
TRUSTED BASE SYSTEM ARCHITECTURE, CLIENT
(4TH EDITION)

System Hardware on ARM®
Document number: ARM DEN 0021D

Copyright © 2012, 2016, 2018, ARM Limited or its affiliates

2 Copyright © 2012, 2016, 2018, ARM Limited or its affiliates. All rights reserved. ARM DEN 0021D
 Non-Confidential

Trusted Base System Architecture, Client (4th Edition)
System Hardware on ARM

Copyright © 2012, 2016, 2018, ARM Limited or its affiliates. All rights reserved.

Release information

Table 1 lists the changes made to this document.

Table 1 Change history

Date Issue Confidentiality Change

20 January 2012 A Confidential First release

21 March 2012 B Confidential Second release

26 September 2016 C Confidential 3rd Edition. Update and restructure document. Draft release

15 October 2018 D Non-Confidential 4th Edition. Non-confidential release.

Intermediate releases, numbered A-3 to A-9, were issued to a restricted circulation

Non-Confidential Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the
information contained in this document may be protected by one or more patents or pending patent applications.
No part of this document may be reproduced in any form by any means without the express prior written
permission of Arm. No license, express or implied, by estoppel or otherwise to any intellectual property rights is
granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or
permit others to use the information for the purposes of determining whether implementations infringe any third
party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR
PURPOSE WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm makes no representation
with respect to, and has undertaken no analysis to identify or understand the scope and content of, patents,
copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY,
ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use,
duplication or disclosure of this document complies fully with any relevant export laws and regulations to assure
that this document or any portion thereof is not exported, directly or indirectly, in violation of such export laws.
Use of the word “partner” in reference to Arm’s customers is not intended to create or refer to any partnership
relationship with any other company. Arm may make changes to this document at any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any click through or signed
written agreement covering this document with Arm, then the click through or signed written agreement prevails
over and supersedes the conflicting provisions of these terms. This document may be translated into other
languages for convenience, and you agree that if there

is any conflict between the English version of this document and any translation, the terms of the English version
of the Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited
(or its subsidiaries) in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this
document may be the trademarks of their respective owners. Please follow Arm’s trademark usage guidelines at
http://www.arm.com/company/policies/trademarks.

http://www.arm.com/company/policies/trademarks

ARM DEN 0021D Copyright © 2012, 2016, 2018 ARM Limited or its affiliates. All rights reserved. 3
 Non-Confidential

Copyright ©2018 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

LES-PRE-20349

Table of Contents

ARM DEN 0021D Copyright © 2012, 2016, 2018 ARM Limited or its affiliates. All rights reserved. 5
 Non-Confidential

Table of contents

1 Introduction .. 6
1.1 Additional reading ... 6
1.2 Target platform ... 7

2 Use cases ... 8
2.1 User privacy .. 8
2.2 Digital Rights Management .. 9
2.3 FIDO ... 9
2.4 Enterprise system support .. 10
2.5 Mobile Network Operators .. 11

3 Security threats .. 12
3.1 Threats .. 12
3.2 Attackers ... 13

4 TrustZone® technology ... 16
4.1 Execution model ... 17
4.2 Memory access... 18

5 TBSA architecture variants... 20
5.1 Baseline architecture .. 22
5.2 Assisted architecture .. 22

6 TBSA security requirements .. 23
6.1 System view .. 23
6.2 Infrastructure ... 23
6.3 Fuses .. 31
6.4 Cryptographic keys ... 33
6.5 Trusted boot .. 37
6.6 Trusted timers ... 39
6.7 Version counters ... 41
6.8 Entropy source.. 42
6.9 Cryptographic acceleration ... 44
6.10 Debug ... 45
6.11 External interface peripherals ... 51
6.12 DRAM protection .. 53

7 Device lifecycle .. 57

8 Approved algorithms ... 59

Glossary... 60

Introduction

6 Copyright © 2012, 2016, 2018, ARM Limited or its affiliates. All rights reserved. ARM DEN 0021D
 Non-Confidential

1 Introduction

This document presents a System-on-Chip (SoC) architecture that incorporates a trusted
hardware base suitable for the implementation of systems compliant with key industry
security standards and specifications, in particular those dealing with third party content
protection, personal data, and second factor authentication. The architecture is founded on
ARM TrustZone® technology, which provides isolation between the Trusted and Non-trusted
worlds. This document includes an overview of TrustZone technology to give the necessary
context.

The goal of the TBSA is to create a platform that supports Trusted Services. Trusted Services
are defined as collections of operations and assets that require protection from the wider
system, and each other, to ensure their confidentiality, authenticity, and integrity.

A description of each target use case is provided together with a list of the assets to be
protected and protection mechanisms needed. Threats and the capabilities of attackers are
then discussed before presenting suitable security architectures and detailed
implementation requirements.

This document aims to provide information that is useful to the designers and implementers
of such platforms. However, this document does not replace the need for thorough security
analysis during the system design.

1.1 Additional reading

This section lists publications by ARM and by third parties.

See the ARM Infocenter, http://infocenter.arm.com/, for access to ARM documentation.

1.1.1 ARM publications

The following documents contain information relevant to this document:

[1.] ARM® Security Technology - Building a Secure System using TrustZone®
Technology (PRD29-GENC-009492)

[2.] ARMv8-A Architecture Reference Manual (ARM DDI 0487)

[3.] ARM® Trusted Board Boot Requirements (ARM DEN 0006)

[4.] ARM® Trusted Firmware
https://github.com/ARM-Software/arm-trusted-firmware

1.1.2 Other publications

The following documents list relevant documents published by third parties:

[5.] NIST Draft Special Publication 800-90b
http://csrc.nist.gov/publications/drafts/800-90/draft-sp800-90b.pdf

[6.] NIST Special Publication 800-22rev1a: A Statistical Test Suite for the Validation
of Random Number Generators and Pseudo Random Number Generators for
Cryptographic Applications
http://csrc.nist.gov/groups/ST/toolkit/rng/documents/SP800-22rev1a.pdf

[7.] Commercial National Security Algorithm Suite (superseding NSA Suite B
Cryptography)
https://apps.nsa.gov/iaarchive/programs/iad-initiatives/cnsa-suite.cfm

[8.] SEC - Recommended Elliptic Curve Domain Parameters
http://www.secg.org/sec2-v2.pdf

[9.] GlobalPlatform TEE Protection Profile Specification v1.2
http://www.globalplatform.org/specificationsdevice.asp

http://infocenter.arm.com/
https://github.com/ARM-Software/arm-trusted-firmware
http://csrc.nist.gov/publications/drafts/800-90/draft-sp800-90b.pdf
http://csrc.nist.gov/groups/ST/toolkit/rng/documents/SP800-22rev1a.pdf
http://csrc.nist.gov/groups/ST/toolkit/rng/documents/SP800-22rev1a.pdf
http://csrc.nist.gov/groups/ST/toolkit/rng/documents/SP800-22rev1a.pdf
http://csrc.nist.gov/groups/ST/toolkit/rng/documents/SP800-22rev1a.pdf
http://www.globalplatform.org/specificationsdevice.asp

Introduction

ARM DEN 0021D Copyright © 2012, 2016, 2018 ARM Limited or its affiliates. All rights reserved. 7
 Non-Confidential

1.2 Target platform

The target platforms addressed by this document are primarily, but not limited to, portable
cellular handsets, mobile internet devices and PayTV systems. These platforms have the
following features:

• They implement a feature-rich operating system (ROS) that is capable of executing
user downloaded third party applications. The environment in which the ROS
executes is referred to as the rich execution environment (REE).

• They support online and over-the-air firmware updates.

• They might support audio and video playback and, in the case of third party premium
content, they will be required to support and comply with digital rights management
(DRM) technology.

• They might act as security tokens that support strong second factor authentication.

It is expected that suitable platforms will utilize the following SoC technology:

• The ARMv8-A architecture or higher with Security Extensions (aka TrustZone).

• On chip peripherals supporting data entry, for example keyboard, touch pad, finger
print sensor.

• Video display and audio output.

• One or more integrated DRAM controllers and interfaces to support a large shared
memory pool.

• A controller and interface supporting external non-volatile bulk storage, for example
flash memory.

• Wired or wireless internet connectivity.

In addition, a SoC that targets mobile applications will require a high degree of power control
and is therefore likely to embed an advanced power control subsystem to meet its power
targets.

There is a wide diversity of platforms and products that are within the scope of this document.
The resulting collection of use cases, assets, threats, and necessary security measures
cannot be reduced to a single, simple checklist of security requirements. Each platform and
product requires specific analysis to determine the appropriate use of security features, and
will need to consider the specification and certification requirements of the target market.

Attacks on systems always get better, with the effect that old security defenses need to be
strengthened and new security defenses need to be implemented to maintain the required
level of security. The requirements described in this document represent best practice at this
point in time. Some requirements significantly raise the bar in comparison with previous
versions of this document and the ARM® Trusted Board Boot Requirements (TBBR) [3.]. In
all cases, the differences are in the degree of security provided, or demanded by other
market specifications: the newer requirements described here are more resilient to certain
types of attack.

Use cases

8 Copyright © 2012, 2016, 2018, ARM Limited or its affiliates. All rights reserved. ARM DEN 0021D
 Non-Confidential

2 Use cases

The use cases that follow are implemented within and therefore rely on Trusted Services,
which typically run on top of a trusted kernel, for example a Trusted Execution Environment
(TEE). A Trusted Service must be securely loaded by the trusted kernel while the kernel
must first be securely loaded itself. The resulting architecture therefore chains together a
series of software modules, each verifying the next in a chain of trust, starting from the secure
boot of the SoC.

The secure boot of the device, which forms the beginning of the chain of trust, is rooted in
the SoC hardware and based on an embedded ROM. Following a system reset, the
processor core boots into Secure state and executes the ROM code. The ROM contains
code that verifies that the next stage boot code is permitted to execute. The next stage boot
code is responsible for verifying that the boot code for the following stage is permitted to
execute, and so forth. Code verification is performed using public key cryptography and
requires a root certificate that is embedded in the SoC, either in the ROM, or in on-chip non-
volatile storage. For further information, see the TBBR specification [3.].

A further core component of the following use cases is the functionality that is required to
securely install a system update delivered over the network to the device. Such an update
must be checked for integrity and authenticity before it is applied, which also relies on a root
of trust.

The following subsections outline the use cases targeted by this specification. For each use
case, the following information is provided:

• An overview of the use case.

• A list of primary assets.

• The protection mechanisms that are required.

Note: A root key that is needed to protect an asset is an asset in itself. It is, however, an implied
asset, not a primary asset, and therefore not listed in the asset table.

2.1 User privacy

A common requirement of modern devices is the protection of user and application data
against malicious access. This requires one or more Trusted Services to be available on the
device to provide isolation from other applications and guarantee confidentiality, authenticity,
and integrity of the assets.

The end solution demands a robust secure platform and often incorporates features such as
a password or biometrically protected screen lock, disk encryption, and remote wipe.

To protect data against malicious access, devices must protect the following assets:

Assets Authenticity Integrity Confidentiality

Generic user data ✓ ✓

Biometric sensor data ✓ ✓

Application data ✓ ✓ ✓

Protection of these assets relies on an underlying root of trust that supports:

• Secure provisioning.

• Secure persistent storage.

• A persistent counter or counters.

• A secure application environment that provides memory protection to isolate code
and data from the REE and other applications.

Use cases

ARM DEN 0021D Copyright © 2012, 2016, 2018 ARM Limited or its affiliates. All rights reserved. 9
 Non-Confidential

• A secure application loading mechanism.

2.2 Digital Rights Management

Digital rights management (DRM) systems are responsible for ensuring the legitimate
playback of stored or streamed media, primarily video and audio content. The right to play
the content is determined by referring to an associated certificate that is purchased by the
end user, and issued by a trusted authority. The certificate contains rights information
concerning factors such as: legitimate decoder devices, legitimate display devices, the
display resolution, legitimate users, the number of views, and the content lifetime.

DRM implementations differ from traditional PayTV systems in that they do not use an
external smart card to generate content decryption keys. Instead, they rely on a secure
software stack running in a protected computing environment which is responsible for
generating the content decryption key. This environment constitutes a trusted service
environment, and one particular embodiment would be a suitable TEE implementation which
maps the DRM stack onto a TA.

DRM systems must protect the following assets:

Assets Authenticity Integrity Confidentiality

License keys, intermediate keys, and
certificates

✓ ✓ ✓

Content keys ✓ ✓

Secure time ✓ ✓

Identification credentials ✓ ✓

Secure version ✓ ✓

The DRM stack ✓ ✓ ✓

The content ✓

Protection of these assets relies on an underlying root of trust that supports:

• Secure provisioning.

• Secure persistent storage, accessible only by the DRM stack.

• A persistent counter or counters.

• A secure timer.

• A secure application environment that provides memory protection to isolate code
and data from the REE and other applications.

• A secure application loading mechanism.

2.3 FIDO

The Fast IDentity Online (FIDO) Alliance is an industry consortium that was formed to
accelerate the adoption of strong online authentication via standardization. The consortium
has developed the following:

• Universal 2nd Factor (U2F) Authentication - A system that augments current web-
based password security with a second factor in the form of a token.

Use cases

10 Copyright © 2012, 2016, 2018, ARM Limited or its affiliates. All rights reserved. ARM DEN 0021D
 Non-Confidential

• Universal Authentication Framework (UAF) - A password-less authentication system
that unlocks a key held in a token based on biometric input such as a fingerprints,
pictures, etc.

In both cases, the token holds a secret key and offers the associated cryptographic services
that are required by the online authentication protocol. One of the most commonly available
form factors is a USB key with an embedded secure microprocessor. However, the FIDO
token technology can also be embedded into portable consumer devices, such as mobile
phones.

A FIDO implementation must protect the following assets:

Assets Authenticity Integrity Confidentiality

The secret key(s) ✓ ✓

Token counter(s) ✓ ✓

A unique identifier ✓

Biometric sensor data ✓

The software stack ✓ ✓ ✓

Protection of these assets relies on an underlying root of trust that supports:

• Secure provisioning.

• Secure persistent storage to hold a secret key or keys, accessible only by the
software stack.

• Dedicated access to biometric inputs.

• A persistent token counter or counters.

• A secure application environment that provides memory protection to isolate code
and data from the REE and other applications.

• A secure application loading mechanism.

2.4 Enterprise system support

Mobile devices that operate in a corporate environment are expected to support the following
security features:

• Authentication of the device and user, based on provisioned keys.

• Disk and/or file encryption, using a unique device secret.

• Malware protection, using verified runtime software.

• Remote wipe, which is activated if the device is stolen.

Traditionally, these devices would be owned by a corporation and they would be dedicated
to corporate use. However, a use case that has become increasingly popular is "bring your
own device" (BYOD), where corporate services are installed on a device owned by the
employee. This use case adds additional complexity because it mixes user data and apps
with corporate data and apps and therefore demands a method to provide isolation between
the two, which can be achieved by one of the following methods:

• Implementing specific kernel functionality.

• A second OS that uses, for example, an underlying hypervisor.

Use cases

ARM DEN 0021D Copyright © 2012, 2016, 2018 ARM Limited or its affiliates. All rights reserved. 11
 Non-Confidential

• A trusted services environment that uses, for example, a TEE.

Implementations that isolate user data from corporate data must protect the following assets:

Assets Authenticity Integrity Confidentiality

Provisioned keys for
authentication and
encryption/decryption

 ✓ ✓

Device and user
identity

 ✓

Corporate code and
data

✓ ✓ ✓

Protection of these assets relies on an underlying root of trust that supports:

• Secure provisioning.

• Secure persistent storage.

• A persistent counter or counters.

• A secure timer.

• A secure application environment that provides memory protection to isolate code
and data from the REE and other applications.

• A secure application loading mechanism.

2.5 Mobile Network Operators

Devices that interact with mobile networks establish secure connections using protocols that
rely on embedded keys.

To be able to use embedded keys, an implementation must protect the following assets:

Assets Authenticity Integrity Confidentiality

Embedded Keys ✓ ✓

A unique identifier,
e.g. IMEI

 ✓

The software stack ✓ ✓ ✓

Protection of these assets relies on an underlying root of trust that requires:

• Secure persistent storage, accessible only by the software stack.

• A secure application environment that provides memory protection to isolate code
and data from the REE and other applications.

• A secure application loading mechanism.

Security threats

12 Copyright © 2012, 2016, 2018, ARM Limited or its affiliates. All rights reserved. ARM DEN 0021D
 Non-Confidential

3 Security threats

The goal of this specification is to protect the Trusted Services that run on the device from
attackers who would benefit from their compromise. The chapter on use cases outlined
examples of the Trusted Services, their assets and the type of protection they require:
authenticity, integrity and confidentiality.

No security implementation can be perfect and so the goal must be to make attacks too
costly with respect to time and money to be feasible in the real world. This chapter outlines
the main threats that TBSA aims to protect against and the capabilities of the attackers
performing the attacks. TBSA does not aim to protect against all types of attack and a TBSA
device might need to meet stricter security requirements depending on its target market.

TBSA cannot prevent the non-trusted world from being compromised, nor can it prevent
phishing attacks. For example, it is possible for malware, executing in the REE, to attempt
to acquire sensitive user information by pretending to be a trustworthy entity.

3.1 Threats

It must be assumed that every interaction from outside of a Trusted Service might be
malicious and a threat. This section draws out the primary threats to aid the rationale of the
security requirements later in the document.

3.1.1 T.FUNC_ABUSE – Functional abuse

Abusing the functionality of the Trusted Service by providing ill-formed interactions, through
APIs or physical interfaces, can compromise the integrity of the Trusted Service. By
compromising the integrity of the Trusted Service any assets directly accessed by the
Trusted Service are also compromised.

This is a very broad threat surface as the interfaces to a Trusted Service can be quite
complex. Examples of potential attack routes are:

• Buffer overflow attacks

• Invalid command sequences

• Hidden commands

• Undefined commands

• Incorrect commands

• System resets during commands

• Exploitation of context switching, for example a poor implementation might not clear
all previous state.

3.1.2 T.CLONE – Trusted Service cloning

Most Trusted Services must be device specific as they are working on behalf of a single
user. If a Trusted Service can be cloned to run on multiple devices, the Trusted Service
cannot be guaranteed to be linked with the user.

3.1.3 T.DEBUG_ABUSE - Debug feature abuse

Devices contain many debug and test features that can be misused to compromise the
assets of a Trusted Service when the service is running or dormant. Depending on the
access and features of the debug functionality, the integrity and confidentiality of the assets
might be compromised.

3.1.4 T.NVS.READ - Reading of non-volatile storage (Flash/HDD)

If the plaintext code or data for a Trusted Service can be retrieved from NVS then its
confidentiality has been breached. Often the data would contain assets of value but an
analysis of the code can reveal further, more serious, vulnerabilities to the Attacker.

Security threats

ARM DEN 0021D Copyright © 2012, 2016, 2018 ARM Limited or its affiliates. All rights reserved. 13
 Non-Confidential

3.1.5 T.NVS.WRITE - Writing to non-volatile storage (Flash/HDD)

It is expected that the REE, or an external attacker, will be able to write to the system non-
volatile storage and so the threats resulting from this must be considered. Any assets stored
in NVS related to the Trusted Service can be tampered with by the REE. The assets might
be corrupted to attempt to produce undesired behavior in the Trusted Service or the assets
might be replaced with valid assets from another device (or from a previous image for the
same device). In either case the authenticity of the Trusted Service is compromised if these
images are accepted.

3.1.6 T.RAM.READ - Reading of Trusted Service RAM

If the Trusted Service RAM contents can be read, the confidentiality of any assets within that
space will be compromised. The breach does not have to cover the entire Trusted Service
RAM space for the threat to be serious; if the code region is breached, the cleartext version
of the encrypted flash image is readable and any security vulnerabilities can be detected
using code analysis.

3.1.7 T.RAM.WRITE - Writing to Trusted Service RAM

If the Trusted Service RAM can be modified, the integrity of any assets in that space will be
compromised, even if they cannot be read. The operation of the Trusted Service could be
modified through code or data regions to leak other assets. An advanced form of this attack
could introduce faults into cryptographic operations to enable the attacker to perform
Differential Fault Analysis, permitting the asset to be extracted.

3.1.8 T.COVERT_PATH - Covert leakage paths

The Trusted Service can leak information via unconventional paths during its operation; e.g.
timing of operations might reveal information on the assets that are used. If the memory is
not cleared after the Trusted Service is shutdown, assets can be accessible to the REE.
Undocumented error codes can reveal operational information, this can be particularly
powerful when combined with fault-injection techniques such as T.RAM.WRITE.

3.1.9 T.ROLLBACK - Rollback to previous versions of code/data

Trusted Services require that when a new firmware containing a security fix is issued, the
previous version cannot be used. If the image can be rolled back, the vulnerability can still
be exploited. In a similar manner, if the data assets of a Trusted Service can be rolled back
to an earlier version, the integrity of the Trusted Service has been compromised.

Secure Time required by some Trusted Services might also be vulnerable to a roll back
attack that enables a user to perform actions beyond a specified expiry time.

3.2 Attackers

When considering the threats and attacks on a system, it is widely recognized that these
must be divided into two phases: identification and exploitation.

The identification phase requires an attacker to discover a vulnerability and create an exploit
to gain access to an asset, which can take the form of access to a higher-privilege execution
level, access to protected content, or access to a cryptographic key.

In the exploitation phase, the exploit is executed on one or more devices by the same or
different attackers. If different attackers are performing the exploit, it is expected that the
identification phase attacker has prepared the exploit as either a set of detailed instructions
or a piece of software.

A security implementation must consider both phases. Due to the complexity of modern
devices, there is a high probability that functional bugs will exist and these can give rise to
vulnerabilities. The system should be designed to resist widespread exploitation because
this form of attack is often the most damaging to the asset owners.

Assuming that the identification phase attacker has full access to the device, they can use
all of the normal interfaces, for example touch screen, keyboard, buttons, non-volatile
storage port, and audio and video ports. They might also perform partial disassembly of the

Security threats

14 Copyright © 2012, 2016, 2018, ARM Limited or its affiliates. All rights reserved. ARM DEN 0021D
 Non-Confidential

device to access any engineering interfaces that are covered by the casing, for example
jumpers and JTAG connectors. The attacker might also use any wireless connections to
breach the device, for example Wi-Fi, Bluetooth, RF, and IR.

Attacks that require probing, modifying the PCB itself, or breaching the package of the SoC
are out-of-scope of TBSA.

3.2.1 Identification phase

Attackers that are capable of identifying a vulnerability are generally considered to have
more expertise than those that use the exploitation phase as they might have software and
hardware skills along with access to equipment such as JTAG debuggers, oscilloscopes and
logic analyzers.

Attacker Description

Basic User The device user could find and implement the attack using the standard
user interface.

Adept The attacker is capable of writing custom software, connecting to PCB
connectors inside the device packaging, and applying knowledge of the
security functions of the device.

Expert The attacker is familiar with numerous attack methods and the
underlying cryptographic principles and methods employed by the
device.

Multiple Experts The exploit requires experts from different fields of expertise.

3.2.2 Exploitation phase

If the exploit discovered in the identification phase reveals a class-breaking asset, for
example a content master key, then often no further actions are required. However, in most
cases the exploit must be repeated on each device. Because the 'hard' work of discovering
the vulnerability and creating the exploit has already been done, the skills of the attacker in
the exploitation phase are often lower.

Attacker Description

Remote An attacker can perform the exploit remotely. The skill to do this might
be “Expert” but the ability to perform the exploit remotely ranks it before
“Basic User”.

Basic User The exploit can be simply performed by the device user using software
that was either downloaded to the device, or downloaded to a PC
connected to the device using a standard user-accessible interface.

Adept The exploit requires an attacker who can dismantle the device and
utilize connectors and settings within the device.

Professional The exploit requires an attacker with the skills and resources of a
backstreet shop. The device might be dismantled and the PCB
modified.

Expert The exploit requires an attacker with capabilities of an Identification
Phase Expert or above and laboratory-like equipment.

3.2.3 Access to devices

During the identification phase, the attacker might need access to more than one device,
either to compare the operations of the devices, or because a device might be damaged by
the attack. How easy it is for an attacker to acquire multiple devices must be considered.

Security threats

ARM DEN 0021D Copyright © 2012, 2016, 2018 ARM Limited or its affiliates. All rights reserved. 15
 Non-Confidential

The properties of the devices must be considered too. For example, if the identification phase
requires development parts that do not have all the security protections activated, the
difficulty of acquisition is increased accordingly.

3.2.4 Equipment

Many consumer devices include a method of linking with a PC, for example a USB
connection. This is an example of simple equipment that any attacker who is local to the
device would have.

Beyond this, an attacker might utilize more specialized equipment that can be acquired
easily and relatively inexpensively acquired. Examples of these are JTAG interface
controllers, soldering irons and oscilloscopes.

To perform the most sophisticated attacks an attacker might require expensive laboratory-
like equipment or software that must be specifically developed.

3.2.5 Scoring

The difficulty of an attack is evaluated based on the profiles outlined above and gives a
numeric score. A detailed scoring scheme is outside the scope of this document, but a well-
known example of this type of scoring system is the Attack potential rating derived from the
Common Criteria, which is applied in the GlobalPlatform TEE Protection Profile [9.].

TrustZone® technology

16 Copyright © 2012, 2016, 2018, ARM Limited or its affiliates. All rights reserved. ARM DEN 0021D
 Non-Confidential

4 TrustZone® technology

Over recent years, driven by consumer demand, the complexity of embedded devices has
increased dramatically and this trend is set to continue. While in the past it was common to
implement closed software running on a bespoke operating system, this approach is no
longer economically scalable and is now the exception rather than the rule. Today most
devices demand an operating system with a rich feature set and this has driven the adoption
of solutions such as Linux and Android. However, these rich operating systems (ROS) have
a far larger footprint than their predecessors, and, given that the number of potential security
bugs increases with the number of lines of code, the threat surface is also increased.
Moreover, with the widespread deployment of app stores and third party app support the
threat surface is extended significantly, as such malware is now a real threat to mobile
devices. In addition, when premium content is delivered to a device, which is increasingly
common, the user himself is a potential threat as he might attempt to circumvent protection
mechanisms to receive free content or services.

To combat these new threats, a robust platform architecture is needed. The architecture
must be able to provide a trusted environment that is isolated and protected from the ROS.
TrustZone technology supports this requirement by providing a binary partition that divides
the system into two isolated worlds.

• Trusted world: This partition is intended to encapsulate and protect all high value
assets including code, data and any hardware assets (such as peripherals) that
need to be protected against malicious attack. Access to these assets is restricted
to Trusted world software and hardware. However, software running in the Trusted
world has the right to access assets in the Non-trusted world.

• Non-trusted world: This partition is intended to support the execution of the ROS,
the assets contained are deemed to have a security value that is lower than those
placed in the Trusted world. Access to these assets is permitted for both Trusted
and Non-trusted software and hardware.

TrustZone technology lies at the heart of the ARM processor core. While it is executing code,
the processor core can operate in one of two possible states, which correspond to the
Trusted and Non-trusted worlds and are known as the Secure and Non-secure states,
respectively. Context switches between Security states can only be made using dedicated
instructions and code that ensures that strict isolation is maintained. The context switch
mechanism enforces fixed code entry points and ensures that code running in the Non-
secure state cannot access registers that belong to the Secure state. Conceptually, the
Secure and Non-secure states can be regarded as two virtual processor cores.

When the ARM processor performs a memory access, the MMU translation provides an
extra bit that indicates the security state that is associated with the transaction. When this
bit is high, it indicates a Non-secure (NS) transaction. The mechanism is tightly coupled to
the cache and consequently an NS bit is stored in every cache line.

When a memory access reaches the external bus, the NS bit from the cache is translated
into two transaction bits: one NS bit for reads and one NS bit for writes. The on-chip
interconnect must guarantee that these bits are propagated to the target of the access, and
the target must determine from the address and NS bits if the access is to be granted or
denied. The NS bit is considered to be an extra address bit that is used to access the Secure
and Non-secure worlds as completely independent address spaces.

By propagating the security state of the processor core through the on-chip interconnect to
target based transaction filters, the TrustZone technology is extended into the SoC
architecture, creating a robust platform supporting fully isolated Trusted and Non-trusted
worlds.

TrustZone technology is also implemented in many other ARM IP components, for example
debug subsystems and memory transaction filters.

Later sections describe the architecture of the SoC hardware that provides such a trusted
system.

TrustZone® technology

ARM DEN 0021D Copyright © 2012, 2016, 2018 ARM Limited or its affiliates. All rights reserved. 17
 Non-Confidential

4.1 Execution model

The overview of the TrustZone technology presented a binary division of the processor core
state and the resources into two worlds, a Trusted and a Non-trusted world. However, in the
in the ARMv8-A architecture, additional privilege levels provide support for the traditional
user/supervisor (unprivileged/privileged) separation that a modern ROS expects, as well as
support for the virtualization layer introduced in the ARMv7-A architecture.

These distinct levels of separation are referred to as Exception levels in the ARMv8-A
architecture and are denoted EL0 to EL3, EL0 being the lowest privilege level and EL3 the
highest. Execution can move between Exception levels only on taking an exception, or on
returning from an exception:

• On taking an exception, the Exception level either increases or remains the same.
The Exception level cannot decrease on taking an exception.

• On returning from an exception, the Exception level either decreases or remains the
same. The Exception level cannot increase on returning from an exception.

The resulting Exception level, is called the target Exception level of the exception:

• Every exception type has a target Exception level that is either implicit in the nature
of the exception, or defined by configuration bits in the System registers.

• An exception cannot target the EL0 Exception level.

As previously described, the ARM processor core also executes in one of two Security
states, called Secure and Non-secure. As a result, exception levels and privilege levels are
defined within a particular Security state. The following table summarizes the situation:

EL\Security-state Non-secure Secure

0 Name: EL0 (unprivileged)
Runs: User space (ROS)
World: Non-Trusted

Name: S-EL0
Runs: Trusted Application
World: Trusted

1 Name: EL1
Runs: Kernel space (ROS)
World: Non-Trusted

Name: S-EL1
Runs: TEE
World: Trusted

2 Name: EL2
Runs: Hypervisor space for
virtualization support
World: Non-Trusted

NA

3 NA Name: EL3
Runs: Monitor code for security state
control
World: Trusted

• EL0 and EL1 provide the traditional user/supervisor separation for a ROS executing
in the Non-trusted world.

• In order to support a Trusted world kernel implementation having a traditional
user/supervisor separation, for example a TEE and associated TAs, both EL0 and
EL1 are supported within the Secure state. These levels are referred to as S-EL0
and S-EL1, respectively.

• EL2 provides support for virtualization and is the level at which the associated
hypervisor executes. It exists within the Non-secure state and consequently the Non-
trusted world.

TrustZone® technology

18 Copyright © 2012, 2016, 2018, ARM Limited or its affiliates. All rights reserved. ARM DEN 0021D
 Non-Confidential

• EL3 has the highest privilege level and exists within the Secure state and
consequently the Trusted world. It provides support for a monitor mode. Monitor
code executing in EL3 is responsible for managing the security state transitions at
lower privilege levels.

4.2 Memory access

An important property of a TrustZone system is that a Trusted service can access both
Secure and Non-secure memory. To achieve this, two possible approaches are evident:

1. A Trusted service can issue either Secure or Non-secure memory transactions, and
the transaction filters only permit a Secure transaction to access Secure memory. A
Secure transaction cannot access Non-secure memory. This is the recommended
approach.

2. A Trusted service always issues Secure memory transactions and the transaction
filters permit a Secure transaction to access any memory, Secure or Non-secure.
This approach has been implemented in legacy systems but is no longer
recommended by ARM.

Note: In both cases a Non-secure memory transaction is only permitted to access Non-secure
memory, it is never possible for a Non-secure transaction to access Secure memory.

Approach (2) leads to aliased entries in the cache and TLBs, and can cause coherency and
security problems, and ARM recommends using approach (1) instead of approach (2).

When using approach (1), software executing in a Secure state that wants to access Non-
secure memory must issue Non-secure memory transactions, by means of translation table
control flags.

The security state of each memory transaction is propagated with each access, and used to
tag cache lines. It exists at all stages of the memory hierarchy up to the final access control
filter. At the SoC interconnect level, it is propagated in the form of the tag bits previously
described, which effectively creates two address spaces, one for Trusted and one for Non-
trusted.

When the processor is in the Non-secure state (EL2, EL1, or EL0), all memory transactions
are Non-secure.

When the processor is in the Secure state (EL3, S-EL1, or S-EL0), the security state of
memory transactions is determined as follows:

• If the MMU is enabled, the security state of memory transactions can be determined
by attributes in the translation table. Consequently, a Trusted kernel in S-EL1 can
provide mappings that send Secure or Non-secure memory accesses into the
memory system.

• If the MMU is disabled, Translation tables are not utilized, and all Secure state
accesses default to Secure transactions on the bus.

The processor core integrates an internal configuration bit that is held in the Security
Configuration Register (SCR), which determines the security state of levels below EL3. This
bit can only be updated in EL3. In the 64-bit architecture (AArch64), it is referred to as
SCR_EL3.NS, when high a Non-secure state is indicated.

Transitions between the two Security states are managed by a dedicated software module
called the Secure Monitor, which runs in EL3. The Secure Monitor is responsible for providing
a clean context switch and must therefore support the safe save and restore of processor
state, including the content of registers, while maintaining isolation between the two worlds.

A Secure Monitor Call (SMC) instruction is used to enter EL3 and safely invoke the Secure
monitor code. Because this instruction can only be executed in privileged mode, a user
process that requests a change from one world to the other must do so using an SVC
instruction, which is usually done via an underlying OS kernel. Furthermore, an SMC can
optionally be trapped by EL2, and prevent even the OS kernel (EL1) from directly invoking
the Secure Monitor (EL3).

TrustZone® technology

ARM DEN 0021D Copyright © 2012, 2016, 2018 ARM Limited or its affiliates. All rights reserved. 19
 Non-Confidential

Interrupts and exceptions can also be configured to cause the processor core to switch into
EL3. Independent exception and vector tables support this functionality.

TBSA architecture variants

20 Copyright © 2012, 2016, 2018, ARM Limited or its affiliates. All rights reserved. ARM DEN 0021D
 Non-Confidential

5 TBSA architecture variants

A typical SoC architecture based on TrustZone technology is shown in Figure 1. The
processor cluster is supported by a number of security hardware IPs that utilize TrustZone
technology, such as the NS-bit, to work within the Trusted world.

SoC

Key

Non-trusted world

Trusted world

Switchable between Trusted and

Non-trusted worlds

Interconnect Configuration registers

Peripheral Filter

Peripherals

Input

devices

Memory Filter

DRAM

Controller

D

Trusted boot

ROM

Trusted

SRAM

NVM

controller

Other

Trusted

CPUs and

masters

CPU cluster

ARMv8

CPU

ARMv8

CPU

ARMv8

CPU

ARMv8

CPU

Other

Non-trusted

CPUs and

masters

CoreSight

debug

subsystem

External

debugger

Test

subsystem

External

test tool

Display

Controller

Internal

display

HDMI

Controller

HDCP

External

display

I2C / GPIO

Trusted timer

Trusted time clock

Entropy source

NV counter

OTP / fuses

DRAM

Rich OS data

Trusted

world data

FLASH

Firmware

Figure 1 TBSA SoC architecture

The Trusted world software and security hardware together implement the protection
mechanisms required for the use cases in section 2. Figure 2 shows an example
implementation.

TBSA architecture variants

ARM DEN 0021D Copyright © 2012, 2016, 2018 ARM Limited or its affiliates. All rights reserved. 21
 Non-Confidential

Secure time

Application
Code/data

Persistent on-
chip

storage

Persistent
storage

External RAM

Peripherals

Protected
Record or App

Version counters

Root keys
Internal

RAM

Crypto
engines

Isolation via
memory
protection

Decrypted &
authenticated
using on-chip
keys

Figure 2 Example protection mechanisms

Memory protection is used to isolate the target application from other applications at runtime
by providing a partitioning of internal and external memory into the Trusted and Non-trusted
worlds. The partitioning is achieved using NS bit target based filtering. The configuration
must be performed by a trusted agent where the trusted agent itself forms part of the chain
of trust that begins with the Secure boot of the device using an on-chip key.

Note: Further partitioning of the Non-trusted world can be achieved using NSAID filtering or through
a hypervisor and associated MMUs. These techniques are outside the scope of TBSA; For
more information, see the relevant ARM documentation.

The critical resources of the protected application are its code and associated data, which
includes cryptographic certificates and keys, but which can also include physical interfaces.
Resources can be loaded into internal or external memory, or can be stored in Secure
persistent external memory, for example flash memory. In the latter case the data must be
encrypted and saved along with an authentication tag or signature so that it can be verified
when read back.

Decryption and authentication of persistent external data (including code) must be
dependent on chip root keys, which are typically stored in non-volatile OTP memory that is
programmed during manufacture. In addition, to prevent replay or roll back attacks, each
application needs a non-volatile version counter. .

A common requirement of many applications is secure time, which requires a permanently
powered hardware timer that is securely loaded with a time stamp that is provided by the
network.

This specification considers two architectures for a TrustZone based system: "Baseline" and
"Assisted". These architecture variants might impose different requirements on the security
features that are described later in this document.

TBSA architecture variants

22 Copyright © 2012, 2016, 2018, ARM Limited or its affiliates. All rights reserved. ARM DEN 0021D
 Non-Confidential

5.1 Baseline architecture

The Baseline Architecture performs the majority of the security functions within Trusted world
software on the Processor cluster. It is supported by a minimum set of required security
hardware, for example:

• Trusted Boot ROM.

• Trusted RAM and/or Trusted External Memory Partitioning.

• Trusted peripherals.

o OTP Fuses.

o Entropy Source.

o Timer.

o Watchdog.

The Baseline architecture focuses on ensuring that the Trusted world software has access
to all the assets it requires, and has the underlying mechanisms to protect the integrity,
confidentiality, and authenticity of the Trusted world. The Trusted world software exports
crypto services to the Non-trusted world, and supports the execution of trusted services, for
example by implementing a TEE capable of running trusted applications.

In a TEE architecture, the API that is exposed to the trusted applications by the TEE will be
responsible for providing secure time, secure version counters, and cryptographic services
that utilize the device root keys. A Trusted application in turn, can expose further services to
the Non-trusted world through its API.

The exact requirements for the Trusted Hardware depend on the use cases that the device
must support.

5.2 Assisted architecture

The Assisted Architecture builds on the Baseline Architecture by adding hardware to
accelerate and offload some of the cryptographic operations from the Trusted world
software, and to provide increased protection to high value assets, such as root keys.

The cryptographic accelerators are expected to support the most commonly used algorithms
for encryption, decryption, and authentication. These are likely to include AES, TDES, SHA,
RSA, and ECC.

ARM recommends increasing protection for the keys in the system by implementing a
hardware Key Store that enables use of the keys by the cryptographic accelerators while
preventing the keys from being read by both Non-trusted and Trusted software.

TBSA security requirements

ARM DEN 0021D Copyright © 2012, 2016, 2018 ARM Limited or its affiliates. All rights reserved. 23
 Non-Confidential

6 TBSA security requirements

6.1 System view

At an abstract level, the TBSA can be viewed as a system that comprises a collection of
assets, together with operations that act on those assets.

In this context, an asset is defined as a data set that has an owner and a particular intrinsic
value, for example a monetary value. All data sets are assets that are associated with a
value, even if that value is zero. A data set can be any stored or processed information; this
includes executable code as well as the data it operates on.

High value assets that require protection belong to the Trusted world, while lower value
assets that do not require protection belong to the Non-trusted world. The actual
classification, ranking, and mapping of assets to worlds depends on the target specifications,
and is therefore beyond the scope of this document.

Similarly, an operation belongs to a world and is therefore classified as either Trusted or
Non-trusted.

R010_TBSA_BASE A Non-trusted world operation shall only access Non-trusted world assets.

R020_TBSA_BASE A Trusted world operation can access both Trusted and Non-trusted world assets.

In the ARM architecture, code executing on an ARM TZ processor core exists in one of two
Security states, Secure or Non-secure, where the Secure state corresponds to Trusted world
operations, and the Non-secure state corresponds to Non-trusted world operations.

R030_TBSA_BASE The SoC shall be based on version 8-A of the ARM architecture. See [2.] for details.

ARM recognizes that the security features of a TBSA device will not be entirely implemented
in hardware, and that the hardware might be configurable by software.

R040_TBSA_BASE The hardware and software of a TBSA device shall work together to ensure all the security
requirements are met.

6.2 Infrastructure

The TBSA is underpinned by a hardware infrastructure that provides strong isolation
between the operations and assets of the Trusted and non-Trusted worlds.

The ARM TZ processor core is a key component of a larger SoC design that performs
operations on stored assets within the wider system, where storage comprises registers,
random access memory, and non-volatile memory. To provide the required protection for
assets, the storage is divided into two types: Secure and Non-secure, which correspond to
the Trusted and Non-trusted worlds, respectively.

Which world an operation belongs to is determined by its security state. A Secure operation
belongs to the Trusted world, while a Non-secure operation belongs to the Non-trusted world.
The ARMv8 processor core and some complex hardware IPs can support operations in both
worlds.

6.2.1 Memory system

Operations and assets are connected by transactions, where a transaction represents a read
or write access to storage containing the asset. Each transaction has a security state that is
defined by the originating operation, and can be Secure or Non-secure.

As described in section 4.2, the memory map as seen by the TZ processor core is divided
into two spaces: Secure and Non-secure storage, where Trusted world assets are held in
Secure storage and Non-trusted world assets are held in Non-secure storage.

The security state of the transaction is interpreted as an additional address bit, which is
referred to as ADDRESS.NS for clarity. ADDRESS.NS is high in a Non-secure state, and
low in a Secure state.

To build a useful system, it is necessary to facilitate communication between worlds through
shared memory. In the TBSA this is achieved by permitting a Trusted operation to issue both

TBSA security requirements

24 Copyright © 2012, 2016, 2018, ARM Limited or its affiliates. All rights reserved. ARM DEN 0021D
 Non-Confidential

Secure and Non-secure transactions. The opposite, however, is not true: a Non-trusted
operation can only issue Non-secure transactions.

 A Trusted operation can issue Secure or Non-secure transactions.

 A Non-trusted operation shall only issue Non-secure transactions.

As described in section 4.2, ARM recommends that a consistent system-wide approach is
adopted, such that Secure transactions only access Secure storage, and Non-secure
transactions only access Non-secure storage. Moreover, this approach is mandatory where
data is cached, to guarantee coherency.

 A Secure transaction shall only access Secure storage.

 A Non-secure Transaction shall only access Non-secure storage.

The following rules summaries the link between operations, transactions and storage:

• A Non-trusted operation is said to operate in a Non-secure state and shall only issue
Non-secure transactions targeting Non-secure storage locations. It shall not issue
Secure transactions and therefore cannot access Trusted assets.

• A Trusted operation is said to operate in a Secure state and can issue either Secure
or Non-secure transactions. As such it is capable of accessing both Secure and Non-
secure storage. However, ARM recommends that a Secure transaction only access
Trusted assets and a Non-secure transaction only access Non-trusted assets.

Given these definitions, Figure 3 shows how resources, for example a set of memory
mapped peripheral interfaces, are placed into the physical memory map that is based on the
world they belong to.

TBSA security requirements

ARM DEN 0021D Copyright © 2012, 2016, 2018 ARM Limited or its affiliates. All rights reserved. 25
 Non-Confidential

Non-secure

Peripheral interfaces

0

Top

Physical memory map

Non-secure

Secure

Secure

Non-secure

Secure

Non-secure

Secure

Secure

Non-secure

Non-secure

Secure

Secure

Secure

Non-secure

Secure

Conceptually interfaces are mapped
into the physical address space and
may only reside in one world.

Figure 3: Peripheral to physical memory mapping

If the peripherals are grouped together on a local interconnect node, the required mapping
can be achieved through memory translation.

Figure 4 shows the incorporation of a DRAM that is divided into Trusted and Non-trusted
regions, using remapping logic.

TBSA security requirements

26 Copyright © 2012, 2016, 2018, ARM Limited or its affiliates. All rights reserved. ARM DEN 0021D
 Non-Confidential

{ADDRESS, ADDRESS.NS}

Non-secure

Secure
Non-secure

Secure

DRAM Secure

DRAM
Non-secure

DRAM

0

Top

Physical memory map

Figure 4: DRAM to physical memory mapping

In this example, and in many real word cases, the DRAM is simply split into only two regions,
Secure and Non-secure. to map the two DRAM regions correctly into the larger physical
address map, remapping logic must be implemented. In simple implementations, this can be
fixed logic, but it is more likely to be programmable logic, as this offers greater flexibility if
software is updated. In the latter case, the relevant configuration registers must only be
accessible to Secure transactions, and belong to the Trusted world.

 If programmable address remapping logic is implemented in the interconnect then its
configuration shall only be possible from the Trusted world.

In general, the mapping of resources into Secure or Non-secure memory can be achieved
using either fixed or programmable logic, for example TLB-based translations of the physical
address, but a more optimal solution uses a target-based filter. Such a filter enables the
definition of Secure and Non-secure memory regions using ranges that are based on all
address bits except ADDRESS.NS, causing incoming transactions to be permitted only if the
following conditions are true:

• Region is Secure and ADDRESS.NS = 0

• Region is Non-secure and ADDRESS.NS = 1

The physical address space after the filter, which does not consider ADDRESS.NS, is
consequently halved in size. Figure 5 shows the resulting address map.

{ADDRESS, ADDRESS.NS}

Secure Illegal

Illegal Non-secureFilter

Secure Non-secure

ADDRESS only

Secure region

Non-secure
region

Figure 5: Filter aliasing

TBSA security requirements

ARM DEN 0021D Copyright © 2012, 2016, 2018 ARM Limited or its affiliates. All rights reserved. 27
 Non-Confidential

The aliasing in the address map that results after filtering places constraints on the memory
layout from the point of view of a bus master, for example an ARM processor.

 A unified address map that uses target side filtering to disambiguate Non-secure and
Secure transactions must only permit all Secure or all Non-secure transactions to any
one region. Secure and Non-secure aliased accesses to the same address region are
not permitted.

 The target transaction filters configuration space shall only be accessed from the Trusted
world.

At the interconnect level, and before filtering, ADDRESS.NS forms an additional address bit,
and each memory transaction must transport this bit together with all other address bits to
the point where the filter constraints are applied.

Note: In the legacy case of the APB v4 or earlier, the peripheral bus does not support an
ADDRESS.NS bit, which makes it necessary to perform filtering before a transaction reaches
the bus, for example at a bus bridge joining AXI and APB.

The ARM TrustZone Address Space Controller (TZC) is one embodiment of such a target-
based filter.

In the specific case of the TZC filter, aliasing enables a region to be configured as accessible
by any combination of accesses. For example, it is possible to configure a region to be
accessible to both Secure and Non-secure transactions. As previously discussed, this
violates TBSA requirements, which demand that a region belongs to only one world, and a
Secure transaction must only access Secure regions, and a Non-secure transaction must
only access Non-secure regions.

Note: This configuration is referred to as “security inversion mode” in the TZC-380 product and
must be explicitly enabled by setting a control bit. Later versions of TZC enable such
configurations by default.

The TZC filter can be configured to silently block illegal transactions or to block and signal a
security exception through a bus error or an interrupt. If an interrupt is generated, it is
classified as a Trusted interrupt, as described in the next section.

 Security exception Interrupts shall be wired or configured as Secure interrupt sources.

For the ARM processor core, the security state of the transaction is made available at the
boundary of the processor core so that it can be propagated through the on-chip
interconnect. For example, in an AXI bus implementation, the security state of the
transaction, ADDRESS.NS, is mapped to the ARPROT[1] and AWPROT[1] signals, where:

• ARPROT[1] indicates a Trusted write when low.

• AWPROT[1] indicates a Trusted read when low.

Similarly, a hardware IP that is an AXI bus master will generate the same signals to indicate
the security state of each transaction.

In architectures that use a network-on-chip interconnect approach, it might be possible to re-
configure the routing of packets so that they arrive at a different interface. Even though the
access address remains unchanged, this is dangerous and can lead to an exploit. Any such
configuration shall only be possible from the Trusted world using Secure transactions.

 Configuration of the on-chip interconnect that modifies routing or the memory map shall
only be possible from the Trusted world.

The different techniques for address remapping and filtering are both methods of constraint
that bind storage locations to worlds. Whatever the method of constraint, it must not be
possible for a memory transaction to bypass it.

A particular example is the case where multiple caches that are up-stream from a target filter
are synchronized via a coherency mechanism. If such a mechanism, for example bus
snooping, is implemented, the mechanism must force a coherency transaction to pass
through the target filter.

TBSA security requirements

28 Copyright © 2012, 2016, 2018, ARM Limited or its affiliates. All rights reserved. ARM DEN 0021D
 Non-Confidential

 All transactions must be constrained; it must not be possible for a transaction to bypass
a constraining mechanism.

6.2.1.1 Shared volatile storage

When assets from different worlds can occupy the same physical volatile storage location,
the underlying storage, for example internal RAM, external RAM, or peripheral space, is
referred to as shared volatile storage.

A shared volatile storage implementation therefore enables a storage location or region that
previously held a Trusted asset to hold a Non-trusted asset. Before such a storage location
or region can be reallocated from Trusted to Non-trusted, the Trusted asset must be securely
removed. This can be achieved using scrubbing.

Scrubbing is defined as the atomic process of overwriting a Trusted asset with an unrelated
value, which is either a constant, a Non-trusted asset value, or a randomly generated number
of the same size. Atomic means that the process must not be interrupted by the Non-trusted
world.

 If shared volatile storage is implemented, then the associated location or region must be
scrubbed, before it can be reallocated from Trusted to Non-trusted.

Note: When a copy of Trusted data is held in a cache, it is important that the implementation does
not permit any mechanism that provides the Non-Trusted world with access to that data, as
required by R030_TBSA_INFRA and R040_TBSA_INFRA. If a hardware engine is used for
scrubbing, careful attention must be given to the sequence to make sure that the relevant
cached data is flushed and invalidated before the scrubbing operation.

6.2.2 Interrupts

In most cases a Trusted interrupt, which is an interrupt that is generated by a Trusted
operation, must not be visible to a Non-trusted operation to prevent information leaks that
might be useful to an attacker. Consequently, the on-chip interrupt network must be capable
of routing any interrupt to any world with the caveat that the routing of Trusted interrupts shall
only be configured from the Trusted world.

The number of interrupts that must be supported in each world depends on the target
requirements and is therefore not specified in this document.

 An interrupt originating from a Trusted operation must by default be mapped only to a
Trusted target. By default, we mean that this must be the case following a system reset.

 Any configuration to mask or route a Trusted interrupt shall only be carried out from the
Trusted world.

 The interrupt network might be configured to route an interrupt originating from a Trusted
operation to a Non-trusted target.

 Any status flags recording Trusted interrupt events shall only be read from the Trusted
world, unless specifically configured by the Trusted world, to be readable by the Non-
trusted world.

For example, these rules permit a Non-trusted world request to a Trusted operation to result,
after passing the policy check, in a Trusted Interrupt being delivered to a non-trusted target
to signal the end of the operation. Configuration of the interrupt in this way must be done by
the Trusted world before or during the Trusted operation.

In the ARM architecture, these requirements can be supported using the GIC interrupt
controller block.

6.2.3 Secure RAM

In a TBSA system, Trusted code is expected to execute from Secure RAM. The Trusted
code will also store high value assets within the Secure RAM. In the context of this document,
Secure RAM refers to one or more dedicated regions that are mapped onto one or more
physical RAMs. When a physical RAM is not entirely dedicated to Secure storage, it is shared
between worlds. However, the underlying locations are not classified as shared volatile

TBSA security requirements

ARM DEN 0021D Copyright © 2012, 2016, 2018 ARM Limited or its affiliates. All rights reserved. 29
 Non-Confidential

storage unless they are re-allocated from Secure to Non-secure. The mapping of Secure
regions can be static and fixed by design, or programmable at runtime.

ARM recommends the use of on-chip RAM, but it is acceptable to use SRAM on a separate
die if it is within the same package as the main SoC.

Example Secure RAM use cases are:

• Secure boot code and data.

• Monitor code.

• A Secure OS.

• Cryptographic services.

• Trusted services, for example Global Platform TEE and TAs.

The Secure RAM size depends on the target requirements and is therefore not specified in
this document. As an example, a quad core system typically integrates 256 KB of SRAM.

 A TBSA system must integrate a Secure RAM.

 Secure RAM must be mapped into the Trusted world only.

 If the mapping of Secure RAM into regions is programmable, then configuration of the
regions must only be possible from the Trusted world.

Note, if Secure RAM is re-mapped from the Trusted world to the Non-trusted world, it is
classified as shared volatile storage, and it must meet the requirements of a shared volatile
storage.

For a description of the use of external DRAM for Secure RAM see 6.12

6.2.4 Power and clock management

Modern battery powered mobile platforms have a high degree of power control and might
integrate an advanced power management subsystem using dedicated hardware, and
execute a small software stack from local RAM. In such cases, the management subsystem
has control over a number of Trusted assets, for example:

• Clock generation and selection. Examples include:

o Phase-Locked Loops (PLL).

o Clock dividers.

o Glitch-less clock switching.

o High-level clock gating.

• Reset generation. Examples include:

o Registers to enable or disable clocks.

o State machines to sequence the assertion and de-assertion of resets in
relation to clocks and power states.

o Re-synchronization of resets.

• Power control. Examples include:

o Access to an off-chip power controller/switch/regulator.

o State machine for sequencing when changing power states.

o Logic or processing to intelligently apply power states either on request, or
dynamically.

• State saving and restoration. To dynamically apply power states, some subsystems
can also perform saving and restoration of system states without the involvement of
the main application processor.

Unrestricted access to this functionality is dangerous, because it could be used by an
attacker to induce a fault that targets a Trusted service, for example by perturbing a system
clock. To mitigate this threat, the advanced power mechanism must integrate a Trusted

TBSA security requirements

30 Copyright © 2012, 2016, 2018, ARM Limited or its affiliates. All rights reserved. ARM DEN 0021D
 Non-Confidential

management function, which performs policy checks on any requests from the Non-trusted
word, before they can be applied.

This approach still permits most of the Non-trusted complex peripheral wake up code, which
is usually created by the OEM and subject to frequent updates, to be executed from the Non-
trusted world.

 The advanced power mechanism must integrate a Trusted management function to
control clocks and power. It must not be possible to directly access clock and power
functionality from the Non-trusted world.

 The power and clock status must be available to the Non-trusted world.

Note: All system clocks are classified as Trusted because they can only be configured via the
Trusted manager.

6.2.5 Peripherals

A peripheral is a hardware block that is not a processor core and which implements one or
more operations that act on assets. It has an interface to receive commands and data from
one or more processor cores and might be capable of direct memory access.

A simple peripheral can have its operations mapped into one world or the other by the wider
system depending on its role in the current use case.

 If access to a peripheral, or a subset of its operations, can be dynamically switched
between Trusted world and Non-trusted world, then this shall only be done under the
control of the Trusted world.

A Non-Trusted peripheral acts only on Non-Trusted assets, while a Trusted peripheral can
act on assets in both worlds. Complex peripherals might therefore act in both worlds,
supporting both Trusted and Non-trusted operations, as illustrated in Figure 6.

Trusted

Non-
trusted

Operation Target resourceInterface

Secure

Non-
secure

Secure

Non-secure Policy

Secure

Non-secure

Distinguish origin

Figure 6: Peripheral operations

A Trusted peripheral is viewed as hardware block that implements at least one Trusted
operation. In turn, each operation has an interface that is mapped into the Trusted or non-
trusted world, or into both worlds.

The implementation of the operations is a design choice. They can be built using fully
separate hardware, or utilize multiplexing of shared functions and resources.

A Trusted peripheral must meet the following requirements, which are framed in terms of its
operations:

 If the peripheral stores assets in local embedded storage, a Non-trusted operation must
not be able to access the local assets of a Trusted operation.

 A Trusted operation must be able to distinguish the originating world of commands and
data arriving at its interface, by using the address.

TBSA security requirements

ARM DEN 0021D Copyright © 2012, 2016, 2018 ARM Limited or its affiliates. All rights reserved. 31
 Non-Confidential

 A Trusted operation that exposes a Non-secure interface must apply a policy check to
the Non-trusted commands and data before acting on them. The policy check must be
atomic and, following the check, it must not be possible to modify the checked commands
or data.

An example policy for a cryptographic accelerator peripheral would cover at least:

• Which world the input data is permitted to be read from.

• Which world the output data is permitted to be written to.

• Whether encryption is permitted.

• Whether decryption is permitted.

A specific example is a DMA engine that is shared between worlds. When configured from
the Trusted world, the DMA can operate on Trusted and Non-Trusted memory, by
appropriate use of the NS bit. However, when configured from the Non-Trusted world, the
DMA shall only operate on Non-Trusted memory, using an NS value of 1.

6.3 Fuses

A modern SoC requires non-volatile storage to store a range of data across power cycles.
These vary from the device firmware to cryptographic keys and system configuration
parameters. Non-volatile storage can use a variety of technologies, for example floating gate
memories or oxide-breakdown antifuse cells. These technologies vary with respect to certain
properties, most notably whether they are one-time-programmable (OTP) or many-time-
programmable (MTP).

Not all non-volatile storage technologies are available in all semiconductor processes.
Floating gate memories, for example, are not economic in modern bulk CMOS processes.
Where needed, off-chip non-volatile memory can be used to augment the available on-chip
non-volatile storage.

Non-Volatile storage technologies generally require error correction mechanisms to ensure
the correct storage of data over the lifespan of the device.

R010_TBSA_FUSE A non-volatile storage technology shall meet the lifetime requirements of the device,
either through its intrinsic characteristics, or through the use of error correction
mechanisms.

The majority of security assets and settings that need to be stored on-chip require OTP non-
volatile storage to ensure that the values cannot be changed. Following the industry norm,
the rest of this document will use the term fuse to refer to on-chip OTP non-volatile storage.
Fuses can be implemented using antifuses or an MTP technology with controlling logic to
make it OTP.

The fundamental requirements for implementing fuses in a TBSA device are:

R020_TBSA_FUSE A fuse is permitted to transition in one direction only, from its un-programmed state to its
programmed state. The reverse operation shall be prevented.

R030_TBSA_FUSE A fuse shall be programmed only once as multiple programming operations might
degrade the programmed cell(s) and introduce a fault.

R040_TBSA_FUSE It shall be possible to blow at least a subset of the fuses when the device has left the
silicon manufacturing facility.

R050_TBSA_FUSE All fuse values shall be stable before any parts of the SoC that depend on them are
released from reset.

R060_TBSA_FUSE Fuses that configure the security features of the device shall be configured so that the
programmed state of the fuse enables the feature. i.e. the programming of a security
configuration fuse will always increase security within the SoC.

This ensures that after a security feature is enabled, it cannot be deactivated.

R070_TBSA_FUSE Lifetime guarantee mechanisms to correct for in-field failures shall not indicate which
fuses have had errors detected or corrected, just that an error has been detected or
corrected. This indicator shall only be available after all fuses have been checked.

TBSA security requirements

32 Copyright © 2012, 2016, 2018, ARM Limited or its affiliates. All rights reserved. ARM DEN 0021D
 Non-Confidential

The full error information will be available to the lifetime guarantee mechanism
and the security of the mechanism implementation must be considered. ARM
recommends to implement the mechanism in hardware, but this might not always
be practical.

Assets stored in fuses have a variety of characteristics that in turn determine the way that
the fuses are accessed. The characteristics of fuses can be summarized as follows:

Confidential/Public - "Confidential" fuses must only be read by the intended recipient, or a
particular hardware module or software process. "Public" fuses can be accessed by any
piece of software or hardware.

Lockable/Open -

“Lockable” fuses shall comply with one of the following requirements:

• Prevent re-writing of a locked value.

A mechanism that prevents the programming of a fuse bit or group of fuse bits can be
implemented by reserving an additional fuse bit to act as a lock bit:

o Writing the value is followed by its lock bit being set. Glue logic ensures that
no further programming is possible.

o Writing zero, which corresponds to the un-programmed fuse state, causes
no value to be written, only the lock bit to be set.

• Use tamper detection to detect that the value has been modified.

A tamper protection mechanism can be implemented by storing a code in additional
fuses that is sufficient to detect any modification to the value:

o Writing the value is followed by storing the detection code.

o When the value is read by the system, a mechanism must recalculate the
code from the value and compare it with the stored code.

o If the codes do not match, the value shall not be returned to the system.

By definition, "Open" fuse bits might be programmed only once, at any point in the device
lifetime.

Bitwise/Bulk - "Bitwise" fuses can be programmed one logical fuse at a time, regardless of
the number of fuses required to store the value. "Bulk" fuses store multi-bit values that must
be programmed at the same time and are treated as an atomic unit.

Bitwise and bulk fuses must comply with the following requirements:

R080_TBSA_FUSE A confidential fuse whose recipient is a hardware IP shall not be readable by any software
process.

R090_TBSA_FUSE A confidential fuse whose recipient is a hardware IP shall be connected to the IP using a
path that is not visible to software or any other hardware IP.

Usually, this is implemented as a direct wire connection.

R100_TBSA_FUSE A confidential fuse whose recipient is a software process might be readable by that
process and shall be readable by software of a higher exception level.

This permits a kernel level driver to access fuses for a user space process. The
confidentiality relies on the kernel level driver only passing fuse values to the
correct user space process.

R110_TBSA_FUSE A confidential fuse whose recipient is a Trusted world software process shall be protected
by a hardware filtering mechanism that can only be configured by S-EL1 or EL3 software,
for example an MPU, an MMU, or an NS-bit filter.

R120_TBSA_FUSE It must be possible to fix a lockable fuse in its current state, regardless of whether it is
programmed or un-programmed.

R130_TBSA_FUSE The locking mechanism for a lockable fuse can be shared with other lockable fuses,
depending on the functional requirements.

TBSA security requirements

ARM DEN 0021D Copyright © 2012, 2016, 2018 ARM Limited or its affiliates. All rights reserved. 33
 Non-Confidential

For example, there can be one locking mechanism for all fuses that are
programmed by the silicon vendor.

R140_TBSA_FUSE A bulk fuse shall also be a lockable fuse to ensure that any unprogrammed bits cannot
be later programmed.

R150_TBSA_FUSE Additional fuses that are used to implement lifetime guarantee mechanisms shall have
the same confidential and write lock characteristics as the logical fuse itself.

6.4 Cryptographic keys

Fundamental to the security of a system are the cryptographic keys that provide authenticity
and confidentiality of the assets that are used by the system.

It is important that a key is treated as an atomic unit when it is created, updated, or destroyed.
This applies at the level of the requesting entity. Replacing part of a key with a known value
and then using that key in a cryptographic operation makes it significantly easier for an
attacker to discover the key using a divide and conquer brute-force attack. This is especially
relevant when a key is stored in memory units that are smaller than the key, for example a
128-bit key that is stored in four 32-bit memory locations. Entities, such as trusted firmware
functions, which implement creation, updating or destruction services for keys should ensure
that it is not possible for their clients to observe or use keys in a manner which breaks the
assumption of atomicity.

R010_TBSA_KEY A key shall be treated as an atomic unit. It shall not be possible to use a key in a
cryptographic operation before it has been fully created, during an update operation, or during its
destruction.

R020_TBSA_KEY Any operations on a key shall be atomic. It shall not be possible to interrupt the
creation, update, or destruction of a key.

R030_TBSA_KEY When a key is no longer required by the system, it must be put beyond use to
prevent a hack at a later time from revealing it.

If a key is “put beyond use” there must be no possible way of using or accessing it,
which can be achieved by hiding the key through blocking access to it, or by removing
the key from the system through scrubbing the storage location that contains the key.

6.4.1 Characteristics

Keys have a range of characteristics that influence the level of protection that must be
applied, and how the keys can be used.

6.4.1.1 Cryptographic Schemes

A cryptographic scheme provides one or more security services and is based on a purpose
and an algorithm requiring specific key properties and key management.
Keys are characterized depending on their classification as private, public or symmetric keys
and according to their use.

Broadly, each key should only be used for a single purpose, such as encryption, digital
signature, integrity, and key wrapping. The main motivations for this principle are:
1. Limiting the uses of a key limits the potential harm if the key is compromised.
2. The use of a single key for two or more different cryptographic schemes can reduce

the security provided by one or more of the processes.
3. Different uses of a single key can lead to conflicts in the way each key should be

managed. For example, the different lifetime of keys used in different cryptographic
processes may result in keys having to be retained longer than is best practice for one
or more uses of that key.

In cases where a scheme can provide more than one cryptographic service, this principle
does not prevent use of a single key. For instance, when a symmetric key is used both to
encrypt and authenticate data in a single operation or when a digital signature is used to
provide both authentication and integrity.

TBSA security requirements

34 Copyright © 2012, 2016, 2018, ARM Limited or its affiliates. All rights reserved. ARM DEN 0021D
 Non-Confidential

Re-using part of a larger key in a scheme that uses a shorter key, or using a shorter key in
a larger algorithm and padding the key input, can leak information about the key. So, this
too, is prohibited.

 R035_TBSA_KEY A key must only be used by the cryptographic scheme for which it was created.

6.4.1.2 Volatility

Keys used by the system will have vastly different lifespans. Some keys are programmed
during SoC manufacture and never change, while others will exist only during the playback
of a piece of content.

Static - A static key is a key that cannot change after it has been introduced to the device.
It might be stored in an immutable structure like a ROM or a set of fuses. Although a static
key cannot have its value changed, it does not preclude it from being revoked or made
inaccessible by the system.

R070_TBSA_KEY A static key shall be stored in an immutable structure, for example a ROM or a set
of Bulk-Lockable fuses.

Ephemeral - Ephemeral keys have a short lifespan. In many cases, they only exist between
power cycles of the device. Ephemeral keys can be created in the device in a number of
ways:

• Derivation - Sometimes it is useful to create one or more keys from a source key.
This method is called key derivation. Derivation is used most often, to create
ephemeral keys from static keys.

A key derivation operation shall use a cryptographic one-way function that
preserves the entropy of the source key, and the operation shall be unique for
each derived key. Common derivation constructions are based on use a keyed-
Hash Message Authentication Code (HMAC) or a Cipher-based Message
Authentication Code (CMAC). Collectively, the inputs to the one-way derivation
function are referred to as “Source Material”.

R080_TBSA_KEY To meet R030_TBSA_KEY for a derived key, at least one part of the Source
Material shall be put beyond use until the next boot to ensure that the key cannot be derived again.

• Injection - A key is introduced into the system from storage or via a communication
link. One example is the key within a DRM license certificate. To ensure that the key
is encrypted during transit, the injection is often protected by another key.

• Generation - Ephemeral keys can be generated on the device by simply sampling
random numbers or by using random numbers to create a key, for example in a
Diffie-Hellman key exchange protocol.

When an ephemeral key is no longer required, it must be removed securely from the system.
This must happen even if the event that makes the key redundant is unexpected, for example
in case of a reset.

R090_TBSA_KEY If an ephemeral key is stored in memory or in a register in clear text form, the
storage location must be scrubbed before being used for another purpose.

6.4.1.3 Unique/Common

Device Unique - A device unique key is statistically unique for each device, meaning that
the probability of another device having the same key value is insignificant. For TBSA
systems, a key with at least 128-bits of entropy is considered to be sufficient for device
uniqueness.

Common - A common key is present on multiple devices.

6.4.1.4 Source

Non-trusted world:

TBSA security requirements

ARM DEN 0021D Copyright © 2012, 2016, 2018 ARM Limited or its affiliates. All rights reserved. 35
 Non-Confidential

R100_TBSA_KEY A key that is accessible to, or generated by, the Non-trusted world shall only be
used for Non-trusted world cryptographic operations, which are operations that are either implemented
in Non-trusted world software, or have both input data and output data in the Non-trusted world.

Trusted world:

R110_TBSA_KEY A key that is accessible to, or generated by, the Trusted world can be used for
operations in both Non-trusted and Trusted worlds, and even across worlds, as long as:

1. The Non-trusted world cannot access the key directly.

2. The Trusted world can control the use of the key through a policy.

An example policy would cover at least:

• Which world the input data is permitted to be read from.

• Which world the output data is permitted to be written to.

• Permitted operations.

In the Assisted architecture, the "Source" key characteristic is extended to include "Trusted
hardware" where the key is derived or generated in pure hardware.

R120_TBSA_KEY A Trusted hardware key shall not be directly accessible by any software.

A Trusted hardware key can be used for Trusted world cryptographic operations, but its
usage in a Non-trusted world must be subject to a policy.

R130_TBSA_KEY The Trusted world must be able to enforce a usage policy for any Trusted
hardware key which can be used for Non-trusted world cryptographic operations.

6.4.2 Root keys

A TBSA-compliant SoC must be capable of providing authentication and encryption services
through the use of embedded cryptographic keys. The exact number of embedded keys and
their type depends on the target requirements, and is not specified in this document.

However, as a minimum, a TBSA-compliant device must embed two root keys, one for
confidentiality and one for authentication, from which others can be derived:

• A hardware unique root symmetric key (HUK) for encryption and decryption.

• A root authentication key that is the public key half of an asymmetric key pair, it might
belong to an RSA or elliptic curve cryptosystem (ECC) and is referred to as the Root
of Trust Public Key (ROTPK).

Examples of other embedded root keys are:

• Endorsement keys - these are asymmetric key pairs used to prove identity and
therefore trustworthiness to the external world.

• Additional symmetric keys for firmware decryption and provisioning - alternatively, if
ownership is not an issue, these can be derived from the HUK.

The use of an elliptic curve cryptosystem for asymmetric cryptography is often beneficial
because its smaller key sizes lessens storage and transmission requirements. For
example, the RSA algorithm of key size 3072 bits gives comparable security to an ECC
algorithm of key size in the range 256-383 bits depending on details of the algorithm and
parameters chosen.

System architects should also review the comparative resource requirements and
performance of RSA and ECC implementations for each of the relevant key use cases.

R140_TBSA_KEY A TBSA device must either entirely embed a root of trust public key (ROTPK), or
the information that is needed to securely recover it as part of a protocol.

R150_TBSA_KEY If stored in its entirety, the ROTPK must reside in on-chip non-volatile memory that
is only accessible until all the operations requiring it are complete. The ROTPK can be hard wired into
the device, for example a ROM, or it can be programmed securely into Confidential-Bulk-Lockable
fuses during manufacture.

TBSA security requirements

36 Copyright © 2012, 2016, 2018, ARM Limited or its affiliates. All rights reserved. ARM DEN 0021D
 Non-Confidential

When no longer in use, hiding the ROTPK requires a non-reversible mechanism, for
example a sticky register bit that is activated by the boot software.

R160_TBSA_KEY An elliptic-curve-based ROTPK must achieve a level of security matching that of
at least 256 bits.

R170_TBSA_KEY An RSA-based ROTPK must achieve a level of security matching that of at least
3072 bits in size.

If an RSA cryptosystem is implemented, the following approaches are permitted to reduce
the ROTPK storage footprint:

1. Instead of the key itself, a cryptographic hash of the key can be stored in on-chip
non-volatile storage. The public key can then be stored1, in external non-volatile
memory. When required, the key must be retrieved from external memory, and
successfully compared with the stored hash by Trusted hardware or software, before
it is used. This approach is known as hash locking. Because this approach is not
susceptible to a second pre-image attack, only half of the digest bits from an
approved hash algorithm need to be stored. It is not important which subset of bits
is stored, but typically the leftmost 128 bits from a SHA-256 digest are used.

2. Instead of the key itself, a 256-bit seed can be stored in on-chip non-volatile storage.
The public/private key pair can then be re-generated by Trusted hardware or
software. Because the seed enables the re-creation of both the public and private
key, ARM recommend not to use this approach if only the public key is required.
Moreover, in many target specifications it is a mandatory requirement that the
signing, or private, key component must not be present in the device.

R180_TBSA_KEY If a cryptographic hash of the ROTPK is stored in on chip non-volatile memory,
rather than the key itself, it must be immutable.

If the ROTPK itself is stored in external non-volatile memory, many target markets
recommend it to be encrypted1, and protected by an approved symmetric cipher having a
key size of at least 128 bits. This applies to the ROTPK, even though it is a public key,
because knowledge of the public key might aid a timing-based attack.

R190_TBSA_KEY If a generator seed is stored in on-chip non-volatile memory, rather than the key
itself, it must be immutable and Trusted, and unreadable from the Non-trusted world.

R200_TBSA_KEY A TBSA device must embed a hardware unique root symmetric key (HUK) in
Confidential-Lockable-Bulk fuses.

R210_TBSA_KEY The HUK must have at least 128 bits of entropy.

R220_TBSA_KEY The HUK shall only be accessible by the Boot ROM code or Trusted hardware that
acts on behalf of the Boot ROM code only.

To achieve this rule while complying with R100_TBSA_FUSE, the HUK must be
hidden by a non-reversible mechanism, for example a sticky register bit that is
activated by the Boot ROM code before the next stage in the boot chain, because
the memory system does not differentiate between accesses from EL3 and S-EL1.

The options are summarized in Table 2.

Table 2 : Root key summary

Name On-Chip Data Size Off-Chip Data Size Access to On-Chip Data

ROTPK – RSA 3072 bits (Key) 0 bits During Boot ROM execution only

128 bits (Digest) 3072 bits (Key) During Boot ROM execution only

ROTPK – ECC 256 bits (Key) 0 bits During Boot ROM execution only

1 Encrypting an externally held public key is generally not required. However, it is a known
stipulation in certain markets to add a defensive layer against certain types of timing-based
attacks.

TBSA security requirements

ARM DEN 0021D Copyright © 2012, 2016, 2018 ARM Limited or its affiliates. All rights reserved. 37
 Non-Confidential

HUK 128 bits (key) 0 bits During Boot ROM execution only

6.5 Trusted boot

6.5.1 Overview

The secure configuration of a TBSA device depends on Trusted software that in turn forms
part of a chain of trust that begins with the Trusted boot of the SoC. Without a Trusted boot
mechanism, TBSA security is not possible.

Trusted boot is based on a fixed and immutable Trusted boot image. It is the first code to run
on the ARM processor core and it is responsible for verifying and launching the next stage
boot. The Trusted boot image must be fixed within the SoC at manufacture time and is stored
in an embedded ROM, which is referred to as the Boot ROM. The Boot ROM contains the
boot vectors for all processors as well as the Trusted boot image.

R010_TBSA_BOOT A TBSA device must embed a Boot ROM with the initial code that is needed to
perform a Trusted system boot.

Typically, the boot loader is divided into several stages, the first of which is the Boot ROM.
Later stages will be loaded from non-volatile storage into Secure RAM and executed there.
In this document, the second stage boot loader is referred to as Trusted Boot Firmware. The
firmware that is loaded by the Trusted Boot Firmware is called Trusted Runtime Firmware.

Further details on the secure boot sequence and authentication mechanisms can be found
in the TBBR [3.], and in the implementation provided by ARM® Trusted Firmware [4.].

6.5.2 Boot types

A cold boot is a boot that is not based on a previous system state. Normally, a cold boot only
occurs when the platform is powered up and a hard reset signal is generated by a power-on
reset circuit. However, depending on the design, a hard reset option that triggers a cold boot
might also be available to the user in case of a software lock-up.

A warm boot can deploy one of the following methods to reuse the stored system state, for
example on resuming from sleep:

• The Boot ROM can use a platform-specific mechanism that is designed into the Boot
ROM to distinguish between a warm boot and a cold boot.

• The or the platform can use platform-specific registers to support an alternate reset
vector for a warm boot.

R020_TBSA_BOOT If the device supports warm boots, a flag or register that survives the sleep state
must exist to enable distinguishing between warm and cold boots. This register shall
be programmable only by the Trusted world and shall be reset after a cold boot.

Typically, any storage that is needed to support these mechanisms is implemented within an
always-on power domain.

6.5.3 Boot configuration

If the SoC implements multiple processor cores the designated boot processor core is called
the primary. After the de-assertion of a reset, the primary processor core executes the Boot
ROM code, and the remaining cores are held in reset or a safe platform-specific state until
the primary processor core initializes and boots them.

R030_TBSA_BOOT On a cold boot, the primary processor core must boot from the Boot ROM. It must
not be possible to boot from any other storage unless Trusted Kernel debug is
enabled For detailed information about Trusted Kernel debug, see section 6.10.

R040_TBSA_BOOT All secondary processor cores must remain inactive until permitted to boot by the
primary processor core.

In one implementation, the platform power controller holds all secondary processor cores in
a reset state, while the primary processor core executes the Boot ROM until it requests the

TBSA security requirements

38 Copyright © 2012, 2016, 2018, ARM Limited or its affiliates. All rights reserved. ARM DEN 0021D
 Non-Confidential

secondary processor cores to be released. In an alternative implementation, all processor
cores execute from the generic boot vector in the Boot ROM after a cold boot. However, the
Boot ROM identifies the primary processor core and permits it to boot using the Trusted boot
image, while the secondary processor cores are made inactive.

The ARMv8 architecture supports both 32-bit and 64-bit execution, which are labelled
AArch32 and AArch64, respectively. The execution mode on boot is implementation-defined.
For example, in the specific case of the Cortex-A53 and Cortex-A57 processors, the
execution mode is controlled by a signal (AA64nAA32) which is sampled at reset. This boot
execution mode signal can be hard-wired or depend on on-chip fuse bits.

ARM recommends that the primary processor core boots into 64-bit mode, AArch64.

R050_TBSA_BOOT The processor execution mode (AArchXX) at cold boot must be fixed and
unchangeable. It must not be possible to change the boot mode through any external
means, for example by using dedicated pins at the SoC boundary.

If a different execution mode is required, the Boot ROM can change the processor core
execution mode and provoke a warm boot. If the platform does not support a programmable
reset vector, two Trusted boot images (one for each execution mode) are required to be
present in the Boot ROM.

The ARMv8-A architecture, when implemented with the TrustZone extensions, will always
boot into EL3.

The Trusted Boot ROM contains sensitive code that verifies and decrypts the next stage of
the boot. If an attacker were able to read and disassemble the ROM image, they could gain
valuable information that could be used to target an attack that circumvents the verification
mechanism. For example, timing information can be used to target a fault injection attack.

Arm recommends that the Trusted boot image within the Boot ROM is accessible only during
boot. Device designers should consider implementing a non-reversible mechanism which
prevents access by, for example, hiding the Trusted boot image using a sticky register bit
that is activated by the boot software. The initial code which supports warm boot is excluded
from this recommendation.

Arm recommends that when stored in external NVM, the Trusted Boot Firmware image
should be stored encrypted using an approved algorithm. This is to deter the acquisition of
the image by an attacker to inspect for vulnerabilities.

The Trusted Boot Firmware image can be encrypted using the HUK, or a HUK-derived key,
which would require a unique image for each device, or using a common static key, which
enables the same image to be used across a set of devices. Arm recommends that externally
held Firmware is authenticated using an approved algorithm.

Arm recommends that the key that decrypts Trusted boot firmware is protected from being
accessed or re-derived after boot to mitigate the threat of attacks revealing the plaintext of
Trusted Boot Firmware image. The key and its source material must either be made
inaccessible or accessible only by the Trusted world.

It is important that the key that is used to decrypt Trusted Boot Firmware is not available to
the system at a later point, not even for decrypting Trusted Runtime Firmware, because this
ensures that a software controlled decryption operation cannot reveal the plaintext Trusted
Boot Firmware image. It is recognized that the current generation of TBSA compliant devices
do not implement this.

The Trusted Boot Firmware code is responsible for verifying and, if successful, launching the
next stage boot, Trusted Runtime Firmware, which is held in off chip memory, typically flash
memory. This is a non-trivial operation, because portions of the image must be copied to
DRAM before authentication, which requires the clocks, pad logic, and the DRAM controller
to be configured correctly in advance. When loaded into DRAM, the image is optionally
decrypted before it is verified, and if and only if verification is successful, the image is
executed. Verification is based on public key cryptography, which uses a digital signature
scheme, and ARM recommends that decryption uses a different key to the one that is used
for Trusted Boot Firmware.

A boot status register can be implemented to indicate the boot state of each Trusted
processor. For example, the boot status register enables the application processor to check

TBSA security requirements

ARM DEN 0021D Copyright © 2012, 2016, 2018 ARM Limited or its affiliates. All rights reserved. 39
 Non-Confidential

if other Trusted processors are booted up correctly. The register can also be used as a
general boot status register.

R100_TBSA_BOOT If a boot status register is implemented, then it must be accessible only by the
Trusted world.

6.5.4 Stored configuration

Some aspects of the secure boot behavior, which are governed by the Trusted ROM, might
depend on stored configuration information. For example, in the case of a warm boot,
configuration information might be stored in Trusted registers that are immutable between
secure boot executions. This can be implemented using a sticky register bit to prevent
access to the data. The sticky bit is set by the secure boot code when the necessary
operations of a cold or warm boot have been performed, and reset by triggering a warm or
a cold boot.

In the case of a cold boot, the Trusted ROM behavior might be entirely fixed in the
implementation. However, it can also be influenced by additional configuration information
stored in fuses.

Fuse configuration information can be used for the following purposes:

• Selection of the boot device.

• Storage of the root public authentication key.

• Storage of a root key for boot image decryption.

• Storage of other boot specific parameters.

6.5.5 Assisted architecture

At each step in the boot chain, each stage must verify the next, and because the Trusted
Boot Firmware is encrypted, a decryption step is also needed. Verification of an image is
based on a cryptographic hash function and asymmetric cryptography, while decryption of
an image is based on symmetric cryptography. Because the underlying cryptographic
algorithms are CPU-intensive, the Assisted architecture implements hardware acceleration.

In an Assisted architecture, the symmetric key that is used to decrypt the Trusted Boot
Firmware is used only by the accelerator peripheral, and is not visible to software.

R110_TBSA_BOOT In an Assisted architecture the key used to decrypt the Trusted Boot Firmware image
shall be visible only to the acceleration peripheral.

6.6 Trusted timers

6.6.1 Trusted clock source

Trusted clock sources are needed to implement Trusted watchdog timers and Trusted time.
By definition, all system clock sources are classified as Trusted, and can only be configured
from the Trusted world.

In addition to this, a Trusted clock source must be robust against tampering that happens
outside of the control of the associated Trusted manager. Two protection strategies are
possible:

• Internal clock source: The clock source is an integrated autonomous oscillator within
the die and cannot be easily altered or stopped without deploying invasive
techniques.

• External clock source: The clock source is an external XTAL or clock module and
connects to the main SoC through an I/O pin. In this case, an attacker can easily
stop the clock or alter its frequency. If this is the case, then the main SoC must
implement monitoring hardware that can detect when the clock frequency is outside
its acceptable range.

R010_TBSA_TIME If the Trusted clock source is external, then monitoring hardware must be implemented
that checks the clock frequency is within acceptable bounds.

TBSA security requirements

40 Copyright © 2012, 2016, 2018, ARM Limited or its affiliates. All rights reserved. ARM DEN 0021D
 Non-Confidential

R020_TBSA_TIME If clock monitoring hardware is implemented, then it must expose a status register that
indicates whether the associated clock source is compromised. This register must be
readable only from the Trusted world.

To signal a clock frequency violation, it might also be useful to add a Trusted interrupt
to any Trusted clock monitoring hardware.

6.6.2 General trusted timer

Trusted timers are needed to provide time-based triggers to Trusted world services. A TBSA
system must support one or more Trusted timers.

R030_TBSA_TIME At least one Trusted timer must exist.

R040_TBSA_TIME A Trusted timer shall only be modified by a Trusted access. Examples of modifications
are the timer being refreshed, suspended, or reset.

R050_TBSA_TIME The clock source that drives a Trusted timer must be a Trusted clock source.

6.6.3 Watchdog

A TBSA system must support one or more Trusted watchdog timers.

Trusted watchdog timers are needed to protect against denial of service, for example where
secure services depend on the ROS scheduler. In such cases, if the Trusted world is not
entered before a pre-defined time limit, a reset is issued and the SoC is restarted.

It is desirable for a Trusted watchdog timer to have the ability to signal an interrupt in advance
of the reset, permitting some state save before a reboot.

R060_TBSA_TIME At least one Trusted watchdog timer must exist.

R070_TBSA_TIME After a system restart, trusted watchdog timers must be started automatically.

R080_TBSA_TIME A Trusted watchdog timer shall only be modified by a Trusted access. Examples of
modifications are the timer being refreshed, suspended, or reset.

ARM recommends that a clock speed of at least 1 Hz is used when the device is not in a
power saving cycle.

R090_TBSA_TIME Before needing a refresh, a Trusted watchdog timer must be capable of running for a time
period that is long enough for the Non-trusted re-flashing of early boot loader code.

R100_TBSA_TIME A Trusted watchdog timer must be able to trigger a Warm reset of the SoC, which is
similar to a cold boot, after a pre-defined period of time. This value can be fixed in
hardware or programmed by a Trusted access.

R110_TBSA_TIME A Trusted watchdog timer must implement a flag that indicates the occurrence of a
timeout event that causes a Warm reset, to distinguishes this from a powerup cold boot.

R120_TBSA_TIME The clock source driving a Trusted watchdog timer must be a Trusted clock source.

6.6.4 Trusted time

Many Trusted services, for example DRM stacks, rely on the availability of Trusted time.
Typically, Trusted time is implemented using an on-chip real-time counter that is
synchronized securely with a remote time server.

An ideal implementation of a Trusted real-time clock (TRTC) would consist of a continuously
powered counter driven by a continuous and accurate clock source, with Trusted time
programmable only from the Trusted world. However, devices that contain a removable
battery must deal with power outages.

A suitable solution for dealing with power outages can be realized by implementing a counter
together with a status flag that indicates whether a valid time has been loaded.

A TBSA system that deploys this solution implements Trusted time using a TRTC that
consists of a Trusted hardware timer that is associated with a status flag that indicates
whether the current time is valid, and receives a Trusted clock source. The valid flag is set
when the Trusted timer has been updated by a Trusted service and is cleared when power
is removed from the timer. ARM recommends that the Trusted timer and valid flag reside in
a power domain that remains on as much as possible.

TBSA security requirements

ARM DEN 0021D Copyright © 2012, 2016, 2018 ARM Limited or its affiliates. All rights reserved. 41
 Non-Confidential

When the Trusted time is lost due to a power outage, the response will depend on the target
specifications. For example, it might be acceptable to restrict specific Trusted services until
the TRTC has been updated by the appropriate Trusted service.

R130_TBSA_TIME A TRTC shall be configured only by a Trusted world access.

R140_TBSA_TIME All components of a TRTC shall be implemented within the same power domain.

R150_TBSA_TIME On initial power up, and following any other outage of power to the TRTC, the valid flag
of the TRTC shall be cleared to zero.

R160_TBSA_TIME The TRTC must be driven by a Trusted clock source.

6.7 Version counters

A compliant TBSA system must implement a core set of Trusted non-volatile counters, which
are required for version control of firmware and trusted data held in external storage. An
important property of these counters is that it must not be possible to roll them back, to
prevent replay attacks.

The following counters are mandatory:

• A Trusted firmware version counter.

• A Non-trusted firmware version counter.

Ideally, a SoC implementation implements version counters using on-chip multiple time
programmable (MTP) storage, for example floating gate (EE ROM) or phase transition
technology. While this is possible for most smart card designs, it is recognized that an MTP
based approach is currently not economically scalable for larger die sizes because the
process overhead is very costly compared to a standard bulk CMOS process. By contrast,
one-time programmable (OTP) storage, which is based on anti-fuse technology, is widely
available and cost effective.

A non-volatile counter can be implemented by mapping each possible value that is greater
than one onto a separate fuse bit. Each counter increment is achieved by programming a
further bit. Because one bit is required for each value, this approach has the downside of
being very costly for large counters, for example a 10 bit counter requires 1024 bits of
storage. For this reason, practical limitations must be imposed on the maximum count values
for fuse-based implementations.

The size requirement for a version counter depends on the target specification. For a TBSA
system, the minimum requirement is as follows:

R010_TBSA_COUNT An on-chip non-volatile Trusted firmware version counter implementation must provide a
counter range of 0 to 63.

R020_TBSA_COUNT An on-chip non-volatile Non-trusted firmware version counter implementation must
provide a counter range of 0 to 255.

All on-chip non-volatile version counters must also meet the following requirements:

R030_TBSA_COUNT It must only be possible to increment a version counter through a Trusted access.

R040_TBSA_COUNT It must only be possible to increment a version counter; it must not be possible to
decrement it.

R050_TBSA_COUNT When a version counter reaches its maximum value, it must not roll over, and no further
changes must be possible.

R060_TBSA_COUNT A version counter must be non-volatile, and the stored value must survive a power down
period up to the lifetime of the device.

Further Trusted version counters are also needed to support version control of other platform
software, for example Trusted services, a hypervisor, or the VMs running on top of the TBSA
system, as well as individual applications. A suitable implementation might employ one
counter per software instance, or group together a list of version numbers inside a database
file, which is itself versioned using a single counter.

TBSA security requirements

42 Copyright © 2012, 2016, 2018, ARM Limited or its affiliates. All rights reserved. ARM DEN 0021D
 Non-Confidential

Whatever the implementation, the software can be updated many times over the lifetime of
the product, so the associated counters must be able to support a range that is likely to be
too large to implement ecomonically using OTP technology.

In these cases, the following alternative strategies are possible:

• Using an external secure element that supports an MTP counter that is
cryptographically paired with the SoC, for example eMMC replay protected memory.

• Embedding an MTP storage die within the same package.

• Using a battery backed hardware up counter.

• Using a hardware up counter in an always-on domain on a remote trusted server
with a Trusted service mechanism that is able to restore the counter value after a
cold boot if power is removed. In this case, it is acceptable to limit availability of
services until the version count is restored.

In the latter two cases, a Trusted service is responsible for cryptographically pairing the
external reference, and for appropriately updating an internal hardware counter.

ARM recommends that at least one such counter is implemented, supporting 232 values.

6.8 Entropy source

Many cryptographic protocols depend on challenge response mechanisms that utilize truly
random numbers which makes an embedded true random number generator (TRNG) an
important element of a TBSA system.

Where platform requirements demand a TRNG there is normally an associated requirement
that specifies the quality of the source, or more commonly, a set of tests that must be passed
by a compliant source.

The quality of a random source is normally described in terms of entropy. In information
theory, entropy is measured on a logarithmic scale in the range [0,1]. For a given string of
bits provided by a TRNG, the maximum entropy of 1 is achieved if all bit combinations are
equally probable.

A formal treatment of entropy can be found in [5.].

A hardware realization of a TRNG consists of two main components: an entropy source and
a digital post processing block, as illustrated in Figure 7.

Digital post processing

FIFO

FIFO

FIFO

Entropy
source

Filter Compress Expand

Figure 7: Entropy source top level

The entropy (noise) source incorporates the non-deterministic, entropy-providing circuitry
that provides the uncertainty associated with the digital output by the entropy source.

Most techniques for constructing an on-chip entropy source in some way exploit thermal
noise on the die.

TBSA security requirements

ARM DEN 0021D Copyright © 2012, 2016, 2018 ARM Limited or its affiliates. All rights reserved. 43
 Non-Confidential

The digital post-processing block is responsible for collecting entropy from the analog source
through sampling, for monitoring the quality of the source, and for filtering it appropriately, to
ensure a high level of gathered entropy. For example, repeated periodic sequences are
clearly predictable and must be rejected. This is important because fault injection techniques
can be used to induce predictable behavior into a TRNG and attack the protocols that make
use of it.

For any entropy source design, the quality of the entropy is reduced as the sample rate
increases. Any design has a maximum safe ceiling for the sample rate, and this sample rate
might not be high enough to meet the overall system requirements.

Although it is possible to design a filtering scheme that removes common and predictable
patterns that can occur in an entropy source, other, more complex patterns might persist,
which degrades the available entropy. The extent of any such degradation depends on the
quality of the source, and in some cases additional digital processing might be required to
compensate for it.

A common compensation technique utilizes a cryptographic hash function to compress a
large bit string of lower entropy into a smaller bit string of higher entropy. However, this
clearly comes at the expense of available bandwidth.

To counter this, the digital post processing stage can expand the entropy source to provide
a greater number of bits per second by using the filtered or compressed source to seed a
cryptographically strong pseudo random sequence generator with a very large period.

A definitive treatment of these steps can be found in [5.].

R010_TBSA_ENTROPY The entropy source must be an integrated hardware block.

Although some or all of the digital post processing can be performed in software by a Trusted
Service, ARM recommends a full hardware design.

It is not possible to construct a TRNG yielding exactly one bit of entropy per output bit. If the
assessed entropy of each sample is variable, the TRNG must provide an assessed entropy
value with each sample.

R020_TBSA_ENTROPY The TRNG shall produce samples of known entropy.

There are many possible choices for measuring entropy; following NIST SP 800-90B [5.]
Arm recommends the use of a conservative measure called min-entropy. Min-entropy is
used as a worst-case measure of the uncertainty associated with observations of X: If X has
min-entropy m, then the probability of observing any particular value is no greater than 2-m.

A number of test suites exist to ensure the quality of a TRNG source, it is recommended that
the TRNG design passes the following test suites:

Table 3: Entropy test suites

Name Details

NIST 800-22 A Statistical Test Suite for Random and Pseudorandom Number
Generators for Cryptographic Applications, April 2010

http://csrc.nist.gov/groups/ST/toolkit/rng/documentation_software.html

DieHard http://www.stat.fsu.edu/pub/diehard/

DieHarder http://www.phy.duke.edu/~rgb/General/dieharder.php

ENT http://www.fourmilab.ch/random/

R030_TBSA_ENTROPY The TRNG must pass the NIST 800-22 [6.] test suite.

R040_TBSA_ENTROPY On production parts, it must not be possible to monitor the analog entropy source
using an external pin.

TBSA security requirements

44 Copyright © 2012, 2016, 2018, ARM Limited or its affiliates. All rights reserved. ARM DEN 0021D
 Non-Confidential

To ease the testing of the TRNG, many certification regimes require direct access to the
analog entropy source so that it can be monitored before it passes through the digital post
processing stage. To meet these requirements, the analog output must be made available
on an external device pin. In addition, it must be possible to disable this output after
certification so that it cannot be monitored by an attacker on a production part. This can be
achieved by gating the output with a fuse bit, which when blown, disables the output.

The rate at which the TRNG is required to produce entropy varies according to the target
specifications.

R050_TBSA_ENTROPY Where independent output ports are required, the TRNG must guarantee that they are
statistically independent.

6.9 Cryptographic acceleration

In the Assisted architecture, the hardware offers acceleration of some of the cryptographic
operations to meet the performance requirements of the system. This in turn permits
hardware management of the cryptographic keys, which are the most valuable assets in the
system. By managing the keys in hardware, the threat space is drastically reduced.

If large amounts of data must be processed, cryptographic algorithms are often accelerated,
which makes symmetric and hashing algorithms the most commonly accelerated functions.
Asymmetric algorithms are complex, which makes full accelerators also complex and quite
often large. A common trade-off is to accelerate only the most computing-intensive parts, for
example big integer modulo arithmetic.

Figure 8 shows an example architecture for symmetric algorithm acceleration and an
associated Key Store.

TDES

AES

SHA-256 / HMAC

Secure

Non-Secure

Secure

Non-Secure

Secure

Non-Secure

Key store

Secure

In
te

rc
o

n
n

e
ct

DMA

DMA

DMA

Peripheral interfaces Accelerators

OTP

Figure 8: Example symmetric crypto acceleration architecture

Each of the accelerators and the Key Store are peripherals within a TBSA SoC and must
meet the associated requirements.

The Key Store contains entries of keys and their associated metadata. The keys might have
been injected through the secure peripheral interface, from Trusted software, or directly from

TBSA security requirements

ARM DEN 0021D Copyright © 2012, 2016, 2018 ARM Limited or its affiliates. All rights reserved. 45
 Non-Confidential

OTP. The metadata associated with a key can include policy restrictions by indicating which
accelerator engines can access the key, exactly what operation is ,permitted and which
worlds the input and outputs must be in. By storing keys in a Key Store, the period of time
that the keys are directly readable by software can be significantly reduced.

The accelerators are expected to be used by both the Trusted and Non-Trusted worlds, and
have both Secure and Non-secure interfaces. These interfaces permit software to request
cryptographic operations on data that is stored in memory, and either supply a key directly,
or index a key and its metadata in the Key Store. When programmed, the accelerator reads
data using its DMA interface, performs the operation, and writes the resultant data.

More advanced versions of this architecture might support key derivation functions where
the resultant data from a decryption is not written to memory using DMA, but is instead
placed into the Key Store.

6.10 Debug

As SoCs have become more and more complex, the mechanisms for debugging the
hardware and software have increased in complexity too. The fundamental principles of
debugging, which require access to the system state and system information, are in direct
conflict with the principles of security, which require the restriction of access to assets. This
section brings together the high-level security requirements for all debug mechanisms in the
SoC.

ARMv8 supports the following debug modes:

Self-hosted debug - The processor core itself hosts a debugger, and developer software
and a debug kernel run on the same processor core.

For more information, see ARMv8-A ARM [2.], Section D2.

External debug - The debugger is external to the processor core. The debugging might be
either on-chip, for example in a second processor core, or off-chip, for example a JTAG
debugger. External debug is particularly useful for:

• Hardware bring-up. That is, debugging during development when a system is first
powered up and not all of the software functionality is available.

• Processor cores that are deeply embedded inside systems.

For more information, see ARMv8-A ARM [2], Part H.

The ARMv8 architecture also includes definitions for invasive and non-invasive debug. From
a security perspective there is no need to distinguish between these, because non-invasive
debug would leak any assets accessed by that processor core.

6.10.1 Protection mechanisms

Debug mechanisms give an external entity access to the system assets, so there must be
protection mechanisms in place to ensure that the external entity is permitted access to those
assets. These shall be referred to as Debug Protection Mechanisms (DPMs).

R010_TBSA_DEBUG All debug functionality shall be protected by a DPM such that only an authorized external
entity shall access the debug functionality.

Note that there might be scenarios where all external entities can access the
debug functionality, for example Android application debugging.

R020_TBSA_DEBUG A DPM mechanism shall be implemented either in pure hardware or in software running
at a higher level of privilege.

The system assets are grouped by the worlds they are accessible by, i.e. Non-Trusted and
Trusted, and the execution space, i.e. Privileged and User.

R030_TBSA_DEBUG There shall be a DPM to permit access to all assets (Trusted Privileged).

R040_TBSA_DEBUG There shall be a DPM to permit access to all Non-trusted world assets (Non-Trusted
Privileged). This mechanism shall not permit access to Trusted world assets.

TBSA security requirements

46 Copyright © 2012, 2016, 2018, ARM Limited or its affiliates. All rights reserved. ARM DEN 0021D
 Non-Confidential

R050_TBSA_DEBUG If a DPM to permit access to only Trusted User space assets exists, then this mechanism
shall not permit access to Trusted Privileged assets. (It is expected to be used in
conjunction with the Non-Trusted Privileged debug protection mechanism.)

6.10.1.1 DPM overlap

This leads to an overlap of the worlds or spaces that each DPM unlocks, as shown in Figure
9 and Table 4.

Non-trusted world
User space

(NTU)

EL0

Non-trusted world
Privileged space

(NTP)

EL1 & EL2

Trusted world
User space

(TU)

S-EL0

DPM_TU

DPM_TP

DPM_NTU

DPM_NTP
Trusted world

Privileged space
(TP)

S-EL1 & EL3

Figure 9: DPM overlap

Table 4: DPM overlap

Master DPM Unlock opens Notes

DPM_TP Trusted world Privileged space

Trusted world User space

Non-trusted world Privileged space

Non-trusted world User space

DPM_TU Trusted world User space In ARMv8-A
implementations , NTP
must be unlocked before
TP can unlock TU.

DPM_NTP Non-trusted world Privileged space

Non-trusted world User space

DPM_NTU Non-trusted world User space

TBSA security requirements

ARM DEN 0021D Copyright © 2012, 2016, 2018 ARM Limited or its affiliates. All rights reserved. 47
 Non-Confidential

6.10.1.2 DPM states

Each DPM shall have three or four states that reflect access to the debug mechanisms,
these shall be controlled by fuses and the unlock mechanism. This is captured in the
following requirements:

R060_TBSA_DEBUG All DPMs shall implement the following fuse controlled states:

• Default - Debug is permitted.

• Closed - Only an unlock operation is permitted (to transition to Open).

These shall be determined by a boolean value (dpm_enable) that is stored in a Public-
Open-Bitwise fuse or derived from the Device Lifecycle state stored in fuses, see Figure
10.

R070_TBSA_DEBUG DPMs controlling Trusted world functionality shall also have another fuse controlled state:

• Locked - The unlock operation is disabled (no state transition possible).

This shall be determined by a boolean value (dpm_lock) that is stored in a Public-Open-
Bitwise fuse or derived from the Device Lifecycle state stored in fuses, see Figure 10.

R080_TBSA_DEBUG All DPMs shall have the following state:

• Open - Debug is permitted.

The Open state can only be entered from the Closed state after a successful unlock
operation.

Note: The fuses and unlock mechanisms for each DPM do not have to be unique. For example,
one fuse can be used as the dpm_enable for all the DPMs and one unlock mechanism can
unlock multiple DPMs as described in 6.10.1.3.2.

Table 5: DPM states

DPM state Debug access Transition(s) Notes

Default Yes None except via Reset

Closed No Open – after a successful
unlock operation

Open Yes None except via Reset

Locked No None Only required for
Trusted world.

TBSA security requirements

48 Copyright © 2012, 2016, 2018, ARM Limited or its affiliates. All rights reserved. ARM DEN 0021D
 Non-Confidential

Reset

Default ClosedOpen

Locked dpm_lock=1

dpm_lock=0
&

dpm_enable=0

dpm_lock=0
&

dpm_enable=1

Unlock=True

No debug access
No unlock

No debug access
Unlock available

Debug access
Unlock N/A

Debug access
Unlock N/A

Trusted world DPMs only

Figure 10: DPM states

Note: The power domain and reset of the DPM state must be carefully considered to ensure that
all operations of the SoC can be debugged. For example, debugging of the Secure Boot
ROM during cold and warm boots might require the state to be stored in a permanently
powered domain with an independent reset.

The DPMs are required to protect the system assets which leads to the following
requirement:

R090_TBSA_DEBUG All Trusted world DPMs shall be enabled, using the respective dpm_enable fuses, or
locked, using the respective dpm_lock fuses, before any Trusted world assets are
provisioned to the system.

6.10.1.3 Unlock operations

To perform the state transition from "Closed" to "Open" an unlock operation must be
performed by the debug protection mechanism to ensure that the external entity has access
to a token that authorizes access to the associated assets. The token might take the form of
a simple password or a cryptographically signed certificate. The choice between these often
depends on the trade-off between complexity on the device and complexity on a token
management server. For example, it is more complicated to implement signature checking
on a device than to compare passwords, but managing a database of unique passwords is
more complicated than one or two private keys on a server.

To prevent the leak of an unlock token that affects multiple devices:

R100_TBSA_DEBUG Unlock tokens shall be unique for each device.

To ensure that the external entity knows which unlock token to use:

R110_TBSA_DEBUG The device shall store a unique ID in Public-Lockable fuses.

6.10.1.3.1 Unlock token - password

Password-based unlock operations are implemented as a simple comparison. However, it is
not advisable to store a copy of the password on the device itself. Instead, a cryptographic
hash of the password that is created using a one-way function (OWF) shall be stored. When
the password token is injected via an interface from the external entity, it is passed through
the same OWF and compared with the stored hash.

R120_TBSA_DEBUG The device shall not store a copy of the password unlock token, instead it shall store a
cryptographic hash of the token in Lockable-Bulk fuses.

R130_TBSA_DEBUG On receipt of a password unlock token, it shall be passed through a cryptographic hash
and the resultant hash shall be compared with the stored hash.

TBSA security requirements

ARM DEN 0021D Copyright © 2012, 2016, 2018 ARM Limited or its affiliates. All rights reserved. 49
 Non-Confidential

Because the comparison is simple, it must be protected from Brute Force attacks by making
the password sufficiently large:

R140_TBSA_DEBUG A password unlock token shall be at least 128bits in length.

To ensure that different external entities can be given different tokens for a device,
depending on their ownership of assets in the system:

R150_TBSA_DEBUG Each debug protection mechanism shall use a unique password unlock token.

6.10.1.3.2 Unlock token - private key

Private key-based unlock operations require the injection of a certificate that has been
cryptographically signed by a private key.

To meet R100_TBSA_DEBUG:

R160_TBSA_DEBUG The unique ID (see REQ R110_TBSA_DEBUG) shall be included in a certificate unlock
token.

The debug protection mechanism shall check the signature of the certificate:

R170_TBSA_DEBUG An unlock operation using a certificate unlock token shall use an approved asymmetric
algorithm to check the certificate signature.

R180_TBSA_DEBUG An unlock operation using a certificate unlock token shall have access to an asymmetric
public key stored on the device. The asymmetric public key used to authenticate the
certificate unlock token shall either be immutably stored on the device or have been
loaded as a certificate during secure boot and authenticated by a chain of certificates that
begins with the ROTPK.

R190_TBSA_DEBUG A certificate unlock token shall indicate which DPM(s) it is able to unlock using an
authenticated field.

R200_TBSA_DEBUG A loadable public key for certificate unlock token authentication shall include an
authenticated field indicating which DPM(s) it is authorized to unlock.

R210_TBSA_DEBUG A certificate unlock token shall only unlock a DPM that its public key is authorized to
unlock.

For more details on this functionality, see TBBR [3.].

6.10.1.4 Other debug functionality

Complex SoCs often include extra debug functionality beyond the main processor. Examples
of this are initiators on the interconnect, which are controlled directly from an external debug
interface, and system trace modules. Care must be taken to make sure that they are
controlled by the correct DPM. They must be evaluated based on their access to assets that
belong to each world, and assigned the corresponding DPM.

6.10.1.5 ARM debug implementation

The ARM processor and CoreSight IPs include an Authentication Interface comprising of the
following signals:

Table 6: ARM authentication interface

Signal Name Action

DBGEN Debug Enable Enables invasive & non-invasive debug
of Non-secure state.

Debug components are disabled but
accessible.

NIDEN Non-invasive Debug Enable Enables non-invasive debug of Non-
secure state.

TBSA security requirements

50 Copyright © 2012, 2016, 2018, ARM Limited or its affiliates. All rights reserved. ARM DEN 0021D
 Non-Confidential

SPIDEN Secure Privileged Invasive
Debug Enable

When asserted with DBGEN enables
invasive & non-invasive debug of
Secure state.

SPNIDEN Secure Privileged Non-
Invasive Debug Enable

When asserted with NIDEN, enables
non-invasive debug of Secure state.

The CoreSight IP also has the following input:

Table 7: DEVICEEN

Signal Name Action

DEVICEEN Device Debug Enable Enables the external debug tool
connection to the device, and drives the
DBGSWENABLE input to the CoreSight
components and Cortex-A series
processor.

The ARM processor also contains an EL2 register that controls the debug functionality for
Trusted User space:

Table 8: SUNIDEN

Signal Name Action

SUNIDEN Secure Unprivileged Non-
Invasive Debug Enable

When asserted with DBGEN or NIDEN,
SUNIDEN enables debugging of
Trusted User Apps (but not of trusted
privilege kernels).

This is a register bit (not a wire), that is
controlled by the Trusted Kernel.

These signals can be mapped to the debug protection mechanisms as shown in Table 9.

Table 9: DPM mapping to authentication interface

DPM Mode Signals

DPM_TP Secure non-invasive debug

Enabled

(DBGEN OR NIDEN) AND

(SPIDEN OR SPNIDEN)

DPM_TP Secure invasive debug enabled (DBGEN AND SPIDEN)

DPM_NTP Non-secure non-invasive debug enabled (DBGEN OR NIDEN)

DPM_NTP Non-secure invasive debug enabled DBGEN

DPM_TU Secure User Space invasive debug
enabled

(DBGEN AND SUNIDEN)

DPM_TU Secure User Space non-invasive debug
enabled

(NIDEN AND SUNIDEN)

TBSA security requirements

ARM DEN 0021D Copyright © 2012, 2016, 2018 ARM Limited or its affiliates. All rights reserved. 51
 Non-Confidential

Note: The debug functionality that is controlled by DPM_NTU has no registers or signals
associated with it because it is implemented purely using self-hosted debug.

6.10.1.6 Baseline architecture

In the Baseline architecture, the DPMs are all implemented in software, including the
unlocking of any external debug interfaces. There are two commonly used implementations:

• Space is reserved in the flash memory map for the unlock token and the unlock
operation is performed by the secure boot process.

• The external debug interface receives an unlock token and requests processing by
the Trusted world.

In both cases, the software must read the relevant fuses to understand the state of the DPM,
and have target registers that unlock the relevant debug features of the device.

R220_TBSA_DEBUG The device must implement registers, that, when written to by software, unlock the
associated hardware debug features. These registers shall be restricted so they can only
be accessed by the world/space of the DPM.

Mapping these registers to the ARM Authentication Interface requires a register that is
restricted to only EL3 and S-EL1 with at least one bit per signal.

6.10.1.7 Assisted architecture

In the Assisted architecture, the DPM_TP and DPM_NTP are implemented in discrete
hardware connected to the external debug interface. The unlock tokens are injected via the
external debug interface, and verified by the hardware that asserts the required signals to
the rest of the device.

R230_TBSA_DEBUG The DPM_TP and DPM_NTP shall be implemented in pure hardware.

6.11 External interface peripherals

SoCs contain many functions of the final consumer device, but they will often need to talk to
other electronic peripherals to receive and transmit data. Examples of these External
Interface Peripherals (EIPs) include remote control infrared receivers, displays, and, more
recently, Near Field Communication (NFC) antennas and Secure Element (SE) chips. Some
interfaces are simply connections via SPI or UART whereas others can embed the
controllers within the SoC itself.

Often these interfaces are used to receive Trusted user data, which might take many forms:

• Via a keyboard/mouse.

• Via a touch screen.

• Biometric data via:

o A camera.

o A microphone.

o A specialized sensor, for example a fingerprint sensor.

• Token data from an NFC device.

Consideration must be given to the assets that are transferred across these interfaces:

• Which on-chip world do the assets belong to?

• Are the assets entering or leaving the device?

• Are the assets in the clear or encrypted?

• Are the assets authenticated?

• If the assets are encrypted or authenticated, how was the key exchanged?

• What is the impact if the assets are modified?

TBSA security requirements

52 Copyright © 2012, 2016, 2018, ARM Limited or its affiliates. All rights reserved. ARM DEN 0021D
 Non-Confidential

• Can commands be received from an external device?

Often the easiest approach is to let the Non-trusted world manage the interface and the
Trusted world supply the data to be transferred. This is acceptable when the Non-trusted
world is no more of a security risk than the external connection. For example, non-
authenticated encrypted content can be sent via the Non-trusted world, because changing
the encrypted content does not compromise the security of any assets. However, if the
assets being transferred include user data and are not authenticated, the Non-trusted world
can perform a man-in-the-middle attack in the same way as an attacker with access to the
external interface.

It follows that if there are any secret values that are not encrypted, the Non-trusted world
must not be able to access them and the external interface must be correspondingly
protected.

R010_TBSA_EIP If an EIP is used to send or receive clear or unauthenticated Trusted world assets,
it is implementing a Trusted operation and shall meet the requirements of a Trusted
peripheral.

R020_TBSA_EIP Where an EIP can receive commands from an external device, e.g. PCIe, then the
system shall enforce a policy to check that those commands will not breach the
security of the TBSA device.

This does not only apply to the commands that can affect the Trusted world: unrestricted
access to the Non-trusted world by an external device is still a security risk.

Where a specialized biometric input device is connected to an EIP, for example a fingerprint
scanner, a device supporting link encryption must be chosen where possible.

R030_TBSA_EIP If a biometric user input device supports encryption, it must be cryptographically
paired with a trusted service. This means that an authenticated encrypted tunnel
can be created to prevent an attacker from monitoring or modifying data in transit
to the main SoC.

R040_TBSA_EIP Any sensitive user data that is stored must be stored in Secure storage.

R050_TBSA_EIP In the specific case of camera input for UV retina imaging, the UV LED activation
shall be under the control of the Trusted world.

6.11.1 Display

When a display is used to present sensitive or private information, it must be protected from
the Non-trusted world. In particular, it must not be possible for a rogue application that runs
in the Non-trusted world to access a display buffer that contains sensitive information. A
TBSA system is therefore required to provide a Trusted display mechanism.

Data that is stored in memory, and is to be rendered by the device display, is referred to as
display data. This definition includes full display frames that occupy the entire display and
smaller sub-regions.

Trusted display data is defined as display data that is stored in Trusted memory, and Non-
trusted display data is display data that is stored in Non-trusted memory.

A Trusted display can display a mixture of Trusted and Non-trusted display data, with the
following qualifications:

R060_TBSA_EIP The rendering of Trusted display data must be entirely under the control of the
Trusted world, it must not be possible to control the rendering of Trusted display
data from the Non-trusted world.

R070_TBSA_EIP If Trusted display data is being displayed, it must not be possible to fully or partially
obscure the image using an overlay that originates from the Non-trusted world.

In a compositor-based system, this could be achieved simply by ensuring that the Trusted
display data is always on top. More generally, it is achieved by ensuring that Trusted display
planes always have a higher priority or exist in a higher layer than any Non-trusted display
plane.

R080_TBSA_EIP If the display subsystem is capable of handling both Trusted and Non-Trusted
display data, then at least two display layers must be supported.

TBSA security requirements

ARM DEN 0021D Copyright © 2012, 2016, 2018 ARM Limited or its affiliates. All rights reserved. 53
 Non-Confidential

6.12 DRAM protection

Many SoC designs that integrate an ARM processor also rely on external DRAM to store
assets. However, this external memory is vulnerable to probing attacks that can be used to
extract or modify data. An attacker can use these techniques to:

• Recover content or other sensitive assets.

• Subvert the behavior of the device to extract further assets, or to use the device for
illegitimate purposes.

Exploitable assets that might be held in DRAM are:

• The Rich OS and associated apps.

• User data.

• Multimedia content.

• Trusted code and data, for example in a TEE.

To mitigate these risks, encryption can be applied to an asset before it is stored in DRAM,
after which an attacker is unable to recover the plain text. With the addition of authentication,
external modifications of DRAM data can also be detected, enabling and execution to be
halted to prevent an attacker from exploiting any such modifications.

The cryptographic algorithms that are needed and their strength depend on the assets and
the target requirements. For multimedia content, the encryption strength varies according to
the resolution (SD, HD, 4K) and the release window, and authentication is not required.
However, for TEE based trusted execution, strong encryption and authentication are needed.

Note: In systems that implement suspension to RAM and power down the main die, the DRAM is
particularly vulnerable, because the SoC pins to the DRAM are in a high impedance state,
which makes it easy to probe the interface and take direct control of the DRAM.

A TBSA system with assets that require DRAM protection implements embedded
cryptographic hardware within the memory system that is capable of protecting those assets
within the memory system. ARM recommends that the mechanism is transparent to the
processor or bus initiator, encrypt the assets as they are written to DRAM, and decrypt them
as they are read back, while performing authentication as required.

6.12.1 Design considerations

There are two symmetric cipher types on which a DRAM encryption system can be founded:

• Block ciphers.

• Stream ciphers.

A block cipher works on a block size, for example 64 or 128 bits, and transforms a block of
plain text into a block of cipher text, or conversely, based on a secret key. A drawback of this
approach is that it is not possible to process only a portion of the block, and writing a single
byte, for example, requires reading and decrypting a whole block, modifying the byte, and
encrypting and writing the block back to DRAM. This means that a read modify write buffer
must be implemented, which has an impact on the performance of sub-block sized accesses,
particularly writes. Alternatively, the block cipher can be used in conjunction with a cache,
where the cache line size is a multiple of the block size.

A stream cipher is based on the one-time pad. It generates a key stream of the same length
as the plain text to be encrypted, and combines it with the plain text to form the cipher text.
To be considered secure, the key stream must never repeat, so, once a key has been used,
it is not permissible to re-use a sequence of key bytes with different data bytes. Typically,
the data and key material are combined using a bitwise XOR function, in which case
encryption and decryption are the same operation. The key is the same size as the data,
and therefore very large, so it is generated using a smaller key in conjunction with a block
cipher, which is commonly configured in counter mode, where incrementing count values
are successively encrypted, and the output becomes the key stream. An advantage of the
stream cipher approach is that there is no fixed block size, so for example a single byte write
does not need a read modify write buffer or cache, as would be the case for the block cipher.

TBSA security requirements

54 Copyright © 2012, 2016, 2018, ARM Limited or its affiliates. All rights reserved. ARM DEN 0021D
 Non-Confidential

However, To re-create the correct portion of the key stream for a decryption operation
following a read, the counter value must be known. This is only possible if the counter value
is stored alongside the data in DRAM, which complicates the implementation and increases
the memory footprint.

If authentication is also required, data written to DRAM must be tagged with an authentication
code, which increases the memory footprint.

The addition of such cryptographic hardware to the memory system carries performance and
die size penalties that increase with the cryptographic strength.

For example, a block cipher is typically composed of a number of rounds N, with each cipher
operation taking N cycles. When a high throughput is required, it must be pipelined, which
multiplies the area by up to N times and adds up to N cycles of latency. Adding the cipher at
the DRAM interface represents the worst case, because it places the hardware at a high
performance interface through which all of the DRAM traffic passes. Often, it is not feasible
to place a cipher of high cryptographic strength at this point in the system, particularly for
very high clock frequencies, because sub round pipelining is required, which leads to very
large implementation sizes and high latency.

A better approach is to adopt a tiered implementation that limits high-strength cryptographic
protection to the memory traffic that requires it. A lower strength protection can be added at
the DRAM interface if required.

6.12.2 Algorithmic strength

DRAM encryption and authentication is provided through performance-optimized
cryptographic hardware blocks, each of which receives a symmetric key.

The cryptographic strength of a given keyed algorithm is defined as the number of key values
that an attacker must try before discovering the correct key, taking into account any known
short cuts that are caused by weaknesses in the algorithm. This value is normally defined in
bits, so if the best-known attack requires an exhaustive search through 1024 keys, for
example, the strength of the algorithm is said to be 10 bits.

Note: Traditionally the term encryption is reserved for encryption algorithms of high cryptographic
strength, and the terms scrambling and obfuscation are used to refer to algorithms of lower
strength.

The required level of cryptographic protection depends on the target requirements and is not
specified here. However, the following tiers are recommended:

Tier 1:For example: SD content, Non-Trusted world assets

Standard definition purchased multimedia content stored in DRAM, due to its low resolution,
is considered a low value asset that does not require any further protection. It can be stored
in DRAM in its plain text form.

Tier 2: For example: HD content

High definition purchased multimedia content stored in DRAM is considered a medium value
asset that requires encryption of medium strength. A key strength of at least 40 bits is
recommended.

Tier 3: For example: UHD content

Ultra-high definition purchased multimedia content stored in DRAM is considered a medium-
high value asset that requires encryption of medium-high strength. A key strength of at least
80 bits is recommended.

Tier 4: For example: Trusted world assets

Within the Trusted world, any assets stored in external DRAM require encryption and
authentication of high strength. A key strength of at least 128 bits is recommended.

TBSA security requirements

ARM DEN 0021D Copyright © 2012, 2016, 2018 ARM Limited or its affiliates. All rights reserved. 55
 Non-Confidential

6.12.3 Key management

R010_TBSA_DRAM A key provided to a DRAM encryption or authentication block must be unique to the SoC.

This rule prevents using a successful key recovery attack to compromise other devices.

R020_TBSA_DRAM Each algorithm and key strength that is implemented must have a unique a key.

This rule prevents using a key that is recovered from a weaker algorithm to compromise a
stronger algorithm.

Suitable unique keys can be stored in on-chip fuses, or might alternatively be derived from
a key that is common across many devices that use a unique SoC ID. A key of this type is
classed as a symmetric, static, unique, trusted hardware key.

R030_TBSA_DRAM If a key is stored in on-chip fuses or derived from a key that is common across many
devices that use a unique SoC ID, it shall meet the requirements of a symmetric, static,
unique, Trusted hardware key.

Unique ephemeral keys can also be sourced from a TRNG at boot time. This method is
preferred because it gives better protection by generating keys that are different for every
boot cycle.

R040_TBSA_DRAM A TRNG sourced key shall have an entropy, measured in bits, equal to or greater than
the key strength demanded by the target algorithm.

If the TRNG sourced bits have full entropy, as defined in [5.], there will be one TRNG source
bit per key bit. However, if the TRNG sourced bits have lower entropy, additional bits must
be sourced to reach or exceed the target key strength.

R050_TBSA_DRAM If an ephemeral key is used, it shall meet the requirements for a symmetric, ephemeral,
unique, Trusted world key.

For example, if the TRNG delivers bit strings with an entropy of 0.5 bits per bit, then a 40 bit
key strength will require 80 bits to be sourced from the TRNG.

An ephemeral TRNG based approach also means that a Trusted save and restore
mechanism is needed for the keys if the system enters a suspend to RAM state where the
main die is powered down.

R060_TBSA_DRAM If suspend to RAM is implemented and the main die is powered down such that the DRAM
protection keys needs to saved and restored, these operations shall be handled by a
Trusted service and the keys stored in Trusted non-volatile storage.

6.12.4 Configuration

Depending on the assets under protection, different cryptographic modules, of differing
strength, can be integrated in various positions within the on-chip interconnect hierarchy
targeting a DRAM interface. In addition, the DRAM space can be divided into protected and
non-protected regions, where each protected region is associated with an asset class, and
therefore an algorithm and key strength.

In any case, whether a particular cryptographic functionality is applied is based on the target
address of an access within the physical memory map. Any potential method to change the
memory map from the Non-trusted world could be exploited to bypass the DRAM protection
and cause clear text to be written. Such modification must be controlled by restricting such
changes to the Trusted world.

R070_TBSA_DRAM If the mapping of cryptographic hardware into the memory system is configurable, then it
must only be possible to perform the configuration from the Trusted world.

Similarly, other interconnect changes, up or down stream of a cryptographic module, that
modify the memory map, must only be possible from the Trusted world, as already detailed
in the Infrastructure section of this document.

R080_TBSA_DRAM The activation and deactivation of encryption and authentication shall only be possible
from the Trusted world.

R090_TBSA_DRAM If a memory region is assigned as protected, and configured for encryption, then there
shall not exist any alias in the memory system, such that the same region can be
accessed directly, bypassing the protection.

TBSA security requirements

56 Copyright © 2012, 2016, 2018, ARM Limited or its affiliates. All rights reserved. ARM DEN 0021D
 Non-Confidential

These rules prevent the collection of cipher text that could aid cryptanalysis, and is a
particular problem for algorithms of lower cryptographic strengths.

Device lifecycle

ARM DEN 0021D Copyright © 2012, 2016, 2018 ARM Limited or its affiliates. All rights reserved. 57
 Non-Confidential

7 Device lifecycle

During its creation and use, a device will progress through a series of non-reversible states
as shown in Figure 11: Device lifecycle. These states indicate what assets are present in the
device and what functionality is available or has been disabled. Progression through the
states is usually controlled by blowing fuses.

Chip Manufacturing

Test &
Manufacturing

Silicon Vendor
Configuration

OEM Production
Configuration

Device
Manufacturing

Deployed

Returned

In-field
Configuration

Return
De-Personalization

SI
LI

C
O

N
 V

EN
D

O
R

O
EM

O
EM

 /
 S

IL
IC

O
N

V

EN
D

O
R

D
EP

LO
YE

D

Development
Personalization

OEM Development
Configuration

Development

Production
Personalization

Personalization
may be done at
Silicon Vendor,
OEM or both

Figure 11: Device lifecycle

The device lifecycle begins in the “Chip Manufacturing” state, which is completely open and
contains only the assets which are fixed in the hardware. At this point, the device must be
fully testable to permit checking for manufacturing defects. The device is then configured in
multiple steps by the Silicon Vendor and the purchasing OEM through the programming of
fuses. Configuration includes personalization, which is the injection of cryptographic assets
such as unique keys. These assets can be broadly grouped into two categories:

• Production assets - These assets are highly sensitive values that must be
protected as soon as it has been verified that they have been correctly programmed.

Device lifecycle

58 Copyright © 2012, 2016, 2018, ARM Limited or its affiliates. All rights reserved. ARM DEN 0021D
 Non-Confidential

• Development assets - These are values known to the OEM and/or Silicon Vendor,
and are used during the development of the system.

Devices that are destined for sale to consumers are personalized with production assets by
the Silicon Vendor and OEM, and configured to enable all of the security mechanisms
required to protect those assets and any other assets that are made accessible to the device,
for example in flash memory. When this configuration is complete, the device enters the
“Deployed” state. .

A device that is in the “Development” state will have a subtly different configuration from the
production parts, because features such as debug can still be enabled. These parts are not
intended to ever leave the OEM.

A device that is in the “Deployed” state only permits configuration operations that support
the required use cases.

A device might also support a state, “Returned”. If the device develops a fault while in the
field, it might be necessary to return it to the manufacturer. The manufacturer might want to
run some of the original test & manufacturing operations to determine if there is a hardware
fault in the device. These operations must not reveal any of the assets that are accessible
to the device. The transition to the “Returned” state permanently removes access to
production assets and permits manufacturing test and debug operations. This state change,
like the others, is non-reversible.

Approved algorithms

ARM DEN 0021D Copyright © 2012, 2016, 2018 ARM Limited or its affiliates. All rights reserved. 59
 Non-Confidential

8 Approved algorithms

In TBSA, the core set of approved algorithms is drawn from NIST suite B [7.], together with
SHA-3.

For keyed algorithms, ARM recommends the following key sizes:

• For symmetric keys used in encryption and MAC generation: a minimum of 128 bits.

• For asymmetric keys: a minimum of 256 bits for ECC, and a minimum of 2048 bits
for RSA.

These algorithms can be implemented in Trusted software if sufficient processor capacity is
available to meet performance targets.

The full list of cryptographic algorithms needed in a given TBSA system depends on the
target requirements, which cannot be specified here.

Note: NIST has recently announced a transitional period during which new algorithms will be
identified that are resistant to a threat that arises from advances in quantum computing,
which is anticipated to become important in 30 to 40 years from now. The NSA has made
some recommendations on algorithm selection during this time of transition, which will last
for several years. The reader is encouraged to refer to these, particularly if the product and
assets to be protected are covered by to this time frame. For more information see [7.].

Glossary

60 Copyright © 2012, 2016, 2018, ARM Limited or its affiliates. All rights reserved. ARM DEN 0021D
 Non-Confidential

Glossary

The following table describes some of the terms used in this document.

Table 10 Glossary terms

Term Description

APB Advanced Peripheral Bus.

AXI Advanced eXtensible Interface.

Cryptographic Hash https://en.wikipedia.org/wiki/Cryptographic_hash_function

DRM Digital Rights Management.

NVM Non-volatile Memory.

NSAID Non-secure Address IDentifier

OTP One Time Programmable – Fuse memory

OWF Cryptographic One-Way Function

REE Rich OS Execution Environment.

ROS Rich Operating System

SCP System Control Processor

SoC System-on-Chip

TA Trusted Application

TEE Trusted Execution Environment.

https://en.wikipedia.org/wiki/Cryptographic_hash_function

	Trusted Base System Architecture, Client (4th Edition)
	System Hardware on ARM
	Release information
	1 Introduction
	1.1 Additional reading
	1.1.1 ARM publications
	1.1.2 Other publications

	1.2 Target platform

	2 Use cases
	2.1 User privacy
	2.2 Digital Rights Management
	2.3 FIDO
	2.4 Enterprise system support
	2.5 Mobile Network Operators

	3 Security threats
	3.1 Threats
	3.1.1 T.FUNC_ABUSE – Functional abuse
	3.1.2 T.CLONE – Trusted Service cloning
	3.1.3 T.DEBUG_ABUSE - Debug feature abuse
	3.1.4 T.NVS.READ - Reading of non-volatile storage (Flash/HDD)
	3.1.5 T.NVS.WRITE - Writing to non-volatile storage (Flash/HDD)
	3.1.6 T.RAM.READ - Reading of Trusted Service RAM
	3.1.7 T.RAM.WRITE - Writing to Trusted Service RAM
	3.1.8 T.COVERT_PATH - Covert leakage paths
	3.1.9 T.ROLLBACK - Rollback to previous versions of code/data

	3.2 Attackers
	3.2.1 Identification phase
	3.2.2 Exploitation phase
	3.2.3 Access to devices
	3.2.4 Equipment
	3.2.5 Scoring

	4 TrustZone® technology
	4.1 Execution model
	4.2 Memory access

	5 TBSA architecture variants
	5.1 Baseline architecture
	5.2 Assisted architecture

	6 TBSA security requirements
	6.1 System view
	6.2 Infrastructure
	6.2.1 Memory system
	6.2.1.1 Shared volatile storage
	6.2.2 Interrupts
	6.2.3 Secure RAM
	6.2.4 Power and clock management
	6.2.5 Peripherals

	6.3 Fuses
	6.4 Cryptographic keys
	6.4.1 Characteristics
	6.4.1.1 Cryptographic Schemes

	1.1.1.1
	1.1.1.1
	1.1.1.1
	1.1.1.1
	1.1.1.1
	1.1.1.1
	1.1.1.1
	1.1.1.1
	1.1.1.1
	1.1.1.1
	6.4.1.2 Volatility
	6.4.1.3 Unique/Common
	6.4.1.4 Source
	6.4.2 Root keys

	6.5 Trusted boot
	6.5.1 Overview
	6.5.2 Boot types
	6.5.3 Boot configuration
	6.5.4 Stored configuration
	6.5.5 Assisted architecture

	6.6 Trusted timers
	6.6.1 Trusted clock source
	6.6.2 General trusted timer
	6.6.3 Watchdog
	6.6.4 Trusted time

	6.7 Version counters
	6.8 Entropy source
	6.9 Cryptographic acceleration
	6.10 Debug
	6.10.1 Protection mechanisms
	6.10.1.1 DPM overlap
	6.10.1.2 DPM states
	6.10.1.3 Unlock operations
	6.10.1.3.1 Unlock token - password
	6.10.1.3.2 Unlock token - private key

	6.10.1.4 Other debug functionality
	6.10.1.5 ARM debug implementation
	6.10.1.6 Baseline architecture
	6.10.1.7 Assisted architecture

	6.11 External interface peripherals
	6.11.1 Display

	6.12 DRAM protection
	6.12.1 Design considerations
	6.12.2 Algorithmic strength
	Tier 1:For example: SD content, Non-Trusted world assets
	Tier 2: For example: HD content
	Tier 3: For example: UHD content
	Tier 4: For example: Trusted world assets

	6.12.3 Key management
	6.12.4 Configuration

	7 Device lifecycle
	8 Approved algorithms
	Glossary

