
Arm®v8-A Foundation Platform
Version 11.13

User Guide

Copyright © 2012–2020 Arm Limited or its affiliates. All rights reserved.
100961_1113_00_en

Arm®v8-A Foundation Platform
User Guide
Copyright © 2012–2020 Arm Limited or its affiliates. All rights reserved.

Release Information

Document History

Issue Date Confidentiality Change

A 17 October 2012 Non-Confidential First release.

B 01 May 2013 Non-Confidential Minor updates. Directory structure changed.

C 13 November 2013 Non-Confidential Memory maps added. Update for Foundation Model v2.

D 24 June 2014 Non-Confidential Minor updates. Update for v2.1.

E 28 November 2014 Non-Confidential Update for v9.1. Added virtiop9 control.

F 28 February 2015 Non-Confidential Update for v9.2.

G 31 May 2015 Non-Confidential Update for v9.3.

H 31 August 2015 Non-Confidential Update for v9.4.

I 30 November 2015 Non-Confidential Update for v9.5.

J 29 February 2016 Non-Confidential Update for v9.6.

K 31 May 2016 Non-Confidential Update for v10.0.

L 31 August 2016 Non-Confidential Update for v10.1.

M 11 November 2016 Non-Confidential Update for v10.2.

N 17 February 2017 Non-Confidential Update for v10.3.

1100-00 31 May 2017 Non-Confidential Update for v11.0. Document numbering scheme has changed.

1101-00 31 August 2017 Non-Confidential Update for v11.1.

1102-00 17 November 2017 Non-Confidential Update for v11.2.

1103-00 23 February 2018 Non-Confidential Update for v11.3.

1104-00 22 June 2018 Non-Confidential Update for v11.4.

1104-01 17 August 2018 Non-Confidential Update for v11.4.2.

1105-00 23 November 2018 Non-Confidential Update for v11.5.

1106-00 27 February 2019 Non-Confidential Update for v11.6.

1107-00 17 May 2019 Non-Confidential Update for v11.7.

1108-00 05 September 2019 Non-Confidential Update for v11.8.

1108-01 03 October 2019 Non-Confidential Update for v11.8.1.

1109-00 28 November 2019 Non-Confidential Update for v11.9.

1110-00 12 March 2020 Non-Confidential Update for v11.10.

1111-00 09 June 2020 Non-Confidential Update for v11.11.

1112-00 22 September 2020 Non-Confidential Update for v11.12.

1113-00 09 December 2020 Non-Confidential Update for v11.13.

Non-Confidential Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information contained in
this document may be protected by one or more patents or pending patent applications. No part of this document may be

 Arm®v8-A Foundation Platform

100961_1113_00_en Copyright © 2012–2020 Arm Limited or its affiliates. All rights
reserved.

2

Non-Confidential

reproduced in any form by any means without the express prior written permission of Arm. No license, express or implied, by
estoppel or otherwise to any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use
the information for the purposes of determining whether implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE
WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, and has
undertaken no analysis to identify or understand the scope and content of, third party patents, copyrights, trade secrets, or other
rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING
OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure of
this document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof is
not exported, directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s customers is
not intended to create or refer to any partnership relationship with any other company. Arm may make changes to this document at
any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any click through or signed written
agreement covering this document with Arm, then the click through or signed written agreement prevails over and supersedes the
conflicting provisions of these terms. This document may be translated into other languages for convenience, and you agree that if
there is any conflict between the English version of this document and any translation, the terms of the English version of the
Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited (or its
subsidiaries) in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this document may be the
trademarks of their respective owners. Please follow Arm’s trademark usage guidelines at http://www.arm.com/company/policies/
trademarks.

Copyright © 2012–2020 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

(LES-PRE-20349)

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license restrictions in
accordance with the terms of the agreement entered into by Arm and the party that Arm delivered this document to.

Unrestricted Access is an Arm internal classification.

Product Status

The information in this document is Final, that is for a developed product.

Web Address

developer.arm.com

Progressive terminology commitment

Arm values inclusive communities. Arm recognizes that we and our industry have used terms that can be offensive. Arm strives to
lead the industry and create change.

We believe that this document contains no offensive terms. If you find offensive terms in this document, please contact
terms@arm.com.

 Arm®v8-A Foundation Platform

100961_1113_00_en Copyright © 2012–2020 Arm Limited or its affiliates. All rights
reserved.

3

Non-Confidential

http://www.arm.com/company/policies/trademarks
http://www.arm.com/company/policies/trademarks
https://developer.arm.com
mailto:terms@arm.com

Contents
Arm®v8-A Foundation Platform User Guide

Preface
About this book 7

Chapter 1 Arm®v8-A Foundation Platform Introduction
1.1 Platform introduction .. 1-10
1.2 Software requirements 1-11
1.3 Platform overview .. 1-12
1.4 Data collection in the Foundation Platform .. 1-15

Chapter 2 Getting Started
2.1 Verifying the installation 2-18
2.2 Running the example program 2-20
2.3 Troubleshooting the example program .. 2-21
2.4 Using Linux .. 2-22

Chapter 3 Programming Reference
3.1 Command-line options 3-24
3.2 Foundation Platform memory map 3-28
3.3 Clock and timer .. 3-31
3.4 Interrupt maps 3-32
3.5 System register block 3-34
3.6 CLCD window .. 3-36
3.7 Web interface 3-39
3.8 UARTs 3-40

100961_1113_00_en Copyright © 2012–2020 Arm Limited or its affiliates. All rights
reserved.

4

Non-Confidential

3.9 Multicore configuration 3-41
3.10 Semihosting 3-42

100961_1113_00_en Copyright © 2012–2020 Arm Limited or its affiliates. All rights
reserved.

5

Non-Confidential

Preface

This preface introduces the Arm®v8‑A Foundation Platform User Guide.

It contains the following:
• About this book on page 7.

100961_1113_00_en Copyright © 2012–2020 Arm Limited or its affiliates. All rights
reserved.

6

Non-Confidential

 About this book
This document describes the Arm®v8‑A Foundation Platform for the Armv8‑A architecture. It is an aid
for hardware and software developers in developing Armv8‑A products.

 Using this book

This book is organized into the following chapters:

Chapter 1 Arm®v8-A Foundation Platform Introduction
This chapter introduces the Armv8‑A Foundation Platform.

Chapter 2 Getting Started
This chapter describes testing the Armv8‑A Foundation Platform installation.

Chapter 3 Programming Reference
This chapter describes the Armv8‑A Foundation Platform.

 Glossary

The Arm® Glossary is a list of terms used in Arm documentation, together with definitions for those
terms. The Arm Glossary does not contain terms that are industry standard unless the Arm meaning
differs from the generally accepted meaning.

See the Arm® Glossary for more information.

 Typographic conventions

italic
Introduces special terminology, denotes cross-references, and citations.

bold
Highlights interface elements, such as menu names. Denotes signal names. Also used for terms
in descriptive lists, where appropriate.

monospace
Denotes text that you can enter at the keyboard, such as commands, file and program names,
and source code.

monospace
Denotes a permitted abbreviation for a command or option. You can enter the underlined text
instead of the full command or option name.

monospace italic
Denotes arguments to monospace text where the argument is to be replaced by a specific value.

monospace bold
Denotes language keywords when used outside example code.

<and>
Encloses replaceable terms for assembler syntax where they appear in code or code fragments.
For example:

MRC p15, 0, <Rd>, <CRn>, <CRm>, <Opcode_2>

SMALL CAPITALS

Used in body text for a few terms that have specific technical meanings, that are defined in the
Arm® Glossary. For example, IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN, and
UNPREDICTABLE.

 Feedback

 Preface
 About this book

100961_1113_00_en Copyright © 2012–2020 Arm Limited or its affiliates. All rights
reserved.

7

Non-Confidential

https://developer.arm.com/support/arm-glossary

Feedback on this product

If you have any comments or suggestions about this product, contact your supplier and give:
• The product name.
• The product revision or version.
• An explanation with as much information as you can provide. Include symptoms and diagnostic

procedures if appropriate.

Feedback on content

If you have comments on content then send an e-mail to errata@arm.com. Give:

• The title Armv8‑A Foundation Platform User Guide.
• The number 100961_1113_00_en.
• If applicable, the page number(s) to which your comments refer.
• A concise explanation of your comments.

Arm also welcomes general suggestions for additions and improvements.
 Note

Arm tests the PDF only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the quality of the
represented document when used with any other PDF reader.

 Other information

• Arm® Developer.
• Arm® Documentation.
• Technical Support.
• Arm® Glossary.

 Preface
 About this book

100961_1113_00_en Copyright © 2012–2020 Arm Limited or its affiliates. All rights
reserved.

8

Non-Confidential

mailto:errata@arm.com
https://developer.arm.com/
https://developer.arm.com/documentation
http://www.arm.com/support/technical-support
https://developer.arm.com/support/arm-glossary

Chapter 1
Arm®v8-A Foundation Platform Introduction

This chapter introduces the Armv8‑A Foundation Platform.

It contains the following sections:
• 1.1 Platform introduction on page 1-10.
• 1.2 Software requirements on page 1-11.
• 1.3 Platform overview on page 1-12.
• 1.4 Data collection in the Foundation Platform on page 1-15.

100961_1113_00_en Copyright © 2012–2020 Arm Limited or its affiliates. All rights
reserved.

1-9

Non-Confidential

1.1 Platform introduction
The Armv8‑A Foundation Platform is an enabling platform for the Armv8‑A architecture.

It is a simple platform model capable of running bare-metal semi-hosted applications and booting a full
operating system, with processor cluster, RAM, and some basic I/O devices such as Universal
Asynchronous Receiver/Transmitters (UARTs), block storage, and network support. It also contains a
simple web interface to indicate the status of the platform. It is supplied as a platform with configuration
of the simulation from the command line and control using peripherals in the platform.

The Foundation Platform is a Programmers View (PV) model, which sacrifices timing accuracy to
achieve fast simulation execution speeds. You can use it for confirming software functionality, but you
must not rely on the accuracy of cycle counts, low-level component interactions, or other hardware-
specific behavior.

It uses Arm Fast Models technology and forms part of a comprehensive suite of modeling solutions for
Arm processors. These modeling solutions are available in the portfolio of models that are delivered
through the Arm Fast Models product. For more information, see Fast Models on Arm Developer.

1 Arm®v8-A Foundation Platform Introduction
1.1 Platform introduction

100961_1113_00_en Copyright © 2012–2020 Arm Limited or its affiliates. All rights
reserved.

1-10

Non-Confidential

https://developer.arm.com/tools-and-software/simulation-models/fast-models

1.2 Software requirements
This section describes the host software that is required to run the Armv8‑A Foundation Platform.

Operating Systems

Red Hat Enterprise Linux 6 or 7 (for 64-bit architectures), Ubuntu 16.04 or 18.04 Long Term
Support (LTS).

 Note

Currently, there is no support for running the platform on other operating systems. However, the platform
runs on any recent x86 64-bit Linux OS provided glibc v2.3.2, or higher, and libstdc++ 6.0.0, or higher,
are present.

UART Output
For the Universal Asynchronous Receiver/Transmitter (UART) output to be visible, both xterm
and telnet must be installed on the host, and be specified in your PATH.

1 Arm®v8-A Foundation Platform Introduction
1.2 Software requirements

100961_1113_00_en Copyright © 2012–2020 Arm Limited or its affiliates. All rights
reserved.

1-11

Non-Confidential

1.3 Platform overview
This section describes the features and limitations of the Foundation Platform, and the types of network
support that are provided.

This section contains the following subsections:
• 1.3.1 Features of the Foundation Platform on page 1-12.
• 1.3.2 Processor models in the Foundation Platform on page 1-12.
• 1.3.3 Network support in the Foundation Platform on page 1-13.
• 1.3.4 Foundation Platform block diagram on page 1-13.
• 1.3.5 Limitations of the Foundation Platform on page 1-14.

1.3.1 Features of the Foundation Platform

The Armv8‑A Foundation Platform provides the following features:

• An Armv8‑A cluster model containing 1-4 cores.
• Up to 8GB of RAM. To simulate a system with 4GB of RAM, you require a host with at least 8GB of

RAM. To simulate a system with 8GB of RAM, you require a host with at least 12GB of RAM.
• Four PL011 UARTs connected to xterms.
• Platform peripherals including a real-time clock, watchdog timer, real-time timer, and power

controller.
• Secure peripherals including a trusted watchdog, random number generator, non-volatile counters,

and root-key storage.
• A network device model that is connected to host network resources.
• A block storage device that is implemented as a file on the host.
• A small system register block with LEDs and switches visible using a web server.
• Host filesystem access that is implemented as a Plan 9 filesystem.
• A CLCD that allows GUI visualization.
• Debug capabilities through the use of a CADI server.
• TarmacTrace support is built into the model.

Caches are modeled as stateless and there are no write buffers. This gives the effect of perfect memory
coherence on the data side. The instruction side has a variable size prefetch buffer so requires correct
barriers to be used in target code to operate correctly.

The platform runs as fast as possible unless all the cores in the cluster are Wait for Interrupt (WFI) or
Wait for Exception (WFE). In the case of WFE, the platform idles until an interrupt or external event occurs.

The Foundation Platform has been revised to support the Arm Trusted Base System Architecture (TBSA)
and Server Base System Architecture (SBSA). Several peripheral devices have been added, with
corresponding changes to the memory map. It has also been updated to align more closely with
peripherals present in the Versatile™ Express baseboard and in Arm Fast Models.

Software that is written to target the previous versions of the platform work unmodified on the platform
by using the --no-gicv3 configuration option. Only software that uses the early blocks of RAM is likely
to require some adjustments.

Related references
3.2 Foundation Platform memory map on page 3-28
Related information
Armv8‑A Architecture Reference Manual

1.3.2 Processor models in the Foundation Platform

The processor models in this platform are not based on any existing processor design, but conform to the
Armv8‑A architectural specifications.

1 Arm®v8-A Foundation Platform Introduction
1.3 Platform overview

100961_1113_00_en Copyright © 2012–2020 Arm Limited or its affiliates. All rights
reserved.

1-12

Non-Confidential

https://developer.arm.com/documentation/ddi0487/fc/

They implement:
• Armv8 versions 8.0-8.7.
• AArch64 at all exception levels.
• AArch32 support at EL0 and EL1.
• Little and big-endian support at all exception levels.
• Generic timers.
• Self-hosted debug.
• GICv2 and GICv3 memory-mapped processor interfaces and distributor.
• Scalable Vector Extension (SVE) and SVE2.

1.3.3 Network support in the Foundation Platform

The platform provides the following types of network support:

NAT, IPv4 based
NAT, IPv4-based networking provides limited IP connectivity by using user-level IP services.
This requires no extra privileges to set up or use, but has inherent limitations. System-level
services, or services conflicting with those services on the host, can be provided using port
remapping.

Bridged
Bridged networking requires the setup of an ethernet bridge device to bridge between the
ethernet port on the host and the network interface that the platform provides. This usually
requires administrator privileges. See the documentation in the Linux bridge-utils package for
more information.

1.3.4 Foundation Platform block diagram

This figure shows the block diagram for the Foundation Platform.

Cortex-A7

Non-secure

Processor cluster

PL011_0

Timers

Secure RAM

PL011_1

PL011_2

PL011_3

Cortex-A7Cortex-A7Core 1

GIC
UARTs

Networking Virtio devices System
Controller

Secure

Non-Secure
RAM

Memory bus

InterruptsInterrupts

Address decoding

Image loader

Non-Secure
peripheral

Secure
peripheral

Block storage

Host
filesystem

CLCD

Figure 1-1 Block diagram of Armv8-A Foundation Platform

1 Arm®v8-A Foundation Platform Introduction
1.3 Platform overview

100961_1113_00_en Copyright © 2012–2020 Arm Limited or its affiliates. All rights
reserved.

1-13

Non-Confidential

 Note

The behavior of the address decoding block depends on whether the --secure-memory command-line
option is used.

1.3.5 Limitations of the Foundation Platform

The following restrictions apply to the Armv8‑A Foundation Platform:

• Write buffers are not modeled.
• Interrupts are not taken at every instruction boundary.
• Caches are modeled as stateless.
• Plug-ins are not supported.
• There is no support for Thumb®2EE.
• There is no support for the Armv8 cryptography extensions.
• Arm does not offer direct customer support for the Foundation Platform. For technical support use the

Arm Connected Community, http://community.arm.com.

1 Arm®v8-A Foundation Platform Introduction
1.3 Platform overview

100961_1113_00_en Copyright © 2012–2020 Arm Limited or its affiliates. All rights
reserved.

1-14

Non-Confidential

http://community.arm.com

1.4 Data collection in the Foundation Platform
Arm periodically collects anonymous information about the usage of our products to understand and
analyze what components or features you are using, with the goal of improving our products and your
experience with them. Product usage analytics contain information such as system information, settings,
and usage of specific features of the product. They do not include any personal information.

Host information includes:
• Operating system name, version, and locale.
• Number of CPUs.
• Amount of physical memory.
• Screen resolution.
• Processor and GPU type.

Feature tracking information includes:

Table 1-1 Fast Models analytics data points

Name Description Since

Platform name • Tracked:
— Name of the platform model being run
— Fast Models version and build number that was used to build the platform model.
— Whether the platform model is a standalone product or was supplied as part of the

Fast Models product. a

• Reported: Percentage of users using the different platforms.
• Data type: Text.
• Send policy: Every invocation.
• Trigger points: On starting the simulation.

v11.8

Session length • Tracked: Length of time the platform was used.
• Reported: Average time the different platforms are used.
• Data type: Text.
• Send policy: Every invocation.
• Trigger points: On exiting the simulation.

v11.9

Debug server • Tracked: Whether a CADI or Iris debugger was connected.
• Reported: Type of debug server that was started, either CADI or Iris.
• Data type: Text.
• Send policy: Every invocation.
• Trigger points: Debug server startup.

v11.10

Arm IP • Tracked: Names of Fast Models core, System IP, and GPU components that are included
in the simulation.

• Reported: Component names, for example DP500 or SMMUv3AEM. These are not
hierarchical names.

• Data type: Text.
• Send policy: Every invocation.
• Trigger points: Component instantiation.

v11.10

a This feature is tracked since v11.10.

1 Arm®v8-A Foundation Platform Introduction
1.4 Data collection in the Foundation Platform

100961_1113_00_en Copyright © 2012–2020 Arm Limited or its affiliates. All rights
reserved.

1-15

Non-Confidential

 Note

• Analytics gathering is enabled by default. Use the --disable-analytics command-line option to
disable it for the current invocation, or set the ARM_DISABLE_ANALYTICS environment variable to a
non-zero value to disable it for all invocations.

• Querying the available options using --help does not trigger reporting.
• The names of non-Arm platforms or components are obfuscated.

1 Arm®v8-A Foundation Platform Introduction
1.4 Data collection in the Foundation Platform

100961_1113_00_en Copyright © 2012–2020 Arm Limited or its affiliates. All rights
reserved.

1-16

Non-Confidential

Chapter 2
Getting Started

This chapter describes testing the Armv8‑A Foundation Platform installation.

It contains the following sections:
• 2.1 Verifying the installation on page 2-18.
• 2.2 Running the example program on page 2-20.
• 2.3 Troubleshooting the example program on page 2-21.
• 2.4 Using Linux on page 2-22.

100961_1113_00_en Copyright © 2012–2020 Arm Limited or its affiliates. All rights
reserved.

2-17

Non-Confidential

2.1 Verifying the installation
The Foundation Platform is available only as a prebuilt platform binary.

Figure 2-1 Contents of the installation

The contents of the installation are:

doc
Contains a readme file and a PDF version of this document. The readme provides an overview
of the platform and release notes for this and previous platform versions.

examples
Contains source code and executable for an example Hello World program. It also includes the
Device Tree Source (DTS) file for the Foundation Platform.

license_terms
Contains the copyright and license information for third-party software, and the end-user license
agreement.

models
Contains the Foundation Platform executable and libraries that are required at run time:

Foundation_Platform
The Armv8‑A Foundation Platform executable.

libFoundation_AEMv8A-Linux64-Release-GCC-6.4.so
EVS shared library. This library is required because the Foundation Platform is an EVS
platform.

libMAXCOREInitSimulationEngine.3.so
Required for initializing the platform.

libSDL2-2.0.so.0.10.0
Simple DirectMedia Layer library, required for CLCD visualization.

2 Getting Started
2.1 Verifying the installation

100961_1113_00_en Copyright © 2012–2020 Arm Limited or its affiliates. All rights
reserved.

2-18

Non-Confidential

libarmctmodel.so
Code translation library.

libarmfastmodelsanalytics.1.1.1.so and librui_5.2.0.x64.so
Required if analytics gathering is enabled.

Related tasks
2.2 Running the example program on page 2-20
Related information
Device Tree

2 Getting Started
2.1 Verifying the installation

100961_1113_00_en Copyright © 2012–2020 Arm Limited or its affiliates. All rights
reserved.

2-19

Non-Confidential

https://community.arm.com/developer/tools-software/oss-platforms/w/docs/525/device-tree

2.2 Running the example program
You can use the example program that is supplied to confirm that the Armv8‑A Foundation Platform is
working correctly.

Procedure
1. Run the example from the command line: ./Foundation_Platform --image hello.axf
2. Optionally add --quiet to suppress all output except for the output from the example program.

Results:

The program should produce output similar to this:

terminal_0: Listening for serial connection on port 5000
terminal_1: Listening for serial connection on port 5000
terminal_3: Listening for serial connection on port 5000
terminal_2: Listening for serial connection on port 5000
Hello, 64-bit world!

Info: /OSCI/SystemC: Simulation stopped by user.

This demonstrates that the platform initialized correctly as it loaded and executed the example
program. It also demonstrates that the semihosting calls to print output and stop the platform worked
properly.

2 Getting Started
2.2 Running the example program

100961_1113_00_en Copyright © 2012–2020 Arm Limited or its affiliates. All rights
reserved.

2-20

Non-Confidential

2.3 Troubleshooting the example program
You can encounter common error messages when running the example program.

• If you attempt to run the example program on a 32-bit Linux host, it gives an error similar to the
following:

./Foundation_Platform: /lib64/ld-linux-x86-64.so.2: bad ELF interpreter: No such file or directory

• If libstdc++ is not installed on your system, you get the following error on startup:

./Foundation_Platform: error while loading shared libraries: libstdc++.so.6: cannot open shared object file

• If your system glibc is too old, or your libstdc++ is too old, you get the following messages:

./Foundation_Platform: /usr/lib64/libstdc++.so.6: version `GLIBCXX_3.4' not found (required by
Foundation_Platform)
./Foundation_Platform: /lib64/libc.so.6: version `GLIBC_2.3.2' not found (required by Foundation_Platform)
./Foundation_Platform: /lib64/libc.so.6: version `GLIBC_2.2.5' not found (required by Foundation_Platform)

libstdc++ and glibc are normally part of your core OS installation.

2 Getting Started
2.3 Troubleshooting the example program

100961_1113_00_en Copyright © 2012–2020 Arm Limited or its affiliates. All rights
reserved.

2-21

Non-Confidential

2.4 Using Linux
Arm provides validated Linux and Android deliverables for the Armv8‑A Foundation Platform.

These are available on the Arm Community website at Arm Development Platforms. To get started with
Linux on the Armv8‑A Foundation Platform, see Armv8-A FVPs on Arm Community.

2 Getting Started
2.4 Using Linux

100961_1113_00_en Copyright © 2012–2020 Arm Limited or its affiliates. All rights
reserved.

2-22

Non-Confidential

https://community.arm.com/dev-platforms/
https://community.arm.com/dev-platforms/w/docs/228/armv8-a-fvps

Chapter 3
Programming Reference

This chapter describes the Armv8‑A Foundation Platform.

It contains the following sections:
• 3.1 Command-line options on page 3-24.
• 3.2 Foundation Platform memory map on page 3-28.
• 3.3 Clock and timer on page 3-31.
• 3.4 Interrupt maps on page 3-32.
• 3.5 System register block on page 3-34.
• 3.6 CLCD window on page 3-36.
• 3.7 Web interface on page 3-39.
• 3.8 UARTs on page 3-40.
• 3.9 Multicore configuration on page 3-41.
• 3.10 Semihosting on page 3-42.

100961_1113_00_en Copyright © 2012–2020 Arm Limited or its affiliates. All rights
reserved.

3-23

Non-Confidential

3.1 Command-line options
Command-line options provide all platform configuration. To see a summary of the available commands,
run the platform with --help.

The syntax to use on the command line is:

./Foundation_Platform [OPTIONS...]

Table 3-1 Command-line options

Option Description

--arm-v8.n Enable the Armv8.n version of the architecture, where 0 <= n <= 7. The default is
--arm-v8.7.

--bigendian Start processors in big-endian mode. The default is little-endian.

--block-device=file Image file to use as persistent block storage.

--cadi-server Start the CADI server. This option allows a CADI-enabled debugger to connect to targets in
the simulation.

--cores=N Specify the number of processors, where N is in the range 1-4. The default is 1.

--(ns)data=file@address Raw file to load at an address in non-secure or secure memory. Use --nsdata to load data
into non-secure memory when the --secure-memory option is enabled.

--disable-analytics Disable product analytics gathering for the current invocation. Set the
ARM_DISABLE_ANALYTICS environment variable to a non-zero value to disable it for all
invocations.

--(no-)gicv3 Enable GICv3 or the legacy, compatible GICv2. The default is --gicv3.

--help Display the command-line options and quit.

--image=file ELF image to load.

--min-sync-latency=N Number of ticks to simulate before synchronizing. Events that occur at a higher frequency
than this value are missed. The default is 100.

--network=(none|nat|bridged) Configure the network access mode. The default is none.

--network-bridge=dev Bridged network device name. The default is ARM0.

--network-mac-address MAC address to use for networking. The default is 00:02:f7:ef:f6:74.

--network-nat-ports=M Optional comma-separated list of NAT port mappings in the form:
host_port=model_port, for example, 8022=22.

--network-nat-subnet=S Subnet used for NAT networking. The default is 172.20.51.0/24.

--p9_root_dir=dir Host folder to be shared between the host and the guest.

--print-port-number Print the port number that the CADI server is listening to. This option can help with
identifying the debug server to connect to when multiple servers are enabled.

--quiet Suppress any non-simulated output on stdout or stderr.

--quantum=N Number of ticks to simulate for each quantum. The default is 10000.

--(no-)rate-limit Enable or disable rate limiting. Enabling rate limiting restricts the simulation speed so that
simulation time more closely matches real time rather than running as fast as possible. The
default is disabled.

--read-only Mount block device image in read-only mode.

3 Programming Reference
3.1 Command-line options

100961_1113_00_en Copyright © 2012–2020 Arm Limited or its affiliates. All rights
reserved.

3-24

Non-Confidential

Table 3-1 Command-line options (continued)

Option Description

--(no-)secure-memory Enable or disable separate secure and non-secure address spaces. The default is disabled.

--(no-)semihost Enable or disable semihosting support. The default is enabled.

--semihost-cmd=cmd A string that is used as the semihosting command line.

--semihosting-
heap_base=address

Virtual address of the heap base. The default is 0.

--semihosting-
heap_limit=address

Virtual address of the top of the heap. The default is 0xFF000000.

--semihosting-
stack_base=address

Virtual address of the base of the descending stack. The default is 0xFFFF0000.

--semihosting-
stack_limit=address

Virtual address of the stack limit. The default is 0xFF000000.

--(no-)sve Enable or disable Scalable Vector Extension (SVE) and SVE2. The default is enabled. This
option requires Armv8.2 or a later architecture to be enabled. If SVE is enabled, the options
described in Table 3-2 Additional SVE-related options on page 3-26 can take effect.

--switches=val Initial setting of switches in the system register block. The default is 0.

--trace=file Enable the TarmacTrace extension. Its behavior is the same as the default behavior of the
TarmacTrace plug-in, as described in TarmacTrace parameters, except that the extension
requires you to specify a trace output file.

--uartN-outfile=file Redirect output from UARTN to a file, where N is in the range 0-3. Specify a filename of -
to redirect output to stdout. If no filename is specified, the option is ignored.

--uart-start-port=P Attempt to listen on a free TCP port in the range P to P+100 for each UART. The default is
5000.

--use-real-time Sets the generic timer registers to report a view of real time as it is seen on the host
platform, instead of simulated time.

--version Display the version and build numbers and quit.

--(no-)visualization Starts a small web server to visualize the platform state. The default is disabled.

You can specify more than one --image, --data, or --nsdata option. The images and data are loaded in
the order that they appear on the command line. The simulation starts from the entry point of the final
ELF file specified.

The following options only take effect if the Scalable Vector Extension (SVE) is enabled which is
controlled by the --(no-)sve option:

 Note

To enable or disable support for particular features, use the --has-* parameters.

3 Programming Reference
3.1 Command-line options

100961_1113_00_en Copyright © 2012–2020 Arm Limited or its affiliates. All rights
reserved.

3-25

Non-Confidential

https://developer.arm.com/documentation/100964/1113/Plug-ins-for-Fast-Models/TarmacTrace/TarmacTrace-parameters

Table 3-2 Additional SVE-related options

Option Type Description

--clear-constrained-
lanes

int When a constrained vector length increases, previously inaccessible bits are set to zero
according to the value of this parameter. Possible values are:

0x0 Never. This is the default.

0x1 Always

0x2 If the register was written to while the vector length was constrained.

--combine-movprfx-and-
destructive

bool Attempt to combine the execution of MOVPRFX and the destructively encoded instruction that
follows it. The default is false.

--disable-speculative-
accesses

bool All speculative memory accesses behave as though faulting without accessing memory. The
default is false.

--enable-at-reset bool Start with system registers set up for Scalable Vector Extension use. The default is false.

--ffr-16b-pattern-
UNKNOWN

int A specific 16-bit UNKNOWN value that is used by parameter force_UNKNOWN_to_ffr. The
default is 0.

--force-UNKNOWN-to-ffr int Governs the behavior if WRFFR writes a non-monotonic value to FFR. Possible values are:

0x0 Write non-canonical value to FFR. This is the default.

0x1 Overwrite FFR with a specific 16-bit UNKNOWN value. See
ffr_16b_pattern_UNKNOWN.

0x2 Clear all bits above first zero.

--fp-exception-report-
lowest

bool If true, for multiple trapped FP exceptions, report the lowest lane in VECITR. Otherwise,
report the highest. The default is false.

--fp-exception-set-tfv bool Set ESR_ELx.TFV during FP exception. Trapped exception flags are valid. The default is
true.

--fp-exception-set-
vecitr

bool If true, set ESR_ELx.VECITR during FP exception. Otherwise, set RES0. The default is
false.

--has-sve2 bool Whether SVE2 is implemented. The default is false.

--has-sve2-aes int If SVE2 is implemented, whether SVE2 AES instructions are implemented. Possible values
are:

0x0 Not implemented.

0x1 SVE2 AESE, AESD, AESMC, and AESIMC are implemented.

0x2 Same as 1, but in addition, SVE2 PMULLB and PMULLT with 64-bit source are
implemented. This is the default.

--has-sve2-bit-perm bool If SVE2 is implemented, whether BitPerm instructions are implemented. The default is true.

--has-sve2-sha3 bool If SVE2 is implemented, whether SHA3 instructions are implemented. The default is true.

--has-sve2-sm4 bool If SVE2 is implemented, whether SM4 instructions are implemented. The default is true.

--has-sve-bf16 bool Whether SVE BFloat16 instructions are implemented. The default is true.

--has-sve-mm-f32 bool Whether the SVE FP32 Matrix Multiply instructions are implemented. The default is true.

--has-sve-mm-f64 bool Whether the SVE FP64 Matrix Multiply instructions are implemented. The default is true.

--has-sve-mm-i8 bool Whether the SVE Int8 Matrix Multiply instructions are implemented. The default is true.

3 Programming Reference
3.1 Command-line options

100961_1113_00_en Copyright © 2012–2020 Arm Limited or its affiliates. All rights
reserved.

3-26

Non-Confidential

Table 3-2 Additional SVE-related options (continued)

Option Type Description

--movprfx-
unpredictable-behavior

int Defines the behavior of MOVPRFX and the instruction it immediately precedes when the
behavior is CONSTRAINED UNPREDICTABLE. Possible values are:

0 UNDEF execution from MOVPRFX. This is the default.

1 MOVPRFX and second half of instruction executes as NOP.

2 NOP MOVPRFX only.

--predicated-sp-align-
check-behaviour

int Governs behavior of SP alignment checking for predicated memory accesses. Possible
values are:

0x0 Always perform. This is the default.

0x1 Skip if governing predicate is 0.

0x2 Skip for contiguous accesses if governing predicate is 0.

0x3 Skip for gather-scatter accesses if governing predicate is 0.

--support-npot-vl bool Whether vector lengths that are not a power of two are supported. The default is true.

--undef-invalid-
combined-movprfx

bool If a combined MOVPRFX is invalid, raise an UNDEF exception. Otherwise NOP the second half
of the register. This parameter is deprecated. The default is true.

--unknown-value int Simulated value for a state that has an UNKNOWN value after reset. The default is
0xdeaddeaddeaddead.

--veclen int Size of the vector in units of 64-bit blocks. Allowed range is 0x2-0x20. The default is 8.

--z-reg-on-load-fault-
behaviour

int Governs the behavior of destination Z-registers in case of a load fault. Possible values are:

0x0 Register becomes UNKNOWN. This is the default.

0x1 Register is preserved.

Related concepts
3.9 Multicore configuration on page 3-41
3.7 Web interface on page 3-39
3.10 Semihosting on page 3-42

3 Programming Reference
3.1 Command-line options

100961_1113_00_en Copyright © 2012–2020 Arm Limited or its affiliates. All rights
reserved.

3-27

Non-Confidential

3.2 Foundation Platform memory map
This section describes the memory map for the Armv8‑A Foundation Platform.

The following list shows the Secure and Non-secure access permissions that are enabled by using the
--(no-)secure-memory parameter.

Table 3-3 Access permissions

--no-secure-memory --secure-memory

S Secure and Non-secure accesses are permitted. Secure access is permitted, Non-secure access aborts.

S/NS Secure and Non-secure accesses are permitted. Secure and Non-secure accesses are permitted.

The following table shows the global memory map for the Armv8‑A Foundation Platform. This map is
based on the Versatile Express RS2 memory map with extensions.

 Note

• Unless you use the --quiet command-line option, areas of memory that are highlighted in the table
return a warning to the console, together with RAZ/WI access behavior. This rule is applicable to
Foundation Model v2 and Foundation Platform v9.

• Writes are ignored.
• Accesses from Foundation Model v1 cause an abort exception.

 Note

The Security column in the following table applies to the Foundation Model v2 and Foundation Platform
v9 only.

Table 3-4 Armv8-A Foundation Platform memory map

Start address End address Foundation v1
peripheral

Foundation v2 and v9
peripherals

Size Security (v2 and
v9 only)

0x00_0000_0000 0x00_03FF_FFFF RAM Trusted Boot ROM, secureflash 64MB S

0x00_0400_0000 0x00_0403_FFFF RAM Trusted SRAM 256KB S

0x00_0600_0000 0x00_07FF_FFFF RAM Trusted DRAM 32MB S

0x00_0800_0000 0x00_0BFF_FFFF - NOR flash, flash0 64MB S/NS

0x00_0C00_0000 0x00_0FFF_FFFF - NOR flash, flash1 64MB S/NS

0x00_1800_0000 0x00_19FF_FFFF - VRAM 32MB b -

0x00_1A00_0000 0x00_1AFF_FFFF Ethernet, SMSC
91C111

Ethernet, SMSC 91C111 16MB S/NS

0x00_1C01_0000 0x00_1C01_FFFF System Registers System Registers 64KB S/NS

0x00_1C02_0000 0x00_1C02_FFFF - System Controller, SP810 64KB S/NS

0x00_1C04_0000 0x00_1C07_FFFF - Warning + RAZ/WI - -

0x00_1C09_0000 0x00_1C09_FFFF UART0, PL011 UART0, PL011 64KB S/NS

0x00_1C0A_0000 0x00_1C0A_FFFF UART1, PL011 UART1, PL011 64KB S/NS

b 8MB of VRAM is replicated 4 times in memory.

3 Programming Reference
3.2 Foundation Platform memory map

100961_1113_00_en Copyright © 2012–2020 Arm Limited or its affiliates. All rights
reserved.

3-28

Non-Confidential

Table 3-4 Armv8-A Foundation Platform memory map (continued)

Start address End address Foundation v1
peripheral

Foundation v2 and v9
peripherals

Size Security (v2 and
v9 only)

0x00_1C0B_0000 0x00_1C0B_FFFF UART2, PL011 UART2, PL011 64KB S/NS

0x00_1C0C_0000 0x00_1C0C_FFFF UART3, PL011 UART3, PL011 64KB S/NS

0x00_1C0D_0000 0x00_1C0D_FFFF - Warning + RAZ/WI - -

0x00_1C0F_0000 0x00_1C0F_FFFF - Watchdog, SP805 64KB S/NS

0x00_1C10_0000 0x00_1C10_FFFF - Base Platform Power Controller 64KB S/NS

0x00_1C11_0000 0x00_1C11_FFFF - Dual-Timer 0, SP804 64KB S/NS

0x00_1C12_0000 0x00_1C12_FFFF - Dual-Timer 1, SP804 64KB S/NS

0x00_1C13_0000 0x00_1C13_FFFF Virtio block device Virtio block device 64KB S/NS

0x00_1C14_0000 0x00_1C14_FFFF - Virtio Plan 9 for v9, Warning +
RAZ/W for v2.1

64KB S/NS

0x00_1C15_0000 0x00_1C15_FFFF - Virtio net device 64KB S/NS

0x00_1C17_0000 0x00_1C17_FFFF - Realtime Clock, PL031 64KB S/NS

0x00_1C1A_0000 0x00_1FFF_FFFF - Warning + RAZ/W - -

0x00_1F00_0000 0x00_1F00_0FFF - Non-trusted ROM 4KB S/NS

0x00_2A43_0000 0x00_2A43_FFFF - REFCLK CNTControl, Generic
Timer

64KB S

0x00_2A44_0000 0x00_2A44_FFFF - EL2 Generic Watchdog Control 64KB S/NS

0x00_2A45_0000 0x00_2A45_FFFF - EL2 Generic Watchdog Refresh 64KB S/NS

0x00_2A49_0000 0x00_2A49_FFFF - Trusted Watchdog, SP805 64KB S

0x00_2A4A_0000 0x00_2A4A_FFFF - Warning + RAZ/W - -

0x00_2A80_0000 0x00_2A80_FFFF - REFCLK CNTRead, Generic
Timer

64KB S/NS

0x00_2A81_0000 0x00_2A81_FFFF - AP_REFCLK CNTCTL, Generic
Timer

64KB S/NS

0x00_2A82_0000 0x00_2A82_FFFF - AP_REFCLK CNTBase0,
Generic Timer

64KB S

0x00_2A83_0000 0x00_2A83_FFFF - AP_REFCLK CNTBase1,
Generic Timer

64KB S/NS

0x00_2C00_0000 0x00_2C00_1FFF - GIC Physical CPU interface,
GICCc

8KB S/NS

0x00_2C00_1000 0x00_2C00_1FFF GIC Distributor GIC Distributord 4KB -

0x00_2C00_2000 0x00_2C00_2FFF GIC Processor
Interface

GIC Processor Interfaced 4KB -

0x00_2C00_4000 0x00_2C00_4FFF GIC Processor Hyp
Interface

GIC Processor Hyp Interfaced 4KB -

c The Foundation Model v2.1 only. Not the Foundation Platform.
d The Foundation Platform uses the GICv3 memory map by default.

3 Programming Reference
3.2 Foundation Platform memory map

100961_1113_00_en Copyright © 2012–2020 Arm Limited or its affiliates. All rights
reserved.

3-29

Non-Confidential

Table 3-4 Armv8-A Foundation Platform memory map (continued)

Start address End address Foundation v1
peripheral

Foundation v2 and v9
peripherals

Size Security (v2 and
v9 only)

0x00_2C00_5000 0x00_2C00_5FFF GIC Hyp Interface GIC Hyp Interfaced 4KB -

0x00_2C00_6000 0x00_2C00_7FFF GIC Virtual CPU
Interface

GIC Virtual CPU Interfaced 8KB -

0x00_2C01_0000 0x00_2C01_0FFF - GIC Virtual Interface Control,
GICH

4KB S/NS

0x00_2C02_F000 0x00_2C03_0FFF - GIC Virtual CPU Interface, GICV 8KB S/NS

0x00_2C09_0000 0x00_2C09_FFFF - Warning + RAZ/W - -

0x00_2E00_0000 0x00_2E00_FFFF - Non-trusted SRAM 64KB S/NS

0x00_2F00_0000 0x00_2F00_FFFF - GICv3 Distributor GICDc 64KB S/NS

0x00_2F10_0000 0x00_2F1F_FFFF - GICv3 Distributor GICR 1MB S/NS

0x00_7FE6_0000 0x00_7FE6_0FFF - Trusted Random Number
Generator

4KB S

0x00_7FE7_0000 0x00_7FE7_0FFF - Trusted Non-volatile counters 4KB S

0x00_7FE8_0000 0x00_7FE8_0FFF - Trusted Root-Key Storage 4KB S

0x00_8000_0000 0x00_FFFF_FFFF DRAM (0GB - 2GB) DRAM (0GB - 2GB) 2GB S/NS

0x08_8000_0000 0x09_FFFF_FFFF DRAM (2GB - 8GB) DRAM (2GB - 8GB) 6GB S/NS

Related references
3.1 Command-line options on page 3-24

3 Programming Reference
3.2 Foundation Platform memory map

100961_1113_00_en Copyright © 2012–2020 Arm Limited or its affiliates. All rights
reserved.

3-30

Non-Confidential

3.3 Clock and timer
This section describes the frequencies of the clock and timer.

Cluster clk_in frequency parameter
100MHz.

GenericTimer base_frequency parameter
100MHz.

3 Programming Reference
3.3 Clock and timer

100961_1113_00_en Copyright © 2012–2020 Arm Limited or its affiliates. All rights
reserved.

3-31

Non-Confidential

3.4 Interrupt maps
You can find information on the SPIs and PPIs on the GIC that the platform assigns.

 Note

Shared Peripheral Interrupt (SPI) and Private Peripheral Interrupt (PPI) numbers are mapped onto GIC
interrupt IDs as the Arm® Generic Interrupt Controller Architecture Specification describes.

The following table lists the SPI assignments.

Table 3-5 Shared peripheral interrupt assignments

IRQ ID SPI offset Device

32 0 Watchdog, SP805

34 2 Dual-Timer 0, SP804

35 3 Dual-Timer 1, SP804

36 4 Realtime Clock, PL031

37 5 UART0, PL011

38 6 UART1, PL011

39 7 UART2, PL011

40 8 UART3, PL011

41 9 MCI, PL180, MCIINTR0

46 14 PL111 CLCD

47 15 Ethernet, SMSC 91C111

56 24 Trusted Watchdog, SP085

57 25 AP_REFCLK, Generic Timer, CNTPSIRQ

58 26 AP_REFCLK, Generic Timer, CNTPSIRQ1

59 27 EL2 Generic Watchdog WS0

60 28 EL2 Generic Watchdog WS1

74 42 Virtio block device

75 43 Virtio Plan 9

76 44 Virtio net device

92 60 cpu0 PMUIRQ

93 61 cpu1 PMUIRQ

94 62 cpu2 PMUIRQ

95 63 cpu3 PMUIRQ

The following table shows the PPI assignments:

3 Programming Reference
3.4 Interrupt maps

100961_1113_00_en Copyright © 2012–2020 Arm Limited or its affiliates. All rights
reserved.

3-32

Non-Confidential

Table 3-6 Private Peripheral Interrupt map

PPI Device

3 Secure hypervisor virtual timer event

4 Secure hypervisor physical timer event

9 Virtual maintenance interrupt

10 Hypervisor timer event

11 Virtual timer event

12 Hypervisor virtual timer event

13 Secure physical timer event

14 Non-secure physical timer event

3 Programming Reference
3.4 Interrupt maps

100961_1113_00_en Copyright © 2012–2020 Arm Limited or its affiliates. All rights
reserved.

3-33

Non-Confidential

3.5 System register block
The system register block provides a minimal set of registers.

This component only accepts word writes and aligned reads.

Table 3-7 System register block

Offset Type Bits Register

0x0000 R/O [31:0] System ID Register

0x0004 R/W [7:0] User Programmable Switches

0x0008 R/W [7:0] LEDs

0x00A0 R/W [31:0] System configuration data

0x00A4 R/W [31:0] System configuration control

0x00A8 R/W [31:0] System configuration status

The System ID Register is divided into the following fields:

• ID[31:28] Revision.

0x2
Foundation Platform v9.1-v9.5.

0x3
Foundation Platform v9.6.

• ID[27:16] HBI board number.

0x010
Armv8‑A Foundation Platform, default.

0x020
Arm Base Platform FVP.

• ID[15:12] Build variant. The value depends on the following command-line options:

0x0
Variant A is the Foundation Platform with the GICv2 legacy map, when the --no-givc3
command-line option is used.

0x1
Variant B is the Foundation Platform with the GICv3 64KB memory map, when the --gicv3
command-line option is used. This is the default.

• ID[11:8] Platform type:

0x0
Board.

0x1
Model, default.

0x2
Emulator.

0x3
Simulator.

0x4
FPGA.

• ID[7:0] FPGA build.
— Not used.

3 Programming Reference
3.5 System register block

100961_1113_00_en Copyright © 2012–2020 Arm Limited or its affiliates. All rights
reserved.

3-34

Non-Confidential

The System ID register is not implemented in the Foundation Model v1. All unimplemented registers in
the Foundation Model v1 system register block return the value 0xDEADDEAD on reads. You can use this
value to distinguish Foundation Model v1 from both Foundation Model v2 and Foundation Platform v9,
and FVP VE Base Platform.

The user-programmable Switches store 8 bits of state that can be read or written by software on the
platform. You can configure the startup value, val, using --switches=val.

You can view and set the switches at run time from the web interface.

The LEDs store 8 bits of state that software can read or write on the platform and can be viewed at
runtime from the web interface.

The system configuration control register provides two functions:
• Writing the value 0xC0800000 stops the simulation and returns control to the command line.
• Writing the value 0xC0900000 asserts and then clears the reset pins on all components in the

simulation. It resets the system without clearing the contents of the RAMs.

 Note

Writes to the system configuration register can take several instructions to complete. Therefore, a write
to this register must be followed by a DSB and infinite loop.

The system configuration data and status registers always return 0 on reads, and writes are ignored.

Related concepts
3.7 Web interface on page 3-39

3 Programming Reference
3.5 System register block

100961_1113_00_en Copyright © 2012–2020 Arm Limited or its affiliates. All rights
reserved.

3-35

Non-Confidential

3.6 CLCD window
When the model starts, the Foundation Platform CLCD window opens, representing the contents of the
simulated color LCD frame buffer. It automatically resizes to match the horizontal and vertical resolution
set in the CLCD peripheral registers.

The following figure shows the Foundation Platform CLCD in its default state, immediately after being
started:

Figure 3-1 CLCD window at startup

The top section of the CLCD window displays the following status information:

Total Instr
A counter showing the total number of instructions executed.

Total Time

A counter showing the total elapsed time, in seconds.

This is wall clock time, not simulated time.

Rate Limit

This option limits the rate of simulated time when the cores are in WFI, reset, or otherwise idle.
Simulation time is restricted so that it more closely matches real time.

Rate Limit is disabled by default. Click the square button to enable it. The text changes from
OFF to ON and the colored box becomes lighter red when the Rate Limit is enabled.

 Note

You can also control whether the Rate Limit is enabled by using the --(no-)rate-limit
parameter when instantiating the model.

Instr / sec

Shows the number of instructions executed per second of wall clock time.

Perf Index
The ratio of real time to simulation time. The larger the ratio, the faster the simulation runs. If
you enable the Rate Limit feature, the Perf Index approaches unity.

Icons

Icons to represent different processor states.

The following table shows each of the possible icons:
 Note

The icons do not appear until you start the simulation.

3 Programming Reference
3.6 CLCD window

100961_1113_00_en Copyright © 2012–2020 Arm Limited or its affiliates. All rights
reserved.

3-36

Non-Confidential

Table 3-8 Core run state icon descriptions

Icon State label Description

UNKNOWN Run status unknown, that is, simulation has not started.

RUNNING The core is running, is not idle, and is executing instructions.

HALTED An external halt signal is asserted.

STANDBY_WFE The last instruction executed was WFE, and standby mode has been entered.

STANDBY_WFI The last instruction executed was WFI and standby mode has been entered.

IN_RESET An external reset signal is asserted.

DORMANT Partial core power down.

SHUTDOWN Complete core power down.

 Note

The icons do not appear until you start the simulation.

The large area at the bottom of the window displays the contents of the CLCD buffer, for example:

3 Programming Reference
3.6 CLCD window

100961_1113_00_en Copyright © 2012–2020 Arm Limited or its affiliates. All rights
reserved.

3-37

Non-Confidential

Figure 3-2 CLCD window active

You can hide the host mouse pointer by pressing the Left Ctrl+Left Alt keys. Press the keys again to
redisplay the host mouse pointer. Only the Left Ctrl key is operational. The Ctrl key on the right-hand
side of the keyboard does not have the same effect.

3 Programming Reference
3.6 CLCD window

100961_1113_00_en Copyright © 2012–2020 Arm Limited or its affiliates. All rights
reserved.

3-38

Non-Confidential

3.7 Web interface
This section describes the syntax to use on the command line.

You can use one of the following options on the command line:
• ./Foundation_Platform --visualization

• ./Foundation_Platform --no-visualization

Running the platform with the --visualization option, and without the --quiet option, shows the
additional output:

terminal_0: Listening for serial connection on port 5000
terminal_1: Listening for serial connection on port 5001
terminal_2: Listening for serial connection on port 5002
terminal_3: Listening for serial connection on port 5003
Visualization web server started on port 2001

The terminal_n lines relate to the UARTs.

Go to the address http://127.0.0.1:2001 with your web browser.

The browser displays a visualization window.

Figure 3-3 Visualization window

The visualization window provides a dynamic view of the state of various parts of the platform and the
ability to change the state of platform switches.

Related concepts
3.8 UARTs on page 3-40

3 Programming Reference
3.7 Web interface

100961_1113_00_en Copyright © 2012–2020 Arm Limited or its affiliates. All rights
reserved.

3-39

Non-Confidential

3.8 UARTs
When the Foundation Platform starts, it initializes four UARTs. For each UART, it searches for a free
TCP port to use for telnet access to the UART. It searches by sequentially scanning a range of 100 ports
and using the first free port. The start port defaults to 5000 and you can change it using the --uart-
start-port command-line parameter.

Connecting a terminal or program to the given port displays and receives output from the associated
UART and permits input to the UART.

If no terminal or program is connected to the port when data is output from the UART, a terminal is
started automatically.

 Note

A terminal only starts automatically if the DISPLAY environment variable is set and is not empty.

UART output

For the UART output to be visible, both xterm and telnet must be installed on the host, and be
specified in your PATH.

Alternatively you can redirect output from each of the four available UARTs to a file or to stdout, using
the --uartN-outfile=file command-line parameter, where N is in the range 0-3. Specifying a filename
of - redirects the output to stdout.

3 Programming Reference
3.8 UARTs

100961_1113_00_en Copyright © 2012–2020 Arm Limited or its affiliates. All rights
reserved.

3-40

Non-Confidential

3.9 Multicore configuration
By default, the platform starts up with a single core that begins executing from the entry point in the last
provided ELF image, or address 0 if no ELF images are provided.

You can configure the platform using --cores=N to have up to four processor cores. Each core starts
executing the same set of images, starting at the same address. The --visualization command-line
option which is used with the multicore option, results in a visualization window.

Figure 3-4 Multicore option with number of cores = 4

3 Programming Reference
3.9 Multicore configuration

100961_1113_00_en Copyright © 2012–2020 Arm Limited or its affiliates. All rights
reserved.

3-41

Non-Confidential

3.10 Semihosting
Semihosting enables code running on a platform model to directly access the I/O facilities of a host
computer. To use semihosting, you must have connected the model to a debugger, for example Arm
Development Studio Debugger.

The simulator handles semihosting by either:
• Intercepting SVC 0x123456 or 0xAB in AArch32 execution state, depending on whether the processor

is in the Arm or Thumb instruction set state.
• Intercepting HLT 0xF000 in AArch64 execution state.

Related information
Semihosting for AArch32 and AArch64
Using semihosting to access resources on the host computer

3 Programming Reference
3.10 Semihosting

100961_1113_00_en Copyright © 2012–2020 Arm Limited or its affiliates. All rights
reserved.

3-42

Non-Confidential

https://developer.arm.com/documentation/100863/latest
https://developer.arm.com/documentation/101470/latest/Controlling-Target-Execution/Using-semihosting-to-access-resources-on-the-host-computer

	Arm®v8‑A Foundation Platform User Guide
	Table of Contents
	Preface
	About this book
	Using this book
	Glossary
	Typographic conventions
	Feedback
	Feedback on this product
	Feedback on content

	Other information

	1 : Arm®v8‑A Foundation Platform Introduction
	1.1 : Platform introduction
	1.2 : Software requirements
	1.3 : Platform overview
	1.3.1 : Features of the Foundation Platform
	1.3.2 : Processor models in the Foundation Platform
	1.3.3 : Network support in the Foundation Platform
	1.3.4 : Foundation Platform block diagram
	1.3.5 : Limitations of the Foundation Platform

	1.4 : Data collection in the Foundation Platform

	2 : Getting Started
	2.1 : Verifying the installation
	2.2 : Running the example program
	2.3 : Troubleshooting the example program
	2.4 : Using Linux

	3 : Programming Reference
	3.1 : Command-line options
	3.2 : Foundation Platform memory map
	3.3 : Clock and timer
	3.4 : Interrupt maps
	3.5 : System register block
	3.6 : CLCD window
	3.7 : Web interface
	3.8 : UARTs
	3.9 : Multicore configuration
	3.10 : Semihosting

