11.6 Memory-mapped register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

11-375

Non-Confidential



RES0

31 08 7

PRMBL_0

Figure 11-14  EDCIDR0 bit assignments

The following table shows the EDCIDR0 bit assignments.

Table 11-26  EDCIDR0 bit assignments

Bits Name Function

[31:8] - Reserved, RES0.

[7:0] PRMBL_0 0x0D Preamble byte 0.

EDCIDR0 can be accessed through the external debug interface:

Table 11-27  EDCIDR0 access information

Component Offset

Debug 0xFF0

External Debug Component Identification Register 1

The EDCIDR1 provides information to identify an external debug component.

Usage constraints

This register is accessible through the external debug interface, and is read-only. For a summary
of the conditions which affect whether access to this register is permitted, see 11.2.4 External
register access permissions on page 11-354. For a detailed description, see Arm® Architecture
Reference Manual Supplement Armv8, for Armv8-R architecture profile.

Traps and enables
There are no traps and enables affecting this register.

Configurations
Available in all processor build configurations.

Attributes
EDCIDR1 is a 32-bit register.

The following figure shows the EDCIDR1 bit assignments.

RES0

31 08 7

PRMBL_1CLASS

34

Figure 11-15  EDCIDR1 bit assignments

The following table shows the EDCIDR1 bit assignments.

11 Debug
11.6 Memory-mapped register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

11-376

Non-Confidential



Table 11-28  EDCIDR1 bit assignments

Bits Name Function

[31:8] - Reserved, RES0.

[7:4] CLASS 0x9 Debug component.

[3:0] PRMBL_1 0x0 Preamble.

EDCIDR1 can be accessed through the external debug interface:

Table 11-29  EDCIDR1 access information

Component Offset

Debug 0xFF4

External Debug Component Identification Register 2

The EDCIDR2 provides information to identify an external debug component.

Usage constraints

This register is accessible through the external debug interface, and is read-only. For a summary
of the conditions which affect whether access to this register is permitted, see 11.2.4 External
register access permissions on page 11-354. For a detailed description, see Arm® Architecture
Reference Manual Supplement Armv8, for Armv8-R architecture profile.

Traps and enables
There are no traps and enables affecting this register.

Configurations
Available in all processor build configurations.

Attributes
EDCIDR2 is a 32-bit register.

The following figure shows the EDCIDR2 bit assignments.

RES0

31 08 7

PRMBL_2

Figure 11-16  EDCIDR2 bit assignments

The following table shows the EDCIDR2 bit assignments.

Table 11-30  EDCIDR2 bit assignments

Bits Name Function

[31:8] - Reserved, RES0.

[7:0] PRMBL_2 0x05 Preamble byte 2.

EDCIDR2 can be accessed through the external debug interface:

11 Debug
11.6 Memory-mapped register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

11-377

Non-Confidential



Table 11-31  EDCIDR2 access information

Component Offset

Debug 0xFF8

External Debug Component Identification Register 3

The EDCIDR3 provides information to identify an external debug component.

Usage constraints

This register is accessible through the external debug interface, and is read-only. For a summary
of the conditions which affect whether access to this register is permitted, see 11.2.4 External
register access permissions on page 11-354. For a detailed description, see Arm® Architecture
Reference Manual Supplement Armv8, for Armv8-R architecture profile.

Traps and enables
There are no traps and enables affecting this register.

Configurations
Available in all processor build configurations.

Attributes
EDCIDR3 is a 32-bit register.

The following figure shows the EDCIDR3 bit assignments.

RES0

31 08 7

PRMBL_3

Figure 11-17  EDCIDR3 bit assignments

The following table shows the EDCIDR3 bit assignments.

Table 11-32  EDCIDR3 bit assignments

Bits Name Function

[31:8] - Reserved, RES0.

[7:0] PRMBL_3 0xB1 Preamble byte 3.

EDCIDR3 can be accessed through the external debug interface:

Table 11-33  EDCIDR3 access information

Component Offset

Debug 0xFFC

11.6.7 External Debug AArch32 Processor Feature Register

EDAA32PFR provides additional information about implemented processor features in AArch32.

Usage constraints

This register is accessible through the external debug interface and is read-only.

Traps and enables
There are no traps and enables affecting this register.

11 Debug
11.6 Memory-mapped register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

11-378

Non-Confidential



Configurations

Available in all build configurations.

Attributes
EDAA32PFR is a 64-bit register.

The following figure shows the EDAA32PFR bit assignments.

AA32EL3 AA32EL2 PMSA

4 3

RES0

63

RES0

31 16 15 012 11 8 7

VMSA

32

Figure 11-18  EDAA32PFR bit assignments

The following table shows the EDAA32PFR bit assignments.

Table 11-34  EDAA32PFR bit assignments

Bits Name Function

[63:16] - Reserved, RES0

[15:12] AA32EL3 AArch32 EL3 Exception level handling. The value is:

0b0000 EL3 is not implemented.

[11:8] AA32EL2 AArch32 EL2 Exception level handling. The value is:

0b0001 EL2 can be executed in Arch32 state only.

[7:4] PMSA Indicates support for PMSA. The value is:

0b0100 PMSAv8 supported, Armv8-R profile.

[3:0] VMSA Indicates support for an R-profile VMSA. The value is:

0b0000 VMSA not supported.

EDAA32PFR[31:0] can be accessed through the external debug interface:

Table 11-35  EDAA32PFR[31:0] access information

Component Offset

Debug 0xD64

EDAA32PFR[63:32] can be accessed through the external debug interface:

Table 11-36  EDAA32PFR[63:32] access information

Component Offset

Debug 0xD60

11 Debug
11.6 Memory-mapped register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

11-379

Non-Confidential



11.6.8 External Debug Processor Feature Register

EDPFR provides additional information about implemented processor features in AArch64. Though
Armv8-R implemented by Cortex-R52 does not have AArch64 state, this register is still included.

Usage constraints

This register is accessible through the external debug interface and is read-only.

Traps and enables
There are no traps and enables affecting this register.

Configurations
Available in all build configurations.

Attributes
EDPFR is a 64-bit register.

The following figure shows the EDPFR bit assignments.

31 78

GIC

16 15 12 11 4 3 0

RES0

28 24 20

AdvSIMD

27 23

FP

19

EL3 EL2 EL1 EL0

63 32

RES0

Figure 11-19  EDPFR bit assignments

The following table shows the EDPFR bit assignments.

Table 11-37  EDPFR bit assignments

Bits Name Function

[63:28] - Reserved, RES0.

[27:24] GIC GIC system register interface. The value is:

0b0001 System register interface to GICv3 supported.

[23:20] AdvSIMD Advanced SIMD. The value is:

0b0000 Advanced SIMD is implemented.

[19:16] FP Floating-point. The value is:

0b0000 Floating-point is implemented.

[15:12] EL3 AArch64 ELn handling. The value is:

0b0000 ELn is not implemented or cannot use AArch64.

[11:8] EL2 AArch64 ELn handling. The value is:

0b0000 ELn is not implemented or cannot use AArch64.

11 Debug
11.6 Memory-mapped register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

11-380

Non-Confidential



Table 11-37  EDPFR bit assignments (continued)

Bits Name Function

[7:4] EL1 AArch64 ELn handling. The value is:

0b0000 ELn must use only AArch32.

[3:0] EL0 AArch64 ELn handling. The value is:

0b0000 ELn must use only AArch32.

EDPFR[31:0] can be accessed through the external debug interface:

Table 11-38  EDPFR[31:0] access information

Component Offset

Debug 0xD20

EDPFR[63:32] can be accessed through the external debug interface:

Table 11-39  EDPFR[63:32] access information

Component Offset

Debug 0xD24

11.6.9 External Debug Feature Register

EDDFR provides top-level information about the debug system.

Usage constraints

This register is accessible through the external debug interface and is read-only.

Traps and enables
There are no traps and enables affecting this register.

Configurations
Available in all build configurations.

Attributes
EDDFR is a 64-bit register.

The following figure shows the EDDFR bit assignments.

31 78

RES0

16 15 12 11 4 3 0

CTX_CMPs

28 24 20

WRPs

27 23

RES0

19

BRPs PMUVer TraceVer

Reserved, UNKNOWN

63 32

RES0

Figure 11-20  EDDFR bit assignments

The following table shows the EDDFR bit assignments.

11 Debug
11.6 Memory-mapped register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

11-381

Non-Confidential



Table 11-40  EDDFR bit assignments

Bits Name Function

[63:32] - Reserved, RES0.

[31:28] CTX_CMPs 0x1. Two breakpoints are context-aware. These are the highest numbered breakpoints.

[27:24] - Reserved, RES0.

[23:20] WRPs 0x7. Eight watchpoints implemented.

[19:16] - Reserved, RES0.

[15:12] BRPs 0x7. Eight watchpoints implemented.

[11:8] PMUVer Performance Monitors extension version. Indicates whether System register interface to Performance Monitors
extension is implemented. The value is:

0b0001 Performance Monitors extension System registers implemented, PMUv3.

[7:4] TraceVer Trace support. Indicates whether System register interface to a trace macrocell is implemented. The value is:

0b0000 Trace macrocell System registers not implemented.

[3:0] - Reserved, UNKNOWN.

EDDFR[31:0] can be accessed through the external debug interface:

Table 11-41  EDDFR[31:0] access information

Component Offset

Debug 0xD2C

EDDFR[63:32] can be accessed through the external debug interface:

Table 11-42  EDPFR[63:32] access information

Component Offset

Debug 0xD28

11 Debug
11.6 Memory-mapped register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

11-382

Non-Confidential



11.7 External debug interface
The system can access memory-mapped debug registers through the APB interface.

The APB interface is compliant with the AMBA 3 APB protocol.

The following figure shows the debug interface implemented in the Cortex-R52 processor. For more
information on these signals, see the Arm® CoreSight™ Architecture Specification v2.0.

DBGEN
HIDEN
NIDEN

HNIDEN

Authentication
interface

COMMTX
COMMRX

DCC
handshake

DBGACK
EDBGRQ

Power
controller
interface

PSELDBG
PADDRDBG

PRDATADBG

PWDATADBG
PENABLEDBG

PREADYDBG

PSLVERRDBG
PWRITEDBG

PCLKENDBG

Debug 
slave port, 

APBv3

Debug 
state
entry

CFGDBGROMADDR
CFGDBGROMADDRV

Processor

DBGRSTREQ

Reset
controller
interface

COREACTIVEx[0]

nPRESETDBG

Configuration

Figure 11-21  External debug interface, including APBv3 slave port

This section contains the following subsections:
• 11.7.1 Debug memory map on page 11-383.
• 11.7.2 Debug power interface on page 11-384.
• 11.7.3 Debug over warm reset on page 11-384.
• 11.7.4 Changing the authentication signals on page 11-385.

11.7.1 Debug memory map

The APB memory map supports up to four cores in a cluster. The following table shows the address
mapping for the debug and trace components.

Table 11-43  Address mapping for debug and trace components

Address range Component bs

0x000000 - 0x00FFFF ROM table

0x010000 - 0x01FFFF Core 0 Debug

0x020000 - 0x02FFFF Core 0 CTI

0x030000 - 0x03FFFF Core 0 PMU

0x040000 - 0x04FFFF Core 0 Trace

0x050000 - 0x10FFFF Reserved

bs Indicates the mapped component if present, otherwise reserved.

11 Debug
11.7 External debug interface

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

11-383

Non-Confidential



Table 11-43  Address mapping for debug and trace components (continued)

Address range Component bs

0x110000 - 0x11FFFF Core 1 Debug

0x120000 - 0x12FFFF Core 1 CTI

0x130000 - 0x13FFFF Core 1 PMU

0x140000 - 0x14FFFF Core 1 Trace

0x150000 - 0x20FFFF Reserved

0x210000 - 0x21FFFF Core 2 Debug

0x220000 - 0x22FFFF Core 2 CTI

0x230000 - 0x23FFFF Core 2 PMU

0x240000 - 0x24FFFF Core 2 Trace

0x250000 - 0x30FFFF Reserved

0x310000 - 0x31FFFF Core 3 Debug

0x320000 - 0x32FFFF Core 3 CTI

0x330000 - 0x33FFFF Core 3 PMU

0x340000 - 0x34FFFF Core 3 Trace

0x350000 - 0x3FFFFF Reserved

11.7.2 Debug power interface

The EDPRSR.PU bit reflects the core power state. The COREACTIVEx[0] output indicates to the
power controller when emulated power down is required.

Related reference
5.4.2 Cortex-R52 LPI on page 5-209

11.7.3 Debug over warm reset

When set HIGH, the CFGL1CACHEINVDISx input signal disables the automatic hardware controlled
invalidation of the L1 data cache after the core is reset using nCORERESETx or nCPUPORESETx.

The CFGL1CACHEINVDISx must be used only to assist debug of an external watchdog triggered reset
by allowing the contents of the L1 data cache before the reset to be observable after the reset. If reset is
asserted, while L1 data cache fetch is being performed, the accuracy of those cache entries is not
guaranteed.

You must not use the CFGL1CACHEINVDISx signal to disable automatic hardware-controlled
invalidation of the L1 data cache in normal processor powerup sequences.

Each of the CFGL1CACHEINVDISx signals corresponds to one of the cores, core x, in the cluster.
Each core samples the signal when its corresponding nCORERESETx or nCPUPORESETx is
asserted.

If the functionality offered by the CFGL1CACHEINVDISx input signal is not required, the input must
be tied to LOW.

Related concepts
6.1 Initialization on page 6-213

bs Indicates the mapped component if present, otherwise reserved.

11 Debug
11.7 External debug interface

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

11-384

Non-Confidential



11.7.4 Changing the authentication signals

The NIDENx, DBGENx, HIDENx, and HNIDENx input signals must be either tied off to some fixed
value or controlled by some external device.

If software running on the processor has control over an external device that drives the authentication
signals, it must make the change using a safe sequence:
1. Execute an implementation-specific sequence of instructions to change the signal value. For example,

this might be a single STR instruction that writes certain value to a control register in a system
peripheral.

2. If the prior step involves any memory operation, issue a DSB instruction.
3. Poll the DBGAUTHSTATUS register to check whether the processor has already detected the

changed value of these signals. This is required because the system might not issue the signal change
to the processor until several cycles after the DSB instruction completes.

4. Issue an ISB instruction or exception entry or exception return.

The software cannot perform debug or analysis operations that depend on the new value of the
authentication signals until this procedure is complete. The same rules apply when the debugger has
control of the processor through the Instruction Transfer Register, EDITR, while in Debug state. The
relevant combinations of the DBGENx, NIDENx, HIDENx, and HNIDENx values can be determined
by polling DBGAUTHSTATUS.

11 Debug
11.7 External debug interface

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

11-385

Non-Confidential



11.8 ROM table
This section provides details on the ROM table of the processor.

The Cortex-R52 processor includes a ROM table that complies with the Arm® CoreSight™ Architecture
Specification v2.0. This table contains a list of components such as core debug units, Cross Trigger
Interfaces (CTIs), core Performance Monitoring Units (PMUs), and Embedded Trace Macrocells
(ETMs). Debuggers can use the ROM table to determine which components are implemented inside the
processor.

If a component is not included in your configuration of the processor, the corresponding debug APB
ROM table entry is still present but the component is marked as not present.

The ROM table register interface to the ROM table entries is the APB slave port.

This section contains the following subsections:
• 11.8.1  ROM table register summary on page 11-386.
• 11.8.2 ROM table register descriptions on page 11-387.
• 11.8.3 ROM table Debug Peripheral Identification Registers on page 11-388.
• 11.8.4 ROM table Debug Component Identification Registers on page 11-393.

11.8.1 ROM table register summary

The following table shows the address offsets of each of the entries from the physical base address of the
ROM table, which is configured by tying off the CFGDBGROMADDR and CFGDBGROMADDRV
pins when the processor is integrated and reflected in DBGDRAR.

Table 11-44  ROM table registers

Offset Name Type Description

0x000 ROMENTRY0 RO Core 0 Debug, see ROM entry registers on page 11-387

0x004 ROMENTRY1 RO Core 0 CTI, see ROM entry registers on page 11-387

0x008 ROMENTRY2 RO Core 0 PMU, see ROM entry registers on page 11-387

0x00C ROMENTRY3 RO Core 0 ETM, see ROM entry registers on page 11-387

0x010 ROMENTRY4 RO Core 1 Debug, see ROM entry registers on page 11-387

0x014 ROMENTRY5 RO Core 1 CTI, see ROM entry registers on page 11-387

0x018 ROMENTRY6 RO Core 1 PMU, see ROM entry registers on page 11-387

0x01C ROMENTRY7 RO Core 1 ETM, see ROM entry registers on page 11-387

0x020 ROMENTRY8 RO Core 2 Debug, see ROM entry registers on page 11-387

0x024 ROMENTRY9 RO Core 2 CTI, see ROM entry registers on page 11-387

0x028 ROMENTRY10 RO Core 2 PMU, see ROM entry registers on page 11-387

0x02C ROMENTRY11 RO Core 2 ETM, see ROM entry registers on page 11-387

0x030 ROMENTRY12 RO Core 3 Debug, see ROM entry registers on page 11-387

0x034 ROMENTRY13 RO Core 3 CTI, see ROM entry registers on page 11-387

0x038 ROMENTRY14 RO Core 3 PMU, see ROM entry registers on page 11-387

0x03C ROMENTRY15 RO Core 3 ETM, see ROM entry registers on page 11-387

0x040-0xFCC - RO Reserved, RES0

0xFD0 ROMPIDR4 RO ROM table Debug Peripheral Identification Register 4 on page 11-392

11 Debug
11.8 ROM table

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

11-386

Non-Confidential



Table 11-44  ROM table registers (continued)

Offset Name Type Description

0xFD4 ROMPIDR5 RO ROM table Debug Peripheral Identification Register 5-7 on page 11-393

0xFD8 ROMPIDR6 RO ROM table Debug Peripheral Identification Register 5-7 on page 11-393

0xFDC ROMPIDR7 RO ROM table Debug Peripheral Identification Register 5-7 on page 11-393

0xFE0 ROMPIDR0 RO ROM table Debug Peripheral Identification Register 0 on page 11-389

0xFE4 ROMPIDR1 RO ROM table Debug Peripheral Identification Register 1 on page 11-390

0xFE8 ROMPIDR2 RO ROM table Debug Peripheral Identification Register 2 on page 11-391

0xFEC ROMPIDR3 RO ROM table Debug Peripheral Identification Register 3 on page 11-391

0xFF0 ROMCIDR0 RO ROM table Debug Component Identification Register 0 on page 11-394

0xFF4 ROMCIDR1 RO ROM table Debug Component Identification Register 1 on page 11-394

0xFF8 ROMCIDR2 RO ROM table Debug Component Identification Register 2 on page 11-395

0xFFC ROMCIDR3 RO ROM table Debug Component Identification Register 3 on page 11-396

11.8.2 ROM table register descriptions

This section describes the ROM table registers.

ROM entry registers

ROMENTRY0-15 indicates to the debugger whether the debug component is present in the debug logic
of the processor. There are 16 ROMENTRY registers in the Cortex-R52 processor.

Usage constraints The ROMENTRY registers are all read-only.

Traps and enables There are no traps and enables affecting these registers.
Configurations Available in all processor build configurations.
Attributes ROMENTRY0-15 are 32-bit registers.

The following figure shows the ROMENTRY bit assignments.

31 0

RES0

Format

1211

Component present

Address offset

12

Figure 11-22  ROMENTRY bit assignments

The following table shows the ROMENTRY bit assignments.

Table 11-45  ROMENTRY bit assignments

Bits Name Function

[31:12] Address offset Address offset for the debug component.

[11:2] - Reserved, RES0.

11 Debug
11.8 ROM table

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

11-387

Non-Confidential



Table 11-45  ROMENTRY bit assignments (continued)

Bits Name Function

[1] Format Format of the ROM table entry. The value for all ROMENTRY registers is 1, indicating 32 bit format.

[0] Component presentbt Indicates whether the component is present:

0 Component is not present.

1 Component is present.

The address of a debug component is determined by shifting the address offset 12 places to the left and
adding the result to the base address of the processor ROM table.

The following table shows the address offset values for all ROMENTRY values and the resulting
ROMENTRY values. If a core is not implemented, the ROMENTRY registers for its Debug, CTI, PMU,
and ETM components are 0x00000000.

Table 11-46  ROMENTRY values

Name Debug component Address offset[31:12] ROMENTRY value

ROMENTRY0 Core 0 Debug 0x00010 0x00010003

ROMENTRY1 Core 0 CTI 0x00020 0x00020003

ROMENTRY2 Core 0 PMU 0x00030 0x00030003

ROMENTRY3 Core 0 ETM 0x00040 0x00040003

ROMENTRY4 Core 1 Debug 0x00110 0x00110003 bu

ROMENTRY5 Core 1 CTI 0x00120 0x00120003 bu

ROMENTRY6 Core 1 PMU 0x00130 0x00130003 bu

ROMENTRY7 Core 1 ETM 0x00140 0x00140003 bu

ROMENTRY8 Core 2 Debug 0x00210 0x00210003 bu

ROMENTRY9 Core 2 CTI 0x00220 0x00220003 bu

ROMENTRY10 Core 2 PMU 0x00230 0x00230003 bu

ROMENTRY11 Core 2 ETM 0x00240 0x00240003 bu

ROMENTRY12 Core 3 Debug 0x00310 0x00310003 bu

ROMENTRY13 Core 3 CTI 0x00320 0x00320003 bu

ROMENTRY14 Core 3 PMU 0x00330 0x00330003 bu

ROMENTRY15 Core 3 ETM 0x00340 0x00340003 bu

11.8.3 ROM table Debug Peripheral Identification Registers

The ROM table Debug Peripheral Identification Registers provide information to identify the ROM
table.

The ROM table Debug Peripheral Identification Registers provide standard information required for all
components that conform to the Arm® Debug Interface Architecture Specification ADIv5.0 to ADIv5.2.
There is a set of eight registers, listed in register number order in the following table.

bt core 0 is always present. The component entries for core 1, 2, and 3 depend on your configuration.
bu If the component is present.

11 Debug
11.8 ROM table

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

11-388

Non-Confidential



Table 11-47  Summary of the ROM table Debug Peripheral Identification Registers

Register Offset Value

ROMPIDR0 0xFE0 0xB8

ROMPIDR1 0xFE4 0xB4

ROMPIDR2 0xFE8 0x3B

ROMPIDR3 0xFEC 0x00

ROMPIDR4 0xFD0 0x04

ROMPIDR5 0xFD4 0x00

ROMPIDR6 0xFD8 0x00

ROMPIDR7 0xFDC 0x00

Only bits[7:0] of each ROM table Debug Peripheral ID Register are used, with bits[31:8] as RES0.
Together, the eight ROM table Debug Peripheral ID Registers define a single 64-bit Peripheral ID.

The ROM table Debug Peripheral ID registers are:
• ROM table Debug Peripheral Identification Register 0 on page 11-389.
• ROM table Debug Peripheral Identification Register 1 on page 11-390.
• ROM table Debug Peripheral Identification Register 2 on page 11-391.
• ROM table Debug Peripheral Identification Register 3 on page 11-391.
• ROM table Debug Peripheral Identification Register 4 on page 11-392.
• ROM table Debug Peripheral Identification Register 5-7 on page 11-393.

ROM table Debug Peripheral Identification Register 0

The ROMPIDR0 provides information to identify the Cortex-R52 ROM table.

Usage constraints

This register is accessible through the memory mapped interface and external debug interface,
and is read-only.

Traps and enables
There are no traps and enables affecting this register.

Configurations
Available in all processor build configurations.

Attributes
ROMPIDR0 is a 32-bit register.

The following figure shows the ROMPIDR0 bit assignments.

RES0

31 08 7

Part_0

Figure 11-23  ROMPIDR0 bit assignments

The following table shows the ROMPIDR0 bit assignments.

11 Debug
11.8 ROM table

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

11-389

Non-Confidential



Table 11-48  ROMPIDR0 bit assignments

Bits Name Function

[31:8] - Reserved, RES0.

[7:0] Part_0 0xB8 Least significant byte of the ROM table part number.

ROMPIDR0 can be accessed through the memory mapped interface and external debug interface:

Table 11-49  ROMPIDR0 access information

Component Offset

Debug 0xFE0

ROM table Debug Peripheral Identification Register 1

The ROMPIDR1 provides information to identify the Cortex-R52 ROM table.

Usage constraints

This register is accessible through the memory mapped interface and external debug interface,
and is read-only. For a summary of the conditions which affect whether access to this register is
permitted see 11.2.4 External register access permissions on page 11-354.

Traps and enables
There are no traps and enables affecting this register.

Configurations
Available in all processor build configurations.

Attributes
ROMPIDR1 is a 32-bit register.

The following figure shows the ROMPIDR1 bit assignments.

RES0

31 08 7

Part_1

34

DES_0

Figure 11-24  ROMPIDR1 bit assignments

The following table shows the ROMPIDR1 bit assignments.

Table 11-50  ROMPIDR1 bit assignments

Bits Name Function

[31:8] - Reserved, RES0.

[7:4] DES_0 0xB Least significant nibble of JEP106 ID code. For Arm Limited.

[3:0] Part_1 0x4 Most significant nibble of the ROM table part number.

ROMPIDR1 can be accessed through the memory mapped interface and external debug interface:

11 Debug
11.8 ROM table

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

11-390

Non-Confidential



Table 11-51  ROMPIDR1 access information

Component Offset

Debug 0xFE4

ROM table Debug Peripheral Identification Register 2

The ROMPIDR2 provides information to identify the Cortex-R52 ROM table.

Usage constraints

This register is accessible through the memory mapped interface and external debug interface,
and is read-only.

Traps and enables
There are no traps and enables affecting this register.

Configurations
Available in all processor build configurations.

Attributes
ROMPIDR2 is a 32-bit register.

The following figure shows the ROMPIDR2 bit assignments.

RES0

31 08 7

DES_1

34

Revision

JEDEC

Figure 11-25  ROMPIDR2 bit assignments

The following table shows the ROMPIDR2 bit assignments.

Table 11-52  ROMPIDR2 bit assignments

Bits Name Function

[31:8] - Reserved, RES0.

[7:4] Revision 0x3

[3] JEDEC 1 Indicates a JEP106 identity code is used.

[2:0] DES_1 0b011 Designer, most significant bits of JEP106 ID code. For Arm Limited.

ROMPIDR2 can be accessed through the memory mapped interface and external debug interface:

Table 11-53  ROMPIDR2 access information

Component Offset

Debug 0xFE8

ROM table Debug Peripheral Identification Register 3

The ROMPIDR3 provides information to identify the Cortex-R52 ROM table.

11 Debug
11.8 ROM table

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

11-391

Non-Confidential



Usage constraints

This register is accessible through the memory mapped interface and external debug interface,
and is read-only.

Traps and enables
There are no traps and enables affecting this register.

Configurations
Available in all processor build configurations.

Attributes
ROMPIDR3 is a 32-bit register.

The following figure shows the ROMPIDR3 bit assignments.

RES0

31 08 7

CMOD

34

REVAND

Figure 11-26  ROMPIDR3 bit assignments

The following table shows the ROMPIDR3 bit assignments.

Table 11-54  ROMPIDR3 bit assignments

Bits Name Function

[31:8] - Reserved, RES0.

[7:4] REVAND 0x0 Part minor revision.

[3:0] CMOD 0x0 Customer modified.

ROMPIDR3 can be accessed through the memory mapped interface and external debug interface:

Table 11-55  ROMPIDR3 access information

Component Offset

Debug 0xFEC

ROM table Debug Peripheral Identification Register 4

The ROMPIDR4 provides information to identify the Cortex-R52 ROM table.

Usage constraints

This register is accessible through the memory mapped interface and external debug interface,
and is read-only.

Traps and enables
There are no traps and enables affecting this register.

Configurations
Available in all processor build configurations.

Attributes
ROMPIDR4 is a 32-bit register.

11 Debug
11.8 ROM table

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

11-392

Non-Confidential



The following figure shows the ROMPIDR4 bit assignments.

RES0

31 08 7

DES_2

34

Size

Figure 11-27  ROMPIDR4 bit assignments

The following table shows the ROMPIDR4 bit assignments.

Table 11-56  ROMPIDR4 bit assignments

Bits Name Function

[31:8] - Reserved, RES0.

[7:4] Size 0x0 4KB. Size of the component.

[3:0] DES_2 0x4 Designer, JEP106 continuation code, least significant nibble. For Arm Limited.

ROMPIDR4 can be accessed through the memory mapped interface and external debug interface:

Table 11-57  ROMPIDR4 access information

Component Offset

Debug 0xFD0

ROM table Debug Peripheral Identification Register 5-7

No information is held in the Peripheral ID5, Peripheral ID6, and Peripheral ID7 Registers. They are
RES0.

11.8.4 ROM table Debug Component Identification Registers

There are four read-only Component Identification Registers, Component ID0 through Component ID3.
The following table shows these registers.

Table 11-58  Summary of the ROM table Debug Component Identification registers

Register Offset Value

ROMCIDR0 0xFF0 0x0D

ROMCIDR1 0xFF4 0x10

ROMCIDR2 0xFF8 0x05

ROMCIDR3 0xFFC 0xB1

The ROM table Debug Component Identification Registers identify the ROM table as an Arm CoreSight
Debug component. The ROM table Component ID registers are:
• ROM table Debug Component Identification Register 0 on page 11-394.
• ROM table Debug Component Identification Register 1 on page 11-394.
• ROM table Debug Component Identification Register 2 on page 11-395.
• ROM table Debug Component Identification Register 3 on page 11-396.

11 Debug
11.8 ROM table

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

11-393

Non-Confidential



ROM table Debug Component Identification Register 0

The ROMCIDR0 provides information to identify an external debug component.

Usage constraints

This register is accessible through the memory mapped interface and external debug interface,
and is read-only.

Traps and enables
There are no traps and enables affecting this register.

Configurations
Available in all processor build configurations.

Attributes
ROMCIDR0 is a 32-bit register.

The following figure shows the ROMCIDR0 bit assignments.

RES0

31 08 7

PRMBL_0

Figure 11-28  ROMCIDR0 bit assignments

The following table shows the ROMCIDR0 bit assignments.

Table 11-59  ROMCIDR0 bit assignments

Bits Name Function

[31:8] - Reserved, RES0

[7:0] PRMBL_0 0x0D Preamble byte 0

ROMCIDR0 can be accessed through the memory mapped interface and external debug interface:

Table 11-60  ROMCIDR0 access information

Component Offset

Debug 0xFF0

ROM table Debug Component Identification Register 1

The ROMCIDR1 provides information to identify an external debug component.

Usage constraints

This register is accessible through the memory mapped interface and external debug interface,
and is read-only.

Traps and enables
There are no traps and enables affecting this register.

Configurations
Available in all processor build configurations.

Attributes
ROMCIDR1 is a 32-bit register.

The following figure shows the ROMCIDR1 bit assignments.

11 Debug
11.8 ROM table

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

11-394

Non-Confidential



RES0

31 08 7

PRMBL_1

4 3

CLASS

Figure 11-29  ROMCIDR1 bit assignments

The following table shows the ROMCIDR1 bit assignments.

Table 11-61  ROMCIDR1 bit assignments

Bits Name Function

[31:8] - Reserved, RES0.

[7:4] CLASS 0x1 Component Class. For a ROM table.

[3:0] PRMBL_1 0x0 Preamble.

ROMCIDR1 can be accessed through the memory mapped interface and external debug interface:

Table 11-62  ROMCIDR1 access information

Component Offset

Debug 0xFF4

ROM table Debug Component Identification Register 2

The ROMCIDR2 provides information to identify an external debug component.

Usage constraints

This register is accessible through the memory mapped interface and external debug interface,
and is read-only.

Traps and enables
There are no traps and enables affecting this register.

Configurations
The ROMCIDR2 is in the Debug power domain, and is available in all processor build
configurations.

Attributes
ROMCIDR2 is a 32-bit register.

The following figure shows the ROMCIDR2 bit assignments.

RES0

31 08 7

PRMBL_2

Figure 11-30  ROMCIDR2 bit assignments

The following table shows the ROMCIDR2 bit assignments.

11 Debug
11.8 ROM table

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

11-395

Non-Confidential



Table 11-63  ROMCIDR2 bit assignments

Bits Name Function

[31:8] - Reserved, RES0

[7:0] PRMBL_2 0x05 Preamble byte 2

ROMCIDR2 can be accessed through the memory mapped interface and external debug interface:

Table 11-64  ROMCIDR2 access information

Component Offset

Debug 0xFF8

ROM table Debug Component Identification Register 3

The ROMCIDR3 provides information to identify an external debug component.

Usage constraints

This register is accessible through the memory mapped interface and external debug interface,
and is read-only.

Traps and enables
There are no traps and enables affecting this register.

Configurations
Available in all processor build configurations.

Attributes
ROMCIDR3 is a 32-bit register.

The following figure shows the ROMCIDR3 bit assignments.

RES0

31 08 7

PRMBL_3

Figure 11-31  ROMCIDR3 bit assignments

The following table shows the ROMCIDR3 bit assignments.

Table 11-65  ROMCIDR3 bit assignments

Bits Name Function

[31:8] - Reserved, RES0

[7:0] PRMBL_3 0xB1 Preamble byte 3

ROMCIDR3 can be accessed through the memory mapped interface and external debug interface:

Table 11-66  ROMCIDR3 access information

Component Offset

Debug 0xFFC

11 Debug
11.8 ROM table

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

11-396

Non-Confidential



Chapter 12
Performance Monitor Unit

This section describes the Performance Monitor Unit (PMU) features and the registers that it uses.

It contains the following sections:
• 12.1 About the PMU on page 12-398.
• 12.2  PMU register summary on page 12-400.
• 12.3 PMU register descriptions on page 12-402.
• 12.4 Memory-mapped register summary on page 12-407.
• 12.5 Memory-mapped register descriptions on page 12-409.
• 12.6 Events on page 12-418.
• 12.7 Interrupts on page 12-426.
• 12.8 Exporting PMU events on page 12-427.

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

12-397

Non-Confidential



12.1 About the PMU
Each Cortex-R52 core includes performance monitors which implement the Arm PMUv3 architecture.
These enable you to gather various statistics on the operation of the core and its memory system during
runtime. These provide useful information about the behavior of the processor that you can use when
debugging or profiling code.

The PMU provides four counters. Each counter can count any of the events available in the core. The
absolute counts recorded might vary because of pipeline effects. This has negligible effect except in
cases where the counters are enabled for a short time.

The events are exported from the core for use by the ETM and counter overflows are exported for use by
the GIC distributor unit. The events available include the architecturally required events (instructions,
branch predictor accuracy, data cache hit rate), some of the common events (counting types of
instruction, particularly branch and load/store), and events for counting different types (and totals) of
ECC errors.

The following figure shows the major blocks inside the PMU.

Cycle Counter

Performance 
Counter

Performance 
Counter

Count Enable 
Set/Clear 

Event 
Selection 
Registers

Core 
clock

Events from 
other units

System 
Control 

Processor

Performance 
Counter

Performance 
Counter

PPI
Interrupt/
Overflow
registers

Event bus 
control PMUEVENT

GIC 
Distributor 

Unit

ETM

APB interface

Figure 12-1  PMU block diagram

This section contains the following subsections:
• 12.1.1 Event interface on page 12-398.
• 12.1.2 System register and APB interface on page 12-398.
• 12.1.3 Counters on page 12-399.
• 12.1.4 External register access permissions on page 12-399.
• 12.1.5 Authentication signals and PMU behavior on page 12-399.

12.1.1 Event interface

Events from all other units from across the design are provided to the PMU.

12.1.2 System register and APB interface

You can program the PMU registers using the system registers or the external APB interface.

12 Performance Monitor Unit
12.1 About the PMU

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

12-398

Non-Confidential



12.1.3 Counters

The PMU has 32-bit event counters which increment when they are enabled based on events and a 64-bit
cycle counter.

12.1.4 External register access permissions

Whether or not access is permitted to a register depends on:

• If the core is powered up.
• The state of the PMU Software Lock.
• The state of the debug authentication inputs to the processor.

The behavior that is specific to each register and the type of access to the register is not described in this
document. For a detailed description of these features and their effects on the registers, see the Arm®

Architecture Reference Manual Supplement Armv8, for Armv8-R architecture profile.

The register descriptions provided in this section describe whether each register is read/write or read-
only.

The Cycle Count Register (PMCCNTR) is always enabled regardless of whether non-invasive debug is
enabled unless the DP bit of the PMCR register is set.

12.1.5 Authentication signals and PMU behavior

The PMU events are exported on the PMUEVENT bus when non-invasive debug is enabled, that is,
when either DBGENx or NIDENx inputs are asserted. The Performance Monitors Cycle Count Register
(PMCCNTR) is always enabled regardless of whether non-invasive debug is enabled. The only exception
is if the disable cycle counter bit of the PMCR.DP is set.

The PMU counts events regardless of the non-invasive debug authentication. The export to the
PMUEVENT bus is the only thing controlled by the debug authentication. Specifically, the effect of
debug authentication on export is:
• If the core is in EL2, export is enabled if one of DBGENx or NIDENx is asserted, and one of

HIDENx or HNIDENx is asserted.
• If the core is in EL1, export is enabled if one of DBGENx or NIDENx is asserted.
• If the core is in EL0, export is enabled if one of DBGENx or NIDENx is asserted, and HCR.TGE=0.
• If the core is in EL0, export is enabled if one of DBGENx or NIDENx is asserted, one of HIDENx

or HNIDENx is asserted, and HCR.TGE=1.

The number of counters that are accessible from EL0 and EL1 is restricted by the hypervisor and this is
controlled by HDCR.HPMN. Event counting is controlled by the HDCR.HPMD which prohibits events
counting by the counters accessible to the Guest Operating System (OS) in Hyp mode. If
HDCR.HPMD=0, event counting by Guest counters is allowed in Hyp mode. If HDCR.HPMD=1, event
counting by Guest counters is prohibited in Hyp mode.

12 Performance Monitor Unit
12.1 About the PMU

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

12-399

Non-Confidential



12.2 PMU register summary
The PMU counters and their associated control registers are accessible from the internal non-debug
system register interface with MCR and MRC instructions.

The following table gives a summary of the Cortex-R52 PMU registers, with the exception of some read-
only ID values and the effect of the number of counters and the event selection values, the PMU registers
are fully described in the Arm® Architecture Reference Manual Supplement Armv8, for Armv8-R
architecture profile. This implies that there is no Cortex-R52-specific behaviors.

See 12.4 Memory-mapped register summary on page 12-407 for a complete list of registers that are
accessible from the memory-mapped interface external debug interface.

Table 12-1  Performance monitor registers

Name CRn Op1 CRm Op2 Type Reset Description

PMCR c9 0 c12 0 RW 0x41132000 12.3.1 Performance Monitors Control Register on page 12-402

PMCNTENSET 1 RW UNK Performance Monitors Count Enable Set Register

PMCNTENCLR 2 RW UNK Performance Monitors Count Enable Clear Register

PMOVSR 3 RW UNK Performance Monitors Overflow Flag Status Register

PMSWINC 4 WO UNK Performance Monitors Software Increment Register

PMSELR 5 RW UNK Performance Monitors Event Counter Selection Register

PMCEID0 6 RO 0x6E1FFFDB 12.3.2 Performance Monitors Common Event Identification
Register 0 on page 12-404

PMCEID1 7 RO 0x0000001E 12.3.3 Performance Monitors Common Event Identification
Register 1 on page 12-405

PMCCNTR c9 0 c13 0 RW UNK Performance Monitors Cycle Count Register

PMXEVTYPER 1 RW 0x00000000 Performance Monitors Selected Event Type Register

PMXEVCNTR 2 RW UNK Performance Monitors Event Count Registers

PMUSERENR c9 0 c14 0 RW 0x00000000 Performance Monitors User Enable Register

PMINTENSET 1 RW UNK Performance Monitors Interrupt Enable Set Register

PMINTENCLR 2 RW UNK Performance Monitors Interrupt Enable Clear Register

PMOVSSET 3 RW UNK Performance Monitor Overflow Flag Status Set Register

12 Performance Monitor Unit
12.2  PMU register summary

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

12-400

Non-Confidential



Table 12-1  Performance monitor registers (continued)

Name CRn Op1 CRm Op2 Type Reset Description

PMEVCNTR0 c14 0 c8 0 RW UNK Performance Monitors Event Count Register 0

PMEVCNTR1 1 UNK Performance Monitors Event Count Register 1

PMEVCNTR2 2 UNK Performance Monitors Event Count Register 2

PMEVCNTR3 3 UNK Performance Monitors Event Count Register 3

PMEVTYPER0 c12 0 UNK Performance Monitors Selected Event Type Register 0

PMEVTYPER1 1 UNK Performance Monitors Selected Event Type Register 1

PMEVTYPER2 2 UNK Performance Monitors Selected Event Type Register 2

PMEVTYPER3 3 UNK Performance Monitors Selected Event Type Register 3

PMCCFILTR c15 7 0x00000000 Performance Monitors Cycle Count Filter Register

12 Performance Monitor Unit
12.2  PMU register summary

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

12-401

Non-Confidential



12.3 PMU register descriptions
This section describes the processor PMU registers.

12.3.1 Performance Monitors Control Register

The PMCR provides details of the Performance Monitors implementation, including the number of
counters implemented, and configures and controls the counters.

Usage constraints

This register is read/write. For a summary of the conditions which affect whether access to this
register is permitted, see 11.2.4 External register access permissions on page 11-354. For a
detailed description, see Arm® Architecture Reference Manual Supplement Armv8, for Armv8-R
architecture profile.

Traps and enables

If HDCR.TPM is set to 1, then accesses to this register from EL0 and EL1 are trapped to EL2.

If HDCR.TPMCR is set to 1, then accesses to this register from EL0 and EL1 are trapped to
EL2.

If HSTR.T9 is set to 1, then accesses to this register from EL0 and EL1 are trapped to EL2.

If PMUSERENR.EN is set to 0, then accesses to this register from EL0 to Undefined mode.

Configurations

Available in all processor build configurations.

Attributes
PMCR is a 32-bit register.

The following figure shows the PMCR bit assignments.

E

31 24 23 16 15 11 10 6 5 4 3 2 1 0

IMP IDCODE N RES0 DP X D C PLC

7

Figure 12-2  PMCR bit assignments

The following table shows the PMCR bit assignments.

Table 12-2  PMCR bit assignments

Bits Name Function

[31:24] IMP Implementer code:

0x41 Arm.

This is a read-only field.

[23:16] IDCODE Identification code:

0x13 Cortex-R52.

This is a read-only field.

[15:11] N Number of event counters.

0b00100 Four counters. This is a read-only field.

12 Performance Monitor Unit
12.3 PMU register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

12-402

Non-Confidential



Table 12-2  PMCR bit assignments (continued)

Bits Name Function

[10:7] - Reserved, RES0.

[6] LC Long cycle count enable. Determines which PMCCNTR bit generates an overflow recorded in PMOVSR[31]. The
possible values are:

0 Overflow on increment that changes PMCCNTR[31] from 1 to 0. The reset value is 0x00000000

1 Overflow on increment that changes PMCCNTR[63] from 1 to 0. This bit is read/write.The reset
value is UNKNOWN.

[5] DP Disable cycle counter, PMCCNTR when event counting is prohibited:

0 Cycle counter operates regardless of the non-invasive debug authentication settings. This is the
reset value.

1 Cycle counter is disabled if non-invasive debug is not permitted and enabled.

This bit is read/write.

[4] X Export enable. This bit permits events to be exported to the ETM and the PMUEVENTx external bus:

0 Export of events is disabled. This is the reset value.

1 Export of events is enabled.

This bit is read/write and does not affect the generation of Performance Monitors interrupts on the nPMUIRQ
pin.

[3] D Clock divider:

0 When enabled, PMCCNTR counts every clock cycle. This is the reset value.

1 When enabled, PMCCNTR counts every 64 clock cycles.

This bit is read/write.

[2] C Clock counter reset. This bit is write-only. The effects of writing to this bit are:

0 No action. This is the reset value.

1 Reset PMCCNTR to 0.

This bit is always RAZ.

12 Performance Monitor Unit
12.3 PMU register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

12-403

Non-Confidential



Table 12-2  PMCR bit assignments (continued)

Bits Name Function

[1] P Event counter reset. This bit is write-only. The effects of writing to this bit are:

0 No action. This is the reset value.

1 Reset event counters, not including PMCCNTR, to zero.

This bit is always RAZ.

In EL0 and EL1, a write of 1 to this bit does not reset event counters that HDCR.HPMN reserves for EL2 use.

In EL2 a write of 1 to this bit resets all the event counters.

Resetting the event counters does not clear any overflow bits to 0.

[0] E Enable. The possible values of this bit are:

0 All counters, including PMCCNTR, are disabled. This is the reset value.

1 All counters are enabled.

This bit is read/write.

In EL0 and EL1, this bit does not affect the operation of event counters that HDCR.HPMN reserves for EL2 use.

To access the PMCR:

MRC p15, 0, <Rt>, c9, c12, 0 ; Read PMCR into Rt
MCR p15, 0, <Rt>, c9, c12, 0 ; Write Rt to PMCR

The PMCR can be accessed through the memory-mapped external debug interface, offset 0xE04.

12.3.2 Performance Monitors Common Event Identification Register 0

The PMCEID0 defines which common architectural and common microarchitectural feature events are
implemented.

Usage constraints

This register is read-only. For a summary of the conditions which affect whether access to this
register is permitted, see 11.2.4 External register access permissions on page 11-354. For a
detailed description, see Arm® Architecture Reference Manual Supplement Armv8, for Armv8-R
architecture profile.

Traps and enables

If HDCR.TPM is set to 1, read accesses to this register from EL0 and EL1 are trapped to Hyp
mode.

If HSTR.T9 is set to 1, read accesses to this register from EL0 and EL1 are trapped to Hyp
mode.

If PMUSERENR.EN is set to 0, read accesses to this register from EL0 are trapped to
Undefined mode.

Configurations

Available in all processor build configurations.

Attributes
PMCEID0 is a 32-bit register.

The following figure shows the PMCEID0 bit assignments.

12 Performance Monitor Unit
12.3 PMU register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

12-404

Non-Confidential



ID[31:0]

31 0

Figure 12-3  PMCEID0 bit assignments

The following table shows the PMCEID0 bit assignments with event implemented or not implemented
when the associated bit is set to 1 or 0.

Table 12-3  PMCEID0 bit assignments

Bits Name Function

[31:0] ID[31:0] Common architectural and microarchitectural feature events that can be counted by the PMU event counters.

For each bit described in 12.6 Events on page 12-418, the event is implemented if the bit is set to 1, or not
implemented if the bit is set to 0.

To access the PMCEID0:

MRC p15,0,<Rt>,c9,c12,6 ; Read PMCEID0 into Rt

The PMCEID0 can be accessed through the memory-mapped external debug interface, offset 0xE20.

12.3.3 Performance Monitors Common Event Identification Register 1

The PMCEID1 defines which common architectural and common microarchitectural feature events are
implemented.

Usage constraints

This register is read-only. For a summary of the conditions which affect whether access to this
register is permitted, see 11.2.4 External register access permissions on page 11-354. For a
detailed description, see Arm® Architecture Reference Manual Supplement Armv8, for Armv8-R
architecture profile.

Traps and enables

If HDCR.TPM is set to 1, read accesses to this register from EL0 and EL1 are trapped to Hyp
mode.

If HSTR.T9 is set to 1, then read accesses to this register from EL0 and EL1 are trapped to Hyp
mode.

If PMUSERENR.EN is set to 0, accesses to this register from EL0 are trapped to Undefined
mode.

Configurations

Available in all processor build configurations.

Attributes
PMCEID1 is a 32-bit register.

The following figure shows the PMCEID1 bit assignments.

12 Performance Monitor Unit
12.3 PMU register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

12-405

Non-Confidential



31 0

ID[63:32]

Figure 12-4  PMCEID1 bit assignments

The following table that shows the PMCEID1 bit assignments.

Table 12-4  PMCEID1 bit assignments

Bits Name Function

[31:0] ID[63:32] Common architectural and microarchitectural feature events that can be counted by the PMU event counters.

For each bit described in 12.6 Events on page 12-418, the event is implemented if the bit is set to 1, or not
implemented if the bit is set to 0.

To access the PMCEID1:

MRC p15,0,<Rt>,c9,c12,7 ; Read PMCEID1 into Rt

The PMCEID1 can be accessed through the memory-mapped external debug interface, offset 0xE24.

12 Performance Monitor Unit
12.3 PMU register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

12-406

Non-Confidential



12.4 Memory-mapped register summary
The following table shows the PMU registers that are accessible through the memory-mapped external
debug interface.

With the exception of ID values, the effects of the number of counters and the event encodings, these
registers are fully described in the Arm® Architecture Reference Manual Supplement Armv8, for Armv8-R
architecture profile. This implies that there is no Cortex-R52-specific behavior.

 Note 

The value of PADDRDBG31 and the CoreSight Software lock restrict write accesses to the PMU
registers through the memory-mapped external debug interface. When PADDRDBG31 is driven LOW,
the CoreSight software lock must be used to unlock write permissions for the PMU registers. When
PADDRDBG31 is driven HIGH, the software lock does not restrict the write access permissions of the
PMU registers. The software lock is controlled with the Lock Access register.

Table 12-5  Memory-mapped PMU register summary

Offset Name Type Description

0x000 PMEVCNTR0 RW Performance Monitor Event Count Register 0

0x008 PMEVCNTR1 RW Performance Monitor Event Count Register 1

0x010 PMEVCNTR2 RW Performance Monitor Event Count Register 2

0x018 PMEVCNTR3 RW Performance Monitor Event Count Register 3

0x0F8 PMCCNTR[31:0] RW Performance Monitor Cycle Count Register

0x0FC PMCCNTR[63:32] RW

0x400 PMEVTYPER0 RW Performance Monitor Event Type Register 0

0x404 PMEVTYPER1 RW Performance Monitor Event Type Register 1

0x408 PMEVTYPER2 RW Performance Monitor Event Type Register 2

0x40C PMEVTYPER3 RW Performance Monitor Event Type Register 3

0x47C PMCCFILTR RW Performance Monitor Cycle Count Filter Register

0xC00 PMCNTENSET RW Performance Monitor Count Enable Set Register

0xC20 PMCNTENCLR RW Performance Monitor Count Enable Clear Register

0xC40 PMINTENSET RW Performance Monitors Interrupt Enable Set Register

0xC60 PMINTENCLR RW Performance Monitors Interrupt Enable Clear Register

0xC80 PMOVSCLR RW Performance Monitor Overflow Flag Status Register

0xCA0 PMSWINC WO Performance Monitor Software Increment Register

0xCC0 PMOVSSET RW Performance Monitor Overflow Flag Status Set Register

0xE00 PMCFGR RO 12.5.1 Performance Monitor Configuration Register on page 12-409

0xE04 PMCRbv RW Performance Monitors Control Register

bv This register is distinct from the PMCR system register. It does not have the same value.

12 Performance Monitor Unit
12.4 Memory-mapped register summary

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

12-407

Non-Confidential



Table 12-5  Memory-mapped PMU register summary (continued)

Offset Name Type Description

0xE20 PMCEID0 RO Performance Monitors Peripheral Identification Register 0 on page 12-411

0xE24 PMCEID1 RO Performance Monitor Common Event Identification Register 1

0xFA8 PMDEVAFF0 RO Performance Monitors Device Affinity Register 0, see 3.3.78 Multiprocessor Affinity Register
on page 3-166

0xFAC PMDEVAFF1 RO Performance Monitors Device Affinity Register 1. bw

0xFB0 PMLAR WO Performance Monitor Lock Access Register

0xFB4 PMLSR RO Performance Monitor Lock Status Register

0xFB8 PMAUTHSTATUS RO Performance Monitor Authentication Status Register

0xFBC PMDEVARCH Performance Monitor Device Architecture Register

0xFCC PMDEVTYPE RO Performance Monitor Device Type Register

0xFD0 PMPIDR4 RO Performance Monitors Peripheral Identification Register 4 on page 12-413

0xFD4 PMPIDR5 RO Performance Monitors Peripheral Identification Register 5-7 on page 12-414

0xFD8 PMPIDR6 RO

0xFDC PMPIDR7 RO

0xFE0 PMPIDR0 RO Performance Monitors Peripheral Identification Register 0 on page 12-411

0xFE4 PMPIDR1 RO Performance Monitors Peripheral Identification Register 1 on page 12-411

0xFE8 PMPIDR2 RO Performance Monitors Peripheral Identification Register 2 on page 12-412

0xFEC PMPIDR3 RO Performance Monitors Peripheral Identification Register 3 on page 12-413

0xFF0 PMCIDR0 RO Performance Monitors Component Identification Register 0 on page 12-414

0xFF4 PMCIDR1 RO Performance Monitors Component Identification Register 1 on page 12-415

0xFF8 PMCIDR2 RO Performance Monitors Component Identification Register 2 on page 12-416

0xFFC PMCIDR3 RO Performance Monitors Component Identification Register 3 on page 12-417

bw This register is RES0

12 Performance Monitor Unit
12.4 Memory-mapped register summary

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

12-408

Non-Confidential



12.5 Memory-mapped register descriptions
This section describes the Cortex-R52 processor PMU registers accessible through the memory-mapped
debug interface.

This section contains the following subsections:
• 12.5.1 Performance Monitor Configuration Register on page 12-409.
• 12.5.2 Performance Monitors Peripheral Identification Registers on page 12-410.
• 12.5.3 Performance Monitors Component Identification Registers on page 12-414.

12.5.1 Performance Monitor Configuration Register

The PMCFGR contains PMU specific configuration data.

Usage constraints This register is read-only. For a summary of the conditions which affect whether
access to this register is permitted, see 11.2.4 External register access permissions
on page 11-354. For a detailed description, see Arm® Architecture Reference
Manual Supplement Armv8, for Armv8-R architecture profile.

Traps and enables There are no traps and enables affecting this register.
Configurations Available in all processor build configurations.
Attributes PMCFGR is a 32-bit register.

The following figure shows the PMCFGR bit assignments.

31 17 16 15 14 13 8 7 0

N

EX
CCD
CC

NCG Size

28 27

RES0

20 19 18

NA
WT
UEN

Figure 12-5  PMCFGR bit assignments

The following table shows the PMCFGR bit assignments.

Table 12-6  PMCFGR bit assignments

Bits Name Function

[31:28] NCG This feature is not supported, RAZ.

[27:20] - Reserved, RES0.

[19] UEN User-mode Enable Register supported. PMUSERENR_EL0 is not visible in the external debug interface, so this bit
is RAZ.

[18] WT This feature is not supported, RAZ.

[17] NA This feature is not supported, RAZ.

[16] EX Export supported. The value is:

1 Export is supported.

12 Performance Monitor Unit
12.5 Memory-mapped register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

12-409

Non-Confidential



Table 12-6  PMCFGR bit assignments (continued)

Bits Name Function

[15] CCD Cycle counter has prescale. The value is:

1 Cycle counter has prescale.

[14] CC Dedicated cycle counter supported. The value is:

1 Dedicated counter supported.

[13:8] Size Counter size. The value is:

0b1111
11

64-bit counters.

[7:0] N Number of event counters. The value is:

0x04 Four counters.

PMCFGR can be accessed through the external debug interface:

Table 12-7  PMCFGR access information

Component Offset

PMU 0xEE0

12.5.2 Performance Monitors Peripheral Identification Registers

The Performance Monitors Peripheral Identification Registers provide standard information required for
all components that conform to the Arm PMUv3 architecture.

These registers are required for CoreSight compliance. For more information, see Arm® CoreSight™

Architecture Specification v2.0.

There is a set of eight registers, listed in the following table.

Table 12-8  Summary of the Performance Monitors Peripheral Identification Registers

Register Offset Value

PMPIDR0 0xFE0 0xB6

PMPIDR1 0xFE4 0xB9

PMPIDR2 0xFE8 0x3B

PMPIDR3 0xFEC 0x00

PMPIDR4 0xFD0 0x04

PMPIDR5 0xFD4 0x00

PMPIDR6 0xFD8 0x00

PMPIDR7 0xFDC 0x00

Only bits[7:0] of each Performance Monitors Peripheral ID Register are used, with bits[31:8] as RES0.
Together, the eight Performance Monitors Peripheral ID Registers define a single 64-bit Peripheral ID.

12 Performance Monitor Unit
12.5 Memory-mapped register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

12-410

Non-Confidential



Performance Monitors Peripheral Identification Register 0

The PMPIDR0 provides information to identify the Performance Monitor component.

Usage constraints The register is read-only. For a summary of the conditions which affect whether
access to this register is permitted, see 11.2.4 External register access permissions
on page 11-354. For a detailed description, see Arm® Architecture Reference
Manual Supplement Armv8, for Armv8-R architecture profile.

Traps and enables There are no traps and enables affecting this register.
Configurations Available in all processor build configurations.
Attributes PMPIDR0 is a 32-bit register.

The following figure shows the PMPIDR0 bit assignments.

RES0

31 078

Part_0

Figure 12-6  PMPIDR0 bit assignments

The following table shows the PMPIDR0 bit assignments.

Table 12-9  PMPIDR0 bit assignments

Bits Name Function

[31:8] - Reserved, RES0.

[7:0] Part_0 0xB6 Least significant byte of the performance monitor part number.

PMPIDR0 can be accessed through the external debug interface:

Table 12-10  PMPIDR0 access information

Component Offset

PMU 0xFE0

Performance Monitors Peripheral Identification Register 1

The PMPIDR1 provides information to identify the Performance Monitor component.

Usage constraints The register is read-only. For a summary of the conditions which affect whether
access to this register is permitted, see 11.2.4 External register access permissions
on page 11-354. For a detailed description, see Arm® Architecture Reference
Manual Supplement Armv8, for Armv8-R architecture profile.

Traps and enables There are no traps and enables affecting this register.
Configurations Available in all processor build configurations.
Attributes PMPIDR1 is a 32-bit register.

The following figure shows the PMPIDR1 bit assignments.

RES0

31 034

Part_1

78

DES_0

Figure 12-7  PMPIDR1 bit assignments

The following table shows the PMPIDR1 bit assignments.

12 Performance Monitor Unit
12.5 Memory-mapped register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

12-411

Non-Confidential



Table 12-11  PMPIDR1 bit assignments

Bits Name Function

[31:8] - Reserved, RES0.

[7:4] DES_0 0xB Arm Limited. This is the least significant nibble of JEP106 ID code.

[3:0] Part_1 0x9 Most significant nibble of the performance monitor part number.

PMPIDR1 can be accessed through the external debug interface:

Table 12-12  PMPIDR1 access information

Component Offset

PMU 0xFE4

Performance Monitors Peripheral Identification Register 2

The PMPIDR2 provides information to identify the Performance Monitor component.

Usage constraints This register is read-only. For a summary of the conditions which affect whether
access to this register is permitted, see 11.2.4 External register access permissions
on page 11-354. For a detailed description, see Arm® Architecture Reference
Manual Supplement Armv8, for Armv8-R architecture profile.

Traps and enables There are no traps and enables affecting this register.
Configurations Available in all processor build configurations.
Attributes PMPIDR2 is a 32-bit register.

The following figure shows the PMPIDR2 bit assignments.

RES0

31 034

DES_1

78

Revision

JEDEC

2

Figure 12-8  PMPIDR2 bit assignments

The following table shows the PMPIDR2 bit assignments.

Table 12-13  PMPIDR2 bit assignments

Bits Name Function

[31:8] - Reserved, RES0.

[7:4] Revision 0x3

[3] JEDEC 1 Indicates a JEP106 identity code is used.

[2:0] DES_1 0b011 Arm Limited. The most significant bits of JEP106 ID code.

PMPIDR2 can be accessed through the external debug interface:

12 Performance Monitor Unit
12.5 Memory-mapped register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

12-412

Non-Confidential



Table 12-14  PMPIDR2 access information

Component Offset

PMU 0xFE8

Performance Monitors Peripheral Identification Register 3

The PMPIDR3 provides information to identify the Performance Monitor component.

Usage constraints This register is read-only. For a summary of the conditions which affect whether
access to this register is permitted, see 11.2.4 External register access permissions
on page 11-354. For a detailed description, see Arm® Architecture Reference
Manual Supplement Armv8, for Armv8-R architecture profile.

Traps and enables There are no traps and enables affecting this register.
Configurations Available in all processor build configurations.
Attributes PMPIDR3 is a 32-bit register.

The following figure shows the PMPIDR3 bit assignments.

RES0

31 034

CMOD

78

REVAND

Figure 12-9  PMPIDR3 bit assignments

The following table shows the PMPIDR3 bit assignments.

Table 12-15  PMPIDR3 bit assignments

Bits Name Function

[31:8] - Reserved, RES0.

[7:4] REVAND 0x0 Part minor revision.

[3:0] CMOD 0x0 Customer modified.

PMPIDR3 can be accessed through the external debug interface:

Table 12-16  PMPIDR3 access information

Component Offset

PMU 0xFEC

Performance Monitors Peripheral Identification Register 4

The PMPIDR4 provides information to identify the Performance Monitor component.

Usage constraints This register is read-only. For a summary of the conditions which affect whether
access to this register is permitted, see 11.2.4 External register access permissions
on page 11-354. For a detailed description, see Arm® Architecture Reference
Manual Supplement Armv8, for Armv8-R architecture profile.

Traps and enables There are no traps and enables affecting this register.
Configurations Available in all processor build configurations.
Attributes PMPIDR4 is a 32-bit register.

12 Performance Monitor Unit
12.5 Memory-mapped register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

12-413

Non-Confidential



The following figure shows the PMPIDR4 bit assignments.

RES0

31 034

DES_2

78

Size

Figure 12-10  PMPIDR4 bit assignments

The following table shows the PMPIDR4 bit assignments.

Table 12-17  PMPIDR4 bit assignments

Bits Name Function

[31:8] - Reserved, RES0.

[7:4] Size 0x0 Size of the component. The PMU occupies a 4KB space.

[3:0] DES_2 0x4 Arm Limited. This is the least significant nibble JEP106 continuation code.

PMPIDR4 can be accessed through the external debug interface:

Table 12-18  PMPIDR4 access information

Component Offset

PMU 0xFD0

Performance Monitors Peripheral Identification Register 5-7

No information is held in PMPIDR5, PMPIDR6, and PMPIDR7. They are RES0.

12.5.3 Performance Monitors Component Identification Registers

There are four read-only Performance Monitors Component Identification Registers, Component ID0
through Component ID3.

These registers are required for CoreSight compliance. For more information, see Arm® CoreSight™

Architecture Specification v2.0.

The following table shows these registers.

Table 12-19  Summary of the Performance Monitors Component Identification Registers

Register Offset Value

PMCIDR0 0xFF0 0x0D

PMCIDR1 0xFF4 0x90

PMCIDR2 0xFF8 0x05

PMCIDR3 0xFFC 0xB1

The Performance Monitors Component Identification Registers identify the Performance Monitor as
Arm PMUv3 architecture.

Performance Monitors Component Identification Register 0

The PMCIDR0 provides information to identify the Performance Monitor component.

12 Performance Monitor Unit
12.5 Memory-mapped register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

12-414

Non-Confidential



Usage constraints This register is read-only. For a summary of the conditions which affect whether
access to this register is permitted, see 11.2.4 External register access permissions
on page 11-354. For a detailed description, see Arm® Architecture Reference
Manual Supplement Armv8, for Armv8-R architecture profile.

Traps and Enables There are no traps and enables affecting this register.
Configurations Available in all processor build configurations.
Attributes PMCIDR0 is a 32-bit register.

The following figure shows the PMCIDR0 bit assignments.

RES0

31 0

PRMBL_0

78

Figure 12-11  PMCIDR0 bit assignments

The following table shows the PMCIDR0 bit assignments.

Table 12-20  PMCIDR0 bit assignments

Bits Name Function

[31:8] - Reserved, RES0.

[7:0] PRMBL_0 0x0D Preamble byte 0.

PMCIDR0 can be accessed through the external debug interface:

Table 12-21  PMCIDR0 access information

Component Offset

PMU 0xFF0

Performance Monitors Component Identification Register 1

The PMCIDR1 provides information to identify the Performance Monitor component.

Usage constraints This register is read-only. For a summary of the conditions which affect whether
access to this register is permitted, see 11.2.4 External register access permissions
on page 11-354. For a detailed description, see Arm® Architecture Reference
Manual Supplement Armv8, for Armv8-R architecture profile.

Traps and Enables There are no traps and enables affecting this register.
Configurations Available in all processor build configurations.
Attributes PMCIDR1 is a 32-bit register.

The following figure shows the PMCIDR1 bit assignments.

RES0

31 0

PRMBL_1

78 34

CLASS

Figure 12-12  PMCIDR1 bit assignments

The following table shows the PMCIDR1 bit assignments.

12 Performance Monitor Unit
12.5 Memory-mapped register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

12-415

Non-Confidential



Table 12-22  PMCIDR1 bit assignments

Bits Name Function

[31:8] - Reserved, RES0.

[7:4] CLASS 0x9 Debug component.

[3:0] PRMBL_1 0x0 Preamble.

PMCIDR1 can be accessed through the external debug interface:

Table 12-23  PMCIDR1 access information

Component Offset

PMU 0xFF4

Performance Monitors Component Identification Register 2

The PMCIDR2 provides information to identify the Performance Monitor component.

Usage constraints This register is read-only. For a summary of the conditions which affect whether
access to this register is permitted, see 11.2.4 External register access permissions
on page 11-354. For a detailed description, see Arm® Architecture Reference
Manual Supplement Armv8, for Armv8-R architecture profile.

Traps and Enables There are no traps and enables affecting this register.
Configurations Available in all processor build configurations.
Attributes PMCIDR2 is a 32-bit register.

The following figure shows the PMCIDR2 bit assignments.

RES0

31 0

PRMBL_2

78

Figure 12-13  PMCIDR2 bit assignments

The following table shows the PMCIDR2 bit assignments.

Table 12-24  PMCIDR2 bit assignments

Bits Name Function

[31:8] - Reserved, RES0.

[7:0] PRMBL_2 0x05 Preamble byte 2.

PMCIDR2 can be accessed through the external debug interface:

Table 12-25  PMCIDR2 access information

Component Offset

PMU 0xFF8

12 Performance Monitor Unit
12.5 Memory-mapped register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

12-416

Non-Confidential



Performance Monitors Component Identification Register 3

The PMCIDR3 provides information to identify the Performance Monitor component.

Usage constraints This register is read-only. For a summary of the conditions which affect whether
access to this register is permitted, see 11.2.4 External register access permissions
on page 11-354. For a detailed description, see Arm® Architecture Reference
Manual Supplement Armv8, for Armv8-R architecture profile.

Traps and Enables There are no traps and enables affecting this register.
Configurations Available in all processor build configurations.
Attributes PMCIDR3 is a 32-bit register.

The following figure shows the PMCIDR3 bit assignments.

RES0

31 0

PRMBL_3

78

Figure 12-14  PMCIDR3 bit assignments

The following table shows the PMCIDR3 bit assignments.

Table 12-26  PMCIDR3 bit assignments

Bits Name Function

[31:8] - Reserved, RES0.

[7:0] PRMBL_3 0xB1 Preamble byte 3.

PMCIDR3 can be accessed through the external debug interface:

Table 12-27  PMCIDR3 access information

Component Offset

PMU 0xFFC

12 Performance Monitor Unit
12.5 Memory-mapped register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

12-417

Non-Confidential



12.6 Events
Each core also exports some of the events on an external event bus, PMUEVENTx, or an external error
bus, ERREVENTx, according to whether they are profiling events or error detection events. Only the
profiling events are connected to the ETM. The following table shows the bit position of each event on
one of the event buses, as appropriate. In addition, the table documents the bit position of error detection
events that are not associated with a specific core within the ERREVENTx bus.

Table 12-28  PMU events

ERREVENT Event name

[0] Correctable write data payload bus error occurred from AXIS.

[1] Fatal write data payload bus error occurred from AXIS.

[2] Fatal READY signal bus error occurred from AXIS.

[3] Fatal non-protocol bus error (payload errors) occurred from AXIS.

[4] Fatal protocol bus error (LEN, ID, LAST, READY, and interconnect protection errors) occurred from AXIS.

The following table shows the events that are generated and the numbers that the PMU uses to reference
the events. The table also shows the bit position of each event on the event bus.

 Note 

• 0x000 to 0x024 are architecturally defined events. See Arm® Architecture Reference Manual
Supplement Armv8, for Armv8-R architecture profile for more information.

• 0x060 to 0x08F are architecturally recommended. See Arm® Architecture Reference Manual
Supplement Armv8, for Armv8-R architecture profile for more information.

• 0x0C0 to 0x0DF are implementation defined events.
• ERREVENT[25:0] are the ECC error events.
• 0x100 to 0x10D are attributable performance impact events.
• 0x200 to 0x207 are testability events. These events are for testing purposes only and Arm does not

guarantee the accuracy of these events.

Table 12-29  PMU events

Event ID ETM ID Mnemonic PMUEVENTx ERREVENTx Event Name

0x000 - SW_INCR - - Software increment. The register
is incremented only on writes to
the Software Increment Register
(PMSWINC).

0x001 0x004 L1I_CACHE_REFILL [0] - L1 instruction cache refill.

0x003 0x005 L1D_CACHE_REFILL [1] - L1 data cache refill.

0x004 0x006 L1D_CACHE [2] - L1 data cache access.

0x006 0x007 LD_RETIRED [3] - Instruction architecturally
executed, condition check pass -
load.

0x007 0x008 ST_RETIRED [4] - Instruction architecturally
executed, condition check pass -
store.

12 Performance Monitor Unit
12.6 Events

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

12-418

Non-Confidential



Table 12-29  PMU events (continued)

Event ID ETM ID Mnemonic PMUEVENTx ERREVENTx Event Name

0x008 0x009 INST_RETIRED [5] - Instruction architecturally
executed.

- 0x00A - [6] - Two instructions architecturally
executed in parallel. Asserted
along with bit PMUEVENTx[5]
when dual issuing.

0x009 0x00B EXC_TAKEN [7] - Exception taken.

0x00A 0x00C EXC_RETURN [8] - Instruction architecturally
executed, condition code check
pass, exception return.

0x00B 0x00D CID_WRITE_RETIRED [9] - Instruction architecturally
executed, condition code check
pass, write to CONTEXTIDR.

0x00C 0x00E PC_WRITE_RETIRED [10] - Instruction architecturally
executed, condition check pass,
software change of the PC.

0x00D 0x00F BR_IMMED_RETIRED [11] - Instruction architecturally
executed, immediate branch.

0x00E 0x020 BR_RETURN_RETIRED [28] - Instruction architecturally
executed, condition code check
pass, procedure return.

0x00F 0x010 UNALIGNED_LDST_RETIRED [12] - Instruction architecturally
executed, condition code check
pass, unaligned load or store.

0x010 0x011 BR_MIS_PRED [13] - Mispredicted or not predicted
branch speculatively executed.

0x011 - CPU_CYCLES - - Cycle

0x012 0x012 BR_PRED [14] - Predictable branch speculatively
executed.

0x013 0x013 MEM_ACCESS [15] - Data memory access.

0x014 0x014 L1I_CACHE [16] - L1 instruction cache access.

0x019 - BUS_ACCESS - - AXIM, Flash, or LLPP bus access.

0x01A - MEMORY_ERROR - - Local memory error (instruction
cache, data cache, ATCM, BTCM,
CTCM, or Flash).

0x01B - INST_SPEC - - Operation speculatively executed.

0x01D - BUS_CYCLES - - Bus cycle (AXIM).

12 Performance Monitor Unit
12.6 Events

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

12-419

Non-Confidential



Table 12-29  PMU events (continued)

Event ID ETM ID Mnemonic PMUEVENTx ERREVENTx Event Name

0x01E - CHAIN - - For odd-numbered counters,
increments the count by one for
each overflow of the preceding
even-numbered counter. For even-
numbered counters, there is no
increment.

0x021 0x01C BR_RETIRED [24] - Instruction architecturally
executed, branch.

0x022 - BR_MIS_PRED_RETIRED - - Instruction architecturally
executed, mispredicted branch.

0x023 - STALL_FRONTEND - - No operation issued due to the
front end.

0x024 - STALL_BACKEND - - No operation issued due to the
back end.

0x060 - BUS_ACCESS_RD - - Bus access - Read (AXIM, Flash,
or LLPP).

0x061 - BUS_ACCESS_WR - - Bus access - Write (AXIM, Flash,
or LLPP).

0x082 0x01B EXC_SVC [23] - Exception taken, supervisor call.

0x086 0x015 EXC_IRQ [17] - Exception taken, IRQ.

0x087 0x016 EXC_FIQ [18] - Exception taken, FIQ.

0x08A 0x017 EXC_HVC [19] - Exception taken, Hypervisor Call.

0x08E 0x018 EXC_TRAP_IRQ [20] - Exception taken, IRQ not taken
locally.

0x08F 0x019 EXC_TRAP_FIQ [21] - Exception taken, FIQ not taken
locally.

0x0C0 0x023 KITE_AXI_READ [31] - External memory request, AXIM
read.

0x0C1 0x024 KITE_AXI_WRITE [32] - External memory request, AXIM
write.

0x0C2 0x025 KITE_FLASH_READ [33] - External memory request, Flash
(read-only).

0x0C3 0x026 KITE_LLPP_READ [34] - External memory request, LLPP
read.

0x0C4 0x027 KITE_LLPP_WRITE [35] - External memory request, LLPP
write.

0x0C5 0x028 KITE_NC_AXI_READ - - Non-cacheable external memory
request, AXIM read.

0x0C6 0x029 KITE_NC_AXI_WRITE - - Non-cacheable external memory
request, AXIM write.

0x0C7 0x02A KITE_NC_FLASH_READ - - Non-cacheable external memory
request, Flash (read-only).

12 Performance Monitor Unit
12.6 Events

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

12-420

Non-Confidential



Table 12-29  PMU events (continued)

Event ID ETM ID Mnemonic PMUEVENTx ERREVENTx Event Name

0x0C8 - KITE_REFILL_PF_AXI - - L1 data cache refill because of
prefetch (AXIM only).

0x0C9 - KITE_REFILL_LS_AXI - - L1 data cache refill because of
load or store, AXIM.

0x0CA - KITE_REFILL_LS_FLASH - - L1 data cache refill because of
load or store, Flash.bx

0x0CB 0x02B KITE_DC_ACCESS_AXI - - L1 data cache access in a way
reserved for AXIM.

0x0CC 0x02C KITE_DC_ACCESS_FLASH - - L1 data cache access in a way
reserved for Flash.by

0x0CD 0x02D KITE_IC_ACCESS_AXI - - L1 instruction cache access in a
way reserved for AXIM.

0x0CE 0x02E KITE_IC_ACCESS_FLASH - - L1 instruction cache access in a
way reserved for Flash.bz

0x0CF - KITE_NC_LS_HINTED_AXI - - Non-cacheable external memory
request because of load was
hinted, AXIM.ca

0x0D0 - KITE_NC_LS_HINTED_FLASH_READ - - Non-cacheable external memory
request because of load was
hinted, Flash.ca

0x0D1 - KITE_REFILL_IC_AXI - - L1 Instruction cache refill, AXIM.

0x0D2 - KITE_REFILL_IC_FLASH - - L1 Instruction cache refill,
Flash.cb

0x0D3 0x02F KITE_NC_LS_AXI_READ - - Non-cacheable external memory
request because of load, AXIM.

0x0D4 0x030 KITE_NC_LS_FLASH_READ - - Non-cacheable external memory
request because of load, Flash.

0x0D5 0x01D KITE_COND_BR_RETIRED [25] - Conditional branch executed.

0x0D6 - KITE_MIS_PRED_COND_BR - - Conditional branch mispredicted.

0x0D7 0x01E KITE_BTAC_BR_RETIRED [26] - BTAC branch executed.

0x0D8 - KITE_MIS_PRED_BTAC_BR - - Conditional branch mispredicted.

0x0D9 0x022 KITE_VSCTLR_CHANGED [30] - Instruction architecturally
executed, MCR to VSCTLR.

0x0DA 0x021 KITE_DSB_ALL_RETIRED [29] - Instruction architecturally
executed, strong DSB, DFB.

bx Event 0x003 (LID_CACHE_REFILL) is the sum of events 0x0C9 and 0x0CA.
by Event 0x004 (LID_CACHE) is the sum of events 0x0CB and 0x0CC.
bz Event 0x014 (LII_CACHE) is the sum of events 0x0CD and 0x0CE.
ca A hinted Load Store Unit (LSU) request is an early request issued from the Load Store 1 (LS1) pipeline stage to reduce memory latency. More specifically, hinted

requests be can be made before the condition codes of the instruction have been determined.
cb Event 001 (LII_CACHE_REFILL) is the sum of events 0x0D1 and 0x0D2.

12 Performance Monitor Unit
12.6 Events

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

12-421

Non-Confidential



Table 12-29  PMU events (continued)

Event ID ETM ID Mnemonic PMUEVENTx ERREVENTx Event Name

0x0DB - KITE_SIMULT_ACCESS_AXI - - Simultaneous accesses from
instruction side and data side to
AXIM (causing contention).

0x0DC - KITE_SIMULT_ACCESS_FLASH - - Simultaneous accesses from
instruction side and data side to
Flash (causing contention)

0x0DD 0x01A KITE_EL2_ENTERED [22] - Exception taken to EL2 (hyp
mode entry), excluding reset.

0x0DE 0x01F KITE_CRS_BR_RETIRED [27] - Implementation defined event.
CRS branch executed.

0x0DF - KITE_MIS_PRED_CRS_BR - - CRS branch mispredicted.

0x0F0 - KITE_COR_ERR_MEM - [0] Correctable memory error
occurred from any source (L1
instruction cache, L1 data cache,
ATCM, BTCM, CTCM, or flash).

0x0F1 - KITE_FAT_ERR_MEM - [1] Fatal memory error occurred from
any source (ATCM, BTCM,
CTCM, or Flash).

0x0F2 - KITE_BUS_COR_DATA - [2] Correctable data payload bus error
occurred from any source (AXIM
or LLPP).

- - - - [3] Fatal data payload bus error
occurred from any source (AXIM
or LLPP).

- - - - [4] Fatal READY signal bus error
occurred from any source (AXIM,
Flash, or LLPP).

0x0F3 - KITE_BUS_FAT_OTHER - [5] Fatal non-protocol bus error
(payload errors, except data)
occurred from any source (AXIM,
Flash, or LLPP).

0x0F4 - KITE_BUS_PROTOCOL_ANY - [6] Fatal protocol bus error (LEN, ID,
LAST, READY, and interconnect
protection errors) occurred from
any source (AXIM, Flash, or
LLPP).

- - - - [7] Correctable L1 instruction cache
(data or tag) memory error.

- - - - [8] Correctable L1 data cache (data or
tag) memory error.

- - - - [9] Correctable ATCM, BTCM, or
CTCM memory error.

- - - - [10] Fatal ATCM, BTCM, or CTCM
memory error.

12 Performance Monitor Unit
12.6 Events

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

12-422

Non-Confidential



Table 12-29  PMU events (continued)

Event ID ETM ID Mnemonic PMUEVENTx ERREVENTx Event Name

- - - - [11] Correctable flash memory error.

- - - - [12] Fatal flash memory error.

- - - - [13] Timeout for AXIM bus.

- - - - [14] Timeout for Flash bus.

- - - - [15] Timeout for LLPP bus.

- - - - [16] Correctable memory occurred
from any source (L1 instruction
cache, L1 data cache, ATCM,
BTCM, CTCM, or Flash) but was
not recorded the ERRs because
they were full or because it was
overwritten by a fatal error.

- - - - [17] Fatal memory error occurred from
any source (L1 instruction cache,
L1 data cache, ATCM, BTCM,
CTCM, or Flash) but was not
recorded in the ERRs because they
were full.

- - - - [18] Interrupts masked in Hyp mode
for too long (the IMP_INTMONR
watchdog has triggered).

- - - - [19] A memory or bus fatal error was
synchronously detected in Hyp
mode.

- - - - [20] An abort exception was taken
because an EL2-controlled MPU
fault generated an abort.

- - - - [21] An abort exception was taken
because an EL1-controlled MPU
fault generated an abort.

- - - - [22] An Undefined exception was
taken due to any cause.

- - - - [23] A memory access marked in EL1-
controlled MPU as Device was
flushed because it was marked as
Normal in EL2-controlled MPU.

- - - - [24] Processor livelock because of hard
errors or exception at exception
vector. This is a pulse bit. An
exception of the same type and
vector offset was consecutively
taken 20 times.

- - - - [25] Software running in EL2 unlocks
IMP_TESTR1. IMP_TESTR1 is
for testing purposes only.

12 Performance Monitor Unit
12.6 Events

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

12-423

Non-Confidential



Table 12-29  PMU events (continued)

Event ID ETM ID Mnemonic PMUEVENTx ERREVENTx Event Name

0x100 - KITE_IQ_EMPTY_NO_MISS - - Counts every cycle that the DPU
IQ is empty and that is not
because of a recent instruction
cache miss in any cache way.

0x101 - KITE_IQ_EMPTY_AXI_MISS - - Counts every cycle that the DPU
IQ is empty and there is an
instruction cache miss being
processed for a cache way
reserved for AXI Master.

0x102 - KITE_IQ_EMPTY_FLASH_MISS - - Counts every cycle that the DPU
IQ is empty and there is an
instruction cache miss being
processed for a cache way
reserved for Flash.

0x103 - KITE_INTERLOCK_OTHER - - Counts every cycle there is an
interlock that is not because of an
Advanced SIMD or floating-point
instruction, and not because of a
load/store instruction waiting for
data to calculate the address in the
AGU. Stall cycles because of a
stall in Wr, typically awaiting load
data, are excluded.

0x104 - KITE_INTERLOCK_AGU - - Counts every cycle there is an
interlock that is because of a load/
store instruction waiting for data
to calculate the address in the
AGU. Stall cycles because of a
stall in Wr, typically awaiting load
data, are excluded.

0x105 - KITE_INTERLOCK_FPASIMD - - Counts every cycle there is an
interlock that is because of an
Advanced SIMD or floating-point
instruction. Stall cycles because of
a stall in the Wr stage, typically
waiting load data, are excluded.

0x106 - KITE_LOAD_STALL_AXI - - Counts every cycle there is a stall
in the Wr stage because of a load
miss from the AXIM.

0x107 - KITE_LOAD_STALL_FLASH - - Counts every cycle there is a stall
in the Wr stage because of a load
miss from Flash.

0x108 - KITE_WR_STALL_STORE - - Counts every cycle there is a stall
in the Wr stage because of a store.

0x109 - KITE_WR_STALL_AXI_STB_FULL - - Store stalled because the AXIM
part of the store buffer was full.

12 Performance Monitor Unit
12.6 Events

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

12-424

Non-Confidential



Table 12-29  PMU events (continued)

Event ID ETM ID Mnemonic PMUEVENTx ERREVENTx Event Name

0x10A - KITE_WR_STALL_TCM_STB_FULL - - Store stalled because the TCM
part of the store buffer was full.

0x10B - KITE_WR_STALL_LLPP_STB_FULL - - Store stalled because the LLPP
part of the store buffer was full.

0x10C - KITE_BARRIER_STALL_BARRIER - - Barrier stalled because store buffer
was busy with another barrier.

0x10D - KITE_BARRIER_STORE_AXIWRITE - - Barrier stalled because it was
waiting for a write to complete on
the AXIM bus.

0x200 - KITE_IC_WT_HIT - - L1 instruction cache way tracker
hit.

0x201 - KITE_DC_WT_HIT - - L1 data cache way tracker hit.

0x202 - KITE_I_UMPU_HIT - - Instruction side micro MPU hit.

0x203 - KITE_D_UMPU_HIT - - Data side micro MPU hit. This can
also be counted on a pipeline stall.

0x204 - KITE_IC_CACHE_HIT - - L1 instruction cache hit.

0x205 - KITE_IC_LFB_HIT - - L1 instruction cache linefill buffer
hit.

0x206 - KITE_IC_BIU_HIT - - L1 instruction cache hit on BIU
response.

0x207 - KITE_IC_HINT_REQ - - L1 instruction cache hint request
sent.

 Note 

Error events are expected to be rare and combine errors from different sources. If multiple errors happen
to occur at the same cycle, the respective PMU counter or PMUEVENTx/ERREVENTx bit indicates a
single error.

12 Performance Monitor Unit
12.6 Events

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

12-425

Non-Confidential



12.7 Interrupts
The Cortex-R52 processor asserts the PMU interrupt signal when an interrupt is generated by the PMU.
This signal is connected to the Cortex-R52 processor interrupt controller as one of the PPIs. It appears as
interrupt ID 23.

This interrupt is also driven as a trigger input to the CTI.

Related reference
Chapter 13 Cross Trigger on page 13-428

12 Performance Monitor Unit
12.7 Interrupts

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

12-426

Non-Confidential



12.8 Exporting PMU events
This section describes exporting of PMU events.

This section contains the following subsections:
• 12.8.1 External hardware on page 12-427.
• 12.8.2 Debug trace hardware on page 12-427.

12.8.1 External hardware

In addition to the counters in the processor, there are some events that are exported on the
PMUEVENTx bus and can be connected to external hardware. Export of events on the PMUEVENTx
bus is enabled with the PMCR.X bit.

For information on these events, see Table 12-29  PMU events on page 12-418.

12.8.2 Debug trace hardware

The same events that are exported on PMUEVENTx are exported to the ETM trace unit to enable the
events to be monitored for generating trace and other triggers.

For more information on these events, see Table 12-29  PMU events on page 12-418.

Related reference
Chapter 13 Cross Trigger on page 13-428
Chapter 14 Embedded Trace Macrocell on page 14-446

12 Performance Monitor Unit
12.8 Exporting PMU events

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

12-427

Non-Confidential



Chapter 13
Cross Trigger

This chapter describes the cross trigger logic for the Cortex-R52 processor.

It contains the following sections:
• 13.1 About the cross trigger on page 13-429.
• 13.2 Trigger inputs and outputs on page 13-431.
• 13.3 Cortex®-R52 CTM on page 13-432.
• 13.4 Cross trigger register summary on page 13-433.
• 13.5 Cross trigger register descriptions on page 13-435.

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

13-428

Non-Confidential



13.1 About the cross trigger
In the Cortex-R52 processor, the debug logic in each core and each ETM have cross-trigger inputs and
outputs which can be used to signal trigger events. Each core has an associated CoreSight Cross-Trigger
Interface (CTI) which connects these signals. The CTI blocks are in turn connected by a Cross-Trigger
Matrix (CTM) to a single external cross-trigger channel interface for the processor.

The CTI enables the debug logic, ETM trace unit, and PMU to interact with each other and with other
CoreSight components. This is called cross-triggering. For example, you configure the CTI to generate
an interrupt when the ETM trace unit trigger event occurs.

The following figure shows the debug system components and the available trigger inputs and trigger
outputs.

13 Cross Trigger
13.1 About the cross trigger

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

13-429

Non-Confidential



Core 0

Optional core 1

Optional core 2

Optional core 3

Optional CTI 3

Debug restart

Processor

PMU

Debug

ETM

PMU interrupt
PMUEVENTx

COMMTXx
COMMRXx

ETM trace unit
external input
ETM trace unit

 external output

CTM

C
ha

nn
el

 
ou

tp
ut

s*

C
ha

nn
el

 
in

pu
ts

*

Channel output
Channel output 
acknowledge

Channel input
Channel input 
acknowledge

Governor

PM
U

 e
ve

nt
s

EDBGRQx

Debug trigger
Debug request

Cross
trigger

channel

GIC Distributor 
Unit

Optional CTI 1

CTI 0

Optional CTI 2

DCC interrupt

C
TI interrupt

* Indicates that there 
are inputs and outputs 

to and from each of 
the CTIs.

ETMEXTIN[3:0]

ETMEXTOUT[3:0]

Figure 13-1  Debug system components

13 Cross Trigger
13.1 About the cross trigger

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

13-430

Non-Confidential



13.2 Trigger inputs and outputs
This section describes the trigger inputs and trigger outputs which are available to the CTI.

The following table shows the CTI inputs.

Table 13-1  Trigger inputs

CTI input Description

0 Cross Halt trigger event.

1 PMU interrupt

2 -

3 -

4 ETM trace unit external output 0

5 ETM trace unit external output 1

6 ETM trace unit external output 2

7 ETM trace unit external output 3

The following table shows the CTI outputs.

Table 13-2  Trigger outputs

CTI output Description

0 Requests the processor to enter debug state

1 Requests the processor to exit debug state

2 CTI interrupt

3 -

4 ETM trace unit external input 0

5 ETM trace unit external input 1

6 ETM trace unit external input 2

7 ETM trace unit external input 3

13 Cross Trigger
13.2 Trigger inputs and outputs

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

13-431

Non-Confidential



13.3 Cortex®-R52 CTM
The CoreSight CTI channel signals from all the cores are combined using a CTM block so that a single
cross trigger channel interface is presented by the Cortex-R52 processor.

The following figure illustrates the Cortex-R52 processor CTM. In the CTM, the external channel output
is driven by the OR output of all internal channel outputs. Each internal channel input is driven by the
OR output of internal channel outputs of all other CTIs in addition to the external channel input. Only
one of the bits of the channel is shown but each bit is similar to the figure. The figure does not illustrate
the handshaking and synchronization logic associated with the channels.

CTM external channel 
inputs

CTM external 
channel outputs

Internal core channel
inputs

Internal core channel
outputs

CTM

Figure 13-2  Cortex-R52 processor CTM

13 Cross Trigger
13.3 Cortex®-R52 CTM

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

13-432

Non-Confidential



13.4 Cross trigger register summary
This section describes the registers for each CTI in the Cortex-R52 processor. These registers are
accessed through the memory-mapped interface or the external debug interface.

For more information on the base address for each CTI in the Cortex-R52 processor, see 11.7.1 Debug
memory map on page 11-383.

The following table gives a summary of the Cortex-R52 cross trigger registers. With the exception of a
number of read-only registers that contain ID information, the CTI registers are fully described in Arm®

CoreSight™ Architecture Specification v2.0. This implies that there are no Cortex-R52-specific details.
 Note 

The value of PADDRDBG31 and the CoreSight software lock restrict write accesses to the CTI registers
through the memory-mapped external debug interface. When PADDRDBG31 is driven LOW, the
CoreSight software lock must be used to unlock write permissions for the cross trigger registers. When
PADDRDBG31 is driven HIGH, the software lock does not restrict the write access permissions of the
cross trigger registers. The software lock is controlled with the Lock Access register (CTILAR).

Table 13-3  Cross trigger register summary

Offset Name Type Description

0x000 CTICONTROL RW CTI Control Register

0x010 CTIINTACK WO CTI Output Trigger Acknowledge Register

0x014 CTIAPPSET RW CTI Application Trigger Set Register

0x018 CTIAPPCLEAR WO CTI Application Trigger Clear Register

0x01C CTIAPPPULSE WO CTI Application Pulse Register

0x020 CTIINEN0 RW CTI Input Trigger to Output Channel Enable Registers

0x024 CTIINEN1 RW

0x028 CTIINEN2 RW

0x02C CTIINEN3 RW

0x030 CTIINEN4 RW

0x034 CTIINEN5 RW

0x038 CTIINEN6 RW

0x03C CTIINEN7 RW

0x0A0 CTIOUTEN0 RW CTI Input Channel to Output Trigger Enable Registers

0x0A4 CTIOUTEN1 RW

0x0A8 CTIOUTEN2 RW

0x0AC CTIOUTEN3 RW

0x0B0 CTIOUTEN4 RW

0x0B4 CTIOUTEN5 RW

0x0B8 CTIOUTEN6 RW

0x0BC CTIOUTEN7 RW

0x130 CTITRIGINSTATUS RO CTI Trigger In Status Register

13 Cross Trigger
13.4 Cross trigger register summary

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

13-433

Non-Confidential



Table 13-3  Cross trigger register summary (continued)

Offset Name Type Description

0x134 CTITRIGOUTSTATUS RO CTI Trigger Out Status Register

0x138 CTICHINSTATUS RO CTI Channel In Status Register

0x13C CTICHOUTSTATUS RO CTI Channel Out Status Register

0x140 CTIGATE RW CTI Channel Gate Enable Register

0x144 ASICCTL RW CTI External Multiplexer Control Register

0xF00 CTIITCTRL RW 13.5.2 CTI Integration Mode Control Register on page 13-436

0xFA0 CTICLAIMSET RW CTI Claim Tag Set Register

0xFA4 CTICLAIMCLR RW CTI Claim Tag Clear Register

0xFA8 CTIDEVAFF0 RO CTI Device Affinity Register 0

0xFAC CTIDEVAFF1 RO CTI Device Affinity Register 1

0xFB0 CTILAR WO CTI Lock Access Register

0xFB4 CTILSR RO CTI Lock Status Register

0xFB8 CTIAUTHSTATUS RO CTI Authentication Status Register

0xFBC CTIDEVARCH RO CTI Device Architecture Register

0xFC0 CTIDEVID2 RO CTI Device ID Register 2

0xFC4 CTIDEVID1 RO CTI Device ID Register 1

0xFC8 CTIDEVID RO 13.5.1 CTI Device Identification Register on page 13-435

0xFCC CTIDEVTYPE RO CTI Device Type Register

0xFD0 CTIPIDR4 RO Peripheral Identification Register 4 on page 13-441

0xFD4 CTIPIDR5 RO Peripheral Identification Register 5-7 on page 13-441

0xFD8 CTIPIDR6 RO

0xFDC CTIPIDR7 RO

0xFE0 CTIPIDR0 RO Peripheral Identification Register 0 on page 13-437

0xFE4 CTIPIDR1 RO Peripheral Identification Register 1 on page 13-438

0xFE8 CTIPIDR2 RO Peripheral Identification Register 2 on page 13-439

0xFEC CTIPIDR3 RO Peripheral Identification Register 3 on page 13-440

0xFF0 CTICIDR0 RO Component Identification Register 0 on page 13-442

0xFF4 CTICIDR1 RO Component Identification Register 1 on page 13-443

0xFF8 CTICIDR2 RO Component Identification Register 2 on page 13-443

0xFFC CTICIDR3 RO Component Identification Register 3 on page 13-444

13.4.1 External register access permissions

Whether access is permitted to a CTI register depends on:

• The state of the CTI software lock.
• The state of the debug authentication inputs to the processor.

13 Cross Trigger
13.4 Cross trigger register summary

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

13-434

Non-Confidential



13.5 Cross trigger register descriptions

This section contains the following subsections:
• 13.5.1 CTI Device Identification Register on page 13-435.
• 13.5.2 CTI Integration Mode Control Register on page 13-436.
• 13.5.3 CTI Peripheral Identification Registers on page 13-437.
• 13.5.4 Component Identification Registers on page 13-442.

13.5.1 CTI Device Identification Register

The CTIDEVID describes the CTI component to the debugger.

Usage constraints

This register is read-only. For a summary of the conditions which affect whether access to this
register is permitted, see 11.2.4 External register access permissions on page 11-354. For a
detailed description, see Arm® Architecture Reference Manual Supplement Armv8, for Armv8-R
architecture profile.

Traps and enables
There are no traps and enables affecting this register.

Configurations
Available in all processor build configurations.

Attributes
The CTIDEVID is a 32-bit register.

The following figure shows the CTIDEVID bit assignments.

31 0

NUMCHAN

15 14 13

INOUT

47 6 5816212223242526

RES0 RES0 NUMTRIG EXTMUXNUMRES0RES0

Figure 13-3  CTIDEVID bit assignments

The following table shows the CTIDEVID bit assignments.

Table 13-4  CTIDEVID bit assignments

Bits Name Function

[31:26] - Reserved, RES0.

[25:24] INOUT Input and output options. Indicates the presence of an input gate. The value is:

0b01 CTIGATE masks propagation of input events from external channels.

[23:22] - Reserved, RES0.

[21:16] NUMCHAN Number of channels implemented. This value is:

0b000
100

Four channels implemented.

[15:14] - Reserved, RES0.

13 Cross Trigger
13.5 Cross trigger register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

13-435

Non-Confidential



Table 13-4  CTIDEVID bit assignments (continued)

Bits Name Function

[13:8] NUMTRIG Number of triggers implemented. This value is:

0b001
000

Eight triggers implemented.

[7:5] - Reserved, RES0.

[4:0] EXTMUXNUM Indicates the number of multiplexers available on Trigger Inputs and Triggers Outputs. This value is:

0b000
00

No external triggers implemented.

CTIDEVID can be accessed through the external debug interface:

Table 13-5  CTIDEVID access information

Component Offset

CTI 0xFC8

13.5.2 CTI Integration Mode Control Register

The CTIITCTRL register shows that the Cortex-R52 processor does not implement an integration mode.

Usage constraints

This register is read-only. For a summary of the conditions which affect whether access to this
register is permitted, see 11.2.4 External register access permissions on page 11-354. For a
detailed description, see Arm® Architecture Reference Manual Supplement Armv8, for Armv8-R
architecture profile.

Traps and enables
There are no traps and enables affecting this register.

Configurations
Available in all processor build configurations.

Attributes
The CTIITCTRL is a 32-bit register.

The following figure shows the CTIITCTRL bit assignments.

31 01

RES0

IME

Figure 13-4  CTIITCTRL bit assignments

The following table shows the CTIITCTRL bit assignments.

13 Cross Trigger
13.5 Cross trigger register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

13-436

Non-Confidential



Table 13-6  CTIITCTRL bit assignments

Bits Name Function

[31:1] - Reserved, RES0.

[0] IME Integration mode enable. The value is:

0 Normal operation.

 Note 

Writes to this bit are ignored.

CTIITCTRL can be accessed through the external debug interface:

Table 13-7  CTIITCTRL access information

Component Offset

CTI 0xF00

13.5.3 CTI Peripheral Identification Registers

The Peripheral Identification Registers provide standard information required for all components that
conform to the Arm CoreSight architecture. They are a set of eight registers, as listed in the following
table.

Table 13-8  Summary of the Peripheral Identification Registers

Register Value Offset

Peripheral ID0 0xB6 0xFE0

Peripheral ID1 0xB9 0xFE4

Peripheral ID2 0x0B 0xFE8

Peripheral ID3 0x00 0xFEC

Peripheral ID4 0x04 0xFD0

Peripheral ID5 0x00 0xFD4

Peripheral ID6 0x00 0xFD8

Peripheral ID7 0x00 0xFDC

Only bits[7:0] of each Peripheral ID Register are used, with bits[31:8] reserved. Together, the eight
Peripheral ID Registers define a single 64-bit Peripheral ID.

The Peripheral ID registers are:
• Peripheral Identification Register 0 on page 13-437.
• Peripheral Identification Register 1 on page 13-438.
• Peripheral Identification Register 2 on page 13-439.
• Peripheral Identification Register 3 on page 13-440.
• Peripheral Identification Register 4 on page 13-441.
• Peripheral Identification Register 5-7 on page 13-441.

Peripheral Identification Register 0

The CTIPIDR0 provides information to identify a CTI component.

13 Cross Trigger
13.5 Cross trigger register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

13-437

Non-Confidential



Usage constraints

This register is read-only. For a summary of the conditions which affect whether access to this
register is permitted, see 11.2.4 External register access permissions on page 11-354. For a
detailed description, see Arm® Architecture Reference Manual Supplement Armv8, for Armv8-R
architecture profile.

Traps and enables
There are no traps and enables affecting this register.

Configurations

Available in all processor build configurations.

Attributes
The CTIPIDR0 is a 32-bit register.

The following figure shows the CTIPIDR0 bit assignments.

RES0

31 078

Part_0

Figure 13-5  CTIPIDR0 bit assignments

The following table shows the CTIPIDR0 bit assignments.

Table 13-9  CTIPIDR0 bit assignments

Bits Name Function

[31:8] - Reserved, RES0.

[7:0] Part_0 0xB6 Least significant byte of the cross trigger part number.

CTIPIDR0 can be accessed through the external debug interface:

Table 13-10  CTIPIDR0 access information

Component Offset

CTI 0xFE0

Peripheral Identification Register 1

The CTIPIDR1 provides information to identify a CTI component.

Usage constraints

This register is read-only. For a summary of the conditions which affect whether access to this
register is permitted, see 11.2.4 External register access permissions on page 11-354. For a
detailed description, see Arm® Architecture Reference Manual Supplement Armv8, for Armv8-R
architecture profile.

Traps and enables
There are no traps and enables affecting this register.

Configurations

Available in all processor build configurations.

Attributes
The CTIPIDR1 is a 32-bit register.

13 Cross Trigger
13.5 Cross trigger register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

13-438

Non-Confidential



The following figure shows the CTIPIDR1 bit assignments.

RES0

31 034

Part_1

78

DES_0

Figure 13-6  CTIPIDR1 bit assignments

The following table shows the CTIPIDR1 bit assignments.

Table 13-11  CTIPIDR1 bit assignments

Bits Name Function

[31:8] - Reserved, RES0.

[7:4] DES_0 0xB Arm Limited. This is the least significant nibble of JEP106 ID code.

[3:0] Part_1 0x9 Most significant nibble of the CTI part number.

CTIPIDR1 can be accessed through the external debug interface:

Table 13-12  CTIPIDR1 access information

Component Offset

CTI 0xFE4

Peripheral Identification Register 2

The CTIPIDR2 provides information to identify a CTI component.

Usage constraints

This register is read-only. For a summary of the conditions which affect whether access to this
register is permitted, see 11.2.4 External register access permissions on page 11-354. For a
detailed description, see Arm® Architecture Reference Manual Supplement Armv8, for Armv8-R
architecture profile.

Traps and enables
There are no traps and enables affecting this register.

Configurations

Available in all processor build configurations.

Attributes
The CTIPIDR2 is a 32-bit register.

The following figure shows the CTIPIDR2 bit assignments.

RES0

31 034

DES_1

78

Revision

JEDEC

2

Figure 13-7  CTIPIDR2 bit assignments

The following table shows the CTIPIDR2 bit assignments.

13 Cross Trigger
13.5 Cross trigger register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

13-439

Non-Confidential



Table 13-13  CTIPIDR2 bit assignments

Bits Name Function

[31:8] - Reserved, RES0.

[7:4] Revision 0x3

[3] JEDEC 1 Indicates a JEP106 identity code is used.

[2:0] DES_1 0b011 Arm Limited. This is the most significant nibble of JEP106 ID code.

CTIPIDR2 can be accessed through the external debug interface:

Table 13-14  CTIPIDR2 access information

Component Offset

CTI 0xFE8

Peripheral Identification Register 3

The CTIPIDR3 provides information to identify a CTI component.

Usage constraints This register is read-only. For a summary of the conditions which affect whether
access to this register is permitted, see 11.2.4 External register access permissions
on page 11-354. For a detailed description, see Arm® Architecture Reference
Manual Supplement Armv8, for Armv8-R architecture profile.

Traps and enables There are no traps and enables affecting this register.
Configurations Available in all processor build configurations.

Attributes The CTIPIDR3 is a 32-bit register.

The following figure shows the CTIPIDR3 bit assignments.

RES0

31 034

CMOD

78

REVAND

Figure 13-8  CTIPIDR3 bit assignments

The following table shows the CTIPIDR3 bit assignments.

Table 13-15  CTIPIDR3 bit assignments

Bits Name Function

[31:8] - Reserved, RES0.

[7:4] REVAND 0x0 Part minor revision.

[3:0] CMOD 0x0 Customer modified.

CTIPIDR3 can be accessed through the external debug interface:

13 Cross Trigger
13.5 Cross trigger register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

13-440

Non-Confidential



Table 13-16  CTIPIDR3 access information

Component Offset

CTI 0xFEC

Peripheral Identification Register 4

The CTIPIDR4 provides information to identify a CTI component.

Usage constraints

This register is read-only. For a summary of the conditions which affect whether access to this
register is permitted, see 11.2.4 External register access permissions on page 11-354. For a
detailed description, see Arm® Architecture Reference Manual Supplement Armv8, for Armv8-R
architecture profile.

Traps and enables
There are no traps and enables affecting this register.

Configurations

Available in all processor build configurations.

Attributes
The CTIPIDR4 is a 32-bit register.

The following figure shows the CTIPIDR4 bit assignments.

RES0

31 034

DES_2

78

Size

Figure 13-9  CTIPIDR4 bit assignments

The following table shows the CTIPIDR4 bit assignments.

Table 13-17  CTIPIDR4 bit assignments

Bits Name Function

[31:8] - Reserved, RES0.

[7:4] Size 0x0 1KB. Size of the component.

[3:0] DES_2 0x4 Arm Limited. This is the least significant nibble JEP106 continuation code.

CTIPIDR4 can be accessed through the external debug interface:

Table 13-18  CTIPIDR4 access information

Component Offset

CTI 0xFD0

Peripheral Identification Register 5-7

No information is held in the Peripheral ID5, Peripheral ID6, and Peripheral ID7 Registers. They are
RES0.

13 Cross Trigger
13.5 Cross trigger register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

13-441

Non-Confidential



13.5.4 Component Identification Registers

There are four read-only Component Identification Registers, Component ID0 through Component ID3.
The following table shows these registers.

Table 13-19  Summary of the Component Identification Registers

Register Value Offset

Component ID0 0x0D 0xFF0

Component ID1 0x90 0xFF4

Component ID2 0x05 0xFF8

Component ID3 0xB1 0xFFC

The Component ID registers are:
• Component Identification Register 0 on page 13-442.
• Component Identification Register 1 on page 13-443.
• Component Identification Register 2 on page 13-443.
• Component Identification Register 3 on page 13-444.

Component Identification Register 0

The CTICIDR0 provides information to identify a CTI component.

Usage constraints

This register is read-only. For a summary of the conditions which affect whether access to this
register is permitted, see 11.2.4 External register access permissions on page 11-354. For a
detailed description, see Arm® Architecture Reference Manual Supplement Armv8, for Armv8-R
architecture profile.

Traps and enables
There are no traps and enables affecting this register.

Configurations

Available in all processor build configurations.

Attributes
The CTICIDR0 is a 32-bit register.

The following figure shows the CTICIDR0 bit assignments.

RES0

31 0

PRMBL_0

78

Figure 13-10  CTICIDR0 bit assignments

The following table shows the CTICIDR0 bit assignments.

Table 13-20  CTICIDR0 bit assignments

Bits Name Function

[31:8] - Reserved, RES0.

[7:0] PRMBL_0 0x0D Preamble byte 0.

CTICIDR0 can be accessed through the external debug interface:

13 Cross Trigger
13.5 Cross trigger register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

13-442

Non-Confidential



Table 13-21  CTICIDR0 access information

Component Offset

CTI 0xFF0

Component Identification Register 1

The CTICIDR1 provides information to identify a CTI component.

Usage constraints

This register is read-only. For a summary of the conditions which affect whether access to this
register is permitted, see 11.2.4 External register access permissions on page 11-354. For a
detailed description, see Arm® Architecture Reference Manual Supplement Armv8, for Armv8-R
architecture profile.

Traps and enables
There are no traps and enables affecting this register.

Configurations

Available in all processor build configurations.

Attributes
The CTICIDR1 is a 32-bit register.

The following figure shows the CTICIDR1 bit assignments.

RES0

31 0

PRMBL_1

78 34

CLASS

Figure 13-11  CTICIDR1 bit assignments

The following table shows the CTICIDR1 bit assignments.

Table 13-22  CTICIDR1 bit assignments

Bits Name Function

[31:8] - Reserved, RES0.

[7:4] CLASS 0x9 Debug component.

[3:0] PRMBL_1 0x0 Preamble byte 1.

CTICIDR1 can be accessed through the external debug interface:

Table 13-23  CTICIDR1 access information

Component Offset

CTI 0xFF4

Component Identification Register 2

The CTICIDR2 provides information to identify a CTI component.

13 Cross Trigger
13.5 Cross trigger register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

13-443

Non-Confidential



Usage constraints
This register is read-only. For a summary of the conditions which affect whether access to this
register is permitted, see 11.2.4 External register access permissions on page 11-354. For a
detailed description, see Arm® Architecture Reference Manual Supplement Armv8, for Armv8-R
architecture profile.

Traps and enables
There are no traps and enables affecting this register.

Configurations

Available in all processor build configurations.

Attributes
The CTICIDR2 is a 32-bit register.

The following figure shows the CTICIDR2 bit assignments.

RES0

31 0

PRMBL_2

78

Figure 13-12  CTICIDR2 bit assignments

The following table shows the CTICIDR2 bit assignments.

Table 13-24  CTICIDR2 bit assignments

Bits Name Function

[31:8] - Reserved, RES0.

[7:0] PRMBL_2 0x05 Preamble byte 2.

CTICIDR2 can be accessed through the external debug interface:

Table 13-25  CTICIDR2 access information

Component Offset

CTI 0xFF8

Component Identification Register 3

The CTICIDR3 provides information to identify a CTI component.

Usage constraints

This register is read-only. For a summary of the conditions which affect whether access to this
register is permitted, see 11.2.4 External register access permissions on page 11-354. For a
detailed description, see Arm® Architecture Reference Manual Supplement Armv8, for Armv8-R
architecture profile.

Traps and enables
There are no traps and enables affecting this register.

Configurations

Available in all processor build configurations.

Attributes
The CTICIDR3 is a 32-bit register.

The following figure shows the CTICIDR3 bit assignments.

13 Cross Trigger
13.5 Cross trigger register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

13-444

Non-Confidential



RES0

31 0

PRMBL_3

78

Figure 13-13  CTICIDR3 bit assignments

The following table shows the CTICIDR3 bit assignments.

Table 13-26  CTICIDR3 bit assignments

Bits Name Function

[31:8] - Reserved, RES0.

[7:0] PRMBL_3 0xB1 Preamble byte 3.

CTICIDR3 can be accessed through the external debug interface:

Table 13-27  CTICIDR3 access information

Component Offset

CTI 0xFFC

13 Cross Trigger
13.5 Cross trigger register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

13-445

Non-Confidential



Chapter 14
Embedded Trace Macrocell

This chapter describes the Embedded Trace Macrocell (ETM) for the Cortex-R52 processor.

It contains the following sections:
• 14.1 About the ETM on page 14-447.
• 14.2 ETM trace unit generation options and resources on page 14-449.
• 14.3 ETM Event connectivity on page 14-451.
• 14.4 Operation on page 14-452.
• 14.5 Modes of operation and execution on page 14-456.
• 14.6 Register summary on page 14-458.
• 14.7 Register descriptions on page 14-462.

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

14-446

Non-Confidential



14.1 About the ETM
The Cortex-R52 ETM performs real-time instruction and data flow tracing based on the ETM
architecture ETMv4.2. Cortex-R52 supports one ETM per core.

The ETM is a CoreSight component, and is an integral part of the Arm Real-time Debug solution, DS-5
Development Studio.

The following figure shows the main functional blocks of the ETM.

Processor
interface

Debug Advanced 
Peripheral Bus (APB)

ETM

Advanced Trace 
Bus (ATBI)

Resources 
and filtering 

logic

APB
interface

Registers
Trigger, TraceEnable, 
ViewInst, ViewData

ATB interface

Data
FIFO

Data trace 
generator

Instruction 
FIFO

Instruction 
trace 

generator

ATB interface Advanced Trace 
Bus (ATBD)

Processor 
Core

Global Trace 
Timestamp 
Generator

Figure 14-1  ETM block diagram

This section contains the following subsections:
• 14.1.1 Processor interface on page 14-447.
• 14.1.2 Instruction trace generator on page 14-447.
• 14.1.3 Data trace generator on page 14-447.
• 14.1.4 FIFO on page 14-448.
• 14.1.5 Resources and filtering logic on page 14-448.
• 14.1.6 ATB interfaces on page 14-448.
• 14.1.7 APB interface on page 14-448.
• 14.1.8 Global timestamping on page 14-448.

14.1.1 Processor interface

This block connects to the Cortex-R52 core. It tracks the execution information from the core, decodes
the control signals, and passes on the information to the internal interfaces.

14.1.2 Instruction trace generator

This block generates the trace packets which are a compressed form of the instruction execution
information provided by the Cortex-R52 core. The trace packets are then passed to the instruction FIFO.

14.1.3 Data trace generator

This block generates trace packets which are a compressed form of the data transfers (data address and
data value) provided by the Cortex-R52 core. The trace packets are then passed to the data FIFO.

14 Embedded Trace Macrocell
14.1 About the ETM

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

14-447

Non-Confidential



14.1.4 FIFO

This block buffers bursts of trace packets. Separate FIFOs are provided, one for the instruction trace
stream, and one for the data trace stream.

14.1.5 Resources and filtering logic

These blocks contain resources which are programmed by trace software to trigger and filter the trace
information. They start and stop trace generation, depending on the conditions that have been set.

14.1.6 ATB interfaces

There are two ATB interfaces:

Instruction ATB interface
This reads up to four bytes of packet information from the instruction FIFO and sends them over
the instruction ATB interface.

Data ATB interface
This reads up to eight bytes of packet information from the data FIFO and sends them over the
data ATB interface.

14.1.7 APB interface

This block implements the interface to the APB that provides access to the programmable registers.

14.1.8 Global timestamping

A global timestamp source can be connected to the ETMs through the TSVALUEB

This provides a 64-bit timestamp that a debugger can use for coarse-grained profiling, and correlation of
trace sources. Arm recommends that the timestamp counter is no slower than 10% of the processor clock
frequency.

 Note 

Decompression of data trace relies on the presence of a global timestamp count.

14 Embedded Trace Macrocell
14.1 About the ETM

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

14-448

Non-Confidential



14.2 ETM trace unit generation options and resources
The following table shows the resources of the ETM that are implemented.

Table 14-1  ETM trace unit resources implemented

Feature Instance

Address comparators 4 pairs

Data value comparators 2

Data address comparators 2

Context ID comparators 1

Single-Shot comparator resource 2

Counters 2

Cycle count size 12 bits

Number of sequencer states 4

Processor comparator inputs 0

External inputs 53

External outputs 4

External input selectors 4

Resource selector pairs 8

Instruction trace port size 32-bit

Data trace port size 64-bit

Instruction FIFOcc 128-byte with 32-bit output

Data FIFO 256 byte with 64-bit output

Claim tag bits 4

The following table shows the optional features of the ETM architecture that the ETM implements.

Table 14-2  ETM trace unit generation options implemented

Feature Implemented

Trace Start/Stop block Yes

Trace all branches option Yes

Trace of conditional instructions Yes

Cycle counting in instruction trace Yes

Data trace supported  Yes

Data address comparison Yes

OS Lock mechanism Yes

Secure non-invasive debug Yes

Context ID tracing Yes

cc Instruction trace can be configured to take priority over data trace. See bit[10] of the TRCSTALLCTLR.

14 Embedded Trace Macrocell
14.2 ETM trace unit generation options and resources

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

14-449

Non-Confidential



Table 14-2  ETM trace unit generation options implemented (continued)

Feature Implemented

Trace output Yes

Timestamp size 64-bit

Memory mapped access to ETM registers Yes

External debugger access to ETM registers Yes

System instruction access to ETM registers No

VMID comparator support Yes

ATB trigger support Yes

14 Embedded Trace Macrocell
14.2 ETM trace unit generation options and resources

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

14-450

Non-Confidential



14.3 ETM Event connectivity
This section describes how the Cortex-R52 ETM inputs and outputs are connected to the CTI and PMU.

The following table shows the connection of the ETM external inputs that come from the CTI and PMU.

Table 14-3  ETM External Input connections

Bits Description

ETM External Input 0 CTI Trigger Output 4

ETM External Input 1 CTI Trigger Output 5

ETM External Input 2 CTI Trigger Output 6

ETM External Input 3 CTI Trigger Output 7

ETM External Input [48:4] Performance Monitor PMUEVENTx[44:0]

ETM External Input 49 ETMEXTIN[0]

ETM External Input 50 ETMEXTIN[1]

ETM External Input 51 ETMEXTIN[2]

ETM External Input 52 ETMEXTIN[3]

The ETM external output resources are connected to the CTI, as the following table shows.

Table 14-4  ETM External Output connections to CTI

ETM output CTI input

ETM External Output 0 CTI Trigger Input 4 and ETMEXTOUT[0]

ETM External Output 1 CTI Trigger Input 5 and ETMEXTOUT[1]

ETM External Output 2 CTI Trigger Input 6 and ETMEXTOUT[2]

ETM External Output 3 CTI Trigger Input 7 and ETMEXTOUT[3]

14 Embedded Trace Macrocell
14.3 ETM Event connectivity

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

14-451

Non-Confidential



14.4 Operation
This section describes the ETM-Cortex-R52 IMPLEMENTATION DEFINED features. These features are
IMPLEMENTATION DEFINED.

For information on the operation, see the Arm® Embedded Trace Macrocell Architecture Specification
ETMv4.

This section contains the following subsections:
• 14.4.1 Implementation defined registers on page 14-452.
• 14.4.2 Precise TraceEnable events on page 14-452.
• 14.4.3 Parallel instruction execution on page 14-452.
• 14.4.4 Comparator features on page 14-452.
• 14.4.5 Trace features on page 14-452.
• 14.4.6 Packet formats on page 14-453.
• 14.4.7 Resource selection on page 14-453.
• 14.4.8 Trace flush behavior on page 14-454.
• 14.4.9 Low power state behavior on page 14-454.
• 14.4.10 Cycle counter on page 14-454.
• 14.4.11 Non-architectural exceptions on page 14-455.
• 14.4.12 Trace synchronization on page 14-455.

14.4.1 Implementation defined registers

There are two groups of ETM-Cortex-R52 registers:

• Registers that are completely defined by the Arm® Embedded Trace Macrocell Architecture
Specification ETMv4.

• Registers that are partly IMPLEMENTATION DEFINED.

14.4.2 Precise TraceEnable events

The ViewInst and ViewData are imprecise under certain conditions, with some implementation-defined
exceptions. The only condition which ensures that ViewInst and ViewData are precise is that the
enabling event condition is TRUE.

For more information, see the Arm® Embedded Trace Macrocell Architecture Specification ETMv4.

14.4.3 Parallel instruction execution

The Cortex-R52 processor supports parallel instruction execution. This means the macrocell can trace
two instructions per cycle and 64 bits of data transfer.

If ViewInst is active for a cycle, the ETM:
• Always traces the first of any paired instructions.
• Always traces the second instruction if ViewInst is active for that instruction.
• Can trace data for any of the instructions traced.

14.4.4 Comparator features

The ETM implements data address comparison. There are eight address comparators that can be
configured for either instruction or data address comparison.

See the Arm® Embedded Trace Macrocell Architecture Specification ETMv4 for a description of data
address comparison.

14.4.5 Trace features

The ETM implements all of the ETMv4 trace features.

14 Embedded Trace Macrocell
14.4 Operation

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

14-452

Non-Confidential



This means it supports:
• Data value and data address tracing.
• Data suppression.
• Cycle-accurate tracing.
• Timestamping.

See the Arm® Embedded Trace Macrocell Architecture Specification ETMv4 for descriptions of these
features.

14.4.6 Packet formats

This section describes the packet types that the ETM instruction trace interface supports.

The ETM instruction trace interface does not support the following packet formats:

• Speculation resolution:
— Mispredict packet.
— Cancel format 2 and 3 packets.

• Conditional tracing:
— All instruction format packets.
— Result format 1 packet.

• Q packets.

Except the following data trace packet types, the ETM data trace interface supports all data trace packet
types.
• P1 Format 6 and 7 packets.
• P2 Format 2 and 3 packets.

See the Arm® Embedded Trace Macrocell Architecture Specification ETMv4 for the trace packet format
descriptions.

14.4.7 Resource selection

The ETM uses event selectors to control resources.

The ETM controls the following resources:
• Trace events (triggers and markers in the trace stream).
• Timestamp event.
• ViewInst event.
• ViewData event.
• Counter control.
• Sequencer state transitions.

Each event selector is configured to be sensitive to a resource selector pair, and one resource selector pair
can control more than one event selector.

The ETM provides one fixed resource selector pair, with static values of 0 and 1, and seven configurable
selector pairs. A resource selector pair provides a bitfield OR selector for resources in two different
groups, with each group and a configurable boolean combination provided.

The following shows the resources that can be selected for the instruction and data trace.

Table 14-5  Instruction and data resource selection

Group Select Resource

0b0000 0-3 External input selector 0-3

0b0010 0-1 Counter at zero 0-1

4-7 Sequencer states 0-3

0b0011 1 Single-Shot comparator 0-1

14 Embedded Trace Macrocell
14.4 Operation

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

14-453

Non-Confidential



Table 14-5  Instruction and data resource selection (continued)

Group Select Resource

0b0100 0-7 Single address comparator 0-7

0b0101 0-3 Address range comparator 0-3

0b0110 0 Context ID Comparator 0

0b0111 0 VMID Comparator 0

For example, the following figure shows the steps necessary to use a single address comparator to
generate a trigger event and an ATB trigger. This example uses the first single resource selector that can
be user-configured.

TRCACVR0
<0xnnn>

TRCACATR0
<0x00>

Simple instruction 
address comparator

TRCRSCTL2
<0x40001>

Resource selector 
sensitive to SAC0

Event selector sensitive 
to single Resource 2

TRCEVENTCTL0R
<0x02>

TRCEVENTCTL1R
<0x801>

Event0 generates event 
element and ATB trigger

Figure 14-2  Trigger event resource selection

14.4.8 Trace flush behavior

Events that are observed by the ETM can be confirmed to have reached the trace bus output with the use
of the ATB flush protocol. Both ATB ports must be flushed to determine when the trace infrastructure
finishes capturing all the packets generated by the ETM.

The ETM internally flushes instruction and data trace together whenever either flush request is seen but
does not guarantee that the trace data has drained from the ETM. When the processor enters a low power
state, this also causes all trace to be output from the ETM.

14.4.9 Low power state behavior

When the processor enters a low power state there is a delay before the resources in the ETM become
inactive.

This permits the last instruction executed to trigger a comparator, update the counter or sequencer, and
the resultant event packet to be inserted in the specified trace stream. This event packet is presented on
the trace bus before the ETM itself enters a low power state.

If an event packet is generated for a different reason, it is not guaranteed to be output before the ETM
enters a low power state, but is traced when the processor leaves the low power state, if the ETM logic is
not reset before this can occur.

The TRCEVENTCTL1R.LPOVERRIDE bit controls how a trace unit behaves in a low power state. If it
is set to 1, trace unit low-power state behavior is overridden, that is, entry to a low-power state does not
affect the trace unit resources or trace generation. In this case, the ETM resources remain active.

Related reference
14.7.5 Event Control 1 Register on page 14-468

14.4.10 Cycle counter

The Cortex-R52 ETM uses a 12-bit cycle counter.

14 Embedded Trace Macrocell
14.4 Operation

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

14-454

Non-Confidential



It does not count when non-invasive debug is disabled, or when the processor is in a low power state.

14.4.11 Non-architectural exceptions

Non-architectural behavior exceptions are indicated by the ETM.

The ETM indicates exceptions for the following non-architectural behaviors that use the following TYPE
encodings:

0b10001 ECC logic requires instruction trace to be replayed. This should not be relied on as providing
trace of ECC behavior.

14.4.12 Trace synchronization

The ETM receives and combines all sources of trace synchronization requests to determine when
synchronization is required. When synchronization is required, information is inserted in both trace
streams as necessary (depending on whether data trace is active).

To decompress the trace streams, synchronization information in the data trace stream determines the
alignment with synchronization information in the instruction stream. If the ETM is configured to trace
only events in the data stream, you must configure the instruction trace stream to contain sufficient
elements to permit the required data trace stream synchronization.

14 Embedded Trace Macrocell
14.4 Operation

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

14-455

Non-Confidential



14.5 Modes of operation and execution
This section describes how to control the ETM programming and read and program the ETM registers.

This section contains the following subsections:
• 14.5.1 Use of the ETM main enable bit on page 14-456.
• 14.5.2 Programming and reading ETM registers on page 14-457.
• 14.5.3 External register access permissions on page 14-457.

14.5.1 Use of the ETM main enable bit

When programming the ETM registers, you must enable all the changes at the same time.

For example, if the counter is reprogrammed, it might start to count based on incorrect events, before the
trigger condition has been correctly set up.

To disable all trace operations during programming use:
• The ETM main enable in the TRCPRGCTLR, see 14.7.1 Programming Control Register

on page 14-463.
• The TRCSTATR to indicate the ETM status, see 14.7.2 Status Register on page 14-463.

The following figure shows the procedure to use.

Start

Set TRCPRGCTLR.EN 
bit to 0

Read TRCSTATR  

Is TRCSTATR.IDLE  
1?  

Program all trace 
registers required

Set TRCPRGCTLR.EN 
bit to 1

Is TRCSTATR.IDLE
0?  

End

No

Yes

No

Yes

Figure 14-3  Programming ETM registers

The Cortex-R52 processor does not have to be in Debug state while you program the ETM registers.

14 Embedded Trace Macrocell
14.5 Modes of operation and execution

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

14-456

Non-Confidential



14.5.2 Programming and reading ETM registers

To access the ETM registers, use the external APB interface. This provides a direct method of
programming the ETM.

14.5.3 External register access permissions

Whether access is permitted to a register depends on:

• If the processor is powered up.
• The state of the OS Lock and Software Lock.
• The state of the debug authentication inputs to the processor.

The behavior that is specific to each register and the type of access to the register is not described in this
document. For a detailed description of these features and their effects on the registers, see the Arm®

Architecture Reference Manual Supplement Armv8, for Armv8-R architecture profile.

The register descriptions provided in this section describe whether each register is read/write or read-
only.

14 Embedded Trace Macrocell
14.5 Modes of operation and execution

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

14-457

Non-Confidential



14.6 Register summary
This section summarizes the ETM registers.

For full descriptions of the ETM registers, see:

• 14.7 Register descriptions on page 14-462, for the implementation defined registers.

Table 14-6  ETM register summary on page 14-458 lists the ETM registers in numerical order and
describes each register.

The register table includes additional information about each register:
• The register access type. This is read-only, write-only, or read and write.
• The base offset address of the register. The base offset of a register is always four times its register

number.
• Additional information about the implementation of the register, where appropriate.

 Note 

• Registers not listed here are not implemented. Reading a non-implemented register address returns 0.
Writing to a non-implemented register address has no effect.

• In the following table:
— The Reset value column shows the value of the register immediately after an ETM reset. For read-

only registers, every read of the register returns this value.
— Access type is described as follows:

RW Read and write.
RO Read only.
WO Write only.

• The value of PADDRDBG31 and the CoreSight Software lock restrict write accesses to the ETM
registers through the memory-mapped external debug interface. When PADDRDBG31 is driven
LOW, the CoreSight software lock must be used to unlock write permissions for the ETM registers.
When PADDRDBG31 is driven HIGH, the software lock does not restrict the write access
permissions of the ETM registers. The software lock is controlled with the Lock Access register.

All ETM registers are 32 bits wide.

Table 14-6  ETM register summary

Register
number

Base offset Name Type Reset Description

1 0x004 TRCPRGCTLR RW 0x00000000 14.7.1 Programming Control Register on page 14-463

3 0x00C TRCSTATR RO UNK 14.7.2 Status Register on page 14-463

4 0x010 TRCCONFIGR RW UNK 14.7.3 Trace Configuration Register on page 14-464

8 0x020 TRCEVENTCTL0R RW UNK 14.7.4 Event Control 0 Register on page 14-467

9 0x024 TRCEVENTCTL1R RW UNK 14.7.5 Event Control 1 Register on page 14-468

11 0x02C TRCSTALLCTLR RW UNK 14.7.6 Stall Control Register on page 14-469

12 0x030 TRCTSCTLR RW UNK 14.7.7 Global Timestamp Control Register
on page 14-471

13 0x034 TRCSYNCPR RW UNK 14.7.8 Synchronization Period Register
on page 14-472

14 0x038 TRCCCCTLR RW UNK 14.7.9 Cycle Count Control Register on page 14-473

14 Embedded Trace Macrocell
14.6 Register summary

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

14-458

Non-Confidential



Table 14-6  ETM register summary (continued)

Register
number

Base offset Name Type Reset Description

15 0x03C TRCBBCTLR RW UNK 14.7.10 Branch Broadcast Control Register
on page 14-474

16 0x040 TRCTRACEIDR RW UNK 14.7.11 Trace ID Register on page 14-475

32 0x080 TRCVICTLR RW UNK 14.7.12 ViewInst Main Control Register
on page 14-475

33 0x084 TRCVIIECTLR RW UNK 14.7.13 ViewInst Include/Exclude Control Register
on page 14-477

34 0x088 TRCVISSCTLR RW UNK 14.7.14 ViewInst Start/Stop Control Register
on page 14-478

40 0x0A0 TRCVDCTLR RW UNK 14.7.15 ViewData Main Control Register
on page 14-479

41 0x0A4 TRCVDSACCTLR RW UNK 14.7.16 ViewData Include/Exclude Single Address
Comparator Register on page 14-480

42 0x0A8 TRCVDARCCTLR RW UNK 14.7.17 ViewData Include/Exclude Address Range
Comparator Register on page 14-481

64-66 0x100-0x108 TRCSEQEVR0-2 RW UNK 14.7.18 Sequencer State Transition Control Registers,
n=0-2 on page 14-482

70 0x118 TRCSEQRSTEVR RW UNK 14.7.19 Sequencer Reset Control Register
on page 14-483

71 0x11C TRCSEQSTR RW UNK 14.7.20 Sequencer State Register on page 14-484

72 0x120 TRCEXTINSELR RW UNK 14.7.21 External Input Select Register on page 14-485

80-81 0x140-0x144 TRCCNTRLDVR0-1 RW UNK 14.7.22 Counter Reload Value Registers, n=0-1
on page 14-486

84-85 0x150-0x154 TRCCNTCTLR0-1 RW UNK 14.7.23 Counter Control Registers 0-1 on page 14-487

88-89 0x160-0x164 TRCCNTVR0-1 RW UNK 14.7.24 Counter Value Registers, n=0-1
on page 14-488

96 0x180 TRCIDR8 RO 0x00000001 14.7.25 ID Registers, n=8-13 on page 14-489

97 0x184 TRCIDR9 RO 0x00000020

98 0x188 TRCIDR10 RO 0x00000002

99 0x18C TRCIDR11 RO 0x00000000

100 0x190 TRCIDR12 RO 0x00000001

101 0x194 TRCIDR13 RO 0x00000000

112 0x1C0 TRCIMSPEC0 RW 0x00000000 14.7.26 Implementation Specific Register 0
on page 14-492

120 0x1E0 TRCIDR0 RO 0x08000EFF 14.7.27 ID Register 0 on page 14-492

121 0x1E4 TRCIDR1 RO 0x4100F423 14.7.28 ID Register 1 on page 14-494

122 0x1E8 TRCIDR2 RO 0x00420484 14.7.29 ID Register 2 on page 14-495

14 Embedded Trace Macrocell
14.6 Register summary

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

14-459

Non-Confidential



Table 14-6  ETM register summary (continued)

Register
number

Base offset Name Type Reset Description

123 0x1EC TRCIDR3 RO 0x0D700004 14.7.30 ID Register 3 on page 14-496

124 0x1F0 TRCIDR4 RO 0x11270124 14.7.31 ID Register 4 on page 14-498

125 0x1F4 TRCIDR5 RO 0x28C7081A 14.7.32 ID Register 5 on page 14-499

130-143 0x208-0x23C TRCRSCTLR2-15 RW UNK 14.7.33 Resource Selection Registers, n=2-15
on page 14-500

160-161 0x280-0x284 TRCSSCCR0-1 RW UNK 14.7.34 Single-shot Comparator Control Registers,
n=0-1 on page 14-501

168-169 0x2A0-0x2A4 TRCSSCSR0-1 RW UNK 14.7.35 Single-shot Comparator Status Registers
n=0-1 on page 14-502

192 0x300 TRCOSLAR WO UNK 14.7.36 OS Lock Access Register on page 14-504

193 0x304 TRCOSLSR RO 0x0000000A 14.7.37  OS Lock Status Register on page 14-504

196 0x310 TRCPDCR RW 0x00000000 14.7.38 Power Down Control Register on page 14-505

197 0x314 TRCPDSR RO UNK 14.7.39 Power Down Status Register on page 14-506

256-270 0x400-0x438 TRCACVR0-7 RW UNK 14.7.40 Address Comparator Value Registers, n=0-7
on page 14-507

288-302 0x480-0x4B8 TRCACATR0-7 RW UNK 14.7.41 Address Comparator Access Type Registers,
n=0-7 on page 14-508

320-324 0x500-0x510 TRCDVCVR0-1 RW UNK 14.7.42 Data Value Comparator Value Registers,
n=0-1 on page 14-512

352-356 0x580-0x590 TRCDVCMR0-1 RW UNK 14.7.43 Data Value Comparator Mask Registers,
n=0-1 on page 14-512

384 0x600 TRCCIDCVR0 RW UNK 14.7.44 Context ID Comparator Value Registers 0
on page 14-513

400 0x640 TRCVMIDCVR0 RW UNK 14.7.45 Virtual Context Identifier Comparator Value
Register on page 14-513

416 0x680 TRCCIDCCTLR0 RW UNK 14.7.46  Context ID Comparator Control Register 0
on page 14-514

960 0xF00 TRCITCTRL RO 0x00000000 14.7.47 Integration Mode Control Register
on page 14-515

1000 0xFA0 TRCCLAIMSET RW 0x0000000F 14.7.48 Claim Tag Set Register on page 14-516

1001 0xFA4 TRCCLAIMCLR RW 0x00000000 14.7.49 Claim Tag Clear Register on page 14-517

1002 0xFA8 TRCDEVAFF0 RO -cd 14.7.50 TRCDEVAFF0, Device Affinity Register 0
on page 14-518

1003 0xFAC TRCDEVAFF1 RO 0x00000000 14.7.51 TRCDEVAFF1, Device Affinity Register 1
on page 14-518

1004 0xFB0 TRCLAR WO UNK 14.7.52 Software Lock Access Register
on page 14-518

cd The reset value depends on the cluster and processor ID. See 3.3.78 Multiprocessor Affinity Register on page 3-166

14 Embedded Trace Macrocell
14.6 Register summary

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

14-460

Non-Confidential



Table 14-6  ETM register summary (continued)

Register
number

Base offset Name Type Reset Description

1005 0xFB4 TRCLSR RO 0x00000003 14.7.53 Software Lock Status Register on page 14-519

1006 0xFB8 TRCAUTHSTATUS RO UNK 14.7.54 Authentication Status Register on page 14-520

1007 0xFBC TRCDEVARCH RO 0x47724A13 14.7.55 Device Architecture Register on page 14-521

1010 0xFC8 TRCDEVID RO 0x00000000 14.7.56 Device ID Register on page 14-522

1011 0xFCC TRCDEVTYPE RO 0x00000013 14.7.57 Device Type Register on page 14-522

1012 0xFD0 TRCPIDR4 RO -ce 14.7.58 Peripheral Identification Registers
on page 14-523

1013-1015 0xFD4-0xFDC TRCPIDR[5,6,7] RO

1016 0xFE0 TRCPIDR0 RO

1017 0xFE4 TRCPIDR1 RO

1018 0xFE8 TRCPIDR2 RO

1019 0xFEC TRCPIDR3 RO

1020-1023 0xFF0-0xFFC TRCCIDR0-3 RO -cf 14.7.59 Component Identification Registers
on page 14-526

ce See 14.7.58 Peripheral Identification Registers on page 14-523
cf 14.7.59 Component Identification Registers on page 14-526

14 Embedded Trace Macrocell
14.6 Register summary

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

14-461

Non-Confidential



14.7 Register descriptions
This section describes the ETM-Cortex-R52 registers.

This section contains the following subsections:
• 14.7.1 Programming Control Register on page 14-463.
• 14.7.2 Status Register on page 14-463.
• 14.7.3 Trace Configuration Register on page 14-464.
• 14.7.4 Event Control 0 Register on page 14-467.
• 14.7.5 Event Control 1 Register on page 14-468.
• 14.7.6 Stall Control Register on page 14-469.
• 14.7.7 Global Timestamp Control Register on page 14-471.
• 14.7.8 Synchronization Period Register on page 14-472.
• 14.7.9 Cycle Count Control Register on page 14-473.
• 14.7.10 Branch Broadcast Control Register on page 14-474.
• 14.7.11 Trace ID Register on page 14-475.
• 14.7.12 ViewInst Main Control Register on page 14-475.
• 14.7.13 ViewInst Include/Exclude Control Register on page 14-477.
• 14.7.14 ViewInst Start/Stop Control Register on page 14-478.
• 14.7.15 ViewData Main Control Register on page 14-479.
• 14.7.16 ViewData Include/Exclude Single Address Comparator Register on page 14-480.
• 14.7.17 ViewData Include/Exclude Address Range Comparator Register on page 14-481.
• 14.7.18 Sequencer State Transition Control Registers, n=0-2 on page 14-482.
• 14.7.19 Sequencer Reset Control Register on page 14-483.
• 14.7.20 Sequencer State Register on page 14-484.
• 14.7.21 External Input Select Register on page 14-485.
• 14.7.22 Counter Reload Value Registers, n=0-1 on page 14-486.
• 14.7.23 Counter Control Registers 0-1 on page 14-487.
• 14.7.24 Counter Value Registers, n=0-1 on page 14-488.
• 14.7.25 ID Registers, n=8-13 on page 14-489.
• 14.7.26 Implementation Specific Register 0 on page 14-492.
• 14.7.27 ID Register 0 on page 14-492.
• 14.7.28 ID Register 1 on page 14-494.
• 14.7.29 ID Register 2 on page 14-495.
• 14.7.30 ID Register 3 on page 14-496.
• 14.7.31 ID Register 4 on page 14-498.
• 14.7.32 ID Register 5 on page 14-499.
• 14.7.33 Resource Selection Registers, n=2-15 on page 14-500.
• 14.7.34 Single-shot Comparator Control Registers, n=0-1 on page 14-501.
• 14.7.35 Single-shot Comparator Status Registers n=0-1 on page 14-502.
• 14.7.36 OS Lock Access Register on page 14-504.
• 14.7.37  OS Lock Status Register on page 14-504.
• 14.7.38 Power Down Control Register on page 14-505.
• 14.7.39 Power Down Status Register on page 14-506.
• 14.7.40 Address Comparator Value Registers, n=0-7 on page 14-507.
• 14.7.41 Address Comparator Access Type Registers, n=0-7 on page 14-508.
• 14.7.42 Data Value Comparator Value Registers, n=0-1 on page 14-512.
• 14.7.43 Data Value Comparator Mask Registers, n=0-1 on page 14-512.
• 14.7.44 Context ID Comparator Value Registers 0 on page 14-513.
• 14.7.45 Virtual Context Identifier Comparator Value Register on page 14-513.
• 14.7.46  Context ID Comparator Control Register 0 on page 14-514.
• 14.7.47 Integration Mode Control Register on page 14-515.
• 14.7.48 Claim Tag Set Register on page 14-516.
• 14.7.49 Claim Tag Clear Register on page 14-517.
• 14.7.50 TRCDEVAFF0, Device Affinity Register 0 on page 14-518.

14 Embedded Trace Macrocell
14.7 Register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

14-462

Non-Confidential



• 14.7.51 TRCDEVAFF1, Device Affinity Register 1 on page 14-518.
• 14.7.52 Software Lock Access Register on page 14-518.
• 14.7.53 Software Lock Status Register on page 14-519.
• 14.7.54 Authentication Status Register on page 14-520.
• 14.7.55 Device Architecture Register on page 14-521.
• 14.7.56 Device ID Register on page 14-522.
• 14.7.57 Device Type Register on page 14-522.
• 14.7.58 Peripheral Identification Registers on page 14-523.
• 14.7.59 Component Identification Registers on page 14-526.

14.7.1 Programming Control Register

The TRCPRGCTLR enables the ETM.

Usage constraints
This register is read/write. Might ignore writes when the trace unit is enabled or not idle.

Traps and enables
There are no traps and enables affecting this register.

Configurations
Available in all configurations.

Attributes
TRCPRGCTLR is a 32-bit register.

The following figure shows the TRCPRGCTLR bit assignments.

31 1 0

EN

RES0

Figure 14-4  TRCPRGCTLR bit assignments

The following table shows the TRCPRGCTLR bit assignments.

Table 14-7  TRCPRGCTLR bit assignments

Bits Name Function

[31:1] - Reserved, RES0.

[0] EN Trace program enable:

0 Enabled when necessary to process APB accesses, or drain any already generated trace. No trace is generated and
all resources are inactive. This is the value after reset.

1 Clocks are enabled except for when the processor is in a low power state, or non-invasive debug is disabled, and
all trace has been drained. The trace unit is enabled.

TRCPRGCTLR can be accessed through the memory mapped interface:

Table 14-8  TRCPRGCTLR access information

Component Offset Reset

ETM 0x004 0x00000000

14.7.2 Status Register

The TRCSTATR indicates the ETM status.

14 Embedded Trace Macrocell
14.7 Register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

14-463

Non-Confidential



Usage constraints
This register is read-only.

Traps and enables
There are no traps and enables affecting this register.

Configurations
Available in all configurations.

Attributes
TRCSTATR is a 32-bit register.

The following figure shows the TRCSTATR bit assignments.

31 1 0

IDLE

RES0

2

PMSTABLE

Figure 14-5  TRCSTATR bit assignments

The following table shows the TRCSTATR bit assignments.

Table 14-9  TRCSTATR bit assignments

Bits Name Function

[31:2] - Reserved, RES0.

[1] PMSTABLE Indicates whether the ETM registers are stable and can be read:

0 The programmers model is not stable.

1 The programmers model is stable.

[0] IDLE Indicates that the trace unit is inactive:

0 The ETM is not idle.

1 The ETM is idle.

TRCSTATR can be accessed through the memory mapped interface:

Table 14-10  TRCSTATR access information

Component Offset Reset

ETM 0x00C UNK

14.7.3 Trace Configuration Register

The TRCCONFIGR sets the basic tracing options for the trace unit.

Usage constraints

This register is read/write and must always be programmed as part of the trace unit initialization.

Only accepts writes when the trace unit is disabled.

Traps and enables
There are no traps and enables affecting this register.

Configurations
Available in all configurations.

14 Embedded Trace Macrocell
14.7 Register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

14-464

Non-Confidential



Attributes
TRCCONFIGR is a 32-bit register.

The following figure shows the TRCCONFIGR bit assignments.

31 18 17 16 15 13 12 11 10 8 7 6 5 4 3 2 1 0

RES0

DV
DA

RES0

RS
TS

COND

RES0
CID

VMID

CCI
BB

RES1

INSTP0

Figure 14-6  TRCCONFIGR bit assignments

The following table shows the TRCCONFIGR bit assignments.

Table 14-11  TRCCONFIGR bit assignments

Bits Name Function

[31:18] - Reserved, RES0.

[17] DV Data value tracing:

0 Data value tracing disabled.

1 Data value tracing enabled.

[16] DA Data address tracing:

0 Data address tracing disabled.

1 Data address tracing enabled.

[15:13] - Reserved, RES0.

[12] RS Return stack enable:

0 Return stack disabled.

1 Return stack enabled.

[11] TS Global timestamp tracing:

0 Global timestamp tracing disabled.

1 Global timestamp tracing enabled.

For more global timestamping options, see 14.7.7 Global Timestamp Control Register on page 14-471.

14 Embedded Trace Macrocell
14.7 Register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

14-465

Non-Confidential



Table 14-11  TRCCONFIGR bit assignments (continued)

Bits Name Function

[10:8] COND Conditional instruction tracing. The supported values are:

0b000 Conditional instruction tracing disabled.

0b001 Conditional load instructions are traced.

0b010 Conditional store instructions are traced.

0b011 Conditional load and store instructions are traced.

0b111 All conditional instructions are traced.

All other values are Reserved.

[7] VMID Virtual machine ID tracing:

0 VMID tracing is disabled.

1 VMID tracing is enabled.

[6] CID Context ID tracing:

0 Context ID tracing is disabled.

1 Context ID tracing is enabled.

[5] - Reserved, RES0.

[4] CCI Cycle counting in instruction trace:

0 Cycle counting in instruction trace disabled.

1 Cycle counting in instruction trace enabled.

For more cycle counting options, see 14.7.9 Cycle Count Control Register on page 14-473.

[3] BB Branch broadcast mode:

0 Branch broadcast mode disabled.

1 Branch broadcast mode enabled.

For more branch broadcast mode options, see 14.7.10 Branch Broadcast Control Register on page 14-474.

[2:1] INSTP0 Determines the instructions that generate P0 elements:

0b00 Only branches are P0 elements.

0b01 Load instructions and branches are P0 elements.

0b10 Store instructions and branches are P0 elements.

0b11 Load and store instructions and branches are P0 elements.

[0] - Reserved, RES1.

TRCCONFIGR can be accessed through the memory mapped interface:

Table 14-12  TRCCONFIGR access information

Component Offset Reset

ETM 0x010 UNK

14 Embedded Trace Macrocell
14.7 Register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

14-466

Non-Confidential



14.7.4 Event Control 0 Register

The TRCEVENTCTL0R controls the tracing of events in the trace streams. The events also drive the
external outputs from the ETM.

Usage constraints

This register is read/write and must always be programmed as part of the trace unit initialization.

Only accepts writes when the trace unit is disabled.

Traps and enables
There are no traps and enables affecting this register.

Configurations
Available in all configurations.

Attributes
TRCEVENTCTL0R is a 32-bit register.

The following figure shows the TRCEVENTCTL0R bit assignments.

31 16 15 14 12 11 8 7 4 3 0

TYPE3

RES0 SEL1

30 28 27 24 23 22 20 19

SEL3 SEL2

TYPE2

RES0 RES0

TYPE0TYPE1

SEL0RES0

6

Figure 14-7  TRCEVENTCTL0R bit assignments

The following table shows the TRCEVENTCTL0R bit assignments.

Table 14-13  TRCEVENTCTL0R bit assignments

Bits Name Function

[31] TYPE3 Selects the resource type for event 3:

0 Single selected resource.

1 Boolean combined resource pair.

[30:28] - Reserved, RES0.

[27:24] SEL3 Selects the resource number, based on the value of TYPE3:

When TYPE3 is 0, selects a single selected resource from 0-15 defined by SEL3[3:0].

When TYPE3 is 1, selects a Boolean combined resource pair from 0-7 defined by SEL3[2:0].

[23] TYPE2 Selects the resource type for event 2:

0 Single selected resource.

1 Boolean combined resource pair.

[22:20] - Reserved, RES0.

[19:16] SEL2 Selects the resource number, based on the value of TYPE2:

When TYPE2 is 0, selects a single selected resource from 0-15 defined by SEL2[3:0].

When TYPE2 is 1, selects a Boolean combined resource pair from 0-7 defined by SEL2[2:0].

14 Embedded Trace Macrocell
14.7 Register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

14-467

Non-Confidential



Table 14-13  TRCEVENTCTL0R bit assignments (continued)

Bits Name Function

[15] TYPE1 Selects the resource type for event 1:

0 Single selected resource.

1 Boolean combined resource pair.

[14:12] - Reserved, RES0.

[11:8] SEL1 Selects the resource number, based on the value of TYPE1:

When TYPE1 is 0, selects a single selected resource from 0-15 defined by SEL1[3:0].

When TYPE1 is 1, selects a Boolean combined resource pair from 0-7 defined by SEL1[2:0].

[7] TYPE0 Selects the resource type for event 0:

0 Single selected resource.

1 Boolean combined resource pair.

[6:4] - Reserved, RES0.

[3:0] SEL0 Selects the resource number, based on the value of TYPE0:

When TYPE0 is 0, selects a single selected resource from 0-15 defined by SEL0[3:0].

When TYPE0 is 1, selects a Boolean combined resource pair from 0-7 defined by SEL0[2:0].

TRCEVENTCTL0R can be accessed through the memory mapped interface:

Table 14-14  TRCEVENTCTL0R access information

Component Offset Reset

ETM 0x020 UNK

14.7.5 Event Control 1 Register

The TRCEVENTCTL1R controls how the events selected by TRCEVENTCTL0R behave.

Usage constraints

This register is read/write and must always be programmed as part of the trace unit initialization.

Only accepts writes when the trace unit is disabled.

Traps and enables
There are no traps and enables affecting this register.

Configurations
Available in all configurations.

Attributes
TRCEVENTCTL1R is a 32-bit register.

The following figure shows the TRCEVENTCTL1R bit assignments.

14 Embedded Trace Macrocell
14.7 Register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

14-468

Non-Confidential



31 0

RES0

11 1013 12

RES0

5 4

INSTEN

3

LPOVERRIDE DATAENATB

Figure 14-8  TRCEVENTCTL1R bit assignments

The following table shows the TRCEVENTCTL1R bit assignments.

Table 14-15  TRCEVENTCTL1R bit assignments

Bits Name Function

[31:13] - Reserved, RES0.

[12] LPOVERRIDE Low power state behavior override:

0 Low power state behavior unaffected.

1 Low power state behavior overridden. The resources and Event trace generation are unaffected
by entry to a low power state.

[11] ATB ATB trigger enable:

0 ATB trigger disabled.

1 ATB trigger enabled.

[10:5] - Reserved, RES0.

[4] DATAEN Enables generation of an event element in the data trace stream when the selected event occurs:

0 Event does not cause an event element.

1 Event causes an event element.

[3:0] INSTEN One bit per event, to enable generation of an event element in the instruction trace stream when the selected
event occurs:

0 Event does not cause an event element.

1 Event causes an event element.

TRCEVENTCTL1R can be accessed through the memory mapped interface:

Table 14-16  TRCEVENTCTL1R access information

Component Offset Reset

ETM 0x024 UNK

14.7.6 Stall Control Register

The TRCSTALLCTLR enables the ETM to stall the Cortex-R52 processor if the ETM FIFO goes over
the programmed level to minimize risk of overflow.

Usage constraints

Only accepts writes when the trace unit is disabled.

This register is read/write and must always be programmed as part of the trace unit initialization.

Traps and enables
There are no traps and enables affecting this register.

14 Embedded Trace Macrocell
14.7 Register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

14-469

Non-Confidential



Configurations
Available in all configurations.

Attributes
TRCSTALLCTLR is a 32-bit register.

The following figure shows the TRCSTALLCTLR bit assignments.

31 12 11 8 7 4 3 0

RES0

10 9

DATADISCARD
INSTPRIORITY

DSTALL

13 2 1

ISTALL
LEVEL

RES0

RES0NOOVERFLOW

Figure 14-9  TRCSTALLCTLR bit assignments

The following table shows the TRCSTALLCTLR bit assignments.

Table 14-17  TRCSTALLCTLR bit assignments

Bits Name Function

[31:14] - Reserved, RES0.

[13] NOOVERFLOW Trace overflow prevention bit. This field is RES0.

[12:11] DATADISCARD Sets the priority of data trace components, enabling the ETM to discard some data if the data trace buffer
space is less than LEVEL:

0b00 The trace unit must not discard any data trace elements.

0b01 The trace unit can discard P1 and P2 elements associated with data loads.

0b10 The trace unit can discard P1 and P2 elements associated with data stores.

0b11 The trace unit can discard P1 and P2 elements associated with both data loads and stores.

[10] INSTPRIORITY Prioritize instruction trace if instruction trace buffer space is less than LEVEL:

0 The trace unit must not prioritize instruction trace.

1 The trace unit can prioritize instruction trace.

[9] DSTALL Stall processor based on data trace buffer space:

0 The trace unit must not stall the processor.

1 The trace unit can stall the processor.

[8] ISTALL Stall processor based on instruction trace buffer space:

0 The trace unit must not stall the processor.

1 The trace unit can stall the processor.

[7:4] - Reserved, RES0.

14 Embedded Trace Macrocell
14.7 Register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

14-470

Non-Confidential



Table 14-17  TRCSTALLCTLR bit assignments (continued)

Bits Name Function

[3:2] LEVEL Threshold at which stalling becomes active. This provides four levels. This level can be varied to optimize
the level of invasion caused by stalling, balanced against the risk of a FIFO overflow:

0b00 Zero invasion. This setting has a greater risk of a FIFO overflow.

0b11 Maximum invasion occurs but there is less risk of a FIFO overflow.

[1:0] - Reserved, RES0.

TRCSTALLCTLR can be accessed through the memory mapped interface:

Table 14-18  TRCSTALLCTLR access information

Component Offset Reset

ETM 0x02C UNK

14.7.7 Global Timestamp Control Register

The TRCTSCTLR controls the insertion of global timestamps into the trace streams. A timestamp is
always inserted into the instruction trace stream, and also in the data trace stream if any data tracing is
enabled.

Usage constraints

Only accepts writes when the trace unit is disabled.

This register is read/write and must always be programmed as part of the trace unit initialization.

Traps and enables
There are no traps and enables affecting this register.

Configurations
Available in all configurations.

Attributes
TRCTSCTLR is a 32-bit register.

The following figure shows the TRCTSCTLR bit assignments.

31 8 7 4 3 0

RES0

TYPE

SELRES0

6

Figure 14-10  TRCTSCTLR bit assignments

The following table shows the TRCTSCTLR bit assignments.

Table 14-19  TRCTSCTLR bit assignments

Bits Name Function

[31:8] - Reserved, RES0.

[7] TYPE Selects the resource type:

0 Single selected resource.

1 Boolean combined resource pair.

14 Embedded Trace Macrocell
14.7 Register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

14-471

Non-Confidential



Table 14-19  TRCTSCTLR bit assignments (continued)

Bits Name Function

[6:4] - Reserved, RES0.

[3:0] SEL Selects the resource number, based on the value of TYPE:

When TYPE is 0, selects a single selected resource from 0-15 defined by bits[3:0].

When TYPE is 1, selects a Boolean combined resource pair from 0-7 defined by bits[2:0].

TRCTSCTLR can be accessed through the memory mapped interface:

Table 14-20  TRCTSCTLR access information

Component Offset Reset

ETM 0x030 UNK

14.7.8 Synchronization Period Register

The TRCSYNCPR specifies the period of trace synchronization of the trace streams. TRCSYNCPR
defines a number of bytes of trace between requests for trace synchronization. This value is always a
power of two.

Usage constraints

Only accepts writes when the trace unit is disabled.

This register is read/write and must always be programmed as part of the trace unit initialization.

Traps and enables
There are no traps and enables affecting this register.

Configurations
Available in all configurations.

Attributes
TRCSYNCPR is a 32-bit register.

The following figure shows the TRCSYNCPR bit assignments.

31 5 0

RES0

4

PERIOD

Figure 14-11  TRCSYNCPR bit assignments

The following table shows the TRCSYNCPR bit assignments.

14 Embedded Trace Macrocell
14.7 Register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

14-472

Non-Confidential



Table 14-21  TRCSYNCPR bit assignments

Bits Name Function

[31:5] - Reserved, RES0.

[4:0] PERIOD Defines the number of bytes of trace between trace synchronization requests as a total of the number of bytes
generated by both the instruction and data streams. The number of bytes is 2N where N is the value of this field:
• A value of zero disables these periodic trace synchronization requests, but does not disable other trace

synchronization requests.
• The minimum value that can be programmed, other than zero, is 8, providing a minimum trace synchronization

period of 256 bytes.
• The maximum value is 20, providing a maximum trace synchronization period of 220 bytes.

TRCSYNCPR can be accessed through the memory mapped interface:

Table 14-22  TRCSYNCPR access information

Component Offset Reset

ETM 0x034 UNK

14.7.9 Cycle Count Control Register

The TRCCCCTLR sets the threshold value for instruction trace cycle counting. The threshold represents
the minimum interval between cycle count trace packets.

Usage constraints

Only accepts writes when the trace unit is disabled.

This register is read/write and must always be programmed as part of the trace unit initialization.

Traps and enables
There are no traps and enables affecting this register.

Configurations
Available in all configurations.

Attributes
TRCCCCTLR is a 32-bit register.

The following figure shows the TRCCCCTLR bit assignments.

31 12 0

RES0

11

THRESHOLD

Figure 14-12  TRCCCCTLR bit assignments

The following table shows the TRCCCCTLR bit assignments.

Table 14-23  TRCCCCTLR bit assignments

Bits Name Function

[31:12] - Reserved, RES0.

[11:0] THRESHOLD Instruction trace cycle count threshold.

TRCCCCTLR can be accessed through the memory mapped interface:

14 Embedded Trace Macrocell
14.7 Register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

14-473

Non-Confidential



Table 14-24  TRCCCCTLR access information

Component Offset Reset

ETM 0x038 UNK

14.7.10 Branch Broadcast Control Register

The TRCBBCTLR controls how branch broadcasting behaves, and enables branch broadcasting to be
enabled for certain memory regions.

Usage constraints

This register is read/write. Only accepts writes when the trace unit is disabled.

Traps and enables
There are no traps and enables affecting this register.

Configurations
Available in all configurations.

Attributes
TRCBBCTLR is a 32-bit register.

The following figure shows the TRCBBCTLR bit assignments.

31 8 7 4 3 0

RES0

MODE

RANGERES0

9

Figure 14-13  TRCBBCTLR bit assignments

The following table shows the TRCBBCTLR bit assignments.

Table 14-25  TRCBBCTLR bit assignments

Bits Name Function

[31:9] - Reserved, RES0.

[8] MODE Selects mode:

0 Exclude mode. The Address Range Comparators defined by the RANGE field indicate address ranges where
branch broadcasting is not enabled. Selecting no ranges results in branch broadcasting being enabled over the
whole memory map.

1 Include mode. The Address Range Comparators defined by the RANGE field indicate address ranges where
branch broadcasting is enabled. Setting RANGE to all zeroes is UNPREDICTABLE when in Include mode.

[7:4] - Reserved, RES0.

[3:0] RANGE Selects Address Range Comparators to control where branch broadcasting is enabled. One bit is provided for each
implemented Address Range Comparator.

TRCBBCTLR can be accessed through the memory mapped interface:

Table 14-26  TRCBBCTLR access information

Component Offset Reset

ETM 0x03C UNK

14 Embedded Trace Macrocell
14.7 Register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

14-474

Non-Confidential



14.7.11 Trace ID Register

The TRCTRACEIDR sets the trace ID on the trace bus. Controls two trace IDs, one for instruction trace
and one for data trace.

Usage constraints

In a CoreSight system, writing of reserved trace ID values, 0x00 and 0x70-0x7F, is
UNPREDICTABLE. This register is read/write and must always be programmed as part of the trace
unit initialization.

Only accepts writes when the trace unit is disabled.

Traps and enables
There are no traps and enables affecting this register.

Configurations
Available in all configurations.

Attributes
TRCTRACEIDR is a 32-bit register.

The following figure shows the TRCTRACEIDR bit assignments.

31 7 0

RES0

6

TRACEID

Figure 14-14  TRCTRACEIDR bit assignments

The following table shows the TRCTRACEIDR bit assignments.

Table 14-27  TRCTRACEIDR bit assignments

Bits Name Function

[31:7] - Reserved, RES0.

[6:0] TRACEID Trace ID value. When only instruction tracing is enabled, this provides the trace ID.

When data tracing is enabled, this field must be written with bit[0] set to 0. The instruction and data trace streams
use adjacent trace ID values:
• The instruction trace stream uses the trace ID TRACEID[6:0].
• The data value trace stream uses the trace ID TRACEID{[6:1],1}.

TRCTRACEIDR can be accessed through the memory mapped interface:

Table 14-28  TRCTRACEIDR access information

Component Offset Reset

ETM 0x040 UNK

14.7.12 ViewInst Main Control Register

The TRCVICTLR controls instruction trace filtering.

Usage constraints

This registers is read/write. Only accepts writes when the trace unit is disabled.

Only returns stable data when TRCSTATR.PMSTABLE is 1.

Must be programmed to set the value of the SSSTATUS bit, that sets the state of the start-stop
logic.

14 Embedded Trace Macrocell
14.7 Register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

14-475

Non-Confidential



Traps and enables
There are no traps and enables affecting this register.

Configurations
Available in all configurations.

Attributes
TRCVICTLR is a 32-bit register.

The following figure shows the TRCVICTLR bit assignments.

31 12 11 8 7 4 3 0

RES0

20 19

TRCERR

SEL

RES0

610 9

RES0

TRCRESET
SSSTATUS

TYPE

RES0

23 22 21

EXLEVEL_NS

16 15

EXLEVEL_S

Figure 14-15  TRCVICTLR bit assignments

The following table shows the TRCVICTLR bit assignments.

Table 14-29  TRCVICTLR bit assignments

Bits Value Function

[31:23] - Reserved, RES0.

[22] EXLEVEL_NS Disables tracing for the specified exception level in EL2.

[21] EXLEVEL_NS Disables tracing for the specified exception level in EL1.

[20] EXLEVEL_NS Disables tracing for the specified exception level in EL0.

[19:16] EXLEVEL_S This field is RES0.

[15:12] - Reserved, RES0.

[11] TRCERR Selects whether a system error exception must always be traced:

0 System error exception is traced only if the instruction or exception immediately before the
system error exception is traced.

1 System error exception is always traced regardless of the value of ViewInst.

[10] TRCRESET Selects whether a reset exception must always be traced:

0 Reset exception is traced only if the instruction or exception immediately before the reset
exception is traced.

1 Reset exception is always traced regardless of the value of ViewInst.

[9] SSSTATUS Indicates the current status of the start/stop logic:

0 Start/stop logic is in the stopped state.

1 Start/stop logic is in the started state.

[8] - Reserved, RES0.

14 Embedded Trace Macrocell
14.7 Register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

14-476

Non-Confidential



Table 14-29  TRCVICTLR bit assignments (continued)

Bits Value Function

[7] TYPE Selects the resource type:

0 Single selected resource.

1 Boolean combined resource pair.

[6:4] - Reserved, RES0.

[3:0] SEL Selects the resource number, based on the value of TYPE:

When TYPE is 0, selects a single selected resource from 0-15 defined by bits[3:0].

When TYPE is 1, selects a Boolean combined resource pair from 0-7 defined by bits[2:0].

TRCVICTLR can be accessed through the memory mapped interface:

Table 14-30  TRCVICTLR access information

Component Offset Reset

ETM 0x080 UNK

14.7.13 ViewInst Include/Exclude Control Register

The TRCVIIECTLR defines the address range comparators that control the ViewInst Include/Exclude
control.

Usage constraints

This register is read/write. Only accepts writes when the trace unit is disabled.

Traps and enables
There are no traps and enables affecting this register.

Configurations
Available in all configurations.

Attributes
TRCVIIECTLR is a 32-bit register.

The following figure shows the TRCVIIECTLR bit assignments.

RES0

31 20 19 16 15 4 3 0

EXCLUDE RES0 INCLUDE

Figure 14-16  TRCVIIECTLR bit assignments

The following table shows the TRCVIIECTLR bit assignments.

Table 14-31  TRCVIIECTLR bit assignments

Bits Name Function

[31:20] - Reserved, RES0.

[19:16] EXCLUDE Defines the address range comparators for ViewInst exclude control. One bit is provided for each Address
Range Comparator.

14 Embedded Trace Macrocell
14.7 Register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

14-477

Non-Confidential



Table 14-31  TRCVIIECTLR bit assignments (continued)

Bits Name Function

[15:4] - Reserved, RES0.

[3:0] INCLUDE Defines the address range comparators for ViewInst include control.

Selecting no include comparators indicates that all instructions must be included. The exclude control indicates
which ranges must be excluded.

One bit is provided for each Address Range Comparator.

TRCVIIECTLR can be accessed through the memory mapped interface:

Table 14-32  TRCVIIECTLR access information

Component Offset Reset

ETM 0x084 UNK

14.7.14 ViewInst Start/Stop Control Register

The TRCVISSCTLR defines the single address comparators that control the ViewInst Start/Stop logic.

Usage constraints

Only accepts writes when the trace unit is disabled.

This register is read/write and must always be programmed as part of the trace unit initialization.

Traps and enables
There are no traps and enables affecting this register.

Configurations
Available in all configurations.

Attributes
TRCVISSCTLR is a 32-bit register.

The following figure shows the TRCVISSCTLR bit assignments.

RES0

31 24 23 16 15 8 7 0

STOP RES0 START

Figure 14-17  TRCVISSCTLR bit assignments

The following table shows the TRCVISSCTLR bit assignments.

Table 14-33  TRCVISSCTLR bit assignments

Bits Name Function

[31:24] - Reserved, RES0.

[23:16] STOP Defines the single address comparators to stop trace with the ViewInst Start/Stop control.

One bit is provided for each single address comparator.

[15:8] - Reserved, RES0.

[7:0] START Defines the single address comparators to start trace with the ViewInst Start/Stop control.

One bit is provided for each single address comparator.

14 Embedded Trace Macrocell
14.7 Register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

14-478

Non-Confidential



TRCVISSCTLR can be accessed through the memory mapped interface:

Table 14-34  TRCVISSCTLR access information

Component Offset Reset

ETM 0x088 UNK

14.7.15 ViewData Main Control Register

The TRCVDCTLR controls data trace filtering.

Usage constraints

Only accepts writes when the trace unit is disabled.

This register is read/write and must be programmed when data tracing is enabled.

Traps and enables
There are no traps and enables affecting this register.

Configurations
Available in all configurations.

Attributes
TRCVDCTLR is a 32-bit register.

The following figure shows the TRCVDCTLR bit assignments.

31 0

RES0

11 10 9 7

SEL

SPREL

8 346

RES0

TYPE

PCREL

13 12

TBI
TRCEXDATA

Figure 14-18  TRCVDCTLR bit assignments

The following table shows the TRCVDCTLR bit assignments.

Table 14-35  TRCVDCTLR bit assignments

Bits Name Function

[31:13] - Reserved, RES0.

[12] TRCEXDATA This field is RES0.

[11] TBI This field is RES0.

[10] PCREL Controls tracing of data for transfers that are relative to the PC:

0 Tracing of PC-relative transfers is unaffected.

1 Do not trace either the address or value portions of PC-relative transfers.

[9:8] SPREL Controls tracing of data for transfers that are relative to the Stack Pointer (SP):

0b00 Tracing of SP-relative transfers is unaffected.

0b01 Reserved.

0b10 Do not trace the address portion of SP-relative transfers. A P1 data address element is generated if
data value tracing is enabled.

0b11 Do not trace either the address or value portions of SP-relative transfers.

14 Embedded Trace Macrocell
14.7 Register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

14-479

Non-Confidential



Table 14-35  TRCVDCTLR bit assignments (continued)

Bits Name Function

[7] TYPE Selects the resource type:

0 Single selected resource.

1 Boolean combined resource pair.

[6:4] - Reserved, RES0.

[3:0] SEL Selects the resource number, based on the value of TYPE:

When TYPE is 0, selects a single selected resource from 0-15 defined by bits[3:0].

When TYPE is 1, selects a Boolean combined resource pair from 0-7 defined by bits[2:0].

TRCVDCTLR can be accessed through the memory mapped interface:

Table 14-36  TRCVDCTLR access information

Component Offset Reset

ETM 0x0A0 UNK

14.7.16 ViewData Include/Exclude Single Address Comparator Register

The TRCVDSACCTLR defines the single address comparators that control the ViewData Include/
Exclude control.

Usage constraints
Only accepts writes when the trace unit is disabled. This register is read/write and must be
programmed when data tracing is enabled and one or more address comparators are
implemented.

Traps and enables
There are no traps and enables affecting this register.

Configurations
Available in all configurations.

Attributes
TRCVDSACCTLR is a 32-bit register.

The following figure shows the TRCVDSACCTLR bit assignments.

RES0

31 25 24 16 15 0

EXCLUDE RES0 INCLUDE

78

Figure 14-19  TRCVDSACCTLR bit assignments

The following table shows the TRCVDSACCTLR bit assignments.

Table 14-37  TRCVDSACCTLR bit assignments

Bits Name Function

[31:25] - Reserved, RES0.

[24:16] EXCLUDE Defines the single address comparators for ViewData exclude control. One bit is provided for each address
comparator.

14 Embedded Trace Macrocell
14.7 Register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

14-480

Non-Confidential



Table 14-37  TRCVDSACCTLR bit assignments (continued)

Bits Name Function

[15:8] - Reserved, RES0.

[7:0] INCLUDE Defines the single address comparators for ViewData include control.

One bit is provided for each address comparator.

TRCVDSACCTLR can be accessed through the memory mapped interface:

Table 14-38  TRCVDSACCTLR access information

Component Offset Reset

ETM 0x0A4 UNK

14.7.17 ViewData Include/Exclude Address Range Comparator Register

The TRCVDARCCTLR defines the address range comparators that control the ViewData Include/
Exclude control.

Usage constraints
Only accepts writes when the trace unit is disabled. This register is read/write and must be
programmed when data tracing is enabled and one or more address comparators are
implemented.

Traps and Enables
There are no traps and enables affecting this register.

Configurations
Available in all configurations.

Attributes
TRCVDARCCTLR is a 32-bit register.

The following figure shows the TRCVDARCCTLR bit assignments.

RES0

31 20 19 16 15 4 3 0

EXCLUDE RES0 INCLUDE

Figure 14-20  TRCVDARCCTLR bit assignments

The following table shows the TRCVDARCCTLR bit assignments.

Table 14-39  TRCVDARCCTLR bit assignments

Bits Name Function

[31:20] - Reserved, RES0

[19:16] EXCLUDE Defines the address range comparators for ViewData exclude control.One bit is provided for each address range
comparator.

[15:4] - Reserved, RES0.

[3:0] INCLUDE Defines the address range comparators for ViewData include control.

One bit is provided for each address range comparator.

TRCVDARCCTLR can be accessed through the memory mapped interface:

14 Embedded Trace Macrocell
14.7 Register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

14-481

Non-Confidential



Table 14-40  TRCVDARCCTLR access information

Component Offset Reset

ETM 0x0A8 UNK

14.7.18 Sequencer State Transition Control Registers, n=0-2

The TRCSEQEVRn registers define the sequencer transitions that progress to the next state or backwards
to the previous state. The ETM implements a sequencer state machine with four states.

Usage constraints
These registers is read/write. Only accept writes when the trace unit is disabled.

Traps and Enables
There are no traps and enables affecting these registers.

Configurations
Available in all configurations.

Attributes
TRCSEQEVRn are 32-bit registers.

The following figure shows the TRCSEQEVRn bit assignments.

31 0

RES0

16

B SEL F SEL

15 8 7111214

RES0

4 36

RES0

B TYPE F TYPE

Figure 14-21  TRCSEQEVRn bit assignments

The following table shows the TRCSEQEVRn bit assignments.

Table 14-41  TRCSEQEVRn bit assignments

Bits Name Function

[31:16] - Reserved, RES0.

[15] B TYPE Selects the resource type to move backwards to this state from the next state:

0 Single selected resource.

1 Boolean combined resource pair.

[14:12] - Reserved, RES0.

[11:8] B SEL Selects the resource number, based on the value of B TYPE:

When B TYPE is 0, selects a single selected resource from 0-15 defined by bits[3:0].

When B TYPE is 1, selects a Boolean combined resource pair from 0-7 defined by bits[2:0].

[7] F TYPE Selects the resource type to move forwards from this state to the next state:

0 Single selected resource.

1 Boolean combined resource pair.

14 Embedded Trace Macrocell
14.7 Register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

14-482

Non-Confidential



Table 14-41  TRCSEQEVRn bit assignments (continued)

Bits Name Function

[6:4] - Reserved, RES0.

[3:0] F SEL Selects the resource number, based on the value of F TYPE:

When F TYPE is 0, selects a single selected resource from 0-15 defined by bits[3:0].

When F TYPE is 1, selects a Boolean combined resource pair from 0-7 defined by bits[2:0].

TRCSEQEVRn can be accessed through the memory mapped interface:

Table 14-42  TRCSEQEVRn access information

Component Offset Reset

ETM 0x100-0x108 UNK

14.7.19 Sequencer Reset Control Register

The TRCSEQRSTEVR resets the sequencer to state 0.

Usage constraints
This register is read/write. Only accepts writes when the trace unit is disabled.

Traps and Enables
There are no traps and enables affecting this register.

Configurations
Available in all configurations.

Attributes
TRCSEQRSTEVR is a 32-bit register.

The following figure shows the TRCSEQRSTEVR bit assignments.

31 0

RES0 RESETSEL

8 7 4 36

RES0

RESETTYPE

Figure 14-22  TRCSEQRSTEVR bit assignments

The following table shows the TRCSEQRSTEVR bit assignments.

Table 14-43  TRCSEQRSTEVR bit assignments

Bits Name Function

[31:8] - Reserved, RES0.

[7] RESETTYPE Selects the resource type to move back to state 0:

0 Single selected resource.

1 Boolean combined resource pair.

14 Embedded Trace Macrocell
14.7 Register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

14-483

Non-Confidential



Table 14-43  TRCSEQRSTEVR bit assignments (continued)

Bits Name Function

[6:4] - Reserved, RES0.

[3:0] RESETSEL Selects the resource number, based on the value of RESETTYPE:

When RESETTYPE is 0, selects a single selected resource from 0-15 defined by bits[3:0].

When RESETTYPE is 1, selects a Boolean combined resource pair from 0-7 defined by bits[2:0].

TRCSEQRSTEVR can be accessed through the memory mapped interface:

Table 14-44  TRCSEQRSTEVR access information

Component Offset Reset

ETM 0x118 UNK

14.7.20 Sequencer State Register

The TRCSEQSTR holds the value of the current state of the sequencer.

Usage constraints

This register is read/write. Only accepts writes when the trace unit is disabled.

Must be programmed with an initial value when programming the sequencer.

Traps and Enables
There are no traps and enables affecting this register.

Configurations
Available in all configurations.

Attributes
TRCSEQSTR is a 32-bit register.

The following figure shows the TRCSEQSTR bit assignments.

31 1 0

RES0

2

STATE

Figure 14-23  TRCSEQSTR bit assignments

The following table shows the TRCSEQSTR bit assignments.

14 Embedded Trace Macrocell
14.7 Register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

14-484

Non-Confidential



Table 14-45  TRCSEQSTR bit assignments

Bits Name Function

[31:2] - Reserved, RES0.

[1:0] STATE Current sequencer state:

0b00 State 0.

0b01 State 1.

0b10 State 2.

0b11 State 3.

TRCSEQSTR can be accessed through the memory mapped interface:

Table 14-46  TRCSEQSTR access information

Component Offset Reset

ETM 0x11C UNK

14.7.21 External Input Select Register

Use the TRCEXTINSELR register to set, or read, which external inputs are resources to the trace unit.

Usage constraints
This register is read/write. Ignores writes when the trace unit is enabled or not idle.

Traps and Enables
There are no traps and enables affecting this register.

Configurations
Available in all configurations.

Attributes
A 32-bit read/write register. This register is set to an UNKNOWN value on a trace unit reset.

The following figure shows the TRCEXTINSELR bit assignments.

31 16 15 024 232930 22 21 14 7 568

RES0RES0RES0RES0 SEL3 SEL2 SEL1 SEL0

Figure 14-24  TRCEXTINSELR bit assignments

The following table shows the TRCEXTINSELR bit assignments.

Table 14-47  TRCEXTINSELR bit assignments

Bits Name Function

[31:30] - Reserved, RES0.

[29:24] SEL3 Selects which external input is a resource for the trace unit.

[23:22] - Reserved, RES0.

[21:16] SEL2 Selects which external input is a resource for the trace unit.

[15:14] - Reserved, RES0.

14 Embedded Trace Macrocell
14.7 Register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

14-485

Non-Confidential



Table 14-47  TRCEXTINSELR bit assignments (continued)

Bits Name Function

[13:8] SEL1 Selects which external input is a resource for the trace unit.

[7:6] - Reserved, RES0.

[5:0] SEL0 Selects which external input is a resource for the trace unit.

TRCEXTINSELR can be accessed through the memory mapped interface:

Table 14-48  TRCEXTINSELR access information

Component Offset Reset

ETM 0x120 UNK

14.7.22 Counter Reload Value Registers, n=0-1

Each TRCCNTRLDVRn register defines the reload value for counter <n>.

Usage constraints

This register is read/write. Only accepts writes when the trace unit is disabled.

Traps and enables
There are no traps and enables affecting these registers.

Configurations

Available in all configurations.

Attributes
TRCCNTRLDVRn are 32-bit registers.

The following figure shows the TRCCNTRLDVRn bit assignments.

31 16 15 0

RES0 VALUE

Figure 14-25  TRCCNTRLDVRn bit assignments

The following table shows the TRCCNTRLDVRn bit assignments.

Table 14-49  TRCCNTRLDVRn bit assignments

Bits Value Function

[31:16] - Reserved, RES0.

[15:0] VALUE Defines the reload value for the counter. This value is loaded into the counter each time the reload event occurs.

TRCCNTRLDVRn can be accessed through the memory mapped interface:

Table 14-50  TRCCNTRLDVRn access information

Component Offset Reset

ETM 0x140-0x144 UNK

14 Embedded Trace Macrocell
14.7 Register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

14-486

Non-Confidential



14.7.23 Counter Control Registers 0-1

Each TRCCNTCTLRn register controls the counter <n>.

Usage constraints
These registers are read/write. Only accepts writes when the trace unit is disabled.

Traps and enables
There are no traps and enables affecting these registers.

Configurations
Available in all configurations.

Attributes
TRCCNTCTLRn are 32-bit registers.

The following figure shows the TRCCNTCTLRn bit assignments.

RES0

31 16 15 14 12 11 8 7 6 4 3 0

RES0 RLDSEL RES0 CNTSEL

RLDSELF
CNTTYPE

17

RLDTYPE

18

CNTCHAIN

Figure 14-26  TRCCNTCTLRn bit assignments

The following table shows the TRCCNTCTLRn bit assignments.

Table 14-51  TRCCNTCTLRn bit assignments

Bits Name Function

[31:18] - Reserved, RES0.

[17] CNTCHAINcg Defines whether the counter decrements when the counter reloads. This enables two counters to be used in
combination to provide a larger counter:

0 The counter operates independently from the counter. The counter only decrements based on
CNTTYPE and CNTSEL.

1 The counter decrements when the counter reloads. The counter also decrements when the resource
selected by CNTTYPE and CNTSEL is active.

[16] RLDSELF Defines whether the counter reloads when it reaches zero:

0 The counter does not reload when it reaches zero. The counter only reloads based on RLDTYPE
and RLDSEL.

1 The counter reloads when it reaches zero and the resource selected by CNTTYPE and CNTSEL is
also active. The counter also reloads based on RLDTYPE and RLDSEL.

[15] RLDTYPE Selects the resource type for the reload:

0 Single selected resource.

1 Boolean combined resource pair.

[14:12] - Reserved, RES0.

cg Only present on TRCCNTCTLR1. RES0 on TRCCNTCTLR0.

14 Embedded Trace Macrocell
14.7 Register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

14-487

Non-Confidential



Table 14-51  TRCCNTCTLRn bit assignments (continued)

Bits Name Function

[11:8] RLDSEL Selects the resource number, based on the value of RLDTYPE:

When RLDTYPE is 0, selects a single selected resource from 0-15 defined by RLDSEL[3:0].

When RLDTYPE is 1, selects a Boolean combined resource pair from 0-7 defined by RLDSEL[2:0].

[7] CNTTYPE Selects the resource type for the counter:

0 Single selected resource.

1 Boolean combined resource pair.

[6:4] - Reserved, RES0.

[3:0] CNTSEL Selects the resource number, based on the value of CNTTYPE:

When CNTTYPE is 0, selects a single selected resource from 0-15 defined by bits[3:0].

When CNTTYPE is 1, selects a Boolean combined resource pair from 0-7 defined by bits[2:0].

TRCCNTCTLRn can be accessed through the memory mapped interface:

Table 14-52  TRCCNTCTLRn access information

Component Offset Reset

ETM 0x150-0x154 UNK

14.7.24 Counter Value Registers, n=0-1

The TRCCNTVRn registers set or return the value of counter <n>.

Usage constraints

These registers is read/write. Only accept writes when the trace unit is disabled. The count value
is only stable when TRCSTATR.PMSTABLE==1.

If software uses counter <n>, then it must write to these registers to set the initial counter value.

Traps and enables
There are no traps and enables affecting these registers.

Configurations
Available in all configurations.

Attributes
TRCCNTVRn are 32-bit registers.

The following figure shows the TRCCNTVRn bit assignments.

31 16 15 0

RES0 VALUE

Figure 14-27  TRCCNTVRn bit assignments

The following table shows the TRCCNTVRn bit assignments.

14 Embedded Trace Macrocell
14.7 Register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

14-488

Non-Confidential



Table 14-53  TRCCNTVRn bit assignments

Bits Value Function

[31:16] - Reserved, RES0.

[15:0] VALUE Contains the current counter value.

TRCCNTVRn can be accessed through the memory mapped interface:

Table 14-54  TRCCNTVRn access information

Component Offset Reset

ETM 0x160-0x164 UNK

14.7.25 ID Registers, n=8-13

The TRCIDRn registers provide information about the implemented trace streams that are required to
analyze the trace.

Usage constraints
These registers are read-only.

Traps and enables
There are no traps and enables affecting these registers.

Configurations
These registers are available in all configurations.

Attributes
TRCIDRn are 32-bit registers.

The following figure shows the TRCIDR8 bit assignments.

31 0

MAXSPEC

Figure 14-28  TRCIDR8 bit assignments

The following table shows the TRCIDR8 bit assignments.

Table 14-55  TRCIDR8 bit assignments

Bits Name Function

[31:0] MAXSPEC Indicates the maximum speculation depth of the instruction trace stream. This is the maximum number of P0
elements that have not been committed in the trace stream at any one time.

0x00000001 Maximum trace speculation depth is one.

TRCIDR8 can be accessed through the memory mapped interface:

Table 14-56  TRCIDR8 access information

Component Offset Reset

ETM 0x180 0x00000001

The following figure shows the TRCIDR9 bit assignments.

14 Embedded Trace Macrocell
14.7 Register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

14-489

Non-Confidential



31 0

NUMP0KEY

Figure 14-29  TRCIDR9 bit assignments

The following table shows the TRCIDR9 bit assignments.

Table 14-57  TRCIDR9 bit assignments

Bits Name Function

[31:0] NUMP0KEY Indicates the number of P0 right-hand keys that are used:

0x00000020 The ETM supports 32 P0 keys.

TRCIDR9 can be accessed through the memory mapped interface:

Table 14-58  TRCIDR9 access information

Component Offset Reset

ETM 0x184 0x00000020

The following figure shows the TRCIDR10 bit assignments.

31 0

NUMP1KEY

Figure 14-30  TRCIDR10 bit assignments

The following table shows the TRCIDR10 bit assignments.

Table 14-59  TRCIDR10 bit assignments

Bits Name Function

[31:0] NUMP1KEY Indicates the total number of P1 right-hand keys, including normal and special keys:

0x00000002 The ETM supports 2 P1 right-hand keys.

TRCIDR10 can be accessed through the memory mapped interface:

Table 14-60  TRCIDR10 access information

Component Offset Reset

ETM 0x188 0x00000002

The following figure shows the TRCIDR11 bit assignments.

31 0

NUMP1SPC

Figure 14-31  TRCIDR11 bit assignments

The following table shows the TRCIDR11 bit assignments.

14 Embedded Trace Macrocell
14.7 Register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

14-490

Non-Confidential



Table 14-61  TRCIDR11 bit assignments

Bits Name Function

[31:0] NUMP1SPC Indicates the number of special P1 right-hand keys.

0x00000000 No special P1 right-hand keys used.

TRCIDR11 can be accessed through the memory mapped interface:

Table 14-62  TRCIDR11 access information

Component Offset Reset

ETM 0x18C 0x00000000

The following figure shows the TRCIDR12 bit assignments.

31 0

NUMCONDKEY

Figure 14-32  TRCIDR12 bit assignments

The following table shows the TRCIDR12 bit assignments.

Table 14-63  TRCIDR12 bit assignments

Bits Name Function

[31:0] NUMCONDKEY Indicates the total number of conditional instruction right-hand keys, including normal and special keys:

0x00000001 One conditional instruction right-hand key implemented.

TRCIDR12 can be accessed through the memory mapped interface:

Table 14-64  TRCIDR12 access information

Component Offset Reset

ETM 0x190 0x00000001

The following figure shows the TRCIDR13 bit assignments.

31 0

NUMCONDSPC

Figure 14-33  TRCIDR13 bit assignments

The following table shows the TRCIDR13 bit assignments.

Table 14-65  TRCIDR13 bit assignments

Bits Name Function

[31:0] NUMCONDSPC This indicates the number of special conditional instruction right-hand keys.

0x00000000 No special conditional instruction right-hand keys implemented.

14 Embedded Trace Macrocell
14.7 Register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

14-491

Non-Confidential



TRCIDR13 can be accessed through the memory mapped interface:

Table 14-66  TRCIDR13 access information

Component Offset Reset

ETM 0x194 0x00000000

14.7.26 Implementation Specific Register 0

The TRCIMSPEC0 shows the presence of any IMPLEMENTATION-SPECIFIC features, and enables any features
that are provided.

Usage constraints
This register is read/write.

Traps and enables
There are no traps and enables affecting this register.

Configurations
Available in all configurations.

Attributes
TRCIMSPEC0 is a 32-bit register.

The following figure shows the TRCIMSPEC0 bit assignments.

31 0

RES0

4

SUPPORT

38 7

EN

Figure 14-34  TRCIMSPEC0 bit assignments

The following table shows the TRCIMSPEC0 bit assignments.

Table 14-67  TRCIMSPEC0 bit assignments

Bits Name Function

[31:8] - Reserved, RES0.

[7:4] EN SUPPORT set to 0, this field is RES0

[3:0] SUPPORT Set to 0. No IMPLEMENTATION-SPECIFIC extensions are supported.

TRCIMSPEC0 can be accessed through the memory mapped interface:

Table 14-68  TRCIMSPEC0 access information

Component Offset Reset

ETM 0x1C0 0x00000000

14.7.27 ID Register 0

The TRCIDR0 indicates the tracing capabilities of the ETM.

Usage constraints

This register is read-only.

14 Embedded Trace Macrocell
14.7 Register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

14-492

Non-Confidential



Traps and enables
There are no traps and enables affecting this register.

Configurations
Available in all configurations.

Attributes
TRCIDR0 is a 32-bit register.

The following figure shows the TRCIDR0 bit assignments.

31 0

RETSTACK
RES0

14 12 10 8 7 6 59 3 1

CONDTYPE

RES1

NUMEVENT
TRCCCI

INSTP0
TRCDATA
TRCBB
TRCCOND

211 4132829 24

TSSIZE RES0

23

RES0

16 15

QSUPP
QFILT

30

COMMOPT

18 17

TRCEXDATA

Figure 14-35  TRCIDR0 bit assignments

The following table shows the TRCIDR0 bit assignments.

Table 14-69  TRCIDR0 bit assignments

Bits Name Function

[31:30] - Reserved, RES0.

[29] COMMOPT Indicates the meaning of the commit field in some packets:

0 Commit mode 0.

[28:24] TSSIZE Global timestamp size:

0b01000 Maximum of 64-bit global timestamp implemented.

[23:18] - Reserved, RES0.

[17] TRCEXDATA Indicates support for the tracing of data transfers for exceptions and exception returns:

0 TRCVDCTLR.TRCEXDATA is not implemented.

[16:15] QSUPP Indicates Q element support:

0b00 Q elements not supported.

[14] QFILT This field is RES0.

[13:12] CONDTYPE Indicates how conditional results are traced:

0b00 The trace unit indicates only if a conditional instruction passes or fails its condition code check.

[11:10] NUMEVENT Number of events supported in the trace:

0b11 Four events supported.

14 Embedded Trace Macrocell
14.7 Register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

14-493

Non-Confidential



Table 14-69  TRCIDR0 bit assignments (continued)

Bits Name Function

[9] RETSTACK Return stack support:

1 Return stack implemented.

[8] - Reserved, RES0.

[7] TRCCCI Support for cycle counting in the instruction trace:

1 Cycle counting in the instruction trace is implemented.

[6] TRCCOND Support for conditional instruction tracing:

1 Conditional instruction tracing is implemented.

[5] TRCBB Support for branch broadcast tracing:

1 Branch broadcast tracing is implemented.

[4:3] TRCDATA Support for tracing of data:

0b11 Tracing of data addresses and data values is supported.

[2:1] INSTP0 Support for tracing of load and store instructions as P0 elements:

0b11 Tracing of load and store instructions as P0 elements is supported.

[0] - Reserved, RES1.

TRCIDR0 can be accessed through the memory mapped interface:

Table 14-70  TRCIDR0 access information

Component Offset Reset

ETM 0x1E0 0x0C000EFF

14.7.28 ID Register 1

The TRCIDR1 indicates the basic architecture of the ETM.

Usage constraints
This register is read-only.

Traps and enables
There are no traps and enables affecting this register.

Configurations
Available in all configurations.

Attributes
TRCIDR1 is a 32-bit register.

The following figure shows the TRCIDR1 bit assignments.

14 Embedded Trace Macrocell
14.7 Register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

14-494

Non-Confidential



31 0

DESIGNER

8

REVISION

24 23 1116

RES0

1215 4 3

RES1

TRCARCHMINTRCARCHMAJ

7

Figure 14-36  TRCIDR1 bit assignments

The following table shows the TRCIDR1 bit assignments.

Table 14-71  TRCIDR1 bit assignments

Bits Name Function

[31:24] DESIGNER Indicates the designer of the trace unit:

0x41 Arm.

[23:16] - Reserved, RES0.

[15:12] - Reserved, RES1.

[11:8] TRCARCHMAJ Major trace unit architecture version number:

0b0100 ETMv4.

[7:4] TRCARCHMIN Minor trace unit architecture version number:

0b0010 Minor revision 2.

[3:0] REVISION Implementation revision number:

0b0011 Implementation revision 3.

TRCIDR1 can be accessed through the memory mapped interface:

Table 14-72  TRCIDR1 access information

Component Offset Reset

ETM 0x1E4 0x4100F423

14.7.29 ID Register 2

The TRCIDR2 indicates the maximum sizes of certain aspects of items in the trace.

Usage constraints
This register is read-only.

Traps and enables
There are no traps and enables affecting this register.

Configurations
Available in all configurations.

Attributes
TRCIDR2 is a 32-bit register.

The following figure shows the TRCIDR2 bit assignments.

14 Embedded Trace Macrocell
14.7 Register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

14-495

Non-Confidential



31 0

RES0

10 9

IASIZE

2425

DVSIZE

20 19

DASIZE

1415 4

VMIDSIZE

5

CIDSIZE

29 28

CCSIZE

30

VMIDOPT

Figure 14-37  TRCIDR2 bit assignments

The following table shows the TRCIDR2 bit assignments.

Table 14-73  TRCIDR2 bit assignments

Bits Name Function

[31] - Reserved, RES0.

[30:29] VMIDOPT Indicates the options for observing the Virtual context identifier in the processor:

0b00 TRCCONFIGR.VMIDOPT is not implemented and this field is RES0.

[28:25] CCSIZE Indicates the size of the cycle counter in bits minus 12:

0b0000 Cycle count is 12 bits.

[24:20] DVSIZE Data value size in bytes:

0b00100 Maximum of 32-bit data value size is supported.

[19:15] DASIZE Data address size in bytes:

0b00100 Maximum of 32-bit address size is supported.

[14:10] VMIDSIZE Virtual Machine ID size:

0b00001 Virtual Machine ID size is 1 byte.

[9:5] CIDSIZE Context ID tracing:

0b00100 Context ID size is 4 bytes.

[4:0] IASIZE Instruction address size:

0b00100 Maximum of 32-bit address size.

TRCIDR2 can be accessed through the memory mapped interface:

Table 14-74  TRCIDR2 access information

Component Offset Reset

ETM 0x1E8 0x00420484

14.7.30 ID Register 3

The TRCIDR3 indicates certain aspects of the ETM configuration.

Usage constraints
This register is read-only.

14 Embedded Trace Macrocell
14.7 Register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

14-496

Non-Confidential



Traps and enables
There are no traps and enables affecting this register.

Configurations
Available in all configurations.

Attributes
TRCIDR3 is a 32-bit register.

The following figure shows the TRCIDR3 bit assignments.

31 01112

CCITMIN

NOOVERFLOW

TRCERR
SYNCPR

24 23 20 19 16 15

NUMPROC

28 27 26 25

SYSSTALL

30

STALLCTL EXLEVEL_NS
EXLEVEL_S

14 13

RES0
NUMPROC

Figure 14-38  TRCIDR3 bit assignments

The following table shows the TRCIDR3 bit assignments.

Table 14-75  TRCIDR3 bit assignments

Bits Name Function

[31] NOOVERFLOW Indicates whether TRCSTALLCTLR.NOOVERFLOW is implemented:

0 NOOVERFLOW is not implemented.

[30:28] NUMPROC Indicates the number of processors available for tracing:

0b000 The trace unit can trace one processor.

[27] SYSSTALL System support for stall control of the processor:

1 System supports stall control of the processor.

[26] STALLCTL Stall control support:

1 TRCSTALLCTLR is implemented.

[25] SYNCPR Indicates trace synchronization period support:

0 TRCSYNCPR is read/write. Software can change the synchronization period.

[24] TRCERR Indicates whether TRCVICTLR.TRCERR is implemented:

1 TRCERR is implemented.

[23:20] EXLEVEL_NS Exception levels are implemented:

0b0111 EL0, EL1, and EL2 are implemented.

[19:16] EXLEVEL_S Related to whether instruction tracing is supported for corresponding Exception level. This field is 0.

[15:14] - Reserved, RES0.

14 Embedded Trace Macrocell
14.7 Register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

14-497

Non-Confidential



Table 14-75  TRCIDR3 bit assignments (continued)

Bits Name Function

[13:12] NUMPROC Indicates the number of PEs available for tracing. This field is 0b00000.

[11:0] CCITMIN Instruction trace cycle counting minimum threshold:

0x4 Minimum threshold is 4 instruction trace cycle.

TRCIDR3 can be accessed through the memory mapped interface:

Table 14-76  TRCIDR3 access information

Component Offset Reset

ETM 0x1EC 0x0D700004

14.7.31 ID Register 4

The TRCIDR4 indicates the resources available in the ETM.

Usage constraints
This register is read-only.

Traps and enables
There are no traps and enables affecting this register.

Configurations
Available in all configurations.

Attributes
TRCIDR4 is a 32-bit register.

The following figure shows the TRCIDR4 bit assignments.

31 012 89 4 311 7151924

NUMCIDC

23

NUMVMIDC NUMSSCC

20 16

NUMPC NUMDVC

NUMRSPAIR

RES0

SUPPDAC NUMACPAIRS

28 27

Figure 14-39  TRCIDR4 bit assignments

The following table shows the TRCIDR4 bit assignments.

Table 14-77  TRCIDR4 bit assignments

Bits Name Function

[31:28] NUMVMIDC Number of VMID comparators implemented:

0b0001 One VMID comparator is implemented.

[27:24] NUMCIDC Number of Context ID comparators implemented:

0b0001 One Context ID comparator is implemented.

[23:20] NUMSSCC Number of single-shot comparator controls implemented:

0b0010 Two single-shot comparator controls are implemented.

14 Embedded Trace Macrocell
14.7 Register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

14-498

Non-Confidential



Table 14-77  TRCIDR4 bit assignments (continued)

Bits Name Function

[19:16] NUMRSPAIR Number of resource selection pairs implemented:

0b0111 Eight resource selection pairs are implemented.

[15:12] NUMPC Number of processor comparator inputs implemented:

0b0000 No processor comparator inputs.

[11:9] - Reserved, RES0.

[8] SUPPDAC Data address comparisons implemented:

1 Data address comparisons are supported.

[7:4] NUMDVC Number of data value comparators implemented:

0b0010 Two data value comparators are implemented.

[3:0] NUMACPAIRS Number of address comparator pairs implemented:

0b0100 Four address comparator pairs are implemented.

TRCIDR4 can be accessed through the memory mapped interface:

Table 14-78  TRCIDR4 access information

Component Offset Reset

ETM 0x1F0 0x11270124

14.7.32 ID Register 5

The TRCIDR5 indicates the resources available in the ETM.

Usage constraints
This register is read-only.

Traps and enables
There are no traps and enables affecting this register.

Configurations
Available in all configurations.

Attributes
TRCIDR5 is a 32-bit register.

The following figure shows the TRCIDR5 bit assignments.

31 01112

NUMEXTIN

REDFUNCNTR ATBTRIG
LPOVERRIDE

24 23 22 21

TRACEIDSIZE

16 15

RES0

NUMCNTR

28 27 25

NUMSEQSTATE

30 89

NUMEXTINSEL

RES0

Figure 14-40  TRCIDR5 bit assignments

The following table shows the TRCIDR5 bit assignments.

14 Embedded Trace Macrocell
14.7 Register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

14-499

Non-Confidential



Table 14-79  TRCIDR5 bit assignments

Bits Name Function

[31] REDFUNCNTR Reduced Function Counter implemented:

0 Reduced Function Counter not implemented.

[30:28] NUMCNTR Number of counters implemented:

0b010 Two counters implemented.

[27:25] NUMSEQSTATE Number of sequencer states implemented:

0b100 Four sequencer states implemented.

[24] - Reserved, RES0.

[23] LPOVERRIDE Low power state override support:

1 Low power state override support implemented.

[22] ATBTRIG ATB trigger support:

1 ATB trigger support implemented.

[21:16] TRACEIDSIZE Number of bits of trace ID:

0x07 Seven-bit trace ID implemented.

[15:12] - Reserved, RES0.

[11:9] NUMEXTINSEL Number of external input selectors implemented:

0b100 Four external input selectors are implemented.

[8:0] NUMEXTIN Number of external inputs implemented:

0x35 35 external inputs implemented in instruction and data trace configuration.

TRCIDR5 can be accessed through the memory mapped interface:

Table 14-80  TRCIDR5 access information

Component Offset Reset

ETM 0x1F4 0x28C70835

14.7.33 Resource Selection Registers, n=2-15

The TRCRSCTLRn registers control the trace resources.

Usage constraints
These registers are read/write.

Traps and enables
There are no traps and enables affecting these registers.

Configurations
Available in all configurations.

Attributes
The TRCRSCTLRn are 32-bit registers.

14 Embedded Trace Macrocell
14.7 Register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

14-500

Non-Confidential



The following figure shows the TRCRSCTLRn bit assignments.

RES0

31 22 21 20 19 18 16 15 8 7 0

GROUP RES0 SELECT

PAIRINV
INV

RES0

Figure 14-41  TRCRSCTLRn bit assignments

The following table shows the TRCRSCTLRn bit assignments.

Table 14-81  TRCRSCTLRn bit assignments

Bits Name Function

[31:22] - Reserved, RES0.

[21] PAIRINV Inverts the result of a combined pair of resources.

This bit is only implemented on the lower register for a pair of resource selectors. This bit is RES0 for the upper
register.

[20] INV Inverts the selected resources:

0 Resource is not inverted.

1 Resource is inverted.

[19] - Reserved, RES0.

[18:16] GROUP Selects a group of resources.

[15:8] - Reserved, RES0.

[7:0] SELECT Selects one or more resources from the wanted group. One bit is provided per resource from the group.

TRCRSCTLRn can be accessed through the memory mapped interface:

Table 14-82  TRCRSCTLRn access information

Component Offset Reset

ETM 0x208-0x23C UNK

14.7.34 Single-shot Comparator Control Registers, n=0-1

The TRCSSCCRn registers control the single-shot comparator <n>.

Usage constraints
These registers are read/write.

Traps and enables
There are no traps and enables affecting these registers.

Configurations
Available in all configurations.

Attributes
The TRCSSCCRn registers are 32-bit.

The following figure shows the TRCSSCCRn bit assignments.

14 Embedded Trace Macrocell
14.7 Register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

14-501

Non-Confidential



RES0RES0

31 20 19 16 15 8 7 0

ARC RES0 SAC

24 2325

RST

Figure 14-42  TRCSSCCRn bit assignments

The following table shows the TRCSSCCRn bit assignments.

Table 14-83  TRCSSCCRn bit assignments

Bits Name Function

[31:25] - Reserved, RES0.

[24] RST Enables the single-shot comparator resource to be reset when it occurs, to enable another comparator match to be
detected:

1 Reset enabled. Multiple matches can occur.

[23:20] - Reserved, RES0.

[19:16] ARC Selects one or more address range comparators for single-shot control.

One bit is provided for each address range comparator.

[15:8] - Reserved, RES0.

[7:0] SAC Selects one or more single address comparators for single-shot control.

One bit is provided for each single address comparator.

TRCSSCCRn can be accessed through the memory mapped interface:

Table 14-84  TRCSSCCRn access information

Component Offset Reset

ETM 0x280-0x284 UNK

14.7.35 Single-shot Comparator Status Registers n=0-1

The TRCSSCSRn registers indicate the status of the single-shot comparator <n>. It is sensitive to
instruction addresses.

Usage constraints

These registers are read/write.

Traps and enables
There are no traps and enables affecting these registers.

Configurations
Available in all configurations.

Attributes
The TRCSSCSRn registers are 32-bit.

The following figure shows the TRCSSCSRn bit assignments.

14 Embedded Trace Macrocell
14.7 Register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

14-502

Non-Confidential



RES0

31 30 3 2 1 0

STATUS
DV
DA

INST

4

PC

Figure 14-43  TRCSSCSRn bit assignments

The following table shows the TRCSSCSR0 bit assignments.

Table 14-85  TRCSSCSRn bit assignments

Bits Name Function

[31] STATUS Single-shot status. This indicates whether any of the selected comparators have matched:

0 Match has not occurred.

1 Match has occurred at least once.

When programming the ETM, if TRCSSCCRn.RST is 0, the STATUS bit must be explicitly written to 0 to enable
this single-shot comparator control.

[30:4] - Reserved, RES0.

[3] PC Indicates that the Single-shot comparator is sensitive to processor comparator inputs.

0 Single-shot comparator inputs are not supported.

[2] DV Data value comparator support.

For TRCSSCSR0, the value is:

0 Single-shot data value comparisons not supported.

For TRCSSCSR1, the value is:

1 Single-shot data value comparisons supported.

[1] DA Data address comparator support.

For TRCSSCSR0, the value is:

0 Single-shot data address comparisons not supported.

For TRCSSCSR1, the value is:

1 Single-shot data address comparisons supported.

[0] INST Instruction address comparator support:

1 Single-shot instruction address comparisons supported.

TRCSSCSRn can be accessed through the memory mapped interface:

Table 14-86  TRCSSCSRn access information

Component Offset Reset

ETM 0x2A0-0x2A4 UNK

14 Embedded Trace Macrocell
14.7 Register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

14-503

Non-Confidential



14.7.36 OS Lock Access Register

The TRCOSLAR controls whether the OS Lock is locked.

Usage constraints
This register is write-only.

Traps and enables
There are no traps and enables affecting this register.

Configurations
Always implemented because OS Lock is always implemented.

Attributes
TRCOSLAR is a 32-bit register.

The following figure shows the TRCOSLAR bit assignments.

OSLK

RES0

31 01

Figure 14-44  TRCOSLAR bit assignments

The following table shows the TRCOSLAR bit assignments.

Table 14-87  TRCOSLAR bit assignments

Bits Name Function

[31:1] - Reserved, RES0.

[0] OSLK OS Lock control bit:

0 Unlocks the OS Lock.

1 Locks the OS Lock. This setting disables the trace unit.

TRCOSLAR can be accessed through the memory mapped interface:

Table 14-88  TRCOSLAR access information

Component Offset Reset

ETM 0x300 UNK

14.7.37 OS Lock Status Register

The TRCOSLSR returns the status of the OS Lock.

Usage constraints
This register is read-only.

Traps and enables
There are no traps and enables affecting this register.

Configurations
Available in all implementations.

Attributes
TRCOSLSR is a 32-bit register.

14 Embedded Trace Macrocell
14.7 Register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

14-504

Non-Confidential



The following figure shows the TRCOSLSR bit assignments.

31 1 0

RES0

OSLM[1]

3 24

nTT
OSLK

OSLM[0]

Figure 14-45  TRCOSLSR bit assignments

The following table shows the TRCOSLSR bit assignments.

Table 14-89  TRCOSLSR bit assignments

Bits Name Function

[31:4] - Reserved, RES0.

[3, 0] OSLM[1] Indicates whether the OS Lock model is implemented or not.

0b10 OS Lock is implemented.

[2] nTT This bit is RAZ, which indicates that software must perform a 32-bit write to update the TRCOSLAR.

[1] OSLK OS Lock status bit:

0 The OS Lock is unlocked.

1 The OS Lock is locked.

The reset value is 1.

[0] OSLM[0] Indicates whether the OS Lock model is implemented or not.

0b10
OS Lock is implemented.

TRCOSLSR can be accessed through the memory mapped interface:

Table 14-90  TRCOSLSR access information

Component Offset Reset

ETM 0x304 0x0000000A

14.7.38 Power Down Control Register

TRCPDCR requests to the system power controller to keep the ETM powered up.

Usage constraints
This register is read/write. Accessible only from the memory-mapped interface or from an
external agent such as a debugger.

Traps and enables
There are no traps and enables affecting this register.

Configurations
Available in all configurations.

14 Embedded Trace Macrocell
14.7 Register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

14-505

Non-Confidential



Attributes
TRCPDCR is a 32-bit register.

The following figure shows the TRCPDCR bit assignments.

31

RES0

3 24

PU

0

RES0

Figure 14-46  TRCPDCR bit assignments

The following table shows the TRCPDCR bit assignments.

Table 14-91  TRCPDCR bit assignments

Bits Name Function

[31:4] - Reserved, RES0.

[3] PU Powerup request, to request that power to the ETM and access to the trace registers is maintained:

0 Power not requested.

1 Power requested.

This bit is reset to 0 on a trace unit reset.

[2:0] - Reserved, RES0.

TRCPDCR can be accessed through the memory mapped interface:

Table 14-92  TRCPDCR access information

Component Offset Reset

ETM 0x310 0x00000000

14.7.39 Power Down Status Register

The TRCPDSR indicates the power down status of the ETM.

Usage constraints
This register is read-only. Accessible only from the memory-mapped interface or from an
external agent such as a debugger.

Traps and enables
There are no traps and enables affecting this register.

Configurations
Available in all configurations.

Attributes
TRCPDSR is a 32-bit register.

The following figure shows the TRCPDSR bit assignments.

31

RES0

5 2 14

OSLK POWER
STICKYPD

06

RES0

Figure 14-47  TRCPDSR bit assignments

14 Embedded Trace Macrocell
14.7 Register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

14-506

Non-Confidential



The following table shows the TRCPDSR bit assignments.

Table 14-93  TRCPDSR bit assignments

Bits Name Function

[31:6] - Reserved, RES0.

[5] OSLK OS Lock status bit:

0 The OS Lock is unlocked.

1 The OS Lock is locked.

This field is reset to 1 on a trace unit reset.

[4:2] - Reserved, RES0.

[1] STICKYPD Sticky power down state.

0 Trace register power has not been removed since the TRCPDSR was last read.

1 Trace register power has been removed since the TRCPDSR was last read.

This bit is set to 1 when power to the ETM registers is removed, to indicate that programming state has been
lost. It is cleared after a read of the TRCPDSR.

[0] POWER Indicates the ETM is powered up:

1 ETM is powered up. All registers are accessible.

0 The trace unit core power domain is not powered. The trace registers are not accessible and they all
return an error response.

TRCPDSR can be accessed through the memory mapped interface:

Table 14-94  TRCPDSR access information

Component Offset Reset

ETM 0x314 UNK

14.7.40 Address Comparator Value Registers, n=0-7

Each TRCACVRn register indicates the address for the data address comparator <n>.

Usage constraints
These registers are read-write. Only accept writes when the trace unit is disabled.

Traps and enables
There are no traps and enables affecting this register.

Configurations
Available in all configurations.

Attributes
TRCACVRn are 32-bit registers.

The following figure shows the TRCACVRn bit assignments.

ADDRESS

31 0

Figure 14-48  TRCACVRn bit assignments

14 Embedded Trace Macrocell
14.7 Register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

14-507

Non-Confidential



The following table shows the TRCACVRn bit assignments.

Table 14-95  TRCACVRn bit assignments

Bits Name Function

[31:0] ADDRESS The address value to compare against.

TRCACVRn can be accessed through the memory mapped interface:

Table 14-96  TRCACVRn access information

Component Offset Reset

ETM 0x400-0x438 UNK

14.7.41 Address Comparator Access Type Registers, n=0-7

Each TRCACATRn register controls the access for the data address comparator <n>.

Usage constraints
These registers are read/write. Only accept writes when the trace unit is disabled.

Traps and enables
There are no traps and enables affecting this register.

Configurations
Available in all build configurations.

Attributes
TRCACATRn are 32-bit registers.

The following figure shows the TRCACATR0 bit assignments.

RES0

31 21 20 19 18 17 16 15 12 11 3 2 1 0

DATARANGE
DATASIZE

DATAMATCH
RES0

CONTEXTTYPE
TYPE

14 13 4

EXLEVEL_NS

78

EXLEVEL_S

6

RES0

CONTEXT

22

DTBM

Figure 14-49  TRCACATR0 bit assignments

The following table shows the TRCACATR0 bit assignments.

14 Embedded Trace Macrocell
14.7 Register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

14-508

Non-Confidential



Table 14-97  TRCACATR0 bit assignments

Bits Name Function

[31:22] - Reserved, RES0.

[21] DTBM This field is RES0.

[20] DATARANGE Data value comparison range control, to select whether the data value comparison is made against the
single address comparator or the address range comparator:

0 Only the single address comparator matches.

1 Only the address range comparator matches.

[19:18] DATASIZE Data value comparison size control:

0b00 Byte size.

0b01 Halfword size.

0b10 Word size.

0b11 Doubleword size.

[17:16] DATAMATCH Data value comparison control:

0b01 Comparator matches only if the data value comparison matches.

0b11 Comparator matches only if the data value comparison does not match.

[15] - Reserved, RES0.

[14] EXLEVEL_NS Indicates if the comparator matches in EL2:

0 The comparator can match in this exception level.

1 The comparator must not match in this exception level.

[13] EXLEVEL_NS Indicates if the comparator matches EL1.

[12] EXLEVEL_NS Indicates if the comparator matches EL0.

[11:8] EXLEVEL_S This field is RES0.

[7] - Reserved, RES0.

[6:4] CONTEXT Context ID comparator or Virtual context identifier comparator:

0b00 Comparator 0.

14 Embedded Trace Macrocell
14.7 Register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

14-509

Non-Confidential



Table 14-97  TRCACATR0 bit assignments (continued)

Bits Name Function

[3:2] CONTEXTTYPE The type of comparison:

0b00 The trace unit does not perform a Context ID comparison.

0b01 The trace unit performs a Context ID comparison, and signals a match if both the Context ID
comparators match and the address comparator match.

0b10 The trace unit performs a Virtual context identifier comparison, and signals a match if both the
Virtual context identifier comparator and the address comparator match.

0b11 The trace unit performs a Context ID comparison and a Virtual context identifier comparison,
and signals a match if the Context ID comparator, the Virtual context identifier comparator, and
the address comparator match.

[1:0] TYPE The type of comparison:

0b00 Instruction address.

0b01 Data load address.

0b10 Data store address.

0b11 Data load or store address.

 Note 

TRCACATR2, 4 and 6 are functionally identical to TRCACATR0.

The following figure shows the TRCACATR1 bit assignments.

RES0

31 21 20 19 18 17 16 15 12 11 3 2 1 0

DATARANGE
DATASIZE

DATAMATCH
RES0

CONTEXTTYPE
TYPE

14 13 4

EXLEVEL_NS

78

EXLEVEL_S

6

RES0

CONTEXT

22

DTBM

Figure 14-50  TRCACATR1 bit assignments

The following figure shows the TRCACATR1 bit assignments.

Table 14-98  TRCACATR1 bit assignments

Bits Name Function

[31:22] - Reserved, RES0.

[21] DTBM This field is RES0.

14 Embedded Trace Macrocell
14.7 Register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

14-510

Non-Confidential



Table 14-98  TRCACATR1 bit assignments (continued)

Bits Name Function

[20] DATARANGE This field is RES0.

[19:18] DATASIZE This field is RES0.

[17:16] DATAMATCH This field is RES0.

[15] - Reserved, RES0.

[14] EXLEVEL_NS Indicates if the comparator matches in EL2:

0 The comparator can match in this exception level.

1 The comparator must not match in this exception level.

[13] EXLEVEL_NS Indicates if the comparator matches EL1.

[12] EXLEVEL_NS Indicates if the comparator matches EL0.

[11:8] EXLEVEL_S This field is RES0.

[7] - Reserved, RES0.

[6:4] CONTEXT Context ID comparator or Virtual context identifier comparator:

0b00 Comparator 0.

[3:2] CONTEXTTYPE The type of comparison:

0b00 The trace unit does not perform a Context ID comparison.

0b01 The trace unit performs a Context ID comparison, and signals a match if both the Context ID
comparators match and the address comparator match.

0b10 The trace unit performs a Virtual context identifier comparison, and signals a match if both the
Virtual context identifier comparator and the address comparator match.

0b11 The trace unit performs a Context ID comparison and a Virtual context identifier comparison,
and signals a match if the Context ID comparator, the Virtual context identifier comparator, and
the address comparator match.

[1:0] TYPE The type of comparison:

0b00 Instruction address.

0b01 Data load address.

0b10 Data store address.

0b11 Data load or store address.

 Note 

TRCACATR3, 5 and 7 are functionally identical to TRCACATR1.

TRCACATRn can be accessed through the memory mapped interface:

Table 14-99  TRCACATRn access information

Component Offset Reset

ETM 0x480-0x4B8 UNK

14 Embedded Trace Macrocell
14.7 Register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

14-511

Non-Confidential



14.7.42 Data Value Comparator Value Registers, n=0-1

Each TRCDVCVRn register indicates the value for the data value comparator <n>.

Usage constraints
This register is read/write. Only accepts writes when the trace unit is disabled.

Traps and enables
There are no traps and enables affecting this register.

Configurations
This register is available in all build configurations.

Attributes
TRCDVCVRn registers are 32 bits.

The following figure shows the TRCDVCVRn bit assignments.

VALUE

31 0

Figure 14-51  TRCDVCVRn bit assignments

The following table shows the TRCDVCVRn bit assignments.

Table 14-100  TRCDVCVRn bit assignments

Bits Name Function

[31:0] VALUE The data value to compare against.

TRCDVCVRn can be accessed through the memory mapped interface:

Table 14-101  TRCDVCVRn access information

Component Offset Reset

ETM 0x500-0x510 UNK

14.7.43 Data Value Comparator Mask Registers, n=0-1

Each TRCDVCMRn register controls the mask value for the data value comparator <n>.

Usage constraints
These registers are read/write.

Traps and enables
There are no traps and enables affecting this register.

Configurations
Available in all build configurations.

Attributes
TRCDVCMRn are 32-bit registers.

The following figure shows the TRCDVCMRn bit assignments.

MASK

31 0

Figure 14-52  TRCDVCMRn bit assignments

The following table shows the TRCDVCMRn bit assignments.

14 Embedded Trace Macrocell
14.7 Register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

14-512

Non-Confidential



Table 14-102  TRCDVCMRn bit assignments

Bits Name Function

[31:0] MASK The mask value to apply to the data value comparison.

TRCDVCMRn can be accessed through the memory mapped interface:

Table 14-103  TRCDVCMRn access information

Component Offset Reset

ETM 0x580-0x590 UNK

14.7.44 Context ID Comparator Value Registers 0

The TRCCIDCVR0 register contains a Context ID value.

Usage constraints
This register is read/write and ignores writes when the trace unit is enabled or not idle.

Traps and enables
There are no traps and enables affecting this register.

Configurations
This register is available in all build configurations.

Attributes
TRCCIDCVR0 is a 32-bit register.

The following figure shows the TRCCIDCVR0 bit assignments.

VALUE

31 0

Figure 14-53  TRCCIDCVR0 bit assignments

The following table shows the TRCCIDCVR0 bit assignments.

Table 14-104  TRCCIDCVR0 bit assignments

Bits Name Function

[31:0] VALUE Context ID Value.

TRCCIDCVR0 can be accessed through the memory mapped interface:

Table 14-105  TRCCIDCVR0 access information

Component Offset Reset

ETM 0x600 UNK

14.7.45 Virtual Context Identifier Comparator Value Register

The TRCVMIDCVR0 register contains a virtual context identifier value.

Usage constraints
This register is read/write and ignores writes when the trace unit is enabled or not idle.

Traps and enables
There are no traps and enables affecting this register.

14 Embedded Trace Macrocell
14.7 Register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

14-513

Non-Confidential



Configurations
This register is available in all build configurations.

Attributes
TRCVMIDCVR0 is a 32-bit register.

The following figure shows the TRCVMIDCVR0 bit assignments.

31 8 7 0

RES0 VALUE

Figure 14-54  TRCVMIDCVR0 bit assignments

The following table shows the TRCVMIDCVR0 bit assignments.

Table 14-106  TRCVMIDCVR0 bit assignments

Bits Name Function

[31:8] - Reserved, RES0.

[7:0] VALUE VMID value.

TRCVMIDCVR0 can be accessed through the memory mapped interface:

Table 14-107  TRCVMIDCVR0 access information

Component Offset Reset

ETM 0x640 UNK

14.7.46 Context ID Comparator Control Register 0

The TRCCIDCCTLR0 contains Context ID mask values for the TRCCIDCVRn registers, where n=0-3.

Usage constraints
This register is read/write and ignores writes when the trace unit is enabled or not idle.

Traps and enables
There are no traps and enables affecting this register.

Configurations
This register is available in all build configurations.

Attributes
TRCCIDCCTLR0 is a 32-bit register.

The following figure shows the TRCCIDCCTLR0 bit assignments.

31 4 3 0

COMP0COMP3 COMP2 COMP1 RES0

24 23 16 15 8 7

Figure 14-55  TRCCIDCCTLR0 bit assignments

The following table shows the TRCCIDCCTLR0 bit assignments.

14 Embedded Trace Macrocell
14.7 Register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

14-514

Non-Confidential



Table 14-108  TRCCIDCCTLR0 bit assignments

Bits Name Function

[31:24] COMP3 Controls the mask value that the trace unit applies to TRCCIDCVRn. This field is RES0.

[23:16] COMP2 Controls the mask value that the trace unit applies to TRCCIDCVRn. This field is RES0.

[15:8] COMP1 Controls the mask value that the trace unit applies to TRCCIDCVRn. This field is RES0.

[7:4] - Reserved, RES0.

[3:0] COMP0 Controls the mask value that the trace unit applies to TRCCIDCVR0:

0 The trace unit includes the relevant byte in TRCCIDCVR0 when it performs the Context ID comparison.

1 The trace unit ignores the relevant byte in TRCCIDCVR0 when it performs the Context ID comparison.

TRCCIDCCTLR0 can be accessed through the memory mapped interface:

Table 14-109  TRCCIDCCTLR0 access information

Component Offset Reset

ETM 0x680 UNK

14.7.47 Integration Mode Control Register

The TRCITCTRL register enables topology detection or integration testing, by putting the ETM into
integration mode.

Usage constraints
This register is read/write. Accessible only from the memory-mapped interface or from an
external agent such as a debugger.Arm recommends that you perform a debug reset after using
integration mode.

Traps and enables
There are no traps and enables affecting this register.

Configurations
Available in all configurations.

Attributes
TRCITCTRL is a 32-bit register.

The following figure shows the TRCITCTRL bit assignments.

RES0

31 1 0

IME

Figure 14-56  TRCITCTRL bit assignments

The following table shows the TRCITCTRL bit assignments.

14 Embedded Trace Macrocell
14.7 Register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

14-515

Non-Confidential



Table 14-110  TRCITCTRL bit assignments

Bits Name Function

[31:1] - Reserved, RES0.

[0] IME Integration mode enable:

0 ETM is not in integration mode.

TRCITCTRL can be accessed through the memory mapped interface:

Table 14-111  TRCITCTRL access information

Component Offset Reset

ETM 0xF00 0x00000000

 Note 

The Cortex-R52 processor does not include ATB integration registers.

14.7.48 Claim Tag Set Register

The TRCCLAIMSET register sets bits in the claim tag and determines the number of claim tag bits
implemented.

Usage constraints
This register is read/write.

Traps and enables
There are no traps and enables affecting this register.

Configurations
Available in all configurations.

Attributes
TRCCLAIMSET is a 32-bit register.

The following figure shows the TRCCLAIMSET bit assignments.

RAZ/SBZ

31 0

SET

4 3

Figure 14-57  TRCCLAIMSET bit assignments

The following table shows the TRCCLAIMSET bit assignments.

14 Embedded Trace Macrocell
14.7 Register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

14-516

Non-Confidential



Table 14-112  TRCCLAIMSET bit assignments

Bits Name Function

[31:4] - RAZ/SBZ.

[3:0] SET On reads, for each bit:

0 Claim tag bit is not implemented.

1 Claim tag bit is implemented.

On writes, for each bit:

0 Has no effect.

1 Sets the relevant bit of the claim tag.

TRCCLAIMSET can be accessed through the memory mapped interface:

Table 14-113  TRCCLAIMSET access information

Component Offset Reset

ETM 0xFA0 0x0000000F

14.7.49 Claim Tag Clear Register

The TRCCLAIMCLR clears bits in the claim tag and determines the current value of the claim tag.

Usage constraints
This register is read/write.

Traps and enables
There are no traps and enables affecting this register.

Configurations
Available in all configurations.

Attributes
TRCCLAIMCLR is a 32-bit register.

The following figure shows the TRCCLAIMCLR bit assignments.

RAZ/SBZ

31 0

CLR

34

RAZ/WI

78

Figure 14-58  TRCCLAIMCLR bit assignments

The following table shows the TRCCLAIMCLR bit assignments.

14 Embedded Trace Macrocell
14.7 Register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

14-517

Non-Confidential



Table 14-114  TRCCLAIMCLR bit assignments

Bits Name Function

[31:8] - RAZ/SBZ.

[7:4] - RAZ/WI.

[3:0] CLR On reads, for each bit:

0 Claim tag bit is not set.

1 Claim tag bit is set.

On writes, for each bit:

0 Has no effect.

1 Clears the relevant bit of the claim tag.

TRCCLAIMCLR can be accessed through the memory mapped interface:

Table 14-115  TRCCLAIMCLR access information

Component Offset Reset

ETM 0xFA4 0x00000000

14.7.50 TRCDEVAFF0, Device Affinity Register 0

The TRCDEVAFF0 register provides a read-only copy of MPIDR accessible from the memory mapped
interface and the external debug interface.

For more information on MPIDR, see 3.3.78 Multiprocessor Affinity Register on page 3-166.

14.7.51 TRCDEVAFF1, Device Affinity Register 1

The TRCDEVAFF1 register has value 0x00000000.

TRCDEVAFF1 is a read-only 32-bit register that can be accessed through the memory mapped interface
or external debug interface.

14.7.52 Software Lock Access Register

The TRCLAR controls access to registers when PADDRDBG31 is LOW. When the software lock is set,
write accesses when PADDRDBG31 is LOW to all ETM registers are ignored except for write accesses
to the TRCLAR. When the software lock is set, read accesses of TRCPDSR with PADDRDBG31 is
LOW do not change the TRCPDSR.STICKYPD bit. Read accesses of all other registers are not affected.
Accesses with PADDRDBG31 HIGH are not affected by the software lock.

Usage constraints
This register is write-only and is only present for accesses with PADDRDBG31 LOW, and is
RES0 for accesses with PADDRDBG31 HIGH.

Traps and enables
There are no traps and enables affecting this register.

Configurations
Available in all configurations.

Attributes
TRCLAR is a 32-bit register.

The following figure shows the TRCLAR bit assignments.

14 Embedded Trace Macrocell
14.7 Register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

14-518

Non-Confidential



31 0

KEY

Figure 14-59  TRCLAR bit assignments

The following table shows the TRCLAR bit assignments.

Table 14-116  TRCLAR bit assignments

Bits Name Function

[31:0] KEY Software lock key value:

0xC5ACCE55 Clear the software lock.

All other write values set the software lock.

TRCLAR can be accessed through the memory mapped interface:

Table 14-117  TRCLAR access information

Component Offset Reset

ETM 0xFB0 UNK

14.7.53 Software Lock Status Register

The TRCLSR indicates whether the software lock is implemented, and indicates the current status of the
software lock.

Usage constraints
This register is read-only.

Configurations
Available in all configurations.

Attributes
TRCLSR is a 32-bit register.

The following figure shows the TRCLSR bit assignments.

RES0

31 1 0

SLK

2

SLI

3

nTT

Figure 14-60  TRCLSR bit assignments

The following table shows the TRCLSR bit assignments.

14 Embedded Trace Macrocell
14.7 Register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

14-519

Non-Confidential



Table 14-118  TRCLSR bit assignments

Bits Name Function

[31:3] - Reserved, RES0.

[2] nTT Indicates size of TRCLAR:

0 TRCLAR is always 32 bits.

[1] SLK Software lock status:

0 Software lock is clear. This value is returned for all accesses with PADDRDBG31 HIGH.

1 Software lock is set.

[0] SLI Indicates whether the software lock is implemented on this interface:

0 Software lock is not implemented. This is returned for all accesses with PADDRDBG31 HIGH.

1 Software lock is implemented. This is returned for all accesses with PADDRDBG31 LOW.

TRCLSR can be accessed through the memory mapped interface and external debug interface:

Table 14-119  TRCLSR access information

Component Offset Reset

ETM 0xFB4 0x00000003

14.7.54 Authentication Status Register

The TRCAUTHSTATUS register indicates the current level of tracing permitted by the system.

Usage constraints
This register is read-only.

Traps and enables
There are no traps and enables affecting this register.

Configurations
Available in all configurations.

Attributes
TRCAUTHSTATUS is a 32-bit register.

The following figure shows the TRCAUTHSTATUS bit assignments.

HIDHNIDRES0

31 1 0

SNID

2

SID

4 357 68

NSNID
NSID

1112 910

Figure 14-61  TRCAUTHSTATUS bit assignments

The following table shows the TRCAUTHSTATUS bit assignments.

14 Embedded Trace Macrocell
14.7 Register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

14-520

Non-Confidential



Table 14-120  TRCAUTHSTATUS bit assignments

Bits Name Function

[31:12] - Reserved, RES0.

[11:10] HNID Non-Invasive Debug at EL2:

0b10 Implemented but disabled.

0b11 Implemented and enabled.

[9:8] HID Invasive Debug at EL2:

0b00 Not implemented.

[7:6] SNID Secure Non-Invasive Debug:

0b00 Not implemented.

[5:4] SID Secure Invasive Debug:

0b00 Not implemented.

[3:2] NSNID Non-Secure Non-Invasive Debug:

0b10 Implemented but disabled.

0b11 Implemented and enabled.

[1:0] NSID
0b00 Not implemented.

TRCAUTHSTATUS can be accessed through the memory mapped interface:

Table 14-121  TRCAUTHSTATUS access information

Component Offset Reset

ETM 0xFB8 UNK

14.7.55 Device Architecture Register

The TRCDEVARCH register identifies the ETM as an ETMv4.2 component.

Usage constraints
This register is read-only.

Traps and enables
There are no traps and enables affecting this register.

Configurations
This register is available in all build configurations.

Attributes
TRCDEVARCH is a 32-bit register.

The following figure shows the TRCDEVARCH bit assignments.

14 Embedded Trace Macrocell
14.7 Register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

14-521

Non-Confidential



ARCHITECT

31 21 20 19 16 15 0

REVISION ARCHID

PRESENT

Figure 14-62  TRCDEVARCH bit assignments

The following table shows the TRCDEVARCH bit assignments.

Table 14-122  TRCDEVARCH bit assignments

Bits Name Function

[31:21] ARCHITECT Defines the architect of the component:

0x23B Arm

[20] PRESENT Indicates the presence of this register:

1 Register is present.

[19:16] REVISION Architecture revision:

0b0010 Architecture revision 2.

[15:0] ARCHID Architecture ID:

0x4A13 ETMv4 component.

TRCDEVARCH can be accessed through the memory mapped interface:

Table 14-123  TRCDEVARCH access information

Component Offset Reset

ETM 0xFBC 0x47724A13

14.7.56 Device ID Register

The TRCDEVID register is RES0.

14.7.57 Device Type Register

The TRCDEVTYPE indicates the type of the component.

Usage constraints
This register is read-only.

Traps and enables
There are no traps and enables affecting this register.

Configurations
Available in all configurations.

Attributes
TRCDEVTYPE is a 32-bit register.

The following figure shows the TRCDEVTYPE bit assignments.

14 Embedded Trace Macrocell
14.7 Register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

14-522

Non-Confidential



SUB MAJORRES0

31 04 378

Figure 14-63  TRCDEVTYPE bit assignments

The following table shows the TRCDEVTYPE bit assignments.

Table 14-124  TRCDEVTYPE bit assignments

Bits Name Function

[31:8] - Reserved, RES0.

[7:4] SUB The subtype of the component:

0b0001 Processor trace.

[3:0] MAJOR The main type of the component:

0b0011 Trace source.

TRCDEVTYPE can be accessed through the memory mapped interface and external debug interface:

Table 14-125  TRCDEVTYPE access information

Component Offset Reset

ETM 0xFCC 0x00000013

14.7.58 Peripheral Identification Registers

The TRCPIDR0-7 registers provide the standard Peripheral ID required by all CoreSight components.

See the Arm® CoreSight™ Architecture Specification v2.0 for more information.

Usage constraints
These registers are read-only. Only bits[7:0] of each register are used. This means that
TRCPIDR0-7 define a single 64-bit Peripheral ID, as the following figure shows.

Traps and enables
There are no traps and enables affecting these registers.

Configurations
Available in all configurations.

Attributes
The TRCPIDR0-7 registers are 32 bits.

The following figure shows the mapping between TRCPIDR0-7 and the single 64-bit Peripheral ID
value.

0

Conceptual 64-bit Peripheral ID

Actual Peripheral ID register fields
TRCPIDR0

7 07 07 07 07 07 07 07

TRCPIDR1TRCPIDR2TRCPIDR3TRCPIDR4TRCPIDR5TRCPIDR6TRCPIDR7

63 16 15 8 0724 2332 3140 3948 4756 55

Figure 14-64  Mapping between TRCPIDR0-7 and the Peripheral ID value

14 Embedded Trace Macrocell
14.7 Register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

14-523

Non-Confidential



The following figure shows the Peripheral ID bit assignments in the single conceptual Peripheral ID
register.

0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 10 0 0 0 0 0 0 00 0 0 0 0 0 1‡ 0 1 1 1 11 0 1 0 0 1 1 01 0 1 1 1 0

Conceptual 64-bit Peripheral ID

63 16 15 8

07

24 2332 3140 3948 4756 55

Reserved, 
RAZ

TRCPIDR0TRCPIDR1TRCPIDR2TRCPIDR3TRCPIDR4TRCPIDR5TRCPIDR6TRCPIDR7

Part numberJEP 106
ID code

4KB
count

RevAnd

JEP 106
Continuation Code

Customer
modified

Revision

07

07070707070707

‡ See text for the value of the Revision field

Figure 14-65  Peripheral ID fields

The following table shows the values of the fields when reading this set of registers. The Arm®

Embedded Trace Macrocell Architecture Specification ETMv4 gives more information about many of
these fields.

 Note 

The following table shows registers in order of register name, from most significant (TRCPIDR7) to
least significant (TRCPIDR0). This does not match the order of the register offsets.

Table 14-126  TCRPIDR0-7 bit assignments

Register number Register Register offset Bits Value Function

1015 TRCPIDR7 0xFDC [31:8] - Reserved, RES0.

[7:0] 0x00 Reserved, RES0.

1014 TRCPIDR6 0xFD8 [31:8] - Reserved, RES0.

[7:0] 0x00 Reserved, RES0.

1013 TRCPIDR5 0xFD4 [31:8] - Reserved, RES0.

[7:0] 0x00 Reserved, RES0.

1012 TRCPIDR4 0xFD0 [31:8] - Reserved, RES0.

[7:4] 0x0 4KB

[3:0] 0x4 JEP 106 continuation code.

1019 TRCPIDR3 0xFEC [31:8] - Reserved, RES0.

[7:4] 0x0 RevAnd. Part minor revision.

[3:0] 0x0 Customer Modified.

0x0 indicates from Arm.

1018 TRCPIDR2 0xFE8 [31:8] - Reserved, RES0.

[7:4] - Revision Number of ETM. This value is 0x3.

[3] 1 Always 1. Indicates that a JEDEC assigned value is used.

[2:0] 0x3 JEP 106 identity code [6:4].

14 Embedded Trace Macrocell
14.7 Register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

14-524

Non-Confidential



Table 14-126  TCRPIDR0-7 bit assignments (continued)

Register number Register Register offset Bits Value Function

1017 TRCPIDR1 0xFE4 [31:8] - Reserved, RES0.

[7:4] 0xB JEP 106 identity code [3:0].

[3:0] 0x9 Part Number[11:8].

1016 TRCPIDR0 0xFE0 [31:8] - Reserved, RES0.

[7:0] 0xB6 Part Number [7:0].

14 Embedded Trace Macrocell
14.7 Register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

14-525

Non-Confidential



14.7.59 Component Identification Registers

The TRCCIDR0-3 registers identify the ETM as a CoreSight component.

For more information, see the Arm® CoreSight™ Architecture Specification v2.0.

Usage constraints
Only bits[7:0] of each register are used. This means that TRCCIDR0-3 define a single 32-bit
Component ID.

Traps and enables
There are no traps and enables affecting these registers.

Configurations
Available in all configurations.

Attributes
The TRCCIDR0-3 registers are 32 bits.

The following figure shows the mapping between TRCCIDR0-3 and the single 32-bit Component ID
value.

TRCCIDR3

Conceptual 32-bit component ID

Actual ComponentID register fields

7 0

TRCCIDR2 TRCCIDR1 TRCCIDR0

Component ID

7 0 7 0 7 0

31 2423 1615 8 7 0

Figure 14-66  Mapping between TRCCIDR0-3 and the Component ID value

The following table shows the Component ID bit assignments in the single conceptual Component ID
register.

 Note 

The following table lists registers in name order, from most significant (TRCCIDR3) to least significant
(TRCCIDR0). This does not match the order of the register offsets.

Table 14-127  TRCCIDR0-3 bit assignments

Register Register number Register offset Bits Value Function

TRCCIDR3 0x3FF 0xFFC [31:8] - Reserved, RES0.

[7:0] 0xB1 Component identifier, bits[31:24].

TRCCIDR2 0x3FE 0xFF8 [31:8] - Reserved, RES0.

[7:0] 0x05 Component identifier, bits[23:16].

TRCCIDR1 0x3FD 0xFF4 [31:8] - Reserved, RES0.

[7:4] 0x9 Debug component with CoreSight compatible registers
(component identifier, bits[15:12]).

[3:0] 0x0 Component identifier, bits[11:8].

TRCCIDR0 0x3FC 0xFF0 [31:8] - Reserved, RES0.

[7:0] 0x0D Component identifier, bits[7:0].

14 Embedded Trace Macrocell
14.7 Register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

14-526

Non-Confidential



Chapter 15
Advanced SIMD and floating-point support

This chapter describes the Advanced SIMD and floating-point features and registers the processor uses.

It contains the following sections:
• 15.1 About the Advanced SIMD and floating-point support on page 15-528.
• 15.2 Floating-point support on page 15-529.
• 15.3 AArch32 single-precision floating point instructions on page 15-530.
• 15.4 Accessing the feature identification registers on page 15-531.
• 15.5 Register summary on page 15-532.
• 15.6 Register descriptions on page 15-533.

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

15-527

Non-Confidential



15.1 About the Advanced SIMD and floating-point support
The Cortex-R52 processor supports single-precision floating-point instructions and can optionally
support the double-precision floating-point and Advanced SIMD instructions.

15 Advanced SIMD and floating-point support
15.1 About the Advanced SIMD and floating-point support

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

15-528

Non-Confidential



15.2 Floating-point support
The Cortex-R52 floating-point implementation:

• Does not support trapping of floating-point exceptions.
• Does not support the deprecated floating-point short vector feature.
• Implements all operations in hardware, with support for all combinations of:

— Rounding modes.
— Flush-to-zero mode, which can be enabled or not enabled.
— Default Not a Number (NaN) mode, which can be enabled or not enabled.

15 Advanced SIMD and floating-point support
15.2 Floating-point support

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

15-529

Non-Confidential



15.3 AArch32 single-precision floating point instructions
A single-precision only configuration has fewer registers and instructions than a full implementation.

For more information, see Arm® Architecture Reference Manual Supplement Armv8, for Armv8-R
architecture profile.

15 Advanced SIMD and floating-point support
15.3 AArch32 single-precision floating point instructions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

15-530

Non-Confidential



15.4 Accessing the feature identification registers
Software can identify the Advanced SIMD and floating-point features using the feature identification
registers.

You can access the feature identification registers using the VMRS instructions, for example:

VMRS <Rt>, FPSID ; Read FPSID into Rt
VMRS <Rt>, MVFR0 ; Read MVFR0 into Rt
VMRS <Rt>, MVFR1 ; Read MFFR1 into Rt
VMRS <Rt>, MVFR2 ; Read MVFR2 into Rt

15 Advanced SIMD and floating-point support
15.4 Accessing the feature identification registers

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

15-531

Non-Confidential



15.5 Register summary
The following table gives a summary of the Cortex-R52 processor Advanced SIMD and floating-point
system registers.

Table 15-1  Advanced SIMD and floating-point system registers

Name Type Reset Description

FPSID RO 0x41034023 See 15.6.1 Floating-point System ID Register on page 15-533.

FPSCR RW 0x00000000 See 15.6.2 Floating-point Status and Control Register on page 15-534.

MVFR0 RO 0x1011022
2

Full Advanced SIMD
config

0x1011002
1

SP-only config

See 15.6.3 Media and Floating-point Feature Register 0 on page 15-536.

MVFR1 RO 0x1211111
1

Full Advanced SIMD
config

0x1100001
1

SP-only config

See 15.6.4 Media and Floating-point Feature Register 1 on page 15-538.

MVFR2 RW 0x0000004
3

Full Advanced SIMD
config

0x0000004
0

SP-only config

See 15.6.5 Media and Floating-point Feature Register 2 on page 15-539.

FPEXC RW 0x00000700 See 15.6.6 Floating-Point Exception Control Register on page 15-540.

 Note 

The floating-point instruction registers, FPINST and FPINST2, are not implemented and any attempt to
access them is UNDEFINED.

See the Arm® Architecture Reference Manual Supplement Armv8, for Armv8-R architecture profile for
information about permitted accesses to the Advanced SIMD and floating-point system registers.

15 Advanced SIMD and floating-point support
15.5 Register summary

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

15-532

Non-Confidential



15.6 Register descriptions
This section describes the Advanced SIMD and floating-point system registers in the Cortex-R52
processor.

This section contains the following subsections:
• 15.6.1 Floating-point System ID Register on page 15-533.
• 15.6.2 Floating-point Status and Control Register on page 15-534.
• 15.6.3 Media and Floating-point Feature Register 0 on page 15-536.
• 15.6.4 Media and Floating-point Feature Register 1 on page 15-538.
• 15.6.5 Media and Floating-point Feature Register 2 on page 15-539.
• 15.6.6 Floating-Point Exception Control Register on page 15-540.

15.6.1 Floating-point System ID Register

The FPSID provides top-level information about the floating-point implementation.

Usage constraints The accessibility to the FPSID by Exception level is:

EL0 EL1 EL2

- Config Config

This register largely duplicates information held in the MIDR. Arm deprecates use
of it.

Traps and enables If CPACR.cp10 is 0b00, then accesses to this register from EL1 are UNDEFINED.
If HCPTR.TCP10 is set to 1, then accesses to this register from EL1 are trapped to
Hyp mode and accesses to this register from EL2 are UNDEFINED.
If HCR.TID0 is set to 1, then read accesses to this register from EL1 are trapped to
Hyp mode.

Configurations Available in all configurations.

Attributes The FPSID is a 32-bit register.

The following figure shows the FPSID bit assignments.

31 24 23 22 16 15 8 7 4 3 0

Subarchitecture Part number Variant RevisionImplementer

SW

Figure 15-1  FPSID bit assignments

The following table shows the FPSID bit assignments.

Table 15-2  FPSID bit assignments

Bits Name Function

[31:24] Implementer Indicates the implementer:

0x41 Arm Limited.

[23] SW Software bit. This bit indicates whether a system provides only software emulation of the floating-point
instructions:

0 The system includes hardware support for floating-point operations.

15 Advanced SIMD and floating-point support
15.6 Register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

15-533

Non-Confidential



Table 15-2  FPSID bit assignments (continued)

Bits Name Function

[22:16] Subarchitecture Subarchitecture version number:

0x03 VFPv3 architecture, or later, with no subarchitecture. The entire floating-point implementation is
in hardware, and no software support code is required. The MVFR0, MVFR1, and MVFR2
registers indicate the VFP architecture version.

[15:8] Part Number Indicates the part number for the floating-point implementation:

0x40 Cortex-R52 processor.

[7:4] Variant Indicates the variant number:

0x2 Cortex-R52 processor.

[3:0] Revision Indicates the revision number for the floating-point implementation:

0x3 r1p2.

To access the FPSID register:

VMRS <Rt>, FPSID ; Read FPSID into Rt

15.6.2 Floating-point Status and Control Register

The FPSCR provides floating-point system status information and control.

Usage constraints The accessibility to the FPSCR by Exception level is:

EL0 EL1 EL2

Config Config Config

Traps and enables If CPACR.cp10 is 0b00,then accesses to this register from EL0 and EL1 are
UNDEFINED.
If CPACR.cp10 is 0b01,then accesses to this register from EL0 UNDEFINED.
If HCPTR.TCP10 is set to 1, then accesses to this register from EL0 and EL1 are
trapped to Hyp mode and accesses to this register from EL2 are UNDEFINED

Configurations Available in all configurations.

Attributes The FPSCR is a 32-bit register.

The following figure shows the FPSCR bit assignments.

N

30 29 28 6 5 4 3 2 1

Z C V

31 08 716 1527 26 25 24 23 22 21 20 19 18

Len

AHP
DN
FZ

RMode
Stride

RES0 RES0

QC IOC
DZC
OFC
UFC
IXC

IDCRES0

14 13 12

IDE IXE

11

UFE

10

OFE

9

DZE
IOE

Figure 15-2  FPSCR bit assignments

15 Advanced SIMD and floating-point support
15.6 Register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

15-534

Non-Confidential



The following table shows the FPSCR bit assignments.

Table 15-3  FPSCR bit assignments

Bits Field Function

[31] N Floating-point Negative condition code flag.

Set to 1 if a floating-point comparison operation produces a less than result.

[30] Z Floating-point Zero condition code flag.

Set to 1 if a floating-point comparison operation produces an equal result.

[29] C Floating-point Carry condition code flag.

Set to 1 if a floating-point comparison operation produces an equal, greater than, or unordered result.

[28] V Floating-point Overflow condition code flag.

Set to 1 if a floating-point comparison operation produces an unordered result.

[27] QC Cumulative saturation bit.

This bit is set to 1 to indicate that an Advanced SIMD integer operation has saturated after 0 was last written to this
bit.

[26] AHP Alternative Half-Precision control bit:

0 IEEE half-precision format selected.

1 Alternative half-precision format selected.

[25] DN Default NaN mode control bit:

0 NaN operands propagate through to the output of a floating-point operation.

1 Any operation involving one or more NaNs returns the Default NaN.

The value of this bit only controls floating-point arithmetic. Advanced SIMD arithmetic always uses the Default
NaN setting, regardless of the value of the DN bit.

[24] FZ Flush-to-zero mode control bit:

0 Flush-to-zero mode disabled. Behavior of the floating-point system is fully compliant with the IEEE 754
standard.

1 Flush-to-zero mode enabled.

The value of this bit only controls floating-point arithmetic. Advanced SIMD arithmetic always uses the Flush-to-
zero setting, regardless of the value of the FZ bit.

[23:22] RMode Rounding Mode control field:

0b00 Round to Nearest (RN) mode.

0b01 Round towards Plus Infinity (RP) mode.

0b10 Round towards Minus Infinity (RM) mode.

0b11 Round towards Zero (RZ) mode.

The specified rounding mode is used by almost all scalar floating-point instructions. Advanced SIMD arithmetic
always uses the Round to Nearest setting, regardless of the value of the RMode bits.

[21:20] Stride This field is RES0.

15 Advanced SIMD and floating-point support
15.6 Register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

15-535

Non-Confidential



Table 15-3  FPSCR bit assignments (continued)

Bits Field Function

[19] - Reserved, RES0.

[18:16] Len This field is RAZ.

[15] IDE This field is RES0.

[14:13] - Reserved, RES0.

[12] IXE This field is RES0.

[11] UFE This field is RES0.

[10] OFE This field is RES0.

[9] DZE This field is RES0.

[8] IOE This field is RES0.

[7] IDC Input Denormal cumulative exception bit. This bit is set to 1 to indicate that the Input Denormal exception has
occurred since 0 was last written to this bit.

[6:5] - Reserved, RES0.

[4] IXC Inexact cumulative exception bit. This bit is set to 1 to indicate that the Inexact exception has occurred since 0 was
last written to this bit.

[3] UFC Underflow cumulative exception bit. This bit is set to 1 to indicate that the Underflow exception has occurred since
0 was last written to this bit.

[2] OFC Overflow cumulative exception bit. This bit is set to 1 to indicate that the Overflow exception has occurred since 0
was last written to this bit.

[1] DZC Division by Zero cumulative exception bit. This bit is set to 1 to indicate that the Division by Zero exception has
occurred since 0 was last written to this bit.

[0] IOC Invalid Operation cumulative exception bit. This bit is set to 1 to indicate that the Invalid Operation exception has
occurred since 0 was last written to this bit.

To access the FPSCR:

VMRS <Rt>, FPSCR ; Read FPSCR into Rt
VMSR FPSCR, <Rt> ; Write Rt to FPSCR

15.6.3 Media and Floating-point Feature Register 0

The MVFR0 must be interpreted with the MVFR1 and the MVFR2 to describe the features provided by
Advanced SIMD and floating-point support.

Usage constraints The accessibility to the MVFR0 by Exception level is:

EL0 EL1 EL2

- Config Config

Traps and enables If CPACR.cp10 is 0b00, then read accesses to this register from EL1 are UNDEFINED.
If HCPTR.TCP10 is set to 1, then read accesses to this register from EL1 are
trapped to Hyp mode and read accesses to this register from EL2 are UNDEFINED

If HCR.TID3 is set to 1, then read accesses to this register from EL1 are trapped to
Hyp mode.

15 Advanced SIMD and floating-point support
15.6 Register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

15-536

Non-Confidential



Configurations Available in all configurations.
Attributes The MVFR0 is a 32-bit register.

The following figure shows the MVFR0 bit assignments.

SIMDReg

31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0

FPRound FPShVec FPSqrt FPDivide FPTrap FPDP FPSP

Figure 15-3  MVFR0 bit assignments

The following table shows the MVFR0 bit assignments.

Table 15-4  MVFR0 bit assignments

Bits Name Function

[31:28] FPRound Indicates the rounding modes supported by the floating-point hardware:

0x1 All rounding modes supported.

[27:24] FPShVec Indicates the hardware support for floating-point short vectors:

0x0 Not supported.

[23:20] FPSqrt Indicates the hardware support for floating-point square root operations:

0x1 Supported.

[19:16] FPDivide Indicates the hardware support for floating-point divide operations:

0x1 Supported.

[15:12] FPTrap Indicates whether the floating-point hardware implementation supports exception trapping:

0x0 Not supported.

[11:8] FPDP Indicates the hardware support for floating-point double-precision operations:

0x0 Not supported in hardware when the processor is configured without optional double-precision
floating-point and NEON technology support.

0x2 Supported, VFPv3 or greater, when the processor is configured with optional double-precision
floating-point and NEON technology support.

See the Arm® Architecture Reference Manual Supplement Armv8, for Armv8-R architecture profile for more
information.

15 Advanced SIMD and floating-point support
15.6 Register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

15-537

Non-Confidential



Table 15-4  MVFR0 bit assignments (continued)

Bits Name Function

[7:4] FPSP Indicates the hardware support for floating-point single-precision operations:

0x2 Supported, VFPv3 or greater.

See the Arm® Architecture Reference Manual Supplement Armv8, for Armv8-R architecture profile for more
information.

[3:0] SIMDReg Indicates support for the Advanced SIMD register bank:

0x1 Supported, 16 x 64-bit registers, when the processor is configured without optional double-precision
floating-point and NEON technology support.

0x2 Supported, 32 x 64-bit registers, when the processor is configured with optional double-precision
floating-point and NEON technology support.

See the Arm® Architecture Reference Manual Supplement Armv8, for Armv8-R architecture profile for more
information.

To access the MVFR0:

VMRS <Rt>, MVFR0 ; Read MVFR0 into Rt

15.6.4 Media and Floating-point Feature Register 1

The MVFR1 must be interpreted with the MVFR0 and the MVFR2 to describe the features provided by
Advanced SIMD and floating-point support.

Usage constraints The accessibility to the MVFR1 by Exception level is:

EL0 EL1 EL2

- Config Config

Traps and enables If CPACR.cp10 is 0b00, then read accesses to this register from EL1 are UNDEFINED.
If HCPTR.TCP10 is set to 1, then read accesses to this register from EL1 are
trapped to Hyp mode and read accesses to this register from EL2 are UNDEFINED.
If HCR.TID3 is set to 1, then read accesses to this register from EL1 are trapped to
Hyp mode.

Configurations Available in all configurations.

Attributes The MVFR1 is a 32-bit register.

The following figure shows the MVFR1 bit assignments.

FPFtZ

31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0

SIMDFMAC FPHP SIMDHP SIMDSP SIMDInt SIMDLS FPDNaN

Figure 15-4  MVFR1 bit assignments

The following table shows the MVFR1 bit assignments.

15 Advanced SIMD and floating-point support
15.6 Register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

15-538

Non-Confidential



Table 15-5  MVFR1 bit assignments

Bits Name Function

[31:28] SIMDFMAC Indicates whether Advanced SIMD and floating-point supports fused multiply accumulate operations:

0x1 Implemented.

[27:24] FPHP Indicates whether Advanced SIMD and floating-point supports half-precision floating-point conversion
instructions:

0x1 Instructions to convert between half-precision and single-precision implemented in hardware when
the processor is configured without optional double-precision floating-point and NEON technology
support.

0x2 Supported, instructions to convert between half-precision and either single-precision or double-
precision implemented when the processor is configured with optional double-precision floating-
point and NEON technology support.

[23:20] SIMDHP Indicates whether Advanced SIMD and floating-point supports half-precision floating-point conversion
operations:

0x0 Not implemented.

0x1 Implemented. This value is permitted only if the SIMDSP field is 0x1.

[19:16] SIMDSP Indicates whether Advanced SIMD and floating-point supports single-precision floating-point operations:

0x0 Not implemented

0x1 Implemented. This value is permitted only if the SIMDINt field is 0x1.

[15:12] SIMDInt Indicates whether Advanced SIMD and floating-point supports integer operations:

0x0 Not implemented.

0x1 Implemented.

[11:8] SIMDLS Indicates whether Advanced SIMD and floating-point supports load/store instructions:

0x0 Implemented.

0x1 Not implemented.

[7:4] FPDNaN Indicates whether the floating-point hardware implementation supports only the Default NaN mode:

0x1 Hardware supports propagation of NaN values.

[3:0] FPFtZ Indicates whether the floating-point hardware implementation supports only the Flush-to-Zero mode of
operation:

0x1 Hardware supports full denormalized number arithmetic.

To access the MVFR1:

VMRS <Rt>, MVFR1 ; Read MVFR1 into Rt

15.6.5 Media and Floating-point Feature Register 2

The MVFR2 must be interpreted with the MVFR0 and the MVFR1 to describe the features provided by
Advanced SIMD and floating-point support.

15 Advanced SIMD and floating-point support
15.6 Register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

15-539

Non-Confidential



Usage constraints The accessibility to the MVFR2 by Exception level is:

Table 15-6  

ELO EL1 EL2

- Config Config

Traps and enables If CPACR.cp10 is 0b00, then read accesses to this register from EL1 are UNDEFINED.
If HCPTR.TCP10 is set to 1, then read accesses to this register from EL1 are
trapped in Hyp mode and read accesses to this register from EL2 are UNDEFINED.
If HCR.TID3 is set to 1, then read accesses to this register from EL1 are trapped to
Hyp mode.

Configurations Available in all configurations.

Attributes The MVFR2 is a 32-bit register.

The following figure shows the MVFR2 bit assignments.

31 8 7 4 3 0

FPMisc SIMDMiscRES0

Figure 15-5  MVFR2 bit assignments

The following table shows the MVFR2 bit assignments.

Table 15-7  MVFR2 bit assignments

Bits Name Function

[31:8] - Reserved, RES0.

[7:4] FPMisc Indicates support for miscellaneous floating-point features.

0x4 Supports:
• Floating-point selection.
• Floating-point Conversion to Integer with Directed Rounding modes.
• Floating-point Round to Integral floating-point.
• Floating-point MaxNum and MinNum.

[3:0] SIMDMisc Indicates support for miscellaneous Advanced SIMD features.

0x0 Not implemented.

0x3 Implemented.

To access the MVFR2:

VMRS <Rt>, MVFR2 ; Read MVFR2 into Rt

15.6.6 Floating-Point Exception Control Register

The FPEXC provides a global enable for Advanced SIMD and floating-point support, and indicates how
the state of this support is recorded.

15 Advanced SIMD and floating-point support
15.6 Register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

15-540

Non-Confidential



Usage constraints The accessibility to the FPEXC by Exception level is:

EL0 EL1 EL2

- Config Config

Traps and enables If CPACR.cp10 is 0b00, then accesses to this register from EL1 are UNDEFINED.
If HCPTR.TCP10 is set to 1, then accesses to this register from EL1 are trapped to
Hyp mode and accesses to this register from EL2 are UNDEFINED.

Configurations Available in all configurations.

Attributes FPEXC is a 32-bit register.

The following figure shows the FPEXC bit assignments.

31 30 29 0

RES0

TFV
VV

11 10 8 7

VECITR

28 27 26 25

FP2V
DEX
EN
EX

6 5 4 3 2 1

IDF

RES0

IXF
UFF
OFF
DZF
IOF

Figure 15-6  FPEXC bit assignments

The following table shows the FPEXC bit assignments.

Table 15-8  FPEXC bit assignments

Bits Name Function

[31] EX This field is RES0.

[30] EN Enable bit. A global enable for Advanced SIMD and floating-point support:

0 Advanced SIMD and floating-point support is disabled.

1 Advanced SIMD and floating-point support is enabled and operates normally.

The EN bit is cleared at reset.

[29] DEX This field is RES0.

[28] FP2V This field is RES0.

[27] VV This field is RES0.

[26] TFV This field is RAZ/WI.

[25:11] - Reserved, RES0.

[10:8] VECITR This field is RES1.

[7] IDF This field is RAZ/WI.

[6:5] - Reserved, RES0.

15 Advanced SIMD and floating-point support
15.6 Register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

15-541

Non-Confidential



Table 15-8  FPEXC bit assignments (continued)

Bits Name Function

[4] IXF This field is RAZ/WI.

[3] UFF This field is RAZ/WI.

[2] OFF This field is RAZ/WI.

[1] DZF This field is RAZ/WI.

[0] IOF This field is RAZ/WI.

To access the FPEXC register:

VMRS <Rt>, FPEXC ; Read FPEXC into Rt 

VMRS FPEXC, <Rt> ; Write Rt to FPEXC

15 Advanced SIMD and floating-point support
15.6 Register descriptions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

15-542

Non-Confidential



Appendix A
Signal Descriptions

This appendix describes the Cortex-R52 processor signals.

 Note 

Some of the signals appear twice in this appendix. For example, the AXIM interface clock enable signal
is listed in A.1 Clock and clock enable signals on page Appx-A-544 and AXIM clock enable signal
on page Appx-A-559.

It contains the following sections:
• A.1 Clock and clock enable signals on page Appx-A-544.
• A.2 Resets on page Appx-A-545.
• A.3 Reset-related signals on page Appx-A-546.
• A.4 Configuration inputs on page Appx-A-547.
• A.5 Memory correcting error reporting signals on page Appx-A-548.
• A.6 Event output signals on page Appx-A-552.
• A.7 MRP signals on page Appx-A-557.
• A.8 Bus interface signals on page Appx-A-559.
• A.9 Debug and trace interface signals on page Appx-A-575.
• A.10 Generic timer signals on page Appx-A-579.
• A.11 Power management signals on page Appx-A-580.
• A.12 DFT and on-line MBIST signals on page Appx-A-582.
• A.13 GIC Distributor external messaging port signals on page Appx-A-583.
• A.14 Interrupt input signals on page Appx-A-584.
• A.15 DCLS signals on page Appx-A-585.
• A.16 Split/Lock signal on page Appx-A-586.

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-A-543

Non-Confidential



A.1 Clock and clock enable signals
This section shows the Cortex-R52 processor clock and clock enable signals.

 Note 

You can stop the processor clock indefinitely without loss of state.

The following table shows the clock signals.

Table A-1  Clock signals

Signal Direction Description

CLKIN Input Main clock.

CLKINDCLS Input Redundant clock for the redundant logic in lock-step configurations.

The following table shows the clock enable signals.

Table A-2  Clock enable signals

Signal Direction Description

PCLKENDBG Input APB clock enable.

ACLKENMx Input AXIM interface clock enable.

ACLKENS Input AXIS interface clock enable.

ATCLKEND Input ATB clock enable for data trace.

ATCLKENI Input ATB clock enable for instruction trace and clock enable for TSVALUEB[63:0].

ACLKENFx Input Flash interface clock enable.

CNTCLKEN Input Counter clock enable CNTVALUEB.

ACLKENPx Input LLPP clock enable.

A Signal Descriptions
A.1 Clock and clock enable signals

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-A-544

Non-Confidential



A.2 Resets
The following table shows the reset signals and reset control signals.

 Note 

If DCLS is configured, all reset signals must be synchronous.

Table A-3  Reset signals

Signal Direction Description

nCORERESETx Input Individual core warm reset.

0 Apply reset to the core x excluding debug and trace logic.

1 Do not apply reset to the core.

nCPUPORESETx Input Individual core powerup cold reset.

0 Apply reset to the core x including debug and trace logic.

1 Do not apply reset to the core.

nTOPRESET Input Top-level reset. Resets all the top-level functional logic.

0 Reset all the top-level functional logic.

1 Do not reset all the top-level functional logic.

nCORERESETDCLSx Input Individual redundant core warm reset. Must be driven by the same source as the equivalent
nCORERESETx input.

0 Apply reset to the redundant core x excluding debug and trace logic.

1 Do not apply reset to the redundant core.

nCPUPORESETDCLSx Input Individual redundant core powerup cold reset. Must be driven by the same source as the
equivalent nCPUPORESETx input.

0 Apply reset to the redundant core x including debug and trace logic.

1 Do not apply reset to the redundant core.

nTOPRESETDCLS Input Top-level redundant logic reset. Resets all the top-level functional redundant logic in the
processor, this input must be identical to nTOPRESET.

0 Reset all the top-level functional redundant logic.

1 Do not reset all the top-level functional redundant logic.

nPRESETDBG Input APB reset:

0 Reset APB and top-level debug logic.

1 Do not reset APB and top-level debug logic.

nMBISTRESET Input MBIST reset.

0 Reset MBIST.

1 Do not reset MBIST.

A Signal Descriptions
A.2 Resets

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-A-545

Non-Confidential



A.3 Reset-related signals
Each core has two reset request outputs which it can assert to request a warm reset. Whether these signals
are factored into the reset inputs is determined by the reset control logic external to the Cortex-R52
processor.

The following table shows the reset-related signals.

Table A-4  Reset-related signals

Signal Direction Description

WARMRSTREQx Output Warm core reset request.

DBGRSTREQx Output Request for reset from external debug logic.

CPUHALTx Input Core waits out of reset before taking reset exception and fetching instructions.

CFGINITREG Input Program-visible registers initialized to fixed value out of reset.

CFGL1CACHEINVDISx Input Automatic post-reset L1 cache invalidate disable.

WARMRSTREQx is asserted when software writes 1 to HRMR.RR. DBGRSTREQx is asserted when
the debugger writes 1 to the EDPRCR.CWRR.

A Signal Descriptions
A.3 Reset-related signals

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-A-546

Non-Confidential



A.4 Configuration inputs
The following table shows the configuration inputs.

Table A-5  Configuration inputs

Signal Direction Description

CFGAXISTCMBASEADDR[31:24] Input Base address of the TCMs on the AXIS interface.

CFGCLUSTERUTID[1:0] Input Cluster unique transaction identifier for the purpose of interconnect protection.

CFGDBGROMADDRV Input Top-level debug ROM table address enable.

CFGDBGROMADDR[31:12] Input Top-level debug ROM table base address.

CFGENDIANESSx Input Data endianness (little-endian or byte-invariant big-endian) and value of
HSCTLR.EE out of reset.

CFGFLASHBASEADDR[31:27] Input Base address of the Flash interface.

CFGFLASHENx Input Flash interface enabled or disabled out of reset.

CFGFLASHPROTEN Input Flash memory protection enable out of reset.

CFGFLASHPROTIMP Input Flash memory protection support.

CFGFLASHIMP Input Flash region implemented in memory map.

CFGLLPPIMP Input LLPP region implemented in memory map.

CFGLLPPBASEADDR[31:12] Input Base address of the LLPP.

CFGLLPPSIZE[3:0] Input Region size of the LLPP.

CFGMRPEN Input Memory reconstruction port enable.

CFGMPIDRAFF1[7:0] Input Cluster ID at affinity level 1.

CFGMPIDRAFF2[7:0] Input Cluster ID at affinity level 2.

CFGPERIPHBASE[31:21] Input Base address of the GIC Distributor Unit (GDU) registers

CFGRAMPROTEN Input RAM (caches and TCMs) memory protection enable out of reset.

CFGTCMBOOTx Input ATCM enabled and at address 0x0 out of reset.

CFGTHUMBEXCEPTIONSx Input Instruction set state (A32 or T32) and value of HSCTLR.TE out of reset.

CFGVECTABLEx[31:5] Input Vector table base address out of reset.

CFGSLSPLIT Input Split/Lock implementation.

0 Lock mode.

1 Split mode.

A Signal Descriptions
A.4 Configuration inputs

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-A-547

Non-Confidential



A.5 Memory correcting error reporting signals
The processor has primary and secondary memory error reporting interfaces to identify the source of the
highest and next highest priority correctable memory error. A system safety controller can use these
interfaces to build a log of the locations of correctable errors detected in the memories.

The following table shows the error reporting signals. These signals are valid for a single cycle whenever
the associated valid bit is asserted.

Table A-6  Memory correcting error reporting signals

Signal Direction Description

PRIMEMERRIDXx[24:0] Output Primary error reporting interface index.

PRIMEMERRMEMx[14:0] Output Primary error reporting interface memory identifier.

PRIMEMERRVx Output Primary error reporting interface valid.

SECMEMERRIDXx[24:0] Output Secondary error reporting interface index.

SECMEMERRMEMx[14:0] Output Secondary error reporting interface memory identifier.

SECMEMERRVx Output Secondary error reporting interface valid.

 Note 

PRIMEMERRIDXx[24:0], PRIMEMERRMEMx[14:0], SECMEMERRIDXx[24:0], and
SECMEMERRMEMx[14:0] are valid when PRIMEMERRVx and SECMEMERRVx are valid.

The interfaces indicate the RAM that is the source of the error on the PRIMEMERRMEM and
SECMEMERRMEM signals. The following tables show the bits and their encoding, which varies
according to the block indicated in bits [2:0].

Table A-7  ATCM

Bits Function

[14:3] These bits are unused for ATCM because it is a single bank.

[2:0] Block in which the error was found. The value is 0b000.

Table A-8  BTCM

Bits Function

[14:3] Bits indicating the RAM bank or banks within the BTCM in which correctable error or errors were detected. Multiple bits can
be set. Bits [14:5] are unused. The possible values are:

[4] Bank 1.

[3] Bank 0.

[2:0] Block in which the error was found. The value is 0b001.

A Signal Descriptions
A.5 Memory correcting error reporting signals

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-A-548

Non-Confidential



Table A-9  CTCM

Bits Function

[14:3] Bits indicating the RAM bank or banks within the CTCM in which correctable error or errors were detected. Multiple bits can
be set. Bits [14:5] are unused. The possible values are:

[4] Bank 1.

[3] Bank 0.

[2:0] Block in which the error was found. The value is 0b010.

Table A-10  Flash

Bits Function

[14:3] These bits are unused for flash because it is a single bank.

[2:0] Block in which the error was found. The value is 0b011.

Table A-11  L1 instruction cache

Bits Function

[14:3] Bits indicating the RAM bank or banks within the instruction cache in which correctable error or errors were detected.
Multiple bits can be set. Bits [14: 11] are unused. The possible values are:

[10] Tag RAM, bank 3.

[9] Tag RAM, bank 2.

[8] Tag RAM, bank 1.

[7] Tag RAM, bank 0.

[6] Data RAM, bank 3.

[5] Data RAM, bank 2.

[4] Data RAM, bank 1.

[3] Data RAM, bank 0.

[2:0] Block in which the error was found. The value is 0b100.

A Signal Descriptions
A.5 Memory correcting error reporting signals

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-A-549

Non-Confidential



Table A-12  L1 data cache

Bits Function

[14:3] Bits indicating the RAM bank or banks within the data cache in which correctable error or errors were detected. Multiple bits
can be set. The possible values are:

[14] Tag RAM, bank 3.

[13] Tag RAM, bank 2.

[12] Tag RAM, bank 1.

[11] Tag RAM, bank 0.

[10] Data RAM, bank 7.

[9] Data RAM, bank 6.

[8] Data RAM, bank 5.

[7] Data RAM, bank 4.

[6] Data RAM, bank 3.

[5] Data RAM, bank 2.

[4] Data RAM, bank 1.

[3] Data RAM, bank 0.

[2:0] Block in which the error was found. The value is 0b101.

PRIMEMERRINDEX and SECMEMERRINDEX show the row in the RAM that has the error.

For TCM errors
8 Most Significant Bits (MSBs) unused.
17 Least Significant Bits (LSBs) is the INDEX value that corresponds to the access address
[19:3] masked with the TCM size. The following table shows the bits corresponding to the TCM
size.

Table A-13  TCM errors

Bits Size

[19:3] 1MB

[18:3] 512KB

[17:3] 256KB

[16:3] 128KB

[15:3] 64KB

[14:3] 32KB

[13:3] 16KB

[12:3] 8KB

For flash errors
All bits are used. The INDEX value that corresponds to the access address is [25:1]. In a normal
scenario, bits [25:4] would be adequate as the flash region is 128MB and the accesses are 64-bit
aligned. However, in Cortex-R52, the Flash Error Record Registers (FLASHERR) log accesses
aligned to halfwords. This is done to capture the exact instruction that caused an error for
instruction-side errors which are corrected inline.

A Signal Descriptions
A.5 Memory correcting error reporting signals

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-A-550

Non-Confidential



For instruction and data cache errors
18 MSBs unused.
7 LSBs is the INDEX value that corresponds to the instruction cache index or data cache index
and corresponds to bits [12:6] masked with the cache size. The following table shows the bits
corresponding to the cache size.

Table A-14  Instruction and data cache errors

Bits Size

[12:6] 32KB

[11:6] 16KB

[10:6] 8KB

[9:6] 4KB

A Signal Descriptions
A.5 Memory correcting error reporting signals

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-A-551

Non-Confidential



A.6 Event output signals
These buses collate the error signals within each core. The system safety controller can use these signals
to identify more closely the nature of any error detected in the system. This helps the system safety
controller to determine its response to the error.

The following table shows the event output signals. An event occurrence is indicated for every clock
cycle that the event signal is asserted HIGH.

A Signal Descriptions
A.6 Event output signals

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-A-552

Non-Confidential



Table A-15  Event output signals

Signal Direction Description

ERREVENT[4:0] Output Global error events. The bit assignment is:

[0] Correctable data payload bus error occurred from AXIS.

[1] Fatal data payload bus error occurred from AXIS.

[2] Fatal READY signal bus error occurred from AXIS.

[3] Fatal non-protocol bus errors (payload errors) occurred from AXIS.

[4] Fatal protocol bus error (LEN, ID, LAST, READY, and interconnect protection errors)
occurred from AXIS.

A Signal Descriptions
A.6 Event output signals

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-A-553

Non-Confidential



Table A-15  Event output signals (continued)

Signal Direction Description

ERREVENTx[25:0] Output Per-core error events. The bit assignment is:

[0] Correctable memory error detected from L1 instruction cache, L1 data cache, ATCM,
BTCM, CTCM, or flash. The PMU mnemonic is KITE_CORE_ERR_MEM.

[1] Fatal memory error occurred from ATCM, BTCM, CTCM, or flash. The PMU mnemonic
is KITE_FAT_ERR_MEM.

[2] Correctable data payload bus error occurred from AXIM or LLPP. The PMU mnemonic is
KITE_BUS_COR_DATA.

[3] Fatal data payload bus error occurred from AXIM or LLPP.

[4] Fatal READY signal bus error occurred from AXIM, Flash, or LLPP.

[5] Fatal non-protocol bus error occurred from AXIM, Flash, or LLPP. These are payload
errors. The PMU mnemonic is KITE_BUS_FAT_ANY.

[6] Fatal protocol bus error occurred from AXIM, Flash, or LLPP. These are LEN, ID, LAST,
VALID and READY, and interconnect protection errors. The mnemonic is
KITE_BUS_PROTOCOL_ANY.

[7] Correctable L1 instruction cache data or L1 instruction cache tag memory error.

[8] Correctable L1 data cache data or L1 data cache tag memory error.

[9] Correctable ATCM, BTCM, or CTCM memory error.

[10] Fatal ATCM, BTCM, or CTCM memory error.

[11] Correctable flash memory error.

[12] Fatal flash memory error.

[13] Timeout for main AXIM bus.

[14] Timeout for Flash bus.

[15] Timeout for LLPP bus.

[16] Correctable memory error occurred L1 instruction cache, L1 data cache, ATCM, BTCM,
CTCM, or flash, but was not recorded in the Error Record Registers (ERRs), because they
were full or because it was overwritten by a fatal error.

[17] Fatal memory error occurred L1 instruction cache, L1 data cache, ATCM, BTCM, CTCM,
or flash, but was not recorded in the ERRs, because they were full.

[18] Interrupts masked in Hyp mode for too long. The IMP_INTMONR watchdog is triggered.

[19] A memory or bus fatal error was synchronously detected in Hyp mode.

[20] An abort exception was taken because an EL2-controlled MPU fault generated an abort.

[21] An Abort exception was taken because an EL1-controlled MPU fault generated an abort.

[22] An Undefined exception was taken due to any cause.

[23] A memory access marked in EL1-controlled MPU as Device was flushed because it was
marked as Normal in EL2-controlled MPU.

[24] Processor livelock because of hard errors or exception at exception vector. An exception
of the same type and vector offset was consecutively taken 20 times.

[25] Software running in EL2 unlocks IMP_TESTR1. IMP_TESTR1 is for testing purposes
only.

A Signal Descriptions
A.6 Event output signals

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-A-554

Non-Confidential



Table A-15  Event output signals (continued)

Signal Direction Description

PMUEVENTx[22:0] Output Performance Monitoring Unit events.

[0] L1 instruction cache refill. The PMU mnemonic is L1I_CACHE_REFILL.

[1] L1 data cache refill. The PMU mnemonic is L1D_CACHE_REFILL.

[2] L1 data cache access. The PMU mnemonic is L1I_CACHE.

[3] Instruction architecturally executed, condition check pass-load. The PMU mnemonic is
LD_RETIRED.

[4] Instruction architecturally executed, condition check pass-store. The PMU mnemonic is
SD_RETIRED.

[5] Instruction architecturally executed. The PMU mnemonic is INST_RETIRED.

[6] Two instructions architecturally executed in parallel. Asserted with PMUEVENTx[5]
when dual-issuing.

[7] Exception taken. The PMU mnemonic is EXC_TAKEN.

[8] Instruction architecturally executed, condition code check pass, exception return. The
PMU mnemonic is EXC_RETURN.

[9] Instruction architecturally executed, condition code check pass, write to CONTEXTIDR.
The PMU mnemonic is CID_WRITE_RETIRED.

[10] Instruction architecturally executed, condition code check pass, software change of the
PC. The PMU mnemonic is PC_WRITE_RETIRED.

[11] Instruction architecturally executed, immediate branch. The PMU mnemonic is
BR_IMMED_RETIRED.

[12] Instruction architecturally executed, condition code check pass, unaligned load or store.
The PMU mnemonic is UNALIGNED_LDST_RETIRED.

[13] Mispredicted or unpredicted branch speculatively executed. The PMU mnemonic is
BS_MIS_PRED.

[14] Predictable branch speculatively executed. The PMU mnemonic is BR_PRED.

[15] Data memory access. The PMU mnemonic is MEM_ACCESS.

[16] L1 instruction cache access. The PMU mnemonic is L1I_CACHE.

[17] Exception taken, IRQ. The PMU mnemonic is EXC_IRQ.

[18] Exception taken, FIQ. The PMU mnemonic is EXC_FIQ.

[19] Exception taken, Hypervisor call. The PMU mnemonic is EXC_HVC.

[20] Exception taken, IRQ not taken locally. The PMU mnemonic is EXC_TRAP_IRQ.

[21] Exception taken, FIQ not taken locally. The PMU mnemonic is EXC_TRAP_FIQ.

[22] Exception taken to EL2 (Hypervisor mode entry), excluding reset. The PMU mnemonic is
KITE_EL2_ENTERED.

A Signal Descriptions
A.6 Event output signals

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-A-555

Non-Confidential



Table A-15  Event output signals (continued)

Signal Direction Description

PMUEVENTx[35:23] Output [23] Exception taken, supervisor call. The PMU mnemonic is EXC_SVC.

[24] Instruction architecturally executed, branch.The PMU mnemonic is BR_RETIRED.

[25] Exception taken to EL2 (Hypervisor mode entry), excluding reset. The PMU mnemonic is
KITE_EL2_ENTERED.

[26] Exception taken to EL2 (Hypervisor mode entry), excluding reset. The PMU mnemonic is
KITE_EL2_ENTERED.

[27] Exception taken to EL2 (Hypervisor mode entry), excluding reset. The PMU mnemonic is
KITE_EL2_ENTERED.

[28] Instruction architecturally executed, condition code check pass, procedure return.The
PMU mnemonic is BR_RETURN_RETIRED.

[29] Exception taken to EL2 (Hypervisor mode entry), excluding reset. The PMU mnemonic is
KITE_EL2_ENTERED.

[30] Exception taken to EL2 (Hypervisor mode entry), excluding reset. The PMU mnemonic is
KITE_EL2_ENTERED.

[31] External memory request, AXIM read. The PMU mnemonic is KITE_AXI_READ.

[32] External memory request, AXIM write.The PMU mnemonic is KITE_AXI_WRITE.

[33] External memory request, Flash (read-only).The PMU mnemonic is
KITE_FLASH_READ.

[34] External memory request, LLPP read. The PMU mnemonic is KITE_LLPP_READ.

[35] External memory request, LLPP write. The PMU mnemonic is KITE_LLPP_WRITE.

A Signal Descriptions
A.6 Event output signals

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-A-556

Non-Confidential



A.7 MRP signals
Each core of the Cortex-R52 processor provides an MRP for reporting write accesses so that an image of
memory can be reconstructed.

The MRP is always present and has a control to enable or disable it. When the MRP is enabled, the store
unit only accepts one store transaction per cycle to serialize stores into the store unit. The store unit
outputs all write transactions to the MRP regardless of whether the source of the transaction is the core or
an AXI master attached to the slave interface of the processor.

 Note 

The MRP is driven off CLKIN without support for a slower bus.

The following table shows the MRP signals.

Table A-16  MRP signals

Signal Direction Description

MRPBACKPRESSx Input Apply back-pressure to MRP generation. This signal should be asserted when the MRP trace
generation logic is soon unable to accept more data. Typically this is when a FIFO holding the
MRP trace information is almost full. The MRP can send the master can send up to three more
transactions after the signal goes high and the back-pressure must be applied until it has taken
effect.

MRPATTRx[4:0] Output Reflects the attribute encoding for inner-cacheability and inner-shareability output by the
processor.

MRPCSx[4:0] Output Chip select signal which is one-hot and reflects the memory region targeted by the write.

MRPSOURCEx Output Indicates the source of the write (AXIS or core).

MRPADDRx[31:0] Output Address of the write access.

MRPDATAx[63:0] Output Data of the write access.

MRPSTRBx[7:0] Output Byte strobes of the write access.

MRPVALIDx Output Indicates the processor is committing a new write. There is no corresponding handshake input
signal.

CFGMRPEN Input MRP enable. This signal can only change under reset. If the signal is HIGH, MRP is enabled.

The following tables show the attribute encoding for MRPATTRx[4:0].

Table A-17  Attribute encoding for MRPATTRx[4:2]

MRPATTRx[4:2] Attribute

0b000 Device-nGnRnE

0b001 Device-nGnRE

0b010 Device-nGRE

0b011 Device-GRE

0b100 Normal Inner NC or AXIS write

0b101 Normal Inner WB

0b110 Normal Inner WT

0b111 AXIS write, which was reordered

A Signal Descriptions
A.7 MRP signals

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-A-557

Non-Confidential



Table A-18  Attribute encoding for MRPATTRx[1:0]

MRPATTRx[1:0] Attribute

0b00 Non-shareable or AXIS write

0b01 UNUSED

0b10 Outer-shareable

0b11 Inner-shareable

The following table shows the attribute encoding for MRPCSx[4:0].

Table A-19  Attribute encoding for MRPCSx[4:0]

MRPCSx[4:0] Attribute

0b00001 AXI

0b00010 ATCM

0b00100 BTCM

0b01000 CTCM

0b10000 LLPP

The following table shows the source encoding for MRPSOURCEx.

Table A-20  Attribute encoding for MRPSOURCEx

MRPSOURCEx Attribute

0 Core

1 AXIS

A Signal Descriptions
A.7 MRP signals

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-A-558

Non-Confidential



A.8 Bus interface signals
This section describes the bus interface signals.

This section contains the following subsections:
• A.8.1 AXIM interface signals on page Appx-A-559.
• A.8.2 AXIS interface signals on page Appx-A-563.
• A.8.3 LLPP interface signals on page Appx-A-567.
• A.8.4 Flash interface signals on page Appx-A-572.

A.8.1 AXIM interface signals

This section describes the AXIM interface signals.

AXIM clock enable signal

The following table shows the clock enable signal for the AXIM interface.

Table A-21  AXIM clock enable signal

Signal Direction Description

ACLKENMx Input Clock enable for the AXIM interface.

AXIM read address channel signals

The following table shows the read address channel signals for the AXIM interface.

Table A-22  AXIM read address channel signals

Signal Direction Description

ARREADYMx Input Read address ready.

ARADDRMx[31:0] Output Read address.

ARBURSTMx[1:0] Output Read burst type.

ARCACHEMx[3:0] Output Read cache type.

ARIDMx[3:0] Output Read request ID.

ARLENMx[7:0] Output Read burst length. ARLENMx[7:2] is always 0b000000.

ARLOCKMx Output Read lock type.

ARPROTMx[2:0] Output Read protection type.

ARVALIDMx Output Read address valid.

ARSIZEMx[2:0] Output Read burst size.

ARQOSMx[3:0] Output Read quality of service read identifier.

ARVMIDMx[7:0] Output Virtual Machine IDentifier (VMID) where uniquely identifiable.

AXIM read address signal integrity protection signals

The following table shows the read address signal integrity protection signals for the AXIM interface.

A Signal Descriptions
A.8 Bus interface signals

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-A-559

Non-Confidential



Table A-23  AXIM read address signal integrity protection signals

Signal Direction Description

ARREADYCODEMx Input Protection code for ARREADYMx.

ARCTL0CODEMx[4:0] Output Protection code for read address channel control signals group 0.

ARCTL1CODEMx[4:0] Output Protection code for read address channel control signals group 1.

ARADDRCODEMx[6:0] Output Protection code for ARADDRMx[31:0].

ARIDCODEMx[4:0] Output Protection code for ARIDMx[3:0].

ARVALIDCODEMx Output Protection code for ARVALIDMx.

ARVMIDCODEMx[4:0] Output Protection code for ARVMIDMx[4:0].

AXIM read address interconnect protection signal

The following table shows the read address interconnect protection signal for the AXIM interface.

Table A-24  AXIM read address interconnect protection signal

Signal Direction Description

ARUTIDMx[9:0] Output Read address unique transaction identifier for interconnect protection.

Read data channel signals

The following table shows the read data channel signals for the AXIM interface.

Table A-25  AXIM read data channel signals

Signal Direction Description

RDATAMx[127:0] Input Read data.

RIDMx[3:0] Input Read data ID.

RLASTMx Input Read data last transfer indication.

RRESPMx[1:0] Input Read data response.

RVALIDMx Input Read data valid.

RREADYMx Output Read data ready.

AXIM read data signal integrity protection signals

The following table shows the read data signal integrity protection signals for the AXIM interface.

Table A-26  AXIM read data signal integrity protection signals

Signal Direction Description

RCTLCODEMx[2:0] Input Protection code for read data channel control signals.

RDATACODEMx[15:0] Input Protection code for RDATAMx[127:0].

RIDCODEMx[4:0] Input Protection code for RIDMx[4:0].

RVALIDCODEMx Input Protection code for RVALIDMx.

RREADYCODEMx Output Protection code for RREADYMx.

A Signal Descriptions
A.8 Bus interface signals

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-A-560

Non-Confidential



AXIM read data interconnect protection signals

The following table shows the read data interconnect protection signals for the AXIM interface.

Table A-27  AXIM read data interconnect protection signals

Signal Direction Description

REOBIMx Input Read data even/odd beat indicator for interconnect protection.

RUTIDMx[9:0] Input Read data unique transaction identifier for interconnect protection.

AXIM write address channel signals

The following table shows the write address channel signals for the AXIM interface.

Table A-28  AXIM write address channel signals

Signal Direction Description

AWREADYMx Input Write address ready.

AWADDRMx[31:0] Output Write address.

AWBURSTMx[1:0] Output Write burst type.

AWCACHEMx[3:0] Output Write cache type.

AWIDMx[2:0] Output Write request ID.

AWLENMx[7:0] Output Write burst length. AWLENM[7:2] is always 0b000000.

AWLOCKMx Output Write lock type.

AWPROTMx[2:0] Output Write protection type.

AWQOSMx[3:0] Output Quality of service.

AWSIZEMx[2:0] Output Write burst size.

AWVALIDMx Output Write address valid.

AWVMIDMx[7:0] Output Write virtual machine identifier.

AXIM write address signal integrity

The following table shows the write address signal integrity signals for the AXIM interface.

Table A-29  AXIM write address signal integrity protection signals

Signal Direction Description

AWREADYCODEMx Input Protection code for AWREADYMx.

AWADDRCODEMx[6:0] Output Protection code for AWADDRMx[31:0].

AWCTL0CODEMx[4:0] Output Protection code for write address channel control signals group 0.

AWCTL1CODEMx[4:0] Output Protection code for write address channel control signals group 1.

AWIDCODEMx[4:0] Output Protection code for AWIDMx[2:0].

AWVALIDCODEMx Output Protection code for AWVALIDMx.

AWVMIDCODEMx[4:0] Output Protection code for AWVMIDMx[7:0].

AXIM write address interconnect protection signal

The following table shows the write address interconnect protection signal for the AXIM interface.

A Signal Descriptions
A.8 Bus interface signals

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-A-561

Non-Confidential



Table A-30  AXIM write address interconnect protection signal

Signal Direction Description

AWUTIDMx[9:0] Output Write address unique transaction identifier for interconnect protection.

AXIM write data channel signals

The following table shows the write data channel signals for the AXIM interface.

Table A-31  AXIM write data channel signals

Signal Direction Description

WREADYMx Input Write data ready.

WDATAMx[127:0] Output Write data.

WSTRBMx[15:0] Output Write byte-lane strobes.

WLASTMx Output Indicates the last transfer in a write burst.

WVALIDMx Output Write data valid.

AXIM write data signal integrity protection signals

The following table shows the write data signal integrity protection signals for the AXIM interface.

Table A-32  AXIM write data signal integrity protection signals

Signal Direction Description

WREADYCODEMx Input Protection code for WREADYMx.

WCTLCODEMx[4:0] Output Protection code for write data channel control signals.

WDATACODEMx[15:0] Output Protection code for WDATAMx[127:0].

WVALIDCODEMx Output Protection code for WVALIDMx.

AXIM write data interconnect protection signals

The following table shows the write data interconnect protection signals for the AXIM interface.

Table A-33  AXIM write data interconnect protection signals

Signal Direction Description

WEOBIMx Output Write data even/odd beat indicator for interconnect protection.

WUTIDMx[9:0] Output Write data unique transaction identifier for interconnect protection.

AXIM write response channel signals

The following table shows the write response channel signals for the AXIM interface.

Table A-34  AXIM write response channel signals

Signal Direction Description

BIDMx[2:0] Input Write response ID.

BRESPMx[1:0] Input Write response.

A Signal Descriptions
A.8 Bus interface signals

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-A-562

Non-Confidential



Table A-34  AXIM write response channel signals (continued)

Signal Direction Description

BVALIDMx Input Write response valid.

BREADYMx Output Write response ready.

AXIM write response signal integrity protection signals

The following table shows the write response signal integrity protection signals for the AXIM interface.

Table A-35  AXIM write response signal integrity protection signals

Signal Direction Description

BCTLCODEMx[2:0] Input Protection code for BRESPMx[1:0].

BIDCODEMx[4:0] Input Protection code for BIDMx[2:0].

BVALIDCODEMx Input Protection code for BVALIDMx.

BREADYCODEMx Output Protection code for BREADYMx.

AXIM write response interconnect protection signal

The following table shows the write response interconnect protection signal for the AXIM interface.

Table A-36  AXIM write response interconnect protection signal

Signal Direction Description

BUTIDMx[9:0] Input Write response unique transaction identifier for interconnect protection.

A.8.2 AXIS interface signals

This section describes the AXIS interface signals.

AXIS clock enable signal

The following table shows the clock enable signal for the AXIS interface.

Table A-37  AXIS clock enable signal

Signal Direction Description

ACLKENS Input Clock enable for the AXIS interface. This signal gets registered once in the processor before being used as
the clock enable for the interface.

AXIS read address channel signals

The following table shows the read address channel signals for the AXIS interface.

Table A-38  AXIS read address channel signals

Signal Direction Description

ARADDRS[31:0] Input Read address.

ARIDS[AXIS_ID_WIDTH-1:0] Input Read address ID.

ARLENS[7:0] Input Instruction fetch burst length.

A Signal Descriptions
A.8 Bus interface signals

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-A-563

Non-Confidential



Table A-38  AXIS read address channel signals (continued)

Signal Direction Description

ARPROTS[2:0] Input Protection information, privileged/normal access.

ARVALIDS Input Read address valid.

ARREADYS Output Read address ready.

AXIS read address signal integrity protection signals

The following table shows the read address signal integrity protection signals for the AXIS interface.

Table A-39  AXIS read address signal integrity protection signals

Signal Direction Description

ARADDRCODES[6:0] Input Protection code for ARADDRS[31:0].

ARCTL0CODES[4:0] Input Protection code for read address channel control signals group 0.

ARCTL1CODES[4:0] Input Protection code for read address channel control signals group 1.

ARIDCODES[4:0] Input Protection code for ARIDS[AXIS_ID_WIDTH-1:0].

ARVALIDCODES Input Protection code for ARVALIDS.

ARREADYCODES Output Protection code for ARREADYS.

AXIS read address interconnect protection signal

The following table shows the read address interconnect protection signal for the AXIS interface.

Table A-40  AXIS read address interconnect protection signal

Signal Direction Description

ARUTIDS[9:0] Input Read address unique transaction identifier for interconnect protection.

AXIS read data channel signals

The following table shows the read data channel signals for the AXIS interface.

Table A-41  AXIS read data channel signals

Signal Direction Description

RREADYS Input Read data ready.

RDATAS[127:0] Output Read data.

RIDS[AXIS_ID_WIDTH-1:0] Output Read data ID.

RLASTS Output Indicates the last transfer in a read burst.

RRESPS[1:0] Output Read response.

RVALIDS Output Read data valid.

AXIS read data signal integrity protection signals

The following table shows the read data signal integrity protection signals for the AXIS interface.

A Signal Descriptions
A.8 Bus interface signals

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-A-564

Non-Confidential



Table A-42  AXIS read data signal integrity protection signals

Signal Direction Description

RREADYCODES Input Protection code for RREADYS.

RCTLCODES[2:0] Output Protection code for read data channel control signals.

RDATACODES[15:0] Output Protection code for RDATAS[127:0].

RIDCODES[4:0] Output Protection code for RIDS[AXIS_ID_WIDTH-1:0].

RVALIDCODES Output Protection code for RVALIDS.

AXIS read data interconnect protection signals

The following table shows the read data interconnect protection signals for the AXIS interface.

Table A-43  AXIS read data interconnect protection signals

Signal Direction Description

REOBIS Output Read data even/odd beat indicator.

RUTIDS[9:0] Output Read data unique transaction identifier for interconnect protection.

AXIS write address channel signals

The following table shows the write address channel signals for the AXIS interface.

Table A-44  AXIS write address channel signals

Signal Direction Description

AWADDRS[31:0] Input Write transfer start address.

AWIDS[AXIS_ID_WIDTH-1:0] Input Write address ID.

AWLENS[7:0] Input Write transfer burst length.

AWPROTS[2:0] Input Protection information, privileged/normal access.

AWVALIDS Input Write address valid.

AWREADYS Output Write address ready.

AXIS write address signal integrity protection signals

The following table shows the write address signal integrity protection signals for the AXIS interface.

Table A-45  AXIS write address signal integrity protection signals

Signal Direction Description

AWADDRCODES[6:0] Input Protection code for AWADDRS[31:0].

AWCTL0CODES[4:0] Input Protection code for write address channel control signals group 0.

AWCTL1CODES[4:0] Input Protection code for write address channel control signals group 1.

AWIDCODES[4:0] Input Protection code for AWIDS[AXIS_ID_WIDTH-1:0].

AWVALIDCODES Input Protection code for AWVALIDS.

AWREADYCODES Output Protection code for AWREADYS.

A Signal Descriptions
A.8 Bus interface signals

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-A-565

Non-Confidential



AXIS write address interconnect protection signals

The following table shows the write address interconnect protection signal for the AXIS interface.

Table A-46  AXIS write address interconnect protection signals

Signal Direction Description

AWUTIDS[9:0] Input Write address unique transaction identifier for interconnect protection.

AXIS write data channel signals

The following table shows the write data channel signals for the AXIS interface.

Table A-47  AXIS write data channel signals

Signal Direction Description

WDATAS[127:0] Input Write data.

WLASTS Input Indicates the last data transfer of a burst.

WSTRBS[15:0] Input Write byte-lane strobes.

WVALIDS Input Write data valid.

WREADYS Output Write data ready.

AXIS write data signal integrity protection signals

The following table shows the write data signal integrity protection signals for the AXIS interface.

Table A-48  AXIS write data signal integrity protection signals

Signal Direction Description

WCTLCODES[4:0] Input Protection code for write data channel control signals.

WDATACODES[15:0] Input Protection code for WDATAS[127:0].

WVALIDCODES Input Protection code for WVALIDS.

WREADYCODES Output Protection code for WREADYS.

AXIS write data interconnect protection signals

The following table shows the write data interconnect protection signals for the AXIS interface.

Table A-49  AXIS write data interconnect protection signals

Signal Direction Description

WEOBIS Input Write data even/odd beat indicator.

WUTIDS[9:0] Input Write data unique transaction identifier for interconnect protection.

AXIS write response channel signals

The following table shows the write response channel signals for the AXIS interface.

A Signal Descriptions
A.8 Bus interface signals

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-A-566

Non-Confidential



Table A-50  AXIS write response channel signals

Signal Direction Description

BREADYS Input Write response ready.

BIDS[AXIS_ID_WIDTH-1:0] Output Write response ID.

BRESPS[1:0] Output Write response.

BVALIDS Output Write response valid.

AXIS write response signal integrity protection signals

The following table shows the write response signal integrity protection signals for the AXIS interface.

Table A-51  AXIS write response signal integrity protection signals

Signal Direction Description

BREADYCODES Input Protection code for BREADYS.

BCTLCODES[2:0] Output Protection code for BRESPS[1:0].

BIDCODES[4:0] Output Protection code for BIDS[AXIS_ID_WIDTH-1:0].

BVALIDCODES Output Protection code for BVALIDS.

AXIS write response interconnect protection signal

The following table shows the write response interconnect protection signal for the AXIS interface.

Table A-52  AXIS write response interconnect protection signals

Signal Direction Description

BUTIDS[9:0] Output Write response unique transaction identifier for interconnect protection.

A.8.3 LLPP interface signals

This section describes the LLPP interface signals.

LLPP clock enable signal

The following table shows the clock enable signal for the LLPP interface.

Table A-53  LLPP clock enable signal

Signal Direction Description

ACLKENPx Input Clock enable for the LLPP. This signal gets registered once in the processor before being used as the clock
enable for the interface.

LLPP read address channel signals

The following table shows the read address channel signals for the LLPP interface.

Table A-54  LLPP read address channel signals

Signal Direction Description

ARREADYPx Input Read address ready.

ARADDRPx[31:0] Output Read address.

A Signal Descriptions
A.8 Bus interface signals

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-A-567

Non-Confidential



Table A-54  LLPP read address channel signals (continued)

Signal Direction Description

ARBURSTPx[1:0] Output Read burst type.

ARCACHEPx[3:0] Output Read cache type.

ARIDPx Output Read address ID.

ARLENPx[7:0] Output Read burst length.

ARLOCKPx Output Read lock type.

ARSIZEPx[2:0] Output Read burst size.

ARVALIDPx Output Read address valid.

ARPROTPx[2:0] Output Read protection type.

ARQOSPx[3:0] Output Read quality of service read identifier.

ARVMIDPx[7:0] Output VMID where uniquely identifiable. For example, for Device memory transfers, the VMID is
indicated. When a transfer does not have a uniquely identifiable VMID, the signal is driven as
0x00.

LLPP read address signal integrity protection signals

The following table shows the read address signal integrity protection signals for the LLPP interface.

Table A-55  LLPP read address signal integrity protection signals

Signal Direction Description

ARREADYCODEPx Input Protection code for ARREADYPx

ARADDRCODEPx[6:0] Output Protection code for ARADDRPx[31:0]

ARCTL0CODEPx[4:0] Output Protection code for read address channel control signals group 0.

ARCTL1CODEPx[4:0] Output Protection code for read address channel control signals group 1.

ARIDCODEPx[4:0] Output Protection code for ARIDPx.

ARVALIDCODEPx Output Protection code for ARVALIDPx.

ARVMIDCODEPx[4:0] Output Protection code for ARVMIDPx[7:0].

LLPP read address interconnect protection signals

The following table shows read address interconnect protection signals for the LLPP interface.

Table A-56  LLPP read address interconnect protection signals

Signal Direction Description

ARUTIDPx[9:0] Output Read address unique transaction identifier for interconnect protection.

LLPP read data channel signals

The following table shows the read data channel signals for the LLPP interface.

A Signal Descriptions
A.8 Bus interface signals

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-A-568

Non-Confidential



Table A-57  LLPP read address channel signals

Signal Direction Description

RREADYPx Output Read data ready.

RLASTPx Input Read data last transfer indication.

RRESPPx[1:0] Input Read response.

RVALIDPx Input Read data valid.

RDATAPx[31:0] Input Read data.

RIDPx Input Read data ID.

LLPP read data signal integrity protection signals

The following table shows the read data signal integrity protection channel signals for the LLPP
interface.

Table A-58  LLPP read data signal integrity protection signals

Signal Direction Description

RVALIDCODEPx Input Protection code for RVALIDPx.

RDATACODEPx[6:0] Input Protection code for RDATAPx[31:0].

RIDCODEPx[4:0] Input Protection code for RIDPx.

RCTLCODEPx[2:0] Input Protection code for read data channel control signals.

RREADYCODEPx Output Protection code for RREADYPx.

LLPP read data interconnect protection signals

The following table shows the read data interconnect protection signals for the LLPP interface.

Table A-59  LLPP read data interconnect protection signals

Signal Direction Description

RUTIDPx[9:0] Input Read data unique transaction identifier for interconnect protection.

REOBIPx Input Read data even/odd beat indicator for interconnect protection.

LLPP write address channel signals

The following table shows the write address channel signals for the LLPP interface.

Table A-60  LLPP write address channel signals

Signal Direction Description

AWBURSTPx[1:0] Output Write burst type.

AWCACHEPx[3:0] Output Write cache type.

AWIDPx Output Write address ID.

AWLENPx[7:0] Output Write burst length.

AWLOCKPx Output Write lock type.

AWPROTPx[2:0] Output Write protection type.

A Signal Descriptions
A.8 Bus interface signals

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-A-569

Non-Confidential



Table A-60  LLPP write address channel signals (continued)

Signal Direction Description

AWVALIDPx Output Write address valid.

AWSIZEPx[2:0] Output Write burst size.

AWREADYPx Input Write address ready.

AWADDRPx[31:0] Output Write address.

AWQOSPx[3:0] Output Quality of service.

AWVMIDPx[7:0] Output VMID where uniquely identifiable. For example, for Device memory transfers, the VMID is
indicated. When a transfer does not have a uniquely identifiable VMID, the signal is driven as
0x00.

LLPP write address signal integrity protection signals

The following table shows the write address signal integrity protection signals for the LLPP interface.

Table A-61  LLPP write address signal integrity protection signals

Signal Direction Description

AWCTL0CODEPx[4:0] Output Protection code for write address channel control signals group 0.

AWCTL1CODEPx[4:0] Output Protection code for write address channel control signals group 1.

AWIDCODEPx[4:0] Output Protection code for AWIDPx.

AWVALIDCODEPx Output Protection code for AWVALIDPx

AWADDRCODEPx[6:0] Input Protection code for AWADDRPx[31:0].

AWREADYCODEPx Input Protection code for AWREADYPx.

AWVMIDCODEPx Output Protection code for AWVMIDPx[7:0].

LLPP write address interconnect protection signal

The following table shows the write address interconnect protection signal for the LLPP interface.

Table A-62  LLPP write address interconnect protection signal

Signal Direction Description

AWUTIDPx[9:0] Output Write address unique transaction identifier for interconnect protection.

LLPP write data channels signals

The following table shows the write data channel signals for the LLPP interface.

Table A-63  LLPP write data channel signals

Signal Direction Description

WREADYPx Input Write data ready.

WVALIDPx Output Write data valid.

WDATAPx[31:0] Output Write data.

A Signal Descriptions
A.8 Bus interface signals

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-A-570

Non-Confidential



Table A-63  LLPP write data channel signals (continued)

Signal Direction Description

WLASTPx Output Write data last transfer indication.

WSTRBPx[3:0] Output Write byte-lane strobes.

LLPP write data signal integrity protection signals

The following table shows the write data signal integrity protection signals for the LLPP interface.

Table A-64  LLPP write data signal integrity protection signals

Signal Direction Description

WREADYCODEPx Input Protection code for WREADYPx.

WVALIDCODEPx Output Protection code for WVALIDPx.

WDATACODEPx[6:0] Output Protection code for WDATAPx[31:0].

WCTLCODEPx[4:0] Output Protection code for write data channel control signals.

LLPP write data interconnect protection signals

The following table shows the write data interconnect protection signals for the LLPP interface.

Table A-65  LLPP write data interconnect protection signals

Signal Direction Description

WEOBIPx Output Write data even/odd beat indicator for interconnect protection.

WUTIDPx[9:0] Output Write data unique transaction identifier for interconnect protection.

LLPP write response channel signals

The following table shows the write response channel signals for the LLPP interface.

Table A-66  LLPP write response channel signals

Signal Direction Description

BIDPx Input Write response ID.

BREADYPx Output Write response ready.

BRESPPx[1:0] Input Write response.

BVALIDPx Input Write response valid.

LLPP write response signal integrity protection signals

The following table shows the write response signal integrity protection signals for the LLPP interface.

Table A-67  LLPP write response signal integrity protection signals

Signal Direction Description

BIDCODEPx[4:0] Input Protection code for BIDPx.

BREADYCODEPx Output Protection code for BREADYPx.

A Signal Descriptions
A.8 Bus interface signals

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-A-571

Non-Confidential



Table A-67  LLPP write response signal integrity protection signals (continued)

Signal Direction Description

BVALIDCODEPx Input Protection code for BVALIDPx.

BCTLCODEPx[2:0] Input Protection code for write response channel control signals.

LLPP write response interconnect protection signal

The following table shows the write response interconnect protection signal for the LLPP interface.

Table A-68  LLPP write response interconnect protection signal

Signal Direction Description

BUTIDPx[9:0] Input Write response unique transaction identifier for interconnect protection.

A.8.4 Flash interface signals

This section describes the Flash interface signals.

Flash clock enable signal

The following table shows the clock enable signal for the Flash interface.

Table A-69  Flash clock enable signal

Signal Direction Description

ACLKENFx Input Clock enable for the Flash interface. This signal gets registered once in the processor before being used as
the clock enable for the interface.

Flash read address channel signals

The following table shows the read address channel signals for the Flash interface.

Table A-70  Flash read address channel signals

Signal Direction Description

ARREADYFx Input Read address ready.

ARLENFx[7:0] Output Read burst length.

ARIDFx Output Read address ID.

ARADDRFx[31:0] Output Read address.

ARPROTFx[2:0] Output Read protection type.

ARVALIDFx Output Read address valid.

ARBURSTFx[1:0] Output Read burst type.

Flash read address signal integrity protection signals

The following table shows the read address signal integrity protection signals for the Flash interface.

A Signal Descriptions
A.8 Bus interface signals

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-A-572

Non-Confidential



Table A-71  Flash read address signal integrity protection signals

Signal Direction Description

ARREADYCODEFx Input Protection code for ARREADYFx.

ARIDCODEFx[4:0] Output Protection code for ARIDFx.

ARADDRCODEFx[6:0] Output Protection code for ARADDRFx[31:0].

ARCTL0CODEFx[4:0] Output Protection code for read address channel control signals group 0.

ARCTL1CODEFx[4:0] Output Protection code for read address channel control signals group 1.

ARVALIDCODEFx Output Protection code for ARVALIDFx.

Flash read address interconnect protection signals

The following table shows the read address interconnect protection signals for the Flash interface.

Table A-72  Flash read address interconnect protection signals

Signal Direction Description

ARUTIDFx[7:0] Output Read address unique transaction identifier for interconnect protection.

Flash read data channel signals

The following table shows the read data channel signals for the Flash interface.

Table A-73  Flash read data channel signals

Signal Direction Description

LATEERRFx Input Late data error. LATEERRFx is valid exactly one CLKIN cycle after a valid/ready handshake
completes on the R channel because RVALIDFx and RREADYFx are both HIGH on a gated
(registered ACLKENFx clock enable) clock positive edge.

RIDFx Input Read data ID.

RDATAFx[127:0] Input Read data.

RRESPFx[1:0] Input Read data response.

RVALIDFx Input Read data valid.

RLASTFx Input Indicates the last transfer in a read burst.

RREADYFx Output Read data ready.

Flash read data signal integrity protection signals

The following table shows the read data signal integrity protection signals for the Flash interface.

Table A-74  Flash read data signal integrity protection signals

Signal Direction Description

LATEERRCODEFx Input Protection code for LATEERRFx.

RCTLCODEFx[2:0] Input Protection code for read data channel control
signals.

A Signal Descriptions
A.8 Bus interface signals

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-A-573

Non-Confidential



Table A-74  Flash read data signal integrity protection signals (continued)

Signal Direction Description

RDATACODEFx[8:0]
 Note 

The width of RDATACODEFx is configurable based on the value
of the global configuration parameter FLASH_DATA_ECC_SCHEME.
The possible values are:

1 RDATACODEFx[8:0]

2 RDATACODEFx[15:0]

Input Protection code for RDATAFx[127:0].

RIDCODEFx[4:0] Input Protection code for RIDFx.

RVALIDCODEFx Input Protection code for RVALIDFx.

RREADYCODEFx Output Protection code for RREADYFx.

Flash read data interconnect protection signals

The following table shows the read data interconnect protection signals for the Flash interface.

Table A-75  Flash read data interconnect protection signals

Signal Direction Description

REOBIFx Input Read data even/odd beat indicator for interconnect protection.

RUTIDFx[7:0] Input Read data unique transaction identifier for interconnect protection.

A Signal Descriptions
A.8 Bus interface signals

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-A-574

Non-Confidential



A.9 Debug and trace interface signals
This section describes the debug and trace interface signals.

This section contains the following subsections:
• A.9.1 Debug interface signals on page Appx-A-575.
• A.9.2 ETM interface signals on page Appx-A-576.
• A.9.3 Cross trigger interface signals on page Appx-A-578.

A.9.1 Debug interface signals

This section describes the debug interface signals.

The debug signals are described in:
• Debug APB interface signals on page Appx-A-575.
• Authentication interface signals on page Appx-A-576.
• Miscellaneous debug signals on page Appx-A-576.

Debug APB interface signals

The following table shows the debug APB interface signals.

Table A-76  Debug APB interface signals

Signal Direction Description

PCLKENDBG Input APB clock enable.

PADDRDBG31 Input APB address bus bit[31]:

0 Not an external debugger access.

1 External debugger access.

PADDRDBG[21:2] Input APB address bus bits[21:2].

PENABLEDBG Input Indicates the second and subsequent cycles of an APB transfer.

PSELDBG Input Debug registers select:

0 Debug registers not selected.

1 Debug registers selected.

PWDATADBG[31:0] Input APB write data bus.

PWRITEDBG Input APB read or write signal:

0 Reads from APB.

1 Writes to APB.

nPRESETDBG Input APB reset:

0 Reset APB and top-level debug logic.

1 Do not reset APB and top-level debug logic.

PRDATADBG[31:0] Output APB read data bus.

A Signal Descriptions
A.9 Debug and trace interface signals

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-A-575

Non-Confidential



Table A-76  Debug APB interface signals (continued)

Signal Direction Description

PREADYDBG Output APB slave ready. The processor can assert PREADYDBG to extend a transfer by inserting wait
states.

PSLVERRDBG Output APB slave transfer error:

0 No transfer error.

1 Transfer error.

Authentication interface signals

The following table shows the authentication interface signals.

Table A-77  Authentication interface signals

Signal Direction Description

DBGENx Input Invasive debug enable.

NIDENx Input Non-invasive debug enable.

HIDENx Input Authentication hypervisor invasive debug enable.

HNIDENx Input Authentication hypervisor non-invasive debug enable.

Miscellaneous debug signals

The following table shows the miscellaneous debug signals.

Table A-78  Miscellaneous debug signals

Signal Direction Description

EDBGRQx Input External debug request.

COMMRXx Output Debug Communications Channel (DCC) data transfer register receive is full.

COMMTXx Output DCC data transfer register transmit is empty.

DBGACKx Output Debug request acknowledge.

DBGRSTREQx Output Request for reset from external debug logic.

A.9.2 ETM interface signals

This section describes the ETM interface signals.

The interface signals are described in:
• ATB data trace interface signals on page Appx-A-577.
• ATB instruction trace interface signals on page Appx-A-576.
• Miscellaneous ETM interface signals on page Appx-A-577.

ATB instruction trace interface signals

The following table shows the ATB instruction side interface signals.

A Signal Descriptions
A.9 Debug and trace interface signals

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-A-576

Non-Confidential



Table A-79  ATB instruction trace interface signals

Signal Direction Description

ATCLKENI Input ATB clock enable for instruction trace and TSVALUEB.

AFVALIDIx Input FIFO flush request.

ATREADYIx Input ATB device ready.

SYNCREQIx Input Synchronization request. The input must be driven HIGH for one ATB bus cycle.

AFREADYIx Output FIFO flush finished.

ATBYTESIx[1:0] Output Data size.

ATDATAIx[31:0] Output Data.

ATIDIx[6:0] Output Trace source ID.

ATVALIDIx Output Data valid.

ATB data trace interface signals

The following table shows the ATB data side interface signals.

Table A-80  ATB data trace interface signals

Signal Direction Description

ATCLKEND Input ATB clock enable for data trace.

AFVALIDDx Input FIFO flush request.

ATREADYDx Input ATB device ready.

SYNCREQDx Input Synchronization request. The input must be driven HIGH for one ATB bus cycle.

AFREADYDx Output FIFO flush finished.

ATBYTESDx[2:0] Output Data size.

ATDATADx[63:0] Output Data.

ATIDDx[6:0] Output Trace source ID.

ATVALIDDx Output Data valid.

Miscellaneous ETM interface signals

The following table shows the miscellaneous ETM interface signals.

Table A-81  Miscellaneous ETM interface signals

Signal Direction Description

TSVALUEB[63:0] Input Time stamp value in binary encoding.

ETMEXTIN[3:0] Input Used to trigger events in the trace unit.

ETMEXTOUT[3:0] Output Used to indicate events to a trace analyzer.

 Note 

In order to use data trace, an active timestamp generator is required.

A Signal Descriptions
A.9 Debug and trace interface signals

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-A-577

Non-Confidential



A.9.3 Cross trigger interface signals

The following table shows the cross trigger interface signals.

 Note 

You must balance the CTI and CTM interface signals with respect to CLKIN.

Table A-82  CTI and CTM interface signals

Signal Direction Description

CTMCHIN[3:0] Input CTM input channel interface.

CTMCHINACK[3:0] Output CTM input channel interface acknowledge.

CTMCHOUT[3:0] Output CTM output channel.

CTMCHOUTACK[3:0] Input CTM output channel acknowledge.

CTMCIHSBYPASS[3:0] Input CTM channel interfaces handshake bypass for each channel.

CTMCISBYPASS Input CTM channel interfaces synchronization bypass. Same for all channels.

A Signal Descriptions
A.9 Debug and trace interface signals

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-A-578

Non-Confidential



A.10 Generic timer signals
The following table shows the generic timer signals.

Table A-83  Generic timer signals

Signal Direction Description

CNTCLKEN Input System counter clock enable.

CNTVALUEB[63:0] Input Global system counter value in binary format.

A Signal Descriptions
A.10 Generic timer signals

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-A-579

Non-Confidential



A.11 Power management signals
The following table shows the power management signals.

Table A-84  Power management signals

Signal Direction Description

CLREXMONREQ Input Clearing of the external global exclusive monitor request. When asserted, this signal acts as a WFE
wake-up event to all cores.

CLREXMONACK Output Clearing of the external global exclusive monitor acknowledge.

EVENTI Input Event input for processor wake-up from WFE low-power state.

EVENTO Output Event output. Active when a SEV instruction is executed.

STANDBYWFIx Output Core is in WFI low-power state.

STANDBYWFEx Output Core is in WFE low-power state.

Complex power scenarios with multiple transitions are managed by the P-channel interface. See, Low
Power Interface Specification ARM® Q-Channel and P-Channel Interfaces for more information on the
P-channel interface.

The following table shows the P-channel signals.

Table A-85  P-channel signals

Signal Direction Description

COREPSTATEx Input P-channel state.

nCOREPREQx Input P-channel request.

COREPACTIVEx[1:0] Output P-channel active.

COREPDENYx Output P-channel deny request.

COREPACCEPTx Output P-channel accept request.

COREPSTATEx encodes the power state that the external power controller is requesting that the core
enters when it asserts COREPREQx. There are two power states for each core, and the following table
shows the encoding.

Table A-86  Power states for PE

Bit Function

0 RUN

1 SHUTDOWN

When Cortex-R52 is initially switched on or fully resets, it is in RUN state. Arm recommends that
nCOREPREQx is asserted while the core is in reset with COREPSTATExset to RUN and after reset
the power controller must wait until this transition is completed before making a request for
SHUTDOWN state. If this method is not used, then the power controller must wait at least eight
cycles. ch CLKIN cycles after reset deassertion before making a request for SHUTDOWN state. When a
core enters SHUTDOWN, it sets the debug interface and AXIS interface for the core to respond to any

ch Four cycles while reset is held internally after the external deassertion, two additional cycles while the cores are held in reset, and finally, two cycles for any
initialization registers to settle.

A Signal Descriptions
A.11 Power management signals

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-A-580

Non-Confidential



requests with an error and then asserts COREPACCEPTx. When COREPACCEPTx is deasserted, the
core is in SHUTDOWN and the external power control can remove power from that part of the design.

COREPACTIVEx[1:0] indicates if the core has any activity within it. The following table shows the
encoding.

Table A-87  Signals in COREPACTIVEx[1:0]

Bit Function

[0] Indicates if the debug systems require power. This bit is equivalent to the DBGNOPWRDN and DBGPWRUPRQ output on
previous Arm processors.

[1] In RUN state, indicates if there are any instructions being processed in the core or if there is any AXIS access through the core in
progress. In SHUTDOWN state, indicates if there is a pending interrupt or debug powerup request.

COREPACTIVEx[1:0] must be used by the power controller as an indication that the core has entered
WFI low-power state or WFE low-power state with the GIC ProcessorSleep for the core set, whether
there is no AXIS or debug request in progress. When COREPACTIVEx[1:0] is LOW, a P-channel
transition to SHUTDOWN state is normally accepted.

COREPACTIVEx[1:0] must be used by the power controller as an indication that any powerdown must
be an emulated powerdown.

A Signal Descriptions
A.11 Power management signals

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-A-581

Non-Confidential



A.12 DFT and on-line MBIST signals
This section describes the DFT and MBIST signals.

This section contains the following subsections:
• A.12.1 DFT signals on page Appx-A-582.
• A.12.2 On-line MBIST signals on page Appx-A-582.

A.12.1 DFT signals

The following table shows the DFT interface signals.

Table A-88  DFT signals

Signal Direction Description

DFTCGEN Input Clock gate override control signal. When this signal is HIGH, the clock enables of the
architectural clock gates that control the internal clocks are all forced HIGH so that all internal
clocks always run.

DFTRAMHOLD Input Disables the chip selects of all the RAMs instantiated within the processor during scan shift.

DFTRSTDISABLE[1:0] Input Disables internal synchronized reset during scan shift.

DFTMCPHOLD Input Disable multicycle paths on RAM interfaces.

A.12.2 On-line MBIST signals

On-line MBIST signals function in the same way as production MBIST signals.

The following table shows the on-line MBIST interface signals.

Table A-89  On-line MBIST interface signals

Signal Direction Description

MBISTADDREXT[16:0] Input Address for array under test.

MBISTARRAYEXT[4:0] Input Select array under test.

MBISTCFGEXT Input Sets ALL mode.

MBISTINDATAEXT[77:0] Input Write data for array under test.

MBISTREADENEXT Input Read enable.

MBISTWRITEENEXT Input Write enable.

nMBISTRESET Input MBIST reset.

0 Reset MBIST.

1 Do not reset MBIST.

MBISTACKEXT Output MBIST acknowledge.

MBISTREQEXT Input MBIST mode request when using the external MBIST interface.

MBISTREQINT Input MBIST mode request when using the internal MBIST interface for production MBIST.
Unused for on-line MBIST operation.

MBISTERREXT Output MBIST access has failed. For example, on-line MBIST access to a core that has powered
down. This signal is only used for on-line MBIST and not for production MBIST.

MBISTOUTDATAEXT[77:0] Output Read data for array under test.

A Signal Descriptions
A.12 DFT and on-line MBIST signals

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-A-582

Non-Confidential



A.13 GIC Distributor external messaging port signals
The interrupt external messaging port allows an external component, for example a DMA engine, to
receive interrupts which are signaled to the Cortex-R52 processor under the control of the Cortex-R52
GDU. The GIC Distributor external messaging port signals the HPPI to the external component and
receives messages for interrupt-related activities such as, acknowledging interrupts and ending interrupts.

The following table shows the GIC Distributor external messaging port signals.

Table A-90  GIC Distributor external messaging port signals

Signal Direction Description

GDDATAIN[13:0] Input Data from external device to GIC Distributor for activate, deactivate, and generate SGI
requests.

GDACTIVATEREQ Input Activate request from external device.

GDDEACTIVATEREQ Input Deactivate request from external device.

GDGENSGIREQ Input Generate SGI request from external device.

GDDATAOUT[15:0] Output Data from GIC Distributor to external device for HPPI update requests.

GDQUIESCEACK Input Quiesce acknowledge from external device for sleep entry.

GDACTIVATEACK Output Activate acknowledge from GIC Distributor.

GDDEACTIVATEACK Output Deactivate acknowledge from GIC Distributor.

GDGENSGIACK Output Generate SGI acknowledge from GIC Distributor.

GDHPPIREQ Output HPPI update request from GIC Distributor.

GDQUIESCEREQ Output Quiesce request from GIC Distributor for sleep entry.

GDASLEEP Output Indicates the interface between GIC Distributor and external device is quiesced and the
external device can be powered down. This is the GICR_WAKER.ChildrenAsleep register
interface bit.

GDWAKEREQUEST Output Indicates there is a pending interrupt for the external device and that it must be powered up.

A Signal Descriptions
A.13 GIC Distributor external messaging port signals

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-A-583

Non-Confidential



A.14 Interrupt input signals
The following table shows the interrupt input signals.

Table A-91  Interrupt input signals

Signal Direction Description

SPI[NUM_SPIS-1:0] Input Shared peripheral interrupts into the GIC Distributor. These interrupts are active-HIGH when
configured as level-sensitive, or rising-edge triggered when configured as edge-triggered in the
GIC Distributor.

SEIx Input Physical system error interrupt into the core. Active HIGH, edge-sensitive.

VSEIx Input Virtual system error interrupt into the core. Active HIGH, edge-sensitive.

EXTPPIx[8:0] Input External private peripheral interrupts into the GIC Distributor. These interrupts are active-LOW
when configured as level-sensitive, or they are rising-edge triggered when configured as edge-
triggered in the GIC DIstributor. These are spare PPIs that are made available as extra interrupt
inputs where the core does not require them for internal purposes.

A Signal Descriptions
A.14 Interrupt input signals

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-A-584

Non-Confidential



A.15 DCLS signals
The following table shows the DCLS signals.

Table A-92  DCLS signals

Signal Direction Description

CLKINDCLS Input Redundant clock for the redundant logic in lock-step configurations.

nCORERESETDCLSx Input Individual redundant core warm reset.

0 Apply reset to the redundant core excluding debug and trace logic.

1 Do not apply reset to the redundant core.

nCPUPORESETDCLSx Input Individual redundant core powerup cold reset.

0 Apply reset to the redundant core including debug and trace logic.

1 Do not apply reset to the redundant core.

nTOPRESETDCLSx Input Top-level redundant logic reset. Resets all the top-level functional redundant logic in the
processor.

0 Reset all the top-level functional redundant logic.

1 Do not reset all the top-level functional redundant logic.

DCLSCOMPIN[99:0] Input DCLS comparators control.

DCLSCOMPOUT[99:0] Output DCLS comparators status.

A Signal Descriptions
A.15 DCLS signals

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-A-585

Non-Confidential



A.16 Split/Lock signal
The following table shows the Split/Lock signal.

Table A-93  Split/Lock signal

Signal Direction Description

CFGSLSPLIT Input Indicates whether Split mode or Lock mode is selected.

0 Logical Lock mode selected.

1 Logical Split mode selected.

 Note 

If Lock mode is selected, all the DCLS signals must be driven in addition to CFGSLSPLIT. If Split
mode is selected, only CLKINDCLS must be driven in addition to CFGSLSPLIT. For more
information on DCLS signals, see A.15 DCLS signals on page Appx-A-585.

A Signal Descriptions
A.16 Split/Lock signal

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-A-586

Non-Confidential



Appendix B
Cycle Timings and Interlock Behavior

This appendix describes the cycle timing and interlock behavior of instructions on the Cortex-R52
processor.

It contains the following sections:
• B.1 About cycle timings and interlock behavior on page Appx-B-588.
• B.2 Instructions cycle timings on page Appx-B-591.
• B.3 Pipeline behavior on page Appx-B-608.

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-B-587

Non-Confidential



B.1 About cycle timings and interlock behavior
Complex instruction dependencies and memory system interactions make it impossible to exhaustively
describe the exact cycle timing behavior for all instructions in all circumstances and all contexts. The
timings described in this chapter are accurate in most cases.

If precise timings are required, you must use a cycle-accurate model of the Cortex-R52 processor. Unless
stated otherwise, cycle counts described in this chapter are best-case numbers. They assume:
• No outstanding data dependencies between the current instruction and a previous instruction.
• The instruction does not encounter any resource conflicts.
• All data accesses hit in the data cache, do not cross protection region boundaries, and are aligned to

the access size.
• All instruction accesses hit in the instruction cache.

This section contains the following subsections:
• B.1.1 Pipeline information on page Appx-B-588.
• B.1.2 Instruction execution overview on page Appx-B-588.
• B.1.3 Conditional instructions on page Appx-B-589.
• B.1.4 Flag-setting instructions on page Appx-B-590.

B.1.1 Pipeline information

All cores in the Cortex-R52 processor have the same pipeline design, which is two-way superscalar for
high instruction throughput and good power efficiency. The following figure is a simplified view of the
overall pipeline structure.

Decode (De) Issue (Iss) Execute 1 (Ex1) Execute 2 (Ex2) Write (Wr)

Floating-point 1 
(F1)

Floating-point 2 
(F2)

Floating-point 3 
(F3)

Floating-point 4 
(F4)

Floating-point 5 
(F5)

Integer

Advanced SIMD and floating-point

Figure B-1  Cortex-R52 pipeline

B.1.2 Instruction execution overview

The instruction execution pipeline for integer instructions has four stages which are, Iss, Ex1, Ex2, and
Wr. The instruction execution pipeline for floating-point and Advanced SIMD instructions has six stages
which are, Iss, F1, F2, F3, F4, and F5.

Extensive forwarding among all execution stages enables many dependent instruction sequences to run
without pipeline stalls. General forwarding occurs from the Ex1, Ex2, Wr, F3, F4, and F5 pipeline stages.
In addition, the multiplier contains an internal multiply accumulate forwarding path. The address
generation unit also contains an internal forwarding path for instructions that perform base register
update.

Instructions can forward out of a pipeline stage if the result is available and a forwarding path exists. For
more information on when results are ready to be forwarded for each instruction, see Table B-2  Base
instructions cycle timings on page Appx-B-592 and Table B-3  Floating point and Advanced SIMD
instructions cycle timings on page Appx-B-601.

The tables do not specify by which pipeline stage an instruction needs its input to be ready in order not to
interlock, but the following rules generally apply:

B Cycle Timings and Interlock Behavior
B.1 About cycle timings and interlock behavior

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-B-588

Non-Confidential



• If they do not require the shifter, integer ALU operations require their inputs to be ready by the end of
the Ex1 stage. If they require the shifter, integer ALU operations require their inputs to be ready by
the end of the Iss stage.

• Integer multiplication and division operations require their inputs by the end of the Iss stage.
• Both integer and floating-point and Advanced SIMD load/store operations require inputs which are

used to compute the address by the beginning of the Iss stage, and inputs which are used for storing
data to memory by the end of the Ex2 stage.

• Floating-point and Advanced SIMD arithmetic instructions require their inputs by the end of the F1
stage.

For example, the following sequence takes two cycles because when the ADD/SUB pair is in Ex2, the
ADDS/BEQ pair is in Ex1, and the updated value for R1 can be forwarded from Ex2 to Ex1.

            ADD R1, R2, R3  ; Produces R1 result in Ex2
            SUB R4, R5, R6  ; Dual-issued with the ADD, no hazards
            ADDS R5, R1, R7 ; Read-After-Write hazard on R1
            BEQ loop        ; Dual-issued with the ADDS
            

The following sequence takes four cycles because, when the Store Register (STR) is in Iss and needs R1
early in Iss to produce the address, the Load Register (LDR) is in Ex1 and cannot produce a result yet.
Therefore, the STR stalls for two cycles for the LDR to reach the Wr stage and to forward its result to the
STR that is still in Iss:

            LDR R1, [R2]  ; Produces R1 result early in Wr
            STR R3, [R1]  ; Read-After-Write hazard on R1, interlocks for two cycles
            

The Program Counter (PC) is the only register that result latency does not affect. An instruction that
alters the PC never causes a pipeline stall because of interlocking with a subsequent instruction that reads
the PC. Such instructions do, however, cause the program to branch which can add latency if it was not
correctly predicted.

The base register update for load or store instructions occurs in the ALU pipeline. To prevent an
interlock for back-to-back load/store instructions reusing the same base register, there is a local
forwarding path to recycle the updated base register around the address generator. This only applies
when:
• The load/store instruction with base update uses pre-indexed addressing.
• It is a single load/store instruction that is not a load/store double instruction or load/store multiple

instruction.

For example, with R2 aligned the following instruction sequence takes three cycles to execute:

            LDR R5, [R2, #4]!  
            LDR R6, [R2, #0x10]!  ; Single-issued (structural hazard), but R2 is forwarded
            LDR R7, [R2, #0x20]! ; Single-issued (structural hazard), but R2 is forwarded
            

B.1.3 Conditional instructions

If an instruction fails its condition code, in most cases, it takes the same number of cycles to execute as
when it passes its condition code.

The exceptions to this condition are:
• Instructions that alter the PC, such as branches.
• Divide instructions which require only one execute cycle when they fail their condition code.
• Floating-point and Advanced SIMD multiply-accumulate instructions which require only one execute

cycle when they fail their condition code.

Certain performance optimizations are also not used for conditional instructions. For example,
forwarding from the Ex1 stage is not used for conditional instructions.

However, other performance optimizations are possible for conditional instructions. For example, the
processor detects when a pair of dependent instructions have opposite condition codes and avoid

B Cycle Timings and Interlock Behavior
B.1 About cycle timings and interlock behavior

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-B-589

Non-Confidential



unnecessary interlocking between them. Similarly, the processor evaluates the condition code for an
instruction early when possible and avoids generating interlocks if it fails.

B.1.4 Flag-setting instructions

If instructions are flag-setting, most of them take the same number of cycles to execute as if they were
not flag-setting.

Subsequent instructions that depend on the NZCV flags are executed without any penalty. The
exceptions to these rules are:
• Flag-setting multiply instructions.
• Instructions that explicitly consume the C flag for arithmetic operations or RRX shifts.

As an example, the following code sequence takes a single cycle to execute:

            SUBS r1, #1  
            BEQ label  ; Dual-issued with the above. Z flag is forwarded appropriately. 
            

The following code sequence takes two cycles to execute:

            SUBS r1, #1  
            ADC r2, #2  ; Read-After-Write Hazard on the C flag, not dual-issued
            

Similarly, the following code sequence also takes two cycles to execute:

            MULS r1, #2 ; Produces flags later than usual  
            BEQ label   ; Not dual-issued because of the flag-setting multiply
            

B Cycle Timings and Interlock Behavior
B.1 About cycle timings and interlock behavior

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-B-590

Non-Confidential



B.2 Instructions cycle timings
This section describes the cycle timing behavior for all the instructions supported by the Cortex-R52
processor in the A32 and T32 instruction sets.

This section contains the following subsections:
• B.2.1 Definition of terms on page Appx-B-591.
• B.2.2 Base instructions cycle timings on page Appx-B-592.
• B.2.3 Floating-point and Advanced SIMD instructions cycle timings on page Appx-B-601.

B.2.1 Definition of terms

The following table shows the cycle timing terms used in this section and their description.

Table B-1  Cycle timing terms

Term Description

Interlock There is a data dependency between two instructions in the pipeline, resulting in the Iss stage being stalled until the
processor resolves the dependency.

Memory
Cycles

This is the number of cycles during which an instruction sends a memory access to the cache or TCM. Barriers are not
counted as inducing Memory Cycles.

Cycles This is the minimum number of cycles required to issue an instruction. Issue cycles that produce memory accesses to
the cache are included, so Cycles is always greater than or equal to Memory Cycles.

Instruction
and Variant

The instruction mnemonic, according to the Arm® Architecture Reference Manual Supplement Armv8, for Armv8-R
architecture profile. For example, for the “ADC, ADCS (immediate)” instruction, the Instruction column is “ADC,
ADCS” and the Variant column is “immediate”.

Main Result The pipeline stage in which the instruction result or results to be written to the register file by this instruction are
produced, and can be potentially forwarded to a dependent instruction. This can be more than one value. For example,
UMLAL R0, R1, R2, R3 produces two results (R0 and R1) in Wr.

For load/store operations, the Main Result is the value loaded from the memory, or the exclusive status information
for store exclusive. Updates to the base register are described separately. For example, LDR R0, [R1, #4]!
produces only one Main Result (R0) in Wr and the R1 update is described separately.

If an instruction can produce its results in various stages, then a range of stages is given hyphenated. For example,
ADD, ADDS (register) can produce its result either in Ex1 or in Ex2, because it is skewable. A notation of (+N)
indicates an out-of-order delayed write.

Most floating-point and Advanced SIMD instructions only produce results for the floating-point and Advanced SIMD
register file. Some instructions, for example, VMOV, might also produce results for the integer register file, which is
captured in a separate Main Result column.

B Cycle Timings and Interlock Behavior
B.2 Instructions cycle timings

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-B-591

Non-Confidential



Table B-1  Cycle timing terms (continued)

Term Description

Base Register
Update

Applicable only for load/store instructions. Indicates the stage in which a load/store operation which updates its base
register has produced the new value that can be potentially forwarded to a dependent instruction. For example, LDR
R0, [R1, #4]! updates its base register (R1) either in Ex1 or in Ex2.

Branch
Prediction

Applicable only for instructions that are branches, for example, BEQ label, or might behave like branches if they write
the PC, for example, ADD PC, R1, R2. It can take three values:

Predicted The processor predicts the instruction. No performance penalty occurs on a correct prediction. On a
misprediction, the pipeline is flushed. The penalty is equivalent to increasing the Cycles number by
either seven for direct branches or eight for indirect branches.

Not
Predicted

The processor is always making a not-take prediction. If the instruction is unconditional or if it passes
its condition code, the pipeline is flushed, add eight to the Cycles. If the instruction fails its condition
code, no penalty occurs.

Stop The processor does not predict the instruction but pre-decodes it. Instructions are always
unconditional, therefore, power is saved because no fetches are done and there can be second-order
effect performance gains because of less traffic in the memory system. The performance penalty is
similar to the Not Predicted case, therefore, add eight to the Cycles.

Related reference
B.3.1 Skewing on page Appx-B-608
B.3.4 Division and square root on page Appx-B-609

B.2.2 Base instructions cycle timings

This section describes the cycle timing behavior of the base instructions in the A32 and T32 instruction
sets, excluding floating-point and Advanced SIMD instructions.

Table B-2  Base instructions cycle timings

Instruction Variant Cycles Memory cycles Main result Base register
update

Branch prediction

ADC, ADCS Immediate 1 0 Ex2 - Not predicted

ADC, ADCS Register 1 0 Ex2 - Not predicted

ADC, ADCS Register-shifted
register

1 0 Ex2 - -

ADD, ADDS Immediate 1 0 Ex1-Ex2 - Stop

ADD, ADDS Register 1 0 Ex1-Ex2 - Stop

ADD, ADDS Register-shifted
register

1 0 Ex2 - -

ADR 1 0 Ex1 - Stop

AND, ANDS Immediate 1 0 Ex1-Ex2 - Not predicted

AND, ANDS Register 1 0 Ex1-Ex2 - Not predicted

AND, ANDS Register-shifted
register

1 0 Ex2 - -

ASR, ASRS Immediate 1 0 Ex1 - Not predicted

ASR, ASRS Register 1 0 Ex1 - -

B Cycle Timings and Interlock Behavior
B.2 Instructions cycle timings

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-B-592

Non-Confidential



Table B-2  Base instructions cycle timings (continued)

Instruction Variant Cycles Memory cycles Main result Base register
update

Branch prediction

B 1 0 - - Predicted

BFC 1 0 Ex2 - -

BFI 1 0 Ex2 - -

BIC, BICS Immediate 1 0 Ex1-Ex2 - Not predicted

BIC, BICS Register 1 0 Ex1-Ex2 - Not predicted

BIC, BICS Register-shifted
register

1 0 Ex2 - -

BKPT 1 0 - - -

BL Immediate 1 0 Ex2 - Predicted

BLX Register 1 0 Ex2 - Predicted

BX 1 0 - - Predicted

BXJ 1 0 - - Not predicted

CBZ, CBNZ 1 0 - - Predicted

CLREX 1 0 - - -

CLZ 1 0 Ex2 - -

CMN Immediate 1 0 - - -

CMN Register 1 0 - - -

CMN Register-shifted
register

1 0 - - -

CMP Immediate 1 0 - - -

CMP Register 1 0 - - -

CMP Register-shifted
register

1 0 - - -

CPS, CPSIE, CPSID 1 0 - - -

CRC32 1 0 Ex2 - -

CRC32C 1 0 Ex2 - -

DBG 1 0 - - -

DMB 1 0 - - -

DSB 1 0 - - -

EOR, EORS Immediate 1 0 Ex1-Ex2 - Not predicted

EOR, EORS Register 1 0 Ex1-Ex2 - Not predicted

EOR, EORS Register-shifted
register

1 0 Ex2 - -

ERET 1 0 - - Stop

HLT 1 0 - - -

B Cycle Timings and Interlock Behavior
B.2 Instructions cycle timings

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-B-593

Non-Confidential



Table B-2  Base instructions cycle timings (continued)

Instruction Variant Cycles Memory cycles Main result Base register
update

Branch prediction

HVC 1 0 - - -

ISB 1 0 - - Stop

IT 1 0 - - -

LDA 1 1 Wr - -

LDAB 1 1 Wr - -

LDAEX 1 1 Wr - -

LDAEXB 1 1 Wr - -

LDAEXD 1 1 Wr - -

LDAEXH 1 1 Wr - -

LDAH 1 1 Wr - -

LDC Immediate 1 1 - Ex2 -

LDM Exception return 1-8 1-8 Wr Ex2 Stop

LDM, LDMIA, LDMFD 1-8 1-8 Wr Ex2 Predicted

LDM User registers 1-8 1-8 Wr - -

LDMDA, LDMFA 1-8 1-8 Wr Ex2 Predicted

LDMDB, LDMEA 1-8 1-8 Wr Ex2 Predicted

LDMIB, LDMED 1-8 1-8 Wr Ex2 Predicted

LDR Immediate 1 1 Wr Ex1-Ex2 Predicted

LDR Literal 1 1 Wr - Predicted

LDR Register 1 or 3 1 Wr Ex2 Predictedci

LDRB Immediate 1 1 Wr Ex1-Ex2 -

LDRB Literal 1 1 Wr - -

LDRB Register 1 or 3 1 Wr Ex2 -

LDRBT 1 1 Wr Ex1-Ex2 -

LDRD Immediate 1 1 Wr Ex2 -

LDRD Literal 1 1 Wr - -

LDRD Register 1 or 3 1 Wr Ex2 -

LDREX 1 1 Wr - -

LDREXB 1 1 Wr - -

LDREXD 1 1 Wr - -

LDREXH 1 1 Wr - -

LDRH Immediate 1 1 Wr Ex1-Ex2 -

LDRH Literal 1 1 Wr - -

ci The instruction is predicted only for the A1 encoding when Offset addressing mode is used.

B Cycle Timings and Interlock Behavior
B.2 Instructions cycle timings

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-B-594

Non-Confidential



Table B-2  Base instructions cycle timings (continued)

Instruction Variant Cycles Memory cycles Main result Base register
update

Branch prediction

LDRH Register 1 or 3 1 Wr Ex1-Ex2 -

LDRHT 1 1 Wr Ex1-Ex2 -

LDRSB Immediate 1 1 Wr Ex1-Ex2 1

LDRSB Literal 1 1 Wr - -

LDRSB Register 1 or 3 1 Wr Ex1-Ex2 -

LDRSBT 1 1 Wr Ex1-Ex2 -

LDRSH Immediate 1 1 Wr Ex1-Ex2 -

LDRSH Literal 1 1 Wr - -

LDRSH Register 1 or 3 1 Wr Ex1-Ex2 -

LDRSHT 1 1 Wr Ex1-Ex2 -

LDRT 1 1 Wr Ex1-Ex2 -

LSL, LSLS Immediate 1 0 Ex1 - Not predicted

LSL, LSLS Register 1 0 Ex1 - -

LSR, LSRS Immediate 1 0 Ex1 - Not predicted

LSR, LSRS Register 1 0 Ex1 - -

MCR 1-6 0 - - -

MCRR 1 0 - - -

MLA, MLAS 1 0 Wr - -

MLS 1 0 Wr - -

MOV, MOVS Immediate 1 0 Ex1 - Stop

MOV, MOVS Register 1 0 Ex1-Ex2 - Stop

MOVT 1 0 Ex2 - -

MRC 1-2 0 Wr - -

MRRC 1 0 Wr - -

MRS 1 0 Wr - -

MRS Banked register 1 0 Wr - -

MSR Banked register 1 0 Wr - -

MSR Immediate 1 or 5 0 - - -

MSR Register 1 or 5 0 - - -

MUL, MULS 1 0 Wr - -

MVN, MVNS Immediate 1 0 Ex1 - Not predicted

MVN, MVNS Register 1 0 Ex1-Ex2 - Not predicted

MVN, MVNS Register-shifted
register

1 0 Ex2 - -

B Cycle Timings and Interlock Behavior
B.2 Instructions cycle timings

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-B-595

Non-Confidential



Table B-2  Base instructions cycle timings (continued)

Instruction Variant Cycles Memory cycles Main result Base register
update

Branch prediction

NOP 1 0 - - -

ORN, ORNS Immediate 1 0 Ex1-Ex2 - -

ORN, ORNS Register 1 0 Ex1 - Ex2 - -

ORR, ORRS Immediate 1 0 Ex1-Ex2 - Not predicted

ORR, ORRS Register 1 0 Ex1-Ex2 - Not predicted

ORR, ORRS Register-shifted
register

1 0 Ex2 - -

PKHBT, PKHTB 1 0 Ex2 - -

PLD, PLDB Immediate 1 1 - - -

PLD Literal 1 1 - - -

PLD, PLDW Register 1 or 3 1 - - -

POP 1-6 1-6 Wr Ex2 Predicted

PUSH 1-6 1-6 - Ex2 -

QADD 1 0 Wr - -

QADD16 1 0 Wr - -

QADD8 1 0 Wr - -

QASX 1 0 Wr - -

QDADD 1 0 Wr - -

QDSUB 1 0 Wr - -

QSAX 1 0 Wr - -

QSUB 1 0 Wr - -

QSUB16 1 0 Wr - -

QSUB8 1 0 Wr - -

RBIT 1 0 Ex2 - -

REV 1 0 Ex2 - -

REV16 1 0 Ex2 - -

REVSH 1 0 Ex2 - -

RFE, RFEDA,
RFEDB,
RFEIA,RFEIB

1 1 Ex2 - Stop

ROR, RORS Immediate 1 0 Ex1 - Not predicted

ROR, RORS Register 1 0 Ex1 - -

RRX, RRXS 1 0 Ex2 - Not predicted

RSB, RSBS Immediate 1 0 Ex1-Ex2 - Stop

RSB, RSBS Register 1 0 Ex1-Ex2 - Stop

B Cycle Timings and Interlock Behavior
B.2 Instructions cycle timings

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-B-596

Non-Confidential



Table B-2  Base instructions cycle timings (continued)

Instruction Variant Cycles Memory cycles Main result Base register
update

Branch prediction

RSB, RSBS Register-shifted
register

1 0 Ex2 - -

RSC, RSCS Immediate 1 0 Ex2 - Not predicted

RSC, RSCS Register 1 0 Ex2 - Not predicted

RSC, RSCS Register-shifted
register

1 0 Ex2 - -

SADD16 1 0 Ex1-Ex2 - -

SADD8 1 0 Ex1-Ex2 - -

SASX 1 0 Ex1-Ex2 - -

SBC, SBCS Immediate 1 0 Ex2 - Not predicted

SBC, SBCS Register 1 0 Ex2 - Not predicted

SBC, SBCS Register-shifted
register

1 0 Ex2 - -

SBFX 1 0 Ex2 - -

SDIV 1-10cj 0 Wr - -

SEL 1 0 Ex2 - -

SETEND 1 0 - - -

SEV 1 0 - - -

SEVL 1 0 - - -

SHADD16 1 0 Ex1-Ex2 - -

SHADD8 1 0 Ex1-Ex2 - -

SHASX 1 0 Ex1-Ex2 - -

SHSAX 1 0 Ex1-Ex2 - -

SHSUB16 1 0 Ex1-Ex2 - -

SHSUB8 1 0 Ex1-Ex2 - -

SMLABB, SMLABT,
SMLATB, SMLATT

1 0 Wr - -

SMLAD, SMLADX 1 0 Wr - -

SMLAL, SMLALS 1 0 Wr - -

SMLALBB SMLALBT
SMLALTB,SMLALTT

1 0 Wr - -

SMLALD, SMLALDX 1 0 Wr - -

SMLAWB, SMLAWT 1 0 Wr - -

SMLSD, SMLSDX 1 0 Wr - -

cj See B.3.4 Division and square root on page Appx-B-609

B Cycle Timings and Interlock Behavior
B.2 Instructions cycle timings

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-B-597

Non-Confidential



Table B-2  Base instructions cycle timings (continued)

Instruction Variant Cycles Memory cycles Main result Base register
update

Branch prediction

SMLSLD, SMLSLDX 1 0 Wr - -

SMMLA, SMMLAR 1 0 Wr - -

SMMLS, SMMLSR 1 0 Wr - -

SMMUL, SMMULR 1 0 Wr - -

SMUAD, SMUADX 1 0 Wr - -

SMULBB, SMULBT,
SMULTB, SMULTT

1 0 Wr - -

SMULL, SMULLS 1 0 Wr - -

SMULWB, SMULWT 1 0 Wr - -

SMUSD, SMUSDX 1 0 Wr - -

SRS, SRSDA,
SRSDB, SRSIA,
SRSIB

1 1 Ex2 - -

SSAT 1 0 Ex2 - -

SSAT16 1 0 Ex2 - -

SSAX 1 0 Ex1-Ex2 - -

SSUB16 1 0 Ex1-Ex2 - -

SSUB8 1 0 Ex1-Ex2 - -

STC 1 1 Ex2 - -

STL 2 1 - - -

STLB 2 1 - - -

STLEX 2 1 Wr - -

STLEXB 2 1 Wr - -

STLEXD 2 1 Wr - -

STLEXH 2 1 Wr - -

STLH 2 1 - - -

STM, STMIA, STMEA 1-8 1-8 - Ex2 -

STM User registers 1-8 1-8 - - -

STMDA, STMED 1-8 1-8 - Ex2 -

STMDB, STMFD 1-8 1-8 - Ex2 -

STMIB, STMFA 1-8 1-8 - Ex2 -

STR Immediate 1 1 - Ex1-Ex2 -

STR Register 1 or 3 1 - Ex2 -

STRB Immediate 1 1 - Ex1-Ex2 -

STRB Register 1 or 3 1 - Ex2 -

B Cycle Timings and Interlock Behavior
B.2 Instructions cycle timings

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-B-598

Non-Confidential



Table B-2  Base instructions cycle timings (continued)

Instruction Variant Cycles Memory cycles Main result Base register
update

Branch prediction

STRBT 1 1 - Ex1-Ex2 -

STRD Immediate 1 1 - Ex2 -

STRD Register 1 or 3 1 - Ex2 -

STREX 1 1 Wr - -

STREXB 1 1 Wr - -

STREXD 1 1 Wr - -

STREXH 1 1 Wr - -

STRH Immediate 1 1 - Ex1-Ex2 -

STRH Register 1-3 1 - Ex1-Ex2 -

STRHT 1 1 - Ex1-Ex2 -

STRT 1 1 - Ex1-Ex2 -

SUB, SUBS Immediate 1 0 Ex1-Ex2 - Stop

SUB, SUBS Register 1 0 Ex1-Ex2 - Stop

SUB, SUBS Register-shifted
register

1 0 Ex2 - -

SVC 1 0 - - -

SXTAB 1 0 Ex2 - -

SXTAB16 1 0 Ex2 - -

SXTAH 1 0 Ex2 - -

SXTB 1 0 Ex2 - -

SXTB16 1 0 Ex2 - -

SXTH 1 0 Ex2 - -

TBB, TBH 1 1 - - Stop

TEQ Immediate 1 0 - - -

TEQ Register 1 0 - - -

TEQ Register-shifted
register

1 0 - - -

TST Immediate 1 0 - - -

TST Register 1 0 - - -

TST Register-shift
register

1 0 - - -

UADD16 1 0 Ex1-Ex2 - -

UADD8 1 0 Ex1-Ex2 - -

UASX 1 0 Ex1-Ex2 - -

UBFX 1 0 Ex2 - -

B Cycle Timings and Interlock Behavior
B.2 Instructions cycle timings

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-B-599

Non-Confidential



Table B-2  Base instructions cycle timings (continued)

Instruction Variant Cycles Memory cycles Main result Base register
update

Branch prediction

UDIV 1-9cj 0 Wr - -

UHADD16 1 0 Ex1-Ex2 - -

UHADD8 1 0 Ex1-Ex2 - -

UHASX 1 0 Ex1-Ex2 - -

UHSAX 1 0 Ex1-Ex2 - -

UHSUB16 1 0 Ex1-Ex2 - -

UHSUB8 1 0 Ex1-Ex2 - -

UMAAL 2 0 Wr - -

UMLAL, UMLALS 1 0 Wr - -

UMULL, UMULLS 1 0 Wr - -

UQADD16 1 0 Wr - -

UQADD8 1 0 Wr - -

UQASX 1 0 Wr - -

UQSAX 1 0 Wr - -

UQSUB16 1 0 Wr - -

UQSUB8 1 0 Wr - -

USAD8 1 0 Wr - -

USADA8 1 0 Wr - -

USAT 1 0 Ex2 - -

USAT16 1 0 Ex2 - -

USAX 1 0 Ex1-Ex2 - -

USUB16 1 0 Ex1-Ex2 - -

USUB8 1 0 Ex1-Ex2 - -

UXTAB 1 0 Ex2 - -

UXTAB16 1 0 Ex2 - -

UXTAH 1 0 Ex2 - -

UXTB 1 0 Ex2 - -

UXTB16 1 0 Ex2 - -

UXTH 1 0 Ex2 - -

WFE 5 0 - - -

WFI 5 0 - - -

YIELD 1 0 - - -

B Cycle Timings and Interlock Behavior
B.2 Instructions cycle timings

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-B-600

Non-Confidential



B.2.3 Floating-point and Advanced SIMD instructions cycle timings

This section describes the cycle timing behavior of the floating-point and Advanced SIMD instructions
in the A32 and T32 instruction sets.

Table B-3  Floating point and Advanced SIMD instructions cycle timings

Instruction Variant Cycles Memory
cycles

FP/Advanced
SIMD main
result

Integer main
result

Base register
update

VABA 2 - F4 - -

VABAL 2 - F4 - -

VABD Floating-point 1 - F5 - -

VABD Integer 1 - F4 - -

VABDL Integer 1 - F4 - -

VABS 1 - F4-F5 - -

VACGE 1 - F3 - -

VACGT 1 - F3 - -

VADD Integer 1 - F4 - -

VADD Floating-point 1 - F5 - -

VADDHN 1 - F5 - -

VADDL 1 - F4 - -

VADDW 1 - F4 - -

VAND Register 1 - F3 - -

VBIC Immediate 1 - F3 - -

VBIC Register 1 - F3 - -

VBIF 1 - F3 - -

VBIT 1 - F3 - -

VBSL 1 - F3 - -

VCEQ Immediate #0 1 - F3 - -

VCEQ Register 1 - F3 - -

VCGE Immediate #0 1 - F3 - -

VCGE Register 1 - F3 - -

VCGT Immediate #0 1 - F3 - -

VCGT Register 1 - F3 - -

VCLE Immediate #0 1 - F3 - -

VCLS 1 - F4 - -

VCLT Immediate #0 1 - F3 - -

VCLZ 1 - F4 - -

VCMP 1 - - - -

VCMPE 1 - - - -

B Cycle Timings and Interlock Behavior
B.2 Instructions cycle timings

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-B-601

Non-Confidential



Table B-3  Floating point and Advanced SIMD instructions cycle timings (continued)

Instruction Variant Cycles Memory
cycles

FP/Advanced
SIMD main
result

Integer main
result

Base register
update

VCNT 1 - F3 - -

VCVT Between double-
precision and single-
precision

1 - F5 - -

VCVT Between floating-point
and fixed-point,
Advanced SIMD

1 - F5 - -

VCVT Between floating-point
and fixed-point, floating-
point

1 - F5 - -

VCVT Between floating-point
and integer, Advanced
SIMD

1 - F5 - -

VCVT Between half-precision
and single-precision,
Advanced SIMD

1 - F5 - -

VCVT Floating-point to integer,
floating-point

1 - F5 - -

VCVT Integer to floating-point,
floating-point

1 - F5 - -

VCVTA Advanced SIMD 1 - F5 - -

VCVTA Floating-point 1 - F5 - -

VCVTB 1 - F5 - -

VCVTM Advanced SIMD 1 - F5 - -

VCVTM Floating-point 1 - F5 - -

VCVTN Advanced SIMD 1 - F5 - -

VCVTN Floating-point 1 - F5 - -

VCVTP Advanced SIMD 1 - F5 - -

VCVTP Floating-point 1 - F5 - -

VCVTR 1 - F5 - -

VCVTT 1 - F5 - -

VDIV 1 - F5(+9 or +18) - -

VDUP General purpose register 1 - F3 - -

VDUP Scalar 1 - F3 - -

VEOR 1 - F3 - -

VEXT Byte elements 1 - F3 - -

VFMA 1 - F5(+4) - -

B Cycle Timings and Interlock Behavior
B.2 Instructions cycle timings

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-B-602

Non-Confidential



Table B-3  Floating point and Advanced SIMD instructions cycle timings (continued)

Instruction Variant Cycles Memory
cycles

FP/Advanced
SIMD main
result

Integer main
result

Base register
update

VFMS 1 - F5(+4) - -

VFNMA 1 - F5(+4) - -

VFNMS 1 - F5(+4) - -

VHADD 1 - F4 - -

VHSUB 1 - F4 - -

VLD1 Multiple single elements 1-4 1-4 F4 - Ex1-Ex2

VLD1 Single element to all
lanes

1 1 F4 - Ex1-Ex2

VLD1 Single element to one
lane

1 1 F4 - Ex1-Ex2

VLD2 Multiple 2-element
structures

2-4 2-4 F4 - Ex2

VLD2 Single 2-element
structure to all lanes

1 1 F4 - Ex1-Ex2

VLD2 Single 2-element
structure to one lane

1 1 F4 - Ex1-Ex2

VLD3 Multiple 3-element
structures

3-4 3 F4 - Ex2

VLD3 Single 3-element
structure to all lanes

2 2 F4 - Ex2

VLD3 Single 3-element
structure to one lane

2 2 F4 - Ex2

VLD4 Multiple 4-element
structures

4-5 4 F4 - Ex2

VLD4 Single 4-element
structure to all lanes

2 2 F4 - Ex2

VLD4 Single 4-element
structure to one lane

2 2 F4 - Ex2

VLDM, VLDMDB,
VLDMIA

1-16 1-16 F4 - Ex2

VLDR 1 1 F4 - Ex2

VMAX Floating-point 1 - F5 - -

VMAX Integer 1 - F3 - -

VMAXNM 1 - F5 - -

VMIN Floating-point 1 - F5 - -

VMIN Integer 1 - F3 - -

VMINNM 1 - F5 - 1

B Cycle Timings and Interlock Behavior
B.2 Instructions cycle timings

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-B-603

Non-Confidential



Table B-3  Floating point and Advanced SIMD instructions cycle timings (continued)

Instruction Variant Cycles Memory
cycles

FP/Advanced
SIMD main
result

Integer main
result

Base register
update

VMLA By scalar 1 - F5(+0 or +4) - -

VMLA Floating-point 1 - F5(+4) - -

VMLA Integer 1 - F5 - -

VMLAL By scalar 1 - F5 - -

VMLAL Integer 1 - F5 - -

VMLS By scalar 1 - F5(+0 or +4) - -

VMLS Floating-point 1 - F5(+4) - -

VMLS Integer 1 - F5 - -

VMLSL By scalar 1 - F5 - -

VMLSL Integer 1 - F5 - -

VMOV Between general purpose
register and single-
precision register

1 - F3 Wr -

VMOV Between two general
purpose registers and
doubleword floating-
point register

1 - F3 Wr -

VMOV Between two general
purpose registers and two
single-precision registers

1 - F3 Wr -

VMOV General purpose register
to scalar

1 - F3 - -

VMOV Immediate 1 - F3 - -

VMOV Register 1 - F3 - -

VMOV Scalar to general-purpose
register

1 - F3 Wr -

VMOVL 1 - F3 - -

VMOVN 1 - F3 - -

VMRS 1 - - Wr -

VMSR 7 - - - -

VMUL By scalar 1 - F5 - -

VMUL Floating-point 1 - F5 - -

VMUL Integer and polynomial 1 - F5 - -

VMULL By scalar 1 - F5 - -

VMULL Integer and polynomial 1 - F4-F5 - -

VMVN Immediate 1 - F3 - -

B Cycle Timings and Interlock Behavior
B.2 Instructions cycle timings

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-B-604

Non-Confidential



Table B-3  Floating point and Advanced SIMD instructions cycle timings (continued)

Instruction Variant Cycles Memory
cycles

FP/Advanced
SIMD main
result

Integer main
result

Base register
update

VMVN Register 1 - F3 - -

VNEG 1 - F4-F5 - -

VNMLA 1 - F5(+4) - -

VNMLS 1 - F5(+4) - -

VNMUL 1 - F5 - -

VORN Register 1 - F3 - -

VORR Immediate 1 - F3 - -

VORR Register 1 - F3 - -

VPADAL 2 - F4 - -

VPADD Floating-point 1 - F5 - -

VPADD Integer 1 - F4 - -

VPADDL 1 - F4 - -

VPMAX Floating-point 1 - F5 - -

VPMAX Integer 1 - F3 - -

VPMIN Floating-point 1 - F5 - -

VPMIN Integer 1 - F3 - -

VPOP 1-16 1-16 F4 - Ex2

VPUSH 1-16 1-16 - Ex2

VQABS 1 - F5 - -

VQADD 1 - F5 - -

VQDMLAL 1 - F5 - -

VQDMLSL 1 - F5 - -

VQDMULH 1 - F5 - -

VQDMULL 1 - F5 - -

VQMOVN, VQMOVUN 1 - F5 - -

VQNEG 1 - F5 - -

VQRDMULH 1 - F5 - -

VQRSHL 1 - F5 - -

VQRSHRN,
VQRSHRUN

1 - F5 - -

VQSHL, VQSHLU Immediate 1 - F5 - -

VQSHL Register 1 - F5 - -

VQSHRN, VQSHRUN 1 - F5 - -

VQSUB 1 - F5 - -

B Cycle Timings and Interlock Behavior
B.2 Instructions cycle timings

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-B-605

Non-Confidential



Table B-3  Floating point and Advanced SIMD instructions cycle timings (continued)

Instruction Variant Cycles Memory
cycles

FP/Advanced
SIMD main
result

Integer main
result

Base register
update

VRADDHN 2 - F5 - -

VRECPE 1 - F5 - -

VRECPS 1 - F5(+4) - -

VREV16 1 - F3 - -

VREV32 1 - F3 - -

VREV64 1 - F3 - -

VRHADD 1 - F4 - -

VRINTA Advanced SIMD 1 - F5 - -

VRINTA Floating-point 1 - F5 - -

VRINTM Advanced SIMD 1 - F5 - -

VRINTM Floating-point 1 - F5 - -

VRINTN Advanced SIMD 1 - F5 - -

VRINTN Floating-point 1 - F5 - -

VRINTP Advanced SIMD 1 - F5 - -

VRINTP Floating-point 1 - F5 - -

VRINTR 1 - F5 - -

VRINTX Advanced SIMD 1 - F5 - -

VRINTX Floating-point 1 - F5 - -

VRINTZ Advanced SIMD 1 - F5 - -

VRINTZ Floating-point 1 - F5 - -

VRSHL 1 - F4 - -

VRSHR 1 - F4 - -

VRSHRN 1 - F4 - -

VRSQRTE 1 - F5 - -

VRSQRTS 1 - F5(+4) - -

VRSRA 2 - F4 - -

VRSUBHN 2 - F5 - -

VSELEQ, VSELGE,
VSELGT, VSELVS

1 - F3 - -

VSHL Immediate 1 - F3 - -

VSHL Register 1 - F3 - -

VSHLL 1 - F3 - -

VSHR 1 - F3 - -

VSHRN 1 - F3 - -

B Cycle Timings and Interlock Behavior
B.2 Instructions cycle timings

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-B-606

Non-Confidential



Table B-3  Floating point and Advanced SIMD instructions cycle timings (continued)

Instruction Variant Cycles Memory
cycles

FP/Advanced
SIMD main
result

Integer main
result

Base register
update

VSLI 1 - F3 - -

VSQRT 1 - F5 (+8 or +18) - -

VSRA 1 - F4 - -

VSRI 1 - F3 - -

VST1 Multiple single elements 1-4 1-4 - - Ex2

VST1 Single element from one
lane

1 1 - - Ex2

VST2 Multiple 2-element
structures

2-4 2-4 - - Ex1-Ex2

VST2 Single 2-element
structure from one lane

1 1 - - Ex2

VST3 Multiple 3-element
structures

4 3 - - Ex1-Ex2

VST3 Single 3-element
structure from one lane

2 2 - - Ex1-Ex2

VST4 Multiple 4-element
structures

5 4 - - Ex1-Ex2

VST4 Single 4-element
structure from one lane

2 2 - - Ex1-Ex2

VSTM, VSTMDB,
VSTMIA

1-16 1-16 - - Ex2

VSTR 1 1 - - -

VSUB Floating-point 1 - F5 - -

VSUB Integer 1 - F4 - -

VSUBHN 1 - F5 - -

VSUBL 1 - F4 - -

VSUBW 1 - F4 - -

VSWP 1-2 - F3 - -

VTBL, VTBX 1-3 - F3 - -

VTRN 2 - F3 - -

VTST 1 - F5 - -

VUZP 2 - F3 - -

VZIP 1-2 - F3 - -

B Cycle Timings and Interlock Behavior
B.2 Instructions cycle timings

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-B-607

Non-Confidential



B.3 Pipeline behavior
This section provides the detailed aspects of pipeline behavior.

This section contains the following subsections:
• B.3.1 Skewing on page Appx-B-608.
• B.3.2 Dual-issuing on page Appx-B-608.
• B.3.3 Load/store instructions on page Appx-B-609.
• B.3.4 Division and square root on page Appx-B-609.
• B.3.5 Floating-point and Advanced SIMD Multiply-Accumulate instructions on page Appx-B-610.
• B.3.6 Instructions with exceptional behavior on page Appx-B-610.

B.3.1 Skewing

Normally, within each of the two integer addition or subtraction pipelines, an instruction accesses the
ALU in the Ex2 stage, which means the operands are required at the end of Ex1 and the result is
generated at the end of Ex2.

The Cortex-R52 processor features secondary skewed ALUs in the Ex1 stage of the pipeline. Most of the
simple logical or arithmetic instructions that do not require shifting or saturation resources can access the
skewed ALU in the Ex1 stage. By doing so, the instruction result is available one stage earlier for
forwarding to dependent instructions. Also, the instruction inputs must be ready one stage earlier. The
Cortex-R52 processor dynamically decides whether an instruction must be skewed or not to minimize the
pipeline interlocks.

B.3.2 Dual-issuing

To increase instruction throughput, the Cortex-R52 processor can issue pairs of instructions
simultaneously. This is called dual-issuing.

Most instructions capable of being dual-issued are examined for hazards in the Decode (De) stage of the
pipeline. Both instructions must reach the De stage at the same time. This is less likely if there are many
branches. If the Cortex-R52 processor determines that the pair must be dual-issued, it remains a pair until
both instructions are retired. If one instruction of the pair is interlocked, both are interlocked.

The following broad classes of structural hazards limit the amount of dual-issuing:

• Only one load/store instruction can issue per cycle.
• Only one branch instruction or instruction that writes the PC can issue per cycle.
• Only one integer multiplication or division instruction can issue per cycle.
• Only one floating-point or Advanced SIMD division or square root instruction can issue per cycle.
• Advanced SIMD instructions that operate on 128-bit vectors cannot dual-issue with other floating-

point or Advanced SIMD instructions.
• Multicycle instructions have limited dual-issuing capabilities.
• Load-acquire, store-release, and load/store-exclusive instructions have limited dual-issuing

capabilities.
• Loads or stores that subtract a register from the base register or that perform complex shifts (shifts

other than LSL of 0-3) have limited dual-issuing capabilities.
• Most instructions that access system registers cannot dual-issue. ck

• Instructions which read or write an unusually high number of registers have limited dual-issuing
capabilities.

The following broad classes of dynamic hazards limit the amount of dual-issuing:
• Unless a suitable forwarding path exists, Read-After-Write hazards between the two instructions are

not dual-issued.
• If dual-issuing a pair of instructions causes more interlocks that single-issuing, then the Cortex-R52

processor chooses to single-issue instead.

ck An exception to that rule is direct access to compatible MPU region address register pairs (PRBARn with PRLARn, or HPRBAR with HPRLAR) can dual-issue.

B Cycle Timings and Interlock Behavior
B.3 Pipeline behavior

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-B-608

Non-Confidential



B.3.3 Load/store instructions

Typically, instructions which perform a single load or store have Cycles count of 1, for example, LDR and
STR.

In the A32 instruction set, some of the instructions support addressing modes with either negative
register offsets or shifts other than LSL #0, #1, #2, or #3. The Cycles count for these instructions is three
because the full ALU has to compute the address to be loaded or stored.

Instructions which perform multiple loads or stores, for example, LDM and STM, have Cycles and Memory
Cycles counts. The number depends on the number and width of registers that are accessed.
• For integer load/store multiples (LDM, STM, POP, PUSH) and for floating-point load/store multiples

(VLDM, VSTM, VPOP, VPUSH) when accessing single-precision registers, the Cycles count and number of
Memory Cycles is given as:

Cycles = Memory Cycles = number of registers/2
• For floating-point load/store multiples (VLDM, VSTM, VPOP, VPUSH), when accessing double-precision

registers, the Cycles count and number of Memory Cycles is given as:

Cycles = Memory Cycles = number of registers
• For Advanced SIMD load/store multiples (VLD1, VLD2, VLD3, VLD4, VST1, VST2, VST3, VST4) the

number of cycles depends on multiple factors. For information on the ranges for Cycles and Memory
Cycles per instruction, see Table B-3  Floating point and Advanced SIMD instructions cycle timings
on page Appx-B-601.

 Note 

If the Cycles count and Memory Cycles is a fractional result, it is rounded up.

Accesses to addresses that cross a 64-bit aligned boundary make additional memory accesses. For integer
and floating-point load/stores or load/store-multiples, the Cycles and Memory Cycles is increased by
one. For Advanced SIMD load/store multiples, the Memory Cycles are doubled and the Cycles are
increased accordingly.

B.3.4 Division and square root

Integer divisions (UDIV and SDIV instructions) operate in-order. The Cycles required for the instruction to
complete is variable and data-dependent.

The Cycles for a UDIV instruction that performs division of value A by B is given as:

1 + max(( clz(B) - clz(A) + 1
4 )), 0

The Cycles for a SDIV instruction that performs division of value A by B is given as:

2 + max(( clz(B) - clz(A) + 1
4 )), 0

Floating-point divisions and square roots (VDIV and VSQRT instructions) operate out-of-order. These
instructions always complete in a single cycle but there is a delay in the division or square root result
being written to the register file. Subsequent instructions are allowed to issue, execute, and retire,
provided they do not depend on the result of the VDIV, or VSQRT, and they are not VDIV or VSQRT
themselves. If a dependency is detected, the pipeline interlocks and waits for the availability of the result
before continuing.

The delayed result for a VDIV instruction happens nine cycles later than normal for a single-precision
operation or 18 cycles later than normal for a double-precision operation. These latencies are data-

B Cycle Timings and Interlock Behavior
B.3 Pipeline behavior

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-B-609

Non-Confidential



independent. In Table B-3  Floating point and Advanced SIMD instructions cycle timings
on page Appx-B-601, they are denoted as (+N) notation.

The delayed result write for a VSQRT instruction happens eight cycles later than normal for a single-
precision operation or 18 cycles later than normal for a double-precision operation. These latencies are
data-independent.

 Note 

• Any divide or square root instruction that fails its condition code has a Cycle count of 1. There is no
delayed register file write for floating-point instructions which fail their condition code.

• The clz(x) function counts the number of leading zeros in the 32-bit value x. If x is negative, it is
negated before this count occurs.

• The value of the (clz(B) - clz(A) + 1)/4 component of these equations must be rounded down.

B.3.5 Floating-point and Advanced SIMD Multiply-Accumulate instructions

Floating-point multiply-accumulate operations first use the floating-point multiplication pipeline and
then use the floating-point addition pipeline.

The second part is done in an out-of-order fashion. When the multiplication part of the instruction
reaches the F5 stage of the pipeline, the partial result is forwarded back to the F1 stage of the pipeline
that continues with the addition part of the instruction. If a newer floating-point addition instruction is in
F1 at the time, the second part of the multiply-accumulate takes precedence over it. The new instruction
interlocks for one cycle to make space for the older multiply-accumulate to complete. Other types of
instruction, including newer floating-point multiply accumulate instructions can issue in parallel with the
second part of a floating-point multiply-accumulate.

The result of such instructions (VFMA, VFMS, VFNMA, VFNMS, VMLA, VMLS, VNMLA, VNMLS) is written in a
delayed fashion four cycles later than normal.

For example, the following code takes eight cycles to execute:

VFMA.F32 D16, D0, D0  
VFMA.F32 D17, D1, D0  ; Dual-issued with the above
VFMA.F32 D18, D2, D0 
VFMA.F32 D19, D3, D0  ; Dual-issued with the above
VFMA.F32 D20, D4, D0VFMA.F32 D21, D5, D0  ; Dual-issued with the above
VFMA.F32 D22, D6, D0  
VFMA.F32 D23, D7, D0  ; Dual-issued with the above
VFMA.F32 D24, D8, D0VFMA.F32 D25, D9, D0  ; Dual-issued with the above
VFMA.F32 D26, D10, D0VFMA.F32 D27, D11, D0 ; Dual-issued with the above
VFMA.F32 D28, D12, D0VFMA.F32 D29, D13, D0 ; Dual-issued with the above
VFMA.F32 D30, D14, D0VFMA.F32 D31, D15, D0 ; Dual-issued with the above

The following code takes 12 cycles to execute because the four pairs of VFMA instructions use the
floating-point addition pipelines and prevent the VADD instructions from issuing:

VFMA.F32 D16, D0, D0  
VFMA.F32 D17, D1, D0  ; Dual-issued with the above
VFMA.F32 D18, D2, D0 
VFMA.F32 D19, D3, D0  ; Dual-issued with the above
VFMA.F32 D20, D4, D0VFMA.F32 D21, D5, D0  ; Dual-issued with the above
VFMA.F32 D22, D6, D0  
VFMA.F32 D23, D7, D0  ; Dual-issued with the above
VADD.F32 D24, D8, D0  ; Interlocks for four cycles because of VFMAs
VADD.F32 D25, D9, D0  ; Dual-issued with the above
VADD.F32 D26, D10, D0VADD.F32 D27, D11, D0 ; Dual-issued with the above
VADD.F32 D28, D12, D0VADD.F32 D29, D13, D0 ; Dual-issued with the above
VADD.F32 D30, D14, D0VADD.F32 D31, D15, D0 ; Dual-issued with the above

B.3.6 Instructions with exceptional behavior

Certain instructions might take an exception when they reach the Write (Wr) stage of the pipeline.

For example, SVC or HVC might take an exception to EL1 or EL2. Instructions might cause a Prefetch
Abort or might be trapped by an EL1 or EL2 control register. For such cases, the pipeline is flushed and
the Cycles count must be increased by eight.

B Cycle Timings and Interlock Behavior
B.3 Pipeline behavior

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-B-610

Non-Confidential



Similarly, though they do not take any exceptions, there are certain instructions that might flush the
pipeline. For example, the ISB instruction always flushes the pipe. CPS and MSR instructions might flush
the pipe when they update CPSR.M. An exception to this rule is when CPS instructions are used to
change modes within EL1. For example, when in FIQ mode, the pipeline is not flushed.

Certain MCR and MCRR accesses (IMP_ATCMREGIONR, IMP_BTCMREGIONR,
IMP_CTCMREGIONR, IMP_CSCTLR, HSCTLR, IMP_QOSR, SCTLR, VSCTLR, and CPUACTLR)
also cause the pipeline to flush. For simplicity, the cycle timing tables do not assume flushes. The Cycles
count must be increased by eight for such cases.

Some instructions that write system registers are blocking. Examples of such instructions include some
of the MCR, MCRR, MSR, VMSR instructions. This blocking refers to no subsequent instruction
starting execution before the system register write is completed and being visible for all subsequent
instructions. Therefore, such instructions might take more Cycles to complete.

All transfers to and from the floating-point and Advanced SIMD system registers (VMRS, VMSR) are also
serializing. This indicates that if there are any outstanding out-of-order completion instructions, the
system register transfer instruction stalls in the Iss stage until these instructions are complete.

B Cycle Timings and Interlock Behavior
B.3 Pipeline behavior

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-B-611

Non-Confidential



Appendix C
Processor UNPREDICTABLE Behaviors

This appendix describes specific Cortex-R52 processor UNPREDICTABLE behaviors of particular interest.
These UNPREDICTABLE behaviors differ from the Arm standard behavior.

For each scenario, the Arm standard specification is listed under Specification and the Cortex-R52
implementation is listed under Implementation. For detailed background information on UNPREDICTABLE

behaviors, see Arm® Architecture Reference Manual Supplement Armv8, for Armv8-R architecture
profile.

It contains the following sections:
• C.1 Use of R15 by Instruction on page Appx-C-613.
• C.2 UNPREDICTABLE instructions within an IT block on page Appx-C-615.
• C.3 Instruction fetches from Device memory on page Appx-C-616.
• C.4 Specific UNPREDICTABLE cases for instructions on page Appx-C-617.
• C.5 Load/Store accesses crossing MPU regions on page Appx-C-621.
• C.6 Armv8 Debug UNPREDICTABLE behaviors on page Appx-C-622.
• C.7 Other UNPREDICTABLE behaviors on page Appx-C-627.

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-C-612

Non-Confidential



C.1 Use of R15 by Instruction
The section describes the specification and implementation of R15 by instruction.

Specification

All uses of R15 as a named register specifier for a source register that are described as
UNPREDICTABLE in the Arm® Architecture Reference Manual Supplement Armv8, for Armv8-R
architecture profile pseudo-code, or in other places in the Arm® Architecture Reference Manual
Supplement Armv8, for Armv8-R architecture profile, read 0 unless otherwise stated in the Arm®

Architecture Reference Manual Supplement Armv8, for Armv8-R architecture profile, or as
described in the following paragraph.

If the use of R15 as a base register for a load or store is UNPREDICTABLE, the value used by the
load or store using R15 as a base register is the PC with its usual offset and, in the case of T32
instructions, with the forced word alignment. In this case, if the instruction specifies write-back,
then the load or store is performed without write-back.

All uses of R15 as a named register specifier for a destination register that are described as
UNPREDICTABLE in the Arm® Architecture Reference Manual Supplement Armv8, for Armv8-R
architecture profile pseudo-code, or in other places in the Arm® Architecture Reference Manual
Supplement Armv8, for Armv8-R architecture profile, ignore the write. For instructions which
have two destination registers, for example, LDRD, MRCC, and many of the multipliers, if
either Rt or Rt2 is R15, or if either RdLo or RdHi is R15, then the other destination register is
the pair is UNKNOWN.

For instructions which affects any of the flags (CPSR.NZCV/Q/GE) if the register specifier is
not R15, if the instruction is UNPREDICTABLE when the register specifier is R15, then the flags that
the instruction affects become UNKNOWN.

In addition, MRC instructions for CP14 and CP15 that use R15 as the target register descriptor
and therefore target APSR_nzcv, the APSR_nzvc bits become UNKNOWN where these are
described as being UNPREDICTABLE.

C Processor UNPREDICTABLE Behaviors
C.1 Use of R15 by Instruction

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-C-613

Non-Confidential



Implementation
The Cortex-R52 processor deviates from this behavior in the following ways:
• If using R15 as a source register is UNPREDICTABLE, then the processor treats the instruction as

UNDEFINED. This behavior is also aligned in the following specific UNPREDICTABLE cases for
instructions.
— C.4.1 CLZ on page Appx-C-617.
— C.4.2 PUSH on page Appx-C-617.
— C.4.3 RBIT on page Appx-C-617.
— C.4.4 REV, REV16, REVSH on page Appx-C-617.
— C.4.5 STC on page Appx-C-618.
— C.4.6 STM/STMIA/STMEA on page Appx-C-618.
— C.4.7 STMDA/STMED and STMIB/STMFA on page Appx-C-618.
— C.4.8 STMDB/STMFD on page Appx-C-618.
— C.4.9 STR (Immediate, Thumb), STR (Immediate, Arm), STR (register), STRB

(immediate, Thumb), STRB (immediate, Arm), STRB (register), STRBT, STRH
(immediate, Thumb), STRH (immediate, Arm), STRH (register), STRHT, and STRT
on page Appx-C-619.

— C.4.10 STRD (immediate) and STRD (register) on page Appx-C-619.
— C.4.11 STREX, STREXB, STREXD, STREXH, STLEX, STLEXB, STLEXD, and STLEXH

on page Appx-C-620.

The exceptions to this behavior are for the other specific UNPREDICTABLE cases that are
described in the Armv8 AArch32 UNPREDICTABLE behaviours that not mentioned in the
previous list.

• If using R15 as a base register is UNPREDICTABLE, the processor treats the instruction as
UNDEFINED.

• If using R15 as a destination register UNPREDICTABLE, the processor treats the instruction as
UNDEFINED.

C Processor UNPREDICTABLE Behaviors
C.1 Use of R15 by Instruction

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-C-614

Non-Confidential



C.2 UNPREDICTABLE instructions within an IT block
This section describes the specification and implementation of UNPREDICTABLE instructions within an IT
block.

Instructions affected
• CRC32 encodings A1, T1.
• CRC32C encodings A1, T1.

Specification
Several instructions are described in the Arm® Architecture Reference Manual Supplement
Armv8, for Armv8-R architecture profile as UNPREDICTABLE either:
• Anywhere within an IT block.
• As any instruction in an IT block other than the last instruction within an IT block.

In Arm implementations of the Armv8 architecture, unless otherwise stated, such instructions
take an UNDEFINED exception.

Implementation

The Cortex-R52 processor deviates from this behavior and the affected instructions are executed
conditionally.

C Processor UNPREDICTABLE Behaviors
C.2 UNPREDICTABLE instructions within an IT block

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-C-615

Non-Confidential



C.3 Instruction fetches from Device memory
This section describes the specification and implementation of instruction fetches from Device memory.

Specification
Instruction fetches from Device memory are UNPREDICTABLE.
If a region of memory has the Device attribute and is not marked as XN, then an implementation
might perform speculative instruction accesses to this memory location at times when the MMU
is enabled.
If branches cause the PC to point at an area of memory with the Device attribute for instruction
fetches which is not marked as XN for the current exception level, an implementation treats the
instruction fetch as if it is to a memory location with the Normal Non-cacheable attribute.

Implementation
The Cortex-R52 processor deviates from this behavior in the following ways:
• If the speculative instruction access happens on an AXI memory region, the processor takes

a permission fault.
• If the speculative instruction access happens on a Flash or TCM memory region, the

processor treats the instruction fetch as if it is to a memory location with the Normal Non-
cacheable attribute.

• If the speculative instruction access happens on an LLPP memory region, the processor takes
a synchronous external abort.

C Processor UNPREDICTABLE Behaviors
C.3 Instruction fetches from Device memory

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-C-616

Non-Confidential



C.4 Specific UNPREDICTABLE cases for instructions
This section describes specific UNPREDICTABLE cases for instructions.

C.4.1 CLZ

The section describes the specification and implementation of CLZ.

Specification
• For T1 encoding, the two source register specifiers must be consistent, therefore, hw1[3:0]

must equal hw2[3:0].
• If these two register specifiers are not consistent, hw2[3:0] specifies a register that is used as

a source register.

Implementation
The Cortex-R52 processor deviates from this behavior and treats the instruction as UNDEFINED.

C.4.2 PUSH

The section describes the specification and implementation of PUSH.

Specification
• If the number of registers stored is zero, then the instruction is treated as NOP.
• For T2 encoding:

— If the number of registers stored is one, then the instruction stores a single register using
the specified addressing modes.

— If hw2 bit[13] is set, then the instruction performs all of the stores using the specified
addressing mode including R13 as one of the target registers.

— If hw2 bit [15] is set, then the instruction performs all the stores using the specified
addressing mode but the value corresponding to R15 is 0.

Implementation
The Cortex-R52 processor deviates from this behavior and for T2 encoding, if hw2 bit[15] is
set, then the processor performs all the stores using the specified addressing mode and the value
corresponding to R15 is the PC with the standard offset that applies for the current instruction
set.

C.4.3 RBIT

The section describes the specification and implementation of RBIT.

Specification
• For encoding T1, hw1[3:0] must equal hw2[3:0] because the two target register specifiers

must be consistent.
• If these two register specifiers are not consistent, hw2[3:0] specifies a register that is used as

a source register.

Implementation
The Cortex-R52 processor deviates from this behavior and treats the instruction as UNDEFINED.

C.4.4 REV, REV16, REVSH

The section describes the specification and implementation of REV, REV16, and REVSH.

Specification
• For encoding T1, hw1[3:0] must equal hw2[3:0] because the two target register specifiers

must be consistent.
• If these two register specifiers are not consistent, hw2[3:0] specifies a register that is used as

a source register.

C Processor UNPREDICTABLE Behaviors
C.4 Specific UNPREDICTABLE cases for instructions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-C-617

Non-Confidential



Implementation
The Cortex-R52 processor deviates from this behavior and treats the instructions as UNDEFINED.

C.4.5 STC

The section describes the specification and implementation of STC.

Specification
If the base register for the STC instruction set is R15, then if W is 1 or if not executing in the
Arm instruction set, then the store instruction is performed without a Writeback.

Implementation
The Cortex-R52 processor deviates from this behavior and treats the instructions as UNDEFINED.

C.4.6 STM/STMIA/STMEA

The section describes the specification and implementation of STM/STMIA/STMEA.

Specification
• If the number of registers stored is zero, then the instruction is treated as a NOP.
• For encoding T2:

— If the instruction performs a write-back and the base register is in the list, then the
instruction performs all of the stores using the specified addressing mode with the value
stored for the base register being the value before the instruction was executed.

— If the number of registers stored is one, the instruction stores a single register using the
specified addressing modes.

— If hw2 bit[13] is set, then the instruction performs all of the stores using the specified
addressing mode including R13 as one of the target registers.

— If hw2 bit[15] is set then, the instruction performs all of the stores using the specified
addressing mode, but the value corresponding to R15 is 0.

• If the instruction uses R15 as a base register and specifies write-back, then the store
instruction is performed without a write-back.

Implementation
The Cortex-R52 processor deviates from this behavior in the following ways:
• For the T2 encoding, if hw2 bit[15] is set, then the processor performs all of the stores using

the specified addressing mode and the value corresponding to R15 is the PC with the
standard offset that applies for the current instruction set.

• If the instruction uses R15 as a base register and specifies write-back, then the processor
treats the instruction as UNDEFINED.

C.4.7 STMDA/STMED and STMIB/STMFA

The section describes the specification and implementation of STMDA/STMED and STMIB/STMFA.

Specification
• If the number of registers stored is zero, then the instruction is treated as a NOP.
• If the instruction uses R15 as a base register and specifies write-back, then the store

instruction is performed without a write-back.

Implementation
The Cortex-R52 processor deviates from this behavior and if the instruction uses R15 as a base
register and specifies write-back, then the processor treats the instructions as UNDEFINED.

C.4.8 STMDB/STMFD

The section describes the specification and implementation of STMDB/STMFD.

C Processor UNPREDICTABLE Behaviors
C.4 Specific UNPREDICTABLE cases for instructions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-C-618

Non-Confidential



Specification
• If the number of registers stored is zero, then the instruction is treated as a NOP.
• For encoding T1:

— The instruction performs a write-back and the base register is in the list, then the
instruction performs all of the stores using the specified addressing mode with the value
stored for the base register being the value before the instruction is executed.

— If the number of registers stored is one, then the instruction stores a single register using
the specified addressing modes.

— If hw2 bit[13] is set, then the instruction performs all of the stores using the specifies
addressing mode including R13 as one of the target registers.

— If hw2 bit[15] is set, then the instruction performs all of the stores using the specified
addressing mode, but the value corresponding to R15 is 0.

• If the instruction uses R15 as a base register and specifies write-back, then the store
instruction is performed without a write-back.

Implementation
The Cortex-R52 processor deviates from this behavior in the following ways:
• For the T1 encoding, if hw2 bit[15] is set, then the processor performs all the stores using the

specified addressing mode and the value corresponding to R15 is the PC with the standard
offset that applies to the current instruction set.

• If the instruction uses R15 as a base register and specifies write-back, then the processor
treats the instructions as UNDEFINED.

C.4.9 STR (Immediate, Thumb), STR (Immediate, Arm), STR (register), STRB (immediate, Thumb),
STRB (immediate, Arm), STRB (register), STRBT, STRH (immediate, Thumb), STRH
(immediate, Arm), STRH (register), STRHT, and STRT

This section describes the specification and implementation of STR (Immediate, Thumb), STR
(Immediate, Arm), STR (register), STRB (immediate, Thumb), STRB (immediate, Arm), STRB (register),
STRBT, STRH (Immediate, Thumb), STRH (Immediate, Arm), STRH (register), STRHT, and STRT.

Specification
• If R15 is specified as the transfer register and the instruction describes the behavior as

UNPREDICTABLE, then the instruction performs the store using the specified addressing mode,
but the value corresponding to R15 is 0.

• If the instruction performs a write-back and the register is stored in the base register, then the
instruction performs the store using the specified addressing mode storing the value of the
register before the write-back.

• If the instruction uses R15 as a base register and specifies write-back and the instruction is
defined as UNPREDICTABLE, then the store instruction is performed without a write-back.

Implementation
The Cortex-R52 processor deviates from this behavior in the following ways:
• If R15 is specified as the transfer register and the instruction describes the behavior as

UNPREDICTABLE, then the processor treats the instruction as UNDEFINED.
• If the instruction uses R15 as a base register and specifies write-back and the instruction is

defined as UNPREDICTABLE, then the processor treats the instruction as UNDEFINED.

C.4.10 STRD (immediate) and STRD (register)

This section describes the specification and implementation of STRD (immediate) and STRD (register).

C Processor UNPREDICTABLE Behaviors
C.4 Specific UNPREDICTABLE cases for instructions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-C-619

Non-Confidential



Specification
• For the A1 encoding of STRD (immediate) and STRD (register), if P is 0 and W is 1, then the

instruction behaves as if the values of P and W are both 0.
• If R15 is specified as one of the transfer registers, then the instruction performs the store

using the specified addressing mode but the value corresponding to R15 is 0.
• If the instruction performs a write-back and one of the registers stored is the base register,

then the instruction performs the store of the registers specified using the specified
addressing mode storing the value of the register before the write-back.

• If the instruction uses R15 as a base register and specifies write-back, then the store
instruction is performed without a write-back.

• For all Arm STRD encodings, if Rt<0> is 1, then the behavior is the same as if Rt<0> is 0.

Implementation
The Cortex-R52 processor deviates from this behavior in the following ways:
• If R15 is specified as one of the transfer registers, then the processor treats the instruction as

UNDEFINED.
• If the instruction uses R15 as a base register and specifies write-back, then the processor

treats the instruction as UNDEFINED.

C.4.11 STREX, STREXB, STREXD, STREXH, STLEX, STLEXB, STLEXD, and STLEXH

This section describes the specification and implementation of STREX, STREXB, STREXD, STREXH, STLEX,
STLEXB, STLEXD, and STLEXH.

Specification
• If the destination register for the exclusive result (Rd) is the same register as the transfer

register, then the store instruction is performed using the value of the register transfer before
the instruction was executed.

• If the destination register for the exclusive result (Rd) is the same register as the base address
register, then the store instruction is performed using the value of the base address register
before the instruction was executed.

• If the Store Exclusive is Strongly-ordered or Device memory type, then the instruction
functions in the same way as it would occur if it was to Normal memory.

• For the Arm STREXD and STLEXD encoding, if Rt<0> is 1, then the behavior is the same as if
Rt<0> is 0.

• For the Arm STREXD and STLEXD encoding, if Rt<0> is 1110, then the behavior of the
instruction is specified that Rt is 1110 is not UNPREDICTABLE, but having t2 as 15 is
UNPREDICTABLE.

Implementation
The Cortex-R52 processor deviates from this behavior and for the Arm STREXD and STLEXD
encoding, if Rt is 1110, then the processor treats the instruction as UNDEFINED.

C Processor UNPREDICTABLE Behaviors
C.4 Specific UNPREDICTABLE cases for instructions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-C-620

Non-Confidential



C.5 Load/Store accesses crossing MPU regions
This section describes load or store accesses that cross MPU regions

This section contains the following subsections:
• C.5.1 Crossing an MPU region with different memory types or shareability attributes

on page Appx-C-621.
• C.5.2 Crossing a 4KB boundary with Device (or Strongly-Ordered) accesses on page Appx-C-621.

C.5.1 Crossing an MPU region with different memory types or shareability attributes

This section describes the specification for crossing an MPU region with different memory types or
shareability attributes.

Specification

In the Arm® Architecture Reference Manual Supplement Armv8, for Armv8-R architecture
profile, having memory accesses from one load or store instruction cross an MPU region with
different memory types or shareability, is UNPREDICTABLE.

Implementation
In this situation, the implementation uses the memory type and shareability attributes associated
with its own address for each memory access from this instruction.

C.5.2 Crossing a 4KB boundary with Device (or Strongly-Ordered) accesses

This section describes the specification and implementation of crossing a 4KB boundary with Device (or
Strongly-Ordered) accesses.

Specification

In the Arm® Architecture Reference Manual Supplement Armv8, for Armv8-R architecture
profile, having memory accesses from one load or store instruction to Device, or Strongly-
ordered, memory cross a 4 KB boundary, is UNPREDICTABLE.

Implementation (for both page boundary specifications)
In this situation, both Loads and Stores behave as separate memory accesses with their own
address on either side of the boundary. Therefore, any Device access is subject to alignment
checks on the address associated with that access.

C Processor UNPREDICTABLE Behaviors
C.5 Load/Store accesses crossing MPU regions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-C-621

Non-Confidential



C.6 Armv8 Debug UNPREDICTABLE behaviors
This section describes the behavior that the Cortex-R52 processor implements when:

• A topic has multiple options.
• The processor behavior diverges from either or both of the Options and Preference behavior.

Additionally, for any particular topics for which the Cortex-R52 processor behavior diverges from either
or both of the Options and Preferences, an explanation of the actual behavior is given. If the Cortex-R52
processor follows the recommended behavior, then this appendix does not comment on that topic or
behavior.

For more information on the Armv8 Debug UNPREDICTABLE behaviors, see Armv8 AArch32 UNPREDICTABLE

behaviours.

Table C-1  Armv8 Debug UNPREDICTABLE behaviors

Scenario Behavior

A32 BKPT instruction with condition code
not AL

The processor implements the following preferred option:
• Executed unconditionally.

Context matching type with
DBGBCRn.BAS!=1111

The Cortex-R52 processor implements the following option:
• If DBGBCRn.BT is set to Context matching type, DBGBCRn.BAS is RES1 and

ignored.

VMID (only) matching breakpoint with
DBGBVRn!=0x00000000

The Cortex-R52 processor implements the following option:
• DBGBVRn is RES0 and ignored.

Unlinked breakpoint or watchpoint type
with LBN!=0b0000

The Cortex-R52 processor implements the following option:
• The LBN field reads UNKNOWN and the value is ignored.

Reserved DBGBCRn.BAS values The Cortex-R52 processor implements the following option:
• DBGBCRn.BAS[3] and DBGBCRn.BAS[1] are read-only copies of

DBGBCRn.BAS[2] and DBGBCRn.BAS[0].

Address match breakpoint match only on
second halfword of an instruction

The Cortex-R52 processor implements the following option:
• Does not match.

Address matching breakpoint on A32
instruction with DBGBCRn.BAS=0b1100

The Cortex-R52 processor implements the following option:
• Does not match.

Address match breakpoint match on T32
instruction at DBGBVRn+2 with
DBGBCRn.BAS=0b1111

The Cortex-R52 processor implements the following option:
• Does not match.

Address mismatch breakpoint match only
on second halfword of an instruction

The Cortex-R52 processor implements the following option:
• Does not match.

Address mismatch breakpoint match on
T32 instruction at DBGBVRn +2 with
DBGBCRn.BAS=0b1111

The Cortex-R52 processor implements the following option:
• Does match.

Other mismatch breakpoint matches any
address in current mode and state

The Cortex-R52 processor implements the following option:
• Immediate breakpoint debug event.

Mismatch breakpoint on branch to self The Cortex-R52 processor implements the following option:
• Instruction is stepped an UNKNOWN number of times, while it continues to branch to

itself.

C Processor UNPREDICTABLE Behaviors
C.6 Armv8 Debug UNPREDICTABLE behaviors

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-C-622

Non-Confidential



Table C-1  Armv8 Debug UNPREDICTABLE behaviors (continued)

Scenario Behavior

Address matching breakpoint with
DBGBVRn[1:0]!=0b00

The Cortex-R52 processor implements the following option:
• If DBGBCRn.BT is set to an Address matching type, DBGBVRn[1:0] are RES0 and

ignored.

Link to non-existent breakpoint or
breakpoint that is not context-aware

The Cortex-R52 processor implements the following option:
• No breakpoint or watchpoint debug event is generated and the LBN field of the

linker reads UNKNOWN.

Link to breakpoint not configured for
Linked context matching

The Cortex-R52 processor implements the following option:
• If the linkee is implemented and context-aware but is either not programmed for

linked context matching or not enabled, no debug event is generated for the linker.

Link to breakpoint not configured to match
everywhere

The Cortex-R52 processor implements the following option:
• The LBN, SSC, HMC, BAS, and PMC fields of the linkee are ignored.

DBGWCRn[2]=1 and
DBGWCRn.BAS=0b0000

The Cortex-R52 processor implements the following option:
• If DBGWCRn[2] is set to 1, then DBGWCRn.BAS[7:4] is RES0 and ignored.

DBGWCRn.MASK!=0b00000 and
DBGWCRn.BAS!=0b11111111

The Cortex-R52 processor implements the following option:
• DBGWCRn.BAS is ignored and treated as 0b11111111.

DBGWCRn.MASK!=0b00000 and
masked DBGWVRn bits nonzero

The Cortex-R52 processor implements the following option:
• If masked bits of DBGWVRn are not zero, no watchpoint debug event is generated.

Address-matching Vector catch on 32-bit
T32 instruction at (vector-2)

The Cortex-R52 processor implements the following option:
• Does not match.

Address-matching Vector catch on 32-bit
T32 instruction at (vector+2)

The Cortex-R52 processor implements the following option:
• Does match.

Address-matching Vector catch and
breakpoint on same instruction

The Cortex-R52 processor implements the following option:
• Report breakpoint.

Address match breakpoint with
DBGBCRn.BAS=0b0000

The Cortex-R52 processor implements the following option:
• As if disabled.

DBGWCRn.BAS specifies a non-
contiguous set of bytes within a
doubleword

The Cortex-R52 processor implements the following option:
• A watchpoint debug event is generated for each matching byte.

A32 HLT instruction with condition code
not AL

The Cortex-R52 processor implements the following option:
• Executed unconditionally.

Execute instruction at a given Exception
level when the corresponding EDECCR bit
is 1 and Halting is allowed

The Cortex-R52 processor behaves as follows:
• Generates debug event and Halt no later than the instruction following the next

Context Synchronization Operation (CSO).

Routing general exceptions to Hyp mode The Cortex-R52 processor behaves as follows:
• If HDCR.TDE is set to 1, then the HDCR.{TDA, TDRA, TDOSA} bits are treated

as 1 regardless of their actual state other then for the purpose of reading the bits.

Unlinked Context matching and Address
mismatch breakpoints taken to Abort mode

The Cortex-R52 processor implements the following option:
• The breakpoint debug event is ignored.

C Processor UNPREDICTABLE Behaviors
C.6 Armv8 Debug UNPREDICTABLE behaviors

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-C-623

Non-Confidential



Table C-1  Armv8 Debug UNPREDICTABLE behaviors (continued)

Scenario Behavior

Vector catch on Data or Prefetch abort, and
taken to Abort mode

The Cortex-R52 processor implements the following option:
• A Prefetch Abort debug exception is generated. If Vector catch is enabled on the

Prefetch Abort vector, this generates a Vector catch debug event.

 Note 

The debug event is subject to the same CONSTRAINED UNPREDICTABLE behavior, therefore
the breakpoint debug event is repeatedly generated an UNKNOWN number of times.

H > N or H = 0 at EL1 and EL0, including
value read from PMCR.N

The Cortex-R52 processor implements the following option:
• A simple implementation where all of HPMN[4:0] are implemented, and in EL1 and

EL0:
— If H > N then M = N.
— If H = 0 then M = 0.

H > N or H = 0: value read back in
HDCR.HPMN

The Cortex-R52 processor implements:
• A simple implementation where all of HPMN[4:0] are implemented and for reads of

HDCR.HPMN, return H.

P ≥ M and P ≠ 31: reads and writes of
PMXEVTYPER and PMXEVCNTR

The Cortex-R52 processor implements:
• RAZ/WI.

P ≥ M and P ≠ 31: value read in
PMSELR.SEL

The Cortex-R52 processor implements:
• A simple implementation where all of SEL[4:0] are implemented, and if P ≥ M and

P ≠ 31 then the register is RES0.

P = 31: reads and writes of PMXEVCNTR The Cortex-R52 processor implements:
• RAZ/WI.

n ≥ M: Direct access to PMEVCNTRn and
PMEVTYPERn

The Cortex-R52 processor implements:
• If n ≥ N, then the instruction is UNALLOCATED.
• Otherwise if n ≥ M, then the register is RES0.

Exiting Debug state while instruction issued
through EDITR is in flight

The Cortex-R52 processor implements the following option:
• The instruction completes in Debug state before executing the restart.

Using memory-access mode with a non-
word-aligned address

The Cortex-R52 processor implements the following option:
• For each memory access the processor makes, the processor makes an unaligned

access to X0/R0. If alignment checking is enabled for the access, this generates an
alignment fault.

Restart request and Halt request asserted at
same time

The Cortex-R52 processor implements the following option:
• The restart is ignored, then the processor enters Debug state.

Access to memory-mapped registers
mapped to Normal memory

The Cortex-R52 processor implements the following option:
• The access generates an external abort or not.

Not word-sized accesses The Cortex-R52 processor implements the following option:
• The access generates an external abort or not.

UNPREDICTABLE CP14 register accesses The Cortex-R52 processor implements the following option:
• Access permissions are as for the equivalent system registers in AArch64 state.

C Processor UNPREDICTABLE Behaviors
C.6 Armv8 Debug UNPREDICTABLE behaviors

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-C-624

Non-Confidential



Table C-1  Armv8 Debug UNPREDICTABLE behaviors (continued)

Scenario Behavior

External debug write to register that is
being reset.

The Cortex-R52 processor implements the following option:
• Takes reset value.

Accessing reserved debug registers The Cortex-R52 processor deviates from preferred behavior because the hardware cost
to decode some of these addresses in Debug power domain is significantly high.

The actual behavior is:

Actual behavior:
1. For reserved debug in the range 0x000-0xCFC and Performance Monitors

registers in the address range 0x000-0xF00, the response is either
CONSTRAINED UNPREDICTABLE Error or RES0 when any of the following
errors occurs:

Off
The core power domain is either completely off or in a low-
power state where the core power domain registers cannot be
accessed.

DLK
DoubleLockStatus() is TRUE, OS double-lock is locked
(EDPRSR.DLK is 1).

OSLK
OS lock is locked (OSLSR.OSLK is 1).

2. For reserved debug registers in the address ranges 0x400-0x4FC and
0x800-0x8FC, the response is either CONSTRAINED UNPREDICTABLE error
or RES0 when the conditions in 1 do not apply and the following error
occurs:

EDAD
AllowExternalDebugAccess() is FALSE. External debug
access is disabled.

3. For reserved Performance Monitor registers in the address ranges
0x000-0x0FC and 0x400-0x47C, the response is CONSTRAINED

UNPREDICTABLE Error or RES0 when the conditions in 1 and 2 do not apply,
and the following error occurs:

EPMAD
AllowExternalPMUAccess() is FALSE. External
Performance Monitors access is disabled.

Reserved DBGBCRn,BT values The Cortex-R52 processor implements the following option:
• If the breakpoint is not context-aware, BT[3] and BT[1] are RES0. The values

0b011x and 0b11xx are reserved but they must behave as if the breakpoint is
disabled.

Reserved combinations of DBGBCRn.
{SSC,HMC,PMC} or DBGWCRn.
{SSC,HMC,PAC}

The Cortex-R52 processor behaves as if it is programmed with a combination that is not
reserved.

Reserved DBGWCRn.LSC values The Cortex-R52 processor behaves as if watchpoint is disabled.

C Processor UNPREDICTABLE Behaviors
C.6 Armv8 Debug UNPREDICTABLE behaviors

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-C-625

Non-Confidential



Table C-1  Armv8 Debug UNPREDICTABLE behaviors (continued)

Scenario Behavior

Reserved DBGWCRn.MASK values The Cortex-R52 processor behaves as if no mask is set.

Clearing the clear-after-read EDPRSR bits
when core power domain is on, and
DoubleLockStatus() is TRUE

The Cortex-R52 processor implements the following option:
• Bits are not cleared to zero.

C Processor UNPREDICTABLE Behaviors
C.6 Armv8 Debug UNPREDICTABLE behaviors

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-C-626

Non-Confidential



C.7 Other UNPREDICTABLE behaviors
This section describes other UNPREDICTABLE behaviors.

Table C-2  Other UNPREDICTABLE behaviors

Scenario Description

CSSELR indicates a cache that is
not implemented.

If CSSELR indicates a cache that is not implemented, then on a read of the CCSIDR the
behavior is CONSTRAINED UNPREDICTABLE, and can be one of the following:
• The CCSIDR read returns an UNKNOWN value (preferred).

HDCR.HPMN is set to 0, or to a
value larger than PMCR.N.

If HDCR.HPMN is set to 0, then there is no access to any counters.

If HDCR.HPMN is set to a value higher than the number of available counters (in Cortex-R52,
this value is four), then the number of counters accessible is four.

For reads of HDCR.HPMN by EL2 or higher, if this field is set to 0 or to a value larger than
PMCR.N, the processor must return a CONSTRAINED UNPREDICTABLE value that is one of:
• The value that was written to HDCR.HPMN.

Write access to IMPLEMENTATION

DEFINED read-only registers.
This results in an UNDEFINED exception.

C Processor UNPREDICTABLE Behaviors
C.7 Other UNPREDICTABLE behaviors

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-C-627

Non-Confidential



Appendix D
Revisions

This appendix describes the technical changes between released issues of this book.

It contains the following section:
• D.1 Revisions on page Appx-D-629.

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-D-628

Non-Confidential



D.1 Revisions
This section describes the technical changes between released issues of this document.

Table D-1  Issue 0000-00

Change Location Affects

First release for r0p0 - -

Table D-2  Differences between Issue 0000-00 and Issue 0100-00

Change Location Affects

First release for r1p0 Document history table. r1p0

IMPLEMENTATION DEFINED register naming convention
changed

• 3.3.10 Branch Predictor Control Register on page 3-80.
• 3.3.11 Build Options Register on page 3-81.
• 3.3.12 Bus Timeout Register on page 3-82.
• 3.3.14 Cache Segregation Control Register on page 3-85.
• 3.3.17 Configuration Base Address Register on page 3-88.
• 3.3.21 Data Cache Error Record Registers 0 and 1

on page 3-95.
• 3.3.29 Flash Error Record Registers 0 and 1 on page 3-102.
• 3.3.30 Flash Interface Region Register on page 3-104.
• 3.3.57 Instruction Cache Error Record Registers 0 and 1

on page 3-140.
• 3.3.66 Interrupt Monitoring Register on page 3-153.
• 3.3.76 Memory Protection Control Register on page 3-164.
• 3.3.80 Peripheral Port Region Register on page 3-168.
• 3.3.82 Pin Options Register on page 3-172.
• 3.3.88 Quality Of Service Register on page 3-179.
• 3.3.91 Slave Port Control Register on page 3-182.
• 3.3.93 TCM Error Record Register 0 and 1 on page 3-187.
• 3.3.94 TCM Region Registers A, B, and C on page 3-188.
• 3.3.97 Test Register 0 on page 3-192.

r1p0

New IMPLEMENTATION DEFINED registers added • IMP_TESTR1, 3.2.17 c15 registers on page 3-53 and
3.2.29 AArch32 Implementation defined registers
on page 3-67.

• 3.3.68 Invalidate All Register on page 3-155.
• IMP_CDBGDCD, 7.4 Direct access to internal memory

on page 7-224.
• IMP_CDBGICD, 7.4 Direct access to internal memory

on page 7-224.
• IMP_CDBGDCT, 7.4 Direct access to internal memory

on page 7-224.
• IMP_CDBGICT, 7.4 Direct access to internal memory

on page 7-224.
• IMP_CDBGDR0, 7.4 Direct access to internal memory

on page 7-224.
• IMP_CDBGDR1, 7.4 Direct access to internal memory

on page 7-224.

r1p0

D Revisions
D.1 Revisions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-D-629

Non-Confidential



Table D-2  Differences between Issue 0000-00 and Issue 0100-00 (continued)

Change Location Affects

ID register fields updated • 3.3.69 Main ID Register on page 3-155.
• 15.6.1 Floating-point System ID Register on page 15-533.
• External Debug Peripheral Identification Register 2

on page 11-372.
• ROM table Debug Peripheral Identification Register 2

on page 11-391.
• Performance Monitors Peripheral Identification Register 2

on page 12-412.
• Peripheral Identification Register 2 on page 13-439.
• 14.7.58 Peripheral Identification Registers on page 14-523.
• 14.7.29 ID Register 2 on page 14-495.
• Distributor Implementer Identification Register on page 9-269.
• Redistributor Implementer Identification Register

on page 9-284.

r1p0

CPUACTLR bit[47] added to enable fixed latency for
integer divide instructions.

3.3.19 CPU Auxiliary Control Register on page 3-90. r1p0

Syndrome reporting functionality for TCMs added 3.3.95 TCM Syndrome Register 0 and 1 on page 3-189 r1p0

VMID availability changed 7.5.6 AXIM QoS and user signals on page 7-230 r1p0

MPU regions modified 8.2 MPU regions on page 8-252 r1p0

Hardware cache invalidate for AXIM added • 7.3.2 Data cache invalidation on page 7-222.
• 11.6.1 External Debug Calibration Control Register

on page 11-366.

r1p0

IMP_BUILDOPTR.LOCK_STEP width modified to
[31:30]

3.3.11 Build Options Register on page 3-81 r1p0

HACTLR bit [15] is HACTLR.TESTR1 and HACTLR
bit [1] is HACTLR.CDBGDCI

3.3.33 Hyp Auxiliary Control Register on page 3-107

IMP_PINOPTR bit[23] functionality modified 3.3.82 Pin Options Register on page 3-172 r1p0

IMP_FLASHFREGIONR.BASEADDRESS width
modified

• 3.3.30 Flash Interface Region Register on page 3-104.
• A.4 Configuration inputs on page Appx-A-547.

r1p0

Split/Lock functionality added. Split/Lock on page 1-17. r1p0

CFGFLASHBASEADDR signal width changed to
[31:27]

A.4 Configuration inputs on page Appx-A-547 r1p0

PMU events modified. 12.6 Events on page 12-418

A.6 Event output signals on page Appx-A-552

r1p0

Miscellaneous ETM signals added, ETMEXTIN[3:0]
and ETMEXTOUT[3:0]

Miscellaneous ETM interface signals on page Appx-A-577 r1p0

DFT signal width modified, DFTRSTDISABLE[1:0] A.12.1 DFT signals on page Appx-A-582 r1p0

Split/Lock signal added, CFGSLSPLIT A.16 Split/Lock signal on page Appx-A-586 r1p0

Cortex-R52 processor UNPREDICTABLE behavior
appendix modified

Appendix C Processor UNPREDICTABLE Behaviors
on page Appx-C-612

r1p0

D Revisions
D.1 Revisions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-D-630

Non-Confidential



Table D-3  Differences between Issue 0100-00 and Issue 0101-00

Change Location Affects

First release for r1p1 Document history table. First documentation release r1p1

IMPLEMENTATION DEFINED

IMP_DBGDR2 register removed.
7.4 Direct access to internal memory on page 7-224 First documentation release for r1p1

MIDR.Variant and MIDR.Revision
bits

3.3.69 Main ID Register on page 3-155 First documentation release for r1p1

FPSID.Variant and FPSID.Revision
bits

15.6.1 Floating-point System ID Register
on page 15-533

First documentation release for r1p1

ROMPIDR2.Revision bit ROM table Debug Peripheral Identification Register 2
on page 11-391

First documentation release for r1p1

TRCPIDR2.Revision bit 14.7.58 Peripheral Identification Registers
on page 14-523

First documentation release for r1p1

EDPIDR2.Revision bit External Debug Peripheral Identification Register 2
on page 11-372

First documentation release for r1p1

PMPIDR2.Revision bit Performance Monitors Peripheral Identification
Register 2 on page 12-412

First documentation release for r1p1

CTIPIDR2.Revision bit Peripheral Identification Register 2 on page 13-439 First documentation release for r1p1

GICD_IIDR.Variant and
GICD_IIDR.Revision bits

Distributor Implementer Identification Register
on page 9-269

First documentation release for r1p1

GICR_IIDR.Variant and
GICR_IIDR.Revision bits

Redistributor Implementer Identification Register
on page 9-284

First documentation release for r1p1

Table D-4  Differences between Issue 0101-00 and Issue 0101-01

Change Location Affects

Second release for r1p1 Document history table. Second documentation
release for r1p1

Note added to bit description for bits [7:4] for
ID_ISAR2 register.

3.3.62 Instruction Set Attribute Register 2
on page 3-146

Second documentation
release for r1p1

IMP_ATCMREGIONR, IMP_BTCMREGIONR, and
IMP_CTCMREGIONR register introduction changed
to provide more clarity, and a note has been added to
this section.

3.3.94 TCM Region Registers A, B, and C
on page 3-188

Second documentation
release for r1p1

PRBAR and PRLAR register diagrams corrected 3.3.85 Protection Region Base Address
Register on page 3-175 and 3.3.86 Protection
Region Limit Address Register on page 3-177.

ROMPID2 value in Summary of the ROM table Debug
Peripheral Identification Registers table updated

Table 11-47  Summary of the ROM table
Debug Peripheral Identification Registers
on page 11-389

Second documentation
release for r1p1

Integration Mode Control Register has a note added to
indicate that Cortex-R52 processor does not include
ATB integration registers

14.7.47 Integration Mode Control Register
on page 14-515

Second documentation
release for r1p1

TRCEXTINSELR.SEL fields width updated 14.7.21 External Input Select Register
on page 14-485

Second documentation
release for r1p1

D Revisions
D.1 Revisions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-D-631

Non-Confidential



Table D-4  Differences between Issue 0101-00 and Issue 0101-01 (continued)

Change Location Affects

TRCIDR5.NUMEXTIN value updated 14.7.32 ID Register 5 on page 14-499 Second documentation
release for r1p1

Note added to TRCITCTRL description 14.7.47 Integration Mode Control Register
on page 14-515

Second documentation
release for r1p1

Write streaming mode section added 7.3.3 Write streaming mode on page 7-223 Second documentation
release for r1p1

Minor modification to the write ID capability and read
ID capability comments in Table 7-8  AXI4 master
interface attributes on page 7-227

7.5.1 AXIM interface attributes on page 7-227 Second documentation
release for r1p1

AXIM interface transfers information on Non-
cacheable transaction details updated

7.5.2 AXIM interface transfers on page 7-227 Second documentation
release for r1p1

Minor modification to description of Normal requests
in Table 7-10  AXIM write address and write response
channel identifiers on page 7-229

7.5.4 AXIM transaction IDs on page 7-229 Second documentation
release for r1p1

GICR_ISPENDR0 register bits [31:16] function
description corrected.

Interrupt Set-Pending Register 0
on page 9-291

Second documentation
release for r1p1

Description of behavior when there are write accesses
to IMPLEMENTATION DEFINED read-only registers added

C.7 Other UNPREDICTABLE behaviors
on page Appx-C-627

Second documentation
release for r1p1

Table D-5  Differences between Issue 0101-01 and Issue 0102-00

Change Location Affects

First release for r1p2 Document history table. First documentation release for
r1p2

Variant and Revision bits changed for MIDR to
reflect r1p2 release

3.3.69 Main ID Register on page 3-155 First documentation release for
r1p2

AXIS interface information slightly modified
to describe functionality when an external
agent or core attempts to write the TCMs
through the AXIS interface

7.8 AXIS interface on page 7-242 First documentation release for
r1p2

Revision bits changed for GICD_IIDR to
reflect r1p2 release

Distributor Implementer Identification Register
on page 9-269

First documentation release for
r1p2

Revision bits changed for GICR_IIDR to
reflect r1p2 release

Redistributor Implementer Identification Register
on page 9-284

First documentation release for
r1p2

Revision bits changed for EDPIDR2 to reflect
r1p2 release

External Debug Peripheral Identification Register 2
on page 11-372

First documentation release for
r1p2

Revision bits changed for ROMPIDR2 to
reflect r1p2 release

ROM table Debug Peripheral Identification
Register 2 on page 11-391

First documentation release for
r1p2

Revision bits changed for PMPIDR2 to reflect
r1p2 release

Performance Monitors Peripheral Identification
Register 2 on page 12-412

First documentation release for
r1p2

Revision bits changed for CTIPIDR2 to reflect
r1p2 release

Peripheral Identification Register 2 on page 13-439 First documentation release for
r1p2

D Revisions
D.1 Revisions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-D-632

Non-Confidential



Table D-5  Differences between Issue 0101-01 and Issue 0102-00 (continued)

Change Location Affects

REVISION bits changes for TRCIDR1 to
reflect r1p2 release

14.7.28 ID Register 1 on page 14-494 First documentation release for
r1p2

TRCPIDR2 bits [7:4] value changed to reflect
r1p2 release

14.7.58 Peripheral Identification Registers
on page 14-523

First documentation release for
r1p2

Revision bits changed for FPSID to reflect
r1p2 release

15.6.1 Floating-point System ID Register
on page 15-533

First documentation release for
r1p2

Attributes for MRPATTRx[4:2] when set to
0b100 and 0b111 changed.

A.7 MRP signals on page Appx-A-557 First documentation release for
r1p2

PMCR reset value corrected in register
summary table

12.2  PMU register summary on page 12-400 First documentation release for
r1p2

Flash interface short description modified 7.7 Flash interface on page 7-240 First documentation release for
r1p2

ARUTIDFx signal width has been corrected Flash read address interconnect protection signals
on page Appx-A-573

First documentation release for
r1p2

RUTIDFx signal width has been corrected Flash read data interconnect protection signals
on page Appx-A-574

First documentation release for
r1p2

Timer events arrow removed from Cortex-R52
processor interfaces image

Figure 1-2  Cortex-R52 processor interfaces
on page 1-15

First documentation release for
r1p2

Description of Read issuing capability slightly
modified

Table 7-8  AXI4 master interface attributes
on page 7-227

First documentation release for
r1p2

Description of Device accesses (data side)
slightly modified

Table 7-9  AXIM read address and read response
channel identifiers on page 7-229

First documentation release for
r1p2

Added clarity to REGION bits description in
HPSELR for 0-16 EL2-controlled MPU
regions

3.3.50 Hyp Protection Region Selection Register
on page 3-128

First documentation release for
r1p2

Added clarity to HCR.AMO, HCR.IMO, and
HCR.FMO bit descriptions

3.3.39 Hyp Configuration Register on page 3-111 First documentation release for
r1p2

TESTR1 register description added 3.3.98 Test Register 1 on page 3-193 First documentation release for
r1p2

Note added to GIC functional description
section

9.2 GIC functional description on page 9-261 First documentation release for
r1p2

Functionality when there are write to the read-
only flash port is documented

7.7 Flash interface on page 7-240 First documentation release for
r1p2

Write acceptance and read acceptance
capability values corrected

7.8.2 AXIS characteristics on page 7-243 First documentation release for
r1p2

Note column added to bit description table for
IMP_DCERRx and IMP_ICERRx register
descriptions

• 3.3.21 Data Cache Error Record Registers 0
and 1 on page 3-95

• 3.3.57 Instruction Cache Error Record Registers
0 and 1 on page 3-140

First documentation release for
r1p2

D Revisions
D.1 Revisions

100026_0102_00_en Copyright © 2016–2019 Arm Limited or its affiliates. All rights
reserved.

Appx-D-633

Non-Confidential


	Arm® Cortex®-R52 Processor Technical Reference Manual
	Table of Contents
	Preface
	About this book
	Product revision status
	Intended audience
	Using this book
	Glossary
	Typographic conventions
	Timing diagrams
	Signals

	Additional reading

	Feedback
	Feedback on this product
	Feedback on content


	1 : Introduction
	1.1 : About the Cortex®-R52 processor
	1.1.1 : Features
	1.1.2 : Interfaces
	1.1.3 : Configuration options
	Processor configurations
	DCLS
	Split/Lock



	1.2 : Component blocks
	1.2.1 : Instruction Fetch
	1.2.2 : Advanced SIMD and floating-point support
	1.2.3 : GIC Distributor
	1.2.4 : GIC CPU interface
	1.2.5 : Memory system
	1.2.6 : Memory management
	1.2.7 : Debug, trace, and test

	1.3 : Interfaces
	1.3.1 : Advanced Microcontroller Bus Architecture (AMBA) interfaces
	AXIM
	AXIS
	Advanced Peripheral Bus (APB) Debug interface
	LLPP

	1.3.2 : Flash interface
	1.3.3 : Memory Reconstruction Port
	1.3.4 : Interrupt interface
	1.3.5 : MBIST interface
	1.3.6 : Low Power Interface

	1.4 : Supported standards
	1.4.1 : Arm architecture
	1.4.2 : AMBA
	1.4.3 : Generic Interrupt Controller architecture
	1.4.4 : Generic Timer architecture
	1.4.5 : Debug architecture
	1.4.6 : Embedded Trace Macrocell architecture

	1.5 : Documentation
	1.6 : Design process
	1.7 : Product revisions

	2 : Programmers Model
	2.1 : About the programmers model
	2.1.1 : Advanced SIMD and Floating-point
	2.1.2 : Generic Interrupt Controller
	2.1.3 : Jazelle implementation
	2.1.4 : Instruction set states
	2.1.5 : Memory model
	2.1.6 : Security state

	2.2 : Armv8-R architecture concepts
	2.2.1 : Execution state
	2.2.2 : Exception levels
	2.2.3 : Typical exception level usage model
	2.2.4 : Exception terminology
	Terminology for taking an exception
	Terminology for returning from an exception
	Fast interrupts

	2.2.5 : Instruction set state
	2.2.6 : AArch32 execution modes
	2.2.7 : Support for v8 memory types
	2.2.8 : System registers
	2.2.9 : General purpose registers
	2.2.10 : Program status registers
	2.2.11 : Data types
	2.2.12 : Memory model
	2.2.13 : GIC Architecture


	3 : System Control
	3.1 : About system control
	3.2 : Register summary
	3.2.1 : c0 registers
	3.2.2 : c1 registers
	3.2.3 : c2 registers
	3.2.4 : c3 registers
	3.2.5 : c4 registers
	3.2.6 : c5 registers
	3.2.7 : c6 registers
	3.2.8 : c7 registers
	3.2.9 : c7 System operations
	3.2.10 : c8 System operations
	3.2.11 : c9 registers
	3.2.12 : c10 registers
	3.2.13 : c11 registers
	3.2.14 : c12 registers
	3.2.15 : c13 registers
	3.2.16 : c14 registers
	3.2.17 : c15 registers
	3.2.18 : 64-bit registers
	3.2.19 : AArch32 Identification registers
	3.2.20 : AArch32 Memory control registers
	3.2.21 : AArch32 Exception and fault handling registers
	3.2.22 : AArch32 Other system control registers
	3.2.23 : AArch32 Address registers
	3.2.24 : AArch32 Thread registers
	3.2.25 : AArch32 Performance monitor registers
	3.2.26 : AArch32 Virtualization registers
	3.2.27 : AArch32 GIC system registers
	3.2.28 : AArch32 Generic Timer registers
	3.2.29 : AArch32 Implementation defined registers
	3.2.30 : AArch32 Implementation defined operations
	3.2.31 : AArch32 Debug registers
	3.2.32 : AArch32 Reset management registers
	3.2.33 : AArch32 Legacy feature registers
	3.2.34 : AArch32 Cache maintenance instructions
	3.2.35 : AArch32 Security registers
	3.2.36 : AArch 32 PMSA-specific registers

	3.3 : AArch32 register descriptions
	3.3.1 : Architectural Feature Access Control Register
	3.3.2 : Auxiliary Control Register
	3.3.3 : Auxiliary Control Register 2
	3.3.4 : Auxiliary Data Fault Status Register
	3.3.5 : Auxiliary Feature Register 0
	3.3.6 : Auxiliary ID Register
	3.3.7 : Auxiliary Instruction Fault Status Register
	3.3.8 : Auxiliary Memory Attribute Indirection Register 0
	3.3.9 : Auxiliary Memory Attribute Indirection Register 1
	3.3.10 : Branch Predictor Control Register
	3.3.11 : Build Options Register
	3.3.12 : Bus Timeout Register
	3.3.13 : Cache Level ID Register
	3.3.14 : Cache Segregation Control Register
	3.3.15 : Cache Size Selection Register
	3.3.16 : Cache Type Register
	3.3.17 : Configuration Base Address Register
	3.3.18 : Context ID Register
	3.3.19 : CPU Auxiliary Control Register
	3.3.20 : Current Cache Size ID Register
	3.3.21 : Data Cache Error Record Registers 0 and 1
	3.3.22 : Data Fault Address Register
	3.3.23 : Data Fault Status Register
	3.3.24 : Debug Feature Register 0
	3.3.25 : EL0 Read/Write Software Thread ID Register
	3.3.26 : EL0 Read-Only Software Thread ID Register
	3.3.27 : EL1 Software Thread ID Register
	3.3.28 : FCSE Process ID Register
	3.3.29 : Flash Error Record Registers 0 and 1
	3.3.30 : Flash Interface Region Register
	3.3.31 : Hyp Architectural Feature Trap Register
	3.3.32 : Hyp Auxiliary Configuration Register
	3.3.33 : Hyp Auxiliary Control Register
	3.3.34 : Hyp Auxiliary Control Register 2
	3.3.35 : Hyp Auxiliary Data Fault Status Register
	3.3.36 : Hyp Auxiliary Instruction Fault Status Register
	3.3.37 : Hyp Auxiliary Memory Attribute Indirection Register 0
	3.3.38 : Hyp Auxiliary Memory Attribute Indirection Register 1
	3.3.39 : Hyp Configuration Register
	3.3.40 : Hyp Configuration Register 2
	3.3.41 : Hyp Data Fault Address Register
	3.3.42 : Hyp Debug Control Register
	3.3.43 : Hyp Instruction Fault Address Register
	3.3.44 : Hyp IPA Fault Address Register
	3.3.45 : Hyp Memory Attribute Indirection Register 0 and 1
	3.3.46 : Hyp MPU Region Enable Register
	3.3.47 : Hyp MPU Type Register
	3.3.48 : Hyp Protection Region Base Address Register
	3.3.49 : Hyp Protection Region Limit Address Register
	3.3.50 : Hyp Protection Region Selection Register
	3.3.51 : Hyp Software Thread ID Register
	3.3.52 : Hyp Syndrome Register
	3.3.53 : Hyp System Control Register
	3.3.54 : Hyp System Trap Register
	3.3.55 : Hyp Vector Base Address Register
	3.3.56 : Hypervisor Reset Management Register
	3.3.57 : Instruction Cache Error Record Registers 0 and 1
	3.3.58 : Instruction Fault Address Register
	3.3.59 : Instruction Fault Status Register
	3.3.60 : Instruction Set Attribute Register 0
	3.3.61 : Instruction Set Attribute Register 1
	3.3.62 : Instruction Set Attribute Register 2
	3.3.63 : Instruction Set Attribute Register 3
	3.3.64 : Instruction Set Attribute Register 4
	3.3.65 : Instruction Set Attribute Register 5
	3.3.66 : Interrupt Monitoring Register
	3.3.67 : Interrupt Status Register
	3.3.68 : Invalidate All Register
	3.3.69 : Main ID Register
	3.3.70 : Memory Attribute Indirection Registers 0 and 1
	3.3.71 : Memory Model Feature Register 0
	3.3.72 : Memory Model Feature Register 1
	3.3.73 : Memory Model Feature Register 2
	3.3.74 : Memory Model Feature Register 3
	3.3.75 : Memory Model Feature Register 4
	3.3.76 : Memory Protection Control Register
	3.3.77 : MPU Type Register
	3.3.78 : Multiprocessor Affinity Register
	3.3.79 : Non-Secure Access Control Register
	3.3.80 : Peripheral Port Region Register
	3.3.81 : Physical Address Register
	Physical Address Register (F==0)
	Physical Address Register (F==1)

	3.3.82 : Pin Options Register
	3.3.83 : Processor Feature Register 0
	3.3.84 : Processor Feature Register 1
	3.3.85 : Protection Region Base Address Register
	3.3.86 : Protection Region Limit Address Register
	3.3.87 : Protection Region Selection Register
	3.3.88 : Quality Of Service Register
	3.3.89 : Reset Vector Base Address Register
	3.3.90 : Revision ID Register
	3.3.91 : Slave Port Control Register
	3.3.92 : System Control Register
	3.3.93 : TCM Error Record Register 0 and 1
	3.3.94 : TCM Region Registers A, B, and C
	3.3.95 : TCM Syndrome Register 0 and 1
	3.3.96 : TCM Type Register
	3.3.97 : Test Register 0
	3.3.98 : Test Register 1
	3.3.99 : TLB Type Register
	3.3.100 : Vector Base Address Register
	3.3.101 : Virtualization Multiprocessor ID Register
	3.3.102 : Virtualization Processor ID Register
	3.3.103 : Virtualization System Control Register


	4 : Clocking and Resets
	4.1 : Clock and clock enables
	4.2 : Reset signals
	4.3 : Reset-related signals

	5 : Power Management
	5.1 : About power management
	5.2 : Local and regional clock gating
	5.3 : Architectural clock gating
	5.3.1 : WFI low-power state
	5.3.2 : WFE low-power state
	5.3.3 : Event communication using WFE and SEV instructions
	5.3.4 : CLREXMON request and acknowledge signaling

	5.4 : Power gating
	5.4.1 : Power domains
	5.4.2 : Cortex-R52 LPI
	5.4.3 : Powerdown sequence
	5.4.4 : Powerup sequence
	5.4.5 : Debug over powerdown
	5.4.6 : Powerdown of the cluster


	6 : Initialization
	6.1 : Initialization
	6.1.1 : MPU
	6.1.2 : Floating-point Unit
	6.1.3 : Caches

	6.2 : TCM
	6.2.1 : Preloading TCMs
	6.2.2 : Preloading TCMs with ECC
	6.2.3 : Using TCMs from reset

	6.3 : Entering EL1

	7 : Memory System
	7.1 : About the memory system
	7.2 : TCM memory
	7.3 : Level-1 caches
	7.3.1 : Cache segregation
	7.3.2 : Data cache invalidation
	7.3.3 : Write streaming mode

	7.4 : Direct access to internal memory
	7.4.1 : Data cache tag and data encoding
	7.4.2 : Instruction cache tag and data encoding

	7.5 : AXIM interface
	7.5.1 : AXIM interface attributes
	7.5.2 : AXIM interface transfers
	7.5.3 : AXIM data prefetchers
	7.5.4 : AXIM transaction IDs
	7.5.5 : AXI privilege information
	7.5.6 : AXIM QoS and user signals
	7.5.7 : AXIM interface timeout

	7.6 : Low-latency peripheral port
	7.6.1 : LLPP Memory attributes
	7.6.2 : LLPP AXI transfer restrictions
	LLPP Device transactions
	LLPP Normal reads
	LLPP Normal writes

	7.6.3 : LLPP timeout

	7.7 : Flash interface
	7.7.1 : Flash interface timeout

	7.8 : AXIS interface
	7.8.1 : Accessing TCM with ECC
	7.8.2 : AXIS characteristics

	7.9 : Error detection and handling
	7.9.1 : TCM error detection and correction
	7.9.2 : Cache memory ECC
	7.9.3 : ECC error reporting
	7.9.4 : Bus protection
	7.9.5 : Flash data ECC

	7.10 : Exclusive accesses
	7.11 : Bus timeouts

	8 : Memory Protection Unit
	8.1 : About the MPU
	8.2 : MPU regions
	8.2.1 : EL1-controlled MPU background region
	8.2.2 : EL2-controlled MPU background region
	8.2.3 : Default cacheability

	8.3 : Virtualization support
	8.3.1 : Combining MPU memory attributes

	8.4 : MPU register access
	8.5 : MPU Register summary

	9 : Generic Interrupt Controller
	9.1 : About the GIC
	9.2 : GIC functional description
	9.2.1 : GIC Distributor memory map
	9.2.2 : Interrupt sources
	9.2.3 : Optional export interface

	9.3 : GIC programmers model
	9.3.1 : Distributor Registers (GICD)
	Distributor Control Register
	Interrupt Controller Type Register
	Distributor Implementer Identification Register
	Interrupt Group Registers 1-30
	Interrupt Set-Enable Registers 1-30
	Interrupt Clear-Enable Registers 1-30
	Interrupt Set-Pending Registers 1-30
	Interrupt Clear-Pending Registers 1-30
	Interrupt Set-Active Registers 1-30
	Interrupt Clear-Active Registers 1-30
	Interrupt Priority Registers 8-247
	Interrupt Configuration Registers 2-61
	Interrupt Routing Registers 32-991
	Identification Registers 0-7
	Component Identification Registers 0-3

	9.3.2 : Redistributor Registers (GICR)
	Redistributor Control Register
	Redistributor Implementer Identification Register
	Redistributor Type Register
	Redistributor Wake Register
	Redistributor Identification Registers 0-7
	Redistributor Component Identification Registers 0-3
	Interrupt Group Register 0
	Interrupt Set-Enable Register 0
	Interrupt Clear-Enable Register 0
	Interrupt Set-Pending Register 0
	Interrupt Clear-Pending Register 0
	Interrupt Set-Active Register 0
	Interrupt Clear-Active Register 0
	Interrupt Priority Registers 0-7
	Interrupt Configuration Register 0
	Interrupt Configuration Register 1

	9.3.3 : Hypervisor Control System Registers
	Interrupt Controller Hyp Control Register
	Interrupt Controller Hyp Control VGIC Type Register
	Interrupt Controller Hyp Maintenance Interrupt Status Register EL2
	Interrupt Controller End of Interrupt Status Register
	Interrupt Controller Empty List Register Status Register
	Interrupt Controller Virtual Machine Control Register
	Interrupt Controller List Registers 0-3
	Interrupt Controller List Registers 0-3
	Interrupt Controller Hyp Active Priorities Group 0 Register 0
	Interrupt Controller Hyp Active Priorities Group 1 Register 0

	9.3.4 : CPU Interface Registers
	Interrupt Controller Interrupt Acknowledge Register 0
	Interrupt Controller Interrupt Acknowledge Register 1
	Interrupt Controller End Of Interrupt Register 0
	Interrupt Controller End Of Interrupt Register 1
	Interrupt Controller Highest Priority Pending Interrupt Register 0
	Interrupt Controller Highest Priority Pending Interrupt Register 1
	Interrupt Controller Binary Point Register 0
	Interrupt Controller Binary Point Register 1
	Interrupt Controller Deactivate Interrupt Register
	Interrupt Controller Interrupt Priority Mask Register
	Interrupt Controller Running Priority Register
	Interrupt Controller Control Register (EL1)
	Interrupt Controller System Register Enable Register (EL1)
	Interrupt Controller System Register Enable Register (EL2)
	Interrupt Controller Interrupt Group 0 Enable Register
	Interrupt Controller Interrupt Group 1 Enable Register
	Interrupt Controller Software Generated Interrupt Group 0 Register
	Interrupt Controller Software Generated Interrupt Group 1 Register
	Interrupt Controller Alias Software Generated Interrupt Group 1 Register
	Interrupt Controller Active Priorities Group 0 Register
	Interrupt Controller Active Priorities Group 1 Register

	9.3.5 : Virtual CPU Interface Registers
	Interrupt Controller Virtual Interrupt Acknowledge Register 0
	Interrupt Controller Virtual Interrupt Acknowledge Register 1
	Interrupt Controller Virtual End Of Interrupt Register 0
	Interrupt Controller Virtual End Of Interrupt Register 1
	Interrupt Controller Virtual Highest Priority Pending Interrupt Register 0
	Interrupt Controller Virtual Highest Priority Pending Interrupt Register 1
	Interrupt Controller Virtual Binary Point Register 0
	Interrupt Controller Virtual Binary Point Register 1
	Interrupt Controller Deactivate Virtual Interrupt Register
	Interrupt Controller Virtual Interrupt Priority Mask Register
	Interrupt Controller Virtual Running Priority Register
	Interrupt Controller Virtual Control Register
	Interrupt Controller Virtual Interrupt Group 0 Enable Register
	Interrupt Controller Virtual Interrupt Group 1 Enable Register
	Interrupt Controller Virtual Active Priorities Group 0 Register
	Interrupt Controller Virtual Active Priorities Group 1 Register



	10 : Generic Timer
	10.1 : About the Generic Timer
	10.2 : Generic Timer functional description
	10.3 : Generic Timer register summary
	10.3.1 : AArch32 Generic Timer register summary


	11 : Debug
	11.1 : About Debug
	11.1.1 : External debug
	Debug host
	Protocol converter
	Debug target
	The Cortex-R52 debug unit

	11.1.2 : Self-hosted debug
	11.1.3 : The debug model
	Watchpoint debug events
	Debug OS Lock


	11.2 : Debug register interfaces
	11.2.1 : Processor interfaces
	11.2.2 : Breakpoints and watchpoints
	11.2.3 : Effects of resets on debug registers
	11.2.4 : External register access permissions

	11.3 : System register summary
	11.4 : System register descriptions
	11.4.1 : Debug ID Register
	11.4.2 : Debug Device ID Register
	11.4.3 : Debug Device ID Register 1

	11.5 : Memory-mapped register summary
	11.6 : Memory-mapped register descriptions
	11.6.1 : External Debug Calibration Control Register
	11.6.2 : External Debug Reserve Control Register
	11.6.3 : External Debug Device ID Register 0
	11.6.4 : External Debug Device ID Register 1
	11.6.5 : External Debug Peripheral Identification Registers
	External Debug Peripheral Identification Register 0
	External Debug Peripheral Identification Register 1
	External Debug Peripheral Identification Register 2
	External Debug Peripheral Identification Register 3
	External Debug Peripheral Identification Register 4

	11.6.6 : External Debug Component Identification Registers
	External Debug Component Identification Register 0
	External Debug Component Identification Register 1
	External Debug Component Identification Register 2
	External Debug Component Identification Register 3

	11.6.7 : External Debug AArch32 Processor Feature Register
	11.6.8 : External Debug Processor Feature Register
	11.6.9 : External Debug Feature Register

	11.7 : External debug interface
	11.7.1 : Debug memory map
	11.7.2 : Debug power interface
	11.7.3 : Debug over warm reset
	11.7.4 : Changing the authentication signals

	11.8 : ROM table
	11.8.1 : ROM table register summary
	11.8.2 : ROM table register descriptions
	ROM entry registers

	11.8.3 : ROM table Debug Peripheral Identification Registers
	ROM table Debug Peripheral Identification Register 0
	ROM table Debug Peripheral Identification Register 1
	ROM table Debug Peripheral Identification Register 2
	ROM table Debug Peripheral Identification Register 3
	ROM table Debug Peripheral Identification Register 4
	ROM table Debug Peripheral Identification Register 5-7

	11.8.4 : ROM table Debug Component Identification Registers
	ROM table Debug Component Identification Register 0
	ROM table Debug Component Identification Register 1
	ROM table Debug Component Identification Register 2
	ROM table Debug Component Identification Register 3



	12 : Performance Monitor Unit
	12.1 : About the PMU
	12.1.1 : Event interface
	12.1.2 : System register and APB interface
	12.1.3 : Counters
	12.1.4 : External register access permissions
	12.1.5 : Authentication signals and PMU behavior

	12.2 : PMU register summary
	12.3 : PMU register descriptions
	12.3.1 : Performance Monitors Control Register
	12.3.2 : Performance Monitors Common Event Identification Register 0
	12.3.3 : Performance Monitors Common Event Identification Register 1

	12.4 : Memory-mapped register summary
	12.5 : Memory-mapped register descriptions
	12.5.1 : Performance Monitor Configuration Register
	12.5.2 : Performance Monitors Peripheral Identification Registers
	Performance Monitors Peripheral Identification Register 0
	Performance Monitors Peripheral Identification Register 1
	Performance Monitors Peripheral Identification Register 2
	Performance Monitors Peripheral Identification Register 3
	Performance Monitors Peripheral Identification Register 4
	Performance Monitors Peripheral Identification Register 5-7

	12.5.3 : Performance Monitors Component Identification Registers
	Performance Monitors Component Identification Register 0
	Performance Monitors Component Identification Register 1
	Performance Monitors Component Identification Register 2
	Performance Monitors Component Identification Register 3


	12.6 : Events
	12.7 : Interrupts
	12.8 : Exporting PMU events
	12.8.1 : External hardware
	12.8.2 : Debug trace hardware


	13 : Cross Trigger
	13.1 : About the cross trigger
	13.2 : Trigger inputs and outputs
	13.3 : Cortex®-R52 CTM
	13.4 : Cross trigger register summary
	13.4.1 : External register access permissions

	13.5 : Cross trigger register descriptions
	13.5.1 : CTI Device Identification Register
	13.5.2 : CTI Integration Mode Control Register
	13.5.3 : CTI Peripheral Identification Registers
	Peripheral Identification Register 0
	Peripheral Identification Register 1
	Peripheral Identification Register 2
	Peripheral Identification Register 3
	Peripheral Identification Register 4
	Peripheral Identification Register 5-7

	13.5.4 : Component Identification Registers
	Component Identification Register 0
	Component Identification Register 1
	Component Identification Register 2
	Component Identification Register 3



	14 : Embedded Trace Macrocell
	14.1 : About the ETM
	14.1.1 : Processor interface
	14.1.2 : Instruction trace generator
	14.1.3 : Data trace generator
	14.1.4 : FIFO
	14.1.5 : Resources and filtering logic
	14.1.6 : ATB interfaces
	14.1.7 : APB interface
	14.1.8 : Global timestamping

	14.2 : ETM trace unit generation options and resources
	14.3 : ETM Event connectivity
	14.4 : Operation
	14.4.1 : Implementation defined registers
	14.4.2 : Precise TraceEnable events
	14.4.3 : Parallel instruction execution
	14.4.4 : Comparator features
	14.4.5 : Trace features
	14.4.6 : Packet formats
	14.4.7 : Resource selection
	14.4.8 : Trace flush behavior
	14.4.9 : Low power state behavior
	14.4.10 : Cycle counter
	14.4.11 : Non-architectural exceptions
	14.4.12 : Trace synchronization

	14.5 : Modes of operation and execution
	14.5.1 : Use of the ETM main enable bit
	14.5.2 : Programming and reading ETM registers
	14.5.3 : External register access permissions

	14.6 : Register summary
	14.7 : Register descriptions
	14.7.1 : Programming Control Register
	14.7.2 : Status Register
	14.7.3 : Trace Configuration Register
	14.7.4 : Event Control 0 Register
	14.7.5 : Event Control 1 Register
	14.7.6 : Stall Control Register
	14.7.7 : Global Timestamp Control Register
	14.7.8 : Synchronization Period Register
	14.7.9 : Cycle Count Control Register
	14.7.10 : Branch Broadcast Control Register
	14.7.11 : Trace ID Register
	14.7.12 : ViewInst Main Control Register
	14.7.13 : ViewInst Include/Exclude Control Register
	14.7.14 : ViewInst Start/Stop Control Register
	14.7.15 : ViewData Main Control Register
	14.7.16 : ViewData Include/Exclude Single Address Comparator Register
	14.7.17 : ViewData Include/Exclude Address Range Comparator Register
	14.7.18 : Sequencer State Transition Control Registers, n=0-2
	14.7.19 : Sequencer Reset Control Register
	14.7.20 : Sequencer State Register
	14.7.21 : External Input Select Register
	14.7.22 : Counter Reload Value Registers, n=0-1
	14.7.23 : Counter Control Registers 0-1
	14.7.24 : Counter Value Registers, n=0-1
	14.7.25 : ID Registers, n=8-13
	14.7.26 : Implementation Specific Register 0
	14.7.27 : ID Register 0
	14.7.28 : ID Register 1
	14.7.29 : ID Register 2
	14.7.30 : ID Register 3
	14.7.31 : ID Register 4
	14.7.32 : ID Register 5
	14.7.33 : Resource Selection Registers, n=2-15
	14.7.34 : Single-shot Comparator Control Registers, n=0-1
	14.7.35 : Single-shot Comparator Status Registers n=0-1
	14.7.36 : OS Lock Access Register
	14.7.37 : OS Lock Status Register
	14.7.38 : Power Down Control Register
	14.7.39 : Power Down Status Register
	14.7.40 : Address Comparator Value Registers, n=0-7
	14.7.41 : Address Comparator Access Type Registers, n=0-7
	14.7.42 : Data Value Comparator Value Registers, n=0-1
	14.7.43 : Data Value Comparator Mask Registers, n=0-1
	14.7.44 : Context ID Comparator Value Registers 0
	14.7.45 : Virtual Context Identifier Comparator Value Register
	14.7.46 : Context ID Comparator Control Register 0
	14.7.47 : Integration Mode Control Register
	14.7.48 : Claim Tag Set Register
	14.7.49 : Claim Tag Clear Register
	14.7.50 : TRCDEVAFF0, Device Affinity Register 0
	14.7.51 : TRCDEVAFF1, Device Affinity Register 1
	14.7.52 : Software Lock Access Register
	14.7.53 : Software Lock Status Register
	14.7.54 : Authentication Status Register
	14.7.55 : Device Architecture Register
	14.7.56 : Device ID Register
	14.7.57 : Device Type Register
	14.7.58 : Peripheral Identification Registers
	14.7.59 : Component Identification Registers


	15 : Advanced SIMD and floating-point support
	15.1 : About the Advanced SIMD and floating-point support
	15.2 : Floating-point support
	15.3 : AArch32 single-precision floating point instructions
	15.4 : Accessing the feature identification registers
	15.5 : Register summary
	15.6 : Register descriptions
	15.6.1 : Floating-point System ID Register
	15.6.2 : Floating-point Status and Control Register
	15.6.3 : Media and Floating-point Feature Register 0
	15.6.4 : Media and Floating-point Feature Register 1
	15.6.5 : Media and Floating-point Feature Register 2
	15.6.6 : Floating-Point Exception Control Register


	A : Signal Descriptions
	A.1 : Clock and clock enable signals
	A.2 : Resets
	A.3 : Reset-related signals
	A.4 : Configuration inputs
	A.5 : Memory correcting error reporting signals
	A.6 : Event output signals
	A.7 : MRP signals
	A.8 : Bus interface signals
	A.8.1 : AXIM interface signals
	AXIM clock enable signal
	AXIM read address channel signals
	AXIM read address signal integrity protection signals
	AXIM read address interconnect protection signal
	Read data channel signals
	AXIM read data signal integrity protection signals
	AXIM read data interconnect protection signals
	AXIM write address channel signals
	AXIM write address signal integrity
	AXIM write address interconnect protection signal
	AXIM write data channel signals
	AXIM write data signal integrity protection signals
	AXIM write data interconnect protection signals
	AXIM write response channel signals
	AXIM write response signal integrity protection signals
	AXIM write response interconnect protection signal

	A.8.2 : AXIS interface signals
	AXIS clock enable signal
	AXIS read address channel signals
	AXIS read address signal integrity protection signals
	AXIS read address interconnect protection signal
	AXIS read data channel signals
	AXIS read data signal integrity protection signals
	AXIS read data interconnect protection signals
	AXIS write address channel signals
	AXIS write address signal integrity protection signals
	AXIS write address interconnect protection signals
	AXIS write data channel signals
	AXIS write data signal integrity protection signals
	AXIS write data interconnect protection signals
	AXIS write response channel signals
	AXIS write response signal integrity protection signals
	AXIS write response interconnect protection signal

	A.8.3 : LLPP interface signals
	LLPP clock enable signal
	LLPP read address channel signals
	LLPP read address signal integrity protection signals
	LLPP read address interconnect protection signals
	LLPP read data channel signals
	LLPP read data signal integrity protection signals
	LLPP read data interconnect protection signals
	LLPP write address channel signals
	LLPP write address signal integrity protection signals
	LLPP write address interconnect protection signal
	LLPP write data channels signals
	LLPP write data signal integrity protection signals
	LLPP write data interconnect protection signals
	LLPP write response channel signals
	LLPP write response signal integrity protection signals
	LLPP write response interconnect protection signal

	A.8.4 : Flash interface signals
	Flash clock enable signal
	Flash read address channel signals
	Flash read address signal integrity protection signals
	Flash read address interconnect protection signals
	Flash read data channel signals
	Flash read data signal integrity protection signals
	Flash read data interconnect protection signals


	A.9 : Debug and trace interface signals
	A.9.1 : Debug interface signals
	Debug APB interface signals
	Authentication interface signals
	Miscellaneous debug signals

	A.9.2 : ETM interface signals
	ATB instruction trace interface signals
	ATB data trace interface signals
	Miscellaneous ETM interface signals

	A.9.3 : Cross trigger interface signals

	A.10 : Generic timer signals
	A.11 : Power management signals
	A.12 : DFT and on-line MBIST signals
	A.12.1 : DFT signals
	A.12.2 : On-line MBIST signals

	A.13 : GIC Distributor external messaging port signals
	A.14 : Interrupt input signals
	A.15 : DCLS signals
	A.16 : Split/Lock signal

	B : Cycle Timings and Interlock Behavior
	B.1 : About cycle timings and interlock behavior
	B.1.1 : Pipeline information
	B.1.2 : Instruction execution overview
	B.1.3 : Conditional instructions
	B.1.4 : Flag-setting instructions

	B.2 : Instructions cycle timings
	B.2.1 : Definition of terms
	B.2.2 : Base instructions cycle timings
	B.2.3 : Floating-point and Advanced SIMD instructions cycle timings

	B.3 : Pipeline behavior
	B.3.1 : Skewing
	B.3.2 : Dual-issuing
	B.3.3 : Load/store instructions
	B.3.4 : Division and square root
	B.3.5 : Floating-point and Advanced SIMD Multiply-Accumulate instructions
	B.3.6 : Instructions with exceptional behavior


	C : Processor UNPREDICTABLE Behaviors
	C.1 : Use of R15 by Instruction
	C.2 : UNPREDICTABLE instructions within an IT block
	C.3 : Instruction fetches from Device memory
	C.4 : Specific UNPREDICTABLE cases for instructions
	C.4.1 : CLZ
	C.4.2 : PUSH
	C.4.3 : RBIT
	C.4.4 : REV, REV16, REVSH
	C.4.5 : STC
	C.4.6 : STM/STMIA/STMEA
	C.4.7 : STMDA/STMED and STMIB/STMFA
	C.4.8 : STMDB/STMFD
	C.4.9 : STR (Immediate, Thumb), STR (Immediate, Arm), STR (register), STRB (immediate, Thumb), STRB (immediate, Arm), STRB (register), STRBT, STRH (immediate, Thumb), STRH (immediate, Arm), STRH (register), STRHT, and STRT
	C.4.10 : STRD (immediate) and STRD (register)
	C.4.11 : STREX, STREXB, STREXD, STREXH, STLEX, STLEXB, STLEXD, and STLEXH

	C.5 : Load/Store accesses crossing MPU regions
	C.5.1 : Crossing an MPU region with different memory types or shareability attributes
	C.5.2 : Crossing a 4KB boundary with Device (or Strongly-Ordered) accesses

	C.6 : Armv8 Debug UNPREDICTABLE behaviors
	C.7 : Other UNPREDICTABLE behaviors

	D : Revisions
	D.1 : Revisions


