
TRUSTED BASE SYSTEM ARCHITECTURE, CLIENT 
(4TH EDITION) 

System Hardware on ARM® 
Document number: ARM DEN 0021D 

Copyright © 2012, 2016, 2018, ARM Limited or its affiliates 

 



 
2  Copyright © 2012, 2016, 2018, ARM Limited or its affiliates. All rights reserved. ARM DEN 0021D 
 Non-Confidential  

Trusted Base System Architecture, Client (4th Edition)  
System Hardware on ARM 

Copyright © 2012, 2016, 2018, ARM Limited or its affiliates. All rights reserved. 

Release information 

Table 1 lists the changes made to this document. 

Table 1 Change history 

Date Issue Confidentiality Change 

20 January 2012 A Confidential First release 

21 March 2012 B Confidential Second release 

26 September 2016 C Confidential 3rd Edition. Update and restructure document. Draft release 

15 October 2018 D Non-Confidential 4th Edition. Non-confidential release. 

Intermediate releases, numbered A-3 to A-9, were issued to a restricted circulation 

Non-Confidential Proprietary Notice  

This document is protected by copyright and other related rights and the practice or implementation of the 
information contained in this document may be protected by one or more patents or pending patent applications. 
No part of this document may be reproduced in any form by any means without the express prior written 
permission of Arm. No license, express or implied, by estoppel or otherwise to any intellectual property rights is 
granted by this document unless specifically stated.  

Your access to the information in this document is conditional upon your acceptance that you will not use or 
permit others to use the information for the purposes of determining whether implementations infringe any third 
party patents.  

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES, 
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF 
MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR 
PURPOSE WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm makes no representation 
with respect to, and has undertaken no analysis to identify or understand the scope and content of, patents, 
copyrights, trade secrets, or other rights.  

This document may include technical inaccuracies or typographical errors.  

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES, 
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR 
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, 
ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE 
POSSIBILITY OF SUCH DAMAGES.  

This document consists solely of commercial items. You shall be responsible for ensuring that any use, 
duplication or disclosure of this document complies fully with any relevant export laws and regulations to assure 
that this document or any portion thereof is not exported, directly or indirectly, in violation of such export laws. 
Use of the word “partner” in reference to Arm’s customers is not intended to create or refer to any partnership 
relationship with any other company. Arm may make changes to this document at any time and without notice.  

If any of the provisions contained in these terms conflict with any of the provisions of any click through or signed 
written agreement covering this document with Arm, then the click through or signed written agreement prevails 
over and supersedes the conflicting provisions of these terms. This document may be translated into other 
languages for convenience, and you agree that if there  

is any conflict between the English version of this document and any translation, the terms of the English version 
of the Agreement shall prevail.  

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited 
(or its subsidiaries) in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this 
document may be the trademarks of their respective owners. Please follow Arm’s trademark usage guidelines at 
http://www.arm.com/company/policies/trademarks.  

http://www.arm.com/company/policies/trademarks


 
ARM DEN 0021D Copyright © 2012, 2016, 2018 ARM Limited or its affiliates. All rights reserved. 3 
 Non-Confidential 

Copyright ©2018 Arm Limited (or its affiliates). All rights reserved.  

Arm Limited. Company 02557590 registered in England.  

110 Fulbourn Road, Cambridge, England CB1 9NJ.  

LES-PRE-20349  

   





Table of Contents 

 

 
ARM DEN 0021D Copyright © 2012, 2016, 2018 ARM Limited or its affiliates. All rights reserved. 5 
 Non-Confidential 

Table of contents 

1 Introduction .................................................................................................. 6 
1.1 Additional reading ................................................................................. 6 
1.2 Target platform ..................................................................................... 7 

2 Use cases ..................................................................................................... 8 
2.1 User privacy .......................................................................................... 8 
2.2 Digital Rights Management .................................................................. 9 
2.3 FIDO ..................................................................................................... 9 
2.4 Enterprise system support .................................................................. 10 
2.5 Mobile Network Operators .................................................................. 11 

3 Security threats .......................................................................................... 12 
3.1 Threats ................................................................................................ 12 
3.2 Attackers ............................................................................................. 13 

4 TrustZone® technology ............................................................................. 16 
4.1 Execution model ................................................................................. 17 
4.2 Memory access................................................................................... 18 

5 TBSA architecture variants....................................................................... 20 
5.1 Baseline architecture .......................................................................... 22 
5.2 Assisted architecture .......................................................................... 22 

6 TBSA security requirements .................................................................... 23 
6.1 System view ........................................................................................ 23 
6.2 Infrastructure ....................................................................................... 23 
6.3 Fuses .................................................................................................. 31 
6.4 Cryptographic keys ............................................................................. 33 
6.5 Trusted boot ........................................................................................ 37 
6.6 Trusted timers ..................................................................................... 39 
6.7 Version counters ................................................................................. 41 
6.8 Entropy source.................................................................................... 42 
6.9 Cryptographic acceleration ................................................................. 44 
6.10 Debug ................................................................................................. 45 
6.11 External interface peripherals ............................................................. 51 
6.12 DRAM protection ................................................................................ 53 

7 Device lifecycle .......................................................................................... 57 

8 Approved algorithms ................................................................................. 59 

Glossary................................................................................................................. 60 

 

 



Introduction 

 

 
6  Copyright © 2012, 2016, 2018, ARM Limited or its affiliates. All rights reserved. ARM DEN 0021D 
 Non-Confidential  

1 Introduction 

This document presents a System-on-Chip (SoC) architecture that incorporates a trusted 
hardware base suitable for the implementation of systems compliant with key industry 
security standards and specifications, in particular those dealing with third party content 
protection, personal data, and second factor authentication. The architecture is founded on 
ARM TrustZone® technology, which provides isolation between the Trusted and Non-trusted 
worlds. This document includes an overview of TrustZone technology to give the necessary 
context. 

The goal of the TBSA is to create a platform that supports Trusted Services. Trusted Services 
are defined as collections of operations and assets that require protection from the wider 
system, and each other, to ensure their confidentiality, authenticity, and integrity. 

A description of each target use case is provided together with a list of the assets to be 
protected and protection mechanisms needed. Threats and the capabilities of attackers are 
then discussed before presenting suitable security architectures and detailed 
implementation requirements. 

This document aims to provide information that is useful to the designers and implementers 
of such platforms. However, this document does not replace the need for thorough security 
analysis during the system design. 

1.1 Additional reading 

This section lists publications by ARM and by third parties. 

See the ARM Infocenter, http://infocenter.arm.com/, for access to ARM documentation. 

1.1.1 ARM publications 

The following documents contain information relevant to this document: 

[1.] ARM® Security Technology - Building a Secure System using TrustZone® 
Technology (PRD29-GENC-009492) 

[2.] ARMv8-A Architecture Reference Manual (ARM DDI 0487) 

[3.] ARM® Trusted Board Boot Requirements (ARM DEN 0006) 

[4.] ARM® Trusted Firmware 
https://github.com/ARM-Software/arm-trusted-firmware 

1.1.2 Other publications 

The following documents list relevant documents published by third parties: 

[5.] NIST Draft Special Publication 800-90b 
http://csrc.nist.gov/publications/drafts/800-90/draft-sp800-90b.pdf 

[6.] NIST Special Publication 800-22rev1a: A Statistical Test Suite for the Validation 
of Random Number Generators and Pseudo Random Number Generators for 
Cryptographic Applications 
http://csrc.nist.gov/groups/ST/toolkit/rng/documents/SP800-22rev1a.pdf 

[7.] Commercial National Security Algorithm Suite (superseding NSA Suite B 
Cryptography) 
https://apps.nsa.gov/iaarchive/programs/iad-initiatives/cnsa-suite.cfm 

[8.] SEC - Recommended Elliptic Curve Domain Parameters  
http://www.secg.org/sec2-v2.pdf 

[9.] GlobalPlatform TEE Protection Profile Specification v1.2 
http://www.globalplatform.org/specificationsdevice.asp 

http://infocenter.arm.com/
https://github.com/ARM-Software/arm-trusted-firmware
http://csrc.nist.gov/publications/drafts/800-90/draft-sp800-90b.pdf
http://csrc.nist.gov/groups/ST/toolkit/rng/documents/SP800-22rev1a.pdf
http://csrc.nist.gov/groups/ST/toolkit/rng/documents/SP800-22rev1a.pdf
http://csrc.nist.gov/groups/ST/toolkit/rng/documents/SP800-22rev1a.pdf
http://csrc.nist.gov/groups/ST/toolkit/rng/documents/SP800-22rev1a.pdf
http://www.globalplatform.org/specificationsdevice.asp
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1.2 Target platform 

The target platforms addressed by this document are primarily, but not limited to, portable 
cellular handsets, mobile internet devices and PayTV systems. These platforms have the 
following features: 

• They implement a feature-rich operating system (ROS) that is capable of executing 
user downloaded third party applications. The environment in which the ROS 
executes is referred to as the rich execution environment (REE). 

• They support online and over-the-air firmware updates. 

• They might support audio and video playback and, in the case of third party premium 
content, they will be required to support and comply with digital rights management 
(DRM) technology. 

• They might act as security tokens that support strong second factor authentication. 

 

It is expected that suitable platforms will utilize the following SoC technology: 

• The ARMv8-A architecture or higher with Security Extensions (aka TrustZone). 

• On chip peripherals supporting data entry, for example keyboard, touch pad, finger 
print sensor. 

• Video display and audio output. 

• One or more integrated DRAM controllers and interfaces to support a large shared 
memory pool. 

• A controller and interface supporting external non-volatile bulk storage, for example 
flash memory. 

• Wired or wireless internet connectivity. 

  

In addition, a SoC that targets mobile applications will require a high degree of power control 
and is therefore likely to embed an advanced power control subsystem to meet its power 
targets. 

There is a wide diversity of platforms and products that are within the scope of this document. 
The resulting collection of use cases, assets, threats, and necessary security measures 
cannot be reduced to a single, simple checklist of security requirements. Each platform and 
product requires specific analysis to determine the appropriate use of security features, and 
will need to consider the specification and certification requirements of the target market. 

Attacks on systems always get better, with the effect that old security defenses need to be 
strengthened and new security defenses need to be implemented to maintain the required 
level of security. The requirements described in this document represent best practice at this 
point in time. Some requirements significantly raise the bar in comparison with previous 
versions of this document and the ARM® Trusted Board Boot Requirements (TBBR) [3.]. In 
all cases, the differences are in the degree of security provided, or demanded by other 
market specifications: the newer requirements described here are more resilient to certain 
types of attack. 
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2 Use cases  

The use cases that follow are implemented within and therefore rely on Trusted Services, 
which typically run on top of a trusted kernel, for example a Trusted Execution Environment 
(TEE). A Trusted Service must be securely loaded by the trusted kernel while the kernel 
must first be securely loaded itself. The resulting architecture therefore chains together a 
series of software modules, each verifying the next in a chain of trust, starting from the secure 
boot of the SoC. 

The secure boot of the device, which forms the beginning of the chain of trust, is rooted in 
the SoC hardware and based on an embedded ROM. Following a system reset, the 
processor core boots into Secure state and executes the ROM code. The ROM contains 
code that verifies that the next stage boot code is permitted to execute. The next stage boot 
code is responsible for verifying that the boot code for the following stage is permitted to 
execute, and so forth. Code verification is performed using public key cryptography and 
requires a root certificate that is embedded in the SoC, either in the ROM, or in on-chip non-
volatile storage.  For further information, see the TBBR specification [3.]. 

A further core component of the following use cases is the functionality that is required to 
securely install a system update delivered over the network to the device. Such an update 
must be checked for integrity and authenticity before it is applied, which also relies on a root 
of trust. 

The following subsections outline the use cases targeted by this specification. For each use 
case, the following information is provided: 

• An overview of the use case. 

• A list of primary assets. 

• The protection mechanisms that are required.  

Note: A root key that is needed to protect an asset is an asset in itself. It is, however, an implied 
asset, not a primary asset, and therefore not listed in the asset table. 

2.1 User privacy 

A common requirement of modern devices is the protection of user and application data 
against malicious access. This requires one or more Trusted Services to be available on the 
device to provide isolation from other applications and guarantee confidentiality, authenticity, 
and integrity of the assets. 

The end solution demands a robust secure platform and often incorporates features such as 
a password or biometrically protected screen lock, disk encryption, and remote wipe. 

To protect data against malicious access, devices must protect the following assets: 

Assets Authenticity Integrity Confidentiality 

Generic user data  ✓ ✓ 

Biometric sensor data  ✓ ✓ 

Application data ✓ ✓ ✓ 

 

Protection of these assets relies on an underlying root of trust that supports: 

• Secure provisioning. 

• Secure persistent storage. 

• A persistent counter or counters. 

• A secure application environment that provides memory protection to isolate code 
and data from the REE and other applications. 
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• A secure application loading mechanism. 

2.2 Digital Rights Management 

Digital rights management (DRM) systems are responsible for ensuring the legitimate 
playback of stored or streamed media, primarily video and audio content. The right to play 
the content is determined by referring to an associated certificate that is purchased by the 
end user, and issued by a trusted authority. The certificate contains rights information 
concerning factors such as: legitimate decoder devices, legitimate display devices, the 
display resolution, legitimate users, the number of views, and the content lifetime. 

DRM implementations differ from traditional PayTV systems in that they do not use an 
external smart card to generate content decryption keys. Instead, they rely on a secure 
software stack running in a protected computing environment which is responsible for 
generating the content decryption key. This environment constitutes a trusted service 
environment, and one particular embodiment would be a suitable TEE implementation which 
maps the DRM stack onto a TA. 

DRM systems must protect the following assets: 

Assets Authenticity Integrity Confidentiality 

License keys, intermediate keys, and 
certificates 

✓ ✓ ✓ 

Content keys  ✓ ✓ 

Secure time ✓ ✓  

Identification credentials ✓ ✓  

Secure version ✓ ✓  

The DRM stack ✓ ✓ ✓ 

The content   ✓ 

 

Protection of these assets relies on an underlying root of trust that supports: 

• Secure provisioning. 

• Secure persistent storage, accessible only by the DRM stack. 

• A persistent counter or counters. 

• A secure timer. 

• A secure application environment that provides memory protection to isolate code 
and data from the REE and other applications. 

• A secure application loading mechanism. 

2.3 FIDO 

The Fast IDentity Online (FIDO) Alliance is an industry consortium that was formed to 
accelerate the adoption of strong online authentication via standardization. The consortium 
has developed the following: 

• Universal 2nd Factor (U2F) Authentication - A system that augments current web-
based password security with a second factor in the form of a token. 
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• Universal Authentication Framework (UAF) - A password-less authentication system 
that unlocks a key held in a token based on biometric input such as a fingerprints, 
pictures, etc. 

 

In both cases, the token holds a secret key and offers the associated cryptographic services 
that are required by the online authentication protocol. One of the most commonly available 
form factors is a USB key with an embedded secure microprocessor. However, the FIDO 
token technology can also be embedded into portable consumer devices, such as mobile 
phones. 

A FIDO implementation must protect the following assets: 

Assets Authenticity Integrity Confidentiality 

The secret key(s)  ✓ ✓ 

Token counter(s) ✓ ✓  

A unique identifier  ✓  

Biometric sensor data   ✓ 

The software stack ✓ ✓ ✓ 

 

Protection of these assets relies on an underlying root of trust that supports: 

• Secure provisioning. 

• Secure persistent storage to hold a secret key or keys, accessible only by the 
software stack. 

• Dedicated access to biometric inputs. 

• A persistent token counter or counters. 

• A secure application environment that provides memory protection to isolate code 
and data from the REE and other applications. 

• A secure application loading mechanism. 

2.4 Enterprise system support 

Mobile devices that operate in a corporate environment are expected to support the following 
security features: 

• Authentication of the device and user, based on provisioned keys. 

• Disk and/or file encryption, using a unique device secret. 

• Malware protection, using verified runtime software. 

• Remote wipe, which is activated if the device is stolen. 

Traditionally, these devices would be owned by a corporation and they would be dedicated 
to corporate use. However, a use case that has become increasingly popular is "bring your 
own device" (BYOD), where corporate services are installed on a device owned by the 
employee. This use case adds additional complexity because it mixes user data and apps 
with corporate data and apps and therefore demands a method to provide isolation between 
the two, which can be achieved by one of the following methods: 

• Implementing specific kernel functionality. 

• A second OS that uses, for example, an underlying hypervisor. 
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• A trusted services environment that uses, for example, a TEE. 

 

Implementations that isolate user data from corporate data must protect the following assets: 

Assets Authenticity Integrity Confidentiality 

Provisioned keys for 
authentication and 
encryption/decryption 

 ✓ ✓ 

Device and user 
identity 

 ✓  

Corporate code and 
data 

✓ ✓ ✓ 

 

Protection of these assets relies on an underlying root of trust that supports:  

• Secure provisioning. 

• Secure persistent storage. 

• A persistent counter or counters. 

• A secure timer. 

• A secure application environment that provides memory protection to isolate code 
and data from the REE and other applications. 

• A secure application loading mechanism. 

2.5 Mobile Network Operators 

Devices that interact with mobile networks establish secure connections using protocols that 
rely on embedded keys. 

To be able to use embedded keys, an implementation must protect the following assets: 

Assets Authenticity Integrity Confidentiality 

Embedded Keys  ✓ ✓ 

A unique identifier, 
e.g. IMEI 

 ✓  

The software stack ✓ ✓ ✓ 

 

Protection of these assets relies on an underlying root of trust that requires: 

• Secure persistent storage, accessible only by the software stack. 

• A secure application environment that provides memory protection to isolate code 
and data from the REE and other applications. 

• A secure application loading mechanism. 
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3 Security threats 

The goal of this specification is to protect the Trusted Services that run on the device from 
attackers who would benefit from their compromise. The chapter on use cases outlined 
examples of the Trusted Services, their assets and the type of protection they require: 
authenticity, integrity and confidentiality. 

No security implementation can be perfect and so the goal must be to make attacks too 
costly with respect to time and money to be feasible in the real world. This chapter outlines 
the main threats that TBSA aims to protect against and the capabilities of the attackers 
performing the attacks. TBSA does not aim to protect against all types of attack and a TBSA 
device might need to meet stricter security requirements depending on its target market. 

TBSA cannot prevent the non-trusted world from being compromised, nor can it prevent 
phishing attacks. For example, it is possible for malware, executing in the REE, to attempt 
to acquire sensitive user information by pretending to be a trustworthy entity. 

3.1 Threats 

It must be assumed that every interaction from outside of a Trusted Service might be 
malicious and a threat. This section draws out the primary threats to aid the rationale of the 
security requirements later in the document. 

3.1.1 T.FUNC_ABUSE – Functional abuse 

Abusing the functionality of the Trusted Service by providing ill-formed interactions, through 
APIs or physical interfaces, can compromise the integrity of the Trusted Service. By 
compromising the integrity of the Trusted Service any assets directly accessed by the 
Trusted Service are also compromised. 

This is a very broad threat surface as the interfaces to a Trusted Service can be quite 
complex. Examples of potential attack routes are: 

• Buffer overflow attacks 

• Invalid command sequences 

• Hidden commands 

• Undefined commands 

• Incorrect commands 

• System resets during commands 

• Exploitation of context switching, for example a poor implementation might not clear 
all previous state. 

3.1.2 T.CLONE – Trusted Service cloning 

Most Trusted Services must be device specific as they are working on behalf of a single 
user. If a Trusted Service can be cloned to run on multiple devices, the Trusted Service 
cannot be guaranteed to be linked with the user. 

3.1.3 T.DEBUG_ABUSE - Debug feature abuse 

Devices contain many debug and test features that can be misused to compromise the 
assets of a Trusted Service when the service is running or dormant. Depending on the 
access and features of the debug functionality, the integrity and confidentiality of the assets 
might be compromised. 

3.1.4 T.NVS.READ - Reading of non-volatile storage (Flash/HDD) 

If the plaintext code or data for a Trusted Service can be retrieved from NVS then its 
confidentiality has been breached. Often the data would contain assets of value but an 
analysis of the code can reveal further, more serious, vulnerabilities to the Attacker. 
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3.1.5 T.NVS.WRITE - Writing to non-volatile storage (Flash/HDD) 

It is expected that the REE, or an external attacker, will be able to write to the system non-
volatile storage and so the threats resulting from this must be considered. Any assets stored 
in NVS related to the Trusted Service can be tampered with by the REE. The assets might 
be corrupted to attempt to produce undesired behavior in the Trusted Service or the assets 
might be replaced with valid assets from another device (or from a previous image for the 
same device). In either case the authenticity of the Trusted Service is compromised if these 
images are accepted. 

3.1.6 T.RAM.READ - Reading of Trusted Service RAM 

If the Trusted Service RAM contents can be read, the confidentiality of any assets within that 
space will be compromised. The breach does not have to cover the entire Trusted Service 
RAM space for the threat to be serious; if the code region is breached, the cleartext version 
of the encrypted flash image is readable and any security vulnerabilities can be detected 
using code analysis. 

3.1.7 T.RAM.WRITE - Writing to Trusted Service RAM 

If the Trusted Service RAM can be modified,  the integrity of any assets in that space will be 
compromised, even if they cannot be read. The operation of the Trusted Service could be 
modified through code or data regions to leak other assets. An advanced form of this attack 
could introduce faults into cryptographic operations to enable the attacker to perform 
Differential Fault Analysis, permitting the asset to be extracted. 

3.1.8 T.COVERT_PATH - Covert leakage paths 

The Trusted Service can leak information via unconventional paths during its operation; e.g. 
timing of operations might reveal information on the assets that are used. If the memory is 
not cleared after the Trusted Service is shutdown, assets can be accessible to the REE. 
Undocumented error codes can reveal operational information, this can be particularly 
powerful when combined with fault-injection techniques such as T.RAM.WRITE. 

3.1.9 T.ROLLBACK - Rollback to previous versions of code/data 

Trusted Services require that when a new firmware containing a security fix is issued, the 
previous version cannot be used. If the image can be rolled back, the vulnerability can still 
be exploited. In a similar manner, if the data assets of a Trusted Service can be rolled back 
to an earlier version, the integrity of the Trusted Service has been compromised. 

Secure Time required by some Trusted Services might also be vulnerable to a roll back 
attack that enables a user to perform actions beyond a specified expiry time. 

3.2 Attackers 

When considering the threats and attacks on a system, it is widely recognized that these 
must be divided into two phases: identification and exploitation. 

The identification phase requires an attacker to discover a vulnerability and create an exploit 
to gain access to an asset, which can take the form of access to a higher-privilege execution 
level, access to protected content, or access to a cryptographic key. 

In the exploitation phase, the exploit is executed on one or more devices by the same or 
different attackers. If different attackers are performing the exploit, it is expected that the 
identification phase attacker has prepared the exploit as either a set of detailed instructions 
or a piece of software. 

A security implementation must consider both phases. Due to the complexity of modern 
devices, there is a high probability that functional bugs will exist and these can give rise to 
vulnerabilities. The system should be designed to resist widespread exploitation because 
this form of attack is often the most damaging to the asset owners. 

Assuming that the identification phase attacker has full access to the device,  they can use 
all of the normal interfaces, for example touch screen, keyboard, buttons, non-volatile 
storage port, and audio and video ports. They might also perform partial disassembly of the 
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device to access any engineering interfaces that are covered by the casing, for example 
jumpers and JTAG connectors. The attacker might also use any wireless connections to 
breach the device, for example Wi-Fi, Bluetooth, RF, and IR. 

Attacks that require probing, modifying the PCB itself, or breaching the package of the SoC 
are out-of-scope of TBSA. 

3.2.1 Identification phase 

Attackers that are capable of identifying a vulnerability are generally considered to have 
more expertise than those that use the exploitation phase as they might have software and 
hardware skills along with access to equipment such as JTAG debuggers, oscilloscopes and 
logic analyzers. 

Attacker Description 

Basic User The device user could find and implement the attack using the standard 
user interface. 

Adept The attacker is capable of writing custom software, connecting to PCB 
connectors inside the device packaging, and applying knowledge of the 
security functions of the device. 

Expert The attacker is familiar with numerous attack methods and the 
underlying cryptographic principles and methods employed by the 
device. 

Multiple Experts The exploit requires experts from different fields of expertise. 

3.2.2 Exploitation phase 

If the exploit discovered in the identification phase reveals a class-breaking asset, for 
example a content master key, then often no further actions are required. However, in most 
cases the exploit must be repeated on each device. Because the 'hard' work of discovering 
the vulnerability and creating the exploit has already been done, the skills of the attacker in 
the exploitation phase are often lower. 

Attacker Description 

Remote An attacker can perform the exploit remotely. The skill to do this might 
be “Expert” but the ability to perform the exploit remotely ranks it before 
“Basic User”. 

Basic User The exploit can be simply performed by the device user using software 
that was either downloaded to the device, or downloaded to a PC 
connected to the device using a standard user-accessible interface. 

Adept The exploit requires an attacker who can dismantle the device and 
utilize connectors and settings within the device. 

Professional The exploit requires an attacker with the skills and resources of a 
backstreet shop. The device might be dismantled and the PCB 
modified. 

Expert The exploit requires an attacker with capabilities of an Identification 
Phase Expert or above and laboratory-like equipment. 

3.2.3 Access to devices 

During the identification phase, the attacker might need access to more than one device, 
either to compare the operations of the devices, or because a device might be damaged by 
the attack. How easy it is for an attacker to acquire multiple devices must be considered. 
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The properties of the devices must be considered too. For example, if the identification phase 
requires development parts that do not have all the security protections activated, the 
difficulty of acquisition is increased accordingly. 

3.2.4 Equipment 

Many consumer devices include a method of linking with a PC, for example a USB 
connection. This is an example of simple equipment that any attacker who is local to the 
device would have. 

Beyond this, an attacker might utilize more specialized equipment that can be acquired  
easily and relatively inexpensively acquired. Examples of these are JTAG interface 
controllers, soldering irons and oscilloscopes. 

To perform the most sophisticated attacks an attacker might require expensive laboratory-
like equipment or software that must be specifically developed. 

3.2.5 Scoring 

The difficulty of an attack is evaluated based on the profiles outlined above and gives a 
numeric score. A detailed scoring scheme is outside the scope of this document, but a well-
known example of this type of scoring system is the Attack potential rating derived from the 
Common Criteria, which is applied in the GlobalPlatform TEE Protection Profile [9.]. 
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4 TrustZone® technology 

Over recent years, driven by consumer demand, the complexity of embedded devices has 
increased dramatically and this trend is set to continue. While in the past it was common to 
implement closed software running on a bespoke operating system, this approach is no 
longer economically scalable and is now the exception rather than the rule. Today most 
devices demand an operating system with a rich feature set and this has driven the adoption 
of solutions such as Linux and Android. However, these rich operating systems (ROS) have 
a far larger footprint than their predecessors, and, given that the number of potential security 
bugs increases with the number of lines of code, the threat surface is also increased. 
Moreover, with the widespread deployment of app stores and third party app support the 
threat surface is extended significantly, as such malware is now a real threat to mobile 
devices. In addition, when premium content is delivered to a device, which is increasingly 
common, the user himself is a potential threat as he might attempt to circumvent protection 
mechanisms to receive free content or services. 

To combat these new threats, a robust platform architecture is needed. The architecture 
must be able to provide a trusted environment that is isolated and protected from the ROS. 
TrustZone technology supports this requirement by providing a binary partition that divides 
the system into two isolated worlds. 

• Trusted world: This partition is intended to encapsulate and protect all high value 
assets including code, data and any hardware assets (such as peripherals) that 
need to be protected against malicious attack. Access to these assets is restricted 
to Trusted world software and hardware. However, software running in the Trusted 
world has the right to access assets in the Non-trusted world. 

• Non-trusted world: This partition is intended to support the execution of the ROS, 
the assets contained are deemed to have a security value that is lower than those 
placed in the Trusted world. Access to these assets is permitted for both Trusted 
and Non-trusted software and hardware. 

TrustZone technology lies at the heart of the ARM processor core. While it is executing code, 
the processor core can operate in one of two possible states, which correspond to the 
Trusted and Non-trusted worlds and are known as the Secure and Non-secure states, 
respectively. Context switches between Security states can only be made using dedicated 
instructions and code that ensures that strict isolation is maintained. The context switch 
mechanism enforces fixed code entry points and ensures that code running in the Non-
secure state cannot access registers that belong to the Secure state. Conceptually, the 
Secure and Non-secure states can be regarded as two virtual processor cores. 

When the ARM processor performs a memory access, the MMU translation provides an 
extra bit that indicates the security state that is associated with the transaction.  When this 
bit is high, it indicates a Non-secure (NS) transaction. The mechanism is tightly coupled to 
the cache and consequently an NS bit is stored in every cache line. 

When a memory access reaches the external bus, the NS bit from the cache is translated 
into two transaction bits: one NS bit for reads and one NS bit for writes. The on-chip 
interconnect must guarantee that these bits are propagated to the target of the access, and 
the target must determine from the address and NS bits if the access is to be granted or 
denied. The NS bit is considered to be an extra address bit that is used to access the Secure 
and Non-secure worlds as completely independent address spaces. 

By propagating the security state of the processor core through the on-chip interconnect to 
target based transaction filters, the TrustZone technology is extended into the SoC 
architecture, creating a robust platform supporting fully isolated Trusted and Non-trusted 
worlds.  

TrustZone technology is also implemented in many other ARM IP components, for example 
debug subsystems and memory transaction filters. 

Later sections describe the architecture of the SoC hardware that provides such a trusted 
system. 
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4.1 Execution model 

The overview of the TrustZone technology presented a binary division of the processor core 
state and the resources into two worlds, a Trusted and a Non-trusted world. However, in the 
in the ARMv8-A architecture, additional privilege levels provide support for the traditional 
user/supervisor (unprivileged/privileged) separation that a modern ROS expects, as well as 
support for the virtualization layer introduced in the ARMv7-A architecture. 

These distinct levels of separation are referred to as Exception levels in the ARMv8-A 
architecture and are denoted EL0 to EL3, EL0 being the lowest privilege level and EL3 the 
highest. Execution can move between Exception levels only on taking an exception, or on 
returning from an exception: 

• On taking an exception, the Exception level either increases or remains the same. 
The Exception level cannot decrease on taking an exception. 

• On returning from an exception, the Exception level either decreases or remains the 
same. The Exception level cannot increase on returning from an exception. 

The resulting Exception level, is called the target Exception level of the exception: 

• Every exception type has a target Exception level that is either implicit in the nature 
of the exception, or defined by configuration bits in the System registers. 

• An exception cannot target the EL0 Exception level. 

As previously described, the ARM processor core also executes in one of two Security 
states, called Secure and Non-secure. As a result, exception levels and privilege levels are 
defined within a particular Security state. The following table summarizes the situation: 

 

EL\Security-state Non-secure Secure 

0 Name: EL0  (unprivileged) 
Runs: User space (ROS) 
World: Non-Trusted 

Name: S-EL0 
Runs: Trusted Application 
World: Trusted  

1 Name: EL1  
Runs: Kernel space (ROS) 
World: Non-Trusted 

Name: S-EL1 
Runs: TEE 
World: Trusted 

2 Name: EL2 
Runs: Hypervisor space for 
virtualization support 
World: Non-Trusted 

NA 

3 NA Name: EL3 
Runs: Monitor code for security state 
control 
World: Trusted 

  

 

• EL0 and EL1 provide the traditional user/supervisor separation for a ROS executing 
in the Non-trusted world. 

• In order to support a Trusted world kernel implementation having a traditional 
user/supervisor separation, for example a TEE and associated TAs, both EL0 and 
EL1 are supported within the Secure state. These levels are referred to as S-EL0 
and S-EL1, respectively. 

• EL2 provides support for virtualization and is the level at which the associated 
hypervisor executes. It exists within the Non-secure state and consequently the Non-
trusted world. 
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• EL3 has the highest privilege level and exists within the Secure state and 
consequently the Trusted world. It provides support for a monitor mode. Monitor 
code executing in EL3 is responsible for managing the security state transitions at 
lower privilege levels. 

4.2 Memory access 

An important property of a TrustZone system is that a Trusted service can access both 
Secure and Non-secure memory. To achieve this, two possible approaches are evident: 

1. A Trusted service can issue either Secure or Non-secure memory transactions, and 
the transaction filters only permit a Secure transaction to access Secure memory. A 
Secure transaction cannot access Non-secure memory. This is the recommended 
approach. 

2. A Trusted service always issues Secure memory transactions and the transaction 
filters permit a Secure transaction to access any memory, Secure or Non-secure. 
This approach has been implemented in legacy systems but is no longer 
recommended by ARM. 

Note: In both cases a Non-secure memory transaction is only permitted to access Non-secure 
memory, it is never possible for a Non-secure transaction to access Secure memory. 

Approach (2) leads to aliased entries in the cache and TLBs, and can cause coherency and 
security problems, and ARM recommends using approach (1) instead of approach (2). 

When using approach (1), software executing in a Secure state that wants to access Non-
secure memory must issue Non-secure memory transactions, by means of translation table 
control flags. 

The security state of each memory transaction is propagated with each access, and used to 
tag cache lines. It exists at all stages of the memory hierarchy up to the final access control 
filter. At the SoC interconnect level, it is propagated in the form of the tag bits previously 
described, which effectively creates two address spaces, one for Trusted and one for Non-
trusted. 

When the processor is in the Non-secure state (EL2, EL1, or EL0), all memory transactions 
are Non-secure. 

When the processor is in the Secure state (EL3, S-EL1, or S-EL0), the security state of 
memory transactions is determined as follows: 

• If the MMU is enabled, the security state of memory transactions can be determined 
by attributes in the translation table. Consequently, a Trusted kernel in S-EL1 can 
provide mappings that send Secure or Non-secure memory accesses into the 
memory system. 

• If the MMU is disabled, Translation tables are not utilized, and all Secure state 
accesses default to Secure transactions on the bus. 

The processor core integrates an internal configuration bit that is held in the Security 
Configuration Register (SCR), which determines the security state of levels below EL3. This 
bit can only be updated in EL3. In the 64-bit architecture (AArch64), it is referred to as 
SCR_EL3.NS, when high a Non-secure state is indicated. 

Transitions between the two Security states are managed by a dedicated software module 
called the Secure Monitor, which runs in EL3. The Secure Monitor is responsible for providing 
a clean context switch and must therefore support the safe save and restore of processor 
state, including the content of registers, while maintaining isolation between the two worlds. 

A Secure Monitor Call (SMC) instruction is used to enter EL3 and safely invoke the Secure 
monitor code. Because this instruction can only be executed in privileged mode, a user 
process that requests a change from one world to the other must do so using an SVC 
instruction, which is usually done via an underlying OS kernel. Furthermore, an SMC can 
optionally be trapped by EL2, and prevent even the OS kernel (EL1) from directly invoking 
the Secure Monitor (EL3). 
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Interrupts and exceptions can also be configured to cause the processor core to switch into 
EL3. Independent exception and vector tables support this functionality. 
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5 TBSA architecture variants 

A typical SoC architecture based on TrustZone technology is shown in Figure 1. The 
processor cluster is supported by a number of security hardware IPs that utilize TrustZone 
technology, such as the NS-bit, to work within the Trusted world. 
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Figure 1 TBSA SoC architecture 

 

The Trusted world software and security hardware together implement the protection 
mechanisms required for the use cases in section 2. Figure 2 shows an example 
implementation. 
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Figure 2 Example protection mechanisms 

 

Memory protection is used to isolate the target application from other applications at runtime 
by providing a partitioning of internal and external memory into the Trusted and Non-trusted 
worlds. The partitioning is achieved using NS bit target based filtering. The configuration 
must be performed by a trusted agent where the trusted agent itself forms part of the chain 
of trust that begins with the Secure boot of the device using an on-chip key. 

Note: Further partitioning of the Non-trusted world can be achieved using NSAID filtering or through 
a hypervisor and associated MMUs. These techniques are outside the scope of TBSA; For 
more information, see the relevant ARM documentation. 

The critical resources of the protected application are its code and associated data, which 
includes cryptographic certificates and keys, but which can also include physical interfaces. 
Resources can be loaded into internal or external memory, or can be stored in Secure 
persistent external memory, for example flash memory. In the latter case the data must be 
encrypted and saved along with an authentication tag or signature so that it can be verified 
when read back. 

Decryption and authentication of persistent external data (including code) must be 
dependent on chip root keys, which are typically stored in non-volatile OTP memory that is 
programmed during manufacture. In addition, to prevent replay or roll back attacks, each 
application needs a non-volatile version counter. . 

A common requirement of many applications is secure time, which requires a permanently 
powered hardware timer that is securely loaded with a time stamp that is provided by the 
network. 

This specification considers two architectures for a TrustZone based system: "Baseline" and 
"Assisted". These architecture variants might impose different requirements on the security 
features that are described later in this document. 
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5.1 Baseline architecture 

The Baseline Architecture performs the majority of the security functions within Trusted world 
software on the Processor cluster. It is supported by a minimum set of required security 
hardware, for example: 

• Trusted Boot ROM. 

• Trusted RAM and/or Trusted External Memory Partitioning. 

• Trusted peripherals. 

o OTP Fuses. 

o Entropy Source. 

o Timer. 

o Watchdog. 

The Baseline architecture focuses on ensuring that the Trusted world software has access 
to all the assets it requires, and has the underlying mechanisms to protect the integrity, 
confidentiality, and authenticity of the Trusted world. The Trusted world software exports 
crypto services to the Non-trusted world, and supports the execution of trusted services, for 
example by implementing a TEE capable of running trusted applications.  

In a TEE architecture, the API that is exposed to the trusted applications by the TEE will be 
responsible for providing secure time, secure version counters, and cryptographic services 
that utilize the device root keys. A Trusted application in turn, can expose further services to 
the Non-trusted world through its API. 

The exact requirements for the Trusted Hardware depend on the use cases that the device 
must support. 

5.2 Assisted architecture 

The Assisted Architecture builds on the Baseline Architecture by adding hardware to 
accelerate and offload some of the cryptographic operations from the Trusted world 
software, and to provide increased protection to high value assets, such as root keys. 

The cryptographic accelerators are expected to support the most commonly used algorithms 
for encryption, decryption, and authentication. These are likely to include AES, TDES, SHA, 
RSA, and ECC. 

ARM recommends increasing protection for the keys in the system by implementing a 
hardware Key Store that enables use of the keys by the cryptographic accelerators while 
preventing the keys from being read by both Non-trusted and Trusted software. 
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6 TBSA security requirements 

6.1 System view 

At an abstract level, the TBSA can be viewed as a system that comprises a collection of 
assets, together with operations that act on those assets. 

In this context, an asset is defined as a data set that has an owner and a particular intrinsic 
value, for example a monetary value. All data sets are assets that are associated with a 
value, even if that value is zero. A data set can be any stored or processed information; this 
includes executable code as well as the data it operates on. 

High value assets that require protection belong to the Trusted world, while lower value 
assets that do not require protection belong to the Non-trusted world. The actual 
classification, ranking, and mapping of assets to worlds depends on the target specifications, 
and is therefore beyond the scope of this document. 

Similarly, an operation belongs to a world and is therefore classified as either Trusted or 
Non-trusted. 

R010_TBSA_BASE A Non-trusted world operation shall only access Non-trusted world assets. 

R020_TBSA_BASE A Trusted world operation can access both Trusted and Non-trusted world assets. 

In the ARM architecture, code executing on an ARM TZ processor core exists in one of two 
Security states, Secure or Non-secure, where the Secure state corresponds to Trusted world 
operations, and the Non-secure state corresponds to Non-trusted world operations. 

R030_TBSA_BASE The SoC shall be based on version 8-A of the ARM architecture. See [2.] for details. 

ARM recognizes that the security features of a TBSA device will not be entirely implemented 
in hardware, and that the hardware might be configurable by software. 

R040_TBSA_BASE The hardware and software of a TBSA device shall work together to ensure all the security 
requirements are met. 

6.2 Infrastructure 

The TBSA is underpinned by a hardware infrastructure that provides strong isolation 
between the operations and assets of the Trusted and non-Trusted worlds.  

The ARM TZ processor core is a key component of a larger SoC design that performs 
operations on stored assets within the wider system, where storage comprises registers, 
random access memory, and non-volatile memory. To provide the required protection for 
assets, the storage is divided into two types: Secure and Non-secure, which correspond to 
the Trusted and Non-trusted worlds, respectively. 

Which world an operation belongs to is determined by its security state. A Secure operation 
belongs to the Trusted world, while a Non-secure operation belongs to the Non-trusted world. 
The ARMv8 processor core and some complex hardware IPs can support operations in both 
worlds. 

6.2.1 Memory system 

Operations and assets are connected by transactions, where a transaction represents a read 
or write access to storage containing the asset. Each transaction has a security state that is 
defined by the originating operation, and can be Secure or Non-secure. 

As described in section 4.2, the memory map as seen by the TZ processor core is divided 
into two spaces: Secure and Non-secure storage, where Trusted world assets are held in 
Secure storage and Non-trusted world assets are held in Non-secure storage. 

The security state of the transaction is interpreted as an additional address bit, which is 
referred to as ADDRESS.NS for clarity. ADDRESS.NS is high in a Non-secure state, and 
low in a Secure state. 

To build a useful system, it is necessary to facilitate communication between worlds through 
shared memory. In the TBSA this is achieved by permitting a Trusted operation to issue both 
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Secure and Non-secure transactions. The opposite, however, is not true: a Non-trusted 
operation can only issue Non-secure transactions. 

 A Trusted operation can issue Secure or Non-secure transactions. 

 A Non-trusted operation shall only issue Non-secure transactions. 

As described in section 4.2, ARM recommends that a consistent system-wide approach is 
adopted, such that Secure transactions only access Secure storage, and Non-secure 
transactions only access Non-secure storage. Moreover, this approach is mandatory where 
data is cached, to guarantee coherency. 

 A Secure transaction shall only access Secure storage. 

 A Non-secure Transaction shall only access Non-secure storage. 

The following rules summaries the link between operations, transactions and storage: 

• A Non-trusted operation is said to operate in a Non-secure state and shall only issue 
Non-secure transactions targeting Non-secure storage locations. It shall not issue 
Secure transactions and therefore cannot access Trusted assets.   

• A Trusted operation is said to operate in a Secure state and can issue either Secure 
or Non-secure transactions. As such it is capable of accessing both Secure and Non-
secure storage. However, ARM recommends that a Secure transaction only access 
Trusted assets and a Non-secure transaction only access Non-trusted assets. 

Given these definitions, Figure 3 shows how resources, for example a set of memory 
mapped peripheral interfaces, are placed into the physical memory map that is based on the 
world they belong to. 
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Figure 3: Peripheral to physical memory mapping 

 

If the peripherals are grouped together on a local interconnect node, the required mapping 
can be achieved through memory translation. 

Figure 4 shows the incorporation of a DRAM that is divided into Trusted and Non-trusted 
regions, using remapping logic. 
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Figure 4: DRAM to physical memory mapping 

 

In this example, and in many real word cases, the DRAM is simply split into only two regions, 
Secure and Non-secure. to map the two DRAM regions correctly into the larger physical 
address map, remapping logic must be implemented. In simple implementations, this can be 
fixed logic, but it is more likely to be programmable logic, as this offers greater flexibility if 
software is updated. In the latter case, the relevant configuration registers must only be 
accessible to Secure transactions, and belong to the Trusted world. 

 If programmable address remapping logic is implemented in the interconnect then its 
configuration shall only be possible from the Trusted world. 

In general, the mapping of resources into Secure or Non-secure memory can be achieved 
using either fixed or programmable logic, for example TLB-based translations of the physical 
address, but a more optimal solution uses a target-based filter. Such a filter enables the 
definition of Secure and Non-secure memory regions using ranges that are based on all 
address bits except ADDRESS.NS, causing incoming transactions to be permitted only if the 
following conditions are true:  

• Region is Secure and ADDRESS.NS = 0 

• Region is Non-secure and ADDRESS.NS = 1 

The physical address space after the filter, which does not consider ADDRESS.NS, is 
consequently halved in size. Figure 5 shows the resulting address map. 
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Figure 5: Filter aliasing 
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The aliasing in the address map that results after filtering places constraints on the memory 
layout from the point of view of a bus master, for example  an ARM processor.  

 A unified address map that uses target side filtering to disambiguate Non-secure and 
Secure transactions must only permit all Secure or all Non-secure transactions to any 
one region. Secure and Non-secure aliased accesses to the same address region are 
not permitted. 

 The target transaction filters configuration space shall only be accessed from the Trusted 
world. 

At the interconnect level, and before filtering, ADDRESS.NS forms an additional address bit,  
and each memory transaction must transport this bit together with all other address bits to 
the point where the filter constraints are applied. 

Note: In the legacy case of the APB v4 or earlier, the peripheral bus does not support an 
ADDRESS.NS bit, which makes it necessary to perform filtering before a transaction reaches 
the bus, for example at a bus bridge joining AXI and APB. 

The ARM TrustZone Address Space Controller (TZC) is one embodiment of such a target-
based filter. 

In the specific case of the TZC filter, aliasing enables a region to be configured as accessible 
by any combination of accesses. For example, it is possible to configure a region to be 
accessible to both Secure and Non-secure transactions. As previously discussed, this 
violates TBSA requirements, which demand that a region  belongs to only one world, and a 
Secure transaction must only access Secure regions, and a Non-secure transaction must 
only access Non-secure regions. 

Note: This configuration is referred to as “security inversion mode” in the TZC-380 product and 
must be explicitly enabled by setting a control bit. Later versions of TZC enable such 
configurations by default. 

The TZC filter can be configured to silently block illegal transactions or to block and signal a 
security exception through a bus error or an interrupt. If an interrupt is generated, it is 
classified as a Trusted interrupt, as described in the next section. 

 Security exception Interrupts shall be wired or configured as Secure interrupt sources. 

For the ARM processor core, the security state of the transaction is made available at the 
boundary of the processor core so that it can be propagated through the on-chip 
interconnect. For example, in an AXI bus implementation, the security state of the 
transaction, ADDRESS.NS, is mapped to the ARPROT[1] and AWPROT[1] signals, where: 

• ARPROT[1] indicates a Trusted write when low.   

• AWPROT[1] indicates a Trusted read when low. 

Similarly, a hardware IP that is an AXI bus master will generate the same signals to indicate 
the security state of each transaction.  

In architectures that use a network-on-chip interconnect approach, it might be possible to re-
configure the routing of packets so that they arrive at a different interface. Even though the 
access address remains unchanged, this is dangerous and can lead to an exploit. Any such 
configuration shall only be possible from the Trusted world using Secure transactions. 

 Configuration of the on-chip interconnect that modifies routing or the memory map shall 
only be possible from the Trusted world. 

The different techniques for address remapping and filtering are both methods of constraint 
that bind storage locations to worlds. Whatever the method of constraint, it must not be 
possible for a memory transaction to bypass it. 

A particular example is the case where multiple caches that are up-stream from a target filter 
are synchronized via a coherency mechanism. If such a mechanism, for example bus 
snooping, is implemented, the mechanism must force a coherency transaction to pass 
through the target filter. 
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 All transactions must be constrained; it must not be possible for a transaction to bypass 
a constraining mechanism. 

6.2.1.1 Shared volatile storage 

When assets from different worlds can occupy the same physical volatile storage location, 
the underlying storage, for example internal RAM, external RAM, or peripheral space, is 
referred to as shared volatile storage. 

A shared volatile storage implementation therefore enables a storage location or region that 
previously held a Trusted asset to hold a Non-trusted asset. Before such a storage location 
or region can be reallocated from Trusted to Non-trusted, the Trusted asset must be securely 
removed. This can be achieved using scrubbing. 

Scrubbing is defined as the atomic process of overwriting a Trusted asset with an unrelated 
value, which is either a constant, a Non-trusted asset value, or a randomly generated number 
of the same size. Atomic means that the process must not be interrupted by the Non-trusted 
world. 

 If shared volatile storage is implemented, then the associated location or region must be 
scrubbed, before it can be reallocated from Trusted to Non-trusted. 

Note: When a copy of Trusted data is held in a cache, it is important that the implementation does 
not permit any mechanism that provides the Non-Trusted world with access to that data, as 
required by R030_TBSA_INFRA and R040_TBSA_INFRA. If a hardware engine is used for 
scrubbing, careful attention must be given to the sequence to make sure that the relevant 
cached data is flushed and invalidated before the scrubbing operation. 

6.2.2 Interrupts 

In most cases a Trusted interrupt, which is an interrupt that is generated by a Trusted 
operation, must not be visible to a Non-trusted operation to prevent information leaks that 
might be useful to an attacker. Consequently, the on-chip interrupt network must be capable 
of routing any interrupt to any world with the caveat that the routing of Trusted interrupts shall 
only be configured from the Trusted world. 

The number of interrupts that must be supported in each world depends on the target 
requirements and is therefore not specified in this document. 

 An interrupt originating from a Trusted operation must by default be mapped only to a 
Trusted target. By default, we mean that this must be the case following a system reset. 

 Any configuration to mask or route a Trusted interrupt shall only be carried out from the 
Trusted world. 

 The interrupt network might be configured to route an interrupt originating from a Trusted 
operation to a Non-trusted target. 

 Any status flags recording Trusted interrupt events shall only be read from the Trusted 
world, unless specifically configured by the Trusted world, to be readable by the Non-
trusted world. 

For example, these rules permit a Non-trusted world request to a Trusted operation to result, 
after passing the policy check, in a Trusted Interrupt being delivered to a non-trusted target 
to signal the end of the operation. Configuration of the interrupt in this way must be done by 
the Trusted world before or during the Trusted operation. 

In the ARM architecture, these requirements can be supported using the GIC interrupt 
controller block. 

6.2.3 Secure RAM 

In a TBSA system, Trusted code is expected to execute from Secure RAM. The Trusted 
code will also store high value assets within the Secure RAM. In the context of this document, 
Secure RAM refers to one or more dedicated regions that are mapped onto one or more 
physical RAMs. When a physical RAM is not entirely dedicated to Secure storage, it is shared 
between worlds. However, the underlying locations are not classified as shared volatile 
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storage unless they are re-allocated from Secure to Non-secure. The mapping of Secure 
regions can be static and fixed by design, or programmable at runtime. 

ARM recommends the use of on-chip RAM, but it is acceptable to use SRAM on a separate 
die if it is within the same package as the main SoC. 

Example Secure RAM use cases are: 

• Secure boot code and data. 

• Monitor code. 

• A Secure OS. 

• Cryptographic services. 

• Trusted services, for example Global Platform TEE and TAs. 

The Secure RAM size depends on the target requirements and is therefore not specified in 
this document. As an example, a quad core system typically integrates 256 KB of SRAM. 

 A TBSA system must integrate a Secure RAM. 

 Secure RAM must be mapped into the Trusted world only. 

 If the mapping of Secure RAM into regions is programmable, then configuration of the 
regions must only be possible from the Trusted world. 

Note, if Secure RAM is re-mapped from the Trusted world to the Non-trusted world, it is 
classified as shared volatile storage, and it must meet the requirements of a shared volatile 
storage.  

For a description of the use of external DRAM for Secure RAM see 6.12 

6.2.4 Power and clock management 

Modern battery powered mobile platforms have a high degree of power control and might 
integrate an advanced power management subsystem using dedicated hardware, and 
execute a small software stack from local RAM. In such cases, the management subsystem 
has control over a number of Trusted assets, for example: 

• Clock generation and selection. Examples include: 

o Phase-Locked Loops (PLL). 

o Clock dividers. 

o Glitch-less clock switching. 

o High-level clock gating. 

• Reset generation. Examples include: 

o Registers to enable or disable clocks. 

o State machines to sequence the assertion and de-assertion of resets in 
relation to clocks and power states. 

o Re-synchronization of resets. 

• Power control. Examples include: 

o Access to an off-chip power controller/switch/regulator. 

o State machine for sequencing when changing power states. 

o Logic or processing to intelligently apply power states either on request, or 
dynamically. 

• State saving and restoration. To dynamically apply power states, some subsystems 
can also perform saving and restoration of system states without the involvement of 
the main application processor. 

Unrestricted access to this functionality is dangerous, because it could be used by an 
attacker to induce a fault that targets a Trusted service, for example by perturbing a system 
clock. To mitigate this threat, the advanced power mechanism must integrate a Trusted 
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management function, which performs policy checks on any requests from the Non-trusted 
word, before they can be applied. 

This approach still permits most of the Non-trusted complex peripheral wake up code, which 
is usually created by the OEM and subject to frequent updates, to be executed from the Non-
trusted world. 

 The advanced power mechanism must integrate a Trusted management function to 
control clocks and power. It must not be possible to directly access clock and power 
functionality from the Non-trusted world.   

 The power and clock status must be available to the Non-trusted world. 

Note: All system clocks are classified as Trusted because they can only be configured via the 
Trusted manager. 

6.2.5 Peripherals 

A peripheral is a hardware block that is not a processor core and which implements one or 
more operations that act on assets. It has an interface to receive commands and data from 
one or more processor cores and might be capable of direct memory access. 

A simple peripheral can have its operations mapped into one world or the other by the wider 
system depending on its role in the current use case. 

 If access to a peripheral, or a subset of its operations, can be dynamically switched 
between Trusted world and Non-trusted world, then this shall only be done under the 
control of the Trusted world. 

A Non-Trusted peripheral acts only on Non-Trusted assets, while a Trusted peripheral can 
act on assets in both worlds. Complex peripherals might therefore act in both worlds, 
supporting both Trusted and Non-trusted operations, as illustrated in Figure 6. 
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Figure 6: Peripheral operations 

A Trusted peripheral is viewed as hardware block that implements at least one Trusted 
operation. In turn, each operation has an interface that is mapped into the Trusted or non-
trusted world, or into both worlds. 

The implementation of the operations is a design choice. They can be built using fully 
separate hardware, or utilize multiplexing of shared functions and resources. 

A Trusted peripheral must meet the following requirements, which are framed in terms of its 
operations: 

 If the peripheral stores assets in local embedded storage, a Non-trusted operation must 
not be able to access the local assets of a Trusted operation. 

 A Trusted operation must be able to distinguish the originating world of commands and 
data arriving at its interface, by using the address. 
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 A Trusted operation that exposes a Non-secure interface must apply a policy check to 
the Non-trusted commands and data before acting on them. The policy check must be 
atomic and, following the check, it must not be possible to modify the checked commands 
or data. 

An example policy for a cryptographic accelerator peripheral would cover at least: 

• Which world the input data is permitted to be read from. 

• Which world the output data is permitted to be written to. 

• Whether encryption is permitted. 

• Whether decryption is permitted. 

A specific example is a DMA engine that is shared between worlds. When configured from 
the Trusted world, the DMA can operate on Trusted and Non-Trusted memory, by 
appropriate use of the NS bit. However, when configured from the Non-Trusted world, the 
DMA shall only operate on Non-Trusted memory, using an NS value of 1. 

6.3 Fuses 

A modern SoC requires non-volatile storage to store a range of data across power cycles. 
These vary from the device firmware to cryptographic keys and system configuration 
parameters. Non-volatile storage can use a variety of technologies, for example floating gate 
memories or oxide-breakdown antifuse cells. These technologies vary with respect to certain 
properties, most notably whether they are one-time-programmable (OTP) or many-time-
programmable (MTP). 

Not all non-volatile storage technologies are available in all semiconductor processes. 
Floating gate memories, for example, are not economic in modern bulk CMOS processes. 
Where needed, off-chip non-volatile memory can be used to augment the available on-chip 
non-volatile storage. 

Non-Volatile storage technologies generally require error correction mechanisms to ensure 
the correct storage of data over the lifespan of the device. 

R010_TBSA_FUSE A non-volatile storage technology shall meet the lifetime requirements of the device, 
either through its intrinsic characteristics, or through the use of error correction 
mechanisms. 

The majority of security assets and settings that need to be stored on-chip require OTP non-
volatile storage to ensure that the values cannot be changed. Following the industry norm, 
the rest of this document will use the term fuse to refer to on-chip OTP non-volatile storage. 
Fuses can be implemented using antifuses or an MTP technology with controlling logic to 
make it OTP. 

The fundamental requirements for implementing fuses in a TBSA device are: 

R020_TBSA_FUSE A fuse is permitted to transition in one direction only, from its un-programmed state to its 
programmed state. The reverse operation shall be prevented. 

R030_TBSA_FUSE A fuse shall be programmed only once as multiple programming operations might 
degrade the programmed cell(s) and introduce a fault. 

R040_TBSA_FUSE It shall be possible to blow at least a subset of the fuses when the device has left the 
silicon manufacturing facility. 

R050_TBSA_FUSE All fuse values shall be stable before any parts of the SoC that depend on them are 
released from reset. 

R060_TBSA_FUSE Fuses that configure the security features of the device shall be configured so that the 
programmed state of the fuse enables the feature. i.e. the programming of a security 
configuration fuse will always increase security within the SoC. 

This ensures that after a security feature is enabled, it cannot be deactivated. 

R070_TBSA_FUSE Lifetime guarantee mechanisms to correct for in-field failures shall not indicate which 
fuses have had errors detected or corrected, just that an error has been detected or 
corrected. This indicator shall only be available after all fuses have been checked. 
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The full error information will be available to the lifetime guarantee mechanism 
and the security of the mechanism implementation must be considered. ARM 
recommends to implement the mechanism in hardware, but this might not always 
be practical. 

Assets stored in fuses have a variety of characteristics that in turn determine the way that 
the fuses are accessed. The characteristics of fuses can be summarized as follows: 

Confidential/Public - "Confidential" fuses must only be read by the intended recipient, or a 
particular hardware module or software process. "Public" fuses can be accessed by any 
piece of software or hardware. 

Lockable/Open -  

“Lockable” fuses shall comply with one of the following requirements: 

• Prevent re-writing of a locked value. 

A mechanism that prevents the programming of a fuse bit or group of fuse bits can be 
implemented by reserving an additional fuse bit to act as a lock bit:  

o Writing the value is followed by its lock bit being set. Glue logic ensures that 
no further programming is possible. 

o Writing zero, which corresponds to the un-programmed fuse state, causes 
no value to be written, only the lock bit to be set. 

• Use tamper detection to detect that the value has been modified. 

A tamper protection mechanism can be implemented by storing a code in additional 
fuses that is sufficient to detect any modification to the value: 

o Writing the value is followed by storing the detection code. 

o When the value is read by the system, a mechanism must recalculate the 
code from the value and compare it with the stored code. 

o If the codes do not match, the value shall not be returned to the system. 

By definition, "Open" fuse bits might be programmed only once, at any point in the device 
lifetime. 

Bitwise/Bulk - "Bitwise" fuses can be programmed one logical fuse at a time, regardless of 
the number of fuses required to store the value. "Bulk" fuses store multi-bit values that must 
be programmed at the same time and are treated as an atomic unit. 

Bitwise and bulk fuses must comply with the following requirements: 

R080_TBSA_FUSE A confidential fuse whose recipient is a hardware IP shall not be readable by any software 
process.  

R090_TBSA_FUSE A confidential fuse whose recipient is a hardware IP shall be connected to the IP using a 
path that is not visible to software or any other hardware IP. 

Usually, this is implemented as a direct wire connection.  

R100_TBSA_FUSE A confidential fuse whose recipient is a software process might be readable by that 
process and shall be readable by software of a higher exception level. 

This permits a kernel level driver to access fuses for a user space process. The 
confidentiality relies on the kernel level driver only passing fuse values to the 
correct user space process. 

R110_TBSA_FUSE A confidential fuse whose recipient is a Trusted world software process shall be protected 
by a hardware filtering mechanism that can only be configured by S-EL1 or EL3 software, 
for example an MPU, an MMU, or an NS-bit filter. 

R120_TBSA_FUSE It must be possible to fix a lockable fuse in its current state, regardless of whether it is 
programmed or un-programmed. 

R130_TBSA_FUSE The locking mechanism for a lockable fuse can be shared with other lockable fuses, 
depending on the functional requirements. 
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For example, there can be one locking mechanism for all fuses that are 
programmed by the silicon vendor. 

R140_TBSA_FUSE A bulk fuse shall also be a lockable fuse to ensure that any unprogrammed bits cannot 
be later programmed. 

R150_TBSA_FUSE Additional fuses that are used to implement lifetime guarantee mechanisms shall have 
the same confidential and write lock characteristics as the logical fuse itself. 

6.4 Cryptographic keys 

Fundamental to the security of a system are the cryptographic keys that provide authenticity 
and confidentiality of the assets that are used by the system. 

It is important that a key is treated as an atomic unit when it is created, updated, or destroyed. 
This applies at the level of the requesting entity. Replacing part of a key with a known value 
and then using that key in a cryptographic operation makes it significantly easier for an 
attacker to discover the key using a divide and conquer brute-force attack. This is especially 
relevant when a key is stored in memory units that are smaller than the key, for example a 
128-bit key that is stored in four 32-bit memory locations. Entities, such as trusted firmware 
functions, which implement creation, updating or destruction services for keys should ensure 
that it is not possible for their clients to observe or use keys in a manner which breaks the 
assumption of atomicity. 

 

R010_TBSA_KEY A key shall be treated as an atomic unit. It shall not be possible to use a key in a 
cryptographic operation before it has been fully created, during an update operation, or during its 
destruction. 

R020_TBSA_KEY Any operations on a key shall be atomic. It shall not be possible to interrupt the 
creation, update, or destruction of a key. 

R030_TBSA_KEY When a key is no longer required by the system, it must be put beyond use to 
prevent a hack at a later time from revealing it. 

If a key is “put beyond use” there must be no possible way of using or accessing it, 
which can be achieved by hiding the key through blocking access to it, or by removing 
the key from the system through scrubbing the storage location that contains the key. 

6.4.1 Characteristics 

Keys have a range of characteristics that influence the level of protection that must be 
applied, and how the keys can be used. 

6.4.1.1 Cryptographic Schemes 

A cryptographic scheme provides one or more security services and is based on a purpose 
and an algorithm requiring specific key properties and key management.  
Keys are characterized depending on their classification as private, public or symmetric keys 
and according to their use.  
 
Broadly, each key should only be used for a single purpose, such as encryption, digital 
signature, integrity, and key wrapping. The main motivations for this principle are: 
1. Limiting the uses of a key limits the potential harm if the key is compromised. 
2. The use of a single key for two or more different cryptographic schemes can reduce 

the security provided by one or more of the processes. 
3. Different uses of a single key can lead to conflicts in the way each key should be 

managed. For example, the different lifetime of keys used in different cryptographic 
processes may result in keys having to be retained longer than is best practice for one 
or more uses of that key. 

  
In cases where a scheme can provide more than one cryptographic service, this principle 
does not prevent use of a single key. For instance, when a symmetric key is used both to 
encrypt and authenticate data in a single operation or when a digital signature is used to 
provide both authentication and integrity.  
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Re-using part of a larger key in a scheme that uses a shorter key, or using a shorter key in 
a larger algorithm and padding the key input, can leak information about the key. So, this 
too, is prohibited. 

  R035_TBSA_KEY A key must only be used by the cryptographic scheme for which it was created. 

 

6.4.1.2 Volatility 

Keys used by the system will have vastly different lifespans. Some keys are programmed 
during SoC manufacture and never change, while others will exist only during the playback 
of a piece of content. 

Static - A static key is a key that cannot change after it has been introduced to the device. 
It might be stored in an immutable structure like a ROM or a set of fuses. Although a static 
key cannot have its value changed, it does not preclude it from being revoked or made 
inaccessible by the system. 

R070_TBSA_KEY A static key shall be stored in an immutable structure, for example a ROM or a set 
of Bulk-Lockable fuses. 

Ephemeral - Ephemeral keys have a short lifespan. In many cases, they only exist between 
power cycles of the device. Ephemeral keys can be created in the device in a number of 
ways: 

• Derivation - Sometimes it is useful to create one or more keys from a source key. 
This method is called key derivation. Derivation is used most often, to create 
ephemeral keys from static keys. 

A key derivation operation shall use a cryptographic one-way function that 
preserves the entropy of the source key, and the operation shall be unique for 
each derived key. Common derivation constructions are based on use a keyed-
Hash Message Authentication Code (HMAC) or a Cipher-based Message 
Authentication Code (CMAC). Collectively, the inputs to the one-way derivation 
function are referred to as “Source Material”. 

R080_TBSA_KEY To meet R030_TBSA_KEY for a derived key, at least one part of the Source 
Material shall be put beyond use until the next boot to ensure that the key cannot be derived again. 

• Injection - A key is introduced into the system from storage or via a communication 
link. One example is the key within a DRM license certificate. To ensure that the key 
is encrypted during transit, the injection is often protected by another key. 

• Generation - Ephemeral keys can be generated on the device by simply sampling 
random numbers or by using random numbers to create a key, for example in a 
Diffie-Hellman key exchange protocol. 

When an ephemeral key is no longer required, it must be removed securely from the system. 
This must happen even if the event that makes the key redundant is unexpected, for example 
in case of a reset. 

R090_TBSA_KEY If an ephemeral key is stored in memory or in a register in clear text form, the 
storage location must be scrubbed before being used for another purpose. 

6.4.1.3 Unique/Common 

Device Unique - A device unique key is statistically unique for each device, meaning that 
the probability of another device having the same key value is insignificant. For TBSA 
systems, a key with at least 128-bits of entropy is considered to be sufficient for device 
uniqueness. 

Common - A common key is present on multiple devices.  

6.4.1.4 Source 

Non-trusted world: 



TBSA security requirements 

 

 
ARM DEN 0021D Copyright © 2012, 2016, 2018 ARM Limited or its affiliates. All rights reserved. 35 
 Non-Confidential 

R100_TBSA_KEY A key that is accessible to, or generated by, the Non-trusted world shall only be 
used for Non-trusted world cryptographic operations, which are operations that are either implemented 
in Non-trusted world software, or have both input data and output data in the Non-trusted world. 

Trusted world: 

R110_TBSA_KEY A key that is accessible to, or generated by, the Trusted world can be used for 
operations in both Non-trusted and Trusted worlds, and even across worlds, as long as: 

1. The Non-trusted world cannot access the key directly. 

2. The Trusted world can control the use of the key through a policy. 

An example policy would cover at least: 

• Which world the input data is permitted to be read from. 

• Which world the output data is permitted to be written to. 

• Permitted operations. 

In the Assisted architecture, the "Source" key characteristic is extended to include "Trusted 
hardware" where the key is derived or generated in pure hardware. 

R120_TBSA_KEY A Trusted hardware key shall not be directly accessible by any software. 

A Trusted hardware key can be used for Trusted world cryptographic operations, but its 
usage in a Non-trusted world must be subject to a policy. 

R130_TBSA_KEY The Trusted world must be able to enforce a usage policy for any Trusted 
hardware key which can be used for Non-trusted world cryptographic operations. 

6.4.2 Root keys 

A TBSA-compliant SoC must be capable of providing authentication and encryption services 
through the use of embedded cryptographic keys. The exact number of embedded keys and 
their type depends on the target requirements, and is not specified in this document. 

However, as a minimum, a TBSA-compliant device must embed two root keys, one for 
confidentiality and one for authentication, from which others can be derived: 

• A hardware unique root symmetric key (HUK) for encryption and decryption. 

• A root authentication key that is the public key half of an asymmetric key pair, it might 
belong to an RSA or elliptic curve cryptosystem (ECC) and is referred to as the Root 
of Trust Public Key (ROTPK). 

Examples of other embedded root keys are: 

• Endorsement keys - these are asymmetric key pairs used to prove identity and 
therefore trustworthiness to the external world. 

• Additional symmetric keys for firmware decryption and provisioning - alternatively, if 
ownership is not an issue, these can be derived from the HUK. 

The use of an elliptic curve cryptosystem for asymmetric cryptography is often beneficial 
because its smaller key sizes lessens storage and transmission requirements. For 
example, the RSA algorithm of key size 3072 bits gives comparable security to an ECC 
algorithm of key size in the range 256-383 bits depending on details of the algorithm and 
parameters chosen.  

System architects should also review the comparative resource requirements and 
performance of RSA and ECC implementations for each of the relevant key use cases. 

R140_TBSA_KEY A TBSA device must either entirely embed a root of trust public key (ROTPK), or 
the information that is needed to securely recover it as part of a protocol. 

R150_TBSA_KEY If stored in its entirety, the ROTPK must reside in on-chip non-volatile memory that 
is only accessible until all the operations requiring it are complete. The ROTPK can be hard wired into 
the device, for example a ROM, or it can be programmed securely into Confidential-Bulk-Lockable 
fuses during manufacture. 
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When no longer in use, hiding the ROTPK requires a non-reversible mechanism, for 
example a sticky register bit that is activated by the boot software. 

R160_TBSA_KEY An elliptic-curve-based ROTPK must achieve a level of security matching that of  
at least 256 bits. 

R170_TBSA_KEY An RSA-based ROTPK must achieve a level of security matching that of at least 
3072 bits in size. 

If an RSA cryptosystem is implemented, the following approaches are permitted to reduce 
the ROTPK storage footprint: 

1. Instead of the key itself, a cryptographic hash of the key can be stored in on-chip 
non-volatile storage. The public key can then be stored1, in external non-volatile 
memory. When required, the key must be retrieved from external memory, and 
successfully compared with the stored hash by Trusted hardware or software, before 
it is used. This approach is known as hash locking. Because this approach is not 
susceptible to a second pre-image attack, only half of the digest bits from an 
approved hash algorithm need to be stored. It is not important which subset of bits 
is stored, but typically the leftmost 128 bits from a SHA-256 digest are used. 

2. Instead of the key itself, a 256-bit seed can be stored in on-chip non-volatile storage. 
The public/private key pair can then be re-generated by Trusted hardware or 
software. Because the seed enables the re-creation of both the public and private 
key, ARM recommend not to use this approach if only the public key is required. 
Moreover, in many target specifications it is a mandatory requirement that the 
signing, or private,  key component must not be present in the device. 

R180_TBSA_KEY If a cryptographic hash of the ROTPK is stored in on chip non-volatile memory, 
rather than the key itself, it must be immutable. 

If the ROTPK itself is stored in external non-volatile memory, many target markets 
recommend it to be encrypted1, and protected by an approved symmetric cipher having a 
key size of at least 128 bits. This applies to the ROTPK, even though it is a public key, 
because knowledge of the public key might aid a timing-based attack. 

R190_TBSA_KEY If a generator seed is stored in on-chip non-volatile memory, rather than the key 
itself, it must be immutable and Trusted, and unreadable from the Non-trusted world. 

R200_TBSA_KEY A TBSA device must embed a hardware unique root symmetric key (HUK) in 
Confidential-Lockable-Bulk fuses. 

R210_TBSA_KEY The HUK must have at least 128 bits of entropy. 

R220_TBSA_KEY The HUK shall only be accessible by the Boot ROM code or Trusted hardware that 
acts on behalf of the Boot ROM code only. 

To achieve this rule while complying with R100_TBSA_FUSE, the HUK must be 
hidden by a non-reversible mechanism, for example a sticky register bit that is 
activated by the Boot ROM code before the next stage in the boot chain, because 
the memory system does not differentiate between accesses from EL3 and S-EL1. 

The options are summarized in Table 2. 

Table 2 : Root key summary 

Name On-Chip Data Size Off-Chip Data Size Access to On-Chip Data 

ROTPK – RSA 3072 bits (Key) 0 bits During Boot ROM execution only 

128 bits (Digest) 3072 bits (Key) During Boot ROM execution only 

ROTPK – ECC 256 bits (Key) 0 bits During Boot ROM execution only 

                                                      
1 Encrypting an externally held public key is generally not required. However, it is a known 
stipulation in certain markets to add a defensive layer against certain types of timing-based 
attacks. 
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HUK 128 bits (key) 0 bits During Boot ROM execution only 

 

6.5 Trusted boot 

6.5.1 Overview 

The secure configuration of a TBSA device depends on Trusted software that in turn forms 
part of a chain of trust that begins with the Trusted boot of the SoC. Without a Trusted boot 
mechanism, TBSA security is not possible. 

Trusted boot is based on a fixed and immutable Trusted boot image. It is the first code to run 
on the ARM processor core and it is responsible for verifying and launching the next stage 
boot. The Trusted boot image must be fixed within the SoC at manufacture time and is stored 
in an embedded ROM, which is referred to as the Boot ROM. The Boot ROM contains the 
boot vectors for all processors as well as the Trusted boot image. 

R010_TBSA_BOOT A TBSA device must embed a Boot ROM with the initial code that is needed to 
perform a Trusted system boot. 

Typically, the boot loader is divided into several stages, the first of which is the Boot ROM. 
Later stages will be loaded from non-volatile storage into Secure RAM and executed there. 
In this document, the second stage boot loader is referred to as Trusted Boot Firmware. The 
firmware that is loaded by the Trusted Boot Firmware is called Trusted Runtime Firmware. 

Further details on the secure boot sequence and authentication mechanisms can be found 
in the TBBR [3.], and in the implementation provided by ARM® Trusted Firmware [4.]. 

6.5.2 Boot types 

A cold boot is a boot that is not based on a previous system state. Normally, a cold boot only 
occurs when the platform is powered up and a hard reset signal is generated by a power-on 
reset circuit. However, depending on the design, a hard reset option that  triggers a cold boot 
might also be available to the user in case of a software lock-up. 

A warm boot can deploy one of the following methods to reuse the stored system state, for 
example on resuming from sleep: 

• The Boot ROM can use a platform-specific mechanism that is designed into the Boot 
ROM to distinguish between a warm boot and a cold boot. 

• The or the platform can use platform-specific registers to support an alternate reset 
vector for a warm boot. 

R020_TBSA_BOOT If the device supports warm boots, a flag or register that survives the sleep state 
must exist to enable distinguishing between warm and cold boots. This register shall 
be programmable only by the Trusted world and shall be reset after a cold boot. 

Typically, any storage that is needed to support these mechanisms is implemented within an 
always-on power domain. 

6.5.3 Boot configuration 

If the SoC implements multiple processor cores the designated boot processor core is called 
the primary. After the de-assertion of a reset, the primary processor core executes the Boot 
ROM code, and the remaining cores are held in reset or a safe platform-specific state until 
the primary processor core initializes and boots them. 

R030_TBSA_BOOT On a cold boot, the primary processor core must boot from the Boot ROM. It must 
not be possible to boot from any other storage unless Trusted Kernel debug is 
enabled For detailed information about Trusted Kernel debug, see section 6.10. 

R040_TBSA_BOOT All secondary processor cores must remain inactive until permitted to boot by the 
primary processor core. 

In one implementation, the platform power controller holds all secondary processor cores in 
a reset state, while the primary processor core executes the Boot ROM until it requests the 
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secondary processor cores to be released. In an alternative implementation, all processor 
cores execute from the generic boot vector in the Boot ROM after a cold boot. However, the 
Boot ROM identifies the primary processor core and permits it to boot using the Trusted boot 
image, while the secondary processor cores are made inactive.  

The ARMv8 architecture supports both 32-bit and 64-bit execution, which are labelled 
AArch32 and AArch64, respectively. The execution mode on boot is implementation-defined. 
For example, in the specific case of the Cortex-A53 and Cortex-A57 processors, the 
execution mode is controlled by a signal (AA64nAA32) which is sampled at reset. This boot 
execution mode signal can be hard-wired or depend on on-chip fuse bits. 

ARM recommends that the primary processor core boots into 64-bit mode, AArch64. 

R050_TBSA_BOOT The processor execution mode (AArchXX) at cold boot must be fixed and 
unchangeable. It must not be possible to change the boot mode through any external 
means, for example by using dedicated pins at the SoC boundary. 

If a different execution mode is required, the Boot ROM can change the processor core 
execution mode and provoke a warm boot. If the platform does not support a programmable 
reset vector, two Trusted boot images (one for each execution mode) are required to be 
present in the Boot ROM. 

The ARMv8-A architecture, when implemented with the TrustZone extensions, will always 
boot into EL3. 

The Trusted Boot ROM contains sensitive code that verifies and decrypts the next stage of 
the boot. If an attacker were able to read and disassemble the ROM image,  they could gain 
valuable information that could be used to target an attack that circumvents the verification 
mechanism. For example, timing information can be used to target a fault injection attack. 

Arm recommends that the Trusted boot image within the Boot ROM is accessible only during 
boot. Device designers should consider implementing a non-reversible mechanism which 
prevents access by, for example, hiding the Trusted boot image using a sticky register bit 
that is activated by the boot software. The initial code which supports warm boot is excluded 
from this recommendation. 

Arm recommends that when stored in external NVM, the Trusted Boot Firmware image 
should be stored encrypted using an approved algorithm. This is to deter the acquisition of 
the image by an attacker to inspect for vulnerabilities.  

The Trusted Boot Firmware image can be encrypted using the HUK, or a HUK-derived key, 
which would require a unique image for each device, or using a common static key, which 
enables the same image to be used across a set of devices. Arm recommends that externally 
held Firmware is authenticated using an approved algorithm. 

Arm recommends that the key that decrypts Trusted boot firmware is protected from being 
accessed or re-derived after boot to mitigate the threat of attacks revealing the plaintext of 
Trusted Boot Firmware image. The key and its source material must either be made 
inaccessible or accessible only by the Trusted world. 

It is important that the key that is used to decrypt Trusted Boot Firmware is not available to 
the system at a later point, not even for decrypting Trusted Runtime Firmware, because this 
ensures that a software controlled decryption operation cannot reveal the plaintext Trusted 
Boot Firmware image. It is recognized that the current generation of TBSA compliant devices 
do not implement this. 

The Trusted Boot Firmware code is responsible for verifying and, if successful, launching the 
next stage boot, Trusted Runtime Firmware, which is held in off chip memory, typically flash 
memory. This is a non-trivial operation, because portions of the image must be copied to 
DRAM before authentication, which requires the clocks, pad logic, and the DRAM controller 
to be configured correctly in advance. When loaded into DRAM, the image is optionally 
decrypted before it is verified, and if and only if verification is successful, the image is 
executed. Verification is based on public key cryptography, which uses a digital signature 
scheme, and ARM recommends that decryption uses a different key to the one that is used 
for Trusted Boot Firmware. 

A boot status register can be implemented to indicate the boot state of each Trusted 
processor. For example, the boot status register enables the application processor to check 
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if other Trusted processors are booted up correctly. The register can also be used as a 
general boot status register. 

R100_TBSA_BOOT If a boot status register is implemented, then it must be accessible only by the 
Trusted world.  

6.5.4 Stored configuration 

Some aspects of the secure boot behavior, which are governed by the Trusted ROM, might  
depend on stored configuration information. For example, in the case of a warm boot, 
configuration information might be stored in Trusted registers that are immutable between 
secure boot executions. This can be implemented using a sticky register bit to prevent 
access to the data. The sticky bit is set by the secure boot code when the necessary 
operations of a cold or warm boot have been performed, and reset by triggering a warm or 
a cold boot.  

In the case of a cold boot, the Trusted ROM behavior might be entirely fixed in the 
implementation. However, it can also be influenced by additional configuration information 
stored in fuses. 

Fuse configuration information can be used for the following purposes: 

• Selection of the boot device. 

• Storage of the root public authentication key. 

• Storage of a root key for boot image decryption. 

• Storage of other boot specific parameters. 

6.5.5 Assisted architecture 

At each step in the boot chain, each stage must verify the next, and because the Trusted 
Boot Firmware is encrypted, a decryption step is also needed. Verification of an image is 
based on a cryptographic hash function and asymmetric cryptography, while decryption of 
an image is based on symmetric cryptography. Because the underlying cryptographic 
algorithms are CPU-intensive, the Assisted architecture implements hardware acceleration. 

In an Assisted architecture, the symmetric key that is used to decrypt the Trusted Boot 
Firmware is used only by the accelerator peripheral, and is not visible to software. 

R110_TBSA_BOOT In an Assisted architecture the key used to decrypt the Trusted Boot Firmware image 
shall be visible only to the acceleration peripheral. 

6.6 Trusted timers 

6.6.1 Trusted clock source 

Trusted clock sources are needed to implement Trusted watchdog timers and Trusted time. 
By definition, all system clock sources are classified as Trusted, and can only be configured 
from the Trusted world. 

In addition to this, a Trusted clock source must be robust against tampering that happens 
outside of the control of the associated Trusted manager. Two protection strategies are 
possible: 

• Internal clock source: The clock source is an integrated autonomous oscillator within 
the die and cannot be easily altered or stopped without deploying invasive 
techniques. 

• External clock source: The clock source is an external XTAL or clock module and 
connects to the main SoC through an I/O pin. In this case, an attacker can easily 
stop the clock or alter its frequency. If this is the case, then the main SoC must 
implement monitoring hardware that can detect when the clock frequency is outside 
its acceptable range. 

R010_TBSA_TIME If the Trusted clock source is external, then monitoring hardware must be implemented 
that checks the clock frequency is within acceptable bounds. 
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R020_TBSA_TIME If clock monitoring hardware is implemented, then it must expose a status register that 
indicates whether the associated clock source is compromised. This register must be 
readable only from the Trusted world. 

To signal a clock frequency violation, it might also be useful to add a Trusted interrupt 
to any Trusted clock monitoring hardware. 

6.6.2 General trusted timer 

Trusted timers are needed to provide time-based triggers to Trusted world services. A TBSA 
system must support one or more Trusted timers. 

R030_TBSA_TIME At least one Trusted timer must exist. 

R040_TBSA_TIME A Trusted timer shall only be modified by a Trusted access. Examples of modifications 
are the timer being refreshed, suspended, or reset.  

R050_TBSA_TIME The clock source that drives a Trusted timer must be a Trusted clock source. 

6.6.3 Watchdog 

A TBSA system must support one or more Trusted watchdog timers. 

Trusted watchdog timers are needed to protect against denial of service, for example where 
secure services depend on the ROS scheduler. In such cases, if the Trusted world is not 
entered before a pre-defined time limit, a reset is issued and the SoC is restarted. 

It is desirable for a Trusted watchdog timer to have the ability to signal an interrupt in advance 
of the reset, permitting some state save before a reboot. 

R060_TBSA_TIME At least one Trusted watchdog timer must exist. 

R070_TBSA_TIME After a system restart, trusted watchdog timers must be started automatically. 

R080_TBSA_TIME A Trusted watchdog timer shall only be modified by a Trusted access. Examples of 
modifications are the timer being refreshed, suspended, or reset. 

ARM recommends that a clock speed of at least 1 Hz is used when the device is not in a 
power saving cycle. 

R090_TBSA_TIME Before needing a refresh, a Trusted watchdog timer must be capable of running for a time 
period that is long enough for the Non-trusted re-flashing of early boot loader code.  

R100_TBSA_TIME A Trusted watchdog timer must be able to trigger a Warm reset of the SoC, which is 
similar to a cold boot, after a pre-defined period of time. This value can be fixed in 
hardware or programmed by a Trusted access. 

R110_TBSA_TIME A Trusted watchdog timer must implement a flag that indicates the occurrence of a 
timeout event that causes a Warm reset, to distinguishes this from a powerup cold boot. 

R120_TBSA_TIME The clock source driving a Trusted watchdog timer must be a Trusted clock source. 

6.6.4 Trusted time 

Many Trusted services, for example DRM stacks, rely on the availability of Trusted time. 
Typically, Trusted time is implemented using an on-chip real-time counter that is 
synchronized securely with a remote time server. 

An ideal implementation of a Trusted real-time clock (TRTC) would consist of a continuously 
powered counter driven by a continuous and accurate clock source, with Trusted time 
programmable only from the Trusted world. However, devices that contain a removable 
battery must deal with power outages. 

A suitable solution for dealing with power outages can be realized by implementing a counter 
together with a status flag that indicates whether a valid time has been loaded. 

A TBSA system that deploys this solution implements Trusted time using a TRTC that 
consists of a Trusted hardware timer that is associated with a status flag that indicates 
whether the current time is valid, and receives a Trusted clock source. The valid flag is set 
when the Trusted timer has been updated by a Trusted service and is cleared when power 
is removed from the timer. ARM recommends that the Trusted timer and valid flag reside in 
a power domain that remains on as much as possible. 
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When the Trusted time is lost due to a power outage, the response will depend on the target 
specifications. For example, it might be acceptable to restrict specific Trusted services until 
the TRTC has been updated by the appropriate Trusted service. 

R130_TBSA_TIME A TRTC shall be configured only by a Trusted world access. 

R140_TBSA_TIME All components of a TRTC shall be implemented within the same power domain. 

R150_TBSA_TIME On initial power up, and following any other outage of power to the TRTC, the valid flag 
of the TRTC shall be cleared to zero. 

R160_TBSA_TIME The TRTC must be driven by a Trusted clock source. 

6.7 Version counters 

A compliant TBSA system must implement a core set of Trusted non-volatile counters, which 
are required for version control of firmware and trusted data held in external storage. An 
important property of these counters is that it must not be possible to roll them back, to 
prevent replay attacks. 

The following counters are mandatory: 

• A Trusted firmware version counter. 

• A Non-trusted firmware version counter. 

Ideally, a SoC implementation implements version counters using on-chip multiple time 
programmable (MTP) storage, for example floating gate (EE ROM) or phase transition 
technology. While this is possible for most smart card designs, it is recognized that an MTP 
based approach is currently not economically scalable for larger die sizes because the 
process overhead is very costly compared to a standard bulk CMOS process. By contrast, 
one-time programmable (OTP) storage, which is based on anti-fuse technology, is widely 
available and cost effective. 

A non-volatile counter can be implemented by mapping each possible value that is greater 
than one onto a separate fuse bit. Each counter increment is achieved by programming a 
further bit. Because one bit is required for each value, this approach has the downside of 
being very costly for large counters, for example a 10 bit counter requires 1024 bits of 
storage. For this reason, practical limitations must be imposed on the maximum count values 
for fuse-based implementations. 

The size requirement for a version counter depends on the target specification. For a TBSA 
system, the minimum requirement is as follows: 

R010_TBSA_COUNT An on-chip non-volatile Trusted firmware version counter implementation must provide a 
counter range of 0 to 63. 

R020_TBSA_COUNT An on-chip non-volatile Non-trusted firmware version counter implementation must 
provide a counter range of 0 to 255. 

All on-chip non-volatile version counters must also meet the following requirements: 

R030_TBSA_COUNT It must only be possible to increment a version counter through a Trusted access. 

R040_TBSA_COUNT It must only be possible to increment a version counter; it must not be possible to 
decrement it. 

R050_TBSA_COUNT When a version counter reaches its maximum value, it must not roll over, and no further 
changes must be possible. 

R060_TBSA_COUNT A version counter must be non-volatile, and the stored value must survive a power down 
period up to the lifetime of the device. 

Further Trusted version counters are also needed to support version control of other platform 
software, for example Trusted services, a hypervisor, or the VMs running on top of the TBSA 
system, as well as individual applications. A suitable implementation might employ one 
counter per software instance, or group together a list of version numbers inside a database 
file, which is itself versioned using a single counter. 
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Whatever the implementation, the software can be updated many times over the lifetime of 
the product, so the associated counters must be able to support a range that is likely to be 
too large to implement ecomonically using OTP technology. 

In these cases, the following alternative strategies are possible: 

• Using an external secure element that supports an MTP counter that is 
cryptographically paired with the SoC, for example eMMC replay protected memory. 

• Embedding an MTP storage die within the same package. 

• Using a battery backed hardware up counter. 

• Using a hardware up counter in an always-on domain on a remote trusted server 
with a Trusted service mechanism that is able to restore the counter value after a 
cold boot if power is removed. In this case, it is acceptable to limit availability of 
services until the version count is restored. 

In the latter two cases, a Trusted service is responsible for cryptographically pairing  the 
external reference, and for appropriately updating an internal hardware counter. 

ARM recommends that at least one such counter is implemented, supporting 232 values. 

6.8 Entropy source 

Many cryptographic protocols depend on challenge response mechanisms that utilize truly 
random numbers which makes an embedded true random number generator (TRNG) an 
important element of a TBSA system. 

Where platform requirements demand a TRNG there is normally an associated requirement 
that specifies the quality of the source, or more commonly, a set of tests that must be passed 
by a compliant source. 

The quality of a random source is normally described in terms of entropy. In information 
theory, entropy is measured on a logarithmic scale in the range [0,1]. For a given string of 
bits provided by a TRNG, the maximum entropy of 1 is achieved if all bit combinations are 
equally probable. 

A formal treatment of entropy can be found in [5.]. 

A hardware realization of a TRNG consists of two main components: an entropy source and 
a digital post processing block, as illustrated in Figure 7. 
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Figure 7: Entropy source top level 

 

The entropy (noise) source incorporates the non-deterministic, entropy-providing circuitry 
that provides the uncertainty associated with the digital output by the entropy source.  

Most techniques for constructing an on-chip entropy source in some way exploit thermal 
noise on the die. 
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The digital post-processing block is responsible for collecting entropy from the analog source 
through sampling, for monitoring the quality of the source, and for filtering it appropriately, to 
ensure a high level of gathered entropy. For example, repeated periodic sequences are 
clearly predictable and must be rejected. This is important because fault injection techniques 
can be used to induce predictable behavior into a TRNG and attack the protocols that make 
use of it.  

For any entropy source design, the quality of the entropy is reduced as the sample rate 
increases. Any design has a maximum safe ceiling for the sample rate, and this sample rate 
might not be high enough to meet the overall system requirements. 

Although it is possible to design a filtering scheme that removes common and predictable 
patterns that can occur in an entropy source, other, more complex patterns might persist, 
which degrades the available entropy. The extent of any such degradation depends on the 
quality of the source, and in some cases additional digital processing might be required to 
compensate for it. 

A common compensation technique utilizes a cryptographic hash function to compress a 
large bit string of lower entropy into a smaller bit string of higher entropy. However, this 
clearly comes at the expense of available bandwidth. 

To counter this, the digital post processing stage can expand the entropy source to provide 
a greater number of bits per second by using the filtered or compressed source to seed a 
cryptographically strong pseudo random sequence generator with a very large period. 

A definitive treatment of these steps can be found in [5.]. 

R010_TBSA_ENTROPY The entropy source must be an integrated hardware block. 

Although some or all of the digital post processing can be performed in software by a Trusted 
Service, ARM recommends a full hardware design. 

It is not possible to construct a TRNG yielding exactly one bit of entropy per output bit. If the 
assessed entropy of each sample is variable, the TRNG must provide an assessed entropy 
value with each sample. 

R020_TBSA_ENTROPY The TRNG shall produce samples of known entropy. 

There are many possible choices for measuring entropy; following NIST SP 800-90B [5.] 
Arm recommends the use of a conservative measure called min-entropy. Min-entropy is 
used as a worst-case measure of the uncertainty associated with observations of X: If X has 
min-entropy m, then the probability of observing any particular value is no greater than 2-m. 

A number of test suites exist to ensure the quality of a TRNG source, it is recommended that 
the TRNG design passes the following test suites: 

Table 3: Entropy test suites 

Name Details 

NIST 800-22 A Statistical Test Suite for Random and Pseudorandom Number 
Generators for Cryptographic Applications, April 2010 

http://csrc.nist.gov/groups/ST/toolkit/rng/documentation_software.html 

DieHard http://www.stat.fsu.edu/pub/diehard/ 

DieHarder http://www.phy.duke.edu/~rgb/General/dieharder.php 

ENT http://www.fourmilab.ch/random/ 

 

R030_TBSA_ENTROPY The TRNG must pass the NIST 800-22 [6.] test suite. 

R040_TBSA_ENTROPY On production parts, it must not be possible to monitor the analog entropy source 
using an external pin. 
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To ease the testing of the TRNG, many certification regimes require direct access to the 
analog entropy source so that it can be monitored before it passes through the digital post 
processing stage. To meet these requirements, the analog output must be made available 
on an external device pin. In addition, it must be possible to disable this output after 
certification so that it cannot be monitored by an attacker on a production part. This can be 
achieved by gating the output with a fuse bit, which when blown, disables the output. 

The rate at which the TRNG is required to produce entropy varies according to the target 
specifications. 

R050_TBSA_ENTROPY Where independent output ports are required, the TRNG must guarantee that they are 
statistically independent. 

6.9 Cryptographic acceleration 

In the Assisted architecture, the hardware offers acceleration of some of the cryptographic 
operations to meet the performance requirements of the system. This in turn permits 
hardware management of the cryptographic keys, which are the most valuable assets in the 
system. By managing the keys in hardware, the threat space is drastically reduced. 

If large amounts of data must be processed, cryptographic algorithms are often accelerated, 
which makes symmetric and hashing algorithms the most commonly accelerated functions. 
Asymmetric algorithms are complex, which makes full accelerators also complex and quite 
often large. A common trade-off is to accelerate only the most computing-intensive parts, for 
example big integer modulo arithmetic. 

Figure 8 shows an example architecture for symmetric algorithm acceleration and an 
associated Key Store. 
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Figure 8: Example symmetric crypto acceleration architecture 

 

Each of the accelerators and the Key Store are peripherals within a TBSA SoC and must 
meet the associated requirements. 

The Key Store contains entries of keys and their associated metadata. The keys might have 
been injected through the secure peripheral interface, from Trusted software, or directly from 
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OTP. The metadata associated with a key can include policy restrictions by indicating which 
accelerator engines can access the key, exactly what operation is ,permitted and which 
worlds the input and outputs must be in. By storing keys in a Key Store, the period of time 
that the keys are directly readable by software can be significantly reduced. 

The accelerators are expected to be used by both the Trusted and Non-Trusted worlds, and 
have both Secure and Non-secure interfaces. These interfaces permit software to request 
cryptographic operations on data that is stored in memory, and either supply a key directly, 
or index a key and its metadata in the Key Store. When programmed, the accelerator reads 
data using its DMA interface, performs the operation, and writes the resultant data. 

More advanced versions of this architecture might support key derivation functions where 
the resultant data from a decryption is not written to memory using DMA, but is instead 
placed into the Key Store. 

6.10 Debug 

As SoCs have become more and more complex, the mechanisms for debugging the 
hardware and software have increased in complexity too. The fundamental principles of 
debugging, which require access to the system state and system information, are in direct 
conflict with the principles of security, which require the restriction of access to assets. This 
section brings together the high-level security requirements for all debug mechanisms in the 
SoC. 

ARMv8 supports the following debug modes: 

Self-hosted debug - The processor core itself hosts a debugger, and developer software 
and a debug kernel run on the same processor core. 

For more information, see ARMv8-A ARM [2.], Section D2. 

External debug - The debugger is external to the processor core. The debugging might be 
either on-chip, for example in a second processor core, or off-chip, for example a JTAG 
debugger. External debug is particularly useful for: 

• Hardware bring-up. That is, debugging during development when a system is first 
powered up and not all of the software functionality is available. 

• Processor cores that are deeply embedded inside systems. 

For more information, see ARMv8-A ARM [2], Part H. 

The ARMv8 architecture also includes definitions for invasive and non-invasive debug. From 
a security perspective there is no need to distinguish between these, because non-invasive 
debug would leak any assets accessed by that processor core. 

6.10.1 Protection mechanisms 

Debug mechanisms give an external entity access to the system assets, so there must be 
protection mechanisms in place to ensure that the external entity is permitted access to those 
assets. These shall be referred to as Debug Protection Mechanisms (DPMs). 

R010_TBSA_DEBUG All debug functionality shall be protected by a DPM such that only an authorized external 
entity shall access the debug functionality. 

Note that there might be scenarios where all external entities can access the 
debug functionality, for example Android application debugging. 

R020_TBSA_DEBUG A DPM mechanism shall be implemented either in pure hardware or in software running 
at a higher level of privilege. 

The system assets are grouped by the worlds they are accessible by, i.e. Non-Trusted and 
Trusted, and the execution space, i.e. Privileged and User. 

R030_TBSA_DEBUG There shall be a DPM to permit access to all assets (Trusted Privileged). 

R040_TBSA_DEBUG There shall be a DPM to permit access to all Non-trusted world assets (Non-Trusted 
Privileged). This mechanism shall not permit access to Trusted world assets. 
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R050_TBSA_DEBUG If a DPM to permit access to only Trusted User space assets exists, then this mechanism 
shall not permit access to Trusted Privileged assets. (It is expected to be used in 
conjunction with the Non-Trusted Privileged debug protection mechanism.) 

6.10.1.1 DPM overlap 

This leads to an overlap of the worlds or spaces that each DPM unlocks, as shown in Figure 
9 and Table 4. 
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Figure 9: DPM overlap 

 

Table 4: DPM overlap 

Master DPM Unlock opens Notes 

DPM_TP Trusted world Privileged space 

Trusted world User space 

Non-trusted world Privileged space 

Non-trusted world User space 

 

DPM_TU Trusted world User space In ARMv8-A 
implementations , NTP 
must be unlocked before 
TP can unlock TU. 

DPM_NTP Non-trusted world Privileged space 

Non-trusted world User space 

 

DPM_NTU Non-trusted world User space  
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6.10.1.2 DPM states 

Each DPM shall have three or four states that reflect access to the debug mechanisms, 
these shall be controlled by fuses and the unlock mechanism. This is captured in the 
following requirements: 

R060_TBSA_DEBUG All DPMs shall implement the following fuse controlled states: 

• Default - Debug is permitted. 

• Closed - Only an unlock operation is permitted (to transition to Open). 

These shall be determined by a boolean value (dpm_enable) that is stored in a Public-
Open-Bitwise fuse or derived from the Device Lifecycle state stored in fuses, see Figure 
10. 

R070_TBSA_DEBUG DPMs controlling Trusted world functionality shall also have another fuse controlled state: 

• Locked - The unlock operation is disabled (no state transition possible). 

This shall be determined by a boolean value (dpm_lock) that is stored in a Public-Open-
Bitwise fuse or derived from the Device Lifecycle state stored in fuses, see Figure 10. 

R080_TBSA_DEBUG All DPMs shall have the following state: 

• Open - Debug is permitted. 

The Open state can only be entered from the Closed state after a successful unlock 
operation. 

Note: The fuses and unlock mechanisms for each DPM do not have to be unique. For example, 
one fuse can be used as the dpm_enable for all the DPMs and one unlock mechanism can 
unlock multiple DPMs as described in 6.10.1.3.2. 

Table 5: DPM states 

DPM state Debug access Transition(s) Notes 

Default Yes None except via Reset  

Closed No Open – after a successful 
unlock operation 

 

Open Yes None except via Reset  

Locked No None Only required for 
Trusted world. 
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Reset

Default ClosedOpen

Locked dpm_lock=1

dpm_lock=0
&

dpm_enable=0

dpm_lock=0
&

dpm_enable=1

Unlock=True

No debug access
No unlock

No debug access
Unlock available

Debug access
Unlock N/A

Debug access
Unlock N/A

Trusted world DPMs only

 

Figure 10: DPM states 

 

Note: The power domain and reset of the DPM state must be carefully considered to ensure that 
all operations of the SoC can be debugged. For example, debugging of the Secure Boot 
ROM during cold and warm boots might require the state to be stored in a permanently 
powered domain with an independent reset. 

The DPMs are required to protect the system assets which leads to the following 
requirement: 

R090_TBSA_DEBUG All Trusted world DPMs shall be enabled, using the respective dpm_enable fuses, or 
locked, using the respective dpm_lock fuses, before any Trusted world assets are 
provisioned to the system. 

6.10.1.3 Unlock operations 

To perform the state transition from "Closed" to "Open" an unlock operation must be 
performed by the debug protection mechanism to ensure that the external entity has access 
to a token that authorizes access to the associated assets. The token might take the form of 
a simple password or a cryptographically signed certificate. The choice between these often 
depends on the trade-off between complexity on the device and complexity on a token 
management server. For example, it is more complicated to implement signature checking 
on a device than to compare passwords, but managing a database of unique passwords is 
more complicated than one or two private keys on a server. 

To prevent the leak of an unlock token that affects multiple devices: 

R100_TBSA_DEBUG Unlock tokens shall be unique for each device. 

To ensure that the external entity knows which unlock token to use: 

R110_TBSA_DEBUG The device shall store a unique ID in Public-Lockable fuses. 

6.10.1.3.1 Unlock token - password 

Password-based unlock operations are implemented as a simple comparison. However, it is 
not advisable to store a copy of the password on the device itself. Instead, a cryptographic 
hash of the password that is created using a one-way function (OWF) shall be stored. When 
the password token is injected via an interface from the external entity, it is passed through 
the same OWF and compared with the stored hash. 

R120_TBSA_DEBUG The device shall not store a copy of the password unlock token, instead it shall store a 
cryptographic hash of the token in Lockable-Bulk fuses. 

R130_TBSA_DEBUG On receipt of a password unlock token, it shall be passed through a cryptographic hash 
and the resultant hash shall be compared with the stored hash. 
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Because the comparison is simple, it must be protected from Brute Force attacks by making 
the password sufficiently large: 

R140_TBSA_DEBUG A password unlock token shall be at least 128bits in length. 

To ensure that different external entities can be given different tokens for a device, 
depending on their ownership of assets in the system: 

R150_TBSA_DEBUG Each debug protection mechanism shall use a unique password unlock token. 

6.10.1.3.2 Unlock token - private key 

Private key-based unlock operations require the injection of a certificate that has been 
cryptographically signed by a private key. 

To meet R100_TBSA_DEBUG: 

R160_TBSA_DEBUG The unique ID (see REQ R110_TBSA_DEBUG) shall be included in a certificate unlock 
token. 

The debug protection mechanism shall check the signature of the certificate: 

R170_TBSA_DEBUG An unlock operation using a certificate unlock token shall use an approved asymmetric 
algorithm to check the certificate signature. 

R180_TBSA_DEBUG An unlock operation using a certificate unlock token shall have access to an asymmetric 
public key stored on the device. The asymmetric public key used to authenticate the 
certificate unlock token shall either be immutably stored on the device or have been 
loaded as a certificate during secure boot and authenticated by a chain of certificates that 
begins with the ROTPK. 

R190_TBSA_DEBUG A certificate unlock token shall indicate which DPM(s) it is able to unlock using an 
authenticated field. 

R200_TBSA_DEBUG A loadable public key for certificate unlock token authentication shall include an 
authenticated field indicating which DPM(s) it is authorized to unlock. 

R210_TBSA_DEBUG A certificate unlock token shall only unlock a DPM that its public key is authorized to 
unlock. 

For more details on this functionality, see TBBR [3.]. 

6.10.1.4 Other debug functionality 

Complex SoCs often include extra debug functionality beyond the main processor. Examples 
of this are initiators on the interconnect, which are controlled directly from an external debug 
interface, and system trace modules. Care must be taken to make sure that they are 
controlled by the correct DPM. They must be evaluated based on their access to assets that 
belong to each world, and assigned the corresponding DPM. 

6.10.1.5 ARM debug implementation 

The ARM processor and CoreSight IPs include an Authentication Interface comprising of the 
following signals: 

Table 6: ARM authentication interface 

Signal Name Action 

DBGEN Debug Enable Enables invasive & non-invasive debug 
of Non-secure state. 

Debug components are disabled but 
accessible. 

NIDEN Non-invasive Debug Enable Enables non-invasive debug of Non-
secure state. 



TBSA security requirements 

 

 
50  Copyright © 2012, 2016, 2018, ARM Limited or its affiliates. All rights reserved. ARM DEN 0021D 
 Non-Confidential  

SPIDEN Secure Privileged Invasive 
Debug Enable 

When asserted with DBGEN enables 
invasive & non-invasive debug of 
Secure state. 

SPNIDEN Secure Privileged Non-
Invasive Debug Enable 

When asserted with NIDEN, enables 
non-invasive debug of Secure state. 

  

The CoreSight IP also has the following input: 

Table 7: DEVICEEN 

Signal Name Action 

DEVICEEN Device Debug Enable Enables the external debug tool 
connection to the device, and drives the 
DBGSWENABLE input to the CoreSight 
components and Cortex-A series 
processor. 

  

The ARM processor also contains an EL2 register that controls the debug functionality for 
Trusted User space: 

Table 8: SUNIDEN 

Signal Name Action 

SUNIDEN Secure Unprivileged Non-
Invasive Debug Enable 

When asserted with DBGEN or NIDEN, 
SUNIDEN enables debugging of 
Trusted User Apps (but not of trusted 
privilege kernels). 

This is a register bit (not a wire), that is 
controlled by the Trusted Kernel. 

  

These signals can be mapped to the debug protection mechanisms as shown in Table 9. 

Table 9: DPM mapping to authentication interface 

DPM Mode Signals 

DPM_TP Secure non-invasive debug 

Enabled 

(DBGEN OR NIDEN) AND 

(SPIDEN OR SPNIDEN) 

DPM_TP Secure invasive debug enabled (DBGEN AND SPIDEN) 

DPM_NTP Non-secure non-invasive debug enabled (DBGEN OR NIDEN) 

DPM_NTP Non-secure invasive debug enabled DBGEN 

DPM_TU Secure User Space invasive debug 
enabled 

(DBGEN AND SUNIDEN) 

DPM_TU Secure User Space non-invasive debug 
enabled 

(NIDEN AND SUNIDEN) 
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Note: The debug functionality that is controlled by DPM_NTU has no registers or signals 
associated with it because it is implemented purely using self-hosted debug. 

6.10.1.6 Baseline architecture 

In the Baseline architecture, the DPMs are all implemented in software, including the 
unlocking of any external debug interfaces. There are two commonly used implementations: 

• Space is reserved in the flash memory map for the unlock token and the unlock 
operation is performed by the secure boot process. 

• The external debug interface receives an unlock token and requests processing by 
the Trusted world. 

In both cases, the software must read the relevant fuses to understand the state of the DPM, 
and have target registers that unlock the relevant debug features of the device. 

R220_TBSA_DEBUG The device must implement registers, that, when written to by software, unlock the 
associated hardware debug features. These registers shall be restricted so they can only  
be accessed by the world/space of the DPM. 

Mapping these registers to the ARM Authentication Interface requires a register that is 
restricted to only EL3 and S-EL1 with at least one bit per signal. 

6.10.1.7 Assisted architecture 

In the Assisted architecture, the DPM_TP and DPM_NTP are implemented in discrete 
hardware connected to the external debug interface. The unlock tokens are injected via the 
external debug interface, and verified by the hardware that asserts the required signals to 
the rest of the device. 

R230_TBSA_DEBUG The DPM_TP and DPM_NTP shall be implemented in pure hardware. 

6.11 External interface peripherals 

SoCs contain many functions of the final consumer device, but they will often need to talk to 
other electronic peripherals to receive and transmit data. Examples of these External 
Interface Peripherals (EIPs) include remote control infrared receivers, displays, and, more 
recently, Near Field Communication (NFC) antennas and Secure Element (SE) chips. Some 
interfaces are simply connections via SPI or UART whereas others can embed the 
controllers within the SoC itself. 

Often these interfaces are used to receive Trusted user data, which might take many forms: 

• Via a keyboard/mouse. 

• Via a touch screen. 

• Biometric data via: 

o A camera. 

o A microphone. 

o A specialized sensor, for example a fingerprint sensor. 

• Token data from an NFC device. 

Consideration must be given to the assets that are transferred across these interfaces: 

• Which on-chip world do the assets belong to? 

• Are the assets entering or leaving the device? 

• Are the assets in the clear or encrypted? 

• Are the assets authenticated? 

• If the assets are encrypted or authenticated, how was the key exchanged? 

• What is the impact if the assets are modified? 
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• Can commands be received from an external device? 

Often the easiest approach is to let the Non-trusted world manage the interface and the 
Trusted world supply the data to be transferred. This is acceptable when the Non-trusted 
world is no more of a security risk than the external connection. For example, non-
authenticated encrypted content can be sent via the Non-trusted world, because changing 
the encrypted content does not compromise the security of any assets. However, if the 
assets being transferred include user data and are not authenticated, the Non-trusted world 
can perform a man-in-the-middle attack in the same way as an attacker with access to the 
external interface. 

It follows that if there are any secret values that are not encrypted, the Non-trusted world 
must not be able to access them and the external interface must be correspondingly 
protected. 

R010_TBSA_EIP If an EIP is used to send or receive clear or unauthenticated Trusted world assets, 
it is implementing a Trusted operation and shall meet the requirements of a Trusted 
peripheral. 

R020_TBSA_EIP Where an EIP can receive commands from an external device, e.g. PCIe, then the 
system shall enforce a policy to check that those commands will not breach the 
security of the TBSA device. 

This does not only apply to the commands that can affect the Trusted world: unrestricted 
access to the Non-trusted world by an external device is still a security risk. 

Where a specialized biometric input device is connected to an EIP, for example a fingerprint 
scanner, a device supporting link encryption must be chosen where possible. 

R030_TBSA_EIP If a biometric user input device supports encryption, it must be cryptographically 
paired with a trusted service. This means that an authenticated encrypted tunnel 
can be created to prevent an attacker from monitoring or modifying data in transit 
to the main SoC. 

R040_TBSA_EIP Any sensitive user data that is stored must be stored in Secure storage.    

R050_TBSA_EIP In the specific case of camera input for UV retina imaging, the UV LED activation 
shall be under the control of the Trusted world. 

6.11.1 Display 

When a display is used to present sensitive or private information, it must be protected from 
the Non-trusted world. In particular, it must not be possible for a rogue application that runs 
in the Non-trusted world to access a display buffer that contains sensitive information. A 
TBSA system is therefore required to provide a Trusted display mechanism. 

Data that is stored in memory, and is to be rendered by the device display, is referred to as 
display data. This definition includes full display frames that occupy the entire display and 
smaller sub-regions. 

Trusted display data is defined as display data that is stored in Trusted memory, and Non-
trusted display data is display data that is stored in Non-trusted memory. 

A Trusted display can display a mixture of Trusted and Non-trusted display data, with the 
following qualifications: 

R060_TBSA_EIP The rendering of Trusted display data must be entirely under the control of the 
Trusted world, it must not be possible to control the rendering of Trusted display 
data from the Non-trusted world. 

R070_TBSA_EIP If Trusted display data is being displayed, it must not be possible to fully or partially 
obscure the image using an overlay that originates from the Non-trusted world. 

In a compositor-based system, this could be achieved simply by ensuring that the Trusted 
display data is always on top. More generally, it is achieved by ensuring that Trusted display 
planes always have a higher priority or exist in a higher layer than any Non-trusted display 
plane. 

R080_TBSA_EIP If the display subsystem is capable of handling both Trusted and Non-Trusted 
display data, then at least two display layers must be supported. 



TBSA security requirements 

 

 
ARM DEN 0021D Copyright © 2012, 2016, 2018 ARM Limited or its affiliates. All rights reserved. 53 
 Non-Confidential 

6.12 DRAM protection 

Many SoC designs that integrate an ARM processor also rely on external DRAM to store 
assets. However, this external memory is vulnerable to probing attacks that can be used to 
extract or modify data. An attacker can use these techniques to: 

• Recover content or other sensitive assets. 

• Subvert the behavior of the device to extract further assets, or to use the device for 
illegitimate purposes. 

Exploitable assets that might be held in DRAM are: 

• The Rich OS and associated apps. 

• User data. 

• Multimedia content. 

• Trusted code and data, for example in a TEE. 

To mitigate these risks, encryption can be applied to an asset before it is stored in DRAM, 
after which an attacker is unable to recover the plain text. With the addition of authentication, 
external modifications of DRAM data can also be detected, enabling and execution to be 
halted to prevent an attacker from exploiting any such modifications. 

The cryptographic algorithms that are needed and their strength depend on the assets and 
the target requirements. For multimedia content, the encryption strength varies according to 
the resolution (SD, HD, 4K) and the release window, and authentication is not required. 
However, for TEE based trusted execution, strong encryption and authentication are needed. 

Note: In systems that implement suspension to RAM and power down the main die, the DRAM is 
particularly vulnerable, because the SoC pins to the DRAM are in a high impedance state, 
which makes it easy to probe the interface and take direct control of the DRAM. 

A TBSA system with assets that require DRAM protection implements embedded 
cryptographic hardware within the memory system that is capable of protecting those assets 
within the memory system. ARM recommends that the mechanism is transparent to the 
processor or bus initiator, encrypt the assets as they are written to DRAM, and decrypt them 
as they are read back, while performing authentication as required. 

6.12.1 Design considerations 

There are two symmetric cipher types on which a DRAM encryption system can be founded: 

• Block ciphers. 

• Stream ciphers. 

A block cipher works on a block size, for example 64 or 128 bits, and transforms a block of 
plain text into a block of cipher text, or conversely, based on a secret key. A drawback of this 
approach is that it is not possible to process only a portion of the block, and writing a single 
byte, for example, requires reading and decrypting a whole block, modifying the byte, and 
encrypting and writing the block back to DRAM. This means that a read modify write buffer 
must be implemented, which has an impact on the performance of sub-block sized accesses, 
particularly writes. Alternatively, the block cipher can be used in conjunction with a cache, 
where the cache line size is a multiple of the block size. 

A stream cipher is based on the one-time pad. It generates a key stream of the same length 
as the plain text to be encrypted, and combines it with the plain text to form the cipher text. 
To be considered secure, the key stream must never repeat, so, once a key has been used, 
it is not permissible to re-use a sequence of key bytes with different data bytes. Typically, 
the data and key material are combined using a bitwise XOR function, in which case 
encryption and decryption are the same operation. The key is the same size as the data, 
and therefore very large, so it is generated using a smaller key in conjunction with a block 
cipher, which is commonly configured in counter mode, where incrementing count values 
are successively encrypted, and the output becomes the key stream. An advantage of the 
stream cipher approach is that there is no fixed block size, so for example a single byte write 
does not need a read modify write buffer or cache, as would be the case for the block cipher. 
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However, To re-create the correct portion of the key stream for a decryption operation 
following a read, the counter value must be known. This is only possible if the counter value 
is stored alongside the data in DRAM, which complicates the implementation and increases 
the memory footprint. 

If authentication is also required, data written to DRAM must be tagged with an authentication 
code, which increases the memory footprint. 

The addition of such cryptographic hardware to the memory system carries performance and 
die size penalties that increase with the cryptographic strength.  

For example, a block cipher is typically composed of a number of rounds N, with each cipher 
operation taking N cycles. When a high throughput is required, it must be pipelined, which 
multiplies the area by up to N times and adds up to N cycles of latency. Adding the cipher at 
the DRAM interface represents the worst case, because it places the hardware at a high 
performance interface through which all of the DRAM traffic passes. Often, it is not feasible 
to place a cipher of high cryptographic strength at this point in the system, particularly for 
very high clock frequencies, because sub round pipelining is required, which leads to very 
large implementation sizes and high latency. 

A better approach is to adopt a tiered implementation that limits high-strength cryptographic 
protection to the memory traffic that requires it. A lower strength protection can be added at 
the DRAM interface if required. 

 

6.12.2 Algorithmic strength 

DRAM encryption and authentication is provided through performance-optimized 
cryptographic hardware blocks, each of which receives a symmetric key. 

The cryptographic strength of a given keyed algorithm is defined as the number of key values 
that an attacker must try before discovering the correct key, taking into account any known 
short cuts that are caused by weaknesses in the algorithm. This value is normally defined in 
bits, so if the best-known attack requires an exhaustive search through 1024 keys, for 
example, the strength of the algorithm is said to be 10 bits. 

Note: Traditionally the term encryption is reserved for encryption algorithms of high cryptographic 
strength, and the terms scrambling and obfuscation are used to refer to algorithms of lower 
strength. 

The required level of cryptographic protection depends on the target requirements and is not 
specified here. However, the following tiers are recommended: 

Tier 1:For example: SD content, Non-Trusted world assets 

Standard definition purchased multimedia content stored in DRAM, due to its low resolution, 
is considered a low value asset that does not require any further protection. It can be stored 
in DRAM in its plain text form. 

Tier 2: For example: HD content 

High definition purchased multimedia content stored in DRAM is considered a medium value 
asset that requires encryption of medium strength. A key strength of at least 40 bits is 
recommended. 

Tier 3: For example: UHD content 

Ultra-high definition purchased multimedia content stored in DRAM is considered a medium-
high value asset that requires encryption of medium-high strength. A key strength of at least 
80 bits is recommended. 

Tier 4: For example: Trusted world assets 

Within the Trusted world, any assets stored in external DRAM require encryption and 
authentication of high strength. A key strength of at least 128 bits is recommended. 
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6.12.3 Key management 

R010_TBSA_DRAM A key provided to a DRAM encryption or authentication block must be unique to the SoC. 

This rule prevents using a successful key recovery attack to compromise other devices. 

R020_TBSA_DRAM Each algorithm and key strength that is implemented must have a unique a key. 

This rule prevents using a key that is recovered from a weaker algorithm to compromise a 
stronger algorithm. 

Suitable unique keys can be stored in on-chip fuses, or might alternatively be derived from 
a key that is common across many devices that use a unique SoC ID. A key of this type is 
classed as a symmetric, static, unique, trusted hardware key. 

R030_TBSA_DRAM If a key is stored in on-chip fuses or derived from a key that is common across many 
devices that use a unique SoC ID, it shall meet the requirements of a symmetric, static, 
unique, Trusted hardware key. 

Unique ephemeral keys can also be sourced from a TRNG at boot time. This method is 
preferred because it gives better protection by generating keys that are different for every 
boot cycle. 

R040_TBSA_DRAM A TRNG sourced key shall have an entropy, measured in bits, equal to or greater than 
the key strength demanded by the target algorithm. 

If the TRNG sourced bits have full entropy, as defined in [5.], there will be one TRNG source 
bit per key bit. However, if the TRNG sourced bits have lower entropy, additional bits must 
be sourced to reach or exceed the target key strength. 

R050_TBSA_DRAM If an ephemeral key is used, it shall meet the requirements for a symmetric, ephemeral, 
unique, Trusted world key. 

For example, if the TRNG delivers bit strings with an entropy of 0.5 bits per bit, then a 40 bit 
key strength will require 80 bits to be sourced from the TRNG. 

An ephemeral TRNG based approach also means that a Trusted save and restore 
mechanism is needed for the keys if the system enters a suspend to RAM state where the 
main die is powered down. 

R060_TBSA_DRAM If suspend to RAM is implemented and the main die is powered down such that the DRAM 
protection keys needs to saved and restored, these operations shall be handled by a 
Trusted service and the keys stored in Trusted non-volatile storage. 

6.12.4 Configuration 

Depending on the assets under protection, different cryptographic modules, of differing 
strength, can be integrated in various positions within the on-chip interconnect hierarchy 
targeting a DRAM interface. In addition, the DRAM space can be divided into protected and 
non-protected regions, where each protected region is associated with an asset class, and 
therefore an algorithm and key strength. 

In any case, whether a particular cryptographic functionality is applied is based on the target 
address of an access within the physical memory map. Any potential method to change the 
memory map from the Non-trusted world could be exploited to bypass the DRAM protection 
and cause clear text to be written. Such modification must be controlled by restricting such 
changes to the Trusted world. 

R070_TBSA_DRAM If the mapping of cryptographic hardware into the memory system is configurable, then it 
must only be possible to perform the configuration from the Trusted world. 

Similarly, other interconnect changes, up or down stream of a cryptographic module, that 
modify the memory map, must only be possible from the Trusted world, as already detailed 
in the Infrastructure section of this document. 

R080_TBSA_DRAM The activation and deactivation of encryption and authentication shall only be possible 
from the Trusted world. 

R090_TBSA_DRAM If a memory region is assigned as protected, and configured for encryption, then there 
shall not exist any alias in the memory system, such that the same region can be 
accessed directly, bypassing the protection.  
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These rules prevent the collection of cipher text that could aid cryptanalysis, and is a 
particular problem for algorithms of lower cryptographic strengths. 
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7 Device lifecycle 

During its creation and use, a device will progress through a series of non-reversible states 
as shown in Figure 11: Device lifecycle. These states indicate what assets are present in the 
device and what functionality is available or has been disabled. Progression through the 
states is usually controlled by blowing fuses. 
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Figure 11: Device lifecycle 

 

The device lifecycle begins in the “Chip Manufacturing” state, which is completely open and 
contains only the assets which are fixed in the hardware. At this point, the device must be 
fully testable to permit checking for manufacturing defects. The device is then configured in 
multiple steps by the Silicon Vendor and the purchasing OEM through the programming of 
fuses. Configuration includes personalization, which is the injection of cryptographic assets 
such as unique keys. These assets can be broadly grouped into two categories: 

• Production assets - These assets are highly sensitive values that must be 
protected as soon as it has been verified that they have been correctly programmed. 
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• Development assets - These are values known to the OEM and/or Silicon Vendor, 
and are used during the development of the system. 

Devices that are destined for sale to consumers are personalized with production assets by 
the Silicon Vendor and OEM, and configured to enable all of the security mechanisms 
required to protect those assets and any other assets that are made accessible to the device, 
for example in flash memory. When this configuration is complete, the device enters the 
“Deployed” state. . 

A device that is in the “Development” state will have a subtly different configuration from the 
production parts, because features such as debug can still be enabled. These parts are not 
intended to ever leave the OEM. 

A device that is in the “Deployed” state only permits configuration operations that support 
the required use cases. 

A device might also support a state, “Returned”. If the device develops a fault while in the 
field, it might be necessary to return it to the manufacturer. The manufacturer might want to 
run some of the original test & manufacturing operations to determine if there is a hardware 
fault in the device. These operations must not reveal any of the assets that are accessible 
to the device. The transition to the “Returned” state permanently removes access to 
production assets and permits manufacturing test and debug operations. This state change, 
like the others, is non-reversible. 
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8 Approved algorithms 

In TBSA, the core set of approved algorithms is drawn from NIST suite B [7.], together with 
SHA-3. 

For keyed algorithms, ARM recommends the following key sizes: 

• For symmetric keys used in encryption and MAC generation: a minimum of 128 bits. 

• For asymmetric keys: a minimum of 256 bits for ECC, and a minimum of 2048 bits 
for RSA. 

These algorithms can be implemented in Trusted software if sufficient processor capacity is 
available to meet performance targets. 

The full list of cryptographic algorithms needed in a given TBSA system depends on the 
target requirements, which cannot be specified here. 

Note: NIST has recently announced a transitional period during which new algorithms will be 
identified that are resistant to a threat that arises from advances in quantum computing, 
which is anticipated to become important in 30 to 40 years from now. The NSA has made 
some recommendations on algorithm selection during this time of transition, which will last 
for several years. The reader is encouraged to refer to these, particularly if the product and 
assets to be protected are covered by to this time frame. For more information see [7.]. 
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Glossary 

The following table describes some of the terms used in this document. 

Table 10 Glossary terms 

Term Description 

APB Advanced Peripheral Bus. 

AXI Advanced eXtensible Interface. 

Cryptographic Hash https://en.wikipedia.org/wiki/Cryptographic_hash_function 

DRM Digital Rights Management. 

NVM Non-volatile Memory. 

NSAID Non-secure Address IDentifier 

OTP One Time Programmable – Fuse memory 

OWF Cryptographic One-Way Function 

REE Rich OS Execution Environment. 

ROS Rich Operating System 

SCP System Control Processor 

SoC System-on-Chip 

TA Trusted Application 

TEE Trusted Execution Environment. 
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