
 Copyright © 2014, 2016, 2018 Arm Limited or its affiliates. All rights reserved.

Document number: DEN0044C

Arm® Server Base Boot Requirements 1.1
Platform Design Document

Server Base Boot Requirements

Copyright 2014, 2016, 2018 Arm Limited or its affiliates. All rights reserved.

Server Base Boot Requirements
Copyright © 2014, 2016, 2018 Arm Limited or its affiliates. All rights reserved.

Release information
The Change History table lists the changes made to this document.

Table 1-1 Change history

Date Issue Confidentiality Change

16 August 2014 A Non-Confidential Initial release, SBBR version 0.9

8 March 2016 B Non-Confidential SBBR version 1.0
Updated referenced specifications to:
UEFI 2.5, ACPI 6.0, SMBIOS 3.0.0

31 May 2018 C Non-Confidential SBBR version 1.1
• Updated referenced specifications to:

UEFI 2.7, ACPI 6.2, SMBIOS 3.1.1
• ACPI Interrupt-signaled Events support
• ACPI GED support
• Secondary core boot standardization
• PSCI minimum revision back to 1.0
• SMBIOS Processor Information
• SMBIOS structure data requirements clarification
• Secure and Trusted Boot
• Secure Firmware Update
• UEFI REST Protocol support
• UEFI Capsule Service clarification
• ACPI PCI IO Address Translation clarifications
• UEFI PCI Root Bridge IO Protocol Address Translation

clarifications
• UEFI GOP implementation clarifications
• IORT implementation guidelines
• SPMI recommendation removal
• SMBIOS Redfish Host Interface support
• Native AArch64 image requirements for UEFI applications

and drivers
• Clarifications of SSDT being optional
• Clarifications on UEFI Load File and Load File 2 Protocols
• UEFI Random Number Generator Protocol guideline
• ACPI MCFG Table guideline clarifications

Non-Confidential Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the
information contained in this document may be protected by one or more patents or pending patent applications.
No part of this document may be reproduced in any form by any means without the express prior written
permission of Arm. No license, express or implied, by estoppel or otherwise to any intellectual property
rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or
permit others to use the information for the purposes of determining whether implementations infringe any third
party patents.

Server Base Boot Requirements

Copyright 2014, 2016, 2018 Arm Limited or its affiliates. All rights reserved.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR
PURPOSE WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm makes no representation
with respect to, and has undertaken no analysis to identify or understand the scope and content of, patents,
copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY,
ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use,
duplication or disclosure of this document complies fully with any relevant export laws and regulations to assure
that this document or any portion thereof is not exported, directly or indirectly, in violation of such export laws.
Use of the word “partner” in reference to Arm’s customers is not intended to create or refer to any partnership
relationship with any other company. Arm may make changes to this document at any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any click through or signed
written agreement covering this document with Arm, then the click through or signed written agreement prevails
over and supersedes the conflicting provisions of these terms. This document may be translated into other
languages for convenience, and you agree that if there is any conflict between the English version of this
document and any translation, the terms of the English version of the Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited
(or its subsidiaries) in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this
document may be the trademarks of their respective owners. Please follow Arm’s trademark usage guidelines at
http://www.arm.com/company/policies/trademarks.

Copyright © 2014, 2016, 2018 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

LES-PRE-20349

http://www.arm.com/company/policies/trademarks

Table of Contents

Page 4 of 35 Copyright © 2014, 2016,2018 Arm Limited or its affiliates. All rights reserved. DEN0044C 1.1

1 ABOUT THIS DOCUMENT 6
1.1 Introduction 6
1.2 References 6

1.2.1 Cross References 8
1.3 Terms and abbreviations 8
1.4 Feedback 9

2 SCOPE 10

3 UEFI 11
3.1 UEFI Version 11
3.2 UEFI Compliance 11
3.3 UEFI System Environment and Configuration 11

3.3.1 AArch64 Exception Levels 11
3.3.2 Additional environment configuration 11
3.3.3 System Volume Format 11
3.3.4 UEFI Image Format 11
3.3.5 GOP Protocol 12
3.3.6 Address Translation Support 12

3.4 UEFI Boot Services 12
3.4.1 Memory Map 12
3.4.2 UEFI Loaded Images 12
3.4.3 Configuration Tables 12

3.5 UEFI Runtime Services 13
3.5.1 Runtime Exception Level 13
3.5.2 Runtime Memory Map 13
3.5.3 Real-time Clock 13
3.5.4 UEFI Reset and Shutdown 13
3.5.5 Set Variable 13

3.6 Secure and Trusted Boot 14
3.6.1 Secure Boot 14
3.6.2 TCG Trusted Boot 14
3.6.3 Relationships 14

3.7 Secure Firmware Update 15
3.7.1 Host-initiated Firmware Update 15
3.7.2 BMC-initiated Firmware Update 15

3.8 Platform Firmware Resiliency 15

4 ACPI REQUIREMENTS 16
4.1 ACPI Provided Data Structures 16
4.2 ACPI Tables 16

4.2.1 Mandatory ACPI Tables 16
4.2.2 Recommended ACPI Tables 18
4.2.3 Optional ACPI Tables 18

4.3 ACPI Definition Blocks 18
4.4 ACPI Methods and Objects 18

4.4.1 Global Methods and Objects 18
4.4.2 Device Methods and Objects 18
4.4.3 GPIO Controllers 19
4.4.4 Generic Event Devices 19
4.4.5 Address Translation Support 20

4.5 Hardware Requirements Imposed on the Platform by ACPI 20
4.5.1 Platform Communication Channel (PCC) 20
4.5.2 Time and Alarm Device 20

Table of Contents

Page 5 of 35 Copyright © 2014, 2016,2018 Arm Limited or its affiliates. All rights reserved. DEN0044C 1.1

5 SMBIOS 21
5.1 SMBIOS Base Requirements 21

5.1.1 SMBIOS requirements on UEFI 21
5.2 SMBIOS Structures 21

5.2.1 Type00: BIOS Information (REQUIRED) 21
5.2.2 Type01: System Information (REQUIRED) 21
5.2.3 Type02: Baseboard (or Module) Information (RECOMMENDED) 21
5.2.4 Type03: System Enclosure or Chassis (REQUIRED) 22
5.2.5 Type04: Processor Information (REQUIRED) 22
5.2.6 Type07: Cache Information (REQUIRED) 22
5.2.7 Type08: Port Connector Information (RECOMMENDED for platforms with physical ports) 23
5.2.8 Type09: System Slots (REQUIRED for platforms with expansion slots) 23
5.2.9 Type11: OEM Strings (RECOMMENDED) 23
5.2.10 Type13: BIOS Language Information (RECOMMENDED) 23
5.2.11 Type15: System Event Log (RECOMMENDED) 23
5.2.12 Type16: Physical Memory Array (REQUIRED) 23
5.2.13 Type17: Memory Device (REQUIRED) 23
5.2.14 Type19: Memory Array Mapped Address (REQUIRED) 24
5.2.15 Type32: System Boot Information (REQUIRED) 24
5.2.16 Type38: IPMI Device Information (REQUIRED for platforms with IPMIv1.0 BMC Host

Interface) 24
5.2.17 Type41: Onboard Devices Extended Information (RECOMMENDED) 24
5.2.18 Type42: Redfish Host Interface (REQUIRED for platforms supporting Redfish Host

Interface[8]) 24

6 SECONDARY CORE BOOT 25

APPENDIX A REQUIRED UEFI BOOT SERVICES 26

APPENDIX B REQUIRED UEFI RUNTIME SERVICES 27

APPENDIX C REQUIRED UEFI PROTOCOLS 28

APPENDIX D OPTIONAL UEFI PROTOCOLS 30

APPENDIX E RECOMMENDED ACPI TABLES 32

APPENDIX F RECOMMENDED ACPI METHODS 34

Server Base Boot Requirements

Page 6 of 35 Copyright © 2014, 2016, 2018 Arm Limited. All rights reserved. DEN0044C 1.1

1 ABOUT THIS DOCUMENT

1.1 Introduction
This Server Base Boot Requirements (SBBR) specification is intended for SBSA[2]-compliant 64-bit Armv8 servers.
It defines the base firmware requirements for out-of-box support of any Arm SBSA-compatible Operating System or
hypervisor. The requirements in this specification are intended to be minimal yet complete for booting a multi-core
Armv8 server platform, while leaving plenty of room for OEM or ODM innovations and design details.

This specification is intended to be OS-neutral. It leverages the prevalent industry standard UEFI and ACPI firmware
specifications.

1.2 References
This document refers to the following documents:

Server Base Boot Requirements

Page 7 of 35 Copyright © 2014, 2016, 2018 Arm Limited. All rights reserved. DEN0044C 1.1

Reference Doc No Authors Title

[1] Arm DDI 0487 Arm Arm® Architecture Reference Manual, Armv8, for Armv8-
A architecture profile

[2] Arm DEN 0029 Arm Server Based System Architecture SBSA
Version 2.3

[3] ACPI 6.2 UEFI.org Advanced Configuration and Power Interface
Specification.
Revision 6.2

[4] UEFI Specification 2.7 UEFI.org Unified Extensible Firmware Interface Specification.
Version 2.7

[5] Arm DEN 022 Arm Power State Coordination Interface (PSCI)

Version 1.0

[6] SMBIOS Version 3.1.1 DMTF System Management BIOS (SMBIOS) Reference
Specification

[7] Arm DEN 0054 Arm Software Delegated Exception Interface (SDEI)

[8] Redfish Host Interface
Specification Version
1.0.0a

DMTF Redfish Host Interface Specification Version 1.0.0a

[9] Arm DEN 0006 Arm Arm TBBR Specification

[10] TCG PC Firmware Profile
v2.0

TCG TCG PC Client Platform Firmware Profile Specification
Family 2.0

[11] TCG ACPI TCG TCG ACPI Specification for TPM Family 1.2 and 2.0

[12] TCG EFI TCG TCG EFI Protocol Specification, Family 2.0

[13] TCG PPI TCG TCG PC Client Platform Physical Presence Interface
Specification Family 1.2 and 2.0

[14] TCG PTP TCG TCG PC Client Platform TPM Profile (PTP) Specification
Family 2.0

[15] TCG RAM TCG TCG Platform Reset Attack Mitigation Specification
Version 1.00

[16] NIST800-147B NIST BIOS Protection Guidelines for Servers

Server Base Boot Requirements

Page 8 of 35 Copyright © 2014, 2016, 2018 Arm Limited. All rights reserved. DEN0044C 1.1

[17] NIST800-193 NIST Platform Firmware Resiliency Guidelines

[18] NIST800-155 NIST BIOS Integrity Measurement Guidelines

[19] PCI FW PCI SIG PCI Firmware Specification Revision 3.2

1.2.1 Cross References
This document cross-references sources that are listed in the References section by using the section sign §.

Examples:

 ACPI § 5.6.5 - Reference to the ACPI specification [3] section 5.6.6

UEFI § 6.1 - Reference to the UEFI specification [4] section 6.1

1.3 Terms and abbreviations
This document uses the following terms and abbreviations.

Term Meaning

A64 The 64-bit Arm instruction set used in AArch64 state. All A64 instructions are 32
bits.

AArch64 state The Arm 64-bit Execution state that uses 64-bit general purpose registers, and a 64-
bit program counter (PC), Stack Pointer (SP), and exception link registers (ELR).
AArch64 Execution state provides a single instruction set, A64.

ACPI Advanced Configuration and Power Interface.

EFI Loaded Image An executable image to be run under the UEFI environment, and which uses boot
time services.

EL0 The lowest Exception level. The Exception level that is used to execute user
applications, in Non-secure state.

EL1 Privileged Exception level. The Exception level that is used to execute Operating
Systems, in Non-secure state.

EL2 Hypervisor Exception level. The Exception level that is used to execute hypervisor
code. EL2 is always in Non-secure state.

EL3 Secure Monitor Exception level. The Exception level that is used to execute Secure
Monitor code, which handles the transitions between Non-secure and Secure states.
EL3 is always in Secure state.

OEM Original Equipment Manufacturer. In this document, the final device manufacturer.

SiP Silicon Partner. In this document, the silicon manufacturer.

UEFI Unified Extensible Firmware Interface.

UEFI Boot Services Functionality that is provided to UEFI Loaded Images during the UEFI boot process.

UEFI Runtime Services Functionality that is provided to an Operating System after the ExitBootServices()
call.

Server Base Boot Requirements

Page 9 of 35 Copyright © 2014, 2016, 2018 Arm Limited. All rights reserved. DEN0044C 1.1

1.4 Feedback
Arm welcomes feedback on its documentation.

If you have comments on the content of this manual, send an e-mail to errata@arm.com. Give:

• The title Server Base Boot Requirements.

• The document ID and version DEN0044C 1.1.

• The page numbers to which your comments apply.

• A concise explanation of your comments.

Arm also welcomes general suggestions for additions and improvements.

Server Base Boot Requirements

Page 10 of 35 Copyright © 2014, 2016, 2018 Arm Limited. All rights reserved. DEN0044C 1.1

2 SCOPE
This document defines the Boot and Runtime Services expected by an enterprise platform Operating System or
hypervisor, for an SBSA-compliant Arm AArch64 server which follows the UEFI and ACPI specifications.

The UEFI and ACPI specifications have been chosen to ease the adoption of Arm, by aligning the AArch64 server
ecosystem to the existing enterprise server market. Many other AArch64 systems exist within other market
segments, but their boot and firmware choices are beyond the scope of this document.

This document references the following specification and versions:

UEFI 2.7 Published June 2017, includes the AArch64 bindings.

 ACPI 6.2 Published June 2017, includes the Reduced HW profile.

This specification defines the boot and Runtime Services for a physical system, including services that are
required for virtualization. It does not define a standardized abstract virtual machine view for a Guest Operating
System.

When present with in a system, this document makes additional references to the Power State Coordination
Interface:

 PSCI 1.0 Published January 2013.

Server Base Boot Requirements

Page 11 of 35 Copyright © 2014, 2016, 2018 Arm Limited. All rights reserved. DEN0044C 1.1

3 UEFI

3.1 UEFI Version
Boot and system firmware for 64-bit Arm servers is based on the UEFI specification[4], version 2.7 or later,
incorporating the AArch64 bindings.

3.2 UEFI Compliance
Any UEFI-compliant system must follow the requirements that are laid out in section 2.6 of the UEFI specification.
However, to ensure a common boot architecture for server-class AArch64, systems compliant with this
specification must always provide the UEFI services and protocols that are listed in Appendix A, Appendix B , and
Appendix C of this document.

3.3 UEFI System Environment and Configuration

3.3.1 AArch64 Exception Levels
The resident AArch64 UEFI boot-time environment is specified to “Use the highest 64-bit Non-secure privilege
level available”. This level is either EL1 or EL2, depending on whether or not virtualization is used or supported.

Resident UEFI firmware might target a specific Exception level. In contrast, UEFI Loaded Images, such as third-
party drivers and boot applications, must not contain any built-in assumptions of the exception level to be loaded
at boot time, since they can be loaded into EL1 or EL2.

3.3.1.1 UEFI Boot at EL2
Most systems are expected to boot UEFI at EL2, to allow for the installation of a hypervisor or a virtualiazation-
aware Operating System.

3.3.1.2 UEFI Boot at EL1
Booting of UEFI at EL1 is most likely within a hypervisor hosted Guest Operating System environment, to allow
the subsequent booting of a UEFI-compliant Operating System. In this instance, the UEFI boot-time environment
can be provided as a virtualized service by the hypervisor, and not part of the host firmwarm.

3.3.2 Additional environment configuration
The UEFI environment must operate in accordance with the UEFI specification. The following specific register
settings must be in place before the invocation of the UEFI boot environment:

• The system firmware is not expected to initialize EL2 registers that do not have an architectural reset
value, except in cases where firmware itself is running at EL2 and needs to do so.

Note: This addition is approved for inclusion into UEFI Specification 2.7 Errata B Section 2.3.6.

3.3.3 System Volume Format
The system firmware must support GPT Partitioning.

3.3.4 UEFI Image Format
UEFI allows the extension of platform firmware by loading UEFI driver and UEFI application images [UEFI § 2]

3.3.4.1 UEFI Drivers

Server Base Boot Requirements

Page 12 of 35 Copyright © 2014, 2016, 2018 Arm Limited. All rights reserved. DEN0044C 1.1

If a platform supports the inclusion or addition of any device that provides a container for one or more UEFI drivers
[UEFI § 2.1.4] required for the initialization of that device, then at least one of the UEFI drivers must be in the A64
binary format to be used for the systems complying to this specification.

3.3.4.2 UEFI Applications
A UEFI application [UEFI § 2.1.2] must be in the A64 binary format to be used for the systems complying to this
specification.

3.3.5 GOP Protocol
For systems with graphics video hardware, EFI_GRAPHICS_OUTPUT_PROTOCOL is recommended to be
implemented with the frame buffer of the graphics adapters directly accessible (e.g.
EFI_GRAPHICS_PIXEL_FORMAT is not PixelBltOnly). The GOP FrameBufferBase must be reported as a CPU
physical address, not as a bus address (such as a PCI(e) bus address).

3.3.6 Address Translation Support
If a platform includes PCI bus support, then the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL and the
EFI_PCI_IO_PROTOCOL must be implemented. The implementation of the
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL must provide the correct Address Translation Offset field to translate
between the host and bus addresses. EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_CONFIGURATION must report
resources produced by the PCI(e) root bridge, not resources consumed by its register maps. In the cases where
there are unpopulated PCIe slots behind the root bridge,
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_CONFIGURATION must report valid resources assigned (e.g., for hot
plug), or report no resources assigned.

3.4 UEFI Boot Services

3.4.1 Memory Map
The UEFI environment must provide a system memory map, which must include all appropriate devices and
memories that are required for booting and system configuration.

All RAM defined by the UEFI memory map must be identity-mapped, which means that virtual addresses must
have equal physical addresses.

The default RAM allocated attribute must be EFI_MEMORY_WB.

3.4.2 UEFI Loaded Images
UEFI loaded images for AArch64 must be in 64-bit PE/COFF format and must contain only A64 code.

3.4.3 Configuration Tables
A UEFI system that complies with this specification must provide the following tables via the EFI Configuration
Table:

• EFI_ACPI_20_TABLE_GUID

o The ACPI tables must be at version ACPI 6.2 or later with a HW-Reduced ACPI model.
See Section 4.

• SMBIOS3_TABLE_GUID

o This table defines the 64-bit entry point for SMBIOS table.
o The SMBIOS tables must conform to version 3.1.1 or later of the SMBIOS Specification.

See Section 5.

Server Base Boot Requirements

Page 13 of 35 Copyright © 2014, 2016, 2018 Arm Limited. All rights reserved. DEN0044C 1.1

3.5 UEFI Runtime Services
UEFI Runtime Services exist after ExitBootServices() is called and are designed to provide a limited set of
persistent services to the platform Operating System or hypervisor.

The Runtime Services that are listed in Appendix B must be provided.

3.5.1 Runtime Exception Level
UEFI enables runtime services to be supported at either EL1 or EL2, with appropriate virtual address mappings.
When called, subsequent runtime service calls must be from the same Exception level.

3.5.2 Runtime Memory Map
Before calling ExitBootServices(), the final call to GetMemoryMap() returns a description of the entire UEFI
memory map which includes the persistent Runtime Services mappings.

After the call to ExitBootServices(), the Runtime Services page mappings can be relocated in virtual address
space by calling SetVirtualAddressMap(). This call allows the Runtime Services to assign virtual addresses that
are compatible with the incoming Operating System memory map.

A UEFI runtime environment compliant with this specification must not be written with any assumption of an
identity mapping between virtual and physical memory maps.

UEFI operates with a 4K page size. With Runtime Services, these pages are mapped into the Operating System
address space.

To allow Operating Systems to use 64K page mappings, UEFI Specification constrains all mapped 4K memory
pages to have identical page attributes within the same physical 64K page.

3.5.3 Real-time Clock
The Real-time Clock must be accessible via the UEFI runtime firmware, and the following services must be
provided:

• GetTime().

• SetTime().

It is permissible for SetTime() to return an error on systems where the Real-time Clock cannot be set by this call.

3.5.4 UEFI Reset and Shutdown
The UEFI Runtime service ResetSystem() must implement the following commands, for purposes of power
management and system control:

• EfiResetCold.

• EfiResetShutdown.

o EfiResetShutdown must not reboot the system.

If firmware updates are supported through the Runtime Service of UpdateCapsule(), then ResetSystem() might
need to support the following command:

• EFiWarmReset.

These Runtime Services must be implemented by calling into PSCI.

Note: When Runtime Services and PSCI co-exist, it is anticipated that Operating System calls to reset the system
will go via Runtime Services and not directly to PSCI.

3.5.5 Set Variable
Non-volatile UEFI variables must persist across reset, and emulated variables in RAM are not permitted.

Server Base Boot Requirements

Page 14 of 35 Copyright © 2014, 2016, 2018 Arm Limited. All rights reserved. DEN0044C 1.1

The UEFI Runtime Services must be able to update the variables directly without the aid of the Operating System.

Note: This normally requires dedicated storage for UEFI variables that is not directly accessible from the
Operating System.

3.6 Secure and Trusted Boot

3.6.1 Secure Boot
In this specification, Secure Boot refers to the mechanism for achieving a complete authentication and validation
of all the executed software/firmware images.

If Secure Boot is implemented, the system must provide an implementation of a complete cascading Chain of
Trust, from the initial firmware up to the first normal world firmware (Arm TBBR Specification[9] provides an
example reference indication of such a Chain of Trust. A reference software implementation of the TBBR is
available in the Arm Trusted Firmware code base located at https://github.com/ARM-software/arm-trusted-
firmware). In order to establish an immutable root-of-trust, the initial firmware (i.e. the first instructions executed on
SoC by the boot CPU or micro-controller) must be in an immutable read-only location. UEFI Secure Boot then
continues the verification of the subsequent UEFI images until the launch of the OS loader. During this stage, the
platform must conform to the Secure Boot definitions in the UEFI specification. After this, the OS can continue this
chain of trust forward. All firmware images loaded from external boot media and executed on any processor or
microcontroller on the SoC must be authenticated.

3.6.2 TCG Trusted Boot
TCG defines a Trusted Boot mechanism where integrity measurements of the software/firmware images are
recorded into the Platform Configuration Registers (PCRs) on the TPM for the purpose of attestation. In addition,
any modifiable configuration data stored on the external boot media must be measured.

Note: SBSA/SBBR Specifications support a TPM implementation that is compliant to TPM Library Specification,
Family 2.0.

If TCG Trusted Boot is supported, the platform must provide support for TCG PC Client Platform Firmware Profile
Specification Family 2.0[10], TCG ACPI Specification for TPM Family 1.2 and 2.0[11], TCG EFI Protocol
Specification for TPM Family 2.0[12] and TCG PC Client Platform Physical Presence Interface Specification
Family 1.2 and 2.0[13].

Note: TCG ACPI Specification for TPM defines a TPM Start Method based on vendor-specific Arm Secure
Monitor Call(SMC). The OSes get the SMC function ID shown in Table 9, no additional parameters are involved in
this SMC call. This supports Locality 0 for CRTM/SRTM on Arm systems.

Optionally, the platform can support the TCG PC Client Platform TPM Profile (PTP) Specification Family 2.0[14]
for software interacting with the TPM.

Optionally, the platform may support the TCG Platform Reset Attack Mitigation Specification[15] for clearing
memory upon unexpected resets and reboots.

Note: When the UEFI MemoryOverwriteRequestControl variable, ACPI _DSM method and PSCI memory
protection API co-exist, it is anticipated that Operating System calls to mitigate the reset attack will go via the
UEFI/ACPI interfaces and not directly to PSCI.

3.6.3 Relationships
Secure Boot and TCG Trusted Boot are independent of each other, and may be adopted individually. They are,
however, complementary, and can opportunistically leverage each other when present in combination - e.g. UEFI
Secure Boot secure variables can be stored on a TPM.

https://github.com/ARM-software/arm-trusted-firmware
https://github.com/ARM-software/arm-trusted-firmware

Server Base Boot Requirements

Page 15 of 35 Copyright © 2014, 2016, 2018 Arm Limited. All rights reserved. DEN0044C 1.1

3.7 Secure Firmware Update
In this specification, Secure Firmware Update includes the update of pre-UEFI firmware (e.g., Arm Trusted
Firmware or equivalent), system firmware (e.g., UEFI), and device firmware.

TheTBBR Specification provides its Firmware Update definition in terms of Trusted and Non-trusted firmware
responsibilities. Arm Trusted Firmware provides a reference software implementation as described at:

https://github.com/ARM-software/arm-trusted-firmware/blob/master/docs/firmware-update.rst

Secure Firmware Update refers to the mechanism for achieving a complete authentication and validation of the
updated firmware implemented in a Root of Trust for Update (RTU).

If Secure Firmware Update is implemented, the requirements in the NIST 800-147B Specification[16] and the
NIST 800-193 Specification[17] must be met.

Firmware update can be initiated from the host (e.g., OS or UEFI) or the Baseboard Management Controller
(BMC). One or both of these mechanisms should be provided.

3.7.1 Host-initiated Firmware Update
Supporting host-initiated firmware update is optional.

If implemented, the following requirements must be met.

3.7.1.1 UEFI ESRT
System firmware must present a UEFI ESRT configuration table containing one system resource entry describing
the system firmware.

Note: If an implementation performs system and device firmware updates as a single monolithic operation, this
system firmware entry must be used to target the update. In all other cases, device firmware updates are targeted
by an ESRT entry describing device firmware.

3.7.1.2 UEFI Capsule Services
System firmware must implement the UpdateCasule() and QueryCapsuleCapabilities() runtime service that
support the system firmware updates, as well as UEFI-updatable device firmware. UpdateCapsule() is used to
pass the firmware update payload between the OS and the system firmware. It must recognize a firmware update
payload passed to it before initiating the update process. However, peripheral devices may not be present during
boot. These devices can have their firmware updated via OS runtime device drivers.

3.7.1.3 UEFI Firmware Management Protocol
UEFI drivers must provide the Firmware Management Protocol. This enables a standard mechanism for the
device firmware update at the UEFI boot time. When mapped with ESRT and the UpdateCapsule() service, this
provides a standard mechanism for runtime updating the UEFI-updatable device firmware.

3.7.2 BMC-initiated Firmware Update
Supporting BMC-initiated firmware update is optional and system implementation dependent.

If implemented, the requirements in the NIST 800-147B Specification[16] and NIST 800-193 Specification[17]
must be met.

3.8 Platform Firmware Resiliency
To support resiliency of platforms against potentially destructive attacks, three principles are followed: Protection,
Detection and Recovery. If implemented, the requirements in the NIST 800-193 Specification[17] must be met.

https://github.com/ARM-software/arm-trusted-firmware

Server Base Boot Requirements

Page 16 of 35 Copyright © 2014, 2016, 2018 Arm Limited. All rights reserved. DEN0044C 1.1

4 ACPI REQUIREMENTS
SBSA-compliant servers use the Advanced Configuration and Power Interface (ACPI) to describe the hardware
resources that are installed, and to handle aspects of runtime system configuration, event notification, and power
management.

The Operating System must be able to use ACPI to configure the platform hardware and provide basic operations.
The ACPI tables are passed, via UEFI, into the Operating System to drive the OSPM (Operating System-directed
Power Management).

This section defines mandatory and optional ACPI features, and a few excluded features.

4.1 ACPI Provided Data Structures
All platforms compliant with this specification must:

• Conform to the ACPI specification[3], version 6.2 or later.

o Legacy tables and methods are not supported.

• Implement the HW-Reduced ACPI model. See ACPI § 3.11.1 and 4.1.

• Not support legacy ACPI Fixed Hardware interfaces.

• Provide either Interrupt-signaled Events (see ACPI § 5.6.9) or GPIO-signaled Events (see ACPI § 5.6.5)
for the conveyance of runtime event notifications, from the system firmware to the Operating System
Power Management (OSPM).

4.2 ACPI Tables
ACPI tables are essentially data structures. The OSPM of the Operating System receives a pointer to the Root
System Description Pointer (RSDP) from the boot loader. The OSPM then uses the information in the RSDP to
determine the addresses of all other ACPI tables. The ACPI tables might be stored in ROM or flash memory as
decided by the platform designers.

All platforms compliant with this specification:

• Must ensure that the structure of all tables is consistent with the ACPI 6.2 or later specification.

o Legacy tables are not supported.

• Must ensure that the pointer to the RSDP is passed via UEFI to the OSPM as described by UEFI.

• Must use 64-bit addresses within all address fields in ACPI tables.

o This restriction ensures a long-term future for the ACPI tables. Versions before ACPI 5.0 allowed
32-bit address fields.

4.2.1 Mandatory ACPI Tables
The following tables are mandatory for all compliant systems.

4.2.1.1 RSDP
• Root System Description Pointer (RSDP), ACPI § 5.2.5.

o Within the RSDP, the RsdtAddress field must be null (zero) and the XsdtAddresss MUST be a
valid, non-null, 64-bit value.

4.2.1.2 XSDT
• Extended System Description Table (XSDT), ACPI § 5.2.8.

Server Base Boot Requirements

Page 17 of 35 Copyright © 2014, 2016, 2018 Arm Limited. All rights reserved. DEN0044C 1.1

o The RSDP must contain a pointer to this table.

o This table, in turn, contains pointers to all other ACPI tables that are to be used by the OSPM.

4.2.1.3 FADT
• Fixed ACPI Description Table (FADT), ACPI § 5.2.9

o The ACPI signature for this table is actually FACP. The name FADT is used for historical reasons.

o This table must have the HW_REDUCED_ACPI flag set to comply with the HW-Reduced ACPI
model. Many other fields must be set to null when this flag is set.

o It is recommended that one of the server profiles (ACPI § 5.2.9.1) is selected.

o The ARM_BOOT_ARCH flags describe the presence of PSCI. See ACPI § 5.2.9.4.

4.2.1.4 DSDT and SSDT
• Differentiated System Description Table (DSDT), ACPI § 5.2.11.1.

o This table provides the essential configuration information that is needed to boot the platform.

• Secondary System Description Table (SSDT), ACPI § 5.2.11.2.

o This table is optional. One or more of this table can be used to provide additional definition blocks
if necessary.

4.2.1.5 MADT
• Multiple APIC Description Table (MADT), ACPI § 5.2.12.

o This table describes the GIC interrupt controllers, their version, and their configuration.

o For systems without PSCI, this table provides the Parked Address for secondary CPU
initialization.

4.2.1.6 GTDT
• Generic Timer Descriptor Table (GTDT), ACPI § 5.2.24.

o This table describes the Arm Generic Timer block and the SBSA watchdog.

4.2.1.7 DBG2
• Debug Port Table 2 (DBG2). See

http://uefi.org/acpi

o This table provides a standard debug port.

o Note: this table can be used to describe the Arm SBSA Generic UART.

4.2.1.8 SPCR
• Serial Port Console Redirection (SPCR). See

http://uefi.org/acpi

o This table provides the essential configuration information that is needed for headless operations,
such as a kernel shell or console.

o This table defines a Serial Port type, location, and interrupts.

o Note: this table can be used to describe the Arm SBSA Generic UART.

• This specification requires revision 2 or above of the SPCR table; revisions before 2 are not supported.

• The SPCR must be populated with correct ACPI GSIV interrupt routing information for the UART device.

• The SPCR console device must be included in the DSDT.

Server Base Boot Requirements

Page 18 of 35 Copyright © 2014, 2016, 2018 Arm Limited. All rights reserved. DEN0044C 1.1

4.2.1.9 MCFG
• PCI Memory-mapped Configuration Space (MCFG). PCI FW[19] § 4.1.2

o This table described the PCIe ECAM base address

o It is required if PCIe is supported.

4.2.2 Recommended ACPI Tables
ACPI tables that are recommended are listed in Appendix E .

Not every platform that is compliant with this specification provides all of these tables, because many tables
reference optional platform features.

Examples:

• A platform does not have to implement NUMA for memory.
If it does, it must provide the SRAT and SLIT that describe the NUMA topology to ACPI. In addition,
HMAT can also be used to describe the heterogeneous memory attributes.

4.2.3 Optional ACPI Tables
All other tables that are defined in the ACPI specification can be used as needed for AArch64 platforms, only if
they comply with syntax and semantics of the specification.

4.3 ACPI Definition Blocks
Within the DSDT or SSDT tables that are used to describe the platform, devices are defined by ACPI definition
blocks (see ACPI § 5.2.11). Each of these definition blocks describes one or more devices that cannot be
enumerated by the OSPM at boot time without additional information. For example, processors must be described
by definition blocks, whereas PCI devices are enumerated by a defined protocol.

4.4 ACPI Methods and Objects
A DSDT or SSDT definition block contains definitions of objects and methods which can be invoked. These
definitions can provide global information, but most of them provide information that is specific to a single device.
Objects and methods can also be predefined, that is, they are defined either by the ACPI specification or as
needed by a platform designer.

All objects and methods must conform to the definitions in ACPI version 6.2 or later, legacy definitions are not
supported.

4.4.1 Global Methods and Objects
Platforms must define processors as devices under the _SB (System Bus) namespace. See ACPI § 5.3.1

Platforms must not define processors using the global _PR (Processors) namespace. See ACPI § 5.3.1

Platforms compliant with this specification can provide the following predefined global methods:

• _ SST: System Status Indicator. This method reports on the current overall state of the system status
indicator, if and only if a platform provides a user-visible status such as an LED.

o See ACPI § 9.2.1

4.4.2 Device Methods and Objects
For each device definition in the platform DSDT or SSDT tables, platforms must provide the following predefined
methods or objects in accordance with their definitions in version 6.0 or later of the ACPI specification:

Server Base Boot Requirements

Page 19 of 35 Copyright © 2014, 2016, 2018 Arm Limited. All rights reserved. DEN0044C 1.1

• _ADR: Address on the parent bus of the device. Either this object or the _HID must be provided. This
object is essential for PCI, for example.

o See ACPI § 6.1.1

• _CCA: Cache Coherency Attribute. This object provides information about whether a device has to
manage cache coherency and about hardware support. It is mandatory for all devices that are not cache-
coherent, and recommended for all devices. This object is only relevant for devices that can access CPU-
visible memory, such as devices that are DMA capable.

o See ACPI § 6.2.17

• _CRS: Current Resource Settings. This method provides essential information to describe resources,
such as registers and their locations that are provided by the device.

o See ACPI § 6.2.2

• _HID: Hardware ID. This object provides the Plug and Play Identifier or the ACPI ID for the device. Either
this object or the _ADR must be provided.

o See ACPI § 6.1.5.

• _STA: Status. This method identifies whether the device is on, off, or removed.

o See ACPI § 6.3.7 and 7.2.4.

• _UID: Unique persistent ID. This object provides a unique value that is persistent across boots, and can
uniquely identify the device with either a common _HID or _CID. The object is used, for example, to
identify a PCI root bridge, if there are multiple PCI root bridges in the system.

o See ACPI § 6.1.12.

Note: A _HID object must be used to describe any device that is enumerated by OSPM. OSPM only
enumerates a device when no bus enumerator can detect the ID. For example, devices on an ISA bus are
enumerated by OSPM. Use the _ADR object to describe devices that are enumerated by bus enumerators
other than OSPM.

4.4.3 GPIO Controllers
The HW-Reduced ACPI model has specific requirements for GPIO controllers and devices. Platforms supporting
GPIO-signaled events must provide the following methods:

• _AEI: ACPI Event Interrupts. This object defines which GPIO interrupts are to be handled as ACPI events.

o See ACPI § 5.6.5.2.

• _EVT: Event method for GPIO-signaled interrupts. For event numbers less than 255, the _Exx or _Lxx
methods can be used instead.

o See ACPI § 5.6.5.3 and 5.6.4.1.

4.4.4 Generic Event Devices
The HW-Reduced ACPI model has specific requirements for Generic Event Devices. Platforms supporting
interrupt-signaled events must provide the Generic Event Devices with the following methods:

• _CRS: Current Resource Setting. This object designates those interrupts that shall be handled by OSPM
as ACPI events.

o See ACPI § 5.6.9.2

• _EVT: Event method for interrupt-signaled interrupts.

o See ACPI § 5.6.9.3.

Server Base Boot Requirements

Page 20 of 35 Copyright © 2014, 2016, 2018 Arm Limited. All rights reserved. DEN0044C 1.1

4.4.5 Address Translation Support
This specification recommends that PCIe-compliant devices are used, eliminating the need to support legacy IO
port space. However, if the platform supports legacy IO port space, it must report the host (CPU) to PCI I/O bus
address space translations using resource descriptors of type DWordIO, QWordIO or ExtendedIO.
TranslationType must be set to TypeStatic (due to existing OS behaviour).

4.5 Hardware Requirements Imposed on the Platform by ACPI
The term HW-Reduced does not imply anything about functionality. HW-Reduced simply means that the hardware
specification is not implemented, see Chapter 4 of the ACPI specification. All functionality is still supported through
equivalent software-defined interfaces.

What is reduced, is the complexity of the OSPM in supporting ACPI. For example, many requirements from
versions earlier than version 5.0 can be ignored. At the same time, this model does impose some requirements
on the hardware that is provided by the platform. In particular, either interrupt-signaled events (ACPI § 5.6.9) or
GPIO-signaled events (ACPI § 5.6.5) must be used to generate interrupts that are functionally equivalent to
General Purpose Events (GPEs), see ACPI § 5.6.4.

Platforms compliant with this specification must provide the following GPIO-Signaled platform events:

• For the ACPI Platform Error Interface (APEI):

o One event for non-fatal error signaling (ACPI § 18.3.2.7.2).

o Software Delegated Exception(SDE)[7] or one NMI-equivalent signal for use in fatal errors.

o See ACPI § 18.

• At least one wake signal, which is routed via a platform event. Note: for systems that do not support Sx
states except S5 soft off, this can be just the power button.

4.5.1 Platform Communication Channel (PCC)
This specification highly recommends that the Platform Communications Channel be used. See ACPI § 14.

Note: An interrupt must be defined specifically for the doorbell.

This specification recommends that the Collaborative Processor Performance Control (CPPC) be used.

4.5.2 Time and Alarm Device
If the ACPI Time and Alarm Device is implemented (see ACPI § 9.18), it must operate on the same real-time clock
that is exposed by the UEFI Runtime Services.

Server Base Boot Requirements

Page 21 of 35 Copyright © 2014, 2016, 2018 Arm Limited. All rights reserved. DEN0044C 1.1

5 SMBIOS
The System Management BIOS (SMBIOS) published by the DMTF is an important firmware component for
servers. SMBIOS provides basic hardware and firmware configuration information through table-driven data
structures. Although it is not required for Operating System booting or core kernel functions, SMBIOS is widely
used for platform management, scripting, and deployment applications.

5.1 SMBIOS Base Requirements
The SMBIOS table is required to conform to the SMBIOS specification[6], version 3.1.1 or later. Legacy SMBIOS
tables and formats are not supported.

5.1.1 SMBIOS requirements on UEFI
• UEFI uses SMBIOS3_TABLE_GUID to identify the SMBIOS table.

• UEFI uses the EfiRuntimeServicesData type for the system memory region containing the SMBIOS table.

• UEFI must not the use the EfiBootServicesData type for the SMBIOS data region, as the region could be
reclaimed by a UEFI-compliant Operating System after UEFI ExitBootServices() is called.

5.2 SMBIOS Structures
SMBIOS implementations vary by server design and form-factor. For an SBBR-compliant server, the following
SMBIOS structures are required or recommended. For required data within these structures, please refer to Table
4 and Annex A of the SMBIOS Specification.

5.2.1 Type00: BIOS Information (REQUIRED)
• Vendor
• BIOS Version
• BIOS Release Date
• BIOS ROM Size
• System BIOS Major Release
• System BIOS Minor Release
• Embedded Controller Firmware Major Release
• Embedded Controller Firmware Minor Release

5.2.2 Type01: System Information (REQUIRED)
• Manufacturer
• Product Name
• Version
• Serial Number
• UUID
• SKU Number

5.2.3 Type02: Baseboard (or Module) Information (RECOMMENDED)
• Manufacturer
• Product
• Version
• Serial Number

Server Base Boot Requirements

Page 22 of 35 Copyright © 2014, 2016, 2018 Arm Limited. All rights reserved. DEN0044C 1.1

• Asset Tag
• Location in Chassis
• Board Type

5.2.4 Type03: System Enclosure or Chassis (REQUIRED)
• Manufacturer
• Type
• Version
• Serial Number
• Asset Tag Number
• Height
• SKU Number

5.2.5 Type04: Processor Information (REQUIRED)
• Socket Designation
• Processor Type
• Processor Family

o This field must provide a human readable description of the processor product line
• Processor Manufacturer

o This field must provide a human readable description of the processor manufacturer
• Processor ID
• Processor Version

o This field must provide a human readable description of the processor part number
• Max Speed
• Status
• Core Count
• Core Enabled
• Thread Count
• Processor Family 2
• Core Count 2
• Core Enabled 2
• Thread Count 2

Exactly one Type4 structure must be provided for every socket in the system, for example, N Type4 structures, in
a one-to-one mapping with each physical socket, out of a socket count of N.

• A physical socket is defined as a discrete SoC or equivalent physical chip package implementing a chip-
to-chip extension of cache coherency and typically participating within the same Inner Shareable
domain, as defined in[1].

5.2.6 Type07: Cache Information (REQUIRED)
• Socket Designation
• Cache Configuration
• Maximum Cache Size
• Installed Size
• Cache Speed

Server Base Boot Requirements

Page 23 of 35 Copyright © 2014, 2016, 2018 Arm Limited. All rights reserved. DEN0044C 1.1

5.2.7 Type08: Port Connector Information (RECOMMENDED for platforms with physical
ports)

• Internal Reference Designator
• Internal Connector Type
• External Reference Designator
• External Connector Type
• Port Type

5.2.8 Type09: System Slots (REQUIRED for platforms with expansion slots)
• Slot Designation
• Slot Type
• Slot Data Bus Width
• Current Usage
• Slot ID
• Slot Characteristics 1
• Slot Characteristics 2
• Segment Group Number
• Bus Number
• Device Function Number

5.2.9 Type11: OEM Strings (RECOMMENDED)
• Count

5.2.10 Type13: BIOS Language Information (RECOMMENDED)
• Installable Languages
• Flags
• Current Language

5.2.11 Type15: System Event Log (RECOMMENDED)

5.2.12 Type16: Physical Memory Array (REQUIRED)
• Location
• Use
• Maximum Capacity
• Number of Memory Devices
• Extended Maximum Capacity

5.2.13 Type17: Memory Device (REQUIRED)
• Total Width
• Data Width
• Size
• Device Locator
• Memory Type
• Type Detail
• Speed

Server Base Boot Requirements

Page 24 of 35 Copyright © 2014, 2016, 2018 Arm Limited. All rights reserved. DEN0044C 1.1

• Manufacturer
• Serial Number
• Asset Tag
• Part Number
• Extended Size

5.2.14 Type19: Memory Array Mapped Address (REQUIRED)
• Starting Address
• Ending Address
• Extended Starting Address
• Extended Ending Address

5.2.15 Type32: System Boot Information (REQUIRED)
• Boot Status

5.2.16 Type38: IPMI Device Information (REQUIRED for platforms with IPMIv1.0 BMC
Host Interface)

• IPMI Specification Revision
• I2C Slave Address
• Base Address
• Base Address Modifier
• Interrupt Info
• Interrupt Number

Note: The ACPI SPMI Table replaces this Type in IPMI v1.5 and v2.0

5.2.17 Type41: Onboard Devices Extended Information (RECOMMENDED)
• Reference Designation
• Device Type
• Device Type Instance
• Segment Group Number
• Bus Number
• Device Function Number

5.2.18 Type42: Redfish Host Interface (REQUIRED for platforms supporting Redfish Host
Interface[8])

• Interface Type
• Interface Specific Data
• Protocol Records

Server Base Boot Requirements

Page 25 of 35 Copyright © 2014, 2016, 2018 Arm Limited. All rights reserved. DEN0044C 1.1

6 SECONDARY CORE BOOT
UEFI is defined as a uniprocessor specification that only uses a single CPU core for booting.

Platforms providing EL3 must implement the Power State Coordination Interface (PSCI) [5]. This interface will be
the main method for booting secondary cores, implementing CPU idling, and providing reset and shutdown
runtime services. ACPI tables need to reflect this:

• FADT should indicate the presence of PSCI.

• MADT GICC structures must provide valid MPIDR entries.

Where CPU idling low power states are provided, the DSDT must provide _LPI objects.

All secondary cores remain powered down during boot. After boot, OSPM can call CPU_ON() into the PSCI
firmware to power up a chosen core. The PSCI firmware powers up, initializes the core, and starts execution at
the provided address.

Server Base Boot Requirements

Page 26 of 35 Copyright © 2014, 2016, 2018 Arm Limited. All rights reserved. DEN0044C 1.1

APPENDIX A REQUIRED UEFI BOOT SERVICES

Service UEFI §

EFI_RAISE_TPL 7.1

EFI_RESTORE_TPL 7.1

EFI_ALLOCATE_PAGES 7.2

EFI_FREE_PAGES 7.2

EFI_GET_MEMORY_MAP 7.2

EFI_ALLOCATE_POOL 7.2

EFI_FREE_POOL 7.2

EFI_CREATE_EVENT 7.1

EFI_SET_TIMER 7.1

EFI_WAIT_FOR_EVENT 7.1

EFI_SIGNAL_EVENT 7.1

EFI_CLOSE_EVENT 7.1

EFI_INSTALL_PROTOCOL_INTERFACE 7.3

EFI_REINSTALL_PROTOCOL_INTERFACE 7.3

EFI_UNINSTALL_PROTOCOL_INTERFACE 7.3

EFI_HANDLE_PROTOCOL 7.3

EFI_REGISTER_PROTOCOL_NOTIFY 7.3

EFI_LOCATE_HANDLE 7.3

EFI_LOCATE_PROTOCOL 7.3

EFI_LOCATE_DEVICE_PATH 7.3

EFI_INSTALL_CONFIGURATION_TABLE 7.3

EFI_IMAGE_LOAD 7.4

EFI_IMAGE_START 7.4

EFI_EXIT 7.4

EFI_IMAGE_UNLOAD 7.4

EFI_EXIT_BOOT_SERVICES 7.4

EFI_GET_NEXT_MONOTONIC_COUNT 7.5

EFI_STALL 7.5

EFI_SET_WATCHDOG_TIMER 7.5

EFI_CONNECT_CONTROLLER 7.3

EFI_DISCONNECT_CONTROLLER 7.3

EFI_OPEN_PROTOCOL 7.3

EFI_CLOSE_PROTOCOL 7.3

EFI_OPEN_PROTOCOL_INFORMATION 7.3

EFI_PROTOCOLS_PER_HANDLE 7.3

EFI_LOCATE_HANDLE_BUFFER 7.3

EFI_LOCATE_PROTOCOL 7.3

EFI_INSTALL_MULTIPLE_PROTOCOL_INT
ERFACES

7.3

EFI_UNINSTALL_MULTIPLE_PROTOCOL_I
NTERFACES

7.3

EFI_CALCULATE_CRC32 7.5

EFI_COPY_MEM 7.5

EFI_SET_MEM 7.5

EFI_CREATE_EVENT_EX 7.5

Server Base Boot Requirements

Page 27 of 35 Copyright © 2014, 2016, 2018 Arm Limited. All rights reserved. DEN0044C 1.1

APPENDIX B REQUIRED UEFI RUNTIME SERVICES

Service UEFI §

EFI_GET_TIME 8.3

EFI_SET_TIME 8.3

EFI_GET_WAKEUP_TIME 8.3

EFI_SET_WAKEUP_TIME 8.3

EFI_SET_VIRTUAL_ADDRESS_MAP 8.4

EFI_CONVERT_POINTER 8.4

EFI_GET_VARIABLE 8.2

EFI_GET_NEXT_VARIABLE_NAME 8.2

EFI_SET_VARIABLE 8.2

EFI_GET_NEXT_HIGH_MONO_COUNT 8.5

EFI_RESET_SYSTEM 8.5

EFI_UPDATE_CAPSULE 8.5

EFI_QUERY_CAPSULE_CAPABILITIES 8.5

EFI_QUERY_VARIABLE_INFO 8.5

Note: EFI_GET_WAKEUP_TIME and EFI_SET_WAKEUP_TIME must be implemented, but might simply return
EFI_UNSUPPORTED.

Note: EFI_UPDATE_CAPSULE and EFI_QUERY_CAPSULE_CAPABILITIES must be implemented, but might
simply return EFI_UNSUPPORTED.

UEFI Configuration Table Entries

Configuration Table

EFI_ACPI_20_TABLE_GUID

SMBIOS3_TABLE_GUID

Server Base Boot Requirements

Page 28 of 35 Copyright © 2014, 2016, 2018 Arm Limited. All rights reserved. DEN0044C 1.1

APPENDIX C REQUIRED UEFI PROTOCOLS

Core UEFI Protocols

Service UEFI §

EFI_LOADED_IMAGE_PROTOCOL 9.1

EFI_LOADED_IMAGE_DEVICE_PATH_PROTOCOL 9.2

EFI_DECOMPRESS_PROTOCOL 19.5

EFI_DEVICE_PATH_PROTOCOL 10.2

EFI_DEVICE_PATH_UTILITIES_PROTOCOL 10.3

Media I/O Protocols

Service UEFI §

EFI_LOAD_FILE_PROTOCOL 13.1

EFI_LOAD_FILE2_PROTOCOL 13.2

EFI_SIMPLE_FILE_SYSTEM_PROTOCOL 13.4

EFI_FILE_PROTOCOL 13.5

The Load File protocol is used to obtain files from arbitrary devices that are primarily boot options. The Load File 2
protocol is used to obtain files from arbitrary devices that are not boot options.

Console Protocols

Service UEFI §

EFI_SIMPLE_TEXT_INPUT_PROTOCOL 12.2

EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL 12.3

EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL 12.4

Driver Configuration Protocols

Service UEFI §

EFI_HII_DATABASE_PROTOCOL 33.8

EFI_HII_STRING_PROTOCOL 33.3

EFI_HII_CONFIG_ROUTING_PROTOCOL 34.4

EFI_HII_CONFIG_ACCESS_PROTOCOL 34.5

Server Base Boot Requirements

Page 29 of 35 Copyright © 2014, 2016, 2018 Arm Limited. All rights reserved. DEN0044C 1.1

Random Number Generator Protocol

Service UEFI §

EFI_RNG_PROTOCOL 36.5

Server Base Boot Requirements

Page 30 of 35 Copyright © 2014, 2016, 2018 Arm Limited. All rights reserved. DEN0044C 1.1

APPENDIX D OPTIONAL UEFI PROTOCOLS

Basic Networking Support

Service UEFI §

EFI_SIMPLE_NETWORK_PROTOCOL 24.1

EFI_MANAGED_NETWORK_PROTOCOL 25.1

EFI_MANAGED_NETWORK_SERVICE_BINDING_PROTOCOL 25.1

Networking services are optional on platforms that do not support networking.

Network Boot Protocols

Service UEFI §

EFI_PXE_BASE_CODE_PROTOCOL 24.3

EFI_PXE_BASE_CODE_CALLBACK_PROTOCOL 24.4

EFI_BIS_PROTOCOL 24.5

EFI_MTFTP4_PROTOCOL 30.3

EFI_MTFTP6_PROTOCOL 30.4

EFI_BIS_PROTOCOL is optional on machines that do not support Secure Boot.

Ipv4 Network Support

Service UEFI §

EFI_ARP_PROTOCOL 29.1

EFI_ARP_SERVICE_BINDING_PROTOCOL 29.1

EFI_DHCP4_SERVICE_BINDING_PROTOCOL 29.2

EFI_DHCP4_PROTOCOL 29.2

EFI_TCP4_PROTOCOL 28.1.2

EFI_TCP4_SERVICE_BINDING_PROTOCOL 28.1.1

EFI_IP4_SERVICE_BINDING_PROTOCOL 28.3.1

EFI_IP4_CONFIG2_PROTOCOL 28.5

EFI_UDP4_PROTOCOL 30.1.2

EFI_UDP4_SERVICE_BINDING_PROTOCOL 30.1.1

Networking services are optional on platforms that do not support networking.

Server Base Boot Requirements

Page 31 of 35 Copyright © 2014, 2016, 2018 Arm Limited. All rights reserved. DEN0044C 1.1

Ipv6 Networking Support

Service UEFI §

EFI_DHCP6_PROTOCOL 29.3.2

EFI_DHCP6_SERVICE_BINDING_PROTOCOL 29.3.1

EFI_TCP6_PROTOCOL 28.2.2

EFI_TCP6_SERVICE_BINDING_PROTOCOL 28.2.1

EFI_IP6_SERVICE_BINDING_PROTOCOL 28.6.1

EFI_IP6_CONFIG_PROTOCOL 28.7

EFI_UDP6_PROTOCOL 30.2.2

EFI_UDP6_SERVICE_BINDING_PROTOCOL 30.2.1

Networking services are optional on platforms that do not support networking.

VLAN Protocols

Service UEFI §

EFI_VLAN_CONFIG_PROTOCOL 27.1

iSCSI Protocols

Service UEFI §

EFI_ISCSI_INITIATOR_NAME_PROTOCOL 16.2

Support for iSCSI is only required on machines that lack persistent storage, such as a HDD. This configuration is
intended for thin clients and compute-only nodes.

REST Protocol

Service UEFI §

EFI_REST_PROTOCOL 29.7

Support for REST protocol is required on machines that support RESTful communication over HTTP (e.g., Redfish
Host Interface to a BMC).

Server Base Boot Requirements

Page 32 of 35 Copyright © 2014, 2016, 2018 Arm Limited. All rights reserved. DEN0044C 1.1

APPENDIX E RECOMMENDED ACPI TABLES

I/O Topology

ACPI
Signature

Full Name ACPI §

IORT Support for SMMU, ITS, and system topology description 5.2.6

Table to describe SMMU or ITS that is required if such capabilities are supported. Components behind an SMMU
that are not enumerable behind a PCIe root complex must be described as IORT nodes in the IORT table.

Platform Error Interfaces

ACPI
Signature

Full Name ACPI §

BERT Boot Error Record Table 18.3.1

EINJ Error Injection Table 18.6.1

ERST Error Record Serialization Table 18.5

HEST Hardware Error Source Table 18.3.2

SDEI Software Delegated Exception Interface Table http://uefi.org/acpi

Tables that are required to support ACPI Platform Error Interfaces (APEI), which convey error information to the
Operating System.

NUMA

ACPI
Signature

Full Name ACPI §

SLIT System Locality Information Table 5.2.17

SRAT System Resource Affinity Table 5.2.16

HMAT Heterogeneous Memory Attribute Table 5.2.27

Tables to describe topology and resources that are required by NUMA systems.

Platform Communications Channel (PCC)

ACPI
Signature

Full Name ACPI §

PCCT Platform Communications Channel Table 14

Provides the interface to communicate to an on-platform controller.

Processor Properties and Topology

Server Base Boot Requirements

Page 33 of 35 Copyright © 2014, 2016, 2018 Arm Limited. All rights reserved. DEN0044C 1.1

ACPI
Signature

Full Name ACPI §

PPTT Processor Properties and Topology Table 5.2.29

Platform Debug Trigger

ACPI
Signature

Full Name ACPI §

PDTT Platform Debug Trigger Table 5.2.28

NVDIMM Firmware Interface

ACPI
Signature

Full Name ACPI §

NFIT NVDIMM Firmware Interface Table 5.2.25

Table to describe NVDIMM that is required if NVDIMM is supported.

Server Base Boot Requirements

Page 34 of 35 Copyright © 2014, 2016, 2018 Arm Limited. All rights reserved. DEN0044C 1.1

APPENDIX F RECOMMENDED ACPI METHODS

CPU performance control
For CPU performance and control, there are two mutually exclusive methods defined.

Method Full Name ACPI §

_CPC Continuous Performance Control (replaces _PCT and _PSS) 8.4.5.1

Newer _CPC method in conjunction with the PCCT

_PSS Performance Supported States (Superseded by _CPC) 8.4.4.2

Older _PSS method.

CPU and system idle control
 For CPU and system idle management, the following method has been introduced in ACPI6.0.

Method Full Name ACPI §

_LPI Low Power Idle States 8.4.4

NUMA

ACPI
Signature

Full Name ACPI §

_PXM Proximity 6.2.14

_SLI System Locality Information 6.2.15

_HMA Heterogeneous Memory Attributes 6.2.18

IPMI

Method Full Name ACPI §

_IFT IPMIv2: the IPMI Interface Type, if and only if IPMI has been implemented IPMI spec

_SRV IPMIv2: the IPMI revision that is supported by the platform, if and only if IPMI has been
implemented

IPMI spec

Device Configuration and Control

Method Full Name ACPI §

_CLS Class code (for non-PCI devices that are compatible with PCI drivers) 6.1.3

_CID Compatible ID 6.1.2

_DSD Device Specific Data: Provides additional device properties and information. 6.2.5

Server Base Boot Requirements

Page 35 of 35 Copyright © 2014, 2016, 2018 Arm Limited. All rights reserved. DEN0044C 1.1

All compliant _DSD UUIDs and associated definitions must be published by the UEFI
Forum, see http://www.uefi.org/acpi

_DSM Device Specific Method (used to convey info to ACPI that it might not currently have a
mechanism to describe, see https://lkml.org/lkml/2013/8/20/556)

9.14.1

_INI Initialize a device 6.5.1

Resources

Method Full Name ACPI §

_MLS Human readable description in multiple languages. Note: this is preferred over _STR. 6.1.7

_PRS Possible Resource Settings 6.2.11

_SRS Set Resource Settings 6.2.15

_STR Device description (in a single language). Superseded by _MLS. 6.1.9

http://www.uefi.org/acpi
https://lkml.org/lkml/2013/8/20/556

	1 ABOUT THIS DOCUMENT
	1.1 Introduction
	1.2 References
	1.2.1 Cross References

	1.3 Terms and abbreviations
	1.4 Feedback

	2 SCOPE
	3 UEFI
	3.1 UEFI Version
	3.2 UEFI Compliance
	3.3 UEFI System Environment and Configuration
	3.3.1 AArch64 Exception Levels
	3.3.1.1 UEFI Boot at EL2
	3.3.1.2 UEFI Boot at EL1

	3.3.2 Additional environment configuration
	3.3.3 System Volume Format
	3.3.4 UEFI Image Format
	3.3.4.1 UEFI Drivers
	3.3.4.2 UEFI Applications

	3.3.5 GOP Protocol
	3.3.6 Address Translation Support

	3.4 UEFI Boot Services
	3.4.1 Memory Map
	3.4.2 UEFI Loaded Images
	3.4.3 Configuration Tables

	3.5 UEFI Runtime Services
	3.5.1 Runtime Exception Level
	3.5.2 Runtime Memory Map
	3.5.3 Real-time Clock
	3.5.4 UEFI Reset and Shutdown
	3.5.5 Set Variable

	3.6 Secure and Trusted Boot
	3.6.1 Secure Boot
	3.6.2 TCG Trusted Boot
	3.6.3 Relationships

	3.7 Secure Firmware Update
	3.7.1 Host-initiated Firmware Update
	3.7.1.1 UEFI ESRT
	3.7.1.2 UEFI Capsule Services
	3.7.1.3 UEFI Firmware Management Protocol

	3.7.2 BMC-initiated Firmware Update

	3.8 Platform Firmware Resiliency

	4 ACPI REQUIREMENTS
	4.1 ACPI Provided Data Structures
	4.2 ACPI Tables
	4.2.1 Mandatory ACPI Tables
	4.2.1.1 RSDP
	4.2.1.2 XSDT
	4.2.1.3 FADT
	4.2.1.4 DSDT and SSDT
	4.2.1.5 MADT
	4.2.1.6 GTDT
	4.2.1.7 DBG2
	4.2.1.8 SPCR
	4.2.1.9 MCFG

	4.2.2 Recommended ACPI Tables
	4.2.3 Optional ACPI Tables

	4.3 ACPI Definition Blocks
	4.4 ACPI Methods and Objects
	4.4.1 Global Methods and Objects
	4.4.2 Device Methods and Objects
	4.4.3 GPIO Controllers
	4.4.4 Generic Event Devices
	4.4.5 Address Translation Support

	4.5 Hardware Requirements Imposed on the Platform by ACPI
	4.5.1 Platform Communication Channel (PCC)
	4.5.2 Time and Alarm Device

	5 SMBIOS
	5.1 SMBIOS Base Requirements
	5.1.1 SMBIOS requirements on UEFI

	5.2 SMBIOS Structures
	5.2.1 Type00: BIOS Information (REQUIRED)
	5.2.2 Type01: System Information (REQUIRED)
	5.2.3 Type02: Baseboard (or Module) Information (RECOMMENDED)
	5.2.4 Type03: System Enclosure or Chassis (REQUIRED)
	5.2.5 Type04: Processor Information (REQUIRED)
	5.2.6 Type07: Cache Information (REQUIRED)
	5.2.7 Type08: Port Connector Information (RECOMMENDED for platforms with physical ports)
	5.2.8 Type09: System Slots (REQUIRED for platforms with expansion slots)
	5.2.9 Type11: OEM Strings (RECOMMENDED)
	5.2.10 Type13: BIOS Language Information (RECOMMENDED)
	5.2.11 Type15: System Event Log (RECOMMENDED)
	5.2.12 Type16: Physical Memory Array (REQUIRED)
	5.2.13 Type17: Memory Device (REQUIRED)
	5.2.14 Type19: Memory Array Mapped Address (REQUIRED)
	5.2.15 Type32: System Boot Information (REQUIRED)
	5.2.16 Type38: IPMI Device Information (REQUIRED for platforms with IPMIv1.0 BMC Host Interface)
	5.2.17 Type41: Onboard Devices Extended Information (RECOMMENDED)
	5.2.18 Type42: Redfish Host Interface (REQUIRED for platforms supporting Redfish Host Interface[8])

	6 SECONDARY CORE BOOT
	Appendix A REQUIRED UEFI BOOT SERVICES
	Appendix B REQUIRED UEFI RUNTIME SERVICES
	Appendix C REQUIRED UEFI PROTOCOLS
	Appendix D OPTIONAL UEFI PROTOCOLS
	Appendix E RECOMMENDED ACPI TABLES
	Appendix F RECOMMENDED ACPI METHODS

