
 Copyright © 2020 Arm Limited or its affiliates. All rights reserved.

Document number: DEN0044F

Arm® Base Boot Requirements 1.0
Platform Design Document

Arm Base Boot Requirements

Copyright  2020 Arm Limited or its affiliates. All rights reserved.

Arm Base Boot Requirements

Copyright © 2020 Arm Limited or its affiliates. All rights reserved.

Release information
The Change History table lists the changes made to this document.

Table 1-1 Change History

Date Issue Confidentiality Change

6 Oct 2020 F Non-Confidential Arm BBR version 1.0

Arm Base Boot Requirements

Copyright  2020 Arm Limited or its affiliates. All rights reserved.

Arm Non-Confidential Document Licence (“Licence”)

This Licence is a legal agreement between you and Arm Limited (“Arm”) for the use of Arm’s intellectual property (including,
without limitation, any copyright) embodied in the document accompanying this Licence (“Document”). Arm licenses its
intellectual property in the Document to you on condition that you agree to the terms of this Licence. By using or copying the
Document you indicate that you agree to be bound by the terms of this Licence.

“Subsidiary” means any company the majority of whose voting shares is now or hereafter owner or controlled, directly or
indirectly, by you. A company shall be a Subsidiary only for the period during which such control exists.

This Document is NON-CONFIDENTIAL and any use by you and your Subsidiaries (“Licensee”) is subject to the terms of this
Licence between you and Arm.

Subject to the terms and conditions of this Licence, Arm hereby grants to Licensee under the intellectual property in the
Document owned or controlled by Arm, a non-exclusive, non-transferable, non-sub-licensable, royalty-free, worldwide licence
to:

(i) use and copy the Document for the purpose of designing and having designed products that comply with the Document;

(ii) manufacture and have manufactured products which have been created under the licence granted in (i) above; and

(iii) sell, supply and distribute products which have been created under the licence granted in (i) above.

Licensee hereby agrees that the licences granted above shall not extend to any portion or function of a product that is
not itself compliant with part of the Document.

Except as expressly licensed above, Licensee acquires no right, title or interest in any Arm technology or any intellectual property
embodied therein.

THE DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES, EXPRESS,
IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY,
SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE
DOCUMENT. Arm may make changes to the Document at any time and without notice. For the avoidance of doubt, Arm makes
no representation with respect to, and has undertaken no analysis to identify or understand the scope and content of, third party
patents, copyrights, trade secrets, or other rights.

NOTWITHSTANING ANYTHING TO THE CONTRARY CONTAINED IN THIS LICENCE, TO THE FULLEST EXTENT
PETMITTED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES, IN CONTRACT, TORT OR OTHERWISE,
IN CONNECTION WITH THE SUBJECT MATTER OF THIS LICENCE (INCLUDING WITHOUT LIMITATION) (I) LICENSEE’S
USE OF THE DOCUMENT; AND (II) THE IMPLEMENTATION OF THE DOCUMENT IN ANY PRODUCT CREATED BY
LICENSEE UNDER THIS LICENCE). THE EXISTENCE OF MORE THAN ONE CLAIM OR SUIT WILL NOT ENLARGE OR
EXTEND THE LIMIT. LICENSEE RELEASES ARM FROM ALL OBLIGATIONS, LIABILITY, CLAIMS OR DEMANDS IN
EXCESS OF THIS LIMITATION.

This Licence shall remain in force until terminated by Licensee or by Arm. Without prejudice to any of its other rights, if Licensee
is in breach of any of the terms and conditions of this Licence then Arm may terminate this Licence immediately upon giving
written notice to Licensee. Licensee may terminate this Licence at any time. Upon termination of this Licence by Licensee or by
Arm, Licensee shall stop using the Document and destroy all copies of the Document in its possession. Upon termination of this
Licence, all terms shall survive except for the licence grants.

Arm Base Boot Requirements

Copyright  2020 Arm Limited or its affiliates. All rights reserved.

Any breach of this Licence by a Subsidiary shall entitle Arm to terminate this Licence as if you were the party in breach. Any
termination of this Licence shall be effective in respect of all Subsidiaries. Any rights granted to any Subsidiary hereunder shall
automatically terminate upon such Subsidiary ceasing to be a Subsidiary.

The Document consists solely of commercial items. Licensee shall be responsible for ensuring that any use, duplication or
disclosure of the Document complies fully with any relevant export laws and regulations to assure that the Document or any
portion thereof is not exported, directly or indirectly, in violation of such export laws.

This Licence may be translated into other languages for convenience, and Licensee agrees that if there is any conflict between
the English version of this Licence and any translation, the terms of the English version of this Licence shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited (or its
subsidiaries) in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this document may be the
trademarks of their respective owners. No licence, express, implied or otherwise, is granted to Licensee under this Licence, to
use the Arm trade marks in connection with the Document or any products based thereon. Visit Arm’s website at
https://www.arm.com/company/policies/trademarks for more information about Arm’s trademarks.

The validity, construction and performance of this Licence shall be governed by English Law.

Copyright © [2020] Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

Arm document reference: LES-PRE-21585 version 4.0

https://www.arm.com/company/policies/trademarks

Arm Base Boot Requirements

Page 5 of 43 Copyright © 2020 Arm Limited. All rights reserved. DEN0044F 1.0

1 ABOUT THIS DOCUMENT 8
1.1 References 8

1.1.1 Cross References 9
1.2 Terms and abbreviations 9
1.3 Feedback 10

2 BACKGROUND 11

3 INTRODUCTION 12

4 BBR RECIPES 13
4.1 SBBR recipe 13
4.2 ESBBR recipe 13
4.3 EBBR recipe 13
4.4 LBBR recipe 13

5 PSCI/SMCCC REQUIREMENTS 15
5.1 SMCCC Architecture Call requirements 15
5.2 PSCI Call requirements 15

6 SECONDARY CORE BOOT 16

7 UEFI REQUIREMENTS 17
7.1 UEFI version 17
7.2 UEFI compliance 17
7.3 UEFI system environment and configuration 17

7.3.1 AArch64 Exception levels 17
7.3.2 System volume format 17
7.3.3 UEFI image format 17
7.3.4 GOP protocol 18
7.3.5 Address translation support 18

7.4 UEFI boot services 18
7.4.1 Memory map 18
7.4.2 UEFI loaded images 18
7.4.3 Configuration tables 18

7.5 UEFI Runtime Services 19
7.5.1 Runtime Exception level 19
7.5.2 Runtime memory map 19
7.5.3 Real-time clock 19
7.5.4 UEFI reset and shutdown 19
7.5.5 Set variable 20

8 ACPI REQUIREMENTS 21
8.1 ACPI version 21
8.2 ACPI provided data structures 21
8.3 ACPI tables 21

8.3.1 Mandatory ACPI tables 21
8.3.2 Recommended ACPI tables 23
8.3.3 Optional ACPI tables 24

8.4 ACPI definition blocks 24
8.5 ACPI methods and objects 24

8.5.1 Global methods and objects 24

Arm Base Boot Requirements

Page 6 of 43 Copyright © 2020 Arm Limited. All rights reserved. DEN0044F 1.0

8.5.2 Device methods and objects 24
8.5.3 GPIO controllers 25
8.5.4 Generic Event Devices 25
8.5.5 Address translation support 25
8.5.6 Describing Arm components in ACPI 25

8.6 Hardware requirements imposed on the platform by ACPI 26
8.6.1 Processor Performance Control 26
8.6.2 Time and Alarm Device 26

9 SMBIOS REQUIREMENTS 27
9.1 SMBIOS version 27

9.1.1 SMBIOS requirements on UEFI 27
9.2 SMBIOS structures 27

9.2.1 Type00: BIOS Information (required) 27
9.2.2 Type01: System Information (required) 27
9.2.3 Type02: Baseboard (or Module) Information (recommended) 27
9.2.4 Type03: System Enclosure or Chassis (required) 28
9.2.5 Type04: Processor Information (required) 28
9.2.6 Type07: Cache Information (required) 28
9.2.7 Type08: Port Connector Information (recommended for platforms with physical ports) 29
9.2.8 Type09: System Slots (required for platforms with expansion slots) 29
9.2.9 Type11: OEM Strings (recommended) 29
9.2.10 Type13: BIOS Language Information (recommended) 29
9.2.11 Type15: System Event Log (recommended) 29
9.2.12 Type16: Physical Memory Array (required) 29
9.2.13 Type17: Memory Device (required) 29
9.2.14 Type19: Memory Array Mapped Address (required) 30
9.2.15 Type32: System Boot Information (required) 30
9.2.16 Type38: IPMI Device Information (required for platforms with IPMIv1.0 BMC Host Interface)

 30
9.2.17 Type41: Onboard Devices Extended Information (recommended) 30
9.2.18 Type42: Redfish Host Interface (required for platforms supporting Redfish Host

Interface[11]) 30

10 ESBBR EXCEPTIONS 30

11 DT REQUIREMENTS 32
11.1 DT version 32
11.2 DT requirements 32

APPENDIX A REQUIRED UEFI BOOT SERVICES 33

APPENDIX B REQUIRED UEFI RUNTIME SERVICES 34

APPENDIX C REQUIRED UEFI PROTOCOLS 35

APPENDIX D OPTIONAL UEFI PROTOCOLS 37

APPENDIX E RECOMMENDED ACPI TABLES 40

APPENDIX F RECOMMENDED ACPI METHODS 42

Arm Base Boot Requirements

Page 7 of 43 Copyright © 2020 Arm Limited. All rights reserved. DEN0044F 1.0

Arm Base Boot Requirements

Page 8 of 43 Copyright © 2020 Arm Limited. All rights reserved. DEN0044F 1.0

1 About This Document

1.1 References
This document refers to the following documents:

Reference Doc No Authors Title

[1] ACPI 6.3 UEFI.org Advanced Configuration and Power Interface
Specification.
Revision 6.3

[2] Arm DDI 0487 Arm Arm® Architecture Reference Manual, Armv8, for Armv8-
A architecture profile

[3] Arm DEN 0006 Arm Arm® TBBR Specification

[4] Arm DEN 022 Arm Power State Coordination Interface (PSCI)

Version 1.1

[5] Arm DEN 028 Arm SMC Calling Convention (SMCCC)

Version 1.2

[6] Arm DEN 0054 Arm Software Delegated Exception Interface (SDEI)

[7] Arm DEN 056 Arm System Control and Management Interface (SCMI)
Version 2.0

[8] Arm DEN 0085 Arm ACPI for the Armv8 RAS Extensions 1.0

[9] Arm DEN 0093 Arm ACPI for Arm Components Version 1.0

[10] Arm DEN 0094A Arm Arm® Base System Architecture
Version 1.0

[11] DMTF DSP0270 DMTF Redfish Host Interface Specification Version 1.2.0

[12] DT Devicetree.org Devicetree Specification 0.3

[13] EBBR Arm Embedded Base Boot Requirements 1.01

[14] IPMI Dell, HP, Intel,
NEC

Intelligent Platform Management Interface 2.0, Revision
1.1 (October 2013)

[15] NIST800-147B NIST BIOS Protection Guidelines for Servers

[16] NIST800-155 NIST BIOS Integrity Measurement Guidelines

[17] NIST800-193 NIST Platform Firmware Resiliency Guidelines

Arm Base Boot Requirements

Page 9 of 43 Copyright © 2020 Arm Limited. All rights reserved. DEN0044F 1.0

[18] OCP OSF Checklist OCP OCP Open System Firmware Checklist v1.0

[19] PCI FW PCI SIG PCI Firmware Specification Revision 3.2

[20] SMBIOS Version 3.4.0 DMTF System Management BIOS (SMBIOS) Reference
Specification

[21] TCG ACPI TCG TCG ACPI Specification for TPM Family 1.2 and 2.0

[22] TCG EFI TCG TCG EFI Protocol Specification, Family 2.0

[23] TCG PC Firmware
Profile v2.0

TCG TCG PC Client Platform Firmware Profile Specification
Family 2.0

[24] TCG PPI TCG TCG PC Client Platform Physical Presence Interface
Specification Family 1.2 and 2.0

[25] TCG PTP TCG TCG PC Client Platform TPM Profile (PTP) Specification
Family 2.0

[26] TCG RAM TCG TCG Platform Reset Attack Mitigation Specification
Version 1.00

[27] UEFI Specification 2.8 UEFI.org Unified Extensible Firmware Interface Specification.
Version 2.8

1.1.1 Cross References
This document cross-references sources that are listed in the References section by using the section sign §.

Examples:

 ACPI § 5.6.5 - Reference to the ACPI specification [1] section 5.6.6

UEFI § 6.1 - Reference to the UEFI specification [27] section 6.1

1.2 Terms and abbreviations
This document uses the following terms and abbreviations.

Term Meaning

A64 The 64-bit Arm instruction set used in AArch64 state. All A64 instructions are 32
bits.

AArch64 state The Arm 64-bit Execution state that uses 64-bit general-purpose registers, and a 64-
bit Program Counter (PC), Stack Pointer (SP), and Exception Link Registers (ELR).
AArch64 Execution state provides a single instruction set, A64.

Arm Base Boot Requirements

Page 10 of 43 Copyright © 2020 Arm Limited. All rights reserved. DEN0044F 1.0

ACPI Advanced Configuration and Power Interface.

DT DeviceTree

EFI Loaded Image An executable image to be run under the UEFI environment, and which uses boot
time services.

EL0 The lowest Exception level. The Exception level that is used to execute user
applications, in Non-secure state.

EL1 Privileged Exception level. The Exception level that is used to execute operating
systems, in Non-secure state.

EL2 Hypervisor Exception level. The Exception level that is used to execute hypervisor
code. EL2 is always in Non-secure state.

EL3 Secure monitor Exception level. The Exception level that is used to execute Secure
monitor code, which handles the transitions between Non-secure and Secure states.
EL3 is always in Secure state.

OEM Original Equipment Manufacturer. In this document, the final device manufacturer.

PSCI Power State Coordination Interface

SiP Silicon Partner. In this document, the silicon manufacturer.

SMBIOS System Management BIOS

SMCCC SMC Calling Convention

TCG Trusted Computing Group

TPM Trusted Platform Module

UEFI Unified Extensible Firmware Interface.

UEFI Boot Services Functionality that is provided to UEFI Loaded Images during the UEFI boot process.

UEFI Runtime Services Functionality that is provided to an operating system after the ExitBootServices()
call.

1.3 Feedback
Arm welcomes feedback on its documentation.

If you have comments on the content of this manual, send an email to errata@arm.com. Give:

• The title Arm Base Boot Requirements.

• The document ID and version (DEN0044F 1.0).

• The page numbers to which your comments apply.

• A concise explanation of your comments.

Arm also welcomes general suggestions for additions and improvements.

Arm Base Boot Requirements

Page 11 of 43 Copyright © 2020 Arm Limited. All rights reserved. DEN0044F 1.0

2 Background
Arm processors are used in a wide variety of System on Chip products in many diverse markets. The constraints
on products in these markets are inevitably very different. This means that it is impossible to produce a single
product that meets the needs of the various markets.

The Arm architecture profiles, Application, Real-time, and Microcontroller, segment Arm solutions and align with
the functional requirements of different target markets. The differences between products that are targeted at
different profiles are substantial. These differences reflect the diverse functional requirements of the market
segments.

However, even within an architectural profile, the wide-ranging use of a product means that there are frequent
requests for features to be removed to save silicon area. This is relevant for products that are targeted at cost-
sensitive markets. In these markets, the cost of customizing software to accommodate the loss of a feature is
small, compared to the overall cost saving of removing the feature itself.

In other markets, like those which require an open platform with complex software, the cost of software
development to support the different variants of a hardware feature outweighs the savings that are gained from
removing the variation. In addition, third parties often perform software development. The uncertainty about
whether new features are widely deployed can be a substantial obstacle to the adoption of those features.

The Arm Application profile must balance these two competing business pressures. This profile offers a wide
range of features, like Advanced SIMD, floating-point support, and TrustZone system security technology, to
tackle an increasing range of problems. The Arm Application profile also provides the flexibility to reduce silicon
space, by removing hardware features in cost-sensitive implementations.

Arm processors are built into a large variety of systems. Aspects of this system functionality are crucial to the
fundamental function of system software.

Variability in boot models and certain key aspects of the system has a direct impact on the cost of software
system development and the associated quality risks.

The Base Boot Requirements (BBR) specification is part of the Arm strategy of addressing this variability.

Arm Base Boot Requirements

Page 12 of 43 Copyright © 2020 Arm Limited. All rights reserved. DEN0044F 1.0

3 Introduction
This document specifies the Base Boot Requirements (BBR) for Boot and Runtime Services, based on Arm 64-bit
architecture, that system software, for example operating systems and hypervisors, can rely on.

The primary goal of this document is to ensure sufficient standard system architecture to enable a suitably built
single OS image to run on all hardware that is compliant with this specification and the Arm Base System
Architecture specification[10]. A driver-based model for advanced platform capabilities beyond basic system
configuration and boot is required. However, this model is beyond the scope of this document. Fully discoverable
and describable peripherals aid the implementation of this type of a driver model.

This document identifies the Arm and industry standard firmware interfaces applicable to the Arm 64-bit
architecture. They include the PSCI, SMCCC, UEFI, ACPI, SMBIOS, and DT interfaces. Requirements that are
based on these interfaces are specified. In addition, various recipes are created to accommodate the various
operating systems and hypervisors.

Arm does not require compliance to this specification. Arm anticipates that Cloud Service Providers (CSPs),
OEMs, ODMs, and software providers will require compliance to maximize out of box software compatibility and
reliability.

This document is structured as following:

Section 4 BBR recipes

Provides recipes to accommodate the various operating systems and hypervisors. This includes, but is
not limited to, SBBR, EBBR, and LBBR.

Note: SBBR, EBBR and LBBR are the names of the BBR recipes. The details of the recipes are specified in
Section 4. SBBR and EBBR recipes reflect the requirements specified in the SBBR (the predecessor to this
document) and EBBR specifications, respectively. The recipes are designed to accommodate the various
operating systems and hypervisors, regardless of the market segments.

Section 5 PSCI/SMCCC requirements

Section 6 Secondary Core Boot requirements

Section 7 UEFI requirements

Section 8 ACPI requirements

Section 9 SMBIOS requirements

Section 10 ESBBR exceptions

Section 11 DeviceTree (DT) requirements

Appendixes

Provide summaries of required and recommended UEFI and ACPI interfaces.

Implementations that are consistent with Base Boot Requirements can include other features that are not included
in the definition of BBR. However, software that is written for a specific version of BBR must run, unaltered, on
implementations that include this type of extra functionality.

Arm Base Boot Requirements

Page 13 of 43 Copyright © 2020 Arm Limited. All rights reserved. DEN0044F 1.0

4 BBR Recipes
This section provides recipes to accommodate various operating systems and hypervisors.

These recipes define the Boot and Runtime Services for a physical system, including services that are required for
virtualization. The recipes do not define a standardized abstract virtual machine view for a Guest operating
system.

Note: Servers that implement SBBR or LBBR recipes can be compliant with OCP Open System Firmware
requirements by following the OCP OSF Checklist requirements [18].

4.1 SBBR recipe
Systems using SBBR recipe must meet the requirements that are specified in section 5 (PSCI/SMCCC), section 6
(Secondary Core Boot), section 7 (UEFI), section 8 (ACPI), and section 9 (SMBIOS).

SBBR-compliant systems must not present a DeviceTree binary to the operating system.

Note: Currently, Windows Server, Windows 10, Red Hat Enterprise Linux (RHEL), Amazon Linux, and Oracle
Linux require SBBR recipe. Other operating systems, for example VMware ESXi, SUSE Linux Enterprise Server
(SLES), CentOS, Ubuntu, Kylin OS, NetBSD, and FreeBSD can also support SBBR. This list of operating systems
and hypervisors is subject to change.

Note: The reference implementation that is provided at tianocore.org is called EDK2. However,
SBBR compliance does not require EDK2 implementation.

4.2 ESBBR recipe
Systems using ESBBR recipe must meet the requirements that are specified in section 4.1, with the exceptions
that are specified in section 10.

4.3 EBBR recipe
Systems using EBBR recipe must meet the requirements that are specified in section 5 (PSCI/SMCCC) and in the
EBBR specification v1.0.1[13].

Note: The EBBR specification defines a reduced UEFI environment. The underlying implementation of EBBR
specification is typically U-Boot. However, EBBR does not preclude EDK2 implementation.
Note: Currently, Fedora, Debian, openSUSE, SLES, and Ubuntu support EBBR. This list of operating systems
and hypervisors is subject to change.

4.4 LBBR recipe
LBBR is a recipe for LinuxBoot based systems. LinuxBoot is an alternative firmware stack that uses the Linux
kernel as the Normal world firmware component. LinuxBoot is not a standard, but it can be supported on platforms
that provide open source firmware and implement the requirements in section 5 (PSCI/SMCC), section 9
(SMBIOS), and section 8 (ACPI).

Note: LinuxBoot is used by some hyperscale datacenters that are compliant with the Open Compute Project
(OCP) Open System Firmware (OSF) Checklist [18].

The following diagram shows the relationships among SBBR, ESBBR, EBBR, and LBBR recipes.

https://www.opencompute.org/wiki/Open_System_Firmware/Checklist
https://www.tianocore.org/
http://www.linuxboot.org/
https://www.opencompute.org/wiki/Open_System_Firmware/Checklist

Arm Base Boot Requirements

Page 14 of 43 Copyright © 2020 Arm Limited. All rights reserved. DEN0044F 1.0

Figure 4-1 Relationships among SBBR, ESBBR, EBBR, and LBBR

Operating Systems

PSCI, SMCCC

Trusted Firmware

DT ACPI SMBIOS

EBBR

SBBR
ESBBR

U-boot EDK2

UEFI

Operating Systems

PSCI, SMCCC

Trusted Firmware

DT LinuxBoot ACPI SMBIOS

UEFI

LBBR

SBBR

Arm Base Boot Requirements

Page 15 of 43 Copyright © 2020 Arm Limited. All rights reserved. DEN0044F 1.0

5 PSCI/SMCCC Requirements
The system must expose PSCI[4] and SMCCC[5] interfaces to the operating system or hypervisor.

Note: Trusted Firmware-A (TF-A) provides a reference implementation of Secure world software that is executing
at EL3. TF-A implements various Arm interface standards including PSCI and SMCCC.

5.1 SMCCC Architecture Call requirements

Arm Architecture Call

SMCCC § Requirement

SMCCC_VERSION

7.2 Required for platforms that support SMCCC v1.1 or
newer.

SMCCC_ARCH_FEATURES 7.3 Required for platforms that support SMCCC v1.1 or
newer.

SMCCC_ARCH_SOC_ID

7.4 Required for platforms that support SMCCC v1.2 or
newer. On such platforms, both SoC_ID types 0
(SoC version) and 1 (SoC revision) must be
implemented.

SMCCC_ARCH_WORKAROUND_1 7.5

Recommended for platforms that support SMCCC
v1.1 or newer and contain at least one PE that is
affected by CVE-2017-5715.

SMCCC_ARCH_WORKAROUND_2 7.6

Recommended for platforms that support SMCCC
v1.1 newer and contain at least one PE that is
affected by CVE-2018-3639.

5.2 PSCI Call requirements
The system must meet PSCI 1.1 compliance requirements as defined in [PSCI § 6.9]:

• All mandatory functions must be implemented.
• Optional functions are recommended to be implemented.

Arm Base Boot Requirements

Page 16 of 43 Copyright © 2020 Arm Limited. All rights reserved. DEN0044F 1.0

6 Secondary Core Boot
Platforms providing EL3 must implement the Power State Coordination Interface (PSCI)[4]:

 PSCI 1.1 Published April 2017

This interface will be the main method for booting secondary cores, implementing CPU idling, and providing reset
and shutdown runtime services.

ACPI tables need to reflect:

• FADT should indicate the presence of PSCI.

• MADT GICC structures must provide valid MPIDR entries.

Where CPU idling low power states are provided, the DSDT must provide _LPI objects.

All secondary cores remain powered down during boot. After boot, OSPM can call CPU_ON() into the PSCI
firmware to power up a chosen core. The PSCI firmware powers up, initializes the core, and starts execution at
the provided address.

Arm Base Boot Requirements

Page 17 of 43 Copyright © 2020 Arm Limited. All rights reserved. DEN0044F 1.0

7 UEFI Requirements

7.1 UEFI version
This document references the following specification and versions:

UEFI 2.8[27] Published March 2019, includes the AArch64 bindings

7.2 UEFI compliance
Any UEFI-compliant system must follow the requirements that are laid out in section 2.6 of the UEFI specification.
Systems that are compliant with this section must always provide the UEFI services and protocols that are listed in
Appendix A , Appendix B , and Appendix C of this document.

7.3 UEFI system environment and configuration

7.3.1 AArch64 Exception levels
The resident AArch64 UEFI boot-time environment is specified to use the highest 64-bit Non-secure privilege level
available. This level is either EL1 or EL2, depending on whether virtualization is used or supported.

Resident UEFI firmware might target a specific Exception level. In contrast, UEFI loaded images, like third-party
drivers and boot applications, must not contain any built-in assumptions of the Exception level to be loaded at
boot time. This is because these UEFI loaded images can be loaded into EL1 or EL2.

7.3.1.1 UEFI Boot at EL2
Systems must boot UEFI at EL2, to allow for the installation of a hypervisor or a virtualization-aware operating
system.

7.3.1.2 UEFI Boot at EL1
Booting of UEFI at EL1 is only permitted within a Guest operating system environment, to allow the subsequent
booting of a UEFI-compliant operating system. In this instance, the UEFI boot-time environment can be provided
as a virtualized service by the hypervisor, and not part of the host firmware.

7.3.2 System volume format
The system firmware must support the disk partitioning schemes that are required by the UEFI specification [UEFI
§2.6.2][UEFI §13.3.1].

7.3.3 UEFI image format
UEFI allows the extension of platform firmware, by loading UEFI driver and UEFI application images [UEFI § 2.1]

7.3.3.1 UEFI drivers
A device may provide a container for one or more UEFI drivers [UEFI § 2.1.4] that are used for the device
initialization. If a platform supports the inclusion or addition of such a device, at least one of the UEFI drivers must
be in the A64 binary format.

7.3.3.2 UEFI applications
A UEFI application [UEFI § 2.1.2] must be in the A64 binary format to be used for the systems that comply with
this specification.

7.3.3.3 PE/COFF image

Arm Base Boot Requirements

Page 18 of 43 Copyright © 2020 Arm Limited. All rights reserved. DEN0044F 1.0

The SectionAlignment and FileAlignment fields, as defined in Microsoft PE Format, must contain the value of at
least 4KiB. Higher values are also permitted, for example for DXE_RUNTIME_DRIVER modules, to meet the
64KiB granular memory type requirements that are imposed by the UEFI specification.

Modules that may execute in place, for example SEC, PEI_CORE or PEIM type UEFI/PI modules, are exempt
from this requirement. For these modules, any power-of-2 value of 32 bytes or higher is permitted, if the section
alignment and file alignment are equal.

PE/COFF images whose section alignment is at least 4KiB should not contain any sections that have both the
IMAGE_SCN_MEM_WRITE and IMAGE_SCN_MEM_EXECUTE attributes set.

7.3.4 GOP protocol
For systems with graphics video hardware, EFI_GRAPHICS_OUTPUT_PROTOCOL (UEFI §12.9) is recommended
to be implemented with the frame buffer of the graphics adapters directly accessible (for example
EFI_GRAPHICS_PIXEL_FORMAT is not PixelBltOnly). The GOP FrameBufferBase must be reported as a CPU
physical address, not as a bus address (like a PCI(e) bus address).

7.3.5 Address translation support
If a platform includes PCI bus support, then the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL (UEFI §14.2) and the
EFI_PCI_IO_PROTOCOL (UEFI §14.4) must be implemented. The implementation of the
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL must provide the correct Address Translation Offset field to translate
between the host and bus addresses. EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_CONFIGURATION must report
resources produced by the PCI(e) root bridge, not resources consumed by its register maps. In the cases where
there are unpopulated PCIe slots behind the root bridge,
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_CONFIGURATION must report valid resources assigned (for example,
for hot plug), or report no resources assigned.

7.4 UEFI boot services

7.4.1 Memory map
The UEFI environment must provide a system memory map, which must include all appropriate devices and
memories that are required for booting and system configuration.

All RAM defined by the UEFI memory map must be identity-mapped. This means that virtual addresses must have
equal physical addresses.

The default RAM allocated attribute must be EFI_MEMORY_WB.

7.4.2 UEFI loaded images
UEFI loaded images for AArch64 must be in 64-bit PE/COFF format and must contain only A64 code.

7.4.3 Configuration tables
A UEFI system that complies with this specification must provide the following tables through the EFI
Configuration Table:

• EFI_ACPI_20_TABLE_GUID

o The ACPI tables must be at version ACPI 6.3 or later with a HW-Reduced ACPI model.
See section 8.

• SMBIOS3_TABLE_GUID

o This table defines the 64-bit entry point for SMBIOS table.
o The SMBIOS tables must conform to version 3.2.0 or later of the SMBIOS Specification.

See section 9.

https://docs.microsoft.com/en-us/windows/desktop/Debug/pe-format#section-data

Arm Base Boot Requirements

Page 19 of 43 Copyright © 2020 Arm Limited. All rights reserved. DEN0044F 1.0

7.5 UEFI Runtime Services
UEFI Runtime Services exist after ExitBootServices() is called. UEFI Runtime Services provide a limited set of
persistent services to the platform operating system or hypervisor.

The Runtime Services that are listed in Appendix B must be provided.

7.5.1 Runtime Exception level
UEFI enables runtime services to be supported at either EL1 or EL2, with appropriate virtual address mappings.
When called, subsequent runtime service calls must be from the same Exception level.

7.5.2 Runtime memory map
Before calling ExitBootServices(), the final call to GetMemoryMap() returns a description of the entire UEFI
memory map. This description includes the persistent Runtime Services mappings.

After the call to ExitBootServices(), the Runtime Services page mappings can be relocated in virtual address
space by calling SetVirtualAddressMap(). This call allows the Runtime Services to assign virtual addresses that
are compatible with the incoming operating system memory map.

A UEFI runtime environment that is compliant with this specification must not be written with any assumption of an
identity mapping between virtual and physical memory maps.

UEFI operates with a 4KiB page size. With Runtime Services, these pages are mapped into the operating system
address space.

To allow operating systems to use 64KiB page mappings, the UEFI specification constrains all mapped 4KiB
memory pages to have identical page attributes within the same physical 64K page.

7.5.3 Real-time clock
The Real-time Clock must be accessible through the UEFI runtime firmware, and the following services must be
provided:

• GetTime()

• SetTime()

It is permissible for SetTime() to return an error on systems where the Real-time Clock cannot be set by this call.

7.5.4 UEFI reset and shutdown
The UEFI Runtime service ResetSystem() must implement the following ResetType values, for purposes of power
management and system control:

• EfiResetCold

• EfiResetShutdown

o EfiResetShutdown must not reboot the system.

If firmware updates are supported through the Runtime Service of UpdateCapsule(), then ResetSystem() might
need to support the following command:

• EfiWarmReset

These Runtime Services must be implemented by calling into PSCI. The following table maps the UEFI and PSCI
reset calls:

EFI ResetSystem() ResetType

PSCI Reset call

EfiResetShutdown SYSTEM_OFF
EfiResetCold SYSTEM_RESET

Arm Base Boot Requirements

Page 20 of 43 Copyright © 2020 Arm Limited. All rights reserved. DEN0044F 1.0

EfiResetWarm SYSTEM_RESET2, with reset_type = 0x0
(SYSTEM_WARM_RESET)

EfiResetPlatformSpecific, with a platform-specific
ResetData GUID.

The exact mapping of the UEFI runtime call to the
PSCI call is IMPLEMENTATION DEFINED.

Note: When Runtime Services and PSCI co-exist, operating systems may call either interface to reset the system.
Calling the UpdateCapsule() service requires the use of the UEFI Runtime service for reset.

7.5.5 Set variable
Non-volatile UEFI variables must persist across reset, and emulated variables in RAM are not permitted.

The UEFI Runtime Services must be able to update the variables directly without the aid of the operating system.

Note: UEFI variables normally require dedicated storage that is not directly accessible from the operating system.

Arm Base Boot Requirements

Page 21 of 43 Copyright © 2020 Arm Limited. All rights reserved. DEN0044F 1.0

8 ACPI Requirements

8.1 ACPI version
This document references the following specification and versions:

 ACPI 6.3[1] Published January 2019, includes the Reduced HW profile

ACPI is used to describe the hardware resources that are installed, and to handle aspects of runtime system
configuration, event notification, and power management.

The ACPI-compliant OS must be able to use ACPI to configure the platform hardware and provide basic
operations. The ACPI tables are passed, through UEFI, into the OS to drive the Operating System-directed Power
Management (OSPM).

This section defines mandatory and optional ACPI features, and a few excluded features.

8.2 ACPI provided data structures
All platforms that comply with this specification must:

• Conform to the ACPI specification[1], version 6.3 or later

o Legacy tables and methods are not supported.

• Implement the HW-Reduced ACPI model. See ACPI § 3.11.1 and 4.1.

• Not support legacy ACPI Fixed Hardware interfaces

• Provide either Interrupt-signaled Events (see ACPI § 5.6.9) or GPIO-signaled Events (see ACPI § 5.6.5)
for the conveyance of runtime event notifications, from the system firmware to the Operating System
Power Management (OSPM).

8.3 ACPI tables
ACPI tables are essentially data structures. The OSPM of the operating system receives a pointer to the Root
System Description Pointer (RSDP) from the boot loader. The OSPM then uses the information in the RSDP to
determine the addresses of all other ACPI tables. Platform designers can decide whether the ACPI tables are
stored in ROM or in flash memory.

All platforms that comply with this specification:

• Must ensure that the structure of all tables is consistent with the ACPI 6.3 or later specification

o Legacy tables are not supported.

• Must ensure that the pointer to the RSDP is passed through UEFI to the OSPM as described by UEFI

• Must use 64-bit addresses within all address fields in ACPI tables

o This restriction ensures a long-term future for the ACPI tables. Versions before ACPI 5.0 allowed
32-bit address fields.

8.3.1 Mandatory ACPI tables
The following tables are mandatory for all compliant systems.

8.3.1.1 RSDP
• Root System Description Pointer (RSDP), ACPI § 5.2.5.

Arm Base Boot Requirements

Page 22 of 43 Copyright © 2020 Arm Limited. All rights reserved. DEN0044F 1.0

o Within the RSDP, the RsdtAddress field must be null (zero) and the XsdtAddresss must be a
valid, non-null, 64-bit value.

8.3.1.2 XSDT
• Extended System Description Table (XSDT), ACPI § 5.2.8.

o The RSDP must contain a pointer to this table.

o This table contains pointers to all other ACPI tables that the OSPM will use.

8.3.1.3 FADT
• Fixed ACPI Description Table (FADT), ACPI § 5.2.9

o The ACPI signature for this table is actually FACP. The name FADT is used for historical reasons.

o This table must have the HW_REDUCED_ACPI flag set to comply with the HW-Reduced ACPI
model. Many other fields must be set to null when this flag is set.

o The recommendation for the Preferred PM Profile is that an appropriate profile as defined by the
ACPI specification (ACPI § 5.2.9.1) is selected.

 For servers, the recommendation for the Preferred PM Profile is that one of the server
profiles is selected.

o The ARM_BOOT_ARCH flags describe the presence of PSCI. See ACPI § 5.2.9.4.

8.3.1.4 DSDT and SSDT
• Differentiated System Description Table (DSDT), ACPI § 5.2.11.1.

o This table provides the essential configuration information that is needed to boot the platform.

• Secondary System Description Table (SSDT), ACPI § 5.2.11.2.

o This table is optional. One or more of SSDT can be used to provide definition blocks if necessary.

8.3.1.5 MADT
• Multiple APIC Description Table (MADT), ACPI § 5.2.12.

o This table describes the GIC interrupt controllers, their version, and their configuration.

o For systems without PSCI, this table provides the Parked Address for secondary CPU
initialization.

• The strong recommendation for the entry order of GICC structures is that it reflects affinity in resource
sharing, typically caches, in the system. That is, processors that share resources should be close together
in the ordering. For example, consider an SMT system with the following properties:

o Comprised of two sockets, in which each socket has a large cache that is shared by all logical
processors in the socket.

o Each socket contains two processor clusters, and within each cluster there is cache that is shared
by all logical processors in the cluster.

o Each physical processor contains two logical processors or hardware threads, which share
physical processor resources.

• The recommended indexing in the order of GICC structures for this system should increase in hardware
thread, then cluster, and then socket ordering. In other words, it should be:

o Socket 0, Cluster 0, Thread 0 – GICC

o Socket 0, Cluster 0, Thread 1 – GICC

o Socket 0, Cluster 1, Thread 0 – GICC

Arm Base Boot Requirements

Page 23 of 43 Copyright © 2020 Arm Limited. All rights reserved. DEN0044F 1.0

o Socket 0, Cluster 1, Thread 1 – GICC

o Socket 1, Cluster 0, Thread 0 – GICC

o Socket 1, Cluster 0, Thread 1 – GICC

o Socket 1, Cluster 1, Thread 0 – GICC

o Socket 1, Cluster 1, Thread 1 – GICC

8.3.1.6 GTDT
• Generic Timer Descriptor Table (GTDT), ACPI § 5.2.24.

o This table describes the Arm Generic Timer block and the Arm Generic Watchdog.

8.3.1.7 DBG2
• Debug Port Table 2 (DBG2). See http://uefi.org/acpi

o This table provides a standard debug port.

o Note: this table can be used to describe the UART as specified by BSA §3.12.

o Note: If OS debug through serial port is wanted, the system must make the UART instance that is
specified in DBG2 to be exclusively available for use of the debugger. How the system enables
this is IMPLEMENTATION DEFINED.

8.3.1.8 SPCR
• Serial Port Console Redirection (SPCR). See http://uefi.org/acpi

o This table provides the essential configuration information that is needed for headless operations,
like a kernel shell or console.

o This table defines a serial port type, location, and interrupts.

o Note: this table can be used to describe the UART as specified by BSA §3.12.

• This specification requires revision 2 or later of the SPCR table. Revisions before 2 are not supported.

• The SPCR must be populated with correct ACPI GSIV interrupt routing information for the UART device.

• The SPCR console device must be included in the DSDT.

8.3.1.9 MCFG
• PCI Memory-mapped Configuration Space (MCFG). PCI FW[19] § 4.1.2

o This table described the PCIe ECAM base address

o This table is required if PCIe is supported.

8.3.1.10 PPTT
• Processor Properties Topology Table (PPTT), ACPI § 5.2.29.

o This table describes the topological structure of processors that are controlled by the OSPM and
their shared resources.

8.3.2 Recommended ACPI tables
ACPI tables that are recommended are listed in Appendix E .

Not every platform that is compliant with this specification provides all of these tables. This is because many
tables reference optional platform features.

http://uefi.org/acpi
http://uefi.org/acpi

Arm Base Boot Requirements

Page 24 of 43 Copyright © 2020 Arm Limited. All rights reserved. DEN0044F 1.0

Example:

A platform does not have to implement NUMA for memory. If it does, it must provide the SRAT and SLIT that
describe the NUMA topology to ACPI. In addition, HMAT can also be used to describe the heterogeneous memory
attributes.

8.3.3 Optional ACPI tables
All other tables that are defined in the ACPI specification can be used as needed for AArch64 platforms, but only if
they comply with syntax and semantics of the specification.

8.4 ACPI definition blocks
Within the DSDT or SSDT, tables that are used to describe the platform, devices are defined by ACPI definition
blocks (see ACPI § 5.2.11). Each of these definition blocks describes one or more devices that cannot be
enumerated by the OSPM at boot time without more information. For example, processors must be described by
definition blocks, but PCI devices are enumerated by a defined protocol.

8.5 ACPI methods and objects
A DSDT or SSDT definition block contains definitions of objects and methods which can be invoked. These
definitions can provide global information, but most of them provide information that is specific to a single device.
Objects and methods can also be predefined, either by the ACPI specification or as needed by a platform
designer.

All objects and methods must conform to the definitions in ACPI version 6.3 or later. Legacy definitions are not
supported.

8.5.1 Global methods and objects
Platforms must define processors as devices under the _SB (System Bus) namespace. See ACPI § 5.3.1

Platforms must not define processors using the global _PR (Processors) namespace. See ACPI § 5.3.1

Platforms that comply with this specification can provide the following predefined global methods:

• _ SST: System Status Indicator. This method reports on the current overall state of the system status
indicator, if and only if a platform provides a user-visible status like an LED.

o See ACPI § 9.2.1

8.5.2 Device methods and objects
For each device definition in the platform DSDT or SSDT tables, platforms must provide the following predefined
methods or objects, in accordance with their definitions in version 6.3 or later of the ACPI specification:

• _ADR: Address on the parent bus of the device. Either this object or the _HID must be provided. This
object is essential for PCI, for example.

o See ACPI § 6.1.1

• _CCA: Cache Coherency Attribute. This object provides information about whether a device has to
manage cache coherency and about hardware support. This object is mandatory for all devices that are
not cache-coherent, and recommended for all devices. This object is only relevant for devices that can
access CPU-visible memory, like devices that are DMA capable.

o See ACPI § 6.2.17

• _CRS: Current Resource Settings. This method provides essential information to describe resources, like
registers and their locations, that are provided by the device.

o See ACPI § 6.2.2.

Arm Base Boot Requirements

Page 25 of 43 Copyright © 2020 Arm Limited. All rights reserved. DEN0044F 1.0

o Note: The _PRS (Possible Resource Settings) and _SRS (Set Resource Settings) are not
supported.

• _HID: Hardware ID. This object provides the Plug and Play Identifier or the ACPI ID for the device. Either
this object or the _ADR must be provided.

o See ACPI § 6.1.5.

• _STA: Status. This method identifies whether the device is on, off, or removed.

o See ACPI § 6.3.7 and 7.2.4.

• _UID: Unique persistent ID. This object provides a unique value that is persistent across boots, and can
uniquely identify the device with either a common _HID or _CID. The object is used, for example, to
identify a PCI root bridge, if there are multiple PCI root bridges in the system.

o See ACPI § 6.1.12.

Note: A _HID object must be used to describe any device that is enumerated by OSPM. OSPM only
enumerates a device when no bus enumerator can detect the ID. For example, devices on an ISA bus are
enumerated by OSPM. Use the _ADR object to describe devices that are enumerated by bus enumerators
other than OSPM.

8.5.3 GPIO controllers
The HW-Reduced ACPI model has specific requirements for GPIO controllers and devices. If a platform supports
GPIO-signaled ACPI events, it must provide the following methods:

• _AEI: ACPI Event Interrupts. This object defines which GPIO interrupts are to be handled as ACPI events.

o See ACPI § 5.6.5.2.

• _EVT: Event method for GPIO-signaled interrupts. For event numbers that are less than 255, the _Exx or
_Lxx methods can be used instead.

o See ACPI § 5.6.5.3 and 5.6.4.1.

8.5.4 Generic Event Devices
The HW-Reduced ACPI model has specific requirements for Generic Event Devices. Platforms that support
interrupt-signaled ACPI events must provide the Generic Event Devices with the following methods:

• _CRS: Current Resource Setting. This object designates those interrupts that shall be handled by OSPM
as ACPI events.

o See ACPI § 5.6.9.2

• _EVT: Event method for interrupt-signaled interrupts.

o See ACPI § 5.6.9.3.

8.5.5 Address translation support
PCIe-compliant devices are recommended, eliminating the need to support legacy I/O port space. However, if the
platform supports legacy I/O port space, it must report the host (CPU) to the PCI I/O bus address space
translations using resource descriptors of type DWordIO, QWordIO or ExtendedIO. The TranslationType must be
set to TypeStatic. This is because of existing OS behavior.

8.5.6 Describing Arm components in ACPI
Certain components that are implemented or licensed by Arm have special ACPI properties and IDs defined in
ACPI for Arm Components [9]. If a platform includes any of the Arm components that are listed in ACPI for Arm
Components, it must follow the guidance of that specification for implementing the ACPI objects and methods for
such components.

Arm Base Boot Requirements

Page 26 of 43 Copyright © 2020 Arm Limited. All rights reserved. DEN0044F 1.0

8.6 Hardware requirements imposed on the platform by ACPI
The term HW-Reduced does not imply anything about functionality. HW-Reduced simply means that the hardware
specification is not implemented. See Chapter 4 of the ACPI specification. All functionality is still supported
through equivalent software-defined interfaces.

Instead, the complexity of the OSPM in supporting ACPI is reduced. For example, many requirements from
versions earlier than version 5.0 can be ignored. However, this model does impose some requirements on the
hardware that is provided by the platform. In particular, either interrupt-signaled events (ACPI § 5.6.9) or GPIO-
signaled events (ACPI § 5.6.5) must be used to generate interrupts that are functionally equivalent to General
Purpose Events (GPEs). See ACPI § 5.6.4.

Platforms that comply with this specification must provide the following platform events:

• For the ACPI Platform Error Interface (APEI):

o One event for non-fatal error signaling (ACPI § 18.3.2.7.2)

o Software Delegated Exception(SDE)[6] or one NMI-equivalent signal for use in fatal errors

o See ACPI § 18.

• At least one wake signal, which is routed through a platform event.

Note: for systems that do not support Sx states except S5 soft off, this can be just the power button.

8.6.1 Processor Performance Control
If OSPM-directed processor performance control is supported, then it must be exposed using Collaborative
Processor Performance Control (CPPC).

The use of Platform Communications Channel (PCC) is highly recommended for processor performance
management. See ACPI § 14. Using PCC address space allows to support process performance management in
operating systems which do not support flexible address space for CPPC Registers. See Bit[14] of Table 6-200
Platform-Wide _OSC Capabilities, ACPI § 6.2.11.2.

Note: Provisioning a Platform Interrupt is recommended if PCC is used. See Platform Communications
Channel Global Flags, ACPI § 14.1.1.

8.6.2 Time and Alarm Device
If the ACPI Time and Alarm Device is implemented (see ACPI § 9.18), it must operate on the same real-time clock
that is exposed by the UEFI Runtime Services.

Arm Base Boot Requirements

Page 27 of 43 Copyright © 2020 Arm Limited. All rights reserved. DEN0044F 1.0

9 SMBIOS Requirements
The System Management BIOS (SMBIOS) [20] that is published by the DMTF is an important firmware
component for servers. SMBIOS provides basic hardware and firmware configuration information through table-
driven data structures. Although it is not required for operating system booting or core kernel functions, SMBIOS is
widely used for platform management, scripting, and deployment applications.

9.1 SMBIOS version
This document references the following specification and versions:

 SMBIOS 3.4.0 Published September 2020.

Legacy SMBIOS tables and formats are not supported.

9.1.1 SMBIOS requirements on UEFI
• UEFI uses SMBIOS3_TABLE_GUID to identify the SMBIOS table.

• UEFI uses the EfiRuntimeServicesData type for the system memory region containing the SMBIOS table.

• UEFI must not use the EfiBootServicesData type for the SMBIOS data region, as the region could be
reclaimed by a UEFI-compliant operating system after UEFI ExitBootServices() is called.

9.2 SMBIOS structures
SMBIOS implementations vary by system design and form factor. For a BBR-compliant system, the following
SMBIOS structures are required or recommended. For required data within these structures, please refer to Table
4 and Annex A of the SMBIOS specification.

9.2.1 Type00: BIOS Information (required)
• Vendor
• BIOS Version
• BIOS Release Date
• BIOS ROM Size
• System BIOS Major Release
• System BIOS Minor Release
• Embedded Controller Firmware Major Release
• Embedded Controller Firmware Minor Release
• Extended BIOS ROM Size

9.2.2 Type01: System Information (required)
• Manufacturer
• Product Name
• Version
• Serial Number
• UUID

o This field must provide a unique value for every individual system.
• SKU Number

9.2.3 Type02: Baseboard (or Module) Information (recommended)
• Manufacturer
• Product
• Version

Arm Base Boot Requirements

Page 28 of 43 Copyright © 2020 Arm Limited. All rights reserved. DEN0044F 1.0

• Serial Number
• Asset Tag
• Location in Chassis
• Board Type

9.2.4 Type03: System Enclosure or Chassis (required)
• Manufacturer
• Type
• Version
• Serial Number
• Asset Tag Number
• Height
• SKU Number

9.2.5 Type04: Processor Information (required)
• Socket Designation
• Processor Type
• Processor Family

o This field must provide a human readable description of the processor product line.
• Processor Manufacturer

o This field must provide a human readable description of the processor manufacturer.
• Processor ID

o For systems that support SMBIOS 3.4.0 or newer and support SMCCC_ARCH_SOC_ID call, this
field must implement the SoC Id value, as specified by SMBIOS specification. Otherwise, this field
must implement the MIDR_EL1 value as specified by SMBIOS specification.

• Processor Version
o This field must provide a human readable description of the processor part number.

• Max Speed
• Status
• Core Count
• Core Enabled
• Thread Count
• Processor Family 2
• Core Count 2
• Core Enabled 2
• Thread Count 2

Exactly one Type04 structure must be provided for every socket in the system. For example, N Type04 structures,
in a one-to-one mapping with each physical socket, out of a socket count of N.

• A physical socket is defined as a discrete SoC, or equivalent physical chip package (implementing a chip-
to-chip extension of cache coherency, and typically participating within the same Inner Shareable domain
as defined in [2]).

9.2.6 Type07: Cache Information (required)
• Socket Designation
• Cache Configuration
• Maximum Cache Size
• Installed Size
• Cache Speed
• Maximum Cache Size 2
• Installed Cache Size 2

Arm Base Boot Requirements

Page 29 of 43 Copyright © 2020 Arm Limited. All rights reserved. DEN0044F 1.0

9.2.7 Type08: Port Connector Information (recommended for platforms with physical
ports)

• Internal Reference Designator
• Internal Connector Type
• External Reference Designator
• External Connector Type
• Port Type

9.2.8 Type09: System Slots (required for platforms with expansion slots)
• Slot Designation
• Slot Type
• Slot Data Bus Width
• Current Usage
• Slot ID
• Slot Characteristics 1
• Slot Characteristics 2
• Segment Group Number
• Bus Number
• Device Function Number

9.2.9 Type11: OEM Strings (recommended)
• Count

9.2.10 Type13: BIOS Language Information (recommended)
• Installable Languages
• Flags
• Current Language

9.2.11 Type15: System Event Log (recommended)

9.2.12 Type16: Physical Memory Array (required)
• Location
• Use
• Maximum Capacity
• Number of Memory Devices
• Extended Maximum Capacity

9.2.13 Type17: Memory Device (required)
• Total Width
• Data Width
• Size
• Device Locator
• Memory Type
• Type Detail
• Speed
• Manufacturer
• Serial Number
• Asset Tag
• Part Number

Arm Base Boot Requirements

Page 30 of 43 Copyright © 2020 Arm Limited. All rights reserved. DEN0044F 1.0

• Extended Size
• Extended Speed

In addition, the following fields are required if NVDIMM is supported:

• Memory Technology
• Memory Operating Mode Capability
• Non-volatile Size
• Volatile Size
• Cache Size
• Logical Size

9.2.14 Type19: Memory Array Mapped Address (required)
• Starting Address
• Ending Address
• Extended Starting Address
• Extended Ending Address

9.2.15 Type32: System Boot Information (required)
• Boot Status

9.2.16 Type38: IPMI Device Information (required for platforms with IPMIv1.0 BMC Host
Interface)

• IPMI Specification Revision
• I2C Target Address
• Base Address
• Base Address Modifier
• Interrupt Info
• Interrupt Number

Note: The ACPI SPMI Table replaces this Type in IPMI v1.5 and v2.0 [14]

9.2.17 Type41: Onboard Devices Extended Information (recommended)
• Reference Designation
• Device Type
• Device Type Instance
• Segment Group Number
• Bus Number
• Device Function Number

9.2.18 Type42: Redfish Host Interface (required for platforms supporting Redfish Host
Interface[11])

• Interface Type
• Interface Specific Data

o Device Type must be 04h (USB Network Interface v2) or 05h (PCI/PCIe Network Interface v2).
• Protocol Records

10 ESBBR Exceptions
ESBBR recipe (4.2) allows exceptions (as defined in this section) to the SBBR recipe (4.1).

Arm Base Boot Requirements

Page 31 of 43 Copyright © 2020 Arm Limited. All rights reserved. DEN0044F 1.0

Note: There are no exceptions defined in v1.0 of this document.

Arm Base Boot Requirements

Page 32 of 43 Copyright © 2020 Arm Limited. All rights reserved. DEN0044F 1.0

11 DT Requirements
The Devicetree Specification [12] specifies a construct called a DeviceTree to describe system hardware.
DeviceTree describes device information in a system that cannot necessarily be dynamically detected.

11.1 DT version
This document references the following specification and versions:

 Devicetree Specification Release 0.3 Published Feb 2020

11.2 DT requirements
Chapter 3 of the Devicetree Specification documents the requirements for the base set of device nodes that are
required in a DT-compliant devicetree.

Arm Base Boot Requirements

Page 33 of 43 Copyright © 2020 Arm Limited. All rights reserved. DEN0044F 1.0

Appendix A Required UEFI Boot Services

Service UEFI §

EFI_RAISE_TPL 7.1

EFI_RESTORE_TPL 7.1

EFI_ALLOCATE_PAGES 7.2

EFI_FREE_PAGES 7.2

EFI_GET_MEMORY_MAP 7.2

EFI_ALLOCATE_POOL 7.2

EFI_FREE_POOL 7.2

EFI_CREATE_EVENT 7.1

EFI_SET_TIMER 7.1

EFI_WAIT_FOR_EVENT 7.1

EFI_SIGNAL_EVENT 7.1

EFI_CLOSE_EVENT 7.1

EFI_INSTALL_PROTOCOL_INTERFACE 7.3

EFI_REINSTALL_PROTOCOL_INTERFACE 7.3

EFI_UNINSTALL_PROTOCOL_INTERFACE 7.3

EFI_HANDLE_PROTOCOL 7.3

EFI_REGISTER_PROTOCOL_NOTIFY 7.3

EFI_LOCATE_HANDLE 7.3

EFI_LOCATE_PROTOCOL 7.3

EFI_LOCATE_DEVICE_PATH 7.3

EFI_INSTALL_CONFIGURATION_TABLE 7.5

EFI_LOAD_IMAGE 7.4

EFI_START_IMAGE 7.4

EFI_EXIT 7.4

EFI_UNLOAD_IMAGE 7.4

EFI_EXIT_BOOT_SERVICES 7.4

EFI_GET_NEXT_MONOTONIC_COUNT 7.5

EFI_STALL 7.5

EFI_SET_WATCHDOG_TIMER 7.5

EFI_CONNECT_CONTROLLER 7.3

EFI_DISCONNECT_CONTROLLER 7.3

EFI_OPEN_PROTOCOL 7.3

EFI_CLOSE_PROTOCOL 7.3

EFI_OPEN_PROTOCOL_INFORMATION 7.3

EFI_PROTOCOLS_PER_HANDLE 7.3

EFI_LOCATE_HANDLE_BUFFER 7.3

EFI_LOCATE_PROTOCOL 7.3

EFI_INSTALL_MULTIPLE_PROTOCOL_INT
ERFACES

7.3

EFI_UNINSTALL_MULTIPLE_PROTOCOL_I
NTERFACES

7.3

EFI_CALCULATE_CRC32 7.5

EFI_COPY_MEM 7.5

EFI_SET_MEM 7.5

EFI_CREATE_EVENT_EX 7.1

Arm Base Boot Requirements

Page 34 of 43 Copyright © 2020 Arm Limited. All rights reserved. DEN0044F 1.0

Appendix B Required UEFI Runtime Services

Service UEFI §

EFI_GET_TIME 8.3

EFI_SET_TIME 8.3

EFI_GET_WAKEUP_TIME 8.3

EFI_SET_WAKEUP_TIME 8.3

EFI_SET_VIRTUAL_ADDRESS_MAP 8.4

EFI_CONVERT_POINTER 8.4

EFI_GET_VARIABLE 8.2

EFI_GET_NEXT_VARIABLE_NAME 8.2

EFI_SET_VARIABLE 8.2

EFI_GET_NEXT_HIGH_MONO_COUNT 8.5

EFI_RESET_SYSTEM 8.5

EFI_UPDATE_CAPSULE 8.5

EFI_QUERY_CAPSULE_CAPABILITIES 8.5

EFI_QUERY_VARIABLE_INFO 8.2

Note: EFI_GET_WAKEUP_TIME and EFI_SET_WAKEUP_TIME must be implemented, but might simply return
EFI_UNSUPPORTED.

Note: EFI_UPDATE_CAPSULE and EFI_QUERY_CAPSULE_CAPABILITIES must be implemented, but might
simply return EFI_UNSUPPORTED.

Note: If the system implements UEFI capsule services, OSes need to clean cache by VA to PoC (that is, using
DC CVAC) on each ScatterGatherList element that is passed to the UpdateCapsule() before issuing the call. This
is needed only when UpdateCapsule() is called after ExitBootServices(). This requirement will be clarified in a
future version of the UEFI specification.

UEFI Configuration Table Entries

Configuration Table

EFI_ACPI_20_TABLE_GUID

SMBIOS3_TABLE_GUID

Arm Base Boot Requirements

Page 35 of 43 Copyright © 2020 Arm Limited. All rights reserved. DEN0044F 1.0

Appendix C Required UEFI Protocols

Core UEFI Protocols

Service UEFI §

EFI_LOADED_IMAGE_PROTOCOL 9.1

EFI_LOADED_IMAGE_DEVICE_PATH_PROTOCOL 9.2

EFI_DECOMPRESS_PROTOCOL 19.5

EFI_DEVICE_PATH_PROTOCOL 10.2

EFI_DEVICE_PATH_UTILITIES_PROTOCOL 10.5

Media I/O Protocols

Service UEFI §

EFI_LOAD_FILE_PROTOCOL 13.1

EFI_LOAD_FILE2_PROTOCOL 13.2

EFI_SIMPLE_FILE_SYSTEM_PROTOCOL 13.4

EFI_FILE_PROTOCOL 13.5

The Load File protocol is used to obtain files from arbitrary devices that are primarily boot options. The Load File 2
protocol is used to obtain files from arbitrary devices that are not boot options.

Console Protocols

Service UEFI §

EFI_SIMPLE_TEXT_INPUT_PROTOCOL 12.3

EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL 12.2

EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL 12.4

Driver Configuration Protocols

Service UEFI §

EFI_HII_DATABASE_PROTOCOL 34.8

EFI_HII_STRING_PROTOCOL 34.3

EFI_HII_CONFIG_ROUTING_PROTOCOL 35.4

EFI_HII_CONFIG_ACCESS_PROTOCOL 35.5

Arm Base Boot Requirements

Page 36 of 43 Copyright © 2020 Arm Limited. All rights reserved. DEN0044F 1.0

Random Number Generator Protocol

Service UEFI §

EFI_RNG_PROTOCOL 37.5

The EFI_RNG_PROTOCOL is used by operating systems for entropy generation capabilities early during OS
boot. The protocol is recommended to support returning at least 256 bits of full entropy in a single call, from a
source with security strength of at least 256 bits.

Arm Base Boot Requirements

Page 37 of 43 Copyright © 2020 Arm Limited. All rights reserved. DEN0044F 1.0

Appendix D Optional UEFI Protocols

Basic Networking Support

Service UEFI §

EFI_SIMPLE_NETWORK_PROTOCOL 24.1

EFI_MANAGED_NETWORK_PROTOCOL 25.1

EFI_MANAGED_NETWORK_SERVICE_BINDING_PROTOCOL 25.1

Networking services are optional on platforms that do not support networking.

Network Boot Protocols

Service UEFI §

EFI_PXE_BASE_CODE_PROTOCOL 24.3

EFI_PXE_BASE_CODE_CALLBACK_PROTOCOL 24.4

EFI_MTFTP4_PROTOCOL 30.3

EFI_MTFTP6_PROTOCOL 30.4

Ipv4 Network Support

Service UEFI §

EFI_ARP_PROTOCOL 29.1

EFI_ARP_SERVICE_BINDING_PROTOCOL 29.1

EFI_DHCP4_SERVICE_BINDING_PROTOCOL 29.2

EFI_DHCP4_PROTOCOL 29.2

EFI_TCP4_PROTOCOL 28.1.2

EFI_TCP4_SERVICE_BINDING_PROTOCOL 28.1.1

EFI_IP4_SERVICE_BINDING_PROTOCOL 28.3.1

EFI_IP4_CONFIG2_PROTOCOL 28.5

EFI_UDP4_PROTOCOL 30.1.2

EFI_UDP4_SERVICE_BINDING_PROTOCOL 30.1.1

Networking services are optional on platforms that do not support networking.

Ipv6 Networking Support

Arm Base Boot Requirements

Page 38 of 43 Copyright © 2020 Arm Limited. All rights reserved. DEN0044F 1.0

Service UEFI §

EFI_DHCP6_PROTOCOL 29.3.2

EFI_DHCP6_SERVICE_BINDING_PROTOCOL 29.3.1

EFI_TCP6_PROTOCOL 28.2.2

EFI_TCP6_SERVICE_BINDING_PROTOCOL 28.2.1

EFI_IP6_SERVICE_BINDING_PROTOCOL 28.6.1

EFI_IP6_CONFIG_PROTOCOL 28.7

EFI_UDP6_PROTOCOL 30.2.2

EFI_UDP6_SERVICE_BINDING_PROTOCOL 30.2.1

Networking services are optional on platforms that do not support networking.

VLAN Protocols

Service UEFI §

EFI_VLAN_CONFIG_PROTOCOL 27.1

iSCSI Protocols

Service UEFI §

EFI_ISCSI_INITIATOR_NAME_PROTOCOL 16.2

Support for iSCSI is only required on machines that lack persistent storage, like an HDD. This configuration is
intended for thin clients and compute-only nodes.

REST Protocols

Service UEFI §

EFI_REST_EX_PROTOCOL 29.7.2.2

EFI_REST_EX_SERVICE_BINDING_PROTOCOL 29.7.2.1

EFI_REDFISH_DISCOVER_PROTOCOL 31.1.4

EFI_REST_JSON_STRUCTURE_PROTOCOL 29.7.3.2

Support for REST protocol is optional on machines that support RESTful communication (for example, Redfish
Host Interface to a BMC).

HTTP Network Protocols

Service UEFI §

Arm Base Boot Requirements

Page 39 of 43 Copyright © 2020 Arm Limited. All rights reserved. DEN0044F 1.0

EFI_HTTP_SERVICE_BINDING_PROTOCOL 29.6.1

EFI_HTTP_PROTOCOL 29.6.2

EFI_HTTP_UTILITIES_PROTOCOL 29.6.3

EFI_HTTP_BOOT_CALLBACK_PROTOCOL 24.7.6

EFI_DNS4_SERVICE_BINDING_PROTOCOL 29.4

EFI_DNS4_PROTOCOL 29.4

EFI_DNS6_SERVICE_BINDING_PROTOCOL 29.5.1

EFI_DNS6_PROTOCOL 29.5.2

EFI_TLS_SERVICE_BINDING_PROTOCOL 28.10.1

EFI_TLS_PROTOCOL 28.10.2

EFI_TLS_CONFIGURATION_PROTOCOL 28.10.3

Networking services are optional on platforms that do not support networking.

Firmware Update

Service UEFI §

EFI_FIRMWARE_MANAGEMENT_PROTOCOL 23.1

EFI_SYSTEM_RESOURCE_TABLE GUID (ESRT)
(UEFI Configuration Table)

23.4

Note: Firmware Management Protocol is used for device firmware update if the device UEFI drivers support it.

Note: The ESRT configuration table is used for firmware update If the system implements UEFI capsule services.

Arm Base Boot Requirements

Page 40 of 43 Copyright © 2020 Arm Limited. All rights reserved. DEN0044F 1.0

Appendix E Recommended Acpi Tables
I/O Topology
IORT describes the SMMU or ITS that is required if such capabilities are supported. Components behind an
SMMU that are not enumerable behind a PCIe root complex must be described as IORT nodes in the IORT table.

ACPI
Signature

Full Name ACPI §

IORT IO Remapping Table https://uefi.org/acpi

Platform Error Interfaces
The following tables are required to support ACPI Platform Error Interfaces (APEI), which convey error information
to the operating system.

ACPI
Signature

Full Name ACPI §

BERT Boot Error Record Table 18.3.1

EINJ Error Injection Table 18.6.1

ERST Error Record Serialization Table 18.5

HEST Hardware Error Source Table 18.3.2

SDEI Software Delegated Exception Interface Table https://uefi.org/acpi

AEST Arm Error Source Table https://uefi.org/acpi

NUMA
The following tables describe topology and resources that are required by NUMA systems.

ACPI
Signature

Full Name ACPI §

SLIT System Locality Information Table 5.2.17

SRAT System Resource Affinity Table 5.2.16

HMAT Heterogeneous Memory Attribute Table 5.2.27

Platform Communications Channel (PCC)
PCCT provides the interface to communicate to an on-platform controller.

ACPI
Signature

Full Name ACPI §

PCCT Platform Communications Channel Table 14

Platform Debug Trigger

https://uefi.org/acpi
https://uefi.org/acpi
https://uefi.org/acpi

Arm Base Boot Requirements

Page 41 of 43 Copyright © 2020 Arm Limited. All rights reserved. DEN0044F 1.0

PDTT describes one or more PCC subspace identifiers that can be used to trigger/notify the platform specific
debug facilities to capture non-architectural system state. This is intended as a standard mechanism for the
OSPM to notify the platform of a fatal crash (e.g. kernel panic or bug check).

ACPI
Signature

Full Name ACPI §

PDTT Platform Debug Trigger Table 5.2.28

NVDIMM Firmware Interface
NFIT describes NVDIMM that is required if NVDIMM is supported.

ACPI
Signature

Full Name ACPI §

NFIT NVDIMM Firmware Interface Table 5.2.25

Graphics Resource Table

BGRT describes system graphics resources when a video frame buffer is present.

ACPI
Signature

Full Name ACPI §

BGRT Boot Graphics Resource Table 5.2.22

IPMI
SPMI describes the processor-relative, translated, fixed resources of an IPMI system interface at system boot
time.

ACPI
Signature

Full Name ACPI §

SPMI Server Platform Management Interface Table, if and only if IPMI has been
implemented.

https://uefi.org/acpi

https://uefi.org/acpi

Arm Base Boot Requirements

Page 42 of 43 Copyright © 2020 Arm Limited. All rights reserved. DEN0044F 1.0

Appendix F Recommended ACPI Methods

CPU performance control
For CPU performance and control, two mutually exclusive methods are defined. The newer _CPC method is used
in conjuction with the PCCT.

Method Full Name ACPI §

_CPC Continuous Performance Control (replaces _PCT and _PSS) 8.4.6.1

_PSS Performance Supported States (Superseded by _CPC) 8.4.6.2

CPU and system idle control
 For CPU and system idle management, the following method has been introduced in ACPI 6.0.

Method Full Name ACPI §

_LPI Low Power Idle States 8.4.4

NUMA
The following methods describe topology and resources that are required by NUMA systems.

ACPI
Signature

Full Name ACPI §

_PXM Proximity 6.2.14

_SLI System Locality Information 6.2.15

_HMA Heterogeneous Memory Attributes 6.2.18

IPMI
The following methods describe the interface type and revision of an IPMI system interface at system boot time.

Method Full Name ACPI §

_IFT IPMIv2: the IPMI Interface Type, if and only if IPMI has been implemented 5.5.2.4.4, IPMI
spec [14]

_SRV IPMIv2: the IPMI revision that is supported by the platform, if and only if IPMI has been
implemented

IPMI spec [14]

Device Configuration and Control
The following methods provide configuration and control for devices.

Method Full Name ACPI §

_CLS Class code (for non-PCI devices that are compatible with PCI drivers) 6.1.3

Arm Base Boot Requirements

Page 43 of 43 Copyright © 2020 Arm Limited. All rights reserved. DEN0044F 1.0

_CID Compatible ID 6.1.2

_DSD Device Specific Data: Provides more device properties and information. 6.2.5

_DSM Device Specific Method (used to convey info to ACPI that it might not currently have a
mechanism to describe, see https://lkml.org/lkml/2013/8/20/556)

9.1.1

_INI Initialize a device 6.5.1

Resources
The following methods provide descriptions for devices.

Method Full Name ACPI §

_MLS Human readable description in multiple languages. Note: this is preferred over _STR. 6.1.7

_STR Device description (in a single language). Superseded by _MLS. 6.1.10

https://lkml.org/lkml/2013/8/20/556

	1 About This Document
	1.1 References
	1.1.1 Cross References

	1.2 Terms and abbreviations
	1.3 Feedback

	2 Background
	3 Introduction
	4 BBR Recipes
	4.1 SBBR recipe
	4.2 ESBBR recipe
	4.3 EBBR recipe
	4.4 LBBR recipe

	5 PSCI/SMCCC Requirements
	5.1 SMCCC Architecture Call requirements
	5.2 PSCI Call requirements

	6 Secondary Core Boot
	7 UEFI Requirements
	7.1 UEFI version
	7.2 UEFI compliance
	7.3 UEFI system environment and configuration
	7.3.1 AArch64 Exception levels
	7.3.1.1 UEFI Boot at EL2
	7.3.1.2 UEFI Boot at EL1

	7.3.2 System volume format
	7.3.3 UEFI image format
	7.3.3.1 UEFI drivers
	7.3.3.2 UEFI applications

	7.3.4 GOP protocol
	7.3.5 Address translation support

	7.4 UEFI boot services
	7.4.1 Memory map
	7.4.2 UEFI loaded images
	7.4.3 Configuration tables

	7.5 UEFI Runtime Services
	7.5.1 Runtime Exception level
	7.5.2 Runtime memory map
	7.5.3 Real-time clock
	7.5.4 UEFI reset and shutdown
	7.5.5 Set variable

	8 ACPI Requirements
	8.1 ACPI version
	8.2 ACPI provided data structures
	8.3 ACPI tables
	8.3.1 Mandatory ACPI tables
	8.3.1.1 RSDP
	8.3.1.2 XSDT
	8.3.1.3 FADT
	8.3.1.4 DSDT and SSDT
	8.3.1.5 MADT
	8.3.1.6 GTDT
	8.3.1.7 DBG2
	8.3.1.8 SPCR
	8.3.1.9 MCFG
	8.3.1.10 PPTT

	8.3.2 Recommended ACPI tables
	8.3.3 Optional ACPI tables

	8.4 ACPI definition blocks
	8.5 ACPI methods and objects
	8.5.1 Global methods and objects
	8.5.2 Device methods and objects
	8.5.3 GPIO controllers
	8.5.4 Generic Event Devices
	8.5.5 Address translation support
	8.5.6 Describing Arm components in ACPI

	8.6 Hardware requirements imposed on the platform by ACPI
	8.6.1 Processor Performance Control
	8.6.2 Time and Alarm Device

	9 SMBIOS Requirements
	9.1 SMBIOS version
	9.1.1 SMBIOS requirements on UEFI

	9.2 SMBIOS structures
	9.2.1 Type00: BIOS Information (required)
	9.2.2 Type01: System Information (required)
	9.2.3 Type02: Baseboard (or Module) Information (recommended)
	9.2.4 Type03: System Enclosure or Chassis (required)
	9.2.5 Type04: Processor Information (required)
	9.2.6 Type07: Cache Information (required)
	9.2.7 Type08: Port Connector Information (recommended for platforms with physical ports)
	9.2.8 Type09: System Slots (required for platforms with expansion slots)
	9.2.9 Type11: OEM Strings (recommended)
	9.2.10 Type13: BIOS Language Information (recommended)
	9.2.11 Type15: System Event Log (recommended)
	9.2.12 Type16: Physical Memory Array (required)
	9.2.13 Type17: Memory Device (required)
	9.2.14 Type19: Memory Array Mapped Address (required)
	9.2.15 Type32: System Boot Information (required)
	9.2.16 Type38: IPMI Device Information (required for platforms with IPMIv1.0 BMC Host Interface)
	9.2.17 Type41: Onboard Devices Extended Information (recommended)
	9.2.18 Type42: Redfish Host Interface (required for platforms supporting Redfish Host Interface[11])

	10 ESBBR Exceptions
	11 DT Requirements
	11.1 DT version
	11.2 DT requirements

	Appendix A Required UEFI Boot Services
	Appendix B Required UEFI Runtime Services
	Appendix C Required UEFI Protocols
	Appendix D Optional UEFI Protocols
	Appendix E Recommended Acpi Tables
	Appendix F Recommended ACPI Methods

