
Arm® CoreSight™ Architecture
Performance Monitoring Unit Architecture

Copyright © 2005-2020 Arm Limited or its affiliates. All rights reserved.
ARM IHI 0091 A.a-00bet0

CoreSight Performance Monitoring Unit Architecture

Release information

Date Version Changes

2020/Nov/04 00bet0 • First non-confidential release.

ii

Non-Confidential Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information
contained in this document may be protected by one or more patents or pending patent applications. No part of this document
may be reproduced in any form by any means without the express prior written permission of Arm. No license, express
or implied, by estoppel or otherwise to any intellectual property rights is granted by this document unless specifically
stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to
use the information for the purposes of determining whether implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR
PURPOSE WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm makes no representation with
respect to, and has undertaken no analysis to identify or understand the scope and content of, patents, copyrights, trade secrets,
or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY,
ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or
disclosure of this document complies fully with any relevant export laws and regulations to assure that this document or any
portion thereof is not exported, directly or indirectly, in violation of such export laws. Use of the word “partner” in reference
to Arm’s customers is not intended to create or refer to any partnership relationship with any other company. Arm may make
changes to this document at any time and without notice.

This document may be translated into other languages for convenience, and you agree that if there is any conflict between the
English version of this document and any translation, the terms of the English version of the Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited (or its
affiliates) in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this document may be the
trademarks of their respective owners. Please follow Arm’s trademark usage guidelines at http://www.arm.com/company/
policies/trademarks.

Copyright © 2005-2020 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

LES-PRE-20349 version 21.0

ARM IHI 0091
A.a-00bet0

Copyright © 2005-2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

iii

http://www.arm.com/company/policies/trademarks
http://www.arm.com/company/policies/trademarks

Contents

CoreSight Performance Monitoring Unit Architecture

CoreSight Performance Monitoring Unit Architecture ii
Release information . ii
Non-Confidential Proprietary Notice . iii

Preface
Document status . vii

About this book . viii
Using this book . ix
Conventions . x

Typographical conventions . x
Numbers . x

Rules-based writing . xi
Content item classes . xi
Identifiers . xii
Examples . xii

Additional reading . xiii
Feedback . xiv

Feedback on this book . xiv

Chapter 1 Description
1.1 About Performance Monitors . 16

1.1.1 Profiling and software optimization . 16
1.1.2 Monitoring . 17
1.1.3 Sampling . 17

1.2 Rationale for a standard PMU architecture 19
1.3 What to measure . 20
1.4 MPAM . 23

1.4.1 Overview . 23
1.4.2 MPAM v1.1 . 23

Chapter 2 Specification
2.1 Organization . 26
2.2 Operation of the PMU . 28

2.2.1 Event counting . 28
2.2.2 State or event monitoring . 29
2.2.3 Mapping controls and fixed-function monitors 29
2.2.4 Interrupt signaling . 29

2.3 Accuracy of the PMU . 31
2.4 Accessing PMU registers . 32
2.5 Security . 34
2.6 Extensions . 36

2.6.1 Freeze on overflow extension . 36
2.6.2 Halt-on-debug extension . 37
2.6.3 Fixed-function cycle counter extension 37
2.6.4 Monitor group extension . 38
2.6.5 Counter chaining . 39
2.6.6 Snapshot extension . 39
2.6.7 Trace generation extension . 40
2.6.8 Export extension . 40

ARM IHI 0091
A.a-00bet0

Copyright © 2005-2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

iv

Contents

2.6.9 Dual-page extension . 40

Chapter 3 Programmers’ Model
3.1 Memory-mapped registers . 43

3.1.1 When the dual-page extension is not implemented 43
3.1.2 Page 0, when the dual-page extension is implemented 44
3.1.3 Page 1, when the dual-page extension is implemented 45

3.2 IMPDEF<n>, IMPLEMENTATION DEFINED Register <0-31> 47
3.3 PMAUTHSTATUS, Authentication Status Register 48

3.3.1 Field descriptions . 48
3.4 PMCCFILTR, Cycle Counter Filter Register 50

3.4.1 Field descriptions . 50
3.5 PMCCNTR, Cycle Count Register (up-to 32 bits) 51

3.5.1 Field descriptions . 51
3.6 PMCCNTR, Cycle Count Register (up-to 64 bits) 52

3.6.1 Field descriptions . 52
3.7 PMCEID<n>, Common Event Identification Register <0-3> 53

3.7.1 Field descriptions . 53
3.8 PMCFGR, Configuration Register . 54

3.8.1 Field descriptions . 54
3.9 PMCGCR<n>, Counter Group Configuration Register <0-3> 59

3.9.1 Field descriptions . 59
3.10 PMCIDR0, Component Identification Register 0 60

3.10.1 Field descriptions . 60
3.11 PMCIDR1, Component Identification Register 1 61

3.11.1 Field descriptions . 61
3.12 PMCIDR2, Component Identification Register 2 62

3.12.1 Field descriptions . 62
3.13 PMCIDR3, Component Identification Register 3 63

3.13.1 Field descriptions . 63
3.14 PMCNTENCLR<n>, Count Enable Clear Register <n> 64

3.14.1 Field descriptions . 64
3.15 PMCNTENSET<n>, Count Enable Set Register <n> 65

3.15.1 Field descriptions . 65
3.16 PMCR, Control Register . 66

3.16.1 Field descriptions . 66
3.17 PMDEVAFF, Device Affinity Register . 70

3.17.1 Field descriptions . 70
3.18 PMDEVARCH, Device Architecture Register 74

3.18.1 Field descriptions . 74
3.19 PMDEVID, Device Configuration Register 76

3.19.1 Field descriptions . 76
3.20 PMDEVTYPE, Device Type Register . 77

3.20.1 Field descriptions . 77
3.21 PMEVCNTR<n>, Event Count Register <n> (up-to 32 bits) 79

3.21.1 Field descriptions . 79
3.22 PMEVCNTR<n>, Event Count Register <n> (up-to 64 bits) 80

3.22.1 Field descriptions . 80
3.23 PMEVFILTR<n>, Event Type Select Register <n> 81

3.23.1 Field descriptions . 81
3.24 PMEVTYPER<n>, Event Type Select Register <n> 82

3.24.1 Field descriptions . 82
3.25 PMIIDR, Implementation Identification Register 83

3.25.1 Field descriptions . 83
3.26 PMINTENCLR<n>, Overflow Interrupt Enable Clear Register <n> 85

ARM IHI 0091
A.a-00bet0

Copyright © 2005-2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

v

Contents
Contents

3.26.1 Field descriptions . 85
3.27 PMINTENSET<n>, Overflow Interrupt Enable Set Register <n> 86

3.27.1 Field descriptions . 86
3.28 PMIRQCR0, Interrupt Configuration Register 0 87

3.28.1 Field descriptions . 87
3.29 PMIRQCR1, Interrupt Configuration Register 1 88

3.29.1 Field descriptions . 88
3.30 PMIRQCR2, Interrupt Configuration Register 2 89

3.30.1 Field descriptions . 89
3.31 PMIRQSR, Interrupt Status Register . 92

3.31.1 Field descriptions . 92
3.32 PMOVSCLR<n>, Overflow Status Clear Register <n> 94

3.32.1 Field descriptions . 94
3.33 PMOVSSET<n>, Overflow Status Set Register <n> 95

3.33.1 Field descriptions . 95
3.34 PMOVSSR<n>, Overflow Status Snapshot Register <n> 96
3.35 PMPIDR0, Peripheral Identification Register 0 97

3.35.1 Field descriptions . 97
3.36 PMPIDR1, Peripheral Identification Register 1 98

3.36.1 Field descriptions . 98
3.37 PMPIDR2, Peripheral Identification Register 2 99

3.37.1 The component uses a 12-bit part number 99
3.37.2 The component uses a 16-bit part number 100

3.38 PMPIDR3, Peripheral Identification Register 3 101
3.38.1 The component uses a 12-bit part number 101
3.38.2 The component uses a 16-bit part number 102

3.39 PMPIDR4, Peripheral Identification Register 4 103
3.39.1 Field descriptions . 103

3.40 PMPIDR5, Peripheral Identification Register 5 105
3.40.1 Field descriptions . 105

3.41 PMPIDR6, Peripheral Identification Register 6 106
3.41.1 Field descriptions . 106

3.42 PMPIDR7, Peripheral Identification Register 7 107
3.42.1 Field descriptions . 107

3.43 PMSSCR, Snapshot Capture Register . 108
3.43.1 Field descriptions . 108

3.44 PMSSRR, Snapshot Reset Register . 109
3.44.1 Field descriptions . 109

3.45 PMSSSR, Snapshot Status Register . 110
3.45.1 Field descriptions . 110

3.46 PMSVR<n>, Saved Value Register <0-63> 111

Glossary

ARM IHI 0091
A.a-00bet0

Copyright © 2005-2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

vi

Preface

Document status

Beta release.

The information contained in this manual is at Beta quality. Beta quality means that all major features of the
specification are described in the manual, some details might be missing.

In case of any apparent discrepancy or missing information, please contact Arm Limited.

vii

About this book

IBBMHH This manual describes a standard Performance Monitoring Unit (PMU). A PMU primarily consists of monitors
that measure a characteristic of a component. Monitors are often event counters that count events generated
by the component. However, in some cases a PMU provides monitors that measure the state or an operational
characteristic of the component.

RGNQRW In keeping with the rest of the architecture reference manuals, features which are optional are explicitly declared
in this manual as being optional, and the presence of independent ID codes for features does not implicitly mean
that the features are optional.

viii

Using this book

IWZYHY This manual has three main sections:

Description
An informative section describing the architecture and motivation.

Specification
A normative section that specifies the mandatory aspects of the architecture. The Specification section
uses Rules-based writing.

Programmers’ Model
A normative section that provides the definitions of the registers added by this manual.

ix

Conventions

Typographical conventions

The typographical conventions are:

italic

Introduces special terminology, and denotes citations.

bold

Denotes signal names, and is used for terms in descriptive lists, where appropriate.

monospace

Used for assembler syntax descriptions, pseudocode, and source code examples.

Also used in the main text for instruction mnemonics and for references to other items appearing in
assembler syntax descriptions, pseudocode, and source code examples.

SMALL CAPITALS

Used in body text for terms, such as IMPLEMENTATION DEFINED, that have specific technical
meanings described in the Arm Architecture Reference Manual.

Blue text

Indicates a link. This can be a cross-reference to another location within the document, or a URL
such as http://developer.arm.com.

Numbers

Numbers are normally written in decimal. Binary numbers are preceded by 0b, and hexadecimal numbers by 0x.
In both cases, the prefix and the associated value are written in a monospace font, for example 0xFFFF0000. To
improve readability, long numbers can be written with an underscore separator between every four characters,
for example 0xFFFF_0000_0000_0000. Ignore any underscores when interpreting the value of a number.

x

http://developer.arm.com

Rules-based writing

This specification consists of a set of individual content items. Content items are classified into the following
types:

• Rule
• Information
• Rationale
• Implementation note
• Software usage

Rules are normative statements. An implementation which is compliant with this specification must conform to
all of the Rules in this specification.

Rules must not be read in isolation. Where a particular feature is specified by multiple Rules, these are
grouped into sections and subsections to provide context. Where appropriate, these sections begin with a short
introduction to aid the reader.

Arm strongly recommends that implementers read all chapters and sections of this document to ensure that an
implementation is compliant.

Content items other than Rules are informative statements. These are provided purely as an aid to understanding
this specification.

Content item classes

Rule

A Rule is a statement which either

• describes the behaviour of a compliant implementation, or
• defines concepts or terminology.

A Rule is identified by the letter R.

Information

An Information statement provides additional information and guidance as an aid to understanding the
specification.

An Information statement is identified by the letter I.

Rationale

A Rationale statement explains why the specification was specified as it was.

A Rationale statement is identified by the letter X.

Implementation note

An Implementation note provides guidance on implementation of the specification.

An Implementation note is identified by the letter U.

xi

Preface
Rules-based writing

Software usage

A Software usage statement provides guidance on how software can make use of the features defined by the
specification.

A Software usage statement is identified by the letter S.

Identifiers

Each content item may have an associated identifier which is unique within the context of this specification.

When the document is prior to beta status:

• Content items are assigned numerical identifiers, in ascending order through the document (0001, 0002,
. . .).

• Identifiers are volatile: the identifier for a given content item may change between versions of the
document.

After the document reaches beta status:

• Content items are assigned random alphabetical identifiers (HJQS, PZWL, . . .).
• Identifiers are preserved: a given content item has the same identifier across versions of the document.

Examples

Below are examples showing the appearance of each type of content item.

R This is a Rule.

RX001 This is a Rule with an identifier.

X This is a Rationale statement.

I This is an Information statement.

U This is an Implementation note.

S This is a Software usage statement.

ARM IHI 0091
A.a-00bet0

Copyright © 2005-2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

xii

Additional reading

This section lists publications by Arm and by third parties.

See Arm Developer (http://developer.arm.com) for access to Arm documentation.

[1] The Every Computer Performance Book. (ISBN 9781482657753) Bob Wescott.

[2] Arm® Architecture Reference Manual Supplement; Memory System Resource Partitioning and Monitoring
(MPAM), for Armv8-A. (ARM DDI 0598) Arm Limited.

[3] Arm® Architecture Reference Manual for ARMv8-A architecture profile. (ARM DDI 0487) Arm Limited.

[4] Armv8-M Architecture Reference Manual. (ARM DDI 0553) Arm Limited.

[5] ARM CoreSight Architecture Specification. (ARM IHI 0029) Arm Limited.

xiii

Feedback

Arm welcomes feedback on its documentation.

Feedback on this book

If you have comments on the content of this book, send an e-mail to errata@arm.com. Give:

• The title (CoreSight Performance Monitoring Unit Architecture).
• The number (ARM IHI 0091 A.a-00bet0).
• The page numbers to which your comments apply.
• The rule identifiers to which your comments apply, if applicable.
• A concise explanation of your comments.

Arm also welcomes general suggestions for additions and improvements.

Note

Arm tests PDFs only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the appearance or behavior
of any document when viewed with any other PDF reader.

xiv

Chapter 1
Description

This section is informative.

ARM IHI 0091
A.a-00bet0

Copyright © 2005-2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

15

Chapter 1. Description
1.1. About Performance Monitors

1.1 About Performance Monitors

This manual describes a standard Performance Monitoring Unit (PMU). A PMU primarily consists of monitors
that measure a characteristic of a component.

Monitors are often event counters that count events generated by the component. (For the purposes of the
PMU architecture, a cycle counter is an event counter that counts the cycle event.) The architecture includes a
mechanism to generate an interrupt when a counter reaches a threshold value.

In the CoreSight Performance Monitoring Unit Architecture, event counters are monotonically increasing.

However, in some cases a PMU provides monitors that measure the state or an operational characteristic of the
component. For instance, a monitor might increment when a resource is allocated and decrement when the
resource is deallocated, meaning it provides the current allocation level for the resource and is not monotonic.

A PMU might consist of a mix of such monitors and event counters. Where this manual uses the term monitor it
can mean either an event counter or some other monitor, unless explictly stated.

An implementation of the CoreSight Performance Monitoring Unit Architecture can have up-to 128 monitors of
up-to 64-bits in size, or up-to 256 monitors of up-to 32-bits in size.

A PMU has two main use models:

• Profiling and software optimization.

• Monitoring.

Both approaches typically use Sampling to read the PMU.

PMUs are sometimes also described as Hardware Performance Monitors (HPM).

1.1.1 Profiling and software optimization

Profiling is a tool used in software optimization. Performance Monitors are a hardware feature used by profiling.

The main goal of optimization is almost always reducing the elapsed time required to execute the program.
Reducing power consumption might be a goal, but is usually a side-effect of reducing the elapsed time.

For some markets, performance merely has to be good enough. For example, mobile applications are dominated
by frameworks and middleware. Optimizing the application software is a comparatively niche activity.

However:

• Profiling can be used to provide data for Profile-guided Optimization (PGO).

• Frameworks and middleware are themselves optimized. This improves all applications and so benefits the
platform.

• For server and High-performance Computing (HPC) systems, software optimization is a mainstream
activity.

– These systems are often sold on their performance at key benchmarks.
– For example, SPEC, TPC, Linpack, and so on.

As a result, these systems might be subject to continuous improvement.

Not all software is like this. There is much dusty deck code that is deemed good enough or too hard to optimize.
Profiling can also be used as a mechanism to expose this code.

ARM IHI 0091
A.a-00bet0

Copyright © 2005-2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

16

Chapter 1. Description
1.1. About Performance Monitors

1.1.2 Monitoring

Monitoring is a tool used in system operations. Performance Monitors are a hardware feature used in monitoring.

The goal of performance monitoring is to provide a system operator with answers that can be used to improve
the efficiency of the system. Examples of the questions that answers are needed for are:

• “What is the system doing right now?”

• “Why is the system running slow?”

• “Can the system handle the upcoming peak load?”

(These questions are taken from [1].)

The answers to these questions might cause the operator to, for example, increase (or decrease) capacity or to
rearrange load on the available machines. Operators are not necessarily human. Systems might use Performance
Monitoring hardware to automatically make these changes.

1.1.3 Sampling

There are two main sampling models for HPM:

• Time-based sampling. Time-based sampling with Arm DS-5 Streamline Performance Analyzer and
Source-level profiling with Arm MAP source-level profiler show example output of a time-based sampling
tools.

• Event-based sampling. Hot-spot analysis from event-based sampling with Arm DS-5 Streamline
Performance Analyzer shows example output of a event-based sampling tool.

Figure 1.1: Time-based sampling with Arm DS-5 Streamline Performance Analyzer

ARM IHI 0091
A.a-00bet0

Copyright © 2005-2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

17

Chapter 1. Description
1.1. About Performance Monitors

Figure 1.2: Source-level profiling with Arm MAP source-level profiler

Figure 1.3: Hot-spot analysis from event-based sampling with Arm DS-5 Streamline Performance Analyzer

ARM IHI 0091
A.a-00bet0

Copyright © 2005-2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

18

Chapter 1. Description
1.2. Rationale for a standard PMU architecture

1.2 Rationale for a standard PMU architecture

Layered software design allows software to be configurable and reusable across many systems.

For example, a standard architecture for a PMU monitors is allows a shared PMU driver software layer. Such a
driver abstracts the software interface to a PMU, and can be configured with target-specific data.

For instance, in a typical Arm processor PMU there are an IMPLEMENTATION DEFINED number of event counter
monitors, most of which can be configured to count one from an IMPLEMENTATION DEFINED set of events.
The Arm processor PMU also contains an example of a fixed function counter that, in this case, can only count
CPU clock cycles. This target-specific knowledge does not need to be known at the PMU driver level.

Without a common architecture, the tool requires concrete implementations at many levels. This architecture
provides such an abstraction. The Armv8 PMUv3 extension is a further abstraction layered on top of this
abstraction.

ARM IHI 0091
A.a-00bet0

Copyright © 2005-2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

19

Chapter 1. Description
1.3. What to measure

1.3 What to measure

The following are suggestions for what to measure:

Utilization
Utilization (ρ) is a key measurement for any performance monitor, for two main reasons:

• If a resource is under-utilized, there is scope for improving performance.

• Performance drops dramatically as a resource reaches saturation, because of the additional waiting
time in a system.

Queuing time as a function of utilization for M/M/1 and M/M/2 queues shows the ratio of Queuing time to
Service time (S = 1/µ) varying over Utilization (ρ), by considering the total Response time (W) for both
an M/M/1 queue (W = S/(1− ρ)) and an M/M/2 queue (W = S/(1− ρ2)) using Little’s Law.

Figure 1.4: Queuing time as a function of utilization for M/M/1 and M/M/2 queues

Utilization is defined as the total amount of time the resource is busy (B) (not idle) during a period, divided
by the length of the period (T). (ρ = B ÷ T)

For some interfaces, an access on the interface is defined as a sequence of units, each of which comprises
a sequence of smaller units that are transmitted one-per-cycle on the interface link. For example, a packet
interface might define a packet as a sequence of flow-control units (flits) which are sent one physical unit
(phit) per cycle:

• A flit is a fixed integer (N) multiple of the size of a phit.
• A phit is the fixed number of data bits that can be transmitted in a single cycle on the link.
• The link is busy (B) when it is transferring a phit, that is, part of a flit or packet.

To calculate Utilization for such an interface, the number of phits (B = #{phit}) or flits (B = N×#{flit})
must be counted, along with the total number of cycles (T).

Latency
Many processes are very latency sensitive. For example, a PE cannot make forward progress once all
instructions are stalled waiting on long latency operations.

Latency is also referred to as Response time, W .

Statistics such as the maximum latency or distribution of latencies for a population of operations can
be used in evaulating the effect of long latency operations on performance. For example, a PMU might
provide a mechanism to count every operation that took longer than a programmed minimum latency. By
varying this minimum in steps, software can create a histogram for the distribution of latencies.

However, these can be hard to measure if there can be many simultaneously outstanding operations.
Statistical sampling of operations can be used to reduce the number of simultaneously monitored
operations.

Alternatively, Little’s Law can be used to derive average Latency compartively cheaply. Average latency
is less useful, as performance tends to be most affected by outliers. To calculate average Latency, the

ARM IHI 0091
A.a-00bet0

Copyright © 2005-2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

20

Chapter 1. Description
1.3. What to measure

total number of outstanding operations on each cycle can be divided by the number of operations. See
Occupancy.

Bandwidth
Cumulative number of data bytes (or some other fixed unit) transferred per unit of time.

When calculating useful bandwidth, only data bytes should be counted. Overheads that might form part of
a transfer, such as the address or access type information, should not be counted. Example of other fixed
units that might be counted are full and partial cache-lines.

Memory System Resource Partitioning and Monitoring (MPAM) [2] defines a standard bandwidth monitor.
See MPAM.

Throughput
Cumulative number of packets (or some other variable unit) transferred per unit of time. In a packetized
system, packet throughput can be an important measure of system performance. Packets might vary in
size, meaning a comparison of Throughput and Bandwidth can determine average packet size.

Effectiveness
For example, a cache is effective if accesses to the cache have low latency because they do not miss in the
cache.

Counting events that indicate effectiveness or ineffectiveness (for example, a cache miss) might be more
cost efficient than measuring actual Latency.

Errors
An error means any unexpected circumstance; or, at least, any circumstance that the designer and user
should not expect. That is, any significant performance or power impacting should-be-rare events.

Completions
Average Completion rate can be calculated by counting the total number of tasks and dividing by the
elapsed time. The definition of a task is specific to each measurement. Completion rate is sometimes
referred to as the output rate.

For example, for a stored-program PE, a task might be a program instruction (giving a completion rate of
instructions-per-cycle or IPC), or a particular class of operation.

Bandwidth and Throughput are other forms of Completion rate, where the task is transferring a byte of
data or a packet across an interface.

Arrivals
Arrival rate (λ) can be calculated by counting the total number of arrivals and dividing by the elapsed
time. Arrival rate is used in calculating Utilization (ρ) and other measurements. (ρ = λ× S.)

If tasks always complete then the average Arrival rate is the same as the average Completion rate.

Occupancy
Average occupancy (L) can be calculated by counting the total occupancy of tasks on each cycle, and
dividing by the total number of cycles. The definition of a task is specific to each measurement.

If Arrival rate (λ) is also measured then Little’s Law can then be used to calculate average Response time
(W = L÷ λ). That is, the average time each task spends in the system.

For example, for a load-store unit of a processor, a task might be a memory access, and the occupancy is
the total number of outstanding accesses in the load-store queue on each cycle.

Cumulative duration (occupancy) in particular states
For example, in a configuration state, refresh state, processing with interrupts masked, and so on. That is,
the monitor measures total occupancy in the state of the resource being monitored. Typically, this is either
zero (not in the state) or one (in the state) on each cycle.

If entries into the state are also measured then average Occupancy in the state can be calculated.

ARM IHI 0091
A.a-00bet0

Copyright © 2005-2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

21

Chapter 1. Description
1.3. What to measure

Cumulative duration of stalls (occupancy in the stalled state)
Time (or resources) spent doing nothing. Stalls might be further split into stall because there are no tasks
to perform (frontend stall, L = 0) and stall due to inability to complete a task (backend stall, L 6= 0).
These might be further refined into significant reasons for stalls.

Utilization can be calculated from the frontend stall time (tL=0). (ρ = 1− tL=0/T)

Statistically sampled events
For some events or characteristic it might be expensive to accurately monitor the event or characteristic.
For example calculating average duration for a task can be achieved using only a pair of event counters.
However, to determine the maximum (or minimum) duration for the task means measuring the duration of
all tasks, which might be impractical if there can be many tasks operating in parallel.

In such situations, the monitor might be designed to sample a subset of the tasks and instead measure the
maximum or minimum duration of only the sampled tasks. That way, the monitor unit only has to be able
to measure the number of sampled tasks that can operate in parallel.

Some sampling techniques, such as systematic sampling, can either guarantee or at least make it unlikely
that more than one sampled task operates in parallel.

When such a technique is used, it is important that the monitor describes the parameters used for sampling.

Software increment (SW_INCR)
Increment on writes to a software increment register.

Cycles (CYCLES)
Increment once every cycle. An implementation might also include a fixed cycle counter.

Counter overflows (CHAIN)
Allowing one counter to overflow into another counter can be an effective way to flexibly allocate counters
if resources are constrained. For example if 16-bit or 32-bit counters are implemented.

Note

This architecture does not require an implementation to have standard event types. The events that an event
counter counts might be fixed by the implementation.

Certain events might only be applicable to certain performance monitors. For example, software increment is
only useful on a stored-program PE, but generally not useful on a bus monitor.

ARM IHI 0091
A.a-00bet0

Copyright © 2005-2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

22

Chapter 1. Description
1.4. MPAM

1.4 MPAM

MPAM [2] is an Arm architecture extension that provides mechanisms for partitioning shared resources between
software agents such as Virtual Machines (VMs). MPAM also includes standard interfaces for memory-mapped
resource monitoring components.

Overview is taken from the introduction to [2].

MPAM v1.1 describes the MPAM v1.1 extensions.

1.4.1 Overview

Some shared-memory computer systems run multiple applications or multiple virtual machines (VMs)
concurrently. Such systems might have one or more of the following needs:

• Control the performance effects of misbehaving software on the performance of other software.
• Bound the performance impact on some software by any other software.
• Minimize the performance impact of some software on other software.

These scenarios are common in enterprise networking and server systems. The MPAM extension addresses these
scenarios with two approaches that work together, under software control, to apportion the performance-giving
resources of the memory system. The apportionment can be used to align the division of memory-system
performance between software, to match higher-level goals for dividing the performance of the system between
software environments.

These approaches are:

• Memory-system resource partitioning.
• Memory-system resource usage monitoring.

The main motivation of the extension is to make data centers less expensive. The extension can increase
server utilization, so that fewer servers are needed for a given level of service. Utilization can be increased by
controlling how much impact the best-effort jobs have on the tail latency of responses by web-facing jobs.

The MPAM extension describes:

• A mechanism for attaching partition identifiers and a monitoring property, for executing software on an
Arm processing element (PE).

• Propagation of a Partition ID (PARTID) and Performance Monitoring Group (PMG) through the memory
system.

• A framework for memory-system component controls that partition one or more of the performance
resources of the component.

• Extension of the framework for MSCs to have performance monitoring that is sensitive to a combination
of PARTID and PMG.

• Some implementation-independent, memory-mapped interfaces to memory-system component controls
for performance resource controls most likely to be deployed in systems.

• Some implementation-independent memory-mapped interfaces to memory-system component resource
monitoring that would likely be needed to monitor the partitioning of memory-system resources.

1.4.2 MPAM v1.1

The following MPAM features are also described in [2]:

• A Resource Instance Selector (RIS) field is added to MPAMCFG_PART_SEL and MSMON_CFG_MON_SEL
registers. Resource instance selection provides a means to access control settings in an MSC for multiple
resources of the same type.

• Greater range for the memory bandwidth usage monitors through optional long registers.

ARM IHI 0091
A.a-00bet0

Copyright © 2005-2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

23

Chapter 1. Description
1.4. MPAM

Other minor additions to the MPAM programmers’ model are also included in MPAM v1.1.

ARM IHI 0091
A.a-00bet0

Copyright © 2005-2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

24

Chapter 2
Specification

This section is normative.

ARM IHI 0091
A.a-00bet0

Copyright © 2005-2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

25

Chapter 2. Specification
2.1. Organization

2.1 Organization

RDRPFZ Each monitor <n> comprises:

• A monitor value register, PMEVCNTR<n>.

• An optional event select register, PMEVTYPER<n>.

• An optional event filter register, PMEVFILTR<n>.

• A monitor enable bit, PMCNTEN[n].

If the monitor is an event counter, or defines an overflow condition, the monitor also comprises:

• A monitor overflow flag, PMOVS[n].

• An interrupt enable bit, PMINTEN[n].

IZJTZQ The names of registers in an implementation might differ from those in this document. In particular:

• The mnemonic and name might include some reference to the component being monitored.

• The mnemonics and names in this document are appropriate only for monitors that implement counters.

RKRLSW The Performance Monitoring Unit (PMU) might include a Software Increment register, PMSWINC. This feature
is deprecated and not recommended for new designs. The Software Increment register is not described in this
document. See [3].

RKBRSS When event counters are implemented, or any monitor defines an overflow condition, the PMU includes an
overflow interrupt request signal.

RMRBCQ Monitors might be split into monitor groups. See Monitor group extension.

RVPSKV The size of each monitor value is IMPLEMENTATION DEFINED, up-to 64 bits.

RJRSCZ The size of the largest monitor value is discoverable through PMCFGR.SIZE.

UNNHQG When event counters are implemented, Arm recommends that all event counters are the same size.

Exceptions can be made for fixed-function counters, such as cycle counters, as is the case in the Armv8-A PMU
[3] when FEAT_PMUv3p5 is not implemented, and in the Armv8-M PMU [4].

UDPSDJ When event counters are implemented, the choice of counter size is usually determined by the periodicity and
impact of an event counter unsigned overflow:

• The expected period between overflows is 2SZ

f×E(N) , where SZ is the size of the counter, E(N) is the
expected average number of events per counting cycle, and f is the counting frequency.

For example, if SZ is 32, E(N) is 0.1 and f is 2GHz, then the expected period between overflows is
21.4 seconds. The same example with a 48-bit counter has an expected period between overflows
of just over 16 days, whereas a 64-bit counter has an expected period between overflows of almost
3,000 years.

• The impact of a counter overflow depends on the intended usage models for the counters.

For example, if an overflow generates a CPU interrupt and handled by software incrementing a soft
overflow counter then resetting the overflow flag, then the impact is manageable if the overflow
is infrequent, likely to be serviced before the next overflow, and the software complexity and
maintenance cost is acceptable.

However, if the counter is free-running and overflows are never serviced by software, the impact of
overflow can be very large. Such a system might require that the counter never overflows.

RBNQPR If the largest monitor value register is 32 bits or smaller, all monitor value registers are at word-aligned addresses.
Otherwise, all monitor value registers are at doubleword-aligned addresses.

ARM IHI 0091
A.a-00bet0

Copyright © 2005-2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

26

Chapter 2. Specification
2.1. Organization

RHKCFV The number of monitors is IMPLEMENTATION DEFINED and is discoverable through PMCFGR.N:

• If the largest monitor value register is 32 bits or smaller, up-to 256 monitors can be implemented.

• Otherwise, up-to 128 monitors can be implemented.

IXDDYT If Monitor group extension or Snapshot extension are implemented, the maximum number of counters that can
be implemented might be less than this. See the descriptions of the extensions for more information.

RGZMZD Each of the registers PMOVS, PMCNTEN and PMINTEN are programmed through pairs of set/clear registers:

• PMOVSSET<m> and PMOVSCLR<m>.

• PMCNTENSET<m> and PMCNTENCLR<m>.

• PMINTENSET<m> and PMINTENCLR<m>.

When accessed as a 32-bit register, each bit [q] in these registers corresponds to a status or control bit for
monitor <m>, where n = q + (32×m). For each register pair PM{fn}SET and PM{fn}CLR:

• A write of 1 to PM{fn}SET<m>[q] sets the PM{fn}[q + (32×m)] bit to 1.

• A write of 1 to PM{fn}CLR<m>[q] clears the PM{fn}<m>[q + (32×m)] bit to 0.

• A write of 0 to PM{fn}SET<m>[q] or PM{fn}CLR<m>[q + (32×m)] has no effect.

• A read of PM{fn}SET<m>[q] or PM{fn}CLR<m>[q] returns the current value of PM{fn}[q + (32×m)].

Note

Due to technical limitations of this manual, the set/clear registers are described in Programmers’ Model as:

• PMOVSSET<n> and PMOVSCLR<n>.
• PMCNTENSET<n> and PMCNTENCLR<n>.
• PMINTENSET<n> and PMINTENCLR<n>.

Do not confuse the <n> index used for these registers with the <n> index used for monitor value and
configuration registers.

IPFGYY The PMU might include a CoreSight Lock Access Register, although this is deprecated and not recommended
for new designs. The CoreSight Lock Access Register mechanism is not described in this document. See [5].

IMFDCF The PMU might have other interfaces to the registers which are not considered by this architecture. For example,
an Armv8-A PE has a System register interface to the PMU registers.

IGFGGZ The PMU might have other deviations from this structure. For example, an Armv8-A PE has:

• Controls to partition the counters between those used by an Operating System and those used by a
Hypervisor.

• Controls to configure overflow from either the bottom 32 bits or full 64 bits of the counter.

See also:

• Accessing PMU registers.
• Extensions.
• Programmers’ Model.

ARM IHI 0091
A.a-00bet0

Copyright © 2005-2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

27

Chapter 2. Specification
2.2. Operation of the PMU

2.2 Operation of the PMU

RWXSQT The PMU has a RUN state and a STOP state. PMU state-machine shows this.

RUN
PMCR.E=1

STOP
PMCR.E=0

Figure 2.1: PMU state-machine

RHLTDF The PMU operating state is determined by the PMCR.E control bit.

PMCR.E State

0b0 STOP
0b1 RUN

IKNMNQ Freeze on overflow extension describes a third state, WAIT.

SFJDNY Software configures the monitors using PMEVTYPER<n> and PMEVFILTR<n>. If these registers are
programmable, software must program PMEVTYPER<n> and PMEVFILTR<n> for each monitor before
enabling that monitor.

See also:

• Accuracy of the PMU.
• Security.
• Extensions.

2.2.1 Event counting

This section applies for monitors that are event counters.

RLXYWS For a given event counter, n, the event counter increments by an IMPLEMENTATION DEFINED amount each time
all of the following occur:

• The PMU is in the RUN state.

• The event counter is enabled by PMCNTEN[n].

• Counting is not prohibited. See Security.

• The event conditions specified by PMEVTYPER<n> and, if implemented, PMEVFILTR<n> occur.

RTGVMJ Increments of event counters by the PMU are atomic operations on the event counter.

RXKQWT Event counters are unsigned integer counters.

RQLMFG The event conditions specified by PMEVTYPER<n> and PMEVFILTR<n> configure what the event counter
counts, including:

• The event counted by the event counter.

• Any filtering of the event, for example, on the context of the component being monitored.

RVPCMF For a given event counter, n, if the event counter increment generates unsigned overflow of the event counter:

• The overflow status flag PMOVS[n] is set to 1.

ARM IHI 0091
A.a-00bet0

Copyright © 2005-2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

28

Chapter 2. Specification
2.2. Operation of the PMU

• The event counter wraps through zero.

ISCFBG If the PMU does not implement the Freeze on overflow extension or freeze-on-overflow is not enabled, the event
counter continues counting events. Counting continues as long as the event counter is enabled, regardless of any
overflows.

IGKWYH Unsigned overflow of an event counter might generate a countable event. See Counter chaining.

2.2.2 State or event monitoring

This section applies for monitors that are not event counters.

RXWGCN For a given monitor, n, the monitor monitors the IMPLEMENTATION DEFINED state or characteristic of the
monitored component while all of the following are true:

• The PMU is in the RUN state.

• The monitor is enabled by PMCNTEN[n].

• Monitoring is not prohibited. See Security.

RMBSSC The conditions under which the monitored state or characteristic are updated, including the frequency of any
updates, are IMPLEMENTATION DEFINED.

RNBWKD Updates of the monitor by the PMU are atomic operations on the monitor.

RHSHSJ The monitoring conditions specified by PMEVTYPER<n> and PMEVFILTR<n> configure what the monitor
monitors, including:

• The state or events monitored by the monitor.

• Any filtering of the state or events, for example, on the context of the component being monitored.

RVHWBS For a given monitor, n, the monitor might define an overflow condition. When the monitor enters the overflow
condition, the overflow status flag PMOVS[n] is set to 1.

ILPGWN If the PMU does not implement the Freeze on overflow extension or freeze-on-overflow is not enabled, the
monitor continues operating after recording the overflow condition.

RYCLQB If a given monitor, n, does not define an overflow condition, PMOVS[n] and PMINTEN[n] are RES0.

2.2.3 Mapping controls and fixed-function monitors

RYSQVN The mapping of the PMEVTYPER<n> and PMEVFILTR<n> register contents to controls is IMPLEMENTATION
DEFINED, and might differ between monitors.

IXNQJD RYSQVN means that events might be dynamically programmable, but also that PMUs can have fixed monitors that
have IMPLEMENTATION DEFINED configurations.

UKDGTQ It is preferred, but not required, that monitors are homogeneous. That is, all monitors can be configured in
the same way. However, for systems with very large numbers of events this might not be plausible, so this
restriction is not enforced in the architecture.

As a result it is not required that there is a single definition for all event select registers. However, this is also
strongly recommended. A part or all of the event select register might read-as a fixed, non-zero value.

2.2.4 Interrupt signaling

RMDCYL If the PMU implements an overflow interrupt then it is asserted when all of the following are true for any given
monitor, n:

ARM IHI 0091
A.a-00bet0

Copyright © 2005-2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

29

Chapter 2. Specification
2.2. Operation of the PMU

• The overflow status flag PMOVS[n] is set to 1.

• The interrupt enable bit PMINTEN[n] is set to 1.

• The PMU is in the RUN or WAIT state.

SVFGSS If software programs an event counter with a negative number then the PMU generates the overflow interrupt
request when the event counter wraps through zero. That is, after minus that number of events have been
counted.

IQQFDG One overflow interrupt request signal is implemented for each PMU.

RRSZKZ The mechanism for signaling overflow interrupt requests is IMPLEMENTATION DEFINED.

RFDLKQ A PMU might include the PMIRQCR0, PMIRQCR1, and PMIRQCR2 registers to configure a message-signaled
interrupt. The status of the message is indicated in PMIRQSR. If this standard form of message-signaled
interrupts are implemented then PMCFGR.MSI reads as 1.

IVBWMC Arm strongly recommends that if a PMU has close affinity to a single PE, the interrupt request signal is
configured as a Private Peripheral Interrupt (PPI) for that PE.

ARM IHI 0091
A.a-00bet0

Copyright © 2005-2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

30

Chapter 2. Specification
2.3. Accuracy of the PMU

2.3 Accuracy of the PMU

ISDBRN The PMU provides approximately accurate performance information.

RYTRMH To keep the implementation and validation cost low, a reasonable degree of inaccuracy in the monitored values
is often acceptable. The permitted degree of inaccuracy is IMPLEMENTATION DEFINED.

IDYQXP There is no exact definition of reasonable degree of inaccuracy, but the following guidelines are recommended:

• Under normal operating conditions, the monitors must present an accurate value of the monitored
characteristic.

• In exceptional circumstances, such as changes in Security state or other boundary conditions, it is
acceptable for the value to be inaccurate.

• Under very unusual non-repeating pathological cases values can be inaccurate. These cases are likely to
occur as a result of asynchronous exceptions, such as interrupts, where the chance of a systematic error in
the value is vanishingly unlikely.

An implementation must not introduce inaccuracies that can be triggered systematically by normal pieces of
code that are running. For example, dropping a branch count in a loop due to the structure of the loop gives a
systematic error that makes the count of branch behavior very inaccurate, and this is not reasonable. However,
the dropping of a single branch count as the result of a rare interaction with an interrupt is acceptable.

The permitted inaccuracy limits the possible uses of the PMU. In particular, the point in an operation pipeline
where the monitor is updated is not defined relative to the point where a read of the monitor is made. This means
that pipelining effects can cause some imprecision. An implementation must document any particular scenarios
where significant inaccuracies are expected.

ARM IHI 0091
A.a-00bet0

Copyright © 2005-2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

31

Chapter 2. Specification
2.4. Accessing PMU registers

2.4 Accessing PMU registers

RWVQDZ It is IMPLEMENTATION DEFINED whether the monitor value registers, PMEVCNTR<n>, and/or monitor
configuration registers, PMEVTYPER<n> and PMEVFILTR<n>, are writable through the register interface.

If monitors are writable:

RCGWBM • It is IMPLEMENTATION DEFINED whether the monitor value and monitor configuration registers can be
written to other than in the STOP state.

RCLXGJ • If the PMU does not allow monitor value and monitor configuration registers to be written to other than in
the STOP state then writes to the registers other than in the STOP state are ignored.

RYNJLW • If the PMU does not allow monitor value and monitor configuration registers to be written to other than in
the STOP state then PMCFGR.NA reads as 1.

RYHTDZ • If the PMU allows monitor value and monitor configuration registers to be written to other than in the
STOP state, then writes to the registers other than in the STOP state take effect in finite time. Take effect
means:

– Before the write takes effect, reads of the register by the PMU made as part of the operation of the
PMU yield the old value.

– After the write takes effect, reads of the register by the PMU made as part of the operation of the
PMU yield the new value.

RQBXTC Reads of monitor value and monitor configuration registers through the register interface return the last value
written to the registers. This is either the last value written through the register interface, or a value written by
the PMU after the write through the register interface took effect.

IPYSHB A write to the register through the register interface will not be overwritten by a hardware update of the monitor
value, for example, when incrementing an event counter. See RTGVMJ and RNBWKD.

A following read of the monitor value register through the register interface will return either the last value
written through the register interface, or the last value written by the PMU. If the value returned is the value
written by the PMU, then this write by the PMU will have occurred after the write through the register interface.

That is, if the monitor is an event counter, a read of the event counter through the register interface will
return either the value written to the event counter, or the value written to the event counter and subsequently
incremented by the PMU. The read of the event counter does not return either the old value or a value incremented
from the old value.

RPVPYD An implementation might define additional constraints on accessing PMU registers.

IDCPZN For example, the Armv8-A PMU [3] defines that external accesses to the PMU are not permitted when the OS
Lock is locked.

RZWQLG A memory-mapped PMU must implement the supported access sizes defined by the section Supported access
sizes in [3].

RZQQKP Permitted word-aligned 32-bit accesses to either half of a 64-bit register that is mapped to a doubleword-aligned
pair of adjacent 32-bit locations must be supported.

RZNTBP It is IMPLEMENTATION DEFINED and recommended that doubleword-aligned 64-bit accesses are supported to
the following pairs of 32-bit registers (n is even):

• PMCNTENSET<n> and PMCNTENSET<n+1>.
• PMCNTENCLR<n> and PMCNTENCLR<n+1>.
• PMINTENSET<n> and PMINTENSET<n+1>.
• PMINTENCLR<n> and PMINTENCLR<n+1>.
• PMOVSSET<n> and PMOVSSET<n+1>.
• PMOVSCLR<n> and PMOVSCLR<n+1>.

ARM IHI 0091
A.a-00bet0

Copyright © 2005-2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

32

Chapter 2. Specification
2.4. Accessing PMU registers

IMSFBY That is, it is IMPLEMENTATION DEFINED and recommended that the PMU treats each PM{fn}{SET|CLR}<n>
and PM{fn}{SET|CLR}<n+1> register pair as a 64-bit register. This recommendation includes the case where
the <n+1> register is reserved because fewer than 32× (n+ 1) monitors are implemented.

RDDZMD It is IMPLEMENTATION DEFINED and recommended that permitted doubleword-aligned 64-bit accesses to 64-bit
registers and supported pairs of 32-bit registers are single-copy atomic at doubleword granularity.

IWHSHV If doubleword-aligned 64-bit accesses are only single-copy atomic at word granularity, then the system might
generate a pair of 32-bit accesses from a 64-bit access. The order in which the two halves are accessed is not
specified.

RZWZGC A memory-mapped PMU must implement the memory-mapped component synchronization rules defined by the
section Synchronization of memory-mapped registers in [3].

RKRVRQ A memory-mapped PMU must implement the access requirements for reserved and unallocated registers defined
by the section Access requirements for reserved and unallocated registers in [3].

See also:

• Security.
• Programmers’ Model.

ARM IHI 0091
A.a-00bet0

Copyright © 2005-2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

33

Chapter 2. Specification
2.5. Security

2.5 Security

Note

A PMU produces performance data about the behavior of the system being monitored. It might be possible
for users to deduce information about the system from this performance data. This might be done directly
or indirectly using the PMU as a side-channel.

The PMU architecture does not, by itself, protect against exposing such information. Arm recommends
that, when implementing performance monitoring features, designers assess the types of information
that might be exposed by a PMU and implement any necessary safeguards to avoid exposure of any
information that the designer deems to be secure or confidential. This assessment should be based on the
security requirements of the system being monitored and to whom the performance data is being exposed.

This section provides some base rules and recommendations for a PMU that might monitor systems
processing secure or confidential information. It does not, however, define which information is secure or
confidential, nor does it define exact mechanisms to control access to the performance data. These details
are implementation specific. Implementations of this architecture should extend and adapt these rules as
required.

RJGBVD A PMU must not count events or expose characteristics when counting that event or monitoring that characteristic
is prohibited.

RVHTGC When an event or characteristic of an agent being monitored is attributable to an operating state of the agent:

• Counting the event or monitoring the characteristic is allowed when non-invasive debug of the operating
state is allowed.

• Counting the event or monitoring the characteristic is prohibited when non-invasive debug of the operating
state is prohibited.

RWRKQV A PMU might include IMPLEMENTATION DEFINED authentication controls for whether non-invasive debug
is allowed or prohibited. These controls might further determine whether non-invasive debug is allowed or
prohibited for a subset of the operating states or operations of the agent being monitored.

IJVJPQ A PMU also includes controls that enable or disable the monitors. Disabling a monitor takes precedence over
the authentication controls. Non-invasive debug authentication only controls whether monitoring is allowed, it
does not control access to the performance monitor registers, although this might be an additional feature of an
implementation.

IGRNVM Example implementations of authentication controls are:

• An authentication interface, where asserting a signal to the component means a class of operation is
allowed and de-asserting the signal means the class of operation is prohibited.

• A control register or registers that are not accessible to untrusted software. For example, a Secure register
within the component that cannot be accessed by Non-secure agents and can be programmed to allow the
Non-secure PMU to monitor Secure operations.

• A fixed configuration. For example, always treating Secure operations as prohibited operations.

• A combination of these.

RDBXDJ When a component incorporating a PMU implements separate Secure and Non-secure operating states, a PMU
that is accessible to Non-secure software treats events or characteristics attributable to Secure operation of the
agent being monitored as prohibited unless enabled by the IMPLEMENTATION DEFINED authentication controls.

IGMSMS An example of a PMU that is accessible to Non-secure software is a memory-mapped PMU that is mapped in
the Non-secure physical address space.

ARM IHI 0091
A.a-00bet0

Copyright © 2005-2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

34

Chapter 2. Specification
2.5. Security

RRYNLT When a component incorporating a PMU implements separate Secure and Non-secure operating states, any
IMPLEMENTATION DEFINED authentication controls are not configurable by Non-secure software.

IWTVDK The CoreSight architecture [5] describes a signal authentication interface comprising four signals: NIDEN,
DBGEN, SPIDEN, and SPNIDEN. These signals control:

• Invasive and non-invasive debug authentication.

• Secure and Non-secure debug authentication.

IDNMWG In the Armv8-A architecture profile Performance Monitors Extension [3]:

• The Non-secure debug authentication signals (NIDEN and DBGEN) are ignored by the PMU when
determining whether to count events attributable to Non-secure state.

• The MDCR_EL3.SPME control prohibits counting of events attributable to Secure state.

• If FEAT_PMUv3p1 is implemented, the MDCR_EL2.HPMD prohibits counting of events attributable to
EL2 by some event counters.

• If FEAT_Debugv8p2 is not implemented, when asserted, the Secure debug authentication signals
(SPNIDEN and SPIDEN) override the MDCR_EL3.SPME and MDCR_EL2.HPMD controls. If
FEAT_Debugv8p2 is implemented, the Secure debug authentication signals are ignored by the PMU when
determining whether to count events attributable to Secure state and/or EL2.

• If FEAT_Debugv8p4 is implemented, the Non-invasive debug authentication signals (NIDEN and
SPNIDEN) are not implemented.

This means that the authentication interface is ignored by the PMU when FEAT_Debugv8p2 is implemented.

ITZLYG Arm recommends that:

• A PMU that is used by external or other independent agents in the system, and requires authentication
without the intervention of software, implements an authentication interface. For example, a PMU that can
be used by an external debug agent and can monitor behavior from system reset.

• A PMU that is primarily used by software, particularly software running on application processors and
executing in a rich operating system environment, implements software authentication controls and does
not implement an authentication interface. For example, the Armv8-A PMU [3].

ARM IHI 0091
A.a-00bet0

Copyright © 2005-2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

35

Chapter 2. Specification
2.6. Extensions

2.6 Extensions

2.6.1 Freeze on overflow extension

RYTDDD It is IMPLEMENTATION DEFINED whether a PMU implements a control, PMCR.FZO, to disable (freeze)
monitors when any monitor overflows.

RGYWBJ If PMCR.FZO is implemented then PMCFGR.FZO reads as 1.

IFSDCY If PMCR.FZO is implemented then the PMU has RUN, STOP, and WAIT states. Freeze-on-overflow
state-machine shows this.

RUN
PMCR.E=1 &&

(PMCR.FZO=0 || PMOVS=0)

WAIT
PMCR.E=1 &&

PMCR.FZO=1 && PMOVS!=0

STOP
PMCR.E=0

Figure 2.2: Freeze-on-overflow state-machine

RMLXVL The PMU operating state is determined by the PMCR.E and PMCR.FZO bits and applicable monitor overflow
flags, PMOVS.

PMCR.E PMCR.FZO PMOVS State

0b0 X X STOP
0b1 0b0 X RUN
0b1 0b1 zero RUN
0b1 0b1 nonzero WAIT

The applicable monitor overflow flags are all monitor overflow flags other than as described by RJKHCM and
RVPDGQ. This includes overflow flags for disabled monitors.

IDHXMS State changes are not precise, meaning that some events might be counted after overflow, or might not be
counted after software clears the overflow flags. However, state changes must occur in finite time. See Accuracy
of the PMU.

RJKHCM If a PMU implements the Freeze on overflow extension and Counter chaining, it is IMPLEMENTATION DEFINED
which of the following applies:

• The overflow flag for an even-numbered counter PMEVCNTR<n> is ignored by the freeze-on-overflow
feature when the corresponding odd-numbered counter PMEVCNTR<n+1> is configured to count the
CHAIN event.

• The overflow status for all counters are considered for the freeze-on-overflow feature.

SNXGXL If the freeze-on-overflow feature of a PMU that implements Counter chaining does not ignore the overflow
status for an even-numbered counter when the corresponding odd-numbered counter is configured to count the
CHAIN event, then on overflow of the even-numbered counter:

• The CHAIN event is generated for the odd-numbered counter.

ARM IHI 0091
A.a-00bet0

Copyright © 2005-2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

36

Chapter 2. Specification
2.6. Extensions

• The PMU enters the WAIT state.

It is IMPLEMENTATION DEFINED and might be UNPREDICTABLE whether the CHAIN event is counted before
the PMU enters the WAIT state or after the PMU enters the WAIT state. This can occur only once, as the
even-numbered counter now stops counting events, meaning there is no benefit from setting the CHAIN event.

RDPGBH If a PMU implements the Freeze on overflow extension and Fixed-function cycle counter extension, it is
IMPLEMENTATION DEFINED whether or not the operation of the cycle counter ignores the freeze-on-overflow
feature. That is, whether or not, if enabled and allowed, the cycle counter will count cycles when the PMU is in
the WAIT state.

RVPDGQ If a PMU implements the Freeze on overflow extension and Fixed-function cycle counter extension and the
cycle counter can count cycles in the WAIT state, then the freeze-on-overflow feature ignores the overflow flag
for the cycle counter.

2.6.2 Halt-on-debug extension

IXXHPW A PMU might have an affinity with a PE or other agent that has both a Non-debug operating state and a Debug
operating state.

RSQJTW If the PMU has affinity with an agent that includes a Debug operating state, the PMU behaves as one of the
following and it is IMPLEMENTATION DEFINED which one:

• Events are counted in the Debug operating state.

• The PMU includes a control, PMCR.HDBG, that controls whether events are counted in the Debug
operating state.

• Events are not counted in the Debug operating state.

This might differ for groups of events.

RXPPSF If the PMU implements PMCR.HDBG then PMCFGR.HDBG reads as 1.

2.6.3 Fixed-function cycle counter extension

ISZJRL This feature is described for compatibility with the Arm architecture PMU. It is not recommended for other
PMUs to implement a fixed-function cycle counter in this way.

An implementation can include other fixed-function monitors. If the cycle counter extension is not implemented,
a PMU might still include a fixed-function cycle counter.

The only difference is that it does not implement it as monitor 31.

RKFQDK An implementation might include a dedicated cycle counter, PMCCNTR. It counts unhalted clock cycles in the
clock domain of the PMU.

RKFHHP If the Cycle Counter extension is implemented then PMCFGR.CC reads as 1.

RHJZYK For compatibility with the Arm architecture PMU, the cycle counter is always an alias for PMEVCNTR<31>.

RCMLXS If the Cycle Counter extension is implemented and the cycle counter is 32 bits or fewer, the implementation
might include a prescaler for the cycle counter, such that it counts by one for every 64 cycles. If the prescaler is
implemented then PMCFGR.CCD reads as 1.

IJNMYM If the Cycle Counter extension is not implemented then monitor 31 (if implemented) is a regular monitor.

RVZKXS If the Cycle Counter extension is implemented and the agent being monitored has two operating states then the
cycle counter:

• Counts when PMCR.DP is 1 or the agent being monitored is in the first state.

ARM IHI 0091
A.a-00bet0

Copyright © 2005-2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

37

Chapter 2. Specification
2.6. Extensions

• Does not count when PMCR.DP is 0 and the agent being monitored is in the second state.

The definitions of the first and second states are IMPLEMENTATION DEFINED.

IBNDHS In the Armv8-A architecture profile [3], the first state is a state where counting events is allowed and the second
state is a state where counting events is prohibited.

• Depending on the features of the PE and the values of the MDCR_EL3.SPME and MDCR_EL3.HPMD
controls, the second state might include Secure state and/or EL2.

• If FEAT_PMUv3p5 is implemented, MDCR_EL3.SCCD disables the cycle counter in Secure state and
MDCR_EL2.HCCD disables the cycle counter at EL2, regardless of the value of PMCR.DP.

See Security.

ISVGVM In the Armv8-M architecture profile [4], when the PMU and Security Extensions are implemented, the first state
is Non-secure state and the second state is Secure state. This is irrespective of whether Secure non-invasive
debug is allowed or prohibited.

2.6.4 Monitor group extension

IGPQWD An implementation might include multiple monitor groups. Monitor groups are a mechanism for a PMU to
partition monitors

RKZNGG If monitor groups are implemented, the number of monitor groups is IMPLEMENTATION DEFINED, and
discoverable through PMCFGR.NCG.

RZSFHF If monitor groups are implemented then PMCFGR.NCG is nonzero.

RTFNPJ Each monitor group can have up-to 32 monitors. The maximum number of monitors per group depends on both
the number of groups and the size of the largest implemented monitor. The following table shows this.

Number of monitor
groups

Max. per group, if monitors are
32-bits or smaller

Max. per group, if at least one monitor is
larger-than 32 bits

4 or fewer 32 32
Between 5 and 8 32 16
9 or more 16 8

IGNPZG The first counter for monitor group m is PMEVCNTR<m×max>, where max is defined by RTFNPJ.

IHGRPD For example, an implementation might define:

• PMCFGR.NCG reads as 0b0001, indicating 2 monitor groups.

• PMCGCR0 reads as 0x00000604, indicating:

– Group 0 has four monitors: PMEVCNTR0 to PMEVCNTR3.

– Group 1 has six monitors: PMEVCNTR32 to PMEVCNTR37.

• PMCFGR.N reads as 0x09, indicating 10 monitors are implemented overall.

IJJQRM The System MMU architecture implements a different model of monitor groups.

ARM IHI 0091
A.a-00bet0

Copyright © 2005-2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

38

Chapter 2. Specification
2.6. Extensions

2.6.5 Counter chaining

ITCBXV Support for larger event counters can be provided by counter chaining.

RYBGZK If counter chaining is implemented, then an odd-numbered counter PMEVCNTR<n+1> configured to count
the CHAIN event increments when the even-numbered counter PMEVCNTR<n> has an unsigned overflow on
counting an event.

SPGJDB For example where two 16-bit counters, PMEVCNTR<0> and PMEVCNTR<1> are provided, they can be
chained to form a 32-bit counter by programming PMEVTYPER<1> to count the CHAIN event.

RDJHLY It is IMPLEMENTATION DEFINED whether the increment of the odd-numbered counter PMEVCNTR<n+1>
occurs atomically with update of the even-numbered counter PMEVCNTR<n>.

If the increment is not atomic it must occur in limited finite time such that a read of PMEVCNTR<n+1>
that is ordered-after a read of PMEVCNTR<n> must not observe the updated PMEVCNTR<n> without also
observing the updated PMEVCNTR<n+1>. However, it is possible that the reads might observe the updated
PMEVCNTR<n+1> without observing the updated PMEVCNTR<n>.

SQZDDJ If the updates are not atomic, software must take care when reading the pair of counters.

2.6.6 Snapshot extension

RWGXRN It is IMPLEMENTATION DEFINED whether the PMU includes the Snapshot mechanism.

RPDXMS If the Snapshot mechanism is implemented then PMCFGR.SS reads as 1.

RDNJSY On a Capture event, the PMU writes snapshot values to the snapshot value registers, PMSVR<n>, and sets
PMSSSR.NC to zero to indicate a successful capture.

RHSCPL The snapshot values must include PMSSSR.

INNVZK The snapshot values typically include:

• The event monitors, PMEVCNTR<m>.

• PMCCNTR, if implemented.

• The overflow status flags, captured into PMOVSSR<n>, if PMSSRR is implemented.

• Any additional IMPLEMENTATION DEFINED syndrome information captured by the PMU.

Up-to sixty-four 32-bit values or thirty-two 64-bit values can be captured.

ISSNNY Because of the limited number of snapshot value registers, and requirement to capture PMSSSR, the Snapshot
mechanism will not capture all the implemented counters if either:

• 64 or more event counters are implemented, when all counters are 32-bits or smaller.

• 32 or more event counters are implemented, when at least one counter is larger-than 32-bits.

RCFXNM The mapping of snapshot values to the snapshot value registers, PMSVR<n>, is IMPLEMENTATION DEFINED.

ITRJQW PMSSSR and PMOVSSR<m> are aliases for PMSVR<n>, where n is IMPLEMENTATION DEFINED for each
register.

RCVTPF It is IMPLEMENTATION DEFINED whether the Snapshot mechanism also supports PMSSRR. If PMSSRR is
implemented then each of the monitors so-configured by PMSSRR are reset to 0 after a Capture event.

RZXZYK A Capture event is generated by one of:

• Assertion of an IMPLEMENTATION DEFINED snapshot request signal, PMUSNAPSHOTREQ.

• Writing 1 to PMSSCR.SS.

ARM IHI 0091
A.a-00bet0

Copyright © 2005-2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

39

Chapter 2. Specification
2.6. Extensions

2.6.7 Trace generation extension

RLBLQK It is IMPLEMENTATION DEFINED whether the PMU can generate a trace of events or event monitor data. If the
PMU can generate a trace of events or event monitor data then it is IMPLEMENTATION DEFINED whether the
PMU includes an additional control to enable trace, PMCR.TRO.

RSRKVT If the PMU implements PMCR.TRO then PMCFGR.TRO reads as 1.

RZNVML Trace is not generated for prohibited events. See Security.

RNVRCD The details of any trace generated by the PMU are IMPLEMENTATION DEFINED.

2.6.8 Export extension

RTYMMH It is IMPLEMENTATION DEFINED whether events are exported to an external monitoring agents to provide
triggering information. If events are exported then it is IMPLEMENTATION DEFINED whether the PMU includes
an additional control to gate export of events, PMCR.X.

RJSMMJ If the PMU implements PMCR.X then PMCFGR.EX reads as 1.

RYJZSC Prohibited events are not exported. See Security.

2.6.9 Dual-page extension

RFJVQZ It is IMPLEMENTATION DEFINED whether the PMU is programmed through a single page of registers, or two
pages of registers.

RXZWHB The following are Page 1 registers:

• PMEVCNTR<n>.
• PMOVSCLR<n>.
• PMOVSSET<n>.

RPVRYN If the Fixed-function cycle counter extension is implemented, the following is a Page 1 register:

• PMCCNTR.

RMYXPD If the Snapshot extension is implemented, the following are Page 1 registers:

• PMSVR<n>.
• PMOVSSR<n>.
• PMSSSR.

RHXZHB The following registers are both Page 0 and Page 1 registers:

• PMIIDR.
• PMDEVAFF.
• PMDEVID.
• PMPIDR0.
• PMPIDR1.
• PMPIDR2.
• PMPIDR3.
• PMPIDR4.
• PMPIDR5.
• PMPIDR6.
• PMPIDR7.
• PMCIDR0.
• PMCIDR1.
• PMCIDR2.

ARM IHI 0091
A.a-00bet0

Copyright © 2005-2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

40

Chapter 2. Specification
2.6. Extensions

• PMCIDR3.

The following registers are both Page 0 and Page 1 registers that, in a dual-page implementation, do not have
the same value in both Page 0 and Page 1 views:

• PMCFGR.
• PMDEVARCH.
• PMDEVTYPE.

RFQFQP For each IMPLEMENTATION DEFINED register, it is IMPLEMENTATION DEFINED whether the register is a Page
0 register, a Page 1 register, or both.

RMLQHD All PMU registers that are not Page 1 registers are Page 0 registers.

RRSCXF In a dual-page implementation:

• Page 0 registers are memory-mapped at architecturally-defined offsets from the IMPLEMENTATION
DEFINED Page 0 base addresses.

• Page 1 registers are memory-mapped at architecturally-defined offsets from the IMPLEMENTATION
DEFINED Page 1 base addresses.

RBVDMH In a single-page implementation, all Page 0 and Page 1 registers are memory-mapped at architecturally-defined
offsets from an IMPLEMENTATION DEFINED base address.

RJYWDL Base addresses must be aligned to a multiple of 4KB.

IBKZLQ Arm recommends that base addresses are aligned to a multiple of 64KB.

STCPZJ A dual-page implementation allows a Hypervisor to provide different accessibility to the Page 0 and Page 1
registers to a Guest operating system.

For example, the Guest can read performance monitors directly from the Page 1 registers, but writes to Page 1
and any accesses to Page 0 registers generate a stage 2 translation fault and can be emulated by the Hypervisor.

RQCGTS If the PMU implements dual-pages then this is identified through the unique PMDEVARCH values for the two
pages.

ICQFCY The Armv8 PMU does not implement the dual-page view on its CoreSight interface. The PE implements a
second view of the PMU through System registers.

IMZWTV This extension does not provide any mechanism for the Page 1 view to be further restricted by the Hypervisor,
beyond that provided for by an MMU. A future extension might provide controls to restrict access to monitors
or monitor groups visible in the Page 1 view.

ARM IHI 0091
A.a-00bet0

Copyright © 2005-2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

41

Chapter 3
Programmers’ Model

This section is normative.

IBWWWJ The programmers’ model described in this manual is derived from the Armv8-A Performance Monitors
extension, which in turn is based on the similar extension to Armv7-A. In particular, the structure and layout of
registers is suited to implementations that support a 32-bit Execution state.

Future development of this architecture might define an alternative structure and layout that is better suited for
systems that only support 64-bit operation. For instance, by locating every register at a doubleword-aligned
address. Such changes might not be backwards compatible.

See also:

• Accessing PMU registers.

ARM IHI 0091
A.a-00bet0

Copyright © 2005-2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

42

Chapter 3. Programmers’ Model
3.1. Memory-mapped registers

3.1 Memory-mapped registers

RLLXMB The values in the Version columns of the register indices refer to the following extensions:

32b Monitors up-to 32 bits in size.
64b Monitors up-to 64 bits in size.
CC Fixed-function cycle counter extension.
CS CoreSight registers.
MG

Monitor group extension.
MSI

Message-signaled interrupts.
SS Snapshot extension.

3.1.1 When the dual-page extension is not implemented

Table 3.1: Memory-mapped register map

Offset Access Version Register Description

0x000+4×n R/W 32b PMEVCNTR<n> Event Count Register <n> (up-to 32 bits)
0x000+8×n R/W 64b PMEVCNTR<n>[31:0] Event Count Register <n> (up-to 64 bits), bits[31:0]
0x004+8×n R/W 64b PMEVCNTR<n>[63:32] Event Count Register <n> (up-to 64 bits), bits[63:32]
0x03C R/W 32b,CC PMCCNTR Cycle Count Register (up-to 32 bits)
0x0F8 R/W 64b,CC PMCCNTR[31:0] Cycle Count Register (up-to 64 bits), bits[31:0]
0x0FC R/W 64b,CC PMCCNTR[63:32] Cycle Count Register (up-to 64 bits), bits[63:32]
0x400+4×n R/W PMEVTYPER<n> Event Type Select Register <n>
0x47C R/W CC PMCCFILTR Cycle Counter Filter Register
0x600+4×n RO SS PMSVR<n> Saved Value Register <n>
0x600+IMP
DEF

RO SS PMSSSR Snapshot Status Register

0x600+IMP
DEF+4×n

RO SS PMOVSSR<n> Overflow Status Snapshot Register <n>

0xA00+4×n R/W PMEVFILTR<n> Event Type Select Register <n>
0xC00+4×n R/W1S PMCNTENSET<n> Count Enable Set Register <n>
0xC20+4×n R/W1C PMCNTENCLR<n> Count Enable Clear Register <n>
0xC40+4×n R/W1S PMINTENSET<n> Overflow Interrupt Enable Set Register <n>
0xC60+4×n R/W1C PMINTENCLR<n> Overflow Interrupt Enable Clear Register <n>
0xC80+4×n R/W1C PMOVSCLR<n> Overflow Status Clear Register <n>
0xCC0+4×n R/W1S PMOVSSET<n> Overflow Status Set Register <n>
0xCE0+4×n RO MG PMCGCR<n> Counter Group Configuration Register <n>
0xD80+4×n R/W IMPDEF<n> IMPLEMENTATION DEFINED Register <n>
0xE00 RO PMCFGR Configuration Register
0xE04 R/W PMCR Control Register
0xE08 RO PMIIDR Implementation Identification Register
0xE20+4×n RO PMCEID<n> Common Event Identification Register <n>
0xE30 WO SS PMSSCR Snapshot Capture Register
0xE38 R/W SS PMSSRR[31:0] Snapshot Reset Register, bits[31:0]
0xE3C R/W SS PMSSRR[63:32] Snapshot Reset Register, bits[63:32]
0xE80 R/W MSI PMIRQCR0[31:0] Interrupt Configuration Register 0, bits[31:0]
0xE84 R/W MSI PMIRQCR0[63:32] Interrupt Configuration Register 0, bits[63:32]

ARM IHI 0091
A.a-00bet0

Copyright © 2005-2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

43

Chapter 3. Programmers’ Model
3.1. Memory-mapped registers

Offset Access Version Register Description

0xE88 R/W MSI PMIRQCR1 Interrupt Configuration Register 1
0xE8C R/W MSI PMIRQCR2 Interrupt Configuration Register 2
0xEF8 R/W MSI PMIRQSR[31:0] Interrupt Status Register, bits[31:0]
0xEFC R/W MSI PMIRQSR[63:32] Interrupt Status Register, bits[63:32]
0xFA8 RO PMDEVAFF[31:0] Device Affinity Register, bits[31:0]
0xFAC RO PMDEVAFF[63:32] Device Affinity Register, bits[63:32]
0xFB8 RO PMAUTHSTATUS Authentication Status Register
0xFBC RO PMDEVARCH Device Architecture Register
0xFC8 RO PMDEVID Device Configuration Register
0xFCC RO PMDEVTYPE Device Type Register
0xFD0 RO PMPIDR4 Peripheral Identification Register 4
0xFD4 RO PMPIDR5 Peripheral Identification Register 5
0xFD8 RO PMPIDR6 Peripheral Identification Register 6
0xFDC RO PMPIDR7 Peripheral Identification Register 7
0xFE0 RO PMPIDR0 Peripheral Identification Register 0
0xFE4 RO PMPIDR1 Peripheral Identification Register 1
0xFE8 RO PMPIDR2 Peripheral Identification Register 2
0xFEC RO PMPIDR3 Peripheral Identification Register 3
0xFF0 RO PMCIDR0 Component Identification Register 0
0xFF4 RO PMCIDR1 Component Identification Register 1
0xFF8 RO PMCIDR2 Component Identification Register 2
0xFFC RO PMCIDR3 Component Identification Register 3

3.1.2 Page 0, when the dual-page extension is implemented

Table 3.2: Memory-mapped register map

Offset Access Version Register Description

0x400+4×n R/W PMEVTYPER<n> Event Type Select Register <n>
0x47C R/W CC PMCCFILTR Cycle Counter Filter Register
0xA00+4×n R/W PMEVFILTR<n> Event Type Select Register <n>
0xC00+4×n R/W1S PMCNTENSET<n> Count Enable Set Register <n>
0xC20+4×n R/W1C PMCNTENCLR<n> Count Enable Clear Register <n>
0xC40+4×n R/W1S PMINTENSET<n> Overflow Interrupt Enable Set Register <n>
0xC60+4×n R/W1C PMINTENCLR<n> Overflow Interrupt Enable Clear Register <n>
0xCE0+4×n RO MG PMCGCR<n> Counter Group Configuration Register <n>
0xD80+4×n R/W IMPDEF<n> IMPLEMENTATION DEFINED Register <n>
0xE00 RO PMCFGR Configuration Register
0xE04 R/W PMCR Control Register
0xE08 RO PMIIDR Implementation Identification Register
0xE20+4×n RO PMCEID<n> Common Event Identification Register <n>
0xE30 WO SS PMSSCR Snapshot Capture Register
0xE38 R/W SS PMSSRR[31:0] Snapshot Reset Register, bits[31:0]
0xE3C R/W SS PMSSRR[63:32] Snapshot Reset Register, bits[63:32]
0xE80 R/W MSI PMIRQCR0[31:0] Interrupt Configuration Register 0, bits[31:0]
0xE84 R/W MSI PMIRQCR0[63:32] Interrupt Configuration Register 0, bits[63:32]
0xE88 R/W MSI PMIRQCR1 Interrupt Configuration Register 1

ARM IHI 0091
A.a-00bet0

Copyright © 2005-2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

44

Chapter 3. Programmers’ Model
3.1. Memory-mapped registers

Offset Access Version Register Description

0xE8C R/W MSI PMIRQCR2 Interrupt Configuration Register 2
0xEF8 R/W MSI PMIRQSR[31:0] Interrupt Status Register, bits[31:0]
0xEFC R/W MSI PMIRQSR[63:32] Interrupt Status Register, bits[63:32]
0xFA8 RO PMDEVAFF[31:0] Device Affinity Register, bits[31:0]
0xFAC RO PMDEVAFF[63:32] Device Affinity Register, bits[63:32]
0xFB8 RO PMAUTHSTATUS Authentication Status Register
0xFBC RO PMDEVARCH Device Architecture Register
0xFC8 RO PMDEVID Device Configuration Register
0xFCC RO PMDEVTYPE Device Type Register
0xFD0 RO PMPIDR4 Peripheral Identification Register 4
0xFD4 RO PMPIDR5 Peripheral Identification Register 5
0xFD8 RO PMPIDR6 Peripheral Identification Register 6
0xFDC RO PMPIDR7 Peripheral Identification Register 7
0xFE0 RO PMPIDR0 Peripheral Identification Register 0
0xFE4 RO PMPIDR1 Peripheral Identification Register 1
0xFE8 RO PMPIDR2 Peripheral Identification Register 2
0xFEC RO PMPIDR3 Peripheral Identification Register 3
0xFF0 RO PMCIDR0 Component Identification Register 0
0xFF4 RO PMCIDR1 Component Identification Register 1
0xFF8 RO PMCIDR2 Component Identification Register 2
0xFFC RO PMCIDR3 Component Identification Register 3

3.1.3 Page 1, when the dual-page extension is implemented

Table 3.3: Memory-mapped register map

Offset Access Version Register Description

0x000+4×n R/W 32b PMEVCNTR<n> Event Count Register <n> (up-to 32 bits)
0x000+8×n R/W 64b PMEVCNTR<n>[31:0] Event Count Register <n> (up-to 64 bits), bits[31:0]
0x004+8×n R/W 64b PMEVCNTR<n>[63:32] Event Count Register <n> (up-to 64 bits), bits[63:32]
0x03C R/W 32b,CC PMCCNTR Cycle Count Register (up-to 32 bits)
0x0F8 R/W 64b,CC PMCCNTR[31:0] Cycle Count Register (up-to 64 bits), bits[31:0]
0x0FC R/W 64b,CC PMCCNTR[63:32] Cycle Count Register (up-to 64 bits), bits[63:32]
0x600+4×n RO SS PMSVR<n> Saved Value Register <n>
0x600+IMP
DEF

RO SS PMSSSR Snapshot Status Register

0x600+IMP
DEF+4×n

RO SS PMOVSSR<n> Overflow Status Snapshot Register <n>

0xC80+4×n R/W1C PMOVSCLR<n> Overflow Status Clear Register <n>
0xCC0+4×n R/W1S PMOVSSET<n> Overflow Status Set Register <n>
0xD80+4×n R/W IMPDEF<n> IMPLEMENTATION DEFINED Register <n>
0xE00 RO PMCFGR Configuration Register
0xE08 RO PMIIDR Implementation Identification Register
0xFA8 RO PMDEVAFF[31:0] Device Affinity Register, bits[31:0]
0xFAC RO PMDEVAFF[63:32] Device Affinity Register, bits[63:32]
0xFBC RO PMDEVARCH Device Architecture Register
0xFCC RO PMDEVTYPE Device Type Register

ARM IHI 0091
A.a-00bet0

Copyright © 2005-2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

45

Chapter 3. Programmers’ Model
3.1. Memory-mapped registers

Offset Access Version Register Description

0xFD0 RO PMPIDR4 Peripheral Identification Register 4
0xFD4 RO PMPIDR5 Peripheral Identification Register 5
0xFD8 RO PMPIDR6 Peripheral Identification Register 6
0xFDC RO PMPIDR7 Peripheral Identification Register 7
0xFE0 RO PMPIDR0 Peripheral Identification Register 0
0xFE4 RO PMPIDR1 Peripheral Identification Register 1
0xFE8 RO PMPIDR2 Peripheral Identification Register 2
0xFEC RO PMPIDR3 Peripheral Identification Register 3
0xFF0 RO PMCIDR0 Component Identification Register 0
0xFF4 RO PMCIDR1 Component Identification Register 1
0xFF8 RO PMCIDR2 Component Identification Register 2
0xFFC RO PMCIDR3 Component Identification Register 3

ARM IHI 0091
A.a-00bet0

Copyright © 2005-2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

46

Chapter 3. Programmers’ Model
3.2. IMPDEF<n>, IMPLEMENTATION DEFINED Register <0-31>

3.2 IMPDEF<n>, IMPLEMENTATION DEFINED Register <0-31>

The IMPDEF<0-31> characteristics are:

Purpose
IMPLEMENTATION DEFINED extensions.

Usage constraints
None.

Configurations
If the dual-page extension is implemented, then for each IMPLEMENTATION DEFINED<n>, it is
IMPLEMENTATION DEFINED whether the register is a Page 0 register, a Page 1 register, or both.

Attributes
IMPLEMENTATION DEFINED<n> is a 32-bit read/write memory-mapped register located at offset 0xD80 +
4×n.

A pair of IMPLEMENTATION DEFINED<n> registers at a doubleword-aligned offset might be defined as a
single 64 bit register.

ARM IHI 0091
A.a-00bet0

Copyright © 2005-2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

47

Chapter 3. Programmers’ Model
3.3. PMAUTHSTATUS, Authentication Status Register

3.3 PMAUTHSTATUS, Authentication Status Register

The PMAUTHSTATUS characteristics are:

Purpose
Provides information about the state of the IMPLEMENTATION DEFINED authentication interface for debug.

Usage constraints
None.

Configurations
Always implemented.

Attributes
PMAUTHSTATUS is a 32-bit read-only memory-mapped register located at offset 0xFB8 in the Page 0
component.

3.3.1 Field descriptions

The PMAUTHSTATUS bit assignments are:

1 0

RAZ

3 25 4

RAZ

7 6

SNID

31 8

RES0

NSIDSID
NSNID

Figure 3.1: PMAUTHSTATUS

Bits [31:8]
Reserved. This field is RES0.

SNID, bits [7:6]
Secure Non-invasive Debug. Indicates whether Secure non-invasive debug features are implemented and
enabled. The defined values of this field are:

0b00 Secure non-invasive debug features not implemented.
0b10 Implemented and disabled.
0b11 Implemented and enabled.

All other values are reserved.

This field reads-as-zeros if Security Extensions are not implemented and the Performance Monitoring Unit
(PMU) is Non-secure.

SID, bits [5:4]
Secure Invasive Debug. Indicates whether Secure invasive debug features are implemented and enabled.
The possible values of this field are:

0b00 Secure invasive debug features not implemented.
0b10 Implemented and disabled.
0b11 Implemented and enabled.

ARM IHI 0091
A.a-00bet0

Copyright © 2005-2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

48

Chapter 3. Programmers’ Model
3.3. PMAUTHSTATUS, Authentication Status Register

All other values are reserved.

This field reads-as-zero.

NSNID, bits [3:2]
Non-secure Non-invasive Debug. Indicates whether Non-secure non-invasive debug features are
implemented and enabled. The defined values of this field are:

0b00 Non-secure non-invasive debug features not implemented.
0b10 Implemented and disabled.
0b11 Implemented and enabled.

All other values are reserved.

This field reads-as-zeros if Security Extensions are not implemented and the PMU is Secure.

NSID, bits [1:0]
Non-secure Invasive Debug. Indicates whether Non-secure invasive debug features are implemented and
enabled. The possible values of this field are:

0b00 Non-secure invasive debug features not implemented.
0b10 Implemented and disabled.
0b11 Implemented and enabled.

All other values are reserved.

This field reads-as-zero.

ARM IHI 0091
A.a-00bet0

Copyright © 2005-2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

49

Chapter 3. Programmers’ Model
3.4. PMCCFILTR, Cycle Counter Filter Register

3.4 PMCCFILTR, Cycle Counter Filter Register

The PMCCFILTR characteristics are:

Purpose
Configures the Cycle Counter.

Usage constraints
None.

Configurations
PMCCFILTR is present only if PMCFGR.CC == 0b1, cycle counter extension is implemented.
PMCCFILTR is RES0 otherwise.

Attributes
PMCCFILTR is a 32-bit read/write memory-mapped register located at offset 0x47C in the Page 0
component.

3.4.1 Field descriptions

The PMCCFILTR bit assignments are:

31 0

IMPLEMENTATION DEFINED

Figure 3.2: PMCCFILTR

Bits [31:0]
This field reads as an IMPLEMENTATION DEFINED value and writes to this field have IMPLEMENTATION
DEFINED behavior.

ARM IHI 0091
A.a-00bet0

Copyright © 2005-2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

50

Chapter 3. Programmers’ Model
3.5. PMCCNTR, Cycle Count Register (up-to 32 bits)

3.5 PMCCNTR, Cycle Count Register (up-to 32 bits)

The PMCCNTR characteristics are:

Purpose
If cycle counting is not prohibited and the cycle counter is enabled, the counter increments for each cycle,
according to the configuration specified by PMCCFILTR.

Usage constraints
None.

Configurations
PMCCNTR is present only if all of the following are true:

• PMCFGR.CC == 0b1, cycle counter extension is implemented.
• PMCFGR.SIZE <= 0b011111, all monitors are 32 bits or smaller.

PMCCNTR is RES0 otherwise.

Attributes
PMCCNTR is a 32-bit read/write memory-mapped register located at offset 0x03C in the Page 1
component.

3.5.1 Field descriptions

The PMCCNTR bit assignments are:

31 0

CCNT

Figure 3.3: PMCCNTR

CCNT, bits [31:0]
Cycle Counter.

The number of implemented bits for PMCCNTR is IMPLEMENTATION DEFINED. Unimplemented bits are
RES0.

ARM IHI 0091
A.a-00bet0

Copyright © 2005-2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

51

Chapter 3. Programmers’ Model
3.6. PMCCNTR, Cycle Count Register (up-to 64 bits)

3.6 PMCCNTR, Cycle Count Register (up-to 64 bits)

The PMCCNTR characteristics are:

Purpose
If cycle counting is not prohibited and the cycle counter is enabled, the counter increments for each cycle,
according to the configuration specified by PMCCFILTR.

Usage constraints
None.

Configurations
PMCCNTR is present only if all of the following are true:

• PMCFGR.CC == 0b1, cycle counter extension is implemented.
• PMCFGR.SIZE > 0b011111, at least one monitor is larger than 32 bits.

PMCCNTR is RES0 otherwise.

Attributes
PMCCNTR is a 64-bit read/write memory-mapped register located at offset 0x0F8 in the Page 1
component.

3.6.1 Field descriptions

The PMCCNTR bit assignments are:

63 32

CCNT[63:32]

31 0

CCNT[31:0]

Figure 3.4: PMCCNTR

CCNT, bits [63:0]
Cycle Counter.

The number of implemented bits for PMCCNTR is IMPLEMENTATION DEFINED. Unimplemented bits are
RES0.

ARM IHI 0091
A.a-00bet0

Copyright © 2005-2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

52

Chapter 3. Programmers’ Model
3.7. PMCEID<n>, Common Event Identification Register <0-3>

3.7 PMCEID<n>, Common Event Identification Register <0-3>

The PMCEID<0-3> characteristics are:

Purpose
Provide a mechanism for an implementation to describe which events it supports.

Usage constraints
None.

Configurations
Always implemented.

Attributes
PMCEID<n> is a 32-bit read-only memory-mapped register located at offset 0xE20 + 4×n in the Page 0
component.

3.7.1 Field descriptions

The PMCEID<0-3> bit assignments are:

31 0

CE

Figure 3.5: PMCEID<n>

CE[m], bit [q], for q = 0 to 31, where m = q+x
Common Event m implemented. The defined values of this bit are:

0 The Common event is not implemented or not counted.
1 The Common event is implemented.

The base value x for each PMCEID<n> register is IMPLEMENTATION DEFINED.

ARM IHI 0091
A.a-00bet0

Copyright © 2005-2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

53

Chapter 3. Programmers’ Model
3.8. PMCFGR, Configuration Register

3.8 PMCFGR, Configuration Register

The PMCFGR characteristics are:

Purpose
Describes the performance monitor.

Usage constraints
None.

Configurations
Always implemented.

Attributes
PMCFGR is a 32-bit read-only memory-mapped register located at offset 0xE00.

3.8.1 Field descriptions

The PMCFGR bit assignments are:

7 0

IMP DEF

13 8

IMP DEF

141516

EX

1718

(0)

19

0

202122232427 25

RES0

31 28

IMP DEF

NSIZECCNAHDBGNCG
CCDUENTRO

MSISS
FZO

Figure 3.6: PMCFGR

NCG, bits [31:28]
Monitor Groups.

Defines the number of monitor groups implemented, minus one. If this field is zero, then one monitor
group is implemented and PMCGCR<n> are not implemented.

Otherwise, for each monitor group <m>, PMCGCR<m DIV 4>.N<m MOD 4> defines the number of
monitors in the group.

Locating the first monitor in each group depends on the number of implemented groups and the largest
implemented monitor size. Each monitor group starts with monitor:

• PMEVTYPER<m×32>, meaning there are at most 32 monitors per group, if either:
– Monitors are 32-bits or smaller and there are 8 monitor groups or fewer.
– Monitors are larger-than 32-bits and there are 4 monitor groups or fewer.

• PMEVTYPER<m×16>, meaning there are at most 16 monitors per group, if either:
– Monitors are 32-bits or smaller and there are more than 8 monitor groups.
– Monitors are larger-than 32-bits and there are more than 4 monitor groups.

• PMEVTYPER<m×16>, meaning there are at most 8 monitors per group, if monitors are larger-than
32-bits and there are more than 8 monitor groups.

This field reads as an IMPLEMENTATION DEFINED value.

Bits [27:25,18]
Reserved. This field is RES0.

HDBG, bit [24]
Halt-on-debug feature supported.

ARM IHI 0091
A.a-00bet0

Copyright © 2005-2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

54

Chapter 3. Programmers’ Model
3.8. PMCFGR, Configuration Register

When the dual-page extension is not implemented or accessed in Page 0
The defined values of this bit are:

0 Halt-on-debug feature not supported.
1 Halt-on-debug feature supported.

This bit reads as an IMPLEMENTATION DEFINED value.

Otherwise
Reserved. This bit is RES0.

TRO, bit [23]
Trace features supported.

When the dual-page extension is not implemented or accessed in Page 0
The defined values of this bit are:

0 Trace features not supported.
1 Trace features supported.

The nature of any supported trace features are IMPLEMENTATION DEFINED.

This bit reads as an IMPLEMENTATION DEFINED value.

Otherwise
Reserved. This bit is RES0.

SS, bit [22]
Snapshot supported. The defined values of this bit are:

0 Snapshot mechanism not supported. PMSSCR and PMSSRR is reserved. The locations
0x600-0x7FC are IMPLEMENTATION DEFINED.

1 Snapshot mechanism supported. PMSVR<n>, PMSSCR and PMSSSR are implemented.

If the architecture-defined form of snapshot is not implemented, a PMU might nonetheless implement a
snapshot mechanism, including one located at the IMPLEMENTATION DEFINED registers 0x600-0x6FC.

This bit reads as an IMPLEMENTATION DEFINED value.

FZO, bit [21]
Freeze-on-overflow supported.

When the dual-page extension is not implemented or accessed in Page 0
The defined values of this bit are:

0 Freeze-on-overflow mechanism not supported. PMCR.FZO is RES0.
1 Freeze-on-overflow mechanism supported. PMCR.FZO is RW.

This bit reads as an IMPLEMENTATION DEFINED value.

Otherwise
Reserved. This bit is RES0.

MSI, bit [20]
Message-signaled interrupts (MSI) supported.

ARM IHI 0091
A.a-00bet0

Copyright © 2005-2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

55

Chapter 3. Programmers’ Model
3.8. PMCFGR, Configuration Register

When the dual-page extension is not implemented or accessed in Page 0
The defined values of this bit are:

0 MSI not supported. PMIRQCR<n> and PMIRQSR are reserved.
1 MSI supported. PMIRQCR<n> is used to configure the MSI, and PMIRQSR shows

the MSI status.

If the architecture-defined form of MSI is not implemented, a PMU might nonetheless implement an
MSI mechanism, including one located at the IMPLEMENTATION DEFINED registers 0xE80-0xEFC.

This bit reads as an IMPLEMENTATION DEFINED value.

Otherwise
Reserved. This bit is RES0.

UEN, bit [19]
This feature is not supported. This bit reads-as-zero.

NA, bit [17]
No write access when running.

When the dual-page extension is not implemented or accessed in Page 0
The defined values of this bit are:

0 The monitor registers can be written at any time. It is IMPLEMENTATION DEFINED
whether the monitor configuration registers are read-only or read/write.

1 The monitor and monitor configuration registers cannot be written when the PMU is
not in the STOP state.

The monitor and monitor configuration registers can be read in any state.

This bit reads as an IMPLEMENTATION DEFINED value.

Otherwise
Reserved. This bit is RES0.

EX, bit [16]
Export supported.

When the dual-page extension is not implemented or accessed in Page 0
The defined values of this bit are:

0 Export is not supported. PMCR.X is RES0.
1 Export is supported. PMCR.X is read/write.

This bit reads as an IMPLEMENTATION DEFINED value.

Otherwise
Reserved. This bit is RES0.

CCD, bit [15]
Cycle counter has pre-scale.

When the cycle counter is implemented, and the dual-page extension is not implemented or
accessed in Page 0
The defined values of this bit are:

0 Cycle counter only ever counts every cycle. PMCR.D is RES0.

ARM IHI 0091
A.a-00bet0

Copyright © 2005-2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

56

Chapter 3. Programmers’ Model
3.8. PMCFGR, Configuration Register

1 Cycle counter can count every 64th cycle. PMCR.D is read/write.

This bit reads as an IMPLEMENTATION DEFINED value.

Otherwise
This bit reads-as-zero.

CC, bit [14]
Dedicated Cycle counter implemented as PMEVCNTR31. The defined values of this bit are:

0 If PMEVCNTR31 is implemented, it is a normal monitor. PMCR.C, PMCR.D and
PMCFGR.CCD are RES0.

1 PMEVCNTR31 is implemented and is a dedicated cycle counter. PMCR.C is write-only.

This bit reads as an IMPLEMENTATION DEFINED value.

SIZE, bits [13:8]
Monitor size. The size of the largest implemented monitor. The defined values of this field are:

0b000111 8-bit monitors.
0b001001 10-bit monitors.
0b001011 12-bit monitors.
0b001111 16-bit monitors.
0b010011 20-bit monitors.
0b010111 24-bit monitors.
0b011111 32-bit monitors.
0b100011 36-bit monitors.
0b100111 40-bit monitors.
0b101011 44-bit monitors.
0b101111 48-bit monitors.
0b110011 52-bit monitors.
0b110111 56-bit monitors.
0b111111 64-bit monitors.

All other values are reserved.

Not all monitors are necessarily this size. For example, an implementation might include a mix of 32-bit
and 64-bit monitors.

This field reads as an IMPLEMENTATION DEFINED value.

N, bits [7:0]
Number of monitors, minus one. The defined values of this field are:

0x00 1 monitor.
0x01 2 monitors.
.. ..
0xFF 256 monitors.

If PMCFGR.CC == 0b1, PMEVCNTR31, the cycle counter, is one of the (N+1) monitors. For example,
if PMCFGR.N == 0x00 and PMCFGR.CC == 0b1, there is a single monitor, PMEVCNTR31, and

ARM IHI 0091
A.a-00bet0

Copyright © 2005-2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

57

Chapter 3. Programmers’ Model
3.8. PMCFGR, Configuration Register

PMEVCNTR0 is not implemented.

If PMCFGR.NCG != 0b0000, then PMCFGR.N is the total number of monitors implemented.

If the monitors are larger-than 32-bits, then the PMU includes at most 128 monitors.

If the Snapshot mechanism is implemented, then the implementation includes at most 256 bytes of snapshot
values, which equates to thirty-two 64-bit or sixty-four 32-bit monitors, although the snapshot values
might include other, non-monitor, values.

This field reads as an IMPLEMENTATION DEFINED value.

ARM IHI 0091
A.a-00bet0

Copyright © 2005-2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

58

Chapter 3. Programmers’ Model
3.9. PMCGCR<n>, Counter Group Configuration Register <0-3>

3.9 PMCGCR<n>, Counter Group Configuration Register <0-3>

The PMCGCR<0-3> characteristics are:

Purpose
Describes the performance monitor.

Usage constraints
None.

Configurations
PMCGCR<n> is present only if PMCFGR.NCG != 0x0, monitor groups are implemented. PMCGCR<n>
is RES0 otherwise.

Attributes
PMCGCR<n> is a 32-bit read-only memory-mapped register located at offset 0xCE0 + 4×n in the Page 0
component.

3.9.1 Field descriptions

The PMCGCR<0-3> bit assignments are:

7 0

N0

15 8

N1

23 16

N2

31 24

N3

Figure 3.7: PMCGCR<n>

Nm[m×8+7:m×8], bits [m×8+7:m×8], for m = 0 to 3
Number of monitors in group n×4+m.

The maximum size of each monitor group depends on the number of implemented groups and the largest
implemented monitor size. Each monitor group starts with monitor:

• There are at most 32 monitors per group if either:
– Monitors are 32-bits or smaller and there are 8 monitor groups or fewer.
– Monitors are larger-than 32-bits and there are 4 monitor groups or fewer.

• There are at most 16 monitors per group if either:
– Monitors are 32-bits or smaller and there are more than 8 monitor groups.
– Monitors are larger-than 32-bits and there are more than 4 monitor groups.

• There are at most 8 monitors per group if monitors are larger-than 32-bits and there are more than 8
monitor groups.

ARM IHI 0091
A.a-00bet0

Copyright © 2005-2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

59

Chapter 3. Programmers’ Model
3.10. PMCIDR0, Component Identification Register 0

3.10 PMCIDR0, Component Identification Register 0

The PMCIDR0 characteristics are:

Purpose
Provides discovery information about the component.

Usage constraints
None.

Configurations
PMCIDR0 is present only if Peripheral Identification scheme is implemented. PMCIDR0 is RES0
otherwise.

Attributes
PMCIDR0 is a 32-bit read-only memory-mapped register located at offset 0xFF0.

3.10.1 Field descriptions

The PMCIDR0 bit assignments are:

7 0

0 0 0 0 1 1 0 1

31 8

RES0

PRMBL_0

Figure 3.8: PMCIDR0

Bits [31:8]
Reserved. This field is RES0.

PRMBL_0, bits [7:0]
Component identification preamble, segment 0. This field reads as 0x0D.

ARM IHI 0091
A.a-00bet0

Copyright © 2005-2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

60

Chapter 3. Programmers’ Model
3.11. PMCIDR1, Component Identification Register 1

3.11 PMCIDR1, Component Identification Register 1

The PMCIDR1 characteristics are:

Purpose
Provides discovery information about the component.

Usage constraints
None.

Configurations
PMCIDR1 is present only if Peripheral Identification scheme is implemented. PMCIDR1 is RES0
otherwise.

Attributes
PMCIDR1 is a 32-bit read-only memory-mapped register located at offset 0xFF4.

3.11.1 Field descriptions

The PMCIDR1 bit assignments are:

3 0

0 0 0 0

7 4

1 0 0 1

31 8

RES0

PRMBL_1CLASS

Figure 3.9: PMCIDR1

Bits [31:8]
Reserved. This field is RES0.

CLASS, bits [7:4]
Component class. The defined values of this field are:

0x9 CoreSight peripheral.

Other values are defined by the CoreSight Architecture.

This field reads as 0x9.

PRMBL_1, bits [3:0]
Component identification preamble, segment 1. This field reads as 0x0.

ARM IHI 0091
A.a-00bet0

Copyright © 2005-2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

61

Chapter 3. Programmers’ Model
3.12. PMCIDR2, Component Identification Register 2

3.12 PMCIDR2, Component Identification Register 2

The PMCIDR2 characteristics are:

Purpose
Provides discovery information about the component.

Usage constraints
None.

Configurations
PMCIDR2 is present only if Peripheral Identification scheme is implemented. PMCIDR2 is RES0
otherwise.

Attributes
PMCIDR2 is a 32-bit read-only memory-mapped register located at offset 0xFF8.

3.12.1 Field descriptions

The PMCIDR2 bit assignments are:

7 0

0 0 0 0 0 1 0 1

31 8

RES0

PRMBL_2

Figure 3.10: PMCIDR2

Bits [31:8]
Reserved. This field is RES0.

PRMBL_2, bits [7:0]
Component identification preamble, segment 2. This field reads as 0x05.

ARM IHI 0091
A.a-00bet0

Copyright © 2005-2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

62

Chapter 3. Programmers’ Model
3.13. PMCIDR3, Component Identification Register 3

3.13 PMCIDR3, Component Identification Register 3

The PMCIDR3 characteristics are:

Purpose
Provides discovery information about the component.

Usage constraints
None.

Configurations
PMCIDR3 is present only if Peripheral Identification scheme is implemented. PMCIDR3 is RES0
otherwise.

Attributes
PMCIDR3 is a 32-bit read-only memory-mapped register located at offset 0xFFC.

3.13.1 Field descriptions

The PMCIDR3 bit assignments are:

7 0

1 0 1 1 0 0 0 1

31 8

RES0

PRMBL_3

Figure 3.11: PMCIDR3

Bits [31:8]
Reserved. This field is RES0.

PRMBL_3, bits [7:0]
Component identification preamble, segment 3. This field reads as 0xB1.

ARM IHI 0091
A.a-00bet0

Copyright © 2005-2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

63

Chapter 3. Programmers’ Model
3.14. PMCNTENCLR<n>, Count Enable Clear Register <n>

3.14 PMCNTENCLR<n>, Count Enable Clear Register <n>

The PMCNTENCLR<n> characteristics are:

Purpose
Disable monitors.

Usage constraints
None.

Configurations
Always implemented.

Attributes
PMCNTENCLR<n> is a 32-bit read/write-one-to-clear memory-mapped register located at offset 0xC20
+ 4×n in the Page 0 component.

3.14.1 Field descriptions

The PMCNTENCLR<n> bit assignments are:

31 0

P

Figure 3.12: PMCNTENCLR<n>

P[m], bit [m], for m = 0 to 31
PMEVCNTR<m> disable. On writes, allows software to disable PMEVCNTR<m>. On reads, returns the
PMEVCNTR<m> enable status.

On a read, the defined values of this bit are:

0 PMEVCNTR<m> disabled.
1 PMEVCNTR<m> enabled.

On a write, the possible values for writing to this bit are:

0 Write is ignored.
1 Disable PMEVCNTR<m>.

If the Cycle Counter extension is implemented, then PMCNTENCLR<n>.P[31] allows software to disable
PMCCNTR and query the PMCCNTR enable status.

ARM IHI 0091
A.a-00bet0

Copyright © 2005-2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

64

Chapter 3. Programmers’ Model
3.15. PMCNTENSET<n>, Count Enable Set Register <n>

3.15 PMCNTENSET<n>, Count Enable Set Register <n>

The PMCNTENSET<n> characteristics are:

Purpose
Enable monitors.

Usage constraints
None.

Configurations
Always implemented.

Attributes
PMCNTENSET<n> is a 32-bit read/write-one-to-set memory-mapped register located at offset 0xC00 +
4×n in the Page 0 component.

3.15.1 Field descriptions

The PMCNTENSET<n> bit assignments are:

31 0

P

Figure 3.13: PMCNTENSET<n>

P[m], bit [m], for m = 0 to 31
PMEVCNTR<m> enable. On writes, allows software to enable PMEVCNTR<m>. On reads, returns the
PMEVCNTR<m> enable status.

On a read, the defined values of this bit are:

0 PMEVCNTR<m> disabled.
1 PMEVCNTR<m> enabled.

On a write, the possible values for writing to this bit are:

0 Write is ignored.
1 Enable PMEVCNTR<m>.

If the Cycle Counter extension is implemented, then PMCNTENSET<n>.P[31] allows software to enable
PMCCNTR and query the PMCCNTR enable status.

ARM IHI 0091
A.a-00bet0

Copyright © 2005-2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

65

Chapter 3. Programmers’ Model
3.16. PMCR, Control Register

3.16 PMCR, Control Register

The PMCR characteristics are:

Purpose
Main control register for the performance monitors.

Usage constraints
None.

Configurations
Always implemented.

Attributes
PMCR is a 32-bit read/write memory-mapped register located at offset 0xE04 in the Page 0 component.

3.16.1 Field descriptions

The PMCR bit assignments are:

0

E

12

C

3

D

4

X

57 6

RES0

89101131 12

RES0

PDPNATRO
FZOHDBG

Figure 3.14: PMCR

Bits [31:12,7:6]
Reserved. This field is RES0.

TRO, bit [11]
Trace enable.

When trace features are implemented
Enable trace features. The possible values of this bit are:

0 Trace disabled.
1 Trace enabled.

Otherwise
Reserved. This bit is RES0.

HDBG, bit [10]
Halt-on-debug.

When Halt-on-debug is implemented
Stops events being counted when the affine PE or agent is in a halted state such as Debug state. The
possible values of this bit are:

0 Do not stop counting when agent is halted.
1 Stop counting when agent is halted.

ARM IHI 0091
A.a-00bet0

Copyright © 2005-2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

66

Chapter 3. Programmers’ Model
3.16. PMCR, Control Register

Otherwise
Reserved. This bit is RES0.

FZO, bit [9]
Freeze-on-overflow.

When PMCFGR.FZO == 0b1, freeze-on-overflow extension is implemented
Stop monitors on overflow. The possible values of this bit are:

0 Do not freeze on overflow.
1 Monitors do not count when PMOVSR is nonzero.

Otherwise
Reserved. This bit is RES0.

NA, bit [8]
Not accessible.

When the monitors cannot be written at any time
Indicates the monitors are read-only. The defined values of this bit are:

0 Monitors are read/write. It is IMPLEMENTATION DEFINED whether the monitor
configuration registers are read-only or read/write.

1 Monitors and monitor configuration registers are read-only and writes are ignored.

This bit is read-only.

Otherwise
Reserved. This bit is RES0.

DP, bit [5]
Disable cycle counter when prohibited or not counting.

When PMCFGR.CC == 0b1, cycle counter extension is implemented
The possible values of this bit are:

0 Cycle counting by PMCCNTR not affected by this bit.
1 Cycle counting by PMCCNTR disabled in prohibited regions.

Prohibited regions are IMPLEMENTATION DEFINED regions where event counting is prohibited.

Note:

This bit allows software to ignore cycle counts that might be accumulated during periods
when the other counts are prohibited because of security prohibitions. It is not a control to
enhance security. The function of this bit is to avoid corruption of the count.

Otherwise
Reserved. This bit is RES0.

X, bit [4]
Export enable.

When export of events is implemented
Permit events to be exported to another debug device, such as a PE Trace Unit, over an event bus. The
possible values of this bit are:

ARM IHI 0091
A.a-00bet0

Copyright © 2005-2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

67

Chapter 3. Programmers’ Model
3.16. PMCR, Control Register

0 Export of events is disabled.
1 Export of events is enabled.

This bit does not affect the generation of performance monitor interrupts that can be implemented as
a signal exported from the PMU to an interrupt controller.

Otherwise
Reserved. This bit is RES0.

D, bit [3]
Cycle counter divider.

When PMCFGR.CC == 0b1, cycle counter extension is implemented
The possible values of this bit are:

0 When enabled, the cycle counter counts every clock cycle.
1 When enabled, the cycle counter counts once every 64 clock cycles.

Otherwise
Reserved. This bit is RES0.

C, bit [2]
Cycle counter reset.

When PMCFGR.CC == 0b1, cycle counter extension is implemented
The possible values for writing to this bit are:

0 Write is ignored.
1 Reset the cycle counter to zero.

This bit is write-only and reads-as-zero.

Note:

Resetting the cycle counter does not affect the cycle counter overflow flag.

Otherwise
Reserved. This bit is RES0.

P, bit [1]
Monitor reset. The possible values for writing to this bit are:

0 Write is ignored.
1 Reset all monitors to zero. The cycle counter is not reset.

Resetting the monitors does not affect any overflow flags.

This bit is write-only and reads-as-zero.

E, bit [0]
Count enable. Controls the performance monitor. The possible values of this bit are:

0 All monitors are disabled.
1 All monitors are enabled by PMCNTENSET.

ARM IHI 0091
A.a-00bet0

Copyright © 2005-2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

68

Chapter 3. Programmers’ Model
3.16. PMCR, Control Register

This bit resets to zero.

ARM IHI 0091
A.a-00bet0

Copyright © 2005-2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

69

Chapter 3. Programmers’ Model
3.17. PMDEVAFF, Device Affinity Register

3.17 PMDEVAFF, Device Affinity Register

The PMDEVAFF characteristics are:

Purpose
For a monitor that has affinity with a single PE or a group of PEs, PMDEVAFF is a copy of MPIDR_EL1
or part of MPIDR_EL1:

• If the monitor has affinity with a single PE, the affinity level is 0, PMDEVAFF reads the same value
as MPIDR_EL1, and PMDEVAFF.F0V reads-as-one to indicate affinity level 0.

• If the monitor has affinity with a group of PEs, the affinity level is 1, 2, or 3, parts of PMDEVAFF
reads the same value as parts of MPIDR_EL1, and the rest of PMDEVAFF indicates the level.

For example, if the group of PEs is a subset of the PEs at affinity level 1 then all of the following are true:

• All the PEs in the group have the same values in MPIDR_EL1.{Aff3,Aff2}, and these values are
equal to PMDEVAFF.{Aff3,Aff2}.

• PMDEVAFF.Aff1 is nonzero and not 0x80, and PMDEVAFF.{Aff0,F0V} read-as-zero, to indicate
at least affinity level 1. The subset of PEs at level 1 that the monitor has affinity with is indicated
by the least-significant set bit in PMDEVAFF.Aff1. In this example, if PMDEVAFF.Aff1[2:0] is
0b100, then the monitor has affinity with the up-to 8 PEs that have MPIDR_EL1.Aff1[7:3] ==
PMDEVAFF.Aff1[7:3].

Usage constraints
None.

Configurations
PMDEVAFF is present only if the monitor has affinity with a PE or cluster of PEs. PMDEVAFF is RES0
otherwise.

Attributes
PMDEVAFF is a 64-bit read-only memory-mapped register located at offset 0xFA8.

3.17.1 Field descriptions

The PMDEVAFF bit assignments are:

39 32

Aff3

63 40

RES0

7 0

Aff0

15 8

Aff1

23 16

Aff2

2429 25

RES0

30

U

31

MTF0V

Figure 3.15: PMDEVAFF

Bits [63:40,29:25]
Reserved. This field is RES0.

Aff3, bits [39:32]
PE affinity level 3. The MPIDR_EL1.Aff3 field, viewed from the highest Exception level of the associated
PE or PEs.

F0V, bit [31]
Indicates that the PMDEVAFF.Aff0 field is valid. The defined values of this bit are:

ARM IHI 0091
A.a-00bet0

Copyright © 2005-2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

70

Chapter 3. Programmers’ Model
3.17. PMDEVAFF, Device Affinity Register

0b0 PMDEVAFF.Aff0 is not valid, and the PE affinity is above level 0 or a subset of level 0.
0b1 PMDEVAFF.Aff0 is valid, and the PE affinity is at level 0.

U, bit [30]
Uniprocessor.

When PMDEVAFF.F0V == 0b1
The MPIDR_EL1.U bit, viewed from the highest Exception level of the associated PE.

Otherwise
Reserved. This bit is UNKNOWN.

MT, bit [24]
Multithreaded.

When PMDEVAFF.F0V == 0b1
The MPIDR_EL1.MT bit, viewed from the highest Exception level of the associated PE.

Otherwise
Reserved. This bit is UNKNOWN.

Aff2, bits [23:16]
PE affinity level 2.

When affine with a PE or PEs at affinity level 2 or below
The MPIDR_EL1.Aff2 field, viewed from the highest Exception level of the associated PE or PEs.

When affine with a sub-set of PEs at affinity level 2
Defines part of the MPIDR_EL1.Aff2 field, viewed from the highest Exception level of the associated
PEs. The defined values of this field are:

0bxxxxxxx1 PMDEVAFF.Aff2[7:1] is the value of MPIDR_EL1.Aff2[7:1], viewed from the
highest Exception level of the associated PEs.

0bxxxxxx10 PMDEVAFF.Aff2[7:2] is the value of MPIDR_EL1.Aff2[7:2], viewed from the
highest Exception level of the associated PEs.

0bxxxxx100 PMDEVAFF.Aff2[7:3] is the value of MPIDR_EL1.Aff2[7:3], viewed from the
highest Exception level of the associated PEs.

0bxxxx1000 PMDEVAFF.Aff2[7:4] is the value of MPIDR_EL1.Aff2[7:4], viewed from the
highest Exception level of the associated PEs.

0bxxx10000 PMDEVAFF.Aff2[7:5] is the value of MPIDR_EL1.Aff2[7:5], viewed from the
highest Exception level of the associated PEs.

0bxx100000 PMDEVAFF.Aff2[7:6] is the value of MPIDR_EL1.Aff2[7:6], viewed from the
highest Exception level of the associated PEs.

0bx1000000 PMDEVAFF.Aff2[7] is the value of MPIDR_EL1.Aff2[7], viewed from the highest
Exception level of the associated PEs.

Otherwise
Indicates whether the PE affinity is at level 3. The defined values of this field are:

0x80 PE affinity is at level 3.

All other values are reserved.

Aff1, bits [15:8]
PE affinity level 1.

ARM IHI 0091
A.a-00bet0

Copyright © 2005-2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

71

Chapter 3. Programmers’ Model
3.17. PMDEVAFF, Device Affinity Register

When affine with a PE or PEs at affinity level 1 or below
The MPIDR_EL1.Aff1 field, viewed from the highest Exception level of the associated PE or PEs.

When affine with a sub-set of PEs at affinity level 1
Defines part of the MPIDR_EL1.Aff1 field, viewed from the highest Exception level of the associated
PEs. The defined values of this field are:

0bxxxxxxx1 PMDEVAFF.Aff1[7:1] is the value of MPIDR_EL1.Aff1[7:1], viewed from the
highest Exception level of the associated PEs.

0bxxxxxx10 PMDEVAFF.Aff1[7:2] is the value of MPIDR_EL1.Aff1[7:2], viewed from the
highest Exception level of the associated PEs.

0bxxxxx100 PMDEVAFF.Aff1[7:3] is the value of MPIDR_EL1.Aff1[7:3], viewed from the
highest Exception level of the associated PEs.

0bxxxx1000 PMDEVAFF.Aff1[7:4] is the value of MPIDR_EL1.Aff1[7:4], viewed from the
highest Exception level of the associated PEs.

0bxxx10000 PMDEVAFF.Aff1[7:5] is the value of MPIDR_EL1.Aff1[7:5], viewed from the
highest Exception level of the associated PEs.

0bxx100000 PMDEVAFF.Aff1[7:6] is the value of MPIDR_EL1.Aff1[7:6], viewed from the
highest Exception level of the associated PEs.

0bx1000000 PMDEVAFF.Aff1[7] is the value of MPIDR_EL1.Aff1[7], viewed from the highest
Exception level of the associated PEs.

Otherwise
Indicates whether the PE affinity is at level 2. The defined values of this field are:

0x00 PE affinity is above level 2 or a subset of level 2.
0x80 PE affinity is at level 2.

Aff0, bits [7:0]
PE affinity level 0.

When affine with a PE at affinity level 0
The MPIDR_EL1.Aff0 field, viewed from the highest Exception level of the associated PE.

When affine with a sub-set of PEs at affinity level 0
Defines part of the MPIDR_EL1.Aff0 field, viewed from the highest Exception level of the associated
PEs. The defined values of this field are:

0bxxxxxxx1 PMDEVAFF.Aff0[7:1] is the value of MPIDR_EL1.Aff0[7:1], viewed from the
highest Exception level of the associated PEs.

0bxxxxxx10 PMDEVAFF.Aff0[7:2] is the value of MPIDR_EL1.Aff0[7:2], viewed from the
highest Exception level of the associated PEs.

0bxxxxx100 PMDEVAFF.Aff0[7:3] is the value of MPIDR_EL1.Aff0[7:3], viewed from the
highest Exception level of the associated PEs.

0bxxxx1000 PMDEVAFF.Aff0[7:4] is the value of MPIDR_EL1.Aff0[7:4], viewed from the
highest Exception level of the associated PEs.

0bxxx10000 PMDEVAFF.Aff0[7:5] is the value of MPIDR_EL1.Aff0[7:5], viewed from the
highest Exception level of the associated PEs.

0bxx100000 PMDEVAFF.Aff0[7:6] is the value of MPIDR_EL1.Aff0[7:6], viewed from the
highest Exception level of the associated PEs.

0bx1000000 PMDEVAFF.Aff0[7] is the value of MPIDR_EL1.Aff0[7], viewed from the highest
Exception level of the associated PEs.

ARM IHI 0091
A.a-00bet0

Copyright © 2005-2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

72

Chapter 3. Programmers’ Model
3.17. PMDEVAFF, Device Affinity Register

Otherwise
Indicates whether the PE affinity is at level 1. The defined values of this field are:

0x00 PE affinity is above level 1 or a subset of level 1.
0x80 PE affinity is at level 1.

ARM IHI 0091
A.a-00bet0

Copyright © 2005-2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

73

Chapter 3. Programmers’ Model
3.18. PMDEVARCH, Device Architecture Register

3.18 PMDEVARCH, Device Architecture Register

The PMDEVARCH characteristics are:

Purpose
Provides discovery information for the component.

Usage constraints
None.

Configurations
Always implemented.

Attributes
PMDEVARCH is a 32-bit read-only memory-mapped register located at offset 0xFBC.

3.18.1 Field descriptions

The PMDEVARCH bit assignments are:

11 0

ARCHPART

15 12

ARCHVER

19 16

REVISION

20

1

31 21

0 1 0 0 0 1 1 1 0 1 1

PRESENTARCHITECT

Figure 3.16: PMDEVARCH

ARCHITECT, bits [31:21]
Architect. Defines the architect of the component. Bits [31:28] are the JEP106 continuation code (JEP106
bank ID, minus 1) and bits [27:21] are the JEP106 ID code. The defined values of this field are:

0x23B JEP106 continuation code 0x4, ID code 0x3B. Arm Limited.

Other values are defined by the JEDEC JEP106 standard.

This field reads as 0x23B.

PRESENT, bit [20]
DEVARCH Present. Defines that the DEVARCH register is present. The defined values of this bit are:

0b0 Device Architecture information not present.
0b1 Device Architecture information present.

This bit reads as 0b1.

REVISION, bits [19:16]
Revision. Defines the architecture revision of the component.

ARCHVER, bits [15:12]
Architecture Version. Defines the architecture version of the component.

ARCHVER and ARCHPART are also defined as a single field, ARCHID, so that ARCHVER is
ARCHID[15:12].

ARM IHI 0091
A.a-00bet0

Copyright © 2005-2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

74

Chapter 3. Programmers’ Model
3.18. PMDEVARCH, Device Architecture Register

ARCHPART, bits [11:0]
Architecture Part. Defines the architecture of the component.

ARCHVER and ARCHPART are also defined as a single field, ARCHID, so that ARCHPART is
ARCHID[11:0].

ARM IHI 0091
A.a-00bet0

Copyright © 2005-2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

75

Chapter 3. Programmers’ Model
3.19. PMDEVID, Device Configuration Register

3.19 PMDEVID, Device Configuration Register

The PMDEVID characteristics are:

Purpose
Provides discovery information for the component.

Usage constraints
None.

Configurations
Always implemented.

Attributes
PMDEVID is a 32-bit read-only memory-mapped register located at offset 0xFC8 in the Page 0 component.

3.19.1 Field descriptions

The PMDEVID bit assignments are:

31 0

IMPLEMENTATION DEFINED

Figure 3.17: PMDEVID

Bits [31:0]
This field reads as an IMPLEMENTATION DEFINED value.

ARM IHI 0091
A.a-00bet0

Copyright © 2005-2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

76

Chapter 3. Programmers’ Model
3.20. PMDEVTYPE, Device Type Register

3.20 PMDEVTYPE, Device Type Register

The PMDEVTYPE characteristics are:

Purpose
Provides discovery information for the component. If the part number field is not recognized, a debugger
can report the information that is provided by PMDEVTYPE about the component instead.

Usage constraints
None.

Configurations
Always implemented.

Attributes
PMDEVTYPE is a 32-bit read-only memory-mapped register located at offset 0xFCC.

3.20.1 Field descriptions

The PMDEVTYPE bit assignments are:

3 0

0 1 1 0

7 4

SUB

31 8

RES0

MAJOR

Figure 3.18: PMDEVTYPE

Bits [31:8]
Reserved. This field is RES0.

SUB, bits [7:4]
Component sub-type.

When MAJOR == 0x6 (Performance monitor), the defined values of this field are:

0x0 Other.
0x1 Associated with a PE.
0x2 Associated with a DSP.
0x3 Associated with a Data Engine or coprocessor.
0x4 Associated with a bus or stimulus derived from bus activity.
0x5 Associated with a memory management unit conforming to the Arm System MMU

architecture.
0x7 Derived from generic signals.

Other values are defined by the CoreSight Architecture.

MAJOR, bits [3:0]
Component major type. The defined values of this field are:

0x6 Performance monitor.

ARM IHI 0091
A.a-00bet0

Copyright © 2005-2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

77

Chapter 3. Programmers’ Model
3.20. PMDEVTYPE, Device Type Register

Other values are defined by the CoreSight Architecture.

This field reads as 0x6.

ARM IHI 0091
A.a-00bet0

Copyright © 2005-2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

78

Chapter 3. Programmers’ Model
3.21. PMEVCNTR<n>, Event Count Register <n> (up-to 32 bits)

3.21 PMEVCNTR<n>, Event Count Register <n> (up-to 32 bits)

The PMEVCNTR<n> characteristics are:

Purpose
Monitor value <n>. If monitoring is not prohibited and the monitor is enabled, the monitor monitors the
component as configured by PMEVTYPER<n> and PMEVFILTR<n>.

Usage constraints
None.

Configurations
PMEVCNTR<n> is present only if PMCFGR.SIZE <= 0b011111, all monitors are 32 bits or smaller.
PMEVCNTR<n> is RES0 otherwise.

Attributes
PMEVCNTR<n> is a 32-bit read/write memory-mapped register located at offset 0x000 + 4×n in the
Page 1 component.

3.21.1 Field descriptions

The PMEVCNTR<n> bit assignments are:

31 0

CNTR

Figure 3.19: PMEVCNTR<n>

CNTR, bits [31:0]
Monitor value.

The number of implemented bits for PMEVCNTR<n> is IMPLEMENTATION DEFINED. Unimplemented
bits are RES0.

ARM IHI 0091
A.a-00bet0

Copyright © 2005-2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

79

Chapter 3. Programmers’ Model
3.22. PMEVCNTR<n>, Event Count Register <n> (up-to 64 bits)

3.22 PMEVCNTR<n>, Event Count Register <n> (up-to 64 bits)

The PMEVCNTR<n> characteristics are:

Purpose
Monitor value <n>. If monitoring is not prohibited and the monitor is enabled, the monitor monitors the
component as configured by PMEVTYPER<n> and PMEVFILTR<n>.

Usage constraints
None.

Configurations
PMEVCNTR<n> is present only if PMCFGR.SIZE > 0b011111, at least one monitor is larger than 32
bits. PMEVCNTR<n> is RES0 otherwise.

Attributes
PMEVCNTR<n> is a 64-bit read/write memory-mapped register located at offset 0x000 + 8×n in the
Page 1 component.

3.22.1 Field descriptions

The PMEVCNTR<n> bit assignments are:

63 32

CNTR[63:32]

31 0

CNTR[31:0]

Figure 3.20: PMEVCNTR<n>

CNTR, bits [63:0]
Monitor value.

The number of implemented bits for PMEVCNTR<n> is IMPLEMENTATION DEFINED. Unimplemented
bits are RES0.

ARM IHI 0091
A.a-00bet0

Copyright © 2005-2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

80

Chapter 3. Programmers’ Model
3.23. PMEVFILTR<n>, Event Type Select Register <n>

3.23 PMEVFILTR<n>, Event Type Select Register <n>

The PMEVFILTR<n> characteristics are:

Purpose
For performance monitors requiring event selection controls in addition to the 32-bit PMEVTYPER<n>
register.

Usage constraints
None.

Configurations
Always implemented.

Attributes
PMEVFILTR<n> is a 32-bit read/write memory-mapped register located at offset 0xA00 + 4×n in the
Page 0 component.

It is IMPLEMENTATION DEFINED whether this register is read-only or read/write.

3.23.1 Field descriptions

The PMEVFILTR<n> bit assignments are:

31 0

IMPLEMENTATION DEFINED

Figure 3.21: PMEVFILTR<n>

Bits [31:0]
This field reads as an IMPLEMENTATION DEFINED value and writes to this field have IMPLEMENTATION
DEFINED behavior.

ARM IHI 0091
A.a-00bet0

Copyright © 2005-2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

81

Chapter 3. Programmers’ Model
3.24. PMEVTYPER<n>, Event Type Select Register <n>

3.24 PMEVTYPER<n>, Event Type Select Register <n>

The PMEVTYPER<n> characteristics are:

Purpose
Configures monitor <n>.

Usage constraints
None.

Configurations
Always implemented.

Attributes
PMEVTYPER<n> is a 32-bit read/write memory-mapped register located at offset 0x400 + 4×n in the
Page 0 component.

It is IMPLEMENTATION DEFINED whether this register is read-only or read/write.

3.24.1 Field descriptions

The PMEVTYPER<n> bit assignments are:

31 0

IMPLEMENTATION DEFINED

Figure 3.22: PMEVTYPER<n>

Bits [31:0]
This field reads as an IMPLEMENTATION DEFINED value and writes to this field have IMPLEMENTATION
DEFINED behavior.

ARM IHI 0091
A.a-00bet0

Copyright © 2005-2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

82

Chapter 3. Programmers’ Model
3.25. PMIIDR, Implementation Identification Register

3.25 PMIIDR, Implementation Identification Register

The PMIIDR characteristics are:

Purpose
Defines the implementer of the component.

Usage constraints
None.

Configurations
It is IMPLEMENTATION DEFINED whether PMIIDR is present. PMIIDR is RES0 if not present.

Attributes
PMIIDR is a 32-bit read-only memory-mapped register located at offset 0xE08.

3.25.1 Field descriptions

The PMIIDR bit assignments are:

6 0

IMP DEF

7

(0)

11 8

IMP DEF

15 12

IMP DEF

19 16

IMP DEF

31 20

IMPLEMENTATION DEFINED

Implementer[6:0]Implementer[10:7]RevisionVariantProductID

Figure 3.23: PMIIDR

ProductID, bits [31:20]
Part number, bits [11:0]. The part number is selected by the designer of the component.

Matches the {PMPIDR1.PART_1,PMPIDR0.PART_0} fields, if PMPIDR0 and PMPIDR1 are also present.

This field reads as an IMPLEMENTATION DEFINED value.

Variant, bits [19:16]
Component major revision.

PMIIDR.Variant defines either a variant of the component defined by PMIIDR.ProductID, or the major
revision of the component.

When defining a major revision, PMIIDR.Variant and PMIIDR.Revision together form the revision number
of the component, with PMIIDR.Variant being the most significant part and PMIIDR.Revision the least
significant part. When a component is changed, PMIIDR.Variant or PMIIDR.Revision is increased to
ensure that software can differentiate the different revisions of the component. If PMIIDR.Variant is
increased then PMIIDR.Revision should be set to 0b0000.

Matches the PMPIDR2.REVISION field, if PMPIDR2 is also present.

This field reads as an IMPLEMENTATION DEFINED value.

Revision, bits [15:12]
Component minor revision.

When a component is changed:

• If PMIIDR.Variant and PMIIDR.Revision together form the revision number of the component then:
– PMIIDR.Variant or PMIIDR.Revision is increased to ensure that software can differentiate the

different revisions of the component.
– If Variant is increased then Revision should be set to 0b0000.

ARM IHI 0091
A.a-00bet0

Copyright © 2005-2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

83

Chapter 3. Programmers’ Model
3.25. PMIIDR, Implementation Identification Register

• Otherwise, PMIIDR.Revision is increased to ensure that software can differentiate the different
revisions of the component.

Matches the PMPIDR3.REVAND field, if PMPIDR3 is also present.

This field reads as an IMPLEMENTATION DEFINED value.

Implementer, bits [11:8,6:0]
JEDEC-assigned JEP106 identification code. PMIIDR[11:8] is the JEP106 bank identifier minus 1 and
PMIIDR[6:0] is the JEP106 identification code for the designer of the component. The code identifies
the designer of the component, which might not be not the same as the implementer of the device
containing the component. To obtain a number, or to see the assignment of these codes, contact JEDEC
http://www.jedec.org.

PMIIDR[11:8] matches PMPIDR4.DES_2 and PMIIDR[6:0] match the {PMPIDR2.DES_1,ERRPIDR1.DES_0}
fields, if PMPIDR{1,2,4} are also present.

This field reads as an IMPLEMENTATION DEFINED value.

Note:

For a component designed by Arm Limited, the JEP106 bank is 5, and the JEP106 identification
code is 0x3B, meaning PMIIDR[11:0] has the value 0x43B.

Zero is not a valid JEP106 identification code, meaning a value of zero for PMIIDR indicates
this register is not implemented.

Bit [7]
Reserved. This bit is RES0.

ARM IHI 0091
A.a-00bet0

Copyright © 2005-2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

84

Chapter 3. Programmers’ Model
3.26. PMINTENCLR<n>, Overflow Interrupt Enable Clear Register <n>

3.26 PMINTENCLR<n>, Overflow Interrupt Enable Clear Register <n>

The PMINTENCLR<n> characteristics are:

Purpose
Disable interrupt on monitor unsigned overflow.

Usage constraints
None.

Configurations
Always implemented.

Attributes
PMINTENCLR<n> is a 32-bit read/write-one-to-clear memory-mapped register located at offset 0xC60 +
4×n in the Page 0 component.

3.26.1 Field descriptions

The PMINTENCLR<n> bit assignments are:

31 0

P

Figure 3.24: PMINTENCLR<n>

P[m], bit [m], for m = 0 to 31
Interrupt on overflow status of PMEVCNTR<m> disable. On writes, allows software to disable the
interrupt on overflow status of PMEVCNTR<m>. On reads, returns the interrupt on overflow status of
PMEVCNTR<m> enable status.

On a read, the defined values of this bit are:

0 Interrupt on overflow status of PMEVCNTR<m> disabled.
1 Interrupt on overflow status of PMEVCNTR<m> enabled.

On a write, the possible values for writing to this bit are:

0 Write is ignored.
1 Disable interrupt on overflow status of PMEVCNTR<m>.

If the Cycle Counter extension is implemented, then PMINTENCLR<n>.P[31] allows software to disable
the interrupt on overflow status of PMCCNTR and query the interrupt on overflow status of PMCCNTR
enable status.

ARM IHI 0091
A.a-00bet0

Copyright © 2005-2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

85

Chapter 3. Programmers’ Model
3.27. PMINTENSET<n>, Overflow Interrupt Enable Set Register <n>

3.27 PMINTENSET<n>, Overflow Interrupt Enable Set Register <n>

The PMINTENSET<n> characteristics are:

Purpose
Enable interrupt on monitor unsigned overflow.

Usage constraints
None.

Configurations
Always implemented.

Attributes
PMINTENSET<n> is a 32-bit read/write-one-to-set memory-mapped register located at offset 0xC40 +
4×n in the Page 0 component.

3.27.1 Field descriptions

The PMINTENSET<n> bit assignments are:

31 0

P

Figure 3.25: PMINTENSET<n>

P[m], bit [m], for m = 0 to 31
Interrupt on overflow status of PMEVCNTR<m> enable. On writes, allows software to enable the
interrupt on overflow status of PMEVCNTR<m>. On reads, returns the interrupt on overflow status of
PMEVCNTR<m> enable status.

On a read, the defined values of this bit are:

0 Interrupt on overflow status of PMEVCNTR<m> disabled.
1 Interrupt on overflow status of PMEVCNTR<m> enabled.

On a write, the possible values for writing to this bit are:

0 Write is ignored.
1 Enable interrupt on overflow status of PMEVCNTR<m>.

If the Cycle Counter extension is implemented, then PMINTENSET<n>.P[31] allows software to enable
the interrupt on overflow status of PMCCNTR and query the interrupt on overflow status of PMCCNTR
enable status.

ARM IHI 0091
A.a-00bet0

Copyright © 2005-2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

86

Chapter 3. Programmers’ Model
3.28. PMIRQCR0, Interrupt Configuration Register 0

3.28 PMIRQCR0, Interrupt Configuration Register 0

The PMIRQCR0 characteristics are:

Purpose
Interrupt configuration register.

Usage constraints
None.

Configurations
PMIRQCR0 is present only if PMCFGR.MSI == 0b1, message-signaled interrupts are implemented.
PMIRQCR0 is RES0 otherwise.

Attributes
PMIRQCR0 is a 64-bit read/write memory-mapped register located at offset 0xE80 in the Page 0
component.

3.28.1 Field descriptions

The PMIRQCR0 bit assignments are:

55 32

ADDR[53:30]

63 56

RES0

1 0

RES0

31 2

ADDR[29:0]

Figure 3.26: PMIRQCR0

Bits [63:56,1:0]
Reserved. This field is RES0.

ADDR, bits [55:2]
Message Signaled Interrupt address. (PMIRQCR0.ADDR << 2) is the address that the PMU writes to
when signaling the Interrupt. Bits [1:0] of the address are always zero.

The physical address size supported by the PMU is IMPLEMENTATION DEFINED. Unimplemented
high-order physical address bits are RES0.

ARM IHI 0091
A.a-00bet0

Copyright © 2005-2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

87

Chapter 3. Programmers’ Model
3.29. PMIRQCR1, Interrupt Configuration Register 1

3.29 PMIRQCR1, Interrupt Configuration Register 1

The PMIRQCR1 characteristics are:

Purpose
Interrupt configuration register.

Usage constraints
If this component allows both Secure and Non-secure accesses, then when PMIRQCR2.NSMSI is
implemented and set to 0b0 PMIRQCR1 is read-only to Non-secure accesses.

Configurations
PMIRQCR1 is present only if PMCFGR.MSI == 0b1, message-signaled interrupts are implemented.
PMIRQCR1 is RES0 otherwise.

Attributes
PMIRQCR1 is a 32-bit read/write memory-mapped register located at offset 0xE88 in the Page 0
component.

3.29.1 Field descriptions

The PMIRQCR1 bit assignments are:

31 0

DATA

Figure 3.27: PMIRQCR1

DATA, bits [31:0]
Payload for the message signaled interrupt.

ARM IHI 0091
A.a-00bet0

Copyright © 2005-2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

88

Chapter 3. Programmers’ Model
3.30. PMIRQCR2, Interrupt Configuration Register 2

3.30 PMIRQCR2, Interrupt Configuration Register 2

The PMIRQCR2 characteristics are:

Purpose
Interrupt control and configuration register.

Usage constraints
If this component allows both Secure and Non-secure accesses, then when PMIRQCR2.NSMSI is
implemented and set to 0b0 PMIRQCR2 is read-only to Non-secure accesses.

Configurations
PMIRQCR2 is present only if PMCFGR.MSI == 0b1, message-signaled interrupts are implemented.
PMIRQCR2 is RES0 otherwise.

Attributes
PMIRQCR2 is a 32-bit read/write memory-mapped register located at offset 0xE8C in the Page 0
component.

3.30.1 Field descriptions

The PMIRQCR2 bit assignments are:

3 0

MemAttr

5 4

SH

6731 8

RES0

NSMSIMSIEN

Figure 3.28: PMIRQCR2

Bits [31:8]
Reserved. This field is RES0.

MSIEN, bit [7]
Message signaled interrupt enable.

When the PMU supports disabling message signaled interrupts
Enables generation of message signaled interrupts. The possible values of this bit are:

0b0 Disabled.
0b1 Enabled.

This bit resets to 0b0.

Otherwise
Message signaled interrupts are always enabled.

This bit is RES0.

NSMSI, bit [6]
Security attribute. Defines the physical address space for message signaled interrupts.

When the PMU supports configuring the Security attribute for message signaled interrupts, and
the PMU does not allow Non-secure writes to PMIRQCR2
The possible values of this bit are:

ARM IHI 0091
A.a-00bet0

Copyright © 2005-2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

89

Chapter 3. Programmers’ Model
3.30. PMIRQCR2, Interrupt Configuration Register 2

0b0 Secure.
0b1 Non-secure.

This bit resets to an IMPLEMENTATION DEFINED value.

When the PMU allows Non-secure writes to PMIRQCR2
The Security attribute used for message signaled interrupts is Non-secure.

This bit is RES0.

Otherwise
The Security attribute for message signaled interrupts is IMPLEMENTATION DEFINED.

This bit is RES0.

SH, bits [5:4]
Shareability.

When the PMU supports configuring the Shareability domain for message signaled interrupts
Defines the Shareability domain for message signaled interrupts. The possible values of this field are:

0b00 Not shared.
0b10 Outer Shareable.
0b11 Inner Shareable.

All other values are reserved.

This field is ignored when PMIRQCR2.MemAttr specifies any of the following memory types:

• Any Device memory type.
• Normal memory, Inner Non-cacheable, Outer Non-cacheable.

All Device and Normal Inner Non-cacheable Outer Non-cacheable memory regions are always treated
as Outer Shareable.

This field resets to an architecturally UNKNOWN value.

Otherwise
The Shareability domain for message signaled interrupts is IMPLEMENTATION DEFINED.

This field is RES0.

MemAttr, bits [3:0]
Memory type.

When the PMU supports configuring the memory type for message signaled interrupts
Defines the memory type and attributes for message signaled interrupts. The possible values of this
field are:

0b0000 Device-nGnRnE memory.
0b0001 Device-nGnRE memory.
0b0010 Device-nGRE memory.
0b0011 Device-GRE memory.
0b0101 Normal memory, Inner Non-cacheable, Outer Non-cacheable.
0b0110 Normal memory, Inner Write-Through, Outer Non-cacheable.
0b0111 Normal memory, Inner Write-Back, Outer Non-cacheable.
0b1001 Normal memory, Inner Non-cacheable, Outer Write-Through.
0b1010 Normal memory, Inner Write-Through, Outer Write-Through.

ARM IHI 0091
A.a-00bet0

Copyright © 2005-2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

90

Chapter 3. Programmers’ Model
3.30. PMIRQCR2, Interrupt Configuration Register 2

0b1011 Normal memory, Inner Write-Back, Outer Write-Through.
0b1101 Normal memory, Inner Non-cacheable, Outer Write-Back.
0b1110 Normal memory, Inner Write-Through, Outer Write-Back.
0b1111 Normal memory, Inner Write-Back, Outer Write-Back.

All other values are reserved.

This field resets to an architecturally UNKNOWN value.

Note:

This is the same format as the VMSAv8-64 stage 2 memory region attributes.

Otherwise
The memory type used for message signaled interrupts is IMPLEMENTATION DEFINED.

This field is RES0.

ARM IHI 0091
A.a-00bet0

Copyright © 2005-2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

91

Chapter 3. Programmers’ Model
3.31. PMIRQSR, Interrupt Status Register

3.31 PMIRQSR, Interrupt Status Register

The PMIRQSR characteristics are:

Purpose
Interrupt status register.

Usage constraints
If this component allows both Secure and Non-secure accesses, then when PMIRQCR2.NSMSI is
implemented and set to 0b0 PMIRQSR is read-only to Non-secure accesses.

Configurations
PMIRQSR is present only if PMCFGR.MSI == 0b1, message-signaled interrupts are implemented.
PMIRQSR is RES0 otherwise.

Attributes
PMIRQSR is a 64-bit read/write memory-mapped register located at offset 0xEF8 in the Page 0 component.

3.31.1 Field descriptions

The PMIRQSR bit assignments are:

63 32

RES0

0131 2

RES0

IRQIRQERR

Figure 3.29: PMIRQSR

Bits [63:2]
Reserved. This field is RES0.

IRQERR, bit [1]
Interrupt error. The possible values of this bit are:

0b0 Interrupt write has not returned an error since this bit was last cleared to zero.
0b1 Interrupt write has returned an error since this bit was last cleared to zero.

This bit is read/write-one-to-clear.

IRQ, bit [0]
PMU Overflow Interrupt write in progress. The defined values of this bit are:

0b0 PMU Overflow Interrupt write not in progress.
0b1 PMU Overflow Interrupt write in progress.

Software must not disable an interrupt whilst the write is in progress.

This bit is read-only.

ARM IHI 0091
A.a-00bet0

Copyright © 2005-2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

92

Chapter 3. Programmers’ Model
3.31. PMIRQSR, Interrupt Status Register

Note:

This bit does not indicate whether an interrupt is active, but rather whether a write triggered by
the interrupt is in progress.

To determine whether an interrupt is active, software must examine the individual PMOVSR<n>
and PMINTEN<n> registers.

ARM IHI 0091
A.a-00bet0

Copyright © 2005-2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

93

Chapter 3. Programmers’ Model
3.32. PMOVSCLR<n>, Overflow Status Clear Register <n>

3.32 PMOVSCLR<n>, Overflow Status Clear Register <n>

The PMOVSCLR<n> characteristics are:

Purpose
Clear PMU monitor overflow status flags.

Usage constraints
None.

Configurations
Always implemented.

Attributes
PMOVSCLR<n> is a 32-bit read/write-one-to-clear memory-mapped register located at offset 0xC80 +
4×n in the Page 1 component.

3.32.1 Field descriptions

The PMOVSCLR<n> bit assignments are:

31 0

P

Figure 3.30: PMOVSCLR<n>

P[m], bit [m], for m = 0 to 31
Overflow status flag for PMEVCNTR<m> clear. On writes, allows software to clear the overflow status
flag for PMEVCNTR<m> to 0. On reads, returns the overflow status flag for PMEVCNTR<m>.

On a read, the defined values of this bit are:

0 PMEVCNTR<m> has not overflowed.
1 PMEVCNTR<m> has overflowed.

On a write, the possible values for writing to this bit are:

0 Write is ignored.
1 Clear overflow status flag for PMEVCNTR<m> to 0.

If the Cycle Counter extension is implemented, then PMOVSCLR<n>.P[31] allows software to clear the
overflow status flag for PMCCNTR to 0 and query the overflow status flag for PMCCNTR.

ARM IHI 0091
A.a-00bet0

Copyright © 2005-2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

94

Chapter 3. Programmers’ Model
3.33. PMOVSSET<n>, Overflow Status Set Register <n>

3.33 PMOVSSET<n>, Overflow Status Set Register <n>

The PMOVSSET<n> characteristics are:

Purpose
Set PMU monitor overflow status flags.

Usage constraints
None.

Configurations
Always implemented.

Attributes
PMOVSSET<n> is a 32-bit read/write-one-to-set memory-mapped register located at offset 0xCC0 + 4×n
in the Page 1 component.

3.33.1 Field descriptions

The PMOVSSET<n> bit assignments are:

31 0

P

Figure 3.31: PMOVSSET<n>

P[m], bit [m], for m = 0 to 31
Overflow status flag for PMEVCNTR<m> set. On writes, allows software to set the overflow status flag
for PMEVCNTR<m> to 1. On reads, returns the overflow status flag for PMEVCNTR<m>.

On a read, the defined values of this bit are:

0 PMEVCNTR<m> has not overflowed.
1 PMEVCNTR<m> has overflowed.

On a write, the possible values for writing to this bit are:

0 Write is ignored.
1 Set overflow status flag for PMEVCNTR<m> to 1.

If the Cycle Counter extension is implemented, then PMOVSSET<n>.P[31] allows software to set the
overflow status flag for PMCCNTR to 1 and query the overflow status flag for PMCCNTR.

ARM IHI 0091
A.a-00bet0

Copyright © 2005-2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

95

Chapter 3. Programmers’ Model
3.34. PMOVSSR<n>, Overflow Status Snapshot Register <n>

3.34 PMOVSSR<n>, Overflow Status Snapshot Register <n>

The PMOVSSR<n> characteristics are:

Purpose
Captured copy of PMOVSR. Once captured, the value in PMOVSSR is unaffected by writes to PMOVSSET
and PMOVSCLR.

Usage constraints
PMOVSSR<n> is one of the PMSVR<n> registers. The location of PMOVSSR<n> within the PMSVR<n>
registers is IMPLEMENTATION DEFINED.

Configurations
PMOVSSR<n> is present only if PMCFGR.SS == 0b1, snapshot extension is implemented.
PMOVSSR<n> is RES0 otherwise.

PMOVSSR<n> is an optional one of the PMSVR<n> registers. If PMSSRR is implemented, Arm
recommends that PMOVSSR<n> is implemented, as this indicates whether a counter that is reset has
overflowed during the sampling period. If PMSSRR is not implemented, counters are free-running across
samples without being reset and could overflow at any time, meaning there is less benefit from sampling
PMOVSR.

Attributes
PMOVSSR<n> is a 32-bit read-only memory-mapped register located at offset 0x600 + IMPLEMENTATION
DEFINED + 4×n in the Page 1 component.

ARM IHI 0091
A.a-00bet0

Copyright © 2005-2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

96

Chapter 3. Programmers’ Model
3.35. PMPIDR0, Peripheral Identification Register 0

3.35 PMPIDR0, Peripheral Identification Register 0

The PMPIDR0 characteristics are:

Purpose
Provides discovery information about the component.

Usage constraints
None.

Configurations
PMPIDR0 is present only if Peripheral Identification scheme is implemented. PMPIDR0 is RES0 otherwise.

Attributes
PMPIDR0 is a 32-bit read-only memory-mapped register located at offset 0xFE0.

3.35.1 Field descriptions

The PMPIDR0 bit assignments are:

7 0

IMP DEF

31 8

RES0

PART_0

Figure 3.32: PMPIDR0

Bits [31:8]
Reserved. This field is RES0.

PART_0, bits [7:0]
Part number, bits [7:0].

The part number is selected by the designer of the component. The designer chooses whether to use a
12-bit or a 16-bit part number:

• If a 12-bit part number is used, it is stored in PMPIDR1.PART_1 and PMPIDR0.PART_0. There
are 8 bits, PMPIDR2.REVISION and PMPIDR3.REVAND, available to define the revision of the
component.

• If a 16-bit part number is used, it is stored in PMPIDR2.PART_2, PMPIDR1.PART_1 and
PMPIDR0.PART_0. There are 4 bits, PMPIDR3.REVISION, available to define the revision of the
component.

This field reads as an IMPLEMENTATION DEFINED value.

ARM IHI 0091
A.a-00bet0

Copyright © 2005-2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

97

Chapter 3. Programmers’ Model
3.36. PMPIDR1, Peripheral Identification Register 1

3.36 PMPIDR1, Peripheral Identification Register 1

The PMPIDR1 characteristics are:

Purpose
Provides discovery information about the component.

Usage constraints
None.

Configurations
PMPIDR1 is present only if Peripheral Identification scheme is implemented. PMPIDR1 is RES0 otherwise.

Attributes
PMPIDR1 is a 32-bit read-only memory-mapped register located at offset 0xFE4.

3.36.1 Field descriptions

The PMPIDR1 bit assignments are:

3 0

IMP DEF

7 4

IMP DEF

31 8

RES0

PART_1DES_0

Figure 3.33: PMPIDR1

Bits [31:8]
Reserved. This field is RES0.

DES_0, bits [7:4]
Designer, JEP106 identification code, bits [3:0]. PMPIDR1.DES_0 and PMPIDR2.DES_1 together form
the JEDEC-assigned JEP106 identification code for the designer of the component. The parity bit in the
JEP106 identification code is not included. The code identifies the designer of the component, which
might not be not the same as the implementer of the device containing the component. To obtain a number,
or to see the assignment of these codes, contact JEDEC http://www.jedec.org.

This field reads as an IMPLEMENTATION DEFINED value.

Note:

For a component designed by Arm Limited, the JEP106 identification code is 0x3B.

PART_1, bits [3:0]
Part number, bits [11:8].

The part number is selected by the designer of the component. The designer chooses whether to use a
12-bit or a 16-bit part number:

• If a 12-bit part number is used, it is stored in PMPIDR1.PART_1 and PMPIDR0.PART_0. There
are 8 bits, PMPIDR2.REVISION and PMPIDR3.REVAND, available to define the revision of the
component.

• If a 16-bit part number is used, it is stored in PMPIDR2.PART_2, PMPIDR1.PART_1 and
PMPIDR0.PART_0. There are 4 bits, PMPIDR3.REVISION, available to define the revision of the
component.

This field reads as an IMPLEMENTATION DEFINED value.

ARM IHI 0091
A.a-00bet0

Copyright © 2005-2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

98

Chapter 3. Programmers’ Model
3.37. PMPIDR2, Peripheral Identification Register 2

3.37 PMPIDR2, Peripheral Identification Register 2

The PMPIDR2 characteristics are:

Purpose
Provides discovery information about the component.

Usage constraints
None.

Configurations
PMPIDR2 is present only if Peripheral Identification scheme is implemented. PMPIDR2 is RES0 otherwise.

Attributes
PMPIDR2 is a 32-bit read-only memory-mapped register located at offset 0xFE8.

3.37.1 The component uses a 12-bit part number

Configurations
Defined only if the component uses a 12-bit part number.

The the component uses a 12-bit part number bit assignments are:

2 0

IMP DEF

3

1

7 4

IMP DEF

31 8

RES0

DES_1REVISION
JEDEC

Figure 3.34: PMPIDR2 the component uses a 12-bit part number

Bits [31:8]
Reserved. This field is RES0.

REVISION, bits [7:4]
Component major revision. PMPIDR2.REVISION and PMPIDR3.REVAND together form the
revision number of the component, with PMPIDR2.REVISION being the most significant part and
PMPIDR3.REVAND the least significant part. When a component is changed, PMPIDR2.REVISION or
PMPIDR3.REVAND are increased to ensure that software can differentiate the different revisions of the
component. If PMPIDR2.REVISION is increased then PMPIDR3.REVAND should be set to 0b0000.

This field reads as an IMPLEMENTATION DEFINED value.

JEDEC, bit [3]
JEDEC-assigned JEP106 implementer code is used. This bit reads as 0b1.

DES_1, bits [2:0]
Designer, JEP106 identification code, bits [6:4]. PMPIDR1.DES_0 and PMPIDR2.DES_1 together form
the JEDEC-assigned JEP106 identification code for the designer of the component. The parity bit in the
JEP106 identification code is not included. The code identifies the designer of the component, which
might not be not the same as the implementer of the device containing the component. To obtain a number,
or to see the assignment of these codes, contact JEDEC http://www.jedec.org.

This field reads as an IMPLEMENTATION DEFINED value.

Note:

For a component designed by Arm Limited, the JEP106 identification code is 0x3B.

ARM IHI 0091
A.a-00bet0

Copyright © 2005-2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

99

Chapter 3. Programmers’ Model
3.37. PMPIDR2, Peripheral Identification Register 2

3.37.2 The component uses a 16-bit part number

Configurations
Defined only if the component uses a 16-bit part number.

The the component uses a 16-bit part number bit assignments are:

2 0

IMP DEF

3

1

7 4

IMP DEF

31 8

RES0

DES_1PART_2
JEDEC

Figure 3.35: PMPIDR2 the component uses a 16-bit part number

Bits [31:8]
Reserved. This field is RES0.

PART_2, bits [7:4]
Part number, bits [15:12].

The part number is selected by the designer of the component. The designer chooses whether to use a
12-bit or a 16-bit part number:

• If a 12-bit part number is used, it is stored in PMPIDR1.PART_1 and PMPIDR0.PART_0. There
are 8 bits, PMPIDR2.REVISION and PMPIDR3.REVAND, available to define the revision of the
component.

• If a 16-bit part number is used, it is stored in PMPIDR2.PART_2, PMPIDR1.PART_1 and
PMPIDR0.PART_0. There are 4 bits, PMPIDR3.REVISION, available to define the revision of the
component.

This field reads as an IMPLEMENTATION DEFINED value.

JEDEC, bit [3]
JEDEC-assigned JEP106 implementer code is used. This bit reads as 0b1.

DES_1, bits [2:0]
Designer, JEP106 identification code, bits [6:4]. PMPIDR1.DES_0 and PMPIDR2.DES_1 together form
the JEDEC-assigned JEP106 identification code for the designer of the component. The parity bit in the
JEP106 identification code is not included. The code identifies the designer of the component, which
might not be not the same as the implementer of the device containing the component. To obtain a number,
or to see the assignment of these codes, contact JEDEC http://www.jedec.org.

This field reads as an IMPLEMENTATION DEFINED value.

Note:

For a component designed by Arm Limited, the JEP106 identification code is 0x3B.

ARM IHI 0091
A.a-00bet0

Copyright © 2005-2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

100

Chapter 3. Programmers’ Model
3.38. PMPIDR3, Peripheral Identification Register 3

3.38 PMPIDR3, Peripheral Identification Register 3

The PMPIDR3 characteristics are:

Purpose
Provides discovery information about the component.

Usage constraints
None.

Configurations
PMPIDR3 is present only if Peripheral Identification scheme is implemented. PMPIDR3 is RES0 otherwise.

Attributes
PMPIDR3 is a 32-bit read-only memory-mapped register located at offset 0xFEC.

3.38.1 The component uses a 12-bit part number

Configurations
Defined only if the component uses a 12-bit part number.

The the component uses a 12-bit part number bit assignments are:

3 0

IMP DEF

7 4

IMP DEF

31 8

RES0

CMODREVAND

Figure 3.36: PMPIDR3 the component uses a 12-bit part number

Bits [31:8]
Reserved. This field is RES0.

REVAND, bits [7:4]
Component minor revision. PMPIDR2.REVISION and PMPIDR3.REVAND together form the
revision number of the component, with PMPIDR2.REVISION being the most significant part and
PMPIDR3.REVAND the least significant part. When a component is changed, PMPIDR2.REVISION or
PMPIDR3.REVAND are increased to ensure that software can differentiate the different revisions of the
component. If PMPIDR2.REVISION is increased then PMPIDR3.REVAND should be set to 0b0000.

This field reads as an IMPLEMENTATION DEFINED value.

CMOD, bits [3:0]
Customer Modified.

Indicates the component has been modified.

A value of 0b0000 means the component is not modified from the original design.

Any other value means the component has been modified in an IMPLEMENTATION DEFINED way.

For any two components with the same Unique Component Identifier:

• If the value of the CMOD fields of both components equals zero, the components are identical.
• If the CMOD fields of both components have the same non-zero value, it does not necessarily mean

that they have the same modifications.
• If the value of the CMOD field of either of the two components is non-zero, they might not be

identical, even though they have the same Unique Component Identifier.

ARM IHI 0091
A.a-00bet0

Copyright © 2005-2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

101

Chapter 3. Programmers’ Model
3.38. PMPIDR3, Peripheral Identification Register 3

This field reads as an IMPLEMENTATION DEFINED value.

3.38.2 The component uses a 16-bit part number

Configurations
Defined only if the component uses a 16-bit part number.

The the component uses a 16-bit part number bit assignments are:

3 0

IMP DEF

7 4

IMP DEF

31 8

RES0

CMODREVISION

Figure 3.37: PMPIDR3 the component uses a 16-bit part number

Bits [31:8]
Reserved. This field is RES0.

REVISION, bits [7:4]
Component revision. When a component is changed, PMPIDR3.REVISION is increased to ensure that
software can differentiate the different revisions of the component.

This field reads as an IMPLEMENTATION DEFINED value.

CMOD, bits [3:0]
Customer Modified.

Indicates the component has been modified.

A value of 0b0000 means the component is not modified from the original design.

Any other value means the component has been modified in an IMPLEMENTATION DEFINED way.

For any two components with the same Unique Component Identifier:

• If the value of the CMOD fields of both components equals zero, the components are identical.
• If the CMOD fields of both components have the same non-zero value, it does not necessarily mean

that they have the same modifications.
• If the value of the CMOD field of either of the two components is non-zero, they might not be

identical, even though they have the same Unique Component Identifier.

This field reads as an IMPLEMENTATION DEFINED value.

ARM IHI 0091
A.a-00bet0

Copyright © 2005-2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

102

Chapter 3. Programmers’ Model
3.39. PMPIDR4, Peripheral Identification Register 4

3.39 PMPIDR4, Peripheral Identification Register 4

The PMPIDR4 characteristics are:

Purpose
Provides discovery information about the component.

Usage constraints
None.

Configurations
PMPIDR4 is present only if Peripheral Identification scheme is implemented. PMPIDR4 is RES0 otherwise.

Attributes
PMPIDR4 is a 32-bit read-only memory-mapped register located at offset 0xFD0.

3.39.1 Field descriptions

The PMPIDR4 bit assignments are:

3 0

IMP DEF

7 4

IMP DEF

31 8

RES0

DES_2SIZE

Figure 3.38: PMPIDR4

Bits [31:8]
Reserved. This field is RES0.

SIZE, bits [7:4]
Size of the component.

The distance from the start of the address space used by this component to the end of the component
identification registers.

A value of 0b0000 means one of the following is true:

• The component uses a single 4KB block.
• The component uses an IMPLEMENTATION DEFINED number of 4KB blocks.

Any other value means the component occupies 2PMPIDR4.SIZE 4KB blocks.

Using this field to indicate the size of the component is deprecated. This field might not correctly indicate
the size of the component. Arm recommends that software determine the size of the component from the
Unique Component Identifier fields, and other IMPLEMENTATION DEFINED registers in the component.

This field reads as an IMPLEMENTATION DEFINED value.

DES_2, bits [3:0]
Designer, JEP106 continuation code. This is the JEDEC-assigned JEP106 bank identifier for the designer
of the component, minus 1. The code identifies the designer of the component, which might not be not
the same as the implementer of the device containing the component. To obtain a number, or to see the
assignment of these codes, contact JEDEC http://www.jedec.org.

This field reads as an IMPLEMENTATION DEFINED value.

Note:

ARM IHI 0091
A.a-00bet0

Copyright © 2005-2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

103

Chapter 3. Programmers’ Model
3.39. PMPIDR4, Peripheral Identification Register 4

For a component designed by Arm Limited, the JEP106 bank is 5, meaning this field has the
value 0x4.

ARM IHI 0091
A.a-00bet0

Copyright © 2005-2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

104

Chapter 3. Programmers’ Model
3.40. PMPIDR5, Peripheral Identification Register 5

3.40 PMPIDR5, Peripheral Identification Register 5

The PMPIDR5 characteristics are:

Purpose
Provides discovery information about the component.

Usage constraints
None.

Configurations
PMPIDR5 is present only if Peripheral Identification scheme is implemented. PMPIDR5 is RES0 otherwise.

Attributes
PMPIDR5 is a 32-bit read-only memory-mapped register located at offset 0xFD4.

3.40.1 Field descriptions

The PMPIDR5 bit assignments are:

31 0

RES0

Figure 3.39: PMPIDR5

Bits [31:0]
This field is RES0.

ARM IHI 0091
A.a-00bet0

Copyright © 2005-2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

105

Chapter 3. Programmers’ Model
3.41. PMPIDR6, Peripheral Identification Register 6

3.41 PMPIDR6, Peripheral Identification Register 6

The PMPIDR6 characteristics are:

Purpose
Provides discovery information about the component.

Usage constraints
None.

Configurations
PMPIDR6 is present only if Peripheral Identification scheme is implemented. PMPIDR6 is RES0 otherwise.

Attributes
PMPIDR6 is a 32-bit read-only memory-mapped register located at offset 0xFD8.

3.41.1 Field descriptions

The PMPIDR6 bit assignments are:

31 0

RES0

Figure 3.40: PMPIDR6

Bits [31:0]
This field is RES0.

ARM IHI 0091
A.a-00bet0

Copyright © 2005-2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

106

Chapter 3. Programmers’ Model
3.42. PMPIDR7, Peripheral Identification Register 7

3.42 PMPIDR7, Peripheral Identification Register 7

The PMPIDR7 characteristics are:

Purpose
Provides discovery information about the component.

Usage constraints
None.

Configurations
PMPIDR7 is present only if Peripheral Identification scheme is implemented. PMPIDR7 is RES0 otherwise.

Attributes
PMPIDR7 is a 32-bit read-only memory-mapped register located at offset 0xFDC.

3.42.1 Field descriptions

The PMPIDR7 bit assignments are:

31 0

RES0

Figure 3.41: PMPIDR7

Bits [31:0]
This field is RES0.

ARM IHI 0091
A.a-00bet0

Copyright © 2005-2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

107

Chapter 3. Programmers’ Model
3.43. PMSSCR, Snapshot Capture Register

3.43 PMSSCR, Snapshot Capture Register

The PMSSCR characteristics are:

Purpose
Provides a mechanism for software to initiate a sample.

Usage constraints
None.

Configurations
PMSSCR is present only if PMCFGR.SS == 0b1, snapshot extension is implemented. PMSSCR is RES0
otherwise.

In some Arm PE implementations where the snapshot feature is an IMPLEMENTATION DEFINED extension,
PMSSCR is located at offset 0x6F0.

Attributes
PMSSCR is a 32-bit write-only memory-mapped register located at offset 0xE30 in the Page 0 component.

3.43.1 Field descriptions

The PMSSCR bit assignments are:

0

SS

31 1

RES0

Figure 3.42: PMSSCR

Bits [31:1]
Reserved. This field is RES0.

SS, bit [0]
Capture now. The possible values for writing to this bit are:

0 Ignored.
1 Initiate a capture immediately.

ARM IHI 0091
A.a-00bet0

Copyright © 2005-2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

108

Chapter 3. Programmers’ Model
3.44. PMSSRR, Snapshot Reset Register

3.44 PMSSRR, Snapshot Reset Register

The PMSSRR characteristics are:

Purpose
Configure Snapshot to reset monitors after each sample is taken.

Usage constraints
None.

Configurations
PMSSRR is present only if PMCFGR.SS == 0b1, snapshot extension is implemented. PMSSRR is RES0
otherwise.

Support for the capability to reset counters after each sample is taken is optional. Arm recommends this
feature is not implemented where the PMU might also be used in a non-snapshot mode, for example, in a
PE.

If the capability is not implemented and the snapshot feature is implemented, this register is RAZ/WI.

In some Arm PE implementations where the snapshot feature is an IMPLEMENTATION DEFINED extension,
PMSSRR is located at offset 0x6F4.

Attributes
PMSSRR is a 64-bit read/write memory-mapped register located at offset 0xE38 in the Page 0 component.

3.44.1 Field descriptions

The PMSSRR bit assignments are:

63 32

RP[63:32]

31 0

RP[31:0]

Figure 3.43: PMSSRR

RP[m], bit [m], for m = 0 to 63
Reset monitor. If m >= PMCFGR.N, the number of implemented monitors, then RP[m] is RAZ/WI.
Otherwise, indicates whether PMEVCNTR<m> and PMOVSR[m] are to be reset after a capture. The
possible values of this bit are:

0 Do not reset PMEVCNTR<m> and PMOVSR[m] on capture.
1 Reset PMEVCNTR<m> and PMOVSR[m] on capture.

If the Cycle Counter extension is implemented, then PMSSRR.RP[31] controls reset of the cycle counter.

ARM IHI 0091
A.a-00bet0

Copyright © 2005-2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

109

Chapter 3. Programmers’ Model
3.45. PMSSSR, Snapshot Status Register

3.45 PMSSSR, Snapshot Status Register

The PMSSSR characteristics are:

Purpose
Holds status information about the captured monitors.

Usage constraints
The location of PMSSSR within the PMSVR<n> registers is IMPLEMENTATION DEFINED. Arm
recommends that PMSSSR is read after the other PMSVR<n> registers, meaning it might be placed last in
the PMSVR<n> registers.

Configurations
PMSSSR is present only if PMCFGR.SS == 0b1, snapshot extension is implemented. PMSSSR is RES0
otherwise.

PMSSSR is a required one of the PMSVR<n> registers.

Attributes
PMSSSR is a 32-bit read-only memory-mapped register located at offset 0x600 + IMPLEMENTATION
DEFINED in the Page 1 component.

3.45.1 Field descriptions

The PMSSSR bit assignments are:

031 1

RES0

NC

Figure 3.44: PMSSSR

Bits [31:1]
Reserved. This field is RES0.

NC, bit [0]
No capture. Indicates whether the PMU monitors have been captured. The defined values of this bit are:

0 PMU monitors captured.
1 PMU monitors not captured.

The monitors are only not captured by the PMU if there is a security violation. The consumer of the
captured data is responsible for keeping track of whether it managed to read the snapshot registers from
the PMU.

PMSSR.NC is reset to 0b1 by reset, but is overwritten at the first capture. Tools need to be aware that
capturing over reset or power-down might lose data, as they are reliant on software saving and restoring
the PMU state, including PMSSCR. There is no sampled sticky reset bit.

This bit resets to one.

ARM IHI 0091
A.a-00bet0

Copyright © 2005-2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

110

Chapter 3. Programmers’ Model
3.46. PMSVR<n>, Saved Value Register <0-63>

3.46 PMSVR<n>, Saved Value Register <0-63>

The PMSVR<0-63> characteristics are:

Purpose
Captured copy of performance monitor registers. The content of these registers is IMPLEMENTATION
DEFINED. These registers contain all the captured state of the PMU, including:

• The event counters PMEVCNTR<n>.
• PMCCNTR.
• The overflow status flags, captured in PMOVSSR<n>, if PMSSRR is implemented.
• Any additional IMPLEMENTATION DEFINED syndrome information captured by the PMU.
• PMSSSR.

Once captured, the values in these registers are unaffected by direct or indirect writes to PMCR or any of
the captured registers.

Usage constraints
None.

Configurations
PMSVR<n> is present only if PMCFGR.SS == 0b1, snapshot extension is implemented. PMSVR<n> is
RES0 otherwise.

Attributes
PMSVR<n> is a 32-bit read-only memory-mapped register located at offset 0x600 + 4×n in the Page 1
component.

A pair of PMSVR<n> registers at a doubleword-aligned offset might be defined as a single 64 bit register.

ARM IHI 0091
A.a-00bet0

Copyright © 2005-2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

111

Glossary

Event-based sampling

The location in the program, or some other measurement, is recorded when a sampled event occurs. This builds
up a statistical model of where events occur.

FDO

Feedback-directed Optimization

Feedback-directed Optimization

See Profile-guided Optimization.

Hardware Performance Monitor

A hardware resource that helps an engineer measure and profile software.

HPC

High-performance Computing

HPM

Hardware Performance Monitors

Little’s Law

Little’s Law (L = λW) relates Arrival rate (λ) and Average occupancy (L) with average Response time (W).

Memory System Resource Partitioning and Monitoring

See [2].

MPAM

Memory System Resource Partitioning and Monitoring

PGO

Profile-guided Optimization

PMU

Performance Monitoring Unit

PPI

Private Peripheral Interrupt

Profile-guided Optimization

Profile-guided optimization, also known as feedback-directed optimization is a compiler optimization technique
that uses profiling to improve program runtime performance. For example, the profile guides the compiler for
which areas of the program are executed more frequently, and which areas are executed less frequently.

R/W

Read/write.

R/W1C

Read, write-one-to-clear.

R/W1S

112

Glossary

Read, write-one-to-set.

RO

Read-only.

Time-based Sampling

Software periodically records values from the HPM and records the location in the program. The changes are
tracked over time through phases of software execution. The engineer looks for correlations between phases
and recorded events.

WO

Write-only.

ARM IHI 0091
A.a-00bet0

Copyright © 2005-2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

113

	CoreSight Performance Monitoring Unit Architecture
	Release information
	Non-Confidential Proprietary Notice

	Contents
	Preface
	Document status
	About this book
	Using this book
	Conventions
	Typographical conventions
	Numbers

	Rules-based writing
	Content item classes
	Rule
	Information
	Rationale
	Implementation note
	Software usage

	Identifiers
	Examples

	Additional reading
	Feedback
	Feedback on this book

	1 Description
	1.1 About Performance Monitors
	1.1.1 Profiling and software optimization
	1.1.2 Monitoring
	1.1.3 Sampling

	1.2 Rationale for a standard PMU architecture
	1.3 What to measure
	1.4 MPAM
	1.4.1 Overview
	1.4.2 MPAM v1.1

	2 Specification
	2.1 Organization
	2.2 Operation of the PMU
	2.2.1 Event counting
	2.2.2 State or event monitoring
	2.2.3 Mapping controls and fixed-function monitors
	2.2.4 Interrupt signaling

	2.3 Accuracy of the PMU
	2.4 Accessing PMU registers
	2.5 Security
	2.6 Extensions
	2.6.1 Freeze on overflow extension
	2.6.2 Halt-on-debug extension
	2.6.3 Fixed-function cycle counter extension
	2.6.4 Monitor group extension
	2.6.5 Counter chaining
	2.6.6 Snapshot extension
	2.6.7 Trace generation extension
	2.6.8 Export extension
	2.6.9 Dual-page extension

	3 Programmers' Model
	3.1 Memory-mapped registers
	3.1.1 When the dual-page extension is not implemented
	3.1.2 Page 0, when the dual-page extension is implemented
	3.1.3 Page 1, when the dual-page extension is implemented

	3.2 IMPDEF<n>, implementation defined Register <0-31>
	3.3 PMAUTHSTATUS, Authentication Status Register
	3.3.1 Field descriptions

	3.4 PMCCFILTR, Cycle Counter Filter Register
	3.4.1 Field descriptions

	3.5 PMCCNTR, Cycle Count Register (up-to 32 bits)
	3.5.1 Field descriptions

	3.6 PMCCNTR, Cycle Count Register (up-to 64 bits)
	3.6.1 Field descriptions

	3.7 PMCEID<n>, Common Event Identification Register <0-3>
	3.7.1 Field descriptions

	3.8 PMCFGR, Configuration Register
	3.8.1 Field descriptions

	3.9 PMCGCR<n>, Counter Group Configuration Register <0-3>
	3.9.1 Field descriptions

	3.10 PMCIDR0, Component Identification Register 0
	3.10.1 Field descriptions

	3.11 PMCIDR1, Component Identification Register 1
	3.11.1 Field descriptions

	3.12 PMCIDR2, Component Identification Register 2
	3.12.1 Field descriptions

	3.13 PMCIDR3, Component Identification Register 3
	3.13.1 Field descriptions

	3.14 PMCNTENCLR<n>, Count Enable Clear Register <n>
	3.14.1 Field descriptions

	3.15 PMCNTENSET<n>, Count Enable Set Register <n>
	3.15.1 Field descriptions

	3.16 PMCR, Control Register
	3.16.1 Field descriptions

	3.17 PMDEVAFF, Device Affinity Register
	3.17.1 Field descriptions

	3.18 PMDEVARCH, Device Architecture Register
	3.18.1 Field descriptions

	3.19 PMDEVID, Device Configuration Register
	3.19.1 Field descriptions

	3.20 PMDEVTYPE, Device Type Register
	3.20.1 Field descriptions

	3.21 PMEVCNTR<n>, Event Count Register <n> (up-to 32 bits)
	3.21.1 Field descriptions

	3.22 PMEVCNTR<n>, Event Count Register <n> (up-to 64 bits)
	3.22.1 Field descriptions

	3.23 PMEVFILTR<n>, Event Type Select Register <n>
	3.23.1 Field descriptions

	3.24 PMEVTYPER<n>, Event Type Select Register <n>
	3.24.1 Field descriptions

	3.25 PMIIDR, Implementation Identification Register
	3.25.1 Field descriptions

	3.26 PMINTENCLR<n>, Overflow Interrupt Enable Clear Register <n>
	3.26.1 Field descriptions

	3.27 PMINTENSET<n>, Overflow Interrupt Enable Set Register <n>
	3.27.1 Field descriptions

	3.28 PMIRQCR0, Interrupt Configuration Register 0
	3.28.1 Field descriptions

	3.29 PMIRQCR1, Interrupt Configuration Register 1
	3.29.1 Field descriptions

	3.30 PMIRQCR2, Interrupt Configuration Register 2
	3.30.1 Field descriptions

	3.31 PMIRQSR, Interrupt Status Register
	3.31.1 Field descriptions

	3.32 PMOVSCLR<n>, Overflow Status Clear Register <n>
	3.32.1 Field descriptions

	3.33 PMOVSSET<n>, Overflow Status Set Register <n>
	3.33.1 Field descriptions

	3.34 PMOVSSR<n>, Overflow Status Snapshot Register <n>
	3.35 PMPIDR0, Peripheral Identification Register 0
	3.35.1 Field descriptions

	3.36 PMPIDR1, Peripheral Identification Register 1
	3.36.1 Field descriptions

	3.37 PMPIDR2, Peripheral Identification Register 2
	3.37.1 The component uses a 12-bit part number
	3.37.2 The component uses a 16-bit part number

	3.38 PMPIDR3, Peripheral Identification Register 3
	3.38.1 The component uses a 12-bit part number
	3.38.2 The component uses a 16-bit part number

	3.39 PMPIDR4, Peripheral Identification Register 4
	3.39.1 Field descriptions

	3.40 PMPIDR5, Peripheral Identification Register 5
	3.40.1 Field descriptions

	3.41 PMPIDR6, Peripheral Identification Register 6
	3.41.1 Field descriptions

	3.42 PMPIDR7, Peripheral Identification Register 7
	3.42.1 Field descriptions

	3.43 PMSSCR, Snapshot Capture Register
	3.43.1 Field descriptions

	3.44 PMSSRR, Snapshot Reset Register
	3.44.1 Field descriptions

	3.45 PMSSSR, Snapshot Status Register
	3.45.1 Field descriptions

	3.46 PMSVR<n>, Saved Value Register <0-63>

	Glossary

