

 Copyright © 2020 Arm Limited or its affiliates. All rights reserved.

Document number: DEN0069B

Arm® Server Base Manageability Requirements 1.0

Platform Design Document
Non-confidential

Server Base Manageability Requirements

 Page 2 of 45 Copyright © 2020 Arm Limited or its affiliates. All rights reserved. DEN0069B 1.0

Server Base Manageability Requirements

Copyright © 2020 Arm Limited or its affiliates. All rights reserved.

Release inormation

The Change History table lists the changes made to this document.

Table 1-1 Change history

Date Issue Confidentiality Change

30 January 2020 A Non-Confidential Initial release, SBMR 1.0

15 June 2020 B Non-Confidential License LES-PRE-21585

Server Base Manageability Requirements

 Page 3 of 45 Copyright © 2020 Arm Limited or its affiliates. All rights reserved. DEN0069B 1.0

Arm Non-Confidential Document Licence (“Licence”)

This Licence is a legal agreement between you and Arm Limited (“Arm”) for the use of the document accompanying this Licence

(“Document”). Arm is only willing to license the Document to you on condition that you agree to the terms of this Licence. By

using or copying the Document you indicate that you agree to be bound by the terms of this Licence. If you do not agree to the

terms of this Licence, Arm is unwilling to license this Document to you and you may not use or copy the Document.

“Subsidiary” means any company the majority of whose voting shares is now or hereafter owner or controlled, directly or

indirectly, by you. A company shall be a Subsidiary only for the period during which such control exists.

This Document is NON-CONFIDENTIAL and any use by you and your Subsidiaries (“Licensee”) is subject to the terms of this

Licence between you and Arm.

Subject to the terms and conditions of this Licence, Arm hereby grants to Licensee under the intellectual property in the

Document owned or controlled by Arm, a non-exclusive, non-transferable, non-sub-licensable, royalty-free, worldwide licence

to:

(i) use and copy the Document for the purpose of designing and having designed products that comply with the Document;

(ii) manufacture and have manufactured products which have been created under the licence granted in (i) above; and

(iii) sell, supply and distribute products which have been created under the licence granted in (i) above.

Licensee hereby agrees that the licences granted above shall not extend to any portion or function of a product that is

not itself compliant with part of the Document.

Except as expressly licensed above, Licensee acquires no right, title or interest in any Arm technology or any intellectual property

embodied therein.

THE DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES, EXPRESS,

IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY,

SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE

DOCUMENT. Arm may make changes to the Document at any time and without notice. For the avoidance of doubt, Arm makes

no representation with respect to, and has undertaken no analysis to identify or understand the scope and content of, third party

patents, copyrights, trade secrets, or other rights.

NOTWITHSTANING ANYTHING TO THE CONTRARY CONTAINED IN THIS LICENCE, TO THE FULLEST EXTENT

PETMITTED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES, IN CONTRACT, TORT OR OTHERWISE,

IN CONNECTION WITH THE SUBJECT MATTER OF THIS LICENCE (INCLUDING WITHOUT LIMITATION) (I) LICENSEE’S

USE OF THE DOCUMENT; AND (II) THE IMPLEMENTATION OF THE DOCUMENT IN ANY PRODUCT CREATED BY

LICENSEE UNDER THIS LICENCE). THE EXISTENCE OF MORE THAN ONE CLAIM OR SUIT WILL NOT ENLARGE OR

EXTEND THE LIMIT. LICENSEE RELEASES ARM FROM ALL OBLIGATIONS, LIABILITY, CLAIMS OR DEMANDS IN

EXCESS OF THIS LIMITATION.

This Licence shall remain in force until terminated by Licensee or by Arm. Without prejudice to any of its other rights, if Licensee

is in breach of any of the terms and conditions of this Licence then Arm may terminate this Licence immediately upon giving

written notice to Licensee. Licensee may terminate this Licence at any time. Upon termination of this Licence by Licensee or by

Arm, Licensee shall stop using the Document and destroy all copies of the Document in its possession. Upon termination of this

Licence, all terms shall survive except for the licence grants.

Any breach of this Licence by a Subsidiary shall entitle Arm to terminate this Licence as if you were the party in breach. Any

termination of this Licence shall be effective in respect of all Subsidiaries. Any rights granted to any Subsidiary hereunder shall

automatically terminate upon such Subsidiary ceasing to be a Subsidiary.

Server Base Manageability Requirements

 Page 4 of 45 Copyright © 2020 Arm Limited or its affiliates. All rights reserved. DEN0069B 1.0

The Document consists solely of commercial items. Licensee shall be responsible for ensuring that any use, duplication or

disclosure of the Document complies fully with any relevant export laws and regulations to assure that the Document or any

portion thereof is not exported, directly or indirectly, in violation of such export laws.

If any of the provisions contained in this Licence conflict with any of the provisions of any click-through or signed written

agreement with Arm relating to the Document, then the click-through or signed written agreement prevails over and supersedes

the conflicting provisions of this Licence. This Licence may be translated into other languages for convenience, and Licensee

agrees that if there is any conflict between the English version of this Licence and any translation, the terms of the English

version of this Licence shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited (or its

subsidiaries) in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this document may be the

trademarks of their respective owners. No licence, express, implied or otherwise, is granted to Licensee under this Licence, to

use the Arm trade marks in connection with the Document or any products based thereon. Visit Arm’s website at

https://www.arm.com/company/policies/trademarks for more information about Arm’s trademarks.

The validity, construction and performance of this Licence shall be governed by English Law.

Copyright © [2020] Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

Arm document reference: LES-PRE-21585

https://www.arm.com/company/policies/trademarks

Table of Contents

Page 5 of 45 Copyright © 2020 Arm Limited or its affiliates. All rights reserved. DEN0069B 1.0

1 ABOUT THIS DOCUMENT 7
1.1 Introduction 7
1.2 References 7

1.2.1 Cross References 10
1.3 Terms and abbreviations 10
1.4 Feedback 11

2 SCOPE AND BACKGROUND 12
2.1 Scope 12
2.2 Background 13
2.3 Arm SoC-BMC Interface Terminology 14

3 COMPLIANCE LEVELS AND REQUIREMENTS 17
3.1 Level M0 18
3.2 Level M1 18

3.2.1 SoC-BMC Interfaces 18
3.2.2 BMC-Platform Elements Interface Recommendations 20
3.2.3 BMC Management Services (Out-of-Band) Interface Recommendations 20

3.3 Level M2 21
3.3.1 SoC-BMC Interfaces 21
3.3.2 BMC-Platform Elements Interface Recommendations 22
3.3.3 BMC-IO Device Interface Recommendations 22
3.3.4 BMC Management Services (Out-of-Band) Interface Recommendations 22

3.4 Level M3 alpha (Work-in-progress) 24
3.4.1 Requirements 24
3.4.2 SoC-BMC Interface 24
3.4.3 BMC-Platform Elements Interface Recommendations 25
3.4.4 BMC-IO Device Interface Recommendations 25

3.5 Level M4 alpha (Work-in-progress) 26
3.5.1 Requirements 26
3.5.2 SoC-BMC Interface 27
3.5.3 BMC-Platform Elements Interface Recommendations 27
3.5.4 BMC-IO Device Interface Recommendations 27

APPENDIX A OPENBMC 28

APPENDIX B IPMI IMPLEMENTATION GUIDE 29
B.1 Remote Power Control 29

B.1.1 Power On 29
B.1.2 Power Off 29
B.1.3 Graceful Power Off 29
B.1.4 IPMI Commands Required 29

B.2 Boot Device Selection 29
B.2.1 IPMI Commands Required 29

B.3 BMC / Host Mapping 29
B.4 BMC User Manipulation 29
B.5 IPMI Support Verification 29

APPENDIX C RAS MESSAGE FORMATS 30
C.1 LEVEL M0 30
C.2 LEVEL M1 30

C.2.1 SMBus System Interface (In-band Interface) 30
C.2.2 RAS IPMI Message Format 31

Table of Contents

Page 6 of 45 Copyright © 2020 Arm Limited or its affiliates. All rights reserved. DEN0069B 1.0

C.2.3 SOC Side-band Interface 32
C.2.4 Out-of-band Interface 33

C.3 LEVEL M2 33
C.3.1 Redfish Host (in-band) Interface 33
C.3.2 RAS Redfish Message Format (proposed) 34
C.3.3 SOC-sideband Interface 35
C.3.4 Out-of-Band Interface 36

C.4 LEVEL M3a/M4a 36
C.4.1 Redfish Host (in-band) Interface 36
C.4.2 MCTP (SOC side-band) Interface 36
C.4.3 RAS PLDM Message Format 39
C.4.4 Out of Band Interface 40

APPENDIX D PLATFORM MONITORING AND CONTROL IMPLEMENTATION GUIDE 41
D.1 Introduction 41
D.2 IPMI Commands to Monitor and Control Managed entities 41
D.3 Redfish Schema to Monitor and Control Managed entities 42
D.4 PLDM Commands/APIs to Monitor and Control Managed entities 42

APPENDIX E REFERENCE IMPLEMENTATION OF BMC REMOTE DEBUG SOLUTION USING
OPENOCD 44
E.1 Introduction 44
E.2 LEVEL M1/M2 44

Server Base Manageability Requirements

Page 7 of 45 Copyright © 2020 Arm Limited. All rights reserved. DEN0069B 1.0

1 ABOUT THIS DOCUMENT

1.1 Introduction

This document is intended for SBSA[2]-compliant 64-bit Arm based servers. It provides a path to establish a
common foundation for server management where common capabilities are standardized and differetiation truly
valuable to the end-users are built on top.

This specification leverages the prevalent industry standard system management specifications of Redfish[7],
Platform Level Data Model (PLDM)[17] and Management Component Transport Protocol (MCTP)[13]. These
specifications are defined in the DMTF Redfish Forum and Platform Management Components Intercommunication
(PMCI) Working Group.

1.2 References

This document refers to the following documents.

Server Base Manageability Requirements

Page 8 of 45 Copyright © 2020 Arm Limited. All rights reserved. DEN0069B 1.0

Reference Doc No Authors Title

[1] Arm DDI 0487 Arm Arm® Architecture Reference Manual, Armv8, for Armv8-
A architecture profile

[2] Arm DEN 0029 Arm Server Base System Architecture SBSA

[3] ACPI UEFI.org Advanced Configuration and Power Interface
Specification

[4] UEFI Specification UEFI.org Unified Extensible Firmware Interface Specificatio

[5] Arm DEN 0044 Arm Server Base Boot Requirements SBBR

[6] DSP0134 DMTF System Management BIOS (SMBIOS) Reference
Specification

[7] DSP0266 DMTF Redfish Specification

[8] DSP0272 DMTF Redfish Interoperability Profiles Specification

[9] DSP0270 DMTF Redfish Host Interface Specification

[10] DSP8010 DMTF Redfish Schema

[11] DSP8011 DMTF Redfish Standard Registries

[12] DSP8013 DMTF Redfish Interoperability Profiles Bundle

[13] DSP0236 DMTF MCTP Base Specification

[14] DSP0237 DMTF MCTP SMBus/I2C Transport Binding Specification

[15] DSP0238 DMTF MCTP PCIe VDM Transport Binding Specification

[16] DSP0239 DMTF MCTP IDs and Codes

[17] DSP0240 DMTF PLDM Base Specification

[18] DSP0241 DMTF PLDM Over MCTP Binding Specification

Server Base Manageability Requirements

Page 9 of 45 Copyright © 2020 Arm Limited. All rights reserved. DEN0069B 1.0

[19] DSP0245 DMTF PLDM IDs and Codes Specification

[20] DSP0248 DMTF PLDM for Platform Monitoring and Control Specification

[21] DSP0222 DMTF NC-SI Specification

[22] DSP0261 DMTF NC-SI over MCTP Binding Specification

[23] DSP0267 DMTF PLDM for Firmware Update Specification

[24] DSP0218 DMTF PLDM for Redfish Device Enablement Specification

[25] DSP0235 DMTF NVMe over MCTP Binding Specification

[26] IPMI Dell, HP,
Intel, NEC

Intelligent Platform Management Interface 2.0

[27] Arm DEN 0022 Arm Power State Coordination Interface

[28] Arm DEN 0056 Arm System Control and Management Interface

[29] OCP Baseline Redfish
Profile

OCP OCP Baseline Hardware Management Redfish Profile

[30] OCP Server Redfish
Profile

OCP OCP Server Hardware Management Redfish Profile

[31] NIST800-147 NIST BIOS Protection Guidelines

[32] NIST800-193 NIST Platform Firmware Resiliency Guidelines

[33] NIST800-155 NIST BIOS Integrity Measurement Guidelines

[34] https://www.opencompute
.org/wiki/Server/SpecsAn
dDesigns

OCP Open Server Specs and Designs

https://www.opencompute.org/wiki/Server/SpecsAndDesigns
https://www.opencompute.org/wiki/Server/SpecsAndDesigns
https://www.opencompute.org/wiki/Server/SpecsAndDesigns

Server Base Manageability Requirements

Page 10 of 45 Copyright © 2020 Arm Limited. All rights reserved. DEN0069B 1.0

[35] DSP0249 DMTF Platform Level Data Model (PLDM) State Set
Specification

[36] Arm IHI 0031 Arm Arm® Debug Interface Architecture Specification, ADIv5

[37] Arm IHI 0074 Arm Arm® Debug Interface Architecture Specification, ADIv6

[38] DSP0256 DMTF MCTP Host Interface Specification

[39] SBSG Arm Server Base Security Guide (SBSG)

[40] http://openocd.org/doc/pdf
/openocd.pdf

OpenOCD Open OCDUser Guide

1.2.1 Cross References

This document cross-references sources that are listed in the References section by using the section sign §.

Examples:

 ACPI § 5.6.5 - Reference to the ACPI specification [3] section 5.6.6

UEFI § 6.1 - Reference to the UEFI specification [4] section 6.1

1.3 Terms and abbreviations

This document uses the following terms and abbreviations.

Term Meaning

ACPI Advanced Configuration and Power Interface.

BMC Baseboard Management Controller

Host The Computer System that is managed

Host Software The software running on the Host, including Operating System and its Software
components (such as drivers or applications), as well as preboot software such as
UEFI drivers and applications

IPMI Intelligent Platform Management Interface. It defines common interfaces that allow
IT managers to receive status alerts, send instructions to servers and run
diagnostics over a network versus locally at the server.

MCTP Management Component Transport Protocol. A transport independent protocol that
is used for intercommunication within an MCTP Network (consists of one or more
physical transports that are used to transfer MCTP Packets between MCTP
Endpoints.

http://openocd.org/doc/pdf/openocd.pdf
http://openocd.org/doc/pdf/openocd.pdf

Server Base Manageability Requirements

Page 11 of 45 Copyright © 2020 Arm Limited. All rights reserved. DEN0069B 1.0

NC-SI Network Controller Sideband Interface. The interface (protocol, messages, and
medium) between a Management Controller and one or more Network Controllers. It
is responsible for providing external network connectivity for the Management
Controller while also allowing the external network interface to be shared with traffic
to and from the host

OEM Original Equipment Manufacturer. In this document, the final device manufacturer.

PLDM Platform Level Data Model. An internal facing low level data model that is designed
to be an effective data/control source for mapping under the Common Information
Model (CIM). It defines data structures and commands that abstract platform
management subsystem components.

Redfish Interface An open industry standard specification that specifies a RESTful interface and
schema for hardware management, and that allows users to integrate solutions
within their existing tool chains. Extensions to Redfish can also be made. Swordfish
for example is a SNIA standard that builds upon Redfish’s local storage
management capabilities to address enterprise storage devices

SiP Silicon Partner. In this document, the silicon manufacturer.

UEFI Unified Extensible Firmware Interface.

UEFI Boot Services Functionality that is provided to UEFI Loaded Images during the UEFI boot process.

UEFI Runtime Services Functionality that is provided to an Operating System after the ExitBootServices()
call.

Satellite Management
Controller (SatMC)

A microcontroller or processor that interpret and process management-related data,
and initiate management-related actions on management devices. It may be part of
SOC or can be outside of SOC.

Baseboard
management controller
(BMC)

The main management controller in an standards-based, remotely managed
platform management subsystem. Also sometimes used as a generic name for a
motherboard-resident management controller that provides motherboard-specific
hardware monitoring and control functions for the platform management subsystem.

1.4 Feedback

Arm welcomes feedback on its documentation.

If you have comments on the content of this manual, send an e-mail to errata@arm.com. Give:

• The title (Server Base Manageability Guide).

• The document ID and version (DEN0069 1.0).

• The page numbers to which your comments apply.

• A concise explanation of your comments.

Arm also welcomes general suggestions for additions and improvements.

Server Base Manageability Requirements

Page 12 of 45 Copyright © 2020 Arm Limited. All rights reserved. DEN0069B 1.0

2 SCOPE AND BACKGROUND

This document provides a path to establish a common foundation for server management on SBSA-compliant Arm
AArch64 servers where common capabilities are standardized and differetiation truly valuable to the end-users are
built on top.

2.1 Scope

Redfish [7], PLDM [17], and MCTP [13] specifications have been chosen to ease the adoption of Arm, by aligning
the AArch64 server ecosystem to where the existing enterprise server market is moving to.

Redfish is based on industry standard RESTful interface for IT infrastructure. Redfish uses the secure or standard
Hypertext Transfer Protocol (HTTP/HTTPS) to transport resources and configure operations. Resources (in
payload) are JavaScript Object Notation (JSON) formatted, making them eaqually usable by apps, GUIs and scripts.
Redfish resources are schema-backed and human readable, with schemas [10] defined using JSON Schema,
OData 4.0, or OpenAPI formats. Redfish provides a secure, multi-node capable replacement for IPMI-over-LAN
[26]. It is intended to meet Open Compute Project (OCP) [29][30] remote machine management requirements.

The support for the legacy Intelligent Platform Management Interface (IPMI)[26] is still required as IPMI-based tools
are still widely used by the endusers. The IPMI contributors group is no longer accepting requests for contribution.
There is no venue for Arm and its ecosystem partners to change or improve the specification. The adoption of IPMI
is therefore “as is”. As the industry becomes ready, this document may make the IPMI support optional.

Figure 3-1 - Server Management Interfaces

Admin

BMC OOB Management Services

IO Device Side-band

interface

Platform Elements

Interface Sensors, FAN, Power

etc

Host OS/Firmware

(Application

Processors)

BMC IN-BAND Management Services

Admin

Server Base Manageability Requirements

Page 13 of 45 Copyright © 2020 Arm Limited. All rights reserved. DEN0069B 1.0

This document addresses the need to establish the following common standard interface sets (See Figure 3-1):

1. Arm SoC-BMC (Baseboard Management Controller) Interfaces: used by the BMC and SoC to
communicate with each other. Some examples are described in section 2.2.

2. BMC-Platform Elements Interface: used by the BMC to communicate with the Platform Elements (e.g.,
devices, sensors)

3. BMC-IO Device Interface: used by the BMC to communicate with one type of the Platform Elements: the
IO devices

4. BMC Management Services (Out-of-Band) Interface: used by the System Admins via external network to
manage servers remotely

The focus of this document is to provide manageability requirements for various SBMR compliance levels (i.e.
Level Mx as described in the next section). These are requirements with respect to relevant interfaces
between the Arm SoC and the BMC, as described in the Table 1 summary below.

This document may also provide some guidance and recommendations with respect to other BMC interfaces
with IO devices and platform elements.

2.2 Background

Typically, there are several interfaces used for communication and interaction between the Arm SoC and the
BMC.

Host/SoC In-band Interface

This interface is used by the Host Software (i.e. OS/Hypervisor/User Software) and/or System Firmware (e.g.
UEFI [4]) to communicate with the BMC . It is typically exposed to Host Software via SMBIOS [6], ACPI [3] tables
(e.g. SPMI), and/or PCIe configuration space. Earlier Arm server systems are IPMI based, with newer Arm server
systems transitioning to Redfish [7] and MCTP host interface [38].

Typical use cases of this interface include:

• UEFI – BMC communication (via IPMI on earlier Arm server systems, and via MCTP host interface on

later Arm server systems):

 Reporting SMBIOS [6] table

 Reporting boot progress codes

 Error reporting

 General event logging

• OS/Hypervisor software – BMC communication

 Redfish Authentication (via IPMI on earlier Arm server systems, possibly MCTP host interface [38]

on later Arm server systems)

• User software – BMC communication

 User/Admin access to BMC management services (via IPMI and/or Redfish [7]), for local server

configuration, update, deployment, or monitoring.

SoC Side-band Interface

This interface is used by the BMC firmware to communicate with the SoC via a “Satellite Management Controller”
(SatMC). Typical use-cases may include:

• Early stages of boot progress codes reporting

• Telemetry (Temperature, power etc.)

• RAS error reporting

• Early stages of boot event logging

Server Base Manageability Requirements

Page 14 of 45 Copyright © 2020 Arm Limited. All rights reserved. DEN0069B 1.0

PCIe connection between the Arm SoC and the BMC

This interface may exist for the following use cases:

• Remote KVM session using PCIe for exposing a graphics controller (typically implemented in the BMC)
for the host’s video output

• MCTP side-band communication between the BMC and PCIe devices via PCIe VDM path (Note: in this
usage, the Arm SoC must contain the logic to route the PCIe VDM messages to the proper IO devices)

• Shared memory mailbox communication between the BMC and the SoC host software

USB connection between the Arm SoC and the BMC

This interface may exist for the following use cases:

• Remote Media session using USB for exposing a virtual media (CD-ROM, Floppy, Memory stick)

• Remote KVM session using USB for exposing Keyboard/Mouse devices

• Redfish Host Interface using USB for exposing a Network-over-USB interface

NOTE: This interface may not be directly connected / integrated in the Arm SoC. It could be an external onboard
PCIe-based USB controller or PHY that connects to the BMC USB ports.

JTAG connection between the Arm SoC and the BMC

This interface may exist for the following use-cases :

• Remote hardware debug (e.g. breakpoints, single stepping, etc.) using JTAG interface and exposed over
BMC management network

• Crash dump or scan dump feature (for crash or hang scenarios) using JTAG interface and exposed over
BMC management network

• Memory/Register dump features using JTAG interface and exposed over BMC management network

NOTE: Debug security must be considered on production platforms, either permanently disabled or re-enabled
through authentication per IMPLEMENTATION DEFINED mechanisms.

Additional connectivity (various physical media) between the Arm SoC and the BMC

Such interfaces may exist for the following use cases:

• Access to the Arm SoC thermal and power information and control

• Access to the Arm SoC RAS error information and control

2.3 Arm SoC-BMC Interface Terminology

This document will use a specific terminology and definition to refer to different types. For example, terms like “In-
Band”, “Side-Band”, and “Out-Of-Band” have a specific meaning when discussing interfaces to/from the BMC.
These terms relevant to the areas covered are defined in this section.

Server Base Manageability Requirements

Page 15 of 45 Copyright © 2020 Arm Limited. All rights reserved. DEN0069B 1.0

Table 2-1 Arm SoC-BMC Interface Terminology

Name Master Slave Description / Example / Notes In SBMR
Scope?

SoC In-band
Interface

Arm SoC (Host
OS / FW)

BMC This is typically IPMI SSIF (I2C interface)
or Redfish Host Interface (via USB/PCIe)
or MCTP Host Interface (MCTP over
KCS, MCTP over Serial)

NOTE: This interface is invasive to the
main processor complex (i.e. processing
cycles is required).

Yes

SoC Side-band
Interface

BMC SoC /
SatMC

Replaces SMLINK on x86.

This interface may leverage a proprietary
protocol or a more standard MCTP
transport protocol (physical interface
specifics depend on the system
implementors).

This is a “multi-master” bi-directional
communication interface.

NOTE: This could be a SatMC within the
SoC or an intermediary entity.

Yes

Out-of-Band
Interface

Datacenter
management
network

BMC This is typically IPMI or Redfish
commands via management network

Yes

SoC Debug
Interface

(i.e. JTAG)

BMC SoC This is the JTAG debug interface used for
hardware debugging the software and
possibly firmware executing on the

Yes

BMC
notification
pins

(e.g. GPIOs or
dedicated pins)

SoC BMC These pins are used for high priority
notifications from the SoC to the BMC
(e.g. critical thermal events or SoC
errors).

NOTE: Some pins may be bi-directional
(e.g. PROCHOT)

Partially
Covered

SoC
notification
pins

(e.g. GPIOs or
dedicated pins)

BMC SoC These pins are used for high priority
notifications from the BMC to the SoC
(e.g. critical thermal events or SoC
errors).

NOTE: Some pins may be bi-directional
(e.g. PROCHOT)

Partially
Covered

Serial Console

(i.e. UART)

SoC BMC Used for implementing Serial-over-LAN
(SoL). Arm SoC typically have at least
one or more UARTs.

Yes

Server Base Manageability Requirements

Page 16 of 45 Copyright © 2020 Arm Limited. All rights reserved. DEN0069B 1.0

Must be an Arm SBSA [2] compliant
UART controller on the SoC side. Default
Baud rate for interoperability with
commercially available BMCs is required
to be 115200 bits/second.

IO Device Side-
Band Interfaces

(Broad range of
various
interfaces)

BMC IO
Devices
(attached
to the Arm
SoC)

This is referring to IO devices attached to
the Arm SoC that the BMC may need to
monitor and/or manage.

Examples of such IO devices may include
side-band interface to firmware storage
device (e.g. UEFI SPI-NOR flash) and
PCIe cards.

NOTE: These interfaces are only partially
in scope of the SBMR compliance
requirements. Some recommendations
and guidance may be provided based on
external specifications and standards.
This specification will not cover the
security aspects of these side-band
interfaces (e.g. platform root-of-trust
(ROT) chips which manage and
authenticate traffic on these side-band
interfaces).

Partially
Covered

N/A

(Broad range of
various
Interfaces)

BMC Platform
Elements

This may include a broad range of
interfaces (e.g. power supplies, voltage
regulators, platform sensors, etc.)

NOTE: This interface is outside the scope
of the SBMR compliance requirements.
Some recommendations and guidance
may be provided based on external
specifications and standards.

No

Server Base Manageability Requirements

Page 17 of 45 Copyright © 2020 Arm Limited. All rights reserved. DEN0069B 1.0

3 COMPLIANCE LEVELS AND REQUIREMENTS

This document defines a number of levels of manageability compliance (e.g., M0, M1, M2) with the intention of
steering the partners to gradually move to the Redfish and PLDM / MCTP standard environment. There is no
direct linkage between these levels and the SBSA levels.

This specification defines a set of requirements for each compliance level. The compliance levels include M1, M2,
M3a, and M4a.

NOTE: M3a and M4a describes preliminary definitions of future compliance levels (for the purpose of public
review and feedback). The ‘α’ denotes that this is an “alpha” (i.e. unofficial) compliance level. These definitions
are subject to change in future publications of this specification.

The table below shows the summary of SBMR compliance levels.

Table 3-1 SBMR Complaicne Levels

Level Out-of-
band
Interface

SoC Side-band
Interface

Host/SoC In-band
Interface

BMC-IO Device
Interface

BMC
Platform
Element
Interface

M0 IMPDEF IMPDEF IMPDEF IMPDEF IMPDEF

M1 Required:
IPMI

IMPDEF Required:

IPMI SSIF

IMPDEF IMPDEF

M2 Required:

Redfish

and

IPMI

IMPDEF Required:

IPMI SSIF

and
Redfish Host
Interface

Conditional
Requirement:

If shared physical
NIC interface - NC-
SI is required

IMPDEF

M3α Required:
Redfish

Required:

MCTP over
I2C/SMBUS

Required:

Redfish Host
Interface

and

IPMI SSIF

or

MCTP (Physical
Interface TBD)

Conditional
Requirement:

If shared physical
NIC is used: NC-SI
over RBT or MCTP

Refer to [34]
and [26] for
guidance

M4α Required:
Redfish

Required:

MCTP over I3C

or

MCTP (Physical
Interface TBD)

Required:

Redfish Host
Interface

And MCTP Host
Interface (Physical
Interface TBD)

Required:

NVMe over MCTP

Conditional
Requirement:

If shared physical
NIC is used: NC-SI
over RBT or MCTP

Conditional

Requirement:

Redfish/PLDM
/MCTP

Server Base Manageability Requirements

Page 18 of 45 Copyright © 2020 Arm Limited. All rights reserved. DEN0069B 1.0

3.1 Level M0

Server management for the Level M0 based server systems are IMPLEMENTATION DEFINED.

There is no standardization for the server management interfaces. Typically, some variations of IPMI based
implementations are used to provide the interfaces from the SoC-BMC Interfaces, Host Interface, BMC-Platform
Elements Interface, BMC-IO Device Interface and BMC Management Services Interface.

3.2 Level M1

Figure 3-2 Server Management Interfaces (Level M1)

LEGEND

Redfish and IPMI

Engine

SOC Side-band

Interface

System Interface

Host OS/Firmware

(Application Processors)

SOC Side-band

Interface Library

Admin

SOC Side-band I/F (events/power/thermal/RAS)

USB 2.0 (Keyboard, Mouse, Virtual Media)

OOB
(IPMI)

Monitor and Control Signals

PCIe x1 (Graphics/Video Feature etc.)

UART (Serial over LAN, Console, etc)

I2C/SMBus/Alert (IPMI System SMBus Interface)

JTAG (remote debug)

Shared Network

Controller
IO Device

Side-band

interface

Platform

Elements

Interface

Sensors, FAN,

Power etc

IMPDEF PCIe x16 (Network)

Other Devices

Connected to SoC

(with optional

device side-band

connection to BMC)

IMPDEF

PCIe, SPI, I2C, other interfaces

IMPDEF connection

Required Connection

Conditionally Required Connection

Admin

IN-BAND (IPMI)

3.2.1 SoC-BMC Interfaces

Most SoC-BMC interfaces for the Level M1 based server systems are IMPLEMENTATION DEFINED. with the
exceptions of the requirements described in the following subsection.

Server Base Manageability Requirements

Page 19 of 45 Copyright © 2020 Arm Limited. All rights reserved. DEN0069B 1.0

3.2.1.1 Requirements

3.2.1.1.1 Host SoC In-Band Interface

M1 compliance requires that an IPMI interface must be supported for communication from the Arm SoC to the
BMC. The IPMI specification [26] defines four supported physical/logical interfaces (KCS, BT, SMIC, and SSIF).
SBMR requires IPMI SSIF as the preferred interface for IPMI in-band communication.

The Arm SoC must have a SMBus System Interface (SSIF) connection to the BMC for IPMI communication as
described by the IPMI specification. At minimum, this must be an I2C connection used for sending IPMI
commands to the BMC. It is recommended that an “ALERT” pin is also supported to enable BMC notification to
the host.

3.2.1.1.2 Console UART

The Arm SoC must have at least one SBSA [2] compliant UART connection to the BMC for the purpose of serial-
over-LAN (SoL) support (e.g. for OS / UEFI console purposes, output/input).

Per the SBSA [2] and SBBR [5], the console UART must be an SBSA [2] compliant UART that must be exposed
to the host software via the Serial Port Console Redirection Table (SPCR).

Additional UART console connections from the Arm SoC to the BMC are permitted but are considered
IMPLEMENTATION DEFINED.

Default baud rate for interoperability with commercially available BMCs is required to be 115200 bits/second.

3.2.1.2 Recommendations

3.2.1.2.1 PCIe

If remote Keyboard-Video-Mouse (KVM) is supported on the platform, it is strongly recommended that the Arm
SoC have a PCIe connection to the BMC for the purpose of graphics (e.g. VGA).

3.2.1.2.2 USB

If remote Virtual Media or KVM is supported on the platform, it is strongly recommended the Arm SoC have a USB
host connection (either via on-chip/SoC USB controller or external onboard USB controller) to the BMC for the
purpose of enabling remote keyboard, mouse, and virtual media.

3.2.1.2.3 JTAG

Remote Debug is an invasive or non-invasive external debug, through a physical interface (i.e. JTAG), that is
remotely controlled through an Out-of-band interface exposed by the platform BMC. Examples of Remote Debug
functions include:

• Crash dump analysis

• Register and memory inspection.

• Stepping through code.

• Low-level bare metal analysis.

If support for JTAG based remote debug and crash dump functions is needed, an IEEE 1149.1 JTAG interface is
required:

• Control of the JTAG interface can be exposed over the Out-of-band interface.

• Inclusion of control of the TRST signal on the BMC is required.

Server Base Manageability Requirements

Page 20 of 45 Copyright © 2020 Arm Limited. All rights reserved. DEN0069B 1.0

• Inclusion of the TRST signal on the SoC is IMPLEMENTATION DEFINED.

• Where multiple SoCs which need support for remote debug functions are connected to the same BMC,

the JTAG interfaces shall be daisy-chained, for control by a single JTAG interface on the BMC.

Access to some or all debug functionality might be prevented at certain lifecycle states of the SoC. When such
access is prevented, an IMPLEMENTATION DEFINED mechanism should be provided to enable Remote Debug
access.

NOTE: For more guidance on debug and JTAG security, refer to the Arm Server Base Security Guide (SBSG) [39]

Where a JTAG interface is provided for Remote Debug functions and when Remote Debug access is enabled, the
JTAG interface shall provide access to all TAP controllers that are compliant with the Arm Debug Interface, ADIv5
[36] or ADIv6 [37].

• The Arm Debug Interface TAP controllers shall provide access to the following for each Arm processor
that needs Remote Debug access:

o The external debug interface.
o The external debug interface for any Cross-Trigger Interfaces (CTI).
o The external debug interface for any Performance Monitor Units (PMU).
o The external debug interface for any processor trace functions (e.g. ETM).

• The Arm Debug Interface TAP controllers shall provide access to all components required to route trace
from the processor trace source to any trace sinks.

• Access to other debug functionality is IMPLEMENTATION DEFINED.

• The Arm Debug Interface TAP controllers shall provide access to all components required to enable
access to any of the above components, for example ROM tables and power control requests.

For more details, refer to Appendix E .

3.2.2 BMC-Platform Elements Interface Recommendations

The BMC-Platform Elements interface for the Level M1 based server systems is IMPLEMENTATION DEFINED.
Typically, the SMBus/I2C medium is used.

3.2.3 BMC Management Services (Out-of-Band) Interface Recommendations

Support for IPMI is a requirement for M1 compliant server systems. Refer to Appendix B for minimal IPMI
commands required.

Server Base Manageability Requirements

Page 21 of 45 Copyright © 2020 Arm Limited. All rights reserved. DEN0069B 1.0

3.3 Level M2

Figure 3-3 Server Management Interfaces (Level M2)

LEGEND

Redfish and IPMI

Engine

SOC Side-band

Interface

System Interface

Host OS/Firmware

(Application Processors)

SOC Side-band

Interface Library

Admin

SOC Side-band I/F (events/power/thermal/RAS)

USB 2.0 (Redfish HI, Keyboard, Mouse, Virtual Media)

OOB
(Redfish, IPMI)

Monitor and Control Signals

PCIe x1 (Graphics/Video Feature etc.)

UART (Serial over LAN, Console, etc)

I2C/SMBus/Alert (IPMI System SMBus Interface)

JTAG (remote debug)

Shared Network

Controller
IO Device

Side-band

interface

Platform

Elements

Interface

Sensors, FAN,

Power etc

RMII, NC-SI PCIe x16 (Network)

Other Devices

Connected to SoC

(with optional

device side-band

connection to BMC)

IMPDEF

PCIe, SPI, I2C, other interfaces

IMPDEF connection

Required Connection

Conditionally Required Connection

Admin

IN-BAND (Redfish, IPMI)

3.3.1 SoC-BMC Interfaces

3.3.1.1 Requirements

The requirements for these interfaces on the Level M2 based server systems are the same as those of the Level
M1 based server systems, with some additional requirements.

Server Base Manageability Requirements

Page 22 of 45 Copyright © 2020 Arm Limited. All rights reserved. DEN0069B 1.0

3.3.1.1.1 Host SoC In-Band Interface

The Host/SoC In-Band interface must be compliant to the Redfish Host Interface Specification [9]. The Arm SoC
must expose this interface via compliant physical connection, namely PCIe or USB based. One of the following
physical interface requirements must be met:

1) The Arm SoC must have a USB connection (either via on-chip USB support or external onboard USB

support via PCIe USB device) to the BMC for Redfish communication over USB network device. At a

minimum, this must be USB 2.0 connection or faster.

Or

2) The Arm SoC must have a PCIe connection to the BMC for Redfish communication over PCIe network

device.

NOTE: In addition to USB and PCIe network device, the Redfish Host Interface Specification [9] defines an OEM
proprietary method. This proprietary method is not recommended for M2 compliant systems.

In addition, M2 compliance requires that a second Host/SoC In-Band interface based on IPMI that must exist.

3.3.1.1.2 JTAG

JTAG connection between the BMC and the SoC is upgraded from a conditional requirement in Level M1 to a
mandatory requirement in Level M2 based server systems.

3.3.1.2 Recommendations

The recommendation for the BMC-SOC interfaces on the Level M2 based server systems are the same as those
of the Level M1 based server systems.

3.3.2 BMC-Platform Elements Interface Recommendations

The BMC-Platform Elements interface for the Level M2 based server systems is IMPLEMENTATION DEFINED.

3.3.3 BMC-IO Device Interface Recommendations

If using shared physical NIC interface between BMC and SOC, then Network Controller Sideband Interface (NC-
SI)[21] over reduced media independent interface (RMII) based transport is required for Level M2 based server
systems.

Network Controller Sideband Interface (NC-SI)[21] defines a combination of logical and physical paths that
interconnect the BMC and Network Controller(s) for the purpose of transferring management communication
traffic among them. NC-SI includes commands and associated responses, which the BMC uses to control the
status and operation of the Network Controller(s). NC-SI also includes a mechanism for transporting management
traffic and asynchronous notifications.

The BMC-IO Device Interface for all other IO devices for the Level M2 based server systems is
IMPLEMENTATION DEFINED.

3.3.4 BMC Management Services (Out-of-Band) Interface Recommendations

Level M2 based server systems requires that the BMC Management Services Interface supports the Redfish
Interface [7].

Server Base Manageability Requirements

Page 23 of 45 Copyright © 2020 Arm Limited. All rights reserved. DEN0069B 1.0

In addition, IPMI support is also a requirement for M2 compliant server systems. Refer to Appendix B for minimal
IPMI commands required.

Level M2 based server systems further standardize the BMC Management Services Interface by adopting the
Redfish Interoperability Profiles Specification[8] and the individual profiles contained in the Redfish Interoperability
Profiles Bundle[12].

Supporting OCP profiles is required for OCP servers. OCP currently defines two Redfish profiles for hardware
management:

1. OCP Baseline Hardware Management Redfish Profile [29]. This is the minimum level a Redfish
interface must provide for OCP compliant hardware management.

2. OCP Server Hardware Management Redfish Profile [30]. This profile defines additional requirements
on top of the OCP Baseline profile [29] for OCP compliant server hardware management.

As Redfish Schema [10] definitions are designed to provide significant flexibility and allow conforming
implementations on a wide variety of products, very few properties within the Schemas are required by the
Redfish specification. However, consumers and software developers need a more rigidly defined set of required
properties (features) in order to accomplish management tasks. This set allows users to compare
implementations, specify needs to vendors, and allows software to rely on the availability of data. To provide that
"common ground", a Redfish Interoperability Profile allows the definition of a set of schemas and property
requirements, which meet the needs of a particular class of product or service.

A tool to verify the compliance of a Redfish implementation to the required Redfish profile is available from DMTF
at: https://github.com/DMTF/Redfish-Interop-Validator.

NOTE: Arm has the ability to publish Arm-specific profiles if needed, but the intent is to adopt the standard profiles
(e.g., OCP profile[29][30]).

https://github.com/DMTF/Redfish-Interop-Validator

Server Base Manageability Requirements

Page 24 of 45 Copyright © 2020 Arm Limited. All rights reserved. DEN0069B 1.0

3.4 Level M3 alpha (Work-in-progress)

The following block diagram describes the BMC interfaces

Figure 3-4 Server Management Interfaces (Levem M3a)

LEGEND

Redfish and IPMI

Engine

SOC Side-band

Interface

System Interface

Host OS/Firmware

(Application Processors)

SOC Side-band

Interface Library

Admin

PLDM, MCTP over I2C (events/power/thermal/RAS)

USB 2.0 (Redfish HI, Keyboard, Mouse, Virtual Media)

OOB
(Redfish, IPMI)

Monitor and Control Signals

PCIe x1 (Graphics/Video Feature etc.)

UART (Serial over LAN, Console, etc)

I2C/SMBus/Alert (IPMI System SMBus Interface)

JTAG (remote debug)

Shared Network

Controller
IO Device

Side-band

interface

Platform

Elements

Interface

Sensors, FAN,

Power etc

RMII, NC-SI PCIe x16 (Network)

Other Devices

Connected to SoC

(with optional

device side-band

connection to BMC)

IMPDEF

PCIe, SPI, I2C, other interfaces

IMPDEF connection

Required Connection

Conditionally Required Connection

Admin

IN-BAND (Redfish, IPMI)

3.4.1 Requirements

The requirements for these interfaces on the Level M3 based server systems are the same as those of the Level
M2 based server systems, with some additional requirements.

3.4.2 SoC-BMC Interface

Level M3 based server systems standardize this interface based on the DMTF PMCI workgroup standards which
define specifications for primary intercommunication interfaces/data models between baseboard management
controller (BMC) and satellite management controller (SatMC).

Server Base Manageability Requirements

Page 25 of 45 Copyright © 2020 Arm Limited. All rights reserved. DEN0069B 1.0

• PLDM [17][19][20][23] for the purpose of supporting platform-level data models and platform functions. PLDM
is designed to be an effective interface and data model that provides efficient access to low-level platform
inventory, monitoring, control, event, and data/parameters transfer functions. PLDM defines data
representations and commands that abstract the platform management hardware.

• MCTP [13][16] as a transport protocol format that is independent of the underlying physical bus properties, as
well as the "data-link" layer messaging used on the bus.

• PLDM over MCTP binding [18] as the format of PLDM over MCTP messages.

For Level M3 based server systems, the physical and data-link layer methods for MCTP communication are
defined by the MCTP over SMBus/I2C binding specification [14].

3.4.3 BMC-Platform Elements Interface Recommendations

For recommendations/guidance on the BMC-Platform Elements interface for the Level M3 based server systems,
please refer to Intelligent Platform Management Interface v2.0 (IPMI) specification [26].

For a list of IPMI commands which aid in monitoring and control of platform elements refer to Appendix D .

3.4.4 BMC-IO Device Interface Recommendations

If using shared physical NIC interface between BMC and SOC, then Network Controller Sideband Interface (NC-
SI)[21] over reduced media independent interface (RMII) based transport or MCTP is required for Level M3 based
server systems. If NC-SI over MCTP [22] is used, the physical layer used is one of the transport bindings on which
MCTP can be bound (for example, PCIe VDM or SMBus/I2C).

The BMC-IO Device Interface for all other IO devices for the Level M3 based server systems is
IMPLEMENTATION DEFINED.

Server Base Manageability Requirements

Page 26 of 45 Copyright © 2020 Arm Limited. All rights reserved. DEN0069B 1.0

3.5 Level M4 alpha (Work-in-progress)

The following block diagram describes the BMC interfaces

Figure 3-5 Server Management Interfaces (Level M4a)

LEGEND

Redfish and IPMI

Engine

SOC Side-band

Interface

System Interface

Host OS/Firmware

(Application Processors)

SOC Side-band

Interface Library

Admin

PLDM, MCTP over I3C or MMIO (events/power/thermal/RAS)

USB 2.0 (Redfish HI, Keyboard, Mouse, Virtual Media)

OOB
(Redfish, IPMI)

Monitor and Control Signals

PCIe x1 (Graphics/Video Feature etc.)

UART (Serial over LAN, Console, etc)

I2C/SMBus/Alert (IPMI System SMBus Interface)

JTAG (remote debug)

Shared Network

Controller

IO Device

Side-band

interface

Platform

Elements

Interface

Sensors, FAN,

Power etc

RMII, NC-SI PCIe x16 (Network)

Other Managed

Devices
IMPDEF PCIe, SPI, I2C, other interfaces

IMPDEF connection

Required Connection

Conditionally Required Connection

Admin

IN-BAND (Redfish, IPMI)

NVMe DevicesNVMe over MCTP

3.5.1 Requirements

The requirements for these interfaces on the Level 4 based server systems are the same as those of the Level M3
based server systems, with some additional requirements.

Server Base Manageability Requirements

Page 27 of 45 Copyright © 2020 Arm Limited. All rights reserved. DEN0069B 1.0

3.5.2 SoC-BMC Interface

For Level M4 based server systems, the physical and data-link layer methods for MCTP communication will be
defined by the MCTP over I3C binding specification. Further, high speed memory mapped interface may also be
considered. (TBD)

3.5.3 BMC-Platform Elements Interface Recommendations

Level M4 based server systems standardize this interface based on the DMTF PMCI workgroup standards which
define specifications for primary intercommunication interfaces/data models between Management Controller
(BMC) and managed entities (Platform Elements).

• PLDM[17][19][20][23] for the purpose of supporting platform-level data models and platform functions. PLDM
is designed to be an effective interface and data model that provides efficient access to low-level platform
inventory, monitoring, control, event, and data/parameters transfer functions. For example, temperature,
voltage, or fan sensors can have a PLDM representation that can be used to monitor and control the platform
using a set of PLDM messages. PLDM defines data representations and commands that abstract the
platform management hardware.

• MCTP [13][16] as a transport protocol format that is independent of the underlying physical bus properties, as
well as the "data-link" layer messaging used on the bus.

• PLDM over MCTP binding [18] as the format of PLDM over MCTP messages.

• PLDM for Redfish Device Enablement [24] as the messages and data structures used for enabling PLDM
devices to participate in Redfish-based management.

This approach abstracts the potential evolutions of the underlying physical medium, enabling future transport
bindings to be defined to support additional media without affecting the base MCTP specification. For the current
popular SMBus/I2C medium, the physical and data-link layer methods for MCTP communication are defined by
the MCTP over SMBus/I2C binding specification [14].

For a list of PLDM commands which aid in monitoring and control of platform elements refer to Appendix D.

3.5.4 BMC-IO Device Interface Recommendations

If using shared physical NIC interface between BMC and SOC, the requirements for these interfaces on the Level
4 based server systems are the same as those of the Level M3 based server systems

Further, Level M4 based server systems standardize NVMe Management Interface support with NVMe
Management Messages over MCTP.

Non-Volatile Memory Express (NVMe-MI) is an optimized register interface, command set, and feature set for
PCIe based storage. The NVMe Management Interface protocol may also be used for other types of non-volatile
memory devices. NVMe Management Interface Commands are used for the accessing configuration, control, and
status functions in NVMe-compatible non-volatile memory devices. NVMe Management Messages over MCTP
Specification [25] defines how NVMe Management Interface Commands are encapsulated in MCTP Messages
and transferred between MCTP Endpoints over the specified transports (for example, PCIe VDM or SMBus/I2C).

The BMC-IO Device Interface for all other IO devices for the Level M4 based server systems is
IMPLEMENTATION DEFINED.

Server Base Manageability Requirements

Page 28 of 45 Copyright © 2020 Arm Limited. All rights reserved. DEN0069B 1.0

APPENDIX A OPENBMC

The OpenBMC project (https://www.openbmc.org/) can be described as a Linux distribution for an embedded
device that serves as a BMC for typically, but not limited to, things like servers, top of rack switches or RAID
appliances. The OpenBMC stack uses technologies such as Yocto, Open-Embedded, Systemd and Dbus to allow
easy customization for each server platform.

OpenBMC is a a Linux Foundation project hosted at https://github.com/openbmc/openbmc. Facebook, Google,
IBM, Intel, and Microsoft are the founding TSC members. Arm is now a TSC member.

OpenBMC is a sample implementation of the BMC software. Actual deployment of BMC in SBSA[2] compliant
AArch64 servers can chose to use this implementation or other commercial solutions.

https://www.openbmc.org/
https://github.com/openbmc/openbmc

Server Base Manageability Requirements

Page 29 of 45 Copyright © 2020 Arm Limited. All rights reserved. DEN0069B 1.0

APPENDIX B IPMI IMPLEMENTATION GUIDE

This appendix documents the minimum IPMI Commands required.

B.1 Remote Power Control

B.1.1 Power On

A platform must provide a mechanism for remotely powering an individual node on and initiating the boot
sequence.

B.1.2 Power Off

A platform must provide a mechanism for remotely powering an individual node off. This mechanism should be
provided out-of-band of and without dependencies on the host operating system. For example, graceful power off
facilities which rely on the host OS to perform the shutdown would not be sufficient.

B.1.3 Graceful Power Off

A platform must provide a mechanism for remotely initiating an OS-controlled power down of a system.

B.1.4 IPMI Commands Required

IPMI LAN Chassis Power Commands

B.2 Boot Device Selection

Platforms must provide a mechanism to remotely select either a local boot or a network boot on the next system
power up.

B.2.1 IPMI Commands Required

IPMI LAN chassis boot device command

B.3 BMC / Host Mapping

It should be possible to automatically determine the mapping between a host and its BMC. Either the host must be
able to identify its BMC configuration through an in-band mechanism, or the BMC must be able to provide unique
identification information about the host (e.g. Host MAC addresses).

B.4 BMC User Manipulation

When an IPMI LAN capable BMC is used to provide platform interfaces, it must be possible for the deployment

server to authenticate to the BMC by using the IPMI System Interface to add a private user to the BMC via the
host operating system. The System Interface does not require the user to authenticate to the BMC to manipulate
the user settings. Once the deployment server has defined a user on the BMC, the MAAS server will be able to
authenticate to the BMC over the IPMI LAN interface. This requires an IPMI-compliant BMC system Interface.

B.5 IPMI Support Verification

A script to verify the basic remote IPMI functionality is available here:

https://git.launchpad.net/~ce-hyperscale/maas/+git/maas/plain/maas-ipmi-test.sh?h=maas-bmc-tests

https://git.launchpad.net/~ce-hyperscale/maas/+git/maas/plain/maas-ipmi-test.sh?h=maas-bmc-tests

Server Base Manageability Requirements

Page 30 of 45 Copyright © 2020 Arm Limited. All rights reserved. DEN0069B 1.0

APPENDIX C RAS MESSAGE FORMATS

C.1 LEVEL M0

For transferring RAS error records, In-band, SOC Side-band, Out-Of-band interfaces are implementation defined.

C.2 LEVEL M1

A conceptual illustration of Required IPMI based In-band, SOC Side-band, Out-Of-band RAS interfaces for LEVEL
M1 is shown in Figure C-1.

Figure C-1 IPMI based RAS Interfaces

IPMI Server

SOC Side-band

Interface

System Interface Host OS/Firmware

SOC Side-band

Interface Library

Administrator

SOC Side-band I/F

In-band (I2C/SMBus/Alert)

Out-of-band IPMI
(LAN,Serial, etc.)

C.2.1 SMBus System Interface (In-band Interface)

For transferring RAS error records generated in Host OS/Firmware, SBMR recommends the use of IPMI based
System Interface (specifically SMBus System Interface SSIF) as the in-band interface for the Level M1 based
server systems.

Other IPMI System Interfaces such as Keyboard Controller Style (KCS), System Management Interface Chip
(SMIC), Block Transfer (BT) are optional and not expected to be present.

The overview of “RAS Events” interaction with the event receiver and RAS Manager through SMBus System
Interface (SSIF) is illustrated in Figure C-2.

Server Base Manageability Requirements

Page 31 of 45 Copyright © 2020 Arm Limited. All rights reserved. DEN0069B 1.0

Figure C-2 IPMI based RAS Event Receiver

System Interface

Event Message Buffer RAS Manager

N
V

 S
to

ra
g

e
 IF

RAS
(CPER Data)

NV Storage

R
A

S
 E

v
e

n
ts

Event Receiver

PEF

Figure C-2 represents a conceptual illustration of the way RAS event messages can be handled by a Baseboard
Management Controller device that uses an external non-volatile storage device to hold the RAS Event Log. The
figure shows a BMC with a shared system messaging interface where RAS Event Messages can be delivered
from either firmware, SMS (system management software/OS), or an SMI/MMI Handler.

SBMR recommends creating an event type “CPER”.

When the BMC receives a message via the system interfaces, a ‘Message Handler’ function recognizes the
message as being for the ‘Event’ functionality in the BMC and passes the message information on to the ‘Event
Receiver’ function.

The Event Receiver function then takes the message content and issues a request to a ‘RAS Manager.’ function
that formats the message as a Common Platform Error Record (CPER) Entry and calls the FLASH Interface to
have the data stored.

SBMR recommends the error record data format to be in raw Common Platform Error Record CPER format when
using this interface. The format of Common Platform Error Record (CPER) is defined in UEFI Specification
Appendix N [4].

C.2.2 RAS IPMI Message Format

The common components of IPMI message consist of

Network Function (NetFn): A field that identifies the functional class of the message.

Request/Response identifier: A field that unambiguously differentiates Request Messages from Response
Messages.

Requester’s ID: Information that identifies the source of the Request.

Responder’s ID: A field that identifies the Responder to the Request.

Command: The messages specified in this document contain a one-byte command field. Commands are unique
within a given Network Function.

Data: The Data field carries the additional parameters for a request or a response, if any.

Server Base Manageability Requirements

Page 32 of 45 Copyright © 2020 Arm Limited. All rights reserved. DEN0069B 1.0

SBMR recommends the use of group extension option (as provided by IPMI specification) as it will give Arm
ecosystem a broad scope for managing the transport and protocols.

Group Extensions (2Ch, 2Dh) - This will allow all the commands to come under a Group for Non-IPMI groups and
requests.

The first data byte position in requests and responses under this network function identifies the defining body that
specifies command functionality. Software assumes that the command and completion code field positions will
hold command and completion code values.

“AEh” value is used to identify SBMR which is the defining body for Arm ecosystem commands.

A multi-part write is used when more than 32-bytes of IPMI message data need to be written to the BMC.

Since the size of error record format is in the order of kilo bytes, SBMG recommends the use of Multi-part write
transaction.

Multi-part write transaction has one Start, multiple Middle and one End transaction.

SSIF start transaction for RAS (CPER) data will be as shown below:

The network function code is “0x2C” and the first byte of IPMI request data is “0xAE” to indicate that the IPMI
commands are defined by SBMR.

SBMR defines IPMI Command “TransferPlatformErrorRecord” with code “0x01” to indicate the write of multi-
part CPER Record to BMC.

There can be multiple middle transactions depending on the size of Common Platform Error Record (CPER).

SSIF middle transaction for RAS (CPER) data will be as shown below:

SSIF end transaction for RAS (CPER) data will be as shown below:

C.2.3 SOC Side-band Interface

For transferring RAS error records either generated in Host OS/Firmware and transferred over to Satellite/Service
Management Controller or in the Satellite/Service Management Controller itself, SOC Side-band interface for
SBMR LEVEL M1 Compliant systems is implementation defined.

Slave

Address

(7)

R/W (1)
SMBus

CMD (8)

Length

(8)

NetFn

(6)
LUN (2)

IPMI

CMD (8)

IPMI

Data (0

or more

bytes)

[PEC] (8)

0 0x06 0x20 0x2C 0x01

0xAE

Followed

by CPER

Slave

Address

(7)

R/W (1)
SMBus

CMD (8)

Length

(8)

IPMI

Data
[PEC] (8)

0 0x07 0x20 CPER

Slave

Address

(7)

R/W (1)
SMBus

CMD (8)

Length

(8)

IPMI

Data
[PEC] (8)

0 0x08 CPER

Server Base Manageability Requirements

Page 33 of 45 Copyright © 2020 Arm Limited. All rights reserved. DEN0069B 1.0

C.2.4 Out-of-band Interface

SBMR recommends IPMI based tool to extract the stored RAS error records in raw CPER format. IPMI based tool
will be responsible for formatting raw CPER format data into human readable format.

C.3 LEVEL M2

LEVEL M2 requires Redfish as out-of-band interface and Redfish Host Interface as the in-band interface. A
conceptual illustration of these interfaces for RAS is shown in Figure C-3.

Figure C-3 Redfish based RAS Interfaces

Redfish Server

SOC side-band

Interface

Implementation

defined Backend

Host OS/Firmware

Redfish Client

SOC side-band

Interface Library

Administrator

SOC Side-band Interface
(Implementation defined)

In-band
Redfish Host Interface

Out-of-band Redfish
(Network based)

RAS Event
Repository

C.3.1 Redfish Host (in-band) Interface

For transferring RAS error records generated in Host OS/Firmware, SBMR recommends Redfish Host Interface as
the in-band interface for the Level M2 based server systems.

SBMR recommends the error record data format to be in JSON format when using this interface. The error
records themselves are recommended to be stored in CPER like format in the RAS Event Repository (non-volatile
storage).

SBMR recommends that Host Interface and out-of-band API must be the same (where possible) so that client
apps have minimal (if any) change to adapt.

Server Base Manageability Requirements

Page 34 of 45 Copyright © 2020 Arm Limited. All rights reserved. DEN0069B 1.0

C.3.2 RAS Redfish Message Format (proposed)

The proposed Redfish model for extracting Platform Error Records is shown below in Figure C-4.

NOTE: This is a proposal, and not a DMTF standard. This proposal is subject to change, and will be updated with
the actual standard once published.

Figure C-4 Redfish Platform Error Records Proposed Model

Service Root

System

1:N

Debug Data

1:1

Platform
Error

Records

Crash
Screens
(future)

1:N

1:N

1:N

Assembly

OEM
Records

Platform
Error

Records

Platform
Error

Records

Crash
Screens
(future)

Crash
Screens
(future)

Server Base Manageability Requirements

Page 35 of 45 Copyright © 2020 Arm Limited. All rights reserved. DEN0069B 1.0

The Redfish JSON mockup for “DebugData” is below:

{

 "@odata.id": "/redfish/v1/Systems/1/DebugData",

 "@odata.type": "#DebugData.v1_0_0.DebugData",

 "Id": "DebugData",

 "Name": "System Debug Data",

 "PlatformErrorRecords" : {

 "@odata.id": "/redfish/v1/Systems/1/DebugData/PlatformErrorRecords",

 },

 "Oem": {}

}

The mockup for “PlatformErrorRecords” which contains an example of Memory Error is shown below. The error
section itself will be in binary.

{

 "@odata.type": "#PlatformErrorRecords.v1_0_0.PlatformErrorRecords",

 "@odata.id": "/redfish/v1/Systems/1/PlatformErrorRecords",

 "ErrorRecords": [

 {

 "@odata.id": "/redfish/v1/Systems/1/PlatformErrorRecords#/ErrorRecords/0",

 "UefiRecordName": "HwErrRec0000",

 "BinaryDataURI": "/dumpster/debug/cper0000.bin",

 "TimeStamp": "2019-04-01T14:55:33+03:00",

 "PlatformId": "289e0c3e-5326-4a55-a378-d8f049a63699",

 "CreatorId": "ab288813-a54e-42ee-aa23-18025620c02d",

 "RecordId": "0x0123456789ABCDEF",

 "Severity": "Fatal",

 "NotificationType": "PEI",

 "RecoveredError”: false,

 "PreviousSessionError”: false,

 "SimulatedError”: true,

 "Sections”: [

 {

 "Name": "Memory Errors",

 "Description”: "Memory Slot 1 Error",

 “SectionType": “Memory",

 "Severity": "Fatal",

 "PrimarySection”: true,

 "Assembly”: {

 "@odata.id": "/redfish/v1/Systems/1/Memory/1/Assembly#/Assemblies/0"

 },

 }

],

 }

],

 "Oem": {},

}

C.3.3 SOC-sideband Interface

For transferring RAS error records either generated in Host OS/Firmware and transferred over to Satellite/Service
Management Controller or in the Satellite/Service Management Controller itself, SOC Side-band interface for
SBMR LEVEL M2 Compliant systems is implementation defined.

Server Base Manageability Requirements

Page 36 of 45 Copyright © 2020 Arm Limited. All rights reserved. DEN0069B 1.0

C.3.4 Out-of-Band Interface

SBMR recommends Redfish based tool to extract the stored RAS error records in CPER like format from RAS
event repository. Backend translates error record from CPER like format to JSON format.

C.4 LEVEL M3a/M4a

LEVEL M3 adds the additional requirement of MCTP based SOC side-band interface in addition to Redfish as out-
of-band interface and Redfish Host Interface as the in-band interface. A conceptual illustration of these interfaces
for RAS is shown in Figure C-5.

Figure C-5 Redfish/PLDM/MCTP based RAS Interfaces

Redfish Server

Management

Component

Transport Protocol

Platform Level Data

Model (PLDM) for

Redfish Device

Enablement

Host OS/Firmware

Redfish Client

PLDM / MCTP

Interface Library

Administrator

SOC Side-band MCTP Interface
(I2C, Serial, PCIe, etc.)

In-band
Redfish Host Interface

(USB NIC, PCIe NIC, etc)

Out-of-band Redfish
(Network based)

Platform Level Data

Model (PLDM) over

MCTP Binding

PLDM Event
Repository

C.4.1 Redfish Host (in-band) Interface

For transferring RAS error records generated in Host OS/Firmware, the recommendations are same as Level M2
based server systems.

C.4.2 MCTP (SOC side-band) Interface

For transferring RAS error records either generated in Host OS/Firmware and transferred over to Satellite/Service
Management Controller or in the Satellite/Service Management Controller itself, SBMR recommends

Server Base Manageability Requirements

Page 37 of 45 Copyright © 2020 Arm Limited. All rights reserved. DEN0069B 1.0

Management Component Transport Protocol (MCTP) as the SoC side-band transport layer interface for the Level
M3a/M4a based server systems.

The physical binding of MCTP is left best to System Implementors. Some examples of the physical binding include
MCTP over I2C, MCTP over PCIe VDM, MCTP over Serial.

Further, SBMR recommends Platform Level Data Model (PLDM) as the SOC side-band message definition and
data layer interface for the Level M3a/M4a based server systems.

SBMR recommends the error record data format to be in CPER like format when using this interface.

SBMR recommends the use of “PlatformEventMessage”, “PollForPlatformEventMessage”,
“EventMessageSupported” and “EventMessageBufferSize” APIs/Commands to transfer CPER like format RAS
errors from the Satellite/Service Management Controller to the BMC. A new event class “cperPollEvent” event
class is proposed to enable this feature.

For more details, please refer to PLDM for Platform Monitoring and Control Specification [20]. Figure C-6 shows
an example flow that demonstrates switching to polled event transfer to receive an CPER event with large event
data.

When BMC gets a “cperPollEvent”, this is a signal that an event with a large amount of cper data is next to be
transferred. The BMC then uses the PollForPlatformEventMessage command with TransferOperationFlag set
to GetFirstPart to initiate the transfer. In response, the satellite management controller supplies the first chunk of
data along with a transfer handle for the next portion and a transferFlag of Start, which indicates that this is the
first chunk and there is at least one more. The BMC then retrieves the next chunk in the same fashion, using the
nextDataTransferHandle supplied in the previous response. So long as the response message transferFlag field is
set to Middle, the BMC knows that more data is waiting to be retrieved, and repeats this process using the most
recently received nextDataTransferHandle to obtain the next data chunk each time. Finally, when the transferFlag
comes back as End, the BMC knows the transfer is complete and can verify the eventDataIntegrityChecksum
against the reassembled cper event data. Assuming the transfer was successful, the BMC can now acknowledge
receipt of the event and switch back to asynchronous transfer of events by sending a final
PollForPlatformEventMessage command with TransferOperationFlag set to AcknowledgementOnly.

Server Base Manageability Requirements

Page 38 of 45 Copyright © 2020 Arm Limited. All rights reserved. DEN0069B 1.0

Figure C-6 Redfish/PLDM/MCTP based RAS Interfaces

BMC
Satellite

Management
Controller

Application
Processor (SOC)

EventMessageSupported(Version, TID)

EventMessageBufferSize(CperSize)

Generate/Store CPER

RAS Errror Event

CPER/Async Event

return(EventClass)

RAS Event Supported?
 yes

return(MaxBufferSize)

MaxBufferSize < CperSize?
Yes

PlatformEventMessage(cperPollEvent)

PollForPlatformEventMessage (GetFirstPart, 0x0000)

return(PLDM_BASE_CODE)

return(nextDataHandle,
Start=0x01,

cperPollEvent,
EventDataSize,

EventData)

PollForPlatformEventMessage (GetNextPart, 0xFFFF)

return(nextDataHandle,
Middle=0x02,
cperPollEvent,
EventDataSize,

EventData)

PollForPlatformEventMessage (GetNextPart, 0xFFFF)

return(nextDataHandle,
End=0x04,

cperPollEvent,
EventDataSize,

EventData,
EventDataIntegrityChecksum)

PollForPlatformEventMessage (AcknowledgementOnly, 0xFFFF)

return(nextDataHandle,
EventID=0x0000 (empty) or 0xFFFF (otherwise)

Server Base Manageability Requirements

Page 39 of 45 Copyright © 2020 Arm Limited. All rights reserved. DEN0069B 1.0

C.4.3 RAS PLDM Message Format

The proposed RAS/CPER PLDM event log entry format is shown in Table C-1.

Table C-1 RAS/CPER PLDM event log entry format

Byte Type Field

0 enum8 entryType

value: {PLDMPlatformEvent, OEMTimestampedEntry, OEMEntry }

1 uint8 entryDataLength

The size in bytes of the entryData field.

variable – entryData

Data for the entry, dependent on the entryType.

entryType = PLDMPlatformEvent for CPER/RAS

The proposed entryData format for RAS/CPER PLDM event is shown in Table C-2.

Table C-2 RAS/CPER PLDM event log entryData format

Byte Type Field

0 sint8 entryTimestampUTCOffset

The UTC offset for the log entry timestamp in increments of 1/2 hour

special value: 0xFF = unspecified

1:5 uint40 entryTimestampSeconds

This value corresponds to a 40-bit unsigned integer that represents the number of seconds

since midnight UTC of January 1, 1970 (not counting leap seconds).

6 uint8 entryTimestamp100s

This value provides a number of 1/100ths of a second added to entryTimestampSeconds.

value: 0 to 99

special value: 0xFF = unspecified. Use this value if the implementation timestamps entries to

no finer than a one-second resolution.

variable – eventData

The eventData format is same as the response of the PollforPlatformEventMessage

command.

The proposed eventData format for RAS/CPER PLDM event is shown in Table C-3.

Table C-3 RAS/CPER PLDM eventData format

Byte Type Field

0:1 uint16 sectionCount

This field indicates the number of valid sections associated with the record, corresponding to

section descriptors.

Server Base Manageability Requirements

Page 40 of 45 Copyright © 2020 Arm Limited. All rights reserved. DEN0069B 1.0

2:5 uint32 errorSeverity

0 - Recoverable (also called non-fatal uncorrected)

1 - Fatal

2 - Corrected

3 - Informational

All other values are reserved.

6:9 uint32 flags

Flags field contains information that describes the error record.

HW_ERROR_FLAGS_RECOVERED = 1

HW_ERROR_FLAGS_PREVERR = 2

HW_ERROR_FLAGS_SIMULATED = 4

variable - sectionDescriptor

This field describes error section description.

The proposed sectionDescriptor format for RAS/CPER PLDM event is shown in Table C-4.

Table C-4 RAS/CPER PLDM sectionDescriptor format

Byte Type Field

0:15 uint128 sectionType

This field holds a pre-assigned GUID value indicating that it is a section of a particular error.

16:31 uint128 fruId

GUID representing the FRU ID. The default value is zero indicating an invalid FRU ID. This
can be used to uniquely identify a physical device for tracking purposes. Association of a

GUID to a physical device is implementation defined.

32:35 uint32 sectionSeverity

This field indicates the severity associated with the error section.

0 – Recoverable (also called non-fatal uncorrected)

1 – Fatal

2 – Corrected

3 – Informational

All other values are reserved.

36:55 uint160 fruString

ASCII string identifying the FRU hardware.

variable section

section consists of error information.

The format of a section is identified by the GUID populated in the Section Descriptor’s “sectionType” field and is
outside the scope of this document.

For more details on standard and non-standard sections, please refer to UEFI Specification Appendix N [4].

C.4.4 Out of Band Interface

SBMR recommends Redfish based tool to extract the stored RAS error records in CPER like format from PLDM
event repository. PLDM backend translates error record from CPER like format to JSON format. For more details,
please refer to PLDM for Redfish Device Enablement specification [24].

Server Base Manageability Requirements

Page 41 of 45 Copyright © 2020 Arm Limited. All rights reserved. DEN0069B 1.0

APPENDIX D PLATFORM MONITORING AND CONTROL

IMPLEMENTATION GUIDE

D.1 Introduction

Managed entity refers to the physical or logical entity that is being managed through management parameters.
Examples of physical entities include fans, processors, power supplies, circuit cards, chassis, and so on.
Examples of logical entities include virtual processors, cooling domains, system security states, and so on.

D.2 IPMI Commands to Monitor and Control Managed entities

SBMR recommends the following list of IPMI commands which aid in monitoring and control of managed entities.

1. Get Sensor Reading

2. Get Sensor Reading Factors

3. Set Sensor Hysteresis

4. Get Sensor Hysteresis

5. Set Sensor Thresholds

6. Get Sensor Thresholds

7. Set Sensor Event Enable

8. Get Sensor Event Enable

9. Re-arm Sensor Events

10. Get Sensor Event Status

11. Set Sensor Type

12. Get Sensor Type

13. Set Sensor Reading and Event Status

For more details, please refer to Intelligent Platform Management Interface v2.0 (IPMI) specification [26].

Sensor Data Records (SDRs)

SBMR recommends SDR Type 01h, Full Sensor Record to describe the managed entities. For more details,
please refer to Intelligent Platform Management Interface v2.0 (IPMI) specification [26].

SBMR recommends the following list of IPMI commands which aid in management of Sensor Data Records
(SDRs) of managed entities.

1. Get Device SDR Info
2. Get Device SDR
3. Reserve Device SDR Repository
4. Get SDR Repository Info
5. Get SDR
6. Add SDR
7. Partial Add SDR
8. Clear SDR Repository

Sensor Data Records (SDRs) are data records that contain information about the type and number of managed
entities in the platform, sensor threshold support, event generation capabilities, and information on what types of
readings the sensor provides.

The general Sensor Data Record format consists of three major components, the Record Header, Record ‘Key’
fields, and the Record Body.

Sensor Type Code, Offset and Unit

Server Base Manageability Requirements

Page 42 of 45 Copyright © 2020 Arm Limited. All rights reserved. DEN0069B 1.0

SBMR recommends the use of Sensor Type values and sensor-specific event offsets (if any) as defined by
Intelligent Platform Management Interface (IPMI) specification for managed entities. For more details on the
Sensor Type values, please refer to Intelligent Platform Management Interface (IPMI) specification Table 42-3
[26].

For a list of sensor unit codes, please refer to Intelligent Platform Management Interface (IPMI) Specification
Table 43-15 [26].

Entity IDs

SBMR recommends the use of Entity IDs which identifies the sensor association with a physical container. SBMR
carves out Entity IDs to identify SOC firmware (E.g., pre-EFI firmware), SOC Management Software (E.g.,
Satellite/Service Management Software) from OEM System Integrator defined range 0xD0 – 0xFF as defined in
the table below.

Code Entity Comments

0xE0 SOC Management

Software

This value identifies firmware or software running on a

satellite/service management controller within/outside Arm

SOC.

0xE1 SOC firmware This value identifies pre-EFI firmware on Arm SOCs.

For a complete list of entity IDs, please refer to Intelligent Platform Management Interface (IPMI) Specification
Table 43-13 [26].

D.3 Redfish Schema to Monitor and Control Managed entities

SBMR recommends the use of the schema for sensor as defined by DMTF here [10][7]:
https://redfish.dmtf.org/schemas/v1/Sensor.v1_0_1.json

D.4 PLDM Commands/APIs to Monitor and Control Managed entities

SBMR recommends the following list of PLDM commands which aid in monitoring and control of SOC connected
Numeric and State managed entities/effecters:

1. SetNumericSensorEnable

2. GetSensorReading

3. InitNumericSensor

4. SetStateSensorEnables

5. GetStateSensorReadings

6. InitStateSensor

7. SetNumericEffecterEnable

8. SetNumericEffecterValue

9. GetNumericEffecterValue

10. SetStateEffecterEnables

11. SetStateEffecterStates

12. GetStateEffecterStates

Platform Descriptor Records (PDRs)

SBMR recommends the use of Platform Descriptor Records (PDRs).

https://redfish.dmtf.org/schemas/v1/Sensor.v1_0_1.json

Server Base Manageability Requirements

Page 43 of 45 Copyright © 2020 Arm Limited. All rights reserved. DEN0069B 1.0

SBMR recommends the following list of PLDM commands which aid in management of Platform Descriptor
Records (PDRs) of managed entities:

1. GetPDRRepositoryInfo

2. GetPDR

3. RunInitAgent

For more details on the PLDM Commands, please refer to PLDM for Platform Monitoring and Control Specification
[20].

PDRs provide semantic information for managed entities.

Server Base Manageability Requirements

Page 44 of 45 Copyright © 2020 Arm Limited. All rights reserved. DEN0069B 1.0

APPENDIX E REFERENCE IMPLEMENTATION OF BMC REMOTE

DEBUG SOLUTION USING OPENOCD

E.1 Introduction

BMC Remote debug is the act of gaining visibility and control of the hardware and software behaviors of a Server
SoC, using a debug client which is not directly connected to the Server SoC, but connected to a debug server
running on a baseboard manageability controller (BMC).

E.2 LEVEL M1/M2

This section describes a reference solution for implementing BMC remote debug using OpenOCD
(http://openocd.org/) for SBMR LEVEL M1/M2 Compliant Servers.

This reference solution for BMC remote debug integrates open source OpenOCD inside the open source
OpenBMC stack. OpenOCD implements support for Arm Debug Interface debugging architecture.

OpenOCD includes in-built JTAG controller drivers which need to be compiled in to the OpenOCD binary to
support a specific JTAG controller. Support for a new JTAG controller can be added by writing a new driver.

OpenOCD provides one of these TCP/IP port-based interface for communication:

1. Gdb port (default port : 3333)
2. Tcl port (default port : 6666)
3. Telnet port (default port : 4444)

A reference implementation of remote debug feature using GNU MCU Eclipse plugin, OpenOCD using JTAG
interface is shown in Figure E-1.

http://openocd.org/

Server Base Manageability Requirements

Page 45 of 45 Copyright © 2020 Arm Limited. All rights reserved. DEN0069B 1.0

Figure E-1 Reference implementation of remote debug.

OpenOCD

(GDB Server, Arm

ADI Driver)

JTAG (Master)

controller driver

Host OS/Firmware

JTAG

TCP/IP
(GDB port:3333)

GNU MCE Eclipse plugin
for OpenOCD,
AARCH64 GDB
Client

Debug

Port

A
c
c
e

s
s

 P
o

rt

A
c
c
e

s
s

 P
o

rt

C
P

U
 0

C
P

U
 n

S
o

C

C
o

n
fig

J
T

A
G

Figure E-1 illustrates the source level bare metal debug of Server SOC firmware and kernel debug from a GDB
client running on the remote machine connected to OpenOCD GDB Server running on the BMC. OpenOCD
includes a JTAG controller (master) driver for the BMC platform, which aids in communication with the Server
SOC Arm Debug Interface.

User/Administrator can use Graphical User Interface (GUI) based integrated development environment (IDE)
Eclipse which supports OpenOCD via the GDB Hardware Debugging plug-in. OpenOCD GDB remote debug
Server running on baseboard manageability controller (BMC) listens on port 3333 for OpenOCD aware GDB
debug client connections. OpenOCD also requires the SOC configuration of the system under debug which should
provide hardware specific details. For more information, refer to OpenOCD user guide [40].

User/Administrator can now access the debug functions remotely through the BMC including but not limited to:

• Full memory and register access

• run and stop

• software and hardware breakpoints and watchpoints

• target reset (restart)

• binary program downloading

• step-over-range

• single stepping

	Server Base Manageability Requirements
	Release inormation
	1 About this document
	1.1 Introduction
	1.2 References
	1.2.1 Cross References

	1.3 Terms and abbreviations
	1.4 Feedback

	2 Scope AND BACKGROUND
	2.1 Scope
	2.2 Background
	2.3 Arm SoC-BMC Interface Terminology

	3 COMPLIANCE LEVELS AND REQUIREMENTS
	3.1 Level M0
	3.2 Level M1
	3.2.1 SoC-BMC Interfaces
	3.2.1.1 Requirements
	3.2.1.1.1 Host SoC In-Band Interface
	3.2.1.1.2 Console UART

	3.2.1.2 Recommendations
	3.2.1.2.1 PCIe
	3.2.1.2.2 USB
	3.2.1.2.3 JTAG

	3.2.2 BMC-Platform Elements Interface Recommendations
	3.2.3 BMC Management Services (Out-of-Band) Interface Recommendations

	3.3 Level M2
	3.3.1 SoC-BMC Interfaces
	3.3.1.1 Requirements
	3.3.1.1.1 Host SoC In-Band Interface
	3.3.1.1.2 JTAG

	3.3.1.2 Recommendations

	3.3.2 BMC-Platform Elements Interface Recommendations
	3.3.3 BMC-IO Device Interface Recommendations
	3.3.4 BMC Management Services (Out-of-Band) Interface Recommendations

	3.4 Level M3 alpha (Work-in-progress)
	3.4.1 Requirements
	3.4.2 SoC-BMC Interface
	3.4.3 BMC-Platform Elements Interface Recommendations
	3.4.4 BMC-IO Device Interface Recommendations

	3.5 Level M4 alpha (Work-in-progress)
	3.5.1 Requirements
	3.5.2 SoC-BMC Interface
	3.5.3 BMC-Platform Elements Interface Recommendations
	3.5.4 BMC-IO Device Interface Recommendations
	Appendix A OpenBMC
	Appendix B IPMI Implementation Guide
	B.1 Remote Power Control
	B.1.1 Power On
	B.1.2 Power Off
	B.1.3 Graceful Power Off
	B.1.4 IPMI Commands Required

	B.2 Boot Device Selection
	B.2.1 IPMI Commands Required

	B.3 BMC / Host Mapping
	B.4 BMC User Manipulation
	B.5 IPMI Support Verification

	Appendix C RAS Message Formats
	C.1 LEVEL M0
	C.2 LEVEL M1
	C.2.1 SMBus System Interface (In-band Interface)
	C.2.2 RAS IPMI Message Format
	C.2.3 SOC Side-band Interface
	C.2.4 Out-of-band Interface

	C.3 LEVEL M2
	C.3.1 Redfish Host (in-band) Interface
	C.3.2 RAS Redfish Message Format (proposed)
	C.3.3 SOC-sideband Interface
	C.3.4 Out-of-Band Interface

	C.4 LEVEL M3a/M4a
	C.4.1 Redfish Host (in-band) Interface
	C.4.2 MCTP (SOC side-band) Interface
	C.4.3 RAS PLDM Message Format
	C.4.4 Out of Band Interface

	Appendix D PLATFORM monitoring and control implementation guide
	D.1 Introduction
	D.2 IPMI Commands to Monitor and Control Managed entities
	D.3 Redfish Schema to Monitor and Control Managed entities
	D.4 PLDM Commands/APIs to Monitor and Control Managed entities

	Appendix E REFERENCE Implementation of BMC Remote DEbug solution using OpenOCD
	E.1 Introduction
	E.2 LEVEL M1/M2

