

ACPI for Arm Components 1.0

Platform Design Document
Non-confidential

Copyright © 2020 Arm Limited or its affiliates. All rights reserved.

Document number: DEN0093

ACPI for Arm Components

Page 2 of 18 Copyright © 2020 Arm Limited or its affiliates. All rights reserved.

Non-confidential

DEN0093

1.0

Contents

Release information 3

Arm Non-Confidential Document Licence (“Licence”) 4

1 About this document 6

1.1 Terms and abbreviations 6

1.2 References 6

1.3 Feedback 7

2 Introduction 8

3 ACPI for Arm Components 9

3.1 ACPI Identifiers 9

3.2 Reserved ACPI IDs for legacy Arm components 9

3.3 Reserved ACPI IDs for SBSA-defined Arm components 9

3.4 Arm components requiring ACPI description 9

3.4.1 Arm DMC620 Memory Controller 10

3.4.1.1 Interface identification 10

3.4.1.2 The DMC620 PMU 10

3.4.2 Arm DynamIQ Shared Unit (DSU) 11

3.4.2.1 Interface Identification 11

3.4.2.2 Common DSU elements 11

3.4.2.3 DSU PMU 11

3.4.3 Arm CoreLink CMN-600 Coherent Mesh Network 13

3.4.3.1 Interface Identification 14

3.4.3.2 Common CMN-600 elements 15

3.4.3.3 CMN-600 PMU 15

ACPI for Arm Components

Page 3 of 18 Copyright © 2020 Arm Limited or its affiliates. All rights reserved.

Non-confidential

DEN0093

1.0

Copyright © 2020 Arm Limited. All rights reserved.

Release information

Date Version Changes

2020/Jul/30 1.0 • External release

ACPI for Arm Components

Page 4 of 18 Copyright © 2020 Arm Limited or its affiliates. All rights reserved.

Non-confidential

DEN0093

1.0

Arm Non-Confidential Document Licence (“Licence”)

This Licence is a legal agreement between you and Arm Limited (“Arm”) for the use of Arm’s intellectual
property (including, without limitation, any copyright) embodied in the document accompanying this
Licence (“Document”). Arm licenses its intellectual property in the Document to you on condition that
you agree to the terms of this Licence. By using or copying the Document you indicate that you agree to
be bound by the terms of this Licence.

“Subsidiary” means any company the majority of whose voting shares is now or hereafter owner or
controlled, directly or indirectly, by you. A company shall be a Subsidiary only for the period during which
such control exists.

This Document is NON-CONFIDENTIAL and any use by you and your Subsidiaries (“Licensee”) is
subject to the terms of this Licence between you and Arm.

Subject to the terms and conditions of this Licence, Arm hereby grants to Licensee under the intellectual
property in the Document owned or controlled by Arm, a non-exclusive, non-transferable, non-sub-
licensable, royalty-free, worldwide licence to:

(i) use and copy the Document for the purpose of designing and having designed products that

comply with the Document;

(ii) manufacture and have manufactured products which have been created under the licence

granted in (i) above; and

(iii) sell, supply and distribute products which have been created under the licence granted in (i)

above.

Licensee hereby agrees that the licences granted above shall not extend to any portion or
function of a product that is not itself compliant with part of the Document.

Except as expressly licensed above, Licensee acquires no right, title or interest in any Arm technology
or any intellectual property embodied therein.

THE DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO
WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE
IMPLIED WARRANTIES OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT
OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE DOCUMENT. Arm may make
changes to the Document at any time and without notice. For the avoidance of doubt, Arm makes no
representation with respect to, and has undertaken no analysis to identify or understand the scope and
content of, third party patents, copyrights, trade secrets, or other rights.

NOTWITHSTANING ANYTHING TO THE CONTRARY CONTAINED IN THIS LICENCE, TO THE
FULLEST EXTENT PETMITTED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
IN CONTRACT, TORT OR OTHERWISE, IN CONNECTION WITH THE SUBJECT MATTER OF THIS
LICENCE (INCLUDING WITHOUT LIMITATION) (I) LICENSEE’S USE OF THE DOCUMENT; AND (II)
THE IMPLEMENTATION OF THE DOCUMENT IN ANY PRODUCT CREATED BY LICENSEE UNDER
THIS LICENCE). THE EXISTENCE OF MORE THAN ONE CLAIM OR SUIT WILL NOT ENLARGE OR
EXTEND THE LIMIT. LICENSEE RELEASES ARM FROM ALL OBLIGATIONS, LIABILITY, CLAIMS
OR DEMANDS IN EXCESS OF THIS LIMITATION.

This Licence shall remain in force until terminated by Licensee or by Arm. Without prejudice to any of its
other rights, if Licensee is in breach of any of the terms and conditions of this Licence then Arm may
terminate this Licence immediately upon giving written notice to Licensee. Licensee may terminate this
Licence at any time. Upon termination of this Licence by Licensee or by Arm, Licensee shall stop using
the Document and destroy all copies of the Document in its possession. Upon termination of this Licence,
all terms shall survive except for the licence grants.

Any breach of this Licence by a Subsidiary shall entitle Arm to terminate this Licence as if you were the
party in breach. Any termination of this Licence shall be effective in respect of all Subsidiaries. Any rights

ACPI for Arm Components

Page 5 of 18 Copyright © 2020 Arm Limited or its affiliates. All rights reserved.

Non-confidential

DEN0093

1.0

granted to any Subsidiary hereunder shall automatically terminate upon such Subsidiary ceasing to be
a Subsidiary.

The Document consists solely of commercial items. Licensee shall be responsible for ensuring that any
use, duplication or disclosure of the Document complies fully with any relevant export laws and
regulations to assure that the Document or any portion thereof is not exported, directly or indirectly, in
violation of such export laws.

 This Licence may be translated into other languages for convenience, and Licensee agrees that if there
is any conflict between the English version of this Licence and any translation, the terms of the English
version of this Licence shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm
Limited (or its subsidiaries) in the US and/or elsewhere. All rights reserved. Other brands and names
mentioned in this document may be the trademarks of their respective owners. No licence, express,
implied or otherwise, is granted to Licensee under this Licence, to use the Arm trade marks in connection
with the Document or any products based thereon. Visit Arm’s website at
https://www.arm.com/company/policies/trademarks for more information about Arm’s trademarks.

The validity, construction and performance of this Licence shall be governed by English Law.

Copyright © [2020] Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.
110 Fulbourn Road, Cambridge, England CB1 9NJ.

LES-PRE-21585 version 4.0

https://www.arm.com/company/policies/trademarks

ACPI for Arm Components

Page 6 of 18 Copyright © 2020 Arm Limited or its affiliates. All rights reserved.

Non-confidential

DEN0093

1.0

 1 About this document

1.1 Terms and abbreviations

Term Meaning

ACPI Advanced Configuration and Power Interface

ASL ACPI Source Language

CMN Arm CoreLink Mesh Network

DSU DynamicIQ Shared Unit

DTC Debug and Trace Controller

GIC Arm Generic Interrupt Controller

GSIV Global System Interrupt Vector

HN Home Node

PMU Performance Monitoring Unit

RN Requester Node

SPE Statistical Profiling Extension

XP Cross-point

1.2 References

This section lists publications by Arm and by third parties.

See Arm Developer (http://developer.arm.com) for access to Arm documentation.

[1] Advanced Configuration and Power Interface Specification 6.3. UEFI Forum, https://uefi.org/specifications.

[2] Arm® Architecture Reference Manual Armv8, for Armv8-A architecture profile: ARM DDI 0487F.b

(ID040120). Arm Limited.

[3] Arm® Generic Interrupt Controller Architecture Specification, GIC architecture version 3 and version 4:

Arm IHI 0069E (ID012119). Arm Limited.

[4] Arm® System Memory Management Unit Architecture Specification SMMU architecture versions 3.0, 3.1

and 3.2: Arm IHI 0070C.a..

[5] Arm® CoreSight™ Architecture Specification v3.0: Arm IHI 0029E (ID022717). Arm Ltd.

[6] Arm® Server Base System Architecture 6.0 Platform Design Document: DEN0029. Arm Limited.

[7] Arm IO Remapping Table: DEN0049E. Arm Limited.

[8] ACPI for CoreSight™ 1.1: DEN0067. Arm Ltd.

[9] Arm® Functional Fixed Hardware Specification Document number: Arm DEN 0048A. Arm Limited,

https://uefi.org/acpi.

[10] _DSD (Device Specific Data) Implementation Guide v1.2. UEFI Forum, https://uefi.org/specifications.

[11] ACPI for Arm v8-A Memory System Resource Partitioning and Monitoring: DEN0065. Arm Limited.

[12] Arm Architecture Reference Manual Supplement Memory System Resource Partitioning and Monitoring

(MPAM), for Armv8-A: ARM DDI 0598B.a. Arm Limited.

[13] ACPI for the Armv8-A RAS Extensions 1.0: DEN0085. Arm Limited.

[14] Arm® Reliability, Availability, and Serviceability (RAS) Specification: Arm DDI 0587C.b. Arm Limited.

ACPI for Arm Components

Page 7 of 18 Copyright © 2020 Arm Limited or its affiliates. All rights reserved.

Non-confidential

DEN0093

1.0

[15] Serial Port Console Redirection Table. Microsoft Corporation, https://uefi.org/acpi.

[16] Debug Port Table 2. Microsoft Corporation, https://uefi.org/acpi.

[17] Arm® DynamIQ™ Shared Unit, Revision r0p2, Technical Reference Manual: Arm 100453_0002_00_en.

Arm Limited.

[18] Arm® CoreLink™ CMN-600 Coherent Mesh Network Revision: r1p3, Technical Reference Manual:

100180_0103_00_en. Arm Limited.

[19] Arm® Power State Coordination Interface Platform Design Document: DEN0022D. Arm Limited.

1.3 Feedback

Arm welcomes feedback on its documentation.

If you have comments on the content of this manual, send an email to errata@arm.com. Give:

• The title (ACPI for Arm Components).

• The document ID and version (DEN0093 1.0).

• The page numbers to which your comments apply.

• A concise explanation of your comments.

Arm also welcomes general suggestions for additions and improvements.

mailto:errata@arm.com

ACPI for Arm Components

Page 8 of 18 Copyright © 2020 Arm Limited or its affiliates. All rights reserved.

Non-confidential

DEN0093

1.0

 2 Introduction

This document provides guidance for describing system components implemented or licensed by Arm, and

their properties, in ACPI [1].

This specification does not cover ACPI description of the Arm Architecture [2] or related architectures, for

example the Generic Interrupt Controller Architecture [3], the System Memory Management Unit Architecture

[4], the CoreSight Architecture [5], or architected components that are described in the Server Base System

Architecture [6]. The ACPI descriptions of these architectural components are covered in the following

specifications instead:

Table 3: Arm Architectures that are covered by ACPI Tables

Specification

Table or

object Arm Architecture Covered

ACPI [1] MADT Arm Architecture [2]

ACPI [1] MADT GIC [3], SPE

I/O Remapping Table [7] IORT SMMU [4]

ACPI For CoreSight [8] ACPI graph CoreSight Architecture [5]

FFH for Arm [9] FFH Armv8 Activity Monitors Extension

ACPI _DSD Implementation

Guide [10]

ACPI graph CoreSight Architecture [5]

ACPI for MPAM [11] MPAM Armv8 MPAM Architecture [12]

ACPI for Arm RAS Extensions

[13]

AEST Armv8 RAS Extensions Architecture [14]

The following table details coverage of specific Arm components in ACPI:

Table 4: Arm Components that are covered by specific ACPI Tables

ACPI Tables Arm Components Covered

GTDT SBSA Watchdog timer [6]

PPTT Caches, cores, clusters

SPCR [15], DBG2 [16] SBSA UART, PL011

This specification recommends that components that are not covered in standard or Arm-specific ACPI tables

are described as ACPI device objects in ASL. Because a component might have multiple internal interfaces,

Arm recommends that a separate ACPI device object is created to cover each of these interfaces to allow

device drivers in OS to unequivocally bind to those specific interfaces. Interfaces like RAS Extensions and

MPAM are not covered, and instead are described in appropriate tables, as indicated in Table 3 above.

The device objects should define the generic and specific properties of the component interface to aid software

discovery from the OS, where:

• Generic properties include an ACPI namespace identifier for the component or its interface, the

memory-mapped base address of the component or its interface, and the interrupts that the component

can generate.

• Specific properties are component specific or vendor specific or both.

ACPI for Arm Components

Page 9 of 18 Copyright © 2020 Arm Limited or its affiliates. All rights reserved.

Non-confidential

DEN0093

1.0

 3 ACPI for Arm Components

3.1 ACPI Identifiers

ACPI Identifiers of Arm components follow the conventions that are described in [1]. The ACPI Hardware ID

object, _HID, is used as the primary identifier. For Arm components, the format is ARMH####.

For some Arm components, existing standard ACPI or PNP identifiers may also be used as _HID values. In

such cases, Arm recommends setting the _CID of the device object as ARMH#### where relevant.

3.2 Reserved ACPI IDs for legacy Arm components

This section lists reserved ACPI IDs for components from Arm that are managed as a complete unit by a

single device driver, or are required for cross-referencing from other Arm ACPI tables like the AEST [13] and

the MPAM [12]. These components are listed in Table 5.

Table 5: Reserved ACPI IDs for legacy Arm components

Component HID

Prime cell UART (PL011 ARMH0011

Prime cell General Purpose I/O ARMH0061

3.3 Reserved ACPI IDs for SBSA-defined Arm components

The following types of Arm components require a unique ACPI ID for identification:

• Specifically defined by the SBSA specification [6]

• Not described in any standard ACPI table listed in Table 3 or Table 4

• Are described in ACPI namespace by virtue of the above two properties

Table 6: Reserved ACPI IDs for SBSA components

SBSA Component HID

SBSA UART ARMHB000

An SBSA component can be described in both ACPI namespace and the standard ACPI tables in a given

system. For example, a system might have two instances of SBSA UARTs: a primary UART that is used by

the OS and a secondary, general-purpose, UART for application usage. In this example system, the primary

UART must be declared in the ACPI SPCR table. The secondary UART might be declared as a device object

in ACPI namespace and assigned the HID that is defined in Table 6.

3.4 Arm components requiring ACPI description

This section describes Arm components that have at least one interface that is not covered by standard or

Arm-specific ACPI tables, and that must be described in ACPI namespace.

ACPI for Arm Components

Page 10 of 18 Copyright © 2020 Arm Limited or its affiliates. All rights reserved.

Non-confidential

DEN0093

1.0

3.4.1 Arm DMC620 Memory Controller

Table 7 describes interfaces within the DMC620 that require ACPI description to support software discovery.

3.4.1.1 Interface identification

Table 7: Arm DMC620 Memory Controller HID values

Value Description

ARMHD620 ACPI Hardware Identifier for the DMC620

PMU.

3.4.1.2 The DMC620 PMU

The DMC620 PMU is assigned the HID value of ARMHD620, as specified in Table 7.

Device configuration objects for the DMC620 PMU

Table 8: Configuration objects for the DMC620 PMU

Object Values Type Description

_CRS Base address

GSIV

QWordMemory

Interrupt

Base address of the PMU in the system

address map

GSIV of the PMU overflow interrupt

ASL reference code for the DMC620 PMU

The DMC620 PMU register space is mapped at a 512-byte range that begins at offset 0x80000A00 in the

system address space. In this reference code, it is assumed that the PMU overflow interrupt from the DMC620

is mapped to GSIV 312.

Device (MC00) { // PMU interface on the example DMC620 memory controller

// instance in the system.

Name (_HID , “ARMHD620”)

Name (_CID , “ARMHD620”)

Name (_UID , 0)

Name (_CCA , 1)

Name (_STR , Unicode (“Socket0 : MCU0”))

Name (_STA , 0 , Not Serialized) {

Return (0 x0f)

}

Name (_CRS , Resource Template () {

// Descriptor for 64 - bit memory - mapped register space

// of the DMC620

QWord Memory (

Resource Producer, // ResourceUsage

 PosDecode, // Decode

MinFixed, // Min range is fixed

MaxFixed, // Max range is fixed

Non Cacheable, // Cacheable

ReadWrite, // Read And Write

0 x 0000000000000000, // Address Granularity - GRA

0 x 0000100080000 A 00, // Address Minimum - MIN

ACPI for Arm Components

Page 11 of 18 Copyright © 2020 Arm Limited or its affiliates. All rights reserved.

Non-confidential

DEN0093

1.0

0 x 0000100080000 BFF, // Address Maximum - MAX

0 x 0000000000000000, // Address Translation - TRA

0 x 0000000000000200, // Range Length - LEN

, // Resource Source Index

, // Resource Source

CFGS // Descriptor Name

)

// PMU overflow Interrupt, with GSIV = 312

Interrupt (Resource Consumer , Level , ActiveHigh , Exclusive) {312}

})

}

3.4.2 Arm DynamIQ Shared Unit (DSU)

The Arm DynamIQ Shared Unit (DSU) provides circuitry, logic, interfaces, and an optional shared cache to

support a DynamIQ cluster. The DSU is described in detail in [17]. Interfaces within the DSU that require

ACPI description to support software discovery are described here.

The DSU is shared by a set of cores organized as a cluster. The ACPI description of interfaces within the

DSU is therefore expressed as a device object that is a child of the ACPI processor container object that

describes the cluster.

The OS must parse the CPU topology in ACPI namespace to discover the DSU interface objects and to

understand the associativity between those DSU instances and cores.

3.4.2.1 Interface Identification

Table 9: Arm DSU HID values

Value Description

ARMHD500 ACPI Hardware Identifier for the DSU PMU.

ARMHD501 ACPI Hardware Identifier for the common DSU

elements.

3.4.2.2 Common DSU elements

Common DSU elements are collectively described by a single device object with a HID of ARMHD501. This

device object allows cross-referencing the DSU object from other ACPI objects and tables.

3.4.2.3 DSU PMU

The DSU provides a PMU for monitoring and recording miscellaneous events. DSU PMU registers are

presented as System Registers to allow for native software discovery. Therefore, no ACPI description is

required to locate them. When a PMU counter overflows, the PMU asserts an interrupt signal that can be

routed to an interrupt controller such as the GIC.

The DSU PMU is assigned the HID value of ARMHD500, as specified in Table 9.

DSU PMU device configuration objects

ACPI for Arm Components

Page 12 of 18 Copyright © 2020 Arm Limited or its affiliates. All rights reserved.

Non-confidential

DEN0093

1.0

Table 10: Arm DSU PMU device configuration objects

Object Value Type Description

_CRS GSIV Interrupt GSIV of the DSU PMU overflow interrupt

ASL reference code

This reference code illustrates how the CPU topology that is associated with the DSU is described in ACPI

namspace by including the DSU device objects in the CPU hierarchy description. The code showcases an

example system that has two clusters, each with a single DSU. Each cluster includes two CPU cores that

share the associated DSU.

The code also illustrates how the global DSU device object may be also included within the CPU topology

description. The placement of the global DSU object allows generic references to the DSU from the OSPM.

Device (SYSM) { // System level states

Name (_HID , “ACPI 0010”)

Name (_UID , 0)

Name (_LPI ,

Package () {...}

)

Device (CLU0) { // Cluster 0

Name (_HID , “ACPI 0010”)

Name (_UID , 1)

Name (_LPI ,

Package () {...}

)

Device (DSU0) { // Common DSU Instance 0 associated with cluster 0

Name (_HID , “ARMHD501”)

Name (_UID , 0)

} // DSU descriptor ends here

Device (DSP0) { // PMU interface on DSU 0 associated with cluster 0

Name (_HID , “ARMHD500 ”)

Name (_UID , 0)

Name (_CRS , Resource Template () {

// PMU overflow Interrupt, with GSIV = 302

Interrupt (Resource Consumer , Level , ActiveHigh , Exclusive) {302}

})

} // DSU0 PMU interface descriptor ends here

Device (CPU0) { // Core0

Name (_HID , “ ACPI 0007”)

Name (_UID , 0)

Method (_LPI , 0 , Not Serialized) {

...

}

} // CPU0 description ends here

Device (CPU1) { // Core1

Name (_HID , “ACPI 0007”)

Name (_UID , 1)

Method (_LPI , 0 , Not Serialized) {

...

}

} // CPU1 description ends here

ACPI for Arm Components

Page 13 of 18 Copyright © 2020 Arm Limited or its affiliates. All rights reserved.

Non-confidential

DEN0093

1.0

} // Cluster 0 descriptor ends here

Device (CLU1) { // Cluster 1

Name (_HID , “ACPI 0010 ”)

Name (_UID , 2)

Method (_LPI , 0 , Not Serialized) {

...

}

Device (DSU1) { // Common DSU Instance 1 associated with cluster 1

Name (_HID , “ ARMHD501 ”)

Name (_UID , 1)

} // DSU descriptor ends here

Device (DSP1) { // PMU interface on DSU 1 associated with cluster 1

Name (_HID , “ ARMHD500”)

Name (_UID , 1)

Name (_CRS , Resource Template () {

// PMU overflow Interrupt , with GSIV = 402

Interrupt (Resource Consumer , Level , ActiveHigh , Exclusive) {402}

})

} // DSU1 PMU interface descriptor ends here

Device (CPU2) { // Core2

Name (_HID , “ACPI 0007”)

Name (_UID , 2)

Method (_LPI , 0 , Not Serialized) {

...

}

} // CPU2 description ends here

Device (CPU3) { // Core3

Name (_HID , “ACPI 0007”)

Name (_UID , 3)

Method (_LPI , 0 , Not Serialized) {

...

}

} // CPU3 description ends here

} // Cluster 1 descriptor ends here

} // End of system description

3.4.3 Arm CoreLink CMN-600 Coherent Mesh Network

The Arm CoreLink CMN-600 Coherent Mesh Network is described in [18]. The CMN-600 network consists of

Cross-points (XPs), Home Nodes (HNs) and Request Nodes (RNs). A special Home Node, HN-D, houses the

global configuration registers. In this network, PMU logic is integrated into Debug and Trace Logic Controllers

(DTCs). HN-D also houses the primary DTC, which is labelled DTC0. Other DTCs, DTC1 to DTC3, are

housed in special Home Nodes called HN-T. The CMN-600 layout is illustrated in the following diagram:

ACPI for Arm Components

Page 14 of 18 Copyright © 2020 Arm Limited or its affiliates. All rights reserved.

Non-confidential

DEN0093

1.0

Figure 1: High-level layout of the CMN-600

All configuration registers that belong to the CMN-600 network are mapped into System Address Map (SAM)

at a pre-determined, 64MB aligned address range at offset PERIPHBASE. Within this address range, the

configuration space of the root node of the network is mapped to an address range at offset ROOTNODEBASE.

These offsets are illustrated in the following diagram:

Figure 2: Memory-mapped configuration region of the CMN-600

All registers are organized into one or more register blocks. Each register block is 16KB in size, and there is

one register block for each logical block in the network. Each register block is called a node. The nodes are

laid out in a tree hierarchy. The root of the tree hierarchy is the root node, as illustrated in the preceding

diagram.

3.4.3.1 Interface Identification

ACPI for Arm Components

Page 15 of 18 Copyright © 2020 Arm Limited or its affiliates. All rights reserved.

Non-confidential

DEN0093

1.0

Table 11: Arm CMN-600 HID values

Value Description

ARMHC600 ACPI Hardware Identifier for the

CMN-600 PMU

ARMHC601 ACPI Hardware Identifier for common

elements of the CMN-600

3.4.3.2 Common CMN-600 elements

Common CMN-600 elements are collectively described by a single device object with a HID of ARMHC601.

The common device object facilitates cross-referencing the CMN-600 object from other ACPI objects and

tables.

3.4.3.3 CMN-600 PMU

CMN-600 PMU logic is integrated into Debug and Trace Logic Controllers (DTCs). Thus, discovery of the

PMU interface in a CMN-600 network relies on the topology in which the DTCs are organized within the

network.

The HN-D houses the primary DTC, which is labelled DTC0. Each DTC is associated with multiple DTMs.

The parent DTC and its children DTMs form a DTC domain. The following diagram shows an example system

with two DTC domains:

Figure 3: CMN-600-based topology with 2 DTCs

Each PMU asserts its own dedicated interrupt signal on overflow, called INTREQPMU. The interrupts from

the PMUs are routed to the GIC and appear as one or more GSIVs to software.

This means that, to support software discovery of CMN PMUs, the primary sources of required information

are:

ACPI for Arm Components

Page 16 of 18 Copyright © 2020 Arm Limited or its affiliates. All rights reserved.

Non-confidential

DEN0093

1.0

Table 12: Information sources for CMN-600 PMU discovery

Information Information source

Discovery of PMUs in CMN-600 network. This

is based on discovery of DTCn for PMUn.

Identity of PMU overflow interrupt for all PMU

logic within the network, where PMUn is

housed in DTCn.

ROOTNODEBASE

INTREQPMUn routing

PMU overflow interrupt description ordering and Logical ID

The CMN-600 network specification allows for up to four DTCs in the system. DTC0 is the primary DTC, and

it must always exist in a system. Additional DTCs may be installed on various cross-points, based on system

design and topology. The CMN-600 provides logical numbering of DTCs to allow for their unique identification

in hardware. The Logical ID is the only way for software to identify a unique DTC. However, the Logical IDs

is not guaranteed to be the same as the DTC number. For example, DTC 1 is not guaranteed to obtain a Logical

ID of 1.

Here is an example mapping for a CMN-600 system with 4 DTCs is as follows:

Table 13: DTC domain number to Logical ID mapping in an example system

DTC Name

DTC Domain

Number (Value)

DTC Logical ID

(Notation)

DTC Logical ID

(Value)

Description

DTC0 0 DTC[0] 0 DTC0 is always assigned
Logical ID of 0.

DTC1 1 DTC[1] j DTC1 is assigned Logical

ID j, where j != 0.

DTC2 2 DTC[2] k DTC2 is assigned Logical

ID k, where j != 0 && k != j

DTC3 3 DTC[3] m DTC1 is assigned Logical

ID m, where m != 0 && m !=
j != k.

To address the lack of an explicit relation between the Logic ID and Domain Number as shown in Table 13, the

PMU overflow interrupt descriptors are organized in increasing order of the hardware assigned Logical IDs of

the related DTCs, respectively. This allows OS software to map interrupt descriptors to their parent DTCs.

This means that INTDESC[1] corresponds to DTC0, INTDESC[2] corresponds to the DTC that is assigned

the next smallest Logical ID, and so on.

Device Identification for CMN-600 PMU

The CMN-600 PMU interface is assigned an ACPI ID of ARMHC600 as indicated in Table 11.

ACPI for Arm Components

Page 17 of 18 Copyright © 2020 Arm Limited or its affiliates. All rights reserved.

Non-confidential

DEN0093

1.0

Device configuration objects

Table 14: Arm CMN-600 Coherent Mesh Network configuration objects

Object Values Type Description

_CRS PERIPHBASE

ROOTNODEBASE

QWordMemory

QWordMemory

Base address of the memory-mapped

region in the system address map where

the CMN-600 registers are mapped.

Base address of the root node.

ACPI for Arm Components

Page 18 of 18 Copyright © 2020 Arm Limited or its affiliates. All rights reserved.

Non-confidential

DEN0093

1.0

Object Values Type Description

GSIV[n]

Interrupt

List of GSIVs of n distinct interrupts

that can be generated by the n

PMUs located in this instance of the

CMN-600

The list must always begin with PERIPHBASE, followed by ROOTNODEBASE, and finally the interrupt

resource descriptors. Similarly, the interrupt resource descriptors for the PMUs,for example GSIV[n], must

appear in numerically increasing order of the corresponding DTC[n]. So the first interrupt resource descriptor

relates to DTC[0], the second interrupt resource descriptor relates to DTC[1] and so on. The mth interrupt

resource descriptor in the list corresponds to DTC[m-1].

ASL code example

This code example pertains to a CMN-600 based network with a dimension larger than 4x4 and that has two

DTCs. Like the example illustrated in Figure 3 in Section 3.4.3.3, the first DTC is always DTC0 and is

attached to HN-D. However, the second DTC could be assigned any Logical ID that will be non-zero. The

term DTC[n] is used to represent the Logical ID of DTCn. In this example, PERIPHBASE of the CMN-600 is

set as 0xAFE0000000, and the root node is at an offset of 0x4000 from PERIPHBASE.

Device (CMN6) { // CMN-600 device object for an X * Y mesh where X, Y > 4

Name (_HID , “ ARMHC600 ”)

Name (_CRS , Resource Template () {

// Descriptor for 256 MB of the CFG region at offset PERIPHBASE

QWord Memory (

Resource Consumer, // bit 0 of general flags is 0

PosDecode,

MinFixed, // Range is fixed

MaxFixed, // Range is Fixed

Non Cacheable,

ReadWrite,

0 x00000000, // Granularity

0 xAFE0000000, // Min, set to PERIPHBASE

0 xAFEFFFFFFF, // Max

0 x00000000, // Translation

0 x0010000000, // Range Length = 256 MB

, // Resource Source Index

, // Resource Source

CFGR // Descriptor Name

)

// Descriptor for the root node. This is a 16 KB region at

// offset ROOTNODEBASE. In this example, ROOTNODEBASE starts

// at the 16 KB aligned offset of PERIPHBASE+0xC000

QWord Memory (

Resource Consumer, // bit 0 of general flags is 0

PosDecode,

MinFixed, // Range is fixed

MaxFixed, // Range is Fixed

Non Cacheable,

ReadWrite,

0 x00000000, // Granularity

0 xAFE000C000, // Min, set to ROOTNODEBASE

0 xAFE000FFFF, // Max

0 x00000000, // Translation

0 x0000004000, // Range Length = 16 KB

, // Resource Source Index

, // Resource Source

ACPI for Arm Components

Page 19 of 18 Copyright © 2020 Arm Limited or its affiliates. All rights reserved.

Non-confidential

DEN0093

1.0

ROOT // Descriptor Name

)

// Interrupt on PMU0 overflow, attached to DTC [0], with GSIV=<gsiv0>

Interrupt (Resource Consumer , Level , ActiveHigh , Exclusive) {<gsiv0>}

// Interrupt on PMU1 overflow, attached to DTC [1], with GSIV=<gsiv1>

Interrupt (Resource Consumer , Level , ActiveHigh , Exclusive) {<gsiv1>}

})

}

The following ASL code example shows pertains to a CMN-600 based network that has a dimension less

than 4x4 and that has four DTCs, DTC0-DTC3. The logical numbers of these DTCs are DTC[0] to DTC[3].

Device (CMN6) { // CMN-600 device object for an X * Y mesh where X, Y <= 4

Name (_HID , “ ARMHC600 ”)

Name (_CRS, Resource Template () {

// Descriptor for 256 MB of the CFG region at offset PERIPHBASE

QWord Memory (

Resource Consumer, // bit 0 of general flags is 0

PosDecode,

MinFixed, // Range is fixed

MaxFixed, // Range is Fixed

Non Cacheable,

ReadWrite,

0 x00000000, // Granularity

0 xAFE0000000, // Min

0 x AFE 0 FFFFFFF, // Max

0 x00000000, // Translation

0 x0010000000, // Range Length

, // Resource Source Index

, // Resource Source

CFGR // Descriptor Name

)

// 16KB memory - mapped address space of the Root Node within CFG

Memory 32 Fixed (ReadWrite , ROOTNODEBASE , 0 x4000 , ROOT)

// Interrupt on PMU0 overflow, attached to DTC[0], with GSIV=<gsiv0>

Interrupt (Resource Consumer , Level , ActiveHigh , Exclusive) {<gsiv0>}

// Interrupt on PMU1 overflow, attached to DTC[1], with GSIV=<gsiv1>

Interrupt (Resource Consumer , Level , ActiveHigh , Exclusive) {<gsiv1>}

// Interrupt on PMU2 overflow, attached to DTC [2], with GSIV = <gsiv2>

Interrupt (Resource Consumer , Level , ActiveHigh , Exclusive) {< gsiv2 >}

// Interrupt on PMU3 overflow, attached to DTC [3], with GSIV = <gsiv3>

Interrupt (Resource Consumer , Level , ActiveHigh , Exclusive) {< gsiv3 >}

})

}

	Release information
	Arm Non-Confidential Document Licence (“Licence”)
	1 About this document
	1.1 Terms and abbreviations
	1.2 References
	1.3 Feedback

	2 Introduction
	3 ACPI for Arm Components
	3.1 ACPI Identifiers
	3.2 Reserved ACPI IDs for legacy Arm components
	3.3 Reserved ACPI IDs for SBSA-defined Arm components
	3.4 Arm components requiring ACPI description
	3.4.1 Arm DMC620 Memory Controller
	3.4.1.1 Interface identification
	3.4.1.2 The DMC620 PMU

	3.4.2 Arm DynamIQ Shared Unit (DSU)
	3.4.2.1 Interface Identification
	3.4.2.2 Common DSU elements
	3.4.2.3 DSU PMU

	3.4.3 Arm CoreLink CMN-600 Coherent Mesh Network
	3.4.3.1 Interface Identification
	3.4.3.2 Common CMN-600 elements
	3.4.3.3 CMN-600 PMU

