
ARM® Architecture Reference Manual
Supplement

ARMv8.1, for ARMv8-A architecture profile
Copyright © 2016 ARM Limited or its affiliates. All rights reserved.
DDI0557A.b (ID060316)

ARM Architecture Reference Manual Supplement
ARMv8.1, for ARMv8-A architecture profile

Copyright © 2016 ARM Limited or its affiliates. All rights reserved.

Release Information

The following changes have been made to this document.

Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information contained
in this document may be protected by one or more patents or pending patent applications. No part of this document may be
reproduced in any form by any means without the express prior written permission of ARM Limited (“ARM”). No license,
express or implied, by estoppel or otherwise to any intellectual property rights is granted by this document unless
specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use
the information for the purposes of determining whether implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR
PURPOSE WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, ARM makes no representation with respect to,
and has undertaken no analysis to identify or understand the scope and content of, third party patents, copyrights, trade secrets, or
other rights.

This document may include technical inaccuracies or typographical errors.

This document may be translated into other languages for convenience, and you agree that if there is any conflict between the
English version of this document and any translation, the terms of the English version shall prevail.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING
OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure
of this document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof
is not exported, directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to ARM’s customers
is not intended to create or refer to any partnership relationship with any other company. ARM may make changes to this document
at any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any signed written agreement specifically
covering this document with ARM, then the signed written agreement prevails over and supersedes the conflicting provisions of
these terms.

Words and logos marked with ® or ™ are registered trademarks or trademarks of ARM Limited or its affiliates in the EU and/or
elsewhere. All rights reserved. Other brands and names mentioned in this document may be the trademarks of their respective
owners. You must follow the ARM trademark usage guidelines http://www.arm.com/about/trademarks/guidelines/index.php.

Copyright © 2016 ARM Limited or its affiliates. All rights reserved.
ARM Limited. Company 02557590 registered in England.
110 Fulbourn Road, Cambridge, England CB1 9NJ.

LES-PRE-20327

In this document, where the term ARM is used to refer to the company it means “ARM or any of its subsidiaries as appropriate”.

Change History

Date Issue Confidentiality Change

29 April 2016 A.a Non-Confidential EAC release, limited circulation

03 June 2016 A.b Non-Confidential EAC release
ii Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license restrictions in
accordance with the terms of the agreement entered into by ARM and the party that ARM delivered this document to.

Product Status

The information in this document is final, that is for a developed product.

Web Address

http://www.arm.com
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. iii
ID060316 Non-Confidential

iv Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

Contents
ARM Architecture Reference Manual Supplement
ARMv8.1, for ARMv8-A architecture profile

Preface
About this supplement ... x
Using this book ... xi
Conventions .. xiv
Additional reading ... xv
Feedback .. xvi

Part A ARMv8.1 Architecture Introduction and Overview
Chapter A1 Introduction

A1.1 About this ARMv8.1 supplement ... A1-20
A1.2 About the ARMv8.1 architecture ... A1-21

Part B ARMv8.1 Changes in the AArch64 Architecture
Chapter B1 New Atomic Instructions

B1.1 About atomic instructions .. B1-28

Chapter B2 AArch64 SIMD Instructions for Rounding Double Multiply Add/Subtract
B2.1 About the new instructions .. B2-32

Chapter B3 Hierarchical Permission Disables
B3.1 About Hierarchical Permission Disables ... B3-34
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. v
ID060316 Non-Confidential

Chapter B4 Hardware Updates to Access Flag and Dirty State
B4.1 About hardware management of the Access flag and of dirty state B4-36

Chapter B5 AArch64 Privileged Access Never
B5.1 About the Privileged Access Never (PAN) bit ... B5-50

Chapter B6 Limited Ordering Regions
B6.1 About limited ordering regions .. B6-54

Chapter B7 16-bit VMID
B7.1 VMID size .. B7-58

Chapter B8 Virtualization Host Extensions
B8.1 About the Virtualization Host Extensions .. B8-60

Chapter B9 AArch64 Performance Monitors Extension
B9.1 Changes to the Performance Monitors Extension ... B9-74

Chapter B10 A64 Instruction Set Encoding
B10.1 Loads and stores ... B10-78
B10.2 Data processing - SIMD and floating point .. B10-81

Chapter B11 A64 Instructions
B11.1 Alphabetical list of instructions .. B11-86
B11.2 ARMv8.0 sections relating to these instructions .. B11-227

Chapter B12 AArch64 Register Descriptions
B12.1 General information about AArch64 System registers B12-232
B12.2 General system control registers ... B12-234
B12.3 Debug registers ... B12-424
B12.4 Performance Monitors registers .. B12-450
B12.5 Generic Timer registers ... B12-463
B12.6 System instructions ... B12-504
B12.7 ARMv8.0 sections relating to these registers .. B12-545

Part C ARMv8.1 Changes in the AArch32 Architecture
Chapter C1 A32/T32 Advanced SIMD Instructions for Rounding Double Multiply

Add/Subtract
C1.1 About the new instructions .. C1-562

Chapter C2 AArch32 Privileged Access Never
C2.1 About the Privileged Access Never bit .. C2-564

Chapter C3 AArch32 Performance Monitors Extension
C3.1 Changes to the Performance Monitors Extension ... C3-568

Chapter C4 A32/T32 Instruction Set Encoding
C4.1 Advanced SIMD data-processing .. C4-572

Chapter C5 A32 and T32 Instructions
C5.1 Alphabetical list of instructions .. C5-576
C5.2 ARMv8.0 sections relating to these instructions .. C5-584
vi Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

Chapter C6 AArch32 Register Descriptions
C6.1 General information about AArch32 System registers C6-590
C6.2 General system control registers ... C6-591
C6.3 Debug registers ... C6-644
C6.4 Performance Monitors registers .. C6-673
C6.5 Generic Timer registers ... C6-687
C6.6 ARMv8.0 sections relating to these registers .. C6-698

Part D ARMv8.1 Changes to External Debug
Chapter D1 PC Sample-based Profiling

D1.1 Changes to PC Sample-based profiling .. D1-704

Chapter D2 External Debug Register Descriptions
D2.1 General information about External debug register descriptions D2-706
D2.2 Debug registers ... D2-707
D2.3 Performance Monitors registers .. D2-733

Part E Architectural Pseudocode
Chapter E1 ARMv8.1 Pseudocode

E1.1 About the ARMv8.1 pseudocode chapter ... E1-746
E1.2 Library pseudocode for AArch64 ... E1-747
E1.3 Library pseudocode for AArch32 ... E1-807
E1.4 Common library pseudocode .. E1-875

Part F Appendixes
Appendix A Notes on Using Debug and Performance Monitors

F1.1 Self-hosted debug .. F1-952
F1.2 External debug ... F1-953
F1.3 Performance Monitors .. F1-954
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. vii
ID060316 Non-Confidential

viii Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

Preface

This preface introduces the ARM Architecture Reference Manual Supplement, ARMv8.1, for ARMv8-A architecture
profile. It contains the following sections:
• About this supplement on page x.
• Using this book on page xi.
• Conventions on page xiv.
• Additional reading on page xv.
• Feedback on page xvi.
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. ix
ID060316 Non-Confidential

 Preface
 About this supplement
About this supplement
This supplement describes the changes that are introduced by ARM® architecture v8.1, ARMv8.1. For a summary
of these changes, see Chapter A1 Introduction.

This supplement must be read with the latest version of the ARM® Architecture Reference Manual, ARMv8, for
ARMv8-A architecture profile. For more information about the information included in this supplement, and how
this supplement relates to the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile, see
About this ARMv8.1 supplement on page A1-20.

Some sections from the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile have been
included in this supplement to complement instruction and register descriptions.

This manual is organized into parts as described in Using this book on page xi.
x Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

 Preface
 Using this book
Using this book
The purpose of this book is to describe the changes that are introduced in ARMv8.1. It is a supplement to the ARM®
Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile (DDI0487), version A.j, and is intended
to be used with it. There might be inconsistency between this supplement and the ARMv8 Architecture Reference
Manual due to some late-breaking changes. Therefore, the ARMv8-A ARM is the definitive source of information
about ARMv8.0.

It is assumed that the reader is familiar with the ARMv8 architecture.

The information in this book is organized into parts, as described in this section.

Part A, Introduction and Architecture Overview

Part A contains the following chapters:

Chapter A1 Introduction

Read this for a summary of how this supplement relates to the ARM® Architecture Reference
Manual, ARMv8, for ARMv8-A architecture profile and an introduction to the ARMv8.1
architecture.

Part B, ARMv8.1 Changes in the AArch64 Architecture

Part B describes the changes to the architecture in AArch64 state. It contains the following chapters:

Chapter B1 New Atomic Instructions

Read this for a description of the new atomic instructions added to the A64 instruction set.

Chapter B2 AArch64 SIMD Instructions for Rounding Double Multiply Add/Subtract

Read this for a description of the Rounding double multiply-add and Rounding double
multiply-subtract instructions added to the A64 Advanced SIMD instruction set.

Chapter B3 Hierarchical Permission Disables

Read this for a description of the Hierarchical permission disables feature of ARMv8.1 in AArch64
state.

Chapter B4 Hardware Updates to Access Flag and Dirty State

Read this for a description of the hardware management of the Access flag and dirty state feature of
ARMv8.1 in AArch64 state.

Chapter B5 AArch64 Privileged Access Never

Read this for a description of the addition of a Privileged Access Never field to PSTATE.

Chapter B6 Limited Ordering Regions

Read this for a description of the Limited ordering regions (LORegions) feature of ARMv8.1.

Chapter B7 16-bit VMID

Read this for a description of the 16-bit VMID feature of ARMv8.1.

Chapter B8 Virtualization Host Extensions

Read this for a description the Virtualization Host Extensions feature of ARMv8.1, that add
enhanced support for type 2 hypervisors to operation in AArch64 state.

Chapter B9 AArch64 Performance Monitors Extension

Read this for a description of the changes to the Performance Monitors Extension introduced in
ARMv8.1.
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. xi
ID060316 Non-Confidential

 Preface
 Using this book
Chapter B10 A64 Instruction Set Encoding

Read this for a description of the encoding of the instructions that ARMv8.1 adds to the A64
instruction set.

Chapter B11 A64 Instructions

Read this for descriptions of the new A64 instructions that are introduced in ARMv8.1.

Chapter B12 AArch64 Register Descriptions

Read this for descriptions of the AArch64 System registers that are added or affected by ARMv8.1.

Part C, ARMv8.1 Changes in the AArch32 Architecture

Part C describes the changes to the architecture in AArch32 state. It contains the following chapters:

Chapter C1 A32/T32 Advanced SIMD Instructions for Rounding Double Multiply Add/Subtract

Read this for a description of the Rounding double multiply-add and Rounding double
multiply-subtract instructions added to the T32 and A32 Advanced SIMD instruction sets.

Chapter C2 AArch32 Privileged Access Never

Read this for a description of the addition of a Privileged Access Never field to PSTATE.

Chapter C3 AArch32 Performance Monitors Extension

Read this for a description of the changes to the Performance Monitors Extension introduced in
ARMv8.1.

Chapter C4 A32/T32 Instruction Set Encoding

Read this for a description of the encoding of the instructions that ARMv8.1 adds to the T32 and
A32 instruction sets.

Chapter C5 A32 and T32 Instructions

Read this for descriptions of the new T32 and A32 instructions that are introduced in ARMv8.1.

Chapter C6 AArch32 Register Descriptions

Read this for descriptions of the AArch32 System registers that are added or affected by ARMv8.1.

Part D, ARMv8.1 Changes to External Debug

Part D describes the external debug registers. It contains the following chapters:

Chapter D1 PC Sample-based Profiling

Read this for a description of the changes to the PC Sample-based Profiling Extension in ARMv8.1.

Chapter D2 External Debug Register Descriptions

Read this for descriptions of the External debug registers that are added or affected by ARMv8.1,
or by the changes to the Performance Monitors Extension introduced with ARMv8.1.

Part E, Architectural Pseudocode

Part E contains pseudocode that describes various features of the ARM architecture. It contains the following
chapter:

Chapter E1 ARMv8.1 Pseudocode

Read this for the definition of pseudocode that describes various features of the ARMv8.1
architecture, for operation in AArch64 and in AArch32 state, including a summary of the changes
that are made by the introduction of ARMv8.1.
xii Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

 Preface
 Using this book
Part F, Appendixes

This manual contains the following appendix:

Appendix F1 Notes on Using Debug and Performance Monitors

Read this for a description of aspects of the use of Debug, including the Performance Monitors, that
are affected by ARMv8.1 or by the changes to the Performance Monitors introduced with
ARMv8.1.
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. xiii
ID060316 Non-Confidential

 Preface
 Conventions
Conventions
The following sections describe conventions that this book can use:
• Typographic conventions.
• Numbers.
• Pseudocode descriptions.
• Assembler syntax descriptions.

Typographic conventions

The typographical conventions are:

italic Introduces special terminology, and denotes citations.

bold Denotes signal names, and is used for terms in descriptive lists, where appropriate.

monospace Used for assembler syntax descriptions, pseudocode, and source code examples.

Also used in the main text for instruction mnemonics and for references to other items appearing in
assembler syntax descriptions, pseudocode, and source code examples.

SMALL CAPITALS

Used in body text for a few terms that have specific technical meanings, and are defined in the ARM®
Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile.

Colored text Indicates a link. This can be:

• A URL, for example http://infocenter.arm.com.

• A cross-reference, that includes the page number of the referenced information if it is not on
the current page, for example, ARM publications on page xv.

• A link, to a chapter or appendix, or to a glossary entry, or to the section of the document that
defines the colored term, for example Chapter B4.

Numbers

Numbers are normally written in decimal. Binary numbers are preceded by 0b, and hexadecimal numbers by 0x. In
both cases, the prefix and the associated value are written in a monospace font, for example 0xFFFF0000. To improve
readability, long numbers can be written with an underscore separator between every four characters, for example
0xFFFF_0000_0000_0000. Ignore any underscores when interpreting the value of a number.

Pseudocode descriptions

This book uses a form of pseudocode to provide precise descriptions of the specified functionality. This pseudocode
is written in a monospace font, and is described in the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A
architecture profile.

Assembler syntax descriptions

This book contains numerous syntax descriptions for assembler instructions and for components of assembler
instructions. These are shown in a monospace font, and use the conventions described in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile.
xiv Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

 Preface
 Additional reading
Additional reading
This section lists relevant publications from ARM and third parties.

See the Infocenter http://infocenter.arm.com, for access to ARM documentation.

ARM publications
• ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile (ARM DDI 0487).
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. xv
ID060316 Non-Confidential

 Preface
 Feedback
Feedback
ARM welcomes feedback on its documentation.

Feedback on this book

If you have comments on the content of this book, send an e-mail to errata@arm.com. Give:
• The title.
• The number, DDI0557A.b.
• The page numbers to which your comments apply.
• A concise explanation of your comments.

ARM also welcomes general suggestions for additions and improvements.

Note
 ARM tests PDFs only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the appearance or behavior of
any document when viewed with any other PDF reader.
xvi Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

Part A
ARMv8.1 Architecture Introduction and Overview

Chapter A1
Introduction

This chapter summarizes how this supplement relates to the ARM® Architecture Reference Manual, ARMv8, for
ARMv8-A architecture profile and introduces the ARMv8.1 architecture. It contains the following sections:
• About this ARMv8.1 supplement on page A1-20.
• About the ARMv8.1 architecture on page A1-21.
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. A1-19
ID060316 Non-Confidential

A1 Introduction
A1.1 About this ARMv8.1 supplement
A1.1 About this ARMv8.1 supplement
This supplement must be read with the most recent issue of the ARM® Architecture Reference Manual, ARMv8, for
ARMv8-A architecture profile. Together, that manual and this supplement provide a full description of the
ARMv8-A architecture, as extended by the ARMv8.1 architecture extensions.

About the ARMv8.1 architecture on page A1-21 introduces the ARMv8.1 architecture extensions.

In general, this supplement describes only the architectural changes that are introduced by the ARMv8.1
architecture extensions. The major exceptions to this approach are:

• Except for ESR_ELx, this supplement includes the complete description of each register and System
instruction that is changed by ARMv8.1. See:
— Chapter B12 AArch64 Register Descriptions.
— Chapter C6 AArch32 Register Descriptions.
— Chapter D2 External Debug Register Descriptions.

Note
 The register descriptions included in this supplement on page B12-232 indicates why ESR_ELx is the

exception to the general approach.

• To complement the register descriptions, and the descriptions of the new instructions introduced by
ARMv8.1, some sections of the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture
profile are included in this supplement. These sections have been updated to include any changes made by
ARMv8,1, see:
— ARMv8.0 sections relating to these instructions on page B11-227.
— ARMv8.0 sections relating to these registers on page B12-545.
— ARMv8.0 sections relating to these registers on page C6-698.

• This supplement includes the complete ARMv8 pseudocode library, as updated for ARMv8.1. See
Chapter E1 ARMv8.1 Pseudocode.
A1-20 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

A1 Introduction
A1.2 About the ARMv8.1 architecture
A1.2 About the ARMv8.1 architecture
ARMv8.1 introduces a set of extensions to the ARMv8-A architecture profile. This document includes the
definitions of features. The new features that are supported are described under the following headings:
• Features supported by AArch64.
• Features supported by AArch32 on page A1-22.

A1.2.1 Features supported by AArch64

Updates to the ISA

• A set of atomic read/write instructions. See Chapter B1 New Atomic Instructions.

• Two new SIMD instructions, SQRDMLAH, and SQRDMLSH. See Chapter B2 AArch64 SIMD
Instructions for Rounding Double Multiply Add/Subtract.

• A set of load and store instructions that provide memory order over a localized address range
of memory. See Chapter B6 Limited Ordering Regions.

• Changes to the MRS and MSR instructions to support the PSTATE.PAN state bit. See Chapter B5
AArch64 Privileged Access Never.

• All implementations of the ARMv8.1 architecture are required to implement the CRC32
instructions. These are OPTIONAL in ARMv8.0.

Changes to the ARMv8 memory model

• A facility to disable the hierarchical attributes, APTable, PXNTable, UXNTable in the
translation table is added. See Chapter B3 Hierarchical Permission Disables.

• Support for hardware management of the Access flag and Dirty bit in the AArch64
translation table is introduced. See Chapter B4 Hardware Updates to Access Flag and Dirty
State.

• A new PAN (Privileged Access Never) state bit is added to PSTATE. A corresponding bit is
added to the SPSRs. See Chapter B5 AArch64 Privileged Access Never.

• Limited ordering regions (LORegions) allow large systems to perform special load-acquire
and store-release instructions that provide order between the memory accesses to a region of
the physical address map as observed by a limited set of observers. See Chapter B6 Limited
Ordering Regions.

Changes to virtualization

• The option of using a 16-bit VMID. See Chapter B7 16-bit VMID.

• Virtualization Host Extensions introduced for implementations with EL2, to provide support
for Type 2 hypervisors in Non-secure state. See Chapter B8 Virtualization Host Extensions.

Enhancements to the Performance Monitor Extensions

Enhancements to the Performance Monitors Extension. In an ARMv8.1 implementation, the
STALL_FRONTEND and STALL_BACKEND events must be implemented. The event space is
extended to 16 bits. See Chapter B9 AArch64 Performance Monitors Extension.

The following table shows the fields that identify when an ARMv8.1 feature in the AArch64 Execution state is
enabled.

Feature Identification mechanism Value

New atomic instructions ID_AA64ISAR0_EL1.Atomic 0010

SIMD instructions for rounding double multiply
operations

ID_AA64ISAR0_EL1.RDM 0001

Hierarchical permission disables ID_AA64MMFR1_EL1.HD 0001
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. A1-21
ID060316 Non-Confidential

A1 Introduction
A1.2 About the ARMv8.1 architecture
A1.2.2 Features supported by AArch32

The following features are supported by the AArch32 Execution state:

• Two new SIMD instructions, VQRDMLAH, and VQRDMLSH. See Chapter C1 A32/T32 Advanced SIMD Instructions
for Rounding Double Multiply Add/Subtract.

• A new Privileged Access Never (PAN) bit introduced in PSTATE, and the associated changes to the
ARMv8-A memory model. A corresponding bit is added to the SPSRs and CPSR. A new instruction SETPAN
added. See Chapter C2 AArch32 Privileged Access Never.

• Enhancements to the Performance Monitors Extension. In an ARMv8.1 implementation, the
STALL_FRONTEND and STALL_BACKEND events must be implemented. The event space is extended
to 16 bits. See Chapter C3 AArch32 Performance Monitors Extension.

• Virtualization Host Extensions have an impact of some AArch32 debug registers.

The following table shows the fields that identify when an ARMv8.1 feature in the AArch32 Execution state is
enabled.

A1.2.3 Updates to External debug register descriptions

This document also includes the full descriptions of the registers that are accessible through the external debug
interface that are affected by the introduction of ARMv8.1, or by the changes to the Performance Monitors
Extension introduced with ARMv8. See Chapter D2 External Debug Register Descriptions.

A1.2.4 Dependencies

ETMv4.1 or later is required where trace is part of an ARMv8.1 implementation that supports EL2:
• Virtualization Host Extensions.
• The optional 16-bit VMID.

Hardware updates to Access flag and dirty state bit ID_AA64MMFR1_EL1.HAFDBS 0001 - Access flag only.
0010 - Access flag and DBM bit.

Privileged Access Never ID_AA64MMFR1_EL1.PAN 0001

LORegions ID_AA64MMFR1_EL1.LO 0001

16-bit VMID ID_AA64MMFR1_EL1.VMIDBits 0000 - 8 bits
0001 - 16 bits

Virtualization Host Extensions ID_AA64MMFR1_EL1.VH 0001

ID_AA64DFR0_EL1.DebugVer 0111

ID_DFR0_EL1.CopDbg 0111

Performance Monitors Extension ID_AA64DFR0_EL1.PMUVer 0100

Feature Identification mechanism Value

Feature Identification mechanism Value

SIMD instructions for rounding double multiply operations ID_ISAR5.RDM 0001

Privileged Access Never ID_MMFR3.PAN 0001

Performance Monitors Extension ID_DFR0.PerfMon 0100
A1-22 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

A1 Introduction
A1.2 About the ARMv8.1 architecture
A1.2.5 See also

In the ARM Architecture Reference Manual

• Introduction to the ARMv8 Architecture.
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. A1-23
ID060316 Non-Confidential

A1 Introduction
A1.2 About the ARMv8.1 architecture
A1-24 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

Part B
ARMv8.1 Changes in the AArch64 Architecture

Chapter B1
New Atomic Instructions

This chapter describes the new atomic instructions added to the A64 instruction set. It contains the following
section:
• About atomic instructions on page B1-28.
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B1-27
ID060316 Non-Confidential

B1 New Atomic Instructions
B1.1 About atomic instructions
B1.1 About atomic instructions
ARMv8.1 introduces a set of atomic instructions.

The atomic instructions introduced are:

• Compare and Swap instructions, CAS, and CASP. These instructions read one or two values from memory,
compare those values with other values supplied by the instruction, and if the comparison succeeds, writes
back different values, also supplied by the instruction. If the write is performed, the read and the write occur
atomically such that no other modification of the memory location can take place between the read and the
write.

• Atomic memory operation instructions, LD<OP>, and ST<OP>, where <OP> is one of ADD, CLR, EOR, SET, SMAX, SMIN,
UMAX, and UMIN. Each instruction atomically loads a value from memory, performs an operation on the values,
and stores the result back to memory. The LD<OP> instructions leave the originally read value in the
destination register of the instruction.

• Swap instruction, SWP. This instruction atomically reads a location from memory into a register and writes
back a different supplied value back to the same memory location.

These instructions must be aligned to the total size of the memory location being accessed. Otherwise, an Alignment
fault is generated.

For the purpose of permission checking, and for watchpoints, all the new atomic instructions are treated as
performing both a load and a store.

The instructions are provided with ordering options, which map to the acquire and release definitions used in the
ARMv8-A architecture. The atomic instructions with release semantics have the same rules as Store-Release
instructions regarding multi-copy atomicity.

For the CAS and CASP instructions, the architecture permits that a data read clears any exclusive monitors associated
with that location, even if the compare subsequently fails. If these instructions generate a synchronous Data Abort,
the registers which are compared and loaded are restored to the values held in the registers before the instruction
was executed.

The ST<OP> instructions are not regarded as doing a read for the purpose of a DMB LD barrier.

The new instructions are only added to the A64 instruction set. See Loads and stores on page B10-78 for
information on the instruction group and instruction classes that the new instructions belong to.

B1.1.1 Behavior in Debug state

In Debug state, these instructions execute as in Non-debug state.

B1.1.2 Impact on Performance Monitors

The Performance Monitors Extension defines events that count load and store instructions, and events that count
memory-read and memory-write operations.

For the purpose of Performance Monitors, the LD<OP>, CAS, and SWP instructions are both load and store instructions,
and generate both read and write operations. These instructions generate:
• Both LD_RETIRED and ST_RETIRED events.
• The L1D_CACHE_RD event if the memory-read operation accesses the Level 1 data cache.
• The L1D_CACHE_WR event if the memory-write operation accesses the Level 1 data cache.

For the purpose of Performance Monitors, the ST<OP> instructions are store instructions. They generate write
operations. It is IMPLEMENTATION DEFINED whether the instruction generates a read operation at any given point in
the memory hierarchy as the atomic operation might be performed beyond that point. These instructions generate:
• The ST_RETIRED event.
• The L1D_CACHE_WR event if the operation accesses the Level 1 data cache.

The ST<OP> instructions do not generate the LD_RETIRED event. It is IMPLEMENTATION DEFINED whether the
L1D_CACHE_RD event is generated.
B1-28 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B1 New Atomic Instructions
B1.1 About atomic instructions
For the following events that count cache refills, if an atomic instruction generates one cache refill, only one event
is generated:
• L1I_CACHE_REFILL.
• L1D_CACHE_REFILL.
• L2I_CACHE_REFILL.
• L2D_CACHE_REFILL.
• L3D_CACHE_REFILL.

B1.1.3 ESR_ELx fault codes for atomic instructions

In the event of a Data Abort from an atomic instruction:

• The ESR_ELx.WnR field is set to 0 if a read of the location would have generated a fault, otherwise it is set
to 1. This field is UNKNOWN for an external abort.

• The ESR_ELx.ISV field is set to 0.

In the event of a Watchpoint from an atomic instruction, the ESR_ELx.WnR field is set to 0 if a read of the location
would have generated a fault, otherwise it is set to 1.

B1.1.4 Possible implementation restrictions on using atomic instructions

In some implementations, and for some memory types, the properties of atomicity can be met only by functionality
outside the PE. Some system implementations might not support atomic instructions for all regions of the memory.
In particular, this can apply to:

• Any type of memory in the system that does not support hardware cache coherency.

• Device, Non-cacheable memory, or memory that is treated as Non-cacheable, in an implementation that does
support hardware cache coherency.

In such implementations, it is defined by the system:

• Whether the atomic instructions are atomic in regard to other agents that access memory.

• If the atomic instructions are atomic in regard to other agents that access memory, which address ranges or
memory types this applies to.

An implementation can choose which memory type is treated as Non-cacheable.

The memory types for which it is architecturally guaranteed that the atomic instructions will be atomic are:

• Inner Shareable, Inner Write-Back, Outer Write-Back Normal memory with Read allocation hints and Write
allocation hints and not transient.

• Outer Shareable, Inner Write-Back, Outer Write-Back Normal memory with Read allocation hints and Write
allocation hints and not transient.

If the atomic instructions are not atomic in regard to other agents that access memory, then performing an atomic
instruction to such a location can have one or more of the following effects:

• The instruction generates a Synchronous external abort.

• The instruction generates a System Error interrupt.

• The instruction generates an IMPLEMENTATION DEFINED MMU fault reported using the new Fault Status code
of ESR_ELx.DFSC = 110101 for Data Aborts.

For the Non-secure EL1&0 translation regime, if the atomic instruction is not supported because of the
memory type that is defined in the first stage of translation, or the second stage of translation is not enabled,
then this exception is a first stage abort and is taken to EL1. Otherwise, the exception is a second stage abort
and is taken to EL2.

• The instruction is treated as a NOP.
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B1-29
ID060316 Non-Confidential

B1 New Atomic Instructions
B1.1 About atomic instructions
• The instructions are performed, but there is no guarantee that the memory accesses were performed
atomically in regard to other agents that access memory. In this case, the instruction might also generate a
System Error interrupt.

B1.1.5 Identification mechanism

The ID_AA64ISAR0_EL1.Atomic field identifies the presence of the atomic instructions.

B1.1.6 See also

In this supplement
• ID_AA64ISAR0_EL1.Atomic.
• The following instructions in Chapter B11 A64 Instructions:

— CAS and CASP instructions.
— LD<OP> instructions.
— ST<OP> instructions.
— SWP instructions.

• Load/store exclusive on page B10-78.
• Atomic memory operations on page B10-80.

In the ARM Architecture Reference Manual

The following sections of the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile will
be updated:
• Loads and stores.
• Load/store exclusive.
B1-30 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

Chapter B2
AArch64 SIMD Instructions for Rounding Double
Multiply Add/Subtract

This chapter describes the Rounding double multiply add and Rounding double multiply subtract instructions added
to the A64 Advanced SIMD instruction set. It contains the following section:
• About the new instructions on page B2-32.
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B2-31
ID060316 Non-Confidential

B2 AArch64 SIMD Instructions for Rounding Double Multiply Add/Subtract
B2.1 About the new instructions
B2.1 About the new instructions
The following instructions are added to the AArch64 SIMD instruction set:
• SQRDMLAH, Signed Saturating Rounding Doubling Multiply Accumulate Returning High Half.
• SQRDMLSH, Signed Saturating Rounding Doubling Multiply Subtract Returning High Half.

These new instructions are added to the Data processing - SIMD and floating-point instruction group. See Data
processing - SIMD and floating point on page B10-81 for information on the instruction classes these new
instructions belong to.

B2.1.1 Behavior in Debug state

In Debug state, these instructions are CONSTRAINED UNPREDICTABLE, and the behavior is one of the following:
• The instruction is UNDEFINED.
• The instruction executes as a NOP.
• The instruction executes as in Non-debug state.

B2.1.2 Identification mechanism

The ID_AA64ISAR0_EL1.RDM field identifies the presence of the Rounding Double Multiply Add/Subtract
instructions.

B2.1.3 See also

In this supplement
• Data processing - SIMD and floating point on page B10-81.
• SQRDMLAH (by element).
• SQRDMLAH (vector).
• SQRDMLSH (by element).
• SQRDMLSH (vector).
• ID_AA64ISAR0_EL1.RDM.

In the ARM Architecture Reference Manual

The following sections in the A64 Instruction Set Overview chapter of the ARM® Architecture Reference Manual,
ARMv8, for ARMv8-A architecture profile will be updated:
• Data processing - SIMD and floating-point.
• Advanced SIMD scalar three same.
• Advanced SIMD scalar x indexed element.
• Advanced SIMD three same.
• Advanced SIMD vector x indexed element.
B2-32 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

Chapter B3
Hierarchical Permission Disables

This chapter describes the Hierarchical permission disables feature of ARMv8.1. It contains the following section:
• About Hierarchical Permission Disables on page B3-34.
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B3-33
ID060316 Non-Confidential

B3 Hierarchical Permission Disables
B3.1 About Hierarchical Permission Disables
B3.1 About Hierarchical Permission Disables
The hierarchical attributes in the translation tables, APTable, PXNTable, and UXNTable permit subtrees of the
translation tables to be used by different agents. Not all operating systems use this functionality, and so ARMv8.1
adds a facility to disable these bits.

When these bits are disabled:
• The value is IGNORED by hardware, allowing them to be used by software.
• The behavior of the system is as if the bits are all set to 0.

This ability to disable hierarchical attribute bits has no effect on the NSTable bit.

Where hierarchical attributes are disabled for the EL2 translation regime, when HCR_EL2.{E2H, TGE} is not {1,
1}, and the EL3 translation regime, bit[61] and bit[59] of the next level descriptor attributes in the translation tables
are required to be IGNORED by hardware and are no longer reserved, meaning these bits can be used by software.

The Hierarchical permission disables feature is added only to the AArch64 translation regimes.

B3.1.1 Identification mechanism

The ID_AA64MMFR1_EL1.HADS field identifies the support for Hierarchical Permission Disables.

B3.1.2 See also

In this supplement
• ID_AA64MMFR1_EL1.HD.
• TCR_EL1.{HPD1, HPD0}.
• TCR_EL2.HPD.
• TCR_EL3.HPD.

In the ARM Architecture Reference Manual

The following sections in The AArch64 Virtual Memory System Architecture chapter of the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile will be updated:
• Translation tables and the translation process.
• Memory attribute fields in the VMSAv8-64 translation table format descriptors.
B3-34 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

Chapter B4
Hardware Updates to Access Flag and Dirty State

This chapter describes the hardware management of Access flag and dirty state feature of ARMv8.1. It contains the
following section:
• About hardware management of the Access flag and of dirty state on page B4-36.
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B4-35
ID060316 Non-Confidential

B4 Hardware Updates to Access Flag and Dirty State
B4.1 About hardware management of the Access flag and of dirty state
B4.1 About hardware management of the Access flag and of dirty state
In ARMv8.0, all updates to the translation tables are performed by software. ARMv8.1 introduces the following
optional features that perform hardware updates to the translation tables, in AArch64 state only:

Hardware management of the Access flag

When enabled, this feature means that, in situations where, without this feature, an Access flag fault
would be generated, the hardware instead performs an atomic read-modify-write of the appropriate
translation table descriptor, to update the Access flag from 0 to 1.

See Hardware management of the Access flag on page B4-39 for the architectural specification of
the feature.

Hardware management of dirty state

In order to support the hardware management of dirty state, a new field, the DBM field, is added to
the translation table descriptors as part of ARMv8.1 architecture.

When enabled, the hardware management of dirty state means that, if the Block or Page descriptor
in a translation table indicates that a data access does not have write permission, then in situations
where, without this feature, a data access would generate a Permission fault only because of this lack
of write permission, the hardware checks the value of the DBM field in the Block or Page descriptor.
If this field is 1, then instead of generating a Permission fault the hardware performs an atomic
read-modify-write of the translation table descriptor, to change the value of the bit that prohibits the
write access.

Hardware management of dirty state can only be enabled when hardware management of the Access
flag is also enabled.

See Hardware management of dirty state on page B4-40 for the architectural specification of this
feature.

Configuration fields are added to:
• TCR_EL1, TCR_EL2, TCR_EL3, and VTCR_EL2 to enable these features.
• ID_AA64MMFR1_EL1 to indicate the level of support for these features.
B4-36 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B4 Hardware Updates to Access Flag and Dirty State
B4.1 About hardware management of the Access flag and of dirty state
B4.1.1 Changes to the translation tables

To support hardware management of dirty state, ARMv8.1 introduces the DBM bit in the translation table Block
and Page descriptors. When hardware management of dirty state is enabled, this bit indicates whether hardware
should perform the associated update to the permission bit in the descriptor. In each of these descriptors, a new bit,
bit[51] is allocated as the DBM bit. This bit is RES0 in ARMv8.0.

Figure B4-1 shows the ARMv8.1 level 0, level 1, and level 2 descriptor formats. Bits[63:51] of the descriptor define
the memory attributes, and bits[50:48] are RES0.

Figure B4-1 VMSAv8-64 level 0, level 1, and level 2 descriptor formats

Figure B4-2 shows the ARMv8.1 level 3 descriptor formats. Bits[63:51] of the descriptor define the memory
attributes, and bits[50:48] are RES0.

Figure B4-2 VMSAv8-64 level 3 descriptor format

RES0 1
63 62 61 60 59 58 5051 48 47 m m-1 2 1 0

IGNORED Next-level table address[47:m]‡ IGNORED 1Table

PXNTable
XNTable
APTable
NSTable

Stage 1 only,
RES0 at stage 2

A level 0 Table descriptor returns the address of the level 1 table.
A level 1 Table descriptor returns the address of the level 2 table.
A level 2 Table descriptor returns the address of the level 3 table.

With the 4KB granule size m is 12, with the 16KB granule size m is 14, and with the 64KB granule size, m is 16.

RES0 1Upper block attributes
63 5051 4748 n n-1 12 11 2 1 0

Output address[47:n] RES0 Lower block attributes 0Block

With the 4KB granule size, for the level 1 descriptor n is 30, and for the level 2 descriptor, n is 21.

With the 64KB granule size, for the level 2 descriptor, n is 29.
With the 16KB granule size, for the level 2 descriptor, n is 25.

0IGNORED

63 1 0
Invalid

‡ When m ≥ 12, bits [m:12] are RES0.

1Upper† attributes
63 5051 4748 12 11 2 1 0

RES0 Output address[47:12] Lower† attributes 1Page, 4KB granule

Reserved 1RES0
63 2 1 0

0

0IGNORED

63 1 0
Invalid

Output address[47:16] RES0 1Upper† attributes
63 5051 4748 12 11 2 1 0

RES0 Lower† attributes 1
16 15

Page, 64KB granule

Output address[47:14] ‡ 1Upper† attributes
63 5051 4748 12 11 2 1 0

RES0 Lower† attributes 1
14 13

Page, 16KB granule

† Upper page attributes and Lower page attributes
‡ Field is RES0
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B4-37
ID060316 Non-Confidential

B4 Hardware Updates to Access Flag and Dirty State
B4.1 About hardware management of the Access flag and of dirty state
In a Table descriptor for a stage 1 translation, bits[63:59] of the descriptor define the attributes for the next-level
translation table access, and bits[58:51] are IGNORED.

Figure B4-3 Next-level attributes in stage 1 VMSAv8-64 Table descriptors

In Block and Page descriptors, the memory attributes are split into an upper block and a lower block. DBM, bit[51],
in the translation table descriptors is the control bit for hardware management of dirty state. The definition of the
other attributes is unchanged.

Figure B4-4 shows the attributes for stage 1 Block and Page descriptors.

Figure B4-4 Attribute fields in stage 1 VMSAv8-64 Block and Page descriptors

Figure B4-5 shows the attributes for stage 2 Block and Page descriptors.

Figure B4-5 Attribute fields in stage 2 VMSAv8-64 Block and Page descriptors

† UXN for a translation regime that applies to execution at EL0, XN for the other regimes.
‡ RES0 for a translation regime that does not apply to execution at EL0.

Next-level descriptor attributes, stage 1 only

63 62 61 60 59 58 51
IGNORED

NSTable
APTable

UXNTable or XNTable †
PXNTable ‡

Upper attributes Lower attributes

IGNORED

63 59 58 55 54 53 52
IGNORED

UXN or XN †
PXN ‡

Contiguous

11 10 9 8 7 6 5 4 2

nG
AF

SH[1:0]
AP[2:1]

NS
AttrIndx[2:0]

Reserved for software use

Attribute fields for VMSAv8-64 stage 1 Block and Page descriptors

† UXN for a translation regime that applies to execution at EL0, XN for the other regimes.

51

DBM

‡ RES0 for a translation regime that does not apply to execution at EL0.

Lower attributes

11 10 9 8 7 6 5 2
(0)

Upper attributes

IGNORED

63 59 58 55 54 53 52
IGNORED (0)

XN
Contiguous

Reserved for software use

Reserved for use by a System MMU

Attribute fields for VMSAv8-64 stage 2 Block and Page descriptors

60

MemAttr[3:0]

AF
SH[1:0]

S2AP[1:0]
IGNORED

51

DBM
B4-38 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B4 Hardware Updates to Access Flag and Dirty State
B4.1 About hardware management of the Access flag and of dirty state
B4.1.2 Hardware management of the Access flag

Hardware management of the Access flag is enabled, for the corresponding stage of address translation, by the
following configuration fields:
For stage 1 translations

• TCR_EL1.HA.
• TCR_EL2.HA.
• TCR_EL3.HA.

For stage 2 translations
VTCR_EL2.HA.

When the value of a configuration bit, HA, is 1, then when a memory access is made using a translation table Block
or Page descriptor from the corresponding stage of address translation:

• The PE sets the value of the Access flag to 1 in the translation table descriptor in memory, in a coherent
manner, by an atomic read-modify-write of the translation table descriptor, if both of the following conditions
are true:

— The descriptor does not generate a Permission fault or an Alignment fault based on the memory type.

— If the hardware update mechanism was disabled or not implemented, the access would have generated
an Access flag fault.

When the PE updates the Access flag in this way no Access flag fault is generated.

• It is CONSTRAINED UNPREDICTABLE whether the PE sets the value of the Access flag in the translation table
entry in memory to 1, in a coherent manner, by an atomic read-modify-write of the translation table
descriptor, if both of the following conditions are true.

— The descriptor generates a Permission fault or an Alignment fault based on the memory type.

— If the hardware update mechanism was disabled or not implemented, the access would have generated
an Access flag fault.

This means that the value of the Access flag becomes UNKNOWN if the above conditions are all true.

The Access flag might be set to 1 as a result of speculative accesses by the PE.

Note
 A consequence of the architectural rules for translation table accesses is that the architecture requires that for any
translation to which an architecturally executed memory access occurs, the Access flag is set to 1, except as
indicated in Using break-before-make when updating translation table entries on page B4-45. However, because
the architecture permits speculative accesses, the Access flag is permitted to be set to 1, even if there is no
architecturally executed memory accesses by the processor.

When hardware updating of the Access flag is enabled, each stage of translation is treated independently. This
means that a single memory access can cause a hardware update to either or both:
• The stage 1 Access flag.
• The stage 2 Access flag.

Note
 Since speculative accesses are permitted to update the Access flags, it is permissible for:

• The stage 1 Access flag for a translation of a virtual address to be updated in situations where the stage 2
translation of the associated intermediate physical address that is returned by the stage 1 of the virtual address
does not permit access.

• The stage 2 Access flag for a translation of an intermediate physical address to be updated in situations where
the stage 1 translation of the associated virtual address which returned that intermediate physical address does
not permit access.
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B4-39
ID060316 Non-Confidential

B4 Hardware Updates to Access Flag and Dirty State
B4.1 About hardware management of the Access flag and of dirty state
An address translation instruction for an address is not required to set the Access flag in the translation table entries
for that address. However, the architecture permits the Access flag in the translation table entries to be set to 1
speculatively.

When hardware updates of the Access flag are enabled for a stage of translation an address translation instruction
that uses that stage of translation will not report that the address will give rise to an Access flag fault in the PAR,
and the result in PAR will be as if the value of the Access flag in the translation table entries for that address was 1.

Implementations are not required to support the hardware management of the Access flag. If this mechanism is not
supported, then the HA bit in TCR_EL1, TCR_EL2, TCR_EL3, and VTCR_EL2 is RES0.

B4.1.3 Hardware management of dirty state

The hardware management of dirty state mechanism can only be enabled if hardware management of the Access
flag is enabled.

Note
 The hardware management of dirty state mechanism uses:
• In a stage 1 translation table access, the AP[2] bit in conjunction with the DBM bit in the translation table

descriptors.
• In a stage 2 translation table access, the S2AP[1] bit in conjunction with the DBM bit in the translation table

descriptors.

Hardware management of dirty state is enabled, for the corresponding stage of address translation, by the following
configuration fields:
For stage 1 translations

• TCR_EL1.HD.
• TCR_EL2.HD.
• TCR_EL3.HD.

For stage 2 translations
VTCR_EL2.HD.

When hardware management of dirty state is enabled, and a memory access is made using a translation table Block
or Page descriptor:

• For a stage 1 address translation, if the value of the TCR_ELx.HD field corresponding to the address
translation is 1, then the PE sets AP[2] to 0 in the translation descriptor in memory, in a coherent manner by
an atomic read-modify-write of the translation table descriptor, if both of the following conditions are true:

— The value of the DBM field in the descriptor is 1.

— If the hardware update mechanism was disabled or not implemented, the access using this descriptor
would have generated a Permission fault only because the value of the AP[2] field is 1, indicating that
the access does not have write permission.

When the PE updates AP[2] in this way no Permission fault is generated because of the value of the AP[2]
field.

• For a stage 2 address translation, if the value of the VTCR_EL2.HD field is 1, then the PE sets S2AP[1] to 1
in the translation descriptor in memory, in a coherent manner by an atomic read-modify-write of the
translation table descriptor, if both of the following conditions are true:

— The value of the DBM field in the descriptor is 1.

— If the hardware update mechanism was disabled or not implemented, the access using this descriptor
would have generated a Permission fault only because the value of the S2AP[1] field is 0, indicating
that the access does not have write permission.

When the PE updates S2AP[1] in this way no Permission fault is generated because of the value of the
S2AP[1] field.
B4-40 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B4 Hardware Updates to Access Flag and Dirty State
B4.1 About hardware management of the Access flag and of dirty state
Note
 The PE that does the atomic update of the translation table descriptor is expected to ensure that any cached copy of
that translation table descriptor for that PE is similarly updated, or removed from the TLB, so that multiple writes
from the same thread on the same PE do not lead to multiple updates to the table. This is only a performance
expectation.

If, for a write access, the PE finds that a cached copy of the descriptor in a TLB had the DBM bit set to 1 and the
AP[2] or S2AP[1] bit set to the value that forbids writes, then the PE must check that the cached copy is not stale
with regard to the descriptor entry in memory, and if necessary perform an atomic read-modify-write update of the
descriptor in memory. This applies if the cached copy of the descriptor in a TLB is either:
• A stage 1 descriptor in which DBM has the value 1 and AP[2] has the value 1.
• A stage 2 descriptor in which DBM has the value 1 and S2AP[1] has the value 0.

Note
 ARM expects that, in many implementations, any atomic update of a translation table entry required by the dirty
state management mechanism will cause a translation table walk.

Implementations are not required to support the dirty state mechanism. If this mechanism is not supported, then the
HD bit in TCR_EL1, TCR_EL2, TCR_EL3, and VTCR_EL2 is RES0.

For the hardware updating of the AP[2] and S2AP[1] bits, each translation stage is treated independently. This
means a single memory access can update either or both of:
• The stage 1 AP[2] bit.
• The stage 2 S2AP[1] bit.

The architecture does not permit updates to AP[2] and S2AP[1] by the hardware management of dirty state
mechanism to occur as a result of speculative accesses by the PE that are not performed architecturally, except that:

• A non-speculative access that passes its stage 1 permissions check can update AP[2] and subsequently
encounter a stage 2 fault.

Note
 This update of AP[2] is permitted even if the transaction subsequently encounters a stage 2 Translation fault

or a Permission fault. This avoids a need to update both AP[2] and S2AP[1] as a single atomic update.

• If the stage 2 hardware management of dirty state mechanism is enabled, the S2AP[1] field of a stage 2
translation table entry that is translating a stage 1 translation table:

— Is updated from 0 to 1 as a result of a speculative update of the Access flag in an entry of that stage 1
translation table, even though speculative updates of S2AP[1] are not permitted.

— Without generating a stage 2 MMU fault, is permitted to be updated speculatively from 0 to 1 as a
result of performing a translation table walk using that stage1 translation table, even if the entry in the
stage 1 translation table is not updated.

Note
 This applies even if the stage 1 translation table contains entries that are not the final level entries and

therefore would not be updated. This relaxation avoids the hardware complexity of having to detect
whether the stage 1 entry is a final level entry before deciding to set the stage 2 dirty state information.

• If an instruction that generates more than one single-copy atomic memory access has a fault on some, but not
all, of those memory accesses, then AP[2] and S2AP[1] bits associated with accesses from that instruction,
which do not fault are permitted to be updated if the associated hardware update of dirty state mechanism is
enabled.
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B4-41
ID060316 Non-Confidential

B4 Hardware Updates to Access Flag and Dirty State
B4.1 About hardware management of the Access flag and of dirty state
For a Block or Page translation table descriptor for which the AF bit is 0, the DBM bit is 1, and either the value of
the stage 1 AP[2] bit is 1 or the value of the stage 2 S2AP[1] bit is 0, both AF can be set to 1, and either AP[2] set
to 0 or S2AP[1] set to 1, in a single atomic read-modify-write operation, as a result of an attempted write to a
memory location that uses the translation table entry.

Implications of enabling the dirty state management mechanism

This subsection describes behaviors that result from having the dirty state management mechanism enabled for a
particular stage of address translation.

For the final level of lookup in a stage 1 translation:

In the EL3 translation regime

The output address of the lookup is treated as writable if all of the following conditions apply:

• In the descriptor for the final level of lookup, the value of DBM is 1 and the value of
AP[2] is 1.

• In the descriptor for every higher level of lookup, the value of APTable[1] is 0.

In addition, if these conditions apply and the value of SCTLR_EL3.WXN is 1, then the output
address is treated as Execute-never.

In the EL2 translation regime, when the value of HCR_EL2.{E2H, TGE} is not {1, 1}

The output address of the lookup is treated as writable if all of the following conditions apply:
• In the descriptor for the final level of lookup, the value of DBM is 1 and the value of

AP[2] is 1.
• In the descriptor for every higher level of lookup the value of APTable[1] is 0.

In addition, if these conditions apply and the value of SCTLR_EL2.WXN is 1, then the output
address is treated as Execute-never.

In the EL2&0 translation regime, when the value of HCR_EL2.{E2H, TGE} is {1, 1}

The output address of the lookup is treated as writable at EL2 and EL0, Privileged execute-never,
but not Unprivileged execute-never, if all of the following conditions apply:
• In the descriptor for the final level of lookup, the value of DBM is 1 and the value of

AP[2:1] is 0b11.
• In the descriptor for every higher level of lookup the value of APTable[1:0] is 0b00.

The output address of the lookup is treated as writable at EL2 but not writable at EL0 if either:

• Both:

— In the descriptor for the final level of lookup, the value of DBM is 1 and the value of
AP[2:1] is 0b10.

— In the descriptor for every higher level of lookup the value of APTable[1:0] is 0b0x.
In this case, if the value of SCTLR_EL2.WXN is, 1 then the output address is treated as
Privileged execute-never and Unprivileged execute-never.

• Or both:

— In the descriptor for the final level of lookup, the value of DBM is 1 and the value of
AP[2:1] is 0b11.

— In at least one of the descriptors for higher levels of lookup the value of APTable[1:0]
is 0b01.

In this case, if the value of SCTLR_EL2.WXN is 1, then the output address is treated as
Privileged execute-never and Unprivileged execute-never.

In the EL1&0 translation regime

The output address of the lookup is treated as writable at EL1 and EL0, Privileged execute-never,
but not Unprivileged execute-never, if all of the following conditions apply:
• In the descriptor for the final level of lookup, the value of DBM is 1 and the value of

AP[2:1] is 0b11.
B4-42 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B4 Hardware Updates to Access Flag and Dirty State
B4.1 About hardware management of the Access flag and of dirty state
• In the descriptor for every higher level of lookup the value of APTable[1:0] is 0b00.

The output address of the lookup is treated as writable at EL1 but not writable at EL0 if either:

• Both:

— In the descriptor for the final level of lookup, the value of DBM is 1 and the value of
AP[2:1] is 0b11.

— In at least one of the descriptors for higher levels of lookup the value of APTable[1:0]
is 0b01.

In this case, if the value of SCTLR_EL1.WXN is 1, then the output address is treated as
Privileged execute-never and Unprivileged execute-never.

• Or both:

— In the descriptor for the final level of lookup, the value of DBM is 1 and the value of
AP[2:1] is 0b10.

— In the descriptor for every higher level of lookup the value of APTable[1:0] is 0b0x.
In this case, if the value of SCTLR_EL1.WXN is 1, then the output address is treated as
Privileged execute-never and as Unprivileged execute-never.

The output address of a translation table entry where the DBM bit is 1, and the stage 1 AP[2] bit is 1 or the stage 2
S2AP[1] bit is 0, is treated as writable:

• For data cache invalidation instructions that require write permission, that is for the DCIVAC instruction.

• For address translation instructions that require write permission, that is for the AT S12E0W, AT S12E1W,
AT S1E0W, AT S1E1W, AT S1E2W, and AT S1E3W instructions.

Cache invalidation and address translation instructions never cause the stage 1 AP[2] bit or the stage 2 S2AP[1] bit
in the translation table entry to be updated.

For a Store-Exclusive instruction to a memory location for which the DBM bit is 1 and the stage 1 AP[2] bit is 1, if
the Store-Exclusive fails because the exclusive monitor is not in the exclusive state, it is IMPLEMENTATION DEFINED
whether the AP[2] bit in the translation table is updated.

For a Store-Exclusive instruction to a memory location for which the DBM bit is 1, and the stage 2 S2AP[1] bit is
0, if the Store-Exclusive fails because the exclusive monitor is not in the exclusive state, it is IMPLEMENTATION
DEFINED whether the S2AP[1] bit in the translation table is updated.

For a store to a memory location for which the DBM bit is 1, and the stage 1 AP[2] bit is 1, it is IMPLEMENTATION
DEFINED whether the AP[2] bit in the translation table is updated:
• If the memory location generates a synchronous external abort on a write for a store to a memory location.
• If the memory location generates a watchpoint on a write.

For a store to a memory location for which the DBM bit is 1, and the stage 2 S2AP[1] bit is 0, it is IMPLEMENTATION
DEFINED whether the S2AP[1] bit in the translation table is updated:
• If the memory location generates a synchronous external abort on a write for a store to a memory location.
• If the memory location generates a watchpoint on a write.

In the event of a PE setting the stage 1 AP[2] bit to 0, it is not required that all associated entries are removed from
the TLBs of other PEs in the system.

In the event of a PE setting the stage 2 S2AP[1] bit to 1, it is not required that all associated entries are removed
from the TLBs of other PEs in the system.

For the stage 2 translation tables, it is CONSTRAINED UNPREDICTABLE whether the stage 2 S2AP[1] entry is updated
in response to a stage 1 translation table walk where the stage 1 translation system is configured to perform hardware
updates to the Access flag or stage 1 AP[2] bit, but the values of the Access flag and AP[2] bit are such that a
hardware update to the stage 1 translation table entry being accessed is not required.

In the event of a PE encountering a situation for a data write for which the DBM bit is 1 and the stage 1 AP[2] bit
is 1 in a TLB, it is required that the hardware checks that the cached copy is not stale with regards to the translation
table entry in memory and performs the atomic read-modify-write update with respect to table entry in memory.
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B4-43
ID060316 Non-Confidential

B4 Hardware Updates to Access Flag and Dirty State
B4.1 About hardware management of the Access flag and of dirty state
In the event of a PE encountering a situation for a data write for which the DBM bit is 1 and stage 2 S2AP[1] bit is
0 in a TLB, it is required that the hardware checks that the cached copy is not stale with regards to the translation
table entry in memory and performs the atomic read-modify-write update with respect to table entry in memory.

For a CAS or CASP instruction to a memory location for which the DBM bit is 1, and the stage 1 AP[2] bit is 1, if the
compare fails, and the location is not updated, it is CONSTRAINED UNPREDICTABLE whether the AP[2] bit in the
translation table is updated.

For a CAS or CASP instruction to a memory location for which the DBM bit is 1, and the stage 2 S2AP[1] bit is 0, if
the compare fails, and the location is not updated, it is CONSTRAINED UNPREDICTABLE whether the S2AP[1] bit in
the translation table is updated.

B4.1.4 Ordering of hardware updates to the translation tables

A hardware update to the translation table that is caused by a load or a store, including an atomic instruction, is
guaranteed to be observed, to the extent required by the shareability attributes:

• Before a load or store, including an atomic instruction, to an arbitrary address, other than the address of the
translation table entry, that appears in program order after the load or store, including an atomic instruction,
causing the update to the translation table entry only if a DSB with the appropriate shareability attributes,
where the DSB applies to both loads and stores, is executed between the load or store, including an atomic
instruction, that caused the update to the translation table and the subsequent load or store.

• Before a load to the translation table entry that is being updated that appears in program order after the load
or store, including an atomic instruction, causing the update to the translation table entry only if a DSB with
the appropriate shareability attributes, where the DSB applies to both loads and stores, is executed between the
load or store, including an atomic instruction, that caused the update to the translation table and the
subsequent load.

• Before a store or atomic access to the translation table entry that is being updated that appears in program
order after the load or store, including an atomic instruction, causing the update to the translation table entry.

• Before a cache maintenance instruction to an arbitrary address appearing in program order after the load or
store, including an atomic instruction, causing the update to the translation table entry only if a DSB with the
appropriate shareability attributes, where the DSB applies to both loads and stores, is executed between the
load or store, including an atomic instructing that caused the update to the translation table entry and the
subsequent cache maintenance instruction.

An update to the translation table that is caused by a load is not ordered with respect to the load itself.

An update to the translation table that is caused by a store or an atomic access is observed by all observers, to the
extent required by the shareability attributes, before the store itself in the case that the store is to the same location
as the translation table update.

An update to the translation table that is caused by a store or an atomic access is not ordered with respect to the store
itself in the case that the store is not the same location as the translation table update.

B4.1.5 Restriction on memory types for hardware updates on page tables

Translation tables can be placed in Normal memory with any cacheability, but the hardware updates to the
translation tables require an atomic update of memory. The properties of the atomicity can be met only by
functionality outside the PE. Some system implementations might not implement this functionality for all regions
of memory. This can apply to:

• Any type of memory in the system that does not support hardware cache coherency.

• Non-cacheable memory, or memory that is treated as Non-cacheable, in an implementation that does not
support hardware cache coherency.

An implementation can choose which memory type is treated as Non-cacheable.
B4-44 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B4 Hardware Updates to Access Flag and Dirty State
B4.1 About hardware management of the Access flag and of dirty state
The memory types for which it is architecturally guaranteed that the hardware updates of the translation tables will
be atomic are:

• Inner Shareable, Inner Write-Back, Outer Write-Back Normal memory with Read allocation hints and Write
allocation hints and not transient.

• Outer Shareable, Inner Write-Back, Outer Write-Back Normal memory with Read allocation hints and Write
allocation hints and not transient.

If the hardware updates of the translation tables are not atomic in regard to other agents that access memory, then
performing a hardware update to such a location can have one or more of the following effects:

• The hardware update generates a Synchronous external abort, which is presented as an external abort on a
translation table walk.

• The instruction generates a System Error interrupt.

• The hardware update generates an Unsupported atomic hardware update MMU fault reported using the new
Fault Status code of:

— ESR_ELx.DFSC = 110001 for Data Aborts.

— ESR_ELx.IFSC = 110001 for Instruction Aborts.
For the Non-secure EL1&0 translation regime, if atomic hardware update is not supported because of
the memory type that is defined in the first stage of translation, or the second stage of translation is not
enabled, then this exception is a first stage abort and is taken to EL1. Otherwise, the exception is a
second stage abort and is taken to EL2.

• The hardware updates are performed, but there is no guarantee that the memory accesses were performed
atomically in regard to other agents that access memory. In this case, the instruction might also generate a
system error interrupt.

B4.1.6 Use of the Contiguous bit with hardware updates of the translation table entries

The hardware update of the Access flag, and the AP[2]/S2AP[1] bit only apply to a single translation table entry.
An update to one of these bits in a translation table entry that also has the Contiguous bit set to 1 can give rise to
translation table entries that have different Access flag, or different AP[2] and S2AP[1] bits within the members of
a group of contiguous translation table entries.

This is acceptable under the architecture when using hardware updates of the translation table entries. In addition,
an access or a write to a location translated by an entry that has the contiguous bit set might not result in a hardware
update of the Access flag or the AP[2]/S2AP[1] bit, if at least one entry in the set of contiguous translation table
entries has the Access flag set to 1, or the AP[2]/S2AP[1] bit indicating that the entry is dirty.

Note
 • The provision of the Contiguous bit permits, but does not require, the hardware to hold a single entry in a

TLB for the set of translation table entries in the group, and to have updated only one or more of the Access
flags and the AP[2] bit or S2AP[1] bit for the single translation table entry that gave rise to the TLB entry.

• A consequence of this is that software must combine the Access flag values, and AP[2] or S2AP[1] values,
across all translation table entries in a contiguous group to determine whether any of the entries have been
accessed or written to.

B4.1.7 Using break-before-make when updating translation table entries

To avoid the effects of TLB caching possibly breaking coherency, ordering guarantees or uniprocessor semantics,
failures associated with the hardware updates of the translation tables, or possibly failing to clear the exclusive
monitors, the ARM architecture requires the use of a break-before-make when changing translation table entries
whenever multiple threads of execution can use the same translation tables and the change to the translation entries
involves any of:

• A change of the memory type.
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B4-45
ID060316 Non-Confidential

B4 Hardware Updates to Access Flag and Dirty State
B4.1 About hardware management of the Access flag and of dirty state
• A change of the cacheability attributes.

• A change of the output address (OA), if the OA of at least one of the old translation table entry and the new
translation table entry is writable.

• A change to the size of block used by the translation system. This applies both:

— When changing from a smaller size to a larger size, for example by replacing a table mapping with a
block mapping in a stage 2 translation table.

— When changing from a larger size to a smaller size, for example by replacing a block mapping with a
table mapping in a stage 2 translation table.

• Creating a global entry when there might be non-global entries in a TLB that overlap with that global entry.

A break-before-make approach on changing from an old translation table entry to a new translation table entry
requires the following steps:

1. Replace the old translation table entry with an invalid entry, and execute a DSB instruction.

2. Invalidate the translation table entry with a broadcast TLB invalidation instruction, and execute a DSB
instruction to ensure the completion of that invalidation.

3. Write the new translation table entry, and execute a DSB instruction to ensure that the new entry is visible.

This sequence ensures that at no time are both the old and new entries simultaneously visible to different threads of
execution. This means the problems described at the start of this subsection cannot arise.

In ARMv8.1, with the introduction of hardware updates to the translation table entries, the effects of not following
the break-before-make rules are extended.

If the break-before-make rules are not followed for changing the translation table entries, the ARMv8.1 architecture
permits that the following failures associated with the hardware updates of the translation table entries could occur:

• The Access flag is not set on such a translation table entry despite the fact that the memory location associated
with that entry was accessed.

• The AP[2] or S2AP[1] bit is modified by the hardware on such a translation table entry despite the fact that
the memory location associated with that entry was not written to.

• The AP[2] or S2AP[1] bit is not modified by the hardware on such a translation table entry despite the fact
that the memory location associated with that entry was written to.

• The ordering required between hardware updates to such a translation table entry and stores appearing later
in program order is not followed.

B4.1.8 Identification mechanism

The ID_AA64MMFR1_EL1.HAFDBS field identifies the support for the hardware management of the Access flag
and dirty state.

B4.1.9 See also

In this supplement
• ID_AA64MMFR1_EL1.HAFDBS.
• TCR_EL1.{HD, HA}.
• TCR_EL2.{HD, HA}.
• TCR_EL3.{HD, HA}.
• VTCR_EL2.{HD, HA}.
B4-46 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B4 Hardware Updates to Access Flag and Dirty State
B4.1 About hardware management of the Access flag and of dirty state
In the ARM Architecture Reference Manual

The following sections in The AArch64 Virtual Memory System Architecture chapter of the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile will be updated:
• VMSAv8-64 translation table format descriptors.
• Access controls and memory region attributes.
• Using break-before-make when updating translation table entries.
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B4-47
ID060316 Non-Confidential

B4 Hardware Updates to Access Flag and Dirty State
B4.1 About hardware management of the Access flag and of dirty state
B4-48 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

Chapter B5
AArch64 Privileged Access Never

This chapter describes the addition of a Privileged access never field to PSTATE. It contains the following section:
• About the Privileged Access Never (PAN) bit on page B5-50.
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B5-49
ID060316 Non-Confidential

B5 AArch64 Privileged Access Never
B5.1 About the Privileged Access Never (PAN) bit
B5.1 About the Privileged Access Never (PAN) bit
A new PAN (Privileged Access Never) state bit is added to PSTATE. When the value of this bit is 1, any access from
EL1 or higher to a memory address that is accessible at EL0 generates a Permission fault. A corresponding bit is
added to SPSR_EL1, SPSR_EL2, SPSR_EL3 for exception returns, and DSPSR_EL0 for entry to or exit from
Debug state.

A new SPAN bit is added to SCTLR_EL1 and SCTLR_EL2, and applies when HCR_EL2.{E2H, TGE} == {1, 1}.
The bit is used to control whether the PAN bit is set on an exception to EL1 or EL2.

When the value of the PAN bit is 0, the translation system is the same as in ARMv8.0.

The PAN bit has no effect on:
• Data Cache instructions other than DC ZVA.
• Address translation instructions.
• Unprivileged instructions, LDTR, LDTRB, LDTRH, LDTRSB, LDTRSH, LDTRSW, STTR, STTRB, and STTRH.
• Instruction accesses.

If access is disabled, then the access will give rise to a stage 1 Permission fault.

On an exception taken from AArch64 to AArch64, PSTATE.PAN is copied to SPSR_ELx.PAN.

On an exception return from AArch64:
• SPSR_ELx.PAN is copied to PSTATE.PAN, when the target Exception level is in AArch64.
• SPSR_ELx.PAN is copied to PSTATE.PAN, when the target Exception level is in AArch32.

PSTATE.PAN is copied to DSPSR_EL0.PAN on entry to Debug state.

DSPSR_EL0.PAN is copied to PSTATE.PAN on exit from Debug state.

B5.1.1 Behavior in Debug state

In Debug state, the behavior of instructions for accessing PSTATE.PAN bit is CONSTRAINED UNPREDICTABLE, and
have one of the following behaviors:
• The instruction is UNDEFINED.
• The instruction executes as a NOP.
• The instruction executes as in Non-debug state, setting DSPSR_EL0 and DLR_EL0 to UNKNOWN values.

B5.1.2 Identification mechanism

The ID_AA64MMFR1_EL1.PAN field identifies the support for the Privileged Access Never bit.

B5.1.3 See also

In this supplement

• Instructions:
— MSR (immediate).

• Registers:

— ID_AA64MMFR1_EL1.PAN.

— SCTLR_EL1.SPAN.

— SPSR_abt.SPAN.

— SPSR_EL1.PAN.

— SPSR_EL2.PAN.

— SPSR_EL3.PAN.

— SPSR_fiq.SPAN.
B5-50 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B5 AArch64 Privileged Access Never
B5.1 About the Privileged Access Never (PAN) bit
— SPSR_irq.SPAN.

— SPSR_und.SPAN.

— DSPSR_EL0.PAN.

In the ARM Architecture Reference Manual

The following sections of the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile will
be updated:
• Process state, PSTATE.
• Saved Program Status Registers (SPSRs).
• Access controls and memory region attributes section in The AArch64 Virtual Memory System Architecture

chapter.
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B5-51
ID060316 Non-Confidential

B5 AArch64 Privileged Access Never
B5.1 About the Privileged Access Never (PAN) bit
B5-52 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

Chapter B6
Limited Ordering Regions

This chapter describes the Limited ordering regions (LORegions) feature of ARMv8.1. It contains the following
section:
• About limited ordering regions on page B6-54.
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B6-53
ID060316 Non-Confidential

B6 Limited Ordering Regions
B6.1 About limited ordering regions
B6.1 About limited ordering regions
Limited ordering regions (LORegions) allow large systems to perform special load-acquire and store-release
instructions that provide order between the memory accesses to a region of the physical address map as observed
by a limited set of observers.

This feature is supported in AArch64 only.

B6.1.1 LoadLOAcquire, StoreLORelease

For each PE, the Non-secure physical memory map is divided into a set of LORegions using a table that is held
within the PE. Any physical address in the Non-secure memory map can be a member of one LORegion. If a
physical address is assigned to more than one LORegion, then an implementation might treat it as if it has been
assigned to fewer LORegions than that have been specified. A physical address in the Secure physical memory map
cannot be a member of any LORegion.

ARMv8.1 provides a set of instructions with Acquire semantics for loads, and Release semantics for stores that
apply in relation to the defined LORegions. The new variants of the load-acquire and store-release instructions are
LoadLOAcquire and StoreLORelease.

For all memory types, these new instructions have the following ordering requirements:

• A StoreLORelease followed by a LoadLOAcquire executed on the same PE, where the StoreLORelease and
LoadLOAcquire access memory addresses in the same LORegion, is observed in program order by any
observers that are in both:
— The shareability domain of the address that is accessed by the StoreLORelease.
— The shareability domain of the address that is accessed by the LoadLOAcquire.

• For a LoadLOAcquire, observers in the shareability domain of the address that is accessed by the
LoadLOAcquire observe accesses in the following order:

1. The read caused by the LoadLOAcquire.

2. Reads and writes caused by loads and stores that appear in program order after the LoadLOAcquire to
the same LORegion as the address accessed by the LoadLOAcquire, to the extent required by the
Shareability domains of the addresses that are accessed by those loads and stores.

There are no additional ordering requirements on loads or stores that appear before the LoadLOAcquire.

• For a StoreLORelease, observers in the shareability domain of the address that is accessed by the
StoreLORelease observe accesses in the following order:

1. All of the following for which the shareability of the address that is accessed requires that the observer
observes the access:

• Reads and writes to the same LORegion caused by loads and stores that appear in program order
before the StoreLORelease.

• Writes to the same LORegion as the StoreLORelease accesses that were observed by the PE
executing the StoreLORelease before it executed the StoreLORelease.

2. The write caused by the StoreLORelease.

There are no additional ordering requirements on loads or stores that appear in program order after the
StoreLORelease.

• A StoreLORelease instruction is multi-copy atomic when observed with a LoadLOAcquire instruction.

In addition, for accesses to a memory-mapped peripheral of an arbitrary system-defined size that is defined using
Device memory, these instructions have the following requirements:

• A LoadLOAcquire to an address in the memory-mapped peripheral ensures that all memory accesses using
Device memory types to the same memory-mapped peripheral that lie in the same LORegion that are
architecturally required to be observed after the LoadLOAcquire will arrive at the memory-mapped
peripheral after the memory access of the LoadLOAcquire.
B6-54 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B6 Limited Ordering Regions
B6.1 About limited ordering regions
• A StoreLORelease to an address in the memory-mapped peripheral ensures that all memory accesses using
Device memory types to the same memory-mapped peripheral that lie in the same LORegion that are
architecturally required to be observed before the StoreLORelease will arrive at the memory-mapped
peripheral before the memory access of the StoreLORelease.

• Any memory access to the memory-mapped peripheral that are architecturally required to be ordered before
the memory access of a StoreLORelease will arrive at the memory-mapped peripheral before any memory
access to the same memory-mapped peripheral using Device memory types that are architecturally required
to be ordered after the memory access of a LoadLOAcquire to the same memory location as the
StoreLORelease, where the LoadLOAcquire has observed the value that is stored by the StoreLORelease.

B6.1.2 Specification of the LORegions

The LORegions are defined in the Non-secure physical memory map using a set of LORegion descriptors. The
number of LORegion descriptors is IMPLEMENTATION DEFINED, and can be discovered by reading the LORID_EL1
register.

Each LORegion descriptor consists of:
• A tuple of the following values:

— A Start Address.
— An End Address.
— An LORegion Number.

• Valid bit which indicates whether that LORegion descriptor is valid

A memory location lies within the LORegion identified by the LORegion Number if the physical address lies
between the Start Address and the End Address, inclusive. The Start Address must be defined to be aligned to 64KB
and the End Address must be defined as the top byte of a 64KB block of memory.

The LORegion descriptors are programmed using the LORSA_EL1, LOREA_EL1, LORN_EL1, and LORC_EL1
registers in the System register space. These registers are only supported in the Non-secure memory map.

If a LoadLOAcquire or a StoreLORelease does not match with any LORegion, then:

• The LoadLOAcquire will behave as a LoadAcquire, and will be ordered in the same way with respect to all
accesses, independent of their LORegions.

• The StoreLORelease will behave as a StoreRelease, and will be ordered in the same way with respect to all
accesses, independent of their LORegions.

Note
 If no LORegions are implemented, then the LoadLOAcquire and StoreLORelease will therefore behave as a
LoadAcquire and StoreRelease.

B6.1.3 Pseudocode enhancements

A new access type AccType_LIMITEDORDERED has been added for these limited ordering instructions to be identified.
This access type is not implemented in the pseudocode, and is just an indication of the memory access.

B6.1.4 Behavior in Debug state

In Debug state, these instructions execute as in Non-debug state.

B6.1.5 Identification mechanism

The ID_AA64MMFR1_EL1.LO field identifies the support for LORegions. The field has the value 0b0001 if the
LORegions are supported.
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B6-55
ID060316 Non-Confidential

B6 Limited Ordering Regions
B6.1 About limited ordering regions
B6.1.6 See also

In this supplement

• Instructions:

— LDLAR.

— LDLARB.

— LDLARH.

— STLLR.

— STLLRB.

— STLLRH.

• Registers:

— ID_AA64MMFR1_EL1.LO

— HCR_EL2.

— LORC_EL1.

— LOREA_EL1.

— LORID_EL1.

— LORN_EL1.

— LORSA_EL1.

— SCR_EL3.

In the ARM Architecture Reference Manual

The following sections of the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile will
be updated:
• Memory barriers section in The AArch64 Application Level Memory Model chapter.
• Loads and stores.
• Load/store exclusive.
B6-56 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

Chapter B7
16-bit VMID

This chapter describes the 16-bit VMID feature of ARMv8.1. It contains the following section:
• VMID size on page B7-58.
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B7-57
ID060316 Non-Confidential

B7 16-bit VMID
B7.1 VMID size
B7.1 VMID size
In ARMv8.1, when EL2 is using AArch64, the VMID size is an IMPLEMENTATION DEFINED choice of 8 bits or 16
bits.

When an implementation supports 16-bit VMID, the VTTBR_EL2.VMID field contains the 16-bit VMID, and
VTCR_EL2.VS selects whether the top 8 bits of the VMID are used.

When the value of VTCR_EL2.VS is 1, the top 8 bits of VTTBR_EL2.VMID:
• Are IGNORED by hardware for every purpose other than direct reads of the field.
• Are treated as if they are all zeros when used for allocating and matching TLB entries.

A 16-bit VMID is only supported when EL2 is using AArch64. Hardware must ignore bits[15:9] of a VMID when
EL2 is using AArch32.

B7.1.1 Impact on debug

When an implementation has 16 bits of VMID, for context-aware breakpoints that are programmed to match a
VMID, DBGBVR<n>_EL1.VMID and DBGBXVR<n>.VMID contains the 16-bit VMID.

When an implementation has 8 bits of VMID, the top 8 bits of DBGBVR<n>_EL1.VMID and
DBGBXVR<n>.VMID of such breakpoints are RES0. See Breakpoint context comparisons on page B8-69.

Note
 • When VTCR_EL2.VS == 0, or when EL2 is using AArch32.

• To DBGBXVR<n>[31:0] and DBGBVR<n>_EL1[63:32] because matching against the 16 bits of VMID
depends on whether EL2 is using AArch64, and not on the Execution state of the debug target Exception
level.

B7.1.2 Identification mechanism

The ID_AA64MMFR1_EL1.VMIDBits field identifies the supported VMID size.

B7.1.3 See also

In this supplement
• VTCR_EL2.VS.
• VTTBR_EL2.VMID.
• DBGBVR<n>_EL1.VMID.
• DBGBXVR<n>.VMID.
• DBGBVR<n>_EL1.VMID (External).
• ID_AA64MMFR1_EL1.VMIDBits.
• Breakpoint context comparisons on page B8-69.

In the ARM Architecture Reference Manual

The following section of the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile will
be updated:

• Virtualization in The AArch64 System Level Programmers’ Model chapter.
B7-58 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

Chapter B8
Virtualization Host Extensions

This chapter describes the Virtualization Host Extensions feature of ARMv8.1, that add enhanced support for type 2
hypervisors to operation in AArch64 state. It contains the following section:
• About the Virtualization Host Extensions on page B8-60.
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B8-59
ID060316 Non-Confidential

B8 Virtualization Host Extensions
B8.1 About the Virtualization Host Extensions
B8.1 About the Virtualization Host Extensions
ARMv8.1 introduces the Virtualization Host Extensions that provide enhanced support for a Type 2 virtualization
solution, where there is a Host OS, which is either more privileged than the hypervisor, or is a peer of the hypervisor.

The Virtualization Host Extensions only apply to an implementation that includes EL2 using AArch64.

B8.1.1 State added by the Virtualization Host Extensions

The following state is added as part of the Virtualization Host Extensions:

• A new configuration bit, EL2 host (E2H), is added to HCR_EL2. This only applies to execution in
Non-secure state. When SCR_EL3.NS==0, HCR_EL2.E2H is treated as 0 for all purposes other than reading
or writing the value of the register

• A new 64-bit register, TTBR1_EL2 is added, having the same format and contents as the TTBR1_EL1.

• A new 32-bit register CONTEXTIDR_EL2 is added, having the same format and contents as
CONTEXTIDR_EL1.

• A new virtual timer is added to EL2 and is accessed using the registers: CNTHV_TVAL_EL2,
CNTHV_CVAL_EL2, and CNTHV_CVAL_EL2. The registers take the same format as CNTV_CVAL_EL0,
CNTV_TVAL_EL0, and CNTV_CTL_EL0 respectively. The virtual offset is treated as 0 for this timer.

B8.1.2 Behavior of HCR_EL2.E2H

When the HCR_EL2.E2H bit is 0:

• There are no changes to the ARMv8 functionality other than the new state described in State added by the
Virtualization Host Extensions.

• The contents of TTBR1_EL2 are ignored by hardware, other than reads by an MRS instruction and writes by
an MSR instruction.

• The Context ID matching breakpoint is disabled at EL2, and uses the value of CONTEXTIDR_EL1 at EL0
and EL1.

When the HCR_EL2.E2H bit is 1:

• The EL2 translation regime is modified to behave in the same way as the first stage of the EL1&0 translation
regime, with an upper address range translated by tables pointed to TTBR1_EL2. The existing TTBR0_EL2
services the lower address range of the EL2 translation regime and is extended to have the same contents and
format as the TTBR0_EL1.

• The translation tables used in the EL2 translation regime are modified to take the same format as the EL1&0
translation regime. EL2 accesses are treated as privileged in this format.

• Context ID matching can occur at EL2. When executing at EL2, a Context ID matching breakpoint uses
CONTEXTIDR_EL2.

• VMID and VMID + Context ID matching breakpoints do not match at EL2.

• The virtual offset is treated as 0 when CNTVCT_EL0 is read from EL2.

• The Privileged Access Never mechanism applies to accesses from EL2 to a virtual address which has access
permitted at EL0.

• The following registers are redefined:
— CNTHCTL_EL2.
— CPTR_EL2.
— TCR_EL2.

If HCR_EL2.{E2H, TGE}== {1, 0}, then all accesses from EL1 and EL0 are not included in the EL2 translation
regime.
B8-60 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B8 Virtualization Host Extensions
B8.1 About the Virtualization Host Extensions
If HCR_EL2.{E2H, TGE} == {1, 1}:

• The EL2&0 translation regime is used when executing at Non-secure EL0 as well as when executing at EL2,
where Non-secure EL0 accesses are treated as unprivileged.

Note
 Accesses from Non-secure EL1 are not possible under this configuration.

• In EL2, the unprivileged instructions LDTR, LDTRB, LDTRH, LDTRSB, LDTRSH, LDTRSW, STTR, STTRB, and STTRH act as
if they are executing at Non-secure EL0 for permission and watchpoint checking.

• Except for the purpose of reading the value held in the register, some fields in HCR_EL2 and all fields in
HSTR_EL2 are treated as having a specific value.

• SCTLR_EL2 is redefined to include additional fields from SCTLR_EL1, and to apply to execution at
Non-secure EL0.

• The following timer registers are redefined to access the associated _EL2 register, rather than accessing the
_EL0 register when in EL0:
— CNTP_CTL_EL0.
— CNTP_CVAL_EL0.
— CNTP_TVAL_EL0.
— CNTV_CTL_EL0.
— CNTV_CVAL_EL0.
— CNTV_TVAL_EL0.

For some information on registers that are redirected, see System and Special-purpose register redirection on
page B8-63.

• When executing at Non-secure EL0, a Context ID matching breakpoint uses CONTEXTIDR_EL2.

• VMID and VMID + Context ID matching breakpoints do not match at Non-secure EL0.

• The CPACR_EL1 register does not cause any instructions to be trapped to EL1, regardless of the contents of
CPACR_EL1.

• The CNTKCTL_EL1 register does not cause any instructions to be trapped to EL1, and the event stream
event caused by the CNTKCTL_EL1 is disabled, regardless of the contents of CNTKCTL_EL1.

• The virtual offset is treated as 0 when CNTVCT_EL0 is read from EL0 or EL2.

• The TLB maintenance and address translation instructions that apply to the EL1&0 translation regime are
redefined to apply to the EL2&0 translation regime. See System instructions on page B12-504.

• When executing at EL2 or Non-secure EL0, any physical interrupt that is configured to be taken at EL2 is
subject to the Process state interrupt mask. If the mask bit is set, then the corresponding interrupt will not be
taken. If the mask bit is not set, then the corresponding interrupt will be taken. See Asynchronous exception
masking on page B8-62.

• When an exception is taken from EL0 to EL2, the value of the HCR_EL2.RW bit is not considered when
determining the exception vector offset to use.
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B8-61
ID060316 Non-Confidential

B8 Virtualization Host Extensions
B8.1 About the Virtualization Host Extensions
Table B8-1 lists the vector offsets used when an exception is taken from EL0.

B8.1.3 Asynchronous exception masking

The following tables show the masking of physical interrupts when the highest implemented Exception level is
using AArch64:
• For implementations that include both EL2 and EL3, see Table B8-2.
• For implementations that include EL2 but not EL3, see Table B8-3 on page B8-63.
• Virtual interrupt masking, see Table B8-4 on page B8-63.

In the tables:
A When the interrupt is asserted it is taken regardless of the value of the Process state interrupt mask.
B When the interrupt is asserted it is subject to the corresponding Process state mask. If the value of

the mask is 1 then the interrupt is not taken. If the value of the mask is 0 the interrupt is taken.
C When the interrupt is asserted it is not taken, regardless of the value of the Process state interrupt

mask.

Table B8-1 Vector offsets from vector table base address

Exception taken from
Offset for exception type

Synchronous IRQ or vIRQ FIQ or vFIQ SError or vSError

Lower Exception level, where the implemented level
immediately lower than the target level is using
AArch64.a

0x400 0x480 0x500 0x580

Lower Exception level, where the implemented level
immediately lower than the target level is using
AArch32.a

0x600 0x680 0x700 0x780

a. For exceptions taken to EL3, if EL2 is implemented, the level immediately lower than the target level is EL2 if the exception was taken from
Non-secure state, but EL1 if the exception was taken from Secure EL1 or EL0.

Table B8-2 Physical interrupt masking when both EL3 and EL2 are implemented

SCR_EL3.EA
SCR_EL3.IRQ
SCR_EL3.FIQ

SCR_EL3.RW
AMOa

IMOa

FMOa

Target
Exception
level

Effect of the interrupt mask when executing in:

Non-secure Secure

EL0 EL1 EL2 EL0 EL1 EL3

0 0 0 EL1 B B B B B C

1 EL2 A A B B B C

1 0 EL1 B B C B B C

1 EL2 A A B B B C

1 X X EL3 A A A A A B

a. If EL2 is using AArch64, these are the HCR_EL2.{AMO, IMO, FMO} control bits. If HCR_EL2.{E2H, TGE} is {0, 1}, these
bits are treated as being 1 other than a direct read. If HCR_EL2.{E2H, TGE} is {1, 1}, these bits are treated as being 0 other
than a direct read. If EL2 is using AArch32, these are the HCR{AMO, IMO, FMO} control bits.If HCR.TGE is 1, these bits
are treated as being 1 other than a direct read.
B8-62 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B8 Virtualization Host Extensions
B8.1 About the Virtualization Host Extensions
B8.1.4 System and Special-purpose register redirection

When the Virtualization Host Extensions are implemented, and HCR_EL2.E2H is set to 1, when executing at EL2,
some EL1 System register access instructions are redefined to access the equivalent EL2 register. Register access
behavior is unchanged when executing at EL3, EL1, or EL0.

Table B8-3 Physical interrupt masking when EL3 is not implemented and EL2 is implemented

HCR_EL2.AMOa

HCR_EL2.IMOa

HCR_EL2.FMOa

Target
Exception
level

Effect of the interrupt mask when executing in:

Non-secure

EL0 EL1 EL2

0 EL1 B B C

1 EL2 A A B

a. If HCR_EL2.{E2H, TGE} is {0, 1}, these bits are treated as being 1 other than for a direct read.
If HCR_EL2.{E2H, TGE} is {1, 1}, these bits are treated as being 0 other than a direct read.

Table B8-4 Virtual interrupt masking

SCR_EL3.EA
SCR_EL3.IRQ
SCR_EL3.FIQ

FMOa

IMOa

AMOa
TGEa

Effect of the interrupt mask when executing in:

Non-secure Secure

EL0 EL1 EL2 EL0 EL1 EL3

X 0 X C C C C C C

X 1 0 B B C C C C

X 1 1 C C C C C C

a. If EL2 is using AArch64, these are the HCR_EL2.{TGE, AMO, IMO, FMO} control bits. If EL2
is using AArch32, these are the HCR{TGE, AMO, IMO, FMO} control bits.
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B8-63
ID060316 Non-Confidential

B8 Virtualization Host Extensions
B8.1 About the Virtualization Host Extensions
Table B8-5 shows the System register access instruction encodings that are redirected to the equivalent EL2 register
when the named mnemonic is used.

Table B8-6 shows the Special-purpose register access instruction encodings that are redirected to the equivalent
EL2 register when the named mnemonic is used.

Table B8-5 System register redirection

System register access instruction encoding
Mnemonic Equivalent register

accessed at EL2op0 op1 CRn CRm op2

3 0 1 0 0 SCTLR_EL1 SCTLR_EL2

2 CPACR_EL1 CPTR_EL2

2 0 0 TTBR0_EL1 TTBR0_EL2

1 TTBR1_EL1 TTBR1_EL2

2 TCR_EL1 TCR_EL2

5 1 0 AFSR0_EL1 AFSR0_EL2

1 AFSR1_EL1 AFSR1_EL2

2 0 ESR_EL1 ESR_EL2

6 0 0 FAR_EL1 FAR_EL2

10 2 0 MAIR_EL1 MAIR_EL2

3 0 AMAIR_EL1 AMAIR_EL2

12 0 0 VBAR_EL1 VBAR_EL2

13 0 1 CONTEXTIDR_EL1 CONTEXTIDR_EL2

14 1 0 CNTKCTL_EL1 CNTHCTL_EL2

3 14 2 0 CNTP_TVAL_EL0 CNTHP_TVAL_EL2

1 CNTP_CTL_EL0 CNTHP_CTL_EL2

2 CNTP_CVAL_EL0 CNTHP_CVAL_EL2

3 3 14 3 0 CNTV_TVAL_EL0 CNTHP_TVAL_EL2

1 CNTV_CTL_EL0 CNTHV_CTL_EL2

2 CNTV_CVAL_EL0 CNTHV_CVAL_EL2

Table B8-6 Special-purpose register redirection

Special-purpose register access instruction encoding
Mnemonic Equivalent register

accessed at EL2op1 CRm op2

0 0 0 SPSR_EL1 SPSR_EL2

1 ELR_EL1 ELR_EL2
B8-64 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B8 Virtualization Host Extensions
B8.1 About the Virtualization Host Extensions
B8.1.5 System and Special-purpose register aliasing

New register encodings, and aliases, are provided so that software executing at EL2 can access the EL1 registers for
which accesses from EL2 are redirected as described in System and Special-purpose register redirection on
page B8-63. These aliases can also be used at EL3, but are UNDEFINED at EL1 and EL0.

Table B8-7 shows the System register aliasing.

Table B8-7 shows the Special-purpose register aliasing.

Table B8-7 System register aliases

System register access instruction encoding
Mnemonic Register accessed

op0 op1 CRn CRm op2

3 5 1 0 0 SCTLR_EL12 SCTLR_EL1

2 CPACR_EL12 CPACR_EL1

2 0 0 TTBR0_EL12 TTBR0_EL1

1 TTBR1_EL12 TTBR1_EL1

2 TCR_EL12 TCR_EL1

5 1 0 AFSR0_EL12 AFSR0_EL1

1 AFSR1_EL12 AFSR1_EL1

2 0 ESR_EL12 ESR_EL1

6 0 0 FAR_EL12 FAR_EL1

10 2 0 MAIR_EL12 MAIR_EL1

3 0 AMAIR_EL12 AMAIR_EL1

12 0 0 VBAR_EL12 VBAR_EL1

13 0 1 CONTEXTIDR_EL12 CONTEXTIDR_EL1

14 1 0 CNTKCTL_EL12 CNTKCTL_EL1

2 0 CNTP_TVAL_EL12 CNTP_TVAL_EL0

1 CNTP_CTL_EL02 CNTP_CTL_EL0

2 CNTP_CVAL_EL02 CNTHP_CVAL_EL2

3 5 14 3 0 CNTV_TVAL_EL02 CNTV_TVAL_EL0

1 CNTV_CTL_EL02 CNTV_CTL_EL0

2 CNTV_CVAL_EL02 CNTHV_CVAL_EL2

Table B8-8 Special-purpose register aliases

Special-purpose register access instruction encoding
Register name Register

accessedop1 CRm op2

5 0 0 SPSR_EL12 SPSR_EL1

1 ELR_EL12 ELR_EL1
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B8-65
ID060316 Non-Confidential

B8 Virtualization Host Extensions
B8.1 About the Virtualization Host Extensions
B8.1.6 Impact on Debug

For context-aware breakpoints, the Virtualization Host Extensions add new breakpoint types, and modify the
existing breakpoint types.

Note
 The changes to the breakpoint types apply to the AArch32 registers DBGBXVR<n> and DBGBVR<n> because
matching against CONTEXTIDR_EL2 depends on whether EL2 is using AArch64, and not on the Execution state
of the debug target Exception level.

ARMv8.1 changes to breakpoint types defined by DBGBCRn_EL1.BT

The following list describes the new and modified breakpoint types introduced in ARMv8.1. The description of the
breakpoint types not listed here is unchanged.

0b0010, Unlinked Context ID Match breakpoint

BT == 0b0010 is a reserved value if the breakpoint is not a context-aware breakpoint.

For context-aware breakpoints, generation of a Breakpoint exception depends on both:

• DBGBCR<n>_EL1.{SSC, HMC, PMC}. These define the execution conditions for which
the breakpoint generates Breakpoint exceptions for.

• A successful Context ID match, as described in Breakpoint context comparisons on
page B8-69.

The value of DBGBVR<n>_EL1[31:0] is compared with the current Context ID.
CONTEXTIDR_EL2 holds the current Context ID when all of:
• The implementation includes the Virtualization Host Extensions.
• The PE is in Non-secure state.
• HCR_EL2.E2H is set to 1.
• The PE is executing at EL0 and HCR_EL2.TGE is 1, or PE is executing at EL2.

Otherwise, CONTEXTIDR_EL1 holds the current Context ID.

DBGBCR<n>_EL1.{LBN, BAS} for this breakpoint are ignored.

0b0011, Linked Context ID Match breakpoint

BT == 0b0011 is a reserved value if the breakpoint is not a context-aware breakpoint.

For context-aware breakpoints, one of the following applies:

• If no Linked breakpoints or Linked watchpoints link to this breakpoint then the breakpoint
does not generate any Breakpoint exceptions.

• Generation of a Breakpoint exception depends on both:

— A successful instruction address match, defined by a Linked Address match
breakpoint that links to this breakpoint.

— A successful Context ID match, as described in Breakpoint context comparisons on
page B8-69.

• Generation of a Watchpoint exception depends on both:

— A successful data address match, defined by a Linked watchpoint that links to this
breakpoint.

— A successful Context ID match, as described in Breakpoint context comparisons on
page B8-69.

The value of DBGBVR<n>_EL1[31:0] is compared with the current Context ID.
CONTEXTIDR_EL2 holds the current Context ID when all of:
• The implementation includes the Virtualization Host Extensions.
• The PE is in Non-secure state.
• HCR_EL2.E2H is set to 1.
B8-66 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B8 Virtualization Host Extensions
B8.1 About the Virtualization Host Extensions
• The PE is executing at EL0 and HCR_EL2.TGE is 1, or PE is executing at EL2.

Otherwise, CONTEXTIDR_EL1 holds the current Context ID.

DBGBCR<n>_EL1.{LBN, SSC, HMC, BAS, PMC} for this breakpoint are ignored.

0b0110, Unlinked CONTEXTIDR_EL1 Match

BT == 0b0110 is a reserved value if the breakpoint is not a context-aware breakpoint, or if the
implementation does not include the Virtualization Host Extensions.

For context-aware breakpoints, generation of a Breakpoint exception depends on both:

• DBGBCR<n>_EL1.{SSC, HMC, PMC}. These define the execution conditions for which
the breakpoint generates Breakpoint exceptions.

• A successful Context ID match defined by this breakpoint, as described in Breakpoint context
comparisons on page B8-69.

The Context ID check is made against the value in CONTEXTIDR_EL1. The value of
DBGBVR<n>_EL1[31:0] is compared with the Context ID value held in CONTEXTIDR_EL1.

DBGBCR<n>_EL1.{LBN, BAS} for this breakpoint are ignored.

0b0111, Linked CONTEXTIDR_EL1 Match

BT == 0b0111 is a reserved value if the breakpoint is not a context-aware breakpoint, or if the
implementation does not include the Virtualization Host Extensions.

For context-aware breakpoints, one of the following applies:

• If no Linked breakpoints or Linked watchpoints link to this breakpoint then the breakpoint
does not generate any Breakpoint exceptions.

• Generation of a Breakpoint exception depends on both:

— A successful instruction address match, defined by a Linked Address match
breakpoint that links to this breakpoint.

— A successful Context ID match defined by this breakpoint, as described in Breakpoint
context comparisons on page B8-69.

• Generation of a Watchpoint exception depends on both:

— A successful data address match, defined by a Linked watchpoint that links to this
breakpoint.

— A successful Context ID match defined by this breakpoint, as described in Breakpoint
context comparisons on page B8-69.

The Context ID check is made against the value in CONTEXTIDR_EL1. The value of
DBGBVR<n>_EL1[31:0] is compared with the Context ID value held in CONTEXTIDR_EL1.

DBGBCR<n>_EL1.{LBN, SSC, HMC, BAS, PMC} for this breakpoint are ignored.

0b1100, Unlinked CONTEXTIDR_EL2 Match

BT == 0b1100 is a reserved value if the breakpoint is not a context-aware breakpoint, or if the
implementation does not include the Virtualization Host Extensions.

For context-aware breakpoints, generation of a Breakpoint exception depends on both:

• DBGBCR<n>_EL1.{SSC, HMC, PMC}. These define the execution conditions for which
the breakpoint generates Breakpoint exceptions.

• A successful CONTEXTIDR_EL2 match, as described in Breakpoint context comparisons
on page B8-69.

The Context ID check is made against the value in CONTEXTIDR_EL2. The check against
CONTEXTIDR_EL2 means this breakpoint can be generated only if execution is in Non-secure
state and EL2 is using AArch64.

The match fails if execution is in Secure state, or if EL2 is using AArch32. Otherwise, the value of
DBGBVR<n>_EL1 is compared with the Context ID value held in CONTEXTIDR_EL2.

DBGBCR<n>_EL1.{LBN, BAS} for this breakpoint are ignored.
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B8-67
ID060316 Non-Confidential

B8 Virtualization Host Extensions
B8.1 About the Virtualization Host Extensions
0b1101, Linked CONTEXTIDR_EL2 Match

BT == 0b1101 is a reserved value if the breakpoint is not a context-aware breakpoint, or if the
implementation does not include the Virtualization Host Extensions.

For context-aware breakpoints, either:

• If no Linked breakpoints or Linked watchpoints link to this breakpoint then the breakpoint
does not generate any Breakpoint exceptions.

• Generation of a Breakpoint exception depends on both:

— A successful instruction address match, defined by a Linked Address match
breakpoint that links to this breakpoint.

— A successful CONTEXTIDR_EL2 match, as described in Breakpoint context
comparisons on page B8-69.

• Generation of a Watchpoint exception depends on both:

— A successful data address match, defined by a Linked watchpoint that links to this
breakpoint.

— A successful CONTEXTIDR_EL2 match, as described in Breakpoint context
comparisons on page B8-69.

The Context ID check is made against the value in CONTEXTIDR_EL2, regardless of the value of
HCR_EL2.E2H. The check against the CONTEXTIDR_EL2 means this breakpoint or watchpoint
can be generated only if execution is in Non-secure state and EL2 is using AArch64.

The match fails if execution is in Secure state, or if EL2 is using AArch32. Otherwise, the value of
DBGBVR<n>_EL1 is compared with the Context ID value held in CONTEXTIDR_EL2.

DBGBCR<n>_EL1.{LBN, SSC, HMC, BAS, PMC} for this breakpoint are ignored.

0b1110, Unlinked Full Context ID Match

BT == 0b1110 is a reserved value if the breakpoint is not a context-aware breakpoint, or if the
implementation does not include the Virtualization Host Extensions.

For context-aware breakpoints, generation of a Breakpoint exception depends on both:

• DBGBCR<n>_EL1.{SSC, HMC, PMC}. These define the execution conditions for which
the breakpoint generates Breakpoint exceptions.

• A successful Context ID match, as described in Breakpoint context comparisons on
page B8-69.

The Context ID check is made by checking the value of DBGBVR<n>_EL1[31:0] against the value
in CONTEXTIDR_EL1 and the value of DBGBVR<n>_EL1[63:32] against the value in
CONTEXTIDR_EL2. Both comparisons must match for the check to succeed.

The check against the CONTEXTIDR_EL2 means this breakpoint can be generated only if
execution is in Non-secure state and EL2 is using AArch64.

The match fails if execution is in Secure state, or if EL2 is using AArch32.

DBGBCR<n>_EL1.{LBN, BAS} for this breakpoint are ignored.

0b1111, Linked Full Context ID Match

BT == 0b1111 is a reserved value if the breakpoint is not a context-aware breakpoint, or if the
implementation does not include the Virtualization Host Extensions.

For context-aware breakpoints, one of the following applies:

• If no Linked breakpoints or Linked watchpoints link to this breakpoint then the breakpoint
does not generate any Breakpoint exceptions.

• Generation of a Breakpoint exception depends on both:

— A successful instruction address match, defined by a Linked Address match
breakpoint that links to this breakpoint.

— A successful Context ID match, as described in Breakpoint context comparisons on
page B8-69.
B8-68 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B8 Virtualization Host Extensions
B8.1 About the Virtualization Host Extensions
• Generation of a Watchpoint exception depends on both:

— A successful data address match, defined by a Linked watchpoint that links to this
breakpoint.

— A successful Context ID match, as described in Breakpoint context comparisons.

The Context ID check is made by checking the value of DBGBVR<n>_EL1[31:0] against the value
in CONTEXTIDR_EL1 and the value of DBGBVR<n>_EL1[63:32] against the value in
CONTEXTIDR_EL2. Both comparisons must match for the check to succeed.

The check against the CONTEXTIDR_EL2 means this breakpoint or watchpoint can be generated
only if execution is in Non-secure state and EL2 is using AArch64.

DBGBCR<n>_EL1.{LBN, SSC, HMC, BAS, PMC} for this breakpoint are ignored.

Breakpoint context comparisons

A context comparison is successful if, depending on the breakpoint type set by DBGBCR<n>_EL1.BT, one of the
following is true:

• The current Context ID value is equal to DBGBVR<n>_EL1[31:0].

• The current VMID value is equal to DBGBVR<n>_EL1.VMID.

• CONTEXTIDR_EL2 is DBGBVR<n>_EL1[31:0] and the current VMID value is equal to
DBGBVR<n>_EL1.VMID.

• CONTEXTIDR_EL1 is equal to DBGBVR<n>_EL1[31:0].

• CONTEXTIDR_EL2 is equal to DBGBVR<n>_EL1[63:32].

• CONTEXTIDR_EL1 is equal to DBGBVR<n>_EL1[31:0] and CONTEXTIDR_EL2 is equal to
DBGBVR<n>_EL1[63:32].

Context breakpoints do not generate Breakpoint exceptions when any of:

• The comparison uses the value of CONTEXTIDR_EL1 and any of:
— The PE is executing at EL3 using AArch64.
— The PE is executing at EL2.
— The Virtualization Host Extensions are implemented, EL2 is using AArch64, the PE is executing in

Non-secure state, and HCR_EL2.{E2H, TGE} == {1, 1}.

• The comparison uses the value of CONTEXTIDR_EL2 and any of:
— The Virtualization Host Extensions are not implemented.
— The PE is in Secure state.
— EL2 is using AArch32.

• The comparison uses the current VMID value and any of:
— EL2 is not implemented.
— The PE is in Secure state.
— The PE is executing at EL2.
— The Virtualization Host Extensions are implemented, EL2 is using AArch64, the PE is executing in

Non-secure state, and HCR_EL2.{E2H, TGE} == {1, 1}.

Note
 • For all Context breakpoints, DBGBCR<n>_EL1.BAS is RES1 and is ignored.
• For Linked Context breakpoints, DBGBCR<n>_EL1.{LBN, SSC, HMC, PMC} are RES0 and are ignored.
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B8-69
ID060316 Non-Confidential

B8 Virtualization Host Extensions
B8.1 About the Virtualization Host Extensions
Reserved DBGBCR<n>_EL1.BT values

Table B8-9 shows when particular DBGBCR<n>_EL1.BT values are reserved.

If a breakpoint is programmed with one of these reserved BT values:
• The breakpoint must behave as if it is either:

— Disabled.
— Programmed with a BT value that is not reserved, other than for a direct or external read of

DBGBCR<n>_EL1.
• For a direct or external read of DBGBCR<n>_EL1, if the reserved BT value:

— Has no function for any execution conditions, the value read back is UNKNOWN.

— Has a function for execution conditions other than the current execution conditions, the value read
back is the value written. This permits software to save and restore the BT value so that the breakpoint
functions for the other execution conditions.

The behavior of breakpoints with reserved BT values might change in future revisions of the architecture. For this
reason, software must not rely on the behavior described here.

B8.1.7 Impact on Performance Monitors

Performance monitoring events, CID_WRITE_RETIRED and TTBR_WRITE_RETIRED are extended to support
Virtualization Host Extensions:

0x000B, CID_WRITE_RETIRED, Instruction architecturally executed, condition code check pass, write to
CONTEXTIDR

The counter is:

• Incremented as a result of the retirement of an instruction accessing the named register
CONTEXTIDR_EL1, even when executing at EL2.

• Not incremented as a result of the retirement of an instruction accessing the named
CONTEXTIDR_EL12.

Note
 The event is defined by the name used to access the register. The counter does not count writes to

the named register CONTEXTIDR_EL2.

For more information, see Exception-related events on page B8-71.

Table B8-9 Reserved BT values

BT value Breakpoint type Reserved

0b001x Context ID Match For non context-aware breakpoints.

0b010x Address Mismatch In stage 1 of an AArch64 translation regime, or if EDSCR.HDE
is 1 and halting is allowed.

0b011x CONTEXTIDR_EL1 Match When Virtualization Host Extensions is not implemented and
breakpoints are not context-aware.

0b100x VMID Match For non context-aware breakpoints, or if EL2 is not implemented.

0b101x Context ID and VMID Match

0b110x CONTEXTIDR_EL2 Match When Virtualization Host Extensions is not implemented and
breakpoints are not context-aware.

0b111x Full Context ID Match
B8-70 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B8 Virtualization Host Extensions
B8.1 About the Virtualization Host Extensions
If the PE performs two architecturally-executed writes to CONTEXTIDR without an intervening
context synchronization operation, it is CONSTRAINED UNPREDICTABLE whether the first write is
counted.

0x001C, TTBR_WRITE_RETIRED, Instruction architecturally executed, condition code check pass, write to
TTBR

The counter counts writes to TTBR0_EL1 and TTBR1_EL1 in AArch64 state and TTBR0 and
TTBR1 in AArch32 state. When EL3 is implemented and using AArch32, this includes counting
writes to both banked copies of TTBR0 and TTBR1.

The counter is:

• Incremented as a result of the retirement of an instruction accessing the named registers
TTBR0_EL1 and TTBR1_EL1.

• Not incremented as a result of the retirement of an instruction accessing the named registers
TTBR0_EL12 and TTBR1_EL12.

Note
 The event is defined by the name used to access the register. The counter does not count writes to

the named registers:
• TTBR0_EL3 if EL3 is implemented and is using AArch64.
• TTBR0_EL2, TTBR1_EL2, and VTTBR_EL2 if EL2 is implemented and is using AArch64.
• HTTBR and VTTBR if EL2 is implemented and is using AArch32.

For more information, see Exception-related events.

If the PE executes two writes to the same TTBR, without an intervening context synchronization
operation, it is CONSTRAINED UNPREDICTABLE whether the first write to the TTBR is counted.

The ARMv8 debug architecture describes events counting exceptions that are either:
• Taken locally, that is, taken from EL0 to EL1, or taken to the current Exception level.
• Not taken locally, that is, taken from EL0 or EL1 to EL2, or from EL0, EL1, or EL2 to EL3.

For ARMv8.1, when the Virtualization Host Extensions are included, and when the values of HCR_EL2.{E2H,
TGE} is {1, 1}, exceptions that are taken from EL0 to EL2 are classified as exceptions that are taken locally.

Exception-related events

In ARMv8 architecture, the PMU must filter some events related to exceptions and exception handling according
to the Exception level from which the exception was taken. These events are:
• Exception taken.
• Instruction architecturally executed, condition code check pass, exception return.
• Instruction architecturally executed, condition code check pass, write to CONTEXTIDR.
• Instruction architecturally executed, condition code check pass, write to translation table base.

The PMU must not count an exception after it has been taken because this could systematically report a result of
zero exceptions at EL0. Similarly, it is not acceptable for the PMU to count exception returns or writes to
CONTEXTIDR after the return from the exception.

Note
 Unprivileged software cannot write to CONTEXTIDR.

B8.1.8 Identification mechanism

The ID_AA64MMFR1_EL1.VH field identifies the presence of the Virtualization Host Extensions.

The following fields indicate the presence of the Virtualization Host Extensions for debug, including the changes
for the Sample-based Profiling Extension and the Performance Monitors Extension:
• ID_AA64DFR0_EL1.DebugVer.
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B8-71
ID060316 Non-Confidential

B8 Virtualization Host Extensions
B8.1 About the Virtualization Host Extensions
• ID_DFR0_EL1.{CopSDbg, CopDbg}.

B8.1.9 See also

In this supplement
• CONTEXTIDR_EL1.
• CONTEXTIDR_EL2.
• HCR_EL2.{E2H, TGE}.
• ID_AA64MMFR1_EL1.VH.
• ID_AA64DFR0_EL1.DebugVer.
• ID_DFR0_EL1.{CopSDbg, CopDbg}.
• TCR_EL2.
• DBGBCR<n>_EL1.BT.
• DBGBVR<n>_EL1.
• DBGBVR<n>_EL1(External).
• EDDEVARCH.ARCHVER.
• Appendix F1 Notes on Using Debug and Performance Monitors.

In the ARM Architecture Reference Manual

The following sections of the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile will
be updated:

• Virtualization section in The AArch64 System Level Programmers’ Model chapter.
• Breakpoint instruction address comparisons.
• Breakpoint types defined by DBGBCRn_EL1.BT.
• Breakpoint usage constraints.
• Watchpoint data address comparisons.
• Common architectural event numbers.
B8-72 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

Chapter B9
AArch64 Performance Monitors Extension

This chapter describes the changes to the Performance Monitors Extension introduced with ARMv8.1. It contains
the following section:
• Changes to the Performance Monitors Extension on page B9-74.
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B9-73
ID060316 Non-Confidential

B9 AArch64 Performance Monitors Extension
B9.1 Changes to the Performance Monitors Extension
B9.1 Changes to the Performance Monitors Extension
The OPTIONAL Performance Monitors Extension is enhanced to:

• Provide a new control to disable event counting at EL2. A control bit HPMD is added to MDCR_EL2 to
prohibit event counting at EL2.

• The event number space is extended to 16 bits to allow additional IMPLEMENTATION DEFINED event types and
extend the reserved space for future additions to the architecturally-defined event types.

• In an ARMv8.1 implementation, in addition to the events required by PMUv3, the STALL_FRONTEND and
STALL_BACKEND events must be implemented. For more information, see Required events.

B9.1.1 Extended event number space

The event number space is extended to 16 bits, and is defined as:

0x0000-0x003F and 0x4000-0x403F

Common architectural and microarchitectural events, discoverable using PMCEID<n>_EL0.

0x0040-0x00BF and 0x4040-0x40BF

ARM recommended common architectural and microarchitectural events. These are
IMPLEMENTATION DEFINED.

0x8000-0x80BF and 0xC000-0xC0BF

Reserved.

All other values

IMPLEMENTATION DEFINED events.

To address this extended number space, the PMEVTYPER<n>_EL0.evtCount is extended to 16 bits.

B9.1.2 Required events

PMUv3 requires that an implementation includes the following common events:
• 0x0000, SW_INCR, Instruction architecturally executed, condition code check pass, software increment.
• 0x0003, L1D_CACHE_REFILL, Attributable Level 1 data cache refill.

Note
 Event 0x0003 is only required if the implementation includes a Level 1 data or unified cache.

• 0x004, L1D_CACHE, Attributable Level 1 data cache access.

Note
 Event 0x0004 is only required if the implementation includes a Level 1 data or unified cache.

• 0x0010, BR_MIS_PRED, Mispredicted or not predicted branch speculatively executed.

Note
 Event 0x0010 is only required if the implementation includes program-flow prediction. However, ARM

recommends that the event is implemented as described in the section Common microarchitectural event
numbers in Chapter D5 The Performance Monitors Extension of the ARM Architecture Reference Manual.

• 0x0011, CPU_CYCLES, Cycle.
• 0x0012, BR_PRED, Predictable branch speculatively executed.
B9-74 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B9 AArch64 Performance Monitors Extension
B9.1 Changes to the Performance Monitors Extension
Note
 Event 0x0012 is only required if the implementation includes program-flow prediction. However, ARM

recommends that the event is implemented as described in the section Common microarchitectural event
numbers in Chapter D5 The Performance Monitors Extension of the ARM Architecture Reference Manual.

• At least one of:
— 0x0008, INST_RETIRED, Instruction architecturally executed.
— 0x001B, INST_SPEC, Operation speculatively executed.

Note
 ARM strongly recommends that event 0x0008 is implemented.

• 0x0023, STALL_FRONTEND, No operation issued due to the frontend. In an ARMv8.1 implementation, this
event must be implemented.

• 0x0024, STALL_BACKEND, No operation issued due to the backend. In an ARMv8.1 implementation, this
event must be implemented.

B9.1.3 Identification mechanism

The ID_AA64DFR0_EL1.PMUVer, and EDDFR.PMUVer fields describe the PMEVTYPER<n>_EL0.evtCount
range.

B9.1.4 See also

In this supplement
• ID_AA64DFR0_EL1.PMUVer.
• MDCR_EL2.HPMD.
• PMCEID0_EL0.
• PMCEID1_EL0.
• PMCR_EL0.
• PMEVTYPER<n>_EL0.evtCount.
• EDDFR.PMUVer.

In the ARM Architecture Reference Manual

The following sections will be updated:
• The Performance Monitors Extension chapter.
• Recommendations for Performance Monitors Event Numbers for IMPLEMENTATION DEFINED Events.
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B9-75
ID060316 Non-Confidential

B9 AArch64 Performance Monitors Extension
B9.1 Changes to the Performance Monitors Extension
B9-76 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

Chapter B10
A64 Instruction Set Encoding

This chapter describes the encoding of the instructions that ARMv8.1 adds to the A64 instruction set. It contains the
following sections:
• Loads and stores on page B10-78.
• Data processing - SIMD and floating point on page B10-81.
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B10-77
ID060316 Non-Confidential

B10 A64 Instruction Set Encoding
B10.1 Loads and stores
B10.1 Loads and stores
The new instructions are added to classes within the Loads and stores instruction group. This section describes the
encoding of the new classes and the new instructions added to the Loads and stores instruction group.

The instructions added to the Load/store exclusive instruction class are:
• The CAS and CASP instructions.
• The LDLAR and STLLR instructions.

The LD<OP> and SWP instructions are added to the Atomic memory operations instruction class. This is a new
instruction class introduced in ARMv8.1. The encoding space used for this instruction class is UNDEFINED in
ARMv8.0.

B10.1.1 Load/store exclusive

The section describes the encoding of the new instructions in the Load/store exclusive instruction class. The
encodings of the other instructions in this instruction class remain unchanged.

The following table shows the allocation of encodings of the new atomic instructions in the Load/store exclusive
instruction class.

Table B10-1 Encoding table for the Loads and Stores group

Decode fields
Decode group

op0 op1 op2 op3 op4 op5

- 00 00 0x - - Load/store exclusive

- 11 - 0x 1xxxxx 00 Atomic memory operations on page B10-80

op1 1 0 op3 op4 op5
31 30 29 28 27 26 25 24 23 22 21 16 15 12 11 10 9 0

op0
op2

size 0 0 1 0 0 0 o2 L o1 Rs o0 Rt2 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

Decode fields
Instruction page

size o2 L o1 o0 Rt2

00 0 0 1 0 11111 CASP, CASPA, CASPAL, CASPL - 32-bit, no memory ordering variant

00 0 0 1 1 11111 CASP, CASPA, CASPAL, CASPL - 32-bit, release variant

00 0 1 1 0 11111 CASP, CASPA, CASPAL, CASPL - 32-bit, acquire variant

00 0 1 1 1 11111 CASP, CASPA, CASPAL, CASPL - 32-bit, acquire and release variant

00 1 0 0 0 - STLLRB

00 1 0 1 0 11111 CASB, CASAB, CASALB, CASLB - No memory ordering variant

00 1 0 1 1 11111 CASB, CASAB, CASALB, CASLB - Release variant

00 1 1 0 0 - LDLARB
B10-78 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B10 A64 Instruction Set Encoding
B10.1 Loads and stores
00 1 1 1 0 11111 CASB, CASAB, CASALB, CASLB - Acquire variant

00 1 1 1 1 11111 CASB, CASAB, CASALB, CASLB - Acquire and release variant

01 0 0 1 0 11111 CASP, CASPA, CASPAL, CASPL - 64-bit, no memory ordering variant

01 0 0 1 1 11111 CASP, CASPA, CASPAL, CASPL - 64-bit, release variant

01 0 1 1 0 11111 CASP, CASPA, CASPAL, CASPL - 64-bit, acquire variant

01 0 1 1 1 11111 CASP, CASPA, CASPAL, CASPL - 64-bit, acquire and release variant

01 1 0 0 0 - STLLRH

01 1 0 1 0 11111 CASH, CASAH, CASALH, CASLH - No memory ordering variant

01 1 0 1 1 11111 CASH, CASAH, CASALH, CASLH - Release variant

01 1 1 0 0 - LDLARH

01 1 1 1 0 11111 CASH, CASAH, CASALH, CASLH - Acquire variant

01 1 1 1 1 11111 CASH, CASAH, CASALH, CASLH - Acquire and release variant

10 1 0 0 0 - STLLR - 32-bit variant

10 1 0 1 0 11111 CAS, CASA, CASAL, CASL - 32-bit, no memory ordering variant

10 1 0 1 1 11111 CAS, CASA, CASAL, CASL - 32-bit, release variant

10 1 1 0 0 - LDLAR - 32-bit variant

10 1 1 1 0 11111 CAS, CASA, CASAL, CASL - 32-bit, acquire variant

10 1 1 1 1 11111 CAS, CASA, CASAL, CASL - 32-bit, acquire and release variant

11 1 0 0 0 - STLLR - 64-bit variant

11 1 0 1 0 11111 CAS, CASA, CASAL, CASL - 64-bit, no memory ordering variant

11 1 0 1 1 11111 CAS, CASA, CASAL, CASL - 64-bit, release variant

11 1 1 0 0 - LDLAR - 64-bit variant

11 1 1 1 0 11111 CAS, CASA, CASAL, CASL - 64-bit, acquire variant

11 1 1 1 1 11111 CAS, CASA, CASAL, CASL - 64-bit, acquire and release variant

Decode fields
Instruction page

size o2 L o1 o0 Rt2
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B10-79
ID060316 Non-Confidential

B10 A64 Instruction Set Encoding
B10.1 Loads and stores
B10.1.2 Atomic memory operations

The section describes the encoding of the new atomic instructions in the Atomic memory operations instruction
class.

The following table shows the allocation of encodings in this space. Other encodings in this space are UNDEFINED.

Decode fields
Instruction page

size V o3 opc

1x 0 0 000 LDADD, LDADDA, LDADDAL, LDADDL

00 0 0 000 LDADDB, LDADDAB, LDADDALB, LDADDLB

01 0 0 000 LDADDH, LDADDAH, LDADDALH, LDADDLH

1x 0 0 001 LDCLR, LDCLRA, LDCLRAL, LDCLRL

00 0 0 001 LDCLRB, LDCLRAB, LDCLRALB, LDCLRLB

01 0 0 001 LDCLRH, LDCLRAH, LDCLRALH, LDCLRLH

1x 0 0 010 LDEOR, LDEORA, LDEORAL, LDEORL

00 0 0 010 LDEORB, LDEORAB, LDEORALB, LDEORLB

01 0 0 010 LDEORH, LDEORAH, LDEORALH, LDEORLH

1x 0 0 011 LDSET, LDSETA, LDSETAL, LDSETL

00 0 0 011 LDSETB, LDSETAB, LDSETALB, LDSETLB

01 0 0 011 LDSETH, LDSETAH, LDSETALH, LDSETLH

1x 0 0 100 LDSMAX, LDSMAXA, LDSMAXAL, LDSMAXL

00 0 0 100 LDSMAXB, LDSMAXAB, LDSMAXALB, LDSMAXLB

01 0 0 100 LDSMAXH, LDSMAXAH, LDSMAXALH, LDSMAXLH

1x 0 0 101 LDSMIN, LDSMINA, LDSMINAL, LDSMINL

00 0 0 101 LDSMINB, LDSMINAB, LDSMINALB, LDSMINLB

01 0 0 101 LDSMINH, LDSMINAH, LDSMINALH, LDSMINLH

1x 0 0 110 LDUMAX, LDUMAXA, LDUMAXAL, LDUMAXL

00 0 0 110 LDUMAXB, LDUMAXAB, LDUMAXALB, LDUMAXLB

01 0 0 110 LDUMAXH, LDUMAXAH, LDUMAXALH, LDUMAXLH

1x 0 0 111 LDUMIN, LDUMINA, LDUMINAL, LDUMINL

00 0 0 111 LDUMINB, LDUMINAB, LDUMINALB, LDUMINLB

01 0 0 111 LDUMINH, LDUMINAH, LDUMINALH, LDUMINLH

1x 0 1 000 SWP, SWPA, SWPAL, SWPL

00 0 1 000 SWPB, SWPAB, SWPALB, SWPLB

01 0 1 000 SWPH, SWPAH, SWPALH, SWPLH

111 V 0 A R 1 Rs o3 opc 0 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
size
B10-80 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B10 A64 Instruction Set Encoding
B10.2 Data processing - SIMD and floating point
B10.2 Data processing - SIMD and floating point
The new SIMD instructions are added to the Data processing - SIMD and floating point instruction group.

The scalar forms of the instructions are grouped under the following instruction classes:
• Advanced SIMD scalar three same extra.
• Advanced SIMD scalar x indexed element.

The vector forms of the instructions are grouped under the following instruction classes:
• Advanced SIMD three same.
• Advanced SIMD vector x indexed element.

The encoding space used for the Advanced SIMD scalar three same extra is UNDEFINED in ARMv8.0.

B10.2.1 Advanced SIMD scalar three same extra

The section describes the encoding of the Advanced SIMD scalar three same extra instruction class. The encodings
of the other instructions in this instruction class remain unchanged.

Table B10-2 Encoding table for the Data processing - Scalar Advanced SIMD and Floating-point
group

Decode fields
Decode group

op0 op1 op2 op3 op4

01x1 0x x0xx - 1xxxx1 Advanced SIMD scalar three same extra

01x1 1x - - xxxxx0 Advanced SIMD scalar x indexed element on page B10-82

0xx0 0x x1xx - xxxxx1 Advanced SIMD three same on page B10-82

0xx0 1x - - xxxxx0 Advanced SIMD vector x indexed element on page B10-82

op0 111 op1 op2 op3 op4
31 28 27 24 23 22 19 18 17 16 15 10 9 0

Decode fields
Instruction page

U size opcode

1 - 0000 SQRDMLAH (vector) - Scalar on page B11-161

1 - 0001 SQRDMLSH (vector) - Scalar on page B11-166

0 1 U 1 1 1 1 0 size 1 Rm opcode 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 11 10 9 5 4 0
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B10-81
ID060316 Non-Confidential

B10 A64 Instruction Set Encoding
B10.2 Data processing - SIMD and floating point
B10.2.2 Advanced SIMD scalar x indexed element

The section describes the encoding of the Advanced SIMD scalar x indexed element instruction class. The
encodings of the other instructions in this instruction class remain unchanged.

B10.2.3 Advanced SIMD three same

This section describes the encoding of the Advanced SIMD three same instruction class. The encodings of the other
instructions in this instruction class remain unchanged.

B10.2.4 Advanced SIMD vector x indexed element

This section describes the encoding of the Advanced SIMD vector x indexed element instruction class. The
encodings of the other instructions in this instruction class remain unchanged.

Decode fields
Instruction page

U size opcode

1 - 0000 SQRDMLAH (by element) - Scalar on page B11-161

1 - 0001 SQRDMLSH (by element) - Scalar on page B11-163

0 1 U 1 1 1 1 0 size 1 Rm opcode 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 11 10 9 5 4 0

Decode fields
Instruction page

U size opcode

1 - 0000 SQRDMLAH (vector) - Vector on page B11-161

1 - 0001 SQRDMLSH (vector) - Vector on page B11-166

0 Q U 0 1 1 1 0 size 1 Rm opcode 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 11 10 9 5 4 0

Decode fields
Instruction page

U size opcode

1 - 0000 SQRDMLAH (by element) - Vector on page B11-158

1 - 0001 SQRDMLSH (by element) - Vector on page B11-163

0 Q U 0 1 1 1 0 size 1 Rm opcode 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 11 10 9 5 4 0
B10-82 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B10 A64 Instruction Set Encoding
B10.2 Data processing - SIMD and floating point
B10.2.5 See also

In the ARM Architecture Reference Manual

The following sections will be updated:
• Data processing - SIMD and floating point.
• Advanced SIMD scalar x indexed element.
• Advanced SIMD three same.
• Advanced SIMD vector x indexed element.
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B10-83
ID060316 Non-Confidential

B10 A64 Instruction Set Encoding
B10.2 Data processing - SIMD and floating point
B10-84 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

Chapter B11
A64 Instructions

This chapter describes the new A64 instructions introduced in ARMv8.1. It contains the following section:
• Alphabetical list of instructions on page B11-86.
• ARMv8.0 sections relating to these instructions on page B11-227.
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B11-85
ID060316 Non-Confidential

B11 A64 Instructions
B11.1 Alphabetical list of instructions
B11.1 Alphabetical list of instructions
B11-86 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B11 A64 Instructions
B11.1 Alphabetical list of instructions
B11.1.1 CAS, CASA, CASAL, CASL

Compare and Swap word or doubleword in memory loads a 32-bit word or 64-bit doubleword from memory, and
compares it against the value held in a first register. If the comparison is equal, the value in a second register is stored
to memory.

• CASA and CASAL load from memory with acquire semantics.

• CASL and CASAL store to memory with release semantics.

• CAS has no memory ordering requirements.

For more information about memory ordering semantics see Load-Acquire, Store-Release on page B11-227.

For information about memory accesses see Load/Store addressing modes on page B11-228.

ARMv8.1

32-bit, acquire variant

Applies when size == 10 && L == 1 && o0 == 0.

CASA <Ws>, <Wt>, [<Xn|SP>{,#0}]

32-bit, acquire and release variant

Applies when size == 10 && L == 1 && o0 == 1.

CASAL <Ws>, <Wt>, [<Xn|SP>{,#0}]

32-bit, no memory ordering variant

Applies when size == 10 && L == 0 && o0 == 0.

CAS <Ws>, <Wt>, [<Xn|SP>{,#0}]

32-bit, release variant

Applies when size == 10 && L == 0 && o0 == 1.

CASL <Ws>, <Wt>, [<Xn|SP>{,#0}]

64-bit, acquire variant

Applies when size == 11 && L == 1 && o0 == 0.

CASA <Xs>, <Xt>, [<Xn|SP>{,#0}]

64-bit, acquire and release variant

Applies when size == 11 && L == 1 && o0 == 1.

CASAL <Xs>, <Xt>, [<Xn|SP>{,#0}]

64-bit, no memory ordering variant

Applies when size == 11 && L == 0 && o0 == 0.

CAS <Xs>, <Xt>, [<Xn|SP>{,#0}]

1 x 0 0 1 0 0 0 1 L 1 Rs o0 1 1 1 1 1 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

size
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B11-87
ID060316 Non-Confidential

B11 A64 Instructions
B11.1 Alphabetical list of instructions
64-bit, release variant

Applies when size == 11 && L == 0 && o0 == 1.

CASL <Xs>, <Xt>, [<Xn|SP>{,#0}]

Decode for all variants of this encoding

 if !HaveAtomicExt() then UnallocatedEncoding();

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 integer s = UInt(Rs);

 integer datasize = 8 << UInt(size);
 integer regsize = if datasize == 64 then 64 else 32;
 AccType ldacctype = if L == '1' then AccType_ORDEREDRW else AccType_ATOMICRW;
 AccType stacctype = if o0 == '1' then AccType_ORDEREDRW else AccType_ATOMICRW;

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register to be compared and loaded, encoded in the "Rs"
field.

<Wt> Is the 32-bit name of the general-purpose register to be conditionally stored, encoded in the "Rt"
field.

<Xs> Is the 64-bit name of the general-purpose register to be compared and loaded, encoded in the "Rs"
field.

<Xt> Is the 64-bit name of the general-purpose register to be conditionally stored, encoded in the "Rt"
field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(datasize) comparevalue;
 bits(datasize) newvalue;
 bits(datasize) data;

 comparevalue = X[s];
 newvalue = X[t];
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];
 data = Mem[address, datasize DIV 8, ldacctype];
 if data == comparevalue then
 Mem[address, datasize DIV 8, stacctype] = newvalue; // all observers in the shareability domain
 // observe the load and store atomically

 X[s] = ZeroExtend(data, regsize);
B11-88 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B11 A64 Instructions
B11.1 Alphabetical list of instructions
B11.1.2 CASB, CASAB, CASALB, CASLB

Compare and Swap byte in memory loads an 8-bit byte from memory, and compares it against the value held in a
first register. If the comparison is equal, the value in a second register is stored to memory.

• CASAB and CASALB load from memory with acquire semantics.

• CASLB and CASALB store to memory with release semantics.

• CASB has no memory ordering requirements.

For more information about memory ordering semantics see Load-Acquire, Store-Release on page B11-227.

For information about memory accesses see Load/Store addressing modes on page B11-228.

ARMv8.1

Acquire variant

Applies when L == 1 && o0 == 0.

CASAB <Ws>, <Wt>, [<Xn|SP>{,#0}]

Acquire and release variant

Applies when L == 1 && o0 == 1.

CASALB <Ws>, <Wt>, [<Xn|SP>{,#0}]

No memory ordering variant

Applies when L == 0 && o0 == 0.

CASB <Ws>, <Wt>, [<Xn|SP>{,#0}]

Release variant

Applies when L == 0 && o0 == 1.

CASLB <Ws>, <Wt>, [<Xn|SP>{,#0}]

Decode for all variants of this encoding

 if !HaveAtomicExt() then UnallocatedEncoding();

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 integer s = UInt(Rs);

 integer datasize = 8 << UInt(size);
 integer regsize = if datasize == 64 then 64 else 32;
 AccType ldacctype = if L == '1' then AccType_ORDEREDRW else AccType_ATOMICRW;
 AccType stacctype = if o0 == '1' then AccType_ORDEREDRW else AccType_ATOMICRW;

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register to be compared and loaded, encoded in the "Rs"
field.

0 0 0 0 1 0 0 0 1 L 1 Rs o0 1 1 1 1 1 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

size
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B11-89
ID060316 Non-Confidential

B11 A64 Instructions
B11.1 Alphabetical list of instructions
<Wt> Is the 32-bit name of the general-purpose register to be conditionally stored, encoded in the "Rt"
field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(datasize) comparevalue;
 bits(datasize) newvalue;
 bits(datasize) data;

 comparevalue = X[s];
 newvalue = X[t];
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];
 data = Mem[address, datasize DIV 8, ldacctype];
 if data == comparevalue then
 Mem[address, datasize DIV 8, stacctype] = newvalue; // all observers in the shareability domain
 // observe the load and store atomically

 X[s] = ZeroExtend(data, regsize);
B11-90 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B11 A64 Instructions
B11.1 Alphabetical list of instructions
B11.1.3 CASH, CASAH, CASALH, CASLH

Compare and Swap halfword in memory loads a 16-bit halfword from memory, and compares it against the value
held in a first register. If the comparison is equal, the value in a second register is stored to memory.

• CASAH and CASALH load from memory with acquire semantics.

• CASLH and CASALH store to memory with release semantics.

• CAS has no memory ordering requirements.

For more information about memory ordering semantics see Load-Acquire, Store-Release on page B11-227.

For information about memory accesses see Load/Store addressing modes on page B11-228.

ARMv8.1

Acquire variant

Applies when L == 1 && o0 == 0.

CASAH <Ws>, <Wt>, [<Xn|SP>{,#0}]

Acquire and release variant

Applies when L == 1 && o0 == 1.

CASALH <Ws>, <Wt>, [<Xn|SP>{,#0}]

No memory ordering variant

Applies when L == 0 && o0 == 0.

CASH <Ws>, <Wt>, [<Xn|SP>{,#0}]

Release variant

Applies when L == 0 && o0 == 1.

CASLH <Ws>, <Wt>, [<Xn|SP>{,#0}]

Decode for all variants of this encoding

 if !HaveAtomicExt() then UnallocatedEncoding();

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 integer s = UInt(Rs);

 integer datasize = 8 << UInt(size);
 integer regsize = if datasize == 64 then 64 else 32;
 AccType ldacctype = if L == '1' then AccType_ORDEREDRW else AccType_ATOMICRW;
 AccType stacctype = if o0 == '1' then AccType_ORDEREDRW else AccType_ATOMICRW;

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register to be compared and loaded, encoded in the "Rs"
field.

0 1 0 0 1 0 0 0 1 L 1 Rs o0 1 1 1 1 1 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

size
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B11-91
ID060316 Non-Confidential

B11 A64 Instructions
B11.1 Alphabetical list of instructions
<Wt> Is the 32-bit name of the general-purpose register to be conditionally stored, encoded in the "Rt"
field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(datasize) comparevalue;
 bits(datasize) newvalue;
 bits(datasize) data;

 comparevalue = X[s];
 newvalue = X[t];
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];
 data = Mem[address, datasize DIV 8, ldacctype];
 if data == comparevalue then
 Mem[address, datasize DIV 8, stacctype] = newvalue; // all observers in the shareability domain
 // observe the load and store atomically

 X[s] = ZeroExtend(data, regsize);
B11-92 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B11 A64 Instructions
B11.1 Alphabetical list of instructions
B11.1.4 CASP, CASPA, CASPAL, CASPL

Compare and Swap Pair of words or doublewords in memory loads a pair of 32-bit words or 64-bit doublewords
from memory, and compares them against the values held in a first pair of registers. If the comparison is equal, the
values in a second pair of registers are stored to memory.

• CASPA and CASPAL load from memory with acquire semantics.

• CASPL and CASPAL store to memory with release semantics.

• CAS has no memory ordering requirements.

For more information about memory ordering semantics see Load-Acquire, Store-Release on page B11-227.

For information about memory accesses see Load/Store addressing modes on page B11-228.

ARMv8.1

32-bit, acquire variant

Applies when sz == 0 && L == 1 && o0 == 0.

CASPA <Ws>, <W(s+1)>, <Wt>, <W(t+1)>, [<Xn|SP>{,#0}]

32-bit, acquire and release variant

Applies when sz == 0 && L == 1 && o0 == 1.

CASPAL <Ws>, <W(s+1)>, <Wt>, <W(t+1)>, [<Xn|SP>{,#0}]

32-bit, no memory ordering variant

Applies when sz == 0 && L == 0 && o0 == 0.

CASP <Ws>, <W(s+1)>, <Wt>, <W(t+1)>, [<Xn|SP>{,#0}]

32-bit, release variant

Applies when sz == 0 && L == 0 && o0 == 1.

CASPL <Ws>, <W(s+1)>, <Wt>, <W(t+1)>, [<Xn|SP>{,#0}]

64-bit, acquire variant

Applies when sz == 1 && L == 1 && o0 == 0.

CASPA <Xs>, <X(s+1)>, <Xt>, <X(t+1)>, [<Xn|SP>{,#0}]

64-bit, acquire and release variant

Applies when sz == 1 && L == 1 && o0 == 1.

CASPAL <Xs>, <X(s+1)>, <Xt>, <X(t+1)>, [<Xn|SP>{,#0}]

64-bit, no memory ordering variant

Applies when sz == 1 && L == 0 && o0 == 0.

CASP <Xs>, <X(s+1)>, <Xt>, <X(t+1)>, [<Xn|SP>{,#0}]

0 sz 0 0 1 0 0 0 0 L 1 Rs o0 1 1 1 1 1 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

Rt2
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B11-93
ID060316 Non-Confidential

B11 A64 Instructions
B11.1 Alphabetical list of instructions
64-bit, release variant

Applies when sz == 1 && L == 0 && o0 == 1.

CASPL <Xs>, <X(s+1)>, <Xt>, <X(t+1)>, [<Xn|SP>{,#0}]

Decode for all variants of this encoding

 if !HaveAtomicExt() then UnallocatedEncoding();
 if Rs<0> == '1' then UnallocatedEncoding();
 if Rt<0> == '1' then UnallocatedEncoding();

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 integer s = UInt(Rs);

 integer datasize = 32 << UInt(sz);
 integer regsize = datasize;
 AccType ldacctype = if L == '1' then AccType_ORDEREDRW else AccType_ATOMICRW;
 AccType stacctype = if o0 == '1' then AccType_ORDEREDRW else AccType_ATOMICRW;

Assembler symbols

<Ws> Is the 32-bit name of the first general-purpose register to be compared and loaded, encoded in the
"Rs" field.

<W(s+1)> Is the 32-bit name of the second general-purpose register to be compared and loaded.

<Wt> Is the 32-bit name of the first general-purpose register to be conditionally stored, encoded in the "Rt"
field.

<W(t+1)> Is the 32-bit name of the second general-purpose register to be conditionally stored.

<Xs> Is the 64-bit name of the first general-purpose register to be compared and loaded, encoded in the
"Rs" field.

<X(s+1)> Is the 64-bit name of the second general-purpose register to be compared and loaded.

<Xt> Is the 64-bit name of the first general-purpose register to be conditionally stored, encoded in the "Rt"
field.

<X(t+1)> Is the 64-bit name of the second general-purpose register to be conditionally stored.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(2*datasize) comparevalue;
 bits(2*datasize) newvalue;
 bits(2*datasize) data;

 bits(datasize) s1 = X[s];
 bits(datasize) s2 = X[s+1];
 bits(datasize) t1 = X[t];
 bits(datasize) t2 = X[t+1];
 comparevalue = if BigEndian() then s1:s2 else s2:s1;
 newvalue = if BigEndian() then t1:t2 else t2:t1;

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];
 data = Mem[address, (2 * datasize) DIV 8, ldacctype];
 if data == comparevalue then
B11-94 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B11 A64 Instructions
B11.1 Alphabetical list of instructions
 Mem[address, (2 * datasize) DIV 8, stacctype] = newvalue;
 // all observers in the shareability domain
 // observe the load and store atomically
 if BigEndian() then
 X[s] = ZeroExtend(data<2*datasize-1:datasize>, regsize);
 X[s+1] = ZeroExtend(data<datasize-1:0>, regsize);
 else
 X[s] = ZeroExtend(data<datasize-1:0>, regsize);
 X[s+1] = ZeroExtend(data<2*datasize-1:datasize>, regsize);
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B11-95
ID060316 Non-Confidential

B11 A64 Instructions
B11.1 Alphabetical list of instructions
B11.1.5 LDADD, LDADDA, LDADDAL, LDADDL

Atomic add on word or doubleword in memory loads a 32-bit word or 64-bit doubleword from memory, adds the
value held in a register to it, and stores the result back to memory. The value initially loaded from memory is
returned in the destination register.

• If the destination register is not one of WZR or XZR, LDADDA and LDADDAL load from memory with acquire
semantics.

• LDADDL and LDADDAL store to memory with release semantics.

• The following have no memory ordering requirements:

— LDADD.

— If the destination register is one of WZR or XZR, LDADDA and LDADDAL.

For more information about memory ordering semantics see Load-Acquire, Store-Release on page B11-227.

For information about memory accesses see Load/Store addressing modes on page B11-228.

ARMv8.1

32-bit, acquire variant

Applies when size == 10 && A == 1 && R == 0.

LDADDA <Ws>, <Wt>, [<Xn|SP>]

32-bit, acquire and release variant

Applies when size == 10 && A == 1 && R == 1.

LDADDAL <Ws>, <Wt>, [<Xn|SP>]

32-bit, no memory ordering variant

Applies when size == 10 && A == 0 && R == 0 && Rt != 11111.

LDADD <Ws>, <Wt>, [<Xn|SP>]

32-bit, release variant

Applies when size == 10 && A == 0 && R == 1 && Rt != 11111.

LDADDL <Ws>, <Wt>, [<Xn|SP>]

64-bit, acquire variant

Applies when size == 11 && A == 1 && R == 0.

LDADDA <Xs>, <Xt>, [<Xn|SP>]

64-bit, acquire and release variant

Applies when size == 11 && A == 1 && R == 1.

LDADDAL <Xs>, <Xt>, [<Xn|SP>]

1 x 1 1 1 0 0 0 A R 1 Rs 0 0 0 0 0 0 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size V o3 opc
B11-96 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B11 A64 Instructions
B11.1 Alphabetical list of instructions
64-bit, no memory ordering variant

Applies when size == 11 && A == 0 && R == 0 && Rt != 11111.

LDADD <Xs>, <Xt>, [<Xn|SP>]

64-bit, release variant

Applies when size == 11 && A == 0 && R == 1 && Rt != 11111.

LDADDL <Xs>, <Xt>, [<Xn|SP>]

Decode for all variants of this encoding

 if !HaveAtomicExt() then UnallocatedEncoding();

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 integer datasize = 8 << UInt(size);
 integer regsize = if datasize == 64 then 64 else 32;
 AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDRW else AccType_ATOMICRW;
 AccType stacctype = if R == '1' then AccType_ORDEREDRW else AccType_ATOMICRW;
 MemAtomicOp op;
 case o3:opc of
 when '0000' op = MemAtomicOp_ADD;
 when '0001' op = MemAtomicOp_BIC;
 when '0010' op = MemAtomicOp_EOR;
 when '0011' op = MemAtomicOp_ORR;
 when '0100' op = MemAtomicOp_SMAX;
 when '0101' op = MemAtomicOp_SMIN;
 when '0110' op = MemAtomicOp_UMAX;
 when '0111' op = MemAtomicOp_UMIN;
 when '1000' op = MemAtomicOp_SWP;
 otherwise UnallocatedEncoding();

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xt> Is the 64-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(datasize) value;
 bits(datasize) data;
 bits(datasize) result;

 value = X[s];
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];
 data = Mem[address, datasize DIV 8, ldacctype];

DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B11-97
ID060316 Non-Confidential

B11 A64 Instructions
B11.1 Alphabetical list of instructions
 case op of
 when MemAtomicOp_ADD result = data + value;
 when MemAtomicOp_BIC result = data AND NOT(value);
 when MemAtomicOp_EOR result = data EOR value;
 when MemAtomicOp_ORR result = data OR value;
 when MemAtomicOp_SMAX result = if SInt(data) > SInt(value) then data else value;
 when MemAtomicOp_SMIN result = if SInt(data) > SInt(value) then value else data;
 when MemAtomicOp_UMAX result = if UInt(data) > UInt(value) then data else value;
 when MemAtomicOp_UMIN result = if UInt(data) > UInt(value) then value else data;
 when MemAtomicOp_SWP result = value;

 Mem[address, datasize DIV 8, stacctype] = result; // all observers in the shareability domain
 // observe the load and store atomically

 X[t] = ZeroExtend(data, regsize);
B11-98 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B11 A64 Instructions
B11.1 Alphabetical list of instructions
B11.1.6 LDADDB, LDADDAB, LDADDALB, LDADDLB

Atomic add on byte in memory loads an 8-bit byte from memory, adds the value held in a register to it, and stores
the result back to memory. The value initially loaded from memory is returned in the destination register.

• If the destination register is not WZR, LDADDAB and LDADDALB load from memory with acquire semantics.

• LDADDLB and LDADDALB store to memory with release semantics.

• The following have no memory ordering requirements:

— LDADDB.

— If the destination register is WZR, LDADDAB and LDADDALB.

For more information about memory ordering semantics see Load-Acquire, Store-Release on page B11-227.

For information about memory accesses see Load/Store addressing modes on page B11-228.

ARMv8.1

Acquire variant

Applies when A == 1 && R == 0.

LDADDAB <Ws>, <Wt>, [<Xn|SP>]

Acquire and release variant

Applies when A == 1 && R == 1.

LDADDALB <Ws>, <Wt>, [<Xn|SP>]

No memory ordering variant

Applies when A == 0 && R == 0 && Rt != 11111.

LDADDB <Ws>, <Wt>, [<Xn|SP>]

Release variant

Applies when A == 0 && R == 1 && Rt != 11111.

LDADDLB <Ws>, <Wt>, [<Xn|SP>]

Decode for all variants of this encoding

 if !HaveAtomicExt() then UnallocatedEncoding();

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 integer datasize = 8 << UInt(size);
 integer regsize = if datasize == 64 then 64 else 32;
 AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDRW else AccType_ATOMICRW;
 AccType stacctype = if R == '1' then AccType_ORDEREDRW else AccType_ATOMICRW;
 MemAtomicOp op;
 case o3:opc of
 when '0000' op = MemAtomicOp_ADD;

0 0 1 1 1 0 0 0 A R 1 Rs 0 0 0 0 0 0 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size V o3 opc
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B11-99
ID060316 Non-Confidential

B11 A64 Instructions
B11.1 Alphabetical list of instructions
 when '0001' op = MemAtomicOp_BIC;
 when '0010' op = MemAtomicOp_EOR;
 when '0011' op = MemAtomicOp_ORR;
 when '0100' op = MemAtomicOp_SMAX;
 when '0101' op = MemAtomicOp_SMIN;
 when '0110' op = MemAtomicOp_UMAX;
 when '0111' op = MemAtomicOp_UMIN;
 when '1000' op = MemAtomicOp_SWP;
 otherwise UnallocatedEncoding();

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(datasize) value;
 bits(datasize) data;
 bits(datasize) result;

 value = X[s];
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];
 data = Mem[address, datasize DIV 8, ldacctype];

 case op of
 when MemAtomicOp_ADD result = data + value;
 when MemAtomicOp_BIC result = data AND NOT(value);
 when MemAtomicOp_EOR result = data EOR value;
 when MemAtomicOp_ORR result = data OR value;
 when MemAtomicOp_SMAX result = if SInt(data) > SInt(value) then data else value;
 when MemAtomicOp_SMIN result = if SInt(data) > SInt(value) then value else data;
 when MemAtomicOp_UMAX result = if UInt(data) > UInt(value) then data else value;
 when MemAtomicOp_UMIN result = if UInt(data) > UInt(value) then value else data;
 when MemAtomicOp_SWP result = value;

 Mem[address, datasize DIV 8, stacctype] = result; // all observers in the shareability domain
 // observe the load and store atomically

 X[t] = ZeroExtend(data, regsize);
B11-100 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B11 A64 Instructions
B11.1 Alphabetical list of instructions
B11.1.7 LDADDH, LDADDAH, LDADDALH, LDADDLH

Atomic add on halfword in memory loads a 16-bit halfword from memory, adds the value held in a register to it,
and stores the result back to memory. The value initially loaded from memory is returned in the destination register.

• If the destination register is not WZR, LDADDAH and LDADDALH load from memory with acquire semantics.

• LDADDLH and LDADDALH store to memory with release semantics.

• The following have no memory ordering requirements:

— LDADDH.

— If the destination register is WZR, LDADDAH and LDADDALH.

For more information about memory ordering semantics see Load-Acquire, Store-Release on page B11-227.

For information about memory accesses see Load/Store addressing modes on page B11-228.

ARMv8.1

Acquire variant

Applies when A == 1 && R == 0.

LDADDAH <Ws>, <Wt>, [<Xn|SP>]

Acquire and release variant

Applies when A == 1 && R == 1.

LDADDALH <Ws>, <Wt>, [<Xn|SP>]

No memory ordering variant

Applies when A == 0 && R == 0 && Rt != 11111.

LDADDH <Ws>, <Wt>, [<Xn|SP>]

Release variant

Applies when A == 0 && R == 1 && Rt != 11111.

LDADDLH <Ws>, <Wt>, [<Xn|SP>]

Decode for all variants of this encoding

 if !HaveAtomicExt() then UnallocatedEncoding();

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 integer datasize = 8 << UInt(size);
 integer regsize = if datasize == 64 then 64 else 32;
 AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDRW else AccType_ATOMICRW;
 AccType stacctype = if R == '1' then AccType_ORDEREDRW else AccType_ATOMICRW;
 MemAtomicOp op;
 case o3:opc of
 when '0000' op = MemAtomicOp_ADD;

0 1 1 1 1 0 0 0 A R 1 Rs 0 0 0 0 0 0 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size V o3 opc
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B11-101
ID060316 Non-Confidential

B11 A64 Instructions
B11.1 Alphabetical list of instructions
 when '0001' op = MemAtomicOp_BIC;
 when '0010' op = MemAtomicOp_EOR;
 when '0011' op = MemAtomicOp_ORR;
 when '0100' op = MemAtomicOp_SMAX;
 when '0101' op = MemAtomicOp_SMIN;
 when '0110' op = MemAtomicOp_UMAX;
 when '0111' op = MemAtomicOp_UMIN;
 when '1000' op = MemAtomicOp_SWP;
 otherwise UnallocatedEncoding();

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(datasize) value;
 bits(datasize) data;
 bits(datasize) result;

 value = X[s];
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];
 data = Mem[address, datasize DIV 8, ldacctype];

 case op of
 when MemAtomicOp_ADD result = data + value;
 when MemAtomicOp_BIC result = data AND NOT(value);
 when MemAtomicOp_EOR result = data EOR value;
 when MemAtomicOp_ORR result = data OR value;
 when MemAtomicOp_SMAX result = if SInt(data) > SInt(value) then data else value;
 when MemAtomicOp_SMIN result = if SInt(data) > SInt(value) then value else data;
 when MemAtomicOp_UMAX result = if UInt(data) > UInt(value) then data else value;
 when MemAtomicOp_UMIN result = if UInt(data) > UInt(value) then value else data;
 when MemAtomicOp_SWP result = value;

 Mem[address, datasize DIV 8, stacctype] = result; // all observers in the shareability domain
 // observe the load and store atomically

 X[t] = ZeroExtend(data, regsize);
B11-102 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B11 A64 Instructions
B11.1 Alphabetical list of instructions
B11.1.8 LDCLR, LDCLRA, LDCLRAL, LDCLRL

Atomic bit clear on word or doubleword in memory loads a 32-bit word or 64-bit doubleword from memory,
performs a bitwise AND with the complement of the value held in a register on it, and stores the result back to
memory. The value initially loaded from memory is returned in the destination register.

• If the destination register is not one of WZR or XZR, LDCLRA and LDCLRAL load from memory with acquire
semantics.

• LDCLRL and LDCLRAL store to memory with release semantics.

• The following have no memory ordering requirements:

— LDCLR.

— If the destination register is one of WZR or XZR, LDCLRA and LDCLRAL.

For more information about memory ordering semantics see Load-Acquire, Store-Release on page B11-227.

For information about memory accesses see Load/Store addressing modes on page B11-228.

ARMv8.1

32-bit, acquire variant

Applies when size == 10 && A == 1 && R == 0.

LDCLRA <Ws>, <Wt>, [<Xn|SP>]

32-bit, acquire and release variant

Applies when size == 10 && A == 1 && R == 1.

LDCLRAL <Ws>, <Wt>, [<Xn|SP>]

32-bit, no memory ordering variant

Applies when size == 10 && A == 0 && R == 0 && Rt != 11111.

LDCLR <Ws>, <Wt>, [<Xn|SP>]

32-bit, release variant

Applies when size == 10 && A == 0 && R == 1 && Rt != 11111.

LDCLRL <Ws>, <Wt>, [<Xn|SP>]

64-bit, acquire variant

Applies when size == 11 && A == 1 && R == 0.

LDCLRA <Xs>, <Xt>, [<Xn|SP>]

64-bit, acquire and release variant

Applies when size == 11 && A == 1 && R == 1.

LDCLRAL <Xs>, <Xt>, [<Xn|SP>]

1 x 1 1 1 0 0 0 A R 1 Rs 0 0 0 1 0 0 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size V o3 opc
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B11-103
ID060316 Non-Confidential

B11 A64 Instructions
B11.1 Alphabetical list of instructions
64-bit, no memory ordering variant

Applies when size == 11 && A == 0 && R == 0 && Rt != 11111.

LDCLR <Xs>, <Xt>, [<Xn|SP>]

64-bit, release variant

Applies when size == 11 && A == 0 && R == 1 && Rt != 11111.

LDCLRL <Xs>, <Xt>, [<Xn|SP>]

Decode for all variants of this encoding

 if !HaveAtomicExt() then UnallocatedEncoding();

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 integer datasize = 8 << UInt(size);
 integer regsize = if datasize == 64 then 64 else 32;
 AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDRW else AccType_ATOMICRW;
 AccType stacctype = if R == '1' then AccType_ORDEREDRW else AccType_ATOMICRW;
 MemAtomicOp op;
 case o3:opc of
 when '0000' op = MemAtomicOp_ADD;
 when '0001' op = MemAtomicOp_BIC;
 when '0010' op = MemAtomicOp_EOR;
 when '0011' op = MemAtomicOp_ORR;
 when '0100' op = MemAtomicOp_SMAX;
 when '0101' op = MemAtomicOp_SMIN;
 when '0110' op = MemAtomicOp_UMAX;
 when '0111' op = MemAtomicOp_UMIN;
 when '1000' op = MemAtomicOp_SWP;
 otherwise UnallocatedEncoding();

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xt> Is the 64-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(datasize) value;
 bits(datasize) data;
 bits(datasize) result;

 value = X[s];
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];
 data = Mem[address, datasize DIV 8, ldacctype];

B11-104 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B11 A64 Instructions
B11.1 Alphabetical list of instructions
 case op of
 when MemAtomicOp_ADD result = data + value;
 when MemAtomicOp_BIC result = data AND NOT(value);
 when MemAtomicOp_EOR result = data EOR value;
 when MemAtomicOp_ORR result = data OR value;
 when MemAtomicOp_SMAX result = if SInt(data) > SInt(value) then data else value;
 when MemAtomicOp_SMIN result = if SInt(data) > SInt(value) then value else data;
 when MemAtomicOp_UMAX result = if UInt(data) > UInt(value) then data else value;
 when MemAtomicOp_UMIN result = if UInt(data) > UInt(value) then value else data;
 when MemAtomicOp_SWP result = value;

 Mem[address, datasize DIV 8, stacctype] = result; // all observers in the shareability domain
 // observe the load and store atomically

 X[t] = ZeroExtend(data, regsize);
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B11-105
ID060316 Non-Confidential

B11 A64 Instructions
B11.1 Alphabetical list of instructions
B11.1.9 LDCLRB, LDCLRAB, LDCLRALB, LDCLRLB

Atomic bit clear on byte in memory loads an 8-bit byte from memory, performs a bitwise AND with the complement
of the value held in a register on it, and stores the result back to memory. The value initially loaded from memory
is returned in the destination register.

• If the destination register is not WZR, LDCLRAB and LDCLRALB load from memory with acquire semantics.

• LDCLRLB and LDCLRALB store to memory with release semantics.

• The following have no memory ordering requirements:

— LDCLRB.

— If the destination register is WZR, LDCLRAB and LDCLRALB.

For more information about memory ordering semantics see Load-Acquire, Store-Release on page B11-227.

For information about memory accesses see Load/Store addressing modes on page B11-228.

ARMv8.1

Acquire variant

Applies when A == 1 && R == 0.

LDCLRAB <Ws>, <Wt>, [<Xn|SP>]

Acquire and release variant

Applies when A == 1 && R == 1.

LDCLRALB <Ws>, <Wt>, [<Xn|SP>]

No memory ordering variant

Applies when A == 0 && R == 0 && Rt != 11111.

LDCLRB <Ws>, <Wt>, [<Xn|SP>]

Release variant

Applies when A == 0 && R == 1 && Rt != 11111.

LDCLRLB <Ws>, <Wt>, [<Xn|SP>]

Decode for all variants of this encoding

 if !HaveAtomicExt() then UnallocatedEncoding();

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 integer datasize = 8 << UInt(size);
 integer regsize = if datasize == 64 then 64 else 32;
 AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDRW else AccType_ATOMICRW;
 AccType stacctype = if R == '1' then AccType_ORDEREDRW else AccType_ATOMICRW;
 MemAtomicOp op;
 case o3:opc of

0 0 1 1 1 0 0 0 A R 1 Rs 0 0 0 1 0 0 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size V o3 opc
B11-106 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B11 A64 Instructions
B11.1 Alphabetical list of instructions
 when '0000' op = MemAtomicOp_ADD;
 when '0001' op = MemAtomicOp_BIC;
 when '0010' op = MemAtomicOp_EOR;
 when '0011' op = MemAtomicOp_ORR;
 when '0100' op = MemAtomicOp_SMAX;
 when '0101' op = MemAtomicOp_SMIN;
 when '0110' op = MemAtomicOp_UMAX;
 when '0111' op = MemAtomicOp_UMIN;
 when '1000' op = MemAtomicOp_SWP;
 otherwise UnallocatedEncoding();

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(datasize) value;
 bits(datasize) data;
 bits(datasize) result;

 value = X[s];
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];
 data = Mem[address, datasize DIV 8, ldacctype];

 case op of
 when MemAtomicOp_ADD result = data + value;
 when MemAtomicOp_BIC result = data AND NOT(value);
 when MemAtomicOp_EOR result = data EOR value;
 when MemAtomicOp_ORR result = data OR value;
 when MemAtomicOp_SMAX result = if SInt(data) > SInt(value) then data else value;
 when MemAtomicOp_SMIN result = if SInt(data) > SInt(value) then value else data;
 when MemAtomicOp_UMAX result = if UInt(data) > UInt(value) then data else value;
 when MemAtomicOp_UMIN result = if UInt(data) > UInt(value) then value else data;
 when MemAtomicOp_SWP result = value;

 Mem[address, datasize DIV 8, stacctype] = result; // all observers in the shareability domain
 // observe the load and store atomically

 X[t] = ZeroExtend(data, regsize);
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B11-107
ID060316 Non-Confidential

B11 A64 Instructions
B11.1 Alphabetical list of instructions
B11.1.10 LDCLRH, LDCLRAH, LDCLRALH, LDCLRLH

Atomic bit clear on halfword in memory loads a 16-bit halfword from memory, performs a bitwise AND with the
complement of the value held in a register on it, and stores the result back to memory. The value initially loaded
from memory is returned in the destination register.

• If the destination register is not WZR, LDCLRAH and LDCLRALH load from memory with acquire semantics.

• LDCLRLH and LDCLRALH store to memory with release semantics.

• The following have no memory ordering requirements:

— LDCLRH.

— If the destination register is WZR, LDCLRAH and LDCLRALH.

For more information about memory ordering semantics see Load-Acquire, Store-Release on page B11-227.

For information about memory accesses see Load/Store addressing modes on page B11-228.

ARMv8.1

Acquire variant

Applies when A == 1 && R == 0.

LDCLRAH <Ws>, <Wt>, [<Xn|SP>]

Acquire and release variant

Applies when A == 1 && R == 1.

LDCLRALH <Ws>, <Wt>, [<Xn|SP>]

No memory ordering variant

Applies when A == 0 && R == 0 && Rt != 11111.

LDCLRH <Ws>, <Wt>, [<Xn|SP>]

Release variant

Applies when A == 0 && R == 1 && Rt != 11111.

LDCLRLH <Ws>, <Wt>, [<Xn|SP>]

Decode for all variants of this encoding

 if !HaveAtomicExt() then UnallocatedEncoding();

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 integer datasize = 8 << UInt(size);
 integer regsize = if datasize == 64 then 64 else 32;
 AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDRW else AccType_ATOMICRW;
 AccType stacctype = if R == '1' then AccType_ORDEREDRW else AccType_ATOMICRW;
 MemAtomicOp op;
 case o3:opc of

0 1 1 1 1 0 0 0 A R 1 Rs 0 0 0 1 0 0 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size V o3 opc
B11-108 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B11 A64 Instructions
B11.1 Alphabetical list of instructions
 when '0000' op = MemAtomicOp_ADD;
 when '0001' op = MemAtomicOp_BIC;
 when '0010' op = MemAtomicOp_EOR;
 when '0011' op = MemAtomicOp_ORR;
 when '0100' op = MemAtomicOp_SMAX;
 when '0101' op = MemAtomicOp_SMIN;
 when '0110' op = MemAtomicOp_UMAX;
 when '0111' op = MemAtomicOp_UMIN;
 when '1000' op = MemAtomicOp_SWP;
 otherwise UnallocatedEncoding();

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(datasize) value;
 bits(datasize) data;
 bits(datasize) result;

 value = X[s];
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];
 data = Mem[address, datasize DIV 8, ldacctype];

 case op of
 when MemAtomicOp_ADD result = data + value;
 when MemAtomicOp_BIC result = data AND NOT(value);
 when MemAtomicOp_EOR result = data EOR value;
 when MemAtomicOp_ORR result = data OR value;
 when MemAtomicOp_SMAX result = if SInt(data) > SInt(value) then data else value;
 when MemAtomicOp_SMIN result = if SInt(data) > SInt(value) then value else data;
 when MemAtomicOp_UMAX result = if UInt(data) > UInt(value) then data else value;
 when MemAtomicOp_UMIN result = if UInt(data) > UInt(value) then value else data;
 when MemAtomicOp_SWP result = value;

 Mem[address, datasize DIV 8, stacctype] = result; // all observers in the shareability domain
 // observe the load and store atomically

 X[t] = ZeroExtend(data, regsize);
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B11-109
ID060316 Non-Confidential

B11 A64 Instructions
B11.1 Alphabetical list of instructions
B11.1.11 LDEOR, LDEORA, LDEORAL, LDEORL

Atomic exclusive OR on word or doubleword in memory loads a 32-bit word or 64-bit doubleword from memory,
performs an exclusive OR with the value held in a register on it, and stores the result back to memory. The value
initially loaded from memory is returned in the destination register.

• If the destination register is not one of WZR or XZR, LDEORA and LDEORAL load from memory with acquire
semantics.

• LDEORL and LDEORAL store to memory with release semantics.

• The following have no memory ordering requirements:

— LDEOR.

— If the destination register is one of WZR or XZR, LDEORA and LDEORAL.

For more information about memory ordering semantics see Load-Acquire, Store-Release on page B11-227.

For information about memory accesses see Load/Store addressing modes on page B11-228.

ARMv8.1

32-bit, acquire variant

Applies when size == 10 && A == 1 && R == 0.

LDEORA <Ws>, <Wt>, [<Xn|SP>]

32-bit, acquire and release variant

Applies when size == 10 && A == 1 && R == 1.

LDEORAL <Ws>, <Wt>, [<Xn|SP>]

32-bit, no memory ordering variant

Applies when size == 10 && A == 0 && R == 0 && Rt != 11111.

LDEOR <Ws>, <Wt>, [<Xn|SP>]

32-bit, release variant

Applies when size == 10 && A == 0 && R == 1 && Rt != 11111.

LDEORL <Ws>, <Wt>, [<Xn|SP>]

64-bit, acquire variant

Applies when size == 11 && A == 1 && R == 0.

LDEORA <Xs>, <Xt>, [<Xn|SP>]

64-bit, acquire and release variant

Applies when size == 11 && A == 1 && R == 1.

LDEORAL <Xs>, <Xt>, [<Xn|SP>]

1 x 1 1 1 0 0 0 A R 1 Rs 0 0 1 0 0 0 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size V o3 opc
B11-110 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B11 A64 Instructions
B11.1 Alphabetical list of instructions
64-bit, no memory ordering variant

Applies when size == 11 && A == 0 && R == 0 && Rt != 11111.

LDEOR <Xs>, <Xt>, [<Xn|SP>]

64-bit, release variant

Applies when size == 11 && A == 0 && R == 1 && Rt != 11111.

LDEORL <Xs>, <Xt>, [<Xn|SP>]

Decode for all variants of this encoding

 if !HaveAtomicExt() then UnallocatedEncoding();

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 integer datasize = 8 << UInt(size);
 integer regsize = if datasize == 64 then 64 else 32;
 AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDRW else AccType_ATOMICRW;
 AccType stacctype = if R == '1' then AccType_ORDEREDRW else AccType_ATOMICRW;
 MemAtomicOp op;
 case o3:opc of
 when '0000' op = MemAtomicOp_ADD;
 when '0001' op = MemAtomicOp_BIC;
 when '0010' op = MemAtomicOp_EOR;
 when '0011' op = MemAtomicOp_ORR;
 when '0100' op = MemAtomicOp_SMAX;
 when '0101' op = MemAtomicOp_SMIN;
 when '0110' op = MemAtomicOp_UMAX;
 when '0111' op = MemAtomicOp_UMIN;
 when '1000' op = MemAtomicOp_SWP;
 otherwise UnallocatedEncoding();

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xt> Is the 64-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(datasize) value;
 bits(datasize) data;
 bits(datasize) result;

 value = X[s];
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];
 data = Mem[address, datasize DIV 8, ldacctype];

DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B11-111
ID060316 Non-Confidential

B11 A64 Instructions
B11.1 Alphabetical list of instructions
 case op of
 when MemAtomicOp_ADD result = data + value;
 when MemAtomicOp_BIC result = data AND NOT(value);
 when MemAtomicOp_EOR result = data EOR value;
 when MemAtomicOp_ORR result = data OR value;
 when MemAtomicOp_SMAX result = if SInt(data) > SInt(value) then data else value;
 when MemAtomicOp_SMIN result = if SInt(data) > SInt(value) then value else data;
 when MemAtomicOp_UMAX result = if UInt(data) > UInt(value) then data else value;
 when MemAtomicOp_UMIN result = if UInt(data) > UInt(value) then value else data;
 when MemAtomicOp_SWP result = value;

 Mem[address, datasize DIV 8, stacctype] = result; // all observers in the shareability domain
 // observe the load and store atomically

 X[t] = ZeroExtend(data, regsize);
B11-112 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B11 A64 Instructions
B11.1 Alphabetical list of instructions
B11.1.12 LDEORB, LDEORAB, LDEORALB, LDEORLB

Atomic exclusive OR on byte in memory loads an 8-bit byte from memory, performs an exclusive OR with the value
held in a register on it, and stores the result back to memory. The value initially loaded from memory is returned in
the destination register.

• If the destination register is not WZR, LDEORAB and LDEORALB load from memory with acquire semantics.

• LDEORLB and LDEORALB store to memory with release semantics.

• The following have no memory ordering requirements:

— LDEORB.

— If the destination register is WZR, LDEORAB and LDEORALB.

For more information about memory ordering semantics see Load-Acquire, Store-Release on page B11-227.

For information about memory accesses see Load/Store addressing modes on page B11-228.

ARMv8.1

Acquire variant

Applies when A == 1 && R == 0.

LDEORAB <Ws>, <Wt>, [<Xn|SP>]

Acquire and release variant

Applies when A == 1 && R == 1.

LDEORALB <Ws>, <Wt>, [<Xn|SP>]

No memory ordering variant

Applies when A == 0 && R == 0 && Rt != 11111.

LDEORB <Ws>, <Wt>, [<Xn|SP>]

Release variant

Applies when A == 0 && R == 1 && Rt != 11111.

LDEORLB <Ws>, <Wt>, [<Xn|SP>]

Decode for all variants of this encoding

 if !HaveAtomicExt() then UnallocatedEncoding();

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 integer datasize = 8 << UInt(size);
 integer regsize = if datasize == 64 then 64 else 32;
 AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDRW else AccType_ATOMICRW;
 AccType stacctype = if R == '1' then AccType_ORDEREDRW else AccType_ATOMICRW;
 MemAtomicOp op;
 case o3:opc of

0 0 1 1 1 0 0 0 A R 1 Rs 0 0 1 0 0 0 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size V o3 opc
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B11-113
ID060316 Non-Confidential

B11 A64 Instructions
B11.1 Alphabetical list of instructions
 when '0000' op = MemAtomicOp_ADD;
 when '0001' op = MemAtomicOp_BIC;
 when '0010' op = MemAtomicOp_EOR;
 when '0011' op = MemAtomicOp_ORR;
 when '0100' op = MemAtomicOp_SMAX;
 when '0101' op = MemAtomicOp_SMIN;
 when '0110' op = MemAtomicOp_UMAX;
 when '0111' op = MemAtomicOp_UMIN;
 when '1000' op = MemAtomicOp_SWP;
 otherwise UnallocatedEncoding();

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(datasize) value;
 bits(datasize) data;
 bits(datasize) result;

 value = X[s];
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];
 data = Mem[address, datasize DIV 8, ldacctype];

 case op of
 when MemAtomicOp_ADD result = data + value;
 when MemAtomicOp_BIC result = data AND NOT(value);
 when MemAtomicOp_EOR result = data EOR value;
 when MemAtomicOp_ORR result = data OR value;
 when MemAtomicOp_SMAX result = if SInt(data) > SInt(value) then data else value;
 when MemAtomicOp_SMIN result = if SInt(data) > SInt(value) then value else data;
 when MemAtomicOp_UMAX result = if UInt(data) > UInt(value) then data else value;
 when MemAtomicOp_UMIN result = if UInt(data) > UInt(value) then value else data;
 when MemAtomicOp_SWP result = value;

 Mem[address, datasize DIV 8, stacctype] = result; // all observers in the shareability domain
 // observe the load and store atomically

 X[t] = ZeroExtend(data, regsize);
B11-114 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B11 A64 Instructions
B11.1 Alphabetical list of instructions
B11.1.13 LDEORH, LDEORAH, LDEORALH, LDEORLH

Atomic exclusive OR on halfword in memory loads a 16-bit halfword from memory, performs an exclusive OR with
the value held in a register on it, and stores the result back to memory. The value initially loaded from memory is
returned in the destination register.

• If the destination register is not WZR, LDEORAH and LDEORALH load from memory with acquire semantics.

• LDEORLH and LDEORALH store to memory with release semantics.

• The following have no memory ordering requirements:

— LDEORH.

— If the destination register is WZR, LDEORAH and LDEORALH.

For more information about memory ordering semantics see Load-Acquire, Store-Release on page B11-227.

For information about memory accesses see Load/Store addressing modes on page B11-228.

ARMv8.1

Acquire variant

Applies when A == 1 && R == 0.

LDEORAH <Ws>, <Wt>, [<Xn|SP>]

Acquire and release variant

Applies when A == 1 && R == 1.

LDEORALH <Ws>, <Wt>, [<Xn|SP>]

No memory ordering variant

Applies when A == 0 && R == 0 && Rt != 11111.

LDEORH <Ws>, <Wt>, [<Xn|SP>]

Release variant

Applies when A == 0 && R == 1 && Rt != 11111.

LDEORLH <Ws>, <Wt>, [<Xn|SP>]

Decode for all variants of this encoding

 if !HaveAtomicExt() then UnallocatedEncoding();

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 integer datasize = 8 << UInt(size);
 integer regsize = if datasize == 64 then 64 else 32;
 AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDRW else AccType_ATOMICRW;
 AccType stacctype = if R == '1' then AccType_ORDEREDRW else AccType_ATOMICRW;
 MemAtomicOp op;
 case o3:opc of

0 1 1 1 1 0 0 0 A R 1 Rs 0 0 1 0 0 0 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size V o3 opc
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B11-115
ID060316 Non-Confidential

B11 A64 Instructions
B11.1 Alphabetical list of instructions
 when '0000' op = MemAtomicOp_ADD;
 when '0001' op = MemAtomicOp_BIC;
 when '0010' op = MemAtomicOp_EOR;
 when '0011' op = MemAtomicOp_ORR;
 when '0100' op = MemAtomicOp_SMAX;
 when '0101' op = MemAtomicOp_SMIN;
 when '0110' op = MemAtomicOp_UMAX;
 when '0111' op = MemAtomicOp_UMIN;
 when '1000' op = MemAtomicOp_SWP;
 otherwise UnallocatedEncoding();

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(datasize) value;
 bits(datasize) data;
 bits(datasize) result;

 value = X[s];
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];
 data = Mem[address, datasize DIV 8, ldacctype];

 case op of
 when MemAtomicOp_ADD result = data + value;
 when MemAtomicOp_BIC result = data AND NOT(value);
 when MemAtomicOp_EOR result = data EOR value;
 when MemAtomicOp_ORR result = data OR value;
 when MemAtomicOp_SMAX result = if SInt(data) > SInt(value) then data else value;
 when MemAtomicOp_SMIN result = if SInt(data) > SInt(value) then value else data;
 when MemAtomicOp_UMAX result = if UInt(data) > UInt(value) then data else value;
 when MemAtomicOp_UMIN result = if UInt(data) > UInt(value) then value else data;
 when MemAtomicOp_SWP result = value;

 Mem[address, datasize DIV 8, stacctype] = result; // all observers in the shareability domain
 // observe the load and store atomically

 X[t] = ZeroExtend(data, regsize);
B11-116 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B11 A64 Instructions
B11.1 Alphabetical list of instructions
B11.1.14 LDLAR

Load LOAcquire Register loads a 32-bit word or 64-bit doubleword from memory, and writes it to a register. The
instruction also has memory ordering semantics as described in Load-Acquire, Store-Release on page B11-227. For
information about memory accesses, see Load/Store addressing modes on page B11-228.

ARMv8.1

32-bit variant

Applies when size == 10.

LDLAR <Wt>, [<Xn|SP>{,#0}]

64-bit variant

Applies when size == 11.

LDLAR <Xt>, [<Xn|SP>{,#0}]

Decode for all variants of this encoding

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 integer t2 = UInt(Rt2); // ignored by load/store single register
 integer s = UInt(Rs); // ignored by all loads and store-release

 AccType acctype = if o0 == '0' then AccType_LIMITEDORDERED else AccType_ORDERED;
 MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
 integer elsize = 8 << UInt(size);
 integer regsize = if elsize == 64 then 64 else 32;
 integer datasize = elsize;

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(datasize) data;
 constant integer dbytes = datasize DIV 8;

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 case memop of
 when MemOp_STORE
 data = X[t];
 Mem[address, dbytes, acctype] = data;

1 x 0 0 1 0 0 0 1 1 0 (1) (1) (1) (1) (1) 0 (1) (1) (1) (1) (1) Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

size L Rs o0 Rt2
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B11-117
ID060316 Non-Confidential

B11 A64 Instructions
B11.1 Alphabetical list of instructions

 when MemOp_LOAD
 data = Mem[address, dbytes, acctype];
 X[t] = ZeroExtend(data, regsize);
B11-118 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B11 A64 Instructions
B11.1 Alphabetical list of instructions
B11.1.15 LDLARB

Load LOAcquire Register Byte loads a byte from memory, zero-extends it and writes it to a register. The instruction
also has memory ordering semantics as described in Load-Acquire, Store-Release on page B11-227. For information
about memory accesses, see Load/Store addressing modes on page B11-228.

ARMv8.1

No offset variant

LDLARB <Wt>, [<Xn|SP>{,#0}]

Decode for this encoding

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 integer t2 = UInt(Rt2); // ignored by load/store single register
 integer s = UInt(Rs); // ignored by all loads and store-release

 AccType acctype = if o0 == '0' then AccType_LIMITEDORDERED else AccType_ORDERED;
 MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
 integer elsize = 8 << UInt(size);
 integer regsize = if elsize == 64 then 64 else 32;
 integer datasize = elsize;

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(datasize) data;
 constant integer dbytes = datasize DIV 8;

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 case memop of
 when MemOp_STORE
 data = X[t];
 Mem[address, dbytes, acctype] = data;

 when MemOp_LOAD
 data = Mem[address, dbytes, acctype];
 X[t] = ZeroExtend(data, regsize);

0 0 0 0 1 0 0 0 1 1 0 (1) (1) (1) (1) (1) 0 (1) (1) (1) (1) (1) Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

size L Rs o0 Rt2
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B11-119
ID060316 Non-Confidential

B11 A64 Instructions
B11.1 Alphabetical list of instructions
B11.1.16 LDLARH

Load LOAcquire Register Halfword loads a halfword from memory, zero-extends it, and writes it to a register. The
instruction also has memory ordering semantics as described in Load-Acquire, Store-Release on page B11-227. For
information about memory accesses, see Load/Store addressing modes on page B11-228.

ARMv8.1

No offset variant

LDLARH <Wt>, [<Xn|SP>{,#0}]

Decode for this encoding

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 integer t2 = UInt(Rt2); // ignored by load/store single register
 integer s = UInt(Rs); // ignored by all loads and store-release

 AccType acctype = if o0 == '0' then AccType_LIMITEDORDERED else AccType_ORDERED;
 MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
 integer elsize = 8 << UInt(size);
 integer regsize = if elsize == 64 then 64 else 32;
 integer datasize = elsize;

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(datasize) data;
 constant integer dbytes = datasize DIV 8;

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 case memop of
 when MemOp_STORE
 data = X[t];
 Mem[address, dbytes, acctype] = data;

 when MemOp_LOAD
 data = Mem[address, dbytes, acctype];
 X[t] = ZeroExtend(data, regsize);

0 1 0 0 1 0 0 0 1 1 0 (1) (1) (1) (1) (1) 0 (1) (1) (1) (1) (1) Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

size L Rs o0 Rt2
B11-120 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B11 A64 Instructions
B11.1 Alphabetical list of instructions
B11.1.17 LDSET, LDSETA, LDSETAL, LDSETL

Atomic bit set on word or doubleword in memory loads a 32-bit word or 64-bit doubleword from memory, performs
a bitwise OR with the value held in a register on it, and stores the result back to memory. The value initially loaded
from memory is returned in the destination register.

• If the destination register is not one of WZR or XZR, LDSETA and LDSETAL load from memory with acquire
semantics.

• LDSETL and LDSETAL store to memory with release semantics.

• The following have no memory ordering requirements:

— LDSET.

— If the destination register is one of WZR or XZR, LDSETA and LDSETAL.

For more information about memory ordering semantics see Load-Acquire, Store-Release on page B11-227.

For information about memory accesses see Load/Store addressing modes on page B11-228.

ARMv8.1

32-bit, acquire variant

Applies when size == 10 && A == 1 && R == 0.

LDSETA <Ws>, <Wt>, [<Xn|SP>]

32-bit, acquire and release variant

Applies when size == 10 && A == 1 && R == 1.

LDSETAL <Ws>, <Wt>, [<Xn|SP>]

32-bit, no memory ordering variant

Applies when size == 10 && A == 0 && R == 0 && Rt != 11111.

LDSET <Ws>, <Wt>, [<Xn|SP>]

32-bit, release variant

Applies when size == 10 && A == 0 && R == 1 && Rt != 11111.

LDSETL <Ws>, <Wt>, [<Xn|SP>]

64-bit, acquire variant

Applies when size == 11 && A == 1 && R == 0.

LDSETA <Xs>, <Xt>, [<Xn|SP>]

64-bit, acquire and release variant

Applies when size == 11 && A == 1 && R == 1.

LDSETAL <Xs>, <Xt>, [<Xn|SP>]

1 x 1 1 1 0 0 0 A R 1 Rs 0 0 1 1 0 0 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size V o3 opc
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B11-121
ID060316 Non-Confidential

B11 A64 Instructions
B11.1 Alphabetical list of instructions
64-bit, no memory ordering variant

Applies when size == 11 && A == 0 && R == 0 && Rt != 11111.

LDSET <Xs>, <Xt>, [<Xn|SP>]

64-bit, release variant

Applies when size == 11 && A == 0 && R == 1 && Rt != 11111.

LDSETL <Xs>, <Xt>, [<Xn|SP>]

Decode for all variants of this encoding

 if !HaveAtomicExt() then UnallocatedEncoding();

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 integer datasize = 8 << UInt(size);
 integer regsize = if datasize == 64 then 64 else 32;
 AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDRW else AccType_ATOMICRW;
 AccType stacctype = if R == '1' then AccType_ORDEREDRW else AccType_ATOMICRW;
 MemAtomicOp op;
 case o3:opc of
 when '0000' op = MemAtomicOp_ADD;
 when '0001' op = MemAtomicOp_BIC;
 when '0010' op = MemAtomicOp_EOR;
 when '0011' op = MemAtomicOp_ORR;
 when '0100' op = MemAtomicOp_SMAX;
 when '0101' op = MemAtomicOp_SMIN;
 when '0110' op = MemAtomicOp_UMAX;
 when '0111' op = MemAtomicOp_UMIN;
 when '1000' op = MemAtomicOp_SWP;
 otherwise UnallocatedEncoding();

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xt> Is the 64-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(datasize) value;
 bits(datasize) data;
 bits(datasize) result;

 value = X[s];
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];
 data = Mem[address, datasize DIV 8, ldacctype];

B11-122 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B11 A64 Instructions
B11.1 Alphabetical list of instructions
 case op of
 when MemAtomicOp_ADD result = data + value;
 when MemAtomicOp_BIC result = data AND NOT(value);
 when MemAtomicOp_EOR result = data EOR value;
 when MemAtomicOp_ORR result = data OR value;
 when MemAtomicOp_SMAX result = if SInt(data) > SInt(value) then data else value;
 when MemAtomicOp_SMIN result = if SInt(data) > SInt(value) then value else data;
 when MemAtomicOp_UMAX result = if UInt(data) > UInt(value) then data else value;
 when MemAtomicOp_UMIN result = if UInt(data) > UInt(value) then value else data;
 when MemAtomicOp_SWP result = value;

 Mem[address, datasize DIV 8, stacctype] = result; // all observers in the shareability domain
 // observe the load and store atomically

 X[t] = ZeroExtend(data, regsize);
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B11-123
ID060316 Non-Confidential

B11 A64 Instructions
B11.1 Alphabetical list of instructions
B11.1.18 LDSETB, LDSETAB, LDSETALB, LDSETLB

Atomic bit set on byte in memory loads an 8-bit byte from memory, performs a bitwise OR with the value held in a
register on it, and stores the result back to memory. The value initially loaded from memory is returned in the
destination register.

• If the destination register is not WZR, LDSETAB and LDSETALB load from memory with acquire semantics.

• LDSETLB and LDSETALB store to memory with release semantics.

• The following have no memory ordering requirements:

— LDSETB.

— If the destination register is WZR, LDSETAB and LDSETALB.

For more information about memory ordering semantics see Load-Acquire, Store-Release on page B11-227.

For information about memory accesses see Load/Store addressing modes on page B11-228.

ARMv8.1

Acquire variant

Applies when A == 1 && R == 0.

LDSETAB <Ws>, <Wt>, [<Xn|SP>]

Acquire and release variant

Applies when A == 1 && R == 1.

LDSETALB <Ws>, <Wt>, [<Xn|SP>]

No memory ordering variant

Applies when A == 0 && R == 0 && Rt != 11111.

LDSETB <Ws>, <Wt>, [<Xn|SP>]

Release variant

Applies when A == 0 && R == 1 && Rt != 11111.

LDSETLB <Ws>, <Wt>, [<Xn|SP>]

Decode for all variants of this encoding

 if !HaveAtomicExt() then UnallocatedEncoding();

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 integer datasize = 8 << UInt(size);
 integer regsize = if datasize == 64 then 64 else 32;
 AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDRW else AccType_ATOMICRW;
 AccType stacctype = if R == '1' then AccType_ORDEREDRW else AccType_ATOMICRW;
 MemAtomicOp op;
 case o3:opc of

0 0 1 1 1 0 0 0 A R 1 Rs 0 0 1 1 0 0 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size V o3 opc
B11-124 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B11 A64 Instructions
B11.1 Alphabetical list of instructions
 when '0000' op = MemAtomicOp_ADD;
 when '0001' op = MemAtomicOp_BIC;
 when '0010' op = MemAtomicOp_EOR;
 when '0011' op = MemAtomicOp_ORR;
 when '0100' op = MemAtomicOp_SMAX;
 when '0101' op = MemAtomicOp_SMIN;
 when '0110' op = MemAtomicOp_UMAX;
 when '0111' op = MemAtomicOp_UMIN;
 when '1000' op = MemAtomicOp_SWP;
 otherwise UnallocatedEncoding();

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(datasize) value;
 bits(datasize) data;
 bits(datasize) result;

 value = X[s];
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];
 data = Mem[address, datasize DIV 8, ldacctype];

 case op of
 when MemAtomicOp_ADD result = data + value;
 when MemAtomicOp_BIC result = data AND NOT(value);
 when MemAtomicOp_EOR result = data EOR value;
 when MemAtomicOp_ORR result = data OR value;
 when MemAtomicOp_SMAX result = if SInt(data) > SInt(value) then data else value;
 when MemAtomicOp_SMIN result = if SInt(data) > SInt(value) then value else data;
 when MemAtomicOp_UMAX result = if UInt(data) > UInt(value) then data else value;
 when MemAtomicOp_UMIN result = if UInt(data) > UInt(value) then value else data;
 when MemAtomicOp_SWP result = value;

 Mem[address, datasize DIV 8, stacctype] = result; // all observers in the shareability domain
 // observe the load and store atomically

 X[t] = ZeroExtend(data, regsize);
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B11-125
ID060316 Non-Confidential

B11 A64 Instructions
B11.1 Alphabetical list of instructions
B11.1.19 LDSETH, LDSETAH, LDSETALH, LDSETLH

Atomic bit set on halfword in memory loads a 16-bit halfword from memory, performs a bitwise OR with the value
held in a register on it, and stores the result back to memory. The value initially loaded from memory is returned in
the destination register.

• If the destination register is not WZR, LDSETAH and LDSETALH load from memory with acquire semantics.

• LDSETLH and LDSETALH store to memory with release semantics.

• The following have no memory ordering requirements:

— LDSETH.

— If the destination register is WZR, LDSETAH and LDSETALH.

For more information about memory ordering semantics see Load-Acquire, Store-Release on page B11-227.

For information about memory accesses see Load/Store addressing modes on page B11-228.

ARMv8.1

Acquire variant

Applies when A == 1 && R == 0.

LDSETAH <Ws>, <Wt>, [<Xn|SP>]

Acquire and release variant

Applies when A == 1 && R == 1.

LDSETALH <Ws>, <Wt>, [<Xn|SP>]

No memory ordering variant

Applies when A == 0 && R == 0 && Rt != 11111.

LDSETH <Ws>, <Wt>, [<Xn|SP>]

Release variant

Applies when A == 0 && R == 1 && Rt != 11111.

LDSETLH <Ws>, <Wt>, [<Xn|SP>]

Decode for all variants of this encoding

 if !HaveAtomicExt() then UnallocatedEncoding();

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 integer datasize = 8 << UInt(size);
 integer regsize = if datasize == 64 then 64 else 32;
 AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDRW else AccType_ATOMICRW;
 AccType stacctype = if R == '1' then AccType_ORDEREDRW else AccType_ATOMICRW;
 MemAtomicOp op;
 case o3:opc of

0 1 1 1 1 0 0 0 A R 1 Rs 0 0 1 1 0 0 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size V o3 opc
B11-126 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B11 A64 Instructions
B11.1 Alphabetical list of instructions
 when '0000' op = MemAtomicOp_ADD;
 when '0001' op = MemAtomicOp_BIC;
 when '0010' op = MemAtomicOp_EOR;
 when '0011' op = MemAtomicOp_ORR;
 when '0100' op = MemAtomicOp_SMAX;
 when '0101' op = MemAtomicOp_SMIN;
 when '0110' op = MemAtomicOp_UMAX;
 when '0111' op = MemAtomicOp_UMIN;
 when '1000' op = MemAtomicOp_SWP;
 otherwise UnallocatedEncoding();

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(datasize) value;
 bits(datasize) data;
 bits(datasize) result;

 value = X[s];
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];
 data = Mem[address, datasize DIV 8, ldacctype];

 case op of
 when MemAtomicOp_ADD result = data + value;
 when MemAtomicOp_BIC result = data AND NOT(value);
 when MemAtomicOp_EOR result = data EOR value;
 when MemAtomicOp_ORR result = data OR value;
 when MemAtomicOp_SMAX result = if SInt(data) > SInt(value) then data else value;
 when MemAtomicOp_SMIN result = if SInt(data) > SInt(value) then value else data;
 when MemAtomicOp_UMAX result = if UInt(data) > UInt(value) then data else value;
 when MemAtomicOp_UMIN result = if UInt(data) > UInt(value) then value else data;
 when MemAtomicOp_SWP result = value;

 Mem[address, datasize DIV 8, stacctype] = result; // all observers in the shareability domain
 // observe the load and store atomically

 X[t] = ZeroExtend(data, regsize);
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B11-127
ID060316 Non-Confidential

B11 A64 Instructions
B11.1 Alphabetical list of instructions
B11.1.20 LDSMAX, LDSMAXA, LDSMAXAL, LDSMAXL

Atomic signed maximum on word or doubleword in memory loads a 32-bit word or 64-bit doubleword from
memory, compares it against the value held in a register, and stores the larger value back to memory, treating the
values as signed numbers. The value initially loaded from memory is returned in the destination register.

• If the destination register is not one of WZR or XZR, LDSMAXA and LDSMAXAL load from memory with acquire
semantics.

• LDSMAXL and LDSMAXAL store to memory with release semantics.

• The following have no memory ordering requirements:

— LDSMAX.

— If the destination register is one of WZR or XZR, LDSMAXA and LDSMAXAL.

For more information about memory ordering semantics see Load-Acquire, Store-Release on page B11-227.

For information about memory accesses see Load/Store addressing modes on page B11-228.

ARMv8.1

32-bit, acquire variant

Applies when size == 10 && A == 1 && R == 0.

LDSMAXA <Ws>, <Wt>, [<Xn|SP>]

32-bit, acquire and release variant

Applies when size == 10 && A == 1 && R == 1.

LDSMAXAL <Ws>, <Wt>, [<Xn|SP>]

32-bit, no memory ordering variant

Applies when size == 10 && A == 0 && R == 0 && Rt != 11111.

LDSMAX <Ws>, <Wt>, [<Xn|SP>]

32-bit, release variant

Applies when size == 10 && A == 0 && R == 1 && Rt != 11111.

LDSMAXL <Ws>, <Wt>, [<Xn|SP>]

64-bit, acquire variant

Applies when size == 11 && A == 1 && R == 0.

LDSMAXA <Xs>, <Xt>, [<Xn|SP>]

64-bit, acquire and release variant

Applies when size == 11 && A == 1 && R == 1.

LDSMAXAL <Xs>, <Xt>, [<Xn|SP>]

1 x 1 1 1 0 0 0 A R 1 Rs 0 1 0 0 0 0 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size V o3 opc
B11-128 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B11 A64 Instructions
B11.1 Alphabetical list of instructions
64-bit, no memory ordering variant

Applies when size == 11 && A == 0 && R == 0 && Rt != 11111.

LDSMAX <Xs>, <Xt>, [<Xn|SP>]

64-bit, release variant

Applies when size == 11 && A == 0 && R == 1 && Rt != 11111.

LDSMAXL <Xs>, <Xt>, [<Xn|SP>]

Decode for all variants of this encoding

 if !HaveAtomicExt() then UnallocatedEncoding();

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 integer datasize = 8 << UInt(size);
 integer regsize = if datasize == 64 then 64 else 32;
 AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDRW else AccType_ATOMICRW;
 AccType stacctype = if R == '1' then AccType_ORDEREDRW else AccType_ATOMICRW;
 MemAtomicOp op;
 case o3:opc of
 when '0000' op = MemAtomicOp_ADD;
 when '0001' op = MemAtomicOp_BIC;
 when '0010' op = MemAtomicOp_EOR;
 when '0011' op = MemAtomicOp_ORR;
 when '0100' op = MemAtomicOp_SMAX;
 when '0101' op = MemAtomicOp_SMIN;
 when '0110' op = MemAtomicOp_UMAX;
 when '0111' op = MemAtomicOp_UMIN;
 when '1000' op = MemAtomicOp_SWP;
 otherwise UnallocatedEncoding();

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xt> Is the 64-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(datasize) value;
 bits(datasize) data;
 bits(datasize) result;

 value = X[s];
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];
 data = Mem[address, datasize DIV 8, ldacctype];

DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B11-129
ID060316 Non-Confidential

B11 A64 Instructions
B11.1 Alphabetical list of instructions
 case op of
 when MemAtomicOp_ADD result = data + value;
 when MemAtomicOp_BIC result = data AND NOT(value);
 when MemAtomicOp_EOR result = data EOR value;
 when MemAtomicOp_ORR result = data OR value;
 when MemAtomicOp_SMAX result = if SInt(data) > SInt(value) then data else value;
 when MemAtomicOp_SMIN result = if SInt(data) > SInt(value) then value else data;
 when MemAtomicOp_UMAX result = if UInt(data) > UInt(value) then data else value;
 when MemAtomicOp_UMIN result = if UInt(data) > UInt(value) then value else data;
 when MemAtomicOp_SWP result = value;

 Mem[address, datasize DIV 8, stacctype] = result; // all observers in the shareability domain
 // observe the load and store atomically

 X[t] = ZeroExtend(data, regsize);
B11-130 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B11 A64 Instructions
B11.1 Alphabetical list of instructions
B11.1.21 LDSMAXB, LDSMAXAB, LDSMAXALB, LDSMAXLB

Atomic signed maximum on byte in memory loads an 8-bit byte from memory, compares it against the value held
in a register, and stores the larger value back to memory, treating the values as signed numbers. The value initially
loaded from memory is returned in the destination register.

• If the destination register is not WZR, LDSMAXAB and LDSMAXALB load from memory with acquire semantics.

• LDSMAXLB and LDSMAXALB store to memory with release semantics.

• The following have no memory ordering requirements:

— LDSMAXB.

— If the destination register is WZR, LDSMAXAB and LDSMAXALB.

For more information about memory ordering semantics see Load-Acquire, Store-Release on page B11-227.

For information about memory accesses see Load/Store addressing modes on page B11-228.

ARMv8.1

Acquire variant

Applies when A == 1 && R == 0.

LDSMAXAB <Ws>, <Wt>, [<Xn|SP>]

Acquire and release variant

Applies when A == 1 && R == 1.

LDSMAXALB <Ws>, <Wt>, [<Xn|SP>]

No memory ordering variant

Applies when A == 0 && R == 0 && Rt != 11111.

LDSMAXB <Ws>, <Wt>, [<Xn|SP>]

Release variant

Applies when A == 0 && R == 1 && Rt != 11111.

LDSMAXLB <Ws>, <Wt>, [<Xn|SP>]

Decode for all variants of this encoding

 if !HaveAtomicExt() then UnallocatedEncoding();

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 integer datasize = 8 << UInt(size);
 integer regsize = if datasize == 64 then 64 else 32;
 AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDRW else AccType_ATOMICRW;
 AccType stacctype = if R == '1' then AccType_ORDEREDRW else AccType_ATOMICRW;
 MemAtomicOp op;
 case o3:opc of

0 0 1 1 1 0 0 0 A R 1 Rs 0 1 0 0 0 0 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size V o3 opc
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B11-131
ID060316 Non-Confidential

B11 A64 Instructions
B11.1 Alphabetical list of instructions
 when '0000' op = MemAtomicOp_ADD;
 when '0001' op = MemAtomicOp_BIC;
 when '0010' op = MemAtomicOp_EOR;
 when '0011' op = MemAtomicOp_ORR;
 when '0100' op = MemAtomicOp_SMAX;
 when '0101' op = MemAtomicOp_SMIN;
 when '0110' op = MemAtomicOp_UMAX;
 when '0111' op = MemAtomicOp_UMIN;
 when '1000' op = MemAtomicOp_SWP;
 otherwise UnallocatedEncoding();

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(datasize) value;
 bits(datasize) data;
 bits(datasize) result;

 value = X[s];
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];
 data = Mem[address, datasize DIV 8, ldacctype];

 case op of
 when MemAtomicOp_ADD result = data + value;
 when MemAtomicOp_BIC result = data AND NOT(value);
 when MemAtomicOp_EOR result = data EOR value;
 when MemAtomicOp_ORR result = data OR value;
 when MemAtomicOp_SMAX result = if SInt(data) > SInt(value) then data else value;
 when MemAtomicOp_SMIN result = if SInt(data) > SInt(value) then value else data;
 when MemAtomicOp_UMAX result = if UInt(data) > UInt(value) then data else value;
 when MemAtomicOp_UMIN result = if UInt(data) > UInt(value) then value else data;
 when MemAtomicOp_SWP result = value;

 Mem[address, datasize DIV 8, stacctype] = result; // all observers in the shareability domain
 // observe the load and store atomically

 X[t] = ZeroExtend(data, regsize);
B11-132 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B11 A64 Instructions
B11.1 Alphabetical list of instructions
B11.1.22 LDSMAXH, LDSMAXAH, LDSMAXALH, LDSMAXLH

Atomic signed maximum on halfword in memory loads a 16-bit halfword from memory, compares it against the
value held in a register, and stores the larger value back to memory, treating the values as signed numbers. The value
initially loaded from memory is returned in the destination register.

• If the destination register is not WZR, LDSMAXAH and LDSMAXALH load from memory with acquire semantics.

• LDSMAXLH and LDSMAXALH store to memory with release semantics.

• The following have no memory ordering requirements:

— LDSMAXH.

— If the destination register is WZR, LDSMAXAH and LDSMAXALH.

For more information about memory ordering semantics see Load-Acquire, Store-Release on page B11-227.

For information about memory accesses see Load/Store addressing modes on page B11-228.

ARMv8.1

Acquire variant

Applies when A == 1 && R == 0.

LDSMAXAH <Ws>, <Wt>, [<Xn|SP>]

Acquire and release variant

Applies when A == 1 && R == 1.

LDSMAXALH <Ws>, <Wt>, [<Xn|SP>]

No memory ordering variant

Applies when A == 0 && R == 0 && Rt != 11111.

LDSMAXH <Ws>, <Wt>, [<Xn|SP>]

Release variant

Applies when A == 0 && R == 1 && Rt != 11111.

LDSMAXLH <Ws>, <Wt>, [<Xn|SP>]

Decode for all variants of this encoding

 if !HaveAtomicExt() then UnallocatedEncoding();

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 integer datasize = 8 << UInt(size);
 integer regsize = if datasize == 64 then 64 else 32;
 AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDRW else AccType_ATOMICRW;
 AccType stacctype = if R == '1' then AccType_ORDEREDRW else AccType_ATOMICRW;
 MemAtomicOp op;
 case o3:opc of

0 1 1 1 1 0 0 0 A R 1 Rs 0 1 0 0 0 0 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size V o3 opc
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B11-133
ID060316 Non-Confidential

B11 A64 Instructions
B11.1 Alphabetical list of instructions
 when '0000' op = MemAtomicOp_ADD;
 when '0001' op = MemAtomicOp_BIC;
 when '0010' op = MemAtomicOp_EOR;
 when '0011' op = MemAtomicOp_ORR;
 when '0100' op = MemAtomicOp_SMAX;
 when '0101' op = MemAtomicOp_SMIN;
 when '0110' op = MemAtomicOp_UMAX;
 when '0111' op = MemAtomicOp_UMIN;
 when '1000' op = MemAtomicOp_SWP;
 otherwise UnallocatedEncoding();

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(datasize) value;
 bits(datasize) data;
 bits(datasize) result;

 value = X[s];
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];
 data = Mem[address, datasize DIV 8, ldacctype];

 case op of
 when MemAtomicOp_ADD result = data + value;
 when MemAtomicOp_BIC result = data AND NOT(value);
 when MemAtomicOp_EOR result = data EOR value;
 when MemAtomicOp_ORR result = data OR value;
 when MemAtomicOp_SMAX result = if SInt(data) > SInt(value) then data else value;
 when MemAtomicOp_SMIN result = if SInt(data) > SInt(value) then value else data;
 when MemAtomicOp_UMAX result = if UInt(data) > UInt(value) then data else value;
 when MemAtomicOp_UMIN result = if UInt(data) > UInt(value) then value else data;
 when MemAtomicOp_SWP result = value;

 Mem[address, datasize DIV 8, stacctype] = result; // all observers in the shareability domain
 // observe the load and store atomically

 X[t] = ZeroExtend(data, regsize);
B11-134 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B11 A64 Instructions
B11.1 Alphabetical list of instructions
B11.1.23 LDSMIN, LDSMINA, LDSMINAL, LDSMINL

Atomic signed minimum on word or doubleword in memory loads a 32-bit word or 64-bit doubleword from
memory, compares it against the value held in a register, and stores the smaller value back to memory, treating the
values as signed numbers. The value initially loaded from memory is returned in the destination register.

• If the destination register is not one of WZR or XZR, LDSMINA and LDSMINAL load from memory with acquire
semantics.

• LDSMINL and LDSMINAL store to memory with release semantics.

• The following have no memory ordering requirements:

— LDSMIN.

— If the destination register is one of WZR or XZR, LDSMINA and LDSMINAL.

For more information about memory ordering semantics see Load-Acquire, Store-Release on page B11-227.

For information about memory accesses see Load/Store addressing modes on page B11-228.

ARMv8.1

32-bit, acquire variant

Applies when size == 10 && A == 1 && R == 0.

LDSMINA <Ws>, <Wt>, [<Xn|SP>]

32-bit, acquire and release variant

Applies when size == 10 && A == 1 && R == 1.

LDSMINAL <Ws>, <Wt>, [<Xn|SP>]

32-bit, no memory ordering variant

Applies when size == 10 && A == 0 && R == 0 && Rt != 11111.

LDSMIN <Ws>, <Wt>, [<Xn|SP>]

32-bit, release variant

Applies when size == 10 && A == 0 && R == 1 && Rt != 11111.

LDSMINL <Ws>, <Wt>, [<Xn|SP>]

64-bit, acquire variant

Applies when size == 11 && A == 1 && R == 0.

LDSMINA <Xs>, <Xt>, [<Xn|SP>]

64-bit, acquire and release variant

Applies when size == 11 && A == 1 && R == 1.

LDSMINAL <Xs>, <Xt>, [<Xn|SP>]

1 x 1 1 1 0 0 0 A R 1 Rs 0 1 0 1 0 0 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size V o3 opc
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B11-135
ID060316 Non-Confidential

B11 A64 Instructions
B11.1 Alphabetical list of instructions
64-bit, no memory ordering variant

Applies when size == 11 && A == 0 && R == 0 && Rt != 11111.

LDSMIN <Xs>, <Xt>, [<Xn|SP>]

64-bit, release variant

Applies when size == 11 && A == 0 && R == 1 && Rt != 11111.

LDSMINL <Xs>, <Xt>, [<Xn|SP>]

Decode for all variants of this encoding

 if !HaveAtomicExt() then UnallocatedEncoding();

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 integer datasize = 8 << UInt(size);
 integer regsize = if datasize == 64 then 64 else 32;
 AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDRW else AccType_ATOMICRW;
 AccType stacctype = if R == '1' then AccType_ORDEREDRW else AccType_ATOMICRW;
 MemAtomicOp op;
 case o3:opc of
 when '0000' op = MemAtomicOp_ADD;
 when '0001' op = MemAtomicOp_BIC;
 when '0010' op = MemAtomicOp_EOR;
 when '0011' op = MemAtomicOp_ORR;
 when '0100' op = MemAtomicOp_SMAX;
 when '0101' op = MemAtomicOp_SMIN;
 when '0110' op = MemAtomicOp_UMAX;
 when '0111' op = MemAtomicOp_UMIN;
 when '1000' op = MemAtomicOp_SWP;
 otherwise UnallocatedEncoding();

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xt> Is the 64-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(datasize) value;
 bits(datasize) data;
 bits(datasize) result;

 value = X[s];
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];
 data = Mem[address, datasize DIV 8, ldacctype];

B11-136 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B11 A64 Instructions
B11.1 Alphabetical list of instructions
 case op of
 when MemAtomicOp_ADD result = data + value;
 when MemAtomicOp_BIC result = data AND NOT(value);
 when MemAtomicOp_EOR result = data EOR value;
 when MemAtomicOp_ORR result = data OR value;
 when MemAtomicOp_SMAX result = if SInt(data) > SInt(value) then data else value;
 when MemAtomicOp_SMIN result = if SInt(data) > SInt(value) then value else data;
 when MemAtomicOp_UMAX result = if UInt(data) > UInt(value) then data else value;
 when MemAtomicOp_UMIN result = if UInt(data) > UInt(value) then value else data;
 when MemAtomicOp_SWP result = value;

 Mem[address, datasize DIV 8, stacctype] = result; // all observers in the shareability domain
 // observe the load and store atomically

 X[t] = ZeroExtend(data, regsize);
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B11-137
ID060316 Non-Confidential

B11 A64 Instructions
B11.1 Alphabetical list of instructions
B11.1.24 LDSMINB, LDSMINAB, LDSMINALB, LDSMINLB

Atomic signed minimum on byte in memory loads an 8-bit byte from memory, compares it against the value held
in a register, and stores the smaller value back to memory, treating the values as signed numbers. The value initially
loaded from memory is returned in the destination register.

• If the destination register is not WZR, LDSMINAB and LDSMINALB load from memory with acquire semantics.

• LDSMINLB and LDSMINALB store to memory with release semantics.

• The following have no memory ordering requirements:

— LDSMINB.

— If the destination register is WZR, LDSMINAB and LDSMINALB.

For more information about memory ordering semantics see Load-Acquire, Store-Release on page B11-227.

For information about memory accesses see Load/Store addressing modes on page B11-228.

ARMv8.1

Acquire variant

Applies when A == 1 && R == 0.

LDSMINAB <Ws>, <Wt>, [<Xn|SP>]

Acquire and release variant

Applies when A == 1 && R == 1.

LDSMINALB <Ws>, <Wt>, [<Xn|SP>]

No memory ordering variant

Applies when A == 0 && R == 0 && Rt != 11111.

LDSMINB <Ws>, <Wt>, [<Xn|SP>]

Release variant

Applies when A == 0 && R == 1 && Rt != 11111.

LDSMINLB <Ws>, <Wt>, [<Xn|SP>]

Decode for all variants of this encoding

 if !HaveAtomicExt() then UnallocatedEncoding();

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 integer datasize = 8 << UInt(size);
 integer regsize = if datasize == 64 then 64 else 32;
 AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDRW else AccType_ATOMICRW;
 AccType stacctype = if R == '1' then AccType_ORDEREDRW else AccType_ATOMICRW;
 MemAtomicOp op;
 case o3:opc of

0 0 1 1 1 0 0 0 A R 1 Rs 0 1 0 1 0 0 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size V o3 opc
B11-138 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B11 A64 Instructions
B11.1 Alphabetical list of instructions
 when '0000' op = MemAtomicOp_ADD;
 when '0001' op = MemAtomicOp_BIC;
 when '0010' op = MemAtomicOp_EOR;
 when '0011' op = MemAtomicOp_ORR;
 when '0100' op = MemAtomicOp_SMAX;
 when '0101' op = MemAtomicOp_SMIN;
 when '0110' op = MemAtomicOp_UMAX;
 when '0111' op = MemAtomicOp_UMIN;
 when '1000' op = MemAtomicOp_SWP;
 otherwise UnallocatedEncoding();

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(datasize) value;
 bits(datasize) data;
 bits(datasize) result;

 value = X[s];
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];
 data = Mem[address, datasize DIV 8, ldacctype];

 case op of
 when MemAtomicOp_ADD result = data + value;
 when MemAtomicOp_BIC result = data AND NOT(value);
 when MemAtomicOp_EOR result = data EOR value;
 when MemAtomicOp_ORR result = data OR value;
 when MemAtomicOp_SMAX result = if SInt(data) > SInt(value) then data else value;
 when MemAtomicOp_SMIN result = if SInt(data) > SInt(value) then value else data;
 when MemAtomicOp_UMAX result = if UInt(data) > UInt(value) then data else value;
 when MemAtomicOp_UMIN result = if UInt(data) > UInt(value) then value else data;
 when MemAtomicOp_SWP result = value;

 Mem[address, datasize DIV 8, stacctype] = result; // all observers in the shareability domain
 // observe the load and store atomically

 X[t] = ZeroExtend(data, regsize);
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B11-139
ID060316 Non-Confidential

B11 A64 Instructions
B11.1 Alphabetical list of instructions
B11.1.25 LDSMINH, LDSMINAH, LDSMINALH, LDSMINLH

Atomic signed minimum on halfword in memory loads a 16-bit halfword from memory, compares it against the
value held in a register, and stores the smaller value back to memory, treating the values as signed numbers. The
value initially loaded from memory is returned in the destination register.

• If the destination register is not WZR, LDSMINAH and LDSMINALH load from memory with acquire semantics.

• LDSMINLH and LDSMINALH store to memory with release semantics.

• The following have no memory ordering requirements:

— LDSMINH.

— If the destination register is WZR, LDSMINAH and LDSMINALH.

For more information about memory ordering semantics see Load-Acquire, Store-Release on page B11-227.

For information about memory accesses see Load/Store addressing modes on page B11-228.

ARMv8.1

Acquire variant

Applies when A == 1 && R == 0.

LDSMINAH <Ws>, <Wt>, [<Xn|SP>]

Acquire and release variant

Applies when A == 1 && R == 1.

LDSMINALH <Ws>, <Wt>, [<Xn|SP>]

No memory ordering variant

Applies when A == 0 && R == 0 && Rt != 11111.

LDSMINH <Ws>, <Wt>, [<Xn|SP>]

Release variant

Applies when A == 0 && R == 1 && Rt != 11111.

LDSMINLH <Ws>, <Wt>, [<Xn|SP>]

Decode for all variants of this encoding

 if !HaveAtomicExt() then UnallocatedEncoding();

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 integer datasize = 8 << UInt(size);
 integer regsize = if datasize == 64 then 64 else 32;
 AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDRW else AccType_ATOMICRW;
 AccType stacctype = if R == '1' then AccType_ORDEREDRW else AccType_ATOMICRW;
 MemAtomicOp op;
 case o3:opc of

0 1 1 1 1 0 0 0 A R 1 Rs 0 1 0 1 0 0 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size V o3 opc
B11-140 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B11 A64 Instructions
B11.1 Alphabetical list of instructions
 when '0000' op = MemAtomicOp_ADD;
 when '0001' op = MemAtomicOp_BIC;
 when '0010' op = MemAtomicOp_EOR;
 when '0011' op = MemAtomicOp_ORR;
 when '0100' op = MemAtomicOp_SMAX;
 when '0101' op = MemAtomicOp_SMIN;
 when '0110' op = MemAtomicOp_UMAX;
 when '0111' op = MemAtomicOp_UMIN;
 when '1000' op = MemAtomicOp_SWP;
 otherwise UnallocatedEncoding();

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(datasize) value;
 bits(datasize) data;
 bits(datasize) result;

 value = X[s];
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];
 data = Mem[address, datasize DIV 8, ldacctype];

 case op of
 when MemAtomicOp_ADD result = data + value;
 when MemAtomicOp_BIC result = data AND NOT(value);
 when MemAtomicOp_EOR result = data EOR value;
 when MemAtomicOp_ORR result = data OR value;
 when MemAtomicOp_SMAX result = if SInt(data) > SInt(value) then data else value;
 when MemAtomicOp_SMIN result = if SInt(data) > SInt(value) then value else data;
 when MemAtomicOp_UMAX result = if UInt(data) > UInt(value) then data else value;
 when MemAtomicOp_UMIN result = if UInt(data) > UInt(value) then value else data;
 when MemAtomicOp_SWP result = value;

 Mem[address, datasize DIV 8, stacctype] = result; // all observers in the shareability domain
 // observe the load and store atomically

 X[t] = ZeroExtend(data, regsize);
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B11-141
ID060316 Non-Confidential

B11 A64 Instructions
B11.1 Alphabetical list of instructions
B11.1.26 LDUMAX, LDUMAXA, LDUMAXAL, LDUMAXL

Atomic unsigned maximum on word or doubleword in memory loads a 32-bit word or 64-bit doubleword from
memory, compares it against the value held in a register, and stores the larger value back to memory, treating the
values as unsigned numbers. The value initially loaded from memory is returned in the destination register.

• If the destination register is not one of WZR or XZR, LDUMAXA and LDUMAXAL load from memory with acquire
semantics.

• LDUMAXL and LDUMAXAL store to memory with release semantics.

• The following have no memory ordering requirements:

— LDUMAX.

— If the destination register is one of WZR or XZR, LDUMAXA and LDUMAXAL.

For more information about memory ordering semantics see Load-Acquire, Store-Release on page B11-227.

For information about memory accesses see Load/Store addressing modes on page B11-228.

ARMv8.1

32-bit, acquire variant

Applies when size == 10 && A == 1 && R == 0.

LDUMAXA <Ws>, <Wt>, [<Xn|SP>]

32-bit, acquire and release variant

Applies when size == 10 && A == 1 && R == 1.

LDUMAXAL <Ws>, <Wt>, [<Xn|SP>]

32-bit, no memory ordering variant

Applies when size == 10 && A == 0 && R == 0 && Rt != 11111.

LDUMAX <Ws>, <Wt>, [<Xn|SP>]

32-bit, release variant

Applies when size == 10 && A == 0 && R == 1 && Rt != 11111.

LDUMAXL <Ws>, <Wt>, [<Xn|SP>]

64-bit, acquire variant

Applies when size == 11 && A == 1 && R == 0.

LDUMAXA <Xs>, <Xt>, [<Xn|SP>]

64-bit, acquire and release variant

Applies when size == 11 && A == 1 && R == 1.

LDUMAXAL <Xs>, <Xt>, [<Xn|SP>]

1 x 1 1 1 0 0 0 A R 1 Rs 0 1 1 0 0 0 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size V o3 opc
B11-142 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B11 A64 Instructions
B11.1 Alphabetical list of instructions
64-bit, no memory ordering variant

Applies when size == 11 && A == 0 && R == 0 && Rt != 11111.

LDUMAX <Xs>, <Xt>, [<Xn|SP>]

64-bit, release variant

Applies when size == 11 && A == 0 && R == 1 && Rt != 11111.

LDUMAXL <Xs>, <Xt>, [<Xn|SP>]

Decode for all variants of this encoding

 if !HaveAtomicExt() then UnallocatedEncoding();

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 integer datasize = 8 << UInt(size);
 integer regsize = if datasize == 64 then 64 else 32;
 AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDRW else AccType_ATOMICRW;
 AccType stacctype = if R == '1' then AccType_ORDEREDRW else AccType_ATOMICRW;
 MemAtomicOp op;
 case o3:opc of
 when '0000' op = MemAtomicOp_ADD;
 when '0001' op = MemAtomicOp_BIC;
 when '0010' op = MemAtomicOp_EOR;
 when '0011' op = MemAtomicOp_ORR;
 when '0100' op = MemAtomicOp_SMAX;
 when '0101' op = MemAtomicOp_SMIN;
 when '0110' op = MemAtomicOp_UMAX;
 when '0111' op = MemAtomicOp_UMIN;
 when '1000' op = MemAtomicOp_SWP;
 otherwise UnallocatedEncoding();

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xt> Is the 64-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(datasize) value;
 bits(datasize) data;
 bits(datasize) result;

 value = X[s];
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];
 data = Mem[address, datasize DIV 8, ldacctype];

DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B11-143
ID060316 Non-Confidential

B11 A64 Instructions
B11.1 Alphabetical list of instructions
 case op of
 when MemAtomicOp_ADD result = data + value;
 when MemAtomicOp_BIC result = data AND NOT(value);
 when MemAtomicOp_EOR result = data EOR value;
 when MemAtomicOp_ORR result = data OR value;
 when MemAtomicOp_SMAX result = if SInt(data) > SInt(value) then data else value;
 when MemAtomicOp_SMIN result = if SInt(data) > SInt(value) then value else data;
 when MemAtomicOp_UMAX result = if UInt(data) > UInt(value) then data else value;
 when MemAtomicOp_UMIN result = if UInt(data) > UInt(value) then value else data;
 when MemAtomicOp_SWP result = value;

 Mem[address, datasize DIV 8, stacctype] = result; // all observers in the shareability domain
 // observe the load and store atomically

 X[t] = ZeroExtend(data, regsize);
B11-144 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B11 A64 Instructions
B11.1 Alphabetical list of instructions
B11.1.27 LDUMAXB, LDUMAXAB, LDUMAXALB, LDUMAXLB

Atomic unsigned maximum on byte in memory loads an 8-bit byte from memory, compares it against the value held
in a register, and stores the larger value back to memory, treating the values as unsigned numbers. The value initially
loaded from memory is returned in the destination register.

• If the destination register is not WZR, LDUMAXAB and LDUMAXALB load from memory with acquire semantics.

• LDUMAXLB and LDUMAXALB store to memory with release semantics.

• The following have no memory ordering requirements:

— LDUMAXB.

— If the destination register is WZR, LDUMAXAB and LDUMAXALB.

For more information about memory ordering semantics see Load-Acquire, Store-Release on page B11-227.

For information about memory accesses see Load/Store addressing modes on page B11-228.

ARMv8.1

Acquire variant

Applies when A == 1 && R == 0.

LDUMAXAB <Ws>, <Wt>, [<Xn|SP>]

Acquire and release variant

Applies when A == 1 && R == 1.

LDUMAXALB <Ws>, <Wt>, [<Xn|SP>]

No memory ordering variant

Applies when A == 0 && R == 0 && Rt != 11111.

LDUMAXB <Ws>, <Wt>, [<Xn|SP>]

Release variant

Applies when A == 0 && R == 1 && Rt != 11111.

LDUMAXLB <Ws>, <Wt>, [<Xn|SP>]

Decode for all variants of this encoding

 if !HaveAtomicExt() then UnallocatedEncoding();

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 integer datasize = 8 << UInt(size);
 integer regsize = if datasize == 64 then 64 else 32;
 AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDRW else AccType_ATOMICRW;
 AccType stacctype = if R == '1' then AccType_ORDEREDRW else AccType_ATOMICRW;
 MemAtomicOp op;
 case o3:opc of

0 0 1 1 1 0 0 0 A R 1 Rs 0 1 1 0 0 0 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size V o3 opc
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B11-145
ID060316 Non-Confidential

B11 A64 Instructions
B11.1 Alphabetical list of instructions
 when '0000' op = MemAtomicOp_ADD;
 when '0001' op = MemAtomicOp_BIC;
 when '0010' op = MemAtomicOp_EOR;
 when '0011' op = MemAtomicOp_ORR;
 when '0100' op = MemAtomicOp_SMAX;
 when '0101' op = MemAtomicOp_SMIN;
 when '0110' op = MemAtomicOp_UMAX;
 when '0111' op = MemAtomicOp_UMIN;
 when '1000' op = MemAtomicOp_SWP;
 otherwise UnallocatedEncoding();

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(datasize) value;
 bits(datasize) data;
 bits(datasize) result;

 value = X[s];
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];
 data = Mem[address, datasize DIV 8, ldacctype];

 case op of
 when MemAtomicOp_ADD result = data + value;
 when MemAtomicOp_BIC result = data AND NOT(value);
 when MemAtomicOp_EOR result = data EOR value;
 when MemAtomicOp_ORR result = data OR value;
 when MemAtomicOp_SMAX result = if SInt(data) > SInt(value) then data else value;
 when MemAtomicOp_SMIN result = if SInt(data) > SInt(value) then value else data;
 when MemAtomicOp_UMAX result = if UInt(data) > UInt(value) then data else value;
 when MemAtomicOp_UMIN result = if UInt(data) > UInt(value) then value else data;
 when MemAtomicOp_SWP result = value;

 Mem[address, datasize DIV 8, stacctype] = result; // all observers in the shareability domain
 // observe the load and store atomically

 X[t] = ZeroExtend(data, regsize);
B11-146 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B11 A64 Instructions
B11.1 Alphabetical list of instructions
B11.1.28 LDUMAXH, LDUMAXAH, LDUMAXALH, LDUMAXLH

Atomic unsigned maximum on halfword in memory loads a 16-bit halfword from memory, compares it against the
value held in a register, and stores the larger value back to memory, treating the values as unsigned numbers. The
value initially loaded from memory is returned in the destination register.

• If the destination register is not WZR, LDUMAXAH and LDUMAXALH load from memory with acquire semantics.

• LDUMAXLH and LDUMAXALH store to memory with release semantics.

• The following have no memory ordering requirements:

— LDUMAXH.

— If the destination register is WZR, LDUMAXAH and LDUMAXALH.

For more information about memory ordering semantics see Load-Acquire, Store-Release on page B11-227.

For information about memory accesses see Load/Store addressing modes on page B11-228.

ARMv8.1

Acquire variant

Applies when A == 1 && R == 0.

LDUMAXAH <Ws>, <Wt>, [<Xn|SP>]

Acquire and release variant

Applies when A == 1 && R == 1.

LDUMAXALH <Ws>, <Wt>, [<Xn|SP>]

No memory ordering variant

Applies when A == 0 && R == 0 && Rt != 11111.

LDUMAXH <Ws>, <Wt>, [<Xn|SP>]

Release variant

Applies when A == 0 && R == 1 && Rt != 11111.

LDUMAXLH <Ws>, <Wt>, [<Xn|SP>]

Decode for all variants of this encoding

 if !HaveAtomicExt() then UnallocatedEncoding();

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 integer datasize = 8 << UInt(size);
 integer regsize = if datasize == 64 then 64 else 32;
 AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDRW else AccType_ATOMICRW;
 AccType stacctype = if R == '1' then AccType_ORDEREDRW else AccType_ATOMICRW;
 MemAtomicOp op;
 case o3:opc of

0 1 1 1 1 0 0 0 A R 1 Rs 0 1 1 0 0 0 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size V o3 opc
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B11-147
ID060316 Non-Confidential

B11 A64 Instructions
B11.1 Alphabetical list of instructions
 when '0000' op = MemAtomicOp_ADD;
 when '0001' op = MemAtomicOp_BIC;
 when '0010' op = MemAtomicOp_EOR;
 when '0011' op = MemAtomicOp_ORR;
 when '0100' op = MemAtomicOp_SMAX;
 when '0101' op = MemAtomicOp_SMIN;
 when '0110' op = MemAtomicOp_UMAX;
 when '0111' op = MemAtomicOp_UMIN;
 when '1000' op = MemAtomicOp_SWP;
 otherwise UnallocatedEncoding();

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(datasize) value;
 bits(datasize) data;
 bits(datasize) result;

 value = X[s];
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];
 data = Mem[address, datasize DIV 8, ldacctype];

 case op of
 when MemAtomicOp_ADD result = data + value;
 when MemAtomicOp_BIC result = data AND NOT(value);
 when MemAtomicOp_EOR result = data EOR value;
 when MemAtomicOp_ORR result = data OR value;
 when MemAtomicOp_SMAX result = if SInt(data) > SInt(value) then data else value;
 when MemAtomicOp_SMIN result = if SInt(data) > SInt(value) then value else data;
 when MemAtomicOp_UMAX result = if UInt(data) > UInt(value) then data else value;
 when MemAtomicOp_UMIN result = if UInt(data) > UInt(value) then value else data;
 when MemAtomicOp_SWP result = value;

 Mem[address, datasize DIV 8, stacctype] = result; // all observers in the shareability domain
 // observe the load and store atomically

 X[t] = ZeroExtend(data, regsize);
B11-148 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B11 A64 Instructions
B11.1 Alphabetical list of instructions
B11.1.29 LDUMIN, LDUMINA, LDUMINAL, LDUMINL

Atomic unsigned minimum on word or doubleword in memory loads a 32-bit word or 64-bit doubleword from
memory, compares it against the value held in a register, and stores the smaller value back to memory, treating the
values as unsigned numbers. The value initially loaded from memory is returned in the destination register.

• If the destination register is not one of WZR or XZR, LDUMINA and LDUMINAL load from memory with acquire
semantics.

• LDUMINL and LDUMINAL store to memory with release semantics.

• The following have no memory ordering requirements:

— LDUMIN.

— If the destination register is one of WZR or XZR, LDUMINA and LDUMINAL.

For more information about memory ordering semantics see Load-Acquire, Store-Release on page B11-227.

For information about memory accesses see Load/Store addressing modes on page B11-228.

ARMv8.1

32-bit, acquire variant

Applies when size == 10 && A == 1 && R == 0.

LDUMINA <Ws>, <Wt>, [<Xn|SP>]

32-bit, acquire and release variant

Applies when size == 10 && A == 1 && R == 1.

LDUMINAL <Ws>, <Wt>, [<Xn|SP>]

32-bit, no memory ordering variant

Applies when size == 10 && A == 0 && R == 0 && Rt != 11111.

LDUMIN <Ws>, <Wt>, [<Xn|SP>]

32-bit, release variant

Applies when size == 10 && A == 0 && R == 1 && Rt != 11111.

LDUMINL <Ws>, <Wt>, [<Xn|SP>]

64-bit, acquire variant

Applies when size == 11 && A == 1 && R == 0.

LDUMINA <Xs>, <Xt>, [<Xn|SP>]

64-bit, acquire and release variant

Applies when size == 11 && A == 1 && R == 1.

LDUMINAL <Xs>, <Xt>, [<Xn|SP>]

1 x 1 1 1 0 0 0 A R 1 Rs 0 1 1 1 0 0 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size V o3 opc
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B11-149
ID060316 Non-Confidential

B11 A64 Instructions
B11.1 Alphabetical list of instructions
64-bit, no memory ordering variant

Applies when size == 11 && A == 0 && R == 0 && Rt != 11111.

LDUMIN <Xs>, <Xt>, [<Xn|SP>]

64-bit, release variant

Applies when size == 11 && A == 0 && R == 1 && Rt != 11111.

LDUMINL <Xs>, <Xt>, [<Xn|SP>]

Decode for all variants of this encoding

 if !HaveAtomicExt() then UnallocatedEncoding();

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 integer datasize = 8 << UInt(size);
 integer regsize = if datasize == 64 then 64 else 32;
 AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDRW else AccType_ATOMICRW;
 AccType stacctype = if R == '1' then AccType_ORDEREDRW else AccType_ATOMICRW;
 MemAtomicOp op;
 case o3:opc of
 when '0000' op = MemAtomicOp_ADD;
 when '0001' op = MemAtomicOp_BIC;
 when '0010' op = MemAtomicOp_EOR;
 when '0011' op = MemAtomicOp_ORR;
 when '0100' op = MemAtomicOp_SMAX;
 when '0101' op = MemAtomicOp_SMIN;
 when '0110' op = MemAtomicOp_UMAX;
 when '0111' op = MemAtomicOp_UMIN;
 when '1000' op = MemAtomicOp_SWP;
 otherwise UnallocatedEncoding();

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xt> Is the 64-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(datasize) value;
 bits(datasize) data;
 bits(datasize) result;

 value = X[s];
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];
 data = Mem[address, datasize DIV 8, ldacctype];

B11-150 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B11 A64 Instructions
B11.1 Alphabetical list of instructions
 case op of
 when MemAtomicOp_ADD result = data + value;
 when MemAtomicOp_BIC result = data AND NOT(value);
 when MemAtomicOp_EOR result = data EOR value;
 when MemAtomicOp_ORR result = data OR value;
 when MemAtomicOp_SMAX result = if SInt(data) > SInt(value) then data else value;
 when MemAtomicOp_SMIN result = if SInt(data) > SInt(value) then value else data;
 when MemAtomicOp_UMAX result = if UInt(data) > UInt(value) then data else value;
 when MemAtomicOp_UMIN result = if UInt(data) > UInt(value) then value else data;
 when MemAtomicOp_SWP result = value;

 Mem[address, datasize DIV 8, stacctype] = result; // all observers in the shareability domain
 // observe the load and store atomically

 X[t] = ZeroExtend(data, regsize);
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B11-151
ID060316 Non-Confidential

B11 A64 Instructions
B11.1 Alphabetical list of instructions
B11.1.30 LDUMINB, LDUMINAB, LDUMINALB, LDUMINLB

Atomic unsigned minimum on byte in memory loads an 8-bit byte from memory, compares it against the value held
in a register, and stores the smaller value back to memory, treating the values as unsigned numbers. The value
initially loaded from memory is returned in the destination register.

• If the destination register is not WZR, LDUMINAB and LDUMINALB load from memory with acquire semantics.

• LDUMINLB and LDUMINALB store to memory with release semantics.

• The following have no memory ordering requirements:

— LDUMINB.

— If the destination register is WZR, LDUMINAB and LDUMINALB.

For more information about memory ordering semantics see Load-Acquire, Store-Release on page B11-227.

For information about memory accesses see Load/Store addressing modes on page B11-228.

ARMv8.1

Acquire variant

Applies when A == 1 && R == 0.

LDUMINAB <Ws>, <Wt>, [<Xn|SP>]

Acquire and release variant

Applies when A == 1 && R == 1.

LDUMINALB <Ws>, <Wt>, [<Xn|SP>]

No memory ordering variant

Applies when A == 0 && R == 0 && Rt != 11111.

LDUMINB <Ws>, <Wt>, [<Xn|SP>]

Release variant

Applies when A == 0 && R == 1 && Rt != 11111.

LDUMINLB <Ws>, <Wt>, [<Xn|SP>]

Decode for all variants of this encoding

 if !HaveAtomicExt() then UnallocatedEncoding();

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 integer datasize = 8 << UInt(size);
 integer regsize = if datasize == 64 then 64 else 32;
 AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDRW else AccType_ATOMICRW;
 AccType stacctype = if R == '1' then AccType_ORDEREDRW else AccType_ATOMICRW;
 MemAtomicOp op;
 case o3:opc of

0 0 1 1 1 0 0 0 A R 1 Rs 0 1 1 1 0 0 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size V o3 opc
B11-152 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B11 A64 Instructions
B11.1 Alphabetical list of instructions
 when '0000' op = MemAtomicOp_ADD;
 when '0001' op = MemAtomicOp_BIC;
 when '0010' op = MemAtomicOp_EOR;
 when '0011' op = MemAtomicOp_ORR;
 when '0100' op = MemAtomicOp_SMAX;
 when '0101' op = MemAtomicOp_SMIN;
 when '0110' op = MemAtomicOp_UMAX;
 when '0111' op = MemAtomicOp_UMIN;
 when '1000' op = MemAtomicOp_SWP;
 otherwise UnallocatedEncoding();

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(datasize) value;
 bits(datasize) data;
 bits(datasize) result;

 value = X[s];
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];
 data = Mem[address, datasize DIV 8, ldacctype];

 case op of
 when MemAtomicOp_ADD result = data + value;
 when MemAtomicOp_BIC result = data AND NOT(value);
 when MemAtomicOp_EOR result = data EOR value;
 when MemAtomicOp_ORR result = data OR value;
 when MemAtomicOp_SMAX result = if SInt(data) > SInt(value) then data else value;
 when MemAtomicOp_SMIN result = if SInt(data) > SInt(value) then value else data;
 when MemAtomicOp_UMAX result = if UInt(data) > UInt(value) then data else value;
 when MemAtomicOp_UMIN result = if UInt(data) > UInt(value) then value else data;
 when MemAtomicOp_SWP result = value;

 Mem[address, datasize DIV 8, stacctype] = result; // all observers in the shareability domain
 // observe the load and store atomically

 X[t] = ZeroExtend(data, regsize);
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B11-153
ID060316 Non-Confidential

B11 A64 Instructions
B11.1 Alphabetical list of instructions
B11.1.31 LDUMINH, LDUMINAH, LDUMINALH, LDUMINLH

Atomic unsigned minimum on halfword in memory loads a 16-bit halfword from memory, compares it against the
value held in a register, and stores the smaller value back to memory, treating the values as unsigned numbers. The
value initially loaded from memory is returned in the destination register.

• If the destination register is not WZR, LDUMINAH and LDUMINALH load from memory with acquire semantics.

• LDUMINLH and LDUMINALH store to memory with release semantics.

• The following have no memory ordering requirements:

— LDUMINH.

— If the destination register is WZR, LDUMINAH and LDUMINALH.

For more information about memory ordering semantics see Load-Acquire, Store-Release on page B11-227.

For information about memory accesses see Load/Store addressing modes on page B11-228.

ARMv8.1

Acquire variant

Applies when A == 1 && R == 0.

LDUMINAH <Ws>, <Wt>, [<Xn|SP>]

Acquire and release variant

Applies when A == 1 && R == 1.

LDUMINALH <Ws>, <Wt>, [<Xn|SP>]

No memory ordering variant

Applies when A == 0 && R == 0 && Rt != 11111.

LDUMINH <Ws>, <Wt>, [<Xn|SP>]

Release variant

Applies when A == 0 && R == 1 && Rt != 11111.

LDUMINLH <Ws>, <Wt>, [<Xn|SP>]

Decode for all variants of this encoding

 if !HaveAtomicExt() then UnallocatedEncoding();

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 integer datasize = 8 << UInt(size);
 integer regsize = if datasize == 64 then 64 else 32;
 AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDRW else AccType_ATOMICRW;
 AccType stacctype = if R == '1' then AccType_ORDEREDRW else AccType_ATOMICRW;
 MemAtomicOp op;
 case o3:opc of

0 1 1 1 1 0 0 0 A R 1 Rs 0 1 1 1 0 0 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size V o3 opc
B11-154 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B11 A64 Instructions
B11.1 Alphabetical list of instructions
 when '0000' op = MemAtomicOp_ADD;
 when '0001' op = MemAtomicOp_BIC;
 when '0010' op = MemAtomicOp_EOR;
 when '0011' op = MemAtomicOp_ORR;
 when '0100' op = MemAtomicOp_SMAX;
 when '0101' op = MemAtomicOp_SMIN;
 when '0110' op = MemAtomicOp_UMAX;
 when '0111' op = MemAtomicOp_UMIN;
 when '1000' op = MemAtomicOp_SWP;
 otherwise UnallocatedEncoding();

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(datasize) value;
 bits(datasize) data;
 bits(datasize) result;

 value = X[s];
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];
 data = Mem[address, datasize DIV 8, ldacctype];

 case op of
 when MemAtomicOp_ADD result = data + value;
 when MemAtomicOp_BIC result = data AND NOT(value);
 when MemAtomicOp_EOR result = data EOR value;
 when MemAtomicOp_ORR result = data OR value;
 when MemAtomicOp_SMAX result = if SInt(data) > SInt(value) then data else value;
 when MemAtomicOp_SMIN result = if SInt(data) > SInt(value) then value else data;
 when MemAtomicOp_UMAX result = if UInt(data) > UInt(value) then data else value;
 when MemAtomicOp_UMIN result = if UInt(data) > UInt(value) then value else data;
 when MemAtomicOp_SWP result = value;

 Mem[address, datasize DIV 8, stacctype] = result; // all observers in the shareability domain
 // observe the load and store atomically

 X[t] = ZeroExtend(data, regsize);
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B11-155
ID060316 Non-Confidential

B11 A64 Instructions
B11.1 Alphabetical list of instructions
B11.1.32 MSR (immediate)

Move immediate value to Special Register moves an immediate value to selected bits of the PSTATE, namely D, A,
I, F, and SP. For more information, see "Process State, PSTATE" in the ARMv8-A Architecture Reference Manual.

System variant

MSR <pstatefield>, #<imm>

Decode for this encoding

 AArch64.CheckSystemAccess('00', op1, '0100', CRm, op2, '11111', '0');

 bits(4) operand = CRm;
 PSTATEField field;
 case op1:op2 of
 when '000 100'
 if !HavePANExt() then
 UnallocatedEncoding();
 field = PSTATEField_PAN;
 when '000 101' field = PSTATEField_SP;
 when '011 110' field = PSTATEField_DAIFSet;
 when '011 111' field = PSTATEField_DAIFClr;
 otherwise UnallocatedEncoding();

 // Check that an AArch64 MSR/MRS access to the DAIF flags is permitted
 if op1 == '011' && PSTATE.EL == EL0 && (IsInHost() || SCTLR_EL1.UMA == '0') then
 AArch64.SystemRegisterTrap(EL1, '00', op2, op1, '0100', '11111', CRm, '0');

Assembler symbols

<pstatefield> Is a PSTATE field name, encoded in the "op1:op2" field. It can have the following values:

PAN when op1 = 000, op2 = 100

SPSel when op1 = 000, op2 = 101

DAIFSet when op1 = 011, op2 = 110

DAIFClr when op1 = 011, op2 = 111

The following encodings are reserved:

• op1 = 000, op2 = 0xx.

• op1 = 000, op2 = 11x.

• op1 = 001, op2 = xxx.

• op1 = 010, op2 = xxx.

• op1 = 011, op2 = 0xx.

• op1 = 011, op2 = 10x.

• op1 = 1xx, op2 = xxx.

<imm> Is a 4-bit unsigned immediate, in the range 0 to 15, encoded in the "CRm" field.

1 1 0 1 0 1 0 1 0 0 0 0 0 op1 0 1 0 0 CRm op2 1 1 1 1 1
31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 8 7 5 4 3 2 1 0
B11-156 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B11 A64 Instructions
B11.1 Alphabetical list of instructions
Operation

 case field of
 when PSTATEField_SP
 PSTATE.SP = operand<0>;
 when PSTATEField_DAIFSet
 PSTATE.D = PSTATE.D OR operand<3>;
 PSTATE.A = PSTATE.A OR operand<2>;
 PSTATE.I = PSTATE.I OR operand<1>;
 PSTATE.F = PSTATE.F OR operand<0>;
 when PSTATEField_DAIFClr
 PSTATE.D = PSTATE.D AND NOT(operand<3>);
 PSTATE.A = PSTATE.A AND NOT(operand<2>);
 PSTATE.I = PSTATE.I AND NOT(operand<1>);
 PSTATE.F = PSTATE.F AND NOT(operand<0>);
 when PSTATEField_PAN
 PSTATE.PAN = operand<0>;
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B11-157
ID060316 Non-Confidential

B11 A64 Instructions
B11.1 Alphabetical list of instructions
B11.1.33 SQRDMLAH (by element)

Signed Saturating Rounding Doubling Multiply Accumulate returning High Half (by element). This instruction
multiplies the vector elements of the first source SIMD&FP register with the value of a vector element of the second
source SIMD&FP register without saturating the multiply results, doubles the results, and accumulates the most
significant half of the final results with the vector elements of the destination SIMD&FP register. The results are
rounded.

If any of the results overflow, they are saturated. The cumulative saturation bit, FPSR.QC, is set if saturation occurs.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

ARMv8.1

Scalar variant

SQRDMLAH <V><d>, <V><n>, <Vm>.<Ts>[<index>]

Decode for this encoding

 if !HaveQRDMLAHExt() then UnallocatedEncoding();

 integer idxdsize = if H == '1' then 128 else 64;
 integer index;
 bit Rmhi;
 case size of
 when '01' index = UInt(H:L:M); Rmhi = '0';
 when '10' index = UInt(H:L); Rmhi = M;
 otherwise UnallocatedEncoding();

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rmhi:Rm);

 integer esize = 8 << UInt(size);
 integer datasize = esize;
 integer elements = 1;

 boolean rounding = TRUE;
 boolean sub_op = (S == '1');

Vector

ARMv8.1

Vector variant

SQRDMLAH <Vd>.<T>, <Vn>.<T>, <Vm>.<Ts>[<index>]

0 1 1 1 1 1 1 1 size L M Rm 1 1 0 1 H 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

S

0 Q 1 0 1 1 1 1 size L M Rm 1 1 0 1 H 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

S

B11-158 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B11 A64 Instructions
B11.1 Alphabetical list of instructions
Decode for this encoding

 if !HaveQRDMLAHExt() then UnallocatedEncoding();

 integer idxdsize = if H == '1' then 128 else 64;
 integer index;
 bit Rmhi;
 case size of
 when '01' index = UInt(H:L:M); Rmhi = '0';
 when '10' index = UInt(H:L); Rmhi = M;
 otherwise UnallocatedEncoding();

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rmhi:Rm);

 integer esize = 8 << UInt(size);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

 boolean rounding = TRUE;
 boolean sub_op = (S == '1');

Assembler symbols

<V> Is a width specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The following encodings are reserved:

• size = 00, Q = x.

• size = 11, Q = x.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "size:M:Rm" field. It can have
the following values:

0:Rm when size = 01

M:Rm when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

Restricted to V0-V15 when element size <Ts> is H.
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B11-159
ID060316 Non-Confidential

B11 A64 Instructions
B11.1 Alphabetical list of instructions
<Ts> Is an element size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

<index> Is the element index, encoded in the "size:L:H:M" field. It can have the following values:

H:L:M when size = 01

H:L when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n];
 bits(idxdsize) operand2 = V[m];
 bits(datasize) operand3 = V[d];
 bits(datasize) result;
 integer rounding_const = if rounding then 1 << (esize - 1) else 0;
 integer element1;
 integer element2;
 integer element3;
 integer product;
 boolean sat;

 element2 = SInt(Elem[operand2, index, esize]);
 for e = 0 to elements-1
 element1 = SInt(Elem[operand1, e, esize]);
 element3 = SInt(Elem[operand3, e, esize]);
 if sub_op then
 accum = ((element3 << esize) - 2 * (element1 * element2) + rounding_const);
 else
 accum = ((element3 << esize) + 2 * (element1 * element2) + rounding_const);
 (Elem[result, e, esize], sat) = SignedSatQ(accum >> esize, esize);
 if sat then FPSR.QC = '1';

 V[d] = result;
B11-160 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B11 A64 Instructions
B11.1 Alphabetical list of instructions
B11.1.34 SQRDMLAH (vector)

Signed Saturating Rounding Doubling Multiply Accumulate returning High Half (vector). This instruction
multiplies the vector elements of the first source SIMD&FP register with the corresponding vector elements of the
second source SIMD&FP register without saturating the multiply results, doubles the results, and accumulates the
most significant half of the final results with the vector elements of the destination SIMD&FP register. The results
are rounded.

If any of the results overflow, they are saturated. The cumulative saturation bit, FPSR.QC, is set if saturation occurs.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

ARMv8.1

Scalar variant

SQRDMLAH <V><d>, <V><n>, <V><m>

Decode for this encoding

 if !HaveQRDMLAHExt() then UnallocatedEncoding();

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if size == '11' || size == '00' then ReservedValue();
 integer esize = 8 << UInt(size);
 integer datasize = esize;
 integer elements = 1;
 boolean rounding = TRUE;
 boolean sub_op = (S == '1');

Vector

ARMv8.1

Vector variant

SQRDMLAH <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 if !HaveQRDMLAHExt() then UnallocatedEncoding();

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if size == '11' || size == '00' then ReservedValue();
 integer esize = 8 << UInt(size);
 integer datasize = if Q == '1' then 128 else 64;

0 1 1 1 1 1 1 0 size 0 Rm 1 0 0 0 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

S

0 Q 1 0 1 1 1 0 size 0 Rm 1 0 0 0 0 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

S

DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B11-161
ID060316 Non-Confidential

B11 A64 Instructions
B11.1 Alphabetical list of instructions
 integer elements = datasize DIV esize;
 boolean rounding = TRUE;
 boolean sub_op = (S == '1');

Assembler symbols

<V> Is a width specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The following encodings are reserved:

• size = 00, Q = x.

• size = 11, Q = x.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n];
 bits(datasize) operand2 = V[m];
 bits(datasize) operand3 = V[d];
 bits(datasize) result;
 integer rounding_const = if rounding then 1 << (esize - 1) else 0;
 integer element1;
 integer element2;
 integer element3;
 integer product;
 boolean sat;

 for e = 0 to elements-1
 element1 = SInt(Elem[operand1, e, esize]);
 element2 = SInt(Elem[operand2, e, esize]);
 element3 = SInt(Elem[operand3, e, esize]);
 if sub_op then
 accum = ((element3 << esize) - 2 * (element1 * element2) + rounding_const);
 else
 accum = ((element3 << esize) + 2 * (element1 * element2) + rounding_const);
 (Elem[result, e, esize], sat) = SignedSatQ(accum >> esize, esize);
 if sat then FPSR.QC = '1';

 V[d] = result;
B11-162 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B11 A64 Instructions
B11.1 Alphabetical list of instructions
B11.1.35 SQRDMLSH (by element)

Signed Saturating Rounding Doubling Multiply Subtract returning High Half (by element). This instruction
multiplies the vector elements of the first source SIMD&FP register with the value of a vector element of the second
source SIMD&FP register without saturating the multiply results, doubles the results, and subtracts the most
significant half of the final results from the vector elements of the destination SIMD&FP register. The results are
rounded.

If any of the results overflow, they are saturated. The cumulative saturation bit, FPSR.QC, is set if saturation occurs.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

ARMv8.1

Scalar variant

SQRDMLSH <V><d>, <V><n>, <Vm>.<Ts>[<index>]

Decode for this encoding

 if !HaveQRDMLAHExt() then UnallocatedEncoding();

 integer idxdsize = if H == '1' then 128 else 64;
 integer index;
 bit Rmhi;
 case size of
 when '01' index = UInt(H:L:M); Rmhi = '0';
 when '10' index = UInt(H:L); Rmhi = M;
 otherwise UnallocatedEncoding();

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rmhi:Rm);

 integer esize = 8 << UInt(size);
 integer datasize = esize;
 integer elements = 1;

 boolean rounding = TRUE;
 boolean sub_op = (S == '1');

Vector

ARMv8.1

Vector variant

SQRDMLSH <Vd>.<T>, <Vn>.<T>, <Vm>.<Ts>[<index>]

0 1 1 1 1 1 1 1 size L M Rm 1 1 1 1 H 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

S

0 Q 1 0 1 1 1 1 size L M Rm 1 1 1 1 H 0 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

S

DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B11-163
ID060316 Non-Confidential

B11 A64 Instructions
B11.1 Alphabetical list of instructions
Decode for this encoding

 if !HaveQRDMLAHExt() then UnallocatedEncoding();

 integer idxdsize = if H == '1' then 128 else 64;
 integer index;
 bit Rmhi;
 case size of
 when '01' index = UInt(H:L:M); Rmhi = '0';
 when '10' index = UInt(H:L); Rmhi = M;
 otherwise UnallocatedEncoding();

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rmhi:Rm);

 integer esize = 8 << UInt(size);
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;

 boolean rounding = TRUE;
 boolean sub_op = (S == '1');

Assembler symbols

<V> Is a width specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The following encodings are reserved:

• size = 00, Q = x.

• size = 11, Q = x.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "size:M:Rm" field. It can have
the following values:

0:Rm when size = 01

M:Rm when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

Restricted to V0-V15 when element size <Ts> is H.
B11-164 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B11 A64 Instructions
B11.1 Alphabetical list of instructions
<Ts> Is an element size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

<index> Is the element index, encoded in the "size:L:H:M" field. It can have the following values:

H:L:M when size = 01

H:L when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n];
 bits(idxdsize) operand2 = V[m];
 bits(datasize) operand3 = V[d];
 bits(datasize) result;
 integer rounding_const = if rounding then 1 << (esize - 1) else 0;
 integer element1;
 integer element2;
 integer element3;
 integer product;
 boolean sat;

 element2 = SInt(Elem[operand2, index, esize]);
 for e = 0 to elements-1
 element1 = SInt(Elem[operand1, e, esize]);
 element3 = SInt(Elem[operand3, e, esize]);
 if sub_op then
 accum = ((element3 << esize) - 2 * (element1 * element2) + rounding_const);
 else
 accum = ((element3 << esize) + 2 * (element1 * element2) + rounding_const);
 (Elem[result, e, esize], sat) = SignedSatQ(accum >> esize, esize);
 if sat then FPSR.QC = '1';

 V[d] = result;
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B11-165
ID060316 Non-Confidential

B11 A64 Instructions
B11.1 Alphabetical list of instructions
B11.1.36 SQRDMLSH (vector)

Signed Saturating Rounding Doubling Multiply Subtract returning High Half (vector). This instruction multiplies
the vector elements of the first source SIMD&FP register with the corresponding vector elements of the second
source SIMD&FP register without saturating the multiply results, doubles the results, and subtracts the most
significant half of the final results from the vector elements of the destination SIMD&FP register. The results are
rounded.

If any of the results overflow, they are saturated. The cumulative saturation bit, FPSR.QC, is set if saturation occurs.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

ARMv8.1

Scalar variant

SQRDMLSH <V><d>, <V><n>, <V><m>

Decode for this encoding

 if !HaveQRDMLAHExt() then UnallocatedEncoding();

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if size == '11' || size == '00' then ReservedValue();
 integer esize = 8 << UInt(size);
 integer datasize = esize;
 integer elements = 1;
 boolean rounding = TRUE;
 boolean sub_op = (S == '1');

Vector

ARMv8.1

Vector variant

SQRDMLSH <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 if !HaveQRDMLAHExt() then UnallocatedEncoding();

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if size == '11' || size == '00' then ReservedValue();
 integer esize = 8 << UInt(size);
 integer datasize = if Q == '1' then 128 else 64;

0 1 1 1 1 1 1 0 size 0 Rm 1 0 0 0 1 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

S

0 Q 1 0 1 1 1 0 size 0 Rm 1 0 0 0 1 1 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

S

B11-166 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B11 A64 Instructions
B11.1 Alphabetical list of instructions
 integer elements = datasize DIV esize;
 boolean rounding = TRUE;
 boolean sub_op = (S == '1');

Assembler symbols

<V> Is a width specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The following encodings are reserved:

• size = 00, Q = x.

• size = 11, Q = x.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n];
 bits(datasize) operand2 = V[m];
 bits(datasize) operand3 = V[d];
 bits(datasize) result;
 integer rounding_const = if rounding then 1 << (esize - 1) else 0;
 integer element1;
 integer element2;
 integer element3;
 integer product;
 boolean sat;

 for e = 0 to elements-1
 element1 = SInt(Elem[operand1, e, esize]);
 element2 = SInt(Elem[operand2, e, esize]);
 element3 = SInt(Elem[operand3, e, esize]);
 if sub_op then
 accum = ((element3 << esize) - 2 * (element1 * element2) + rounding_const);
 else
 accum = ((element3 << esize) + 2 * (element1 * element2) + rounding_const);
 (Elem[result, e, esize], sat) = SignedSatQ(accum >> esize, esize);
 if sat then FPSR.QC = '1';

 V[d] = result;
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B11-167
ID060316 Non-Confidential

B11 A64 Instructions
B11.1 Alphabetical list of instructions
B11.1.37 STADD, STADDL

Atomic add on word or doubleword in memory, without return, loads a 32-bit word or 64-bit doubleword from
memory, adds the value held in a register to it, and stores the result back to memory.

• STADD has no memory ordering semantics.

• STADDL stores to memory with release semantics, as described in Load-Acquire, Store-Release on
page B11-227.

For information about memory accesses see Load/Store addressing modes on page B11-228.

ARMv8.1

32-bit, no memory ordering variant

Applies when size == 10 && R == 0.

STADD <Ws>, [<Xn|SP>]

32-bit, release variant

Applies when size == 10 && R == 1.

STADDL <Ws>, [<Xn|SP>]

64-bit, no memory ordering variant

Applies when size == 11 && R == 0.

STADD <Xs>, [<Xn|SP>]

64-bit, release variant

Applies when size == 11 && R == 1.

STADDL <Xs>, [<Xn|SP>]

Decode for all variants of this encoding

 if !HaveAtomicExt() then UnallocatedEncoding();

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 integer datasize = 8 << UInt(size);
 integer regsize = if datasize == 64 then 64 else 32;
 AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDRW else AccType_ATOMICRW;
 AccType stacctype = if R == '1' then AccType_ORDEREDRW else AccType_ATOMICRW;
 MemAtomicOp op;
 case o3:opc of
 when '0000' op = MemAtomicOp_ADD;
 when '0001' op = MemAtomicOp_BIC;
 when '0010' op = MemAtomicOp_EOR;
 when '0011' op = MemAtomicOp_ORR;
 when '0100' op = MemAtomicOp_SMAX;
 when '0101' op = MemAtomicOp_SMIN;
 when '0110' op = MemAtomicOp_UMAX;

1 x 1 1 1 0 0 0 0 R 1 Rs 0 0 0 0 0 0 Rn 1 1 1 1 1
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size V A o3 opc Rt
B11-168 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B11 A64 Instructions
B11.1 Alphabetical list of instructions
 when '0111' op = MemAtomicOp_UMIN;
 when '1000' op = MemAtomicOp_SWP;
 otherwise UnallocatedEncoding();

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(datasize) value;
 bits(datasize) data;
 bits(datasize) result;

 value = X[s];
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];
 data = Mem[address, datasize DIV 8, ldacctype];

 case op of
 when MemAtomicOp_ADD result = data + value;
 when MemAtomicOp_BIC result = data AND NOT(value);
 when MemAtomicOp_EOR result = data EOR value;
 when MemAtomicOp_ORR result = data OR value;
 when MemAtomicOp_SMAX result = if SInt(data) > SInt(value) then data else value;
 when MemAtomicOp_SMIN result = if SInt(data) > SInt(value) then value else data;
 when MemAtomicOp_UMAX result = if UInt(data) > UInt(value) then data else value;
 when MemAtomicOp_UMIN result = if UInt(data) > UInt(value) then value else data;
 when MemAtomicOp_SWP result = value;

 Mem[address, datasize DIV 8, stacctype] = result; // all observers in the shareability domain
 // observe the load and store atomically

 X[t] = ZeroExtend(data, regsize);
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B11-169
ID060316 Non-Confidential

B11 A64 Instructions
B11.1 Alphabetical list of instructions
B11.1.38 STADDB, STADDLB

Atomic add on byte in memory, without return, loads an 8-bit byte from memory, adds the value held in a register
to it, and stores the result back to memory.

• STADDB has no memory ordering semantics.

• STADDLB stores to memory with release semantics, as described in Load-Acquire, Store-Release on
page B11-227.

For information about memory accesses see Load/Store addressing modes on page B11-228.

ARMv8.1

No memory ordering variant

Applies when R == 0.

STADDB <Ws>, [<Xn|SP>]

Release variant

Applies when R == 1.

STADDLB <Ws>, [<Xn|SP>]

Decode for all variants of this encoding

 if !HaveAtomicExt() then UnallocatedEncoding();

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 integer datasize = 8 << UInt(size);
 integer regsize = if datasize == 64 then 64 else 32;
 AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDRW else AccType_ATOMICRW;
 AccType stacctype = if R == '1' then AccType_ORDEREDRW else AccType_ATOMICRW;
 MemAtomicOp op;
 case o3:opc of
 when '0000' op = MemAtomicOp_ADD;
 when '0001' op = MemAtomicOp_BIC;
 when '0010' op = MemAtomicOp_EOR;
 when '0011' op = MemAtomicOp_ORR;
 when '0100' op = MemAtomicOp_SMAX;
 when '0101' op = MemAtomicOp_SMIN;
 when '0110' op = MemAtomicOp_UMAX;
 when '0111' op = MemAtomicOp_UMIN;
 when '1000' op = MemAtomicOp_SWP;
 otherwise UnallocatedEncoding();

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

0 0 1 1 1 0 0 0 0 R 1 Rs 0 0 0 0 0 0 Rn 1 1 1 1 1
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size V A o3 opc Rt
B11-170 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B11 A64 Instructions
B11.1 Alphabetical list of instructions
Operation

 bits(64) address;
 bits(datasize) value;
 bits(datasize) data;
 bits(datasize) result;

 value = X[s];
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];
 data = Mem[address, datasize DIV 8, ldacctype];

 case op of
 when MemAtomicOp_ADD result = data + value;
 when MemAtomicOp_BIC result = data AND NOT(value);
 when MemAtomicOp_EOR result = data EOR value;
 when MemAtomicOp_ORR result = data OR value;
 when MemAtomicOp_SMAX result = if SInt(data) > SInt(value) then data else value;
 when MemAtomicOp_SMIN result = if SInt(data) > SInt(value) then value else data;
 when MemAtomicOp_UMAX result = if UInt(data) > UInt(value) then data else value;
 when MemAtomicOp_UMIN result = if UInt(data) > UInt(value) then value else data;
 when MemAtomicOp_SWP result = value;

 Mem[address, datasize DIV 8, stacctype] = result; // all observers in the shareability domain
 // observe the load and store atomically

 X[t] = ZeroExtend(data, regsize);
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B11-171
ID060316 Non-Confidential

B11 A64 Instructions
B11.1 Alphabetical list of instructions
B11.1.39 STADDH, STADDLH

Atomic add on halfword in memory, without return, loads a 16-bit halfword from memory, adds the value held in a
register to it, and stores the result back to memory.

• STADDH has no memory ordering semantics.

• STADDLH stores to memory with release semantics, as described in Load-Acquire, Store-Release on
page B11-227.

For information about memory accesses see Load/Store addressing modes on page B11-228.

ARMv8.1

No memory ordering variant

Applies when R == 0.

STADDH <Ws>, [<Xn|SP>]

Release variant

Applies when R == 1.

STADDLH <Ws>, [<Xn|SP>]

Decode for all variants of this encoding

 if !HaveAtomicExt() then UnallocatedEncoding();

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 integer datasize = 8 << UInt(size);
 integer regsize = if datasize == 64 then 64 else 32;
 AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDRW else AccType_ATOMICRW;
 AccType stacctype = if R == '1' then AccType_ORDEREDRW else AccType_ATOMICRW;
 MemAtomicOp op;
 case o3:opc of
 when '0000' op = MemAtomicOp_ADD;
 when '0001' op = MemAtomicOp_BIC;
 when '0010' op = MemAtomicOp_EOR;
 when '0011' op = MemAtomicOp_ORR;
 when '0100' op = MemAtomicOp_SMAX;
 when '0101' op = MemAtomicOp_SMIN;
 when '0110' op = MemAtomicOp_UMAX;
 when '0111' op = MemAtomicOp_UMIN;
 when '1000' op = MemAtomicOp_SWP;
 otherwise UnallocatedEncoding();

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

0 1 1 1 1 0 0 0 0 R 1 Rs 0 0 0 0 0 0 Rn 1 1 1 1 1
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size V A o3 opc Rt
B11-172 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B11 A64 Instructions
B11.1 Alphabetical list of instructions
Operation

 bits(64) address;
 bits(datasize) value;
 bits(datasize) data;
 bits(datasize) result;

 value = X[s];
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];
 data = Mem[address, datasize DIV 8, ldacctype];

 case op of
 when MemAtomicOp_ADD result = data + value;
 when MemAtomicOp_BIC result = data AND NOT(value);
 when MemAtomicOp_EOR result = data EOR value;
 when MemAtomicOp_ORR result = data OR value;
 when MemAtomicOp_SMAX result = if SInt(data) > SInt(value) then data else value;
 when MemAtomicOp_SMIN result = if SInt(data) > SInt(value) then value else data;
 when MemAtomicOp_UMAX result = if UInt(data) > UInt(value) then data else value;
 when MemAtomicOp_UMIN result = if UInt(data) > UInt(value) then value else data;
 when MemAtomicOp_SWP result = value;

 Mem[address, datasize DIV 8, stacctype] = result; // all observers in the shareability domain
 // observe the load and store atomically

 X[t] = ZeroExtend(data, regsize);
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B11-173
ID060316 Non-Confidential

B11 A64 Instructions
B11.1 Alphabetical list of instructions
B11.1.40 STCLR, STCLRL

Atomic bit clear on word or doubleword in memory, without return, loads a 32-bit word or 64-bit doubleword from
memory, performs a bitwise AND with the complement of the value held in a register on it, and stores the result
back to memory.

• STCLR has no memory ordering semantics.

• STCLRL stores to memory with release semantics, as described in Load-Acquire, Store-Release on
page B11-227.

For information about memory accesses see Load/Store addressing modes on page B11-228.

ARMv8.1

32-bit, no memory ordering variant

Applies when size == 10 && R == 0.

STCLR <Ws>, [<Xn|SP>]

32-bit, release variant

Applies when size == 10 && R == 1.

STCLRL <Ws>, [<Xn|SP>]

64-bit, no memory ordering variant

Applies when size == 11 && R == 0.

STCLR <Xs>, [<Xn|SP>]

64-bit, release variant

Applies when size == 11 && R == 1.

STCLRL <Xs>, [<Xn|SP>]

Decode for all variants of this encoding

 if !HaveAtomicExt() then UnallocatedEncoding();

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 integer datasize = 8 << UInt(size);
 integer regsize = if datasize == 64 then 64 else 32;
 AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDRW else AccType_ATOMICRW;
 AccType stacctype = if R == '1' then AccType_ORDEREDRW else AccType_ATOMICRW;
 MemAtomicOp op;
 case o3:opc of
 when '0000' op = MemAtomicOp_ADD;
 when '0001' op = MemAtomicOp_BIC;
 when '0010' op = MemAtomicOp_EOR;
 when '0011' op = MemAtomicOp_ORR;
 when '0100' op = MemAtomicOp_SMAX;
 when '0101' op = MemAtomicOp_SMIN;

1 x 1 1 1 0 0 0 0 R 1 Rs 0 0 0 1 0 0 Rn 1 1 1 1 1
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size V A o3 opc Rt
B11-174 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B11 A64 Instructions
B11.1 Alphabetical list of instructions
 when '0110' op = MemAtomicOp_UMAX;
 when '0111' op = MemAtomicOp_UMIN;
 when '1000' op = MemAtomicOp_SWP;
 otherwise UnallocatedEncoding();

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(datasize) value;
 bits(datasize) data;
 bits(datasize) result;

 value = X[s];
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];
 data = Mem[address, datasize DIV 8, ldacctype];

 case op of
 when MemAtomicOp_ADD result = data + value;
 when MemAtomicOp_BIC result = data AND NOT(value);
 when MemAtomicOp_EOR result = data EOR value;
 when MemAtomicOp_ORR result = data OR value;
 when MemAtomicOp_SMAX result = if SInt(data) > SInt(value) then data else value;
 when MemAtomicOp_SMIN result = if SInt(data) > SInt(value) then value else data;
 when MemAtomicOp_UMAX result = if UInt(data) > UInt(value) then data else value;
 when MemAtomicOp_UMIN result = if UInt(data) > UInt(value) then value else data;
 when MemAtomicOp_SWP result = value;

 Mem[address, datasize DIV 8, stacctype] = result; // all observers in the shareability domain
 // observe the load and store atomically

 X[t] = ZeroExtend(data, regsize);
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B11-175
ID060316 Non-Confidential

B11 A64 Instructions
B11.1 Alphabetical list of instructions
B11.1.41 STCLRB, STCLRLB

Atomic bit clear on byte in memory, without return, loads an 8-bit byte from memory, performs a bitwise AND with
the complement of the value held in a register on it, and stores the result back to memory.

• STCLRB has no memory ordering semantics.

• STCLRLB stores to memory with release semantics, as described in Load-Acquire, Store-Release on
page B11-227.

For information about memory accesses see Load/Store addressing modes on page B11-228.

ARMv8.1

No memory ordering variant

Applies when R == 0.

STCLRB <Ws>, [<Xn|SP>]

Release variant

Applies when R == 1.

STCLRLB <Ws>, [<Xn|SP>]

Decode for all variants of this encoding

 if !HaveAtomicExt() then UnallocatedEncoding();

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 integer datasize = 8 << UInt(size);
 integer regsize = if datasize == 64 then 64 else 32;
 AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDRW else AccType_ATOMICRW;
 AccType stacctype = if R == '1' then AccType_ORDEREDRW else AccType_ATOMICRW;
 MemAtomicOp op;
 case o3:opc of
 when '0000' op = MemAtomicOp_ADD;
 when '0001' op = MemAtomicOp_BIC;
 when '0010' op = MemAtomicOp_EOR;
 when '0011' op = MemAtomicOp_ORR;
 when '0100' op = MemAtomicOp_SMAX;
 when '0101' op = MemAtomicOp_SMIN;
 when '0110' op = MemAtomicOp_UMAX;
 when '0111' op = MemAtomicOp_UMIN;
 when '1000' op = MemAtomicOp_SWP;
 otherwise UnallocatedEncoding();

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

0 0 1 1 1 0 0 0 0 R 1 Rs 0 0 0 1 0 0 Rn 1 1 1 1 1
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size V A o3 opc Rt
B11-176 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B11 A64 Instructions
B11.1 Alphabetical list of instructions
Operation

 bits(64) address;
 bits(datasize) value;
 bits(datasize) data;
 bits(datasize) result;

 value = X[s];
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];
 data = Mem[address, datasize DIV 8, ldacctype];

 case op of
 when MemAtomicOp_ADD result = data + value;
 when MemAtomicOp_BIC result = data AND NOT(value);
 when MemAtomicOp_EOR result = data EOR value;
 when MemAtomicOp_ORR result = data OR value;
 when MemAtomicOp_SMAX result = if SInt(data) > SInt(value) then data else value;
 when MemAtomicOp_SMIN result = if SInt(data) > SInt(value) then value else data;
 when MemAtomicOp_UMAX result = if UInt(data) > UInt(value) then data else value;
 when MemAtomicOp_UMIN result = if UInt(data) > UInt(value) then value else data;
 when MemAtomicOp_SWP result = value;

 Mem[address, datasize DIV 8, stacctype] = result; // all observers in the shareability domain
 // observe the load and store atomically

 X[t] = ZeroExtend(data, regsize);
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B11-177
ID060316 Non-Confidential

B11 A64 Instructions
B11.1 Alphabetical list of instructions
B11.1.42 STCLRH, STCLRLH

Atomic bit clear on halfword in memory, without return, loads a 16-bit halfword from memory, performs a bitwise
AND with the complement of the value held in a register on it, and stores the result back to memory.

• STCLRH has no memory ordering semantics.

• STCLRLH stores to memory with release semantics, as described in Load-Acquire, Store-Release on
page B11-227.

For information about memory accesses see Load/Store addressing modes on page B11-228.

ARMv8.1

No memory ordering variant

Applies when R == 0.

STCLRH <Ws>, [<Xn|SP>]

Release variant

Applies when R == 1.

STCLRLH <Ws>, [<Xn|SP>]

Decode for all variants of this encoding

 if !HaveAtomicExt() then UnallocatedEncoding();

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 integer datasize = 8 << UInt(size);
 integer regsize = if datasize == 64 then 64 else 32;
 AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDRW else AccType_ATOMICRW;
 AccType stacctype = if R == '1' then AccType_ORDEREDRW else AccType_ATOMICRW;
 MemAtomicOp op;
 case o3:opc of
 when '0000' op = MemAtomicOp_ADD;
 when '0001' op = MemAtomicOp_BIC;
 when '0010' op = MemAtomicOp_EOR;
 when '0011' op = MemAtomicOp_ORR;
 when '0100' op = MemAtomicOp_SMAX;
 when '0101' op = MemAtomicOp_SMIN;
 when '0110' op = MemAtomicOp_UMAX;
 when '0111' op = MemAtomicOp_UMIN;
 when '1000' op = MemAtomicOp_SWP;
 otherwise UnallocatedEncoding();

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

0 1 1 1 1 0 0 0 0 R 1 Rs 0 0 0 1 0 0 Rn 1 1 1 1 1
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size V A o3 opc Rt
B11-178 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B11 A64 Instructions
B11.1 Alphabetical list of instructions
Operation

 bits(64) address;
 bits(datasize) value;
 bits(datasize) data;
 bits(datasize) result;

 value = X[s];
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];
 data = Mem[address, datasize DIV 8, ldacctype];

 case op of
 when MemAtomicOp_ADD result = data + value;
 when MemAtomicOp_BIC result = data AND NOT(value);
 when MemAtomicOp_EOR result = data EOR value;
 when MemAtomicOp_ORR result = data OR value;
 when MemAtomicOp_SMAX result = if SInt(data) > SInt(value) then data else value;
 when MemAtomicOp_SMIN result = if SInt(data) > SInt(value) then value else data;
 when MemAtomicOp_UMAX result = if UInt(data) > UInt(value) then data else value;
 when MemAtomicOp_UMIN result = if UInt(data) > UInt(value) then value else data;
 when MemAtomicOp_SWP result = value;

 Mem[address, datasize DIV 8, stacctype] = result; // all observers in the shareability domain
 // observe the load and store atomically

 X[t] = ZeroExtend(data, regsize);
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B11-179
ID060316 Non-Confidential

B11 A64 Instructions
B11.1 Alphabetical list of instructions
B11.1.43 STEOR, STEORL

Atomic exclusive OR on word or doubleword in memory, without return, loads a 32-bit word or 64-bit doubleword
from memory, performs an exclusive OR with the value held in a register on it, and stores the result back to memory.

• STEOR has no memory ordering semantics.

• STEORL stores to memory with release semantics, as described in Load-Acquire, Store-Release on
page B11-227.

For information about memory accesses see Load/Store addressing modes on page B11-228.

ARMv8.1

32-bit, no memory ordering variant

Applies when size == 10 && R == 0.

STEOR <Ws>, [<Xn|SP>]

32-bit, release variant

Applies when size == 10 && R == 1.

STEORL <Ws>, [<Xn|SP>]

64-bit, no memory ordering variant

Applies when size == 11 && R == 0.

STEOR <Xs>, [<Xn|SP>]

64-bit, release variant

Applies when size == 11 && R == 1.

STEORL <Xs>, [<Xn|SP>]

Decode for all variants of this encoding

 if !HaveAtomicExt() then UnallocatedEncoding();

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 integer datasize = 8 << UInt(size);
 integer regsize = if datasize == 64 then 64 else 32;
 AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDRW else AccType_ATOMICRW;
 AccType stacctype = if R == '1' then AccType_ORDEREDRW else AccType_ATOMICRW;
 MemAtomicOp op;
 case o3:opc of
 when '0000' op = MemAtomicOp_ADD;
 when '0001' op = MemAtomicOp_BIC;
 when '0010' op = MemAtomicOp_EOR;
 when '0011' op = MemAtomicOp_ORR;
 when '0100' op = MemAtomicOp_SMAX;
 when '0101' op = MemAtomicOp_SMIN;
 when '0110' op = MemAtomicOp_UMAX;

1 x 1 1 1 0 0 0 0 R 1 Rs 0 0 1 0 0 0 Rn 1 1 1 1 1
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size V A o3 opc Rt
B11-180 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B11 A64 Instructions
B11.1 Alphabetical list of instructions
 when '0111' op = MemAtomicOp_UMIN;
 when '1000' op = MemAtomicOp_SWP;
 otherwise UnallocatedEncoding();

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(datasize) value;
 bits(datasize) data;
 bits(datasize) result;

 value = X[s];
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];
 data = Mem[address, datasize DIV 8, ldacctype];

 case op of
 when MemAtomicOp_ADD result = data + value;
 when MemAtomicOp_BIC result = data AND NOT(value);
 when MemAtomicOp_EOR result = data EOR value;
 when MemAtomicOp_ORR result = data OR value;
 when MemAtomicOp_SMAX result = if SInt(data) > SInt(value) then data else value;
 when MemAtomicOp_SMIN result = if SInt(data) > SInt(value) then value else data;
 when MemAtomicOp_UMAX result = if UInt(data) > UInt(value) then data else value;
 when MemAtomicOp_UMIN result = if UInt(data) > UInt(value) then value else data;
 when MemAtomicOp_SWP result = value;

 Mem[address, datasize DIV 8, stacctype] = result; // all observers in the shareability domain
 // observe the load and store atomically

 X[t] = ZeroExtend(data, regsize);
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B11-181
ID060316 Non-Confidential

B11 A64 Instructions
B11.1 Alphabetical list of instructions
B11.1.44 STEORB, STEORLB

Atomic exclusive OR on byte in memory, without return, loads an 8-bit byte from memory, performs an exclusive
OR with the value held in a register on it, and stores the result back to memory.

• STEORB has no memory ordering semantics.

• STEORLB stores to memory with release semantics, as described in Load-Acquire, Store-Release on
page B11-227.

For information about memory accesses see Load/Store addressing modes on page B11-228.

ARMv8.1

No memory ordering variant

Applies when R == 0.

STEORB <Ws>, [<Xn|SP>]

Release variant

Applies when R == 1.

STEORLB <Ws>, [<Xn|SP>]

Decode for all variants of this encoding

 if !HaveAtomicExt() then UnallocatedEncoding();

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 integer datasize = 8 << UInt(size);
 integer regsize = if datasize == 64 then 64 else 32;
 AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDRW else AccType_ATOMICRW;
 AccType stacctype = if R == '1' then AccType_ORDEREDRW else AccType_ATOMICRW;
 MemAtomicOp op;
 case o3:opc of
 when '0000' op = MemAtomicOp_ADD;
 when '0001' op = MemAtomicOp_BIC;
 when '0010' op = MemAtomicOp_EOR;
 when '0011' op = MemAtomicOp_ORR;
 when '0100' op = MemAtomicOp_SMAX;
 when '0101' op = MemAtomicOp_SMIN;
 when '0110' op = MemAtomicOp_UMAX;
 when '0111' op = MemAtomicOp_UMIN;
 when '1000' op = MemAtomicOp_SWP;
 otherwise UnallocatedEncoding();

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

0 0 1 1 1 0 0 0 0 R 1 Rs 0 0 1 0 0 0 Rn 1 1 1 1 1
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size V A o3 opc Rt
B11-182 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B11 A64 Instructions
B11.1 Alphabetical list of instructions
Operation

 bits(64) address;
 bits(datasize) value;
 bits(datasize) data;
 bits(datasize) result;

 value = X[s];
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];
 data = Mem[address, datasize DIV 8, ldacctype];

 case op of
 when MemAtomicOp_ADD result = data + value;
 when MemAtomicOp_BIC result = data AND NOT(value);
 when MemAtomicOp_EOR result = data EOR value;
 when MemAtomicOp_ORR result = data OR value;
 when MemAtomicOp_SMAX result = if SInt(data) > SInt(value) then data else value;
 when MemAtomicOp_SMIN result = if SInt(data) > SInt(value) then value else data;
 when MemAtomicOp_UMAX result = if UInt(data) > UInt(value) then data else value;
 when MemAtomicOp_UMIN result = if UInt(data) > UInt(value) then value else data;
 when MemAtomicOp_SWP result = value;

 Mem[address, datasize DIV 8, stacctype] = result; // all observers in the shareability domain
 // observe the load and store atomically

 X[t] = ZeroExtend(data, regsize);
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B11-183
ID060316 Non-Confidential

B11 A64 Instructions
B11.1 Alphabetical list of instructions
B11.1.45 STEORH, STEORLH

Atomic exclusive OR on halfword in memory, without return, loads a 16-bit halfword from memory, performs an
exclusive OR with the value held in a register on it, and stores the result back to memory.

• STEORH has no memory ordering semantics.

• STEORLH stores to memory with release semantics, as described in Load-Acquire, Store-Release on
page B11-227.

For information about memory accesses see Load/Store addressing modes on page B11-228.

ARMv8.1

No memory ordering variant

Applies when R == 0.

STEORH <Ws>, [<Xn|SP>]

Release variant

Applies when R == 1.

STEORLH <Ws>, [<Xn|SP>]

Decode for all variants of this encoding

 if !HaveAtomicExt() then UnallocatedEncoding();

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 integer datasize = 8 << UInt(size);
 integer regsize = if datasize == 64 then 64 else 32;
 AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDRW else AccType_ATOMICRW;
 AccType stacctype = if R == '1' then AccType_ORDEREDRW else AccType_ATOMICRW;
 MemAtomicOp op;
 case o3:opc of
 when '0000' op = MemAtomicOp_ADD;
 when '0001' op = MemAtomicOp_BIC;
 when '0010' op = MemAtomicOp_EOR;
 when '0011' op = MemAtomicOp_ORR;
 when '0100' op = MemAtomicOp_SMAX;
 when '0101' op = MemAtomicOp_SMIN;
 when '0110' op = MemAtomicOp_UMAX;
 when '0111' op = MemAtomicOp_UMIN;
 when '1000' op = MemAtomicOp_SWP;
 otherwise UnallocatedEncoding();

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

0 1 1 1 1 0 0 0 0 R 1 Rs 0 0 1 0 0 0 Rn 1 1 1 1 1
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size V A o3 opc Rt
B11-184 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B11 A64 Instructions
B11.1 Alphabetical list of instructions
Operation

 bits(64) address;
 bits(datasize) value;
 bits(datasize) data;
 bits(datasize) result;

 value = X[s];
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];
 data = Mem[address, datasize DIV 8, ldacctype];

 case op of
 when MemAtomicOp_ADD result = data + value;
 when MemAtomicOp_BIC result = data AND NOT(value);
 when MemAtomicOp_EOR result = data EOR value;
 when MemAtomicOp_ORR result = data OR value;
 when MemAtomicOp_SMAX result = if SInt(data) > SInt(value) then data else value;
 when MemAtomicOp_SMIN result = if SInt(data) > SInt(value) then value else data;
 when MemAtomicOp_UMAX result = if UInt(data) > UInt(value) then data else value;
 when MemAtomicOp_UMIN result = if UInt(data) > UInt(value) then value else data;
 when MemAtomicOp_SWP result = value;

 Mem[address, datasize DIV 8, stacctype] = result; // all observers in the shareability domain
 // observe the load and store atomically

 X[t] = ZeroExtend(data, regsize);
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B11-185
ID060316 Non-Confidential

B11 A64 Instructions
B11.1 Alphabetical list of instructions
B11.1.46 STLLR

Store LORelease Register stores a 32-bit word or a 64-bit doubleword to a memory location, from a register. The
instruction also has memory ordering semantics as described in Load-Acquire, Store-Release on page B11-227. For
information about memory accesses, see Load/Store addressing modes on page B11-228.

ARMv8.1

32-bit variant

Applies when size == 10.

STLLR <Wt>, [<Xn|SP>{,#0}]

64-bit variant

Applies when size == 11.

STLLR <Xt>, [<Xn|SP>{,#0}]

Decode for all variants of this encoding

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 integer t2 = UInt(Rt2); // ignored by load/store single register
 integer s = UInt(Rs); // ignored by all loads and store-release

 AccType acctype = if o0 == '0' then AccType_LIMITEDORDERED else AccType_ORDERED;
 MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
 integer elsize = 8 << UInt(size);
 integer regsize = if elsize == 64 then 64 else 32;
 integer datasize = elsize;

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(datasize) data;
 constant integer dbytes = datasize DIV 8;

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 case memop of
 when MemOp_STORE
 data = X[t];
 Mem[address, dbytes, acctype] = data;

1 x 0 0 1 0 0 0 1 0 0 (1) (1) (1) (1) (1) 0 (1) (1) (1) (1) (1) Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

size L Rs o0 Rt2
B11-186 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B11 A64 Instructions
B11.1 Alphabetical list of instructions

 when MemOp_LOAD
 data = Mem[address, dbytes, acctype];
 X[t] = ZeroExtend(data, regsize);
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B11-187
ID060316 Non-Confidential

B11 A64 Instructions
B11.1 Alphabetical list of instructions
B11.1.47 STLLRB

Store LORelease Register Byte stores a byte from a 32-bit register to a memory location. The instruction also has
memory ordering semantics as described in Load-Acquire, Store-Release on page B11-227. For information about
memory accesses, see Load/Store addressing modes on page B11-228.

ARMv8.1

No offset variant

STLLRB <Wt>, [<Xn|SP>{,#0}]

Decode for this encoding

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 integer t2 = UInt(Rt2); // ignored by load/store single register
 integer s = UInt(Rs); // ignored by all loads and store-release

 AccType acctype = if o0 == '0' then AccType_LIMITEDORDERED else AccType_ORDERED;
 MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
 integer elsize = 8 << UInt(size);
 integer regsize = if elsize == 64 then 64 else 32;
 integer datasize = elsize;

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(datasize) data;
 constant integer dbytes = datasize DIV 8;

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 case memop of
 when MemOp_STORE
 data = X[t];
 Mem[address, dbytes, acctype] = data;

 when MemOp_LOAD
 data = Mem[address, dbytes, acctype];
 X[t] = ZeroExtend(data, regsize);

0 0 0 0 1 0 0 0 1 0 0 (1) (1) (1) (1) (1) 0 (1) (1) (1) (1) (1) Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

size L Rs o0 Rt2
B11-188 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B11 A64 Instructions
B11.1 Alphabetical list of instructions
B11.1.48 STLLRH

Store LORelease Register Halfword stores a halfword from a 32-bit register to a memory location. The instruction
also has memory ordering semantics as described in Load-Acquire, Store-Release on page B11-227. For information
about memory accesses, see Load/Store addressing modes on page B11-228.

ARMv8.1

No offset variant

STLLRH <Wt>, [<Xn|SP>{,#0}]

Decode for this encoding

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 integer t2 = UInt(Rt2); // ignored by load/store single register
 integer s = UInt(Rs); // ignored by all loads and store-release

 AccType acctype = if o0 == '0' then AccType_LIMITEDORDERED else AccType_ORDERED;
 MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
 integer elsize = 8 << UInt(size);
 integer regsize = if elsize == 64 then 64 else 32;
 integer datasize = elsize;

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(datasize) data;
 constant integer dbytes = datasize DIV 8;

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 case memop of
 when MemOp_STORE
 data = X[t];
 Mem[address, dbytes, acctype] = data;

 when MemOp_LOAD
 data = Mem[address, dbytes, acctype];
 X[t] = ZeroExtend(data, regsize);

0 1 0 0 1 0 0 0 1 0 0 (1) (1) (1) (1) (1) 0 (1) (1) (1) (1) (1) Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

size L Rs o0 Rt2
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B11-189
ID060316 Non-Confidential

B11 A64 Instructions
B11.1 Alphabetical list of instructions
B11.1.49 STSET, STSETL

Atomic bit set on word or doubleword in memory, without return, loads a 32-bit word or 64-bit doubleword from
memory, performs a bitwise OR with the value held in a register on it, and stores the result back to memory.

• STSET has no memory ordering semantics.

• STSETL stores to memory with release semantics, as described in Load-Acquire, Store-Release on
page B11-227.

For information about memory accesses see Load/Store addressing modes on page B11-228.

ARMv8.1

32-bit, no memory ordering variant

Applies when size == 10 && R == 0.

STSET <Ws>, [<Xn|SP>]

32-bit, release variant

Applies when size == 10 && R == 1.

STSETL <Ws>, [<Xn|SP>]

64-bit, no memory ordering variant

Applies when size == 11 && R == 0.

STSET <Xs>, [<Xn|SP>]

64-bit, release variant

Applies when size == 11 && R == 1.

STSETL <Xs>, [<Xn|SP>]

Decode for all variants of this encoding

 if !HaveAtomicExt() then UnallocatedEncoding();

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 integer datasize = 8 << UInt(size);
 integer regsize = if datasize == 64 then 64 else 32;
 AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDRW else AccType_ATOMICRW;
 AccType stacctype = if R == '1' then AccType_ORDEREDRW else AccType_ATOMICRW;
 MemAtomicOp op;
 case o3:opc of
 when '0000' op = MemAtomicOp_ADD;
 when '0001' op = MemAtomicOp_BIC;
 when '0010' op = MemAtomicOp_EOR;
 when '0011' op = MemAtomicOp_ORR;
 when '0100' op = MemAtomicOp_SMAX;
 when '0101' op = MemAtomicOp_SMIN;
 when '0110' op = MemAtomicOp_UMAX;

1 x 1 1 1 0 0 0 0 R 1 Rs 0 0 1 1 0 0 Rn 1 1 1 1 1
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size V A o3 opc Rt
B11-190 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B11 A64 Instructions
B11.1 Alphabetical list of instructions
 when '0111' op = MemAtomicOp_UMIN;
 when '1000' op = MemAtomicOp_SWP;
 otherwise UnallocatedEncoding();

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(datasize) value;
 bits(datasize) data;
 bits(datasize) result;

 value = X[s];
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];
 data = Mem[address, datasize DIV 8, ldacctype];

 case op of
 when MemAtomicOp_ADD result = data + value;
 when MemAtomicOp_BIC result = data AND NOT(value);
 when MemAtomicOp_EOR result = data EOR value;
 when MemAtomicOp_ORR result = data OR value;
 when MemAtomicOp_SMAX result = if SInt(data) > SInt(value) then data else value;
 when MemAtomicOp_SMIN result = if SInt(data) > SInt(value) then value else data;
 when MemAtomicOp_UMAX result = if UInt(data) > UInt(value) then data else value;
 when MemAtomicOp_UMIN result = if UInt(data) > UInt(value) then value else data;
 when MemAtomicOp_SWP result = value;

 Mem[address, datasize DIV 8, stacctype] = result; // all observers in the shareability domain
 // observe the load and store atomically

 X[t] = ZeroExtend(data, regsize);
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B11-191
ID060316 Non-Confidential

B11 A64 Instructions
B11.1 Alphabetical list of instructions
B11.1.50 STSETB, STSETLB

Atomic bit set on byte in memory, without return, loads an 8-bit byte from memory, performs a bitwise OR with the
value held in a register on it, and stores the result back to memory.

• STSETB has no memory ordering semantics.

• STSETLB stores to memory with release semantics, as described in Load-Acquire, Store-Release on
page B11-227.

For information about memory accesses see Load/Store addressing modes on page B11-228.

ARMv8.1

No memory ordering variant

Applies when R == 0.

STSETB <Ws>, [<Xn|SP>]

Release variant

Applies when R == 1.

STSETLB <Ws>, [<Xn|SP>]

Decode for all variants of this encoding

 if !HaveAtomicExt() then UnallocatedEncoding();

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 integer datasize = 8 << UInt(size);
 integer regsize = if datasize == 64 then 64 else 32;
 AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDRW else AccType_ATOMICRW;
 AccType stacctype = if R == '1' then AccType_ORDEREDRW else AccType_ATOMICRW;
 MemAtomicOp op;
 case o3:opc of
 when '0000' op = MemAtomicOp_ADD;
 when '0001' op = MemAtomicOp_BIC;
 when '0010' op = MemAtomicOp_EOR;
 when '0011' op = MemAtomicOp_ORR;
 when '0100' op = MemAtomicOp_SMAX;
 when '0101' op = MemAtomicOp_SMIN;
 when '0110' op = MemAtomicOp_UMAX;
 when '0111' op = MemAtomicOp_UMIN;
 when '1000' op = MemAtomicOp_SWP;
 otherwise UnallocatedEncoding();

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

0 0 1 1 1 0 0 0 0 R 1 Rs 0 0 1 1 0 0 Rn 1 1 1 1 1
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size V A o3 opc Rt
B11-192 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B11 A64 Instructions
B11.1 Alphabetical list of instructions
Operation

 bits(64) address;
 bits(datasize) value;
 bits(datasize) data;
 bits(datasize) result;

 value = X[s];
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];
 data = Mem[address, datasize DIV 8, ldacctype];

 case op of
 when MemAtomicOp_ADD result = data + value;
 when MemAtomicOp_BIC result = data AND NOT(value);
 when MemAtomicOp_EOR result = data EOR value;
 when MemAtomicOp_ORR result = data OR value;
 when MemAtomicOp_SMAX result = if SInt(data) > SInt(value) then data else value;
 when MemAtomicOp_SMIN result = if SInt(data) > SInt(value) then value else data;
 when MemAtomicOp_UMAX result = if UInt(data) > UInt(value) then data else value;
 when MemAtomicOp_UMIN result = if UInt(data) > UInt(value) then value else data;
 when MemAtomicOp_SWP result = value;

 Mem[address, datasize DIV 8, stacctype] = result; // all observers in the shareability domain
 // observe the load and store atomically

 X[t] = ZeroExtend(data, regsize);
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B11-193
ID060316 Non-Confidential

B11 A64 Instructions
B11.1 Alphabetical list of instructions
B11.1.51 STSETH, STSETLH

Atomic bit set on halfword in memory, without return, loads a 16-bit halfword from memory, performs a bitwise
OR with the value held in a register on it, and stores the result back to memory.

• STSETH has no memory ordering semantics.

• STSETLH stores to memory with release semantics, as described in Load-Acquire, Store-Release on
page B11-227.

For information about memory accesses see Load/Store addressing modes on page B11-228.

ARMv8.1

No memory ordering variant

Applies when R == 0.

STSETH <Ws>, [<Xn|SP>]

Release variant

Applies when R == 1.

STSETLH <Ws>, [<Xn|SP>]

Decode for all variants of this encoding

 if !HaveAtomicExt() then UnallocatedEncoding();

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 integer datasize = 8 << UInt(size);
 integer regsize = if datasize == 64 then 64 else 32;
 AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDRW else AccType_ATOMICRW;
 AccType stacctype = if R == '1' then AccType_ORDEREDRW else AccType_ATOMICRW;
 MemAtomicOp op;
 case o3:opc of
 when '0000' op = MemAtomicOp_ADD;
 when '0001' op = MemAtomicOp_BIC;
 when '0010' op = MemAtomicOp_EOR;
 when '0011' op = MemAtomicOp_ORR;
 when '0100' op = MemAtomicOp_SMAX;
 when '0101' op = MemAtomicOp_SMIN;
 when '0110' op = MemAtomicOp_UMAX;
 when '0111' op = MemAtomicOp_UMIN;
 when '1000' op = MemAtomicOp_SWP;
 otherwise UnallocatedEncoding();

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

0 1 1 1 1 0 0 0 0 R 1 Rs 0 0 1 1 0 0 Rn 1 1 1 1 1
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size V A o3 opc Rt
B11-194 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B11 A64 Instructions
B11.1 Alphabetical list of instructions
Operation

 bits(64) address;
 bits(datasize) value;
 bits(datasize) data;
 bits(datasize) result;

 value = X[s];
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];
 data = Mem[address, datasize DIV 8, ldacctype];

 case op of
 when MemAtomicOp_ADD result = data + value;
 when MemAtomicOp_BIC result = data AND NOT(value);
 when MemAtomicOp_EOR result = data EOR value;
 when MemAtomicOp_ORR result = data OR value;
 when MemAtomicOp_SMAX result = if SInt(data) > SInt(value) then data else value;
 when MemAtomicOp_SMIN result = if SInt(data) > SInt(value) then value else data;
 when MemAtomicOp_UMAX result = if UInt(data) > UInt(value) then data else value;
 when MemAtomicOp_UMIN result = if UInt(data) > UInt(value) then value else data;
 when MemAtomicOp_SWP result = value;

 Mem[address, datasize DIV 8, stacctype] = result; // all observers in the shareability domain
 // observe the load and store atomically

 X[t] = ZeroExtend(data, regsize);
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B11-195
ID060316 Non-Confidential

B11 A64 Instructions
B11.1 Alphabetical list of instructions
B11.1.52 STSMAX, STSMAXL

Atomic signed maximum on word or doubleword in memory, without return, loads a 32-bit word or 64-bit
doubleword from memory, compares it against the value held in a register, and stores the larger value back to
memory, treating the values as signed numbers.

• STSMAX has no memory ordering semantics.

• STSMAXL stores to memory with release semantics, as described in Load-Acquire, Store-Release on
page B11-227.

For information about memory accesses see Load/Store addressing modes on page B11-228.

ARMv8.1

32-bit, no memory ordering variant

Applies when size == 10 && R == 0.

STSMAX <Ws>, [<Xn|SP>]

32-bit, release variant

Applies when size == 10 && R == 1.

STSMAXL <Ws>, [<Xn|SP>]

64-bit, no memory ordering variant

Applies when size == 11 && R == 0.

STSMAX <Xs>, [<Xn|SP>]

64-bit, release variant

Applies when size == 11 && R == 1.

STSMAXL <Xs>, [<Xn|SP>]

Decode for all variants of this encoding

 if !HaveAtomicExt() then UnallocatedEncoding();

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 integer datasize = 8 << UInt(size);
 integer regsize = if datasize == 64 then 64 else 32;
 AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDRW else AccType_ATOMICRW;
 AccType stacctype = if R == '1' then AccType_ORDEREDRW else AccType_ATOMICRW;
 MemAtomicOp op;
 case o3:opc of
 when '0000' op = MemAtomicOp_ADD;
 when '0001' op = MemAtomicOp_BIC;
 when '0010' op = MemAtomicOp_EOR;
 when '0011' op = MemAtomicOp_ORR;
 when '0100' op = MemAtomicOp_SMAX;
 when '0101' op = MemAtomicOp_SMIN;

1 x 1 1 1 0 0 0 0 R 1 Rs 0 1 0 0 0 0 Rn 1 1 1 1 1
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size V A o3 opc Rt
B11-196 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B11 A64 Instructions
B11.1 Alphabetical list of instructions
 when '0110' op = MemAtomicOp_UMAX;
 when '0111' op = MemAtomicOp_UMIN;
 when '1000' op = MemAtomicOp_SWP;
 otherwise UnallocatedEncoding();

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(datasize) value;
 bits(datasize) data;
 bits(datasize) result;

 value = X[s];
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];
 data = Mem[address, datasize DIV 8, ldacctype];

 case op of
 when MemAtomicOp_ADD result = data + value;
 when MemAtomicOp_BIC result = data AND NOT(value);
 when MemAtomicOp_EOR result = data EOR value;
 when MemAtomicOp_ORR result = data OR value;
 when MemAtomicOp_SMAX result = if SInt(data) > SInt(value) then data else value;
 when MemAtomicOp_SMIN result = if SInt(data) > SInt(value) then value else data;
 when MemAtomicOp_UMAX result = if UInt(data) > UInt(value) then data else value;
 when MemAtomicOp_UMIN result = if UInt(data) > UInt(value) then value else data;
 when MemAtomicOp_SWP result = value;

 Mem[address, datasize DIV 8, stacctype] = result; // all observers in the shareability domain
 // observe the load and store atomically

 X[t] = ZeroExtend(data, regsize);
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B11-197
ID060316 Non-Confidential

B11 A64 Instructions
B11.1 Alphabetical list of instructions
B11.1.53 STSMAXB, STSMAXLB

Atomic signed maximum on byte in memory, without return, loads an 8-bit byte from memory, compares it against
the value held in a register, and stores the larger value back to memory, treating the values as signed numbers.

• STSMAXB has no memory ordering semantics.

• STSMAXLB stores to memory with release semantics, as described in Load-Acquire, Store-Release on
page B11-227.

For information about memory accesses see Load/Store addressing modes on page B11-228.

ARMv8.1

No memory ordering variant

Applies when R == 0.

STSMAXB <Ws>, [<Xn|SP>]

Release variant

Applies when R == 1.

STSMAXLB <Ws>, [<Xn|SP>]

Decode for all variants of this encoding

 if !HaveAtomicExt() then UnallocatedEncoding();

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 integer datasize = 8 << UInt(size);
 integer regsize = if datasize == 64 then 64 else 32;
 AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDRW else AccType_ATOMICRW;
 AccType stacctype = if R == '1' then AccType_ORDEREDRW else AccType_ATOMICRW;
 MemAtomicOp op;
 case o3:opc of
 when '0000' op = MemAtomicOp_ADD;
 when '0001' op = MemAtomicOp_BIC;
 when '0010' op = MemAtomicOp_EOR;
 when '0011' op = MemAtomicOp_ORR;
 when '0100' op = MemAtomicOp_SMAX;
 when '0101' op = MemAtomicOp_SMIN;
 when '0110' op = MemAtomicOp_UMAX;
 when '0111' op = MemAtomicOp_UMIN;
 when '1000' op = MemAtomicOp_SWP;
 otherwise UnallocatedEncoding();

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

0 0 1 1 1 0 0 0 0 R 1 Rs 0 1 0 0 0 0 Rn 1 1 1 1 1
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size V A o3 opc Rt
B11-198 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B11 A64 Instructions
B11.1 Alphabetical list of instructions
Operation

 bits(64) address;
 bits(datasize) value;
 bits(datasize) data;
 bits(datasize) result;

 value = X[s];
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];
 data = Mem[address, datasize DIV 8, ldacctype];

 case op of
 when MemAtomicOp_ADD result = data + value;
 when MemAtomicOp_BIC result = data AND NOT(value);
 when MemAtomicOp_EOR result = data EOR value;
 when MemAtomicOp_ORR result = data OR value;
 when MemAtomicOp_SMAX result = if SInt(data) > SInt(value) then data else value;
 when MemAtomicOp_SMIN result = if SInt(data) > SInt(value) then value else data;
 when MemAtomicOp_UMAX result = if UInt(data) > UInt(value) then data else value;
 when MemAtomicOp_UMIN result = if UInt(data) > UInt(value) then value else data;
 when MemAtomicOp_SWP result = value;

 Mem[address, datasize DIV 8, stacctype] = result; // all observers in the shareability domain
 // observe the load and store atomically

 X[t] = ZeroExtend(data, regsize);
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B11-199
ID060316 Non-Confidential

B11 A64 Instructions
B11.1 Alphabetical list of instructions
B11.1.54 STSMAXH, STSMAXLH

Atomic signed maximum on halfword in memory, without return, loads a 16-bit halfword from memory, compares
it against the value held in a register, and stores the larger value back to memory, treating the values as signed
numbers.

• STSMAXH has no memory ordering semantics.

• STSMAXLH stores to memory with release semantics, as described in Load-Acquire, Store-Release on
page B11-227.

For information about memory accesses see Load/Store addressing modes on page B11-228.

ARMv8.1

No memory ordering variant

Applies when R == 0.

STSMAXH <Ws>, [<Xn|SP>]

Release variant

Applies when R == 1.

STSMAXLH <Ws>, [<Xn|SP>]

Decode for all variants of this encoding

 if !HaveAtomicExt() then UnallocatedEncoding();

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 integer datasize = 8 << UInt(size);
 integer regsize = if datasize == 64 then 64 else 32;
 AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDRW else AccType_ATOMICRW;
 AccType stacctype = if R == '1' then AccType_ORDEREDRW else AccType_ATOMICRW;
 MemAtomicOp op;
 case o3:opc of
 when '0000' op = MemAtomicOp_ADD;
 when '0001' op = MemAtomicOp_BIC;
 when '0010' op = MemAtomicOp_EOR;
 when '0011' op = MemAtomicOp_ORR;
 when '0100' op = MemAtomicOp_SMAX;
 when '0101' op = MemAtomicOp_SMIN;
 when '0110' op = MemAtomicOp_UMAX;
 when '0111' op = MemAtomicOp_UMIN;
 when '1000' op = MemAtomicOp_SWP;
 otherwise UnallocatedEncoding();

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

0 1 1 1 1 0 0 0 0 R 1 Rs 0 1 0 0 0 0 Rn 1 1 1 1 1
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size V A o3 opc Rt
B11-200 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B11 A64 Instructions
B11.1 Alphabetical list of instructions
Operation

 bits(64) address;
 bits(datasize) value;
 bits(datasize) data;
 bits(datasize) result;

 value = X[s];
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];
 data = Mem[address, datasize DIV 8, ldacctype];

 case op of
 when MemAtomicOp_ADD result = data + value;
 when MemAtomicOp_BIC result = data AND NOT(value);
 when MemAtomicOp_EOR result = data EOR value;
 when MemAtomicOp_ORR result = data OR value;
 when MemAtomicOp_SMAX result = if SInt(data) > SInt(value) then data else value;
 when MemAtomicOp_SMIN result = if SInt(data) > SInt(value) then value else data;
 when MemAtomicOp_UMAX result = if UInt(data) > UInt(value) then data else value;
 when MemAtomicOp_UMIN result = if UInt(data) > UInt(value) then value else data;
 when MemAtomicOp_SWP result = value;

 Mem[address, datasize DIV 8, stacctype] = result; // all observers in the shareability domain
 // observe the load and store atomically

 X[t] = ZeroExtend(data, regsize);
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B11-201
ID060316 Non-Confidential

B11 A64 Instructions
B11.1 Alphabetical list of instructions
B11.1.55 STSMIN, STSMINL

Atomic signed minimum on word or doubleword in memory, without return, loads a 32-bit word or 64-bit
doubleword from memory, compares it against the value held in a register, and stores the smaller value back to
memory, treating the values as signed numbers.

• STSMIN has no memory ordering semantics.

• STSMINL stores to memory with release semantics, as described in Load-Acquire, Store-Release on
page B11-227.

For information about memory accesses see Load/Store addressing modes on page B11-228.

ARMv8.1

32-bit, no memory ordering variant

Applies when size == 10 && R == 0.

STSMIN <Ws>, [<Xn|SP>]

32-bit, release variant

Applies when size == 10 && R == 1.

STSMINL <Ws>, [<Xn|SP>]

64-bit, no memory ordering variant

Applies when size == 11 && R == 0.

STSMIN <Xs>, [<Xn|SP>]

64-bit, release variant

Applies when size == 11 && R == 1.

STSMINL <Xs>, [<Xn|SP>]

Decode for all variants of this encoding

 if !HaveAtomicExt() then UnallocatedEncoding();

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 integer datasize = 8 << UInt(size);
 integer regsize = if datasize == 64 then 64 else 32;
 AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDRW else AccType_ATOMICRW;
 AccType stacctype = if R == '1' then AccType_ORDEREDRW else AccType_ATOMICRW;
 MemAtomicOp op;
 case o3:opc of
 when '0000' op = MemAtomicOp_ADD;
 when '0001' op = MemAtomicOp_BIC;
 when '0010' op = MemAtomicOp_EOR;
 when '0011' op = MemAtomicOp_ORR;
 when '0100' op = MemAtomicOp_SMAX;
 when '0101' op = MemAtomicOp_SMIN;

1 x 1 1 1 0 0 0 0 R 1 Rs 0 1 0 1 0 0 Rn 1 1 1 1 1
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size V A o3 opc Rt
B11-202 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B11 A64 Instructions
B11.1 Alphabetical list of instructions
 when '0110' op = MemAtomicOp_UMAX;
 when '0111' op = MemAtomicOp_UMIN;
 when '1000' op = MemAtomicOp_SWP;
 otherwise UnallocatedEncoding();

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(datasize) value;
 bits(datasize) data;
 bits(datasize) result;

 value = X[s];
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];
 data = Mem[address, datasize DIV 8, ldacctype];

 case op of
 when MemAtomicOp_ADD result = data + value;
 when MemAtomicOp_BIC result = data AND NOT(value);
 when MemAtomicOp_EOR result = data EOR value;
 when MemAtomicOp_ORR result = data OR value;
 when MemAtomicOp_SMAX result = if SInt(data) > SInt(value) then data else value;
 when MemAtomicOp_SMIN result = if SInt(data) > SInt(value) then value else data;
 when MemAtomicOp_UMAX result = if UInt(data) > UInt(value) then data else value;
 when MemAtomicOp_UMIN result = if UInt(data) > UInt(value) then value else data;
 when MemAtomicOp_SWP result = value;

 Mem[address, datasize DIV 8, stacctype] = result; // all observers in the shareability domain
 // observe the load and store atomically

 X[t] = ZeroExtend(data, regsize);
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B11-203
ID060316 Non-Confidential

B11 A64 Instructions
B11.1 Alphabetical list of instructions
B11.1.56 STSMINB, STSMINLB

Atomic signed minimum on byte in memory, without return, loads an 8-bit byte from memory, compares it against
the value held in a register, and stores the smaller value back to memory, treating the values as signed numbers.

• STSMINB has no memory ordering semantics.

• STSMINLB stores to memory with release semantics, as described in Load-Acquire, Store-Release on
page B11-227.

For information about memory accesses see Load/Store addressing modes on page B11-228.

ARMv8.1

No memory ordering variant

Applies when R == 0.

STSMINB <Ws>, [<Xn|SP>]

Release variant

Applies when R == 1.

STSMINLB <Ws>, [<Xn|SP>]

Decode for all variants of this encoding

 if !HaveAtomicExt() then UnallocatedEncoding();

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 integer datasize = 8 << UInt(size);
 integer regsize = if datasize == 64 then 64 else 32;
 AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDRW else AccType_ATOMICRW;
 AccType stacctype = if R == '1' then AccType_ORDEREDRW else AccType_ATOMICRW;
 MemAtomicOp op;
 case o3:opc of
 when '0000' op = MemAtomicOp_ADD;
 when '0001' op = MemAtomicOp_BIC;
 when '0010' op = MemAtomicOp_EOR;
 when '0011' op = MemAtomicOp_ORR;
 when '0100' op = MemAtomicOp_SMAX;
 when '0101' op = MemAtomicOp_SMIN;
 when '0110' op = MemAtomicOp_UMAX;
 when '0111' op = MemAtomicOp_UMIN;
 when '1000' op = MemAtomicOp_SWP;
 otherwise UnallocatedEncoding();

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

0 0 1 1 1 0 0 0 0 R 1 Rs 0 1 0 1 0 0 Rn 1 1 1 1 1
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size V A o3 opc Rt
B11-204 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B11 A64 Instructions
B11.1 Alphabetical list of instructions
Operation

 bits(64) address;
 bits(datasize) value;
 bits(datasize) data;
 bits(datasize) result;

 value = X[s];
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];
 data = Mem[address, datasize DIV 8, ldacctype];

 case op of
 when MemAtomicOp_ADD result = data + value;
 when MemAtomicOp_BIC result = data AND NOT(value);
 when MemAtomicOp_EOR result = data EOR value;
 when MemAtomicOp_ORR result = data OR value;
 when MemAtomicOp_SMAX result = if SInt(data) > SInt(value) then data else value;
 when MemAtomicOp_SMIN result = if SInt(data) > SInt(value) then value else data;
 when MemAtomicOp_UMAX result = if UInt(data) > UInt(value) then data else value;
 when MemAtomicOp_UMIN result = if UInt(data) > UInt(value) then value else data;
 when MemAtomicOp_SWP result = value;

 Mem[address, datasize DIV 8, stacctype] = result; // all observers in the shareability domain
 // observe the load and store atomically

 X[t] = ZeroExtend(data, regsize);
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B11-205
ID060316 Non-Confidential

B11 A64 Instructions
B11.1 Alphabetical list of instructions
B11.1.57 STSMINH, STSMINLH

Atomic signed minimum on halfword in memory, without return, loads a 16-bit halfword from memory, compares
it against the value held in a register, and stores the smaller value back to memory, treating the values as signed
numbers.

• STSMINH has no memory ordering semantics.

• STSMINLH stores to memory with release semantics, as described in Load-Acquire, Store-Release on
page B11-227.

For information about memory accesses see Load/Store addressing modes on page B11-228.

ARMv8.1

No memory ordering variant

Applies when R == 0.

STSMINH <Ws>, [<Xn|SP>]

Release variant

Applies when R == 1.

STSMINLH <Ws>, [<Xn|SP>]

Decode for all variants of this encoding

 if !HaveAtomicExt() then UnallocatedEncoding();

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 integer datasize = 8 << UInt(size);
 integer regsize = if datasize == 64 then 64 else 32;
 AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDRW else AccType_ATOMICRW;
 AccType stacctype = if R == '1' then AccType_ORDEREDRW else AccType_ATOMICRW;
 MemAtomicOp op;
 case o3:opc of
 when '0000' op = MemAtomicOp_ADD;
 when '0001' op = MemAtomicOp_BIC;
 when '0010' op = MemAtomicOp_EOR;
 when '0011' op = MemAtomicOp_ORR;
 when '0100' op = MemAtomicOp_SMAX;
 when '0101' op = MemAtomicOp_SMIN;
 when '0110' op = MemAtomicOp_UMAX;
 when '0111' op = MemAtomicOp_UMIN;
 when '1000' op = MemAtomicOp_SWP;
 otherwise UnallocatedEncoding();

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

0 1 1 1 1 0 0 0 0 R 1 Rs 0 1 0 1 0 0 Rn 1 1 1 1 1
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size V A o3 opc Rt
B11-206 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B11 A64 Instructions
B11.1 Alphabetical list of instructions
Operation

 bits(64) address;
 bits(datasize) value;
 bits(datasize) data;
 bits(datasize) result;

 value = X[s];
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];
 data = Mem[address, datasize DIV 8, ldacctype];

 case op of
 when MemAtomicOp_ADD result = data + value;
 when MemAtomicOp_BIC result = data AND NOT(value);
 when MemAtomicOp_EOR result = data EOR value;
 when MemAtomicOp_ORR result = data OR value;
 when MemAtomicOp_SMAX result = if SInt(data) > SInt(value) then data else value;
 when MemAtomicOp_SMIN result = if SInt(data) > SInt(value) then value else data;
 when MemAtomicOp_UMAX result = if UInt(data) > UInt(value) then data else value;
 when MemAtomicOp_UMIN result = if UInt(data) > UInt(value) then value else data;
 when MemAtomicOp_SWP result = value;

 Mem[address, datasize DIV 8, stacctype] = result; // all observers in the shareability domain
 // observe the load and store atomically

 X[t] = ZeroExtend(data, regsize);
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B11-207
ID060316 Non-Confidential

B11 A64 Instructions
B11.1 Alphabetical list of instructions
B11.1.58 STUMAX, STUMAXL

Atomic unsigned maximum on word or doubleword in memory, without return, loads a 32-bit word or 64-bit
doubleword from memory, compares it against the value held in a register, and stores the larger value back to
memory, treating the values as unsigned numbers.

• STUMAX has no memory ordering semantics.

• STUMAXL stores to memory with release semantics, as described in Load-Acquire, Store-Release on
page B11-227.

For information about memory accesses see Load/Store addressing modes on page B11-228.

ARMv8.1

32-bit, no memory ordering variant

Applies when size == 10 && R == 0.

STUMAX <Ws>, [<Xn|SP>]

32-bit, release variant

Applies when size == 10 && R == 1.

STUMAXL <Ws>, [<Xn|SP>]

64-bit, no memory ordering variant

Applies when size == 11 && R == 0.

STUMAX <Xs>, [<Xn|SP>]

64-bit, release variant

Applies when size == 11 && R == 1.

STUMAXL <Xs>, [<Xn|SP>]

Decode for all variants of this encoding

 if !HaveAtomicExt() then UnallocatedEncoding();

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 integer datasize = 8 << UInt(size);
 integer regsize = if datasize == 64 then 64 else 32;
 AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDRW else AccType_ATOMICRW;
 AccType stacctype = if R == '1' then AccType_ORDEREDRW else AccType_ATOMICRW;
 MemAtomicOp op;
 case o3:opc of
 when '0000' op = MemAtomicOp_ADD;
 when '0001' op = MemAtomicOp_BIC;
 when '0010' op = MemAtomicOp_EOR;
 when '0011' op = MemAtomicOp_ORR;
 when '0100' op = MemAtomicOp_SMAX;
 when '0101' op = MemAtomicOp_SMIN;

1 x 1 1 1 0 0 0 0 R 1 Rs 0 1 1 0 0 0 Rn 1 1 1 1 1
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size V A o3 opc Rt
B11-208 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B11 A64 Instructions
B11.1 Alphabetical list of instructions
 when '0110' op = MemAtomicOp_UMAX;
 when '0111' op = MemAtomicOp_UMIN;
 when '1000' op = MemAtomicOp_SWP;
 otherwise UnallocatedEncoding();

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(datasize) value;
 bits(datasize) data;
 bits(datasize) result;

 value = X[s];
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];
 data = Mem[address, datasize DIV 8, ldacctype];

 case op of
 when MemAtomicOp_ADD result = data + value;
 when MemAtomicOp_BIC result = data AND NOT(value);
 when MemAtomicOp_EOR result = data EOR value;
 when MemAtomicOp_ORR result = data OR value;
 when MemAtomicOp_SMAX result = if SInt(data) > SInt(value) then data else value;
 when MemAtomicOp_SMIN result = if SInt(data) > SInt(value) then value else data;
 when MemAtomicOp_UMAX result = if UInt(data) > UInt(value) then data else value;
 when MemAtomicOp_UMIN result = if UInt(data) > UInt(value) then value else data;
 when MemAtomicOp_SWP result = value;

 Mem[address, datasize DIV 8, stacctype] = result; // all observers in the shareability domain
 // observe the load and store atomically

 X[t] = ZeroExtend(data, regsize);
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B11-209
ID060316 Non-Confidential

B11 A64 Instructions
B11.1 Alphabetical list of instructions
B11.1.59 STUMAXB, STUMAXLB

Atomic unsigned maximum on byte in memory, without return, loads an 8-bit byte from memory, compares it
against the value held in a register, and stores the larger value back to memory, treating the values as unsigned
numbers.

• STUMAXB has no memory ordering semantics.

• STUMAXLB stores to memory with release semantics, as described in Load-Acquire, Store-Release on
page B11-227.

For information about memory accesses see Load/Store addressing modes on page B11-228.

ARMv8.1

No memory ordering variant

Applies when R == 0.

STUMAXB <Ws>, [<Xn|SP>]

Release variant

Applies when R == 1.

STUMAXLB <Ws>, [<Xn|SP>]

Decode for all variants of this encoding

 if !HaveAtomicExt() then UnallocatedEncoding();

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 integer datasize = 8 << UInt(size);
 integer regsize = if datasize == 64 then 64 else 32;
 AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDRW else AccType_ATOMICRW;
 AccType stacctype = if R == '1' then AccType_ORDEREDRW else AccType_ATOMICRW;
 MemAtomicOp op;
 case o3:opc of
 when '0000' op = MemAtomicOp_ADD;
 when '0001' op = MemAtomicOp_BIC;
 when '0010' op = MemAtomicOp_EOR;
 when '0011' op = MemAtomicOp_ORR;
 when '0100' op = MemAtomicOp_SMAX;
 when '0101' op = MemAtomicOp_SMIN;
 when '0110' op = MemAtomicOp_UMAX;
 when '0111' op = MemAtomicOp_UMIN;
 when '1000' op = MemAtomicOp_SWP;
 otherwise UnallocatedEncoding();

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

0 0 1 1 1 0 0 0 0 R 1 Rs 0 1 1 0 0 0 Rn 1 1 1 1 1
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size V A o3 opc Rt
B11-210 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B11 A64 Instructions
B11.1 Alphabetical list of instructions
Operation

 bits(64) address;
 bits(datasize) value;
 bits(datasize) data;
 bits(datasize) result;

 value = X[s];
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];
 data = Mem[address, datasize DIV 8, ldacctype];

 case op of
 when MemAtomicOp_ADD result = data + value;
 when MemAtomicOp_BIC result = data AND NOT(value);
 when MemAtomicOp_EOR result = data EOR value;
 when MemAtomicOp_ORR result = data OR value;
 when MemAtomicOp_SMAX result = if SInt(data) > SInt(value) then data else value;
 when MemAtomicOp_SMIN result = if SInt(data) > SInt(value) then value else data;
 when MemAtomicOp_UMAX result = if UInt(data) > UInt(value) then data else value;
 when MemAtomicOp_UMIN result = if UInt(data) > UInt(value) then value else data;
 when MemAtomicOp_SWP result = value;

 Mem[address, datasize DIV 8, stacctype] = result; // all observers in the shareability domain
 // observe the load and store atomically

 X[t] = ZeroExtend(data, regsize);
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B11-211
ID060316 Non-Confidential

B11 A64 Instructions
B11.1 Alphabetical list of instructions
B11.1.60 STUMAXH, STUMAXLH

Atomic unsigned maximum on halfword in memory, without return, loads a 16-bit halfword from memory,
compares it against the value held in a register, and stores the larger value back to memory, treating the values as
unsigned numbers.

• STUMAXH has no memory ordering semantics.

• STUMAXLH stores to memory with release semantics, as described in Load-Acquire, Store-Release on
page B11-227.

For information about memory accesses see Load/Store addressing modes on page B11-228.

ARMv8.1

No memory ordering variant

Applies when R == 0.

STUMAXH <Ws>, [<Xn|SP>]

Release variant

Applies when R == 1.

STUMAXLH <Ws>, [<Xn|SP>]

Decode for all variants of this encoding

 if !HaveAtomicExt() then UnallocatedEncoding();

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 integer datasize = 8 << UInt(size);
 integer regsize = if datasize == 64 then 64 else 32;
 AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDRW else AccType_ATOMICRW;
 AccType stacctype = if R == '1' then AccType_ORDEREDRW else AccType_ATOMICRW;
 MemAtomicOp op;
 case o3:opc of
 when '0000' op = MemAtomicOp_ADD;
 when '0001' op = MemAtomicOp_BIC;
 when '0010' op = MemAtomicOp_EOR;
 when '0011' op = MemAtomicOp_ORR;
 when '0100' op = MemAtomicOp_SMAX;
 when '0101' op = MemAtomicOp_SMIN;
 when '0110' op = MemAtomicOp_UMAX;
 when '0111' op = MemAtomicOp_UMIN;
 when '1000' op = MemAtomicOp_SWP;
 otherwise UnallocatedEncoding();

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

0 1 1 1 1 0 0 0 0 R 1 Rs 0 1 1 0 0 0 Rn 1 1 1 1 1
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size V A o3 opc Rt
B11-212 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B11 A64 Instructions
B11.1 Alphabetical list of instructions
Operation

 bits(64) address;
 bits(datasize) value;
 bits(datasize) data;
 bits(datasize) result;

 value = X[s];
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];
 data = Mem[address, datasize DIV 8, ldacctype];

 case op of
 when MemAtomicOp_ADD result = data + value;
 when MemAtomicOp_BIC result = data AND NOT(value);
 when MemAtomicOp_EOR result = data EOR value;
 when MemAtomicOp_ORR result = data OR value;
 when MemAtomicOp_SMAX result = if SInt(data) > SInt(value) then data else value;
 when MemAtomicOp_SMIN result = if SInt(data) > SInt(value) then value else data;
 when MemAtomicOp_UMAX result = if UInt(data) > UInt(value) then data else value;
 when MemAtomicOp_UMIN result = if UInt(data) > UInt(value) then value else data;
 when MemAtomicOp_SWP result = value;

 Mem[address, datasize DIV 8, stacctype] = result; // all observers in the shareability domain
 // observe the load and store atomically

 X[t] = ZeroExtend(data, regsize);
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B11-213
ID060316 Non-Confidential

B11 A64 Instructions
B11.1 Alphabetical list of instructions
B11.1.61 STUMIN, STUMINL

Atomic unsigned minimum on word or doubleword in memory, without return, loads a 32-bit word or 64-bit
doubleword from memory, compares it against the value held in a register, and stores the smaller value back to
memory, treating the values as unsigned numbers.

• STUMIN has no memory ordering semantics.

• STUMINL stores to memory with release semantics, as described in Load-Acquire, Store-Release on
page B11-227.

For information about memory accesses see Load/Store addressing modes on page B11-228.

ARMv8.1

32-bit, no memory ordering variant

Applies when size == 10 && R == 0.

STUMIN <Ws>, [<Xn|SP>]

32-bit, release variant

Applies when size == 10 && R == 1.

STUMINL <Ws>, [<Xn|SP>]

64-bit, no memory ordering variant

Applies when size == 11 && R == 0.

STUMIN <Xs>, [<Xn|SP>]

64-bit, release variant

Applies when size == 11 && R == 1.

STUMINL <Xs>, [<Xn|SP>]

Decode for all variants of this encoding

 if !HaveAtomicExt() then UnallocatedEncoding();

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 integer datasize = 8 << UInt(size);
 integer regsize = if datasize == 64 then 64 else 32;
 AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDRW else AccType_ATOMICRW;
 AccType stacctype = if R == '1' then AccType_ORDEREDRW else AccType_ATOMICRW;
 MemAtomicOp op;
 case o3:opc of
 when '0000' op = MemAtomicOp_ADD;
 when '0001' op = MemAtomicOp_BIC;
 when '0010' op = MemAtomicOp_EOR;
 when '0011' op = MemAtomicOp_ORR;
 when '0100' op = MemAtomicOp_SMAX;
 when '0101' op = MemAtomicOp_SMIN;

1 x 1 1 1 0 0 0 0 R 1 Rs 0 1 1 1 0 0 Rn 1 1 1 1 1
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size V A o3 opc Rt
B11-214 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B11 A64 Instructions
B11.1 Alphabetical list of instructions
 when '0110' op = MemAtomicOp_UMAX;
 when '0111' op = MemAtomicOp_UMIN;
 when '1000' op = MemAtomicOp_SWP;
 otherwise UnallocatedEncoding();

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(datasize) value;
 bits(datasize) data;
 bits(datasize) result;

 value = X[s];
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];
 data = Mem[address, datasize DIV 8, ldacctype];

 case op of
 when MemAtomicOp_ADD result = data + value;
 when MemAtomicOp_BIC result = data AND NOT(value);
 when MemAtomicOp_EOR result = data EOR value;
 when MemAtomicOp_ORR result = data OR value;
 when MemAtomicOp_SMAX result = if SInt(data) > SInt(value) then data else value;
 when MemAtomicOp_SMIN result = if SInt(data) > SInt(value) then value else data;
 when MemAtomicOp_UMAX result = if UInt(data) > UInt(value) then data else value;
 when MemAtomicOp_UMIN result = if UInt(data) > UInt(value) then value else data;
 when MemAtomicOp_SWP result = value;

 Mem[address, datasize DIV 8, stacctype] = result; // all observers in the shareability domain
 // observe the load and store atomically

 X[t] = ZeroExtend(data, regsize);
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B11-215
ID060316 Non-Confidential

B11 A64 Instructions
B11.1 Alphabetical list of instructions
B11.1.62 STUMINB, STUMINLB

Atomic unsigned minimum on byte in memory, without return, loads an 8-bit byte from memory, compares it
against the value held in a register, and stores the smaller value back to memory, treating the values as unsigned
numbers.

• STUMINB has no memory ordering semantics.

• STUMINLB stores to memory with release semantics, as described in Load-Acquire, Store-Release on
page B11-227.

For information about memory accesses see Load/Store addressing modes on page B11-228.

ARMv8.1

No memory ordering variant

Applies when R == 0.

STUMINB <Ws>, [<Xn|SP>]

Release variant

Applies when R == 1.

STUMINLB <Ws>, [<Xn|SP>]

Decode for all variants of this encoding

 if !HaveAtomicExt() then UnallocatedEncoding();

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 integer datasize = 8 << UInt(size);
 integer regsize = if datasize == 64 then 64 else 32;
 AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDRW else AccType_ATOMICRW;
 AccType stacctype = if R == '1' then AccType_ORDEREDRW else AccType_ATOMICRW;
 MemAtomicOp op;
 case o3:opc of
 when '0000' op = MemAtomicOp_ADD;
 when '0001' op = MemAtomicOp_BIC;
 when '0010' op = MemAtomicOp_EOR;
 when '0011' op = MemAtomicOp_ORR;
 when '0100' op = MemAtomicOp_SMAX;
 when '0101' op = MemAtomicOp_SMIN;
 when '0110' op = MemAtomicOp_UMAX;
 when '0111' op = MemAtomicOp_UMIN;
 when '1000' op = MemAtomicOp_SWP;
 otherwise UnallocatedEncoding();

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

0 0 1 1 1 0 0 0 0 R 1 Rs 0 1 1 1 0 0 Rn 1 1 1 1 1
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size V A o3 opc Rt
B11-216 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B11 A64 Instructions
B11.1 Alphabetical list of instructions
Operation

 bits(64) address;
 bits(datasize) value;
 bits(datasize) data;
 bits(datasize) result;

 value = X[s];
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];
 data = Mem[address, datasize DIV 8, ldacctype];

 case op of
 when MemAtomicOp_ADD result = data + value;
 when MemAtomicOp_BIC result = data AND NOT(value);
 when MemAtomicOp_EOR result = data EOR value;
 when MemAtomicOp_ORR result = data OR value;
 when MemAtomicOp_SMAX result = if SInt(data) > SInt(value) then data else value;
 when MemAtomicOp_SMIN result = if SInt(data) > SInt(value) then value else data;
 when MemAtomicOp_UMAX result = if UInt(data) > UInt(value) then data else value;
 when MemAtomicOp_UMIN result = if UInt(data) > UInt(value) then value else data;
 when MemAtomicOp_SWP result = value;

 Mem[address, datasize DIV 8, stacctype] = result; // all observers in the shareability domain
 // observe the load and store atomically

 X[t] = ZeroExtend(data, regsize);
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B11-217
ID060316 Non-Confidential

B11 A64 Instructions
B11.1 Alphabetical list of instructions
B11.1.63 STUMINH, STUMINLH

Atomic unsigned minimum on halfword in memory, without return, loads a 16-bit halfword from memory,
compares it against the value held in a register, and stores the smaller value back to memory, treating the values as
unsigned numbers.

• STUMINH has no memory ordering semantics.

• STUMINLH stores to memory with release semantics, as described in Load-Acquire, Store-Release on
page B11-227.

For information about memory accesses see Load/Store addressing modes on page B11-228.

ARMv8.1

No memory ordering variant

Applies when R == 0.

STUMINH <Ws>, [<Xn|SP>]

Release variant

Applies when R == 1.

STUMINLH <Ws>, [<Xn|SP>]

Decode for all variants of this encoding

 if !HaveAtomicExt() then UnallocatedEncoding();

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 integer datasize = 8 << UInt(size);
 integer regsize = if datasize == 64 then 64 else 32;
 AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDRW else AccType_ATOMICRW;
 AccType stacctype = if R == '1' then AccType_ORDEREDRW else AccType_ATOMICRW;
 MemAtomicOp op;
 case o3:opc of
 when '0000' op = MemAtomicOp_ADD;
 when '0001' op = MemAtomicOp_BIC;
 when '0010' op = MemAtomicOp_EOR;
 when '0011' op = MemAtomicOp_ORR;
 when '0100' op = MemAtomicOp_SMAX;
 when '0101' op = MemAtomicOp_SMIN;
 when '0110' op = MemAtomicOp_UMAX;
 when '0111' op = MemAtomicOp_UMIN;
 when '1000' op = MemAtomicOp_SWP;
 otherwise UnallocatedEncoding();

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

0 1 1 1 1 0 0 0 0 R 1 Rs 0 1 1 1 0 0 Rn 1 1 1 1 1
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size V A o3 opc Rt
B11-218 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B11 A64 Instructions
B11.1 Alphabetical list of instructions
Operation

 bits(64) address;
 bits(datasize) value;
 bits(datasize) data;
 bits(datasize) result;

 value = X[s];
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];
 data = Mem[address, datasize DIV 8, ldacctype];

 case op of
 when MemAtomicOp_ADD result = data + value;
 when MemAtomicOp_BIC result = data AND NOT(value);
 when MemAtomicOp_EOR result = data EOR value;
 when MemAtomicOp_ORR result = data OR value;
 when MemAtomicOp_SMAX result = if SInt(data) > SInt(value) then data else value;
 when MemAtomicOp_SMIN result = if SInt(data) > SInt(value) then value else data;
 when MemAtomicOp_UMAX result = if UInt(data) > UInt(value) then data else value;
 when MemAtomicOp_UMIN result = if UInt(data) > UInt(value) then value else data;
 when MemAtomicOp_SWP result = value;

 Mem[address, datasize DIV 8, stacctype] = result; // all observers in the shareability domain
 // observe the load and store atomically

 X[t] = ZeroExtend(data, regsize);
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B11-219
ID060316 Non-Confidential

B11 A64 Instructions
B11.1 Alphabetical list of instructions
B11.1.64 SWP, SWPA, SWPAL, SWPL

Swap word or doubleword in memory loads a 32-bit word or 64-bit doubleword from a memory location, and stores
the value held in a register back to the same memory location. The value initially loaded from memory is returned
in the destination register.

• If the destination register is not one of WZR or XZR, SWPA and SWPAL load from memory with acquire semantics.

• SWPL and SWPAL store to memory with release semantics.

• The following have no memory ordering requirements:

— SWP.

— If the destination register is one of WZR or XZR, SWPA and SWPAL.

For more information about memory ordering semantics see Load-Acquire, Store-Release on page B11-227.

For information about memory accesses see Load/Store addressing modes on page B11-228.

ARMv8.1

32-bit, acquire variant

Applies when size == 10 && A == 1 && R == 0.

SWPA <Ws>, <Wt>, [<Xn|SP>]

32-bit, acquire and release variant

Applies when size == 10 && A == 1 && R == 1.

SWPAL <Ws>, <Wt>, [<Xn|SP>]

32-bit, no memory ordering variant

Applies when size == 10 && A == 0 && R == 0.

SWP <Ws>, <Wt>, [<Xn|SP>]

32-bit, release variant

Applies when size == 10 && A == 0 && R == 1.

SWPL <Ws>, <Wt>, [<Xn|SP>]

64-bit, acquire variant

Applies when size == 11 && A == 1 && R == 0.

SWPA <Xs>, <Xt>, [<Xn|SP>]

64-bit, acquire and release variant

Applies when size == 11 && A == 1 && R == 1.

SWPAL <Xs>, <Xt>, [<Xn|SP>]

1 x 1 1 1 0 0 0 A R 1 Rs 1 0 0 0 0 0 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size V o3 opc
B11-220 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B11 A64 Instructions
B11.1 Alphabetical list of instructions
64-bit, no memory ordering variant

Applies when size == 11 && A == 0 && R == 0.

SWP <Xs>, <Xt>, [<Xn|SP>]

64-bit, release variant

Applies when size == 11 && A == 0 && R == 1.

SWPL <Xs>, <Xt>, [<Xn|SP>]

Decode for all variants of this encoding

 if !HaveAtomicExt() then UnallocatedEncoding();

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 integer datasize = 8 << UInt(size);
 integer regsize = if datasize == 64 then 64 else 32;
 AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDRW else AccType_ATOMICRW;
 AccType stacctype = if R == '1' then AccType_ORDEREDRW else AccType_ATOMICRW;
 MemAtomicOp op;
 case o3:opc of
 when '0000' op = MemAtomicOp_ADD;
 when '0001' op = MemAtomicOp_BIC;
 when '0010' op = MemAtomicOp_EOR;
 when '0011' op = MemAtomicOp_ORR;
 when '0100' op = MemAtomicOp_SMAX;
 when '0101' op = MemAtomicOp_SMIN;
 when '0110' op = MemAtomicOp_UMAX;
 when '0111' op = MemAtomicOp_UMIN;
 when '1000' op = MemAtomicOp_SWP;
 otherwise UnallocatedEncoding();

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register to be stored, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xs> Is the 64-bit name of the general-purpose register to be stored, encoded in the "Rs" field.

<Xt> Is the 64-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(datasize) value;
 bits(datasize) data;
 bits(datasize) result;

 value = X[s];
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];
 data = Mem[address, datasize DIV 8, ldacctype];

 case op of
 when MemAtomicOp_ADD result = data + value;
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B11-221
ID060316 Non-Confidential

B11 A64 Instructions
B11.1 Alphabetical list of instructions
 when MemAtomicOp_BIC result = data AND NOT(value);
 when MemAtomicOp_EOR result = data EOR value;
 when MemAtomicOp_ORR result = data OR value;
 when MemAtomicOp_SMAX result = if SInt(data) > SInt(value) then data else value;
 when MemAtomicOp_SMIN result = if SInt(data) > SInt(value) then value else data;
 when MemAtomicOp_UMAX result = if UInt(data) > UInt(value) then data else value;
 when MemAtomicOp_UMIN result = if UInt(data) > UInt(value) then value else data;
 when MemAtomicOp_SWP result = value;

 Mem[address, datasize DIV 8, stacctype] = result; // all observers in the shareability domain
 // observe the load and store atomically

 X[t] = ZeroExtend(data, regsize);
B11-222 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B11 A64 Instructions
B11.1 Alphabetical list of instructions
B11.1.65 SWPB, SWPAB, SWPALB, SWPLB

Swap byte in memory loads an 8-bit byte from a memory location, and stores the value held in a register back to the
same memory location. The value initially loaded from memory is returned in the destination register.

• If the destination register is not WZR, SWPAB and SWPALB load from memory with acquire semantics.

• SWPLB and SWPALB store to memory with release semantics.

• The following have no memory ordering requirements:

— SWPB.

— If the destination register is WZR, SWPAB and SWPALB.

For more information about memory ordering semantics see Load-Acquire, Store-Release on page B11-227.

For information about memory accesses see Load/Store addressing modes on page B11-228.

ARMv8.1

Acquire variant

Applies when A == 1 && R == 0.

SWPAB <Ws>, <Wt>, [<Xn|SP>]

Acquire and release variant

Applies when A == 1 && R == 1.

SWPALB <Ws>, <Wt>, [<Xn|SP>]

No memory ordering variant

Applies when A == 0 && R == 0.

SWPB <Ws>, <Wt>, [<Xn|SP>]

Release variant

Applies when A == 0 && R == 1.

SWPLB <Ws>, <Wt>, [<Xn|SP>]

Decode for all variants of this encoding

 if !HaveAtomicExt() then UnallocatedEncoding();

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 integer datasize = 8 << UInt(size);
 integer regsize = if datasize == 64 then 64 else 32;
 AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDRW else AccType_ATOMICRW;
 AccType stacctype = if R == '1' then AccType_ORDEREDRW else AccType_ATOMICRW;
 MemAtomicOp op;
 case o3:opc of
 when '0000' op = MemAtomicOp_ADD;

0 0 1 1 1 0 0 0 A R 1 Rs 1 0 0 0 0 0 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size V o3 opc
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B11-223
ID060316 Non-Confidential

B11 A64 Instructions
B11.1 Alphabetical list of instructions
 when '0001' op = MemAtomicOp_BIC;
 when '0010' op = MemAtomicOp_EOR;
 when '0011' op = MemAtomicOp_ORR;
 when '0100' op = MemAtomicOp_SMAX;
 when '0101' op = MemAtomicOp_SMIN;
 when '0110' op = MemAtomicOp_UMAX;
 when '0111' op = MemAtomicOp_UMIN;
 when '1000' op = MemAtomicOp_SWP;
 otherwise UnallocatedEncoding();

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register to be stored, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(datasize) value;
 bits(datasize) data;
 bits(datasize) result;

 value = X[s];
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];
 data = Mem[address, datasize DIV 8, ldacctype];

 case op of
 when MemAtomicOp_ADD result = data + value;
 when MemAtomicOp_BIC result = data AND NOT(value);
 when MemAtomicOp_EOR result = data EOR value;
 when MemAtomicOp_ORR result = data OR value;
 when MemAtomicOp_SMAX result = if SInt(data) > SInt(value) then data else value;
 when MemAtomicOp_SMIN result = if SInt(data) > SInt(value) then value else data;
 when MemAtomicOp_UMAX result = if UInt(data) > UInt(value) then data else value;
 when MemAtomicOp_UMIN result = if UInt(data) > UInt(value) then value else data;
 when MemAtomicOp_SWP result = value;

 Mem[address, datasize DIV 8, stacctype] = result; // all observers in the shareability domain
 // observe the load and store atomically

 X[t] = ZeroExtend(data, regsize);
B11-224 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B11 A64 Instructions
B11.1 Alphabetical list of instructions
B11.1.66 SWPH, SWPAH, SWPALH, SWPLH

Swap halfword in memory loads a 16-bit halfword from a memory location, and stores the value held in a register
back to the same memory location. The value initially loaded from memory is returned in the destination register.

• If the destination register is not WZR, SWPAH and SWPALH load from memory with acquire semantics.

• SWPLH and SWPALH store to memory with release semantics.

• The following have no memory ordering requirements:

— SWPH.

— If the destination register is WZR, SWPAH and SWPALH.

For more information about memory ordering semantics see Load-Acquire, Store-Release on page B11-227.

For information about memory accesses see Load/Store addressing modes on page B11-228.

ARMv8.1

Acquire variant

Applies when A == 1 && R == 0.

SWPAH <Ws>, <Wt>, [<Xn|SP>]

Acquire and release variant

Applies when A == 1 && R == 1.

SWPALH <Ws>, <Wt>, [<Xn|SP>]

No memory ordering variant

Applies when A == 0 && R == 0.

SWPH <Ws>, <Wt>, [<Xn|SP>]

Release variant

Applies when A == 0 && R == 1.

SWPLH <Ws>, <Wt>, [<Xn|SP>]

Decode for all variants of this encoding

 if !HaveAtomicExt() then UnallocatedEncoding();

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 integer datasize = 8 << UInt(size);
 integer regsize = if datasize == 64 then 64 else 32;
 AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDRW else AccType_ATOMICRW;
 AccType stacctype = if R == '1' then AccType_ORDEREDRW else AccType_ATOMICRW;
 MemAtomicOp op;
 case o3:opc of
 when '0000' op = MemAtomicOp_ADD;

0 1 1 1 1 0 0 0 A R 1 Rs 1 0 0 0 0 0 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size V o3 opc
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B11-225
ID060316 Non-Confidential

B11 A64 Instructions
B11.1 Alphabetical list of instructions
 when '0001' op = MemAtomicOp_BIC;
 when '0010' op = MemAtomicOp_EOR;
 when '0011' op = MemAtomicOp_ORR;
 when '0100' op = MemAtomicOp_SMAX;
 when '0101' op = MemAtomicOp_SMIN;
 when '0110' op = MemAtomicOp_UMAX;
 when '0111' op = MemAtomicOp_UMIN;
 when '1000' op = MemAtomicOp_SWP;
 otherwise UnallocatedEncoding();

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register to be stored, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(datasize) value;
 bits(datasize) data;
 bits(datasize) result;

 value = X[s];
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];
 data = Mem[address, datasize DIV 8, ldacctype];

 case op of
 when MemAtomicOp_ADD result = data + value;
 when MemAtomicOp_BIC result = data AND NOT(value);
 when MemAtomicOp_EOR result = data EOR value;
 when MemAtomicOp_ORR result = data OR value;
 when MemAtomicOp_SMAX result = if SInt(data) > SInt(value) then data else value;
 when MemAtomicOp_SMIN result = if SInt(data) > SInt(value) then value else data;
 when MemAtomicOp_UMAX result = if UInt(data) > UInt(value) then data else value;
 when MemAtomicOp_UMIN result = if UInt(data) > UInt(value) then value else data;
 when MemAtomicOp_SWP result = value;

 Mem[address, datasize DIV 8, stacctype] = result; // all observers in the shareability domain
 // observe the load and store atomically

 X[t] = ZeroExtend(data, regsize);
B11-226 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B11 A64 Instructions
B11.2 ARMv8.0 sections relating to these instructions
B11.2 ARMv8.0 sections relating to these instructions
The following sections of the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile are
included in this supplement to complement the instruction descriptions.

B11.2.1 Load-Acquire, Store-Release

ARMv8 provides a set of instructions with Acquire semantics for loads, and Release semantics for stores.

For all memory types, these instructions have the following ordering requirements:

• A Store-Release followed by a Load-Acquire is observed in program order by any observers that are in both:
— The shareability domain of the address accessed by the Store-Release.
— The shareability domain of the address accessed by the Load-Acquire.

• For a Load-Acquire, observers in the shareability domain of the address accessed by the Load-Acquire
observe accesses in the following order:

1. The read caused by the Load-Acquire.

2. Reads and writes caused by loads and stores that appear in program order after the Load-Acquire for
which the shareability of the address accessed by the load or store requires that the observer observes
the access.

There are no additional ordering requirements on loads or stores that appear before the Load-Acquire.

• For a Store-Release, observers in the shareability domain of the address accessed by the Store-Release
observe accesses in the following order:

1. All of the following for which the shareability of the address accessed requires that the observer
observes the access:

• Reads and writes caused by loads and stores that appear in program order before the
Store-Release.

• Writes that were observed by the PE executing the Store-Release before it executed the
Store-Release.

2. The write caused by the Store-Release.

There are no other ordering requirements on loads or stores that appear in program order after the
Store-Release.

• A Store-Release instruction is multi-copy atomic when observed with a Load-Acquire instruction.

In addition, for accesses to a memory-mapped peripheral of an arbitrary system-defined size that are defined as any
type of Device memory accesses, these instructions have the following requirements:

• A Load-Acquire to an address in the memory-mapped peripheral will ensure that all memory accesses using
Device memory types to the same memory-mapped peripheral that are architecturally required to be observed
after the Load-Acquire will arrive at the memory-mapped peripheral after the memory access of the
Load-Acquire.

• A Store-Release to an address in the memory-mapped peripheral will ensure that all memory accesses using
Device memory types to the same memory-mapped peripheral that are architecturally required to be observed
before the Store-Release will arrive at the memory-mapped peripheral before the memory access of the
Store-Release.

• If a Load-Acquire to a memory address in the memory-mapped peripheral has observed the value stored to
that address by a Store-Release, then any memory access to the memory-mapped peripheral that is
architecturally required to be ordered before the memory access of the Store-Release will arrive at the
memory-mapped peripheral before any memory access to the same peripheral that is architecturally required
to be ordered after the memory access of the Load-Acquire.

Load-Acquire and Store-Release, other than Load-Acquire Exclusive Pair and Store-Release-Exclusive Pair, access
only a single data element. This access is single-copy atomic. The address of the data object must be aligned to the
size of the data element being accessed, otherwise the access generates an Alignment fault.
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B11-227
ID060316 Non-Confidential

B11 A64 Instructions
B11.2 ARMv8.0 sections relating to these instructions
Load-Acquire Exclusive Pair and Store-Release Exclusive Pair access two data elements. The address supplied to
the instructions must be aligned to twice the size of the element being loaded, otherwise the access generates an
Alignment fault.

A Store-Release Exclusive instruction only has the release semantics if the store is successful.

Note
 • Each Load-Acquire Exclusive and Store-Release Exclusive instruction is essentially a variant of the

equivalent Load-Exclusive or Store-Exclusive instruction. All usage restrictions and single-copy atomicity
properties:
— That apply to the Load-Exclusive instructions also apply to the Load-Acquire Exclusive instructions.
— That apply to the Store-Exclusive instructions also apply to the Store-Release Exclusive instructions.

• The Load-Acquire/Store-Release instructions can remove the requirement to use the explicit DMB memory
barrier instruction.

B11.2.2 Load/Store addressing modes

Load/Store addressing modes in the A64 instruction set require a 64-bit base address from a general-purpose register
X0-X30 or the current stack pointer, SP, with an optional immediate or register offset. Table B11-1 shows the
assembler syntax for the complete set of Load/Store addressing modes.

Some types of Load/Store instruction support only a subset of the Load/Store addressing modes listed in
Table B11-1. Details of the supported modes are as follows:

• Base plus offset addressing means that the address is the value in the 64-bit base register plus an offset.

• Pre-indexed addressing means that the address is the sum of the value in the 64-bit base register and an offset,
and the address is then written back to the base register.

• Post-indexed addressing means that the address is the value in the 64-bit base register, and the sum of the
address and the offset is then written back to the base register.

• Literal addressing means that the address is the value of the 64-bit program counter for this instruction plus
a 19-bit signed word offset. This means that it is a 4 byte aligned address within ±1MB of the address of this
instruction with no offset. Literal addressing can only be used for loads of at least 32 bits and for prefetch
instructions. The PC cannot be referenced using any other addressing modes. The syntax for labels is specific
to individual toolchains.

Table B11-1 A64 Load/Store addressing modes

Addressing Mode
Offset

Immediate Register Extended Register

Base register only (no offset) [base{, #0}] - -

Base plus offset [base{, #imm}] [base, Xm{, LSL #imm}] [base, Wm, (S|U)XTW {#imm}]

Pre-indexed [base, #imm]! - -

Post-indexed [base], #imm [base], Xma -

Literal (PC-relative) label - -

a. The post-indexed by register offset mode can be used with the SIMD Load/Store structure instructions described in the section
Load/Store Vector in Chapter C5 of the ARM ARM. Otherwise the post-indexed by register offset mode is not available.
B11-228 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B11 A64 Instructions
B11.2 ARMv8.0 sections relating to these instructions
• An immediate offset can be unsigned or signed, and scaled or unscaled, depending on the type of Load/Store
instruction. When the immediate offset is scaled it is encoded as a multiple of the transfer size, although the
assembly language always uses a byte offset, and the assembler or disassembler performs the necessary
conversion. The usable byte offsets therefore depend on the type of Load/Store instruction and the transfer
size.

Table B11-2 shows the offset and the type of Load/Store instruction.

• A register offset means that the offset is the 64 bits from a general-purpose register, Xm, optionally scaled
by the transfer size, in bytes, if LSL #imm is present and where imm must be equal to log2(transfer_size).

• An extended register offset means that offset is the bottom 32 bits from a general-purpose register Wm,
sign-extended or zero-extended to 64 bits, and then scaled by the transfer size if so indicated by #imm, where
imm must be equal to log2(transfer_size). An assembler must accept Wm or Xm as an extended register
offset, but Wm is preferred for disassembly.

• Generating an address lower than the value in the base register requires a negative signed immediate offset
or a register offset holding a negative value.

• When stack alignment checking is enabled by system software and the base register is the SP, the current
stack pointer must be initially quadword aligned, that is aligned to 16 bytes. Misalignment generates a Stack
Alignment fault. The offset does not have to be a multiple of 16 bytes unless the specific Load/Store
instruction requires this. SP cannot be used as a register offset.

Address calculation

General-purpose arithmetic instructions can calculate the result of most addressing modes and write the address to
a general-purpose register or, in most cases, to the current stack pointer.

Table B11-3 shows the arithmetic instructions that can compute addressing modes.

Table B11-2 Immediate offsets and the type of Load/Store instruction

Offset bits Sign Scaling Write-Back Load/Store type

0 - - - Exclusive/acquire/release

7 Signed Scaled Optional Register pair

9 Signed Unscaled Optional Single register

12 Unsigned Scaled No Single register

Table B11-3 Arithmetic instructions to compute addressing modes

Addressing
Form

Offset

Immediate Register Extended Register

Base register (no
offset)

MOV Xd|SP, base - -

Base plus offset ADD Xd|SP, base, #imm

or
SUB Xd|SP, base, #imm

ADD <Xd|SP>, base, Xm{,LSL#imm} ADD <Xd|SP>, base, Wm,(S|U)XT(W|H|B|) {#imm}

Pre-indexed - - -

Post-indexed - - -

Literal
(PC-relative)

ADR Xd, label - -
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B11-229
ID060316 Non-Confidential

B11 A64 Instructions
B11.2 ARMv8.0 sections relating to these instructions
Note
 • To calculate a base plus immediate offset, the ADD instructions accept an unsigned 12-bit immediate offset,

with an optional left shift by 12. This means that a single ADD instruction cannot support the full range of byte
offsets available to a single register Load/Store with a scaled 12-bit immediate offset. For example, a
quadword LDR effectively has a 16-bit byte offset. To calculate an address with a byte offset that requires more
than 12 bits it is necessary to use two ADD instructions. The following example shows this:
ADD Xd, base, #(imm & 0xFFF)
ADD Xd, Xd, #(imm>>12), LSL #12

• To calculate a base plus extended register offset, the ADD instructions provide a superset of the addressing
mode that also supports sign-extension or zero-extension of a byte or halfword value with any shift amount
between 0 and 4, for example:
ADD Xd, base, Wm, SXTW #3 // Xd = base + (SignExtend(Wm) LSL 3)
ADD Xd, base, Wm, UXTH #4 // Xd = base + (ZeroExtend(Wm<15:0>) LSL 4)

• If the same extended register offset is used by more than one Load/Store instruction, then, depending on the
implementation, it might be more efficient to calculate the extended and scaled intermediate result just once,
and then re-use it as a simple register offset. The extend and scale calculation can be performed using the
SBFIZ and UBFIZ bitfield instructions defined in the section Bitfield move in Chapter C3 of the ARM ARM, for
example:
SBFIZ Xd, Xm, #3, #32 //Xd = “Wm, SXTW #3”
UBFIZ Xd, Xm, #4, #16 //Xd = “Wm, UXTH #4”
B11-230 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

Chapter B12
AArch64 Register Descriptions

This chapter describes the AArch64 System registers that are added or affected by ARMv8.1. It contains the
following sections:
• General information about AArch64 System registers on page B12-232.
• General system control registers on page B12-234.
• Debug registers on page B12-424.
• Performance Monitors registers on page B12-450
• Generic Timer registers on page B12-463
• System instructions on page B12-504
• ARMv8.0 sections relating to these registers on page B12-545.
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-231
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.1 General information about AArch64 System registers
B12.1 General information about AArch64 System registers
The structure of the System register descriptions has changed from that used in ARM® Architecture Reference
Manual, ARMv8, for ARMv8-A architecture profile, Issue A.j and earlier:

• Information about the accessibility of the register from different Exception levels is given in the Accessibility
section, that is the last but one section of a register description.

• Information about the traps and enables that apply to the register is given in the Traps and Enables section,
that is the last section of a register description.

The information in these sections can depend on:
• The mnemonic that is used to access the register.
• The value of one or more of the controls {E2H, TGE, NS}.

These controls are:
• HCR_EL2.{E2H, TGE} fields.
• SCR_EL3.NS field.

Note
 • These changes mean the registers descriptions can address:

— Cases where a single register is accessible using more than one mnemonic, in different contexts, and
that the accessibility can depend on the mnemonic used and the context in which it is used.

— Cases where a single mnemonic can address different registers, depending on the context, and that the
accessibility can also depend on the context.

These changes are needed to describe System register behaviors associated with the Virtualization Host
Extension described in Chapter B8 Virtualization Host Extensions. However, they also improve the
representation of many ARMv8.0 register descriptions.

• This change to the structure of System register descriptions does not apply to the description of
memory-mapped registers such as those described in Chapter D2 External Debug Register Descriptions.

B12.1.1 The register descriptions included in this supplement

In general, this supplement includes the full description of all registers that are changed by ARMv8.1, including
registers where the only changes introduced by ARMv8.1 are to the accessibility of the register. The only exception
to this is the ESR_ELx register description, see Changes to ESR_ELx.

The AArch64 System registers descriptions in this chapter do not highlight where ARMv8.1 has changed the
register field descriptions. However:

• The field descriptions indicate any differences in behavior between ARMv8.0 and ARMv8.1.

• The descriptions of the features of ARMv8.1 elsewhere in this manual indicate where ARMv8.1 has
introduced new register fields, or significantly changed the effect of a register field.

In addition, for the following register descriptions, the effect of HCR_EL2.{E2H, TGE} on the register syntax is
such that separate syntax descriptions are provided for different values of one or both of these fields:
• SCTLR_EL2, System Control Register (EL2) on page B12-344.
• TCR_EL2, Translation Control Register (EL2) on page B12-394.
• CNTHCTL_EL2, Counter-timer Hypervisor Control register on page B12-464.

B12.1.2 Changes to ESR_ELx

ARMv8.1 architecture makes only limited changes to the ESR_ELx field descriptions, and this register is not
reproduced in this supplement. However, the register descriptions include ESR_EL1, ESR_EL2, and ESR_EL3. For
the field descriptions of these registers, see the ARMv8 ARM.
B12-232 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.1 General information about AArch64 System registers
Note
 The ESR_ELx register is not included in this supplement because its description is very extensive, with many
cross-references to other sections of the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture
profile, meaning it has to be read in the context of that document.

The ESR_ELx changes introduced in the ARMv8.1 architecture are:

• If atomic instructions are not atomic in regard to other agents that access memory, then performing an atomic
instruction to such a location generates an IMPLEMENTATION DEFINED MMU fault reported using the new
Fault Status code of ESR_ELx.DFSC = 110101 for Data Aborts.

• If hardware updates of the translation tables are not atomic in regard to other agents that access memory, then
performing a hardware update to such a location generates an Unsupported atomic hardware update MMU
fault reported using the new Fault Status code of:
— ESR_ELx.DFSC = 110001 for Data Aborts.
— ESR_ELx.IFSC = 110001 for Instruction Aborts.

For the Non-secure EL1&0 translation regime, if atomic instruction or atomic hardware update is not supported
because of the memory type that is defined in the first stage of translation, or the second stage of translation is not
enabled, then this exception is a first stage abort and is taken to EL1. Otherwise, the exception is a second stage
abort and is taken to EL2.
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-233
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.2 General system control registers
B12.2 General system control registers
This section lists the ARMv8.1 System registers in AArch64 state that are not part of one of the other listed groups.
B12-234 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.2 General system control registers
B12.2.1 ACTLR_EL1, Auxiliary Control Register (EL1)

The ACTLR_EL1 characteristics are:

Purpose

Provides IMPLEMENTATION DEFINED configuration and control options for execution at EL1 and
EL0.

Note
 ARM recommends the contents of this register have no effect on the PE when HCR_EL2.{E2H,

TGE} is {1, 1}, and instead the configuration and control fields are provided by the ACTLR_EL2
register. This avoids the need for software to manage the contents of these register when switching
between a Guest OS and a Host OS.

Configurations

AArch64 System register ACTLR_EL1[31:0] is architecturally mapped to AArch32 System
register ACTLR.

AArch64 System register ACTLR_EL1[63:32] is architecturally mapped to AArch32 System
register ACTLR2.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

ACTLR_EL1 is a 64-bit register.

Field descriptions

The ACTLR_EL1 bit assignments are:

IMPLEMENTATION DEFINED, bits [63:0]

IMPLEMENTATION DEFINED.

Accessing the ACTLR_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax is encoded with the following settings in the instruction encoding:

IMPLEMENTATION DEFINED

63 0

<systemreg> op0 op1 CRn CRm op2

ACTLR_EL1 11 000 0001 0000 001
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-235
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.2 General system control registers
Accessibility

The register is accessible in software as follows:

Traps and Enables

For a description of the prioritization of any generated exceptions, see Synchronous exception prioritization for
exceptions taken to AArch64 on page B12-547. Subject to the prioritization rules:

When EL2 is implemented and is using AArch64 and (SCR_EL3.NS == 1) AND (HCR_EL2.E2H == 0):

• If HCR_EL2.TACR==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and (SCR_EL3.NS == 1) AND (HCR_EL2.E2H == 1) AND
(HCR_EL2.TGE == 0):

• If HCR_EL2.TACR==1, Non-secure accesses to this register from EL1 are trapped to EL2.

<systemreg>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

ACTLR_EL1 x x 0 - RW n/a RW

ACTLR_EL1 0 0 1 - RW RW RW

ACTLR_EL1 0 1 1 - n/a RW RW

ACTLR_EL1 1 0 1 - RW RW RW

ACTLR_EL1 1 1 1 - n/a RW RW
B12-236 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.2 General system control registers
B12.2.2 ACTLR_EL2, Auxiliary Control Register (EL2)

The ACTLR_EL2 characteristics are:

Purpose

Provides IMPLEMENTATION DEFINED configuration and control options for EL2.

Note
 ARM recommends the contents of this register are updated to apply to EL0 when HCR_EL2.{E2H,

TGE} is {1, 1}, gaining configuration and control fields from the ACTLR_EL1. This avoids the
need for software to manage the contents of these register when switching between a Guest OS and
a Host OS.

Configurations

AArch64 System register ACTLR_EL2[31:0] is architecturally mapped to AArch32 System
register HACTLR.

AArch64 System register ACTLR_EL2[63:32] is architecturally mapped to AArch32 System
register HACTLR2.

If EL2 is not implemented, this register is RES0 from EL3.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

ACTLR_EL2 is a 64-bit register.

Field descriptions

The ACTLR_EL2 bit assignments are:

IMPLEMENTATION DEFINED, bits [63:0]

IMPLEMENTATION DEFINED.

Accessing the ACTLR_EL2

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax is encoded with the following settings in the instruction encoding:

IMPLEMENTATION DEFINED

63 0

<systemreg> op0 op1 CRn CRm op2

ACTLR_EL2 11 100 0001 0000 001
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-237
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.2 General system control registers
Accessibility

The register is accessible in software as follows:

<systemreg>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

ACTLR_EL2 x x 0 - - n/a RW

ACTLR_EL2 0 0 1 - - RW RW

ACTLR_EL2 0 1 1 - n/a RW RW

ACTLR_EL2 1 0 1 - - RW RW

ACTLR_EL2 1 1 1 - n/a RW RW
B12-238 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.2 General system control registers
B12.2.3 AFSR0_EL1, Auxiliary Fault Status Register 0 (EL1)

The AFSR0_EL1 characteristics are:

Purpose

Provides additional IMPLEMENTATION DEFINED fault status information for exceptions taken to EL1.

Configurations

AArch64 System register AFSR0_EL1 is architecturally mapped to AArch32 System register
ADFSR.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

AFSR0_EL1 is a 32-bit register.

Field descriptions

The AFSR0_EL1 bit assignments are:

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

Accessing the AFSR0_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax is encoded with the following settings in the instruction encoding:

IMPLEMENTATION DEFINED

31 0

<systemreg> op0 op1 CRn CRm op2

AFSR0_EL1 11 000 0101 0001 000

AFSR0_EL12 11 101 0101 0001 000
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-239
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.2 General system control registers
Accessibility

The register is accessible in software as follows:

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic AFSR0_EL1 or
AFSR0_EL12 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Traps and Enables

For a description of the prioritization of any generated exceptions, see Synchronous exception prioritization for
exceptions taken to AArch64 on page B12-547. Subject to the prioritization rules:

When EL2 is implemented and is using AArch64 and (SCR_EL3.NS == 1) AND (HCR_EL2.E2H == 0):

• If HCR_EL2.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HCR_EL2.TVM==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and (SCR_EL3.NS == 1) AND (HCR_EL2.E2H == 1) AND
(HCR_EL2.TGE == 0):

• If HCR_EL2.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HCR_EL2.TVM==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

<systemreg>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

AFSR0_EL1 x x 0 - RW n/a RW

AFSR0_EL1 0 0 1 - RW RW RW

AFSR0_EL1 0 1 1 - n/a RW RW

AFSR0_EL1 1 0 1 - RW AFSR0_EL2 RW

AFSR0_EL1 1 1 1 - n/a AFSR0_EL2 RW

AFSR0_EL12 x x 0 - - n/a -

AFSR0_EL12 0 0 1 - - - -

AFSR0_EL12 0 1 1 - n/a - -

AFSR0_EL12 1 0 1 - - RW RW

AFSR0_EL12 1 1 1 - n/a RW RW
B12-240 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.2 General system control registers
B12.2.4 AFSR0_EL2, Auxiliary Fault Status Register 0 (EL2)

The AFSR0_EL2 characteristics are:

Purpose

Provides additional IMPLEMENTATION DEFINED fault status information for exceptions taken to EL2.

Configurations

AArch64 System register AFSR0_EL2 is architecturally mapped to AArch32 System register
HADFSR.

If EL2 is not implemented, this register is RES0 from EL3.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

AFSR0_EL2 is a 32-bit register.

Field descriptions

The AFSR0_EL2 bit assignments are:

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

Accessing the AFSR0_EL2

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax is encoded with the following settings in the instruction encoding:

IMPLEMENTATION DEFINED

31 0

<systemreg> op0 op1 CRn CRm op2

AFSR0_EL2 11 100 0101 0001 000

AFSR0_EL1 11 000 0101 0001 000
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-241
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.2 General system control registers
Accessibility

The register is accessible in software as follows:

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic AFSR0_EL2 or
AFSR0_EL1 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

<systemreg>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

AFSR0_EL2 x x 0 - - n/a RW

AFSR0_EL2 0 0 1 - - RW RW

AFSR0_EL2 0 1 1 - n/a RW RW

AFSR0_EL2 1 0 1 - - RW RW

AFSR0_EL2 1 1 1 - n/a RW RW

AFSR0_EL1 x x 0 - AFSR0_EL1 n/a AFSR0_EL1

AFSR0_EL1 0 0 1 - AFSR0_EL1 AFSR0_EL1 AFSR0_EL1

AFSR0_EL1 0 1 1 - n/a AFSR0_EL1 AFSR0_EL1

AFSR0_EL1 1 0 1 - AFSR0_EL1 RW AFSR0_EL1

AFSR0_EL1 1 1 1 - n/a RW AFSR0_EL1
B12-242 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.2 General system control registers
B12.2.5 AFSR1_EL1, Auxiliary Fault Status Register 1 (EL1)

The AFSR1_EL1 characteristics are:

Purpose

Provides additional IMPLEMENTATION DEFINED fault status information for exceptions taken to EL1.

Configurations

AArch64 System register AFSR1_EL1 is architecturally mapped to AArch32 System register
AIFSR.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

AFSR1_EL1 is a 32-bit register.

Field descriptions

The AFSR1_EL1 bit assignments are:

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

Accessing the AFSR1_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax is encoded with the following settings in the instruction encoding:

IMPLEMENTATION DEFINED

31 0

<systemreg> op0 op1 CRn CRm op2

AFSR1_EL1 11 000 0101 0001 001

AFSR1_EL12 11 101 0101 0001 001
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-243
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.2 General system control registers
Accessibility

The register is accessible in software as follows:

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic AFSR1_EL1 or
AFSR1_EL12 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Traps and Enables

For a description of the prioritization of any generated exceptions, see Synchronous exception prioritization for
exceptions taken to AArch64 on page B12-547. Subject to the prioritization rules:

When EL2 is implemented and is using AArch64 and (SCR_EL3.NS == 1) AND (HCR_EL2.E2H == 0):

• If HCR_EL2.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HCR_EL2.TVM==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and (SCR_EL3.NS == 1) AND (HCR_EL2.E2H == 1) AND
(HCR_EL2.TGE == 0):

• If HCR_EL2.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HCR_EL2.TVM==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

<systemreg>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

AFSR1_EL1 x x 0 - RW n/a RW

AFSR1_EL1 0 0 1 - RW RW RW

AFSR1_EL1 0 1 1 - n/a RW RW

AFSR1_EL1 1 0 1 - RW AFSR1_EL2 RW

AFSR1_EL1 1 1 1 - n/a AFSR1_EL2 RW

AFSR1_EL12 x x 0 - - n/a -

AFSR1_EL12 0 0 1 - - - -

AFSR1_EL12 0 1 1 - n/a - -

AFSR1_EL12 1 0 1 - - RW RW

AFSR1_EL12 1 1 1 - n/a RW RW
B12-244 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.2 General system control registers
B12.2.6 AFSR1_EL2, Auxiliary Fault Status Register 1 (EL2)

The AFSR1_EL2 characteristics are:

Purpose

Provides additional IMPLEMENTATION DEFINED fault status information for exceptions taken to EL2.

Configurations

AArch64 System register AFSR1_EL2 is architecturally mapped to AArch32 System register
HAIFSR.

If EL2 is not implemented, this register is RES0 from EL3.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

AFSR1_EL2 is a 32-bit register.

Field descriptions

The AFSR1_EL2 bit assignments are:

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

Accessing the AFSR1_EL2

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax is encoded with the following settings in the instruction encoding:

IMPLEMENTATION DEFINED

31 0

<systemreg> op0 op1 CRn CRm op2

AFSR1_EL2 11 100 0101 0001 001

AFSR1_EL1 11 000 0101 0001 001
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-245
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.2 General system control registers
Accessibility

The register is accessible in software as follows:

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic AFSR1_EL2 or
AFSR1_EL1 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

<systemreg>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

AFSR1_EL2 x x 0 - - n/a RW

AFSR1_EL2 0 0 1 - - RW RW

AFSR1_EL2 0 1 1 - n/a RW RW

AFSR1_EL2 1 0 1 - - RW RW

AFSR1_EL2 1 1 1 - n/a RW RW

AFSR1_EL1 x x 0 - AFSR1_EL1 n/a AFSR1_EL1

AFSR1_EL1 0 0 1 - AFSR1_EL1 AFSR1_EL1 AFSR1_EL1

AFSR1_EL1 0 1 1 - n/a AFSR1_EL1 AFSR1_EL1

AFSR1_EL1 1 0 1 - AFSR1_EL1 RW AFSR1_EL1

AFSR1_EL1 1 1 1 - n/a RW AFSR1_EL1
B12-246 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.2 General system control registers
B12.2.7 AMAIR_EL1, Auxiliary Memory Attribute Indirection Register (EL1)

The AMAIR_EL1 characteristics are:

Purpose

Provides IMPLEMENTATION DEFINED memory attributes for the memory regions specified by
MAIR_EL1.

Configurations

AArch64 System register AMAIR_EL1[31:0] is architecturally mapped to AArch32 System
register AMAIR0.

AArch64 System register AMAIR_EL1[63:32] is architecturally mapped to AArch32 System
register AMAIR1.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

AMAIR_EL1 is a 64-bit register.

Field descriptions

The AMAIR_EL1 bit assignments are:

AMAIR_EL1 is permitted to be cached in a TLB.

IMPLEMENTATION DEFINED, bits [63:0]

IMPLEMENTATION DEFINED.

Accessing the AMAIR_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax is encoded with the following settings in the instruction encoding:

IMPLEMENTATION DEFINED

63 0

<systemreg> op0 op1 CRn CRm op2

AMAIR_EL1 11 000 1010 0011 000

AMAIR_EL12 11 101 1010 0011 000
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-247
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.2 General system control registers
Accessibility

The register is accessible in software as follows:

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic AMAIR_EL1
or AMAIR_EL12 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Traps and Enables

For a description of the prioritization of any generated exceptions, see Synchronous exception prioritization for
exceptions taken to AArch64 on page B12-547. Subject to the prioritization rules:

When EL2 is implemented and is using AArch64 and (SCR_EL3.NS == 1) AND (HCR_EL2.E2H == 0):

• If HCR_EL2.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HCR_EL2.TVM==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and (SCR_EL3.NS == 1) AND (HCR_EL2.E2H == 1) AND
(HCR_EL2.TGE == 0):

• If HCR_EL2.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HCR_EL2.TVM==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

<systemreg>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

AMAIR_EL1 x x 0 - RW n/a RW

AMAIR_EL1 0 0 1 - RW RW RW

AMAIR_EL1 0 1 1 - n/a RW RW

AMAIR_EL1 1 0 1 - RW AMAIR_EL2 RW

AMAIR_EL1 1 1 1 - n/a AMAIR_EL2 RW

AMAIR_EL12 x x 0 - - n/a -

AMAIR_EL12 0 0 1 - - - -

AMAIR_EL12 0 1 1 - n/a - -

AMAIR_EL12 1 0 1 - - RW RW

AMAIR_EL12 1 1 1 - n/a RW RW
B12-248 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.2 General system control registers
B12.2.8 AMAIR_EL2, Auxiliary Memory Attribute Indirection Register (EL2)

The AMAIR_EL2 characteristics are:

Purpose

Provides IMPLEMENTATION DEFINED memory attributes for the memory regions specified by
MAIR_EL2.

Configurations

AArch64 System register AMAIR_EL2[31:0] is architecturally mapped to AArch32 System
register HAMAIR0.

AArch64 System register AMAIR_EL2[63:32] is architecturally mapped to AArch32 System
register HAMAIR1.

If EL2 is not implemented, this register is RES0 from EL3.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

AMAIR_EL2 is a 64-bit register.

Field descriptions

The AMAIR_EL2 bit assignments are:

AMAIR_EL2 is permitted to be cached in a TLB.

IMPLEMENTATION DEFINED, bits [63:0]

IMPLEMENTATION DEFINED.

Accessing the AMAIR_EL2

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax is encoded with the following settings in the instruction encoding:

IMPLEMENTATION DEFINED

63 0

<systemreg> op0 op1 CRn CRm op2

AMAIR_EL2 11 100 1010 0011 000

AMAIR_EL1 11 000 1010 0011 000
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-249
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.2 General system control registers
Accessibility

The register is accessible in software as follows:

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic AMAIR_EL2
or AMAIR_EL1 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

<systemreg>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

AMAIR_EL2 x x 0 - - n/a RW

AMAIR_EL2 0 0 1 - - RW RW

AMAIR_EL2 0 1 1 - n/a RW RW

AMAIR_EL2 1 0 1 - - RW RW

AMAIR_EL2 1 1 1 - n/a RW RW

AMAIR_EL1 x x 0 - AMAIR_EL1 n/a AMAIR_EL1

AMAIR_EL1 0 0 1 - AMAIR_EL1 AMAIR_EL1 AMAIR_EL1

AMAIR_EL1 0 1 1 - n/a AMAIR_EL1 AMAIR_EL1

AMAIR_EL1 1 0 1 - AMAIR_EL1 RW AMAIR_EL1

AMAIR_EL1 1 1 1 - n/a RW AMAIR_EL1
B12-250 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.2 General system control registers
B12.2.9 CONTEXTIDR_EL1, Context ID Register (EL1)

The CONTEXTIDR_EL1 characteristics are:

Purpose

Identifies the current Process Identifier.

The value of the whole of this register is called the Context ID and is used by:

• The debug logic, for Linked and Unlinked Context ID matching.

• The trace logic, to identify the current process.

The significance of this register is for debug and trace use only.

This register is used:

• In ARMv8.0.

• In ARMv8.1, when HCR_EL2.E2H is 0.

Note
 In ARMv8.1, when HCR_EL2.E2H is set to 1, CONTEXTIDR_EL2 is used.

Configurations

AArch64 System register CONTEXTIDR_EL1 is architecturally mapped to AArch32 System
register CONTEXTIDR.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

CONTEXTIDR_EL1 is a 32-bit register.

Field descriptions

The CONTEXTIDR_EL1 bit assignments are:

PROCID, bits [31:0]

Process Identifier. This field must be programmed with a unique value that identifies the current
process.

Note
 In AArch32 state, when TTBCR.EAE is set to 0, CONTEXTIDR.ASID holds the ASID.

In AArch64 state, CONTEXTIDR_EL1 is independent of the ASID, and for the EL1&0 translation
regime either TTBR0_EL1 or TTBR1_EL1 holds the ASID.

Accessing the CONTEXTIDR_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

PROCID

31 0
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-251
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.2 General system control registers
This syntax is encoded with the following settings in the instruction encoding:

Accessibility

The register is accessible in software as follows:

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic
CONTEXTIDR_EL1 or CONTEXTIDR_EL12 are not guaranteed to be ordered with respect to accesses using the
other mnemonic.

Traps and Enables

For a description of the prioritization of any generated exceptions, see Synchronous exception prioritization for
exceptions taken to AArch64 on page B12-547. Subject to the prioritization rules:

When EL2 is implemented and is using AArch64 and (SCR_EL3.NS == 1) AND (HCR_EL2.E2H == 0):

• If HCR_EL2.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HCR_EL2.TVM==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and (SCR_EL3.NS == 1) AND (HCR_EL2.E2H == 1) AND
(HCR_EL2.TGE == 0):

• If HCR_EL2.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HCR_EL2.TVM==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

<systemreg> op0 op1 CRn CRm op2

CONTEXTIDR_EL1 11 000 1101 0000 001

CONTEXTIDR_EL12 11 101 1101 0000 001

<systemreg>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

CONTEXTIDR_EL1 x x 0 - RW n/a RW

CONTEXTIDR_EL1 0 0 1 - RW RW RW

CONTEXTIDR_EL1 0 1 1 - n/a RW RW

CONTEXTIDR_EL1 1 0 1 - RW CONTEXTIDR_EL2 RW

CONTEXTIDR_EL1 1 1 1 - n/a CONTEXTIDR_EL2 RW

CONTEXTIDR_EL12 x x 0 - - n/a -

CONTEXTIDR_EL12 0 0 1 - - - -

CONTEXTIDR_EL12 0 1 1 - n/a - -

CONTEXTIDR_EL12 1 0 1 - - RW RW

CONTEXTIDR_EL12 1 1 1 - n/a RW RW
B12-252 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.2 General system control registers
B12.2.10 CONTEXTIDR_EL2, Context ID Register (EL2)

The CONTEXTIDR_EL2 characteristics are:

Purpose

In ARMv8.1, when HCR_EL2.E2H is set to 1, identifies the current Process Identifier.

The value of the whole of this register is called the Context ID and is used by:

• The debug logic, for Linked and Unlinked Context ID matching.

• The trace logic, to identify the current process.

The significance of this register is for debug and trace use only.

Note
 In ARMv8.0, and in ARMv8.1 when HCR_EL2.E2H is 0, CONTEXTIDR_EL1 is used.

Configurations

If EL2 is not implemented, this register is RES0 from EL3.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

CONTEXTIDR_EL2 is a 32-bit register.

Field descriptions

The CONTEXTIDR_EL2 bit assignments are:

PROCID, bits [31:0]

Process Identifier. This field must be programmed with a unique value that identifies the current
process.

Note
 In AArch32 state, when TTBCR.EAE is set to 0, CONTEXTIDR.ASID holds the ASID.

In AArch64 state, CONTEXTIDR_EL2 is independent of the ASID, and for the EL2&0 translation
regime either TTBR0_EL2 or TTBR1_EL2 holds the ASID.

Accessing the CONTEXTIDR_EL2

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

PROCID

31 0
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-253
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.2 General system control registers
This syntax is encoded with the following settings in the instruction encoding:

Accessibility

The register is accessible in software as follows:

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic
CONTEXTIDR_EL2 or CONTEXTIDR_EL1 are not guaranteed to be ordered with respect to accesses using the
other mnemonic.

<systemreg> op0 op1 CRn CRm op2

CONTEXTIDR_EL2 11 100 1101 0000 001

CONTEXTIDR_EL1 11 000 1101 0000 001

<systemreg>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

CONTEXTIDR_EL2 x x 0 - - n/a RW

CONTEXTIDR_EL2 0 0 1 - - RW RW

CONTEXTIDR_EL2 0 1 1 - n/a RW RW

CONTEXTIDR_EL2 1 0 1 - - RW RW

CONTEXTIDR_EL2 1 1 1 - n/a RW RW

CONTEXTIDR_EL1 x x 0 - CONTEXTIDR_EL1 n/a CONTEXTIDR_EL1

CONTEXTIDR_EL1 0 0 1 - CONTEXTIDR_EL1 CONTEXTIDR_EL1 CONTEXTIDR_EL1

CONTEXTIDR_EL1 0 1 1 - n/a CONTEXTIDR_EL1 CONTEXTIDR_EL1

CONTEXTIDR_EL1 1 0 1 - CONTEXTIDR_EL1 RW CONTEXTIDR_EL1

CONTEXTIDR_EL1 1 1 1 - n/a RW CONTEXTIDR_EL1
B12-254 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.2 General system control registers
B12.2.11 CPACR_EL1, Architectural Feature Access Control Register

The CPACR_EL1 characteristics are:

Purpose

Controls access to trace, and to Advanced SIMD and floating-point functionality.

Configurations

AArch64 System register CPACR_EL1 is architecturally mapped to AArch32 System register
CPACR.

When HCR_EL2.{E2H, TGE} == {1, 1}, the fields in this register have no effect on execution at
EL0 and EL1. In this case, the controls provided by CPTR_EL2 are used.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

CPACR_EL1 is a 32-bit register.

Field descriptions

The CPACR_EL1 bit assignments are:

Bits [31:29]

Reserved, RES0.

TTA, bit [28]

Traps EL0 and EL1 System register accesses to all implemented trace registers to EL1, from both
Execution states.

0 This control does not cause any instructions to be trapped.

1 For the following settings of SCR_EL3.NS and HCR_EL2.TGE, EL0 and EL1 System
register accesses to all implemented trace registers are trapped to EL1:

• SCR_EL3.NS is 0, and any value of HCR_EL2.TGE.

• SCR_EL3.NS is 1 and HCR_EL2.TGE is 0.
When SCR_EL3.NS is 1 and HCR_EL2.TGE is 1:

• If HCR_EL2.E2H is 0, Non-secure EL0 and EL1 System register accesses to all
implemented trace registers are trapped to EL2.

• If HCR_EL2.E2H is 1, this control does not cause any instructions to be trapped.

Note
 • The ETMv4 architecture does not permit EL0 to access the trace registers. If the ARMv8-A

architecture is implemented with an ETMv4 implementation, EL0 accesses to the trace
registers are UNDEFINED, and any resulting exception is higher priority than an exception that
would be generated because the value of CPACR_EL1.TTA is 1.

• The ARMv8-A architecture does not provide traps on trace register accesses through the
optional memory-mapped interface.

RES0

31 29 28

RES0

27 22

FPEN

21 20

RES0

19 0

TTA
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-255
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.2 General system control registers
System register accesses to the trace registers can have side-effects. When a System register access
is trapped, any side-effects that are normally associated with the access do not occur before the
exception is taken.

If System register access to the trace functionality is not implemented, this bit is RES0.

Bits [27:22]

Reserved, RES0.

FPEN, bits [21:20]

Traps EL0 and EL1 accesses to the Advanced SIMD and floating-point registers to EL1, from both
Execution states.

The behavior is as follows when SCR_EL3.NS is 0, or when SCR_EL3.NS is 1 and HCR_EL2.TGE
is 0:

00 This control causes any instructions in EL0 or EL1 that use the registers associated with
Advanced SIMD and floating-point execution to be trapped to EL1.

01 This control causes any instructions in EL0 that use the registers associated with
Advanced SIMD and floating-point execution to be trapped, but does not cause any
instruction in EL1 to be trapped to EL1.

10 This control causes any instructions in EL0 or EL1 that use the registers associated with
Advanced SIMD and floating-point execution to be trapped to EL1.

11 This control does not cause any instructions to be trapped.

When SCR_EL3.NS is 1 and HCR_EL2.TGE is 1:

• If HCR_EL2.E2H is 0:

— When the value of this field is 0b00, 0b01, or 0b10, this control causes any instructions
in Non-secure EL0 that use the registers associated with Advanced SIMD and
floating-point execution to be trapped to EL2.

— When the value of this field is 0b11, this control does not cause any instructions to be
trapped.

• If HCR_EL2.E2H is 1, this control does not cause any instructions to be trapped.

Writes to MVFR0, MVFR1 and MVFR2 from EL1 or higher are CONSTRAINED UNPREDICTABLE
and whether these accesses can be trapped by this control depends on implemented CONSTRAINED
UNPREDICTABLE behavior.

Note
 • Attempts to write to the FPSID count as use of the registers for accesses from EL1 or higher.

• Accesses from EL0 to FPSID, MVFR0, MVFR1, MVFR2, and FPEXC are UNDEFINED, and
any resulting exception is higher priority than an exception that would be generated because
the value of CPACR_EL1.FPEN is not 11.

Bits [19:0]

Reserved, RES0.

Accessing the CPACR_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>
B12-256 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.2 General system control registers
This syntax is encoded with the following settings in the instruction encoding:

Accessibility

The register is accessible in software as follows:

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic CPACR_EL1
or CPACR_EL12 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Traps and Enables

For a description of the prioritization of any generated exceptions, see Synchronous exception prioritization for
exceptions taken to AArch64 on page B12-547. Subject to the prioritization rules:

When EL2 is implemented and is using AArch64 and (SCR_EL3.NS == 1) AND (HCR_EL2.E2H == 0):

• If CPTR_EL2.TCPAC==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and (SCR_EL3.NS == 1) AND (HCR_EL2.E2H == 1) AND
(HCR_EL2.TGE == 0):

• If CPTR_EL2.TCPAC==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL3 is implemented and is using AArch64:

• If CPTR_EL3.TCPAC==1, accesses to this register from EL1 and EL2 are trapped to EL3.

<systemreg> op0 op1 CRn CRm op2

CPACR_EL1 11 000 0001 0000 010

CPACR_EL12 11 101 0001 0000 010

<systemreg>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

CPACR_EL1 x x 0 - RW n/a RW

CPACR_EL1 0 0 1 - RW RW RW

CPACR_EL1 0 1 1 - n/a RW RW

CPACR_EL1 1 0 1 - RW CPTR_EL2 RW

CPACR_EL1 1 1 1 - n/a CPTR_EL2 RW

CPACR_EL12 x x 0 - - n/a -

CPACR_EL12 0 0 1 - - - -

CPACR_EL12 0 1 1 - n/a - -

CPACR_EL12 1 0 1 - - RW RW

CPACR_EL12 1 1 1 - n/a RW RW
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-257
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.2 General system control registers
B12.2.12 CPTR_EL2, Architectural Feature Trap Register (EL2)

The CPTR_EL2 characteristics are:

Purpose

Controls:

• Trapping to EL2 of access to CPACR, CPACR_EL1, trace functionality, and to Advanced
SIMD and floating-point functionality.

• EL2 access to trace functionality, and to Advanced SIMD and floating-point functionality.

Configurations

AArch64 System register CPTR_EL2 is architecturally mapped to AArch32 System register
HCPTR.

If EL2 is not implemented, this register is RES0 from EL3.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

CPTR_EL2 is a 32-bit register.

Field descriptions

The CPTR_EL2 bit assignments are:

When HCR_EL2.E2H == 0:

This format applies in all ARMv8.0 implementations.

TCPAC, bit [31]

Traps Non-secure EL1 accesses to CPACR_EL1 or CPACR to EL2, from both Execution states.

0 This control does not cause any instructions to be trapped.

1 Non-secure EL1 accesses to CPACR_EL1 and CPACR are trapped to EL2.

Note
 CPACR_EL1 and CPACR are not accessible at EL0.

Bits [30:21]

Reserved, RES0.

TTA, bit [20]

Traps Non-secure System register accesses to all implemented trace registers to EL2, from both
Execution states.

0 This control does not cause any instructions to be trapped.

1 Any attempt at EL2, or Non-secure EL0 or EL1, to execute a System register access to
an implemented trace register is trapped to EL2, except in the following circumstances:

• The instruction is trapped to EL1 by CPACR_EL1.TTA.

31

RES0

30 21 20

RES0

19 14 13 12 11 10

RES1

9 0

TCPAC
TTA

TFP
RES0
RES1
B12-258 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.2 General system control registers
• The instruction is trapped to Undefined mode by CPACR.NSTRCDIS.

Note
 • The ETMv4 architecture does not permit EL0 to access the trace registers. If the ARMv8-A

architecture is implemented with an ETMv4 implementation, EL0 accesses to the trace
registers are UNDEFINED, and any resulting exception is higher priority than an exception that
would be generated because the value of CPTR_EL2.TTA is 1.

• EL2 does not provide traps on trace register accesses through the optional memory-mapped
interface.

System register accesses to the trace registers can have side-effects. When a System register access
is trapped, any side-effects that are normally associated with the access do not occur before the
exception is taken.

If System register access to the trace functionality is not supported, this bit is RES0.

Bits [19:14]

Reserved, RES0.

Bits [13:12]

Reserved, RES1.

Bit [11]

Reserved, RES0.

TFP, bit [10]

Traps Non-secure accesses to Advanced SIMD and floating-point functionality to EL2, from both
Execution states.

0 Does not cause any instruction to be trapped.

1 Any attempt at EL2, or Non-secure EL0 or EL1, to execute an instruction that uses the
registers associated with Advanced SIMD and floating-point execution is trapped to
EL2, except in the following circumstances:

• The instruction is trapped by CPACR_EL1.FPEN.

• The instruction is UNDEFINED as a result of CPACR.cp10.

Bits [9:0]

Reserved, RES1.

When HCR_EL2.E2H == 1:

TCPAC, bit [31]

When HCR_EL2.TGE is 0, traps Non-secure EL1 accesses to CPACR_EL1 and CPACR to EL2,
from both Execution states.

0 This control does not cause any instructions to be trapped.

1 Non-secure EL1 accesses to CPACR_EL1 and CPACR are trapped to EL2.

When HCR_EL2.TGE is 1, this control does not cause any instructions to be trapped.

31 30 29 28

RES0

27 22

FPEN

21 20

RES0

19 0

TCPAC
RES0
TTA
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-259
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.2 General system control registers
Note
 CPACR_EL1 and CPACR are not accessible at EL0.

Bits [30:29]

Reserved, RES0.

TTA, bit [28]

Traps Non-secure System register accesses to all implemented trace registers to EL2, from both
Execution states.

0 This control does not cause any instructions to be trapped.

1 When HCR_EL2.TGE is 0, any attempt at EL2, or Non-secure EL0 or EL1, to execute
a System register access to an implemented trace register is trapped to EL2, except in
the following circumstances:

• The instruction is trapped by CPACR_EL1.TTA.

• The instruction is trapped to Undefined mode by CPACR.NSTRCDIS.
When HCR_EL2.TGE is 1, any attempt at EL2, or Non-secure EL0, to execute a System
register access to an implemented trace register is trapped to EL2.

Note
 • The ETMv4 architecture does not permit EL0 to access the trace registers. If the ARMv8-A

architecture is implemented with an ETMv4 implementation, EL0 accesses to the trace
registers are UNDEFINED, and any resulting exception is higher priority than an exception that
would be generated because the value of CPTR_EL2.TTA is 1.

• EL2 does not provide traps on trace register accesses through the optional memory-mapped
interface.

System register accesses to the trace registers can have side-effects. When a System register access
is trapped, any side-effects that are normally associated with the access do not occur before the
exception is taken.

If System register access to the trace functionality is not supported, this bit is RES0.

Bits [27:22]

Reserved, RES0.

FPEN, bits [21:20]

Traps EL2, EL0 and, when HCR_EL2.TGE is 0, EL1 accesses to the Advanced SIMD and
floating-point registers to EL2, from both Execution states.

00 Causes any instructions in EL0, EL1, or EL2 that use the registers associated with
Advanced SIMD and floating-point execution to be trapped.

01 When HCR_EL2.TGE is 0, this control does not cause any instructions to be trapped.
When HCR_EL2.TGE is 1, causes instructions in EL0 that use the registers associated
with Advanced SIMD and floating-point execution to be trapped.

10 Causes any instructions in EL0, EL1, or EL2 that use the registers associated with
Advanced SIMD and floating-point execution to be trapped.

11 This control does not cause any instructions to be trapped.

When HCR_EL2.TGE is 0, the settings in the following controls can cause a trap that is of a higher
priority:

• CPACR_EL1.FPEN.

• CPACR.cp10.

Writes to MVFR0, MVFR1, and MVFR2 from EL1 or higher are CONSTRAINED UNPREDICTABLE
and whether these accesses can be trapped by this control depends on implemented CONSTRAINED
UNPREDICTABLE behavior.
B12-260 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.2 General system control registers
Note
 • Attempts to write to the FPSID count as use of the registers for accesses from EL1 or higher.

• Accesses from EL0 to FPSID, MVFR0, MVFR1, MVFR2, and FPEXC are UNDEFINED, and
any resulting exception is higher priority than an exception that would be generated because
the value of CPTR_EL2.FPEN is not 11.

Bits [19:0]

Reserved, RES0.

Accessing the CPTR_EL2

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax is encoded with the following settings in the instruction encoding:

Accessibility

The register is accessible in software as follows:

Traps and Enables

For a description of the prioritization of any generated exceptions, see Synchronous exception prioritization for
exceptions taken to AArch64 on page B12-547. Subject to the prioritization rules:

<systemreg> op0 op1 CRn CRm op2

CPTR_EL2 11 100 0001 0001 010

CPACR_EL1 11 000 0001 0000 010

<systemreg>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

CPTR_EL2 x x 0 - - n/a RW

CPTR_EL2 0 0 1 - - RW RW

CPTR_EL2 0 1 1 - n/a RW RW

CPTR_EL2 1 0 1 - - RW RW

CPTR_EL2 1 1 1 - n/a RW RW

CPACR_EL1 x x 0 - CPACR_EL1 n/a CPACR_EL1

CPACR_EL1 0 0 1 - CPACR_EL1 CPACR_EL1 CPACR_EL1

CPACR_EL1 0 1 1 - n/a CPACR_EL1 CPACR_EL1

CPACR_EL1 1 0 1 - CPACR_EL1 RW CPACR_EL1

CPACR_EL1 1 1 1 - n/a RW CPACR_EL1
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-261
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.2 General system control registers
When EL3 is implemented and is using AArch64:

• If CPTR_EL3.TCPAC==1, accesses to this register from EL2 are trapped to EL3.
B12-262 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.2 General system control registers
B12.2.13 ELR_EL1, Exception Link Register (EL1)

The ELR_EL1 characteristics are:

Purpose

When taking an exception to EL1, holds the address to return to.

Configurations

There are no configuration notes.

Attributes

ELR_EL1 is a 64-bit register.

Field descriptions

The ELR_EL1 bit assignments are:

Bits [63:0]

Return address.

An exception return from EL1 using AArch64 makes ELR_EL1 become UNKNOWN.

Accessing the ELR_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax is encoded with the following settings in the instruction encoding:

Accessibility

The register is accessible in software as follows:

Return address

63 0

<systemreg> op0 op1 CRn CRm op2

ELR_EL1 11 000 0100 0000 001

ELR_EL12 11 101 0100 0000 001

<systemreg>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

ELR_EL1 x x 0 - RW n/a RW

ELR_EL1 0 0 1 - RW RW RW

ELR_EL1 0 1 1 - n/a RW RW
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-263
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.2 General system control registers
When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic ELR_EL1 or
ELR_EL12 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

ELR_EL1 1 0 1 - RW ELR_EL2 RW

ELR_EL1 1 1 1 - n/a ELR_EL2 RW

ELR_EL12 x x 0 - - n/a -

ELR_EL12 0 0 1 - - - -

ELR_EL12 0 1 1 - n/a - -

ELR_EL12 1 0 1 - - RW RW

ELR_EL12 1 1 1 - n/a RW RW

<systemreg>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3
B12-264 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.2 General system control registers
B12.2.14 ELR_EL2, Exception Link Register (EL2)

The ELR_EL2 characteristics are:

Purpose

When taking an exception to EL2, holds the address to return to.

Configurations

AArch64 System register ELR_EL2 is architecturally mapped to AArch32 System register
ELR_hyp.

Attributes

ELR_EL2 is a 64-bit register.

Field descriptions

The ELR_EL2 bit assignments are:

Bits [63:0]

Return address.

An exception return from EL2 using AArch64 makes ELR_EL2 become UNKNOWN.

When EL2 is in AArch32 Execution state and an exception is taken from EL0, EL1, or EL2 to EL3
and AArch64 execution, the upper 32-bits of ELR_EL2 are either set to 0 or hold the same value
that they did before AArch32 execution. Which option is adopted is determined by an
implementation, and might vary dynamically within an implementation. Correspondingly software
must regard the value as being an UNKNOWN choice between the two values.

Accessing the ELR_EL2

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax is encoded with the following settings in the instruction encoding:

Return address

63 0

<systemreg> op0 op1 CRn CRm op2

ELR_EL2 11 100 0100 0000 001

ELR_EL1 11 000 0100 0000 001
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-265
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.2 General system control registers
Accessibility

The register is accessible in software as follows:

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic ELR_EL2 or
ELR_EL1 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

<systemreg>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

ELR_EL2 x x 0 - - n/a RW

ELR_EL2 0 0 1 - - RW RW

ELR_EL2 0 1 1 - n/a RW RW

ELR_EL2 1 0 1 - - RW RW

ELR_EL2 1 1 1 - n/a RW RW

ELR_EL1 x x 0 - ELR_EL1 n/a ELR_EL1

ELR_EL1 0 0 1 - ELR_EL1 ELR_EL1 ELR_EL1

ELR_EL1 0 1 1 - n/a ELR_EL1 ELR_EL1

ELR_EL1 1 0 1 - ELR_EL1 RW ELR_EL1

ELR_EL1 1 1 1 - n/a RW ELR_EL1
B12-266 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.2 General system control registers
B12.2.15 ESR_EL1, Exception Syndrome Register (EL1)

The ESR_EL1 characteristics are:

Purpose

Holds syndrome information for an exception taken to EL1.

Configurations

AArch64 System register ESR_EL1 is architecturally mapped to AArch32 System register DFSR.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

ESR_EL1 is a 32-bit register.

Field descriptions

See ESR_ELx.

Accessing the ESR_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax is encoded with the following settings in the instruction encoding:

Accessibility

The register is accessible in software as follows:

<systemreg> op0 op1 CRn CRm op2

ESR_EL1 11 000 0101 0010 000

ESR_EL12 11 101 0101 0010 000

<systemreg>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

ESR_EL1 x x 0 - RW n/a RW

ESR_EL1 0 0 1 - RW RW RW

ESR_EL1 0 1 1 - n/a RW RW

ESR_EL1 1 0 1 - RW ESR_EL2 RW

ESR_EL1 1 1 1 - n/a ESR_EL2 RW

ESR_EL12 x x 0 - - n/a -

ESR_EL12 0 0 1 - - - -
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-267
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.2 General system control registers
When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic ESR_EL1 or
ESR_EL12 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Traps and Enables

For a description of the prioritization of any generated exceptions, see Synchronous exception prioritization for
exceptions taken to AArch64 on page B12-547. Subject to the prioritization rules:

When EL2 is implemented and is using AArch64 and (SCR_EL3.NS == 1) AND (HCR_EL2.E2H == 0):

• If HCR_EL2.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HCR_EL2.TVM==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and (SCR_EL3.NS == 1) AND (HCR_EL2.E2H == 1) AND
(HCR_EL2.TGE == 0):

• If HCR_EL2.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HCR_EL2.TVM==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

ESR_EL12 0 1 1 - n/a - -

ESR_EL12 1 0 1 - - RW RW

ESR_EL12 1 1 1 - n/a RW RW

<systemreg>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3
B12-268 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.2 General system control registers
B12.2.16 ESR_EL2, Exception Syndrome Register (EL2)

The ESR_EL2 characteristics are:

Purpose

Holds syndrome information for an exception taken to EL2.

Configurations

AArch64 System register ESR_EL2 is architecturally mapped to AArch32 System register HSR.

If EL2 is not implemented, this register is RES0 from EL3.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

ESR_EL2 is a 32-bit register.

Field descriptions

See ESR_ELx.

Accessing the ESR_EL2

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax is encoded with the following settings in the instruction encoding:

Accessibility

The register is accessible in software as follows:

<systemr
eg> op0 op1 CRn CRm op2

ESR_EL2 11 100 0101 0010 000

ESR_EL1 11 000 0101 0010 000

<systemr
eg>

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

ESR_EL2 x x 0 - - n/a RW

ESR_EL2 0 0 1 - - RW RW

ESR_EL2 0 1 1 - n/a RW RW

ESR_EL2 1 0 1 - - RW RW

ESR_EL2 1 1 1 - n/a RW RW

ESR_EL1 x x 0 - ESR_EL1 n/a ESR_EL1

ESR_EL1 0 0 1 - ESR_EL1 ESR_EL1 ESR_EL1
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-269
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.2 General system control registers
When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic ESR_EL2 or
ESR_EL1 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

ESR_EL1 0 1 1 - n/a ESR_EL1 ESR_EL1

ESR_EL1 1 0 1 - ESR_EL1 RW ESR_EL1

ESR_EL1 1 1 1 - n/a RW ESR_EL1

<systemr
eg>

Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3
B12-270 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.2 General system control registers
B12.2.17 ESR_EL3, Exception Syndrome Register (EL3)

The ESR_EL3 characteristics are:

Purpose

Holds syndrome information for an exception taken to EL3.

Configurations

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

ESR_EL3 is a 32-bit register.

Field descriptions

See ESR_ELx.

Accessing the ESR_EL3

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax is encoded with the following settings in the instruction encoding:

Accessibility

The register is accessible in software as follows:

<systemreg> op0 op1 CRn CRm op2

ESR_EL3 11 110 0101 0010 000

<systemreg>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

ESR_EL3 x x 0 - - n/a RW

ESR_EL3 0 0 1 - - - RW

ESR_EL3 0 1 1 - n/a - RW

ESR_EL3 1 0 1 - - - RW

ESR_EL3 1 1 1 - n/a - RW
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-271
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.2 General system control registers
B12.2.18 FAR_EL1, Fault Address Register (EL1)

The FAR_EL1 characteristics are:

Purpose

Holds the faulting Virtual Address for all synchronous instruction or data aborts, or exceptions from
a misaligned PC or a Watchpoint exception, taken to EL1.

Configurations

AArch64 System register FAR_EL1[31:0] is architecturally mapped to AArch32 System register
DFAR (NS).

AArch64 System register FAR_EL1[63:32] is architecturally mapped to AArch32 System register
IFAR (NS).

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

FAR_EL1 is a 64-bit register.

Field descriptions

The FAR_EL1 bit assignments are:

Bits [63:0]

Faulting Virtual Address for synchronous exceptions taken to EL1. Exceptions that set the
FAR_EL1 are instruction aborts (EC 0x20 or 0x21), data aborts (EC 0x24 or 0x25), a misaligned PC
exception (EC 0x22), or a Watchpoint exception (EC 0x34 or 0x35). ESR_EL1.EC holds the EC value
for the exception.

For a synchronous external abort other than a synchronous external abort on a translation table walk,
this field is valid only if ESR_EL1.FnV is 0, and the FAR_EL1 is UNKNOWN if ESR_EL1.FnV is 1.

For all other exceptions taken to EL1, the FAR_EL1 is UNKNOWN.

If a memory fault that sets FAR_EL1 is generated from a data cache maintenance or DC ZVA
instruction, this field holds the address specified in the register argument of the instruction.

If the exception that updates FAR_EL1 is taken from an Exception level that is using AArch32, the
top 32 bits are all zero, unless the faulting address is generated by a load or store instruction that
sequentially increments from address 0xFFFFFFFF. This is an UNPREDICTABLE condition, and in this
case the upper 32-bits are set to 0x00000001.

For a Data Abort or Watchpoint exception, if address tagging is enabled for the address accessed by
the data access that caused the exception, then this field includes the tag. For more information
about address tagging, see Address tagging in AArch64 state on page B12-551.

Note
 The address held in this field is an address accessed by the instruction fetch or data access that

caused the exception that gave rise to the instruction or data abort. It is the lower address that gave
rise to the fault. Where different faults from different addresses arise from the same instruction, such
as for an instruction that loads or stores a mis-aligned address that crosses a page boundary, the
architecture does not prioritize between those different faults.

FAR_EL1 is made UNKNOWN on an exception return from EL1.

Faulting Virtual Address for synchronous exceptions taken to EL1

63 0
B12-272 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.2 General system control registers
Accessing the FAR_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax is encoded with the following settings in the instruction encoding:

Accessibility

The register is accessible in software as follows:

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic FAR_EL1 or
FAR_EL12 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Traps and Enables

For a description of the prioritization of any generated exceptions, see Synchronous exception prioritization for
exceptions taken to AArch64 on page B12-547. Subject to the prioritization rules:

When EL2 is implemented and is using AArch64 and (SCR_EL3.NS == 1) AND (HCR_EL2.E2H == 0):

• If HCR_EL2.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HCR_EL2.TVM==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

<systemreg> op0 op1 CRn CRm op2

FAR_EL1 11 000 0110 0000 000

FAR_EL12 11 101 0110 0000 000

<systemreg>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

FAR_EL1 x x 0 - RW n/a RW

FAR_EL1 0 0 1 - RW RW RW

FAR_EL1 0 1 1 - n/a RW RW

FAR_EL1 1 0 1 - RW FAR_EL2 RW

FAR_EL1 1 1 1 - n/a FAR_EL2 RW

FAR_EL12 x x 0 - - n/a -

FAR_EL12 0 0 1 - - - -

FAR_EL12 0 1 1 - n/a - -

FAR_EL12 1 0 1 - - RW RW

FAR_EL12 1 1 1 - n/a RW RW
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-273
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.2 General system control registers
When EL2 is implemented and is using AArch64 and (SCR_EL3.NS == 1) AND (HCR_EL2.E2H == 1) AND
(HCR_EL2.TGE == 0):

• If HCR_EL2.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HCR_EL2.TVM==1, Non-secure write accesses to this register from EL1 are trapped to EL2.
B12-274 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.2 General system control registers
B12.2.19 FAR_EL2, Fault Address Register (EL2)

The FAR_EL2 characteristics are:

Purpose

Holds the faulting Virtual Address for all synchronous instruction or data aborts, or exceptions from
a misaligned PC or a Watchpoint exception, taken to EL2.

Configurations

AArch64 System register FAR_EL2[31:0] is architecturally mapped to AArch32 System register
HDFAR.

AArch64 System register FAR_EL2[63:32] is architecturally mapped to AArch32 System register
HIFAR.

AArch64 System register FAR_EL2[31:0] is architecturally mapped to AArch32 System register
DFAR (S) when EL2 is implemented.

AArch64 System register FAR_EL2[63:32] is architecturally mapped to AArch32 System register
IFAR (S) when EL2 is implemented.

If EL2 is not implemented, this register is RES0 from EL3.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

FAR_EL2 is a 64-bit register.

Field descriptions

The FAR_EL2 bit assignments are:

Bits [63:0]

Faulting Virtual Address for synchronous exceptions taken to EL2. Exceptions that set the
FAR_EL2 are instruction aborts (EC 0x20 or 0x21), data aborts (EC 0x24 or 0x25), a misaligned PC
exception (EC 0x22), or a Watchpoint exception (EC 0x34 or 0x35). ESR_EL2.EC holds the EC value
for the exception.

For a synchronous external abort other than a synchronous external abort on a translation table walk,
this field is valid only if ESR_EL2.FnV is 0, and the FAR_EL2 is UNKNOWN if ESR_EL2.FnV is 1.

For all other exceptions taken to EL2, the FAR_EL2 is UNKNOWN.

If a memory fault that sets FAR_EL2 is generated from a data cache maintenance or DC ZVA
instruction, this field holds the address specified in the register argument of the instruction.

If the exception that updates FAR_EL2 is taken from an Exception level that is using AArch32, the
top 32-bits are all zero, unless the faulting address is generated by a load or store instruction that
sequentially increments from address 0xFFFFFFFF. This is an UNPREDICTABLE condition, and in this
case the upper 32-bits are set to 0x00000001.

For a Data Abort or Watchpoint exception, if address tagging is enabled for the address accessed by
the data access that caused the exception, then this field includes the tag. For more information
about address tagging, see Address tagging in AArch64 state on page B12-551.

Faulting Virtual Address for synchronous exceptions taken to EL2

63 0
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-275
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.2 General system control registers
Note
 The address held in this field is an address accessed by the instruction fetch or data access that

caused the exception that gave rise to the instruction or data abort. It is the lower address that gave
rise to the fault. Where different faults from different addresses arise from the same instruction, such
as for an instruction that loads or stores a mis-aligned address that crosses a page boundary, the
architecture does not prioritize between those different faults.

FAR_EL2 is made UNKNOWN on an exception return from EL2.

Accessing the FAR_EL2

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax is encoded with the following settings in the instruction encoding:

Accessibility

The register is accessible in software as follows:

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic FAR_EL2 or
FAR_EL1 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

<systemreg> op0 op1 CRn CRm op2

FAR_EL2 11 100 0110 0000 000

FAR_EL1 11 000 0110 0000 000

<systemreg>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

FAR_EL2 x x 0 - - n/a RW

FAR_EL2 0 0 1 - - RW RW

FAR_EL2 0 1 1 - n/a RW RW

FAR_EL2 1 0 1 - - RW RW

FAR_EL2 1 1 1 - n/a RW RW

FAR_EL1 x x 0 - FAR_EL1 n/a FAR_EL1

FAR_EL1 0 0 1 - FAR_EL1 FAR_EL1 FAR_EL1

FAR_EL1 0 1 1 - n/a FAR_EL1 FAR_EL1

FAR_EL1 1 0 1 - FAR_EL1 RW FAR_EL1

FAR_EL1 1 1 1 - n/a RW FAR_EL1
B12-276 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.2 General system control registers
B12.2.20 HACR_EL2, Hypervisor Auxiliary Control Register

The HACR_EL2 characteristics are:

Purpose

Controls trapping to EL2 of IMPLEMENTATION DEFINED aspects of Non-secure EL1 or EL0
operation.

Note
 ARM recommends the values in this register do not cause unnecessary traps to EL2 when

HCR_EL2.{E2H, TGE} == {1, 1}.

Configurations

AArch64 System register HACR_EL2 is architecturally mapped to AArch32 System register
HACR.

If EL2 is not implemented, this register is RES0 from EL3.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

HACR_EL2 is a 32-bit register.

Field descriptions

The HACR_EL2 bit assignments are:

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

Accessing the HACR_EL2

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax is encoded with the following settings in the instruction encoding:

IMPLEMENTATION DEFINED

31 0

<systemreg> op0 op1 CRn CRm op2

HACR_EL2 11 100 0001 0001 111
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-277
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.2 General system control registers
Accessibility

The register is accessible in software as follows:

<systemreg>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

HACR_EL2 x x 0 - - n/a RW

HACR_EL2 0 0 1 - - RW RW

HACR_EL2 0 1 1 - n/a RW RW

HACR_EL2 1 0 1 - - RW RW

HACR_EL2 1 1 1 - n/a RW RW
B12-278 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.2 General system control registers

RES
MIOC
RES
TLOR
E2H
CD
RW
TRV
HCD
TDZ
TGE
TVM
TTLB
TPU
TPC
TSW
TACR
B12.2.21 HCR_EL2, Hypervisor Configuration Register

The HCR_EL2 characteristics are:

Purpose

Provides configuration controls for virtualization, including defining whether various Non-secure
operations are trapped to EL2.

Configurations

AArch64 System register HCR_EL2[31:0] is architecturally mapped to AArch32 System register
HCR.

AArch64 System register HCR_EL2[63:32] is architecturally mapped to AArch32 System register
HCR2.

If EL2 is not implemented, this register is RES0 from EL3.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

HCR_EL2 is a 64-bit register.

Field descriptions

The HCR_EL2 bit assignments are:

Bits [63:39]

Reserved, RES0.

MIOCNCE, bit [38]

Mismatched Inner/Outer Cacheable Non-Coherency Enable, for the Non-secure EL1&0 translation
regime.

0 For the Non-secure EL1&0 translation regime, for permitted accesses to a memory
location that use a common definition of the Shareability and Cacheability of the
location, there must be no loss of coherency if the Inner Cacheability attribute for those
accesses differs from the Outer Cacheability attribute.

63 39 38 37 36 35 34

ID

33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12

BSU

11 10

FB

9 8

VI

7 6 5 4 3 2 1 0

0
NCE

0

M

VM
SWIO
PTW
FMO
IMO

AMO
VF

VSE
DC

TWI
TWE
TID0
TID1
TID2
TID3
TSC

TIDCP
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-279
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.2 General system control registers
1 For the Non-secure EL1&0 translation regime, for permitted accesses to a memory
location that use a common definition of the Shareability and Cacheability of the
location, there might be a loss of coherency if the Inner Cacheability attribute for those
accesses differs from the Outer Cacheability attribute.

For more information see Mismatched memory attributes on page B12-545.

This field can be implemented as RAZ/WI.

In an implementation that includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves as if
this field is 0 for all purposes other than a direct read or write access of HCR_EL2.

In ARMv8.1, if HCR_EL2.{E2H, TGE} is set to {1, 1}, the PE ignores the value of this field for all
purposes other than a direct read of this field.

Bits [37:36]

Reserved, RES0.

TLOR, bit [35] (In ARMv8.1)

Trap LOR registers. Traps accesses to the LORSA_EL1, LOREA_EL1, LORN_EL1, LORC_EL1,
and LORID_EL1 registers from Non-secure EL1 to EL2.

0 This control has no effect on Non-secure EL1 accesses to the LOR registers.

1 Non-secure EL1 accesses to the LOR registers are trapped to EL2.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct
read of this field.

Bit [35] (In ARMv8.0)

Reserved, RES0.

E2H, bit [34] (In ARMv8.1)

EL2 Host. Enables a configuration where a Host Operating System is running in EL2, and the Host
Operating System's applications are running in EL0.

0 EL2 is running a hypervisor.

1 EL2 is running a Host Operating System.

For information on the behavior of this bit see Behavior of HCR_EL2.E2H on page B8-60.

This bit is permitted to be cached in a TLB.

In an implementation that includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves as if
this field is 0 for all purposes other than a direct read or write access of HCR_EL2.

Bit [34] (In ARMv8.0)

Reserved, RES0.

ID, bit [33]

Stage 2 Instruction access cacheability disable. For the Non-secure EL1&0 translation regime, when
HCR_EL2.VM==1, this control forces all stage 2 translations for instruction accesses to Normal
memory to be Non-cacheable.

0 This control has no effect on stage 2 of the Non-secure EL1&0 translation regime.

1 For the Non-secure EL1&0 translation regime, forces all stage 2 translations for
instruction accesses to Normal memory to be Non-cacheable.

In an implementation that includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves as if
this field is 0 for all purposes other than a direct read or write access of HCR_EL2.

This bit has no effect on the EL2 or EL3 translation regimes.

In ARMv8.1, if HCR_EL2.{E2H, TGE} is set to {1, 1}, the PE ignores the value of this field for all
purposes other than a direct read of this field.
B12-280 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.2 General system control registers
CD, bit [32]

Stage 2 Data access cacheability disable. For the Non-secure EL1&0 translation regime, when
HCR_EL2.VM==1, this control forces all stage 2 translations for data accesses and translation table
walks to Normal memory to be Non-cacheable.

0 This control has no effect on stage 2 of the Non-secure EL1&0 translation regime for
data accesses and translation table walks.

1 For the Non-secure EL1&0 translation regime, forces all stage 2 translations for data
accesses and translation table walks to Normal memory to be Non-cacheable.

In an implementation that includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves as if
this field is 0 for all purposes other than a direct read or write access of HCR_EL2.

This bit has no effect on the EL2 or EL3 translation regimes.

In ARMv8.1, if HCR_EL2.{E2H, TGE} is set to {1, 1}, the PE ignores the value of this field for all
purposes other than a direct read of this field.

RW, bit [31]

Execution state control for lower Exception levels:

0 Lower levels are all AArch32.

1 The Execution state for EL1 is AArch64. The Execution state for EL0 is determined by
the current value of PSTATE.nRW when executing at EL0.

If all lower Exception levels cannot use AArch32 then this bit is RAO/WI.

In an implementation that includes EL3, when SCR_EL3.NS==0, the PE behaves as if this bit has
the same value as the SCR_EL3.RW bit for all purposes other than a direct read or write access of
HCR_EL2.

The RW bit is permitted to be cached in a TLB.

In ARMv8.1, if HCR_EL2.{E2H, TGE} is set to {1, 1}, this field behaves as 1 for all purposes other
than a direct read of the value of this bit.

TRVM, bit [30]

Trap Reads of Virtual Memory controls. Traps Non-secure EL1 reads of the virtual memory control
registers to EL2, from both Execution states. The registers for which read accesses are trapped are
as follows:

Non-secure EL1 using AArch64: SCTLR_EL1, TTBR0_EL1, TTBR1_EL1, TCR_EL1, ESR_EL1,
FAR_EL1, AFSR0_EL1, AFSR1_EL1, MAIR_EL1, AMAIR_EL1, CONTEXTIDR_EL1.

Non-secure EL1 using AArch32: SCTLR, TTBR0, TTBR1, TTBCR, DACR, DFSR, IFSR, DFAR,
IFAR, ADFSR, AIFSR, PRRR, NMRR, MAIR0, MAIR1, AMAIR0, AMAIR1, CONTEXTIDR.

0 This control has no effect on Non-secure EL1 read accesses to Virtual Memory controls.

1 Non-secure EL1 read accesses to the specified Virtual Memory controls are trapped to
EL2.

In an implementation that includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves as if
this field is 0 for all purposes other than a direct read or write access of HCR_EL2.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct
read of this field.

HCD, bit [29]

HVC instruction disable. Disables Non-secure state execution of HVC instructions, from both
Execution states.

0 HVC instruction execution is enabled at EL2 and Non-secure EL1.

1 HVC instructions are UNDEFINED at EL2 and Non-secure EL1. Any resulting exception
is taken to the Exception level at which the HVC instruction is executed.
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-281
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.2 General system control registers
Note
 HVC instructions are always UNDEFINED at EL0.

This bit is only implemented if EL3 is not implemented. Otherwise, it is RES0.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct
read of this field.

TDZ, bit [28]

Trap DC ZVA instructions. Traps Non-secure EL0 and EL1 execution of DC ZVA instructions to
EL2, from AArch64 state only.

0 This control has no effect on the Non-secure EL0 and EL1 execution of DC ZVA
instructions.

1 Any attempt to execute a DC ZVA instruction at Non-secure EL0 using AArch64 or
Non-secure EL1 using AArch64 is trapped to EL2.
Reading the DCZID_EL0 returns a value that indicates that DC ZVA instructions are
not supported.

In an implementation that includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves as if
this field is 0 for all purposes other than a direct read or write access of HCR_EL2.

In ARMv8.1, if HCR_EL2.{E2H, TGE} is set to {1, 1}, this field behaves as 0 for all purposes other
than a direct read of the value of this bit.

TGE, bit [27]

Trap General Exceptions, from Non-secure EL0.

0 This control has no effect on execution at EL0.

1 When the value of SCR_EL3.NS is 0, this control has no effect on execution at EL0.
When the value of SCR_EL3.NS is 1, in all cases:

• All exceptions that would be routed to EL1 are routed to EL2.

• The SCTLR_EL1.M field, or the SCTLR.M field if EL1 is using AArch32, is
treated as being 0 for all purposes other than returning the result of a direct read
of SCTLR_EL1 or SCTLR.

• All virtual interrupts are disabled.

• Any IMPLEMENTATION DEFINED mechanisms for signaling virtual interrupts are
disabled.

• An exception return to EL1 is treated as an illegal exception return.
When the value of SCR_EL3.NS is 1 and the value of HCR_EL2.E2H is 0, additionally:

• The HCR_EL2.{FMO, IMO, AMO} fields are treated as being 1 for all purposes
other than a direct read or write access of HCR_EL2.

• The MDCR_EL2.{TDRA,TDOSA,TDA} fields are treated as being 1 for all
purposes other than returning the result of a direct read of MDCR_EL2.

For information on the behavior of this bit when E2H is 1, see Behavior of
HCR_EL2.E2H on page B8-60.

HCR_EL2.TGE must not be cached in a TLB.

In an implementation that includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves as if
this field is 0 for all purposes other than a direct read or write access of HCR_EL2.

TVM, bit [26]

Trap Virtual Memory controls. Traps Non-secure EL1 writes to the virtual memory control registers
to EL2, from both Execution states. The registers for which write accesses are trapped are as
follows:

Non-secure EL1 using AArch64: SCTLR_EL1, TTBR0_EL1, TTBR1_EL1, TCR_EL1, ESR_EL1,
FAR_EL1, AFSR0_EL1, AFSR1_EL1, MAIR_EL1, AMAIR_EL1, CONTEXTIDR_EL1.
B12-282 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.2 General system control registers
Non-secure EL1 using AArch32: SCTLR, TTBR0, TTBR1, TTBCR, DACR, DFSR, IFSR, DFAR,
IFAR, ADFSR, AIFSR, PRRR, NMRR, MAIR0, MAIR1, AMAIR0, AMAIR1, CONTEXTIDR.

0 This control has no effect on Non-secure EL1 write accesses to EL1 virtual memory
control registers.

1 Non-secure EL1 write accesses to the specified EL1 virtual memory control registers
are trapped to EL2.

In an implementation that includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves as if
this field is 0 for all purposes other than a direct read or write access of HCR_EL2.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct
read of this field.

TTLB, bit [25]

Trap TLB maintenance instructions. Traps Non-secure EL1 execution of TLB maintenance
instructions to EL2, from both Execution states. This applies to the following instructions:

Non-secure EL1 using AArch64: TLBI VMALLE1IS, TLBI VAE1IS, TLBI ASIDE1IS, TLBI
VAAE1IS, TLBI VALE1IS, TLBI VAALE1IS, TLBI VMALLE1, TLBI VAE1, TLBI ASIDE1,
TLBI VAAE1, TLBI VALE1, TLBI VAALE1.

Non-secure EL1 using AArch32: TLBIALLIS, TLBIMVAIS, TLBIASIDIS, TLBIMVAAIS,
TLBIMVALIS, TLBIMVAALIS, ITLBIALL, ITLBIMVA, ITLBIASID, DTLBIALL,
DTLBIMVA, DTLBIASID, TLBIALL, TLBIMVA, TLBIASID, TLBIMVAA, TLBIMVAL,
TLBIMVAAL

0 This control has no effect on Non-secure EL1 execution of TLB maintenance
instructions.

1 Non-secure EL1 execution of the specified TLB maintenance instructions are trapped
to EL2.

In an implementation that includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves as if
this field is 0 for all purposes other than a direct read or write access of HCR_EL2.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct
read of this field.

TPU, bit [24]

Trap cache maintenance instructions that operate to the Point of Unification. Traps execution of
those cache maintenance instructions at Non-secure EL1 or EL0 using AArch64, and at Non-secure
EL1 using AArch32, to EL2. This applies to the following instructions:

Non-secure EL0 using AArch64:IC IVAU, DC CVAU. However, if the value of SCTLR_EL1.UCI
is 0 these instructions are UNDEFINED at EL0 and any resulting exception is higher priority than this
trap to EL2.

Non-secure EL1 using AArch64: IC IVAU, IC IALLU, IC IALLUIS, DC CVAU.

Non-secure EL1 using AArch32: ICIMVAU, ICIALLU, ICIALLUIS, DCCMVAU.

Note
 An exception generated because an instruction is UNDEFINED at EL0 is higher priority than this trap

to EL2. In addition:

• IC IALLUIS and IC IALLU are always UNDEFINED at EL0 using AArch64.

• ICIMVAU, ICIALLU, ICIALLUIS, and DCCMVAU are always UNDEFINED at EL0 using
AArch32.

0 This control has no effect on the execution of cache maintenance instructions.

1 Non-secure execution of the specified instructions is trapped to EL2.

In an implementation that includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves as if
this field is 0 for all purposes other than a direct read or write access of HCR_EL2.
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-283
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.2 General system control registers
In ARMv8.1, if HCR_EL2.{E2H, TGE} is set to {1, 1}, this field behaves as 0 for all purposes other
than a direct read of the value of this bit.

TPC, bit [23]

Trap data or unified cache maintenance instructions that operate to the Point of Coherency. Traps
execution of those cache maintenance instructions at Non-secure EL1 or EL0 using AArch64, and
at Non-secure EL1 using AArch32, to EL2. This applies to the following instructions:

Non-secure EL0 using AArch64: DC CIVAC, DC CVAC. However, if the value of
SCTLR_EL1.UCI is 0 these instructions are UNDEFINED at EL0 and any resulting exception is
higher priority than this trap to EL2.

Non-secure EL1 using AArch64: DC IVAC, DC CIVAC, DC CVAC.

Non-secure EL1 using AArch32: DCIMVAC, DCCIMVAC, DCCMVAC.

Note
 An exception generated because an instruction is UNDEFINED at EL0 is higher priority than this trap

to EL2. In addition:

• DC IVAC is always UNDEFINED at EL0 using AArch64.

• DCIMVAC, DCCIMVAC, and DCCMVAC are always UNDEFINED at EL0 using AArch32.

0 This control has no effect on the execution of cache maintenance instructions.

1 Non-secure execution of the specified instructions is trapped to EL2.

In an implementation that includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves as if
this field is 0 for all purposes other than a direct read or write access of HCR_EL2.

In ARMv8.1, if HCR_EL2.{E2H, TGE} is set to {1, 1}, this field behaves as 0 for all purposes other
than a direct read of the value of this bit.

TSW, bit [22]

Trap data or unified cache maintenance instructions that operate by Set/Way. Traps execution of
those cache maintenance instructions at Non-secure EL1 using AArch64, and at Non-secure EL1
using AArch32, to EL2. This applies to the following instructions:

Non-secure EL1 using AArch64: DC ISW, DC CSW, DC CISW.

Non-secure EL1 using AArch32: DCISW, DCCSW, DCCISW.

Note
 An exception generated because an instruction is UNDEFINED at EL0 is higher priority than this trap

to EL2, and these instructions are always UNDEFINED at EL0.

0 This control has no effect on the execution of cache maintenance instructions.

1 Non-secure execution of the specified instructions is trapped to EL2.

In an implementation that includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves as if
this field is 0 for all purposes other than a direct read or write access of HCR_EL2.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct
read of this field.

TACR, bit [21]

Trap Auxiliary Control Registers. Traps Non-secure EL1 accesses to the Auxiliary Control
Registers to EL2, from both Execution states. This applies to the following register accesses:

• Non-secure EL1 using AArch64: ACTLR_EL1.

• Non-secure EL1 using AArch32: ACTLR and, if implemented, ACTLR2.

0 This control has no effect on Non-secure EL1 accesses to the Auxiliary Control
Registers.

1 Non-secure EL1 accesses to the specified registers are trapped to EL2.
B12-284 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.2 General system control registers
In an implementation that includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves as if
this field is 0 for all purposes other than a direct read or write access of HCR_EL2.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct
read of this field.

TIDCP, bit [20]

Trap IMPLEMENTATION DEFINED functionality. Traps Non-secure EL1 accesses to the encodings
reserved for IMPLEMENTATION DEFINED functionality to EL2. This applies to the following register
accesses:

AArch64: The following reserved encoding spaces:

• IMPLEMENTATION DEFINED system operations, which are accessed using SYS and SYSL,
with CRm == {13, 15}.

• IMPLEMENTATION DEFINED System registers, which are accessed using MRS and MSR with
the S3_<op1>_<Cn>_<Cm>_<op2> register name.

AArch32: MCR and MRC instructions accessing the following encodings:

• All coproc==p15, CRn==c9, opc1 == {0-7}, CRm == {c0-c2, c5-c8}, opc2 == {0-7}.

• All coproc==p15, CRn==c10, opc1 =={0-7}, CRm == {c0, c1, c4, c8}, opc2 == {0-7}.

• All coproc==p15, CRn==c11, opc1=={0-7}, CRm == {c0-c8, c15}, opc2 == {0-7}.

When the value of HCR_EL2.TIDCP is 1, it is IMPLEMENTATION DEFINED whether any of this
functionality accessed from Non-secure EL0 is trapped to EL2. If it is not, then it is UNDEFINED, and
any attempt to access it from Non-secure EL0 generates an exception that is taken to EL1.

0 This control has no effect on the encodings reserved for IMPLEMENTATION DEFINED
functionality.

1 Non-secure EL1 accesses to or execution of the specified encodings reserved for
IMPLEMENTATION DEFINED functionality are trapped to EL2.

In an implementation that includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves as if
this field is 0 for all purposes other than a direct read or write access of HCR_EL2.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct
read of this field.

TSC, bit [19]

Trap SMC instructions. Traps Non-secure EL1 execution of SMC instructions to EL2, from both
Execution states.

0 This control has no effect on the execution of SMC instructions.

1 Any attempt to execute an SMC instruction at Non-secure EL1 using AArch64 or
Non-secure EL1 using AArch32 is trapped to EL2, regardless of the value of
SCR_EL3.SMD.

In AArch32 state, the ARMv8-A architecture permits, but does not require, this trap to apply to
conditional SMC instructions that fail their condition code check, in the same way as with traps on
other conditional instructions.

If EL3 is not implemented, this bit is RES0.

In an implementation that includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves as if
this field is 0 for all purposes other than a direct read or write access of HCR_EL2.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct
read of this field.

TID3, bit [18]

Trap ID group 3. Traps Non-secure EL1 reads of the following registers to EL2:

AArch64: ID_PFR0_EL1, ID_PFR1_EL1, ID_DFR0_EL1, ID_AFR0_EL1, ID_MMFR0_EL1,
ID_MMFR1_EL1, ID_MMFR2_EL1, ID_MMFR3_EL1, ID_ISAR0_EL1, ID_ISAR1_EL1,
ID_ISAR2_EL1, ID_ISAR3_EL1, ID_ISAR4_EL1, ID_ISAR5_EL1, MVFR0_EL1,
MVFR1_EL1, MVFR2_EL1, ID_AA64PFR0_EL1, ID_AA64PFR1_EL1, ID_AA64DFR0_EL1,
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-285
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.2 General system control registers
ID_AA64DFR1_EL1, ID_AA64ISAR0_EL1, ID_AA64ISAR1_EL1, ID_AA64MMFR0_EL1,
ID_AA64MMFR1_EL1, ID_AA64AFR0_EL1, ID_AA64AFR1_EL1, and ID_MMFR4_EL1,
except that if ID_MMFR4_EL1 is implemented as RAZ/WI then it is IMPLEMENTATION DEFINED
whether accesses to ID_MMFR4_EL1 are trapped.

It is IMPLEMENTATION DEFINED whether this field traps MRS accesses to encodings in the following
range that are not already mentioned in this field description:

• Op0 == 3, op1 == 0, CRn == c0, CRm == {c2-c7}, op2 == {0-7}.

AArch32: ID_PFR0, ID_PFR1, ID_DFR0, ID_AFR0, ID_MMFR0, ID_MMFR1, ID_MMFR2,
ID_MMFR3, ID_ISAR0, ID_ISAR1, ID_ISAR2, ID_ISAR3, ID_ISAR4, ID_ISAR5, MVFR0,
MVFR1, MVFR2, and ID_MMFR4, except that if ID_MMFR4 is implemented as RAZ/WI then it
is IMPLEMENTATION DEFINED whether accesses to ID_MMFR4 are trapped.

MRC access to any of the following encodings are also trapped:

• coproc==p15, opc1 == 0, CRn == c0, CRm == {c3-c7}, opc2 == {0,1}.

• coproc==p15, opc1 == 0, CRn == c0, CRm == c3, opc2 == 2.

• coproc==p15, opc1 == 0, CRn == c0, CRm == c5, opc2 == {4,5}.

It is IMPLEMENTATION DEFINED whether this bit traps MRC accesses to the following encodings:

• coproc==p15, opc1 == 0, CRn == c0, CRm == c2, opc2 == 7.

• coproc==p15, opc1 == 0, CRn == c0, CRm == c3, opc2 == {3-7}.

• coproc==p15, opc1 == 0, CRn == c0, CRm == {c4, c6, c7}, opc2 == {2-7}.

• coproc==p15, opc1 == 0, CRn == c0, CRm == c5, opc2 == {2, 3, 6, 7}.

0 This control has no effect on Non-secure EL1 reads of the ID group 3 registers.

1 The specified Non-secure EL1 read accesses to ID group 3 registers are trapped to EL2.

In an implementation that includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves as if
this field is 0 for all purposes other than a direct read or write access of HCR_EL2.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct
read of this field.

TID2, bit [17]

Trap ID group 2. Traps the following register accesses to EL2:

AArch64:

• Non-secure EL1 reads of CTR_EL0, CCSIDR_EL1, CLIDR_EL1, and CSSELR_EL1.

• Non-secure EL0 reads of CTR_EL0, except that if the value of SCTLR_EL1.UCT is 0 then
EL0 reads of CTR_EL0 are UNDEFINED and any resulting exception takes precedence over
this trap.

• Non-secure EL1 writes to CSSELR_EL1.

AArch32:

• Non-secure EL1 reads of the CTR, CCSIDR, CLIDR, and CSSELR.

• Non-secure EL1 writes to the CSSELR.

0 This control has no effect on Non-secure EL1 and EL0 accesses to the ID group 2
registers.

1 The specified Non-secure EL1 and EL0 accesses to ID group 2 registers are trapped to
EL2.

In an implementation that includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves as if
this field is 0 for all purposes other than a direct read or write access of HCR_EL2.

In ARMv8.1, if HCR_EL2.{E2H, TGE} is set to {1, 1}, this field behaves as 0 for all purposes other
than a direct read of the value of this bit.

TID1, bit [16]

Trap ID group 1. Traps Non-secure EL1 reads of the following registers are trapped to EL2:
B12-286 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.2 General system control registers
AArch64: REVIDR_EL1, AIDR_EL1.

AArch32: TCMTR, TLBTR, REVIDR, AIDR.

0 This control has no effect on Non-secure EL1 reads of the ID group 1 registers.

1 The specified Non-secure EL1 read accesses to ID group 1 registers are trapped to EL2.

In an implementation that includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves as if
this field is 0 for all purposes other than a direct read or write access of HCR_EL2.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct
read of this field.

TID0, bit [15]

Trap ID group 0. Traps the following register accesses to EL2:

AArch64: None.

AArch32:

• Non-secure EL1 reads of the JIDR.

• If the JIDR is RAZ from Non-secure EL0, Non-secure EL0 of the JIDR.

• Non-secure EL1 reads of the FPSID.

Note
 • It is IMPLEMENTATION DEFINED whether the JIDR is RAZ or UNDEFINED at EL0. If it is

UNDEFINED at EL0 then any resulting exception takes precedence over this trap.

• The FPSID is not accessible at EL0 using AArch32.

• Writes to the FPSID are ignored, and not trapped by this control.

0 This control has no effect on Non-secure EL1 reads of the ID group 0 registers.

1 The specified Non-secure EL1 read accesses to ID group 0 registers are trapped to EL2.

In an implementation that includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves as if
this field is 0 for all purposes other than a direct read or write access of HCR_EL2.

In ARMv8.1, if HCR_EL2.{E2H, TGE} is set to {1, 1}, this field behaves as 0 for all purposes other
than a direct read of the value of this bit.

TWE, bit [14]

Traps Non-secure EL0 and EL1 execution of WFE instructions to EL2, from both Execution states.

0 This control has no effect on the execution of WFE instructions at Non-secure EL0 or
Non-secure EL1.

1 Any attempt to execute a WFE instruction at Non-secure EL0 or EL1 is trapped to EL2,
if the instruction would otherwise have caused the PE to enter a low-power state, except
that when the value of SCTLR_EL1.nTWE is 0, the trap of EL0 execution to EL1 takes
precedence over this trap.

In AArch32 state, the attempted execution of a conditional WFE instruction is only trapped if the
instruction passes its condition code check.

In an implementation that includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves as if
this field is 0 for all purposes other than a direct read or write access of HCR_EL2.

Note
 Since a WFE can complete at any time, even without a Wakeup event, the traps on WFE are not

guaranteed to be taken, even if the WFE is executed when there is no Wakeup event. The only
guarantee is that if the instruction does not complete in finite time in the absence of a Wakeup event,
the trap will be taken.

In ARMv8.1, if HCR_EL2.{E2H, TGE} is set to {1, 1}, this field behaves as 0 for all purposes other
than a direct read of the value of this bit.
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-287
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.2 General system control registers
TWI, bit [13]

Traps Non-secure EL0 and EL1 execution of WFI instructions to EL2, from both Execution states.

0 This control has no effect on the execution of WFI instructions at Non-secure EL1 or
Non-secure EL0.

1 Any attempt to execute a WFI instruction at Non-secure EL0 or EL1 is trapped to EL2,
if the instruction would otherwise have caused the PE to enter a low-power state, except
that when the value of SCTLR_EL1.nTWI is 0, the trap of EL0 execution to EL1 takes
precedence over this trap.

In AArch32 state, the attempted execution of a conditional WFI instruction is only trapped if the
instruction passes its condition code check.

In an implementation that includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves as if
this field is 0 for all purposes other than a direct read or write access of HCR_EL2.

Note
 Since a WFI can complete at any time, even without a Wakeup event, the traps on WFI are not

guaranteed to be taken, even if the WFI is executed when there is no Wakeup event. The only
guarantee is that if the instruction does not complete in finite time in the absence of a Wakeup event,
the trap will be taken.

In ARMv8.1, if HCR_EL2.{E2H, TGE} is set to {1, 1}, this field behaves as 0 for all purposes other
than a direct read of the value of this bit.

DC, bit [12]

Default Cacheability.

0 This control has no effect on the Non-secure EL1&0 translation regime.

1 In Non-secure state:

• When EL1 is using AArch64, the PE behaves as if the value of the
SCTLR_EL1.M field is 0 for all purposes other than returning the value of a
direct read of SCTLR_EL1.

• When EL1 is using AArch32, the PE behaves as if the value of the SCTLR.M
field is 0 for all purposes other than returning the value of a direct read of SCTLR.

• The PE behaves as if the value of the HCR_EL2.VM field is 1 for all purposes
other than returning the value of a direct read of HCR_EL2.

• The memory type produced by stage 1 of the EL1&0 translation regime is
Normal Non-Shareable, Inner Write-Back Read-Allocate Write-Allocate, Outer
Write-Back Read-

This field has no effect on the EL2 and EL3 translation regimes.

This field is permitted to be cached in a TLB.

In an implementation that includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves as if
this field is 0 for all purposes other than a direct read or write access of HCR_EL2.

In ARMv8.1, if HCR_EL2.{E2H, TGE} is set to {1, 1}, this field behaves as 0 for all purposes other
than a direct read of the value of this bit.

BSU, bits [11:10]

Barrier Shareability upgrade. This field determines the minimum shareability domain that is applied
to any barrier instruction executed from Non-secure EL1 or Non-secure EL0:

00 No effect

01 Inner Shareable

10 Outer Shareable

11 Full system

This value is combined with the specified level of the barrier held in its instruction, using the same
principles as combining the shareability attributes from two stages of address translation.
B12-288 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.2 General system control registers
In an implementation that includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves as if
this field is 0 for all purposes other than a direct read or write access of HCR_EL2.

In ARMv8.1, if HCR_EL2.{E2H, TGE} is set to {1, 1}, this field behaves as 0b00 for all purposes
other than a direct read of the value of this bit.

FB, bit [9]

Force broadcast. Causes the following instructions to be broadcast within the Inner Shareable
domain when executed from Non-secure EL1:

AArch32: BPIALL, TLBIALL, TLBIMVA, TLBIASID, DTLBIALL, DTLBIMVA, DTLBIASID,
ITLBIALL, ITLBIMVA, ITLBIASID, TLBIMVAA, ICIALLU, TLBIMVAL, TLBIMVAAL.

AArch64: TLBI VMALLE1, TLBI VAE1, TLBI ASIDE1, TLBI VAAE1, TLBI VALE1, TLBI
VAALE1, IC IALLU.

0 This field has no effect on the operation of the specified instructions.

1 When one of the specified instruction is executed at Non-secure EL1, the instruction is
broadcast within the Inner Shareable shareability domain.

In an implementation that includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves as if
this field is 0 for all purposes other than a direct read or write access of HCR_EL2.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct
read of this field.

VSE, bit [8]

Virtual System Error or Asynchronous Abort.

0 This mechanism is not making a virtual System Error or Asynchronous Abort pending.

1 A virtual System Error or Asynchronous Abort is pending because of this mechanism.

The virtual System Error or Asynchronous Abort is only enabled when the value of
HCR_EL2.AMO bit is 1.

In an implementation that includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves as if
this field is 0 for all purposes other than a direct read or write access of HCR_EL2.

VI, bit [7]

Virtual IRQ Interrupt.

0 This mechanism is not making a virtual IRQ pending.

1 A virtual IRQ is pending because of this mechanism.

The virtual IRQ is only enabled when the value of HCR_EL2.IMO bit is 1.

In an implementation that includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves as if
this field is 0 for all purposes other than a direct read or write access of HCR_EL2.

VF, bit [6]

Virtual FIQ Interrupt.

0 This mechanism is not making a virtual FIQ pending.

1 A virtual FIQ is pending because of this mechanism.

The virtual FIQ is only enabled when the value of HCR_EL2.FMO bit is 1.

In an implementation that includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves as if
this field is 0 for all purposes other than a direct read or write access of HCR_EL2.

AMO, bit [5]

Asynchronous External Abort and SError Interrupt routing.

0 When executing at Non-secure Exception levels below EL2, physical Asynchronous
External Aborts and SError Interrupts are not taken to EL2.
When executing at EL2 using AArch64, physical Asynchronous External Aborts and
SError Interrupts are not taken unless they are routed to EL3 by the SCR_EL3.EA bit.
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-289
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.2 General system control registers
Virtual Asynchronous External Aborts and SError Interrupts interrupts are disabled.

1 When executing at any Exception level in Non-secure state:

• Physical Asynchronous External Aborts and SError Interrupts are taken to EL2
unless they are routed to EL3.

• Virtual Asynchronous External Aborts and SError Interrupts are enabled.

If the value of HCR_EL2.TGE is 1:

• In ARMv8.0, or in ARMv8.1 when HCR_EL2.E2H is 0, this field behaves as 1 for all
purposes other than a direct read of the value of this bit.

• In ARMv8.1 when HCR_EL2.E2H is 1, this field behaves as 0 for all purposes other than a
direct read of the value of this bit.

For more information, see Asynchronous exception routing on page B12-550.

In an implementation that includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves as if
this field is 0 for all purposes other than a direct read or write access of HCR_EL2.

IMO, bit [4]

Physical IRQ Routing.

0 When executing at Non-secure Exception levels below EL2, physical IRQ interrupts are
not taken to EL2.
When executing at EL2 using AArch64, physical IRQ interrupts are not taken unless
they are routed to EL3 by the SCR_EL3.IRQ bit.
Virtual IRQ interrupts are disabled.

1 When executing at any Exception level in Non-secure state:

• Physical IRQ interrupts are taken to EL2 unless they are routed to EL3.

• Virtual IRQ interrupts are enabled in Non-secure state.

If the value of HCR_EL2.TGE is 1:

• In ARMv8.0, or in ARMv8.1 when HCR_EL2.E2H is 0, this field behaves as 1 for all
purposes other than a direct read of the value of this bit.

• In ARMv8.1 when HCR_EL2.E2H is 1, this field behaves as 0 for all purposes other than a
direct read of the value of this bit.

For more information, see Asynchronous exception routing on page B12-550.

In an implementation that includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves as if
this field is 0 for all purposes other than a direct read or write access of HCR_EL2.

FMO, bit [3]

Physical FIQ Routing.

0 When executing at Non-secure Exception levels below EL2, physical FIQ interrupts are
not taken to EL2.
When executing at EL2 using AArch64, physical FIQ interrupts are not taken unless
they are routed to EL3 by the SCR_EL3.FIQ bit.
Virtual FIQ interrupts are disabled.

1 When executing at any Exception level in Non-secure state:

• Physical FIQ interrupts are taken to EL2 unless they are routed to EL3.

• Virtual FIQ interrupts are enabled in Non-secure state.

If the value of HCR_EL2.TGE is 1:

• In ARMv8.0, or in ARMv8.1 when HCR_EL2.E2H is 0, this field behaves as 1 for all
purposes other than a direct read of the value of this bit.

• In ARMv8.1 when HCR_EL2.E2H is 1, this field behaves as 0 for all purposes other than a
direct read of the value of this bit.

For more information, see Asynchronous exception routing on page B12-550.
B12-290 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.2 General system control registers
In an implementation that includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves as if
this field is 0 for all purposes other than a direct read or write access of HCR_EL2.

PTW, bit [2]

Protected Table Walk. In the Non-secure EL1&0 translation regime, a translation table access made
as part of a stage 1 translation table walk is subject to a stage 2 translation. The combining of the
memory type attributes from the two stages of translation means the access might be made to a type
of Device memory. If this occurs then the value of this bit determines the behavior:

0 The translation table walk occurs as if it is to Normal Non-cacheable memory. This
means it can be made speculatively.

1 The memory access generates a stage 2 Permission fault.

This field is permitted to be cached in a TLB.

In an implementation that includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves as if
this field is 0 for all purposes other than a direct read or write access of HCR_EL2.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct
read of this field.

SWIO, bit [1]

Set/Way Invalidation Override. Causes Non-secure EL1 execution of the data cache invalidate by
set/way instructions to be treated as data cache clean and invalidate by set/way:

0 This control has no effect on the operation of data cache invalidate by set/way
instructions.

1 Data cache invalidate by set/way instructions operate as data cache clean and invalidate
by set/way.

When the value of this bit is 1:

AArch32: DCISW is executed as DCCISW.

AArch64: DC ISW is executed as DC CISW.

This bit can be implemented as RES1.

In an implementation that includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves as if
this field is 0 for all purposes other than a direct read or write access of HCR_EL2.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct
read of this field.

VM, bit [0]

Virtualization enable. Enables stage 2 address translation for the Non-secure EL1&0 translation
regime. Possible values of this bit are:

0 Non-secure EL1&0 stage 2 address translation disabled.

1 Non-secure EL1&0 stage 2 address translation enabled.

When the value of this bit is 1, data cache invalidate instructions executed at Non-secure EL1
operate as data cache clean and invalidate instructions. For the invalidate by set/way instruction this
behavior applies regardless of the value of the HCR_EL2.SWIO bit.

This bit is permitted to be cached in a TLB.

In an implementation that includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves as if
this field is 0 for all purposes other than a direct read or write access of HCR_EL2.

In ARMv8.1, if HCR_EL2.{E2H, TGE} is set to {1, 1}, this field behaves as 0 for all purposes other
than a direct read of the value of this bit.

Accessing the HCR_EL2

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-291
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.2 General system control registers
This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax is encoded with the following settings in the instruction encoding:

Accessibility

The register is accessible in software as follows:

<systemreg> op0 op1 CRn CRm op2

HCR_EL2 11 100 0001 0001 000

<systemreg>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

HCR_EL2 x x 0 - - n/a RW

HCR_EL2 0 0 1 - - RW RW

HCR_EL2 0 1 1 - n/a RW RW

HCR_EL2 1 0 1 - - RW RW

HCR_EL2 1 1 1 - n/a RW RW
B12-292 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.2 General system control registers
B12.2.22 HSTR_EL2, Hypervisor System Trap Register

The HSTR_EL2 characteristics are:

Purpose

Controls trapping to Hyp mode of Non-secure accesses, at EL1 or lower in AArch32, to the System
register in the coproc == 1111 encoding space, by the CRn value used to access the register using
MCR or MRC instruction. When the register is accessible using an MCRR or MRRC instruction,
this is the CRm value used to access the register.

Configurations

AArch64 System register HSTR_EL2 is architecturally mapped to AArch32 System register HSTR.

If EL2 is not implemented, this register is RES0 from EL3.

If no Exception level can use AArch32, then this register is RES0

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

HSTR_EL2 is a 32-bit register.

Field descriptions

The HSTR_EL2 bit assignments are:

Bits [31:16]

Reserved, RES0.

T<n>, bit [n], for n = 0 to 15

Fields T14 and T4 are RES0.

The remaining fields control whether Non-secure EL0 and EL1 accesses, using MCR, MRC,
MCRR, and MRRC instructions, to the System registers in the coproc == 1111 encoding space are
trapped to Hyp mode:

0 This control has no effect on Non-secure EL0 or EL1 accesses to System registers.

1 Any Non-secure EL1 MCR, MRC access with coproc == 1111 and CRn == <n> is
trapped to Hyp mode if the access is not UNDEFINED when the value of this field is 0.
Any Non-secure EL1 MCRR, MRRC access with coproc == 1111 and CRm == <n> is
trapped to Hyp mode if the access is not UNDEFINED when the value of this field is 0.

For example, when HSTR_EL2.T7 is 1:

• Any 32-bit access from a Non-secure EL1 mode, using an MCR or MRC instruction with
coproc set to 1111 and <CRn> set to c7, and that is not UNDEFINED when HSTR_EL2.T7 is 0,
is trapped to Hyp mode.

RES0

31 16 15 14 13 12 11 10

T9

9

T8

8

T7

7

T6

6

T5

5

T4

4

T3

3

T2

2

T1

1

T0

0

T10
T11
T12
T13
T14
T15
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-293
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.2 General system control registers
• Any 64-bit access from a Non-secure EL1 mode, using an MCRR or MRRC instruction with
coproc set to 1111 and <CRm> set to c7, and that is not UNDEFINED when HSTR_EL2.T7 is 0,
is trapped to Hyp mode.

In ARMv8.1, if HCR_EL2.{E2H, TGE} is set to {1, 1}, this field behaves as 0 for all purposes other
than a direct read of the value of this bit.

Accessing the HSTR_EL2

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax is encoded with the following settings in the instruction encoding:

Accessibility

The register is accessible in software as follows:

<systemreg> op0 op1 CRn CRm op2

HSTR_EL2 11 100 0001 0001 011

<systemreg>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

HSTR_EL2 x x 0 - - n/a RW

HSTR_EL2 0 0 1 - - RW RW

HSTR_EL2 0 1 1 - n/a RW RW

HSTR_EL2 1 0 1 - - RW RW

HSTR_EL2 1 1 1 - n/a RW RW
B12-294 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.2 General system control registers
B12.2.23 ID_AA64DFR0_EL1, AArch64 Debug Feature Register 0

The ID_AA64DFR0_EL1 characteristics are:

Purpose

Provides top level information about the debug system in AArch64.

Configurations

The external register EDDFR gives information from this register.

Attributes

ID_AA64DFR0_EL1 is a 64-bit register.

Field descriptions

The ID_AA64DFR0_EL1 bit assignments are:

Bits [63:32]

Reserved, RES0.

CTX_CMPs, bits [31:28]

Number of breakpoints that are context-aware, minus 1. These are the highest numbered
breakpoints.

Bits [27:24]

Reserved, RES0.

WRPs, bits [23:20]

Number of watchpoints, minus 1. The value of 0b0000 is reserved.

Bits [19:16]

Reserved, RES0.

BRPs, bits [15:12]

Number of breakpoints, minus 1. The value of 0b0000 is reserved.

PMUVer, bits [11:8]

Performance Monitors extension version. Indicates whether System register interface to
Performance Monitors extension is implemented. Defined values are:

0000 Performance Monitors extension System registers not implemented.

0001 Performance Monitors extension System registers implemented, PMUv3.

0100 Performance Monitors extension System registers implemented, PMUv3, with a 16-bit
evtCount field, and if EL2 is implemented, the addition of the MDCR_EL2.HPMD bit.

1111 IMPLEMENTATION DEFINED form of performance monitors supported, PMUv3 not
supported.

All other values are reserved.

In ARMv8-A the permitted values are 0b0000, 0b0001 and 0b1111.

In ARMv8.1 the permitted values are 0b0000, 0b0100 and 0b1111.

RES0

63 32

CTX_CMPs

31 28

RES0

27 24

WRPs

23 20

RES0

19 16

BRPs

15 12

PMUVer

11 8

TraceVer

7 4

DebugVer

3 0
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-295
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.2 General system control registers
TraceVer, bits [7:4]

Trace support. Indicates whether System register interface to a trace macrocell is implemented.
Defined values are:

0000 Trace macrocell System registers not implemented.

0001 Trace macrocell System registers implemented.

All other values are reserved.

A value of 0b0000 only indicates that no System register interface to a trace macrocell is
implemented. A trace macrocell might nevertheless be implemented without a System register
interface.

DebugVer, bits [3:0]

Debug architecture version. Indicates presence of ARMv8 debug architecture.

0110 ARMv8 debug architecture.

0111 ARMv8 debug architecture with Virtualization Host Extensions.

All other values are reserved.

In ARMv8-A the only permitted value is 0b0110.

In ARMv8.1 the only permitted value is 0b0111.

Accessing the ID_AA64DFR0_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This syntax is encoded with the following settings in the instruction encoding:

Accessibility

The register is accessible in software as follows:

Traps and Enables

For a description of the prioritization of any generated exceptions, see Synchronous exception prioritization for
exceptions taken to AArch64 on page B12-547. Subject to the prioritization rules:

When EL2 is implemented and is using AArch64 and (SCR_EL3.NS == 1) AND (HCR_EL2.E2H == 0):

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

<systemreg> op0 op1 CRn CRm op2

ID_AA64DFR0_EL1 11 000 0000 0101 000

<systemreg>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

ID_AA64DFR0_EL1 x x 0 - RO n/a RO

ID_AA64DFR0_EL1 x 0 1 - RO RO RO

ID_AA64DFR0_EL1 x 1 1 - n/a RO RO
B12-296 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.2 General system control registers
When EL2 is implemented and is using AArch64 and (SCR_EL3.NS == 1) AND (HCR_EL2.E2H == 1) AND
(HCR_EL2.TGE == 0):

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-297
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.2 General system control registers
B12.2.24 ID_AA64ISAR0_EL1, AArch64 Instruction Set Attribute Register 0

The ID_AA64ISAR0_EL1 characteristics are:

Purpose

Provides information about the instructions implemented in AArch64 state.

Configurations

There are no configuration notes.

Attributes

ID_AA64ISAR0_EL1 is a 64-bit register.

Field descriptions

The ID_AA64ISAR0_EL1 bit assignments are:

Bits [63:32]

Reserved, RES0.

RDM, bits [31:28] (In ARMv8.1)

SQRDMLAH and SQRDMLSH instructions in AArch64. Defined values are:

0000 No SQRDMLAH and SQRDMLSH instructions implemented.

0001 SQRDMLAH and SQRDMLSH instructions implemented.

All other values are reserved.

In ARMv8-A the only permitted value is 0000.

In ARMv8.1 the only permitted value is 0001.

Bits [31:28] (In ARMv8.0)

Reserved, RES0.

Bits [27:24]

Reserved, RES0.

Atomic, bits [23:20] (In ARMv8.1)

Atomic instructions in AArch64. Defined values are:

0000 No Atomic instructions implemented.

0010 LDADD, LDCLR, LDEOR, LDSET, LDSMAX, LDSMIN, LDUMAX, LDUMIN,
CAS, CASP, and SWP instructions implemented.

All other values are reserved.

In ARMv8.1 the only permitted value is 0010.

Bits [23:20] (In ARMv8.0)

Reserved, RES0.

CRC32, bits [19:16]

CRC32 instructions in AArch64. Defined values are:

0000 No CRC32 instructions implemented.

RES0

63 32

RDM

31 28

RES0

27 24

Atomic

23 20

CRC32

19 16

SHA2

15 12

SHA1

11 8

AES

7 4

RES0

3 0
B12-298 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.2 General system control registers
0001 CRC32B, CRC32H, CRC32W, CRC32X, CRC32CB, CRC32CH, CRC32CW, and
CRC32CX instructions implemented.

All other values are reserved.

In ARMv8-A the permitted values are 0000 and 0001.

In ARMv8.1 the only permitted value is 0001.

SHA2, bits [15:12]

SHA2 instructions in AArch64. Defined values are:

0000 No SHA2 instructions implemented.

0001 SHA256H, SHA256H2, SHA256SU0, and SHA256SU1 instructions implemented.

All other values are reserved.

SHA1, bits [11:8]

SHA1 instructions in AArch64. Defined values are:

0000 No SHA1 instructions implemented.

0001 SHA1C, SHA1P, SHA1M, SHA1H, SHA1SU0, and SHA1SU1 instructions
implemented.

All other values are reserved.

AES, bits [7:4]

AES instructions in AArch64. Defined values are:

0000 No AES instructions implemented.

0001 AESE, AESD, AESMC, and AESIMC instructions implemented.

0010 As for 0001, plus PMULL/PMULL2 instructions operating on 64-bit data quantities.

All other values are reserved.

Bits [3:0]

Reserved, RES0.

Accessing the ID_AA64ISAR0_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This syntax is encoded with the following settings in the instruction encoding:

<systemreg> op0 op1 CRn CRm op2

ID_AA64ISAR0_EL1 11 000 0000 0110 000
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-299
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.2 General system control registers
Accessibility

The register is accessible in software as follows:

Traps and Enables

For a description of the prioritization of any generated exceptions, see Synchronous exception prioritization for
exceptions taken to AArch64 on page B12-547. Subject to the prioritization rules:

When EL2 is implemented and is using AArch64 and (SCR_EL3.NS == 1) AND (HCR_EL2.E2H == 0):

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and (SCR_EL3.NS == 1) AND (HCR_EL2.E2H == 1) AND
(HCR_EL2.TGE == 0):

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

<systemreg>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

ID_AA64ISAR0_EL1 x x 0 - RO n/a RO

ID_AA64ISAR0_EL1 x 0 1 - RO RO RO

ID_AA64ISAR0_EL1 x 1 1 - n/a RO RO
B12-300 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.2 General system control registers
B12.2.25 ID_AA64MMFR1_EL1, AArch64 Memory Model Feature Register 1

The ID_AA64MMFR1_EL1 characteristics are:

Purpose

Provides information about the implemented memory model and memory management support in
AArch64.

Configurations

There are no configuration notes.

Attributes

ID_AA64MMFR1_EL1 is a 64-bit register.

Field descriptions

The ID_AA64MMFR1_EL1 bit assignments are:

Bits [63:24]

Reserved, RES0.

PAN, bits [23:20] (In ARMv8.1)

Privileged Access Never. Indicates support for the PAN bit in PSTATE, SPSR_EL1, SPSR_EL2,
SPSR_EL3, and DSPSR_EL0. Defined values are:

0000 PAN not supported.

0001 PAN supported.

All other values are reserved.

In ARMv8.1 the only permitted value is 0001.

Bits [23:20] (In ARMv8.0)

Reserved, RES0.

LO, bits [19:16] (In ARMv8.1)

LORegions. Indicates support for LORegions. Defined values are:

0000 LORegions not supported.

0001 LORegions supported.

All other values are reserved.

In ARMv8.1 the only permitted value is 0001.

Bits [19:16] (In ARMv8.0)

Reserved, RES0.

HPDS, bits [15:12] (In ARMv8.1)

Hierarchical permission disable bits in translation tables. Defined values are:

0000 Not supported.

0001 Disabling of hierarchical controls supported with the TCR_EL1.HPD0,
TCR_EL1.HPD1, TCR_EL2.HPD, and TCR_EL3.HPD bits.

All other values are reserved.

RES0

63 24

PAN

23 20

LO

19 16

HPDS

15 12

VH

11 8

VMIDBits

7 4

HAFDBS

3 0
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-301
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.2 General system control registers
In ARMv8.1 the only permitted value is 0001.

Bits [15:12] (In ARMv8.0)

Reserved, RES0.

VH, bits [11:8] (In ARMv8.1)

Virtualization Host Extensions. Defined values are:

0000 Virtualization Host Extensions not supported.

0001 Virtualization Host Extensions supported.

All other values are reserved.

In ARMv8.1 the only permitted value is 0001.

Bits [11:8] (In ARMv8.0)

Reserved, RES0.

VMIDBits, bits [7:4] (In ARMv8.1)

Number of VMID bits. Defined values are:

0000 8 bits

0010 16 bits

All other values are reserved.

Bits [7:4] (In ARMv8.0)

Reserved, RES0.

HAFDBS, bits [3:0] (In ARMv8.1)

Hardware updates to Access flag and Dirty state in translation tables. Defined values are:

0000 No hardware update of the Access flag and dirty state is supported in hardware.

0001 Hardware update of the Access flag is supported in hardware.

0010 Hardware update of both the Access flag and dirty state is supported in hardware.

All other values are reserved.

Bits [3:0] (In ARMv8.0)

Reserved, RES0.

Accessing the ID_AA64MMFR1_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This syntax is encoded with the following settings in the instruction encoding:

<systemreg> op0 op1 CRn CRm op2

ID_AA64MMFR1_EL1 11 000 0000 0111 001
B12-302 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.2 General system control registers
Accessibility

The register is accessible in software as follows:

Traps and Enables

For a description of the prioritization of any generated exceptions, see Synchronous exception prioritization for
exceptions taken to AArch64 on page B12-547. Subject to the prioritization rules:

When EL2 is implemented and is using AArch64 and (SCR_EL3.NS == 1) AND (HCR_EL2.E2H == 0):

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and (SCR_EL3.NS == 1) AND (HCR_EL2.E2H == 1) AND
(HCR_EL2.TGE == 0):

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

<systemreg>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

ID_AA64MMFR1_EL1 x x 0 - RO n/a RO

ID_AA64MMFR1_EL1 x 0 1 - RO RO RO

ID_AA64MMFR1_EL1 x 1 1 - n/a RO RO
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-303
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.2 General system control registers
B12.2.26 ID_DFR0_EL1, AArch32 Debug Feature Register 0

The ID_DFR0_EL1 characteristics are:

Purpose

Provides top level information about the debug system in AArch32.

Configurations

AArch64 System register ID_DFR0_EL1 is architecturally mapped to AArch32 System register
ID_DFR0.

In an AArch64-only implementation, this register is UNKNOWN.

Attributes

ID_DFR0_EL1 is a 32-bit register.

Field descriptions

The ID_DFR0_EL1 bit assignments are:

Bits [31:28]

Reserved, RES0.

PerfMon, bits [27:24]

Performance Monitors. Support for System registers-based ARM Performance Monitors Extension,
using registers in the coproc == 1111 encoding space, for A and R profile processors. Defined values
are:

0000 Performance Monitors Extension system registers not implemented.

0001 Support for Performance Monitors Extension version 1 (PMUv1) System registers.

0010 Support for Performance Monitors Extension version 2 (PMUv2) System registers.

0011 Support for Performance Monitors Extension version 3 (PMUv3) System registers.

0100 Support for Performance Monitors Extension version 3 (PMUv3) System registers, with
a 16-bit evtCount field.

1111 IMPLEMENTATION DEFINED form of Performance Monitors System registers supported.
PMUv3 not supported.

All other values are reserved.

In ARMv8-A the permitted values are 0000, 0011, and 1111.

In ARMv8.1 the permitted values are 0000, 0100, and 1111.

In ARMv7, the value 0000 can mean that PMUv1 is implemented. PMUv1 is not permitted in an
ARMv8 implementation.

MProfDbg, bits [23:20]

M Profile Debug. Support for memory-mapped debug model for M profile processors. Defined
values are:

0000 Not supported.

0001 Support for M profile Debug architecture, with memory-mapped access.

All other values are reserved.

In ARMv8-A the only permitted value is 0000.

RES0

31 28

PerfMon

27 24

MProfDbg

23 20

MMapTrc

19 16

CopTrc

15 12

MMapDbg

11 8

CopSDbg

7 4

CopDbg

3 0
B12-304 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.2 General system control registers
MMapTrc, bits [19:16]

Memory Mapped Trace. Support for memory-mapped trace model. Defined values are:

0000 Not supported.

0001 Support for ARM trace architecture, with memory-mapped access.

All other values are reserved.

In ARMv8-A the permitted values are 0000 and 0001.

In the Trace registers, the ETMIDR gives more information about the implementation.

CopTrc, bits [15:12]

Support for System registers-based trace model, using registers in the coproc == 1110 encoding
space. Defined values are:

0000 Not supported.

0001 Support for ARM trace architecture, with System registers access.

All other values are reserved.

In ARMv8-A the permitted values are 0000 and 0001.

In the Trace registers, the ETMIDR gives more information about the implementation.

MMapDbg, bits [11:8]

Memory Mapped Debug. Support for v7 memory-mapped debug model, for A and R profile
processors.

In ARMv8-A this field is RES0.

The optional memory map defined by ARMv8 is not compatible with ARMv7.

CopSDbg, bits [7:4]

Support for a System registers-based Secure debug model, using registers in the coproc = 1110
encoding space, for an A profile processor that includes EL3.

If EL3 is not implemented and the implemented Security state is Non-Secure state, this field is RES0.
Otherwise, this field reads the same as bits [3:0].

CopDbg, bits [3:0]

Support for System registers-based debug model, using registers in the coproc == 1110 encoding
space, for A and R profile processors. Defined values are:

0000 Not supported.

0010 Support for ARMv6, v6 Debug architecture, with System registers access.

0011 Support for ARMv6, v6.1 Debug architecture, with System registers access.

0100 Support for ARMv7, v7 Debug architecture, with System registers access.

0101 Support for ARMv7, v7.1 Debug architecture, with System registers access.

0110 Support for ARMv8 debug architecture, with System registers access.

0111 Support for ARMv8 debug architecture, with System registers access, and
Virtualization Host extensions.

All other values are reserved.

In ARMv8-A the permitted values are 0000, and 0110.

In ARMv8.1 the permitted values are 0000, and 0111.

Accessing the ID_DFR0_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-305
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.2 General system control registers
This syntax is encoded with the following settings in the instruction encoding:

Accessibility

The register is accessible in software as follows:

Traps and Enables

For a description of the prioritization of any generated exceptions, see Synchronous exception prioritization for
exceptions taken to AArch64 on page B12-547. Subject to the prioritization rules:

When EL2 is implemented and is using AArch64 and (SCR_EL3.NS == 1) AND (HCR_EL2.E2H == 0):

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and (SCR_EL3.NS == 1) AND (HCR_EL2.E2H == 1) AND
(HCR_EL2.TGE == 0):

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

<systemreg> op0 op1 CRn CRm op2

ID_DFR0_EL1 11 000 0000 0001 010

<systemreg>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

ID_DFR0_EL1 x x 0 - RO n/a RO

ID_DFR0_EL1 x 0 1 - RO RO RO

ID_DFR0_EL1 x 1 1 - n/a RO RO
B12-306 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.2 General system control registers
B12.2.27 ID_ISAR5_EL1, AArch32 Instruction Set Attribute Register 5

The ID_ISAR5_EL1 characteristics are:

Purpose

Provides information about the instruction sets implemented by the PE in AArch32.

Configurations

AArch64 System register ID_ISAR5_EL1 is architecturally mapped to AArch32 System register
ID_ISAR5.

In an AArch64-only implementation, this register is UNKNOWN.

Attributes

ID_ISAR5_EL1 is a 32-bit register.

Field descriptions

The ID_ISAR5_EL1 bit assignments are:

Bits [31:28]

Reserved, RES0.

RDM, bits [27:24] (In ARMv8.1)

VQRDMLAH and VQRDMLSH instructions in AArch32. Defined values are:

0000 No VQRDMLAH and VQRDMLSH instructions implemented.

0001 VQRDMLAH and VQRDMLSH instructions implemented.

All other values are reserved.

In ARMv8.0 the only permitted value is 0000.

In ARMv8.1 the only permitted value is 0001.

Bits [27:24] (In ARMv8.0)

Reserved, RES0.

Bits [23:20]

Reserved, RES0.

CRC32, bits [19:16]

Indicates whether CRC32 instructions are implemented in AArch32.

0000 No CRC32 instructions implemented.

0001 CRC32B, CRC32H, CRC32W, CRC32CB, CRC32CH, and CRC32CW instructions
implemented.

All other values are reserved.

In ARMv8-A the permitted values are 0000 and 0001.

In ARMv8.1 the only permitted value is 0001.

SHA2, bits [15:12]

Indicates whether SHA2 instructions are implemented in AArch32.

0000 No SHA2 instructions implemented.

RES0

31 28

RDM

27 24

RES0

23 20

CRC32

19 16

SHA2

15 12

SHA1

11 8

AES

7 4

SEVL

3 0
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-307
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.2 General system control registers
0001 SHA256H, SHA256H2, SHA256SU0, and SHA256SU1 implemented.

All other values are reserved.

In ARMv8-A the permitted values are 0000 and 0001.

SHA1, bits [11:8]

Indicates whether SHA1 instructions are implemented in AArch32.

0000 No SHA1 instructions implemented.

0001 SHA1C, SHA1P, SHA1M, SHA1H, SHA1SU0, and SHA1SU1 implemented.

All other values are reserved.

In ARMv8-A the permitted values are 0000 and 0001.

AES, bits [7:4]

Indicates whether AES instructions are implemented in AArch32.

0000 No AES instructions implemented.

0001 AESE, AESD, AESMC, and AESIMC implemented.

0010 As for 0001, plus PMULL/PMULL2 instructions operating on 64-bit data quantities.

All other values are reserved.

In ARMv8-A the permitted values are 0000 and 0010.

SEVL, bits [3:0]

Indicates whether the SEVL instruction is implemented in AArch32.

0000 SEVL is implemented as a NOP.

0001 SEVL is implemented as Send Event Local.

All other values are reserved.

In ARMv8-A the only permitted value is 0001.

Accessing the ID_ISAR5_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This syntax is encoded with the following settings in the instruction encoding:

Accessibility

The register is accessible in software as follows:

<systemreg> op0 op1 CRn CRm op2

ID_ISAR5_EL1 11 000 0000 0010 101

<systemreg>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

ID_ISAR5_EL1 x x 0 - RO n/a RO

ID_ISAR5_EL1 x 0 1 - RO RO RO

ID_ISAR5_EL1 x 1 1 - n/a RO RO
B12-308 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.2 General system control registers
Traps and Enables

For a description of the prioritization of any generated exceptions, see Synchronous exception prioritization for
exceptions taken to AArch64 on page B12-547. Subject to the prioritization rules:

When EL2 is implemented and is using AArch64 and (SCR_EL3.NS == 1) AND (HCR_EL2.E2H == 0):

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and (SCR_EL3.NS == 1) AND (HCR_EL2.E2H == 1) AND
(HCR_EL2.TGE == 0):

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-309
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.2 General system control registers
B12.2.28 ID_MMFR3_EL1, AArch32 Memory Model Feature Register 3

The ID_MMFR3_EL1 characteristics are:

Purpose

Provides information about the implemented memory model and memory management support in
AArch32.

Configurations

AArch64 System register ID_MMFR3_EL1 is architecturally mapped to AArch32 System register
ID_MMFR3.

In an AArch64-only implementation, this register is UNKNOWN.

Attributes

ID_MMFR3_EL1 is a 32-bit register.

Field descriptions

The ID_MMFR3_EL1 bit assignments are:

Supersec, bits [31:28]

Supersections. On a VMSA implementation, indicates whether Supersections are supported.
Defined values are:

0000 Supersections supported.

1111 Supersections not supported.

All other values are reserved.

In ARMv8-A the permitted values are 0000 and 1111.

CMemSz, bits [27:24]

Cached Memory Size. Indicates the physical memory size supported by the caches. Defined values
are:

0000 4GB, corresponding to a 32-bit physical address range.

0001 64GB, corresponding to a 36-bit physical address range.

0010 1TB or more, corresponding to a 40-bit or larger physical address range.

All other values are reserved.

In ARMv8-A the permitted values are 0000, 0001, and 0010.

CohWalk, bits [23:20]

Coherent Walk. Indicates whether Translation table updates require a clean to the point of
unification. Defined values are:

0000 Updates to the translation tables require a clean to the point of unification to ensure
visibility by subsequent translation table walks.

0001 Updates to the translation tables do not require a clean to the point of unification to
ensure visibility by subsequent translation table walks.

All other values are reserved.

In ARMv8-A the only permitted value is 0001.

Supersec

31 28

CMemSz

27 24

CohWalk

23 20

PAN

19 16

MaintBcst

15 12

BPMaint

11 8

CMaintSW

7 4

CMaintVA

3 0
B12-310 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.2 General system control registers
PAN, bits [19:16] (In ARMv8.1)

Privileged Access Never. Indicates support for the PAN bit in CPSR, SPSR, and DSPSR in
AArch32. Defined values are:

0000 PAN not supported.

0001 PAN supported.

All other values are reserved.

In ARMv8.1 the only permitted value is 0001.

Bits [19:16] (In ARMv8.0)

Reserved, RES0.

MaintBcst, bits [15:12]

Maintenance Broadcast. Indicates whether Cache, TLB, and branch predictor operations are
broadcast. Defined values are:

0000 Cache, TLB, and branch predictor operations only affect local structures.

0001 Cache and branch predictor operations affect structures according to shareability and
defined behavior of instructions. TLB operations only affect local structures.

0010 Cache, TLB, and branch predictor operations affect structures according to shareability
and defined behavior of instructions.

All other values are reserved.

In ARMv8-A the only permitted value is 0010.

BPMaint, bits [11:8]

Branch Predictor Maintenance. Indicates the supported branch predictor maintenance operations in
an implementation with hierarchical cache maintenance operations. Defined values are:

0000 None supported.

0001 Supported branch predictor maintenance operations are:

• Invalidate all branch predictors.

0010 As for 0001, and adds:

• Invalidate branch predictors by VA.

All other values are reserved.

In ARMv8-A the only permitted value is 0010.

CMaintSW, bits [7:4]

Cache Maintenance by Set/Way. Indicates the supported cache maintenance operations by set/way,
in an implementation with hierarchical caches. Defined values are:

0000 None supported.

0001 Supported hierarchical cache maintenance instructions by set/way are:

• Invalidate data cache by set/way.

• Clean data cache by set/way.

• Clean and invalidate data cache by set/way.

All other values are reserved.

In ARMv8-A the only permitted value is 0001.

In a unified cache implementation, the data cache maintenance operations apply to the unified
caches.

CMaintVA, bits [3:0]

Cache Maintenance by Virtual Address. Indicates the supported cache maintenance operations by
VA, in an implementation with hierarchical caches. Defined values are:

0000 None supported.
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-311
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.2 General system control registers
0001 Supported hierarchical cache maintenance operations by VA are:

• Invalidate data cache by VA.

• Clean data cache by VA.

• Clean and invalidate data cache by VA.

• Invalidate instruction cache by VA.

• Invalidate all instruction cache entries.

All other values are reserved.

In ARMv8-A the only permitted value is 0001.

In a unified cache implementation, data cache maintenance operations apply to the unified caches,
and the instruction cache maintenance instructions are not implemented.

Accessing the ID_MMFR3_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This syntax is encoded with the following settings in the instruction encoding:

Accessibility

The register is accessible in software as follows:

Traps and Enables

For a description of the prioritization of any generated exceptions, see Synchronous exception prioritization for
exceptions taken to AArch64 on page B12-547. Subject to the prioritization rules:

When EL2 is implemented and is using AArch64 and (SCR_EL3.NS == 1) AND (HCR_EL2.E2H == 0):

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and (SCR_EL3.NS == 1) AND (HCR_EL2.E2H == 1) AND
(HCR_EL2.TGE == 0):

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

<systemreg> op0 op1 CRn CRm op2

ID_MMFR3_EL1 11 000 0000 0001 111

<systemreg>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

ID_MMFR3_EL1 x x 0 - RO n/a RO

ID_MMFR3_EL1 x 0 1 - RO RO RO

ID_MMFR3_EL1 x 1 1 - n/a RO RO
B12-312 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.2 General system control registers
B12.2.29 LORC_EL1, LORegion Control (EL1)

The LORC_EL1 characteristics are:

Purpose

Enables and disables LORegions, and selects the current LORegion descriptor.

Configurations

If no LORegion descriptors are supported by the PE, then this register is RES0.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

LORC_EL1 is a 64-bit register.

Field descriptions

The LORC_EL1 bit assignments are:

Bits [63:10]

Reserved, RES0.

DS, bits [9:2]

Descriptor Select. Selects the current LORegion descriptor accessed by LORSA_EL1,
LOREA_EL1, and LORN_EL1.

The number of LORegion descriptors in IMPLEMENTATION DEFINED. The maximum number of
LORegion descriptors supported is 256. If the number is less than 256, then bits[63:M+2] are RES0,
where M is Log2(Number of LORegion descriptors supported by the implementation).

If this field points to an LORegion descriptor that is not supported by an implementation, then the
registers LORN_EL1, LOREA_EL1, and LORSA_EL1 are RES0.

Bit [1]

Reserved, RES0.

EN, bit [0]

Enable. Indicates whether LORegions are enabled:

0 Disabled. Memory accesses do not match any LORegions.

1 Enabled. Memory accesses may match a LORegion.

This bit is permitted to be cached in a TLB.

Accessing the LORC_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

RES0

63 10

DS

9 2 1 0

EN
RES0
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-313
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.2 General system control registers
This syntax is encoded with the following settings in the instruction encoding:

Accessibility

The register is accessible in software as follows:

Traps and Enables

For a description of the prioritization of any generated exceptions, see Synchronous exception prioritization for
exceptions taken to AArch64 on page B12-547. Subject to the prioritization rules:

When EL2 is implemented and is using AArch64 and (SCR_EL3.NS == 1) AND (HCR_EL2.E2H == 0):

• If HCR_EL2.TLOR==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and (SCR_EL3.NS == 1) AND (HCR_EL2.E2H == 1) AND
(HCR_EL2.TGE == 0):

• If HCR_EL2.TLOR==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL3 is implemented and is using AArch64 and SCR_EL3.NS == 1:

• If SCR_EL3.TLOR==1, Non-secure accesses to this register from EL1 and EL2 are trapped to EL3.

<systemreg> op0 op1 CRn CRm op2

LORC_EL1 11 000 1010 0100 011

<systemreg>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

LORC_EL1 x x 0 - - n/a -

LORC_EL1 x 0 1 - RW RW RW

LORC_EL1 x 1 1 - n/a RW RW
B12-314 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.2 General system control registers
B12.2.30 LOREA_EL1, LORegion End Address (EL1)

The LOREA_EL1 characteristics are:

Purpose

Holds the physical address of the end of the LORegion described in the current LORegion descriptor
selected by LORC_EL1.DS.

Configurations

This register is RES0 if any of the following apply:

• No LORegion descriptors are supported by the PE.

• LORC_EL1.DS points to a LORegion that is not supported by the PE.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

LOREA_EL1 is a 64-bit register.

Field descriptions

The LOREA_EL1 bit assignments are:

Any of the fields in this register are permitted to be cached in a TLB.

Bits [63:48]

Reserved, RES0.

EA, bits [47:16]

Bits [47:16] of the end physical address of an LORegion described in the current LORegion
descriptor selected by LORC_EL1.DS. Bits[15:0] of this address are defined to be 0xFFFF.

Bits [15:0]

Reserved, RES0.

Accessing the LOREA_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax is encoded with the following settings in the instruction encoding:

RES0

63 48

EA

47 16

RES0

15 0

<systemreg> op0 op1 CRn CRm op2

LOREA_EL1 11 000 1010 0100 001
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-315
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.2 General system control registers
Accessibility

The register is accessible in software as follows:

Traps and Enables

For a description of the prioritization of any generated exceptions, see Synchronous exception prioritization for
exceptions taken to AArch64 on page B12-547. Subject to the prioritization rules:

When EL2 is implemented and is using AArch64 and (SCR_EL3.NS == 1) AND (HCR_EL2.E2H == 0):

• If HCR_EL2.TLOR==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and (SCR_EL3.NS == 1) AND (HCR_EL2.E2H == 1) AND
(HCR_EL2.TGE == 0):

• If HCR_EL2.TLOR==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL3 is implemented and is using AArch64 and SCR_EL3.NS == 1:

• If SCR_EL3.TLOR==1, Non-secure accesses to this register from EL1 and EL2 are trapped to EL3.

<systemreg>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

LOREA_EL1 x x 0 - - n/a -

LOREA_EL1 x 0 1 - RW RW RW

LOREA_EL1 x 1 1 - n/a RW RW
B12-316 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.2 General system control registers
B12.2.31 LORID_EL1, LORegionID (EL1)

The LORID_EL1 characteristics are:

Purpose

Indicates the number of LORegions and LORegion descriptors supported by the PE.

Configurations

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

LORID_EL1 is a 64-bit register.

Field descriptions

The LORID_EL1 bit assignments are:

Bits [63:24]

Reserved, RES0.

LD, bits [23:16]

Number of LORegion descriptors supported by the PE. This is an 8-bit binary number.

Bits [15:8]

Reserved, RES0.

LR, bits [7:0]

Number of LORegions supported by the PE. This is an 8-bit binary number.

Note
 If LORID_EL1 indicates that no LORegions are implemented, then LoadLOAcquire and

StoreLORelease will behave as LoadAcquire and StoreRelease.

Accessing the LORID_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This syntax is encoded with the following settings in the instruction encoding:

RES0

63 24

LD

23 16

RES0

15 8

LR

7 0

<systemreg> op0 op1 CRn CRm op2

LORID_EL1 11 000 1010 0100 111
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-317
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.2 General system control registers
Accessibility

The register is accessible in software as follows:

Traps and Enables

For a description of the prioritization of any generated exceptions, see Synchronous exception prioritization for
exceptions taken to AArch64 on page B12-547. Subject to the prioritization rules:

When EL2 is implemented and is using AArch64 and (SCR_EL3.NS == 1) AND (HCR_EL2.E2H == 0):

• If HCR_EL2.TLOR==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and (SCR_EL3.NS == 1) AND (HCR_EL2.E2H == 1) AND
(HCR_EL2.TGE == 0):

• If HCR_EL2.TLOR==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL3 is implemented and is using AArch64:

• If SCR_EL3.TLOR==1, accesses to this register from EL1 and EL2 are trapped to EL3.

<systemreg>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

LORID_EL1 x x 0 - RO n/a RO

LORID_EL1 x 0 1 - RO RO RO

LORID_EL1 x 1 1 - n/a RO RO
B12-318 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.2 General system control registers
B12.2.32 LORN_EL1, LORegion Number (EL1)

The LORN_EL1 characteristics are:

Purpose

Holds the number of the LORegion described in the current LORegion descriptor selected by
LORC_EL1.DS.

Configurations

This register is RES0 if any of the following apply:

• No LORegion descriptors are supported by the PE.

• LORC_EL1.DS points to a LORegion that is not supported by the PE.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

LORN_EL1 is a 64-bit register.

Field descriptions

The LORN_EL1 bit assignments are:

Any of the fields in this register are permitted to be cached in a TLB.

Bits [63:8]

Reserved, RES0.

Num, bits [7:0]

Number of the LORegion described in the current LORegion descriptor selected by
LORC_EL1.DS.

The maximum number of LORegions supported by the PE is 256. If the maximum number is less
than 256, then bits[8:N] are RES0, where N is (Log2(Number of LORegions supported by the PE)).

If this field points to a LORegion that is not supported by the PE, then the current LORegion
descriptor does not match any LORegion.

Accessing the LORN_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax is encoded with the following settings in the instruction encoding:

RES0

63 8

Num

7 0

<systemreg> op0 op1 CRn CRm op2

LORN_EL1 11 000 1010 0100 010
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-319
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.2 General system control registers
Accessibility

The register is accessible in software as follows:

Traps and Enables

For a description of the prioritization of any generated exceptions, see Synchronous exception prioritization for
exceptions taken to AArch64 on page B12-547. Subject to the prioritization rules:

When EL2 is implemented and is using AArch64 and (SCR_EL3.NS == 1) AND (HCR_EL2.E2H == 0):

• If HCR_EL2.TLOR==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and (SCR_EL3.NS == 1) AND (HCR_EL2.E2H == 1) AND
(HCR_EL2.TGE == 0):

• If HCR_EL2.TLOR==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL3 is implemented and is using AArch64 and SCR_EL3.NS == 1:

• If SCR_EL3.TLOR==1, Non-secure accesses to this register from EL1 and EL2 are trapped to EL3.

<systemreg>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

LORN_EL1 x x 0 - - n/a -

LORN_EL1 x 0 1 - RW RW RW

LORN_EL1 x 1 1 - n/a RW RW
B12-320 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.2 General system control registers
B12.2.33 LORSA_EL1, LORegion Start Address (EL1)

The LORSA_EL1 characteristics are:

Purpose

Indicates whether the current LORegion descriptor selected by LORC_EL1.DS is enabled, and
holds the physical address of the start of the LORegion.

Configurations

This register is RES0 if any of the following apply:

• No LORegion descriptors are supported by the PE.

• LORC_EL1.DS points to a LORegion that is not supported by the PE.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

LORSA_EL1 is a 64-bit register.

Field descriptions

The LORSA_EL1 bit assignments are:

Any of the fields in this register are permitted to be cached in a TLB.

Bits [63:48]

Reserved, RES0.

SA, bits [47:16]

Bits [47:16] of the start physical address of the LORegion described in the current LORegion
descriptor selected by LORC_EL1.DS. Bits[15:0] of this address are defined to be 0x0000.

Bits [15:1]

Reserved, RES0.

Valid, bit [0]

Indicates whether the current LORegion Descriptor is enabled.

0 Disabled

1 Enabled

Accessing the LORSA_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

RES0

63 48

SA

47 16

RES0

15 1 0

Valid
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-321
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.2 General system control registers
This syntax is encoded with the following settings in the instruction encoding:

Accessibility

The register is accessible in software as follows:

Traps and Enables

For a description of the prioritization of any generated exceptions, see Synchronous exception prioritization for
exceptions taken to AArch64 on page B12-547. Subject to the prioritization rules:

When EL2 is implemented and is using AArch64 and (SCR_EL3.NS == 1) AND (HCR_EL2.E2H == 0):

• If HCR_EL2.TLOR==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and (SCR_EL3.NS == 1) AND (HCR_EL2.E2H == 1) AND
(HCR_EL2.TGE == 0):

• If HCR_EL2.TLOR==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL3 is implemented and is using AArch64 and SCR_EL3.NS == 1:

• If SCR_EL3.TLOR==1, Non-secure accesses to this register from EL1 and EL2 are trapped to EL3.

<systemreg> op0 op1 CRn CRm op2

LORSA_EL1 11 000 1010 0100 000

<systemreg>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

LORSA_EL1 x x 0 - - n/a -

LORSA_EL1 x 0 1 - RW RW RW

LORSA_EL1 x 1 1 - n/a RW RW
B12-322 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.2 General system control registers
B12.2.34 MAIR_EL1, Memory Attribute Indirection Register (EL1)

The MAIR_EL1 characteristics are:

Purpose

Provides the memory attribute encodings corresponding to the possible AttrIndx values in a
Long-descriptor format translation table entry for stage 1 translations at EL1.

Configurations

AArch64 System register MAIR_EL1[31:0] is architecturally mapped to AArch32 System register
PRRR when TTBCR.EAE==0.

AArch64 System register MAIR_EL1[31:0] is architecturally mapped to AArch32 System register
MAIR0 when TTBCR.EAE==1.

AArch64 System register MAIR_EL1[63:32] is architecturally mapped to AArch32 System register
NMRR when TTBCR.EAE==0.

AArch64 System register MAIR_EL1[63:32] is architecturally mapped to AArch32 System register
MAIR1 when TTBCR.EAE==1.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

MAIR_EL1 is a 64-bit register.

Field descriptions

The MAIR_EL1 bit assignments are:

Attr<n>, bits [8n+7:8n], for n = 0 to 7

The memory attribute encoding for an AttrIndx[2:0] entry in a Long descriptor format translation
table entry, where AttrIndx[2:0] gives the value of <n> in Attr<n>.

Bits [7:4] are encoded as follows:

R = Outer Read Allocate Policy, W = Outer Write Allocate Policy.

Attr7

63 56

Attr6

55 48

Attr5

47 40

Attr4

39 32

Attr3

31 24

Attr2

23 16

Attr1

15 8

Attr0

7 0

Attr<n>[7:4] Meaning

0000 Device memory. See encoding of Attr<n>[3:0] for the type of Device memory.

00RW, RW not 00 Normal Memory, Outer Write-through transient

0100 Normal Memory, Outer Non-cacheable

01RW, RW not 00 Normal Memory, Outer Write-back transient

10RW Normal Memory, Outer Write-through non-transient

11RW Normal Memory, Outer Write-back non-transient
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-323
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.2 General system control registers
The meaning of bits [3:0] depends on the value of bits [7:4]:

R = Inner Read Allocate Policy, W = Inner Write Allocate Policy.

The R and W bits in some Attr<n> fields have the following meanings:

Accessing the MAIR_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax is encoded with the following settings in the instruction encoding:

Accessibility

The register is accessible in software as follows:

Attr<n>[3:0] Meaning when Attr<n>[7:4] is 0000 Meaning when Attr<n>[7:4] is not 0000

0000 Device-nGnRnE memory UNPREDICTABLE

00RW, RW not 00 UNPREDICTABLE Normal Memory, Inner Write-through transient

0100 Device-nGnRE memory Normal memory, Inner Non-cacheable

01RW, RW not 00 UNPREDICTABLE Normal Memory, Inner Write-back transient

1000 Device-nGRE memory Normal Memory, Inner Write-through non-transient (RW=00)

10RW, RW not 00 UNPREDICTABLE Normal Memory, Inner Write-through non-transient

1100 Device-GRE memory Normal Memory, Inner Write-back non-transient (RW=00)

11RW, RW not 00 UNPREDICTABLE Normal Memory, Inner Write-back non-transient

R or W Meaning

0 Do not allocate

1 Allocate

<systemreg> op0 op1 CRn CRm op2

MAIR_EL1 11 000 1010 0010 000

MAIR_EL12 11 101 1010 0010 000

<systemreg>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

MAIR_EL1 x x 0 - RW n/a RW

MAIR_EL1 0 0 1 - RW RW RW

MAIR_EL1 0 1 1 - n/a RW RW
B12-324 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.2 General system control registers
When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic MAIR_EL1 or
MAIR_EL12 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Traps and Enables

For a description of the prioritization of any generated exceptions, see Synchronous exception prioritization for
exceptions taken to AArch64 on page B12-547. Subject to the prioritization rules:

When EL2 is implemented and is using AArch64 and (SCR_EL3.NS == 1) AND (HCR_EL2.E2H == 0):

• If HCR_EL2.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HCR_EL2.TVM==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and (SCR_EL3.NS == 1) AND (HCR_EL2.E2H == 1) AND
(HCR_EL2.TGE == 0):

• If HCR_EL2.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HCR_EL2.TVM==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

MAIR_EL1 1 0 1 - RW MAIR_EL2 RW

MAIR_EL1 1 1 1 - n/a MAIR_EL2 RW

MAIR_EL12 x x 0 - - n/a -

MAIR_EL12 0 0 1 - - - -

MAIR_EL12 0 1 1 - n/a - -

MAIR_EL12 1 0 1 - - RW RW

MAIR_EL12 1 1 1 - n/a RW RW

<systemreg>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-325
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.2 General system control registers
B12.2.35 MAIR_EL2, Memory Attribute Indirection Register (EL2)

The MAIR_EL2 characteristics are:

Purpose

Provides the memory attribute encodings corresponding to the possible AttrIndx values in a
Long-descriptor format translation table entry for stage 1 translations at EL2.

Configurations

AArch64 System register MAIR_EL2[31:0] is architecturally mapped to AArch32 System register
HMAIR0.

AArch64 System register MAIR_EL2[63:32] is architecturally mapped to AArch32 System register
HMAIR1.

If EL2 is not implemented, this register is RES0 from EL3.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

MAIR_EL2 is a 64-bit register.

Field descriptions

The MAIR_EL2 bit assignments are:

Attr<n>, bits [8n+7:8n], for n = 0 to 7

The memory attribute encoding for an AttrIndx[2:0] entry in a Long descriptor format translation
table entry, where AttrIndx[2:0] gives the value of <n> in Attr<n>.

Bits [7:4] are encoded as follows:

R = Outer Read Allocate Policy, W = Outer Write Allocate Policy.

Attr7

63 56

Attr6

55 48

Attr5

47 40

Attr4

39 32

Attr3

31 24

Attr2

23 16

Attr1

15 8

Attr0

7 0

Attr<n>[7:4] Meaning

0000 Device memory. See encoding of Attr<n>[3:0] for the type of Device memory.

00RW, RW not 00 Normal Memory, Outer Write-through transient

0100 Normal Memory, Outer Non-cacheable

01RW, RW not 00 Normal Memory, Outer Write-back transient

10RW Normal Memory, Outer Write-through non-transient

11RW Normal Memory, Outer Write-back non-transient
B12-326 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.2 General system control registers
The meaning of bits [3:0] depends on the value of bits [7:4]:

R = Inner Read Allocate Policy, W = Inner Write Allocate Policy.

The R and W bits in some Attr<n> fields have the following meanings:

Accessing the MAIR_EL2

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax is encoded with the following settings in the instruction encoding:

Accessibility

The register is accessible in software as follows:

Attr<n>[3:0] Meaning when Attr<n>[7:4] is 0000 Meaning when Attr<n>[7:4] is not 0000

0000 Device-nGnRnE memory UNPREDICTABLE

00RW, RW not 00 UNPREDICTABLE Normal Memory, Inner Write-through transient

0100 Device-nGnRE memory Normal memory, Inner Non-cacheable

01RW, RW not 00 UNPREDICTABLE Normal Memory, Inner Write-back transient

1000 Device-nGRE memory Normal Memory, Inner Write-through non-transient (RW=00)

10RW, RW not 00 UNPREDICTABLE Normal Memory, Inner Write-through non-transient

1100 Device-GRE memory Normal Memory, Inner Write-back non-transient (RW=00)

11RW, RW not 00 UNPREDICTABLE Normal Memory, Inner Write-back non-transient

R or W Meaning

0 Do not allocate

1 Allocate

<systemreg> op0 op1 CRn CRm op2

MAIR_EL2 11 100 1010 0010 000

MAIR_EL1 11 000 1010 0010 000

<systemreg>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

MAIR_EL2 x x 0 - - n/a RW

MAIR_EL2 0 0 1 - - RW RW

MAIR_EL2 0 1 1 - n/a RW RW
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-327
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.2 General system control registers
When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic MAIR_EL2 or
MAIR_EL1 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

MAIR_EL2 1 0 1 - - RW RW

MAIR_EL2 1 1 1 - n/a RW RW

MAIR_EL1 x x 0 - MAIR_EL1 n/a MAIR_EL1

MAIR_EL1 0 0 1 - MAIR_EL1 MAIR_EL1 MAIR_EL1

MAIR_EL1 0 1 1 - n/a MAIR_EL1 MAIR_EL1

MAIR_EL1 1 0 1 - MAIR_EL1 RW MAIR_EL1

MAIR_EL1 1 1 1 - n/a RW MAIR_EL1

<systemreg>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3
B12-328 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.2 General system control registers
B12.2.36 PAN, Privileged Access Never

The PAN characteristics are:

Purpose

Allows access to the Privileged Access Never bit.

Configurations

There are no configuration notes.

Attributes

PAN is a 32-bit register.

Field descriptions

The PAN bit assignments are:

Bits [31:23]

Reserved, RES0.

PAN, bit [22]

Privileged Access Never. Defined values are:

0 The translation system is the same as ARMv8.0.

1 Disables privileged read and write accesses.

On taking an exception from the current mode or Exception level, to EL1, EL2 or EL3:

• If the target is EL1, this bit is copied to SPSR_EL1.

• If the target is EL2, this bit is copied to SPSR_EL2.

• If the target is EL3, this bit is copied to SPSR_EL2.

The value of this bit is usually preserved on taking an exception, except in the following situations:

• When the target of the exception is EL1, and the value of the SCTLR_EL1.SPAN bit is 0, this
bit is set to 1.

• When the target of the exception is EL2, HCR_EL2.{E2H, TGE} is {1, 1}, and the value of
the SCTLR_EL2.SPAN bit is 0, this bit is set to 1.

Bits [21:0]

Reserved, RES0.

Accessing the PAN

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

RES0

31 23 22

RES0

21 0

PAN
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-329
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.2 General system control registers
This syntax is encoded with the following settings in the instruction encoding:

Accessibility

The register is accessible in software as follows:

<systemreg> op0 op1 CRn CRm op2

PAN 11 000 0100 0010 011

<systemreg>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

PAN x x 0 - RW n/a RW

PAN x 0 1 - RW RW RW

PAN x 1 1 - n/a RW RW
B12-330 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.2 General system control registers
B12.2.37 SCR_EL3, Secure Configuration Register

The SCR_EL3 characteristics are:

Purpose

Defines the configuration of the current Security state. It specifies:

• The Security state of EL0 and EL1, either Secure or Non-secure.

• The Execution state at lower Exception levels.

• Whether IRQ, FIQ, and External Abort interrupts are taken to EL3.

Configurations

AArch64 System register SCR_EL3 can be mapped to AArch32 System register SCR, but this is
not architecturally mandated.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

SCR_EL3 is a 32-bit register.

Field descriptions

The SCR_EL3 bit assignments are:

Bits [31:15]

Reserved, RES0.

TLOR, bit [14] (In ARMv8.1)

Trap LOR registers. Traps accesses to the LORSA_EL1, LOREA_EL1, LORN_EL1, LORC_EL1,
and LORID_EL1 registers from EL1 and EL2 to EL3, unless the access has been trapped to EL2.

0 This control has no effect on EL1 and EL2 accesses to the LOR registers.

1 EL1 and EL2 accesses to the LOR registers that are not UNDEFINED are trapped to EL3,
unless the access has been trapped to EL2 as a result of HCR_EL2.TLOR being set to 1.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct
read of this field.

Bit [14] (In ARMv8.0)

Reserved, RES0.

RES0

31 15 14 13 12

ST

11 10 9 8 7 6 5 4 3 2 1

NS

0

IRQ
FIQ
EA

RES1
RES0
SMD
HCE
SIF
RW
TWI

TWE
TLOR
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-331
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.2 General system control registers
TWE, bit [13]

Traps EL2, EL1, and EL0 execution of WFE instructions to EL3, from both Security states and both
Execution states.

0 EL2, EL1, and EL0 execution of WFE instructions is not trapped to EL3.

1 Any attempt to execute a WFE instruction at any Exception level lower than EL3 is
trapped to EL3, if the instruction would otherwise have caused the PE to enter a
low-power state.

In AArch32 state, the attempted execution of a conditional WFE instruction is only trapped if the
instruction passes its condition code check.

Note
 Since a WFE or WFI can complete at any time, even without a Wakeup event, the traps on WFE of

WFI are not guaranteed to be taken, even if the WFE or WFI is executed when there is no Wakeup
event. The only guarantee is that if the instruction does not complete in finite time in the absence of
a Wakeup event, the trap will be taken.

TWI, bit [12]

Traps EL2, EL1, and EL0 execution of WFI instructions to EL3, from both Security states and both
Execution states.

0 EL2, EL1, and EL0 execution of WFI instructions is not trapped to EL3.

1 Any attempt to execute a WFI instruction at any Exception level lower than EL3 is
trapped to EL3, if the instruction would otherwise have caused the PE to enter a
low-power state.

In AArch32 state, the attempted execution of a conditional WFI instruction is only trapped if the
instruction passes its condition code check.

Note
 Since a WFE or WFI can complete at any time, even without a Wakeup event, the traps on WFE of

WFI are not guaranteed to be taken, even if the WFE or WFI is executed when there is no Wakeup
event. The only guarantee is that if the instruction does not complete in finite time in the absence of
a Wakeup event, the trap will be taken.

ST, bit [11]

Traps Secure EL1 accesses to the Counter-timer Physical Secure timer registers to EL3, from
AArch64 state only.

0 Secure EL1 using AArch64 accesses to the CNTPS_TVAL_EL1, CNTPS_CTL_EL1,
and CNTPS_CVAL_EL1 are trapped to EL3.

1 Secure EL1 using AArch64 accesses to the CNTPS_TVAL_EL1, CNTPS_CTL_EL1,
and CNTPS_CVAL_EL1 are not trapped to EL3.

RW, bit [10]

Execution state control for lower Exception levels.

0 Lower levels are all AArch32.

1 The next lower level is AArch64.
If EL2 is present:

• EL2 is AArch64.

• EL2 controls EL1 and EL0 behaviors.
If EL2 is not present:

• EL1 is AArch64.

• EL0 is determined by the Execution state described in the current process state
when executing at EL0.
B12-332 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.2 General system control registers
If all lower exception levels cannot use AArch32 then this bit is RAO/WI.

This bit is permitted to be cached in a TLB.

SIF, bit [9]

Secure instruction fetch. When the PE is in Secure state, this bit disables instruction fetch from
Non-secure memory. The possible values for this bit are:

0 Secure state instruction fetches from Non-secure memory are permitted.

1 Secure state instruction fetches from Non-secure memory are not permitted.

This bit is permitted to be cached in a TLB.

HCE, bit [8]

Hypervisor Call instruction enable. Enables HVC instructions at EL3, EL2, and Non-secure EL1,
in both Execution states.

0 HVC instructions are UNDEFINED at EL3, EL2, and Non-secure EL1, and any resulting
exception is taken from the current Exception level to the current Exception level.

1 HVC instructions are enabled at EL1 and above.

Note
 HVC instructions are always UNDEFINED at EL0.

If EL2 is not implemented, this bit is RES0.

SMD, bit [7]

Secure Monitor Call disable. Disables SMC instructions at EL1 and above, from both Security states
and both Execution states.

0 SMC instructions are enabled at EL1 and above.

1 SMC instructions are UNDEFINED at EL1 and above.

Note
 SMC instructions are always UNDEFINED at EL0.

Bit [6]

Reserved, RES0.

Bits [5:4]

Reserved, RES1.

EA, bit [3]

External Abort and SError Interrupt Routing.

0 When executing at Exception levels below EL3, External Aborts and SError Interrupts
are not taken to EL3.
In addition, when executing at EL3:

• SError Interrupts are not taken.

• External Aborts are taken to EL3.

1 When executing at any Exception level, External Aborts and SError Interrupts are taken
to EL3.

For more information, see Asynchronous exception routing on page B12-550.

FIQ, bit [2]

Physical FIQ Routing.

0 When executing at Exception levels below EL3, physical FIQ interrupts are not taken
to EL3.
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-333
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.2 General system control registers
When executing at EL3, physical FIQ interrupts are not taken.

1 When executing at any Exception level, physical FIQ interrupts are taken to EL3.

For more information, see Asynchronous exception routing on page B12-550.

IRQ, bit [1]

Physical IRQ Routing.

0 When executing at Exception levels below EL3, physical IRQ interrupts are not taken
to EL3.
When executing at EL3, physical IRQ interrupts are not taken.

1 When executing at any Exception level, physical IRQ interrupts are taken to EL3.

For more information, see Asynchronous exception routing on page B12-550.

NS, bit [0]

Non-secure bit.

0 Indicates that EL0 and EL1 are in Secure state, and so memory accesses from those
Exception levels can access Secure memory.
When executing at EL3:

• The AT S1E2R, AT S1E2W, TLBI VAE2, TLBI VALE2, TLBI VAE2IS, TLBI
VALE2IS, TLBI ALLE2, and TLBI ALLE2IS System instructions are
UNDEFINED.

• Each AT S12E* System instruction executes as the corresponding AT S1E*
instruction. For example, AT S12E0R executes as AT S1E0R.

• Each of the TLBI IPAS2E1, TLBI IPAS2E1IS, TLBI IPAS2LE1, and TLBI
IPAS2LE1IS System instructions executes as a NOP.

• A TLBI VMALLS12E1 System instruction executes as TLBI VMALLE1, and a
TLBI VMALLS12E1IS System instruction executes as TLBI VMALLE1IS.

1 Indicates that EL0 and EL1 are in Non-secure state, and so memory accesses from those
Exception levels cannot access Secure memory.

Note
 EL2 is not supported in the Secure state. When SCR_EL3.NS==0, it is not possible to enter EL2,

and the EL2 state has no effect on execution. See “Virtualization” in the ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile.

Accessing the SCR_EL3

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax is encoded with the following settings in the instruction encoding:

<systemreg> op0 op1 CRn CRm op2

SCR_EL3 11 110 0001 0001 000
B12-334 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.2 General system control registers
Accessibility

The register is accessible in software as follows:

<systemreg>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

SCR_EL3 x x 0 - - n/a RW

SCR_EL3 0 0 1 - - - RW

SCR_EL3 0 1 1 - n/a - RW

SCR_EL3 1 0 1 - - - RW

SCR_EL3 1 1 1 - n/a - RW
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-335
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.2 General system control registers
B12.2.38 SCTLR_EL1, System Control Register (EL1)

The SCTLR_EL1 characteristics are:

Purpose

Provides top level control of the system, including its memory system, at EL1 and EL0.

Configurations

AArch64 System register SCTLR_EL1 is architecturally mapped to AArch32 System register
SCTLR.

Some or all RW fields of this register have defined reset values. These apply only if the PE resets
into EL1 using AArch64. Otherwise, RW fields in this register reset to architecturally UNKNOWN
values.

Attributes

SCTLR_EL1 is a 32-bit register.

Field descriptions

The SCTLR_EL1 bit assignments are:

Bits [31:30]

Reserved, RES0.

Bits [29:28]

Reserved, RES1.

Bit [27]

Reserved, RES0.

UCI, bit [26]

Traps EL0 execution of cache maintenance instructions to EL1, from AArch64 state only.

0 Any attempt to execute a DC CVAU, DC CIVAC, DC CVAC, or IC IVAU instruction
at EL0 using AArch64 is trapped to EL1.

1 Does not cause any instruction to be trapped.

In ARMv8.1, if HCR_EL2.{E2H, TGE} is set to {1, 1}, this bit has no effect on execution at EL0.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13

I

12 11 10 9 8 7 6 5 4 3

C

2

A

1

M

0

RES0
RES1
RES0
UCI
EE
E0E
SPAN
RES1
RES0
RES1
WXN
nTWE
RES0
nTWI

SA
SA0

CP15BEN
RES0

ITD
SED
UMA

RES0
RES1
RES0

DZE
UCT
B12-336 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.2 General system control registers
When this register has an architecturally-defined reset value, this field resets to a value that is
architecturally UNKNOWN.

EE, bit [25]

Endianness of data accesses at EL1, and stage 1 translation table walks in the EL1&0 translation
regime.

The possible values of this bit are:

0 Explicit data accesses at EL1, and stage 1 translation table walks in the EL1&0
translation regime are little-endian.

1 Explicit data accesses at EL1, and stage 1 translation table walks in the EL1&0
translation regime are big-endian.

If an implementation does not provide Big-endian support at Exception Levels higher than EL0, this
bit is RES0.

If an implementation does not provide Little-endian support at Exception Levels higher than EL0,
this bit is RES1.

The EE bit is permitted to be cached in a TLB.

In ARMv8.1, if HCR_EL2.{E2H, TGE} is set to {1, 1}, this bit has no effect on the PE.

When this register has an architecturally-defined reset value, if this field is implemented as an RW
field, it resets to an IMPLEMENTATION DEFINED value.

E0E, bit [24]

Endianness of data accesses at EL0.

The possible values of this bit are:

0 Explicit data accesses at EL0 are little-endian.

1 Explicit data accesses at EL0 are big-endian.

If an implementation only supports Little-endian accesses at EL0 then this bit is RES0. This option
is not permitted when SCTLR_EL1.EE is RES1.

If an implementation only supports Big-endian accesses at EL0 then this bit is RES1. This option is
not permitted when SCTLR_EL1.EE is RES0.

This bit has no effect on the endianness of LDTR, LDTRH, LDTRSH, LDTRSW, STTR and
STTRH instructions executed at EL1.

In ARMv8.1, if HCR_EL2.{E2H, TGE} is set to {1, 1}, this bit has no effect on execution at EL0.

When this register has an architecturally-defined reset value, if this field is implemented as an RW
field, it resets to a value that is architecturally UNKNOWN.

SPAN, bit [23] (In ARMv8.1)

Set Privileged Access Never, on taking an exception to EL1.

0 PSTATE.PAN is set to 1 on taking an exception to EL1.

1 The value of PSTATE.PAN is left unchanged on taking an exception to EL1.

In ARMv8.1, if HCR_EL2.{E2H, TGE} is set to {1, 1}, this bit has no effect on execution at EL0.

When this register has an architecturally-defined reset value, this field resets to a value that is
architecturally UNKNOWN.

Bit [23] (In ARMv8.0)

Reserved, RES1.

Bit [22]

Reserved, RES1.

Bit [21]

Reserved, RES0.
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-337
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.2 General system control registers
Bit [20]

Reserved, RES1.

WXN, bit [19]

Write permission implies XN (Execute-never). For the EL1&0 translation regime, this bit can force
all memory regions that are writable to be treated as XN. The possible values of this bit are:

0 This control has no effect on memory access permissions.

1 Any region that is writable in the EL1&0 translation regime is forced to XN for accesses
from software executing at EL1 or EL0.

The WXN bit is permitted to be cached in a TLB.

In ARMv8.1, if HCR_EL2.{E2H, TGE} is set to {1, 1}, this bit has no effect on the PE.

When this register has an architecturally-defined reset value, this field resets to a value that is
architecturally UNKNOWN.

nTWE, bit [18]

Traps EL0 execution of WFE instructions to EL1, from both Execution states.

0 Any attempt to execute a WFE instruction at EL0 is trapped to EL1, if the instruction
would otherwise have caused the PE to enter a low-power state.

1 Does not cause any instruction to be trapped.

In AArch32 state, the attempted execution of a conditional WFE instruction is only trapped if the
instruction passes its condition code check.

Note
 Since a WFE or WFI can complete at any time, even without a Wakeup event, the traps on WFE of

WFI are not guaranteed to be taken, even if the WFE or WFI is executed when there is no Wakeup
event. The only guarantee is that if the instruction does not complete in finite time in the absence of
a Wakeup event, the trap will be taken.

In ARMv8.1, if HCR_EL2.{E2H, TGE} is set to {1, 1}, this bit has no effect on execution at EL0.

When this register has an architecturally-defined reset value, this field resets to a value that is
architecturally UNKNOWN.

Bit [17]

Reserved, RES0.

nTWI, bit [16]

Traps EL0 execution of WFI instructions to EL1, from both Execution states.

0 Any attempt to execute a WFI instruction at EL0 is trapped EL1, if the instruction would
otherwise have caused the PE to enter a low-power state.

1 Does not cause any instruction to be trapped.

In AArch32 state, the attempted execution of a conditional WFI instruction is only trapped if the
instruction passes its condition code check.

Note
 Since a WFE or WFI can complete at any time, even without a Wakeup event, the traps on WFE of

WFI are not guaranteed to be taken, even if the WFE or WFI is executed when there is no Wakeup
event. The only guarantee is that if the instruction does not complete in finite time in the absence of
a Wakeup event, the trap will be taken.

In ARMv8.1, if HCR_EL2.{E2H, TGE} is set to {1, 1}, this bit has no effect on execution at EL0.

When this register has an architecturally-defined reset value, this field resets to a value that is
architecturally UNKNOWN.
B12-338 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.2 General system control registers
UCT, bit [15]

Traps EL0 accesses to the CTR_EL0 to EL1, from AArch64 state only.

0 Accesses to the CTR_EL0 from EL0 using AArch64 are trapped to EL1.

1 Does not cause any instruction to be trapped.

In ARMv8.1, if HCR_EL2.{E2H, TGE} is set to {1, 1}, this bit has no effect on execution at EL0.

When this register has an architecturally-defined reset value, this field resets to a value that is
architecturally UNKNOWN.

DZE, bit [14]

Traps EL0 execution of DC ZVA instructions to EL1, from AArch64 state only.

0 Any attempt to execute a DC ZVA instruction at EL0 using AArch64 is trapped to EL1.
Reading DCZID_EL0.DZP from EL0 returns 1, indicating that DC ZVA instructions
are not supported.

1 Does not cause any instruction to be trapped.

In ARMv8.1, if HCR_EL2.{E2H, TGE} is set to {1, 1}, this bit has no effect on execution at EL0.

When this register has an architecturally-defined reset value, this field resets to a value that is
architecturally UNKNOWN.

Bit [13]

Reserved, RES0.

I, bit [12]

Instruction access Cacheability control, for accesses at EL0 and EL1:

0 All instruction access to Normal memory from EL0 and EL1 are Non-cacheable for all
levels of instruction and unified cache.
If the value of SCTLR_EL1.M is 0, instruction accesses from stage 1 of the EL1&0
translation regime are to Normal, Outer Shareable, Inner Non-cacheable, Outer
Non-cacheable memory.

1 This control has no effect on the Cacheability of instruction access to Normal memory
from EL0 and EL1.
If the value of SCTLR_EL1.M is 0, instruction accesses from stage 1 of the EL1&0
translation regime are to Normal, Outer Shareable, Inner Write-Through, Outer
Write-Through memory.

When the value of the HCR_EL2.DC bit is 1, then instruction access to Normal memory from EL0
and EL1 are Cacheable regardless of the value of the SCTLR_EL1.I bit.

In ARMv8.1, if HCR_EL2.{E2H, TGE} is set to {1, 1}, this bit has no effect on the PE.

When this register has an architecturally-defined reset value, this field resets to 0.

Bit [11]

Reserved, RES1.

Bit [10]

Reserved, RES0.

UMA, bit [9]

User Mask Access. Traps EL0 execution of MSR and MRS instructions that access the PSTATE.{D,
A, I, F} masks to EL1, from AArch64 state only.

0 Any attempt at EL0 using AArch64 to execute an MRS, MSR(register), or MSR(immediate)
instruction that accesses the DAIF is trapped to EL1.

1 Does not cause any instruction to be trapped.

In ARMv8.1, if HCR_EL2.{E2H, TGE} is set to {1, 1}, this bit has no effect on execution at EL0.
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-339
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.2 General system control registers
When this register has an architecturally-defined reset value, this field resets to a value that is
architecturally UNKNOWN.

SED, bit [8]

SETEND instruction disable. Disables SETEND instructions at EL0 using AArch32.

0 SETEND instruction execution is enabled at EL0 using AArch32.

1 SETEND instructions are UNDEFINED at EL0 using AArch32.

If the implementation does not support mixed-endian operation at any Exception level, this bit is
RES1.

If EL0 cannot use AArch32, this bit is RES1.

In ARMv8.1, if HCR_EL2.{E2H, TGE} is set to {1, 1}, this bit has no effect on execution at EL0.

When this register has an architecturally-defined reset value, if this field is implemented as an RW
field, it resets to a value that is architecturally UNKNOWN.

ITD, bit [7]

IT Disable. Disables some uses of IT instructions at EL0 using AArch32.

0 All IT instruction functionality is enabled at EL0 using AArch32.

1 Any attempt at EL0 using AArch32 to execute any of the following is UNDEFINED:

• All encodings of the IT instruction with hw1[3:0]!=1000.

• All encodings of the subsequent instruction with the following values for hw1:

11xxxxxxxxxxxxxx

All 32-bit instructions, and the 16-bit instructions B, UDF, SVC,
LDM, and STM.

1011xxxxxxxxxxxx

All instructions in Miscellaneous 16-bit instructions on
page C4-573.

10100xxxxxxxxxxx

ADD Rd, PC, #imm

01001xxxxxxxxxxx

LDR Rd, [PC, #imm]

0100x1xxx1111xxx

ADD Rdn, PC; CMP Rn, PC; MOV Rd, PC; BX PC; BLX PC.

010001xx1xxxx111

ADD PC, Rm; CMP PC, Rm; MOV PC, Rm. This pattern also covers
UNPREDICTABLE cases with BLX Rn.

These instructions are always UNDEFINED, regardless of whether they would pass or fail
the condition code check that applies to them as a result of being in an IT block.
It is IMPLEMENTATION DEFINED whether the IT instruction is treated as:

• A 16-bit instruction, that can only be followed by another 16-bit instruction.

• The first half of a 32-bit instruction.
This means that, for the situations that are UNDEFINED, either the second 16-bit
instruction or the 32-bit instruction is UNDEFINED.
An implementation might vary dynamically as to whether IT is treated as a 16-bit
instruction or the first half of a 32-bit instruction.

If EL0 cannot use AArch32, this bit is RES1.

ITD is optional, but if it is implemented in the SCTLR then it must also be implemented in the
SCTLR_EL1. If it is not implemented then this bit is RAZ/WI.

In ARMv8.1, if HCR_EL2.{E2H, TGE} is set to {1, 1}, this bit has no effect on execution at EL0.
B12-340 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.2 General system control registers
When this register has an architecturally-defined reset value, if this field is implemented as an RW
field, it resets to a value that is architecturally UNKNOWN.

Bit [6]

Reserved, RES0.

CP15BEN, bit [5]

System instruction memory barrier enable. Enables accesses to the DMB, DSB, and ISB System
instructions in the (coproc==1111) encoding space from EL0:

0 EL0 using AArch32: EL0 execution of the CP15DMB, CP15DSB, and CP15ISB
instructions is UNDEFINED.

1 EL0 using AArch32: EL0 execution of the CP15DMB, CP15DSB, and CP15ISB
instructions is enabled.

If EL0 cannot use AArch32, this bit is RES0.

CP15BEN is optional, but if it is implemented in the SCTLR then it must also be implemented in
the SCTLR_EL1. If it is not implemented then this bit is RAO/WI.

In ARMv8.1, if HCR_EL2.{E2H, TGE} is set to {1, 1}, this bit has no effect on execution at EL0.

When this register has an architecturally-defined reset value, if this field is implemented as an RW
field, it resets to a value that is architecturally UNKNOWN.

SA0, bit [4]

Stack Alignment Check Enable for EL0. When set, use of the stack pointer as the base address in a
load/store instruction at EL0 must be aligned to a 16-byte boundary, or a Stack Alignment Fault
exception will be raised.

In ARMv8.1, if HCR_EL2.{E2H, TGE} is set to {1, 1}, this bit has no effect on execution at EL0.

When this register has an architecturally-defined reset value, this field resets to a value that is
architecturally UNKNOWN.

SA, bit [3]

Stack Alignment Check Enable. When set, use of the stack pointer as the base address in a load/store
instruction at EL1 must be aligned to a 16-byte boundary, or a Stack Alignment Fault exception will
be raised.

In ARMv8.1, if HCR_EL2.{E2H, TGE} is set to {1, 1}, this bit has no effect on the PE.

When this register has an architecturally-defined reset value, this field resets to a value that is
architecturally UNKNOWN.

C, bit [2]

Cacheability control, for data accesses.

0 All data access to Normal memory from EL0 and EL1, and all Normal memory accesses
to the EL1&0 stage 1 translation tables, are Non-cacheable for all levels of data and
unified cache.

1 This control has no effect on the Cacheability of:

• Data access to Normal memory from EL0 and EL1.

• Normal memory accesses to the EL1&0 stage 1 translation tables.

When the value of the HCR_EL2.DC bit is 1, the PE ignores SCLTR.C. This means that Non-secure
EL0 and Non-secure EL1 data accesses to Normal memory are Cacheable.

In ARMv8.1, if HCR_EL2.{E2H, TGE} is set to {1, 1}, this bit has no effect on the PE.

When this register has an architecturally-defined reset value, this field resets to 0.

A, bit [1]

Alignment check enable. This is the enable bit for Alignment fault checking at EL1 and EL0:

0 Alignment fault checking disabled when executing at EL1 or EL0.
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-341
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.2 General system control registers
Instructions that load or store one or more registers, other than load/store exclusive and
load-acquire/store-release, do not check that the address being accessed is aligned to the
size of the data element(s) being accessed.

1 Alignment fault checking enabled when executing at EL1 or EL0.
All instructions that load or store one or more registers have an alignment check that the
address being accessed is aligned to the size of the data element(s) being accessed. If
this check fails it causes an Alignment fault, which is taken as a Data Abort exception.

Load/store exclusive and load-acquire/store-release instructions have an alignment check regardless
of the value of the A bit.

In ARMv8.1, if HCR_EL2.{E2H, TGE} is set to {1, 1}, this bit has no effect on execution at EL0.

When this register has an architecturally-defined reset value, this field resets to a value that is
architecturally UNKNOWN.

M, bit [0]

MMU enable for EL1 and EL0 stage 1 address translation. Possible values of this bit are:

0 EL1 and EL0 stage 1 address translation disabled.
See the SCTLR_EL1.I field for the behavior of instruction accesses to Normal memory.

1 EL1 and EL0 stage 1 address translation enabled.

If the value of HCR_EL2.{DC, TGE} is not {0, 0} then in Non-secure state the PE behaves as if the
value of the SCTLR_EL1.M field is 0 for all purposes other than returning the value of a direct read
of the field.

In ARMv8.1, if HCR_EL2.{E2H, TGE} is set to {1, 1}, this bit has no effect on the PE.

When this register has an architecturally-defined reset value, this field resets to 0.

Accessing the SCTLR_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax is encoded with the following settings in the instruction encoding:

Accessibility

The register is accessible in software as follows:

<systemreg> op0 op1 CRn CRm op2

SCTLR_EL1 11 000 0001 0000 000

SCTLR_EL12 11 101 0001 0000 000

<systemreg>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

SCTLR_EL1 x x 0 - RW n/a RW

SCTLR_EL1 0 0 1 - RW RW RW

SCTLR_EL1 0 1 1 - n/a RW RW
B12-342 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.2 General system control registers
When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic SCTLR_EL1
or SCTLR_EL12 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Traps and Enables

For a description of the prioritization of any generated exceptions, see Synchronous exception prioritization for
exceptions taken to AArch64 on page B12-547. Subject to the prioritization rules:

When EL2 is implemented and is using AArch64 and (SCR_EL3.NS == 1) AND (HCR_EL2.E2H == 0):

• If HCR_EL2.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HCR_EL2.TVM==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and (SCR_EL3.NS == 1) AND (HCR_EL2.E2H == 1) AND
(HCR_EL2.TGE == 0):

• If HCR_EL2.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HCR_EL2.TVM==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

SCTLR_EL1 1 0 1 - RW SCTLR_EL2 RW

SCTLR_EL1 1 1 1 - n/a SCTLR_EL2 RW

SCTLR_EL12 x x 0 - - n/a -

SCTLR_EL12 0 0 1 - - - -

SCTLR_EL12 0 1 1 - n/a - -

SCTLR_EL12 1 0 1 - - RW RW

SCTLR_EL12 1 1 1 - n/a RW RW

<systemreg>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-343
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.2 General system control registers
B12.2.39 SCTLR_EL2, System Control Register (EL2)

The SCTLR_EL2 characteristics are:

Purpose

Provides top level control of the system, including its memory system, at EL2.

In ARMv8.1, when the value of HCR_EL2.{E2H, TGE} is {1, 1}, these controls apply also to
execution at EL0.

Configurations

AArch64 System register SCTLR_EL2 is architecturally mapped to AArch32 System register
HSCTLR.

If EL2 is not implemented, this register is RES0 from EL3.

Some or all RW fields of this register have defined reset values. These apply only if the PE resets
into EL2 using AArch64. Otherwise, RW fields in this register reset to architecturally UNKNOWN
values.

Attributes

SCTLR_EL2 is a 32-bit register.

Field descriptions

The SCTLR_EL2 bit assignments are:

When HCR_EL2.{E2H, TGE} != {1, 1}:

This format applies in all ARMv8.0 implementations, and in ARMv8.1 in Secure state.

Bits [31:30]

Reserved, RES0.

Bits [29:28]

Reserved, RES1.

Bits [27:26]

Reserved, RES0.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RES0

15 13

I

12 11

RES0

10 6 5 4 3

C

2

A

1

M

0

RES0
RES1
RES0
EE
RES0
RES1
RES0
WXN
RES1
RES0
RES1

SA
RES1
RES1
B12-344 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.2 General system control registers
EE, bit [25]

Endianness of data accesses at EL2, stage 1 translation table walks in the EL2 translation regime,
and stage 2 translation table walks in the EL1&0 translation regime.

The possible values of this bit are:

0 Explicit data accesses at EL2, stage 1 translation table walks in the EL2 translation
regime, and stage 2 translation table walks in the EL1&0 translation regime are
little-endian.

1 Explicit data accesses at EL2, stage 1 translation table walks in the EL2 translation
regime, and stage 2 translation table walks in the EL1&0 translation regime are
big-endian.

If an implementation does not provide Big-endian support at Exception Levels higher than EL0, this
bit is RES0.

If an implementation does not provide Little-endian support at Exception Levels higher than EL0,
this bit is RES1.

The EE bit is permitted to be cached in a TLB.

When this register has an architecturally-defined reset value, if this field is implemented as an RW
field, it resets to an IMPLEMENTATION DEFINED value.

Bit [24]

Reserved, RES0.

Bits [23:22]

Reserved, RES1.

Bits [21:20]

Reserved, RES0.

WXN, bit [19]

Write permission implies XN (Execute-never). For the EL2 translation regime, this bit can force all
memory regions that are writable to be treated as XN. The possible values of this bit are:

0 This control has no effect on memory access permissions.

1 Any region that is writable in the EL2 translation regime is forced to XN for accesses
from software executing at EL2.

The WXN bit is permitted to be cached in a TLB.

When this register has an architecturally-defined reset value, this field resets to a value that is
architecturally UNKNOWN.

Bit [18]

Reserved, RES1.

Bit [17]

Reserved, RES0.

Bit [16]

Reserved, RES1.

Bits [15:13]

Reserved, RES0.

I, bit [12]

Instruction access Cacheability control, for accesses at EL2:

0 All instruction access to Normal memory from EL2 are Non-cacheable for all levels of
instruction and unified cache.
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-345
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.2 General system control registers
If the value of SCTLR_EL2.M is 0, instruction accesses from stage 1 of the EL2
translation regime are to Normal, Outer Shareable, Inner Non-cacheable, Outer
Non-cacheable memory.

1 This control has no effect on the Cacheability of instruction access to Normal memory
from EL2.
If the value of SCTLR_EL2.M is 0, instruction accesses from stage 1 of the EL2
translation regime are to Normal, Outer Shareable, Inner Write-Through, Outer
Write-Through memory.

This bit has no effect on the EL1&0 or EL3 translation regimes.

When this register has an architecturally-defined reset value, this field resets to 0.

Bit [11]

Reserved, RES1.

Bits [10:6]

Reserved, RES0.

Bits [5:4]

Reserved, RES1.

SA, bit [3]

Stack Alignment Check Enable. When set, use of the stack pointer as the base address in a load/store
instruction at EL2 must be aligned to a 16-byte boundary, or a Stack Alignment Fault exception will
be raised.

When this register has an architecturally-defined reset value, this field resets to a value that is
architecturally UNKNOWN.

C, bit [2]

Cacheability control, for data accesses.

0 All data access to Normal memory from EL2, and all Normal memory accesses to the
EL2 translation tables, are Non-cacheable for all levels of data and unified cache.

1 This control has no effect on the Cacheability of:

• Data access to Normal memory from EL2.

• Normal memory accesses to the EL2 translation tables.

This bit has no effect on the EL1&0 or EL3 translation regimes.

When this register has an architecturally-defined reset value, this field resets to 0.

A, bit [1]

Alignment check enable. This is the enable bit for Alignment fault checking at EL2:

0 Alignment fault checking disabled when executing at EL2.
Instructions that load or store one or more registers, other than load/store exclusive and
load-acquire/store-release, do not check that the address being accessed is aligned to the
size of the data element(s) being accessed.

1 Alignment fault checking enabled when executing at EL2.
All instructions that load or store one or more registers have an alignment check that the
address being accessed is aligned to the size of the data element(s) being accessed. If
this check fails it causes an Alignment fault, which is taken as a Data Abort exception.

Load/store exclusive and load-acquire/store-release instructions have an alignment check regardless
of the value of the A bit.

When this register has an architecturally-defined reset value, this field resets to a value that is
architecturally UNKNOWN.
B12-346 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.2 General system control registers
M, bit [0]

MMU enable for EL2 stage 1 address translation. Possible values of this bit are:

0 EL2 stage 1 address translation disabled.
See the SCTLR_EL2.I field for the behavior of instruction accesses to Normal memory.

1 EL2 stage 1 address translation enabled.

When this register has an architecturally-defined reset value, this field resets to 0.

When HCR_EL2.{E2H, TGE} == {1, 1}:

This format applies in ARMv8.1 in Non-secure state only when HCR_EL2.{E2H, TGE} == {1, 1}.

Bits [31:30]

Reserved, RES0.

Bits [29:28]

Reserved, RES1.

Bit [27]

Reserved, RES0.

UCI, bit [26]

Traps EL0 execution of cache maintenance instructions to EL2, from AArch64 state only.

0 Any attempt to execute a DC CVAU, DC CIVAC, DC CVAC, or IC IVAU instruction
at EL0 using AArch64 is trapped to EL2.

1 Does not cause any instruction to be trapped.

When this register has an architecturally-defined reset value, this field resets to a value that is
architecturally UNKNOWN.

EE, bit [25]

Endianness of data accesses at EL2, and stage 1 translation table walks in the EL2&0 translation
regime.

The possible values of this bit are:

0 Explicit data accesses at EL2, and stage 1 translation table walks in the EL2&0
translation regime are little-endian.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13

I

12 11 10 9 8 7 6 5 4 3

C

2

A

1

M

0

RES0
RES1
RES0
UCI
EE
E0E
SPAN
RES1
RES0
RES1
WXN
nTWE
RES0
nTWI

SA
SA0

CP15BEN
RES0

ITD
SED

RES0
RES1
RES0

DZE
UCT
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-347
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.2 General system control registers
1 Explicit data accesses at EL2, and stage 1 translation table walks in the EL2&0
translation regime are big-endian.

If an implementation does not provide Big-endian support at Exception Levels higher than EL0, this
bit is RES0.

If an implementation does not provide Little-endian support at Exception Levels higher than EL0,
this bit is RES1.

The EE bit is permitted to be cached in a TLB.

When this register has an architecturally-defined reset value, if this field is implemented as an RW
field, it resets to an IMPLEMENTATION DEFINED value.

E0E, bit [24]

Endianness of data accesses at EL0.

The possible values of this bit are:

0 Explicit data accesses at EL0 are little-endian.

1 Explicit data accesses at EL0 are big-endian.

If an implementation only supports Little-endian accesses at EL0 then this bit is RES0. This option
is not permitted when SCTLR_EL1.EE is RES1.

If an implementation only supports Big-endian accesses at EL0 then this bit is RES1. This option is
not permitted when SCTLR_EL1.EE is RES0.

This bit has no effect on the endianness of LDTR, LDTRH, LDTRSH, LDTRSW, STTR and
STTRH instructions executed at EL1.

When this register has an architecturally-defined reset value, if this field is implemented as an RW
field, it resets to a value that is architecturally UNKNOWN.

SPAN, bit [23]

Set Privileged Access Never, on taking an exception to EL2.

0 PSTATE.PAN is set to 1 on taking an exception to EL2.

1 The value of PSTATE.PAN is left unchanged on taking an exception to EL2.

When this register has an architecturally-defined reset value, this field resets to a value that is
architecturally UNKNOWN.

Bit [22]

Reserved, RES1.

Bit [21]

Reserved, RES0.

Bit [20]

Reserved, RES1.

WXN, bit [19]

Write permission implies XN (Execute-never). For the EL2&0 translation regime, this bit can force
all memory regions that are writable to be treated as XN. The possible values of this bit are:

0 This control has no effect on memory access permissions.

1 Any region that is writable in the EL2&0 translation regime is forced to XN for accesses
from software executing at EL2 or EL0.

The WXN bit is permitted to be cached in a TLB.

When this register has an architecturally-defined reset value, this field resets to a value that is
architecturally UNKNOWN.
B12-348 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.2 General system control registers
nTWE, bit [18]

Traps EL0 execution of WFE instructions to EL2, from both Execution states.

0 Any attempt to execute a WFE instruction at EL0 is trapped to EL2, if the instruction
would otherwise have caused the PE to enter a low-power state.

1 Does not cause any instruction to be trapped.

In AArch32 state, the attempted execution of a conditional WFE instruction is only trapped if the
instruction passes its condition code check.

Note
 Since a WFE or WFI can complete at any time, even without a Wakeup event, the traps on WFE of

WFI are not guaranteed to be taken, even if the WFE or WFI is executed when there is no Wakeup
event. The only guarantee is that if the instruction does not complete in finite time in the absence of
a Wakeup event, the trap will be taken.

When this register has an architecturally-defined reset value, this field resets to a value that is
architecturally UNKNOWN.

Bit [17]

Reserved, RES0.

nTWI, bit [16]

Traps EL0 execution of WFI instructions to EL2, from both Execution states.

0 Any attempt to execute a WFI instruction at EL0 is trapped EL2, if the instruction would
otherwise have caused the PE to enter a low-power state.

1 Does not cause any instruction to be trapped.

In AArch32 state, the attempted execution of a conditional WFI instruction is only trapped if the
instruction passes its condition code check.

Note
 Since a WFE or WFI can complete at any time, even without a Wakeup event, the traps on WFE of

WFI are not guaranteed to be taken, even if the WFE or WFI is executed when there is no Wakeup
event. The only guarantee is that if the instruction does not complete in finite time in the absence of
a Wakeup event, the trap will be taken.

When this register has an architecturally-defined reset value, this field resets to a value that is
architecturally UNKNOWN.

UCT, bit [15]

Traps EL0 accesses to the CTR_EL0 to EL2, from AArch64 state only.

0 Accesses to the CTR_EL0 from EL0 using AArch64 are trapped to EL2.

1 Does not cause any instruction to be trapped.

When this register has an architecturally-defined reset value, this field resets to a value that is
architecturally UNKNOWN.

DZE, bit [14]

Traps EL0 execution of DC ZVA instructions to EL2, from AArch64 state only.

0 Any attempt to execute a DC ZVA instruction at EL0 using AArch64 is trapped to EL2.
Reading DCZID_EL0.DZP from EL0 returns 1, indicating that DC ZVA instructions
are not supported.

1 Does not cause any instruction to be trapped.

When this register has an architecturally-defined reset value, this field resets to a value that is
architecturally UNKNOWN.
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-349
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.2 General system control registers
Bit [13]

Reserved, RES0.

I, bit [12]

Instruction access Cacheability control, for accesses at EL2 and EL0:

0 All instruction access to Normal memory from EL2 and EL0 are Non-cacheable for all
levels of instruction and unified cache.
If the value of SCTLR_EL2.M is 0, instruction accesses from stage 1 of the EL2&0
translation regime are to Normal, Outer Shareable, Inner Non-cacheable, Outer
Non-cacheable memory.

1 This control has no effect on the Cacheability of instruction access to Normal memory
from EL2 and EL0.
If the value of SCTLR_EL2.M is 0, instruction accesses from stage 1 of the EL2&0
translation regime are to Normal, Outer Shareable, Inner Write-Through, Outer
Write-Through memory.

This bit has no effect on the EL3 translation regimes.

When this register has an architecturally-defined reset value, this field resets to 0.

Bit [11]

Reserved, RES1.

Bits [10:9]

Reserved, RES0.

SED, bit [8]

SETEND instruction disable. Disables SETEND instructions at EL0 using AArch32.

0 SETEND instruction execution is enabled at EL0 using AArch32.

1 SETEND instructions are UNDEFINED at EL0 using AArch32.

If the implementation does not support mixed-endian operation at any Exception level, this bit is
RES1.

If EL0 cannot use AArch32, this bit is RES1.

When this register has an architecturally-defined reset value, if this field is implemented as an RW
field, it resets to a value that is architecturally UNKNOWN.

ITD, bit [7]

IT Disable. Disables some uses of IT instructions at EL0 using AArch32.

0 All IT instruction functionality is enabled at EL0 using AArch32.

1 Any attempt at EL0 using AArch32 to execute any of the following is UNDEFINED:

• All encodings of the IT instruction with hw1[3:0]!=1000.

• All encodings of the subsequent instruction with the following values for hw1:

11xxxxxxxxxxxxxx

All 32-bit instructions, and the 16-bit instructions B, UDF, SVC,
LDM, and STM.

1011xxxxxxxxxxxx

All instructions in Miscellaneous 16-bit instructions on
page C4-573.

10100xxxxxxxxxxx

ADD Rd, PC, #imm

01001xxxxxxxxxxx

LDR Rd, [PC, #imm]
B12-350 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.2 General system control registers
0100x1xxx1111xxx

ADD Rdn, PC; CMP Rn, PC; MOV Rd, PC; BX PC; BLX PC.

010001xx1xxxx111

ADD PC, Rm; CMP PC, Rm; MOV PC, Rm. This pattern also covers
UNPREDICTABLE cases with BLX Rn.

These instructions are always UNDEFINED, regardless of whether they would pass or fail
the condition code check that applies to them as a result of being in an IT block.
It is IMPLEMENTATION DEFINED whether the IT instruction is treated as:

• A 16-bit instruction, that can only be followed by another 16-bit instruction.

• The first half of a 32-bit instruction.
This means that, for the situations that are UNDEFINED, either the second 16-bit
instruction or the 32-bit instruction is UNDEFINED.
An implementation might vary dynamically as to whether IT is treated as a 16-bit
instruction or the first half of a 32-bit instruction.

If EL0 cannot use AArch32, this bit is RES1.

ITD is optional, but if it is implemented in the SCTLR then it must also be implemented in the
SCTLR_EL1. If it is not implemented then this bit is RAZ/WI.

When this register has an architecturally-defined reset value, if this field is implemented as an RW
field, it resets to a value that is architecturally UNKNOWN.

Bit [6]

Reserved, RES0.

CP15BEN, bit [5]

System instruction memory barrier enable. Enables accesses to the DMB, DSB, and ISB System
instructions in the (coproc==1111) encoding space from EL0:

0 EL0 using AArch32: EL0 execution of the CP15DMB, CP15DSB, and CP15ISB
instructions is UNDEFINED.

1 EL0 using AArch32: EL0 execution of the CP15DMB, CP15DSB, and CP15ISB
instructions is enabled.

If EL0 cannot use AArch32, this bit is RES0.

CP15BEN is optional, but if it is implemented in the SCTLR then it must also be implemented in
the SCTLR_EL1. If it is not implemented then this bit is RAO/WI.

When this register has an architecturally-defined reset value, if this field is implemented as an RW
field, it resets to a value that is architecturally UNKNOWN.

SA0, bit [4]

Stack Alignment Check Enable for EL0. When set, use of the stack pointer as the base address in a
load/store instruction at EL0 must be aligned to a 16-byte boundary, or a Stack Alignment Fault
exception will be raised.

When this register has an architecturally-defined reset value, this field resets to a value that is
architecturally UNKNOWN.

SA, bit [3]

Stack Alignment Check Enable. When set, use of the stack pointer as the base address in a load/store
instruction at EL2 must be aligned to a 16-byte boundary, or a Stack Alignment Fault exception will
be raised.

When this register has an architecturally-defined reset value, this field resets to a value that is
architecturally UNKNOWN.
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-351
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.2 General system control registers
C, bit [2]

Cacheability control, for data accesses.

0 All data access to Normal memory from EL2 and EL0, and all Normal memory accesses
to the EL2&0 translation tables, are Non-cacheable for all levels of data and unified
cache.

1 This control has no effect on the Cacheability of:

• Data access to Normal memory from EL2 and EL0.

• Normal memory accesses to the EL2&0 translation tables.

This bit has no effect on the EL3 translation regimes.

When this register has an architecturally-defined reset value, this field resets to 0.

A, bit [1]

Alignment check enable. This is the enable bit for Alignment fault checking at EL2 and EL0:

0 Alignment fault checking disabled when executing at EL2 and EL0.
Instructions that load or store one or more registers, other than load/store exclusive and
load-acquire/store-release, do not check that the address being accessed is aligned to the
size of the data element(s) being accessed.

1 Alignment fault checking enabled when executing at EL2 and EL0.
All instructions that load or store one or more registers have an alignment check that the
address being accessed is aligned to the size of the data element(s) being accessed. If
this check fails it causes an Alignment fault, which is taken as a Data Abort exception.

Load/store exclusive and load-acquire/store-release instructions have an alignment check regardless
of the value of the A bit.

When this register has an architecturally-defined reset value, this field resets to a value that is
architecturally UNKNOWN.

M, bit [0]

MMU enable for EL2&0 stage 1 address translation. Possible values of this bit are:

0 EL2&0 stage 1 address translation disabled.
See the SCTLR_EL2.I field for the behavior of instruction accesses to Normal memory.

1 EL2&1 stage 1 address translation enabled.

When this register has an architecturally-defined reset value, this field resets to 0.

Accessing the SCTLR_EL2

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax is encoded with the following settings in the instruction encoding:

<systemreg> op0 op1 CRn CRm op2

SCTLR_EL2 11 100 0001 0000 000

SCTLR_EL1 11 000 0001 0000 000
B12-352 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.2 General system control registers
Accessibility

The register is accessible in software as follows:

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic SCTLR_EL2
or SCTLR_EL1 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

<systemreg>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

SCTLR_EL2 x x 0 - - n/a RW

SCTLR_EL2 0 0 1 - - RW RW

SCTLR_EL2 0 1 1 - n/a RW RW

SCTLR_EL2 1 0 1 - - RW RW

SCTLR_EL2 1 1 1 - n/a RW RW

SCTLR_EL1 x x 0 - SCTLR_EL1 n/a SCTLR_EL1

SCTLR_EL1 0 0 1 - SCTLR_EL1 SCTLR_EL1 SCTLR_EL1

SCTLR_EL1 0 1 1 - n/a SCTLR_EL1 SCTLR_EL1

SCTLR_EL1 1 0 1 - SCTLR_EL1 RW SCTLR_EL1

SCTLR_EL1 1 1 1 - n/a RW SCTLR_EL1
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-353
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.2 General system control registers
B12.2.40 SPSR_abt, Saved Program Status Register (Abort mode)

The SPSR_abt characteristics are:

Purpose

Holds the saved process state when an exception is taken to Abort mode.

Configurations

AArch64 System register SPSR_abt is architecturally mapped to AArch32 System register
SPSR_abt.

If EL1 does not support execution in AArch32, this register is RES0.

Attributes

SPSR_abt is a 32-bit register.

Field descriptions

The SPSR_abt bit assignments are:

N, bit [31]

Set to the value of CPSR.N on taking an exception to Abort mode, and copied to CPSR.N on
executing an exception return operation in Abort mode.

Z, bit [30]

Set to the value of CPSR.Z on taking an exception to Abort mode, and copied to CPSR.Z on
executing an exception return operation in Abort mode.

C, bit [29]

Set to the value of CPSR.C on taking an exception to Abort mode, and copied to CPSR.C on
executing an exception return operation in Abort mode.

V, bit [28]

Set to the value of CPSR.V on taking an exception to Abort mode, and copied to CPSR.V on
executing an exception return operation in Abort mode.

Q, bit [27]

Cumulative saturation bit. Set to 1 to indicate that overflow or saturation occurred in some
instructions.

IT[1:0], bits [26:25]

IT block state bits for the T32 IT (If-Then) instruction. See IT[7:2] for explanation of this field.

J, bit [24]

RES0.

N

31

Z

30

C

29

V

28

Q

27 26 25

J

24 23 22 21

IL

20

GE

19 16

IT[7:2]

15 10

E

9

A

8

I

7

F

6

T

5 4

M[3:0]

3 0

IT[1:0]
RES0
PAN
RES0

M[4]
B12-354 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.2 General system control registers
In previous versions of the architecture, the {J, T} bits determined the AArch32 Instruction set state.
ARMv8 does not support either Jazelle state or T32EE state, and the T bit determines the Instruction
set state.

Bit [23]

Reserved, RES0.

PAN, bit [22] (In ARMv8.1)

Set to the value of CPSR.PAN on taking an exception to Abort mode, and copied to CPSR.PAN on
executing an exception return operation in Abort mode.

Bit [22] (In ARMv8.0)

Reserved, RES0.

Bit [21]

Reserved, RES0.

IL, bit [20]

Illegal Execution state bit. Shows the value of PSTATE.IL immediately before the exception was
taken.

GE, bits [19:16]

Greater than or Equal flags, for parallel addition and subtraction.

IT[7:2], bits [15:10]

IT block state bits for the T32 IT (If-Then) instruction. This field must be interpreted in two parts.

• IT[7:5] holds the base condition for the IT block. The base condition is the top 3 bits of the
condition code specified by the first condition field of the IT instruction.

• IT[4:0] encodes the size of the IT block, which is the number of instructions that are to be
conditionally executed, by the position of the least significant 1 in this field. It also encodes
the value of the least significant bit of the condition code for each instruction in the block.

The IT field is 0b00000000 when no IT block is active.

E, bit [9]

Endianness state bit. Controls the load and store endianness for data accesses:

0 Little-endian operation

1 Big-endian operation.

Instruction fetches ignore this bit.

When the reset value of the SCTLR.EE bit is defined by a configuration input signal, that value also
applies to the CPSR.E bit on reset, and therefore applies to software execution from reset.

If an implementation does not provide Big-endian support, this bit is RES0. If it does not provide
Little-endian support, this bit is RES1.

If an implementation provides Big-endian support but only at EL0, this bit is RES0 for an exception
return to any Exception level other than EL0.

Likewise, if it provides Little-endian support only at EL0, this bit is RES1 for an exception return to
any Exception level other than EL0.

A, bit [8]

Asynchronous data abort mask bit. The possible values of this bit are:

0 Exception not masked.

1 Exception masked.
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-355
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.2 General system control registers
I, bit [7]

IRQ mask bit. The possible values of this bit are:

0 Exception not masked.

1 Exception masked.

F, bit [6]

FIQ mask bit. The possible values of this bit are:

0 Exception not masked.

1 Exception masked.

T, bit [5]

T32 Instruction set state bit. Determines the AArch32 instruction set state that the exception was
taken from. Possible values of this bit are:

0 Taken from A32 state.

1 Taken from T32 state.

M[4], bit [4]

Execution state that the exception was taken from. Possible values of this bit are:

1 Exception taken from AArch32.

M[3:0], bits [3:0]

AArch32 mode that an exception was taken from. The possible values are:

Other values are reserved.

Accessing the SPSR_abt

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

M[3:0] Mode

0b0000 User

0b0001 FIQ

0b0010 IRQ

0b0011 Supervisor

0b0110 Monitor

0b0111 Abort

0b1010 Hyp

0b1011 Undefined

0b1111 System
B12-356 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.2 General system control registers
This syntax is encoded with the following settings in the instruction encoding:

Accessibility

The register is accessible in software as follows:

<systemreg> op0 op1 CRn CRm op2

SPSR_abt 11 100 0100 0011 001

<systemreg>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

SPSR_abt x x 0 - - n/a RW

SPSR_abt x 0 1 - - RW RW

SPSR_abt x 1 1 - n/a RW RW
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-357
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.2 General system control registers
B12.2.41 SPSR_EL1, Saved Program Status Register (EL1)

The SPSR_EL1 characteristics are:

Purpose

Holds the saved process state when an exception is taken to EL1.

Configurations

AArch64 System register SPSR_EL1 is architecturally mapped to AArch32 System register
SPSR_svc.

Attributes

SPSR_EL1 is a 32-bit register.

Field descriptions

The SPSR_EL1 bit assignments are:

When exception taken from AArch32:

An exception return from EL1 using AArch64 makes SPSR_EL1 become UNKNOWN.

N, bit [31]

Set to the value of CPSR.N on taking an exception to Supervisor mode, and copied to CPSR.N on
executing an exception return operation in Supervisor mode.

Z, bit [30]

Set to the value of CPSR.Z on taking an exception to Supervisor mode, and copied to CPSR.Z on
executing an exception return operation in Supervisor mode.

C, bit [29]

Set to the value of CPSR.C on taking an exception to Supervisor mode, and copied to CPSR.C on
executing an exception return operation in Supervisor mode.

V, bit [28]

Set to the value of CPSR.V on taking an exception to Supervisor mode, and copied to CPSR.V on
executing an exception return operation in Supervisor mode.

Q, bit [27]

Cumulative saturation bit. Set to 1 to indicate that overflow or saturation occurred in some
instructions.

IT[1:0], bits [26:25]

IT block state bits for the T32 IT (If-Then) instruction. See IT[7:2] for explanation of this field.

J, bit [24]

RES0.

N

31

Z

30

C

29

V

28

Q

27 26 25

J

24 23 22

SS

21

IL

20

GE

19 16

IT[7:2]

15 10

E

9

A

8

I

7

F

6

T

5 4

M[3:0]

3 0

IT[1:0]
RES0
PAN

M[4]
B12-358 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.2 General system control registers
In previous versions of the architecture, the {J, T} bits determined the AArch32 Instruction set state.
ARMv8 does not support either Jazelle state or T32EE state, and the T bit determines the Instruction
set state.

Bit [23]

Reserved, RES0.

PAN, bit [22] (In ARMv8.1)

Set to the value of CPSR.PAN on taking an exception to Supervisor mode, and copied to CPSR.PAN
on executing an exception return operation in Supervisor mode.

Bit [22] (In ARMv8.0)

Reserved, RES0.

SS, bit [21]

Software step. Shows the value of PSTATE.SS immediately before the exception was taken.

IL, bit [20]

Illegal Execution state bit. Shows the value of PSTATE.IL immediately before the exception was
taken.

GE, bits [19:16]

Greater than or Equal flags, for parallel addition and subtraction.

IT[7:2], bits [15:10]

IT block state bits for the T32 IT (If-Then) instruction. This field must be interpreted in two parts.

• IT[7:5] holds the base condition for the IT block. The base condition is the top 3 bits of the
condition code specified by the first condition field of the IT instruction.

• IT[4:0] encodes the size of the IT block, which is the number of instructions that are to be
conditionally executed, by the position of the least significant 1 in this field. It also encodes
the value of the least significant bit of the condition code for each instruction in the block.

The IT field is 0b00000000 when no IT block is active.

E, bit [9]

Endianness state bit. Controls the load and store endianness for data accesses:

0 Little-endian operation

1 Big-endian operation.

Instruction fetches ignore this bit.

When the reset value of the SCTLR.EE bit is defined by a configuration input signal, that value also
applies to the CPSR.E bit on reset, and therefore applies to software execution from reset.

If an implementation does not provide Big-endian support, this bit is RES0. If it does not provide
Little-endian support, this bit is RES1.

If an implementation provides Big-endian support but only at EL0, this bit is RES0 for an exception
return to any Exception level other than EL0.

Likewise, if it provides Little-endian support only at EL0, this bit is RES1 for an exception return to
any Exception level other than EL0.

A, bit [8]

Asynchronous data abort mask bit. The possible values of this bit are:

0 Exception not masked.

1 Exception masked.
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-359
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.2 General system control registers
I, bit [7]

IRQ mask bit. The possible values of this bit are:

0 Exception not masked.

1 Exception masked.

F, bit [6]

FIQ mask bit. The possible values of this bit are:

0 Exception not masked.

1 Exception masked.

T, bit [5]

T32 Instruction set state bit. Determines the AArch32 instruction set state that the exception was
taken from. Possible values of this bit are:

0 Taken from A32 state.

1 Taken from T32 state.

M[4], bit [4]

Execution state that the exception was taken from. Possible values of this bit are:

1 Exception taken from AArch32.

M[3:0], bits [3:0]

AArch32 mode that an exception was taken from. The possible values are:

Other values are reserved. The effect of programming this field to a Reserved value is that behavior
is CONSTRAINED UNPREDICTABLE, as described in Reserved values in System and memory-mapped
registers and translation table entries on page B12-558.

When exception taken from AArch64:

M[3:0] Mode

0b0000 User

0b0001 FIQ

0b0010 IRQ

0b0011 Supervisor

0b0111 Abort

0b1011 Undefined

0b1111 System

N

31

Z

30

C

29

V

28

RES0

27 23 22

SS

21

IL

20

RES0

19 10

D

9

A

8

I

7

F

6 5 4

M[3:0]

3 0

PAN M[4]
RES0
B12-360 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.2 General system control registers
An exception return from EL1 using AArch64 makes SPSR_EL1 become UNKNOWN.

N, bit [31]

Set to the value of the N condition flag on taking an exception to EL1, and copied to the N condition
flag on executing an exception return operation in EL1.

Z, bit [30]

Set to the value of the Z condition flag on taking an exception to EL1, and copied to the Z condition
flag on executing an exception return operation in EL1.

C, bit [29]

Set to the value of the C condition flag on taking an exception to EL1, and copied to the C condition
flag on executing an exception return operation in EL1.

V, bit [28]

Set to the value of the V condition flag on taking an exception to EL1, and copied to the V condition
flag on executing an exception return operation in EL1.

Bits [27:23]

Reserved, RES0.

PAN, bit [22] (In ARMv8.1)

Set to the value of PSTATE.PAN on taking an exception to EL1, and copied to PSTATE.PAN on
executing an exception return operation in EL1.

Bit [22] (In ARMv8.0)

Reserved, RES0.

SS, bit [21]

Software step. Shows the value of PSTATE.SS immediately before the exception was taken.

IL, bit [20]

Illegal Execution state bit. Shows the value of PSTATE.IL immediately before the exception was
taken.

Bits [19:10]

Reserved, RES0.

D, bit [9]

Process state D mask. The possible values of this bit are:

0 Watchpoint, Breakpoint, and Software Step exceptions targeted at the current Exception
level are not masked.

1 Watchpoint, Breakpoint, and Software step exceptions targeted at the current Exception
level are masked.

When the target Exception level of the debug exception is higher than the current Exception level,
the exception is not masked by this bit.

A, bit [8]

SError (System Error) mask bit. The possible values of this bit are:

0 Exception not masked.

1 Exception masked.

I, bit [7]

IRQ mask bit. The possible values of this bit are:

0 Exception not masked.

1 Exception masked.
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-361
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.2 General system control registers
F, bit [6]

FIQ mask bit. The possible values of this bit are:

0 Exception not masked.

1 Exception masked.

Bit [5]

Reserved, RES0.

M[4], bit [4]

Execution state that the exception was taken from. Possible values of this bit are:

0 Exception taken from AArch64.

M[3:0], bits [3:0]

AArch64 mode that an exception was taken from. The possible values are:

Other values are reserved, and returning to an Exception level that is using AArch64 with a reserved
value in this field is treated as an illegal exception return.

The bits in this field are interpreted as follows:

• M[3:2] holds the Exception Level.

• M[1] is unused and is RES0 for all non-reserved values.

• M[0] is used to select the SP:

— 0 means the SP is always SP0.

— 1 means the exception SP is determined by the EL.

Accessing the SPSR_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax is encoded with the following settings in the instruction encoding:

M[3:0] Mode

0b0000 EL0t

0b0100 EL1t

0b0101 EL1h

<systemreg> op0 op1 CRn CRm op2

SPSR_EL1 11 000 0100 0000 000

SPSR_EL12 11 101 0100 0000 000
B12-362 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.2 General system control registers
Accessibility

The register is accessible in software as follows:

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic SPSR_EL1 or
SPSR_EL12 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

<systemreg>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

SPSR_EL1 x x 0 - RW n/a RW

SPSR_EL1 0 0 1 - RW RW RW

SPSR_EL1 0 1 1 - n/a RW RW

SPSR_EL1 1 0 1 - RW SPSR_EL2 RW

SPSR_EL1 1 1 1 - n/a SPSR_EL2 RW

SPSR_EL12 x x 0 - - n/a -

SPSR_EL12 0 0 1 - - - -

SPSR_EL12 0 1 1 - n/a - -

SPSR_EL12 1 0 1 - - RW RW

SPSR_EL12 1 1 1 - n/a RW RW
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-363
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.2 General system control registers
B12.2.42 SPSR_EL2, Saved Program Status Register (EL2)

The SPSR_EL2 characteristics are:

Purpose

Holds the saved process state when an exception is taken to EL2.

Configurations

AArch64 System register SPSR_EL2 is architecturally mapped to AArch32 System register
SPSR_hyp.

Attributes

SPSR_EL2 is a 32-bit register.

Field descriptions

The SPSR_EL2 bit assignments are:

When exception taken from AArch32:

An exception return from EL2 using AArch64 makes SPSR_EL2 become UNKNOWN.

N, bit [31]

Set to the value of CPSR.N on taking an exception to Hyp mode, and copied to CPSR.N on
executing an exception return operation in Hyp mode.

Z, bit [30]

Set to the value of CPSR.Z on taking an exception to Hyp mode, and copied to CPSR.Z on executing
an exception return operation in Hyp mode.

C, bit [29]

Set to the value of CPSR.C on taking an exception to Hyp mode, and copied to CPSR.C on
executing an exception return operation in Hyp mode.

V, bit [28]

Set to the value of CPSR.V on taking an exception to Hyp mode, and copied to CPSR.V on
executing an exception return operation in Hyp mode.

Q, bit [27]

Cumulative saturation bit. Set to 1 to indicate that overflow or saturation occurred in some
instructions.

IT[1:0], bits [26:25]

IT block state bits for the T32 IT (If-Then) instruction. See IT[7:2] for explanation of this field.

J, bit [24]

RES0.

N

31

Z

30

C

29

V

28

Q

27 26 25

J

24 23 22

SS

21

IL

20

GE

19 16

IT[7:2]

15 10

E

9

A

8

I

7

F

6

T

5 4

M[3:0]

3 0

IT[1:0]
RES0
PAN

M[4]
B12-364 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.2 General system control registers
In previous versions of the architecture, the {J, T} bits determined the AArch32 Instruction set state.
ARMv8 does not support either Jazelle state or T32EE state, and the T bit determines the Instruction
set state.

Bit [23]

Reserved, RES0.

PAN, bit [22] (In ARMv8.1)

Set to the value of CPSR.PAN on taking an exception to Hyp mode, and copied to CPSR.PAN on
executing an exception return operation in Hyp mode.

Bit [22] (In ARMv8.0)

Reserved, RES0.

SS, bit [21]

Software step. Shows the value of PSTATE.SS immediately before the exception was taken.

IL, bit [20]

Illegal Execution state bit. Shows the value of PSTATE.IL immediately before the exception was
taken.

GE, bits [19:16]

Greater than or Equal flags, for parallel addition and subtraction.

IT[7:2], bits [15:10]

IT block state bits for the T32 IT (If-Then) instruction. This field must be interpreted in two parts.

• IT[7:5] holds the base condition for the IT block. The base condition is the top 3 bits of the
condition code specified by the first condition field of the IT instruction.

• IT[4:0] encodes the size of the IT block, which is the number of instructions that are to be
conditionally executed, by the position of the least significant 1 in this field. It also encodes
the value of the least significant bit of the condition code for each instruction in the block.

The IT field is 0b00000000 when no IT block is active.

E, bit [9]

Endianness state bit. Controls the load and store endianness for data accesses:

0 Little-endian operation

1 Big-endian operation.

Instruction fetches ignore this bit.

When the reset value of the SCTLR.EE bit is defined by a configuration input signal, that value also
applies to the CPSR.E bit on reset, and therefore applies to software execution from reset.

If an implementation does not provide Big-endian support, this bit is RES0. If it does not provide
Little-endian support, this bit is RES1.

If an implementation provides Big-endian support but only at EL0, this bit is RES0 for an exception
return to any Exception level other than EL0.

Likewise, if it provides Little-endian support only at EL0, this bit is RES1 for an exception return to
any Exception level other than EL0.

A, bit [8]

Asynchronous data abort mask bit. The possible values of this bit are:

0 Exception not masked.

1 Exception masked.
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-365
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.2 General system control registers
I, bit [7]

IRQ mask bit. The possible values of this bit are:

0 Exception not masked.

1 Exception masked.

F, bit [6]

FIQ mask bit. The possible values of this bit are:

0 Exception not masked.

1 Exception masked.

T, bit [5]

T32 Instruction set state bit. Determines the AArch32 instruction set state that the exception was
taken from. Possible values of this bit are:

0 Taken from A32 state.

1 Taken from T32 state.

M[4], bit [4]

Execution state that the exception was taken from. Possible values of this bit are:

1 Exception taken from AArch32.

M[3:0], bits [3:0]

AArch32 mode that an exception was taken from. The possible values are:

Other values are reserved. The effect of programming this field to a Reserved value is that behavior
is CONSTRAINED UNPREDICTABLE, as described in Reserved values in System and memory-mapped
registers and translation table entries on page B12-558.

When exception taken from AArch64:

M[3:0] Mode

0b0000 User

0b0001 FIQ

0b0010 IRQ

0b0011 Supervisor

0b0111 Abort

0b1010 Hyp

0b1011 Undefined

0b1111 System

N

31

Z

30

C

29

V

28

RES0

27 23 22

SS

21

IL

20

RES0

19 10

D

9

A

8

I

7

F

6 5 4

M[3:0]

3 0

PAN M[4]
RES0
B12-366 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.2 General system control registers
An exception return from EL2 using AArch64 makes SPSR_EL2 become UNKNOWN.

N, bit [31]

Set to the value of the N condition flag on taking an exception to EL2, and copied to the N condition
flag on executing an exception return operation in EL2.

Z, bit [30]

Set to the value of the Z condition flag on taking an exception to EL2, and copied to the Z condition
flag on executing an exception return operation in EL2.

C, bit [29]

Set to the value of the C condition flag on taking an exception to EL2, and copied to the C condition
flag on executing an exception return operation in EL2.

V, bit [28]

Set to the value of the V condition flag on taking an exception to EL2, and copied to the V condition
flag on executing an exception return operation in EL2.

Bits [27:23]

Reserved, RES0.

PAN, bit [22] (In ARMv8.1)

Set to the value of PSTATE.PAN on taking an exception to EL2, and copied to PSTATE.PAN on
executing an exception return operation in EL2.

Bit [22] (In ARMv8.0)

Reserved, RES0.

SS, bit [21]

Software step. Shows the value of PSTATE.SS immediately before the exception was taken.

IL, bit [20]

Illegal Execution state bit. Shows the value of PSTATE.IL immediately before the exception was
taken.

Bits [19:10]

Reserved, RES0.

D, bit [9]

Process state D mask. The possible values of this bit are:

0 Watchpoint, Breakpoint, and Software Step exceptions targeted at the current Exception
level are not masked.

1 Watchpoint, Breakpoint, and Software step exceptions targeted at the current Exception
level are masked.

When the target Exception level of the debug exception is higher than the current Exception level,
the exception is not masked by this bit.

A, bit [8]

SError (System Error) mask bit. The possible values of this bit are:

0 Exception not masked.

1 Exception masked.

I, bit [7]

IRQ mask bit. The possible values of this bit are:

0 Exception not masked.

1 Exception masked.
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-367
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.2 General system control registers
F, bit [6]

FIQ mask bit. The possible values of this bit are:

0 Exception not masked.

1 Exception masked.

Bit [5]

Reserved, RES0.

M[4], bit [4]

Execution state that the exception was taken from. Possible values of this bit are:

0 Exception taken from AArch64.

M[3:0], bits [3:0]

AArch64 mode that an exception was taken from. The possible values are:

Other values are reserved, and returning to an Exception level that is using AArch64 with a reserved
value in this field is treated as an illegal exception return.

The bits in this field are interpreted as follows:

• M[3:2] holds the Exception Level.

• M[1] is unused and is RES0 for all non-reserved values.

• M[0] is used to select the SP:

— 0 means the SP is always SP0.

— 1 means the exception SP is determined by the EL.

Accessing the SPSR_EL2

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax is encoded with the following settings in the instruction encoding:

M[3:0] Mode

0b0000 EL0t

0b0100 EL1t

0b0101 EL1h

0b1000 EL2t

0b1001 EL2h

<systemreg> op0 op1 CRn CRm op2

SPSR_EL2 11 100 0100 0000 000

SPSR_EL1 11 000 0100 0000 000
B12-368 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.2 General system control registers
Accessibility

The register is accessible in software as follows:

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic SPSR_EL2 or
SPSR_EL1 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

<systemreg>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

SPSR_EL2 x x 0 - - n/a RW

SPSR_EL2 0 0 1 - - RW RW

SPSR_EL2 0 1 1 - n/a RW RW

SPSR_EL2 1 0 1 - - RW RW

SPSR_EL2 1 1 1 - n/a RW RW

SPSR_EL1 x x 0 - SPSR_EL1 n/a SPSR_EL1

SPSR_EL1 0 0 1 - SPSR_EL1 SPSR_EL1 SPSR_EL1

SPSR_EL1 0 1 1 - n/a SPSR_EL1 SPSR_EL1

SPSR_EL1 1 0 1 - SPSR_EL1 RW SPSR_EL1

SPSR_EL1 1 1 1 - n/a RW SPSR_EL1
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-369
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.2 General system control registers
B12.2.43 SPSR_EL3, Saved Program Status Register (EL3)

The SPSR_EL3 characteristics are:

Purpose

Holds the saved process state when an exception is taken to EL3.

Configurations

AArch64 System register SPSR_EL3 can be mapped to AArch32 System register SPSR_mon, but
this is not architecturally mandated.

Attributes

SPSR_EL3 is a 32-bit register.

Field descriptions

The SPSR_EL3 bit assignments are:

When exception taken from AArch32:

An exception return from EL3 using AArch64 makes SPSR_EL3 become UNKNOWN.

N, bit [31]

Set to the value of CPSR.N on taking an exception to Monitor mode, and copied to CPSR.N on
executing an exception return operation in Monitor mode.

Z, bit [30]

Set to the value of CPSR.Z on taking an exception to Monitor mode, and copied to CPSR.Z on
executing an exception return operation in Monitor mode.

C, bit [29]

Set to the value of CPSR.C on taking an exception to Monitor mode, and copied to CPSR.C on
executing an exception return operation in Monitor mode.

V, bit [28]

Set to the value of CPSR.V on taking an exception to Monitor mode, and copied to CPSR.V on
executing an exception return operation in Monitor mode.

Q, bit [27]

Cumulative saturation bit. Set to 1 to indicate that overflow or saturation occurred in some
instructions.

IT[1:0], bits [26:25]

IT block state bits for the T32 IT (If-Then) instruction. See IT[7:2] for explanation of this field.

J, bit [24]

RES0.

N

31

Z

30

C

29

V

28

Q

27 26 25

J

24 23 22

SS

21

IL

20

GE

19 16

IT[7:2]

15 10

E

9

A

8

I

7

F

6

T

5 4

M[3:0]

3 0

IT[1:0]
RES0
PAN

M[4]
B12-370 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.2 General system control registers
In previous versions of the architecture, the {J, T} bits determined the AArch32 Instruction set state.
ARMv8 does not support either Jazelle state or T32EE state, and the T bit determines the Instruction
set state.

Bit [23]

Reserved, RES0.

PAN, bit [22] (In ARMv8.1)

Set to the value of CPSR.PAN on taking an exception to Monitor mode, and copied to CPSR.PAN
on executing an exception return operation in Monitor mode.

Bit [22] (In ARMv8.0)

Reserved, RES0.

SS, bit [21]

Software step. Shows the value of PSTATE.SS immediately before the exception was taken.

IL, bit [20]

Illegal Execution state bit. Shows the value of PSTATE.IL immediately before the exception was
taken.

GE, bits [19:16]

Greater than or Equal flags, for parallel addition and subtraction.

IT[7:2], bits [15:10]

IT block state bits for the T32 IT (If-Then) instruction. This field must be interpreted in two parts.

• IT[7:5] holds the base condition for the IT block. The base condition is the top 3 bits of the
condition code specified by the first condition field of the IT instruction.

• IT[4:0] encodes the size of the IT block, which is the number of instructions that are to be
conditionally executed, by the position of the least significant 1 in this field. It also encodes
the value of the least significant bit of the condition code for each instruction in the block.

The IT field is 0b00000000 when no IT block is active.

E, bit [9]

Endianness state bit. Controls the load and store endianness for data accesses:

0 Little-endian operation

1 Big-endian operation.

Instruction fetches ignore this bit.

When the reset value of the SCTLR.EE bit is defined by a configuration input signal, that value also
applies to the CPSR.E bit on reset, and therefore applies to software execution from reset.

If an implementation does not provide Big-endian support, this bit is RES0. If it does not provide
Little-endian support, this bit is RES1.

If an implementation provides Big-endian support but only at EL0, this bit is RES0 for an exception
return to any Exception level other than EL0.

Likewise, if it provides Little-endian support only at EL0, this bit is RES1 for an exception return to
any Exception level other than EL0.

A, bit [8]

Asynchronous data abort mask bit. The possible values of this bit are:

0 Exception not masked.

1 Exception masked.
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-371
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.2 General system control registers
I, bit [7]

IRQ mask bit. The possible values of this bit are:

0 Exception not masked.

1 Exception masked.

F, bit [6]

FIQ mask bit. The possible values of this bit are:

0 Exception not masked.

1 Exception masked.

T, bit [5]

T32 Instruction set state bit. Determines the AArch32 instruction set state that the exception was
taken from. Possible values of this bit are:

0 Taken from A32 state.

1 Taken from T32 state.

M[4], bit [4]

Execution state that the exception was taken from. Possible values of this bit are:

1 Exception taken from AArch32.

M[3:0], bits [3:0]

AArch32 mode that an exception was taken from. The possible values are:

Other values are reserved. The effect of programming this field to a Reserved value is that behavior
is CONSTRAINED UNPREDICTABLE, as described in Reserved values in System and memory-mapped
registers and translation table entries on page B12-558.

When exception taken from AArch64:

M[3:0] Mode

0b0000 User

0b0001 FIQ

0b0010 IRQ

0b0011 Supervisor

0b0110 Monitor

0b0111 Abort

0b1010 Hyp

0b1011 Undefined

0b1111 System

N

31

Z

30

C

29

V

28

RES0

27 23 22

SS

21

IL

20

RES0

19 10

D

9

A

8

I

7

F

6 5 4

M[3:0]

3 0

PAN M[4]
RES0
B12-372 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.2 General system control registers
An exception return from EL3 using AArch64 makes SPSR_EL3 become UNKNOWN.

N, bit [31]

Set to the value of the N condition flag on taking an exception to EL3, and copied to the N condition
flag on executing an exception return operation in EL3.

Z, bit [30]

Set to the value of the Z condition flag on taking an exception to EL3, and copied to the Z condition
flag on executing an exception return operation in EL3.

C, bit [29]

Set to the value of the C condition flag on taking an exception to EL3, and copied to the C condition
flag on executing an exception return operation in EL3.

V, bit [28]

Set to the value of the V condition flag on taking an exception to EL3, and copied to the V condition
flag on executing an exception return operation in EL3.

Bits [27:23]

Reserved, RES0.

PAN, bit [22] (In ARMv8.1)

Set to the value of PSTATE.PAN on taking an exception to EL3, and copied to PSTATE.PAN on
executing an exception return operation in EL3.

Bit [22] (In ARMv8.0)

Reserved, RES0.

SS, bit [21]

Software step. Shows the value of PSTATE.SS immediately before the exception was taken.

IL, bit [20]

Illegal Execution state bit. Shows the value of PSTATE.IL immediately before the exception was
taken.

Bits [19:10]

Reserved, RES0.

D, bit [9]

Process state D mask. The possible values of this bit are:

0 Watchpoint, Breakpoint, and Software Step exceptions targeted at the current Exception
level are not masked.

1 Watchpoint, Breakpoint, and Software step exceptions targeted at the current Exception
level are masked.

When the target Exception level of the debug exception is higher than the current Exception level,
the exception is not masked by this bit.

A, bit [8]

SError (System Error) mask bit. The possible values of this bit are:

0 Exception not masked.

1 Exception masked.

I, bit [7]

IRQ mask bit. The possible values of this bit are:

0 Exception not masked.

1 Exception masked.
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-373
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.2 General system control registers
F, bit [6]

FIQ mask bit. The possible values of this bit are:

0 Exception not masked.

1 Exception masked.

Bit [5]

Reserved, RES0.

M[4], bit [4]

Execution state that the exception was taken from. Possible values of this bit are:

0 Exception taken from AArch64.

M[3:0], bits [3:0]

AArch64 mode that an exception was taken from. The possible values are:

Other values are reserved, and returning to an Exception level that is using AArch64 with a reserved
value in this field is treated as an illegal exception return.

The bits in this field are interpreted as follows:

• M[3:2] holds the Exception Level.

• M[1] is unused and is RES0 for all non-reserved values.

• M[0] is used to select the SP:

— 0 means the SP is always SP0.

— 1 means the exception SP is determined by the EL.

Accessing the SPSR_EL3

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax is encoded with the following settings in the instruction encoding:

M[3:0] Mode

0b0000 EL0t

0b0100 EL1t

0b0101 EL1h

0b1000 EL2t

0b1001 EL2h

0b1100 EL3t

0b1101 EL3h

<systemreg> op0 op1 CRn CRm op2

SPSR_EL3 11 110 0100 0000 000
B12-374 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.2 General system control registers
Accessibility

The register is accessible in software as follows:

<systemreg>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

SPSR_EL3 x x 0 - - n/a RW

SPSR_EL3 x 0 1 - - - RW

SPSR_EL3 x 1 1 - n/a - RW
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-375
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.2 General system control registers
B12.2.44 SPSR_fiq, Saved Program Status Register (FIQ mode)

The SPSR_fiq characteristics are:

Purpose

Holds the saved process state when an exception is taken to FIQ mode.

Configurations

AArch64 System register SPSR_fiq is architecturally mapped to AArch32 System register
SPSR_fiq.

If EL1 does not support execution in AArch32, this register is RES0.

Attributes

SPSR_fiq is a 32-bit register.

Field descriptions

The SPSR_fiq bit assignments are:

N, bit [31]

Set to the value of CPSR.N on taking an exception to FIQ mode, and copied to CPSR.N on
executing an exception return operation in FIQ mode.

Z, bit [30]

Set to the value of CPSR.Z on taking an exception to FIQ mode, and copied to CPSR.Z on executing
an exception return operation in FIQ mode.

C, bit [29]

Set to the value of CPSR.C on taking an exception to FIQ mode, and copied to CPSR.C on executing
an exception return operation in FIQ mode.

V, bit [28]

Set to the value of CPSR.V on taking an exception to FIQ mode, and copied to CPSR.V on
executing an exception return operation in FIQ mode.

Q, bit [27]

Cumulative saturation bit. Set to 1 to indicate that overflow or saturation occurred in some
instructions.

IT[1:0], bits [26:25]

IT block state bits for the T32 IT (If-Then) instruction. See IT[7:2] for explanation of this field.

J, bit [24]

RES0.

N

31

Z

30

C

29

V

28

Q

27 26 25

J

24 23 22 21

IL

20

GE

19 16

IT[7:2]

15 10

E

9

A

8

I

7

F

6

T

5 4

M[3:0]

3 0

IT[1:0]
RES0
PAN
RES0

M[4]
B12-376 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.2 General system control registers
In previous versions of the architecture, the {J, T} bits determined the AArch32 Instruction set state.
ARMv8 does not support either Jazelle state or T32EE state, and the T bit determines the Instruction
set state.

Bit [23]

Reserved, RES0.

PAN, bit [22] (In ARMv8.1)

Set to the value of CPSR.PAN on taking an exception to FIQ mode, and copied to CPSR.PAN on
executing an exception return operation in FIQ mode.

Bit [22] (In ARMv8.0)

Reserved, RES0.

Bit [21]

Reserved, RES0.

IL, bit [20]

Illegal Execution state bit. Shows the value of PSTATE.IL immediately before the exception was
taken.

GE, bits [19:16]

Greater than or Equal flags, for parallel addition and subtraction.

IT[7:2], bits [15:10]

IT block state bits for the T32 IT (If-Then) instruction. This field must be interpreted in two parts.

• IT[7:5] holds the base condition for the IT block. The base condition is the top 3 bits of the
condition code specified by the first condition field of the IT instruction.

• IT[4:0] encodes the size of the IT block, which is the number of instructions that are to be
conditionally executed, by the position of the least significant 1 in this field. It also encodes
the value of the least significant bit of the condition code for each instruction in the block.

The IT field is 0b00000000 when no IT block is active.

E, bit [9]

Endianness state bit. Controls the load and store endianness for data accesses:

0 Little-endian operation

1 Big-endian operation.

Instruction fetches ignore this bit.

When the reset value of the SCTLR.EE bit is defined by a configuration input signal, that value also
applies to the CPSR.E bit on reset, and therefore applies to software execution from reset.

If an implementation does not provide Big-endian support, this bit is RES0. If it does not provide
Little-endian support, this bit is RES1.

If an implementation provides Big-endian support but only at EL0, this bit is RES0 for an exception
return to any Exception level other than EL0.

Likewise, if it provides Little-endian support only at EL0, this bit is RES1 for an exception return to
any Exception level other than EL0.

A, bit [8]

Asynchronous data abort mask bit. The possible values of this bit are:

0 Exception not masked.

1 Exception masked.
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-377
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.2 General system control registers
I, bit [7]

IRQ mask bit. The possible values of this bit are:

0 Exception not masked.

1 Exception masked.

F, bit [6]

FIQ mask bit. The possible values of this bit are:

0 Exception not masked.

1 Exception masked.

T, bit [5]

T32 Instruction set state bit. Determines the AArch32 instruction set state that the exception was
taken from. Possible values of this bit are:

0 Taken from A32 state.

1 Taken from T32 state.

M[4], bit [4]

Execution state that the exception was taken from. Possible values of this bit are:

1 Exception taken from AArch32.

M[3:0], bits [3:0]

AArch32 mode that an exception was taken from. The possible values are:

Other values are reserved. The effect of programming this field to a Reserved value is that behavior
is CONSTRAINED UNPREDICTABLE, as described in Reserved values in System and memory-mapped
registers and translation table entries on page B12-558.

Accessing the SPSR_fiq

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

M[3:0] Mode

0b0000 User

0b0001 FIQ

0b0010 IRQ

0b0011 Supervisor

0b0110 Monitor

0b0111 Abort

0b1010 Hyp

0b1011 Undefined

0b1111 System
B12-378 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.2 General system control registers
This syntax is encoded with the following settings in the instruction encoding:

Accessibility

The register is accessible in software as follows:

<systemreg> op0 op1 CRn CRm op2

SPSR_fiq 11 100 0100 0011 011

<systemreg>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

SPSR_fiq x x 0 - - n/a RW

SPSR_fiq x 0 1 - - RW RW

SPSR_fiq x 1 1 - n/a RW RW
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-379
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.2 General system control registers
B12.2.45 SPSR_irq, Saved Program Status Register (IRQ mode)

The SPSR_irq characteristics are:

Purpose

Holds the saved process state when an exception is taken to IRQ mode.

Configurations

AArch64 System register SPSR_irq is architecturally mapped to AArch32 System register
SPSR_irq.

If EL1 does not support execution in AArch32, this register is RES0.

Attributes

SPSR_irq is a 32-bit register.

Field descriptions

The SPSR_irq bit assignments are:

N, bit [31]

Set to the value of CPSR.N on taking an exception to IRQ mode, and copied to CPSR.N on
executing an exception return operation in IRQ mode.

Z, bit [30]

Set to the value of CPSR.Z on taking an exception to IRQ mode, and copied to CPSR.Z on executing
an exception return operation in IRQ mode.

C, bit [29]

Set to the value of CPSR.C on taking an exception to IRQ mode, and copied to CPSR.C on
executing an exception return operation in IRQ mode.

V, bit [28]

Set to the value of CPSR.V on taking an exception to IRQ mode, and copied to CPSR.V on
executing an exception return operation in IRQ mode.

Q, bit [27]

Cumulative saturation bit. Set to 1 to indicate that overflow or saturation occurred in some
instructions.

IT[1:0], bits [26:25]

IT block state bits for the T32 IT (If-Then) instruction. See IT[7:2] for explanation of this field.

J, bit [24]

RES0.

N

31

Z

30

C

29

V

28

Q

27 26 25

J

24 23 22 21

IL

20

GE

19 16

IT[7:2]

15 10

E

9

A

8

I

7

F

6

T

5 4

M[3:0]

3 0

IT[1:0]
RES0
PAN
RES0

M[4]
B12-380 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.2 General system control registers
In previous versions of the architecture, the {J, T} bits determined the AArch32 Instruction set state.
ARMv8 does not support either Jazelle state or T32EE state, and the T bit determines the Instruction
set state.

Bit [23]

Reserved, RES0.

PAN, bit [22] (In ARMv8.1)

Set to the value of CPSR.PAN on taking an exception to IRQ mode, and copied to CPSR.PAN on
executing an exception return operation in IRQ mode.

Bit [22] (In ARMv8.0)

Reserved, RES0.

Bit [21]

Reserved, RES0.

IL, bit [20]

Illegal Execution state bit. Shows the value of PSTATE.IL immediately before the exception was
taken.

GE, bits [19:16]

Greater than or Equal flags, for parallel addition and subtraction.

IT[7:2], bits [15:10]

IT block state bits for the T32 IT (If-Then) instruction. This field must be interpreted in two parts.

• IT[7:5] holds the base condition for the IT block. The base condition is the top 3 bits of the
condition code specified by the first condition field of the IT instruction.

• IT[4:0] encodes the size of the IT block, which is the number of instructions that are to be
conditionally executed, by the position of the least significant 1 in this field. It also encodes
the value of the least significant bit of the condition code for each instruction in the block.

The IT field is 0b00000000 when no IT block is active.

E, bit [9]

Endianness state bit. Controls the load and store endianness for data accesses:

0 Little-endian operation

1 Big-endian operation.

Instruction fetches ignore this bit.

When the reset value of the SCTLR.EE bit is defined by a configuration input signal, that value also
applies to the CPSR.E bit on reset, and therefore applies to software execution from reset.

If an implementation does not provide Big-endian support, this bit is RES0. If it does not provide
Little-endian support, this bit is RES1.

If an implementation provides Big-endian support but only at EL0, this bit is RES0 for an exception
return to any Exception level other than EL0.

Likewise, if it provides Little-endian support only at EL0, this bit is RES1 for an exception return to
any Exception level other than EL0.

A, bit [8]

Asynchronous data abort mask bit. The possible values of this bit are:

0 Exception not masked.

1 Exception masked.
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-381
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.2 General system control registers
I, bit [7]

IRQ mask bit. The possible values of this bit are:

0 Exception not masked.

1 Exception masked.

F, bit [6]

FIQ mask bit. The possible values of this bit are:

0 Exception not masked.

1 Exception masked.

T, bit [5]

T32 Instruction set state bit. Determines the AArch32 instruction set state that the exception was
taken from. Possible values of this bit are:

0 Taken from A32 state.

1 Taken from T32 state.

M[4], bit [4]

Execution state that the exception was taken from. Possible values of this bit are:

1 Exception taken from AArch32.

M[3:0], bits [3:0]

AArch32 mode that an exception was taken from. The possible values are:

Other values are reserved. The effect of programming this field to a Reserved value is that behavior
is CONSTRAINED UNPREDICTABLE, as described in Reserved values in System and memory-mapped
registers and translation table entries on page B12-558.

Accessing the SPSR_irq

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

M[3:0] Mode

0b0000 User

0b0001 FIQ

0b0010 IRQ

0b0011 Supervisor

0b0110 Monitor

0b0111 Abort

0b1010 Hyp

0b1011 Undefined

0b1111 System
B12-382 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.2 General system control registers
This syntax is encoded with the following settings in the instruction encoding:

Accessibility

The register is accessible in software as follows:

<systemreg> op0 op1 CRn CRm op2

SPSR_irq 11 100 0100 0011 000

<systemreg>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

SPSR_irq x x 0 - - n/a RW

SPSR_irq x 0 1 - - RW RW

SPSR_irq x 1 1 - n/a RW RW
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-383
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.2 General system control registers
B12.2.46 SPSR_und, Saved Program Status Register (Undefined mode)

The SPSR_und characteristics are:

Purpose

Holds the saved process state when an exception is taken to Undefined mode.

Configurations

AArch64 System register SPSR_und is architecturally mapped to AArch32 System register
SPSR_und.

If EL1 does not support execution in AArch32, this register is RES0.

Attributes

SPSR_und is a 32-bit register.

Field descriptions

The SPSR_und bit assignments are:

N, bit [31]

Set to the value of CPSR.N on taking an exception to Undefined mode, and copied to CPSR.N on
executing an exception return operation in Undefined mode.

Z, bit [30]

Set to the value of CPSR.Z on taking an exception to Undefined mode, and copied to CPSR.Z on
executing an exception return operation in Undefined mode.

C, bit [29]

Set to the value of CPSR.C on taking an exception to Undefined mode, and copied to CPSR.C on
executing an exception return operation in Undefined mode.

V, bit [28]

Set to the value of CPSR.V on taking an exception to Undefined mode, and copied to CPSR.V on
executing an exception return operation in Undefined mode.

Q, bit [27]

Cumulative saturation bit. Set to 1 to indicate that overflow or saturation occurred in some
instructions.

IT[1:0], bits [26:25]

IT block state bits for the T32 IT (If-Then) instruction. See IT[7:2] for explanation of this field.

J, bit [24]

RES0.

N

31

Z

30

C

29

V

28

Q

27 26 25

J

24 23 22 21

IL

20

GE

19 16

IT[7:2]

15 10

E

9

A

8

I

7

F

6

T

5 4

M[3:0]

3 0

IT[1:0]
RES0
PAN
RES0

M[4]
B12-384 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.2 General system control registers
In previous versions of the architecture, the {J, T} bits determined the AArch32 Instruction set state.
ARMv8 does not support either Jazelle state or T32EE state, and the T bit determines the Instruction
set state.

Bit [23]

Reserved, RES0.

PAN, bit [22] (In ARMv8.1)

Set to the value of CPSR.PAN on taking an exception to Undefined mode, and copied to CPSR.PAN
on executing an exception return operation in Undefined mode.

Bit [22] (In ARMv8.0)

Reserved, RES0.

Bit [21]

Reserved, RES0.

IL, bit [20]

Illegal Execution state bit. Shows the value of PSTATE.IL immediately before the exception was
taken.

GE, bits [19:16]

Greater than or Equal flags, for parallel addition and subtraction.

IT[7:2], bits [15:10]

IT block state bits for the T32 IT (If-Then) instruction. This field must be interpreted in two parts.

• IT[7:5] holds the base condition for the IT block. The base condition is the top 3 bits of the
condition code specified by the first condition field of the IT instruction.

• IT[4:0] encodes the size of the IT block, which is the number of instructions that are to be
conditionally executed, by the position of the least significant 1 in this field. It also encodes
the value of the least significant bit of the condition code for each instruction in the block.

The IT field is 0b00000000 when no IT block is active.

E, bit [9]

Endianness state bit. Controls the load and store endianness for data accesses:

0 Little-endian operation

1 Big-endian operation.

Instruction fetches ignore this bit.

When the reset value of the SCTLR.EE bit is defined by a configuration input signal, that value also
applies to the CPSR.E bit on reset, and therefore applies to software execution from reset.

If an implementation does not provide Big-endian support, this bit is RES0. If it does not provide
Little-endian support, this bit is RES1.

If an implementation provides Big-endian support but only at EL0, this bit is RES0 for an exception
return to any Exception level other than EL0.

Likewise, if it provides Little-endian support only at EL0, this bit is RES1 for an exception return to
any Exception level other than EL0.

A, bit [8]

Asynchronous data abort mask bit. The possible values of this bit are:

0 Exception not masked.

1 Exception masked.
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-385
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.2 General system control registers
I, bit [7]

IRQ mask bit. The possible values of this bit are:

0 Exception not masked.

1 Exception masked.

F, bit [6]

FIQ mask bit. The possible values of this bit are:

0 Exception not masked.

1 Exception masked.

T, bit [5]

T32 Instruction set state bit. Determines the AArch32 instruction set state that the exception was
taken from. Possible values of this bit are:

0 Taken from A32 state.

1 Taken from T32 state.

M[4], bit [4]

Execution state that the exception was taken from. Possible values of this bit are:

1 Exception taken from AArch32.

M[3:0], bits [3:0]

AArch32 mode that an exception was taken from. The possible values are:

Other values are reserved. The effect of programming this field to a Reserved value is that behavior
is CONSTRAINED UNPREDICTABLE, as described in Reserved values in System and memory-mapped
registers and translation table entries on page B12-558.

Accessing the SPSR_und

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

M[3:0] Mode

0b0000 User

0b0001 FIQ

0b0010 IRQ

0b0011 Supervisor

0b0110 Monitor

0b0111 Abort

0b1010 Hyp

0b1011 Undefined

0b1111 System
B12-386 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.2 General system control registers
This syntax is encoded with the following settings in the instruction encoding:

Accessibility

The register is accessible in software as follows:

<systemreg> op0 op1 CRn CRm op2

SPSR_und 11 100 0100 0011 010

<systemreg>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

SPSR_und x x 0 - - n/a RW

SPSR_und x 0 1 - - RW RW

SPSR_und x 1 1 - n/a RW RW
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-387
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.2 General system control registers
B12.2.47 TCR_EL1, Translation Control Register (EL1)

The TCR_EL1 characteristics are:

Purpose

Determines which of the Translation Table Base Registers defines the base address for a translation
table walk required for the stage 1 translation of a memory access from EL0 or EL1. Also controls
the translation table format and holds cacheability and shareability information.

This register is used when HCR_EL2.E2H is 0.

Note
 When HCR_EL2.E2H is 1, TCR_EL2 is used.

Configurations

AArch64 System register TCR_EL1[31:0] is architecturally mapped to AArch32 System register
TTBCR.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

TCR_EL1 is a 64-bit register.

Field descriptions

The TCR_EL1 bit assignments are:

Any of the bits in TCR_EL1 are permitted to be cached in a TLB.

Bits [63:43]

Reserved, RES0.

HPD1, bit [42] (In ARMv8.1)

Hierarchical Permission Disables. This affects the hierarchical control bits, APTable, PXNTable,
and UXNTable, except NSTable, in the translation tables pointed to by TTBR1_EL1.

0 Hierarchical Permissions are enabled.

1 Hierarchical Permissions are disabled.

When disabled, the behavior is as if the bits are zero.

Bit [42] (In ARMv8.0)

Reserved, RES0.

RES0

63 43 42 41 40 39 38 37 36 35

IPS

34 32

TG1

31 30

SH1

29 28 27 26 25 24 23 22

T1SZ

21 16

TG0

15 14

SH0

13 12 11 10 9 8 7 6

T0SZ

5 0

HPD1
HPD0
HD
HA
TBI1
TBI0
AS
RES0
ORGN1

RES0
EPD0
IRGN0

ORGN0
A1

EPD1
IRGN1
B12-388 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.2 General system control registers
HPD0, bit [41] (In ARMv8.1)

Hierarchical Permission Disables. This affects the hierarchical control bits, APTable, PXNTable,
and UXNTable, except NSTable, in the translation tables pointed to by TTBR0_EL1.

0 Hierarchical Permissions are enabled.

1 Hierarchical Permissions are disabled.

When disabled, the behavior is as if the bits are zero.

Bit [41] (In ARMv8.0)

Reserved, RES0.

HD, bit [40] (In ARMv8.1)

Hardware management of dirty state in stage 1 translations from EL0 and EL1.

0 Stage 1 hardware management of dirty state disabled.

1 Stage 1 hardware management of dirty state enabled, only if the HA bit is also set to 1.

Implementation of this bit is OPTIONAL, and, if not implemented, this bit is RES0.

Bit [40] (In ARMv8.0)

Reserved, RES0.

HA, bit [39] (In ARMv8.1)

Hardware Access flag update in stage 1 translations from EL0 and EL1.

0 Stage 1 Access flag update disabled.

1 Stage 1 Access flag update enabled.

Implementation of this bit is OPTIONAL, and, if not implemented, this bit is RES0.

Bit [39] (In ARMv8.0)

Reserved, RES0.

TBI1, bit [38]

Top Byte ignored - indicates whether the top byte of an address is used for address match for the
TTBR1_EL1 region, or ignored and used for tagged addresses. Defined values are:

0 Top Byte used in the address calculation.

1 Top Byte ignored in the address calculation.

This affects addresses generated in EL0 and EL1 using AArch64 where the address would be
translated by tables pointed to by TTBR1_EL1. It has an effect whether the EL1&0 translation
regime is enabled or not.

Additionally, this affects changes to the program counter, when TBI1 is 1 and bit [55] of the target
address is 1, caused by:

• A branch or procedure return within EL0 or EL1.

• An exception taken to EL1.

• An exception return to EL0 or EL1.

In these cases bits [63:56] of the address are also set to 1 before it is stored in the PC.

TBI0, bit [37]

Top Byte ignored - indicates whether the top byte of an address is used for address match for the
TTBR0_EL1 region, or ignored and used for tagged addresses. Defined values are:

0 Top Byte used in the address calculation.

1 Top Byte ignored in the address calculation.

This affects addresses generated in EL0 and EL1 using AArch64 where the address would be
translated by tables pointed to by TTBR0_EL1. It has an effect whether the EL1&0 translation
regime is enabled or not.
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-389
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.2 General system control registers
Additionally, this affects changes to the program counter, when TBI0 is 1 and bit [55] of the target
address is 0, caused by:

• A branch or procedure return within EL0 or EL1.

• An exception taken to EL1.

• An exception return to EL0 or EL1.

In these cases bits [63:56] of the address are also set to 0 before it is stored in the PC.

AS, bit [36]

ASID Size. Defined values are:

0 8 bit - the upper 8 bits of TTBR0_EL1 and TTBR1_EL1 are ignored by hardware for
every purpose except reading back the register, and are treated as if they are all zeros for
when used for allocation and matching entries in the TLB.

1 16 bit - the upper 16 bits of TTBR0_EL1 and TTBR1_EL1 are used for allocation and
matching in the TLB.

If the implementation has only 8 bits of ASID, this field is RES0.

Bit [35]

Reserved, RES0.

IPS, bits [34:32]

Intermediate Physical Address Size.

000 32 bits, 4GB.

001 36 bits, 64GB.

010 40 bits, 1TB.

011 42 bits, 4TB.

100 44 bits, 16TB.

101 48 bits, 256TB.

Other values are reserved.

The reserved values behave in the same way as the 101 encoding, but software must not rely on this
property as the behavior of the RESERVED values might change in a future revision of the
architecture.

TG1, bits [31:30]

Granule size for the TTBR1_EL1.

01 16KB

10 4KB

11 64KB

Other values are reserved.

If the value is programmed to either a reserved value, or a size that has not been implemented, then
the hardware will treat the field as if it has been programmed to an IMPLEMENTATION DEFINED
choice of the sizes that has been implemented for all purposes other than the value read back from
this register.

It is IMPLEMENTATION DEFINED whether the value read back is the value programmed or the value
that corresponds to the size chosen.

SH1, bits [29:28]

Shareability attribute for memory associated with translation table walks using TTBR1_EL1.
Defined values are:

00 Non-shareable

10 Outer Shareable
B12-390 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.2 General system control registers
11 Inner Shareable

Other values are reserved. The effect of programming this field to a Reserved value is that behavior
is CONSTRAINED UNPREDICTABLE, as described in Reserved values in System and memory-mapped
registers and translation table entries on page B12-558.

ORGN1, bits [27:26]

Outer cacheability attribute for memory associated with translation table walks using TTBR1_EL1.

00 Normal memory, Outer Non-cacheable

01 Normal memory, Outer Write-Back Write-Allocate Cacheable

10 Normal memory, Outer Write-Through Cacheable

11 Normal memory, Outer Write-Back no Write-Allocate Cacheable

IRGN1, bits [25:24]

Inner cacheability attribute for memory associated with translation table walks using TTBR1_EL1.

00 Normal memory, Inner Non-cacheable

01 Normal memory, Inner Write-Back Write-Allocate Cacheable

10 Normal memory, Inner Write-Through Cacheable

11 Normal memory, Inner Write-Back no Write-Allocate Cacheable

EPD1, bit [23]

Translation table walk disable for translations using TTBR1_EL1. This bit controls whether a
translation table walk is performed on a TLB miss, for an address that is translated using
TTBR1_EL1. The encoding of this bit is:

0 Perform translation table walks using TTBR1_EL1.

1 A TLB miss on an address that is translated using TTBR1_EL1 generates a Translation
fault. No translation table walk is performed.

A1, bit [22]

Selects whether TTBR0_EL1 or TTBR1_EL1 defines the ASID. The encoding of this bit is:

0 TTBR0_EL1.ASID defines the ASID.

1 TTBR1_EL1.ASID defines the ASID.

T1SZ, bits [21:16]

The size offset of the memory region addressed by TTBR1_EL1. The region size is 2(64-T1SZ) bytes.

The maximum and minimum possible values for T1SZ depend on the level of translation table and
the memory translation granule size, as described in the AArch64 Virtual Memory System
Architecture chapter.

TG0, bits [15:14]

Granule size for the TTBR0_EL1.

00 4KB

01 64KB

10 16KB

Other values are reserved.

If the value is programmed to either a reserved value, or a size that has not been implemented, then
the hardware will treat the field as if it has been programmed to an IMPLEMENTATION DEFINED
choice of the sizes that has been implemented for all purposes other than the value read back from
this register.

It is IMPLEMENTATION DEFINED whether the value read back is the value programmed or the value
that corresponds to the size chosen.
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-391
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.2 General system control registers
SH0, bits [13:12]

Shareability attribute for memory associated with translation table walks using TTBR0_EL1.

00 Non-shareable

10 Outer Shareable

11 Inner Shareable

Other values are reserved. The effect of programming this field to a Reserved value is that behavior
is CONSTRAINED UNPREDICTABLE, as described in Reserved values in System and memory-mapped
registers and translation table entries on page B12-558.

ORGN0, bits [11:10]

Outer cacheability attribute for memory associated with translation table walks using TTBR0_EL1.

00 Normal memory, Outer Non-cacheable

01 Normal memory, Outer Write-Back Write-Allocate Cacheable

10 Normal memory, Outer Write-Through Cacheable

11 Normal memory, Outer Write-Back no Write-Allocate Cacheable

IRGN0, bits [9:8]

Inner cacheability attribute for memory associated with translation table walks using TTBR0_EL1.

00 Normal memory, Inner Non-cacheable

01 Normal memory, Inner Write-Back Write-Allocate Cacheable

10 Normal memory, Inner Write-Through Cacheable

11 Normal memory, Inner Write-Back no Write-Allocate Cacheable

EPD0, bit [7]

Translation table walk disable for translations using TTBR0_EL1. This bit controls whether a
translation table walk is performed on a TLB miss, for an address that is translated using
TTBR0_EL1. The encoding of this bit is:

0 Perform translation table walks using TTBR0_EL1.

1 A TLB miss on an address that is translated using TTBR0_EL1 generates a Translation
fault. No translation table walk is performed.

Bit [6]

Reserved, RES0.

T0SZ, bits [5:0]

The size offset of the memory region addressed by TTBR0_EL1. The region size is 2(64-T0SZ) bytes.

The maximum and minimum possible values for T0SZ depend on the level of translation table and
the memory translation granule size, as described in the AArch64 Virtual Memory System
Architecture chapter.

Accessing the TCR_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>
B12-392 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.2 General system control registers
This syntax is encoded with the following settings in the instruction encoding:

Accessibility

The register is accessible in software as follows:

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic TCR_EL1 or
TCR_EL12 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Traps and Enables

For a description of the prioritization of any generated exceptions, see Synchronous exception prioritization for
exceptions taken to AArch64 on page B12-547. Subject to the prioritization rules:

When EL2 is implemented and is using AArch64 and (SCR_EL3.NS == 1) AND (HCR_EL2.E2H == 0):

• If HCR_EL2.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HCR_EL2.TVM==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and (SCR_EL3.NS == 1) AND (HCR_EL2.E2H == 1) AND
(HCR_EL2.TGE == 0):

• If HCR_EL2.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HCR_EL2.TVM==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

<systemreg> op0 op1 CRn CRm op2

TCR_EL1 11 000 0010 0000 010

TCR_EL12 11 101 0010 0000 010

<systemreg>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

TCR_EL1 x x 0 - RW n/a RW

TCR_EL1 0 0 1 - RW RW RW

TCR_EL1 0 1 1 - n/a RW RW

TCR_EL1 1 0 1 - RW TCR_EL2 RW

TCR_EL1 1 1 1 - n/a TCR_EL2 RW

TCR_EL12 x x 0 - - n/a -

TCR_EL12 0 0 1 - - - -

TCR_EL12 0 1 1 - n/a - -

TCR_EL12 1 0 1 - - RW RW

TCR_EL12 1 1 1 - n/a RW RW
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-393
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.2 General system control registers
B12.2.48 TCR_EL2, Translation Control Register (EL2)

The TCR_EL2 characteristics are:

Purpose

When HCR_EL2.E2H is 0, controls translation table walks required for the stage 1 translation of
memory accesses from EL2.

When HCR_EL2.E2H is 1, determines which of the Translation Table Base Registers defines the
base address for a translation table walk required for the stage 1 translation of a memory access from
EL0 or EL2.

It also controls the translation table format, and holds cacheability and shareability information.

Configurations

AArch64 System register TCR_EL2 is architecturally mapped to AArch32 System register HTCR.

If EL2 is not implemented, this register is RES0 from EL3.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

TCR_EL2 is a 64-bit register.

Field descriptions

The TCR_EL2 bit assignments are:

When HCR_EL2.E2H==0:

Any of the bits in TCR_EL2 are permitted to be cached in a TLB.

This format applies in all ARMv8.0 implementations.

Bits [63:32]

Reserved, RES0.

Bit [31]

Reserved, RES1.

Bits [30:25]

Reserved, RES0.

HPD, bit [24]

Hierarchical Permission Disables. This affects the hierarchical control bits, APTable, PXNTable,
and UXNTable, except NSTable, in the translation tables pointed to by TTBR0_EL2.

0 Hierarchical Permissions are enabled.

1 Hierarchical Permissions are disabled.

RES0

63 32 31

RES0

30 25 24 23 22 21 20 19

PS

18 16

TG0

15 14

SH0

13 12 11 10 9 8 7 6

T0SZ

5 0

RES1
HPD
RES1
HD
HA
TBI

RES0
IRGN0

ORGN0
RES0
B12-394 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.2 General system control registers
Note
 In this case bit[61] (APTable[0]) and bit[59] (PXNTable) of the next level descriptor

attributes are required to be to be ignored by the PE, and are no longer reserved,
allowing them to be used by software.

When disabled, the behavior is as if the bits are zero.

Bit [23]

Reserved, RES1.

HD, bit [22]

Hardware management of dirty state in stage 1 translations from EL2.

0 Stage 1 hardware management of dirty state disabled.

1 Stage 1 hardware management of dirty state enabled, only if the HA bit is also set to 1.

Implementation of this bit is OPTIONAL, and, if not implemented, this bit is RES0.

HA, bit [21]

Hardware Access flag update in stage 1 translations from EL2.

0 Stage 1 Access flag update disabled.

1 Stage 1 Access flag update enabled.

Implementation of this bit is OPTIONAL, and, if not implemented, this bit is RES0.

TBI, bit [20]

Top Byte ignored - indicates whether the top byte of an address is used for address match for the
TTBR0_EL2 region, or ignored and used for tagged addresses.

0 Top Byte used in the address calculation.

1 Top Byte ignored in the address calculation.

This affects addresses generated in EL2 using AArch64 where the address would be translated by
tables pointed to by TTBR0_EL2. It has an effect whether the EL2 translation regime is enabled or
not.

Additionally, this affects changes to the program counter, when TBI is 1, caused by:

• A branch or procedure return within EL2.

• An exception taken to EL2.

• An exception return to EL2.

In these cases bits [63:56] of the address are set to 0 before it is stored in the PC.

Bit [19]

Reserved, RES0.

PS, bits [18:16]

Physical Address Size.

000 32 bits, 4GB.

001 36 bits, 64GB.

010 40 bits, 1TB.

011 42 bits, 4TB.

100 44 bits, 16TB.

101 48 bits, 256TB.

Other values are reserved.
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-395
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.2 General system control registers
The reserved values behave in the same way as the 101 encoding, but software must not rely on this
property as the behavior of the RESERVED values might change in a future revision of the
architecture.

TG0, bits [15:14]

Granule size for the TTBR0_EL2.

00 4KB

01 64KB

10 16KB

Other values are reserved.

If the value is programmed to either a reserved value, or a size that has not been implemented, then
the hardware will treat the field as if it has been programmed to an IMPLEMENTATION DEFINED
choice of the sizes that has been implemented for all purposes other than the value read back from
this register.

It is IMPLEMENTATION DEFINED whether the value read back is the value programmed or the value
that corresponds to the size chosen.

SH0, bits [13:12]

Shareability attribute for memory associated with translation table walks using TTBR0_EL2.

00 Non-shareable

10 Outer Shareable

11 Inner Shareable

Other values are reserved. The effect of programming this field to a Reserved value is that behavior
is CONSTRAINED UNPREDICTABLE, as described in Reserved values in System and memory-mapped
registers and translation table entries on page B12-558.

ORGN0, bits [11:10]

Outer cacheability attribute for memory associated with translation table walks using TTBR0_EL2.

00 Normal memory, Outer Non-cacheable

01 Normal memory, Outer Write-Back Write-Allocate Cacheable

10 Normal memory, Outer Write-Through Cacheable

11 Normal memory, Outer Write-Back no Write-Allocate Cacheable

IRGN0, bits [9:8]

Inner cacheability attribute for memory associated with translation table walks using TTBR0_EL2.

00 Normal memory, Inner Non-cacheable

01 Normal memory, Inner Write-Back Write-Allocate Cacheable

10 Normal memory, Inner Write-Through Cacheable

11 Normal memory, Inner Write-Back no Write-Allocate Cacheable

Bits [7:6]

Reserved, RES0.

T0SZ, bits [5:0]

The size offset of the memory region addressed by TTBR0_EL2. The region size is 2(64-T0SZ) bytes.

The maximum and minimum possible values for T0SZ depend on the level of translation table and
the memory translation granule size, as described in the AArch64 Virtual Memory System
Architecture chapter.
B12-396 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.2 General system control registers
When HCR_EL2.E2H==1:

Any of the bits in TCR_EL2 are permitted to be cached in a TLB.

Bits [63:43]

Reserved, RES0.

HPD1, bit [42]

Hierarchical Permission Disables. This affects the hierarchical control bits, APTable, PXNTable,
and UXNTable, except NSTable, in the translation tables pointed to by TTBR1_EL2.

0 Hierarchical Permissions are enabled.

1 Hierarchical Permissions are disabled.

When disabled, the behavior is as if the bits are zero.

HPD0, bit [41]

Hierarchical Permission Disables. This affects the hierarchical control bits, APTable, PXNTable,
and UXNTable, except NSTable, in the translation tables pointed to by TTBR0_EL2.

0 Hierarchical Permissions are enabled.

1 Hierarchical Permissions are disabled.

When disabled, the behavior is as if the bits are zero.

HD, bit [40]

Hardware management of dirty state in stage 1 translations from EL2.

0 Stage 1 hardware management of dirty state disabled.

1 Stage 1 hardware management of dirty state enabled, only if the HA bit is also set to 1.

Implementation of this bit is OPTIONAL, and, if not implemented, this bit is RES0.

HA, bit [39]

Hardware Access flag update in stage 1 translations from EL2.

0 Stage 1 Access flag update disabled.

1 Stage 1 Access flag update enabled.

Implementation of this bit is OPTIONAL, and, if not implemented, this bit is RES0.

TBI1, bit [38]

Top Byte ignored - indicates whether the top byte of an address is used for address match for the
TTBR1_EL2 region, or ignored and used for tagged addresses. Defined values are:

0 Top Byte used in the address calculation.

RES0

63 43 42 41 40 39 38 37 36 35

IPS

34 32

TG1

31 30

SH1

29 28 27 26 25 24 23 22

T1SZ

21 16

TG0

15 14

SH0

13 12 11 10 9 8 7 6

T0SZ

5 0

HPD1
HPD0
HD
HA
TBI1
TBI0
AS
RES0
ORGN1

RES0
EPD0
IRGN0

ORGN0
A1

EPD1
IRGN1
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-397
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.2 General system control registers
1 Top Byte ignored in the address calculation.

This affects addresses generated in EL0 and EL2 using AArch64 where the address would be
translated by tables pointed to by TTBR1_EL2. It has an effect whether the EL2&0 translation
regime is enabled or not.

Additionally, this affects changes to the program counter, when TBI1 is 1 and bit [55] of the target
address is 1, caused by:

• A branch or procedure return within EL0 or EL1.

• An exception taken to EL1.

• An exception return to EL0 or EL1.

In these cases bits [63:56] of the address are also set to 1 before it is stored in the PC.

TBI0, bit [37]

Top Byte ignored - indicates whether the top byte of an address is used for address match for the
TTBR0_EL2 region, or ignored and used for tagged addresses. Defined values are:

0 Top Byte used in the address calculation.

1 Top Byte ignored in the address calculation.

This affects addresses generated in EL0 and EL2 using AArch64 where the address would be
translated by tables pointed to by TTBR0_EL2. It has an effect whether the EL2&0 translation
regime is enabled or not.

Additionally, this affects changes to the program counter, when TBI0 is 1 and bit [55] of the target
address is 0, caused by:

• A branch or procedure return within EL0 or EL1.

• An exception taken to EL1.

• An exception return to EL0 or EL1.

In these cases bits [63:56] of the address are also set to 0 before it is stored in the PC.

AS, bit [36]

ASID Size. Defined values are:

0 8 bit - the upper 8 bits of TTBR0_EL2 and TTBR1_EL2 are ignored by hardware for
every purpose except reading back the register, and are treated as if they are all zeros for
when used for allocation and matching entries in the TLB.

1 16 bit - the upper 16 bits of TTBR0_EL2 and TTBR1_EL2 are used for allocation and
matching in the TLB.

If the implementation has only 8 bits of ASID, this field is RES0.

Bit [35]

Reserved, RES0.

IPS, bits [34:32]

Intermediate Physical Address Size.

000 32 bits, 4GB.

001 36 bits, 64GB.

010 40 bits, 1TB.

011 42 bits, 4TB.

100 44 bits, 16TB.

101 48 bits, 256TB.

Other values are reserved.

The reserved values behave in the same way as the 101 encoding, but software must not rely on this
property as the behavior of the RESERVED values might change in a future revision of the
architecture.
B12-398 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.2 General system control registers
TG1, bits [31:30]

Granule size for the TTBR1_EL2.

01 16KB

10 4KB

11 64KB

Other values are reserved.

If the value is programmed to either a reserved value, or a size that has not been implemented, then
the hardware will treat the field as if it has been programmed to an IMPLEMENTATION DEFINED
choice of the sizes that has been implemented for all purposes other than the value read back from
this register.

It is IMPLEMENTATION DEFINED whether the value read back is the value programmed or the value
that corresponds to the size chosen.

SH1, bits [29:28]

Shareability attribute for memory associated with translation table walks using TTBR1_EL2.
Defined values are:

00 Non-shareable

10 Outer Shareable

11 Inner Shareable

Other values are reserved. The effect of programming this field to a Reserved value is that behavior
is CONSTRAINED UNPREDICTABLE, as described in Reserved values in System and memory-mapped
registers and translation table entries on page B12-558.

ORGN1, bits [27:26]

Outer cacheability attribute for memory associated with translation table walks using TTBR1_EL2.

00 Normal memory, Outer Non-cacheable

01 Normal memory, Outer Write-Back Write-Allocate Cacheable

10 Normal memory, Outer Write-Through Cacheable

11 Normal memory, Outer Write-Back no Write-Allocate Cacheable

IRGN1, bits [25:24]

Inner cacheability attribute for memory associated with translation table walks using TTBR1_EL2.

00 Normal memory, Inner Non-cacheable

01 Normal memory, Inner Write-Back Write-Allocate Cacheable

10 Normal memory, Inner Write-Through Cacheable

11 Normal memory, Inner Write-Back no Write-Allocate Cacheable

EPD1, bit [23]

Translation table walk disable for translations using TTBR1_EL2. This bit controls whether a
translation table walk is performed on a TLB miss, for an address that is translated using
TTBR1_EL2. The encoding of this bit is:

0 Perform translation table walks using TTBR1_EL2.

1 A TLB miss on an address that is translated using TTBR1_EL2 generates a Translation
fault. No translation table walk is performed.

A1, bit [22]

Selects whether TTBR0_EL2 or TTBR1_EL2 defines the ASID. The encoding of this bit is:

0 TTBR0_EL2.ASID defines the ASID.

1 TTBR1_EL2.ASID defines the ASID.
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-399
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.2 General system control registers
T1SZ, bits [21:16]

The size offset of the memory region addressed by TTBR1_EL2. The region size is 2(64-T1SZ) bytes.

The maximum and minimum possible values for T1SZ depend on the level of translation table and
the memory translation granule size, as described in the AArch64 Virtual Memory System
Architecture chapter.

TG0, bits [15:14]

Granule size for the TTBR0_EL2.

00 4KB

01 64KB

10 16KB

Other values are reserved.

If the value is programmed to either a reserved value, or a size that has not been implemented, then
the hardware will treat the field as if it has been programmed to an IMPLEMENTATION DEFINED
choice of the sizes that has been implemented for all purposes other than the value read back from
this register.

It is IMPLEMENTATION DEFINED whether the value read back is the value programmed or the value
that corresponds to the size chosen.

SH0, bits [13:12]

Shareability attribute for memory associated with translation table walks using TTBR0_EL2.

00 Non-shareable

10 Outer Shareable

11 Inner Shareable

Other values are reserved. The effect of programming this field to a Reserved value is that behavior
is CONSTRAINED UNPREDICTABLE, as described in Reserved values in System and memory-mapped
registers and translation table entries on page B12-558.

ORGN0, bits [11:10]

Outer cacheability attribute for memory associated with translation table walks using TTBR0_EL2.

00 Normal memory, Outer Non-cacheable

01 Normal memory, Outer Write-Back Write-Allocate Cacheable

10 Normal memory, Outer Write-Through Cacheable

11 Normal memory, Outer Write-Back no Write-Allocate Cacheable

IRGN0, bits [9:8]

Inner cacheability attribute for memory associated with translation table walks using TTBR0_EL2.

00 Normal memory, Inner Non-cacheable

01 Normal memory, Inner Write-Back Write-Allocate Cacheable

10 Normal memory, Inner Write-Through Cacheable

11 Normal memory, Inner Write-Back no Write-Allocate Cacheable

EPD0, bit [7]

Translation table walk disable for translations using TTBR0_EL2. This bit controls whether a
translation table walk is performed on a TLB miss, for an address that is translated using
TTBR0_EL2. The encoding of this bit is:

0 Perform translation table walks using TTBR0_EL2.

1 A TLB miss on an address that is translated using TTBR0_EL2 generates a Translation
fault. No translation table walk is performed.
B12-400 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.2 General system control registers
Bit [6]

Reserved, RES0.

T0SZ, bits [5:0]

The size offset of the memory region addressed by TTBR0_EL2. The region size is 2(64-T0SZ) bytes.

The maximum and minimum possible values for T0SZ depend on the level of translation table and
the memory translation granule size, as described in the AArch64 Virtual Memory System
Architecture chapter.

Accessing the TCR_EL2

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax is encoded with the following settings in the instruction encoding:

Accessibility

The register is accessible in software as follows:

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic TCR_EL2 or
TCR_EL1 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

<systemreg> op0 op1 CRn CRm op2

TCR_EL2 11 100 0010 0000 010

TCR_EL1 11 000 0010 0000 010

<systemreg>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

TCR_EL2 x x 0 - - n/a RW

TCR_EL2 0 0 1 - - RW RW

TCR_EL2 0 1 1 - n/a RW RW

TCR_EL2 1 0 1 - - RW RW

TCR_EL2 1 1 1 - n/a RW RW

TCR_EL1 x x 0 - TCR_EL1 n/a TCR_EL1

TCR_EL1 0 0 1 - TCR_EL1 TCR_EL1 TCR_EL1

TCR_EL1 0 1 1 - n/a TCR_EL1 TCR_EL1

TCR_EL1 1 0 1 - TCR_EL1 RW TCR_EL1

TCR_EL1 1 1 1 - n/a RW TCR_EL1
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-401
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.2 General system control registers
B12.2.49 TCR_EL3, Translation Control Register (EL3)

The TCR_EL3 characteristics are:

Purpose

Controls translation table walks required for the stage 1 translation of memory accesses from EL3,
and holds cacheability and shareability information for the accesses.

Configurations

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

TCR_EL3 is a 32-bit register.

Field descriptions

The TCR_EL3 bit assignments are:

Any of the bits in TCR_EL3 are permitted to be cached in a TLB.

Bit [31]

Reserved, RES1.

Bits [30:25]

Reserved, RES0.

HPD, bit [24] (In ARMv8.1)

Hierarchical Permission Disables. This affects the hierarchical control bits, APTable, PXNTable,
and UXNTable, except NSTable, in the translation tables pointed to by TTBR0_EL3.

0 Hierarchical Permissions are enabled.

1 Hierarchical Permissions are disabled.

Note
 In this case bit[61] (APTable[0]) and bit[59] (PXNTable) of the next level descriptor

attributes are required to be to be ignored by the PE, and are no longer reserved,
allowing them to be used by software.

When disabled, the behavior is as if the bits are zero.

Bit [24] (In ARMv8.0)

Reserved, RES0.

Bit [23]

Reserved, RES1.

31

RES0

30 25 24 23 22 21 20 19

PS

18 16

TG0

15 14

SH0

13 12 11 10 9 8 7 6

T0SZ

5 0

RES1
HPD
RES1
HD
HA
TBI
RES0

RES0
IRGN0

ORGN0
B12-402 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.2 General system control registers
HD, bit [22] (In ARMv8.1)

Hardware management of dirty state in stage 1 translations from EL3.

0 Stage 1 hardware management of dirty state disabled.

1 Stage 1 hardware management of dirty state enabled, only if the HA bit is also set to 1.

Implementation of this bit is OPTIONAL, and, if not implemented, this bit is RES0.

Bit [22] (In ARMv8.0)

Reserved, RES0.

HA, bit [21] (In ARMv8.1)

Hardware Access flag update in stage 1 translations from EL3.

0 Stage 1 Access flag update disabled.

1 Stage 1 Access flag update enabled.

Implementation of this bit is OPTIONAL, and, if not implemented, this bit is RES0.

Bit [21] (In ARMv8.0)

Reserved, RES0.

TBI, bit [20]

Top Byte ignored - indicates whether the top byte of an address is used for address match for the
TTBR0_EL3 region, or ignored and used for tagged addresses.

0 Top Byte used in the address calculation.

1 Top Byte ignored in the address calculation.

This affects addresses generated in EL3 using AArch64 where the address would be translated by
tables pointed to by TTBR0_EL3. It has an effect whether the EL3 translation regime is enabled or
not.

Additionally, this affects changes to the program counter, when TBI is 1, caused by:

• A branch or procedure return within EL3.

• A exception taken to EL3.

• An exception return to EL3.

In these cases bits [63:56] of the address are set to 0 before it is stored in the PC.

Bit [19]

Reserved, RES0.

PS, bits [18:16]

Physical Address Size.

000 32 bits, 4GB.

001 36 bits, 64GB.

010 40 bits, 1TB.

011 42 bits, 4TB.

100 44 bits, 16TB.

101 48 bits, 256TB.

Other values are reserved.

The reserved values behave in the same way as the 101 encoding, but software must not rely on this
property as the behavior of the RESERVED values might change in a future revision of the
architecture.
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-403
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.2 General system control registers
TG0, bits [15:14]

Granule size for the TTBR0_EL3.

00 4KB

01 64KB

10 16KB

Other values are reserved.

If the value is programmed to either a reserved value, or a size that has not been implemented, then
the hardware will treat the field as if it has been programmed to an IMPLEMENTATION DEFINED
choice of the sizes that has been implemented for all purposes other than the value read back from
this register.

It is IMPLEMENTATION DEFINED whether the value read back is the value programmed or the value
that corresponds to the size chosen.

SH0, bits [13:12]

Shareability attribute for memory associated with translation table walks using TTBR0_EL3.

00 Non-shareable

10 Outer Shareable

11 Inner Shareable

Other values are reserved. The effect of programming this field to a Reserved value is that behavior
is CONSTRAINED UNPREDICTABLE, as described in Reserved values in System and memory-mapped
registers and translation table entries on page B12-558.

ORGN0, bits [11:10]

Outer cacheability attribute for memory associated with translation table walks using TTBR0_EL3.

00 Normal memory, Outer Non-cacheable

01 Normal memory, Outer Write-Back Write-Allocate Cacheable

10 Normal memory, Outer Write-Through Cacheable

11 Normal memory, Outer Write-Back no Write-Allocate Cacheable

IRGN0, bits [9:8]

Inner cacheability attribute for memory associated with translation table walks using TTBR0_EL3.

00 Normal memory, Inner Non-cacheable

01 Normal memory, Inner Write-Back Write-Allocate Cacheable

10 Normal memory, Inner Write-Through Cacheable

11 Normal memory, Inner Write-Back no Write-Allocate Cacheable

Bits [7:6]

Reserved, RES0.

T0SZ, bits [5:0]

The size offset of the memory region addressed by TTBR0_EL3. The region size is 2(64-T0SZ) bytes.

The maximum and minimum possible values for T0SZ depend on the level of translation table and
the memory translation granule size, as described in the AArch64 Virtual Memory System
Architecture chapter.

Accessing the TCR_EL3

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:
B12-404 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.2 General system control registers
MSR <systemreg>, <Xt>

This syntax is encoded with the following settings in the instruction encoding:

Accessibility

The register is accessible in software as follows:

<systemreg> op0 op1 CRn CRm op2

TCR_EL3 11 110 0010 0000 010

<systemreg>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

TCR_EL3 x x 0 - - n/a RW

TCR_EL3 0 0 1 - - - RW

TCR_EL3 0 1 1 - n/a - RW

TCR_EL3 1 0 1 - - - RW

TCR_EL3 1 1 1 - n/a - RW
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-405
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.2 General system control registers
B12.2.50 TTBR0_EL1, Translation Table Base Register 0 (EL1)

The TTBR0_EL1 characteristics are:

Purpose

Holds the base address of translation table 0, and information about the memory it occupies. This is
one of the translation tables for the stage 1 translation of memory accesses at EL0 and EL1.

This register is used when HCR_EL2.E2H is 0.

Note
 When HCR_EL2.E2H is 1, TTBR0_EL2 is used.

Configurations

AArch64 System register TTBR0_EL1 is architecturally mapped to AArch32 System register
TTBR0.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

TTBR0_EL1 is a 64-bit register.

Field descriptions

The TTBR0_EL1 bit assignments are:

Any of the fields in this register are permitted to be cached in a TLB.

ASID, bits [63:48]

An ASID for the translation table base address. The TCR_EL1.A1 field selects either
TTBR0_EL1.ASID or TTBR1_EL1.ASID.

If the implementation has only 8 bits of ASID, then the upper 8 bits of this field are RES0.

BADDR, bits [47:0]

Translation table base address, bits[47:x]. Bits [x-1:0] are RES0, with the additional requirement that
if they are not all zero, this is a misaligned translation table base address, with effects that are
CONSTRAINED UNPREDICTABLE, and must be on of the following:

• Bits [x-1:0] are treated as if all the bits are zero. The value read back from those bits is either
the value written or zero.

• The result of the calculation of an address for a translation table walk using this register can
be corrupted in those bits that are nonzero.

The AArch64 Virtual Memory System Architecture chapter describes how x is calculated based on
the value of TCR_EL1.T0SZ, the stage of translation, and the translation granule size.

Accessing the TTBR0_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

ASID

63 48

BADDR

47 0
B12-406 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.2 General system control registers
This syntax is encoded with the following settings in the instruction encoding:

Accessibility

The register is accessible in software as follows:

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic TTBR0_EL1
or TTBR0_EL12 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Traps and Enables

For a description of the prioritization of any generated exceptions, see Synchronous exception prioritization for
exceptions taken to AArch64 on page B12-547. Subject to the prioritization rules:

When EL2 is implemented and is using AArch64 and (SCR_EL3.NS == 1) AND (HCR_EL2.E2H == 0):

• If HCR_EL2.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HCR_EL2.TVM==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and (SCR_EL3.NS == 1) AND (HCR_EL2.E2H == 1) AND
(HCR_EL2.TGE == 0):

• If HCR_EL2.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HCR_EL2.TVM==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

<systemreg> op0 op1 CRn CRm op2

TTBR0_EL1 11 000 0010 0000 000

TTBR0_EL12 11 101 0010 0000 000

<systemreg>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

TTBR0_EL1 x x 0 - RW n/a RW

TTBR0_EL1 0 0 1 - RW RW RW

TTBR0_EL1 0 1 1 - n/a RW RW

TTBR0_EL1 1 0 1 - RW TTBR0_EL2 RW

TTBR0_EL1 1 1 1 - n/a TTBR0_EL2 RW

TTBR0_EL12 x x 0 - - n/a -

TTBR0_EL12 0 0 1 - - - -

TTBR0_EL12 0 1 1 - n/a - -

TTBR0_EL12 1 0 1 - - RW RW

TTBR0_EL12 1 1 1 - n/a RW RW
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-407
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.2 General system control registers
B12.2.51 TTBR0_EL2, Translation Table Base Register 0 (EL2)

The TTBR0_EL2 characteristics are:

Purpose

When HCR_EL2.E2H is 0, holds the base address of the translation table for the stage 1 translation
of memory accesses from EL2.

When HCR_EL2.E2H is 1, holds the base address of translation table 0 for stage 1 of the EL2&0
translation regime.

Configurations

AArch64 System register TTBR0_EL2 is architecturally mapped to AArch32 System register
HTTBR.

If EL2 is not implemented, this register is RES0 from EL3.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

TTBR0_EL2 is a 64-bit register.

Field descriptions

The TTBR0_EL2 bit assignments are:

Any of the fields in this register are permitted to be cached in a TLB.

ASID, bits [63:48] (In ARMv8.1)

When HCR_EL2.E2H is 0, this field is RES0.

When HCR_EL2.E2H is 1, it holds an ASID for the translation table base address. The
TCR_EL2.A1 field selects either TTBR0_EL2.ASID or TTBR1_EL2.ASID.

If the implementation has only 8 bits of ASID, then the upper 8 bits of this field are RES0.

Bits [63:48] (In ARMv8.0)

Reserved, RES0.

BADDR, bits [47:0]

Translation table base address, bits[47:x]. Bits [x-1:0] are RES0, with the additional requirement that
if they are not all zero, this is a misaligned translation table base address, with effects that are
CONSTRAINED UNPREDICTABLE, and must be on of the following:

• Bits [x-1:0] are treated as if all the bits are zero. The value read back from those bits is either
the value written or zero.

• The result of the calculation of an address for a translation table walk using this register can
be corrupted in those bits that are nonzero.

The AArch64 Virtual Memory System Architecture chapter describes how x is calculated based on
the value of TCR_EL2.T0SZ, the stage of translation, and the translation granule size.

Accessing the TTBR0_EL2

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

ASID

63 48

BADDR

47 0
B12-408 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.2 General system control registers
This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax is encoded with the following settings in the instruction encoding:

Accessibility

The register is accessible in software as follows:

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic TTBR0_EL2
or TTBR0_EL1 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

<systemreg> op0 op1 CRn CRm op2

TTBR0_EL2 11 100 0010 0000 000

TTBR0_EL1 11 000 0010 0000 000

<systemreg>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

TTBR0_EL2 x x 0 - - n/a RW

TTBR0_EL2 0 0 1 - - RW RW

TTBR0_EL2 0 1 1 - n/a RW RW

TTBR0_EL2 1 0 1 - - RW RW

TTBR0_EL2 1 1 1 - n/a RW RW

TTBR0_EL1 x x 0 - TTBR0_EL1 n/a TTBR0_EL1

TTBR0_EL1 0 0 1 - TTBR0_EL1 TTBR0_EL1 TTBR0_EL1

TTBR0_EL1 0 1 1 - n/a TTBR0_EL1 TTBR0_EL1

TTBR0_EL1 1 0 1 - TTBR0_EL1 RW TTBR0_EL1

TTBR0_EL1 1 1 1 - n/a RW TTBR0_EL1
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-409
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.2 General system control registers
B12.2.52 TTBR1_EL1, Translation Table Base Register 1 (EL1)

The TTBR1_EL1 characteristics are:

Purpose

Holds the base address of translation table 1, and information about the memory it occupies. This is
one of the translation tables for the stage 1 translation of memory accesses at EL0 and EL1.

This register is used when HCR_EL2.E2H is 0.

Note
 When HCR_EL2.E2H is 1, TTBR1_EL2 is used.

Configurations

AArch64 System register TTBR1_EL1 is architecturally mapped to AArch32 System register
TTBR1.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

TTBR1_EL1 is a 64-bit register.

Field descriptions

The TTBR1_EL1 bit assignments are:

Any of the fields in this register are permitted to be cached in a TLB.

ASID, bits [63:48]

An ASID for the translation table base address. The TCR_EL1.A1 field selects either
TTBR0_EL1.ASID or TTBR1_EL1.ASID.

If the implementation has only 8 bits of ASID, then the upper 8 bits of this field are RES0.

BADDR, bits [47:0]

Translation table base address, bits[47:x]. Bits [x-1:0] are RES0, with the additional requirement that
if they are not all zero, this is a misaligned translation table base address, with effects that are
CONSTRAINED UNPREDICTABLE, and must be on of the following:

• Bits [x-1:0] are treated as if all the bits are zero. The value read back from those bits is either
the value written or zero.

• The result of the calculation of an address for a translation table walk using this register can
be corrupted in those bits that are nonzero.

The AArch64 Virtual Memory System Architecture chapter describes how x is calculated based on
the value of TCR_EL1.T1SZ, the stage of translation, and the translation granule size.

Accessing the TTBR1_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

ASID

63 48

BADDR

47 0
B12-410 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.2 General system control registers
This syntax is encoded with the following settings in the instruction encoding:

Accessibility

The register is accessible in software as follows:

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic TTBR1_EL1
or TTBR1_EL12 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Traps and Enables

For a description of the prioritization of any generated exceptions, see Synchronous exception prioritization for
exceptions taken to AArch64 on page B12-547. Subject to the prioritization rules:

When EL2 is implemented and is using AArch64 and (SCR_EL3.NS == 1) AND (HCR_EL2.E2H == 0):

• If HCR_EL2.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HCR_EL2.TVM==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and (SCR_EL3.NS == 1) AND (HCR_EL2.E2H == 1) AND
(HCR_EL2.TGE == 0):

• If HCR_EL2.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HCR_EL2.TVM==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

<systemreg> op0 op1 CRn CRm op2

TTBR1_EL1 11 000 0010 0000 001

TTBR1_EL12 11 101 0010 0000 001

<systemreg>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

TTBR1_EL1 x x 0 - RW n/a RW

TTBR1_EL1 0 0 1 - RW RW RW

TTBR1_EL1 0 1 1 - n/a RW RW

TTBR1_EL1 1 0 1 - RW TTBR1_EL2 RW

TTBR1_EL1 1 1 1 - n/a TTBR1_EL2 RW

TTBR1_EL12 x x 0 - - n/a -

TTBR1_EL12 0 0 1 - - - -

TTBR1_EL12 0 1 1 - n/a - -

TTBR1_EL12 1 0 1 - - RW RW

TTBR1_EL12 1 1 1 - n/a RW RW
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-411
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.2 General system control registers
B12.2.53 TTBR1_EL2, Translation Table Base Register 1 (EL2)

The TTBR1_EL2 characteristics are:

Purpose

When HCR_EL2.E2H is 1, holds the base address of translation table 1 for stage 1 of the EL2&0
translation regime.

Note
 When HCR_EL2.E2H is 0, the contents of this register are ignored by the PE, except for a direct

read or write of the register.

Configurations

If EL2 is not implemented, this register is RES0 from EL3.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

TTBR1_EL2 is a 64-bit register.

Field descriptions

The TTBR1_EL2 bit assignments are:

Any of the fields in this register are permitted to be cached in a TLB.

ASID, bits [63:48]

An ASID for the translation table base address. The TCR_EL2.A1 field selects either
TTBR0_EL2.ASID or TTBR1_EL2.ASID.

If the implementation has only 8 bits of ASID, then the upper 8 bits of this field are RES0.

BADDR, bits [47:0]

Translation table base address, bits[47:x]. Bits [x-1:0] are RES0, with the additional requirement that
if they are not all zero, this is a misaligned translation table base address, with effects that are
CONSTRAINED UNPREDICTABLE, and must be on of the following:

• Bits [x-1:0] are treated as if all the bits are zero. The value read back from those bits is either
the value written or zero.

• The result of the calculation of an address for a translation table walk using this register can
be corrupted in those bits that are nonzero.

The AArch64 Virtual Memory System Architecture chapter describes how x is calculated based on
the value of TCR_EL2.T1SZ, the stage of translation, and the translation granule size.

Accessing the TTBR1_EL2

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

ASID

63 48

BADDR

47 0
B12-412 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.2 General system control registers
This syntax is encoded with the following settings in the instruction encoding:

Accessibility

The register is accessible in software as follows:

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic TTBR1_EL2
or TTBR1_EL1 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

<systemreg> op0 op1 CRn CRm op2

TTBR1_EL2 11 100 0010 0000 001

TTBR1_EL1 11 000 0010 0000 001

<systemreg>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

TTBR1_EL2 x x 0 - - n/a RW

TTBR1_EL2 0 0 1 - - RW RW

TTBR1_EL2 0 1 1 - n/a RW RW

TTBR1_EL2 1 0 1 - - RW RW

TTBR1_EL2 1 1 1 - n/a RW RW

TTBR1_EL1 x x 0 - TTBR1_EL1 n/a TTBR1_EL1

TTBR1_EL1 0 0 1 - TTBR1_EL1 TTBR1_EL1 TTBR1_EL1

TTBR1_EL1 0 1 1 - n/a TTBR1_EL1 TTBR1_EL1

TTBR1_EL1 1 0 1 - TTBR1_EL1 RW TTBR1_EL1

TTBR1_EL1 1 1 1 - n/a RW TTBR1_EL1
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-413
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.2 General system control registers
B12.2.54 VBAR_EL1, Vector Base Address Register (EL1)

The VBAR_EL1 characteristics are:

Purpose

Holds the vector base address for any exception that is taken to EL1.

Configurations

AArch64 System register VBAR_EL1[31:0] is architecturally mapped to AArch32 System register
VBAR.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

VBAR_EL1 is a 64-bit register.

Field descriptions

The VBAR_EL1 bit assignments are:

Bits [63:11]

Vector Base Address. Base address of the exception vectors for exceptions taken to EL1.

If tagged addresses are being used, bits [55:48] of VBAR_EL1 must be the same or else the use of
the vector address will result in a recursive exception.

If tagged addresses are not being used, bits [63:48] of VBAR_EL1 must be the same or else the use
of the vector address will result in a recursive exception.

Bits [10:0]

Reserved, RES0.

Accessing the VBAR_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax is encoded with the following settings in the instruction encoding:

Vector Base Address

63 11

RES0

10 0

<systemreg> op0 op1 CRn CRm op2

VBAR_EL1 11 000 1100 0000 000

VBAR_EL12 11 101 1100 0000 000
B12-414 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.2 General system control registers
Accessibility

The register is accessible in software as follows:

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic VBAR_EL1 or
VBAR_EL12 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

<systemreg>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

VBAR_EL1 x x 0 - RW n/a RW

VBAR_EL1 0 0 1 - RW RW RW

VBAR_EL1 0 1 1 - n/a RW RW

VBAR_EL1 1 0 1 - RW VBAR_EL2 RW

VBAR_EL1 1 1 1 - n/a VBAR_EL2 RW

VBAR_EL12 x x 0 - - n/a -

VBAR_EL12 0 0 1 - - - -

VBAR_EL12 0 1 1 - n/a - -

VBAR_EL12 1 0 1 - - RW RW

VBAR_EL12 1 1 1 - n/a RW RW
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-415
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.2 General system control registers
B12.2.55 VBAR_EL2, Vector Base Address Register (EL2)

The VBAR_EL2 characteristics are:

Purpose

Holds the vector base address for any exception that is taken to EL2.

Configurations

AArch64 System register VBAR_EL2[31:0] is architecturally mapped to AArch32 System register
HVBAR.

If EL2 is not implemented, this register is RES0 from EL3.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

VBAR_EL2 is a 64-bit register.

Field descriptions

The VBAR_EL2 bit assignments are:

Bits [63:11]

Vector Base Address. Base address of the exception vectors for exceptions taken to EL2.

If tagged addresses are being used, bits [55:48] of VBAR_EL2 must be 0 or else the use of the vector
address will result in a recursive exception.

If tagged addresses are not being used, bits [63:48] of VBAR_EL2 must be 0 or else the use of the
vector address will result in a recursive exception.

Bits [10:0]

Reserved, RES0.

Accessing the VBAR_EL2

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax is encoded with the following settings in the instruction encoding:

Vector Base Address

63 11

RES0

10 0

<systemreg> op0 op1 CRn CRm op2

VBAR_EL2 11 100 1100 0000 000

VBAR_EL1 11 000 1100 0000 000
B12-416 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.2 General system control registers
Accessibility

The register is accessible in software as follows:

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic VBAR_EL2 or
VBAR_EL1 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

<systemreg>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

VBAR_EL2 x x 0 - - n/a RW

VBAR_EL2 0 0 1 - - RW RW

VBAR_EL2 0 1 1 - n/a RW RW

VBAR_EL2 1 0 1 - - RW RW

VBAR_EL2 1 1 1 - n/a RW RW

VBAR_EL1 x x 0 - VBAR_EL1 n/a VBAR_EL1

VBAR_EL1 0 0 1 - VBAR_EL1 VBAR_EL1 VBAR_EL1

VBAR_EL1 0 1 1 - n/a VBAR_EL1 VBAR_EL1

VBAR_EL1 1 0 1 - VBAR_EL1 RW VBAR_EL1

VBAR_EL1 1 1 1 - n/a RW VBAR_EL1
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-417
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.2 General system control registers
B12.2.56 VTCR_EL2, Virtualization Translation Control Register

The VTCR_EL2 characteristics are:

Purpose

Controls the translation table walks required for the stage 2 translation of memory accesses from
Non-secure EL0 and EL1, and holds cacheability and shareability information for the accesses.

Configurations

AArch64 System register VTCR_EL2 is architecturally mapped to AArch32 System register
VTCR.

If EL2 is not implemented, this register is RES0 from EL3.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

VTCR_EL2 is a 32-bit register.

Field descriptions

The VTCR_EL2 bit assignments are:

Any of the bits in VTCR_EL2 are permitted to be cached in a TLB.

Bit [31]

Reserved, RES1.

Bits [30:23]

Reserved, RES0.

HD, bit [22] (In ARMv8.1)

Hardware management of dirty state in stage 2 translations from Non-secure EL0 and EL1.

0 Stage 2 hardware management of dirty state disabled.

1 Stage 2 hardware management of dirty state enabled, only if the HA bit is also set to 1.

Implementation of this bit is OPTIONAL, and, if not implemented, this bit is RES0.

Bit [22] (In ARMv8.0)

Reserved, RES0.

HA, bit [21] (In ARMv8.1)

Hardware Access flag update in stage 2 translations from Non-secure EL0 and EL1.

0 Stage 2 Access flag update disabled.

1 Stage 2 Access flag update enabled.

Implementation of this bit is OPTIONAL, and, if not implemented, this bit is RES0.

31

RES0

30 23 22 21 20

VS

19

PS

18 16

TG0

15 14

SH0

13 12 11 10 9 8

SL0

7 6

T0SZ

5 0

RES1
HD
HA
RES0

IRGN0
ORGN0
B12-418 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.2 General system control registers
Bit [21] (In ARMv8.0)

Reserved, RES0.

Bit [20]

Reserved, RES0.

VS, bit [19] (In ARMv8.1)

In ARMv8.1, VMID Size

0 8 bit - the upper 8 bits of VTTBR_EL2 are ignored by the hardware, and treated as if
they are all zeros, for every purpose except when reading back the register.

1 16 bit - the upper 8 bits of VTTBR_EL2 are used for allocation and matching in the
TLB.

If the implementation only supports an 8-bit VMID, this field is RES0.

In ARMv8.0, this bit is RES0.

Bit [19] (In ARMv8.0)

Reserved, RES0.

PS, bits [18:16]

Physical Address Size.

000 32 bits, 4GB.

001 36 bits, 64GB.

010 40 bits, 1TB.

011 42 bits, 4TB.

100 44 bits, 16TB.

101 48 bits, 256TB.

Other values are reserved.

The reserved values behave in the same way as the 101 encoding, but software must not rely on this
property as the behavior of the RESERVED values might change in a future revision of the
architecture.

TG0, bits [15:14]

Granule size for the VTTBR_EL2.

00 4KB

01 64KB

10 16KB

Other values are reserved.

If the value is programmed to either a reserved value, or a size that has not been implemented, then
the hardware will treat the field as if it has been programmed to an IMPLEMENTATION DEFINED
choice of the sizes that has been implemented for all purposes other than the value read back from
this register.

It is IMPLEMENTATION DEFINED whether the value read back is the value programmed or the value
that corresponds to the size chosen.

SH0, bits [13:12]

Shareability attribute for memory associated with translation table walks using VTTBR_EL2.

00 Non-shareable

10 Outer Shareable

11 Inner Shareable
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-419
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.2 General system control registers
Other values are reserved. The effect of programming this field to a Reserved value is that behavior
is CONSTRAINED UNPREDICTABLE, as described in Reserved values in System and memory-mapped
registers and translation table entries on page B12-558.

ORGN0, bits [11:10]

Outer cacheability attribute for memory associated with translation table walks using VTTBR_EL2.

00 Normal memory, Outer Non-cacheable

01 Normal memory, Outer Write-Back Write-Allocate Cacheable

10 Normal memory, Outer Write-Through Cacheable

11 Normal memory, Outer Write-Back no Write-Allocate Cacheable

IRGN0, bits [9:8]

Inner cacheability attribute for memory associated with translation table walks using VTTBR_EL2.

00 Normal memory, Inner Non-cacheable

01 Normal memory, Inner Write-Back Write-Allocate Cacheable

10 Normal memory, Inner Write-Through Cacheable

11 Normal memory, Inner Write-Back no Write-Allocate Cacheable

SL0, bits [7:6]

Starting level of the VTCR_EL2 addressed region. The meaning of this field depends on the value
of VTCR_EL2.TG0 (the granule size).

00 If TG0 is 00 (4KB granule), start at level 2. If TG0 is 10 (16KB granule) or 01 (64KB
granule), start at level 3.

01 If TG0 is 00 (4KB granule), start at level 1. If TG0 is 10 (16KB granule) or 01 (64KB
granule), start at level 2.

10 If TG0 is 00 (4KB granule), start at level 0. If TG0 is 10 (16KB granule) or 01 (64KB
granule), start at level 1.

All other values are reserved. If this field is programmed to a reserved value, or to a value that is not
consistent with the programming of T0SZ, then a stage 2 level 0 Translation fault is generated.

T0SZ, bits [5:0]

The size offset of the memory region addressed by VTTBR_EL2. The region size is 2(64-T0SZ) bytes.

The maximum and minimum possible values for T0SZ depend on the level of translation table and
the memory translation granule size, as described in the AArch64 Virtual Memory System
Architecture chapter.

If this field is programmed to a value that is not consistent with the programming of SL0 then a stage
2 level 0 Translation fault is generated.

Accessing the VTCR_EL2

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax is encoded with the following settings in the instruction encoding:

<systemreg> op0 op1 CRn CRm op2

VTCR_EL2 11 100 0010 0001 010
B12-420 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.2 General system control registers
Accessibility

The register is accessible in software as follows:

<systemreg>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

VTCR_EL2 x x 0 - - n/a RW

VTCR_EL2 x 0 1 - - RW RW

VTCR_EL2 x 1 1 - n/a RW RW
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-421
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.2 General system control registers
B12.2.57 VTTBR_EL2, Virtualization Translation Table Base Register

The VTTBR_EL2 characteristics are:

Purpose

Holds the base address of the translation table for the stage 2 translation of memory accesses from
Non-secure EL0 and EL1.

Configurations

AArch64 System register VTTBR_EL2 is architecturally mapped to AArch32 System register
VTTBR.

If EL2 is not implemented, this register is RES0 from EL3.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

VTTBR_EL2 is a 64-bit register.

Field descriptions

The VTTBR_EL2 bit assignments are:

Any of the fields in this register are permitted to be cached in a TLB.

VMID, bits [63:48] (In ARMv8.1)

The VMID for the translation table.

It is IMPLEMENTATION DEFINED whether the VMID is 8 bits or 16 bits.

If the implementation has an 8 bit VMID, then the upper 8 bits of this field are RES0.

If the implementation has a 16 bit VMID, then:

• The VTCR_EL2.VS bit selects whether the upper 8 bits of this field are ignored by the
hardware for every purpose except reading back the register, or whether they are used for
allocation and matching in the TLB.

• The 16 bit VMID is only supported when EL2 is using AArch64. This means the hardware
must ignore these bits when EL2 is using AArch32.

Bits [63:56] (In ARMv8.0)

Reserved, RES0.

VMID, bits [55:48] (In ARMv8.0)

The VMID for the translation table.

BADDR, bits [47:0]

Translation table base address, bits[47:x]. Bits [x-1:0] are RES0, with the additional requirement that
if they are not all zero, this is a misaligned translation table base address, with effects that are
CONSTRAINED UNPREDICTABLE, and must be on of the following:

• Bits [x-1:0] are treated as if all the bits are zero. The value read back from those bits is either
the value written or zero.

• The result of the calculation of an address for a translation table walk using this register can
be corrupted in those bits that are nonzero.

VMID

63 48

BADDR

47 0
B12-422 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.2 General system control registers
The AArch64 Virtual Memory System Architecture chapter describes how x is calculated based on
the value of VTCR_EL2.T0SZ, the stage of translation, and the translation granule size.

Accessing the VTTBR_EL2

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax is encoded with the following settings in the instruction encoding:

Accessibility

The register is accessible in software as follows:

<systemreg> op0 op1 CRn CRm op2

VTTBR_EL2 11 100 0010 0001 000

<systemreg>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

VTTBR_EL2 x x 0 - - n/a RW

VTTBR_EL2 x 0 1 - - RW RW

VTTBR_EL2 x 1 1 - n/a RW RW
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-423
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.3 Debug registers
B12.3 Debug registers
This section lists the ARMv8.1 Debug System registers in AArch64 state, in alphabetic order.
B12-424 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.3 Debug registers
B12.3.1 DBGBCR<n>_EL1, Debug Breakpoint Control Registers, n = 0 - 15

The DBGBCR<n>_EL1 characteristics are:

Purpose

Holds control information for a breakpoint. Forms breakpoint n together with value register
DBGBVR<n>_EL1.

Configurations

AArch64 System register DBGBCR<n>_EL1 is architecturally mapped to AArch32 System
register DBGBCR<n>.

AArch64 System register DBGBCR<n>_EL1 is architecturally mapped to External register
DBGBCR<n>_EL1.

If breakpoint n is not implemented then this register is unallocated.

This register is in the Cold reset domain. On a Cold reset RW fields in this register reset to
architecturally UNKNOWN values.The register is not affected by a Warm reset.

Attributes

DBGBCR<n>_EL1 is a 32-bit register.

Field descriptions

The DBGBCR<n>_EL1 bit assignments are:

Bits [31:24]

Reserved, RES0.

BT, bits [23:20]

Breakpoint Type. Possible values are:

0000 Unlinked address match.

0001 Linked address match.

0010 Unlinked Context ID match.

0011 Linked Context ID match.

0110 Unlinked CONTEXTIDR_EL1 match (ARMv8.1).

0111 Linked CONTEXTIDR_EL1 match (ARMv8.1).

1000 Unlinked VMID match.

1001 Linked VMID match.

1010 Unlinked VMID and Context ID match.

1011 Linked VMID and Context ID match.

1100 Unlinked CONTEXTIDR_EL2 match (ARMv8.1).

1101 Linked CONTEXTIDR_EL2 match (ARMv8.1).

1110 Unlinked Full Context ID match (ARMv8.1).

1111 Linked Full Context ID match (ARMv8.1).

RES0

31 24

BT

23 20

LBN

19 16

SSC

15 14 13

RES0

12 9

BAS

8 5 4 3

PMC

2 1

E

0

RES0
HMC
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-425
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.3 Debug registers
The field breaks down as follows:

• BT[3:1]: Base type.

000 Match address. DBGBVR<n>_EL1 is the address of an instruction.

001 Match Context ID. DBGBVR<n>_EL1.ContextID is a Context ID compared
against CONTEXTIDR_EL1 in ARMv8.0, and in ARMv8.1 when not in a Host
OS or a Host Application. In ARMv8.1, when in a Host OS or Host Application,
the Context ID is compared against CONTEXTIDR_EL1.

011 Match CONTEXTIDR_EL1. DBGBVR<n>_EL1.ContextID is a Context ID
compared against CONTEXTIDR_EL1.

100 Match VMID. DBGBVR<n>_EL1.VMID is a VMID compared against
VTTBR_EL2.VMID.

101 Match VMID and Context ID. DBGBVR<n>_EL1.ContextID is a Context ID
compared against CONTEXTIDR_EL1, and DBGBVR<n>_EL1.VMID is a
VMID compared against VTTBR_EL2.VMID.

110 Match CONTEXTIDR_EL2. DBGBVR<n>_EL1.ContextID2 is a Context ID
compared against CONTEXTIDR_EL2.

111 Match Full Context ID. DBGBVR<n>_EL1.ContextID is compared against
CONTEXTIDR_EL1, and DBGBVR<n>_EL1.ContextID2 is compared against
CONTEXTIDR_EL2.

• BT[0]: Enable linking.

All other values are reserved. Constraints on breakpoint programming mean other values are
reserved under some conditions. For more information, including the effect of programming this
field to a reserved value, see Reserved DBGBCR<n>_EL1.BT values on page B8-70.

When this register has an architecturally-defined reset value, this field resets to a value that is
architecturally UNKNOWN.

LBN, bits [19:16]

Linked breakpoint number. For Linked address matching breakpoints, this specifies the index of the
Context-matching breakpoint linked to.

For all other breakpoint types this field is ignored and reads of the register return an UNKNOWN
value.

This field is ignored when the value of DBGBCR<n>_EL1.E is 0.

When this register has an architecturally-defined reset value, this field resets to a value that is
architecturally UNKNOWN.

SSC, bits [15:14]

Security state control. Determines the Security states under which a Breakpoint debug event for
breakpoint n is generated. This field must be interpreted along with the HMC and PMC fields, and
there are constraints on the permitted values of the {HMC, SSC, PMC} fields. For more
information, including the effect of programming the fields to a reserved set of values, see
“Reserved DBGBCR<n>_EL1.{SSC,HMC,PMC} values” in the ARM® Architecture Reference
Manual, ARMv8, for ARMv8-A architecture profile.

When this register has an architecturally-defined reset value, this field resets to a value that is
architecturally UNKNOWN.

HMC, bit [13]

Higher mode control. Determines the debug perspective for deciding when a Breakpoint debug
event for breakpoint n is generated. This field must be interpreted along with the SSC and PMC
fields, and there are constraints on the permitted values of the {HMC, SSC, PMC} fields. For more
information see the SSC, bits [15:14] description.

When this register has an architecturally-defined reset value, this field resets to a value that is
architecturally UNKNOWN.
B12-426 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.3 Debug registers
Bits [12:9]

Reserved, RES0.

BAS, bits [8:5]

Byte address select. Defines which half-words an address-matching breakpoint matches, regardless
of the instruction set and Execution state. In an AArch64-only implementation, this field is reserved,
RES1.

The permitted values depend on the breakpoint type.

For Address match breakpoints, the permitted values are:

All other values are reserved. For more information, see “Reserved DBGBCR<n>_EL1.BAS
values” in the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile.

For more information on using the BAS field in address match breakpoints, see Using the BAS field
in Address Match breakpoints on page C6-700.

For Context matching breakpoints, this field is RES1 and ignored.

When this register has an architecturally-defined reset value, if this field is implemented as an RW
field, it resets to a value that is architecturally UNKNOWN.

Bits [4:3]

Reserved, RES0.

PMC, bits [2:1]

Privilege mode control. Determines the Exception level or levels at which a Breakpoint debug event
for breakpoint n is generated. This field must be interpreted along with the SSC and HMC fields,
and there are constraints on the permitted values of the {HMC, SSC, PMC} fields. For more
information see the DBGBCR<n>_EL1.SSC description.

When this register has an architecturally-defined reset value, this field resets to a value that is
architecturally UNKNOWN.

E, bit [0]

Enable breakpoint DBGBVR<n>_EL1. Possible values are:

0 Breakpoint disabled.

1 Breakpoint enabled.

When this register has an architecturally-defined reset value, this field resets to a value that is
architecturally UNKNOWN.

Accessing the DBGBCR<n>_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

BAS Match instruction at Constraint for debuggers

0011 DBGBVR<n>_EL1 Use for T32 instructions.

1100 DBGBVR<n>_EL1+2 Use for T32 instructions.

1111 DBGBVR<n>_EL1 Use for A64 and A32 instructions.
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-427
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.3 Debug registers
This syntax is encoded with the following settings in the instruction encoding:

Accessibility

The register is accessible in software as follows:

Traps and Enables

For a description of the prioritization of any generated exceptions, see Synchronous exception prioritization for
exceptions taken to AArch64 on page B12-547. Subject to the prioritization rules:

In both security states, and not dependent on other bits:

• If EDSCR.TDA==1, and OSLSR_EL1.OSLK==0, accesses to this register from EL1, EL2, and EL3 are
trapped to Debug state.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS == 1:

• If MDCR_EL2.TDA==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL3 is implemented and is using AArch64:

• If MDCR_EL3.TDA==1, accesses to this register from EL1 and EL2 are trapped to EL3.

<systemreg> op0 op1 CRn CRm op2

DBGBCR<n>_EL1 10 000 0000 n<3:0> 101

<systemreg>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

DBGBCR<n>_EL1 x x 0 - RW n/a RW

DBGBCR<n>_EL1 x 0 1 - RW RW RW

DBGBCR<n>_EL1 x 1 1 - n/a RW RW
B12-428 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.3 Debug registers
B12.3.2 DBGBVR<n>_EL1, Debug Breakpoint Value Registers, n = 0 - 15

The DBGBVR<n>_EL1 characteristics are:

Purpose

Holds a virtual address, or a VMID and/or a context ID, for use in breakpoint matching. Forms
breakpoint n together with control register DBGBCR<n>_EL1.

Configurations

AArch64 System register DBGBVR<n>_EL1[31:0] is architecturally mapped to AArch32 System
register DBGBVR<n>.

AArch64 System register DBGBVR<n>_EL1[63:32] is architecturally mapped to AArch32 System
register DBGBXVR<n>.

AArch64 System register DBGBVR<n>_EL1 is architecturally mapped to External register
DBGBVR<n>_EL1.

If breakpoint n is not implemented then this register is unallocated.

This register is in the Cold reset domain. On a Cold reset RW fields in this register reset to
architecturally UNKNOWN values.The register is not affected by a Warm reset.

Attributes

How this register is interpreted depends on the value of DBGBCR<n>_EL1.BT.

• When DBGBCR<n>_EL1.BT is 0b000x, this register holds a virtual address.

• When DBGBCR<n>_EL1.BT is 0b001x, 0b011x, or 0b110x, this register holds a Context
ID.

• When DBGBCR<n>_EL1.BT is 0b100x, this register holds a VMID.

• When DBGBCR<n>_EL1.BT is 0b101x, this register holds a VMID and a Context ID.

• When DBGBCR<n>_EL1.BT is 0b111x, this register holds two Context ID values.

For other values of DBGBCR<n>_EL1.BT, this register is RES0.

Field descriptions

The DBGBVR<n>_EL1 bit assignments are:

When DBGBCR<n>_EL1.BT==0b000x:

RESS, bits [63:49]

Reserved, Sign extended. Software must treat this field as RES0 if bit[48] is 0 or RES0, and as RES1
if bit[48] is 1.

Hardware always ignores the value of these bits and it is IMPLEMENTATION DEFINED whether:

• The bits are hardwired to a copy of bit [48], meaning writes to these bits are ignored, and
reads to the bits always return the hardwired value.

• The value in those bits can be written, and reads will return the last value written. The value
held in those bits is ignored by hardware.

VA, bits [48:2]

Bits[48:2] of the address value for comparison.

RESS

63 49

VA

48 2 1 0

RES0
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-429
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.3 Debug registers
When this register has an architecturally-defined reset value, this field resets to a value that is
architecturally UNKNOWN.

Bits [1:0]

Reserved, RES0.

When DBGBCR<n>_EL1.BT==0b001x:

Bits [63:32]

Reserved, RES0.

ContextID, bits [31:0]

Context ID value for comparison.

The value is compared against CONTEXTIDR_EL1 in the following cases:

• The PE is in Secure state.

• In ARMv8.0.

• In ARMv8.1, when HCR_EL2.E2H is 0 and the PE is in Non-secure EL0, EL1 or EL2.

• In ARMv8.1, when HCR_EL2.{E2H, TGE} is {1, 0} and the PE is in Non-secure EL0 or
EL1.

In ARMv8.1, when HCR_EL2.E2H is 1, the value is compared against CONTEXTIDR_EL2 in the
following cases:

• The PE is executing at EL2.

• HCR_EL2.TGE is 1 and the PE is in Non-secure EL0.

When this register has an architecturally-defined reset value, this field resets to a value that is
architecturally UNKNOWN.

When DBGBCR<n>_EL1.BT==0b011x:

Bits [63:32]

Reserved, RES0.

ContextID, bits [31:0]

Context ID value for comparison against CONTEXTIDR_EL1.

When this register has an architecturally-defined reset value, this field resets to a value that is
architecturally UNKNOWN.

RES0

63 32

ContextID

31 0

RES0

63 32

ContextID

31 0
B12-430 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.3 Debug registers
When DBGBCR<n>_EL1.BT==0b100x and EL2 implemented:

Bits [63:48]

Reserved, RES0.

VMID, bits [47:32] (In ARMv8.1)

VMID value for comparison.

The VMID is 8 bits in the following cases.

• In ARMv8.0.

• In ARMv8.1, when EL2 is using AArch32.

In ARMv8.1 when EL2 is using AArch64, it is IMPLEMENTATION DEFINED whether the VMID is 8
bits or 16 bits.

The upper 8 bits of this field are RES0 if any of the following apply:

• The implementation has an 8 bit VMID.

• VTCR_EL2.VS is 0.

• EL2 is using AArch32.

When this register has an architecturally-defined reset value, this field resets to a value that is
architecturally UNKNOWN.

Bits [47:40] (In ARMv8.0)

Reserved, RES0.

VMID, bits [39:32] (In ARMv8.0)

VMID value for comparison.

When this register has an architecturally-defined reset value, this field resets to a value that is
architecturally UNKNOWN.

Bits [31:0]

Reserved, RES0.

When DBGBCR<n>_EL1.BT==0b101x and EL2 implemented:

Bits [63:48]

Reserved, RES0.

VMID, bits [47:32] (In ARMv8.1)

VMID value for comparison.

The VMID is 8 bits in the following cases.

• In ARMv8.0.

• In ARMv8.1, when EL2 is using AArch32.

RES0

63 48

VMID

47 32

RES0

31 0

RES0

63 48

VMID

47 32

ContextID

31 0
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-431
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.3 Debug registers
In ARMv8.1 when EL2 is using AArch64, it is IMPLEMENTATION DEFINED whether the VMID is 8
bits or 16 bits.

The upper 8 bits of this field are RES0 if any of the following apply:

• The implementation has an 8 bit VMID.

• VTCR_EL2.VS is 0.

• EL2 is using AArch32.

When this register has an architecturally-defined reset value, this field resets to a value that is
architecturally UNKNOWN.

Bits [47:40] (In ARMv8.0)

Reserved, RES0.

VMID, bits [39:32] (In ARMv8.0)

VMID value for comparison.

When this register has an architecturally-defined reset value, this field resets to a value that is
architecturally UNKNOWN.

ContextID, bits [31:0]

Context ID value for comparison against CONTEXTIDR_EL1.

When this register has an architecturally-defined reset value, this field resets to a value that is
architecturally UNKNOWN.

When DBGBCR<n>_EL1.BT==0b110x and EL2 implemented:

ContextID2, bits [63:32]

Context ID value for comparison against CONTEXTIDR_EL2.

When this register has an architecturally-defined reset value, this field resets to a value that is
architecturally UNKNOWN.

Bits [31:0]

Reserved, RES0.

When DBGBCR<n>_EL1.BT==0b111x and EL2 implemented:

ContextID2, bits [63:32]

Context ID value for comparison against CONTEXTIDR_EL2.

When this register has an architecturally-defined reset value, this field resets to a value that is
architecturally UNKNOWN.

ContextID, bits [31:0]

Context ID value for comparison against CONTEXTIDR_EL1.

ContextID2

63 32

RES0

31 0

ContextID2

63 32

ContextID

31 0
B12-432 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.3 Debug registers
When this register has an architecturally-defined reset value, this field resets to a value that is
architecturally UNKNOWN.

Accessing the DBGBVR<n>_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax is encoded with the following settings in the instruction encoding:

Accessibility

The register is accessible in software as follows:

Traps and Enables

For a description of the prioritization of any generated exceptions, see Synchronous exception prioritization for
exceptions taken to AArch64 on page B12-547. Subject to the prioritization rules:

In both security states, and not dependent on other bits:

• If EDSCR.TDA==1, and OSLSR_EL1.OSLK==0, accesses to this register from EL1, EL2, and EL3 are
trapped to Debug state.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS == 1:

• If MDCR_EL2.TDA==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL3 is implemented and is using AArch64:

• If MDCR_EL3.TDA==1, accesses to this register from EL1 and EL2 are trapped to EL3.

<systemreg> op0 op1 CRn CRm op2

DBGBVR<n>_EL1 10 000 0000 n<3:0> 100

<systemreg>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

DBGBVR<n>_EL1 x x 0 - RW n/a RW

DBGBVR<n>_EL1 x 0 1 - RW RW RW

DBGBVR<n>_EL1 x 1 1 - n/a RW RW
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-433
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.3 Debug registers
B12.3.3 DSPSR_EL0, Debug Saved Program Status Register

The DSPSR_EL0 characteristics are:

Purpose

Holds the saved process state on entry to Debug state.

Configurations

AArch64 System register DSPSR_EL0 is architecturally mapped to AArch32 System register
DSPSR.

Attributes

DSPSR_EL0 is a 32-bit register.

Field descriptions

The DSPSR_EL0 bit assignments are:

When exiting Debug state to AArch32:

N, bit [31]

Copied to CPSR.N on exiting Debug state.

Z, bit [30]

Copied to CPSR.Z on exiting Debug state.

C, bit [29]

Copied to CPSR.C on exiting Debug state.

V, bit [28]

Copied to CPSR.V on exiting Debug state.

Q, bit [27]

Cumulative saturation bit. Set to 1 to indicate that overflow or saturation occurred in some
instructions.

IT[1:0], bits [26:25]

IT block state bits for the T32 IT (If-Then) instruction. See IT[7:2] for explanation of this field.

J, bit [24]

RES0.

In previous versions of the architecture, the {J, T} bits determined the AArch32 Instruction set state.
ARMv8 does not support either Jazelle state or T32EE state, and the T bit determines the Instruction
set state.

Bit [23]

Reserved, RES0.

N

31

Z

30

C

29

V

28

Q

27 26 25

J

24 23 22

SS

21

IL

20

GE

19 16

IT[7:2]

15 10

E

9

A

8

I

7

F

6

T

5 4

M[3:0]

3 0

IT[1:0]
RES0
PAN

M[4]
B12-434 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.3 Debug registers
PAN, bit [22] (In ARMv8.1)

Set to the value of CPSR.PAN on entering Debug state, and copied to CPSR.PAN on exiting Debug
state.

Bit [22] (In ARMv8.0)

Reserved, RES0.

SS, bit [21]

Software step. Shows the value of PSTATE.SS immediately before Debug state was entered.

IL, bit [20]

Illegal Execution state bit. Shows the value of PSTATE.IL immediately before Debug state was
entered.

GE, bits [19:16]

Greater than or Equal flags, for parallel addition and subtraction.

IT[7:2], bits [15:10]

IT block state bits for the T32 IT (If-Then) instruction. This field must be interpreted in two parts.

• IT[7:5] holds the base condition for the IT block. The base condition is the top 3 bits of the
condition code specified by the first condition field of the IT instruction.

• IT[4:0] encodes the size of the IT block, which is the number of instructions that are to be
conditionally executed, by the position of the least significant 1 in this field. It also encodes
the value of the least significant bit of the condition code for each instruction in the block.

The IT field is 0b00000000 when no IT block is active.

E, bit [9]

Endianness state bit. Controls the load and store endianness for data accesses:

0 Little-endian operation

1 Big-endian operation.

Instruction fetches ignore this bit.

When the reset value of the SCTLR.EE bit is defined by a configuration input signal, that value also
applies to the CPSR.E bit on reset, and therefore applies to software execution from reset.

If an implementation does not provide Big-endian support, this bit is RES0. If it does not provide
Little-endian support, this bit is RES1.

If an implementation provides Big-endian support but only at EL0, this bit is RES0 for an exception
return to any Exception level other than EL0.

Likewise, if it provides Little-endian support only at EL0, this bit is RES1 for an exception return to
any Exception level other than EL0.

A, bit [8]

Asynchronous data abort mask bit. The possible values of this bit are:

0 Exception not masked.

1 Exception masked.

I, bit [7]

IRQ mask bit. The possible values of this bit are:

0 Exception not masked.

1 Exception masked.

F, bit [6]

FIQ mask bit. The possible values of this bit are:

0 Exception not masked.
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-435
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.3 Debug registers
1 Exception masked.

T, bit [5]

T32 Instruction set state bit. Determines the AArch32 instruction set state that the Debug state entry
was taken from. Possible values of this bit are:

0 Taken from A32 state.

1 Taken from T32 state.

M[4], bit [4]

Execution state that Debug state was entered from. Possible values of this bit are:

1 Exception taken from AArch32.

M[3:0], bits [3:0]

AArch32 mode that Debug state was entered from. The possible values are:

Other values are reserved. The effect of programming this field to a Reserved value is that behavior
is CONSTRAINED UNPREDICTABLE, as described in Reserved values in System and memory-mapped
registers and translation table entries on page B12-558.

When entering Debug state from AArch64 and exiting Debug state to AArch64:

N, bit [31]

Set to the value of the N condition flag on entering Debug state, and copied to the N condition flag
on exiting Debug state.

Z, bit [30]

Set to the value of the Z condition flag on entering Debug state, and copied to the Z condition flag
on exiting Debug state.

M[3:0] Mode

0b0000 User

0b0001 FIQ

0b0010 IRQ

0b0011 Supervisor

0b0110 Monitor

0b0111 Abort

0b1010 Hyp

0b1011 Undefined

0b1111 System

N

31

Z

30

C

29

V

28

RES0

27 23 22

SS

21

IL

20

RES0

19 10

D

9

A

8

I

7

F

6 5 4

M[3:0]

3 0

PAN M[4]
RES0
B12-436 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.3 Debug registers
C, bit [29]

Set to the value of the C condition flag on entering Debug state, and copied to the C condition flag
on exiting Debug state.

V, bit [28]

Set to the value of the V condition flag on entering Debug state, and copied to the V condition flag
on exiting Debug state.

Bits [27:23]

Reserved, RES0.

Bit [22] (In ARMv8.0)

Reserved, RES0.

SS, bit [21]

Software step. Shows the value of PSTATE.SS immediately before Debug state was entered.

IL, bit [20]

Illegal Execution state bit. Shows the value of PSTATE.IL immediately before Debug state was
entered.

Bits [19:10]

Reserved, RES0.

D, bit [9]

Process state D mask. The possible values of this bit are:

0 Watchpoint, Breakpoint, and Software Step exceptions targeted at the current Exception
level are not masked.

1 Watchpoint, Breakpoint, and Software step exceptions targeted at the current Exception
level are masked.

When the target Exception level of the debug exception is higher than the current Exception level,
the exception is not masked by this bit.

A, bit [8]

SError (System Error) mask bit. The possible values of this bit are:

0 Exception not masked.

1 Exception masked.

I, bit [7]

IRQ mask bit. The possible values of this bit are:

0 Exception not masked.

1 Exception masked.

F, bit [6]

FIQ mask bit. The possible values of this bit are:

0 Exception not masked.

1 Exception masked.

Bit [5]

Reserved, RES0.

M[4], bit [4]

Execution state that Debug state was entered from. Possible values of this bit are:

0 Exception taken from AArch64.
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-437
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.3 Debug registers
M[3:0], bits [3:0]

AArch64 mode that Debug state was entered from. The possible values are:

Other values are reserved, and returning to an Exception level that is using AArch64 with a reserved
value in this field is treated as an illegal exception return.

The bits in this field are interpreted as follows:

• M[3:2] holds the Exception Level.

• M[1] is unused and is RES0 for all non-reserved values.

• M[0] is used to select the SP:

— 0 means the SP is always SP0.

— 1 means the exception SP is determined by the EL.

Accessing the DSPSR_EL0

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax is encoded with the following settings in the instruction encoding:

Accessibility

The register is accessible in software as follows:

M[3:0] Mode

0b0000 EL0t

0b0100 EL1t

0b0101 EL1h

0b1000 EL2t

0b1001 EL2h

0b1100 EL3t

0b1101 EL3h

<systemreg> op0 op1 CRn CRm op2

DSPSR_EL0 11 011 0100 0101 000

<systemreg>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

DSPSR_EL0 x x 0 RW RW n/a RW

DSPSR_EL0 x 0 1 RW RW RW RW

DSPSR_EL0 x 1 1 RW n/a RW RW
B12-438 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.3 Debug registers
Access to this register is from Debug state only. During normal execution this register is unallocated.
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-439
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.3 Debug registers
B12.3.4 MDCR_EL2, Monitor Debug Configuration Register (EL2)

The MDCR_EL2 characteristics are:

Purpose

Provides EL2 configuration options for self-hosted debug and the Performance Monitors Extension.

Configurations

AArch64 System register MDCR_EL2 is architecturally mapped to AArch32 System register
HDCR.

If EL2 is not implemented, this register is RES0 from EL3.

This register is in the Warm reset domain. Some or all RW fields of this register have defined reset
values. On a Warm or Cold reset these apply only if the PE resets into an Exception level that is
using AArch64. Otherwise, on a Warm or Cold reset RW fields in this register reset to
architecturally UNKNOWN values.

Attributes

MDCR_EL2 is a 32-bit register.

Field descriptions

The MDCR_EL2 bit assignments are:

Bits [31:18]

Reserved, RES0.

HPMD, bit [17] (In ARMv8.1)

Guest Performance Monitors Disable. This control prohibits event counting at EL2. Permitted
values are:

0 Event counting allowed at EL2.

1 Event counting prohibited at EL2, unless enabled by the IMPLEMENTATION DEFINED
authentication interface ExternalSecureNoninvasiveDebugEnabled().

This control applies only to:

• The event counters in the range [0..HPMN).

• If PMCR_EL0.DP is set to 1, PMCCNTR_EL0.

The other event counters are unaffected, and when PMCR_EL0.DP is set to 0, PMCCNTR_EL0 is
unaffected.

When this register has an architecturally-defined reset value, this field resets to 0.

Bit [17] (In ARMv8.0)

Reserved, RES0.

RES0

31 18 17

RES0

16 12 11 10 9 8 7 6 5

HPMN

4 0

HPMD TPMCR
TPM

HPME
TDE
TDA

TDOSA
TDRA
B12-440 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.3 Debug registers
Bits [16:12]

Reserved, RES0.

TDRA, bit [11]

Trap Debug ROM Address register access. Traps Non-secure System register accesses to the Debug
ROM registers to EL2. This trap is from:

• Non-secure EL0 using AArch32.

• Non-secure EL1, regardless of which Execution state it is using.

0 Non-secure EL0 and EL1 System register accesses to the Debug ROM registers are not
trapped to EL2.

1 Non-secure EL0 and EL1 System register accesses to the Debug ROM registers are
trapped to EL2.

The registers for which accesses are trapped are as follows:

AArch64: MDRAR_EL1.

AArch32: DBGDRAR, DBGDSAR.

If MDCR_EL2.TDE == 1 or HCR_EL2.TGE == 1, behavior is as if this bit is 1 other than for the
purpose of a direct read.

When this register has an architecturally-defined reset value, this field resets to a value that is
architecturally UNKNOWN.

TDOSA, bit [10]

Trap debug OS-related register access. Traps Non-secure EL1 System register accesses to the
powerdown debug registers to EL2, from both Execution states:

0 Non-secure EL1 System register accesses to the powerdown debug registers are not
trapped to EL2.

1 Non-secure EL1 System register accesses to the powerdown debug registers are trapped
to EL2.

The registers for which accesses are trapped are as follows:

AArch64: OSLAR_EL1, OSLSR_EL1, OSDLR_EL1, and the DBGPRCR_EL1.

AArch32: DBGOSLSR, DBGOSLAR, DBGOSDLR, and the DBGPRCR.

AArch64 and AArch32: Any IMPLEMENTATION DEFINED register with similar functionality that the
implementation specifies as trapped by this bit.

Note
 These registers are not accessible at EL0.

If MDCR_EL2.TDE == 1 or HCR_EL2.TGE == 1, behavior is as if this bit is 1 other than for the
purpose of a direct read.

When this register has an architecturally-defined reset value, this field resets to a value that is
architecturally UNKNOWN.

TDA, bit [9]

Trap Debug Access. Traps Non-secure EL0 and EL1 System register accesses to those debug
System registers that are not trapped by either of the following:

• MDCR_EL2.TDRA.

• MDCR_EL2.TDOSA.

0 Has no effect on System register accesses to the debug registers.

1 Non-secure EL0 or EL1 System register accesses to the debug registers, other than the
registers trapped by MDCR_EL2.TDRA and MDCR_EL2.TDOSA, are trapped to EL2,
from both Execution states.
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-441
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.3 Debug registers
MDCR_EL2.TDA does not trap accesses to the DBGDTRRX_EL0, DBGDTRTX_EL0, or
DBGDTR_EL0 when the PE is in Debug state.

If MDCR_EL2.TDE == 1 or HCR_EL2.TGE == 1, behavior is as if this bit is 1 other than for the
purpose of a direct read.

When this register has an architecturally-defined reset value, this field resets to a value that is
architecturally UNKNOWN.

TDE, bit [8]

In Non-secure state, route debug exceptions from EL1 and EL0 to EL2, and trap Debug register
accesses from EL1 and EL0 to EL2. The possible values of this field are:

0 This control has no effect on the routing of debug exceptions, and has no effect on
Non-secure accesses to debug registers.

1 In Non-secure state:

• Debug exceptions generated at EL1 or EL0 are routed to EL2.

• All accesses to Debug registers that would not be UNDEFINED if the value of this
field was 0 are trapped to EL2.

When HCR_EL2.TGE == 1, the PE behaves as if the value of this field is 1 for all purposes other
than returning the value of a direct read of the register.

When this register has an architecturally-defined reset value, this field resets to a value that is
architecturally UNKNOWN.

HPME, bit [7]

Hypervisor Performance Monitors Counters Enable. The possible values of this bit are:

0 EL2 Performance Monitors counters disabled.

1 EL2 Performance Monitors# counters enabled.

When the value of this bit is 1, the Performance Monitors counters that are reserved for use from
EL2 or Secure state are enabled. For more information see the description of the HPMN field.

If the Performance Monitors Extension is not implemented, this field is RES0.

When this register has an architecturally-defined reset value, if this field is implemented as an RW
field, it resets to a value that is architecturally UNKNOWN.

TPM, bit [6]

Trap Performance Monitors accesses. Traps Non-secure EL0 and EL1 accesses to all Performance
Monitors registers to EL2, from both Execution states:

0 Non-secure EL0 and EL1 accesses to all Performance Monitors registers are not trapped
to EL2.

1 Non-secure EL0 and EL1 accesses to all Performance Monitors registers are trapped to
EL2.

Note
 EL2 does not provide traps on Performance Monitor register accesses through the optional

memory-mapped external debug interface.

If the Performance Monitors Extension is not implemented, this field is RES0.

When this register has an architecturally-defined reset value, if this field is implemented as an RW
field, it resets to a value that is architecturally UNKNOWN.

TPMCR, bit [5]

Trap PMCR_EL0 or PMCR accesses. Traps Non-secure EL0 and EL1 accesses to the PMCR_EL0
or PMCR to EL2.

0 Non-secure EL0 and EL1 accesses to the PMCR_EL0 or PMCR are not trapped to EL2.

1 Non-secure EL0 and EL1 accesses to the PMCR_EL0 or PMCR are trapped to EL2.
B12-442 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.3 Debug registers
Note
 EL2 does not provide traps on Performance Monitor register accesses through the optional

memory-mapped external debug interface.

If the Performance Monitors Extension is not implemented, this field is RES0.

When this register has an architecturally-defined reset value, if this field is implemented as an RW
field, it resets to a value that is architecturally UNKNOWN.

HPMN, bits [4:0]

Defines the number of Performance Monitors counters that are accessible from Non-secure EL0 and
EL1 modes.

If the Performance Monitors Extension is not implemented, this field is RES0.

In Non-secure state, HPMN divides the Performance Monitors counters as follows. For counter n in
Non-secure state:

• If n is in the range 0<=n<HPMN, the counter is accessible from EL1 and EL2, and from EL0
if permitted by PMUSERENR_EL0. PMCR_EL0.E enables the operation of counters in this
range.

• If n is in the range HPMN<=n<PMCR_EL0.N, the counter is accessible only from EL2 and
from Secure state. MDCR_EL2.HPME enables the operation of counters in this range.

If this field is set to 0, or to a value larger than PMCR_EL0.N, then the following CONSTRAINED
UNPREDICTABLE behavior applies:

• The value returned by a direct read of MDCR_EL2.HPMN is UNKNOWN.

• Either:

— An UNKNOWN number of counters are reserved for EL2 use. That is, the PE behaves
as if MDCR_EL2.HPMN is set to an UNKNOWN non-zero value less than
PMCR_EL0.N.

— All counters are reserved for EL2 use, meaning no counters are accessible from
Non-secure EL1 and Non-secure EL0.

When this register has an architecturally-defined reset value, if this field is implemented as an RW
field, it resets to the value of PMCR_EL0.N.

Accessing the MDCR_EL2

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax is encoded with the following settings in the instruction encoding:

<systemreg> op0 op1 CRn CRm op2

MDCR_EL2 11 100 0001 0001 001
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-443
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.3 Debug registers
Accessibility

The register is accessible in software as follows:

Traps and Enables

For a description of the prioritization of any generated exceptions, see Synchronous exception prioritization for
exceptions taken to AArch64 on page B12-547. Subject to the prioritization rules:

When EL3 is implemented and is using AArch64:

• If MDCR_EL3.TDA==1, accesses to this register from EL2 are trapped to EL3.

<systemreg>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

MDCR_EL2 x x 0 - - n/a RW

MDCR_EL2 x 0 1 - - RW RW

MDCR_EL2 x 1 1 - n/a RW RW
B12-444 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.3 Debug registers
B12.3.5 MDSCR_EL1, Monitor Debug System Control Register

The MDSCR_EL1 characteristics are:

Purpose

Main control register for the debug implementation.

Configurations

AArch64 System register MDSCR_EL1 is architecturally mapped to AArch32 System register
DBGDSCRext.

This register is in the Warm reset domain. Some or all RW fields of this register have defined reset
values. On a Warm or Cold reset these apply only if the PE resets into an Exception level that is
using AArch64. Otherwise, on a Warm or Cold reset RW fields in this register reset to
architecturally UNKNOWN values.

Attributes

MDSCR_EL1 is a 32-bit register.

Field descriptions

The MDSCR_EL1 bit assignments are:

Bit [31]

Reserved, RES0.

RXfull, bit [30]

Used for save/restore of EDSCR.RXfull.

When OSLSR_EL1.OSLK == 0 (the OS lock is unlocked), this bit is RO, and software must treat
it as UNK/SBZP.

When OSLSR_EL1.OSLK == 1 (the OS lock is locked), this bit is RW and holds the value of
EDSCR.RXfull.

The architected behavior of this field determines the value it returns after a reset.

TXfull, bit [29]

Used for save/restore of EDSCR.TXfull.

When OSLSR_EL1.OSLK == 0 (the OS lock is unlocked), this bit is RO, and software must treat
it as UNK/SBZP.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12

RES0

11 7 6

RES0

5 1

SS

0

RES0
RXfull
TXfull
RES0
RXO
TXU
RES0
INTdis
TDA
RES0
SC2
RAZ/WI

ERR
TDCC

KDE
HDE
MDE
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-445
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.3 Debug registers
When OSLSR_EL1.OSLK == 1 (the OS lock is locked), this bit is RW and holds the value of
EDSCR.TXfull.

The architected behavior of this field determines the value it returns after a reset.

Bit [28]

Reserved, RES0.

RXO, bit [27]

Used for save/restore of EDSCR.RXO.

When OSLSR_EL1.OSLK == 0 (the OS lock is unlocked), this bit is RO, and software must treat
it as UNK/SBZP.

When OSLSR_EL1.OSLK == 1 (the OS lock is locked), this bit is RW and holds the value of
EDSCR.RXO.

The architected behavior of this field determines the value it returns after a reset.

TXU, bit [26]

Used for save/restore of EDSCR.TXU.

When OSLSR_EL1.OSLK == 0 (the OS lock is unlocked), this bit is RO, and software must treat
it as UNK/SBZP.

When OSLSR_EL1.OSLK == 1 (the OS lock is locked), this bit is RW and holds the value of
EDSCR.TXU.

The architected behavior of this field determines the value it returns after a reset.

Bits [25:24]

Reserved, RES0.

INTdis, bits [23:22]

Used for save/restore of EDSCR.INTdis.

When OSLSR_EL1.OSLK == 0 (the OS lock is unlocked), this field is RO, and software must treat
it as UNK/SBZP.

When OSLSR_EL1.OSLK == 1 (the OS lock is locked), this field is RW and holds the value of
EDSCR.INTdis.

The architected behavior of this field determines the value it returns after a reset.

TDA, bit [21]

Used for save/restore of EDSCR.TDA.

When OSLSR_EL1.OSLK == 0 (the OS lock is unlocked), this bit is RO, and software must treat
it as UNK/SBZP.

When OSLSR_EL1.OSLK == 1 (the OS lock is locked), this bit is RW and holds the value of
EDSCR.TDA.

The architected behavior of this field determines the value it returns after a reset.

Bit [20]

Reserved, RES0.

SC2, bit [19] (In ARMv8.1)

Used for save/restore of EDSCR.SC2.

When OSLSR_EL1.OSLK == 0 (the OS lock is unlocked), this bit is RO, and software must treat
it as UNK/SBZP.

When OSLSR_EL1.OSLK == 1 (the OS lock is locked), this bit is RW and holds the value of
EDSCR.SC2.
B12-446 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.3 Debug registers
Bit [19] (In ARMv8.0)

Reserved, RES0.

Bits [18:16]

Reserved, RAZ/WI. Hardware must implement this as RAZ/WI. Software must not rely on this
property as the behavior of reserved values might change in a future revision of the architecture.

MDE, bit [15]

Monitor debug events. Enable Breakpoint, Watchpoint, and Vector Catch exceptions.

0 Breakpoint, Watchpoint, and Vector Catch exceptions disabled.

1 Breakpoint, Watchpoint, and Vector Catch exceptions enabled.

When this register has an architecturally-defined reset value, this field resets to a value that is
architecturally UNKNOWN.

HDE, bit [14]

Used for save/restore of EDSCR.HDE.

When OSLSR_EL1.OSLK == 0 (the OS lock is unlocked), this bit is RO, and software must treat
it as UNK/SBZP.

When OSLSR_EL1.OSLK == 1 (the OS lock is locked), this bit is RW and holds the value of
EDSCR.HDE.

The architected behavior of this field determines the value it returns after a reset.

KDE, bit [13]

Local (kernel) debug enable. If ELD is using AArch64, enable debug exceptions within ELD.
Permitted values are:

0 Debug exceptions, other than Breakpoint Instruction exceptions, disabled within ELD.

1 Breakpoint exceptions enabled within ELD.

RES0 if ELD is using AArch32.

When this register has an architecturally-defined reset value, this field resets to a value that is
architecturally UNKNOWN.

TDCC, bit [12]

Traps EL0 accesses to the DCC registers to EL1, from both Execution states:

0 EL0 using AArch64: EL0 accesses to the MDCCSR_EL0, DBGDTR_EL0,
DBGDTRTX_EL0, and DBGDTRRX_EL0 registers are not trapped to EL1.
EL0 using AArch32: EL0 accesses to the DBGDSCRint, DBGDTRRXint,
DBGDTRTXint, DBGDIDR, DBGDSAR, and DBGDRAR registers are not trapped to
EL1.

1 EL0 using AArch64: EL0 accesses to the MDCCSR_EL0, DBGDTR_EL0,
DBGDTRTX_EL0, and DBGDTRRX_EL0 registers are trapped to EL1.
EL0 using AArch32: EL0 accesses to the DBGDSCRint, DBGDTRRXint,
DBGDTRTXint, DBGDIDR, DBGDSAR, and DBGDRAR registers are trapped to
EL1.

Note
 All accesses to these AArch32 registers are trapped, including LDC and STC accesses to

DBGDTRTXint and DBGDTRRXint, and MRRC accesses to DBGDSAR and DBGDRAR.

Traps of AArch32 PL0 accesses to the DBGDTRRXint and DBGDTRTXint are ignored in Debug
state.

When this register has an architecturally-defined reset value, this field resets to a value that is
architecturally UNKNOWN.
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-447
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.3 Debug registers
Bits [11:7]

Reserved, RES0.

ERR, bit [6]

Used for save/restore of EDSCR.ERR.

When OSLSR_EL1.OSLK == 0 (the OS lock is unlocked), this bit is RO, and software must treat
it as UNK/SBZP.

When OSLSR_EL1.OSLK == 1 (the OS lock is locked), this bit is RW and holds the value of
EDSCR.ERR.

The architected behavior of this field determines the value it returns after a reset.

Bits [5:1]

Reserved, RES0.

SS, bit [0]

Software step control bit. If ELD is using AArch64, enable Software step. Permitted values are:

0 Software step disabled

1 Software step enabled.

RES0 if ELD is using AArch32.

When this register has an architecturally-defined reset value, this field resets to a value that is
architecturally UNKNOWN.

Accessing the MDSCR_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax is encoded with the following settings in the instruction encoding:

Accessibility

The register is accessible in software as follows:

Individual fields within this register might have restricted accessibility when OSLSR_EL1.OSLK == 0 (the OS lock
is unlocked.) See the field descriptions for more detail.

<systemreg> op0 op1 CRn CRm op2

MDSCR_EL1 10 000 0000 0010 010

<systemreg>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

MDSCR_EL1 x x 0 - RW n/a RW

MDSCR_EL1 x 0 1 - RW RW RW

MDSCR_EL1 x 1 1 - n/a RW RW
B12-448 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.3 Debug registers
Traps and Enables

For a description of the prioritization of any generated exceptions, see Synchronous exception prioritization for
exceptions taken to AArch64 on page B12-547. Subject to the prioritization rules:

When EL2 is implemented and is using AArch64 and SCR_EL3.NS == 1:

• If MDCR_EL2.TDA==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL3 is implemented and is using AArch64:

• If MDCR_EL3.TDA==1, accesses to this register from EL1 and EL2 are trapped to EL3.
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-449
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.4 Performance Monitors registers
B12.4 Performance Monitors registers
This section lists the ARMv8.1 Performance Monitors registers in AArch64 state, in alphabetic order.
B12-450 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.4 Performance Monitors registers
B12.4.1 PMCEID0_EL0, Performance Monitors Common Event Identification register 0

The PMCEID0_EL0 characteristics are:

Purpose

Defines which common architectural and common microarchitectural feature events in the ranges
0x0000 to 0x001F and 0x4000 to 0x401F are implemented. If a particular bit is set to 1, then the event
for that bit is implemented.

Configurations

AArch64 System register PMCEID0_EL0[31:0] is architecturally mapped to AArch32 System
register PMCEID0.

AArch64 System register PMCEID0_EL0[63:32] is architecturally mapped to AArch32 System
register PMCEID2.

AArch64 System register PMCEID0_EL0[31:0] is architecturally mapped to External register
PMCEID0.

AArch64 System register PMCEID0_EL0[63:32] is architecturally mapped to External register
PMCEID2.

Attributes

PMCEID0_EL0 is a 64-bit register.

Field descriptions

The PMCEID0_EL0 bit assignments are:

ID[16415:16384], bits [63:32] (In ARMv8.1)

PMCEID0_EL0[63:32] maps to common events 0x4000 to 0x401F. For a list of event numbers and
descriptions, see Events, event numbers, and mnemonics on page B12-557.

For each bit:

0 The common event is not implemented.

1 The common event is implemented.

Bits that map to reserved event numbers are reserved to identify events that might be defined in
future revisions to the architecture.

Events that do not require additional features in the PMU can be defined retrospectively, meaning
that they can be implemented as part of a PMUv3 implementation.

Bits [63:32] (In ARMv8.0)

Reserved, RES0.

ID[31:0], bits [31:0]

PMCEID0_EL0[31:0] maps to common events 0x0000 to 0x001F. For a list of event numbers and
descriptions, see Events, event numbers, and mnemonics on page B12-557.

For each bit:

0 The common event is not implemented.

1 The common event is implemented.

Bits that map to reserved event numbers are reserved to identify events that might be defined in
future revisions to the architecture.

ID[16415:16384]

63 32

ID[31:0]

31 0
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-451
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.4 Performance Monitors registers
Events that do not require additional features in the PMU can be defined retrospectively, meaning
that they can be implemented as part of a PMUv3 implementation.

Accessing the PMCEID0_EL0

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This syntax is encoded with the following settings in the instruction encoding:

Accessibility

The register is accessible in software as follows:

Traps and Enables

For a description of the prioritization of any generated exceptions, see Synchronous exception prioritization for
exceptions taken to AArch64 on page B12-547. Subject to the prioritization rules:

In both security states, and not dependent on other bits:

• If PMUSERENR_EL0.EN==0, read accesses to this register from EL0 are trapped to EL1.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS == 1:

• If MDCR_EL2.TPM==1, Non-secure read accesses to this register from EL0 and EL1 are trapped to EL2.

When EL3 is implemented and is using AArch64:

• If MDCR_EL3.TPM==1, read accesses to this register from EL0, EL1, and EL2 are trapped to EL3.

<systemreg> op0 op1 CRn CRm op2

PMCEID0_EL0 11 011 1001 1100 110

<systemreg>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

PMCEID0_EL0 x x 0 RO RO n/a RO

PMCEID0_EL0 x 0 1 RO RO RO RO

PMCEID0_EL0 x 1 1 RO n/a RO RO
B12-452 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.4 Performance Monitors registers
B12.4.2 PMCEID1_EL0, Performance Monitors Common Event Identification register 1

The PMCEID1_EL0 characteristics are:

Purpose

Defines which common architectural and common microarchitectural feature events in the ranges
0x0020 to 0x003F and 0x4020 to 0x403F are implemented. If a particular bit is set to 1, then the event
for that bit is implemented.

Configurations

AArch64 System register PMCEID1_EL0[31:0] is architecturally mapped to AArch32 System
register PMCEID1.

AArch64 System register PMCEID1_EL0[63:32] is architecturally mapped to AArch32 System
register PMCEID3.

AArch64 System register PMCEID1_EL0[31:0] is architecturally mapped to External register
PMCEID1.

AArch64 System register PMCEID1_EL0[63:32] is architecturally mapped to External register
PMCEID3.

Attributes

PMCEID1_EL0 is a 64-bit register.

Field descriptions

The PMCEID1_EL0 bit assignments are:

ID[16447:16416], bits [63:32] (In ARMv8.1)

PMCEID1_EL0[63:32] maps to common events 0x4020 to 0x403F. For a list of event numbers and
descriptions, see Events, event numbers, and mnemonics on page B12-557.

For each bit:

0 The common event is not implemented.

1 The common event is implemented.

Bits that map to reserved event numbers are reserved to identify events that might be defined in
future revisions to the architecture.

Events that do not require additional features in the PMU can be defined retrospectively, meaning
that they can be implemented as part of a PMUv3 implementation.

Bits [63:32] (In ARMv8.0)

Reserved, RES0.

ID[63:32], bits [31:0]

PMCEID1_EL0[31:0] maps to common events 0x0020 to 0x003F. For a list of event numbers and
descriptions, see Events, event numbers, and mnemonics on page B12-557.

For each bit:

0 The common event is not implemented.

1 The common event is implemented.

Bits that map to reserved event numbers are reserved to identify events that might be defined in
future revisions to the architecture.

ID[16447:16416]

63 32

ID[63:32]

31 0
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-453
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.4 Performance Monitors registers
Events that do not require additional features in the PMU can be defined retrospectively, meaning
that they can be implemented as part of a PMUv3 implementation.

Accessing the PMCEID1_EL0

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This syntax is encoded with the following settings in the instruction encoding:

Accessibility

The register is accessible in software as follows:

Traps and Enables

For a description of the prioritization of any generated exceptions, see Synchronous exception prioritization for
exceptions taken to AArch64 on page B12-547. Subject to the prioritization rules:

In both security states, and not dependent on other bits:

• If PMUSERENR_EL0.EN==0, read accesses to this register from EL0 are trapped to EL1.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS == 1:

• If MDCR_EL2.TPM==1, Non-secure read accesses to this register from EL0 and EL1 are trapped to EL2.

When EL3 is implemented and is using AArch64:

• If MDCR_EL3.TPM==1, read accesses to this register from EL0, EL1, and EL2 are trapped to EL3.

<systemreg> op0 op1 CRn CRm op2

PMCEID1_EL0 11 011 1001 1100 111

<systemreg>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

PMCEID1_EL0 x x 0 RO RO n/a RO

PMCEID1_EL0 x 0 1 RO RO RO RO

PMCEID1_EL0 x 1 1 RO n/a RO RO
B12-454 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.4 Performance Monitors registers
B12.4.3 PMCR_EL0, Performance Monitors Control Register

The PMCR_EL0 characteristics are:

Purpose

Provides details of the Performance Monitors implementation, including the number of counters
implemented, and configures and controls the counters.

Configurations

AArch64 System register PMCR_EL0 is architecturally mapped to AArch32 System register
PMCR.

AArch64 System register PMCR_EL0[6:0] is architecturally mapped to External register
PMCR_EL0[6:0].

This register is in the Warm reset domain. Some or all RW fields of this register have defined reset
values. On a Warm or Cold reset these apply only if the PE resets into an Exception level that is
using AArch64. Otherwise, on a Warm or Cold reset RW fields in this register reset to
architecturally UNKNOWN values.

Attributes

PMCR_EL0 is a 32-bit register.

Field descriptions

The PMCR_EL0 bit assignments are:

IMP, bits [31:24]

Implementer code. This field is RO with an IMPLEMENTATION DEFINED value.

The implementer codes are allocated by ARM. Values have the same interpretation as bits [31:24]
of the MIDR.

IDCODE, bits [23:16]

Identification code. This field is RO with an IMPLEMENTATION DEFINED value.

Each implementer must maintain a list of identification codes that is specific to the implementer. A
specific implementation is identified by the combination of the implementer code and the
identification code.

N, bits [15:11]

Number of event counters. A RO field that indicates the number counters implemented. A value of
0b00000 in this field indicates that only the Cycle Count Register PMCCNTR_EL0 is implemented.

The value of this field is the number of event counters implemented. This value is in the range of
0b00000, in which case only the PMCCNTR_EL0 is implemented, to 0b11111, which indicates that
the PMCCNTR_EL0 and 31 event counters are implemented.

In an implementation that includes EL2, reads of this field from Non-secure EL1 and Non-secure
EL0 return the value of MDCR_EL2.HPMN.

Bits [10:7]

Reserved, RES0.

IMP

31 24

IDCODE

23 16

N

15 11

RES0

10 7

LC

6

DP

5

X

4

D

3

C

2

P

1

E

0

DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-455
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.4 Performance Monitors registers
LC, bit [6]

Long cycle counter enable. Determines which PMCCNTR_EL0 bit generates an overflow recorded
by PMOVSR[31].

0 Cycle counter overflow on increment that changes PMCCNTR_EL0[31] from 1 to 0.

1 Cycle counter overflow on increment that changes PMCCNTR_EL0[63] from 1 to 0.

ARM deprecates use of PMCR_EL0.LC = 0.

In an AArch64-only implementation, this field is RES1.

When this register has an architecturally-defined reset value, if this field is implemented as an RW
field, it resets to a value that is architecturally UNKNOWN.

DP, bit [5]

Disable cycle counter when event counting is prohibited. The possible values of this bit are:

0 PMCCNTR_EL0, if enabled, counts when event counting is prohibited.

1 PMCCNTR_EL0 does not count when event counting is prohibited.

Event counting is prohibited when ProfilingProhibited(IsSecure(),PSTATE.EL) == TRUE.

When EL3 is not implemented, this field is RES0:

• In ARMv8.0.

• In ARMv8.1, only if EL2 is not implemented.

Otherwise this field is RW.

When this register has an architecturally-defined reset value, if this field is implemented as an RW
field, it resets to a value that is architecturally UNKNOWN.

X, bit [4]

Enable export of events in an IMPLEMENTATION DEFINED event stream. The possible values of this
bit are:

0 Do not export events.

1 Export events where not prohibited.

This field enables the exporting of events over an event bus to another device, for example to an
OPTIONAL trace macrocell. If the implementation does not include such an event bus then this field
is RAZ/WI, otherwise it is an RW field.

In an implementation that includes an event bus, no events are exported when counting is prohibited.

This field does not affect the generation of Performance Monitors overflow interrupt requests or
signaling to a cross-trigger interface (CTI) that can be implemented as signals exported from the PE.

When this register has an architecturally-defined reset value, if this field is implemented as an RW
field, it resets to a value that is architecturally UNKNOWN.

D, bit [3]

Clock divider. The possible values of this bit are:

0 When enabled, PMCCNTR_EL0 counts every clock cycle.

1 When enabled, PMCCNTR_EL0 counts once every 64 clock cycles.

In an AArch64-only implementation this field is RES0, otherwise it is an RW field.If
PMCR_EL0.LC == 1, this bit is ignored and the cycle counter counts every clock cycle.

ARM deprecates use of PMCR.D = 1.

When this register has an architecturally-defined reset value, if this field is implemented as an RW
field, it resets to a value that is architecturally UNKNOWN.

C, bit [2]

Cycle counter reset. This bit is WO. The effects of writing to this bit are:

0 No action.
B12-456 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.4 Performance Monitors registers
1 Reset PMCCNTR_EL0 to zero.

This bit is always RAZ.

Resetting PMCCNTR_EL0 does not clear the PMCCNTR_EL0 overflow bit to 0.

P, bit [1]

Event counter reset. This bit is WO. The effects of writing to this bit are:

0 No action.

1 Reset all event counters accessible in the current EL, not including PMCCNTR_EL0,
to zero.

This bit is always RAZ.

In Non-secure EL0 and EL1, if EL2 is implemented, a write of 1 to this bit does not reset event
counters that MDCR_EL2.HPMN reserves for EL2 use.

In EL2 and EL3, a write of 1 to this bit resets all the event counters.

Resetting the event counters does not clear any overflow bits to 0.

E, bit [0]

Enable. The possible values of this bit are:

0 All counters that are accessible at Non-secure EL1, including PMCCNTR_EL0, are
disabled.

1 All counters that are accessible at Non-secure EL1 are enabled by
PMCNTENSET_EL0.

This bit is RW.

If EL2 is implemented, this bit does not affect the operation of event counters that
MDCR_EL2.HPMN reserves for EL2 use.

When this register has an architecturally-defined reset value, this field resets to 0.

Accessing the PMCR_EL0

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax is encoded with the following settings in the instruction encoding:

<systemreg> op0 op1 CRn CRm op2

PMCR_EL0 11 011 1001 1100 000
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-457
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.4 Performance Monitors registers
Accessibility

The register is accessible in software as follows:

Traps and Enables

For a description of the prioritization of any generated exceptions, see Synchronous exception prioritization for
exceptions taken to AArch64 on page B12-547. Subject to the prioritization rules:

In both security states, and not dependent on other bits:

• If PMUSERENR_EL0.EN==0, accesses to this register from EL0 are trapped to EL1.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS == 1:

• If MDCR_EL2.TPM==1, Non-secure accesses to this register from EL0 and EL1 are trapped to EL2.

• If MDCR_EL2.TPMCR==1, Non-secure accesses to this register from EL0 and EL1 are trapped to EL2.

When EL3 is implemented and is using AArch64:

• If MDCR_EL3.TPM==1, accesses to this register from EL0, EL1, and EL2 are trapped to EL3.

<systemreg>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

PMCR_EL0 x x 0 RW RW n/a RW

PMCR_EL0 x 0 1 RW RW RW RW

PMCR_EL0 x 1 1 RW n/a RW RW
B12-458 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.4 Performance Monitors registers
B12.4.4 PMEVTYPER<n>_EL0, Performance Monitors Event Type Registers, n = 0 - 30

The PMEVTYPER<n>_EL0 characteristics are:

Purpose

Configures event counter n, where n is 0 to 30.

Configurations

AArch64 System register PMEVTYPER<n>_EL0 is architecturally mapped to AArch32 System
register PMEVTYPER<n>.

AArch64 System register PMEVTYPER<n>_EL0 is architecturally mapped to External register
PMEVTYPER<n>_EL0.

This register is in the Warm reset domain. On a Warm or Cold reset RW fields in this register reset
to architecturally UNKNOWN values.

Attributes

PMEVTYPER<n>_EL0 is a 32-bit register.

Field descriptions

The PMEVTYPER<n>_EL0 bit assignments are:

P, bit [31]

Privileged filtering bit. Controls counting in EL1. If EL3 is implemented, then counting in
Non-secure EL1 is further controlled by the NSK bit. The possible values of this bit are:

0 Count events in EL1.

1 Do not count events in EL1.

U, bit [30]

User filtering bit. Controls counting in EL0. If EL3 is implemented, then counting in Non-secure
EL0 is further controlled by the NSU bit. The possible values of this bit are:

0 Count events in EL0.

1 Do not count events in EL0.

NSK, bit [29]

Non-secure EL1 (kernel) modes filtering bit. Controls counting in Non-secure EL1. If EL3 is not
implemented, this bit is RES0.

If the value of this bit is equal to the value of P, events in Non-secure EL1 are counted.

Otherwise, events in Non-secure EL1 are not counted.

NSU, bit [28]

Non-secure EL0 (Unprivileged) filtering. Controls counting in Non-secure EL0. If EL3 is not
implemented, this bit is RES0.

If the value of this bit is equal to the value of U, events in Non-secure EL0 are counted.

P

31

U

30 29 28 27

M

26 25

RES0

24 16

evtCount

15 0

NSK
NSU
NSH
MT
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-459
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.4 Performance Monitors registers
Otherwise, events in Non-secure EL0 are not counted.

NSH, bit [27]

Non-secure EL2 (Hypervisor) filtering. Controls counting in Non-secure EL2. If EL2 is not
implemented, this bit is RES0.

0 Do not count events in EL2.

1 Count events in EL2.

M, bit [26]

Secure EL3 filtering bit. If EL3 is not implemented, this bit is RES0.

If the value of this bit is equal to the value of P, cycles in Secure EL3 are counted.

Otherwise, cycles in Secure EL3 are not counted.

Most applications can ignore this field and set its value to 0.

Note
 This field is not visible in the AArch32 PMEVTYPER System register.

MT, bit [25]

Multithreading. When the implementation is multi-threaded, the valid values for this bit are:

0 Count events only on controlling PE.

1 Count events from any PE with the same affinity at level 1 and above as this PE.

When the implementation is not multi-threaded, this bit is RES0.

Note
 • An implementation is described as multi-threaded when the lowest level of affinity consists

of logical PEs that are implemented using a multi-threading type approach. That is, the
performance of PEs at the lowest affinity level is highly interdependent. On such an
implementation, the value of MPIDR_EL1.MT, when read at the highest implemented
Exception level, is 1.

• Events from a different thread of a multithreaded implementation are not Attributable to the
thread counting the event.

Bits [24:16]

Reserved, RES0.

evtCount, bits [15:0] (In ARMv8.1)

Event to count. The event number of the event that is counted by event counter
PMEVCNTR<n>_EL0.

Software must program this field with an event that is supported by the PE being programmed.

There are three ranges of event numbers:

• Event numbers in the range 0x000 to 0x03F are common architectural and microarchitectural
events.

• Event numbers in the range 0x040 to 0x0BF are ARM recommended common architectural and
microarchitectural events.

• Event numbers in the range 0x0C0 to 0x3FF are IMPLEMENTATION DEFINED events.

If evtCount is programmed to an event that is reserved or not supported by the PE, the behavior
depends on the event type:

• For the range 0x000 to 0x03F, no events are counted, and the value returned by a direct or
external read of the evtCount field is the value written to the field.
B12-460 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.4 Performance Monitors registers
• For IMPLEMENTATION DEFINED events, it is UNPREDICTABLE what event, if any, is counted,
and the value returned by a direct or external read of the evtCount field is UNKNOWN.
UNPREDICTABLE in this case means the event must not expose privileged information.

Note
 UNPREDICTABLE means the event must not expose privileged information.

For IMPLEMENTATION DEFINED events:

• It is UNPREDICTABLE what event, if any, is counted. UNPREDICTABLE in this case means the
event must not expose privileged information.

• The value read back from evtCount is UNKNOWN.

ARM recommends that the behavior across a family of implementations is defined such that if a
given implementation does not include an event from a set of common IMPLEMENTATION DEFINED
events, then no event is counted and the value read back on evtCount is the value written.

Bits [15:10] (In ARMv8.0)

Reserved, RES0.

evtCount, bits [9:0] (In ARMv8.0)

Event to count. The event number of the event that is counted by event counter
PMEVCNTR<n>_EL0.

Software must program this field with an event that is supported by the PE being programmed.

There are three ranges of event numbers:

• Event numbers in the range 0x000 to 0x03F are common architectural and microarchitectural
events.

• Event numbers in the range 0x040 to 0x0BF are ARM recommended common architectural and
microarchitectural events.

• Event numbers in the range 0x0C0 to 0x3FF are IMPLEMENTATION DEFINED events.

If evtCount is programmed to an event that is reserved or not supported by the PE, the behavior
depends on the event type:

• For the range 0x000 to 0x03F, no events are counted, and the value returned by a direct or
external read of the evtCount field is the value written to the field.

• For IMPLEMENTATION DEFINED events, it is UNPREDICTABLE what event, if any, is counted,
and the value returned by a direct or external read of the evtCount field is UNKNOWN.
UNPREDICTABLE in this case means the event must not expose privileged information.

Note
 UNPREDICTABLE means the event must not expose privileged information.

For IMPLEMENTATION DEFINED events:

• It is UNPREDICTABLE what event, if any, is counted. UNPREDICTABLE in this case means the
event must not expose privileged information.

• The value read back from evtCount is UNKNOWN.

ARM recommends that the behavior across a family of implementations is defined such that if a
given implementation does not include an event from a set of common IMPLEMENTATION DEFINED
events, then no event is counted and the value read back on evtCount is the value written.

Accessing the PMEVTYPER<n>_EL0

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-461
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.4 Performance Monitors registers
MSR <systemreg>, <Xt>

This syntax is encoded with the following settings in the instruction encoding:

Accessibility

The register is accessible in software as follows:

PMEVTYPER<n>_EL0 can also be accessed by using PMXEVTYPER_EL0 with PMSELR_EL0.SEL set to n.

If <n> is greater than or equal to the number of accessible counters, reads and writes of PMEVTYPER<n>_EL0 are
CONSTRAINED UNPREDICTABLE, and the following behaviors are permitted:

• Accesses to the register are UNDEFINED.

• Accesses to the register behave as RAZ/WI.

• Accesses to the register execute as a NOP.

• For an access from Non-secure EL1, or an access from Non-secure EL0 when the value of
PMUSERENR_EL0.EN is 1, if PMSELR_EL0.SEL is greater than or equal to the number of accessible
counters but is less than the number of implemented counters, the register access is trapped to EL2.

Note
 In an implementation that includes EL2, in Non-secure state at EL0 and EL1, MDCR_EL2.HPMN identifies the
number of accessible counters. Otherwise, the number of accessible counters is the number of implemented
counters.

Traps and Enables

For a description of the prioritization of any generated exceptions, see Synchronous exception prioritization for
exceptions taken to AArch64 on page B12-547. Subject to the prioritization rules:

In both security states, and not dependent on other bits:

• If PMUSERENR_EL0.EN==0, accesses to this register from EL0 are trapped to EL1.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS == 1:

• If MDCR_EL2.TPM==1, Non-secure accesses to this register from EL0 and EL1 are trapped to EL2.

When EL3 is implemented and is using AArch64:

• If MDCR_EL3.TPM==1, accesses to this register from EL0, EL1, and EL2 are trapped to EL3.

<systemreg> op0 op1 CRn CRm op2

PMEVTYPER<n>_EL0 11 011 1110 11:n<4:3> n<2:0>

<systemreg>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

PMEVTYPER<n>_EL0 x x 0 RW RW n/a RW

PMEVTYPER<n>_EL0 x 0 1 RW RW RW RW

PMEVTYPER<n>_EL0 x 1 1 RW n/a RW RW
B12-462 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.5 Generic Timer registers
B12.5 Generic Timer registers
This section lists the ARMv8.1 Generic Timer registers in AArch64 state, in alphabetic order.
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-463
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.5 Generic Timer registers
B12.5.1 CNTHCTL_EL2, Counter-timer Hypervisor Control register

The CNTHCTL_EL2 characteristics are:

Purpose

Controls the generation of an event stream from the physical counter, and access from Non-secure
EL1 to the physical counter and the Non-secure EL1 physical timer.

Configurations

AArch64 System register CNTHCTL_EL2 is architecturally mapped to AArch32 System register
CNTHCTL.

If EL2 is not implemented, this register is RES0 from EL3.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

CNTHCTL_EL2 is a 32-bit register.

Field descriptions

The CNTHCTL_EL2 bit assignments are:

When HCR_EL2.E2H == 0:

This format applies in all ARMv8.0 implementations, and it also contains a description of the behavior when EL3
is implemented and EL2 is not implemented.

Bits [31:8]

Reserved, RES0.

EVNTI, bits [7:4]

Selects which bit (0 to 15) of the counter register CNTPCT_EL0 is the trigger for the event stream
generated from that counter, when that stream is enabled.

EVNTDIR, bit [3]

Controls which transition of the counter register CNTPCT_EL0 trigger bit, defined by EVNTI,
generates an event when the event stream is enabled:

0 A 0 to 1 transition of the trigger bit triggers an event.

1 A 1 to 0 transition of the trigger bit triggers an event.

EVNTEN, bit [2]

Enables the generation of an event stream from the counter register CNTPCT_EL0:

0 Disables the event stream.

1 Enables the event stream.

RES0

31 8

EVNTI

7 4 3 2 1 0

EL1PCTEN
EL1PCEN

EVNTEN
EVNTDIR
B12-464 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.5 Generic Timer registers
EL1PCEN, bit [1]

Traps Non-secure EL0 and EL1 accesses to the physical timer registers to EL2.

0 From AArch64 state: Non-secure EL0 and EL1 accesses to the CNTP_CTL_EL0,
CNTP_CVAL_EL0, and CNTP_TVAL_EL0 are trapped to EL2.
From AArch32 state: Non-secure EL0 and EL1 accesses to the CNTP_CTL,
CNTP_CVAL, and CNTP_TVAL are trapped to EL2.

1 This control does not cause any instructions to be trapped.

If EL3 is implemented and EL2 is not implemented, behavior is as if this bit is 1 other than for the
purpose of a direct read.

EL1PCTEN, bit [0]

Traps Non-secure EL0 and EL1 accesses to the physical counter register to EL2.

0 From AArch64 state: Non-secure EL0 and EL1 accesses to the CNTPCT_EL0 are
trapped to EL2.
From AArch32 state: Non-secure EL0 and EL1 accesses to the CNTPCT are trapped to
EL2.

1 From AArch64 state: Non-secure EL0 and EL1 accesses to the CNTPCT_EL0 are not
trapped to EL2.
From AArch32 state: Non-secure EL0 and EL1 accesses to the CNTPCT are not trapped
to EL2.

If EL3 is implemented and EL2 is not implemented, behavior is as if this bit is 1 other than for the
purpose of a direct read.

When HCR_EL2.E2H == 1:

Bits [31:12]

Reserved, RES0.

EL1PTEN, bit [11]

When HCR_EL2.TGE is 0, traps Non-secure EL0 and EL1 accesses to the physical timer registers
to EL2.

0 From AArch64 state: Non-secure EL0 and EL1 accesses to the CNTP_CTL_EL0,
CNTP_CVAL_EL0, and CNTP_TVAL_EL0 are trapped to EL2.
From AArch32 state: Non-secure EL0 and EL1 accesses to the CNTP_CTL,
CNTP_CVAL, and CNTP_TVAL are trapped to EL2.
The settings in the following controls might cause a trap that is of a higher priority:

• CNTKCTL_EL1.EL0PTEN

• CNTKCTL.PL0PTEN

1 This control does not cause any instructions to be trapped.

RES0

31 12 11 10 9 8

EVNTI

7 4 3 2 1 0

EL0PCTEN
EL0VCTEN

EVNTEN
EVNTDIR

EL0VTEN
EL0PTEN

EL1PCTEN
EL1PTEN
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-465
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.5 Generic Timer registers
When HCR_EL2.TGE is 1, this control does not cause any instructions to be trapped.

EL1PCTEN, bit [10]

When HCR_EL2.TGE is 0, traps Non-secure EL0 and EL1 accesses to the physical counter register
to EL2.

0 From AArch64 state: Non-secure EL0 and EL1 accesses to the CNTPCT_EL0 are
trapped to EL2.
From AArch32 state: Non-secure EL0 and EL1 accesses to the CNTPCT are trapped to
EL2.
The settings in the following controls might cause a trap that is of a higher priority:

• CNTKCTL_EL1.EL0PCTEN

• CNTKCTL.PL0PCTEN

1 This control does not cause any instructions to be trapped.

When HCR_EL2.TGE is 1, this control does not cause any instructions to be trapped.

EL0PTEN, bit [9]

When HCR_EL2.TGE is 0, this control does not cause any instructions to be trapped.

When HCR_EL2.TGE is 1, traps EL0 accesses to the physical timer registers to EL2.

0 EL0 using AArch64: EL0 accesses to the CNTP_CTL_EL0, CNTP_CVAL_EL0, and
CNTP_TVAL_EL0 registers are trapped to EL2.
EL0 using AArch32: EL0 accesses to the CNTP_CTL, CNTP_CVAL, and
CNTP_TVAL registers are trapped to EL2.

1 This control does not cause any instructions to be trapped.

EL0VTEN, bit [8]

When HCR_EL2.TGE is 0, this control does not cause any instructions to be trapped.

When HCR_EL2.TGE is 1, traps EL0 accesses to the virtual timer registers to EL2.

0 EL0 using AArch64: EL0 accesses to the CNTV_CTL_EL0, CNTV_CVAL_EL0, and
CNTV_TVAL_EL0 registers are trapped to EL2.
EL0 using AArch32: EL0 accesses to the CNTV_CTL, CNTV_CVAL, and
CNTV_TVAL registers are trapped to EL2.

1 This control does not cause any instructions to be trapped.

EVNTI, bits [7:4]

Selects which bit (0 to 15) of the counter register CNTPCT_EL0 is the trigger for the event stream
generated from that counter, when that stream is enabled.

EVNTDIR, bit [3]

Controls which transition of the counter register CNTPCT_EL0 trigger bit, defined by EVNTI,
generates an event when the event stream is enabled:

0 A 0 to 1 transition of the trigger bit triggers an event.

1 A 1 to 0 transition of the trigger bit triggers an event.

EVNTEN, bit [2]

Enables the generation of an event stream from the counter register CNTPCT_EL0:

0 Disables the event stream.

1 Enables the event stream.

EL0VCTEN, bit [1]

When HCR_EL2.TGE is 0, this control does not cause any instructions to be trapped.
B12-466 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.5 Generic Timer registers
When HCR_EL2.TGE is 1, traps EL0 accesses to the frequency register and virtual counter register
to EL2.

0 EL0 using AArch64: EL0 accesses to the CNTVCT_EL0 are trapped to EL2.
EL0 using AArch64: EL0 accesses to the CNTFRQ_EL0 register are trapped to EL2, if
CNTHCTL_EL2.EL0PCTEN is also 0.
EL0 using AArch32: EL0 accesses to the CNTVCT are trapped to EL2.
EL0 using AArch32: EL0 accesses to the CNTFRQ register are trapped to EL2, if
CNTHCTL_EL2.EL0PCTEN is also 0.

1 This control does not cause any instructions to be trapped.

EL0PCTEN, bit [0]

When HCR_EL2.TGE is 0, this control does not cause any instructions to be trapped.

When HCR_EL2.TGE is 1, traps EL0 accesses to the frequency register and physical counter
register to EL2.

0 EL0 using AArch64: EL0 accesses to the CNTPCT_EL0 are trapped to EL2.
EL0 using AArch64: EL0 accesses to the CNTFRQ_EL0 register are trapped to EL2, if
CNTHCTL_EL2.EL0VCTEN is also 0.
EL0 using AArch32: EL0 accesses to the CNTPCT are trapped to EL2.
EL0 using AArch32: EL0 accesses to the CNTFRQ and register are trapped to EL2, if
CNTHCTL_EL2.EL0VCTEN is also 0.

1 This control does not cause any instructions to be trapped.

Accessing the CNTHCTL_EL2

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax is encoded with the following settings in the instruction encoding:

Accessibility

The register is accessible in software as follows:

<systemreg> op0 op1 CRn CRm op2

CNTHCTL_EL2 11 100 1110 0001 000

CNTKCTL_EL1 11 000 1110 0001 000

<systemreg>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

CNTHCTL_EL2 x x 0 - - n/a RW

CNTHCTL_EL2 0 0 1 - - RW RW

CNTHCTL_EL2 0 1 1 - n/a RW RW

CNTHCTL_EL2 1 0 1 - - RW RW

CNTHCTL_EL2 1 1 1 - n/a RW RW
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-467
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.5 Generic Timer registers
When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic
CNTHCTL_EL2 or CNTKCTL_EL1 are not guaranteed to be ordered with respect to accesses using the other
mnemonic.

CNTKCTL_EL1 x x 0 - CNTKCTL_EL1 n/a CNTKCTL_EL1

CNTKCTL_EL1 0 0 1 - CNTKCTL_EL1 CNTKCTL_EL1 CNTKCTL_EL1

CNTKCTL_EL1 0 1 1 - n/a CNTKCTL_EL1 CNTKCTL_EL1

CNTKCTL_EL1 1 0 1 - CNTKCTL_EL1 RW CNTKCTL_EL1

CNTKCTL_EL1 1 1 1 - n/a RW CNTKCTL_EL1

<systemreg>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3
B12-468 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.5 Generic Timer registers
B12.5.2 CNTHP_CTL_EL2, Counter-timer Hypervisor Physical Timer Control register

The CNTHP_CTL_EL2 characteristics are:

Purpose

Control register for the EL2 physical timer.

Configurations

AArch64 System register CNTHP_CTL_EL2 is architecturally mapped to AArch32 System
register CNTHP_CTL.

If EL2 is not implemented, this register is RES0 from EL3.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

CNTHP_CTL_EL2 is a 32-bit register.

Field descriptions

The CNTHP_CTL_EL2 bit assignments are:

Bits [31:3]

Reserved, RES0.

ISTATUS, bit [2]

The status of the timer. This bit indicates whether the timer condition is asserted:

0 Timer condition is not asserted.

1 Timer condition is asserted.

When the value of the ENABLE bit is 1, ISTATUS indicates whether the timer value meets the
condition for the timer output to be asserted. ISTATUS takes no account of the value of the IMASK
bit. If the value of ISTATUS is 1 and the value of IMASK is 0 then the timer output signal is asserted.

For more information see and .

This bit is read-only.

IMASK, bit [1]

Timer output signal mask bit. Permitted values are:

0 Timer output signal is not masked.

1 Timer output signal is masked.

For more information, see the description of the ISTATUS bit.

ENABLE, bit [0]

Enables the timer. Permitted values are:

0 Timer disabled.

1 Timer enabled.

RES0

31 3 2 1 0

ENABLE
IMASK

ISTATUS
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-469
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.5 Generic Timer registers
Setting this bit to 0 disables the timer output signal, but the timer value accessible from
CNTHP_TVAL_EL2 continues to count down.

Note
 Disabling the output signal might be a power-saving option.

Accessing the CNTHP_CTL_EL2

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax is encoded with the following settings in the instruction encoding:

Accessibility

The register is accessible in software as follows:

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic
CNTHP_CTL_EL2 or CNTP_CTL_EL0 are not guaranteed to be ordered with respect to accesses using the other
mnemonic.

Traps and Enables

For a description of the prioritization of any generated exceptions, see Synchronous exception prioritization for
exceptions taken to AArch64 on page B12-547. Subject to the prioritization rules:

<systemreg> op0 op1 CRn CRm op2

CNTHP_CTL_EL2 11 100 1110 0010 001

CNTP_CTL_EL0 11 011 1110 0010 001

<systemreg>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

CNTHP_CTL_EL2 x x 0 - - n/a RW

CNTHP_CTL_EL2 0 0 1 - - RW RW

CNTHP_CTL_EL2 0 1 1 - n/a RW RW

CNTHP_CTL_EL2 1 0 1 - - RW RW

CNTHP_CTL_EL2 1 1 1 - n/a RW RW

CNTP_CTL_EL0 x x 0 CNTP_CTL_EL0 CNTP_CTL_EL0 n/a CNTP_CTL_EL0

CNTP_CTL_EL0 0 0 1 CNTP_CTL_EL0 CNTP_CTL_EL0 CNTP_CTL_EL0 CNTP_CTL_EL0

CNTP_CTL_EL0 0 1 1 CNTP_CTL_EL0 n/a CNTP_CTL_EL0 CNTP_CTL_EL0

CNTP_CTL_EL0 1 0 1 CNTP_CTL_EL0 CNTP_CTL_EL0 RW RW

CNTP_CTL_EL0 1 1 1 RW n/a RW RW
B12-470 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.5 Generic Timer registers
When EL2 is implemented and is using AArch64 and (SCR_EL3.NS == 1) AND (HCR_EL2.E2H == 1) AND
(HCR_EL2.TGE == 1):

• If CNTHCTL_EL2.EL0PTEN==0, Non-secure accesses to this register from EL0 are trapped to EL2.
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-471
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.5 Generic Timer registers
B12.5.3 CNTHP_CVAL_EL2, Counter-timer Hypervisor Physical Timer CompareValue register

The CNTHP_CVAL_EL2 characteristics are:

Purpose

Holds the compare value for the EL2 physical timer.

Configurations

AArch64 System register CNTHP_CVAL_EL2 is architecturally mapped to AArch32 System
register CNTHP_CVAL.

If EL2 is not implemented, this register is RES0 from EL3.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

CNTHP_CVAL_EL2 is a 64-bit register.

Field descriptions

The CNTHP_CVAL_EL2 bit assignments are:

Bits [63:0]

EL2 physical timer compare value.

Accessing the CNTHP_CVAL_EL2

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax is encoded with the following settings in the instruction encoding:

EL2 physical timer compare value

63 0

<systemreg> op0 op1 CRn CRm op2

CNTHP_CVAL_EL2 11 100 1110 0010 010

CNTP_CVAL_EL0 11 011 1110 0010 010
B12-472 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.5 Generic Timer registers

<s

CN

CN

CN

CN

CN

CN

CN

CN

CN

CN
Accessibility

The register is accessible in software as follows:

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic
CNTHP_CVAL_EL2 or CNTP_CVAL_EL0 are not guaranteed to be ordered with respect to accesses using the
other mnemonic.

Traps and Enables

For a description of the prioritization of any generated exceptions, see Synchronous exception prioritization for
exceptions taken to AArch64 on page B12-547. Subject to the prioritization rules:

When EL2 is implemented and is using AArch64 and (SCR_EL3.NS == 1) AND (HCR_EL2.E2H == 1) AND
(HCR_EL2.TGE == 1):

• If CNTHCTL_EL2.EL0PTEN==0, Non-secure accesses to this register from EL0 are trapped to EL2.

ystemreg>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

THP_CVAL_EL2 x x 0 - - n/a RW

THP_CVAL_EL2 0 0 1 - - RW RW

THP_CVAL_EL2 0 1 1 - n/a RW RW

THP_CVAL_EL2 1 0 1 - - RW RW

THP_CVAL_EL2 1 1 1 - n/a RW RW

TP_CVAL_EL0 x x 0 CNTP_CVAL_EL0 CNTP_CVAL_EL0 n/a CNTP_CVAL_EL0

TP_CVAL_EL0 0 0 1 CNTP_CVAL_EL0 CNTP_CVAL_EL0 CNTP_CVAL_EL0 CNTP_CVAL_EL0

TP_CVAL_EL0 0 1 1 CNTP_CVAL_EL0 n/a CNTP_CVAL_EL0 CNTP_CVAL_EL0

TP_CVAL_EL0 1 0 1 CNTP_CVAL_EL0 CNTP_CVAL_EL0 RW RW

TP_CVAL_EL0 1 1 1 RW n/a RW RW
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-473
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.5 Generic Timer registers
B12.5.4 CNTHP_TVAL_EL2, Counter-timer Hypervisor Physical Timer TimerValue register

The CNTHP_TVAL_EL2 characteristics are:

Purpose

Holds the timer value for the EL2 physical timer.

Configurations

AArch64 System register CNTHP_TVAL_EL2 is architecturally mapped to AArch32 System
register CNTHP_TVAL.

If EL2 is not implemented, this register is RES0 from EL3.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

CNTHP_TVAL_EL2 is a 32-bit register.

Field descriptions

The CNTHP_TVAL_EL2 bit assignments are:

Bits [31:0]

EL2 physical timer value.

Accessing the CNTHP_TVAL_EL2

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax is encoded with the following settings in the instruction encoding:

EL2 physical timer value

31 0

<systemreg> op0 op1 CRn CRm op2

CNTHP_TVAL_EL2 11 100 1110 0010 000

CNTP_TVAL_EL0 11 011 1110 0010 000
B12-474 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.5 Generic Timer registers

<s

C

C

C

C

C

C

C

C

C

C

Accessibility

The register is accessible in software as follows:

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic
CNTHP_TVAL_EL2 or CNTP_TVAL_EL0 are not guaranteed to be ordered with respect to accesses using the
other mnemonic.

Traps and Enables

For a description of the prioritization of any generated exceptions, see Synchronous exception prioritization for
exceptions taken to AArch64 on page B12-547. Subject to the prioritization rules:

When EL2 is implemented and is using AArch64 and (SCR_EL3.NS == 1) AND (HCR_EL2.E2H == 1) AND
(HCR_EL2.TGE == 1):

• If CNTHCTL_EL2.EL0PTEN==0, Non-secure accesses to this register from EL0 are trapped to EL2.

ystemreg>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

NTHP_TVAL_EL2 x x 0 - - n/a RW

NTHP_TVAL_EL2 0 0 1 - - RW RW

NTHP_TVAL_EL2 0 1 1 - n/a RW RW

NTHP_TVAL_EL2 1 0 1 - - RW RW

NTHP_TVAL_EL2 1 1 1 - n/a RW RW

NTP_TVAL_EL0 x x 0 CNTP_TVAL_EL0 CNTP_TVAL_EL0 n/a CNTP_TVAL_EL0

NTP_TVAL_EL0 0 0 1 CNTP_TVAL_EL0 CNTP_TVAL_EL0 CNTP_TVAL_EL0 CNTP_TVAL_EL0

NTP_TVAL_EL0 0 1 1 CNTP_TVAL_EL0 n/a CNTP_TVAL_EL0 CNTP_TVAL_EL0

NTP_TVAL_EL0 1 0 1 CNTP_TVAL_EL0 CNTP_TVAL_EL0 RW RW

NTP_TVAL_EL0 1 1 1 RW n/a RW RW
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-475
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.5 Generic Timer registers
B12.5.5 CNTHV_CTL_EL2, Counter-timer Virtual Timer Control register (EL2)

The CNTHV_CTL_EL2 characteristics are:

Purpose

Control register for the EL2 virtual timer.

Configurations

AArch64 System register CNTHV_CTL_EL2 is architecturally mapped to AArch32 System
register CNTHV_CTL.

If EL2 is not implemented, this register is RES0 from EL3.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

CNTHV_CTL_EL2 is a 32-bit register.

Field descriptions

The CNTHV_CTL_EL2 bit assignments are:

Bits [31:3]

Reserved, RES0.

ISTATUS, bit [2]

The status of the timer. This bit indicates whether the timer condition is asserted:

0 Timer condition is not asserted.

1 Timer condition is asserted.

When the value of the ENABLE bit is 1, ISTATUS indicates whether the timer value meets the
condition for the timer output to be asserted. ISTATUS takes no account of the value of the IMASK
bit. If the value of ISTATUS is 1 and the value of IMASK is 0 then the timer output signal is asserted.

For more information see and .

This bit is read-only.

IMASK, bit [1]

Timer output signal mask bit. Permitted values are:

0 Timer output signal is not masked.

1 Timer output signal is masked.

For more information, see the description of the ISTATUS bit.

ENABLE, bit [0]

Enables the timer. Permitted values are:

0 Timer disabled.

1 Timer enabled.

RES0

31 3 2 1 0

ENABLE
IMASK

ISTATUS
B12-476 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.5 Generic Timer registers
Setting this bit to 0 disables the timer output signal, but the timer value accessible from
CNTHV_TVAL_EL2 continues to count down.

Note
 Disabling the output signal might be a power-saving option.

Accessing the CNTHV_CTL_EL2

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax is encoded with the following settings in the instruction encoding:

Accessibility

The register is accessible in software as follows:

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic
CNTHV_CTL_EL2 or CNTV_CTL_EL0 are not guaranteed to be ordered with respect to accesses using the other
mnemonic.

Traps and Enables

For a description of the prioritization of any generated exceptions, see Synchronous exception prioritization for
exceptions taken to AArch64 on page B12-547. Subject to the prioritization rules:

<systemreg> op0 op1 CRn CRm op2

CNTHV_CTL_EL2 11 100 1110 0011 001

CNTV_CTL_EL0 11 011 1110 0011 001

<systemreg>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

CNTHV_CTL_EL2 x x 0 - - n/a RW

CNTHV_CTL_EL2 0 0 1 - - RW RW

CNTHV_CTL_EL2 0 1 1 - n/a RW RW

CNTHV_CTL_EL2 1 0 1 - - RW RW

CNTHV_CTL_EL2 1 1 1 - n/a RW RW

CNTV_CTL_EL0 x x 0 CNTV_CTL_EL0 CNTV_CTL_EL0 n/a CNTV_CTL_EL0

CNTV_CTL_EL0 0 0 1 CNTV_CTL_EL0 CNTV_CTL_EL0 CNTV_CTL_EL0 CNTV_CTL_EL0

CNTV_CTL_EL0 0 1 1 CNTV_CTL_EL0 n/a CNTV_CTL_EL0 CNTV_CTL_EL0

CNTV_CTL_EL0 1 0 1 CNTV_CTL_EL0 CNTV_CTL_EL0 RW CNTV_CTL_EL0

CNTV_CTL_EL0 1 1 1 RW n/a RW CNTV_CTL_EL0
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-477
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.5 Generic Timer registers
When EL2 is implemented and is using AArch64 and (SCR_EL3.NS == 1) AND (HCR_EL2.E2H == 1) AND
(HCR_EL2.TGE == 1):

• If CNTHCTL_EL2.EL0VTEN==0, Non-secure accesses to this register from EL0 are trapped to EL2.
B12-478 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.5 Generic Timer registers
B12.5.6 CNTHV_CVAL_EL2, Counter-timer Virtual Timer CompareValue register (EL2)

The CNTHV_CVAL_EL2 characteristics are:

Purpose

Holds the compare value for the EL2 virtual timer.

Configurations

AArch64 System register CNTHV_CVAL_EL2 is architecturally mapped to AArch32 System
register CNTHV_CVAL.

If EL2 is not implemented, this register is RES0 from EL3.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

CNTHV_CVAL_EL2 is a 64-bit register.

Field descriptions

The CNTHV_CVAL_EL2 bit assignments are:

Bits [63:0]

Virtual timer compare value.

Accessing the CNTHV_CVAL_EL2

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax is encoded with the following settings in the instruction encoding:

Virtual timer compare value

63 0

<systemreg> op0 op1 CRn CRm op2

CNTHV_CVAL_EL2 11 100 1110 0011 010

CNTV_CVAL_EL0 11 011 1110 0011 010
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-479
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.5 Generic Timer registers

<sys

CNT

CNT

CNT

CNT

CNT

CNT

CNT

CNT

CNT

CNT
Accessibility

The register is accessible in software as follows:

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic
CNTHV_CVAL_EL2 or CNTV_CVAL_EL0 are not guaranteed to be ordered with respect to accesses using the
other mnemonic.

Traps and Enables

For a description of the prioritization of any generated exceptions, see Synchronous exception prioritization for
exceptions taken to AArch64 on page B12-547. Subject to the prioritization rules:

When EL2 is implemented and is using AArch64 and (SCR_EL3.NS == 1) AND (HCR_EL2.E2H == 1) AND
(HCR_EL2.TGE == 1):

• If CNTHCTL_EL2.EL0VTEN==0, Non-secure accesses to this register from EL0 are trapped to EL2.

temreg>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

HV_CVAL_EL2 x x 0 - - n/a RW

HV_CVAL_EL2 0 0 1 - - RW RW

HV_CVAL_EL2 0 1 1 - n/a RW RW

HV_CVAL_EL2 1 0 1 - - RW RW

HV_CVAL_EL2 1 1 1 - n/a RW RW

V_CVAL_EL0 x x 0 CNTV_CVAL_EL0 CNTV_CVAL_EL0 n/a CNTV_CVAL_EL0

V_CVAL_EL0 0 0 1 CNTV_CVAL_EL0 CNTV_CVAL_EL0 CNTV_CVAL_EL0 CNTV_CVAL_EL0

V_CVAL_EL0 0 1 1 CNTV_CVAL_EL0 n/a CNTV_CVAL_EL0 CNTV_CVAL_EL0

V_CVAL_EL0 1 0 1 CNTV_CVAL_EL0 CNTV_CVAL_EL0 RW CNTV_CVAL_EL0

V_CVAL_EL0 1 1 1 RW n/a RW CNTV_CVAL_EL0
B12-480 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.5 Generic Timer registers
B12.5.7 CNTHV_TVAL_EL2, Counter-timer Virtual Timer TimerValue register (EL2)

The CNTHV_TVAL_EL2 characteristics are:

Purpose

Holds the timer value for the EL2 virtual timer.

Configurations

AArch64 System register CNTHV_TVAL_EL2 is architecturally mapped to AArch32 System
register CNTHV_TVAL.

If EL2 is not implemented, this register is RES0 from EL3.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

CNTHV_TVAL_EL2 is a 32-bit register.

Field descriptions

The CNTHV_TVAL_EL2 bit assignments are:

Bits [31:0]

Virtual timer value.

Accessing the CNTHV_TVAL_EL2

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax is encoded with the following settings in the instruction encoding:

Virtual timer value

31 0

<systemreg> op0 op1 CRn CRm op2

CNTHV_TVAL_EL2 11 100 1110 0011 000

CNTV_TVAL_EL0 11 011 1110 0011 000
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-481
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.5 Generic Timer registers

<sy

CN

CN

CN

CN

CN

CN

CN

CN

CN

CN
Accessibility

The register is accessible in software as follows:

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic
CNTHV_TVAL_EL2 or CNTV_TVAL_EL0 are not guaranteed to be ordered with respect to accesses using the
other mnemonic.

Traps and Enables

For a description of the prioritization of any generated exceptions, see Synchronous exception prioritization for
exceptions taken to AArch64 on page B12-547. Subject to the prioritization rules:

When EL2 is implemented and is using AArch64 and (SCR_EL3.NS == 1) AND (HCR_EL2.E2H == 1) AND
(HCR_EL2.TGE == 1):

• If CNTHCTL_EL2.EL0VTEN==0, Non-secure accesses to this register from EL0 are trapped to EL2.

stemreg>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

THV_TVAL_EL2 x x 0 - - n/a RW

THV_TVAL_EL2 0 0 1 - - RW RW

THV_TVAL_EL2 0 1 1 - n/a RW RW

THV_TVAL_EL2 1 0 1 - - RW RW

THV_TVAL_EL2 1 1 1 - n/a RW RW

TV_TVAL_EL0 x x 0 CNTV_TVAL_EL0 CNTV_TVAL_EL0 n/a CNTV_TVAL_EL0

TV_TVAL_EL0 0 0 1 CNTV_TVAL_EL0 CNTV_TVAL_EL0 CNTV_TVAL_EL0 CNTV_TVAL_EL0

TV_TVAL_EL0 0 1 1 CNTV_TVAL_EL0 n/a CNTV_TVAL_EL0 CNTV_TVAL_EL0

TV_TVAL_EL0 1 0 1 CNTV_TVAL_EL0 CNTV_TVAL_EL0 RW CNTV_TVAL_EL0

TV_TVAL_EL0 1 1 1 RW n/a RW CNTV_TVAL_EL0
B12-482 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.5 Generic Timer registers
B12.5.8 CNTKCTL_EL1, Counter-timer Kernel Control register

The CNTKCTL_EL1 characteristics are:

Purpose

In ARMv8.0, or in ARMv8.1 when HCR_EL2.{E2H, TGE} is not {1, 1}, this register controls the
generation of an event stream from the virtual counter, and access from EL0 to the physical counter,
virtual counter, EL1 physical timers, and the virtual timer.

In ARMv8.1 when HCR_EL2.{E2H, TGE} is {1, 1}, this register does not cause any event stream
from the virtual counter to be generated, and does not control access to the counters and timers. The
access to counters and timers at EL0 is controlled by CNTHCTL_EL2.

Configurations

AArch64 System register CNTKCTL_EL1 is architecturally mapped to AArch32 System register
CNTKCTL.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

CNTKCTL_EL1 is a 32-bit register.

Field descriptions

The CNTKCTL_EL1 bit assignments are:

Bits [31:10]

Reserved, RES0.

EL0PTEN, bit [9]

In ARMv8.0, or in ARMv8.1 when HCR_EL2.{E2H, TGE} is not {1, 1}, traps EL0 accesses to the
physical timer registers to EL1.

0 EL0 using AArch64: EL0 accesses to the CNTP_CTL_EL0, CNTP_CVAL_EL0, and
CNTP_TVAL_EL0 registers are trapped to EL1.
EL0 using AArch32: EL0 accesses to the CNTP_CTL, CNTP_CVAL, and
CNTP_TVAL registers are trapped to EL1.
When HCR_EL2.TGE is 1, this trap is routed to EL2.

1 This control does not cause any instructions to be trapped.

In ARMv8.1 when HCR_EL2.{E2H, TGE} is {1, 1}, this control does not cause any instructions to
be trapped.

RES0

31 10 9 8

EVNTI

7 4 3 2 1 0

EL0PCTEN
EL0VCTEN

EVNTEN
EVNTDIR

EL0VTEN
EL0PTEN
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-483
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.5 Generic Timer registers
EL0VTEN, bit [8]

In ARMv8.0, or in ARMv8.1 when HCR_EL2.{E2H, TGE} is not {1, 1}, traps EL0 accesses to the
virtual timer registers to EL1.

0 EL0 using AArch64: EL0 accesses to the CNTV_CTL_EL0, CNTV_CVAL_EL0, and
CNTV_TVAL_EL0 registers are trapped to EL1.
EL0 using AArch32: EL0 accesses to the CNTV_CTL, CNTV_CVAL, and
CNTV_TVAL registers are trapped to EL1.
When HCR_EL2.TGE is 1, this trap is routed to EL2.

1 This control does not cause any instructions to be trapped.

In ARMv8.1 when HCR_EL2.{E2H, TGE} is {1, 1}, this control does not cause any instructions to
be trapped.

EVNTI, bits [7:4]

Selects which bit (0 to 15) of the counter register CNTVCT_EL0 is the trigger for the event stream
generated from that counter, when that stream is enabled.

EVNTDIR, bit [3]

Controls which transition of the counter register CNTVCT_EL0 trigger bit, defined by EVNTI,
generates an event when the event stream is enabled:

0 A 0 to 1 transition of the trigger bit triggers an event.

1 A 1 to 0 transition of the trigger bit triggers an event.

EVNTEN, bit [2]

In ARMv8.0, or in ARMv8.1 when HCR_EL2.{E2H, TGE} is not {1, 1}, enables the generation of
an event stream from the counter register CNTVCT_EL0:

0 Disables the event stream.

1 Enables the event stream.

In ARMv8.1 when HCR_EL2.{E2H, TGE} is {1, 1}, this control does not enable the event stream.

EL0VCTEN, bit [1]

In ARMv8.0, or in ARMv8.1 when HCR_EL2.{E2H, TGE} is not {1, 1}, traps EL0 accesses to the
frequency register and virtual counter register to EL1.

0 EL0 using AArch64: EL0 accesses to the CNTVCT_EL0 are trapped to EL1.
EL0 using AArch64: EL0 accesses to the CNTFRQ_EL0 register are trapped to EL1, if
CNTKCTL_EL1.EL0PCTEN is also 0.
EL0 using AArch32: EL0 accesses to the CNTVCT are trapped to EL1.
EL0 using AArch32: EL0 accesses to the CNTFRQ register are trapped to EL1, if
CNTKCTL_EL1.EL0PCTEN is also 0.
When HCR_EL2.TGE is 1, this trap is routed to EL2.

1 This control does not cause any instructions to be trapped.

In ARMv8.1 when HCR_EL2.{E2H, TGE} is {1, 1}, this control does not cause any instructions to
be trapped.

EL0PCTEN, bit [0]

In ARMv8.0, or in ARMv8.1 when HCR_EL2.{E2H, TGE} is not {1, 1}, traps EL0 accesses to the
frequency register and physical counter register to EL1.

0 EL0 using AArch64: EL0 accesses to the CNTPCT_EL0 are trapped to EL1.
EL0 using AArch64: EL0 accesses to the CNTFRQ_EL0 register are trapped to EL1, if
CNTKCTL_EL1.EL0VCTEN is also 0.
EL0 using AArch32: EL0 accesses to the CNTPCT are trapped to EL1.
EL0 using AArch32: EL0 accesses to the CNTFRQ and register are trapped to EL1, if
CNTKCTL_EL1.EL0VCTEN is also 0.
B12-484 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.5 Generic Timer registers
When HCR_EL2.TGE is 1, this trap is routed to EL2.

1 This control does not cause any instructions to be trapped.

In ARMv8.1 when HCR_EL2.{E2H, TGE} is {1, 1}, this control does not cause any instructions to
be trapped.

Accessing the CNTKCTL_EL1

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax is encoded with the following settings in the instruction encoding:

Accessibility

The register is accessible in software as follows:

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic
CNTKCTL_EL1 or CNTKCTL_EL12 are not guaranteed to be ordered with respect to accesses using the other
mnemonic.

<systemreg> op0 op1 CRn CRm op2

CNTKCTL_EL1 11 000 1110 0001 000

CNTKCTL_EL12 11 101 1110 0001 000

<systemreg>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

CNTKCTL_EL1 x x 0 - RW n/a RW

CNTKCTL_EL1 0 0 1 - RW RW RW

CNTKCTL_EL1 0 1 1 - n/a RW RW

CNTKCTL_EL1 1 0 1 - RW CNTHCTL_EL2 RW

CNTKCTL_EL1 1 1 1 - n/a CNTHCTL_EL2 RW

CNTKCTL_EL12 x x 0 - - n/a -

CNTKCTL_EL12 0 0 1 - - - -

CNTKCTL_EL12 0 1 1 - n/a - -

CNTKCTL_EL12 1 0 1 - - RW RW

CNTKCTL_EL12 1 1 1 - n/a RW RW
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-485
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.5 Generic Timer registers
B12.5.9 CNTP_CTL_EL0, Counter-timer Physical Timer Control register

The CNTP_CTL_EL0 characteristics are:

Purpose

Control register for the EL1 physical timer.

Configurations

AArch64 System register CNTP_CTL_EL0 is architecturally mapped to AArch32 System register
CNTP_CTL.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

CNTP_CTL_EL0 is a 32-bit register.

Field descriptions

The CNTP_CTL_EL0 bit assignments are:

Bits [31:3]

Reserved, RES0.

ISTATUS, bit [2]

The status of the timer. This bit indicates whether the timer condition is asserted:

0 Timer condition is not asserted.

1 Timer condition is asserted.

When the value of the ENABLE bit is 1, ISTATUS indicates whether the timer value meets the
condition for the timer output to be asserted. ISTATUS takes no account of the value of the IMASK
bit. If the value of ISTATUS is 1 and the value of IMASK is 0 then the timer output signal is asserted.

For more information see and .

This bit is read-only.

IMASK, bit [1]

Timer output signal mask bit. Permitted values are:

0 Timer output signal is not masked.

1 Timer output signal is masked.

For more information, see the description of the ISTATUS bit.

ENABLE, bit [0]

Enables the timer. Permitted values are:

0 Timer disabled.

1 Timer enabled.

Setting this bit to 0 disables the timer output signal, but the timer value accessible from
CNTP_TVAL_EL0 continues to count down.

RES0

31 3 2 1 0

ENABLE
IMASK

ISTATUS
B12-486 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.5 Generic Timer registers
Note
 Disabling the output signal might be a power-saving option.

Accessing the CNTP_CTL_EL0

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax is encoded with the following settings in the instruction encoding:

Accessibility

The register is accessible in software as follows:

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic
CNTP_CTL_EL0 or CNTP_CTL_EL02 are not guaranteed to be ordered with respect to accesses using the other
mnemonic.

Traps and Enables

For a description of the prioritization of any generated exceptions, see Synchronous exception prioritization for
exceptions taken to AArch64 on page B12-547. Subject to the prioritization rules:

<systemreg> op0 op1 CRn CRm op2

CNTP_CTL_EL0 11 011 1110 0010 001

CNTP_CTL_EL02 11 101 1110 0010 001

<systemreg>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

CNTP_CTL_EL0 x x 0 RW RW n/a RW

CNTP_CTL_EL0 0 0 1 RW RW RW RW

CNTP_CTL_EL0 0 1 1 RW n/a RW RW

CNTP_CTL_EL0 1 0 1 RW RW CNTHP_CTL_EL2 RW

CNTP_CTL_EL0 1 1 1 CNTHP_CTL_EL2 n/a CNTHP_CTL_EL2 RW

CNTP_CTL_EL02 x x 0 - - n/a -

CNTP_CTL_EL02 0 0 1 - - - -

CNTP_CTL_EL02 0 1 1 - n/a - -

CNTP_CTL_EL02 1 0 1 - - RW RW

CNTP_CTL_EL02 1 1 1 - n/a RW RW
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-487
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.5 Generic Timer registers
When HCR_EL2.E2H == 0:

• If CNTKCTL_EL1.EL0PTEN==0, accesses to this register from EL0 are trapped to EL1.

When EL2 is implemented and is using AArch64 and (SCR_EL3.NS == 1) AND (HCR_EL2.E2H == 0):

• If CNTHCTL_EL2.EL1PCEN==0, Non-secure accesses to this register from EL1 are trapped to EL2.

• If CNTHCTL_EL2.EL1PCEN==0, and CNTKCTL_EL1.EL0PTEN==1, Non-secure accesses to this
register from EL0 are trapped to EL2.

When EL2 is implemented and is using AArch64 and (SCR_EL3.NS == 1) AND (HCR_EL2.E2H == 1) AND
(HCR_EL2.TGE == 0):

• If CNTHCTL_EL2.EL1PTEN==0, Non-secure accesses to this register from EL1 are trapped to EL2.

• If CNTHCTL_EL2.EL1PTEN==0, and CNTKCTL_EL1.EL0PTEN==1, Non-secure accesses to this
register from EL0 are trapped to EL2.

• If CNTKCTL_EL1.EL0PTEN==0, Non-secure accesses to this register from EL0 are trapped to EL1.

When EL2 is implemented and is using AArch64 and (SCR_EL3.NS == 1) AND (HCR_EL2.E2H == 1) AND
(HCR_EL2.TGE == 1):

• If CNTHCTL_EL2.EL0PTEN==0, Non-secure accesses to this register from EL0 are trapped to EL2.
B12-488 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.5 Generic Timer registers
B12.5.10 CNTP_CVAL_EL0, Counter-timer Physical Timer CompareValue register

The CNTP_CVAL_EL0 characteristics are:

Purpose

Holds the compare value for the EL1 physical timer.

Configurations

AArch64 System register CNTP_CVAL_EL0 is architecturally mapped to AArch32 System
register CNTP_CVAL.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

CNTP_CVAL_EL0 is a 64-bit register.

Field descriptions

The CNTP_CVAL_EL0 bit assignments are:

Bits [63:0]

EL1 physical timer compare value.

Accessing the CNTP_CVAL_EL0

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax is encoded with the following settings in the instruction encoding:

EL1 physical timer compare value

63 0

<systemreg> op0 op1 CRn CRm op2

CNTP_CVAL_EL0 11 011 1110 0010 010

CNTP_CVAL_EL02 11 101 1110 0010 010
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-489
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.5 Generic Timer registers
Accessibility

The register is accessible in software as follows:

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic
CNTP_CVAL_EL0 or CNTP_CVAL_EL02 are not guaranteed to be ordered with respect to accesses using the
other mnemonic.

Traps and Enables

For a description of the prioritization of any generated exceptions, see Synchronous exception prioritization for
exceptions taken to AArch64 on page B12-547. Subject to the prioritization rules:

When HCR_EL2.E2H == 0:

• If CNTKCTL_EL1.EL0PTEN==0, accesses to this register from EL0 are trapped to EL1.

When EL2 is implemented and is using AArch64 and (SCR_EL3.NS == 1) AND (HCR_EL2.E2H == 0):

• If CNTHCTL_EL2.EL1PCEN==0, Non-secure accesses to this register from EL1 are trapped to EL2.

• If CNTHCTL_EL2.EL1PCEN==0, and CNTKCTL_EL1.EL0PTEN==1, Non-secure accesses to this
register from EL0 are trapped to EL2.

When EL2 is implemented and is using AArch64 and (SCR_EL3.NS == 1) AND (HCR_EL2.E2H == 1) AND
(HCR_EL2.TGE == 0):

• If CNTHCTL_EL2.EL1PTEN==0, Non-secure accesses to this register from EL1 are trapped to EL2.

• If CNTHCTL_EL2.EL1PTEN==0, and CNTKCTL_EL1.EL0PTEN==1, Non-secure accesses to this
register from EL0 are trapped to EL2.

• If CNTKCTL_EL1.EL0PTEN==0, Non-secure accesses to this register from EL0 are trapped to EL1.

When EL2 is implemented and is using AArch64 and (SCR_EL3.NS == 1) AND (HCR_EL2.E2H == 1) AND
(HCR_EL2.TGE == 1):

• If CNTHCTL_EL2.EL0PTEN==0, Non-secure accesses to this register from EL0 are trapped to EL2.

<systemreg>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

CNTP_CVAL_EL0 x x 0 RW RW n/a RW

CNTP_CVAL_EL0 0 0 1 RW RW RW RW

CNTP_CVAL_EL0 0 1 1 RW n/a RW RW

CNTP_CVAL_EL0 1 0 1 RW RW CNTHP_CVAL_EL2 RW

CNTP_CVAL_EL0 1 1 1 CNTHP_CVAL_EL2 n/a CNTHP_CVAL_EL2 RW

CNTP_CVAL_EL02 x x 0 - - n/a -

CNTP_CVAL_EL02 0 0 1 - - - -

CNTP_CVAL_EL02 0 1 1 - n/a - -

CNTP_CVAL_EL02 1 0 1 - - RW RW

CNTP_CVAL_EL02 1 1 1 - n/a RW RW
B12-490 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.5 Generic Timer registers
B12.5.11 CNTP_TVAL_EL0, Counter-timer Physical Timer TimerValue register

The CNTP_TVAL_EL0 characteristics are:

Purpose

Holds the timer value for the EL1 physical timer.

Configurations

AArch64 System register CNTP_TVAL_EL0 is architecturally mapped to AArch32 System register
CNTP_TVAL.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

CNTP_TVAL_EL0 is a 32-bit register.

Field descriptions

The CNTP_TVAL_EL0 bit assignments are:

Bits [31:0]

EL1 physical timer value.

Accessing the CNTP_TVAL_EL0

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax is encoded with the following settings in the instruction encoding:

EL1 physical timer value

31 0

<systemreg> op0 op1 CRn CRm op2

CNTP_TVAL_EL0 11 011 1110 0010 000

CNTP_TVAL_EL02 11 101 1110 0010 000
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-491
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.5 Generic Timer registers
Accessibility

The register is accessible in software as follows:

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic
CNTP_TVAL_EL0 or CNTP_TVAL_EL02 are not guaranteed to be ordered with respect to accesses using the other
mnemonic.

Traps and Enables

For a description of the prioritization of any generated exceptions, see Synchronous exception prioritization for
exceptions taken to AArch64 on page B12-547. Subject to the prioritization rules:

When HCR_EL2.E2H == 0:

• If CNTKCTL_EL1.EL0PTEN==0, accesses to this register from EL0 are trapped to EL1.

When EL2 is implemented and is using AArch64 and (SCR_EL3.NS == 1) AND (HCR_EL2.E2H == 0):

• If CNTHCTL_EL2.EL1PCEN==0, Non-secure accesses to this register from EL1 are trapped to EL2.

• If CNTHCTL_EL2.EL1PCEN==0, and CNTKCTL_EL1.EL0PTEN==1, Non-secure accesses to this
register from EL0 are trapped to EL2.

When EL2 is implemented and is using AArch64 and (SCR_EL3.NS == 1) AND (HCR_EL2.E2H == 1) AND
(HCR_EL2.TGE == 0):

• If CNTHCTL_EL2.EL1PTEN==0, Non-secure accesses to this register from EL1 are trapped to EL2.

• If CNTHCTL_EL2.EL1PTEN==0, and CNTKCTL_EL1.EL0PTEN==1, Non-secure accesses to this
register from EL0 are trapped to EL2.

• If CNTKCTL_EL1.EL0PTEN==0, Non-secure accesses to this register from EL0 are trapped to EL1.

When EL2 is implemented and is using AArch64 and (SCR_EL3.NS == 1) AND (HCR_EL2.E2H == 1) AND
(HCR_EL2.TGE == 1):

• If CNTHCTL_EL2.EL0PTEN==0, Non-secure accesses to this register from EL0 are trapped to EL2.

<systemreg>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

CNTP_TVAL_EL0 x x 0 RW RW n/a RW

CNTP_TVAL_EL0 0 0 1 RW RW RW RW

CNTP_TVAL_EL0 0 1 1 RW n/a RW RW

CNTP_TVAL_EL0 1 0 1 RW RW CNTHP_TVAL_EL2 RW

CNTP_TVAL_EL0 1 1 1 CNTHP_TVAL_EL2 n/a CNTHP_TVAL_EL2 RW

CNTP_TVAL_EL02 x x 0 - - n/a -

CNTP_TVAL_EL02 0 0 1 - - - -

CNTP_TVAL_EL02 0 1 1 - n/a - -

CNTP_TVAL_EL02 1 0 1 - - RW RW

CNTP_TVAL_EL02 1 1 1 - n/a RW RW
B12-492 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.5 Generic Timer registers
B12.5.12 CNTV_CTL_EL0, Counter-timer Virtual Timer Control register

The CNTV_CTL_EL0 characteristics are:

Purpose

Control register for the virtual timer.

Configurations

AArch64 System register CNTV_CTL_EL0 is architecturally mapped to AArch32 System register
CNTV_CTL.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

CNTV_CTL_EL0 is a 32-bit register.

Field descriptions

The CNTV_CTL_EL0 bit assignments are:

Bits [31:3]

Reserved, RES0.

ISTATUS, bit [2]

The status of the timer. This bit indicates whether the timer condition is asserted:

0 Timer condition is not asserted.

1 Timer condition is asserted.

When the value of the ENABLE bit is 1, ISTATUS indicates whether the timer value meets the
condition for the timer output to be asserted. ISTATUS takes no account of the value of the IMASK
bit. If the value of ISTATUS is 1 and the value of IMASK is 0 then the timer output signal is asserted.

For more information see and .

This bit is read-only.

IMASK, bit [1]

Timer output signal mask bit. Permitted values are:

0 Timer output signal is not masked.

1 Timer output signal is masked.

For more information, see the description of the ISTATUS bit.

ENABLE, bit [0]

Enables the timer. Permitted values are:

0 Timer disabled.

1 Timer enabled.

Setting this bit to 0 disables the timer output signal, but the timer value accessible from
CNTV_TVAL_EL0 continues to count down.

RES0

31 3 2 1 0

ENABLE
IMASK

ISTATUS
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-493
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.5 Generic Timer registers
Note
 Disabling the output signal might be a power-saving option.

Accessing the CNTV_CTL_EL0

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax is encoded with the following settings in the instruction encoding:

Accessibility

The register is accessible in software as follows:

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic
CNTV_CTL_EL0 or CNTV_CTL_EL02 are not guaranteed to be ordered with respect to accesses using the other
mnemonic.

Traps and Enables

For a description of the prioritization of any generated exceptions, see Synchronous exception prioritization for
exceptions taken to AArch64 on page B12-547. Subject to the prioritization rules:

<systemreg> op0 op1 CRn CRm op2

CNTV_CTL_EL0 11 011 1110 0011 001

CNTV_CTL_EL02 11 101 1110 0011 001

<systemreg>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

CNTV_CTL_EL0 x x 0 RW RW n/a RW

CNTV_CTL_EL0 0 0 1 RW RW RW RW

CNTV_CTL_EL0 0 1 1 RW n/a RW RW

CNTV_CTL_EL0 1 0 1 RW RW CNTHV_CTL_EL2 RW

CNTV_CTL_EL0 1 1 1 CNTHV_CTL_EL2 n/a CNTHV_CTL_EL2 RW

CNTV_CTL_EL02 x x 0 - - n/a -

CNTV_CTL_EL02 0 0 1 - - - -

CNTV_CTL_EL02 0 1 1 - n/a - -

CNTV_CTL_EL02 1 0 1 - - RW RW

CNTV_CTL_EL02 1 1 1 - n/a RW RW
B12-494 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.5 Generic Timer registers
When HCR_EL2.E2H == 0:

• If CNTKCTL_EL1.EL0VTEN==0, accesses to this register from EL0 are trapped to EL1.

When EL2 is implemented and is using AArch64 and (SCR_EL3.NS == 1) AND (HCR_EL2.E2H == 1) AND
(HCR_EL2.TGE == 0):

• If CNTKCTL_EL1.EL0VTEN==0, Non-secure accesses to this register from EL0 are trapped to EL1.

When EL2 is implemented and is using AArch64 and (SCR_EL3.NS == 1) AND (HCR_EL2.E2H == 1) AND
(HCR_EL2.TGE == 1):

• If CNTHCTL_EL2.EL0VTEN==0, Non-secure accesses to this register from EL0 are trapped to EL2.
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-495
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.5 Generic Timer registers
B12.5.13 CNTV_CVAL_EL0, Counter-timer Virtual Timer CompareValue register

The CNTV_CVAL_EL0 characteristics are:

Purpose

Holds the compare value for the virtual timer.

Configurations

AArch64 System register CNTV_CVAL_EL0 is architecturally mapped to AArch32 System
register CNTV_CVAL.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

CNTV_CVAL_EL0 is a 64-bit register.

Field descriptions

The CNTV_CVAL_EL0 bit assignments are:

Bits [63:0]

Virtual timer compare value.

Accessing the CNTV_CVAL_EL0

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax is encoded with the following settings in the instruction encoding:

Virtual timer compare value

63 0

<systemreg> op0 op1 CRn CRm op2

CNTV_CVAL_EL0 11 011 1110 0011 010

CNTV_CVAL_EL02 11 101 1110 0011 010
B12-496 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.5 Generic Timer registers
Accessibility

The register is accessible in software as follows:

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic
CNTV_CVAL_EL0 or CNTV_CVAL_EL02 are not guaranteed to be ordered with respect to accesses using the
other mnemonic.

Traps and Enables

For a description of the prioritization of any generated exceptions, see Synchronous exception prioritization for
exceptions taken to AArch64 on page B12-547. Subject to the prioritization rules:

When HCR_EL2.E2H == 0:

• If CNTKCTL_EL1.EL0VTEN==0, accesses to this register from EL0 are trapped to EL1.

When EL2 is implemented and is using AArch64 and (SCR_EL3.NS == 1) AND (HCR_EL2.E2H == 1) AND
(HCR_EL2.TGE == 0):

• If CNTKCTL_EL1.EL0VTEN==0, Non-secure accesses to this register from EL0 are trapped to EL1.

When EL2 is implemented and is using AArch64 and (SCR_EL3.NS == 1) AND (HCR_EL2.E2H == 1) AND
(HCR_EL2.TGE == 1):

• If CNTHCTL_EL2.EL0VTEN==0, Non-secure accesses to this register from EL0 are trapped to EL2.

<systemreg>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

CNTV_CVAL_EL0 x x 0 RW RW n/a RW

CNTV_CVAL_EL0 0 0 1 RW RW RW RW

CNTV_CVAL_EL0 0 1 1 RW n/a RW RW

CNTV_CVAL_EL0 1 0 1 RW RW CNTHV_CVAL_EL2 RW

CNTV_CVAL_EL0 1 1 1 CNTHV_CVAL_EL2 n/a CNTHV_CVAL_EL2 RW

CNTV_CVAL_EL02 x x 0 - - n/a -

CNTV_CVAL_EL02 0 0 1 - - - -

CNTV_CVAL_EL02 0 1 1 - n/a - -

CNTV_CVAL_EL02 1 0 1 - - RW RW

CNTV_CVAL_EL02 1 1 1 - n/a RW RW
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-497
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.5 Generic Timer registers
B12.5.14 CNTV_TVAL_EL0, Counter-timer Virtual Timer TimerValue register

The CNTV_TVAL_EL0 characteristics are:

Purpose

Holds the timer value for the virtual timer.

Configurations

AArch64 System register CNTV_TVAL_EL0 is architecturally mapped to AArch32 System
register CNTV_TVAL.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

CNTV_TVAL_EL0 is a 32-bit register.

Field descriptions

The CNTV_TVAL_EL0 bit assignments are:

Bits [31:0]

Virtual timer value.

Accessing the CNTV_TVAL_EL0

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax is encoded with the following settings in the instruction encoding:

Virtual timer value

31 0

<systemreg> op0 op1 CRn CRm op2

CNTV_TVAL_EL0 11 011 1110 0011 000

CNTV_TVAL_EL02 11 101 1110 0011 000
B12-498 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.5 Generic Timer registers
Accessibility

The register is accessible in software as follows:

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic
CNTV_TVAL_EL0 or CNTV_TVAL_EL02 are not guaranteed to be ordered with respect to accesses using the
other mnemonic.

Traps and Enables

For a description of the prioritization of any generated exceptions, see Synchronous exception prioritization for
exceptions taken to AArch64 on page B12-547. Subject to the prioritization rules:

When HCR_EL2.E2H == 0:

• If CNTKCTL_EL1.EL0VTEN==0, accesses to this register from EL0 are trapped to EL1.

When EL2 is implemented and is using AArch64 and (SCR_EL3.NS == 1) AND (HCR_EL2.E2H == 1) AND
(HCR_EL2.TGE == 0):

• If CNTKCTL_EL1.EL0VTEN==0, Non-secure accesses to this register from EL0 are trapped to EL1.

When EL2 is implemented and is using AArch64 and (SCR_EL3.NS == 1) AND (HCR_EL2.E2H == 1) AND
(HCR_EL2.TGE == 1):

• If CNTHCTL_EL2.EL0VTEN==0, Non-secure accesses to this register from EL0 are trapped to EL2.

<systemreg>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

CNTV_TVAL_EL0 x x 0 RW RW n/a RW

CNTV_TVAL_EL0 0 0 1 RW RW RW RW

CNTV_TVAL_EL0 0 1 1 RW n/a RW RW

CNTV_TVAL_EL0 1 0 1 RW RW CNTHV_TVAL_EL2 RW

CNTV_TVAL_EL0 1 1 1 CNTHV_TVAL_EL2 n/a CNTHV_TVAL_EL2 RW

CNTV_TVAL_EL02 x x 0 - - n/a -

CNTV_TVAL_EL02 0 0 1 - - - -

CNTV_TVAL_EL02 0 1 1 - n/a - -

CNTV_TVAL_EL02 1 0 1 - - RW RW

CNTV_TVAL_EL02 1 1 1 - n/a RW RW
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-499
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.5 Generic Timer registers
B12.5.15 CNTVCT_EL0, Counter-timer Virtual Count register

The CNTVCT_EL0 characteristics are:

Purpose

Holds the 64-bit virtual count value. The virtual count value is equal to the physical count value
visible in CNTPCT_EL0 minus the virtual offset visible in CNTVOFF_EL2.

Configurations

AArch64 System register CNTVCT_EL0 is architecturally mapped to AArch32 System register
CNTVCT.

The value of this register is the same as the value of CNTPCT_EL0 in the following conditions:

• When EL2 is not implemented.

• When EL2 is implemented, HCR_EL2.E2H is 1, and this register is read from EL2.

• When EL2 is implemented, HCR_EL2.{E2H, TGE} is {1, 1}, and this register is read from
Non-secure EL0 or EL2.

Attributes

CNTVCT_EL0 is a 64-bit register.

Field descriptions

The CNTVCT_EL0 bit assignments are:

Bits [63:0]

Virtual count value.

Accessing the CNTVCT_EL0

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This syntax is encoded with the following settings in the instruction encoding:

Virtual count value

63 0

<systemreg> op0 op1 CRn CRm op2

CNTVCT_EL0 11 011 1110 0000 010
B12-500 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.5 Generic Timer registers
Accessibility

The register is accessible in software as follows:

Traps and Enables

For a description of the prioritization of any generated exceptions, see Synchronous exception prioritization for
exceptions taken to AArch64 on page B12-547. Subject to the prioritization rules:

When HCR_EL2.E2H == 0:

• If CNTKCTL_EL1.EL0VCTEN==0, read accesses to this register from EL0 are trapped to EL1.

When EL2 is implemented and is using AArch64 and (SCR_EL3.NS == 1) AND (HCR_EL2.E2H == 1) AND
(HCR_EL2.TGE == 0):

• If CNTKCTL_EL1.EL0VCTEN==0, Non-secure read accesses to this register from EL0 are trapped to EL1.

When EL2 is implemented and is using AArch64 and (SCR_EL3.NS == 1) AND (HCR_EL2.E2H == 1) AND
(HCR_EL2.TGE == 1):

• If CNTHCTL_EL2.EL0PCTEN==0, Non-secure read accesses to this register from EL0 are trapped to EL2.

<systemreg>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

CNTVCT_EL0 x x 0 RO RO n/a RO

CNTVCT_EL0 x 0 1 RO RO RO RO

CNTVCT_EL0 x 1 1 RO n/a RO RO
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-501
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.5 Generic Timer registers
B12.5.16 CNTVOFF_EL2, Counter-timer Virtual Offset register

The CNTVOFF_EL2 characteristics are:

Purpose

Holds the 64-bit virtual offset. This is the offset between the physical count value visible in
CNTPCT_EL0 and the virtual count value visible in CNTVCT_EL0.

Configurations

AArch64 System register CNTVOFF_EL2 is architecturally mapped to AArch32 System register
CNTVOFF.

If EL2 is not implemented, this register is RES0 from EL3 and the virtual counter uses a fixed virtual
offset of zero.

Note
 When EL2 is implemented and is using AArch64, the virtual counter uses a fixed virtual offset of

zero in the following situations:

• HCR_EL2.E2H is 1, and CNTVCT_EL0 is read from EL2.

• HCR_EL2.{E2H, TGE} is {1, 1}, and either:

— CNTVCT_EL0 is read from Non-secure EL0 or EL2.

— CNTVCT is read from Non-secure EL0.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

CNTVOFF_EL2 is a 64-bit register.

Field descriptions

The CNTVOFF_EL2 bit assignments are:

Bits [63:0]

Virtual offset.

Accessing the CNTVOFF_EL2

This register can be read using MRS with the following syntax:

MRS <Xt>, <systemreg>

This register can be written using MSR (register) with the following syntax:

MSR <systemreg>, <Xt>

This syntax is encoded with the following settings in the instruction encoding:

Virtual offset

63 0

<systemreg> op0 op1 CRn CRm op2

CNTVOFF_EL2 11 100 1110 0000 011
B12-502 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.5 Generic Timer registers
Accessibility

The register is accessible in software as follows:

<systemreg>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

CNTVOFF_EL2 x x 0 - - n/a RW

CNTVOFF_EL2 x 0 1 - - RW RW

CNTVOFF_EL2 x 1 1 - n/a RW RW
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-503
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.6 System instructions
B12.6 System instructions
This section lists the ARMv8.1 System instructions in AArch64 state, in alphabetic order.
B12-504 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.6 System instructions
B12.6.1 AT S12E0R, Address Translate Stages 1 and 2 EL0 Read

The AT S12E0R characteristics are:

Purpose

Performs stage 1 and 2 address translations, with permissions as if reading from the given virtual
address, using the following translation regime:

• In Secure state, and in Non-secure state, when HCR_EL2.{E2H, TGE} is not {1, 1}, the
EL1&0 translation regime.

• When HCR_EL2.{E2H, TGE} is {1, 1}, the EL2&0 translation regime.

Configurations

There are no configuration notes.

Attributes

AT S12E0R is a 64-bit system operation.

Field descriptions

The AT S12E0R input value bit assignments are:

Bits [63:0]

Input address for translation. The resulting address can be read from the PAR_EL1.

If the address translation instructions are targeting a translation regime that is using AArch32, and
so has a VA of only 32 bits, then VA[63:32] is RES0.

Executing the AT S12E0R instruction

This instruction can be executed using AT with the following syntax:

AT <at_op>, <Xt>

This syntax is encoded with the following settings in the instruction encoding:

Accessibility

The instruction is executable as follows:

Input address for translation

63 0

<at_op> op1 CRn CRm op2

S12E0R 100 0111 1000 110

<at_op>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

S12E0R x x 0 - - n/a WO

S12E0R 0 0 1 - - WO WO
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-505
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.6 System instructions
If EL2 is not implemented, or stage 2 translation is disabled, or the instruction is executed at EL3 when the value
of SCR_EL3.NS is 0, this instruction executes as AT S1E0R.

S12E0R 0 1 1 - n/a WO WO

S12E0R 1 0 1 - - WO WO

S12E0R 1 1 1 - n/a WO WO

<at_op>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3
B12-506 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.6 System instructions
B12.6.2 AT S12E0W, Address Translate Stages 1 and 2 EL0 Write

The AT S12E0W characteristics are:

Purpose

Performs stage 1 and 2 address translations, with permissions as if writing to the given virtual
address, using the following translation regime:

• In Secure state, and in Non-secure state, when HCR_EL2.{E2H, TGE} is not {1, 1}, the
EL1&0 translation regime.

• When HCR_EL2.{E2H, TGE} is {1, 1}, the EL2&0 translation regime.

Configurations

There are no configuration notes.

Attributes

AT S12E0W is a 64-bit system operation.

Field descriptions

The AT S12E0W input value bit assignments are:

Bits [63:0]

Input address for translation. The resulting address can be read from the PAR_EL1.

If the address translation instructions are targeting a translation regime that is using AArch32, and
so has a VA of only 32 bits, then VA[63:32] is RES0.

Executing the AT S12E0W instruction

This instruction can be executed using AT with the following syntax:

AT <at_op>, <Xt>

This syntax is encoded with the following settings in the instruction encoding:

Accessibility

The instruction is executable as follows:

Input address for translation

63 0

<at_op> op1 CRn CRm op2

S12E0W 100 0111 1000 111

<at_op>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

S12E0W x x 0 - - n/a WO

S12E0W 0 0 1 - - WO WO
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-507
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.6 System instructions
If EL2 is not implemented, or stage 2 translation is disabled, or the instruction is executed at EL3 when the value
of SCR_EL3.NS is 0, this instruction executes as AT S1E0W.

S12E0W 0 1 1 - n/a WO WO

S12E0W 1 0 1 - - WO WO

S12E0W 1 1 1 - n/a WO WO

<at_op>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3
B12-508 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.6 System instructions
B12.6.3 AT S12E1R, Address Translate Stages 1 and 2 EL1 Read

The AT S12E1R characteristics are:

Purpose

Performs stage 1 and 2 address translation, with permissions as if reading from the given virtual
address, using the following translation regime:

• In Secure state, and in Non-secure state, when HCR_EL2.{E2H, TGE} is not {1, 1}, the
EL1&0 translation regime.

• When HCR_EL2.{E2H, TGE} is {1, 1}, the EL2&0 translation regime.

Configurations

There are no configuration notes.

Attributes

AT S12E1R is a 64-bit system operation.

Field descriptions

The AT S12E1R input value bit assignments are:

Bits [63:0]

Input address for translation. The resulting address can be read from the PAR_EL1.

If the address translation instructions are targeting a translation regime that is using AArch32, and
so has a VA of only 32 bits, then VA[63:32] is RES0.

Executing the AT S12E1R instruction

This instruction can be executed using AT with the following syntax:

AT <at_op>, <Xt>

This syntax is encoded with the following settings in the instruction encoding:

Accessibility

The instruction is executable as follows:

Input address for translation

63 0

<at_op> op1 CRn CRm op2

S12E1R 100 0111 1000 100

<at_op>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

S12E1R x x 0 - - n/a WO

S12E1R 0 0 1 - - WO WO
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-509
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.6 System instructions
If EL2 is not implemented, or stage 2 translation is disabled, or the instruction is executed at EL3 when the value
of SCR_EL3.NS is 0, this instruction executes as AT S1E1R.

S12E1R 0 1 1 - n/a WO WO

S12E1R 1 0 1 - - WO WO

S12E1R 1 1 1 - n/a WO WO

<at_op>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3
B12-510 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.6 System instructions
B12.6.4 AT S12E1W, Address Translate Stages 1 and 2 EL1 Write

The AT S12E1W characteristics are:

Purpose

Performs stage 1 and 2 address translation, with permissions as if writing to the given virtual
address, using the following translation regime:

• In Secure state, and in Non-secure state, when HCR_EL2.{E2H, TGE} is not {1, 1}, the
EL1&0 translation regime.

• When HCR_EL2.{E2H, TGE} is {1, 1}, the EL2&0 translation regime.

Configurations

There are no configuration notes.

Attributes

AT S12E1W is a 64-bit system operation.

Field descriptions

The AT S12E1W input value bit assignments are:

Bits [63:0]

Input address for translation. The resulting address can be read from the PAR_EL1.

If the address translation instructions are targeting a translation regime that is using AArch32, and
so has a VA of only 32 bits, then VA[63:32] is RES0.

Executing the AT S12E1W instruction

This instruction can be executed using AT with the following syntax:

AT <at_op>, <Xt>

This syntax is encoded with the following settings in the instruction encoding:

Accessibility

The instruction is executable as follows:

Input address for translation

63 0

<at_op> op1 CRn CRm op2

S12E1W 100 0111 1000 101

<at_op>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

S12E1W x x 0 - - n/a WO

S12E1W 0 0 1 - - WO WO
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-511
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.6 System instructions
If EL2 is not implemented, or stage 2 translation is disabled, or the instruction is executed at EL3 when the value
of SCR_EL3.NS is 0, this instruction executes as AT S1E1W.

S12E1W 0 1 1 - n/a WO WO

S12E1W 1 0 1 - - WO WO

S12E1W 1 1 1 - n/a WO WO

<at_op>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3
B12-512 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.6 System instructions
B12.6.5 AT S1E0R, Address Translate Stage 1 EL0 Read

The AT S1E0R characteristics are:

Purpose

Performs stage 1 address translation, with permissions as if reading from the given virtual address,
using the following translation regime:

• In Secure state, and in Non-secure state, when HCR_EL2.{E2H, TGE} is not {1, 1}, the
EL1&0 translation regime.

• When HCR_EL2.{E2H, TGE} is {1, 1}, the EL2&0 translation regime.

Configurations

There are no configuration notes.

Attributes

AT S1E0R is a 64-bit system operation.

Field descriptions

The AT S1E0R input value bit assignments are:

Bits [63:0]

Input address for translation. The resulting address can be read from the PAR_EL1.

If the address translation instructions are targeting a translation regime that is using AArch32, and
so has a VA of only 32 bits, then VA[63:32] is RES0.

Executing the AT S1E0R instruction

This instruction can be executed using AT with the following syntax:

AT <at_op>, <Xt>

This syntax is encoded with the following settings in the instruction encoding:

Accessibility

The instruction is executable as follows:

Input address for translation

63 0

<at_op> op1 CRn CRm op2

S1E0R 000 0111 1000 010

<at_op>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

S1E0R x x 0 - WO n/a WO

S1E0R 0 0 1 - WO WO WO
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-513
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.6 System instructions
S1E0R 0 1 1 - n/a WO WO

S1E0R 1 0 1 - WO WO WO

S1E0R 1 1 1 - n/a WO WO

<at_op>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3
B12-514 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.6 System instructions
B12.6.6 AT S1E0W, Address Translate Stage 1 EL0 Write

The AT S1E0W characteristics are:

Purpose

Performs stage 1 address translation, with permissions as if writing to the given virtual address,
using the following translation regime:

• In Secure state, and in Non-secure state, when HCR_EL2.{E2H, TGE} is not {1, 1}, the
EL1&0 translation regime.

• When HCR_EL2.{E2H, TGE} is {1, 1}, the EL2&0 translation regime.

Configurations

There are no configuration notes.

Attributes

AT S1E0W is a 64-bit system operation.

Field descriptions

The AT S1E0W input value bit assignments are:

Bits [63:0]

Input address for translation. The resulting address can be read from the PAR_EL1.

If the address translation instructions are targeting a translation regime that is using AArch32, and
so has a VA of only 32 bits, then VA[63:32] is RES0.

Executing the AT S1E0W instruction

This instruction can be executed using AT with the following syntax:

AT <at_op>, <Xt>

This syntax is encoded with the following settings in the instruction encoding:

Accessibility

The instruction is executable as follows:

Input address for translation

63 0

<at_op> op1 CRn CRm op2

S1E0W 000 0111 1000 011

<at_op>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

S1E0W x x 0 - WO n/a WO

S1E0W 0 0 1 - WO WO WO
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-515
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.6 System instructions
S1E0W 0 1 1 - n/a WO WO

S1E0W 1 0 1 - WO WO WO

S1E0W 1 1 1 - n/a WO WO

<at_op>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3
B12-516 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.6 System instructions
B12.6.7 AT S1E1R, Address Translate Stage 1 EL1 Read

The AT S1E1R characteristics are:

Purpose

Performs stage 1 address translation, with permissions as if reading from the given virtual address,
using the following translation regime:

• In Secure state, and in Non-secure state, when HCR_EL2.{E2H, TGE} is not {1, 1}, the
EL1&0 translation regime.

• When HCR_EL2.{E2H, TGE} is {1, 1}, the EL2&0 translation regime.

Configurations

There are no configuration notes.

Attributes

AT S1E1R is a 64-bit system operation.

Field descriptions

The AT S1E1R input value bit assignments are:

Bits [63:0]

Input address for translation. The resulting address can be read from the PAR_EL1.

If the address translation instructions are targeting a translation regime that is using AArch32, and
so has a VA of only 32 bits, then VA[63:32] is RES0.

Executing the AT S1E1R instruction

This instruction can be executed using AT with the following syntax:

AT <at_op>, <Xt>

This syntax is encoded with the following settings in the instruction encoding:

Accessibility

The instruction is executable as follows:

Input address for translation

63 0

<at_op> op1 CRn CRm op2

S1E1R 000 0111 1000 000

<at_op>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

S1E1R x x 0 - WO n/a WO

S1E1R 0 0 1 - WO WO WO
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-517
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.6 System instructions
S1E1R 0 1 1 - n/a WO WO

S1E1R 1 0 1 - WO WO WO

S1E1R 1 1 1 - n/a WO WO

<at_op>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3
B12-518 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.6 System instructions
B12.6.8 AT S1E1W, Address Translate Stage 1 EL1 Write

The AT S1E1W characteristics are:

Purpose

Performs stage 1 address translation, with permissions as if writing to the given virtual address,
using the following translation regime:

• In Secure state, and in Non-secure state, when HCR_EL2.{E2H, TGE} is not {1, 1}, the
EL1&0 translation regime.

• When HCR_EL2.{E2H, TGE} is {1, 1}, the EL2&0 translation regime.

Configurations

There are no configuration notes.

Attributes

AT S1E1W is a 64-bit system operation.

Field descriptions

The AT S1E1W input value bit assignments are:

Bits [63:0]

Input address for translation. The resulting address can be read from the PAR_EL1.

If the address translation instructions are targeting a translation regime that is using AArch32, and
so has a VA of only 32 bits, then VA[63:32] is RES0.

Executing the AT S1E1W instruction

This instruction can be executed using AT with the following syntax:

AT <at_op>, <Xt>

This syntax is encoded with the following settings in the instruction encoding:

Accessibility

The instruction is executable as follows:

Input address for translation

63 0

<at_op> op1 CRn CRm op2

S1E1W 000 0111 1000 001

<at_op>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

S1E1W x x 0 - WO n/a WO

S1E1W 0 0 1 - WO WO WO
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-519
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.6 System instructions
S1E1W 0 1 1 - n/a WO WO

S1E1W 1 0 1 - WO WO WO

S1E1W 1 1 1 - n/a WO WO

<at_op>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3
B12-520 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.6 System instructions
B12.6.9 TLBI ASIDE1, TLB Invalidate by ASID, EL1

The TLBI ASIDE1 characteristics are:

Purpose

Invalidate stage 1 TLB entries for the given ASID and, if applicable, the current VMID, in the
following translation regime:

• In Secure state, and in Non-secure state, when HCR_EL2.{E2H, TGE} is not {1, 1}, the
EL1&0 translation regime.

• When HCR_EL2.{E2H, TGE} is {1, 1}, the EL2&0 translation regime.

If EL3 is implemented, the value of SCR_EL3.NS determines whether the instruction invalidates
the translations that are associated with Secure address space, or invalidates the translations
associated with the Non-secure address space.

For details of the scope of this instruction see ASID.

Configurations

There are no configuration notes.

Attributes

TLBI ASIDE1 is a 64-bit system operation.

Field descriptions

The TLBI ASIDE1 input value bit assignments are:

ASID, bits [63:48]

ASID value to match. Any appropriate TLB entries that match the ASID values will be affected by
this operation.

If the implementation supports 16 bits of ASID, but only 8 bits are being used in the context being
invalidated, the upper bits are considered RES0 and must be written to 0 by software performing the
TLB maintenance.

Bits [47:0]

Reserved, RES0.

Executing the TLBI ASIDE1 instruction

This instruction can be executed using TLBI with the following syntax:

TLBI <tlbi_op>, <Xt>

This syntax is encoded with the following settings in the instruction encoding:

ASID

63 48

RES0

47 0

<tlbi_op> op1 CRn CRm op2

ASIDE1 000 1000 0111 010
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-521
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.6 System instructions
Accessibility

The instruction is executable as follows:

Traps and Enables

For a description of the prioritization of any generated exceptions, see Synchronous exception prioritization for
exceptions taken to AArch64 on page B12-547. Subject to the prioritization rules:

When EL2 is implemented and is using AArch64 and (SCR_EL3.NS == 1) AND (HCR_EL2.E2H == 0):

• If HCR_EL2.TTLB==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch64 and (SCR_EL3.NS == 1) AND (HCR_EL2.E2H == 1) AND
(HCR_EL2.TGE == 0):

• If HCR_EL2.TTLB==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

<tlbi_op>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

ASIDE1 x x 0 - WO n/a WO

ASIDE1 0 0 1 - WO WO WO

ASIDE1 0 1 1 - n/a WO WO

ASIDE1 1 0 1 - WO WO WO

ASIDE1 1 1 1 - n/a WO WO
B12-522 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.6 System instructions
B12.6.10 TLBI ASIDE1IS, TLB Invalidate by ASID, EL1, Inner Shareable

The TLBI ASIDE1IS characteristics are:

Purpose

Invalidate stage 1 TLB entries for the given ASID and, if applicable, the current VMID on all PEs
in the same Inner Shareable domain, in the following translation regime:

• In Secure state, and in Non-secure state, when HCR_EL2.{E2H, TGE} is not {1, 1}, the
EL1&0 translation regime.

• When HCR_EL2.{E2H, TGE} is {1, 1}, the EL2&0 translation regime.

If EL3 is implemented, the value of SCR_EL3.NS determines whether the instruction invalidates
the translations that are associated with Secure address space, or invalidates the translations
associated with the Non-secure address space.

For details of the scope of this instruction see ASID.

Configurations

There are no configuration notes.

Attributes

TLBI ASIDE1IS is a 64-bit system operation.

Field descriptions

The TLBI ASIDE1IS input value bit assignments are:

ASID, bits [63:48]

ASID value to match. Any appropriate TLB entries that match the ASID values will be affected by
this operation.

If the implementation supports 16 bits of ASID, but only 8 bits are being used in the context being
invalidated, the upper bits are considered RES0 and must be written to 0 by software performing the
TLB maintenance.

Bits [47:0]

Reserved, RES0.

Executing the TLBI ASIDE1IS instruction

This instruction can be executed using TLBI with the following syntax:

TLBI <tlbi_op>, <Xt>

This syntax is encoded with the following settings in the instruction encoding:

ASID

63 48

RES0

47 0

<tlbi_op> op1 CRn CRm op2

ASIDE1IS 000 1000 0011 010
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-523
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.6 System instructions
Accessibility

The instruction is executable as follows:

Traps and Enables

For a description of the prioritization of any generated exceptions, see Synchronous exception prioritization for
exceptions taken to AArch64 on page B12-547. Subject to the prioritization rules:

When EL2 is implemented and is using AArch64 and (SCR_EL3.NS == 1) AND (HCR_EL2.E2H == 0):

• If HCR_EL2.TTLB==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch64 and (SCR_EL3.NS == 1) AND (HCR_EL2.E2H == 1) AND
(HCR_EL2.TGE == 0):

• If HCR_EL2.TTLB==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

<tlbi_op>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

ASIDE1IS x x 0 - WO n/a WO

ASIDE1IS 0 0 1 - WO WO WO

ASIDE1IS 0 1 1 - n/a WO WO

ASIDE1IS 1 0 1 - WO WO WO

ASIDE1IS 1 1 1 - n/a WO WO
B12-524 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.6 System instructions
B12.6.11 TLBI VAAE1, TLB Invalidate by VA, All ASID, EL1

The TLBI VAAE1 characteristics are:

Purpose

Invalidate stage 1 TLB entries for the given VA and, if applicable, the current VMID, in the
following translation regime:

• In Secure state, and in Non-secure state, when HCR_EL2.{E2H, TGE} is not {1, 1}, the
EL1&0 translation regime.

• When HCR_EL2.{E2H, TGE} is {1, 1}, the EL2&0 translation regime.

If EL3 is implemented, the value of SCR_EL3.NS determines whether the instruction invalidates
the translations that are associated with Secure address space, or invalidates the translations
associated with the Non-secure address space.

For details of the scope of this instruction see VAA.

Configurations

There are no configuration notes.

Attributes

TLBI VAAE1 is a 64-bit system operation.

Field descriptions

The TLBI VAAE1 input value bit assignments are:

Bits [63:44]

Reserved, RES0.

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the VA will be
affected by this operation, regardless of the ASID.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and
so has a VA of only 32 bits, then the software must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.

• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored
when the instruction is executed, because VA[13:12] have no effect on the operation of the
instruction.

• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored
when the instruction is executed, because VA[15:12] have no effect on the operation of the
instruction.

RES0

63 44

VA[55:12]

43 0
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-525
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.6 System instructions
Executing the TLBI VAAE1 instruction

This instruction can be executed using TLBI with the following syntax:

TLBI <tlbi_op>, <Xt>

This syntax is encoded with the following settings in the instruction encoding:

Accessibility

The instruction is executable as follows:

Traps and Enables

For a description of the prioritization of any generated exceptions, see Synchronous exception prioritization for
exceptions taken to AArch64 on page B12-547. Subject to the prioritization rules:

When EL2 is implemented and is using AArch64 and (SCR_EL3.NS == 1) AND (HCR_EL2.E2H == 0):

• If HCR_EL2.TTLB==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch64 and (SCR_EL3.NS == 1) AND (HCR_EL2.E2H == 1) AND
(HCR_EL2.TGE == 0):

• If HCR_EL2.TTLB==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

<tlbi_op> op1 CRn CRm op2

VAAE1 000 1000 0111 011

<tlbi_op>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

VAAE1 x x 0 - WO n/a WO

VAAE1 0 0 1 - WO WO WO

VAAE1 0 1 1 - n/a WO WO

VAAE1 1 0 1 - WO WO WO

VAAE1 1 1 1 - n/a WO WO
B12-526 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.6 System instructions
B12.6.12 TLBI VAAE1IS, TLB Invalidate by VA, All ASID, EL1, Inner Shareable

The TLBI VAAE1IS characteristics are:

Purpose

Invalidate stage 1 TLB entries for the given VA and, if applicable, the current VMID on all PEs in
the same Inner Shareable domain, in the following translation regime:

• In Secure state, and in Non-secure state, when HCR_EL2.{E2H, TGE} is not {1, 1}, the
EL1&0 translation regime.

• When HCR_EL2.{E2H, TGE} is {1, 1}, the EL2&0 translation regime.

If EL3 is implemented, the value of SCR_EL3.NS determines whether the instruction invalidates
the translations that are associated with Secure address space, or invalidates the translations
associated with the Non-secure address space.

For details of the scope of this instruction see VAA.

Configurations

There are no configuration notes.

Attributes

TLBI VAAE1IS is a 64-bit system operation.

Field descriptions

The TLBI VAAE1IS input value bit assignments are:

Bits [63:44]

Reserved, RES0.

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the VA will be
affected by this operation, regardless of the ASID.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and
so has a VA of only 32 bits, then the software must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.

• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored
when the instruction is executed, because VA[13:12] have no effect on the operation of the
instruction.

• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored
when the instruction is executed, because VA[15:12] have no effect on the operation of the
instruction.

RES0

63 44

VA[55:12]

43 0
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-527
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.6 System instructions
Executing the TLBI VAAE1IS instruction

This instruction can be executed using TLBI with the following syntax:

TLBI <tlbi_op>, <Xt>

This syntax is encoded with the following settings in the instruction encoding:

Accessibility

The instruction is executable as follows:

Traps and Enables

For a description of the prioritization of any generated exceptions, see Synchronous exception prioritization for
exceptions taken to AArch64 on page B12-547. Subject to the prioritization rules:

When EL2 is implemented and is using AArch64 and (SCR_EL3.NS == 1) AND (HCR_EL2.E2H == 0):

• If HCR_EL2.TTLB==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch64 and (SCR_EL3.NS == 1) AND (HCR_EL2.E2H == 1) AND
(HCR_EL2.TGE == 0):

• If HCR_EL2.TTLB==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

<tlbi_op> op1 CRn CRm op2

VAAE1IS 000 1000 0011 011

<tlbi_op>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

VAAE1IS x x 0 - WO n/a WO

VAAE1IS 0 0 1 - WO WO WO

VAAE1IS 0 1 1 - n/a WO WO

VAAE1IS 1 0 1 - WO WO WO

VAAE1IS 1 1 1 - n/a WO WO
B12-528 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.6 System instructions
B12.6.13 TLBI VAALE1, TLB Invalidate by VA, All ASID, Last level, EL1

The TLBI VAALE1 characteristics are:

Purpose

Invalidate stage 1 TLB entries for the final level of translation table walk for the given VA and, if
applicable, the current VMID, in the following translation regime:

• In Secure state, and in Non-secure state, when HCR_EL2.{E2H, TGE} is not {1, 1}, the
EL1&0 translation regime.

• When HCR_EL2.{E2H, TGE} is {1, 1}, the EL2&0 translation regime.

If EL3 is implemented, the value of SCR_EL3.NS determines whether the instruction invalidates
the translations that are associated with Secure address space, or invalidates the translations
associated with the Non-secure address space.

For details of the scope of this instruction see VAAL.

Configurations

There are no configuration notes.

Attributes

TLBI VAALE1 is a 64-bit system operation.

Field descriptions

The TLBI VAALE1 input value bit assignments are:

Bits [63:44]

Reserved, RES0.

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the VA will be
affected by this operation, regardless of the ASID.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and
so has a VA of only 32 bits, then the software must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.

• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored
when the instruction is executed, because VA[13:12] have no effect on the operation of the
instruction.

• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored
when the instruction is executed, because VA[15:12] have no effect on the operation of the
instruction.

RES0

63 44

VA[55:12]

43 0
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-529
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.6 System instructions
Executing the TLBI VAALE1 instruction

This instruction can be executed using TLBI with the following syntax:

TLBI <tlbi_op>, <Xt>

This syntax is encoded with the following settings in the instruction encoding:

Accessibility

The instruction is executable as follows:

Traps and Enables

For a description of the prioritization of any generated exceptions, see Synchronous exception prioritization for
exceptions taken to AArch64 on page B12-547. Subject to the prioritization rules:

When EL2 is implemented and is using AArch64 and (SCR_EL3.NS == 1) AND (HCR_EL2.E2H == 0):

• If HCR_EL2.TTLB==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch64 and (SCR_EL3.NS == 1) AND (HCR_EL2.E2H == 1) AND
(HCR_EL2.TGE == 0):

• If HCR_EL2.TTLB==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

<tlbi_op> op1 CRn CRm op2

VAALE1 000 1000 0111 111

<tlbi_op>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

VAALE1 x x 0 - WO n/a WO

VAALE1 0 0 1 - WO WO WO

VAALE1 0 1 1 - n/a WO WO

VAALE1 1 0 1 - WO WO WO

VAALE1 1 1 1 - n/a WO WO
B12-530 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.6 System instructions
B12.6.14 TLBI VAALE1IS, TLB Invalidate by VA, All ASID, EL1, Inner Shareable

The TLBI VAALE1IS characteristics are:

Purpose

Invalidate stage 1 TLB entries for the final level of translation table walk for the given VA and, if
applicable, the current VMID, on all PEs in the same Inner Shareable domain, in the following
translation regime:

• In Secure state, and in Non-secure state, when HCR_EL2.{E2H, TGE} is not {1, 1}, the
EL1&0 translation regime.

• When HCR_EL2.{E2H, TGE} is {1, 1}, the EL2&0 translation regime.

If EL3 is implemented, the value of SCR_EL3.NS determines whether the instruction invalidates
the translations that are associated with Secure address space, or invalidates the translations
associated with the Non-secure address space.

For details of the scope of this instruction see VAAL.

Configurations

There are no configuration notes.

Attributes

TLBI VAALE1IS is a 64-bit system operation.

Field descriptions

The TLBI VAALE1IS input value bit assignments are:

Bits [63:44]

Reserved, RES0.

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the VA will be
affected by this operation, regardless of the ASID.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and
so has a VA of only 32 bits, then the software must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.

• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored
when the instruction is executed, because VA[13:12] have no effect on the operation of the
instruction.

• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored
when the instruction is executed, because VA[15:12] have no effect on the operation of the
instruction.

RES0

63 44

VA[55:12]

43 0
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-531
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.6 System instructions
Executing the TLBI VAALE1IS instruction

This instruction can be executed using TLBI with the following syntax:

TLBI <tlbi_op>, <Xt>

This syntax is encoded with the following settings in the instruction encoding:

Accessibility

The instruction is executable as follows:

Traps and Enables

For a description of the prioritization of any generated exceptions, see Synchronous exception prioritization for
exceptions taken to AArch64 on page B12-547. Subject to the prioritization rules:

When EL2 is implemented and is using AArch64 and (SCR_EL3.NS == 1) AND (HCR_EL2.E2H == 0):

• If HCR_EL2.TTLB==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch64 and (SCR_EL3.NS == 1) AND (HCR_EL2.E2H == 1) AND
(HCR_EL2.TGE == 0):

• If HCR_EL2.TTLB==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

<tlbi_op> op1 CRn CRm op2

VAALE1IS 000 1000 0011 111

<tlbi_op>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

VAALE1IS x x 0 - WO n/a WO

VAALE1IS 0 0 1 - WO WO WO

VAALE1IS 0 1 1 - n/a WO WO

VAALE1IS 1 0 1 - WO WO WO

VAALE1IS 1 1 1 - n/a WO WO
B12-532 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.6 System instructions
B12.6.15 TLBI VAE1, TLB Invalidate by VA, EL1

The TLBI VAE1 characteristics are:

Purpose

Invalidate stage 1 TLB entries for the given VA and, as applicable, the specified ASID and the
current VMID, in the following translation regime:

• In Secure state, and in Non-secure state, when HCR_EL2.{E2H, TGE} is not {1, 1}, the
EL1&0 translation regime.

• When HCR_EL2.{E2H, TGE} is {1, 1}, the EL2&0 translation regime.

If EL3 is implemented, the value of SCR_EL3.NS determines whether the instruction invalidates
the translations that are associated with Secure address space, or invalidates the translations
associated with the Non-secure address space.

For details of the scope of this instruction see VA.

Configurations

There are no configuration notes.

Attributes

TLBI VAE1 is a 64-bit system operation.

Field descriptions

The TLBI VAE1 input value bit assignments are:

ASID, bits [63:48]

ASID value to match. When invalidating entries for a translation regime for which an ASID is valid:

• Any TLB entries that match the ASID value and VA value will be affected by this operation.

• Global TLB entries that match the VA value will be affected by this operation, regardless of
the value of the ASID field.

If the implementation supports 16 bits of ASID, but only 8 bits are being used in the context being
invalidated, the upper bits are considered RES0 and must be written to 0 by software performing the
TLB maintenance.

Bits [47:44]

Reserved, RES0.

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the ASID value
(if appropriate) and VA will be affected by this operation.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and
so has a VA of only 32 bits, then the software must treat bits[55:32] as RES0.

ASID

63 48

RES0

47 44

VA[55:12]

43 0
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-533
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.6 System instructions
The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.

• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored
when the instruction is executed, because VA[13:12] have no effect on the operation of the
instruction.

• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored
when the instruction is executed, because VA[15:12] have no effect on the operation of the
instruction.

Executing the TLBI VAE1 instruction

This instruction can be executed using TLBI with the following syntax:

TLBI <tlbi_op>, <Xt>

This syntax is encoded with the following settings in the instruction encoding:

Accessibility

The instruction is executable as follows:

Traps and Enables

For a description of the prioritization of any generated exceptions, see Synchronous exception prioritization for
exceptions taken to AArch64 on page B12-547. Subject to the prioritization rules:

When EL2 is implemented and is using AArch64 and (SCR_EL3.NS == 1) AND (HCR_EL2.E2H == 0):

• If HCR_EL2.TTLB==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch64 and (SCR_EL3.NS == 1) AND (HCR_EL2.E2H == 1) AND
(HCR_EL2.TGE == 0):

• If HCR_EL2.TTLB==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

<tlbi_op> op1 CRn CRm op2

VAE1 000 1000 0111 001

<tlbi_op>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

VAE1 x x 0 - WO n/a WO

VAE1 0 0 1 - WO WO WO

VAE1 0 1 1 - n/a WO WO

VAE1 1 0 1 - WO WO WO

VAE1 1 1 1 - n/a WO WO
B12-534 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.6 System instructions
B12.6.16 TLBI VAE1IS, TLB Invalidate by VA, EL1, Inner Shareable

The TLBI VAE1IS characteristics are:

Purpose

Invalidate stage 1 TLB entries for the given VA and, as applicable, the specified ASID and the
current VMID, on all PEs in the same Inner Shareable domain, in the following translation regime:

• In Secure state, and in Non-secure state, when HCR_EL2.{E2H, TGE} is not {1, 1}, the
EL1&0 translation regime.

• When HCR_EL2.{E2H, TGE} is {1, 1}, the EL2&0 translation regime.

If EL3 is implemented, the value of SCR_EL3.NS determines whether the instruction invalidates
the translations that are associated with Secure address space, or invalidates the translations
associated with the Non-secure address space.

For details of the scope of this instruction see VA.

Configurations

There are no configuration notes.

Attributes

TLBI VAE1IS is a 64-bit system operation.

Field descriptions

The TLBI VAE1IS input value bit assignments are:

ASID, bits [63:48]

ASID value to match. When invalidating entries for a translation regime for which an ASID is valid:

• Any TLB entries that match the ASID value and VA value will be affected by this operation.

• Global TLB entries that match the VA value will be affected by this operation, regardless of
the value of the ASID field.

If the implementation supports 16 bits of ASID, but only 8 bits are being used in the context being
invalidated, the upper bits are considered RES0 and must be written to 0 by software performing the
TLB maintenance.

Bits [47:44]

Reserved, RES0.

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the ASID value
(if appropriate) and VA will be affected by this operation.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and
so has a VA of only 32 bits, then the software must treat bits[55:32] as RES0.

ASID

63 48

RES0

47 44

VA[55:12]

43 0
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-535
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.6 System instructions
The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.

• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored
when the instruction is executed, because VA[13:12] have no effect on the operation of the
instruction.

• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored
when the instruction is executed, because VA[15:12] have no effect on the operation of the
instruction.

Executing the TLBI VAE1IS instruction

This instruction can be executed using TLBI with the following syntax:

TLBI <tlbi_op>, <Xt>

This syntax is encoded with the following settings in the instruction encoding:

Accessibility

The instruction is executable as follows:

Traps and Enables

For a description of the prioritization of any generated exceptions, see Synchronous exception prioritization for
exceptions taken to AArch64 on page B12-547. Subject to the prioritization rules:

When EL2 is implemented and is using AArch64 and (SCR_EL3.NS == 1) AND (HCR_EL2.E2H == 0):

• If HCR_EL2.TTLB==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch64 and (SCR_EL3.NS == 1) AND (HCR_EL2.E2H == 1) AND
(HCR_EL2.TGE == 0):

• If HCR_EL2.TTLB==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

<tlbi_op> op1 CRn CRm op2

VAE1IS 000 1000 0011 001

<tlbi_op>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

VAE1IS x x 0 - WO n/a WO

VAE1IS 0 0 1 - WO WO WO

VAE1IS 0 1 1 - n/a WO WO

VAE1IS 1 0 1 - WO WO WO

VAE1IS 1 1 1 - n/a WO WO
B12-536 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.6 System instructions
B12.6.17 TLBI VALE1, TLB Invalidate by VA, Last level, EL1

The TLBI VALE1 characteristics are:

Purpose

Invalidate stage 1 TLB entries for the final level of translation table walk for the given VA and, as
applicable, the specified ASID and the current VMID, in the following translation regime:

• In Secure state, and in Non-secure state, when HCR_EL2.{E2H, TGE} is not {1, 1}, the
EL1&0 translation regime.

• When HCR_EL2.{E2H, TGE} is {1, 1}, the EL2&0 translation regime.

If EL3 is implemented, the value of SCR_EL3.NS determines whether the instruction invalidates
the translations that are associated with Secure address space, or invalidates the translations
associated with the Non-secure address space.

For details of the scope of this instruction see VAL.

Configurations

There are no configuration notes.

Attributes

TLBI VALE1 is a 64-bit system operation.

Field descriptions

The TLBI VALE1 input value bit assignments are:

ASID, bits [63:48]

ASID value to match. When invalidating entries for a translation regime for which an ASID is valid:

• Any TLB entries that match the ASID value and VA value will be affected by this operation.

• Global TLB entries that match the VA value will be affected by this operation, regardless of
the value of the ASID field.

If the implementation supports 16 bits of ASID, but only 8 bits are being used in the context being
invalidated, the upper bits are considered RES0 and must be written to 0 by software performing the
TLB maintenance.

Bits [47:44]

Reserved, RES0.

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the ASID value
(if appropriate) and VA will be affected by this operation.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and
so has a VA of only 32 bits, then the software must treat bits[55:32] as RES0.

ASID

63 48

RES0

47 44

VA[55:12]

43 0
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-537
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.6 System instructions
The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.

• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored
when the instruction is executed, because VA[13:12] have no effect on the operation of the
instruction.

• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored
when the instruction is executed, because VA[15:12] have no effect on the operation of the
instruction.

Executing the TLBI VALE1 instruction

This instruction can be executed using TLBI with the following syntax:

TLBI <tlbi_op>, <Xt>

This syntax is encoded with the following settings in the instruction encoding:

Accessibility

The instruction is executable as follows:

Traps and Enables

For a description of the prioritization of any generated exceptions, see Synchronous exception prioritization for
exceptions taken to AArch64 on page B12-547. Subject to the prioritization rules:

When EL2 is implemented and is using AArch64 and (SCR_EL3.NS == 1) AND (HCR_EL2.E2H == 0):

• If HCR_EL2.TTLB==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch64 and (SCR_EL3.NS == 1) AND (HCR_EL2.E2H == 1) AND
(HCR_EL2.TGE == 0):

• If HCR_EL2.TTLB==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

<tlbi_op> op1 CRn CRm op2

VALE1 000 1000 0111 101

<tlbi_op>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

VALE1 x x 0 - WO n/a WO

VALE1 0 0 1 - WO WO WO

VALE1 0 1 1 - n/a WO WO

VALE1 1 0 1 - WO WO WO

VALE1 1 1 1 - n/a WO WO
B12-538 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.6 System instructions
B12.6.18 TLBI VALE1IS, TLB Invalidate by VA, Last level, EL1, Inner Shareable

The TLBI VALE1IS characteristics are:

Purpose

Invalidate stage 1 TLB entries for the final level of translation table walk for the given VA and, as
applicable, the specified ASID and the current VMID, on all PEs in the same Inner Shareable
domain, in the following translation regime:

• In Secure state, and in Non-secure state, when HCR_EL2.{E2H, TGE} is not {1, 1}, the
EL1&0 translation regime.

• When HCR_EL2.{E2H, TGE} is {1, 1}, the EL2&0 translation regime.

If EL3 is implemented, the value of SCR_EL3.NS determines whether the instruction invalidates
the translations that are associated with Secure address space, or invalidates the translations
associated with the Non-secure address space.

For details of the scope of this instruction see VAL.

Configurations

There are no configuration notes.

Attributes

TLBI VALE1IS is a 64-bit system operation.

Field descriptions

The TLBI VALE1IS input value bit assignments are:

ASID, bits [63:48]

ASID value to match. When invalidating entries for a translation regime for which an ASID is valid:

• Any TLB entries that match the ASID value and VA value will be affected by this operation.

• Global TLB entries that match the VA value will be affected by this operation, regardless of
the value of the ASID field.

If the implementation supports 16 bits of ASID, but only 8 bits are being used in the context being
invalidated, the upper bits are considered RES0 and must be written to 0 by software performing the
TLB maintenance.

Bits [47:44]

Reserved, RES0.

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the ASID value
(if appropriate) and VA will be affected by this operation.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and
so has a VA of only 32 bits, then the software must treat bits[55:32] as RES0.

ASID

63 48

RES0

47 44

VA[55:12]

43 0
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-539
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.6 System instructions
The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.

• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored
when the instruction is executed, because VA[13:12] have no effect on the operation of the
instruction.

• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored
when the instruction is executed, because VA[15:12] have no effect on the operation of the
instruction.

Executing the TLBI VALE1IS instruction

This instruction can be executed using TLBI with the following syntax:

TLBI <tlbi_op>, <Xt>

This syntax is encoded with the following settings in the instruction encoding:

Accessibility

The instruction is executable as follows:

Traps and Enables

For a description of the prioritization of any generated exceptions, see Synchronous exception prioritization for
exceptions taken to AArch64 on page B12-547. Subject to the prioritization rules:

When EL2 is implemented and is using AArch64 and (SCR_EL3.NS == 1) AND (HCR_EL2.E2H == 0):

• If HCR_EL2.TTLB==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch64 and (SCR_EL3.NS == 1) AND (HCR_EL2.E2H == 1) AND
(HCR_EL2.TGE == 0):

• If HCR_EL2.TTLB==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

<tlbi_op> op1 CRn CRm op2

VALE1IS 000 1000 0011 101

<tlbi_op>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

VALE1IS x x 0 - WO n/a WO

VALE1IS 0 0 1 - WO WO WO

VALE1IS 0 1 1 - n/a WO WO

VALE1IS 1 0 1 - WO WO WO

VALE1IS 1 1 1 - n/a WO WO
B12-540 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.6 System instructions
B12.6.19 TLBI VMALLE1, TLB Invalidate by VMID, All at stage 1, EL1

The TLBI VMALLE1 characteristics are:

Purpose

Invalidate all stage 1 TLB entries for the current VMID, if applicable, in the following translation
regime:

• In Secure state, and in Non-secure state, when HCR_EL2.{E2H, TGE} is not {1, 1}, the
EL1&0 translation regime.

• When HCR_EL2.{E2H, TGE} is {1, 1}, the EL2&0 translation regime.

If EL3 is implemented, the value of SCR_EL3.NS determines whether the instruction invalidates
the translations that are associated with Secure address space, or invalidates the translations
associated with the Non-secure address space.

For details of the scope of this instruction see VMALL.

Configurations

There are no configuration notes.

Attributes

TLBI VMALLE1 is a 64-bit system operation.

Field descriptions

The TLBI VMALLE1 instruction ignores the value in the register specified by the instruction used to execute this
instruction. Software does not have to write a value to the register before issuing this instruction.

Executing the TLBI VMALLE1 instruction

This instruction can be executed using TLBI with the following syntax:

TLBI <tlbi_op>, <Xt>

This syntax is encoded with the following settings in the instruction encoding:

Accessibility

The instruction is executable as follows:

<tlbi_op> op1 CRn CRm op2

VMALLE1 000 1000 0111 000

<tlbi_op>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

VMALLE1 x x 0 - WO n/a WO

VMALLE1 0 0 1 - WO WO WO

VMALLE1 0 1 1 - n/a WO WO

VMALLE1 1 0 1 - WO WO WO

VMALLE1 1 1 1 - n/a WO WO
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-541
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.6 System instructions
Traps and Enables

For a description of the prioritization of any generated exceptions, see Synchronous exception prioritization for
exceptions taken to AArch64 on page B12-547. Subject to the prioritization rules:

When EL2 is implemented and is using AArch64 and (SCR_EL3.NS == 1) AND (HCR_EL2.E2H == 0):

• If HCR_EL2.TTLB==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch64 and (SCR_EL3.NS == 1) AND (HCR_EL2.E2H == 1) AND
(HCR_EL2.TGE == 0):

• If HCR_EL2.TTLB==1, Non-secure execution of this instruction at EL1 is trapped to EL2.
B12-542 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.6 System instructions
B12.6.20 TLBI VMALLE1IS, TLB Invalidate by VMID, All at stage 1, EL1, Inner Shareable

The TLBI VMALLE1IS characteristics are:

Purpose

Invalidate all stage 1 TLB entries for the current VMID, if applicable, on all PEs in the same Inner
Shareable domain, in the following translation regime:

• In Secure state, and in Non-secure state, when HCR_EL2.{E2H, TGE} is not {1, 1}, the
EL1&0 translation regime.

• When HCR_EL2.{E2H, TGE} is {1, 1}, the EL2&0 translation regime.

If EL3 is implemented, the value of SCR_EL3.NS determines whether the instruction invalidates
the translations that are associated with Secure address space, or invalidates the translations
associated with the Non-secure address space.

For details of the scope of this instruction see VMALL.

Configurations

There are no configuration notes.

Attributes

TLBI VMALLE1IS is a 64-bit system operation.

Field descriptions

The TLBI VMALLE1IS instruction ignores the value in the register specified by the instruction used to execute this
instruction. Software does not have to write a value to the register before issuing this instruction.

Executing the TLBI VMALLE1IS instruction

This instruction can be executed using TLBI with the following syntax:

TLBI <tlbi_op>, <Xt>

This syntax is encoded with the following settings in the instruction encoding:

Accessibility

The instruction is executable as follows:

<tlbi_op> op1 CRn CRm op2

VMALLE1IS 000 1000 0011 000

<tlbi_op>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

VMALLE1IS x x 0 - WO n/a WO

VMALLE1IS 0 0 1 - WO WO WO

VMALLE1IS 0 1 1 - n/a WO WO

VMALLE1IS 1 0 1 - WO WO WO

VMALLE1IS 1 1 1 - n/a WO WO
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-543
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.6 System instructions
Traps and Enables

For a description of the prioritization of any generated exceptions, see Synchronous exception prioritization for
exceptions taken to AArch64 on page B12-547. Subject to the prioritization rules:

When EL2 is implemented and is using AArch64 and (SCR_EL3.NS == 1) AND (HCR_EL2.E2H == 0):

• If HCR_EL2.TTLB==1, Non-secure execution of this instruction at EL1 is trapped to EL2.

When EL2 is implemented and is using AArch64 and (SCR_EL3.NS == 1) AND (HCR_EL2.E2H == 1) AND
(HCR_EL2.TGE == 0):

• If HCR_EL2.TTLB==1, Non-secure execution of this instruction at EL1 is trapped to EL2.
B12-544 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.7 ARMv8.0 sections relating to these registers
B12.7 ARMv8.0 sections relating to these registers
The following sections of the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile are
included in this supplement to complement the register descriptions:
• Mismatched memory attributes.
• Synchronous exception prioritization for exceptions taken to AArch64 on page B12-547.
• Asynchronous exception routing on page B12-550.
• Address tagging in AArch64 state on page B12-551.
• Scope of the A64 TLB maintenance instructions on page B12-553.
• Invalidation of TLB entries from stage 2 translations on page B12-556.
• Events, event numbers, and mnemonics on page B12-557.
• Operation of the CompareValue views of the timers on page B12-557.
• Operation of the TimerValue views of the timers on page B12-558.
• Reserved values in System and memory-mapped registers and translation table entries on page B12-558.

B12.7.1 Mismatched memory attributes

Memory attributes are controlled by privileged software. For more information, see Chapter D4 The AArch64
Virtual Memory System Architecture in the ARMARM.

Physical memory locations are accessed with mismatched attributes if all accesses to the location do not use a
common definition of all of the following attributes of that location:
• Memory type, Device or Normal.
• Shareability.
• Cacheability, for the same level of the inner or outer cache, but excluding any cache allocation hints.

Collectively these are referred to as memory attributes.

Note
 The terms location and memory location refer to any byte within the current coherency granule and are used
interchangeably.

When a memory location is accessed with mismatched attributes the only software visible effects are one or more
of the following:

• Uniprocessor semantics for reads and writes to that memory location might be lost. This means:

— A read of the memory location by one agent might not return the value most recently written to that
memory location by the same agent.

— Multiple writes to the memory location by one agent with different memory attributes might not be
ordered in program order.

• There might be a loss of coherency when multiple agents attempt to access a memory location.

• There might be a loss of properties derived from the memory type, as described in later bullets in this section.

• If all Load-Exclusive/Store-Exclusive instructions executed across all threads to access a given memory
location do not use consistent memory attributes, the exclusive monitor state becomes UNKNOWN.

• Bytes written without the Write-Back cacheable attribute within the same Write-Back granule as bytes
written with the Write-Back cacheable attribute might have their values reverted to the old values as a result
of cache Write-Back.

The loss of properties associated with mismatched memory type attributes refers only to the following properties of
Device memory that are additional to the properties of Normal memory:
• Prohibition of speculative read accesses.
• Prohibition on Gathering.
• Prohibition on Re-ordering.
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-545
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.7 ARMv8.0 sections relating to these registers
For the following situations, when a physical memory location is accessed with mismatched attributes, a more
restrictive set of behaviors applies. The description of each situation also describes the behaviors that apply:

1. If the only memory type mismatch associated with a memory location across all users of the memory location
is between different types of Device memory, then all accesses might take the properties of the weakest
Device memory type.

2. Any agent that reads that memory location using the same common definition of the shareability and
cacheability attributes is guaranteed to access it coherently, to the extent required by that common definition
of the memory attributes, only if all of the following conditions are met:

• All aliases to the memory location with write permission both use a common definition of the
shareability and cacheability attributes for the memory location, and either:

— Have the inner cacheability attribute the same as the outer cacheability attribute.

— In the Non-secure EL1&0 translation regime, have HCR_EL2.MIOCNCE set to 0.

• All aliases to a memory location use a definition of the shareability attributes that encompasses all the
agents with permission to access the location.

3. The possible software-visible effects caused by mismatched attributes for a memory location are defined
more precisely if all of the mismatched attributes define the memory location as one of:
• Any Device memory type.
• Normal Inner Non-cacheable, Outer Non-cacheable memory.

In these cases, the only permitted software-visible effects of the mismatched attributes are one or more of the
following:

• Possible loss of properties derived from the memory type when multiple agents attempt to access the
memory location.

• Possible reordering of memory transactions to the same memory location with different memory
attributes, potentially leading to a loss of coherency or uniprocessor semantics. Any possible loss of
coherency or uniprocessor semantics can be avoided by inserting DMB barrier instructions between
accesses to the same memory location that might use different attributes.

Where there is a loss of the uniprocessor semantics, ordering, or coherency, the following approaches can be used:

1. If the mismatched attributes for a memory location all assign the same shareability attribute to the location,
any loss of uniprocessor semantics, ordering, or coherency within a shareability domain can be avoided by
use of software cache management. To do so, software must use the techniques that are required for the
software management of the ordering or coherency of cacheable locations between agents in different
shareability domains. This means:

• Before writing to a location not using the Write-Back attribute, software must invalidate, or clean, a
location from the caches if any agent might have written to the location with the Write-Back attribute.
This avoids the possibility of overwriting the location with stale data.

• After writing to a location with the Write-Back attribute, software must clean the location from the
caches, to make the write visible to external memory.

• Before reading the location with a cacheable attribute, software must invalidate the location from the
caches, to ensure that any value held in the caches reflects the last value made visible in external
memory.

• Executing a DMB barrier instruction, with scope that applies to the common shareability of the accesses,
between any accesses to the same memory location that use different attributes.

In all cases:

• Location refers to any byte within the current coherency granule.

• A clean and invalidate instruction can be used instead of a clean instruction, or instead of an invalidate
instruction.

• In the sequences outlined in this section, all cache maintenance instructions and memory transactions
must be completed, or ordered by the use of barrier operations, if they are not naturally ordered by the
use of a common address.
B12-546 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.7 ARMv8.0 sections relating to these registers
Note
 With software management of coherency, race conditions can cause loss of data. A race condition occurs

when different agents write simultaneously to bytes that are in the same location, and the invalidate, write,
clean sequence of one agent overlaps with the equivalent sequence of another agent. A race condition also
occurs if the first operation of either sequence is a clean, rather than an invalidate.

2. If the mismatched attributes for a location mean that multiple cacheable accesses to the location might be
made with different shareability attributes, then uniprocessor semantics, ordering, and coherency are
guaranteed only if:

• Each PE that accesses the location with a cacheable attribute performs a clean and invalidate of the
location before and after accessing that location.

• A DMB barrier with scope that covers the full shareability of the accesses is placed between any accesses
to the same memory location that use different attributes.

Note
 The Note in rule 1 of this list, about possible race conditions, also applies to this rule.

In addition, if multiple agents attempt to use Load-Exclusive or Store-Exclusive instructions to access a location,
and the accesses from the different agents have different memory attributes associated with the location, the
exclusive monitor state becomes UNKNOWN.

ARM strongly recommends that software does not use mismatched attributes for aliases of the same location. An
implementation might not optimize the performance of a system that uses mismatched aliases.

B12.7.2 Synchronous exception prioritization for exceptions taken to AArch64

In principle, any single instruction can generate a number of different synchronous exceptions, between the fetching
of the instruction, its decode, and eventual execution. For exceptions taken to an Exception level that is using
AArch64, these are prioritized as follows, where 1 is the highest priority.

Note
 The priority numbering in this list only shows the relative priorities of exceptions taken to an Exception level that
is using AArch64. This numbering has no global significance and, for example, does not correlate with the
equivalent AArch32 list in Synchronous exception prioritization for exceptions taken to AArch32 state on
page C6-698.

1. Software Step exceptions.

2. Misaligned PC exceptions.

3. Instruction Abort exceptions.

4. Breakpoint exceptions or Address Matching Vector Catchexceptions.

Vector Catch exceptions are only taken from AArch32 state.

Note
 An Exception Trapping Vector Catch exception is generated on exception entry for an exception that has been

prioritized as described in Synchronous exception prioritization for exceptions taken to AArch32 state on
page C6-698. This means that it is outside the scope of the description of this section.

5. Illegal Execution state exceptions.
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-547
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.7 ARMv8.0 sections relating to these registers
6. Exceptions taken from EL1 to EL2 because of one of the following configuration settings:
• HSTR_EL2.Tn.
• HCR_EL2.TIDCP.

Note
 These are the controls for exceptions taken to AArch64 state. For exceptions taken to AArch32 state the

equivalent controls are HSTR.Tn and HCR.TIDCP.

7. Undefined Instruction exceptions that occur as a result of one or more of the following:

• An attempt to execute an unallocated instruction encoding, including an encoding for an instruction
that is not implemented in the PE implementation.

• An attempt to execute an instruction that is defined never to be accessible at the current Exception
level regardless of any enables or traps.

• Debug state execution of an instruction encoding that is unallocated in Debug state.

• Non-debug state execution of an instruction encoding that is unallocated in Non-debug state.

• Execution of an HVC instruction, when HVC instructions are disabled by SCR_EL3.HCE or
HCR_EL2.HCD.

• Execution of an MSR or MRS instruction to SP_EL0 when the value of SPSel is 0.

• Execution of an HLT instruction when HLT instructions are disabled by EDSCR.HDE.

• In Debug state:

— Execution of a DCPS1 instruction in Non-secure EL0 when HCR_EL2.TGE is 1.

— Execution of a DCPS2 instruction in EL1 or EL0 when SCR_EL3.NS is 0 or when EL2 is not
implemented.

— Execution of a DCPS3 instruction when EDSCR.SDD is 1 or when EL3 is not implemented.

— When the value of EDSCR.SDD is 1, execution in EL2, EL1, or EL0 of an instruction that is
trapped to EL3.

• When executing in AArch32 state, execution of an instruction that is UNDEFINED as a result of any of:

— Being in an IT block when SCTLR_EL1.ITD is 1.

— Executing a SETEND instruction executed SCTLR_EL1.SED.

— Executing a CP15DMB, CP15DSB, or CP15ISB barrier instruction when
SCTLR_EL1.CP15BEN is 0.

Note
 These are the controls for exceptions taken to AArch64 state. For exceptions taken to AArch32 state

the equivalent controls are SCTLR.{ITD, SED, CP15BEN}, with additional controls
HSCTLR.{ITD, SED, CP15BEN}.

• When executing in AArch32 state, execution of an instruction that is UNDEFINED because at least one
of FPCR.{Stride, Len} is nonzero, when programming these bits to nonzero values is supported.

Note
 — This case applies only when EL0 is using AArch32 and EL1 is using AArch64. The exception

generated by the attempted execution at EL0 of the UNDEFINED instruction is taken to EL1
using AArch64.

— When EL1 is using AArch32, the corresponding controls are FPSCR.{Stride, Len}, and any
exception generated by the attempted execution at EL0 or EL1 of an instruction that is
UNDEFINED because of a nonzero {Stride, Len} value is taken to EL1 using AArch32.
B12-548 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.7 ARMv8.0 sections relating to these registers
8. Exceptions taken to EL1, or taken to EL2 because the value of HCR_EL2.TGE is 1, that are generated
because of configurable access to instructions, and that are not covered by any of priorities 1-7.

Note
 When EL2 is using AArch32, the equivalent control for routing exceptions to EL2 is HCR.TGE.

9. Exceptions taken from EL0 to EL2 because of one of the following configuration settings:
• HSTR_EL2.Tn.
• HCR_EL2.TIDCP.

Note
 These are the controls for exceptions taken to AArch64 state. For exceptions taken to AArch32 state the

equivalent controls are HSTR.Tn and HCR.TIDCP.

10. Exceptions taken to EL2 because of configuration settings in the CPTR_EL2.

Note
 These are the controls for exceptions taken to AArch64 state. For exceptions taken to AArch32 state, the

equivalent controls are in the HCPTR.

11. Exceptions taken to EL2 because of one of the following configuration settings:

• Any setting in HCR_EL2, other than the TIDCP bit.

• Any setting in CNTHCTL_EL2.

• Any setting in MDCR_EL2.

Note
 These are the controls for exceptions taken to AArch64 state. For exceptions taken to AArch32 state, the

equivalent controls are:
• Any setting in HCR, other than the TIDCP bit.
• Any setting in CNTHCTL or HDCR.

12. Exceptions taken to EL2 because of configurable access to instructions, and that are not covered by any of
priorities 1-11.

13. Exceptions caused by the SMC instruction being UNDEFINED because the value of SCR_EL3.SMD is 1.

14. Exceptions caused by the execution of an Exception generating instruction:

• For exceptions taken from AArch64 state, the section Branches, Exception generating, and System
instructions in Chapter C3 of the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A
architecture profile defines these instructions.

• When executing in AArch32 state, the exception-generating instructions are SVC, HVC, SMC, and BKPT.

15. Exceptions taken to EL3 because of configuration settings in the CPTR_EL3.

16. Exceptions taken to EL3 from Secure EL1 using AArch32, because of execution of the instructions listed in
the section Traps to EL3 of Secure monitor functionality from Secure EL1 using AArch32 in Chapter D1 of
the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile.

17. Exceptions taken to EL3 from EL0, EL1, or EL2 because of configuration settings in the MDCR_EL3.

18. Exceptions taken to EL3 because of configurable access to instructions, and that are not covered by any of
priorities 1-17.

19. Trapped floating-point exceptions, if supported.

20. Stack Pointer Alignment faults.
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-549
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.7 ARMv8.0 sections relating to these registers
21. Data Abort exceptions other than a Data Abort exception generated by a Synchronous external abort that was
not generated by a translation table walk. That is, any Data Abort exception that is not covered by item 23.
It is IMPLEMENTATION DEFINED whether Synchronous external aborts are prioritized here or as item 23.

22. Watchpoint exceptions.

23. Data Abort exception generated by a Synchronous external abort that was not generated by a translation table
walk. It is IMPLEMENTATION DEFINED whether Synchronous external aborts are prioritized here or as item 21.

For items 21-23, if an instruction results in more than one single-copy atomic memory access, the prioritization
between synchronous exceptions generated on each of those different memory accesses is not defined by the
architecture.

Note
 Exceptions generated by a translation table walk are reported and prioritized as either an Instruction Abort
exception, priority 3 in this list, or a Data Abort exception, priority 21 in this list.

B12.7.3 Asynchronous exception routing

The following tables show the routing of physical interrupts when the highest implemented Exception level is using
AArch64.

In the tables, C indicates that the interrupt is not taken, regardless of the Process state interrupt mask.

Table B12-1 Routing when both EL3 and EL2 are implemented

SCR_EL3.EA
SCR_EL3.IRQ
SCR_EL3.FIQ

SCR_EL3.RW
AMOa

IMOa

FMOa

Target Exception level when executing in:

Non-secure Secure

EL0 EL1 EL2 EL0 EL1 EL3

0 0 0 EL1 EL1 EL2 EL1 EL1 C

X 1 EL2 EL2 EL2 EL1 EL1 C

1 0 EL1 EL1 C EL1 EL1 C

1 X X EL3 EL3 EL3 EL3 EL3 EL3

a. If EL2 is using AArch64, these are the HCR_EL2.{AMO, IMO, FMO} control bits. If EL2 is using AArch32, these are the
HCR{AMO, IMO, FMO} control bits. If HCR_EL2.TGE or HCR.TGE is 1, these bits are treated as being 1 other than for
a direct read.

Table B12-2 Routing when EL3 is implemented and EL2 is not implemented

SCR_EL3.EA
SCR_EL3.IRQ
SCR_EL3.FIQ

Target Exception level when executing in:

Non-secure Secure

EL0 EL1 EL0 EL1 EL3

0 EL1 EL1 EL1 EL1 C

1 EL3 EL3 EL3 EL3 EL3
B12-550 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.7 ARMv8.0 sections relating to these registers
B12.7.4 Address tagging in AArch64 state

In AArch64 state, the ARMv8 architecture supports tagged addresses for data values. In these cases the top eight
bits of the virtual address are ignored when determining:

• Whether the address causes a Translation fault from being out of range if the translation system is enabled.

• Whether the address causes an Address size fault from being out of range if the translation system is not
enabled.

• Whether the address requires invalidation when performing a TLB invalidation instruction by address.

The use of address tags is controlled as follows:

For addresses using the VMSAv8-64 EL1&0 or EL2 translation regime when HCR_EL2.E2H == 1

The value of bit[55] of the VA determines the register bit that controls the use of address tags, as
follows:

VA[55]==0 TCR_ELx.TBI0 determines whether address tags are used. If stage 1
translation is enabled, TTBR0_ELx holds the base address of the translation
tables used to translate the address.

VA[55]==1 TCR_ELx.TBI1 determines whether address tags are used. If stage 1
translation is enabled, TTBR1_ELx holds the base address of the translation
tables used to translate the address.

For addresses using the VMSAv8-64 EL2 translation regime when HCR_EL2.E2H == 0

TCR_EL2.TBI determines whether address tags are used. If stage 1 translation is enabled,
TTBR0_EL2 holds the base address of the translation tables used to translate the address.

For addresses using the VMSAv8-64 EL3 translation regime

TCR_EL3.TBI determines whether address tags are used. If stage 1 translation is enabled,
TTBR0_EL3 holds the base address of the translation tables used to translate the address.

Note
 The TCR_ELx.TBIn bits determine whether address tags are used regardless of whether the corresponding
translation regime is enabled.

An address tag enable bit also has an effect on the PC value in the following cases:

• Any branch or procedure return within the controlled Exception level.

• On taking an exception to the controlled Exception level, regardless of whether this is also the Exception
level from which the exception was taken.

• On performing an exception return to the controlled Exception level, regardless of whether this is also the
Exception level from which the exception return was performed.

Table B12-3 Routing when EL3 is not implemented and EL2 is implemented

HCR_EL2.AMOa

HCR_EL2.IMOa

HCR_EL2.FMOa

Target Exception level when executing in:

Non-secure

EL0 EL1 EL2

1 EL2 EL2 EL2

0 EL1 EL1 C

a. If HCR_EL2.TGE is 1, these bits are treated as being 1 other than for
a direct read.
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-551
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.7 ARMv8.0 sections relating to these registers
• Exiting from debug state to the controlled Exception level.

Note
 As an example of what is meant by the controlled Exception level, TCR_EL2.TBI controls this effect for:
• A branch or procedure return within EL2.
• Taking an exception to EL2.
• Performing an exception return or a debug state exit to EL2.

The effect of the controlling TBI{n} bit is:

For EL0 or EL1 or EL2, when HCR_EL2.E2H == 1

If the controlling TBIn bit for the address being loaded into the PC is set to 1, then
bits[63:56] of the PC are forced to be a sign-extension of bit[55] of that address.

For EL2 or EL3, when HCR_EL2.E2H == 0

If the controlling TBI bit for the address being loaded into the PC is set to 1, then bits[63:56]
of the PC are forced to be 0x00.

The AddrTop() pseudocode function shows the algorithm determining the most significant bit of the VA, and
therefore whether the virtual address is using tagging.

Note
 The required behavior prevents a tagged address being propagated to the program counter.

When address tagging is enabled for an address that causes a Data Abort or a Watchpoint, the address tag is included
in the virtual address returned in the FAR.

Relaxation of the tagged address handling requirements on an Illegal exception return

The AddrTop() pseudocode function does not cover a relaxation to the requirements for tagged address handling that
applies to an Illegal exception return. In the case of an Illegal exception return, it is IMPLEMENTATION DEFINED
whether the exception return targets:
• The Exception level indicated by the current SPSR at the time of the exception return.
• The Exception level at which the exception return instruction was executed.

The AArch64.ExceptionReturn() pseudocode function includes this IMPLEMENTATION DEFINED choice.

Note
 • The TCR_ELx.TBIx fields have the effect shown in the AArch64.ExceptionReturn() pseudocode regardless

of whether the corresponding translation regime is enabled.

• In the case of an Illegal exception return, the tag bits of the address can be propagated to the PC if all of the
following apply:

— The implementation treats the target_exception_level as being the Exception level that was described
in the SPSR at the time of the exception return.

— For the Exception level that was described in the SPSR at the time of the exception return, the value
of TCR_ELx.TBI is 0.

— In the Exception level that the exception was taken from, the value of TCR_ELx.TBI is 1.

In all other cases, the tag bits cannot be propagated to the PC.
B12-552 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.7 ARMv8.0 sections relating to these registers
B12.7.5 Scope of the A64 TLB maintenance instructions

The TLB invalidation instruction <type> affects the different possible cached entries in the TLB as follows:

ALL The invalidation applies to all cached copies of the stage 1 and stage 2 translation table entries from
any level of the translation table walk required to translate any address at the specified Exception
level, that would be used with the state specified by SCR_EL3.NS.

For entries from the Non-secure EL1&0, ALL applies to entries with any VMID.

The invalidation applies to:
• All entries above the final level of lookup.
• All entries at the final level of lookup.

Note
 This means that, for a translation regime for which an ASID is valid, the invalidation applies

to both:
— Global entries.
— Non-global entries with any ASID.

VMALL The invalidation applies to all cached copies of the stage 1 translation table entries, from any level
of the translation table walk required to translate any address at the specified Exception level, that
would be used with all of:
• The Security state specified by SCR_EL3.NS.
• The current VMID, for the Non-secure EL1&0 translation regime.

For all entries that meet these conditions, the invalidation applies to:
• Entries above the final level of lookup.
• Entries at the final level of lookup.

Note
 . This means that, for a translation regime for which an ASID is valid, the invalidation applies

to both:
— Global entries.
— Non-global entries with any ASID.

VMALL is valid for:
• EL1.
• EL2&0, when HCR_EL2.{E2H, TGE} is {1, 1}.

VMALLS12 The invalidation applies to all cached copies of the stage 1 and stage 2 translation table entries from
any level of the translation table walk required to translate any address at the specified Exception
level, that would be used with all of:
• The Security state specified by SCR_EL3.NS.
• The current VMID, for the Non-secure EL1&0 translation regime.

For all entries that meet these conditions, the invalidation applies to:
• All entries above the final level of lookup.
• All entries at the final level of lookup.

Note
 This means that, for a translation regime for which an ASID is valid, the invalidation applies

to both:
— Global entries.
— Non-global entries with any ASID.

VMALLS12 is valid for:
• EL1.
• EL2&0, when HCR_EL2.{E2H, TGE} is {1, 1}.
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-553
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.7 ARMv8.0 sections relating to these registers
If EL2 is not implemented, or if the TLBI VMALLS12 instruction is executed when the value of
SCR_EL3.NS is 0, the instruction is not UNDEFINED but it has the same effect as TLBI VMALL. This is
because there are no stage 2 translations to invalidate.

ASID The invalidation applies to all cached copies of the stage 1 translation table entries from any level
of the translation table walk required to translate any address at the specified Exception level, that
would be used with all of:
• The Security state specified by SCR_EL3.NS.
• The current VMID, for the Non-secure EL1&0 translation regime.

For an entry from the EL1&0 or EL2&0 translation regime that meets these conditions, the
invalidation applies only if either:

• The entry is from a level of lookup above the final level and matches the specified ASID.

• The entry is a non-global entry from the final level of lookup and matches the specified
ASID.

ASID is valid for:
• EL1.
• EL2&0, when HCR_EL2.{E2H, TGE} is {1, 1}.

VA The invalidation applies to all cached copies of the stage 1 translation table entries from any level
of the translation table walk required to translate the address specified in the invalidation instruction
at the specified Exception level that would be used with all of:
• The Security state specified by SCR_EL3.NS.
• The current VMID, for the Non-secure EL1&0 translation regime.

For an entry from a translation regime for which an ASID is valid that meets these conditions, the
invalidation applies if one of the following applies:

• The entry is from a level of lookup above the final level and matches the specified ASID.

• The entry is a global entry from the final level of lookup.

• The entry is a non-global entry from the final level of lookup that matches the specified
ASID.

VAL The invalidation applies to all cached copies of the stage 1 translation table entry from the final level
of the translation table walk required to translate the address specified in the invalidation instruction
at the specified Exception level, that would be used with all of:

• The Security state specified by SCR_EL3.NS.

• The current VMID, for the Non-secure EL1&0 translation regime.

For an entry from a translation regime for which an ASID is valid that meets these conditions, the
invalidation applies only if either:

• The entry is a global entry from the final level of lookup.

• The entry is a non-global entry from the final level of lookup that matches the specified
ASID.
B12-554 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.7 ARMv8.0 sections relating to these registers
VAA The invalidation applies to all cached copies of the stage 1 translation table entries from any level
of the translation table walk required to translate the address specified in the invalidation instruction
at the specified Exception level that would be used with all of:
• The Security state specified by SCR_EL3.NS.
• The current VMID, for the Non-secure EL1&0 translation regime.

For entries that meet these conditions, the invalidation applies to all of:
• All entries above the final level of lookup.
• All entries at the final level of lookup.

Note
 . This means that, for a translation regime for which an ASID is valid, the invalidation applies

to both:
— Global entries.
— Non-global entries with any ASID.

VAAL The invalidation applies to all cached copies of the stage 1 translation table entry from the final level
of the translation table walk required to translate the address specified in the invalidation instruction
at the specified Exception level that would be used with all of:
• The Security state specified by SCR_EL3.NS.
• The current VMID, for the Non-secure EL1&0 translation regime.

For entries that meet these conditions, the invalidation applies to all entries at the final level of
lookup.

Note
 This means that, for a translation regime for which an ASID is valid, the invalidation apples to both:

• Global entries.
• Non-global entries with any ASID.

IPAS2 The invalidation applies to all cached copies of the stage 2 translation table entries from any level
of the translation table walk required to translate the specified IPA, that both:
• Are held in TLB caching structures holding stage 2 only entries.
• Would be used with the current VMID.

It is not required that this instruction invalidates TLB caching structures holding entries that
combine stage 1 and stage 2 of the translation.

The only translation regime to which this instruction can apply is the Non-secure EL1&0 translation
regime.

When executed with the SCR_EL3.NS==0, or in an implementation that does not implement EL2,
this instruction is a NOP.

For more information about the architectural requirements for the IPAS2 instruction see Invalidation
of TLB entries from stage 2 translations on page B12-556.

IPAS2L The invalidation applies to cached copies of the stage 2 translation table entry from the final level
of the stage 2 translation table walk required to translate the specified IPA, that both:
• Are held in TLB caching structures holding stage 2 only entries.
• Would be used with the current VMID.

It is not required that this instruction invalidates TLB caching structures holding entries that
combine stage 1 and stage 2 of the translation.

The only translation regime to which this instruction can apply is the Non-secure EL1&0 translation
regime.
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-555
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.7 ARMv8.0 sections relating to these registers
When executed with the SCR_EL3.NS==0, or in an implementation that does not implement EL2,
this instruction is a NOP.

For more information about the architectural requirements for the IPAS2L instruction see
Invalidation of TLB entries from stage 2 translations.

The entries that the invalidations apply to are not affected by the state of any other control bits involved in the
translation process. Therefore, the following is a non-exhaustive list of control bits that do not affect how a TLB
maintenance instruction updates the TLB entries:

In AArch64 SCTLR_EL1.M, SCTLR_EL2.M, SCTLR_EL3.{M, RW}, HCR_EL2.{VM, RW},
TCR_EL1.{TG1, EPD1, T1SZ, TG0, EPD0, T0SZ, AS, A1}, TCR_EL2.{TG0, T0SZ},
TCR_EL3.{TG0, T0SZ}, VTCR_EL2.{SL0, T0SZ}, TTBR0_EL1.ASID, TTBR1_EL1.ASID.

In AArch32 SCTLR.M, HCR.VM, TTBCR.{EAE, PD1, PD0, N, EPD1, T1SZ, EPD0, T0SZ, A1},
HTCR.T0SZ, VTCR.{SL0, T0SZ}, TTBR0.ASID, TTBR1.ASID, CONTEXTIDR.ASID.

Note
 • ARM expects most TLB maintenance performed by an operating system to occur to the last level entries of

the stage 1 translation table walks, and the purpose of the address-based TLB invalidation instructions where
the invalidation need only apply to caching of entries returned from the last level of translation table walk of
stage 1 translation is to avoid unnecessary loss of the intermediate caching of the translation table entries.
Similarly, for stage 2 translations ARM expects that most TLB maintenance performed by a hypervisor for a
given Guest operation system will affect only the last level entries of the stage 2 translations. Therefore,
similar capability is provided for instructions that invalidate single stage 2 entries.

• The architecture permits the invalidation of entries in TLB caching structures at any time, so for each of these
instructions the definition specifies only the minimum set of entries that must be invalidated from TLB
caching structures, and an implementation might choose to invalidate more entries. In general, for best
performance, ARM recommends not invalidating entries that are not required to be invalidated.

• Dependencies on the VMID for the Non-secure EL1&0 translation regime apply even when HCR_EL2.VM
is set to 0. Because the architecture does not require the VTTBR_EL2.VMID field to be reset in hardware,
the reset routine of each active PE must initialize VTTBR_EL2 to a common value such as 0, even if stage 2
translation is not in use.

B12.7.6 Invalidation of TLB entries from stage 2 translations

The architectural requirements of the IPAS2 instruction are that:

1. The following code is sufficient to invalidate all cached copies of the stage 2 translation of the IPA held in Xt
for the current VMID, with the corresponding requirement for the broadcast versions of the instructions:
TLBI IPAS2E1, Xt
DSB
TLBI VMALLE1

2. The following code is sufficient to invalidate all cached copies of the stage 2 translations of the IPA held in
Xt used to translate the virtual address VA (and the specified ASID when executing TLBI VAE1) held in Xt2,
with the corresponding requirement for the broadcast versions of the instructions:
TLBI IPAS2E1, Xt
DSB
TLBI VAE1, Xt2 ; or TLBI VAAE1, Xt2

3. The following code is sufficient to invalidate all cached copies of the stage 2 translations of the IPA held in
Xt used to translate the IPA produced by the last level of stage 1 translation table lookup for the virtual address
VA (and ASID when executing TLBI VALE1) held in Xt2, with the corresponding requirement for the broadcast
versions of the instructions:
TLBI IPAS2E1, Xt
DSB
TLBI VALE1, Xt2 ; or TLBI VAALE1, Xt2
B12-556 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

B12 AArch64 Register Descriptions
B12.7 ARMv8.0 sections relating to these registers
Note
 Sequences 1, 2, and 3 must use the TLBI IPAS2E1 instruction even when Non-secure EL1&0 stage 1 translation is
disabled.

Equivalent architectural requirements apply to the IPAS2L instruction, except that the only TLB entries that must be
invalidated by an IPAS2L instruction are those that come from the final level of the translation table lookup.

B12.7.7 Events, event numbers, and mnemonics

This is a section from Chapter D5 The Performance Monitors Extension from the ARMv8 ARM. The contents of
this section are unchanged, except for:

• The event number space is extended from 12 bits in ARMv8.0 to 16 bits in ARMv8.1. See Extended event
number space on page B9-74 for more information.

• In an ARMv8.1 implementation, in addition to the events required by PMMUv3, the STALL_FRONTEND
and STALL_BACKEND events must be implemented. For more information, see Required events on
page B9-74.

B12.7.8 Operation of the CompareValue views of the timers

The CompareValue view of a timer operates as a 64-bit upcounter. The timer condition is met when the appropriate
counter reaches the value programmed into a CompareValue register. When the timer condition is met, an interrupt
is generated if the interrupt is not masked in the corresponding timer control register, CNTP_CTL_EL0,
CNTHP_CTL_EL2, CNTPS_CTL_EL1, or CNTV_CTL_EL0. For CNTP_CTL_EL0, the asserted interrupt is the
same as the interrupt asserted by the Non-secure instance of the AArch32 register CNTP_CTL.

The operation of this view of a timer is:

TimerConditionMet = (((Counter[63:0] – Offset[63:0])[63:0] - CompareValue[63:0]) >= 0)

Where:

TimerConditionMet Is TRUE if the timer condition for this counter is met, and FALSE otherwise.

Counter The physical counter value, that can be read from the CNTPCT_EL0 register.

Note
 The virtual counter value, that can be read from the CNTVCT_EL0 register, is the value:

(Counter - Offset)

Offset For a physical timer it is zero, and for the virtual timer it is the virtual offset, held in the
CNTVOFF_EL2 register.

CompareValue The value of the appropriate CompareValue register, CNTP_CVAL_EL0,
CNTHP_CVAL_EL2, CNTPS_CVAL_EL1, or CNTV_CVAL_EL0.

In this view of a timer, Counter, Offset, and CompareValue are all 64-bit unsigned values.

Note
 This means that a timer with a CompareValue of, or close to, 0xFFFF_FFFF_FFFF_FFFF might never trigger. However,
there is no practical requirement to use values close to the counter wrap value.
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. B12-557
ID060316 Non-Confidential

B12 AArch64 Register Descriptions
B12.7 ARMv8.0 sections relating to these registers
B12.7.9 Operation of the TimerValue views of the timers

The TimerValue view of a timer operates as a signed 32-bit downcounter. A TimerValue register is programmed
with a count value. This value decrements on each increment of the appropriate counter, and the timer condition is
met when the value reaches zero. When the timer condition is met, an interrupt is generated if the interrupt is not
masked in the corresponding timer control register, CNTP_CTL_EL0, CNTHP_CTL_EL2, CNTHV_CTL_EL2,
CNTPS_CTL_EL1, or CNTV_CTL_EL0.

This view of a timer depends on the following behavior of accesses to TimerValue registers:
Reads TimerValue = (CompareValue – (Counter - Offset))[31:0]

Writes CompareValue = ((Counter - Offset)[63:0] + SignExtend(TimerValue))[63:0]

Where the arguments have the definitions used in Operation of the CompareValue views of the timers on
page B12-557, and in addition:

TimerValue The value of a TimerValue register, CNTP_TVAL_EL0, CNTHP_TVAL_EL2,
CNTHV_TVAL_EL2, CNTPS_TVAL_EL1, or CNTV_TVAL_EL0.

In this view of a timer, all values are signed, in standard two’s complement form.

A read of a TimerValue register after the timer condition has been met indicates the time since the timer condition
was met.

Note
 • Operation of the CompareValue views of the timers on page B12-557 gives a strict definition of

TimerConditionMet. However, provided that the TimerValue is not expected to wrap as a 32-bit signed value
when decremented from 0x80000000, the TimerValue view can be used as giving an effect equivalent to:

TimerConditionMet = (TimerValue • 0)

• Programming TimerValue to a negative number with magnitude greater than (Counter–Offset) can lead to
an arithmetic overflow that causes the CompareValue to be an extremely large positive value. This potentially
delays meeting the timer condition for an extremely long period of time.

B12.7.10 Reserved values in System and memory-mapped registers and translation table entries

Unless otherwise stated in this manual, all unallocated or reserved values of fields with allocated values within
AArch64 System registers, memory-mapped registers, and translation table entries behave in one of the following
ways:

• The unallocated value maps onto any of the allocated values, but otherwise does not cause CONSTRAINED
UNPREDICTABLE behavior.

• The unallocated value causes effects that could be achieved by a combination of more than one of the
allocated values.

• The unallocated value causes the field to have no functional effect.

Note
 These constraints are identical to those for the equivalent AArch32 definitions, as given in Reserved values in
System and memory-mapped registers and translation table entries on page C6-700.
B12-558 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

Part C
ARMv8.1 Changes in the AArch32 Architecture

Chapter C1
A32/T32 Advanced SIMD Instructions for Rounding
Double Multiply Add/Subtract

This chapter describes the Rounding double multiply add and Rounding double multiply subtract instructions added
to the T32 and A32 Advanced SIMD instruction sets. It contains the following section:
• About the new instructions on page C1-562.
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. C1-561
ID060316 Non-Confidential

C1 A32/T32 Advanced SIMD Instructions for Rounding Double Multiply Add/Subtract
C1.1 About the new instructions
C1.1 About the new instructions
The following instructions are added to the Advanced SIMD instruction set:
• VQRDMLAH, Vector Saturating Rounding Doubling Multiply Accumulate Returning High Half.
• VQRDMLSH, Vector Saturating Rounding Doubling Multiply Subtract Returning High Half.

C1.1.1 Behavior in Debug state

In Debug state, these instructions are CONSTRAINED UNPREDICTABLE, and the behavior is one of the following:
• The instruction is UNDEFINED.
• The instruction executes as a NOP.
• The instruction executes as in Non-debug state.

C1.1.2 Identification mechanism

The ID_ISAR5_EL1.RDM and ID_ISAR5.RDM fields identify the support for the new Advanced SIMD
instructions.

C1.1.3 See also

In this supplement
• Advanced SIMD data-processing on page C4-572.
• Instructions:

— VQRDMLAH.
— VQRDMLSH.

• Registers:
— ID_ISAR5.RDM.

In the ARM Architecture Reference Manual

The following chapters will be updated:

The T32 Instruction Set Encoding
• Advanced SIMD data-processing.
• Advanced SIMD three registers of the same length.
• Advanced SIMD two registers and a scalar.

The T32 Instruction Set Encoding
• Advanced SIMD data-processing.
• Advanced SIMD three registers of the same length.
• Advanced SIMD two registers and a scalar.
C1-562 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

Chapter C2
AArch32 Privileged Access Never

This chapter describes the addition of a Privileged access never field to PSTATE. It contains the following section:
• About the Privileged Access Never bit on page C2-564.
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. C2-563
ID060316 Non-Confidential

C2 AArch32 Privileged Access Never
C2.1 About the Privileged Access Never bit
C2.1 About the Privileged Access Never bit
A new PAN (Privileged Access Never) state bit is added to PSTATE. When the value of this bit is 1, any access from
PL1 or higher to a memory address that is accessible at PL0 generates a Permission fault. A corresponding PAN bit
is added to CPSR, DSPSR, and SPSR.

The PAN bit can be written in the CPSR using an MSR instruction at PL1 or higher. Data writes to the PAN bit in
CPSR using an MSR instruction at PL0 are ignored. The value that is returned for an MRS instruction of CPSR from
PL0 is UNKNOWN. In keeping with all other writes to the CPSR, other than for instruction fetches, the effect of the
PAN bit does not need to be explicitly synchronized.

When the value of the PAN bit is 0, the translation system is the same as in ARMv8.0.

The PAN bit has no effect on:
• Data Cache instructions.
• Address translation instructions.
• Unprivileged instructions, LDRBT, LDRHT, LDRT, LDRSBT, LDRSHT, STRBT, STRHT, STRT, STRSBT, and STRSHT.
• Instruction accesses.
• Manager domains.

If access is disabled, then the access will give rise to a stage 1 Permission fault.

On an exception taken from AArch32 to AArch32, PSTATE.PAN is copied to SPSR.PAN.

On an exception return from AArch32:
• PSTATE.PAN is copied to SPSR_ELx.PAN, when the target Exception level is in AArch64 state.
• SPSR.PAN is copied to PSTATE.PAN, when the target Exception level is in AArch32 state.

On entry to Debug state, PSTATE.PAN is copied to DSPSR.PAN.

On exit from Debug state, DSPSR.PAN is copied to PSTATE.PAN.

C2.1.1 Behavior in Debug state

In Debug state, the behavior of instructions for accessing PSTATE.PAN bit is CONSTRAINED UNPREDICTABLE, and
have one of the following behaviors:
• The instruction is UNDEFINED.
• The instruction executes as a NOP.
• The instruction executes as in Non-debug state, setting DSPSR and DLR to UNKNOWN values.

C2.1.2 Identification mechanism

The ID_MMFR3.PAN field identifies the support for the Privileged Access Never bit.

C2.1.3 See also

In this supplement

• Instructions:

— SETPAN.

• Registers:

— CPSR.PAN.

— ID_MMFR3.PAN.

— SCTLR.SPAN.

— SPSR.PAN.

— SPSR_abt.PAN.
C2-564 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

C2 AArch32 Privileged Access Never
C2.1 About the Privileged Access Never bit
— SPSR_fiq.PAN.

— SPSR_hyp.PAN.

— SPSR_irq.PAN.

— SPSR_mon.PAN.

— SPSR_svc.PAN.

— SPSR_und.PAN.

— DSPSR.PAN.

In the ARM Architecture Reference Manual
• Process state, PSTATE.
• The Current Program Status Register, CPSR.
• Memory access control section in The AArch32 Virtual Memory System Architecture chapter.
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. C2-565
ID060316 Non-Confidential

C2 AArch32 Privileged Access Never
C2.1 About the Privileged Access Never bit
C2-566 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

Chapter C3
AArch32 Performance Monitors Extension

This chapter describes the changes to the Performance Monitors Extension introduced with ARMv8.1. It contains
the following section:
• Changes to the Performance Monitors Extension on page C3-568.
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. C3-567
ID060316 Non-Confidential

C3 AArch32 Performance Monitors Extension
C3.1 Changes to the Performance Monitors Extension
C3.1 Changes to the Performance Monitors Extension
The OPTIONAL Performance Monitors Extension is enhanced to:

• Provide a new control to disable event counting at EL2. A control bit HPMD is added to HDCR to prohibit
event counting at EL2.

• The event number space is extended to 16 bits to allow additional IMPLEMENTATION DEFINED event types and
extend the reserved space for future additions to the architecturally-defined event types.

• In an ARMv8.1 implementation, in addition to the events required by PMUv3, the STALL_FRONTEND and
STALL_BACKEND events must be implemented. For more information, see Required events.

C3.1.1 Extended event number space

The event number space is extended to 16 bits, and is defined as:

0x0000-0x003F and 0x4000-0x403F

Common architectural and microarchitectural events, discoverable using PMCEID<n>.

0x0040-0x00BF and 0x4040-0x40BF

ARM recommended common architectural and microarchitectural events. These are
IMPLEMENTATION DEFINED.

0x8000-0x80BF and 0xC000-0xC0BF

Reserved.

All other values

IMPLEMENTATION DEFINED events.

To address this extended number space, the PMEVTYPER<n>.evtCount is extended to 16 bits.

C3.1.2 Required events

PMUv3 requires that an implementation includes the following common events:
• 0x0000, SW_INCR, Instruction architecturally executed, condition code check pass, software increment.
• 0x0003, L1D_CACHE_REFILL, Attributable Level 1 data cache refill.

Note
 Event 0x0003 is only required if the implementation includes a Level 1 data or unified cache.

• 0x0004, L1D_CACHE, Attributable Level 1 data cache access.

Note
 Event 0x0004 is only required if the implementation includes a Level 1 data or unified cache.

• 0x0010, BR_MIS_PRED, Mispredicted or not predicted branch speculatively executed.

Note
 Event 0x0010 is only required if the implementation includes program-flow prediction. However, ARM

recommends that the event is implemented as described in the section Common microarchitectural event
numbers in Chapter D5 The Performance Monitors Extension of the ARM Architecture Reference Manual.

• 0x0011, CPU_CYCLES, Cycle.
• 0x0012, BR_PRED, Predictable branch speculatively executed.
C3-568 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

C3 AArch32 Performance Monitors Extension
C3.1 Changes to the Performance Monitors Extension
Note
 Event 0x0012 is only required if the implementation includes program-flow prediction. However, ARM

recommends that the event is implemented as described in the section Common microarchitectural event
numbers in Chapter D5 The Performance Monitors Extension of the ARMv8 ARM.

• At least one of:
— 0x0008, INST_RETIRED, Instruction architecturally executed.
— 0x001B, INST_SPEC, Operation speculatively executed.

Note
 ARM strongly recommends that event 0x008 is implemented.

• 0x0023, STALL_FRONTEND, No operation issued due to the frontend. In ARMv8.1, this event must be
implemented.

• 0x0024, STALL_BACKEND, No operation issued due to the backend. In ARMv8.1, this event must be
implemented.

C3.1.3 Identification mechanism

The ID_DFR0.PerfMon and EDDFR.PMUVer fields describe the PMEVTYPER<n>.evtCount range.

C3.1.4 See also

In this supplement
• HDCR.HPMD.
• ID_DFR0.PerfMon.
• PMCEID2.
• PMCEID3.
• PMCR.
• PMEVTYPER<n>.evtCount.
• PMCEID2 (External).
• PMCEID3 (External).

In the ARM Architecture Reference Manual

• The Performance Monitors Extension chapter.

In the ARMv8 ARM, there is only one chapter on Performance Monitors Extension that covers both
AArch64 and AArch32.

• Recommendations for Performance Monitors Event Numbers for IMPLEMENTATION DEFINED Events.
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. C3-569
ID060316 Non-Confidential

C3 AArch32 Performance Monitors Extension
C3.1 Changes to the Performance Monitors Extension
C3-570 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

Chapter C4
A32/T32 Instruction Set Encoding

This chapter describes the encoding of the instructions that ARMv8.1 adds to the T32 and A32 instruction sets. It
contains the following section:
• Advanced SIMD data-processing on page C4-572.
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. C4-571
ID060316 Non-Confidential

C4 A32/T32 Instruction Set Encoding
C4.1 Advanced SIMD data-processing
C4.1 Advanced SIMD data-processing
The VQRDMLAH and VQRDMLSH instructions are added to the Advanced SIMD data-processing instructions group under
the Two registers and a scalar instruction class for the scalar form, and under the Three registers of the same length
instruction class for the non-scalar form.

C4.1.1 Advanced SIMD three registers of the same length

This section describes the encoding of the Three registers of the same length instruction class. The encodings of the
other instructions in this instruction class remain unchanged. Other encodings in this space are UNDEFINED.

The T32 encoding of these instructions is:

The A32 encoding of these instructions is:

The below table shows the allocation of encodings for the new instructions in this space.

C4.1.2 Advanced SIMD two registers and a scalar

This section describes the encoding of the Two registers and a scalar instruction class. The encodings of the other
instructions in this instruction class remain unchanged. Other encodings in this space are UNDEFINED.

The T32 encoding of these instructions is:

The A32 encoding of these instructions is:

If B == 0b11, see See ‘Advanced SIMD data-processing’ for the T32 instruction set, or ‘Advanced SIMD
data-processing’ for the A32 instruction set in the ARMv8 ARM.

Decode fields
Instruction page

opc o1 U size Q

1011 1 1 - 0 VQRDMLAH - 64-bit SIMD vector variant

1011 1 1 - 1 VQRDMLAH - 128-bit SIMD vector variant

1100 1 1 - 0 VQRDMLSH - 64-bit SIMD vector variant

1100 1 1 - 1 VQRDMLSH - 128-bit SIMD vector variant

1 1 1 U 1 1 1 1 0 D size Vn Vd opc N Q M o1 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 8 7 6 5 4 3 0

1 1 1 1 0 0 1 U 0 D size Vn Vd opc N Q M o1 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

1 1 1 Q 1 1 1 1 1 D !=11 Vn Vd opc N 1 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 8 7 6 5 4 3 0

size

1 1 1 1 0 0 1 Q 1 D !=11 Vn Vd opc N 1 M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

size
C4-572 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

C4 A32/T32 Instruction Set Encoding
C4.1 Advanced SIMD data-processing
Otherwise, the below table shows the allocation of encodings for the new instructions in this space.

C4.1.3 Miscellaneous 16-bit instructions

The SETPAN instruction has been added to the Miscellaneous 16-bit instruction group.

See the Miscellaneous 16-bit instructions section in Chapter F3 The T32 Instruction Set Encoding of the ARMv8
ARM.

C4.1.4 See also

In the ARM Architecture Reference Manual

The following chapters of the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile will
be updated:

The T32 Instruction Set Encoding
• Advanced SIMD data-processing.
• Advanced SIMD three registers of the same length.
• Advanced SIMD two registers and a scalar.
• Miscellaneous 16-bit instructions.

The A32 Instruction Set Encoding
• Advanced SIMD data-processing.
• Advanced SIMD three registers of the same length.
• Advanced SIMD two registers and a scalar.
• Miscellaneous.

Decode fields
Instruction page

opc Q

1110 0 VQRDMLAH - 64-bit SIMD vector variant

1111 0 VQRDMLSH - 64-bit SIMD vector variant

1110 1 VQRDMLAH - 128-bit SIMD vector variant

1111 1 VQRDMLSH - 128-bit SIMD vector variant
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. C4-573
ID060316 Non-Confidential

C4 A32/T32 Instruction Set Encoding
C4.1 Advanced SIMD data-processing
C4-574 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

Chapter C5
A32 and T32 Instructions

This chapter describes the new T32 and A32 instructions introduced in ARMv8.1. It contains the following sections:
• Alphabetical list of instructions on page C5-576.
• ARMv8.0 sections relating to these instructions on page C5-584.
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. C5-575
ID060316 Non-Confidential

C5 A32 and T32 Instructions
C5.1 Alphabetical list of instructions
C5.1 Alphabetical list of instructions
This section lists the instructions added to the A32/T32 instruction set in ARMv8.1.
C5-576 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

C5 A32 and T32 Instructions
C5.1 Alphabetical list of instructions
C5.1.1 SETPAN

Set Privileged Access Never writes a new value to PSTATE.PAN.

This instruction is available only in privileged mode and it is a NOP when executed in User mode.

A1

ARMv8.1

A1 variant

SETPAN{<q>} #<imm> // Cannot be conditional

Decode for this encoding

 if !HavePANExt() then UNDEFINED;
 value = imm1;

T1

ARMv8.1

T1 variant

SETPAN{<q>} #<imm> // Not permitted in IT block

Decode for this encoding

 if !HavePANExt() then UNDEFINED;
 if InITBlock() then UNPREDICTABLE;
 value = imm1;

Assembler symbols

<q> See Standard assembler syntax fields on page C5-585.

<imm> Is the unsigned immediate 0 or 1, encoded in the "imm1" field.

Operation for all encodings

 EncodingSpecificOperations();
 if PSTATE.EL != EL0 then
 PSTATE.PAN = value;

1 1 1 1 0 0 0 1 0 0 0 1 (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) 0 0 0 0 (0) (0) (0) (0)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

imm1

1 0 1 1 0 1 1 0 0 0 0 (1) (0) (0) (0)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

imm1
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. C5-577
ID060316 Non-Confidential

C5 A32 and T32 Instructions
C5.1 Alphabetical list of instructions
C5.1.2 VQRDMLAH

Vector Saturating Rounding Doubling Multiply Accumulate Returning High Half. This instruction multiplies the
vector elements of the first source SIMD&FP register with either the corresponding vector elements of the second
source SIMD&FP register or the value of a vector element of the second source SIMD&FP register, without
saturating the multiply results, doubles the results, and accumulates the most significant half of the final results with
the vector elements of the destination SIMD&FP register. The results are rounded.

If any of the results overflow, they are saturated. The cumulative saturation bit, FPSCR.QC, is set if saturation
occurs. For details see Pseudocode description of saturation on page C5-584.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the security state and mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page C5-585.

A1

ARMv8.1

64-bit SIMD vector variant

Applies when Q == 0.

VQRDMLAH{<q>}.<dt> <Dd>, <Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VQRDMLAH{<q>}.<dt> <Qd>, <Qn>, <Qm>

Decode for all variants of this encoding

 if !HaveQRDMLAHExt() then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if size == '00' || size == '11' then UNDEFINED;
 add = TRUE; scalar_form = FALSE; esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

A2

ARMv8.1

64-bit SIMD vector variant

Applies when Q == 0.

VQRDMLAH{<q>}.<dt> {<Dd>,} <Dn>, <Dm[x]>

128-bit SIMD vector variant

Applies when Q == 1.

VQRDMLAH{<q>}.<dt> {<Qd>,} <Qn>, <Dm[x]>

1 1 1 1 0 0 1 1 0 D size Vn Vd 1 0 1 1 N Q M 1 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 0 0 1 Q 1 D !=11 Vn Vd 1 1 1 0 N 1 M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

size
C5-578 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

C5 A32 and T32 Instructions
C5.1 Alphabetical list of instructions
Decode for all variants of this encoding

 if !HaveQRDMLAHExt() then UNDEFINED;
 if size == '11' then SEE "Related encodings";
 if size == '00' then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1') then UNDEFINED;
 add = TRUE; scalar_form = TRUE; d = UInt(D:Vd); n = UInt(N:Vn); regs = if Q == '0' then 1 else 2;
 if size == '01' then esize = 16; elements = 4; m = UInt(Vm<2:0>); index = UInt(M:Vm<3>);
 if size == '10' then esize = 32; elements = 2; m = UInt(Vm); index = UInt(M);

T1

ARMv8.1

64-bit SIMD vector variant

Applies when Q == 0.

VQRDMLAH{<q>}.<dt> <Dd>, <Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VQRDMLAH{<q>}.<dt> <Qd>, <Qn>, <Qm>

Decode for all variants of this encoding

 if !HaveQRDMLAHExt() then UNDEFINED;
 if InITBlock() then UNPREDICTABLE;
 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if size == '00' || size == '11' then UNDEFINED;
 add = TRUE; scalar_form = FALSE; esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T2

ARMv8.1

64-bit SIMD vector variant

Applies when Q == 0.

VQRDMLAH{<q>}.<dt> {<Dd>,} <Dn>, <Dm[x]>

128-bit SIMD vector variant

Applies when Q == 1.

VQRDMLAH{<q>}.<dt> {<Qd>,} <Qn>, <Dm[x]>

1 1 1 1 1 1 1 1 0 D size Vn Vd 1 0 1 1 N Q M 1 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 Q 1 1 1 1 1 D !=11 Vn Vd 1 1 1 0 N 1 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

size
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. C5-579
ID060316 Non-Confidential

C5 A32 and T32 Instructions
C5.1 Alphabetical list of instructions
Decode for all variants of this encoding

 if !HaveQRDMLAHExt() then UNDEFINED;
 if InITBlock() then UNPREDICTABLE;
 if size == '11' then SEE "Related encodings";
 if size == '00' then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1') then UNDEFINED;
 add = TRUE; scalar_form = TRUE; d = UInt(D:Vd); n = UInt(N:Vn); regs = if Q == '0' then 1 else 2;
 if size == '01' then esize = 16; elements = 4; m = UInt(Vm<2:0>); index = UInt(M:Vm<3>);
 if size == '10' then esize = 32; elements = 2; m = UInt(Vm); index = UInt(M);

Notes for all encodings

Related encodings: See "Advanced SIMD data-processing" for the T32 instruction set, or "Advanced SIMD
data-processing" for the A32 instruction set.

Assembler symbols

<q> See Standard assembler syntax fields on page C5-585.

<dt> Is the data type for the elements of the operands, encoded in the "size" field. It can have the
following values:

S16 when size = 01

S32 when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

<Qd> Is the 128-bit name of the SIMD&FP register holding the accumulate vector, encoded in the "D:Vd"
field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP register holding the accumulate vector, encoded in the "D:Vd"
field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

<Dm[x]> The scalar for either a quadword or a doubleword scalar operation. If <dt> is S16, Dm is restricted
to D0-D7. If <dt> is S32, Dm is restricted to D0-D15.

Operation for all encodings

 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 round_const = 1 << (esize-1);
 if scalar_form then op2 = SInt(Elem[D[m],index,esize]);
 for r = 0 to regs-1
 for e = 0 to elements-1
 op1 = SInt(Elem[D[n+r],e,esize]);
 op3 = SInt(Elem[D[d+r],e,esize]) << esize;
 if !scalar_form then op2 = SInt(Elem[D[m+r],e,esize]);
 (result, sat) = SignedSatQ((op3 + 2*(op1*op2) + round_const) >> esize, esize);
 Elem[D[d+r],e,esize] = result;
 if sat then FPSR.QC = '1';
C5-580 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

C5 A32 and T32 Instructions
C5.1 Alphabetical list of instructions
C5.1.3 VQRDMLSH

Vector Saturating Rounding Doubling Multiply Subtract Returning High Half. This instruction multiplies the vector
elements of the first source SIMD&FP register with either the corresponding vector elements of the second source
SIMD&FP register or the value of a vector element of the second source SIMD&FP register, without saturating the
multiply results, doubles the results, and subtracts the most significant half of the final results from the vector
elements of the destination SIMD&FP register. The results are rounded.

If any of the results overflow, they are saturated. The cumulative saturation bit, FPSCR.QC, is set if saturation
occurs. For details see Pseudocode description of saturation on page C5-584.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the security state and mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page C5-585.

A1

ARMv8.1

64-bit SIMD vector variant

Applies when Q == 0.

VQRDMLSH{<q>}.<dt> <Dd>, <Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VQRDMLSH{<q>}.<dt> <Qd>, <Qn>, <Qm>

Decode for all variants of this encoding

 if !HaveQRDMLAHExt() then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if size == '00' || size == '11' then UNDEFINED;
 add = FALSE; scalar_form = FALSE; esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

A2

ARMv8.1

64-bit SIMD vector variant

Applies when Q == 0.

VQRDMLSH{<q>}.<dt> {<Dd>,} <Dn>, <Dm[x]>

128-bit SIMD vector variant

Applies when Q == 1.

VQRDMLSH{<q>}.<dt> {<Qd>,} <Qn>, <Dm[x]>

1 1 1 1 0 0 1 1 0 D size Vn Vd 1 1 0 0 N Q M 1 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 0 0 1 Q 1 D !=11 Vn Vd 1 1 1 1 N 1 M 0 Vm
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

size
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. C5-581
ID060316 Non-Confidential

C5 A32 and T32 Instructions
C5.1 Alphabetical list of instructions
Decode for all variants of this encoding

 if !HaveQRDMLAHExt() then UNDEFINED;
 if size == '11' then SEE "Related encodings";
 if size == '00' then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1') then UNDEFINED;
 add = FALSE; scalar_form = TRUE; d = UInt(D:Vd); n = UInt(N:Vn); regs = if Q == '0' then 1 else 2;
 if size == '01' then esize = 16; elements = 4; m = UInt(Vm<2:0>); index = UInt(M:Vm<3>);
 if size == '10' then esize = 32; elements = 2; m = UInt(Vm); index = UInt(M);

T1

ARMv8.1

64-bit SIMD vector variant

Applies when Q == 0.

VQRDMLSH{<q>}.<dt> <Dd>, <Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VQRDMLSH{<q>}.<dt> <Qd>, <Qn>, <Qm>

Decode for all variants of this encoding

 if !HaveQRDMLAHExt() then UNDEFINED;
 if InITBlock() then UNPREDICTABLE;
 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if size == '00' || size == '11' then UNDEFINED;
 add = FALSE; scalar_form = FALSE; esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T2

ARMv8.1

64-bit SIMD vector variant

Applies when Q == 0.

VQRDMLSH{<q>}.<dt> {<Dd>,} <Dn>, <Dm[x]>

128-bit SIMD vector variant

Applies when Q == 1.

VQRDMLSH{<q>}.<dt> {<Qd>,} <Qn>, <Dm[x]>

1 1 1 1 1 1 1 1 0 D size Vn Vd 1 1 0 0 N Q M 1 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 Q 1 1 1 1 1 D !=11 Vn Vd 1 1 1 1 N 1 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

size
C5-582 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

C5 A32 and T32 Instructions
C5.1 Alphabetical list of instructions
Decode for all variants of this encoding

 if !HaveQRDMLAHExt() then UNDEFINED;
 if InITBlock() then UNPREDICTABLE;
 if size == '11' then SEE "Related encodings";
 if size == '00' then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1') then UNDEFINED;
 add = FALSE; scalar_form = TRUE; d = UInt(D:Vd); n = UInt(N:Vn); regs = if Q == '0' then 1 else 2;
 if size == '01' then esize = 16; elements = 4; m = UInt(Vm<2:0>); index = UInt(M:Vm<3>);
 if size == '10' then esize = 32; elements = 2; m = UInt(Vm); index = UInt(M);

Notes for all encodings

Related encodings: See "Advanced SIMD data-processing" for the T32 instruction set, or "Advanced SIMD
data-processing" for the A32 instruction set.

Assembler symbols

<q> See Standard assembler syntax fields on page C5-585.

<dt> Is the data type for the elements of the operands, encoded in the "size" field. It can have the
following values:

S16 when size = 01

S32 when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

<Qd> Is the 128-bit name of the SIMD&FP register holding the accumulate vector, encoded in the "D:Vd"
field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP register holding the accumulate vector, encoded in the "D:Vd"
field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

<Dm[x]> The scalar for either a quadword or a doubleword scalar operation. If <dt> is S16, Dm is restricted
to D0-D7. If <dt> is S32, Dm is restricted to D0-D15.

Operation for all encodings

 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 round_const = 1 << (esize-1);
 if scalar_form then op2 = SInt(Elem[D[m],index,esize]);
 for r = 0 to regs-1
 for e = 0 to elements-1
 op1 = SInt(Elem[D[n+r],e,esize]);
 op3 = SInt(Elem[D[d+r],e,esize]) << esize;
 if !scalar_form then op2 = SInt(Elem[D[m+r],e,esize]);
 (result, sat) = SignedSatQ((op3 - 2*(op1*op2) + round_const) >> esize, esize);
 Elem[D[d+r],e,esize] = result;
 if sat then FPSR.QC = '1';
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. C5-583
ID060316 Non-Confidential

C5 A32 and T32 Instructions
C5.2 ARMv8.0 sections relating to these instructions
C5.2 ARMv8.0 sections relating to these instructions
The following sections of the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile are
included in this supplement to complement the register descriptions.

C5.2.1 Pseudocode description of saturation

Some instructions perform saturating arithmetic, that is, if the result of the arithmetic overflows the destination
signed or unsigned N-bit integer range, the result produced is the largest or smallest value in that range, rather than
wrapping around modulo 2N. This is supported in pseudocode by:

• The SignedSatQ() and UnsignedSatQ() functions when an operation requires, in addition to the saturated
result, a Boolean argument that indicates whether saturation occurred.

• The SignedSat() and UnsignedSat() functions when only the saturated result is required.

SatQ(i, N, unsigned) returns either UnsignedSatQ(i, N) or SignedSatQ(i, N) depending on the value of its third
argument, and Sat(i, N, unsigned) returns either UnsignedSat(i, N) or SignedSat(i, N) depending on the value of
its third argument.
C5-584 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

C5 A32 and T32 Instructions
C5.2 ARMv8.0 sections relating to these instructions
C5.2.2 Standard assembler syntax fields

The following assembler syntax fields are standard across all or most instructions:

<c> Is an optional field. It specifies the condition under which the instruction is executed. See the section
Conditional execution in Chapter F2 of the ARM ARM for the range of available conditions and their
encoding. If <c> is omitted, it defaults to always (AL).

<q> Specifies optional assembler qualifiers on the instruction. The following qualifiers are defined:

.N Meaning narrow, specifies that the assembler must select a 16-bit encoding for the
instruction. If this is not possible, an assembler error is produced.

.W Meaning wide, specifies that the assembler must select a 32-bit encoding for the
instruction. If this is not possible, an assembler error is produced.

If neither .W nor .N is specified, the assembler can select either 16-bit or 32-bit encodings. If both
are available, it must select a 16-bit encoding. In a few cases, more than one encoding of the same
length can be available for an instruction. The rules for selecting between such encodings are
instruction-specific and are part of the instruction description. The assembler syntax includes a
mandatory .W qualifier, along with a note describing the cases in which it applies, where this
qualifier is required to select a particular encoding for an instruction. Additional assembler syntax
will describe the syntax when the conditions are not met.

Note
 When assembling to the A32 instruction set, the .N qualifier produces an assembler error and the .W

qualifier has no effect.

C5.2.3 Advanced SIMD scalars

Advanced SIMD scalars can be 8-bit, 16-bit, 32-bit, or 64-bit. Instructions other than multiply instructions can
access any element in the register set. The instruction syntax refers to the scalars using an index into a doubleword
vector. The descriptions of the individual instructions contain details of the encodings.

Table C5-1 shows the form of encoding for scalars used in multiply instructions. These instructions cannot access
scalars in some registers. The descriptions of the individual instructions contain cross references to this section
where appropriate.

32-bit Advanced SIMD scalars, when used as single-precision floating-point numbers, are equivalent to
Floating-point single-precision registers. That is, Dm[x] in a 32-bit context (0 <= m <= 15, 0 <= x <=1) is equivalent
to S[2m + x].

C5.2.4 Enabling Advanced SIMD and floating-point support

Software must ensure that the required access to the Advanced SIMD and floating-point features is enabled. Most
of those controls are described in the section Configurable instruction enables and disables, and trap controls in
Chapter G1 of the ARM ARM, and this section:
• Summarizes those controls.
• Provides additional information in the following subsections in Chapter C5 of the ARM ARM:

— FPEXC control of access to Advanced SIMD and floating-point functionality.

Table C5-1 Encoding of scalars in multiply instructions

Scalar
mnemonic Usual usage Scalar

size
Register
specifier

Index
specifier

Accessible
registers

<Dm[x]> Second operand 16-bit Vm[2:0] M, Vm[3] D0-D7

32-bit Vm[3:0] M D0-D15
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. C5-585
ID060316 Non-Confidential

C5 A32 and T32 Instructions
C5.2 ARMv8.0 sections relating to these instructions
— EL0 access to Advanced SIMD and floating-point functionality.

Note
 This section shows the controls when the controlling Exception levels are using AArch32. Similar controls are
provided when the Exception levels are using AArch64, and then apply to lower Exception levels that are using
AArch32.

The controls of access to floating-point and Advanced SIMD functionality are:

General {CP10, CP11} controls

Note
 The naming of these controls reflects the conceptual coprocessors CP10 and CP11.

The {CP10, CP11} controls provide general control of the use of floating-point and Advanced
SIMD functionality, as follows:

• CPACR.{cp10, cp11} control access from PE modes other than Hyp mode.
These fields have no effect on accesses to CP10 and CP11 from Hyp mode.

• In an implementation that includes EL3, NSACR.{cp10, cp11} control access from
Non-secure state.

• In an implementation that includes EL2, if NSACR.{cp10, cp11} permit Non-secure
accesses, or if EL3 is not implemented, HCPTR.{TCP10, TCP11} provide an additional
control on those accesses.

In each case, the {CP10, CP11} controls must be programmed to the same value, otherwise
operation is CONSTRAINED UNPREDICTABLE.

The ARMv8 CONSTRAINED UNPREDICTABLE behavior is that, for all purposes other than reading the
value of the register field, behavior is as if the access control field for CP11 has the same value as
the access control field for CP10.

Control of accesses to the CPACR from Non-secure PL1 modes

As stated in General {CP10, CP11} controls, the CPACR controls access to floating-point and
Advanced SIMD functionality from PE modes other than Hyp mode. Accesses to the CPACR from
Non-secure PL1 modes can be trapped to EL2.

Additional controls of Advanced SIMD functionality

• If implemented as an RW field, CPACR.ASEDIS can make all Advanced SIMD instructions
UNDEFINED in all modes other than Hyp mode.

• In an implementation that includes EL3, when CPACR.ASEDIS permits use of the Advanced
SIMD instructions or if the CPACR.ASEDIS control is not implemented,
NSACR.NSASEDIS can make all Advanced SIMD instructions UNDEFINED in Non-secure
state.

• In an implementation that includes EL2, when the CPACR and NSACR settings permit
Non-secure use of the Advanced SIMD instructions, if HCPTR.TASE is implemented as an
RW field it can make these instructions UNDEFINED in Hyp mode, and trap to Hyp mode any
use of these instructions in a Non-secure PL0 or PL1 mode.

FPEXC control of access to Advanced SIMD and floating-point functionality

In addition, FPEXC.EN is an enable bit for most Advanced SIMD and floating-point operations. When FPEXC.EN
is 0, all Advanced SIMD and floating-point instructions are treated as UNDEFINED except for:
• A VMSR to the FPEXC or FPSID register.
• A VMRS from the FPEXC, FPSID, MVFR0, MVFR1, or MVFR2 register.

These instructions can be executed only at EL1 or higher.
C5-586 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

C5 A32 and T32 Instructions
C5.2 ARMv8.0 sections relating to these instructions
Note
 • When the FPSID is accessible, any write access to the FPSID is ignored.

• When FPEXC.EN is 0, these operations are treated as UNDEFINED:
— A VMSR to the FPSCR.
— A VMRS from the FPSCR.

EL0 access to Advanced SIMD and floating-point functionality

When the access controls summarized in this section permit EL0 access to the Advanced SIMD and floating-point
functionality, this applies only to the subset of functionality that is available at EL0. In particular:
• Only Advanced SIMD and Floating-point system register that is accessible is the FPSCR.
• The Advanced SIMD and floating-point instructions are available.

Execution at EL0 corresponds to the application level view of the Advanced SIMD and floating-point functionality,
as described in Advanced SIMD and floating-point system registers in Chapter E1 of the ARM ARM.
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. C5-587
ID060316 Non-Confidential

C5 A32 and T32 Instructions
C5.2 ARMv8.0 sections relating to these instructions
C5-588 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

Chapter C6
AArch32 Register Descriptions

This chapter describes the AArch32 System registers that are added or or affected by ARMv8.1. It contains the
following section:
• General information about AArch32 System registers on page C6-590.
• General system control registers on page C6-591.
• Debug registers on page C6-644.
• Performance Monitors registers on page C6-673.
• Generic Timer registers on page C6-687.
• ARMv8.0 sections relating to these registers on page C6-698.
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. C6-589
ID060316 Non-Confidential

C6 AArch32 Register Descriptions
C6.1 General information about AArch32 System registers
C6.1 General information about AArch32 System registers
The structure of the System register descriptions has changed from that used in ARM® Architecture Reference
Manual, ARMv8, for ARMv8-A architecture profile, Issue A.j and earlier:

• Information about the accessibility of the register from different Exception levels is given in the Accessibility
section, that is the last but one section of a register description.

• Information about the traps and enables that apply to the register is given in the Traps and Enables section,
that is the last section of a register description.

The information in these sections can depend on the value of one or both of the controls {TGE, NS}.

The TGE control is:
• The HCR_EL2.TGE field when EL2 is using AArch64.
• The HCR.TGE field when EL2 is using AArch32.

The NS control is:
• The SCR_EL3.NS field when EL3 is using AArch64.
• The SCR.NS field when EL3 is using AArch32.

Note
 • These changes mean the registers descriptions can address:

— Cases where a single register is accessible using more than one mnemonic, in different contexts, and
that the accessibility can depend on the mnemonic used and the context in which it is used.

— Cases where a single mnemonic can address different registers, depending on the context, and that the
accessibility can also depend on the context.

These changes are needed to describe the AArch64 System register behaviors associated with the
Virtualization Host Extension described in Chapter B8 Virtualization Host Extensions. However, they also
improve the representation of many ARMv8.0 register descriptions, including descriptions of register
banking in AArch32 state. Therefore, they apply to both the AArch32 and the AArch64 System register
descriptions.

• This change to the structure of System register descriptions does not apply to the description of
memory-mapped registers such as those described in Chapter D2 External Debug Register Descriptions.

C6.1.1 The AArch32 register descriptions included in this supplement

For the AArch32 System registers, this supplement includes the full description of all registers that are changed by
ARMv8.1, including registers where the only changes introduced by ARMv8.1 are to the accessibility of the
register.

The AArch32 System registers descriptions in this chapter do not highlight where ARMv8.1 has changed the
register field descriptions. However:

• The field descriptions indicate any differences in behavior between ARMv8.0 and ARMv8.1.

• The descriptions of the features of ARMv8.1 elsewhere in this manual indicate where ARMv8.1 has
introduced new register fields, or significantly changed the effect of a register field.
C6-590 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

C6 AArch32 Register Descriptions
C6.2 General system control registers
C6.2 General system control registers
This section lists the ARMv8.1 system registers in AArch32 state that are not part of one of the other listed groups.
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. C6-591
ID060316 Non-Confidential

C6 AArch32 Register Descriptions
C6.2 General system control registers
C6.2.1 CPSR, Current Program Status Register

The CPSR characteristics are:

Purpose

Holds PE status and control information.

Configurations

There is one instance of this register that is used in both Secure and Non-secure states.

Attributes

CPSR is a 32-bit register.

Field descriptions

The CPSR bit assignments are:

N, bit [31]

Negative condition flag. Set to bit[31] of the result of the last flag-setting instruction. If the result is
regarded as a two's complement signed integer, then N is set to 1 if the result was negative, and N
is set to 0 if the result was positive or zero.

Z, bit [30]

Zero condition flag. Set to 1 if the result of the last flag-setting instruction was zero, and to 0
otherwise. A result of zero often indicates an equal result from a comparison.

C, bit [29]

Carry condition flag. Set to 1 if the last flag-setting instruction resulted in a carry condition, for
example an unsigned overflow on an addition.

V, bit [28]

Overflow condition flag. Set to 1 if the last flag-setting instruction resulted in an overflow condition,
for example a signed overflow on an addition.

Q, bit [27]

Cumulative saturation bit. Set to 1 to indicate that overflow or saturation occurred in some
instructions.

IT[1:0], bits [26:25]

IT block state bits for the T32 IT (If-Then) instruction. See IT[7:2] for explanation of this field.

J, bit [24]

RES0.

In previous versions of the architecture, the {J, T} bits determined the AArch32 Instruction set state.
ARMv8 does not support either Jazelle state or T32EE state, and the T bit determines the Instruction
set state.

N

31

Z

30

C

29

V

28

Q

27 26 25

J

24 23 22 21 20

GE

19 16

IT[7:2]

15 10

E

9

A

8

I

7

F

6

T

5 4

M[3:0]

3 0

IT[1:0]
RES0
PAN
RES0

RES1
C6-592 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

C6 AArch32 Register Descriptions
C6.2 General system control registers
Bit [23]

Reserved, RES0.

PAN, bit [22] (In ARMv8.1)

Privileged Access Never. Defined values are:

0 The translation system is the same as ARMv8.0.

1 Disables privileged read and write accesses.

On taking an exception from the current mode or Exception level, to EL1, EL2 or EL3:

• If the target Exception level is using AArch32, this bit is copied to SPSR.

• If the target is EL1 using AArch64, this bit is copied to SPSR_EL1.

• If the target is EL2 using AArch64, this bit is copied to SPSR_EL2.

• If the target is EL3 using AArch64, this bit is copied to SPSR_EL2.

The value of this bit is usually preserved on taking an exception, except in the following situations:

• When the target of the exception is EL1, and the value of the SCTLR.SPAN bit for the current
Security state is 0, this bit is set to 1.

• When the target of the exception is EL3, from Secure state, and the value of the Secure
SCTLR.SPAN is 0, this bit is set to 1.

• When the target of the exception is EL3, from Non-secure state, this bit is set to 0 regardless
of the value of the Secure SCTLR.SPAN bit.

Bit [22] (In ARMv8.0)

Reserved, RES0.

Bits [21:20]

Reserved, RES0.

GE, bits [19:16]

Greater than or Equal flags, for parallel addition and subtraction.

IT[7:2], bits [15:10]

IT block state bits for the T32 IT (If-Then) instruction. This field must be interpreted in two parts.

• IT[7:5] holds the base condition for the IT block. The base condition is the top 3 bits of the
condition code specified by the first condition field of the IT instruction.

• IT[4:0] encodes the size of the IT block, which is the number of instructions that are to be
conditionally executed, by the position of the least significant 1 in this field. It also encodes
the value of the least significant bit of the condition code for each instruction in the block.

The IT field is 0b00000000 when no IT block is active.

E, bit [9]

Endianness state bit. Controls the load and store endianness for data accesses:

0 Little-endian operation

1 Big-endian operation.

Instruction fetches ignore this bit.

When the reset value of the SCTLR.EE bit is defined by a configuration input signal, that value also
applies to the CPSR.E bit on reset, and therefore applies to software execution from reset.

If an implementation does not provide Big-endian support, this bit is RES0. If it does not provide
Little-endian support, this bit is RES1.

If an implementation provides Big-endian support but only at EL0, this bit is RES0 for an exception
return to any Exception level other than EL0.

Likewise, if it provides Little-endian support only at EL0, this bit is RES1 for an exception return to
any Exception level other than EL0.
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. C6-593
ID060316 Non-Confidential

C6 AArch32 Register Descriptions
C6.2 General system control registers
A, bit [8]

Asynchronous data abort mask bit. The possible values of this bit are:

0 Exception not masked.

1 Exception masked.

I, bit [7]

IRQ mask bit. The possible values of this bit are:

0 Exception not masked.

1 Exception masked.

F, bit [6]

FIQ mask bit. The possible values of this bit are:

0 Exception not masked.

1 Exception masked.

T, bit [5]

T32 Instruction set state bit. Indicates the AArch32 instruction set state. Possible values of this bit
are:

0 A32 state.

1 T32 state.

Bit [4]

Reserved, RES1.

M[3:0], bits [3:0]

Current PE mode. Possible values are:

Other values are reserved.

M[3:0] Mode

0b0000 User

0b0001 FIQ

0b0010 IRQ

0b0011 Supervisor

0b0110 Monitor

0b0111 Abort

0b1010 Hyp

0b1011 Undefined

0b1111 System
C6-594 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

C6 AArch32 Register Descriptions
C6.2 General system control registers
C6.2.2 ID_DFR0, Debug Feature Register 0

The ID_DFR0 characteristics are:

Purpose

Provides top level information about the debug system in AArch32.

Configurations

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register ID_DFR0 is architecturally mapped to AArch64 System register
ID_DFR0_EL1.

Attributes

ID_DFR0 is a 32-bit register.

Field descriptions

The ID_DFR0 bit assignments are:

Bits [31:28]

Reserved, RES0.

PerfMon, bits [27:24]

Performance Monitors. Support for System registers-based ARM Performance Monitors Extension,
using registers in the coproc == 1111 encoding space, for A and R profile processors. Defined values
are:

0000 Performance Monitors Extension system registers not implemented.

0001 Support for Performance Monitors Extension version 1 (PMUv1) System registers.

0010 Support for Performance Monitors Extension version 2 (PMUv2) System registers.

0011 Support for Performance Monitors Extension version 3 (PMUv3) System registers.

0100 Support for Performance Monitors Extension version 3 (PMUv3) System registers, with
a 16-bit evtCount field.

1111 IMPLEMENTATION DEFINED form of Performance Monitors System registers supported.
PMUv3 not supported.

All other values are reserved.

In ARMv8-A the permitted values are 0000, 0011, and 1111.

In ARMv8.1 the permitted values are 0000, 0100, and 1111.

In ARMv7, the value 0000 can mean that PMUv1 is implemented. PMUv1 is not permitted in an
ARMv8 implementation.

MProfDbg, bits [23:20]

M Profile Debug. Support for memory-mapped debug model for M profile processors. Defined
values are:

0000 Not supported.

0001 Support for M profile Debug architecture, with memory-mapped access.

All other values are reserved.

In ARMv8-A the only permitted value is 0000.

RES0

31 28

PerfMon

27 24

MProfDbg

23 20

MMapTrc

19 16

CopTrc

15 12

MMapDbg

11 8

CopSDbg

7 4

CopDbg

3 0
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. C6-595
ID060316 Non-Confidential

C6 AArch32 Register Descriptions
C6.2 General system control registers
MMapTrc, bits [19:16]

Memory Mapped Trace. Support for memory-mapped trace model. Defined values are:

0000 Not supported.

0001 Support for ARM trace architecture, with memory-mapped access.

All other values are reserved.

In ARMv8-A the permitted values are 0000 and 0001.

In the Trace registers, the ETMIDR gives more information about the implementation.

CopTrc, bits [15:12]

Support for System registers-based trace model, using registers in the coproc == 1110 encoding
space. Defined values are:

0000 Not supported.

0001 Support for ARM trace architecture, with System registers access.

All other values are reserved.

In ARMv8-A the permitted values are 0000 and 0001.

In the Trace registers, the ETMIDR gives more information about the implementation.

MMapDbg, bits [11:8]

Memory Mapped Debug. Support for v7 memory-mapped debug model, for A and R profile
processors.

In ARMv8-A this field is RES0.

The optional memory map defined by ARMv8 is not compatible with ARMv7.

CopSDbg, bits [7:4]

Support for a System registers-based Secure debug model, using registers in the coproc = 1110
encoding space, for an A profile processor that includes EL3.

If EL3 is not implemented and the implemented Security state is Non-Secure state, this field is RES0.
Otherwise, this field reads the same as bits [3:0].

CopDbg, bits [3:0]

Support for System registers-based debug model, using registers in the coproc == 1110 encoding
space, for A and R profile processors. Defined values are:

0000 Not supported.

0010 Support for ARMv6, v6 Debug architecture, with System registers access.

0011 Support for ARMv6, v6.1 Debug architecture, with System registers access.

0100 Support for ARMv7, v7 Debug architecture, with System registers access.

0101 Support for ARMv7, v7.1 Debug architecture, with System registers access.

0110 Support for ARMv8 debug architecture, with System registers access.

0111 Support for ARMv8 debug architecture, with System registers access, and
Virtualization Host extensions.

All other values are reserved.

In ARMv8-A the permitted values are 0000, and 0110.

In ARMv8.1 the permitted values are 0000, and 0111.

Accessing the ID_DFR0

This register can be read using MRC with the following syntax:

MRC <syntax>
C6-596 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

C6 AArch32 Register Descriptions
C6.2 General system control registers
This syntax is encoded with the following settings in the instruction encoding:

Accessibility

The register is accessible in software as follows:

Traps and Enables

For a description of the prioritization of any generated exceptions, see Synchronous exception prioritization for
exceptions taken to AArch32 state on page C6-698 for exceptions taken to AArch32 state and Synchronous
exception prioritization for exceptions taken to AArch64 on page B12-547 for exceptions taken to AArch64 state.
Subject to the prioritization rules:

When EL2 is implemented and is using AArch64 and (SCR_EL3.NS == 1) AND (HCR_EL2.E2H == 0):

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HSTR_EL2.T0==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and (SCR_EL3.NS == 1) AND (HCR_EL2.E2H == 1) AND
(HCR_EL2.TGE == 0):

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HSTR_EL2.T0==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS == 1:

• If HCR.TID3==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

• If HSTR.T0==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c0, c1, 2 000 010 0000 1111 0001

<syntax>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

p15, 0, <Rt>, c0, c1, 2 x x 0 - RO n/a RO

p15, 0, <Rt>, c0, c1, 2 x 0 1 - RO RO RO

p15, 0, <Rt>, c0, c1, 2 x 1 1 - n/a RO RO
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. C6-597
ID060316 Non-Confidential

C6 AArch32 Register Descriptions
C6.2 General system control registers
C6.2.3 ID_ISAR5, Instruction Set Attribute Register 5

The ID_ISAR5 characteristics are:

Purpose

Provides information about the instruction sets implemented by the PE in AArch32.

Configurations

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register ID_ISAR5 is architecturally mapped to AArch64 System register
ID_ISAR5_EL1.

Attributes

ID_ISAR5 is a 32-bit register.

Field descriptions

The ID_ISAR5 bit assignments are:

Bits [31:28]

Reserved, RES0.

RDM, bits [27:24] (In ARMv8.1)

VQRDMLAH and VQRDMLSH instructions in AArch32. Defined values are:

0000 No VQRDMLAH and VQRDMLSH instructions implemented.

0001 VQRDMLAH and VQRDMLSH instructions implemented.

All other values are reserved.

In ARMv8.0 the only permitted value is 0000.

In ARMv8.1 the only permitted value is 0001.

Bits [27:24] (In ARMv8.0)

Reserved, RES0.

Bits [23:20]

Reserved, RES0.

CRC32, bits [19:16]

Indicates whether CRC32 instructions are implemented in AArch32.

0000 No CRC32 instructions implemented.

0001 CRC32B, CRC32H, CRC32W, CRC32CB, CRC32CH, and CRC32CW instructions
implemented.

All other values are reserved.

In ARMv8-A the permitted values are 0000 and 0001.

In ARMv8.1 the only permitted value is 0001.

SHA2, bits [15:12]

Indicates whether SHA2 instructions are implemented in AArch32.

0000 No SHA2 instructions implemented.

RES0

31 28

RDM

27 24

RES0

23 20

CRC32

19 16

SHA2

15 12

SHA1

11 8

AES

7 4

SEVL

3 0
C6-598 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

C6 AArch32 Register Descriptions
C6.2 General system control registers
0001 SHA256H, SHA256H2, SHA256SU0, and SHA256SU1 implemented.

All other values are reserved.

In ARMv8-A the permitted values are 0000 and 0001.

SHA1, bits [11:8]

Indicates whether SHA1 instructions are implemented in AArch32.

0000 No SHA1 instructions implemented.

0001 SHA1C, SHA1P, SHA1M, SHA1H, SHA1SU0, and SHA1SU1 implemented.

All other values are reserved.

In ARMv8-A the permitted values are 0000 and 0001.

AES, bits [7:4]

Indicates whether AES instructions are implemented in AArch32.

0000 No AES instructions implemented.

0001 AESE, AESD, AESMC, and AESIMC implemented.

0010 As for 0001, plus PMULL/PMULL2 instructions operating on 64-bit data quantities.

All other values are reserved.

In ARMv8-A the permitted values are 0000 and 0010.

SEVL, bits [3:0]

Indicates whether the SEVL instruction is implemented in AArch32.

0000 SEVL is implemented as a NOP.

0001 SEVL is implemented as Send Event Local.

All other values are reserved.

In ARMv8-A the only permitted value is 0001.

Accessing the ID_ISAR5

This register can be read using MRC with the following syntax:

MRC <syntax>

This syntax is encoded with the following settings in the instruction encoding:

Accessibility

The register is accessible in software as follows:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c0, c2, 5 000 101 0000 1111 0010

<syntax>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

p15, 0, <Rt>, c0, c2, 5 x x 0 - RO n/a RO

p15, 0, <Rt>, c0, c2, 5 x 0 1 - RO RO RO

p15, 0, <Rt>, c0, c2, 5 x 1 1 - n/a RO RO
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. C6-599
ID060316 Non-Confidential

C6 AArch32 Register Descriptions
C6.2 General system control registers
Traps and Enables

For a description of the prioritization of any generated exceptions, see Synchronous exception prioritization for
exceptions taken to AArch32 state on page C6-698 for exceptions taken to AArch32 state and Synchronous
exception prioritization for exceptions taken to AArch64 on page B12-547 for exceptions taken to AArch64 state.
Subject to the prioritization rules:

When EL2 is implemented and is using AArch64 and (SCR_EL3.NS == 1) AND (HCR_EL2.E2H == 0):

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HSTR_EL2.T0==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and (SCR_EL3.NS == 1) AND (HCR_EL2.E2H == 1) AND
(HCR_EL2.TGE == 0):

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HSTR_EL2.T0==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS == 1:

• If HCR.TID3==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

• If HSTR.T0==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.
C6-600 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

C6 AArch32 Register Descriptions
C6.2 General system control registers
C6.2.4 ID_MMFR3, Memory Model Feature Register 3

The ID_MMFR3 characteristics are:

Purpose

Provides information about the implemented memory model and memory management support in
AArch32.

Configurations

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register ID_MMFR3 is architecturally mapped to AArch64 System register
ID_MMFR3_EL1.

Attributes

ID_MMFR3 is a 32-bit register.

Field descriptions

The ID_MMFR3 bit assignments are:

Supersec, bits [31:28]

Supersections. On a VMSA implementation, indicates whether Supersections are supported.
Defined values are:

0000 Supersections supported.

1111 Supersections not supported.

All other values are reserved.

In ARMv8-A the permitted values are 0000 and 1111.

CMemSz, bits [27:24]

Cached Memory Size. Indicates the physical memory size supported by the caches. Defined values
are:

0000 4GB, corresponding to a 32-bit physical address range.

0001 64GB, corresponding to a 36-bit physical address range.

0010 1TB or more, corresponding to a 40-bit or larger physical address range.

All other values are reserved.

In ARMv8-A the permitted values are 0000, 0001, and 0010.

CohWalk, bits [23:20]

Coherent Walk. Indicates whether Translation table updates require a clean to the point of
unification. Defined values are:

0000 Updates to the translation tables require a clean to the point of unification to ensure
visibility by subsequent translation table walks.

0001 Updates to the translation tables do not require a clean to the point of unification to
ensure visibility by subsequent translation table walks.

All other values are reserved.

In ARMv8-A the only permitted value is 0001.

Supersec

31 28

CMemSz

27 24

CohWalk

23 20

PAN

19 16

MaintBcst

15 12

BPMaint

11 8

CMaintSW

7 4

CMaintVA

3 0
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. C6-601
ID060316 Non-Confidential

C6 AArch32 Register Descriptions
C6.2 General system control registers
PAN, bits [19:16] (In ARMv8.1)

Privileged Access Never. Indicates support for the PAN bit in CPSR, SPSR, and DSPSR in
AArch32. Defined values are:

0000 PAN not supported.

0001 PAN supported.

All other values are reserved.

In ARMv8.1 the only permitted value is 0001.

Bits [19:16] (In ARMv8.0)

Reserved, RES0.

MaintBcst, bits [15:12]

Maintenance Broadcast. Indicates whether Cache, TLB, and branch predictor operations are
broadcast. Defined values are:

0000 Cache, TLB, and branch predictor operations only affect local structures.

0001 Cache and branch predictor operations affect structures according to shareability and
defined behavior of instructions. TLB operations only affect local structures.

0010 Cache, TLB, and branch predictor operations affect structures according to shareability
and defined behavior of instructions.

All other values are reserved.

In ARMv8-A the only permitted value is 0010.

BPMaint, bits [11:8]

Branch Predictor Maintenance. Indicates the supported branch predictor maintenance operations in
an implementation with hierarchical cache maintenance operations. Defined values are:

0000 None supported.

0001 Supported branch predictor maintenance operations are:

• Invalidate all branch predictors.

0010 As for 0001, and adds:

• Invalidate branch predictors by VA.

All other values are reserved.

In ARMv8-A the only permitted value is 0010.

CMaintSW, bits [7:4]

Cache Maintenance by Set/Way. Indicates the supported cache maintenance operations by set/way,
in an implementation with hierarchical caches. Defined values are:

0000 None supported.

0001 Supported hierarchical cache maintenance instructions by set/way are:

• Invalidate data cache by set/way.

• Clean data cache by set/way.

• Clean and invalidate data cache by set/way.

All other values are reserved.

In ARMv8-A the only permitted value is 0001.

In a unified cache implementation, the data cache maintenance operations apply to the unified
caches.

CMaintVA, bits [3:0]

Cache Maintenance by Virtual Address. Indicates the supported cache maintenance operations by
VA, in an implementation with hierarchical caches. Defined values are:

0000 None supported.
C6-602 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

C6 AArch32 Register Descriptions
C6.2 General system control registers
0001 Supported hierarchical cache maintenance operations by VA are:

• Invalidate data cache by VA.

• Clean data cache by VA.

• Clean and invalidate data cache by VA.

• Invalidate instruction cache by VA.

• Invalidate all instruction cache entries.

All other values are reserved.

In ARMv8-A the only permitted value is 0001.

In a unified cache implementation, data cache maintenance operations apply to the unified caches,
and the instruction cache maintenance instructions are not implemented.

Accessing the ID_MMFR3

This register can be read using MRC with the following syntax:

MRC <syntax>

This syntax is encoded with the following settings in the instruction encoding:

Accessibility

The register is accessible in software as follows:

Traps and Enables

For a description of the prioritization of any generated exceptions, see Synchronous exception prioritization for
exceptions taken to AArch32 state on page C6-698 for exceptions taken to AArch32 state and Synchronous
exception prioritization for exceptions taken to AArch64 on page B12-547 for exceptions taken to AArch64 state.
Subject to the prioritization rules:

When EL2 is implemented and is using AArch64 and (SCR_EL3.NS == 1) AND (HCR_EL2.E2H == 0):

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HSTR_EL2.T0==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and (SCR_EL3.NS == 1) AND (HCR_EL2.E2H == 1) AND
(HCR_EL2.TGE == 0):

• If HCR_EL2.TID3==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HSTR_EL2.T0==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c0, c1, 7 000 111 0000 1111 0001

<syntax>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

p15, 0, <Rt>, c0, c1, 7 x x 0 - RO n/a RO

p15, 0, <Rt>, c0, c1, 7 x 0 1 - RO RO RO

p15, 0, <Rt>, c0, c1, 7 x 1 1 - n/a RO RO
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. C6-603
ID060316 Non-Confidential

C6 AArch32 Register Descriptions
C6.2 General system control registers
When EL2 is implemented and is using AArch32 and SCR_EL3.NS == 1:

• If HCR.TID3==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

• If HSTR.T0==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.
C6-604 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

C6 AArch32 Register Descriptions
C6.2 General system control registers
C6.2.5 SCTLR, System Control Register

The SCTLR characteristics are:

Purpose

Provides the top level control of the system, including its memory system.

Configurations

AArch32 System register SCTLR is architecturally mapped to AArch64 System register
SCTLR_EL1.

When EL3 is using AArch32, write access to SCTLR(S) is disabled when the CP15SDISABLE
signal is asserted HIGH.

Some or all RW fields of this register have defined reset values. These apply only if the PE resets
into an Exception level that is using AArch32. If the PE resets into EL3 using AArch32 they apply
only to the Secure instance of the register. Otherwise, RW fields in this register reset to
architecturally UNKNOWN values.

Attributes

SCTLR is a 32-bit register.

Field descriptions

The SCTLR bit assignments are:

Bit [31]

Reserved, RES0.

TE, bit [30]

T32 Exception Enable. This bit controls whether exceptions to an Exception Level that is executing
at PL1 are taken to A32 or T32 state:

0 Exceptions, including reset, taken to A32 state.

1 Exceptions, including reset, taken to T32 state.

When this register has an architecturally-defined reset value, this field resets to an IMPLEMENTATION
DEFINED choice between:

• 0.

31

TE

30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14

V

13

I

12 11 10 9 8 7 6 5 4 3

C

2

A

1

M

0

RES0
AFE
TRE
RES0
EE
RES0
SPAN
RES1
RES0
UWXN
WXN
nTWE
RES0
nTWI

RES1
CP15BEN

UNK
ITD

SED
RES0
RES1
RES0
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. C6-605
ID060316 Non-Confidential

C6 AArch32 Register Descriptions
C6.2 General system control registers
• A value determined by an input configuration signal.

AFE, bit [29]

Access Flag Enable. When using the Short-descriptor translation table format for the PL1&0
translation regime, this bit enables use of the AP[0] bit in the translation descriptors as the Access
flag, and restricts access permissions in the translation descriptors to the simplified model. The
possible values of this bit are:

0 In the translation table descriptors, AP[0] is an access permissions bit. The full range of
access permissions is supported. No Access flag is implemented.

1 In the translation table descriptors, AP[0] is the Access flag. Only the simplified model
for access permissions is supported.

When using the Long-descriptor translation table format, the VMSA behaves as if this bit is set to
1, regardless of the value of this bit.

The AFE bit is permitted to be cached in a TLB.

When this register has an architecturally-defined reset value, this field resets to 0.

TRE, bit [28]

TEX remap enable. This bit enables remapping of the TEX[2:1] bits in the PL1&0 translation
regime for use as two translation table bits that can be managed by the operating system. Enabling
this remapping also changes the scheme used to describe the memory region attributes in the
VMSA. The possible values of this bit are:

0 TEX remap disabled. TEX[2:0] are used, with the C and B bits, to describe the memory
region attributes.

1 TEX remap enabled. TEX[2:1] are reassigned for use as bits managed by the operating
system. The TEX[0], C, and B bits are used to describe the memory region attributes,
with the MMU remap registers.

When the value of TTBCR.EAE is 1, this bit is RES1.

The TRE bit is permitted to be cached in a TLB.

When this register has an architecturally-defined reset value, this field resets to 0.

Bits [27:26]

Reserved, RES0.

EE, bit [25]

The value of the PSTATE.E bit on branch to an exception vector or coming out of reset, and the
endianness of stage 1 translation table walks in the PL1&0 translation regime.

The possible values of this bit are:

0 Little-endian. PSTATE.E is cleared to 0 on taking an exception or coming out of reset.
Stage 1 translation table walks in the PL1&0 translation regime are little-endian.

1 Big-endian. PSTATE.E is cleared to 0 on taking an exception or coming out of reset.
Stage 1 translation table walks in the PL1&0 translation regime are big-endian.

If an implementation does not provide Big-endian support for data accesses at Exception Levels
higher than EL0, this bit is RES0.

If an implementation does not provide Little-endian support for data accesses at Exception Levels
higher than EL0, this bit is RES1.

When this register has an architecturally-defined reset value, if this field is implemented as an RW
field, it resets to an IMPLEMENTATION DEFINED choice between:

• 0.

• A value determined by an input configuration signal.

Bit [24]

Reserved, RES0.
C6-606 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

C6 AArch32 Register Descriptions
C6.2 General system control registers
SPAN, bit [23] (In ARMv8.1)

Set Privileged Access Never, on taking an exception to EL1 from either Secure or Non-secure state,
or to EL3 from Secure state when EL3 is using AArch32.

0 CPSR.PAN is set to 1 in the following situations:

• In Non-secure state, on taking an exception to EL1.

• In Secure state, when EL3 is using AArch64, on taking an exception to EL1.

• In Secure state, when EL3 is using AArch32, on taking an exception to EL3.

1 The value of CPSR.PAN is left unchanged on taking an exception.

Bit [23] (In ARMv8.0)

Reserved, RES1.

Bit [22]

Reserved, RES1.

Bit [21]

Reserved, RES0.

UWXN, bit [20]

Unprivileged write permission implies PL1 XN (Execute-never). This bit can force all memory
regions that are writeable at PL0 to be treated as XN for accesses from software executing at PL1.
The possible values of this bit are:

0 This control has no effect on memory access permissions.

1 Any region that is writeable at PL0 forced to XN for accesses from software executing
at PL1.

The UWXN bit is permitted to be cached in a TLB.

When this register has an architecturally-defined reset value, this field resets to 0.

WXN, bit [19]

Write permission implies XN (Execute-never). For the PL1&0 translation regime, this bit can force
all memory regions that are writeable to be treated as XN. The possible values of this bit are:

0 This control has no effect on memory access permissions.

1 Any region that is writeable in the PL1&0 translation regime is forced to XN for
accesses from software executing at PL1 or PL0.

The WXN bit is permitted to be cached in a TLB.

When this register has an architecturally-defined reset value, this field resets to 0.

nTWE, bit [18]

Traps PL0 execution of WFE instructions to Undefined mode.

0 Any attempt to execute a WFE instruction at PL0 is trapped to Undefined mode, if the
instruction would otherwise have caused the PE to enter a low-power state.

1 This control has no effect on the PL0 execution of WFE instructions.

The attempted execution of a conditional WFE instruction is only trapped if the instruction passes
its condition code check.

Note
 Since a WFE or WFI can complete at any time, even without a Wakeup event, the traps on WFE of

WFI are not guaranteed to be taken, even if the WFE or WFI is executed when there is no Wakeup
event. The only guarantee is that if the instruction does not complete in finite time in the absence of
a Wakeup event, the trap will be taken.

When this register has an architecturally-defined reset value, this field resets to 1.
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. C6-607
ID060316 Non-Confidential

C6 AArch32 Register Descriptions
C6.2 General system control registers
Bit [17]

Reserved, RES0.

nTWI, bit [16]

Traps PL0 execution of WFI instructions to Undefined mode.

0 Any attempt to execute a WFI instruction at PL0 is trapped to Undefined mode, if the
instruction would otherwise have caused the PE to enter a low-power state.

1 This control has no effect on the PL0 execution of WFI instructions.

The attempted execution of a conditional WFI instruction is only trapped if the instruction passes
its condition code check.

Note
 Since a WFE or WFI can complete at any time, even without a Wakeup event, the traps on WFE of

WFI are not guaranteed to be taken, even if the WFE or WFI is executed when there is no Wakeup
event. The only guarantee is that if the instruction does not complete in finite time in the absence of
a Wakeup event, the trap will be taken.

When this register has an architecturally-defined reset value, this field resets to 1.

Bits [15:14]

Reserved, RES0.

V, bit [13]

Vectors bit. This bit selects the base address of the exception vectors for exceptions taken to a PE
mode other than Monitor mode or Hyp mode:

0 Normal exception vectors. Base address is held in VBAR.

1 High exception vectors (Hivecs), base address 0xFFFF0000. This base address cannot be
remapped.

When this register has an architecturally-defined reset value, this field resets to an IMPLEMENTATION
DEFINED choice between:

• 0.

• A value determined by an input configuration signal.

I, bit [12]

Instruction access Cacheability control, for accesses at EL1 and EL0:

0 All instruction access to Normal memory from PL1 and PL0 are Non-cacheable for all
levels of instruction and unified cache.
If the value of SCTLR.M is 0, instruction accesses from stage 1 of the PL1&0
translation regime are to Normal, Outer Shareable, Inner Non-cacheable, Outer
Non-cacheable memory.

1 All instruction access to Normal memory from PL1 and PL0 can be cached at all levels
of instruction and unified cache.
If the value of SCTLR.M is 0, instruction accesses from stage 1 of the PL1&0
translation regime are to Normal, Outer Shareable, Inner Write-Through, Outer
Write-Through memory.

Instruction accesses to Normal memory from Non-secure EL1 and Non-secure EL0 are Cacheable
regardless of the value of the SCTLR.I bit if either:

• EL2 is using AArch32 and the value of HCR.DC is 1.

• EL2 is using AArch64 and the value of HCR_EL2.DC is 1.

When this register has an architecturally-defined reset value, this field resets to 0.

Bit [11]

Reserved, RES1.
C6-608 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

C6 AArch32 Register Descriptions
C6.2 General system control registers
Bits [10:9]

Reserved, RES0.

SED, bit [8]

SETEND instruction disable. Disables SETEND instructions at PL0 and PL1.

0 SETEND instruction execution is enabled at PL0 and PL1.

1 SETEND instructions are UNDEFINED at PL0 and PL1.

If the implementation does not support mixed-endian operation at any Exception level, this bit is
RES1.

When this register has an architecturally-defined reset value, if this field is implemented as an RW
field, it resets to 0.

ITD, bit [7]

IT Disable. Disables some uses of IT instructions at PL1 and PL0.

0 All IT instruction functionality is enabled at PL1 and PL0.

1 Any attempt at PL1 or PL0 to execute any of the following is UNDEFINED:

• All encodings of the IT instruction with hw1[3:0]!=1000.

• All encodings of the subsequent instruction with the following values for hw1:

11xxxxxxxxxxxxxx

All 32-bit instructions, and the 16-bit instructions B, UDF, SVC,
LDM, and STM.

1011xxxxxxxxxxxx

All instructions in Miscellaneous 16-bit instructions on
page C4-573.

10100xxxxxxxxxxx

ADD Rd, PC, #imm

01001xxxxxxxxxxx

LDR Rd, [PC, #imm]

0100x1xxx1111xxx

ADD Rdn, PC; CMP Rn, PC; MOV Rd, PC; BX PC; BLX PC.

010001xx1xxxx111

ADD PC, Rm; CMP PC, Rm; MOV PC, Rm. This pattern also covers
UNPREDICTABLE cases with BLX Rn.

These instructions are always UNDEFINED, regardless of whether they would pass or fail
the condition code check that applies to them as a result of being in an IT block.
It is IMPLEMENTATION DEFINED whether the IT instruction is treated as:

• A 16-bit instruction, that can only be followed by another 16-bit instruction.

• The first half of a 32-bit instruction.
This means that, for the situations that are UNDEFINED, either the second 16-bit
instruction or the 32-bit instruction is UNDEFINED.
An implementation might vary dynamically as to whether IT is treated as a 16-bit
instruction or the first half of a 32-bit instruction.

ITD is optional, but if it is implemented in the SCTLR then it must also be implemented in the
SCTLR_EL1. If it is not implemented then this bit is RAZ/WI.

When this register has an architecturally-defined reset value, if this field is implemented as an RW
field, it resets to 0.

UNK, bit [6]

Writes to this bit are IGNORED. Reads of this bit return an UNKNOWN value.
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. C6-609
ID060316 Non-Confidential

C6 AArch32 Register Descriptions
C6.2 General system control registers
CP15BEN, bit [5]

System instruction memory barrier enable. Enables accesses to the DMB, DSB, and ISB System
instructions in the (coproc==1111) encoding space from PL1 and PL0:

0 PL0 and PL1 execution of the CP15DMB, CP15DSB, and CP15ISB instructions is
UNDEFINED.

1 PL0 and PL1 execution of the CP15DMB, CP15DSB, and CP15ISB instructions is
enabled.

CP15BEN is optional, but if it is implemented in the SCTLR then it must also be implemented in
the SCTLR_EL1. If it is not implemented then this bit is RAO/WI.

When this register has an architecturally-defined reset value, if this field is implemented as an RW
field, it resets to 1.

Bits [4:3]

Reserved, RES1.

C, bit [2]

Cacheability control, for data accesses at EL1 and EL0:

0 All data access to Normal memory from PL1 and PL0, and all accesses to the PL1&0
stage 1 translation tables, are Non-cacheable for all levels of data and unified cache.

1 All data access to Normal memory from PL1 and PL0, and all accesses to the PL1&0
stage 1 translation tables, can be cached at all levels of data and unified cache.

The PE ignores SCLTR.C for Non-secure state and data accesses to Normal memory from EL1 and
EL0 are Cacheable if either:

• EL2 is using AArch32 and the value of HCR.DC is 1.

• EL2 is using AArch64 and the value of HCR_EL2.DC is 1.

When this register has an architecturally-defined reset value, this field resets to 0.

A, bit [1]

Alignment check enable. This is the enable bit for Alignment fault checking at PL1 and PL0:

0 Alignment fault checking disabled when executing at PL1 or PL0.
Instructions that load or store one or more registers, other than load/store exclusive and
load-acquire/store-release, do not check that the address being accessed is aligned to the
size of the data element(s) being accessed.

1 Alignment fault checking enabled when executing at PL1 or PL0.
All instructions that load or store one or more registers have an alignment check that the
address being accessed is aligned to the size of the data element(s) being accessed. If
this check fails it causes an Alignment fault, which is taken as a Data Abort exception.

Load/store exclusive and load-acquire/store-release instructions have an alignment check regardless
of the value of the A bit.

When this register has an architecturally-defined reset value, this field resets to 0.

M, bit [0]

MMU enable for EL1 and EL0 stage 1 address translation. Possible values of this bit are:

0 EL1 and EL0 stage 1 address translation disabled.
See the SCTLR.I field for the behavior of instruction accesses to Normal memory.

1 EL1 and EL0 stage 1 address translation enabled.

In the Non-secure state the PE behaves as if the value of the SCTLR.M field is 0 for all purposes
other than returning the value of a direct read of the field if either:

• EL2 is using AArch32 and the value of HCR.{DC, TGE} is not {0, 0}.

• EL2 is using AArch64 and the value of HCR_EL2.{DC, TGE} is not {0, 0}.

When this register has an architecturally-defined reset value, this field resets to 0.
C6-610 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

C6 AArch32 Register Descriptions
C6.2 General system control registers
Accessing the SCTLR

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax is encoded with the following settings in the instruction encoding:

Accessibility

The register is accessible in software as follows:

Traps and Enables

For a description of the prioritization of any generated exceptions, see Synchronous exception prioritization for
exceptions taken to AArch32 state on page C6-698 for exceptions taken to AArch32 state and Synchronous
exception prioritization for exceptions taken to AArch64 on page B12-547 for exceptions taken to AArch64 state.
Subject to the prioritization rules:

When EL2 is implemented and is using AArch64 and (SCR_EL3.NS == 1) AND (HCR_EL2.E2H == 0):

• If HCR_EL2.TVM==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

• If HCR_EL2.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

• If HSTR_EL2.T1==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and (SCR_EL3.NS == 1) AND (HCR_EL2.E2H == 1) AND
(HCR_EL2.TGE == 0):

• If HCR_EL2.TVM==1, Non-secure write accesses to this register from EL1 are trapped to EL2.

• If HCR_EL2.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to EL2.

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c1, c0, 0 000 000 0001 1111 0000

<syntax> Configuration
Control Accessibility

Instance
E2H TGE NS EL0 EL1 EL2 EL3

p15, 0, <Rt>, c1, c0, 0 EL3 unimplemented x x 0 - RW n/a n/a SCTLR_s

p15, 0, <Rt>, c1, c0, 0 EL3 using AArch64 x x 0 - RW n/a n/a SCTLR_s

p15, 0, <Rt>, c1, c0, 0 EL3 using AArch32 x x 0 - RW n/a RW SCTLR_s

p15, 0, <Rt>, c1, c0, 0 EL3 unimplemented x 0 1 - RW RW n/a SCTLR_ns

p15, 0, <Rt>, c1, c0, 0 EL3 unimplemented x 1 1 - n/a RW n/a SCTLR_ns

p15, 0, <Rt>, c1, c0, 0 EL3 using AArch64 x 0 1 - RW RW n/a SCTLR_ns

p15, 0, <Rt>, c1, c0, 0 EL3 using AArch64 x 1 1 - n/a RW n/a SCTLR_ns

p15, 0, <Rt>, c1, c0, 0 EL3 using AArch32 x 0 1 - RW RW RW SCTLR_ns

p15, 0, <Rt>, c1, c0, 0 EL3 using AArch32 x 1 1 - n/a RW RW SCTLR_ns
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. C6-611
ID060316 Non-Confidential

C6 AArch32 Register Descriptions
C6.2 General system control registers
• If HSTR_EL2.T1==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS == 1:

• If HCR.TVM==1, Non-secure write accesses to this register from EL1 are trapped to Hyp mode.

• If HCR.TRVM==1, Non-secure read accesses to this register from EL1 are trapped to Hyp mode.

• If HSTR.T1==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.
C6-612 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

C6 AArch32 Register Descriptions
C6.2 General system control registers
C6.2.6 SPSR, Saved Program Status Register

The SPSR characteristics are:

Purpose

Holds the saved process state for the current mode.

Configurations

There is one instance of this register that is used in both Secure and Non-secure states.

Attributes

SPSR is a 32-bit register.

Field descriptions

The SPSR bit assignments are:

N, bit [31]

Set to the value of CPSR.N on taking an exception to the current mode, and copied to CPSR.N on
executing an exception return operation in the current mode.

Z, bit [30]

Set to the value of CPSR.Z on taking an exception to the current mode, and copied to CPSR.Z on
executing an exception return operation in the current mode.

C, bit [29]

Set to the value of CPSR.C on taking an exception to the current mode, and copied to CPSR.C on
executing an exception return operation in the current mode.

V, bit [28]

Set to the value of CPSR.V on taking an exception to the current mode, and copied to CPSR.V on
executing an exception return operation in the current mode.

Q, bit [27]

Set to the value of CPSR.Q on taking an exception to the current mode, and copied to CPSR.Q on
executing an exception return operation in the current mode.

IT[1:0], bits [26:25]

IT block state bits for the T32 IT (If-Then) instruction. See IT[7:2] for explanation of this field.

J, bit [24]

RES0.

In previous versions of the architecture, the {J, T} bits determined the AArch32 Instruction set state.
ARMv8 does not support either Jazelle state or T32EE state, and the T bit determines the Instruction
set state.

N

31

Z

30

C

29

V

28

Q

27 26 25

J

24 23 22 21

IL

20

GE

19 16

IT[7:2]

15 10

E

9

A

8

I

7

F

6

T

5 4

M[3:0]

3 0

IT[1:0]
RES0
PAN
RES0

M[4]
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. C6-613
ID060316 Non-Confidential

C6 AArch32 Register Descriptions
C6.2 General system control registers
Bit [23]

Reserved, RES0.

PAN, bit [22] (In ARMv8.1)

Set to the value of CPSR.PAN on taking an exception to the current mode, and copied to CPSR.PAN
on executing an exception return operation in the current mode.

Bit [22] (In ARMv8.0)

Reserved, RES0.

Bit [21]

Reserved, RES0.

IL, bit [20]

Illegal Execution state bit. Shows the value of PSTATE.IL immediately before the exception was
taken.

GE, bits [19:16]

Greater than or Equal flags, for parallel addition and subtraction.

IT[7:2], bits [15:10]

IT block state bits for the T32 IT (If-Then) instruction. This field must be interpreted in two parts.

• IT[7:5] holds the base condition for the IT block. The base condition is the top 3 bits of the
condition code specified by the first condition field of the IT instruction.

• IT[4:0] encodes the size of the IT block, which is the number of instructions that are to be
conditionally executed, by the position of the least significant 1 in this field. It also encodes
the value of the least significant bit of the condition code for each instruction in the block.

The IT field is 0b00000000 when no IT block is active.

E, bit [9]

Endianness state bit. Controls the load and store endianness for data accesses:

0 Little-endian operation

1 Big-endian operation.

Instruction fetches ignore this bit.

When the reset value of the SCTLR.EE bit is defined by a configuration input signal, that value also
applies to the CPSR.E bit on reset, and therefore applies to software execution from reset.

If an implementation does not provide Big-endian support, this bit is RES0. If it does not provide
Little-endian support, this bit is RES1.

If an implementation provides Big-endian support but only at EL0, this bit is RES0 for an exception
return to any Exception level other than EL0.

Likewise, if it provides Little-endian support only at EL0, this bit is RES1 for an exception return to
any Exception level other than EL0.

A, bit [8]

Asynchronous data abort mask bit. The possible values of this bit are:

0 Exception not masked.

1 Exception masked.

I, bit [7]

IRQ mask bit. The possible values of this bit are:

0 Exception not masked.

1 Exception masked.
C6-614 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

C6 AArch32 Register Descriptions
C6.2 General system control registers
F, bit [6]

FIQ mask bit. The possible values of this bit are:

0 Exception not masked.

1 Exception masked.

T, bit [5]

T32 Instruction set state bit. Determines the AArch32 instruction set state that the exception was
taken from. Possible values of this bit are:

0 Taken from A32 state.

1 Taken from T32 state.

M[4], bit [4]

Execution state that the exception was taken from. Possible values of this bit are:

1 Exception taken from AArch32.

M[3:0], bits [3:0]

AArch32 mode that an exception was taken from. The possible values are:

Other values are reserved.

M[3:0] Mode

0b0000 User

0b0001 FIQ

0b0010 IRQ

0b0011 Supervisor

0b0110 Monitor (only valid in Secure state, if EL3 is implemented and can use AArch32)

0b0111 Abort

0b1010 Hyp

0b1011 Undefined

0b1111 System
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. C6-615
ID060316 Non-Confidential

C6 AArch32 Register Descriptions
C6.2 General system control registers
C6.2.7 SPSR_abt, Saved Program Status Register (Abort mode)

The SPSR_abt characteristics are:

Purpose

Holds the saved process state when an exception is taken to Abort mode.

Configurations

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register SPSR_abt is architecturally mapped to AArch64 System register
SPSR_abt.

Attributes

SPSR_abt is a 32-bit register.

Field descriptions

The SPSR_abt bit assignments are:

N, bit [31]

Set to the value of CPSR.N on taking an exception to Abort mode, and copied to CPSR.N on
executing an exception return operation in Abort mode.

Z, bit [30]

Set to the value of CPSR.Z on taking an exception to Abort mode, and copied to CPSR.Z on
executing an exception return operation in Abort mode.

C, bit [29]

Set to the value of CPSR.C on taking an exception to Abort mode, and copied to CPSR.C on
executing an exception return operation in Abort mode.

V, bit [28]

Set to the value of CPSR.V on taking an exception to Abort mode, and copied to CPSR.V on
executing an exception return operation in Abort mode.

Q, bit [27]

Set to the value of CPSR.Q on taking an exception to Abort mode, and copied to CPSR.Q on
executing an exception return operation in Abort mode.

IT[1:0], bits [26:25]

IT block state bits for the T32 IT (If-Then) instruction. See IT[7:2] for explanation of this field.

J, bit [24]

RES0.

N

31

Z

30

C

29

V

28

Q

27 26 25

J

24 23 22 21

IL

20

GE

19 16

IT[7:2]

15 10

E

9

A

8

I

7

F

6

T

5 4

M[3:0]

3 0

IT[1:0]
RES0
PAN
RES0

M[4]
C6-616 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

C6 AArch32 Register Descriptions
C6.2 General system control registers
In previous versions of the architecture, the {J, T} bits determined the AArch32 Instruction set state.
ARMv8 does not support either Jazelle state or T32EE state, and the T bit determines the Instruction
set state.

Bit [23]

Reserved, RES0.

PAN, bit [22] (In ARMv8.1)

Set to the value of CPSR.PAN on taking an exception to Abort mode, and copied to CPSR.PAN on
executing an exception return operation in Abort mode.

Bit [22] (In ARMv8.0)

Reserved, RES0.

Bit [21]

Reserved, RES0.

IL, bit [20]

Illegal Execution state bit. Shows the value of PSTATE.IL immediately before the exception was
taken.

GE, bits [19:16]

Greater than or Equal flags, for parallel addition and subtraction.

IT[7:2], bits [15:10]

IT block state bits for the T32 IT (If-Then) instruction. This field must be interpreted in two parts.

• IT[7:5] holds the base condition for the IT block. The base condition is the top 3 bits of the
condition code specified by the first condition field of the IT instruction.

• IT[4:0] encodes the size of the IT block, which is the number of instructions that are to be
conditionally executed, by the position of the least significant 1 in this field. It also encodes
the value of the least significant bit of the condition code for each instruction in the block.

The IT field is 0b00000000 when no IT block is active.

E, bit [9]

Endianness state bit. Controls the load and store endianness for data accesses:

0 Little-endian operation

1 Big-endian operation.

Instruction fetches ignore this bit.

When the reset value of the SCTLR.EE bit is defined by a configuration input signal, that value also
applies to the CPSR.E bit on reset, and therefore applies to software execution from reset.

If an implementation does not provide Big-endian support, this bit is RES0. If it does not provide
Little-endian support, this bit is RES1.

If an implementation provides Big-endian support but only at EL0, this bit is RES0 for an exception
return to any Exception level other than EL0.

Likewise, if it provides Little-endian support only at EL0, this bit is RES1 for an exception return to
any Exception level other than EL0.

A, bit [8]

Asynchronous data abort mask bit. The possible values of this bit are:

0 Exception not masked.

1 Exception masked.
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. C6-617
ID060316 Non-Confidential

C6 AArch32 Register Descriptions
C6.2 General system control registers
I, bit [7]

IRQ mask bit. The possible values of this bit are:

0 Exception not masked.

1 Exception masked.

F, bit [6]

FIQ mask bit. The possible values of this bit are:

0 Exception not masked.

1 Exception masked.

T, bit [5]

T32 Instruction set state bit. Determines the AArch32 instruction set state that the exception was
taken from. Possible values of this bit are:

0 Taken from A32 state.

1 Taken from T32 state.

M[4], bit [4]

Execution state that the exception was taken from. Possible values of this bit are:

1 Exception taken from AArch32.

M[3:0], bits [3:0]

AArch32 mode that an exception was taken from. The possible values are:

Other values are reserved. The effect of programming this field to a Reserved value is that behavior
is CONSTRAINED UNPREDICTABLE, as described in Reserved values in System and memory-mapped
registers and translation table entries on page C6-700.

Accessing the SPSR_abt

This register can be read using MRS (banked register) with the following syntax:

MRS <Rd>, <banked_reg>

This register can be written using MSR (banked register) with the following syntax:

MSR <banked_reg>, <Rd>

M[3:0] Mode

0b0000 User

0b0001 FIQ

0b0010 IRQ

0b0011 Supervisor

0b0110 Monitor (only valid in Secure state, if EL3 is implemented and can use AArch32)

0b0111 Abort

0b1011 Undefined

0b1111 System
C6-618 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

C6 AArch32 Register Descriptions
C6.2 General system control registers
This syntax is encoded with the following settings in the instruction encoding:

Accessibility

The register is accessible in software as follows:

This register is only accessible at EL1 in modes other than Abort mode. In Abort mode, it is accessible as the current
SPSR.

<banked_reg> R M M1

SPSR_abt 1 1 0100

<banked_reg>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

SPSR_abt x x 0 - RW n/a RW

SPSR_abt x 0 1 - RW RW RW

SPSR_abt x 1 1 - n/a RW RW
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. C6-619
ID060316 Non-Confidential

C6 AArch32 Register Descriptions
C6.2 General system control registers
C6.2.8 SPSR_fiq, Saved Program Status Register (FIQ mode)

The SPSR_fiq characteristics are:

Purpose

Holds the saved process state when an exception is taken to FIQ mode.

Configurations

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register SPSR_fiq is architecturally mapped to AArch64 System register
SPSR_fiq.

Attributes

SPSR_fiq is a 32-bit register.

Field descriptions

The SPSR_fiq bit assignments are:

N, bit [31]

Set to the value of CPSR.N on taking an exception to FIQ mode, and copied to CPSR.N on
executing an exception return operation in FIQ mode.

Z, bit [30]

Set to the value of CPSR.Z on taking an exception to FIQ mode, and copied to CPSR.Z on executing
an exception return operation in FIQ mode.

C, bit [29]

Set to the value of CPSR.C on taking an exception to FIQ mode, and copied to CPSR.C on executing
an exception return operation in FIQ mode.

V, bit [28]

Set to the value of CPSR.V on taking an exception to FIQ mode, and copied to CPSR.V on
executing an exception return operation in FIQ mode.

Q, bit [27]

Set to the value of CPSR.Q on taking an exception to FIQ mode, and copied to CPSR.Q on
executing an exception return operation in FIQ mode.

IT[1:0], bits [26:25]

IT block state bits for the T32 IT (If-Then) instruction. See IT[7:2] for explanation of this field.

J, bit [24]

RES0.

N

31

Z

30

C

29

V

28

Q

27 26 25

J

24 23 22 21

IL

20

GE

19 16

IT[7:2]

15 10

E

9

A

8

I

7

F

6

T

5 4

M[3:0]

3 0

IT[1:0]
RES0
PAN
RES0

M[4]
C6-620 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

C6 AArch32 Register Descriptions
C6.2 General system control registers
In previous versions of the architecture, the {J, T} bits determined the AArch32 Instruction set state.
ARMv8 does not support either Jazelle state or T32EE state, and the T bit determines the Instruction
set state.

Bit [23]

Reserved, RES0.

PAN, bit [22] (In ARMv8.1)

Set to the value of CPSR.PAN on taking an exception to FIQ mode, and copied to CPSR.PAN on
executing an exception return operation in FIQ mode.

Bit [22] (In ARMv8.0)

Reserved, RES0.

Bit [21]

Reserved, RES0.

IL, bit [20]

Illegal Execution state bit. Shows the value of PSTATE.IL immediately before the exception was
taken.

GE, bits [19:16]

Greater than or Equal flags, for parallel addition and subtraction.

IT[7:2], bits [15:10]

IT block state bits for the T32 IT (If-Then) instruction. This field must be interpreted in two parts.

• IT[7:5] holds the base condition for the IT block. The base condition is the top 3 bits of the
condition code specified by the first condition field of the IT instruction.

• IT[4:0] encodes the size of the IT block, which is the number of instructions that are to be
conditionally executed, by the position of the least significant 1 in this field. It also encodes
the value of the least significant bit of the condition code for each instruction in the block.

The IT field is 0b00000000 when no IT block is active.

E, bit [9]

Endianness state bit. Controls the load and store endianness for data accesses:

0 Little-endian operation

1 Big-endian operation.

Instruction fetches ignore this bit.

When the reset value of the SCTLR.EE bit is defined by a configuration input signal, that value also
applies to the CPSR.E bit on reset, and therefore applies to software execution from reset.

If an implementation does not provide Big-endian support, this bit is RES0. If it does not provide
Little-endian support, this bit is RES1.

If an implementation provides Big-endian support but only at EL0, this bit is RES0 for an exception
return to any Exception level other than EL0.

Likewise, if it provides Little-endian support only at EL0, this bit is RES1 for an exception return to
any Exception level other than EL0.

A, bit [8]

Asynchronous data abort mask bit. The possible values of this bit are:

0 Exception not masked.

1 Exception masked.
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. C6-621
ID060316 Non-Confidential

C6 AArch32 Register Descriptions
C6.2 General system control registers
I, bit [7]

IRQ mask bit. The possible values of this bit are:

0 Exception not masked.

1 Exception masked.

F, bit [6]

FIQ mask bit. The possible values of this bit are:

0 Exception not masked.

1 Exception masked.

T, bit [5]

T32 Instruction set state bit. Determines the AArch32 instruction set state that the exception was
taken from. Possible values of this bit are:

0 Taken from A32 state.

1 Taken from T32 state.

M[4], bit [4]

Execution state that the exception was taken from. Possible values of this bit are:

1 Exception taken from AArch32.

M[3:0], bits [3:0]

AArch32 mode that an exception was taken from. The possible values are:

Other values are reserved. The effect of programming this field to a Reserved value is that behavior
is CONSTRAINED UNPREDICTABLE, as described in Reserved values in System and memory-mapped
registers and translation table entries on page C6-700.

Accessing the SPSR_fiq

This register can be read using MRS (banked register) with the following syntax:

MRS <Rd>, <banked_reg>

This register can be written using MSR (banked register) with the following syntax:

MSR <banked_reg>, <Rd>

M[3:0] Mode

0b0000 User

0b0001 FIQ

0b0010 IRQ

0b0011 Supervisor

0b0110 Monitor (only valid in Secure state, if EL3 is implemented and can use AArch32)

0b0111 Abort

0b1011 Undefined

0b1111 System
C6-622 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

C6 AArch32 Register Descriptions
C6.2 General system control registers
This syntax is encoded with the following settings in the instruction encoding:

Accessibility

The register is accessible in software as follows:

This register is only accessible at EL1 in modes other than FIQ mode. In FIQ mode, it is accessible as the current
SPSR.

<banked_reg> R M M1

SPSR_fiq 1 0 1110

<banked_reg>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

SPSR_fiq x x 0 - RW n/a RW

SPSR_fiq x 0 1 - RW RW RW

SPSR_fiq x 1 1 - n/a RW RW
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. C6-623
ID060316 Non-Confidential

C6 AArch32 Register Descriptions
C6.2 General system control registers
C6.2.9 SPSR_hyp, Saved Program Status Register (Hyp mode)

The SPSR_hyp characteristics are:

Purpose

Holds the saved process state when an exception is taken to Hyp mode.

Configurations

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register SPSR_hyp is architecturally mapped to AArch64 System register
SPSR_EL2.

Attributes

SPSR_hyp is a 32-bit register.

Field descriptions

The SPSR_hyp bit assignments are:

N, bit [31]

Set to the value of CPSR.N on taking an exception to Hyp mode, and copied to CPSR.N on
executing an exception return operation in Hyp mode.

Z, bit [30]

Set to the value of CPSR.Z on taking an exception to Hyp mode, and copied to CPSR.Z on executing
an exception return operation in Hyp mode.

C, bit [29]

Set to the value of CPSR.C on taking an exception to Hyp mode, and copied to CPSR.C on
executing an exception return operation in Hyp mode.

V, bit [28]

Set to the value of CPSR.V on taking an exception to Hyp mode, and copied to CPSR.V on
executing an exception return operation in Hyp mode.

Q, bit [27]

Set to the value of CPSR.Q on taking an exception to Hyp mode, and copied to CPSR.Q on
executing an exception return operation in Hyp mode.

IT[1:0], bits [26:25]

IT block state bits for the T32 IT (If-Then) instruction. See IT[7:2] for explanation of this field.

J, bit [24]

RES0.

N

31

Z

30

C

29

V

28

Q

27 26 25

J

24 23 22 21

IL

20

GE

19 16

IT[7:2]

15 10

E

9

A

8

I

7

F

6

T

5 4

M[3:0]

3 0

IT[1:0]
RES0
PAN
RES0

M[4]
C6-624 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

C6 AArch32 Register Descriptions
C6.2 General system control registers
In previous versions of the architecture, the {J, T} bits determined the AArch32 Instruction set state.
ARMv8 does not support either Jazelle state or T32EE state, and the T bit determines the Instruction
set state.

Bit [23]

Reserved, RES0.

PAN, bit [22] (In ARMv8.1)

Set to the value of CPSR.PAN on taking an exception to Hyp mode, and copied to CPSR.PAN on
executing an exception return operation in Hyp mode.

Bit [22] (In ARMv8.0)

Reserved, RES0.

Bit [21]

Reserved, RES0.

IL, bit [20]

Illegal Execution state bit. Shows the value of PSTATE.IL immediately before the exception was
taken.

GE, bits [19:16]

Greater than or Equal flags, for parallel addition and subtraction.

IT[7:2], bits [15:10]

IT block state bits for the T32 IT (If-Then) instruction. This field must be interpreted in two parts.

• IT[7:5] holds the base condition for the IT block. The base condition is the top 3 bits of the
condition code specified by the first condition field of the IT instruction.

• IT[4:0] encodes the size of the IT block, which is the number of instructions that are to be
conditionally executed, by the position of the least significant 1 in this field. It also encodes
the value of the least significant bit of the condition code for each instruction in the block.

The IT field is 0b00000000 when no IT block is active.

E, bit [9]

Endianness state bit. Controls the load and store endianness for data accesses:

0 Little-endian operation

1 Big-endian operation.

Instruction fetches ignore this bit.

When the reset value of the SCTLR.EE bit is defined by a configuration input signal, that value also
applies to the CPSR.E bit on reset, and therefore applies to software execution from reset.

If an implementation does not provide Big-endian support, this bit is RES0. If it does not provide
Little-endian support, this bit is RES1.

If an implementation provides Big-endian support but only at EL0, this bit is RES0 for an exception
return to any Exception level other than EL0.

Likewise, if it provides Little-endian support only at EL0, this bit is RES1 for an exception return to
any Exception level other than EL0.

A, bit [8]

Asynchronous data abort mask bit. The possible values of this bit are:

0 Exception not masked.

1 Exception masked.
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. C6-625
ID060316 Non-Confidential

C6 AArch32 Register Descriptions
C6.2 General system control registers
I, bit [7]

IRQ mask bit. The possible values of this bit are:

0 Exception not masked.

1 Exception masked.

F, bit [6]

FIQ mask bit. The possible values of this bit are:

0 Exception not masked.

1 Exception masked.

T, bit [5]

T32 Instruction set state bit. Determines the AArch32 instruction set state that the exception was
taken from. Possible values of this bit are:

0 Taken from A32 state.

1 Taken from T32 state.

M[4], bit [4]

Execution state that the exception was taken from. Possible values of this bit are:

1 Exception taken from AArch32.

M[3:0], bits [3:0]

AArch32 mode that an exception was taken from. The possible values are:

Other values are reserved. The effect of programming this field to a Reserved value is that behavior
is CONSTRAINED UNPREDICTABLE, as described in Reserved values in System and memory-mapped
registers and translation table entries on page C6-700.

Accessing the SPSR_hyp

This register can be read using MRS (banked register) with the following syntax:

MRS <Rd>, <banked_reg>

This register can be written using MSR (banked register) with the following syntax:

MSR <banked_reg>, <Rd>

M[3:0] Mode

0b0000 User

0b0001 FIQ

0b0010 IRQ

0b0011 Supervisor

0b0111 Abort

0b1010 Hyp

0b1011 Undefined

0b1111 System
C6-626 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

C6 AArch32 Register Descriptions
C6.2 General system control registers
This syntax is encoded with the following settings in the instruction encoding:

Accessibility

The register is accessible in software as follows:

Note
 In Hyp mode, this register is accessible as the current SPSR.

<banked_reg> R M M1

SPSR_hyp 1 1 1110

<banked_reg>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

SPSR_hyp x x 0 - - n/a RW

SPSR_hyp x 0 1 - - - RW

SPSR_hyp x 1 1 - n/a - RW
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. C6-627
ID060316 Non-Confidential

C6 AArch32 Register Descriptions
C6.2 General system control registers
C6.2.10 SPSR_irq, Saved Program Status Register (IRQ mode)

The SPSR_irq characteristics are:

Purpose

Holds the saved process state when an exception is taken to IRQ mode.

Configurations

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register SPSR_irq is architecturally mapped to AArch64 System register
SPSR_irq.

Attributes

SPSR_irq is a 32-bit register.

Field descriptions

The SPSR_irq bit assignments are:

N, bit [31]

Set to the value of CPSR.N on taking an exception to IRQ mode, and copied to CPSR.N on
executing an exception return operation in IRQ mode.

Z, bit [30]

Set to the value of CPSR.Z on taking an exception to IRQ mode, and copied to CPSR.Z on executing
an exception return operation in IRQ mode.

C, bit [29]

Set to the value of CPSR.C on taking an exception to IRQ mode, and copied to CPSR.C on
executing an exception return operation in IRQ mode.

V, bit [28]

Set to the value of CPSR.V on taking an exception to IRQ mode, and copied to CPSR.V on
executing an exception return operation in IRQ mode.

Q, bit [27]

Set to the value of CPSR.Q on taking an exception to IRQ mode, and copied to CPSR.Q on
executing an exception return operation in IRQ mode.

IT[1:0], bits [26:25]

IT block state bits for the T32 IT (If-Then) instruction. See IT[7:2] for explanation of this field.

J, bit [24]

RES0.

N

31

Z

30

C

29

V

28

Q

27 26 25

J

24 23 22 21

IL

20

GE

19 16

IT[7:2]

15 10

E

9

A

8

I

7

F

6

T

5 4

M[3:0]

3 0

IT[1:0]
RES0
PAN
RES0

M[4]
C6-628 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

C6 AArch32 Register Descriptions
C6.2 General system control registers
In previous versions of the architecture, the {J, T} bits determined the AArch32 Instruction set state.
ARMv8 does not support either Jazelle state or T32EE state, and the T bit determines the Instruction
set state.

Bit [23]

Reserved, RES0.

PAN, bit [22] (In ARMv8.1)

Set to the value of CPSR.PAN on taking an exception to IRQ mode, and copied to CPSR.PAN on
executing an exception return operation in IRQ mode.

Bit [22] (In ARMv8.0)

Reserved, RES0.

Bit [21]

Reserved, RES0.

IL, bit [20]

Illegal Execution state bit. Shows the value of PSTATE.IL immediately before the exception was
taken.

GE, bits [19:16]

Greater than or Equal flags, for parallel addition and subtraction.

IT[7:2], bits [15:10]

IT block state bits for the T32 IT (If-Then) instruction. This field must be interpreted in two parts.

• IT[7:5] holds the base condition for the IT block. The base condition is the top 3 bits of the
condition code specified by the first condition field of the IT instruction.

• IT[4:0] encodes the size of the IT block, which is the number of instructions that are to be
conditionally executed, by the position of the least significant 1 in this field. It also encodes
the value of the least significant bit of the condition code for each instruction in the block.

The IT field is 0b00000000 when no IT block is active.

E, bit [9]

Endianness state bit. Controls the load and store endianness for data accesses:

0 Little-endian operation

1 Big-endian operation.

Instruction fetches ignore this bit.

When the reset value of the SCTLR.EE bit is defined by a configuration input signal, that value also
applies to the CPSR.E bit on reset, and therefore applies to software execution from reset.

If an implementation does not provide Big-endian support, this bit is RES0. If it does not provide
Little-endian support, this bit is RES1.

If an implementation provides Big-endian support but only at EL0, this bit is RES0 for an exception
return to any Exception level other than EL0.

Likewise, if it provides Little-endian support only at EL0, this bit is RES1 for an exception return to
any Exception level other than EL0.

A, bit [8]

Asynchronous data abort mask bit. The possible values of this bit are:

0 Exception not masked.

1 Exception masked.
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. C6-629
ID060316 Non-Confidential

C6 AArch32 Register Descriptions
C6.2 General system control registers
I, bit [7]

IRQ mask bit. The possible values of this bit are:

0 Exception not masked.

1 Exception masked.

F, bit [6]

FIQ mask bit. The possible values of this bit are:

0 Exception not masked.

1 Exception masked.

T, bit [5]

T32 Instruction set state bit. Determines the AArch32 instruction set state that the exception was
taken from. Possible values of this bit are:

0 Taken from A32 state.

1 Taken from T32 state.

M[4], bit [4]

Execution state that the exception was taken from. Possible values of this bit are:

1 Exception taken from AArch32.

M[3:0], bits [3:0]

AArch32 mode that an exception was taken from. The possible values are:

Other values are reserved. The effect of programming this field to a Reserved value is that behavior
is CONSTRAINED UNPREDICTABLE, as described in Reserved values in System and memory-mapped
registers and translation table entries on page C6-700.

Accessing the SPSR_irq

This register can be read using MRS (banked register) with the following syntax:

MRS <Rd>, <banked_reg>

This register can be written using MSR (banked register) with the following syntax:

MSR <banked_reg>, <Rd>

M[3:0] Mode

0b0000 User

0b0001 FIQ

0b0010 IRQ

0b0011 Supervisor

0b0110 Monitor (only valid in Secure state, if EL3 is implemented and can use AArch32)

0b0111 Abort

0b1011 Undefined

0b1111 System
C6-630 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

C6 AArch32 Register Descriptions
C6.2 General system control registers
This syntax is encoded with the following settings in the instruction encoding:

Accessibility

The register is accessible in software as follows:

This register is only accessible at EL1 in modes other than IRQ mode. In IRQ mode, it is accessible as the current
SPSR.

<banked_reg> R M M1

SPSR_irq 1 1 0000

<banked_reg>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

SPSR_irq x x 0 - RW n/a RW

SPSR_irq x 0 1 - RW RW RW

SPSR_irq x 1 1 - n/a RW RW
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. C6-631
ID060316 Non-Confidential

C6 AArch32 Register Descriptions
C6.2 General system control registers
C6.2.11 SPSR_mon, Saved Program Status Register (Monitor mode)

The SPSR_mon characteristics are:

Purpose

Holds the saved process state when an exception is taken to Monitor mode.

Configurations

This register is only accessible in Secure state.

AArch32 System register SPSR_mon can be mapped to AArch64 System register SPSR_EL3, but
this is not architecturally mandated.

Attributes

SPSR_mon is a 32-bit register.

Field descriptions

The SPSR_mon bit assignments are:

N, bit [31]

Set to the value of CPSR.N on taking an exception to Monitor mode, and copied to CPSR.N on
executing an exception return operation in Monitor mode.

Z, bit [30]

Set to the value of CPSR.Z on taking an exception to Monitor mode, and copied to CPSR.Z on
executing an exception return operation in Monitor mode.

C, bit [29]

Set to the value of CPSR.C on taking an exception to Monitor mode, and copied to CPSR.C on
executing an exception return operation in Monitor mode.

V, bit [28]

Set to the value of CPSR.V on taking an exception to Monitor mode, and copied to CPSR.V on
executing an exception return operation in Monitor mode.

Q, bit [27]

Set to the value of CPSR.Q on taking an exception to Monitor mode, and copied to CPSR.Q on
executing an exception return operation in Monitor mode.

IT[1:0], bits [26:25]

IT block state bits for the T32 IT (If-Then) instruction. See IT[7:2] for explanation of this field.

J, bit [24]

RES0.

N

31

Z

30

C

29

V

28

Q

27 26 25

J

24 23 22 21

IL

20

GE

19 16

IT[7:2]

15 10

E

9

A

8

I

7

F

6

T

5 4

M[3:0]

3 0

IT[1:0]
RES0
PAN
RES0

M[4]
C6-632 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

C6 AArch32 Register Descriptions
C6.2 General system control registers
In previous versions of the architecture, the {J, T} bits determined the AArch32 Instruction set state.
ARMv8 does not support either Jazelle state or T32EE state, and the T bit determines the Instruction
set state.

Bit [23]

Reserved, RES0.

PAN, bit [22] (In ARMv8.1)

Set to the value of CPSR.PAN on taking an exception to Monitor mode, and copied to CPSR.PAN
on executing an exception return operation in Monitor mode.

Bit [22] (In ARMv8.0)

Reserved, RES0.

Bit [21]

Reserved, RES0.

IL, bit [20]

Illegal Execution state bit. Shows the value of PSTATE.IL immediately before the exception was
taken.

GE, bits [19:16]

Greater than or Equal flags, for parallel addition and subtraction.

IT[7:2], bits [15:10]

IT block state bits for the T32 IT (If-Then) instruction. This field must be interpreted in two parts.

• IT[7:5] holds the base condition for the IT block. The base condition is the top 3 bits of the
condition code specified by the first condition field of the IT instruction.

• IT[4:0] encodes the size of the IT block, which is the number of instructions that are to be
conditionally executed, by the position of the least significant 1 in this field. It also encodes
the value of the least significant bit of the condition code for each instruction in the block.

The IT field is 0b00000000 when no IT block is active.

E, bit [9]

Endianness state bit. Controls the load and store endianness for data accesses:

0 Little-endian operation

1 Big-endian operation.

Instruction fetches ignore this bit.

When the reset value of the SCTLR.EE bit is defined by a configuration input signal, that value also
applies to the CPSR.E bit on reset, and therefore applies to software execution from reset.

If an implementation does not provide Big-endian support, this bit is RES0. If it does not provide
Little-endian support, this bit is RES1.

If an implementation provides Big-endian support but only at EL0, this bit is RES0 for an exception
return to any Exception level other than EL0.

Likewise, if it provides Little-endian support only at EL0, this bit is RES1 for an exception return to
any Exception level other than EL0.

A, bit [8]

Asynchronous data abort mask bit. The possible values of this bit are:

0 Exception not masked.

1 Exception masked.
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. C6-633
ID060316 Non-Confidential

C6 AArch32 Register Descriptions
C6.2 General system control registers
I, bit [7]

IRQ mask bit. The possible values of this bit are:

0 Exception not masked.

1 Exception masked.

F, bit [6]

FIQ mask bit. The possible values of this bit are:

0 Exception not masked.

1 Exception masked.

T, bit [5]

T32 Instruction set state bit. Determines the AArch32 instruction set state that the exception was
taken from. Possible values of this bit are:

0 Taken from A32 state.

1 Taken from T32 state.

M[4], bit [4]

Execution state that the exception was taken from. Possible values of this bit are:

1 Exception taken from AArch32.

M[3:0], bits [3:0]

AArch32 mode that an exception was taken from. The possible values are:

Other values are reserved. The effect of programming this field to a Reserved value is that behavior
is CONSTRAINED UNPREDICTABLE, as described in Reserved values in System and memory-mapped
registers and translation table entries on page C6-700.

Accessing the SPSR_mon

This register can be read using MRS (banked register) with the following syntax:

MRS <Rd>, <banked_reg>

This register can be written using MSR (banked register) with the following syntax:

MSR <banked_reg>, <Rd>

M[3:0] Mode

0b0000 User

0b0001 FIQ

0b0010 IRQ

0b0011 Supervisor

0b0110 Monitor (only valid in Secure state, if EL3 is implemented and can use AArch32)

0b0111 Abort

0b1010 Hyp

0b1011 Undefined

0b1111 System
C6-634 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

C6 AArch32 Register Descriptions
C6.2 General system control registers
This syntax is encoded with the following settings in the instruction encoding:

Accessibility

The register is accessible in software as follows:

This register is only accessible at EL3 in modes other than Monitor mode. In Monitor mode, it is accessible as the
current SPSR.

<banked_reg> R M M1

SPSR_mon 1 1 1100

<banked_reg>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

SPSR_mon x x 0 - - n/a RW

SPSR_mon x 0 1 - - - RW

SPSR_mon x 1 1 - n/a - RW
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. C6-635
ID060316 Non-Confidential

C6 AArch32 Register Descriptions
C6.2 General system control registers
C6.2.12 SPSR_svc, Saved Program Status Register (Supervisor mode)

The SPSR_svc characteristics are:

Purpose

Holds the saved process state when an exception is taken to Supervisor mode.

Configurations

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register SPSR_svc is architecturally mapped to AArch64 System register
SPSR_EL1.

Attributes

SPSR_svc is a 32-bit register.

Field descriptions

The SPSR_svc bit assignments are:

N, bit [31]

Set to the value of CPSR.N on taking an exception to Supervisor mode, and copied to CPSR.N on
executing an exception return operation in Supervisor mode.

Z, bit [30]

Set to the value of CPSR.Z on taking an exception to Supervisor mode, and copied to CPSR.Z on
executing an exception return operation in Supervisor mode.

C, bit [29]

Set to the value of CPSR.C on taking an exception to Supervisor mode, and copied to CPSR.C on
executing an exception return operation in Supervisor mode.

V, bit [28]

Set to the value of CPSR.V on taking an exception to Supervisor mode, and copied to CPSR.V on
executing an exception return operation in Supervisor mode.

Q, bit [27]

Set to the value of CPSR.Q on taking an exception to Supervisor mode, and copied to CPSR.Q on
executing an exception return operation in Supervisor mode.

IT[1:0], bits [26:25]

IT block state bits for the T32 IT (If-Then) instruction. See IT[7:2] for explanation of this field.

J, bit [24]

RES0.

N

31

Z

30

C

29

V

28

Q

27 26 25

J

24 23 22 21

IL

20

GE

19 16

IT[7:2]

15 10

E

9

A

8

I

7

F

6

T

5 4

M[3:0]

3 0

IT[1:0]
RES0
PAN
RES0

M[4]
C6-636 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

C6 AArch32 Register Descriptions
C6.2 General system control registers
In previous versions of the architecture, the {J, T} bits determined the AArch32 Instruction set state.
ARMv8 does not support either Jazelle state or T32EE state, and the T bit determines the Instruction
set state.

Bit [23]

Reserved, RES0.

PAN, bit [22] (In ARMv8.1)

Set to the value of CPSR.PAN on taking an exception to Supervisor mode, and copied to CPSR.PAN
on executing an exception return operation in Supervisor mode.

Bit [22] (In ARMv8.0)

Reserved, RES0.

Bit [21]

Reserved, RES0.

IL, bit [20]

Illegal Execution state bit. Shows the value of PSTATE.IL immediately before the exception was
taken.

GE, bits [19:16]

Greater than or Equal flags, for parallel addition and subtraction.

IT[7:2], bits [15:10]

IT block state bits for the T32 IT (If-Then) instruction. This field must be interpreted in two parts.

• IT[7:5] holds the base condition for the IT block. The base condition is the top 3 bits of the
condition code specified by the first condition field of the IT instruction.

• IT[4:0] encodes the size of the IT block, which is the number of instructions that are to be
conditionally executed, by the position of the least significant 1 in this field. It also encodes
the value of the least significant bit of the condition code for each instruction in the block.

The IT field is 0b00000000 when no IT block is active.

E, bit [9]

Endianness state bit. Controls the load and store endianness for data accesses:

0 Little-endian operation

1 Big-endian operation.

Instruction fetches ignore this bit.

When the reset value of the SCTLR.EE bit is defined by a configuration input signal, that value also
applies to the CPSR.E bit on reset, and therefore applies to software execution from reset.

If an implementation does not provide Big-endian support, this bit is RES0. If it does not provide
Little-endian support, this bit is RES1.

If an implementation provides Big-endian support but only at EL0, this bit is RES0 for an exception
return to any Exception level other than EL0.

Likewise, if it provides Little-endian support only at EL0, this bit is RES1 for an exception return to
any Exception level other than EL0.

A, bit [8]

Asynchronous data abort mask bit. The possible values of this bit are:

0 Exception not masked.

1 Exception masked.
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. C6-637
ID060316 Non-Confidential

C6 AArch32 Register Descriptions
C6.2 General system control registers
I, bit [7]

IRQ mask bit. The possible values of this bit are:

0 Exception not masked.

1 Exception masked.

F, bit [6]

FIQ mask bit. The possible values of this bit are:

0 Exception not masked.

1 Exception masked.

T, bit [5]

T32 Instruction set state bit. Determines the AArch32 instruction set state that the exception was
taken from. Possible values of this bit are:

0 Taken from A32 state.

1 Taken from T32 state.

M[4], bit [4]

Execution state that the exception was taken from. Possible values of this bit are:

1 Exception taken from AArch32.

M[3:0], bits [3:0]

AArch32 mode that an exception was taken from. The possible values are:

Other values are reserved. The effect of programming this field to a Reserved value is that behavior
is CONSTRAINED UNPREDICTABLE, as described in Reserved values in System and memory-mapped
registers and translation table entries on page C6-700.

Accessing the SPSR_svc

This register can be read using MRS (banked register) with the following syntax:

MRS <Rd>, <banked_reg>

This register can be written using MSR (banked register) with the following syntax:

MSR <banked_reg>, <Rd>

M[3:0] Mode

0b0000 User

0b0001 FIQ

0b0010 IRQ

0b0011 Supervisor

0b0110 Monitor (only valid in Secure state, if EL3 is implemented and can use AArch32)

0b0111 Abort

0b1011 Undefined

0b1111 System
C6-638 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

C6 AArch32 Register Descriptions
C6.2 General system control registers
This syntax is encoded with the following settings in the instruction encoding:

Accessibility

The register is accessible in software as follows:

This register is only accessible at EL1 in modes other than Supervisor mode. In Supervisor mode, it is accessible as
the current SPSR.

<banked_reg> R M M1

SPSR_svc 1 1 0010

<banked_reg>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

SPSR_svc x x 0 - RW n/a RW

SPSR_svc x 0 1 - RW RW RW

SPSR_svc x 1 1 - n/a RW RW
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. C6-639
ID060316 Non-Confidential

C6 AArch32 Register Descriptions
C6.2 General system control registers
C6.2.13 SPSR_und, Saved Program Status Register (Undefined mode)

The SPSR_und characteristics are:

Purpose

Holds the saved process state when an exception is taken to Undefined mode.

Configurations

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register SPSR_und is architecturally mapped to AArch64 System register
SPSR_und.

Attributes

SPSR_und is a 32-bit register.

Field descriptions

The SPSR_und bit assignments are:

N, bit [31]

Set to the value of CPSR.N on taking an exception to Undefined mode, and copied to CPSR.N on
executing an exception return operation in Undefined mode.

Z, bit [30]

Set to the value of CPSR.Z on taking an exception to Undefined mode, and copied to CPSR.Z on
executing an exception return operation in Undefined mode.

C, bit [29]

Set to the value of CPSR.C on taking an exception to Undefined mode, and copied to CPSR.C on
executing an exception return operation in Undefined mode.

V, bit [28]

Set to the value of CPSR.V on taking an exception to Undefined mode, and copied to CPSR.V on
executing an exception return operation in Undefined mode.

Q, bit [27]

Set to the value of CPSR.Q on taking an exception to Undefined mode, and copied to CPSR.Q on
executing an exception return operation in Undefined mode.

IT[1:0], bits [26:25]

IT block state bits for the T32 IT (If-Then) instruction. See IT[7:2] for explanation of this field.

J, bit [24]

RES0.

N

31

Z

30

C

29

V

28

Q

27 26 25

J

24 23 22 21

IL

20

GE

19 16

IT[7:2]

15 10

E

9

A

8

I

7

F

6

T

5 4

M[3:0]

3 0

IT[1:0]
RES0
PAN
RES0

M[4]
C6-640 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

C6 AArch32 Register Descriptions
C6.2 General system control registers
In previous versions of the architecture, the {J, T} bits determined the AArch32 Instruction set state.
ARMv8 does not support either Jazelle state or T32EE state, and the T bit determines the Instruction
set state.

Bit [23]

Reserved, RES0.

PAN, bit [22] (In ARMv8.1)

Set to the value of CPSR.PAN on taking an exception to Undefined mode, and copied to CPSR.PAN
on executing an exception return operation in Undefined mode.

Bit [22] (In ARMv8.0)

Reserved, RES0.

Bit [21]

Reserved, RES0.

IL, bit [20]

Illegal Execution state bit. Shows the value of PSTATE.IL immediately before the exception was
taken.

GE, bits [19:16]

Greater than or Equal flags, for parallel addition and subtraction.

IT[7:2], bits [15:10]

IT block state bits for the T32 IT (If-Then) instruction. This field must be interpreted in two parts.

• IT[7:5] holds the base condition for the IT block. The base condition is the top 3 bits of the
condition code specified by the first condition field of the IT instruction.

• IT[4:0] encodes the size of the IT block, which is the number of instructions that are to be
conditionally executed, by the position of the least significant 1 in this field. It also encodes
the value of the least significant bit of the condition code for each instruction in the block.

The IT field is 0b00000000 when no IT block is active.

E, bit [9]

Endianness state bit. Controls the load and store endianness for data accesses:

0 Little-endian operation

1 Big-endian operation.

Instruction fetches ignore this bit.

When the reset value of the SCTLR.EE bit is defined by a configuration input signal, that value also
applies to the CPSR.E bit on reset, and therefore applies to software execution from reset.

If an implementation does not provide Big-endian support, this bit is RES0. If it does not provide
Little-endian support, this bit is RES1.

If an implementation provides Big-endian support but only at EL0, this bit is RES0 for an exception
return to any Exception level other than EL0.

Likewise, if it provides Little-endian support only at EL0, this bit is RES1 for an exception return to
any Exception level other than EL0.

A, bit [8]

Asynchronous data abort mask bit. The possible values of this bit are:

0 Exception not masked.

1 Exception masked.
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. C6-641
ID060316 Non-Confidential

C6 AArch32 Register Descriptions
C6.2 General system control registers
I, bit [7]

IRQ mask bit. The possible values of this bit are:

0 Exception not masked.

1 Exception masked.

F, bit [6]

FIQ mask bit. The possible values of this bit are:

0 Exception not masked.

1 Exception masked.

T, bit [5]

T32 Instruction set state bit. Determines the AArch32 instruction set state that the exception was
taken from. Possible values of this bit are:

0 Taken from A32 state.

1 Taken from T32 state.

M[4], bit [4]

Execution state that the exception was taken from. Possible values of this bit are:

1 Exception taken from AArch32.

M[3:0], bits [3:0]

AArch32 mode that an exception was taken from. The possible values are:

Other values are reserved. The effect of programming this field to a Reserved value is that behavior
is CONSTRAINED UNPREDICTABLE, as described in Reserved values in System and memory-mapped
registers and translation table entries on page C6-700.

Accessing the SPSR_und

This register can be read using MRS (banked register) with the following syntax:

MRS <Rd>, <banked_reg>

This register can be written using MSR (banked register) with the following syntax:

MSR <banked_reg>, <Rd>

M[3:0] Mode

0b0000 User

0b0001 FIQ

0b0010 IRQ

0b0011 Supervisor

0b0110 Monitor (only valid in Secure state, if EL3 is implemented and can use AArch32)

0b0111 Abort

0b1011 Undefined

0b1111 System
C6-642 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

C6 AArch32 Register Descriptions
C6.2 General system control registers
This syntax is encoded with the following settings in the instruction encoding:

Accessibility

The register is accessible in software as follows:

This register is only accessible at EL1 in modes other than Undefined mode. In Undefined mode, it is accessible as
the current SPSR.

<banked_reg> R M M1

SPSR_und 1 1 0110

<banked_reg>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

SPSR_und x x 0 - RW n/a RW

SPSR_und x 0 1 - RW RW RW

SPSR_und x 1 1 - n/a RW RW
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. C6-643
ID060316 Non-Confidential

C6 AArch32 Register Descriptions
C6.3 Debug registers
C6.3 Debug registers
This section lists the ARMv8.1 Debug System registers in AArch32 state, in alphabetic order.

Note
 The changes to the breakpoint types introduced by Virtualization Host Extensions apply to the AArch32 registers
DBGBXVR<n> and DBGBVR<n> because matching against CONTEXTIDR_EL2 depends on whether EL2 is
using AArch64, and not on the Execution state of the debug target Exception level.
C6-644 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

C6 AArch32 Register Descriptions
C6.3 Debug registers
C6.3.1 DBGBCR<n>, Debug Breakpoint Control Registers, n = 0 - 15

The DBGBCR<n> characteristics are:

Purpose

Holds control information for a breakpoint. Forms breakpoint n together with value register
DBGBVR<n>. If EL2 is implemented and this breakpoint supports Context matching,
DBGBVR<n> can be associated with a Breakpoint Extended Value Register DBGBXVR<n> for
VMID matching.

Configurations

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register DBGBCR<n> is architecturally mapped to AArch64 System register
DBGBCR<n>_EL1.

AArch32 System register DBGBCR<n> is architecturally mapped to External register
DBGBCR<n>_EL1.

If breakpoint n is not implemented then this register is unallocated.

This register is in the Cold reset domain. On a Cold reset RW fields in this register reset to
architecturally UNKNOWN values.The register is not affected by a Warm reset.

Attributes

DBGBCR<n> is a 32-bit register.

Field descriptions

The DBGBCR<n> bit assignments are:

When the E field is zero, all the other fields in the register are ignored.

Bits [31:24]

Reserved, RES0.

BT, bits [23:20]

Breakpoint Type. Possible values are:

0000 Unlinked address match.

0001 Linked address match.

0010 Unlinked Context ID match.

0011 Linked Context ID match.

0100 Unlinked instruction address mismatch.

0101 Linked instruction address mismatch.

0110 Unlinked CONTEXTIDR_EL1 match (ARMv8.1).

0111 Linked CONTEXTIDR_EL1 match (ARMv8.1).

1000 Unlinked VMID match.

1001 Linked VMID match.

RES0

31 24

BT

23 20

LBN

19 16

SSC

15 14 13

RES0

12 9

BAS

8 5 4 3

PMC

2 1

E

0

RES0
HMC
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. C6-645
ID060316 Non-Confidential

C6 AArch32 Register Descriptions
C6.3 Debug registers
1010 Unlinked VMID and Context ID match.

1011 Linked VMID and Context ID match.

1100 Unlinked CONTEXTIDR_EL2 match (ARMv8.1).

1101 Linked CONTEXTIDR_EL2 match (ARMv8.1).

1110 Unlinked Full Context ID match (ARMv8.1).

1111 Linked Full Context ID match (ARMv8.1).

The field breaks down as follows:

• BT[3:1]: Base type.

000 Match address. DBGBVR<n> is the address of an instruction.

001 Match Context ID. DBGBVR<n>.ContextID is a Context ID compared against
CONTEXTIDR in ARMv8.0, and in ARMv8.1 when not in a Host OS or a Host
Application. In ARMv8.1, when in a Host OS or Host Application, the Context
ID is compared against CONTEXTIDR_EL1.

010 Mismatch address. DBGBVR<n> is the address of an instruction to be stepped.

011 Match CONTEXTIDR_EL1. DBGBVR<n>.ContextID is a Context ID
compared against CONTEXTIDR.

100 Match VMID. DBGBXVR<n>.VMID is a VMID compared against
VTTBR.VMID.

101 Match VMID and Context ID. DBGBVR<n>.ContextID is a Context ID
compared against CONTEXTIDR, and DBGBXVR<n>.VMID is a VMID
compared against VTTBR.VMID.

110 Match CONTEXTIDR_EL2. DBGBXVR<n>.ContextID2 is a Context ID
compared against CONTEXTIDR_EL2.

111 Match Full Context ID. DBGBVR<n>.ContextID is compared against
CONTEXTIDR_EL1, and DBGBXVR<n>.ContextID2 is compared against
CONTEXTIDR_EL2.

• BT[0]: Enable linking.

All other values are reserved. Constraints on breakpoint programming mean other values are
reserved under some conditions. For more information, including the effect of programming this
field to a reserved value, see “Reserved DBGBCR<n>.BT values” in the.ARM® Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile.

When this register has an architecturally-defined reset value, this field resets to a value that is
architecturally UNKNOWN.

LBN, bits [19:16]

Linked breakpoint number. For Linked address matching breakpoints, this specifies the index of the
Context-matching breakpoint linked to.

For all other breakpoint types this field is ignored and reads of the register return an UNKNOWN
value.

This field is ignored when the value of DBGBCR<n>.E is 0.

When this register has an architecturally-defined reset value, this field resets to a value that is
architecturally UNKNOWN.

SSC, bits [15:14]

Security state control. Determines the Security states under which a Breakpoint debug event for
breakpoint n is generated. This field must be interpreted along with the HMC and PMC fields, and
there are constraints on the permitted values of the {HMC, SSC, PMC} fields. For more
information, including the effect of programming the fields to a reserved set of values, see Usage
constraints on page C6-700.

When this register has an architecturally-defined reset value, this field resets to a value that is
architecturally UNKNOWN.
C6-646 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

C6 AArch32 Register Descriptions
C6.3 Debug registers
HMC, bit [13]

Higher mode control. Determines the debug perspective for deciding when a Breakpoint debug
event for breakpoint n is generated. This field must be interpreted along with the SSC and PMC
fields, and there are constraints on the permitted values of the {HMC, SSC, PMC} fields. For more
information see the SSC, bits [15:14] description.

When this register has an architecturally-defined reset value, this field resets to a value that is
architecturally UNKNOWN.

Bits [12:9]

Reserved, RES0.

BAS, bits [8:5]

Byte address select. Defines which half-words an address-matching breakpoint matches, regardless
of the instruction set and Execution state.

The permitted values depend on the breakpoint type.

For Address match breakpoints, the permitted values are:

All other values are reserved. For more information, see "Reserved DBGBCR<n>_EL1.BAS
values" in the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile.

For more information on using the BAS field in Address Match breakpoints, see Using the BAS field
in Address Match breakpoints on page C6-700.

For Address mismatch breakpoints in an AArch32 stage 1 translation regime, the permitted values
are:

All other values are reserved. For more information, see "Reserved DBGBCR<n>_EL1.BAS
values" in the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile.

For more information on using the BAS field in address mismatch breakpoints, see Using the BAS
field in Address Match breakpoints on page C6-700.

For Context matching breakpoints, this field is RES1 and ignored.

When this register has an architecturally-defined reset value, if this field is implemented as an RW
field, it resets to a value that is architecturally UNKNOWN.

Bits [4:3]

Reserved, RES0.

BAS Match instruction at Constraint for debuggers

0011 DBGBVR<n> Use for T32 instructions.

1100 DBGBVR<n>+2 Use for T32 instructions.

1111 DBGBVR<n> Use for A32 instructions.

BAS Step instruction at Constraint for debuggers

0000 - Use for a match anywhere breakpoint.

0011 DBGBVR<n> Use for stepping T32 instructions.

1100 DBGBVR<n>+2 Use for stepping T32 instructions.

1111 DBGBVR<n> Use for stepping A32 instructions.
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. C6-647
ID060316 Non-Confidential

C6 AArch32 Register Descriptions
C6.3 Debug registers
PMC, bits [2:1]

Privilege mode control. Determines the Exception level or levels at which a Breakpoint debug event
for breakpoint n is generated. This field must be interpreted along with the SSC and HMC fields,
and there are constraints on the permitted values of the {HMC, SSC, PMC} fields. For more
information see the DBGBCR<n>.SSC description.

When this register has an architecturally-defined reset value, this field resets to a value that is
architecturally UNKNOWN.

E, bit [0]

Enable breakpoint DBGBVR<n>. Possible values are:

0 Breakpoint disabled.

1 Breakpoint enabled.

When this register has an architecturally-defined reset value, this field resets to a value that is
architecturally UNKNOWN.

Accessing the DBGBCR<n>

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax is encoded with the following settings in the instruction encoding:

Accessibility

The register is accessible in software as follows:

Traps and Enables

For a description of the prioritization of any generated exceptions, see Synchronous exception prioritization for
exceptions taken to AArch32 state on page C6-698 for exceptions taken to AArch32 state and Synchronous
exception prioritization for exceptions taken to AArch64 on page B12-547 for exceptions taken to AArch64 state.
Subject to the prioritization rules:

In both security states, and not dependent on other bits:

• If EDSCR.TDA==1, and DBGOSLSR.OSLK==0, accesses to this register from PL1 and PL2 are trapped to
Debug state.

<syntax> opc1 opc2 CRn coproc CRm

p14, 0, <Rt>, c0, <CRm>, 5 000 101 0000 1110 n<3:0>

<syntax>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

p14, 0, <Rt>, c0, <CRm>, 5 x x 0 - RW n/a RW

p14, 0, <Rt>, c0, <CRm>, 5 x 0 1 - RW RW RW

p14, 0, <Rt>, c0, <CRm>, 5 x 1 1 - n/a RW RW
C6-648 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

C6 AArch32 Register Descriptions
C6.3 Debug registers
When EL2 is implemented and is using AArch64 and SCR_EL3.NS == 1:

• If MDCR_EL2.TDA==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS == 1:

• If HDCR.TDA==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

When EL3 is implemented and is using AArch64:

• If MDCR_EL3.TDA==1, accesses to this register from PL1 and PL2 are trapped to EL3.
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. C6-649
ID060316 Non-Confidential

C6 AArch32 Register Descriptions
C6.3 Debug registers
C6.3.2 DBGBVR<n>, Debug Breakpoint Value Registers, n = 0 - 15

The DBGBVR<n> characteristics are:

Purpose

Holds a value for use in breakpoint matching, either the virtual address of an instruction or a context
ID. Forms breakpoint n together with control register DBGBCR<n>. If EL2 is implemented and this
breakpoint supports Context matching, DBGBVR<n> can be associated with a Breakpoint
Extended Value Register DBGBXVR<n> for VMID matching.

Configurations

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register DBGBVR<n> is architecturally mapped to AArch64 System register
DBGBVR<n>_EL1[31:0].

AArch32 System register DBGBVR<n> is architecturally mapped to External register
DBGBVR<n>_EL1[31:0].

If breakpoint n is not implemented then this register is unallocated.

This register is in the Cold reset domain. On a Cold reset RW fields in this register reset to
architecturally UNKNOWN values.The register is not affected by a Warm reset.

Attributes

How this register is interpreted depends on the value of DBGBCR<n>.BT.

• When DBGBCR<n>.BT is 0b0x0x, this register holds a virtual address.

• When DBGBCR<n>.BT is 0b001x, 0b101x, or 0b111x, this register holds a Context ID.

For other values of DBGBCR<n>.BT, this register is RES0.

Some breakpoints might not support Context ID comparison. For more information, see the
description of the DBGDIDR.CTX_CMPs field.

Field descriptions

The DBGBVR<n> bit assignments are:

When DBGBCR<n>.BT==0b0x0x:

VA[31:2], bits [31:2]

Bits[31:2] of the address value for comparison.

When this register has an architecturally-defined reset value, this field resets to a value that is
architecturally UNKNOWN.

Bits [1:0]

Reserved, RES0.

VA[31:2]

31 2 1 0

RES0
C6-650 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

C6 AArch32 Register Descriptions
C6.3 Debug registers
When DBGBCR<n>.BT==0b001x:

ContextID, bits [31:0]

Context ID value for comparison.

The value is compared against CONTEXTIDR in the following cases:

• The PE is in Secure state.

• In ARMv8.0.

• In ARMv8.1, when EL2 is using AArch32.

• In ARMv8.1, when EL2 is using AArch64, and HCR_EL2.E2H is 0.

• In ARMv8.1, when EL2 is using AArch64, HCR_EL2.{E2H, TGE} is {1, 0}, and the PE is
in Non-secure EL0 or EL1.

In ARMv8.1, when EL2 is using AArch64, HCR_EL2.{E2H, TGE} is {1, 1} and the PE is in
Non-secure EL0, the value is compared against CONTEXTIDR_EL2.

When this register has an architecturally-defined reset value, this field resets to a value that is
architecturally UNKNOWN.

When DBGBCR<n>.BT==0b101x and EL2 implemented:

ContextID, bits [31:0]

Context ID value for comparison against CONTEXTIDR.

When this register has an architecturally-defined reset value, this field resets to a value that is
architecturally UNKNOWN.

When DBGBCR<n>.BT==0b111x and EL2 implemented:

ContextID, bits [31:0]

Context ID value for comparison against CONTEXTIDR_EL2.

When this register has an architecturally-defined reset value, this field resets to a value that is
architecturally UNKNOWN.

Accessing the DBGBVR<n>

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

ContextID

31 0

ContextID

31 0

ContextID

31 0
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. C6-651
ID060316 Non-Confidential

C6 AArch32 Register Descriptions
C6.3 Debug registers
MCR <syntax>

This syntax is encoded with the following settings in the instruction encoding:

Accessibility

The register is accessible in software as follows:

Traps and Enables

For a description of the prioritization of any generated exceptions, see Synchronous exception prioritization for
exceptions taken to AArch32 state on page C6-698 for exceptions taken to AArch32 state and Synchronous
exception prioritization for exceptions taken to AArch64 on page B12-547 for exceptions taken to AArch64 state.
Subject to the prioritization rules:

In both security states, and not dependent on other bits:

• If EDSCR.TDA==1, and DBGOSLSR.OSLK==0, accesses to this register from PL1 and PL2 are trapped to
Debug state.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS == 1:

• If MDCR_EL2.TDA==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS == 1:

• If HDCR.TDA==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

When EL3 is implemented and is using AArch64:

• If MDCR_EL3.TDA==1, accesses to this register from PL1 and PL2 are trapped to EL3.

<syntax> opc1 opc2 CRn coproc CRm

p14, 0, <Rt>, c0, <CRm>, 4 000 100 0000 1110 n<3:0>

<syntax>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

p14, 0, <Rt>, c0, <CRm>, 4 x x 0 - RW n/a RW

p14, 0, <Rt>, c0, <CRm>, 4 x 0 1 - RW RW RW

p14, 0, <Rt>, c0, <CRm>, 4 x 1 1 - n/a RW RW
C6-652 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

C6 AArch32 Register Descriptions
C6.3 Debug registers
C6.3.3 DBGBXVR<n>, Debug Breakpoint Extended Value Registers, n = 0 - 15

The DBGBXVR<n> characteristics are:

Purpose

Holds a value for use in breakpoint matching, to support VMID matching. Used in conjunction with
a control register DBGBCR<n> and a value register DBGBVR<n>, where EL2 is implemented and
breakpoint n supports Context matching.

Configurations

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register DBGBXVR<n> is architecturally mapped to AArch64 System register
DBGBVR<n>_EL1[63:32].

AArch32 System register DBGBXVR<n> is architecturally mapped to External register
DBGBVR<n>_EL1[63:32].

This register is unallocated in any of the following cases:

• Breakpoint n is not implemented.

• Breakpoint n does not support Context matching.

• EL2 is not implemented.

For more information, see the description of the DBGDIDR.CTX_CMPs field.

This register is in the Cold reset domain. On a Cold reset RW fields in this register reset to
architecturally UNKNOWN values.The register is not affected by a Warm reset.

Attributes

How this register is interpreted depends on the value of DBGBCR<n>.BT.

• When DBGBCR<n>.BT is 0b10xx, this register holds a VMID.

• When DBGBCR<n>.BT is 0b11xx, this register holds a Context ID.

For other values of DBGBCR<n>.BT, this register is RES0.

Field descriptions

The DBGBXVR<n> bit assignments are:

When DBGBCR<n>.BT==0b10xx and EL2 implemented:

Bits [31:16]

Reserved, RES0.

VMID, bits [15:0] (In ARMv8.1)

VMID value for comparison.

The VMID is 8 bits in the following cases.

• In ARMv8.0.

• In ARMv8.1, when EL2 is using AArch32.

In ARMv8.1 when EL2 is using AArch64, it is IMPLEMENTATION DEFINED whether the VMID is 8
bits or 16 bits.

RES0

31 16

VMID

15 0
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. C6-653
ID060316 Non-Confidential

C6 AArch32 Register Descriptions
C6.3 Debug registers
The upper 8 bits of this field are RES0 if any of the following apply:

• The implementation has an 8 bit VMID.

• VTCR_EL2.VS is 0.

• EL2 is using AArch32.

When this register has an architecturally-defined reset value, this field resets to a value that is
architecturally UNKNOWN.

Bits [15:8] (In ARMv8.0)

Reserved, RES0.

VMID, bits [7:0] (In ARMv8.0)

VMID value for comparison.

When this register has an architecturally-defined reset value, this field resets to a value that is
architecturally UNKNOWN.

When DBGBCR<n>.BT==0b11xx and EL2 implemented:

ContextID2, bits [31:0]

Context ID value for comparison against CONTEXTIDR_EL2.

When this register has an architecturally-defined reset value, this field resets to a value that is
architecturally UNKNOWN.

Accessing the DBGBXVR<n>

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax is encoded with the following settings in the instruction encoding:

ContextID2

31 0

<syntax> opc1 opc2 CRn coproc CRm

p14, 0, <Rt>, c1, <CRm>, 1 000 001 0001 1110 n<3:0>
C6-654 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

C6 AArch32 Register Descriptions
C6.3 Debug registers
Accessibility

The register is accessible in software as follows:

Traps and Enables

For a description of the prioritization of any generated exceptions, see Synchronous exception prioritization for
exceptions taken to AArch32 state on page C6-698 for exceptions taken to AArch32 state and Synchronous
exception prioritization for exceptions taken to AArch64 on page B12-547 for exceptions taken to AArch64 state.
Subject to the prioritization rules:

In both security states, and not dependent on other bits:

• If EDSCR.TDA==1, and DBGOSLSR.OSLK==0, accesses to this register from PL1 and PL2 are trapped to
Debug state.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS == 1:

• If MDCR_EL2.TDA==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS == 1:

• If HDCR.TDA==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

When EL3 is implemented and is using AArch64:

• If MDCR_EL3.TDA==1, accesses to this register from PL1 and PL2 are trapped to EL3.

<syntax>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

p14, 0, <Rt>, c1, <CRm>, 1 x x 0 - RW n/a RW

p14, 0, <Rt>, c1, <CRm>, 1 x 0 1 - RW RW RW

p14, 0, <Rt>, c1, <CRm>, 1 x 1 1 - n/a RW RW
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. C6-655
ID060316 Non-Confidential

C6 AArch32 Register Descriptions
C6.3 Debug registers
C6.3.4 DBGDIDR, Debug ID Register

The DBGDIDR characteristics are:

Purpose

Specifies which version of the Debug architecture is implemented, and some features of the debug
implementation.

Configurations

There is one instance of this register that is used in both Secure and Non-secure states.

If EL1 cannot use AArch32 then the implementation of this register is OPTIONAL and deprecated.

Attributes

DBGDIDR is a 32-bit register.

Field descriptions

The DBGDIDR bit assignments are:

WRPs, bits [31:28]

The number of watchpoints implemented, minus 1.

Permitted values of this field are from 0b0001 for 2 implemented watchpoints, to 0b1111 for 16
implemented watchpoints.

The value of 0b0000 is reserved.

If AArch64 is implemented, this field has the same value as ID_AA64DFR0_EL1.WRPs.

BRPs, bits [27:24]

The number of breakpoints implemented, minus 1.

Permitted values of this field are from 0b0001 for 2 implemented breakpoint, to 0b1111 for 16
implemented breakpoints.

The value of 0b0000 is reserved.

If AArch64 is implemented, this field has the same value as ID_AA64DFR0_EL1.BRPs.

CTX_CMPs, bits [23:20]

The number of breakpoints that can be used for Context matching, minus 1.

Permitted values of this field are from 0b0000 for 1 Context matching breakpoint, to 0b1111 for 16
Context matching breakpoints.

The Context matching breakpoints must be the highest addressed breakpoints. For example, if six
breakpoints are implemented and two are Context matching breakpoints, they must be breakpoints
4 and 5.

If AArch64 is implemented, this field has the same value as ID_AA64DFR0_EL1.CTX_CMPs.

WRPs

31 28

BRPs

27 24

CTX_CMPs

23 20

Version

19 16 15 14 13 12

RES0

11 0

SE_imp
RES0

nSUHD_imp
RES1
C6-656 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

C6 AArch32 Register Descriptions
C6.3 Debug registers
Version, bits [19:16]

The Debug architecture version. Defined values are:

0001 ARMv6, v6 Debug architecture.

0010 ARMv6, v6.1 Debug architecture.

0011 ARMv7, v7 Debug architecture, with baseline CP14 registers implemented.

0100 ARMv7, v7 Debug architecture, with all CP14 registers implemented.

0101 ARMv7, v7.1 Debug architecture.

0110 ARMv8, v8 Debug architecture.

0111 ARMv8.1, v8 Debug architecture, with Virtualization Host Extensions.

All other values are reserved.

In ARMv8-A the only permitted value is 0110.

In ARMv8.1 the only permitted value is 0111.

Bit [15]

Reserved, RES1.

nSUHD_imp, bit [14]

In ARMv7-A, was Secure User Halting Debug not implemented.

The value of this bit must match the value of the SE_imp bit.

Bit [13]

Reserved, RES0.

SE_imp, bit [12]

EL3 implemented. The meanings of the values of this bit are:

0 EL3 not implemented.

1 EL3 implemented.

The value of this bit must match the value of the nSUHD_imp bit.

Bits [11:0]

Reserved, RES0.

Accessing the DBGDIDR

This register can be read using MRC with the following syntax:

MRC <syntax>

This syntax is encoded with the following settings in the instruction encoding:

<syntax> opc1 opc2 CRn coproc CRm

p14, 0, <Rt>, c0, c0, 0 000 000 0000 1110 0000
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. C6-657
ID060316 Non-Confidential

C6 AArch32 Register Descriptions
C6.3 Debug registers
Accessibility

The register is accessible in software as follows:

ARM deprecates any access to this register from EL0.

Traps and Enables

For a description of the prioritization of any generated exceptions, see Synchronous exception prioritization for
exceptions taken to AArch32 state on page C6-698 for exceptions taken to AArch32 state and Synchronous
exception prioritization for exceptions taken to AArch64 on page B12-547 for exceptions taken to AArch64 state.
Subject to the prioritization rules:

In both security states, and not dependent on other bits:

• If DBGDSCRext.UDCCdis==1, read accesses to this register from PL0 are trapped to Undefined mode.

• If MDSCR_EL1.TDCC==1, read accesses to this register from PL0 are trapped to EL1.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS == 1:

• If MDCR_EL2.TDA==1, Non-secure read accesses to this register from EL0 and EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS == 1:

• If HDCR.TDA==1, Non-secure read accesses to this register from EL0 and EL1 are trapped to Hyp mode.

When EL3 is implemented and is using AArch64:

• If MDCR_EL3.TDA==1, read accesses to this register from PL0, PL1, and PL2 are trapped to EL3.

<syntax>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

p14, 0, <Rt>, c0, c0, 0 x x 0 RO RO n/a RO

p14, 0, <Rt>, c0, c0, 0 x 0 1 RO RO RO RO

p14, 0, <Rt>, c0, c0, 0 x 1 1 RO n/a RO RO
C6-658 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

C6 AArch32 Register Descriptions
C6.3 Debug registers
C6.3.5 DBGDSCRext, Debug Status and Control Register, External View

The DBGDSCRext characteristics are:

Purpose

Main control register for the debug implementation.

Configurations

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register DBGDSCRext is architecturally mapped to AArch64 System register
MDSCR_EL1.

This register is required in all implementations.

This register is in the Warm reset domain. Some or all RW fields of this register have defined reset
values. On a Warm or Cold reset these apply only if the PE resets into an Exception level that is
using AArch32. Otherwise, on a Warm or Cold reset RW fields in this register reset to
architecturally UNKNOWN values.

Attributes

DBGDSCRext is a 32-bit register.

Field descriptions

The DBGDSCRext bit assignments are:

Bit [31]

Reserved, RES0.

RXfull, bit [30]

DTRRX full. Used for save/restore of EDSCR.RXfull.

When DBGOSLSR.OSLK == 0 (the OS lock is unlocked), this bit is RO, and software must treat it
as UNK/SBZP.

When DBGOSLSR.OSLK == 1 (the OS lock is locked), this bit is RW and holds the value of
EDSCR.RXfull.

ARM deprecates use of this bit other than for save/restore. Use DBGDSCRint to access the DTRRX
full status.

The architected behavior of this field determines the value it returns after a reset.

31 30 29 28 27 26 25 24 23 22 21 20 19

NS

18 17 16 15 14 13 12

RES0

11 7 6

MOE

5 2 1 0

RES0
RXfull
TXfull
RES0
RXO
TXU
RES0
INTdis
TDA
RES0
SC2
SPNIDdis
SPIDdis

RES0
ERR

UDCCdis
RES0

HDE
MDBGen
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. C6-659
ID060316 Non-Confidential

C6 AArch32 Register Descriptions
C6.3 Debug registers
TXfull, bit [29]

DTRTX full. Used for save/restore of EDSCR.TXfull.

When DBGOSLSR.OSLK == 0 (the OS lock is unlocked), this bit is RO, and software must treat it
as UNK/SBZP.

When DBGOSLSR.OSLK == 1 (the OS lock is locked), this bit is RW and holds the value of
EDSCR.TXfull.

ARM deprecates use of this bit other than for save/restore. Use DBGDSCRint to access the DTRTX
full status.

The architected behavior of this field determines the value it returns after a reset.

Bit [28]

Reserved, RES0.

RXO, bit [27]

Used for save/restore of EDSCR.RXO.

When DBGOSLSR.OSLK == 0 (the OS lock is unlocked), this bit is RO, and software must treat it
as UNK/SBZP.

When DBGOSLSR.OSLK == 1 (the OS lock is locked), this bit is RW and holds the value of
EDSCR.RXO.

The architected behavior of this field determines the value it returns after a reset.

TXU, bit [26]

Used for save/restore of EDSCR.TXU.

When DBGOSLSR.OSLK == 0 (the OS lock is unlocked), this bit is RO, and software must treat it
as UNK/SBZP.

When DBGOSLSR.OSLK == 1 (the OS lock is locked), this bit is RW and holds the value of
EDSCR.TXU.

The architected behavior of this field determines the value it returns after a reset.

Bits [25:24]

Reserved, RES0.

INTdis, bits [23:22]

Used for save/restore of EDSCR.INTdis.

When DBGOSLSR.OSLK == 0 (the OS lock is unlocked), this field is RO, and software must treat
it as UNK/SBZP.

When DBGOSLSR.OSLK == 1 (the OS lock is locked), this field is RW and holds the value of
EDSCR.INTdis.

The architected behavior of this field determines the value it returns after a reset.

TDA, bit [21]

Used for save/restore of EDSCR.TDA.

When DBGOSLSR.OSLK == 0 (the OS lock is unlocked), this bit is RO, and software must treat it
as UNK/SBZP.

When DBGOSLSR.OSLK == 1 (the OS lock is locked), this bit is RW and holds the value of
EDSCR.TDA.

The architected behavior of this field determines the value it returns after a reset.

Bit [20]

Reserved, RES0.

SC2, bit [19] (In ARMv8.1)

Used for save/restore of EDSCR.SC2.
C6-660 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

C6 AArch32 Register Descriptions
C6.3 Debug registers
When DBGOSLSR.OSLK == 0 (the OS lock is unlocked), this bit is RO, and software must treat it
as UNK/SBZP.

When DBGOSLSR.OSLK == 1 (the OS lock is locked), this bit is RW and holds the value of
EDSCR.SC2.

Bit [19] (In ARMv8.0)

Reserved, RES0.

NS, bit [18]

Non-secure status. Returns the inverse of IsSecure(). This bit is RO.

ARM deprecates use of this field.

SPNIDdis, bit [17]

Secure privileged profiling disabled status bit. This bit is RO and reflects the value of
ProfilingProhibited(TRUE,EL1). Permitted values are:

0 Profiling allowed in Secure privileged modes.

1 Profiling prohibited in Secure privileged modes.

ARM deprecates use of this field.

SPIDdis, bit [16]

Secure privileged AArch32 invasive self-hosted debug disabled status bit. This bit is RO and
depends on the value of SDCR.SPD and the pseudocode function
AArch32.SelfHostedSecurePrivilegedInvasiveDebugEnabled(). Permitted values are:

0 Self-hosted debug enabled in Secure privileged AArch32 modes.

1 Self-hosted debug disabled in Secure privileged AArch32 modes.

This bit reads as 1 if any of the following is true and reads as 0 otherwise:

• SDCR.SPD has the value 10.

• SDCR.SPD has the value 00 and
AArch32.SelfHostedSecurePrivilegedInvasiveDebugEnabled() returns FALSE.

ARM deprecates use of this field.

MDBGen, bit [15]

Monitor debug events enable. Enable Breakpoint, Watchpoint, and Vector Catch debug exceptions.

0 Breakpoint, Watchpoint, and Vector Catch debug exceptions disabled.

1 Breakpoint, Watchpoint, and Vector Catch debug exceptions enabled.

When this register has an architecturally-defined reset value, this field resets to 0.

HDE, bit [14]

Used for save/restore of EDSCR.HDE.

When DBGOSLSR.OSLK == 0 (the OS lock is unlocked), this bit is RO, and software must treat it
as UNK/SBZP.

When DBGOSLSR.OSLK == 1 (the OS lock is locked), this bit is RW and holds the value of
EDSCR.HDE.

The architected behavior of this field determines the value it returns after a reset.

Bit [13]

Reserved, RES0.

UDCCdis, bit [12]

Traps PL0 accesses to the DCC registers to Undefined mode.

0 PL0 accesses to the DCC registers are not trapped to Undefined mode.
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. C6-661
ID060316 Non-Confidential

C6 AArch32 Register Descriptions
C6.3 Debug registers
1 PL0 accesses to the DBGDSCRint, DBGDTRRXint, DBGDTRTXint, DBGDIDR,
DBGDSAR, and DBGDRAR are trapped to Undefined mode.

Note
 All accesses to these registers are trapped, including LDC and STC accesses to DBGDTRTXint and

DBGDTRRXint, and MRRC accesses to DBGDSAR and DBGDRAR.

Traps of PL0 accesses to the DBGDTRRXint and DBGDTRTXint are ignored in Debug state.

When this register has an architecturally-defined reset value, this field resets to 0.

Bits [11:7]

Reserved, RES0.

ERR, bit [6]

Used for save/restore of EDSCR.ERR.

When DBGOSLSR.OSLK == 0 (the OS lock is unlocked), this bit is RO, and software must treat it
as UNK/SBZP.

When DBGOSLSR.OSLK == 1 (the OS lock is locked), this bit is RW and holds the value of
EDSCR.ERR.

The architected behavior of this field determines the value it returns after a reset.

MOE, bits [5:2]

Method of Entry for debug exception. When a debug exception is taken to an Exception level using
AArch32, this field is set to indicate the event that caused the exception:

0001 Breakpoint

0011 Software breakpoint (BKPT) instruction

0101 Vector catch

1010 Watchpoint

When this register has an architecturally-defined reset value, this field resets to a value that is
architecturally UNKNOWN.

Bits [1:0]

Reserved, RES0.

Accessing the DBGDSCRext

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax is encoded with the following settings in the instruction encoding:

<syntax> opc1 opc2 CRn coproc CRm

p14, 0, <Rt>, c0, c2, 2 000 010 0000 1110 0010
C6-662 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

C6 AArch32 Register Descriptions
C6.3 Debug registers
Accessibility

The register is accessible in software as follows:

Individual fields within this register might have restricted accessibility when DBGOSLSR.OSLK == 0 (the OS lock
is unlocked.) See the field descriptions for more detail.

Traps and Enables

For a description of the prioritization of any generated exceptions, see Synchronous exception prioritization for
exceptions taken to AArch32 state on page C6-698 for exceptions taken to AArch32 state and Synchronous
exception prioritization for exceptions taken to AArch64 on page B12-547 for exceptions taken to AArch64 state.
Subject to the prioritization rules:

When EL2 is implemented and is using AArch64 and SCR_EL3.NS == 1:

• If MDCR_EL2.TDA==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS == 1:

• If HDCR.TDA==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

When EL3 is implemented and is using AArch64:

• If MDCR_EL3.TDA==1, accesses to this register from PL1 and PL2 are trapped to EL3.

<syntax>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

p14, 0, <Rt>, c0, c2, 2 x x 0 - RW n/a RW

p14, 0, <Rt>, c0, c2, 2 x 0 1 - RW RW RW

p14, 0, <Rt>, c0, c2, 2 x 1 1 - n/a RW RW
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. C6-663
ID060316 Non-Confidential

C6 AArch32 Register Descriptions
C6.3 Debug registers
C6.3.6 DSPSR, Debug Saved Program Status Register

The DSPSR characteristics are:

Purpose

Holds the saved process state on entry to Debug state.

Configurations

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register DSPSR is architecturally mapped to AArch64 System register
DSPSR_EL0.

Attributes

DSPSR is a 32-bit register.

Field descriptions

The DSPSR bit assignments are:

When entering Debug state from AArch32 and exiting Debug state to AArch32:

N, bit [31]

Set to the value of CPSR.N on entering Debug state, and copied to CPSR.N on exiting Debug state.

Z, bit [30]

Set to the value of CPSR.Z on entering Debug state, and copied to CPSR.Z on exiting Debug state.

C, bit [29]

Set to the value of CPSR.C on entering Debug state, and copied to CPSR.C on exiting Debug state.

V, bit [28]

Set to the value of CPSR.V on entering Debug state, and copied to CPSR.V on exiting Debug state.

Q, bit [27]

Set to the value of CPSR.Q on entering Debug state, and copied to CPSR.Q on exiting Debug state.

IT[1:0], bits [26:25]

IT block state bits for the T32 IT (If-Then) instruction. See IT[7:2] for explanation of this field.

J, bit [24]

RES0.

In previous versions of the architecture, the {J, T} bits determined the AArch32 Instruction set state.
ARMv8 does not support either Jazelle state or T32EE state, and the T bit determines the Instruction
set state.

Bit [23]

Reserved, RES0.

N

31

Z

30

C

29

V

28

Q

27 26 25

J

24 23 22

SS

21

IL

20

GE

19 16

IT[7:2]

15 10

E

9

A

8

I

7

F

6

T

5 4

M[3:0]

3 0

IT[1:0]
RES0
PAN

M[4]
C6-664 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

C6 AArch32 Register Descriptions
C6.3 Debug registers
PAN, bit [22] (In ARMv8.1)

Set to the value of CPSR.PAN on entering Debug state, and copied to CPSR.PAN on exiting Debug
state.

Bit [22] (In ARMv8.0)

Reserved, RES0.

SS, bit [21]

Software step. Shows the value of PSTATE.SS immediately before Debug state was entered.

IL, bit [20]

Illegal Execution state bit. Shows the value of PSTATE.IL immediately before Debug state was
entered.

GE, bits [19:16]

Greater than or Equal flags, for parallel addition and subtraction.

IT[7:2], bits [15:10]

IT block state bits for the T32 IT (If-Then) instruction. This field must be interpreted in two parts.

• IT[7:5] holds the base condition for the IT block. The base condition is the top 3 bits of the
condition code specified by the first condition field of the IT instruction.

• IT[4:0] encodes the size of the IT block, which is the number of instructions that are to be
conditionally executed, by the position of the least significant 1 in this field. It also encodes
the value of the least significant bit of the condition code for each instruction in the block.

The IT field is 0b00000000 when no IT block is active.

E, bit [9]

Endianness state bit. Controls the load and store endianness for data accesses:

0 Little-endian operation

1 Big-endian operation.

Instruction fetches ignore this bit.

When the reset value of the SCTLR.EE bit is defined by a configuration input signal, that value also
applies to the CPSR.E bit on reset, and therefore applies to software execution from reset.

If an implementation does not provide Big-endian support, this bit is RES0. If it does not provide
Little-endian support, this bit is RES1.

If an implementation provides Big-endian support but only at EL0, this bit is RES0 for an exception
return to any Exception level other than EL0.

Likewise, if it provides Little-endian support only at EL0, this bit is RES1 for an exception return to
any Exception level other than EL0.

A, bit [8]

Asynchronous data abort mask bit. The possible values of this bit are:

0 Exception not masked.

1 Exception masked.

I, bit [7]

IRQ mask bit. The possible values of this bit are:

0 Exception not masked.

1 Exception masked.

F, bit [6]

FIQ mask bit. The possible values of this bit are:

0 Exception not masked.
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. C6-665
ID060316 Non-Confidential

C6 AArch32 Register Descriptions
C6.3 Debug registers
1 Exception masked.

T, bit [5]

T32 Instruction set state bit. Determines the AArch32 instruction set state that the Debug state entry
was taken from. Possible values of this bit are:

0 Taken from A32 state.

1 Taken from T32 state.

M[4], bit [4]

Execution state that Debug state was entered from. Possible values of this bit are:

1 Exception taken from AArch32.

M[3:0], bits [3:0]

AArch32 mode that Debug state was entered from. The possible values are:

Other values are reserved. The effect of programming this field to a Reserved value is that behavior
is CONSTRAINED UNPREDICTABLE, as described in Reserved values in System and memory-mapped
registers and translation table entries on page C6-700.

Accessing the DSPSR

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax is encoded with the following settings in the instruction encoding:

M[3:0] Mode

0b0000 User

0b0001 FIQ

0b0010 IRQ

0b0011 Supervisor

0b0110 Monitor (only valid in Secure state, if EL3 is implemented and can use AArch32)

0b0111 Abort

0b1010 Hyp

0b1011 Undefined

0b1111 System

<syntax> opc1 opc2 CRn coproc CRm

p15, 3, <Rt>, c4, c5, 0 011 000 0100 1111 0101
C6-666 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

C6 AArch32 Register Descriptions
C6.3 Debug registers
Accessibility

The register is accessible in software as follows:

Access to this register is from Debug state only. During normal execution this register is unallocated.

<syntax>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

p15, 3, <Rt>, c4, c5, 0 x x 0 RW RW n/a RW

p15, 3, <Rt>, c4, c5, 0 x 0 1 RW RW RW RW

p15, 3, <Rt>, c4, c5, 0 x 1 1 RW n/a RW RW
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. C6-667
ID060316 Non-Confidential

C6 AArch32 Register Descriptions
C6.3 Debug registers
C6.3.7 HDCR, Hyp Debug Control Register

The HDCR characteristics are:

Purpose

Controls the trapping to Hyp mode of Non-secure accesses, at EL1 or lower, to functions provided
by the debug and trace architectures and the Performance Monitors Extension.

Configurations

AArch32 System register HDCR is architecturally mapped to AArch64 System register
MDCR_EL2.

If EL2 is not implemented, this register is RES0 from EL3.

This register is in the Warm reset domain. Some or all RW fields of this register have defined reset
values. On a Warm or Cold reset these apply only if the PE resets into an Exception level that is
using AArch32. Otherwise, on a Warm or Cold reset RW fields in this register reset to
architecturally UNKNOWN values.

Attributes

HDCR is a 32-bit register.

Field descriptions

The HDCR bit assignments are:

Bits [31:18]

Reserved, RES0.

HPMD, bit [17] (In ARMv8.1)

Guest Performance Monitors Disable. This control prohibits event counting at EL2. Permitted
values are:

0 Event counting allowed in Hyp mode.

1 Event counting prohibited in Hyp mode, unless enabled by the IMPLEMENTATION
DEFINED authentication interface ExternalSecureNoninvasiveDebugEnabled().

This control applies only to:

• The event counters in the range [0..HPMN).

• If PMCR.DP is set to 1, PMCCNTR.

The other event counters are unaffected, and when PMCR.DP is set to 0, PMCCNTR is unaffected.

When this register has an architecturally-defined reset value, this field resets to 0.

Bit [17] (In ARMv8.0)

Reserved, RES0.

RES0

31 18 17

RES0

16 12 11 10 9 8 7 6 5

HPMN

4 0

HPMD TPMCR
TPM

HPME
TDE
TDA

TDOSA
TDRA
C6-668 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

C6 AArch32 Register Descriptions
C6.3 Debug registers
Bits [16:12]

Reserved, RES0.

TDRA, bit [11]

Trap Debug ROM Address register access. Traps Non-secure EL0 and EL1 System register accesses
to the Debug ROM registers to Hyp mode.

0 Non-secure EL0 and EL1 System register accesses to the Debug ROM registers are not
trapped to Hyp mode.

1 Non-secure EL0 and EL1 System register accesses to the DBGDRAR or DBGDSAR
are trapped to Hyp mode.

If HCR.TGE or HDCR.TDE is 1, behavior is as if this bit is 1 other than for the purpose of a direct
read.

When this register has an architecturally-defined reset value, this field resets to 0.

TDOSA, bit [10]

Trap debug OS-related register access. Traps Non-secure EL1 System register accesses to the
powerdown debug registers to Hyp mode.

0 Non-secure EL1 System register accesses to the powerdown debug registers are not
trapped to Hyp mode.

1 Non-secure EL1 System register accesses to the powerdown debug registers are trapped
to Hyp mode.

The registers for which accesses are trapped are as follows:

• DBGOSLSR, DBGOSLAR, DBGOSDLR, and the DBGPRCR.

• Any IMPLEMENTATION DEFINED register with similar functionality that the implementation
specifies as trapped by this bit.

Note
 These registers are not accessible at PL0.

If HCR.TGE or HDCR.TDE is 1, behavior is as if this bit is 1 other than for the purpose of a direct
read.

When this register has an architecturally-defined reset value, this field resets to 0.

TDA, bit [9]

Trap debug access. Traps Non-secure EL0 and EL1 System register accesses to those debug System
registers in the (coproc==1110) encoding space that are not trapped by either of the following:

• HDCR.TDRA.

• HDCR.TDOSA.

0 Has no effect on System register accesses to the debug registers.

1 Non-secure EL0 or EL1 System register accesses to the debug registers, other than the
registers trapped by HDCR.TDRA and HDCR.TDOSA, are trapped to Hyp mode.

HDCR.TDA does not trap accesses to the DBGDTRRXint or DBGDTRTXint when the PE is in
Debug state.

If HCR.TGE or HDCR.TDE is 1, behavior is as if this bit is 1 other than for the purpose of a direct
read.

When this register has an architecturally-defined reset value, this field resets to 0.

TDE, bit [8]

Trap Debug exceptions. The possible values of this bit are:

0 This control has no effect on the routing of debug exceptions, and has no effect on
Non-secure accesses to debug registers.
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. C6-669
ID060316 Non-Confidential

C6 AArch32 Register Descriptions
C6.3 Debug registers
1 In Non-secure state:

• Debug exceptions generated at EL1 or EL0 are routed to EL2.

• All accesses to Debug registers that would not be UNDEFINED if the value of this
field was 0 are trapped to EL2.

When HCR.TGE == 1, the PE behaves as if the value of this field is 1 for all purposes other than
returning the value of a direct read of the register.

When this register has an architecturally-defined reset value, this field resets to 0.

HPME, bit [7]

Hypervisor Performance Monitors Counters Enable. The possible values of this bit are:

0 Hyp mode Performance Monitors counters disabled.

1 Hyp mode Performance Monitors counters enabled.

When the value of this bit is 1, the Performance Monitors counters that are reserved for use from
Hyp mode or Secure state are enabled. For more information see the description of the HPMN field.

If the Performance Monitors Extension is not implemented, this field is RES0.

When this register has an architecturally-defined reset value, if this field is implemented as an RW
field, it resets to a value that is architecturally UNKNOWN.

TPM, bit [6]

Trap Performance Monitors accesses. Traps Non-secure EL0 and EL1 accesses to all Performance
Monitors registers to Hyp mode.

0 Non-secure EL0 and EL1 accesses to all Performance Monitors registers are not trapped
to Hyp mode.

1 Non-secure EL0 and EL1 accesses to all Performance Monitors registers are trapped to
Hyp mode.

Note
 EL2 does not provide traps on Performance Monitor register accesses through the optional

memory-mapped external debug interface.

If the Performance Monitors Extension is not implemented, this field is RES0.

When this register has an architecturally-defined reset value, if this field is implemented as an RW
field, it resets to 0.

TPMCR, bit [5]

Trap PMCR accesses. Traps Non-secure EL0 and EL1 accesses to the PMCR to Hyp mode.

0 Non-secure EL0 and EL1 accesses to the PMCR are not trapped to Hyp mode.

1 Non-secure EL0 and EL1 accesses to the PMCR are trapped to Hyp mode.

Note
 EL2 does not provide traps on Performance Monitor register accesses through the optional

memory-mapped external debug interface.

If the Performance Monitors Extension is not implemented, this field is RES0.

When this register has an architecturally-defined reset value, if this field is implemented as an RW
field, it resets to 0.

HPMN, bits [4:0]

Defines the number of Performance Monitors counters that are accessible from Non-secure EL1
modes, and from Non-secure EL0 modes if unprivileged access is enabled.

If the Performance Monitors Extension is not implemented, this field is RES0.
C6-670 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

C6 AArch32 Register Descriptions
C6.3 Debug registers
In Non-secure state, HPMN divides the Performance Monitors counters as follows. If software is
accessing Performance Monitors counter n then, in Non-secure state:

• If n is in the range 0<=n<HPMN, the counter is accessible from EL1 and EL2, and from EL0
if unprivileged access to the counters is enabled. PMCR.E enables the operation of counters
in this range.

• If n is in the range HPMN<=n<PMCR.N, the counter is accessible only from EL2 and from
Secure state. HDCR.HPME enables the operation of counters in this range.

If this field is set to 0, or to a value larger than PMCR.N, then the following CONSTRAINED
UNPREDICTABLE behavior applies:

• The value returned by a direct read of HDCR.HPMN is UNKNOWN.

• Either:

— An UNKNOWN number of counters are reserved for EL2 use. That is, the PE behaves
as if HDCR.HPMN is set to an UNKNOWN non-zero value less than PMCR.N.

— All counters are reserved for EL2 use, meaning no counters are accessible from
Non-secure EL1 and Non-secure EL0.

When this register has an architecturally-defined reset value, if this field is implemented as an RW
field, it resets to the value of PMCR.N.

Accessing the HDCR

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax is encoded with the following settings in the instruction encoding:

Accessibility

The register is accessible in software as follows:

Traps and Enables

For a description of the prioritization of any generated exceptions, see Synchronous exception prioritization for
exceptions taken to AArch32 state on page C6-698 for exceptions taken to AArch32 state and Synchronous
exception prioritization for exceptions taken to AArch64 on page B12-547 for exceptions taken to AArch64 state.
Subject to the prioritization rules:

<syntax> opc1 opc2 CRn coproc CRm

p15, 4, <Rt>, c1, c1, 1 100 001 0001 1111 0001

<syntax>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

p15, 4, <Rt>, c1, c1, 1 x x 0 - - n/a -

p15, 4, <Rt>, c1, c1, 1 x 0 1 - - RW RW

p15, 4, <Rt>, c1, c1, 1 x 1 1 - n/a RW RW
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. C6-671
ID060316 Non-Confidential

C6 AArch32 Register Descriptions
C6.3 Debug registers
When EL2 is implemented and is using AArch64 and (SCR_EL3.NS == 1) AND (HCR_EL2.E2H == 0):

• If HSTR_EL2.T1==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and (SCR_EL3.NS == 1) AND (HCR_EL2.E2H == 1) AND
(HCR_EL2.TGE == 0):

• If HSTR_EL2.T1==1, Non-secure accesses to this register from EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS == 1:

• If HSTR.T1==1, Non-secure accesses to this register from EL1 are trapped to Hyp mode.

When EL3 is implemented and is using AArch64:

• If MDCR_EL3.TDA==1, accesses to this register from PL2 are trapped to EL3 using AArch64.
C6-672 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

C6 AArch32 Register Descriptions
C6.4 Performance Monitors registers
C6.4 Performance Monitors registers
This section lists the ARMv8.1 Performance Monitors registers in AArch32 state, in alphabetic order.
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. C6-673
ID060316 Non-Confidential

C6 AArch32 Register Descriptions
C6.4 Performance Monitors registers
C6.4.1 PMCEID2, Performance Monitors Common Event Identification register 2

The PMCEID2 characteristics are:

Purpose

Defines which common architectural and common microarchitectural feature events in the range
0x4000 to 0x401F are implemented. If a particular bit is set to 1, then the event for that bit is
implemented.

Configurations

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register PMCEID2 is architecturally mapped to AArch64 System register
PMCEID0_EL0[63:32].

AArch32 System register PMCEID2 is architecturally mapped to External register
PMCEID2[63:32].

Attributes

PMCEID2 is a 32-bit register.

Field descriptions

The PMCEID2 bit assignments are:

ID[16415:16384], bits [31:0]

PMCEID2[31:0] maps to common events 0x4000 to 0x401F. For a list of event numbers and
descriptions, see Events, event numbers, and mnemonics on page B12-557.

For each bit:

0 The common event is not implemented.

1 The common event is implemented.

Bits that map to reserved event numbers are reserved to identify events that might be defined in
future revisions to the architecture.

Events that do not require additional features in the PMU can be defined retrospectively, meaning
that they can be implemented as part of a PMUv3 implementation.

Accessing the PMCEID2

This register can be read using MRC with the following syntax:

MRC <syntax>

This syntax is encoded with the following settings in the instruction encoding:

ID[16415:16384]

31 0

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c9, c14, 4 000 100 1001 1111 1110
C6-674 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

C6 AArch32 Register Descriptions
C6.4 Performance Monitors registers
Accessibility

The register is accessible in software as follows:

Traps and Enables

For a description of the prioritization of any generated exceptions, see Synchronous exception prioritization for
exceptions taken to AArch32 state on page C6-698 for exceptions taken to AArch32 state and Synchronous
exception prioritization for exceptions taken to AArch64 on page B12-547 for exceptions taken to AArch64 state.
Subject to the prioritization rules:

In both security states, and not dependent on other bits:

• If PMUSERENR.EN==0, read accesses to this register from PL0 are trapped to Undefined mode.

• If PMUSERENR_EL0.EN==0, read accesses to this register from PL0 are trapped to EL1.

<syntax>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

p15, 0, <Rt>, c9, c14, 4 x x 0 RO RO n/a RO

p15, 0, <Rt>, c9, c14, 4 x 0 1 RO RO RO RO

p15, 0, <Rt>, c9, c14, 4 x 1 1 RO n/a RO RO
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. C6-675
ID060316 Non-Confidential

C6 AArch32 Register Descriptions
C6.4 Performance Monitors registers
C6.4.2 PMCEID3, Performance Monitors Common Event Identification register 3

The PMCEID3 characteristics are:

Purpose

Defines which common architectural and common microarchitectural feature events in the range
0x4020 to 0x403F are implemented. If a particular bit is set to 1, then the event for that bit is
implemented.

Configurations

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register PMCEID3 is architecturally mapped to AArch64 System register
PMCEID1_EL0[63:32].

AArch32 System register PMCEID3 is architecturally mapped to External register
PMCEID3[63:32].

Attributes

PMCEID3 is a 32-bit register.

Field descriptions

The PMCEID3 bit assignments are:

ID[16447:16416], bits [31:0]

PMCEID3[31:0] maps to common events 0x4020 to 0x403F. For a list of event numbers and
descriptions, see Events, event numbers, and mnemonics on page B12-557.

For each bit:

0 The common event is not implemented.

1 The common event is implemented.

Bits that map to reserved event numbers are reserved to identify events that might be defined in
future revisions to the architecture.

Events that do not require additional features in the PMU can be defined retrospectively, meaning
that they can be implemented as part of a PMUv3 implementation.

Accessing the PMCEID3

This register can be read using MRC with the following syntax:

MRC <syntax>

This syntax is encoded with the following settings in the instruction encoding:

ID[16447:16416]

31 0

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c9, c14, 5 000 101 1001 1111 1110
C6-676 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

C6 AArch32 Register Descriptions
C6.4 Performance Monitors registers
Accessibility

The register is accessible in software as follows:

Traps and Enables

For a description of the prioritization of any generated exceptions, see Synchronous exception prioritization for
exceptions taken to AArch32 state on page C6-698 for exceptions taken to AArch32 state and Synchronous
exception prioritization for exceptions taken to AArch64 on page B12-547 for exceptions taken to AArch64 state.
Subject to the prioritization rules:

In both security states, and not dependent on other bits:

• If PMUSERENR.EN==0, read accesses to this register from PL0 are trapped to Undefined mode.

• If PMUSERENR_EL0.EN==0, read accesses to this register from PL0 are trapped to EL1.

<syntax>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

p15, 0, <Rt>, c9, c14, 5 x x 0 RO RO n/a RO

p15, 0, <Rt>, c9, c14, 5 x 0 1 RO RO RO RO

p15, 0, <Rt>, c9, c14, 5 x 1 1 RO n/a RO RO
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. C6-677
ID060316 Non-Confidential

C6 AArch32 Register Descriptions
C6.4 Performance Monitors registers
C6.4.3 PMCR, Performance Monitors Control Register

The PMCR characteristics are:

Purpose

Provides details of the Performance Monitors implementation, including the number of counters
implemented, and configures and controls the counters.

Configurations

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register PMCR is architecturally mapped to AArch64 System register
PMCR_EL0.

AArch32 System register PMCR[6:0] is architecturally mapped to External register
PMCR_EL0[6:0].

This register is in the Warm reset domain. Some or all RW fields of this register have defined reset
values. On a Warm or Cold reset these apply only if the PE resets into an Exception level that is
using AArch32. Otherwise, on a Warm or Cold reset RW fields in this register reset to
architecturally UNKNOWN values.

Attributes

PMCR is a 32-bit register.

Field descriptions

The PMCR bit assignments are:

IMP, bits [31:24]

Implementer code. This field is RO with an IMPLEMENTATION DEFINED value.

The implementer codes are allocated by ARM. Values have the same interpretation as bits [31:24]
of the MIDR.

IDCODE, bits [23:16]

Identification code. This field is RO with an IMPLEMENTATION DEFINED value.

Each implementer must maintain a list of identification codes that is specific to the implementer. A
specific implementation is identified by the combination of the implementer code and the
identification code.

N, bits [15:11]

Number of event counters. A RO field that indicates the number counters implemented. A value of
0b00000 in this field indicates that only the Cycle Count Register PMCCNTR is implemented.

The value of this field is the number of event counters implemented. This value is in the range of
0b00000, in which case only the PMCCNTR is implemented, to 0b11111, which indicates that the
PMCCNTR and 31 event counters are implemented.

In an implementation that includes EL2, reads of this field from Non-secure EL1 and Non-secure
EL0 return the value of HDCR.HPMN if EL2 is using AArch32, or the value of
MDCR_EL2.HPMN if EL2 is using AArch64.

Bits [10:7]

Reserved, RES0.

IMP

31 24

IDCODE

23 16

N

15 11

RES0

10 7

LC

6

DP

5

X

4

D

3

C

2

P

1

E

0

C6-678 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

C6 AArch32 Register Descriptions
C6.4 Performance Monitors registers
LC, bit [6]

Long cycle counter enable. Determines which PMCCNTR bit generates an overflow recorded by
PMOVSR[31].

0 Cycle counter overflow on increment that changes PMCCNTR[31] from 1 to 0.

1 Cycle counter overflow on increment that changes PMCCNTR[63] from 1 to 0.

ARM deprecates use of PMCR.LC = 0.

When this register has an architecturally-defined reset value, this field resets to a value that is
architecturally UNKNOWN.

DP, bit [5]

Disable cycle counter when event counting is prohibited. The possible values of this bit are:

0 PMCCNTR, if enabled, counts when event counting is prohibited.

1 PMCCNTR does not count when event counting is prohibited.

Event counting is prohibited when ProfilingProhibited(IsSecure(),PSTATE.EL) == TRUE.

When EL3 is not implemented, this field is RES0:

• In ARMv8.0.

• In ARMv8.1, only if EL2 is not implemented.

Otherwise this field is RW.

When this register has an architecturally-defined reset value, if this field is implemented as an RW
field, it resets to 0.

X, bit [4]

Enable export of events in an IMPLEMENTATION DEFINED event stream. The possible values of this
bit are:

0 Do not export events.

1 Export events where not prohibited.

This field enables the exporting of events over an event bus to another device, for example to an
OPTIONAL trace macrocell. If the implementation does not include such an event bus then this field
is RAZ/WI, otherwise it is an RW field.

In an implementation that includes an event bus, no events are exported when counting is prohibited.

This field does not affect the generation of Performance Monitors overflow interrupt requests or
signaling to a cross-trigger interface (CTI) that can be implemented as signals exported from the PE.

When this register has an architecturally-defined reset value, if this field is implemented as an RW
field, it resets to 0.

D, bit [3]

Clock divider. The possible values of this bit are:

0 When enabled, PMCCNTR counts every clock cycle.

1 When enabled, PMCCNTR counts once every 64 clock cycles.

This bit is RW.

If PMCR.LC == 1, this bit is ignored and the cycle counter counts every clock cycle.

ARM deprecates use of PMCR.D = 1.

When this register has an architecturally-defined reset value, this field resets to 0.

C, bit [2]

Cycle counter reset. This bit is WO. The effects of writing to this bit are:

0 No action.

1 Reset PMCCNTR to zero.

This bit is always RAZ.
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. C6-679
ID060316 Non-Confidential

C6 AArch32 Register Descriptions
C6.4 Performance Monitors registers
Resetting PMCCNTR does not clear the PMCCNTR overflow bit to 0.

P, bit [1]

Event counter reset. This bit is WO. The effects of writing to this bit are:

0 No action.

1 Reset all event counters accessible in the current EL, not including PMCCNTR, to zero.

This bit is always RAZ.

In Non-secure EL0 and EL1, if EL2 is implemented, a write of 1 to this bit does not reset event
counters that HDCR.HPMN or MDCR_EL2.HPMN reserves for EL2 use.

In EL2 and EL3, a write of 1 to this bit resets all the event counters.

Resetting the event counters does not clear any overflow bits to 0.

E, bit [0]

Enable. The possible values of this bit are:

0 All counters that are accessible at Non-secure EL1, including PMCCNTR, are disabled.

1 All counters that are accessible at Non-secure EL1 are enabled by PMCNTENSET.

This bit is RW.

If EL2 is implemented, this bit does not affect the operation of event counters that HDCR.HPMN
or MDCR_EL2.HPMN reserves for EL2 use.

When this register has an architecturally-defined reset value, this field resets to 0.

Accessing the PMCR

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax is encoded with the following settings in the instruction encoding:

Accessibility

The register is accessible in software as follows:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c9, c12, 0 000 000 1001 1111 1100

<syntax>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

p15, 0, <Rt>, c9, c12, 0 x x 0 RW RW n/a RW

p15, 0, <Rt>, c9, c12, 0 x 0 1 RW RW RW RW

p15, 0, <Rt>, c9, c12, 0 x 1 1 RW n/a RW RW
C6-680 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

C6 AArch32 Register Descriptions
C6.4 Performance Monitors registers
Traps and Enables

For a description of the prioritization of any generated exceptions, see Synchronous exception prioritization for
exceptions taken to AArch32 state on page C6-698 for exceptions taken to AArch32 state and Synchronous
exception prioritization for exceptions taken to AArch64 on page B12-547 for exceptions taken to AArch64 state.
Subject to the prioritization rules:

In both security states, and not dependent on other bits:

• If PMUSERENR.EN==0, accesses to this register from PL0 are trapped to Undefined mode.

• If PMUSERENR_EL0.EN==0, accesses to this register from PL0 are trapped to EL1.

When EL2 is implemented and is using AArch64 and (SCR_EL3.NS == 1) AND (HCR_EL2.E2H == 0):

• If HSTR_EL2.T9==1, Non-secure accesses to this register from EL0 and EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS == 1:

• If MDCR_EL2.TPM==1, Non-secure accesses to this register from EL0 and EL1 are trapped to EL2.

• If MDCR_EL2.TPMCR==1, Non-secure accesses to this register from EL0 and EL1 are trapped to EL2.

When EL2 is implemented and is using AArch64 and (SCR_EL3.NS == 1) AND (HCR_EL2.E2H == 1) AND
(HCR_EL2.TGE == 0):

• If HSTR_EL2.T9==1, Non-secure write accesses to this register from EL0 and EL1 are trapped to EL2.

When EL2 is implemented and is using AArch32 and SCR_EL3.NS == 1:

• If HDCR.TPM==1, Non-secure accesses to this register from EL0 and EL1 are trapped to Hyp mode.

• If HDCR.TPMCR==1, Non-secure accesses to this register from EL0 and EL1 are trapped to Hyp mode.

• If HSTR.T9==1, Non-secure accesses to this register from EL0 and EL1 are trapped to Hyp mode.

When EL3 is implemented and is using AArch64:

• If MDCR_EL3.TPM==1, accesses to this register from PL0, PL1, and PL2 are trapped to EL3.
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. C6-681
ID060316 Non-Confidential

C6 AArch32 Register Descriptions
C6.4 Performance Monitors registers
C6.4.4 PMEVTYPER<n>, Performance Monitors Event Type Registers, n = 0 - 30

The PMEVTYPER<n> characteristics are:

Purpose

Configures event counter n, where n is 0 to 30.

Configurations

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register PMEVTYPER<n> is architecturally mapped to AArch64 System register
PMEVTYPER<n>_EL0.

AArch32 System register PMEVTYPER<n> is architecturally mapped to External register
PMEVTYPER<n>_EL0.

This register is in the Warm reset domain. On a Warm or Cold reset RW fields in this register reset
to architecturally UNKNOWN values.

Attributes

PMEVTYPER<n> is a 32-bit register.

Field descriptions

The PMEVTYPER<n> bit assignments are:

P, bit [31]

Privileged filtering bit. Controls counting in EL1. If EL3 is implemented, then counting in
Non-secure EL1 is further controlled by the NSK bit. The possible values of this bit are:

0 Count events in EL1.

1 Do not count events in EL1.

U, bit [30]

User filtering bit. Controls counting in EL0. If EL3 is implemented, then counting in Non-secure
EL0 is further controlled by the NSU bit. The possible values of this bit are:

0 Count events in EL0.

1 Do not count events in EL0.

NSK, bit [29]

Non-secure EL1 (kernel) modes filtering bit. Controls counting in Non-secure EL1. If EL3 is not
implemented, this bit is RES0.

If the value of this bit is equal to the value of P, events in Non-secure EL1 are counted.

Otherwise, events in Non-secure EL1 are not counted.

P

31

U

30 29 28 27 26 25

RES0

24 16

evtCount

15 0

NSK
NSU
NSH
RES0
MT
C6-682 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

C6 AArch32 Register Descriptions
C6.4 Performance Monitors registers
NSU, bit [28]

Non-secure EL0 (Unprivileged) filtering. Controls counting in Non-secure EL0. If EL3 is not
implemented, this bit is RES0.

If the value of this bit is equal to the value of U, events in Non-secure EL0 are counted.

Otherwise, events in Non-secure EL0 are not counted.

NSH, bit [27]

Non-secure EL2 (Hyp mode) filtering bit. Controls counting in Non-secure EL2. If EL2 is not
implemented, this bit is RES0.

0 Do not count events in EL2.

1 Count events in EL2.

Bit [26]

Reserved, RES0.

MT, bit [25]

Multithreading. When the implementation is multi-threaded, the valid values for this bit are:

0 Count events only on controlling PE.

1 Count events from any PE with the same affinity at level 1 and above as this PE.

When the implementation is not multi-threaded, this bit is RES0.

Note
 • An implementation is described as multi-threaded when the lowest level of affinity consists

of logical PEs that are implemented using a multi-threading type approach. That is, the
performance of PEs at the lowest affinity level is highly interdependent. On such an
implementation, the value of MPIDR_EL1.MT, when read at the highest implemented
Exception level, is 1.

• Events from a different thread of a multithreaded implementation are not Attributable to the
thread counting the event.

Bits [24:16]

Reserved, RES0.

evtCount, bits [15:0] (In ARMv8.1)

Event to count. The event number of the event that is counted by event counter PMEVCNTR<n>.

Software must program this field with an event that is supported by the PE being programmed.

There are three ranges of event numbers:

• Event numbers in the range 0x000 to 0x03F are common architectural and microarchitectural
events.

• Event numbers in the range 0x040 to 0x0BF are ARM recommended common architectural and
microarchitectural events.

• Event numbers in the range 0x0C0 to 0x3FF are IMPLEMENTATION DEFINED events.

If evtCount is programmed to an event that is reserved or not supported by the PE, the behavior
depends on the event type:

• For the range 0x000 to 0x03F, no events are counted, and the value returned by a direct or
external read of the evtCount field is the value written to the field.

• For IMPLEMENTATION DEFINED events, it is UNPREDICTABLE what event, if any, is counted,
and the value returned by a direct or external read of the evtCount field is UNKNOWN.

Note
 UNPREDICTABLE means the event must not expose privileged information.
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. C6-683
ID060316 Non-Confidential

C6 AArch32 Register Descriptions
C6.4 Performance Monitors registers
For IMPLEMENTATION DEFINED events:

• It is UNPREDICTABLE what event, if any, is counted. UNPREDICTABLE in this case means the
event must not expose privileged information.

• The value read back from evtCount is UNKNOWN.

ARM recommends that the behavior across a family of implementations is defined such that if a
given implementation does not include an event from a set of common IMPLEMENTATION DEFINED
events, then no event is counted and the value read back on evtCount is the value written.

Bits [15:10] (In ARMv8.0)

Reserved, RES0.

evtCount, bits [9:0] (In ARMv8.0)

Event to count. The event number of the event that is counted by event counter PMEVCNTR<n>.

Software must program this field with an event that is supported by the PE being programmed.

There are three ranges of event numbers:

• Event numbers in the range 0x000 to 0x03F are common architectural and microarchitectural
events.

• Event numbers in the range 0x040 to 0x0BF are ARM recommended common architectural and
microarchitectural events.

• Event numbers in the range 0x0C0 to 0x3FF are IMPLEMENTATION DEFINED events.

If evtCount is programmed to an event that is reserved or not supported by the PE, the behavior
depends on the event type:

• For the range 0x000 to 0x03F, no events are counted, and the value returned by a direct or
external read of the evtCount field is the value written to the field.

• For IMPLEMENTATION DEFINED events, it is UNPREDICTABLE what event, if any, is counted,
and the value returned by a direct or external read of the evtCount field is UNKNOWN.

Note
 UNPREDICTABLE means the event must not expose privileged information.

For IMPLEMENTATION DEFINED events:

• It is UNPREDICTABLE what event, if any, is counted. UNPREDICTABLE in this case means the
event must not expose privileged information.

• The value read back from evtCount is UNKNOWN.

ARM recommends that the behavior across a family of implementations is defined such that if a
given implementation does not include an event from a set of common IMPLEMENTATION DEFINED
events, then no event is counted and the value read back on evtCount is the value written.

Accessing the PMEVTYPER<n>

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax is encoded with the following settings in the instruction encoding:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c14, <CRm>, <opc2> 000 n<2:0> 1110 1111 11:n<4:3>
C6-684 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

C6 AArch32 Register Descriptions
C6.4 Performance Monitors registers
Accessibility

The register is accessible in software as follows:

This register is accessible at EL0 when PMUSERENR.EN is set to 1.

PMEVTYPER<n> can also be accessed by using PMXEVTYPER with PMSELR.SEL set to n.

If <n> is greater or equal to the number of accessible counters, reads and writes of PMEVTYPER<n> are
CONSTRAINED UNPREDICTABLE, and the following behaviors are permitted:

• Accesses to the register are UNDEFINED.

• Accesses to the register behave as RAZ/WI.

• Accesses to the register execute as a NOP.

• In Non-secure state, for an access from PL1 or a permitted access from PL0, if PMSELR.SEL, or
PMSELR_EL0.SEL if EL1 is using AArch64, is greater than or equal to the number of accessible counters
but is less than the number of implemented counters, the register access is trapped to EL2. Accesses from
PL0 are permitted when:

— EL1 is using AArch32 and the value of PMUSERENR.EN is 1.

— EL1 is using AArch64 and the value of PMUSERENR_EL0.EN is 1.

Note
 In an implementation that includes EL2, in Non-secure state at EL0 and EL1:

• If EL2 is using AArch32, HDCR.HPMN identifies the number of accessible counters.

• If EL2 is using AArch64, MDCR_EL2.HPMN identifies the number of accessible counters.

Otherwise, the number of accessible counters is the number of implemented counters.

Traps and Enables

For a description of the prioritization of any generated exceptions, see Synchronous exception prioritization for
exceptions taken to AArch32 state on page C6-698 for exceptions taken to AArch32 state and Synchronous
exception prioritization for exceptions taken to AArch64 on page B12-547 for exceptions taken to AArch64 state.
Subject to the prioritization rules:

In both security states, and not dependent on other bits:

• If PMUSERENR.EN==0, accesses to this register from PL0 are trapped to Undefined mode.

• If PMUSERENR_EL0.EN==0, accesses to this register from PL0 are trapped to EL1.

When EL2 is implemented and is using AArch64 and SCR_EL3.NS == 1:

• If MDCR_EL2.TPM==1, Non-secure accesses to this register from EL0 and EL1 are trapped to EL2.

<syntax>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

p15, 0, <Rt>, c14, <CRm>, <opc2> x x 0 RW RW n/a n/a

p15, 0, <Rt>, c14, <CRm>, <opc2> x 0 1 RW RW RW n/a

p15, 0, <Rt>, c14, <CRm>, <opc2> x 1 1 RW n/a RW n/a
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. C6-685
ID060316 Non-Confidential

C6 AArch32 Register Descriptions
C6.4 Performance Monitors registers
When EL2 is implemented and is using AArch32 and SCR_EL3.NS == 1:

• If HDCR.TPM==1, Non-secure accesses to this register from EL0 and EL1 are trapped to Hyp mode.

When EL3 is implemented and is using AArch64:

• If MDCR_EL3.TPM==1, accesses to this register from PL0, PL1, and PL2 are trapped to EL3.
C6-686 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

C6 AArch32 Register Descriptions
C6.5 Generic Timer registers
C6.5 Generic Timer registers
This section lists the ARMv8.1 Generic Timer registers in AArch32 state, in alphabetic order.
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. C6-687
ID060316 Non-Confidential

C6 AArch32 Register Descriptions
C6.5 Generic Timer registers
C6.5.1 CNTHV_CTL, Counter-timer Virtual Timer Control register (EL2)

The CNTHV_CTL characteristics are:

Purpose

Control register for the EL2 virtual timer.

Note
 The EL2 virtual timer is only implemented in ARMv8.1, when EL2 is implemented and is using

AArch64. It is only accessible at EL0 when HCR_EL2.{E2H, TGE} is {1, 1}.

Configurations

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register CNTHV_CTL is architecturally mapped to AArch64 System register
CNTHV_CTL_EL2.

Attributes

CNTHV_CTL is a 32-bit register.

Field descriptions

The CNTHV_CTL bit assignments are:

Bits [31:3]

Reserved, RES0.

ISTATUS, bit [2]

The status of the timer. This bit indicates whether the timer condition is asserted:

0 Timer condition is not asserted.

1 Timer condition is asserted.

When the value of the ENABLE bit is 1, ISTATUS indicates whether the timer value meets the
condition for the timer output to be asserted. ISTATUS takes no account of the value of the IMASK
bit. If the value of ISTATUS is 1 and the value of IMASK is 0 then the timer output signal is asserted.

For more information see “Operation of the CompareValue views of the timers” and “Operation of
the TimerValue views of the timers” in the ARM® Architecture Reference Manual, ARMv8, for
ARMv8-A architecture profile.

This bit is read-only.

IMASK, bit [1]

Timer output signal mask bit. Permitted values are:

0 Timer output signal is not masked.

1 Timer output signal is masked.

For more information, see the description of the ISTATUS bit.

RES0

31 3 2 1 0

ENABLE
IMASK

ISTATUS
C6-688 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

C6 AArch32 Register Descriptions
C6.5 Generic Timer registers
ENABLE, bit [0]

Enables the timer. Permitted values are:

0 Timer disabled.

1 Timer enabled.

Setting this bit to 0 disables the timer output signal, but the timer value accessible from
CNTHV_TVAL continues to count down.

Note
 Disabling the output signal might be a power-saving option.

Accessing the CNTHV_CTL

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax is encoded with the following settings in the instruction encoding:

This register is accessed using the encoding for CNTV_CTL.

Accessibility

The register is accessible in software as follows:

Traps and Enables

For a description of the prioritization of any generated exceptions, see Synchronous exception prioritization for
exceptions taken to AArch32 state on page C6-698 for exceptions taken to AArch32 state and Synchronous
exception prioritization for exceptions taken to AArch64 on page B12-547 for exceptions taken to AArch64 state.
Subject to the prioritization rules:

When EL2 is implemented and is using AArch64 and (SCR_EL3.NS == 1) AND (HCR_EL2.E2H == 1) AND
(HCR_EL2.TGE == 1):

• If CNTHCTL_EL2.EL0VTEN==0, Non-secure accesses to this register from EL0 are trapped to EL2.

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c14, c3, 1 000 001 1110 1111 0011

<syntax>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

p15, 0, <Rt>, c14, c3, 1 x x 0 CNTV_CTL CNTV_CTL n/a CNTV_CTL

p15, 0, <Rt>, c14, c3, 1 0 0 1 CNTV_CTL CNTV_CTL CNTV_CTL CNTV_CTL

p15, 0, <Rt>, c14, c3, 1 0 1 1 CNTV_CTL n/a CNTV_CTL CNTV_CTL

p15, 0, <Rt>, c14, c3, 1 1 0 1 CNTV_CTL CNTV_CTL n/a n/a

p15, 0, <Rt>, c14, c3, 1 1 1 1 RW n/a n/a n/a
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. C6-689
ID060316 Non-Confidential

C6 AArch32 Register Descriptions
C6.5 Generic Timer registers
C6.5.2 CNTHV_CVAL, Counter-timer Virtual Timer CompareValue register (EL2)

The CNTHV_CVAL characteristics are:

Purpose

Holds the compare value for the EL2 virtual timer.

Note
 The EL2 virtual timer is only implemented in ARMv8.1, when EL2 is implemented and is using

AArch64. It is only accessible at EL0 when HCR_EL2.{E2H, TGE} is {1, 1}.

Configurations

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register CNTHV_CVAL is architecturally mapped to AArch64 System register
CNTHV_CVAL_EL2.

Attributes

CNTHV_CVAL is a 64-bit register.

Field descriptions

The CNTHV_CVAL bit assignments are:

Bits [63:0]

Virtual timer compare value.

Accessing the CNTHV_CVAL

This register can be read using MRRC with the following syntax:

MRRC <syntax>

This register can be written using MCRR with the following syntax:

MCRR <syntax>

This syntax is encoded with the following settings in the instruction encoding:

Virtual timer compare value

63 0

<syntax> opc1 coproc CRm

p15, 3, <Rt>, <Rt2>, c14 0011 1111 1110
C6-690 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

C6 AArch32 Register Descriptions
C6.5 Generic Timer registers
Accessibility

The register is accessible in software as follows:

Traps and Enables

For a description of the prioritization of any generated exceptions, see Synchronous exception prioritization for
exceptions taken to AArch32 state on page C6-698 for exceptions taken to AArch32 state and Synchronous
exception prioritization for exceptions taken to AArch64 on page B12-547 for exceptions taken to AArch64 state.
Subject to the prioritization rules:

When EL2 is implemented and is using AArch64 and (SCR_EL3.NS == 1) AND (HCR_EL2.E2H == 1) AND
(HCR_EL2.TGE == 1):

• If CNTHCTL_EL2.EL0VTEN==0, Non-secure accesses to this register from EL0 are trapped to EL2.

<syntax>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

p15, 3, <Rt>, <Rt2>, c14 x x 0 CNTV_CVAL CNTV_CVAL n/a CNTV_CVAL

p15, 3, <Rt>, <Rt2>, c14 0 0 1 CNTV_CVAL CNTV_CVAL CNTV_CVAL CNTV_CVAL

p15, 3, <Rt>, <Rt2>, c14 0 1 1 CNTV_CVAL n/a CNTV_CVAL CNTV_CVAL

p15, 3, <Rt>, <Rt2>, c14 1 0 1 CNTV_CVAL CNTV_CVAL n/a n/a

p15, 3, <Rt>, <Rt2>, c14 1 1 1 RW n/a n/a n/a
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. C6-691
ID060316 Non-Confidential

C6 AArch32 Register Descriptions
C6.5 Generic Timer registers
C6.5.3 CNTHV_TVAL, Counter-timer Virtual Timer TimerValue register (EL2)

The CNTHV_TVAL characteristics are:

Purpose

Holds the timer value for the EL2 virtual timer.

Note
 The EL2 virtual timer is only implemented in ARMv8.1, when EL2 is implemented and is using

AArch64. It is only accessible at EL0 when HCR_EL2.{E2H, TGE} is {1, 1}.

Configurations

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register CNTHV_TVAL is architecturally mapped to AArch64 System register
CNTHV_TVAL_EL2.

Attributes

CNTHV_TVAL is a 32-bit register.

Field descriptions

The CNTHV_TVAL bit assignments are:

Bits [31:0]

Virtual timer value.

Accessing the CNTHV_TVAL

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax is encoded with the following settings in the instruction encoding:

This register is accessed using the encoding for CNTV_TVAL.

Virtual timer value

31 0

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c14, c3, 0 000 000 1110 1111 0011
C6-692 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

C6 AArch32 Register Descriptions
C6.5 Generic Timer registers
Accessibility

The register is accessible in software as follows:

Traps and Enables

For a description of the prioritization of any generated exceptions, see Synchronous exception prioritization for
exceptions taken to AArch32 state on page C6-698 for exceptions taken to AArch32 state and Synchronous
exception prioritization for exceptions taken to AArch64 on page B12-547 for exceptions taken to AArch64 state.
Subject to the prioritization rules:

When EL2 is implemented and is using AArch64 and (SCR_EL3.NS == 1) AND (HCR_EL2.E2H == 1) AND
(HCR_EL2.TGE == 1):

• If CNTHCTL_EL2.EL0VTEN==0, Non-secure accesses to this register from EL0 are trapped to EL2.

<syntax>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

p15, 0, <Rt>, c14, c3, 0 x x 0 CNTV_TVAL CNTV_TVAL n/a CNTV_TVAL

p15, 0, <Rt>, c14, c3, 0 0 0 1 CNTV_TVAL CNTV_TVAL CNTV_TVAL CNTV_TVAL

p15, 0, <Rt>, c14, c3, 0 0 1 1 CNTV_TVAL n/a CNTV_TVAL CNTV_TVAL

p15, 0, <Rt>, c14, c3, 0 1 0 1 CNTV_TVAL CNTV_TVAL n/a n/a

p15, 0, <Rt>, c14, c3, 0 1 1 1 RW n/a n/a n/a
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. C6-693
ID060316 Non-Confidential

C6 AArch32 Register Descriptions
C6.5 Generic Timer registers
C6.5.4 CNTVCT, Counter-timer Virtual Count register

The CNTVCT characteristics are:

Purpose

Holds the 64-bit virtual count value. The virtual count value is equal to the physical count value
visible in CNTPCT minus the virtual offset visible in CNTVOFF.

Configurations

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register CNTVCT is architecturally mapped to AArch64 System register
CNTVCT_EL0.

The value of this register is the same as the value of CNTPCT in the following conditions:

• When EL2 is not implemented.

• When EL2 is implemented and is using AArch64, HCR_EL2.{E2H, TGE} is {1, 1}, and this
register is read from Non-secure EL0.

Attributes

CNTVCT is a 64-bit register.

Field descriptions

The CNTVCT bit assignments are:

Bits [63:0]

Virtual count value.

Accessing the CNTVCT

This register can be read using MRRC with the following syntax:

MRRC <syntax>

This syntax is encoded with the following settings in the instruction encoding:

Virtual count value

63 0

<syntax> opc1 coproc CRm

p15, 1, <Rt>, <Rt2>, c14 0001 1111 1110
C6-694 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

C6 AArch32 Register Descriptions
C6.5 Generic Timer registers
Accessibility

The register is accessible in software as follows:

Traps and Enables

For a description of the prioritization of any generated exceptions, see Synchronous exception prioritization for
exceptions taken to AArch32 state on page C6-698 for exceptions taken to AArch32 state and Synchronous
exception prioritization for exceptions taken to AArch64 on page B12-547 for exceptions taken to AArch64 state.
Subject to the prioritization rules:

When HCR_EL2.E2H == 0:

• If CNTKCTL.PL0VCTEN==0, read accesses to this register from PL0 are trapped to Undefined mode.

• If CNTKCTL_EL1.EL0VCTEN==0, read accesses to this register from PL0 are trapped to EL1.

When EL2 is implemented and is using AArch64 and (SCR_EL3.NS == 1) AND (HCR_EL2.E2H == 1) AND
(HCR_EL2.TGE == 0):

• If CNTKCTL.PL0VCTEN==0, Non-secure read accesses to this register from EL0 are trapped to Undefined
mode.

• If CNTKCTL_EL1.EL0VCTEN==0, Non-secure read accesses to this register from EL0 are trapped to EL1.

When EL2 is implemented and is using AArch64 and (SCR_EL3.NS == 1) AND (HCR_EL2.E2H == 1) AND
(HCR_EL2.TGE == 1):

• If CNTHCTL_EL2.EL0PCTEN==0, Non-secure read accesses to this register from EL0 are trapped to EL2.

<syntax>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

p15, 1, <Rt>, <Rt2>, c14 x x 0 RO RO n/a RO

p15, 1, <Rt>, <Rt2>, c14 x 0 1 RO RO RO RO

p15, 1, <Rt>, <Rt2>, c14 x 1 1 RO n/a RO RO
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. C6-695
ID060316 Non-Confidential

C6 AArch32 Register Descriptions
C6.5 Generic Timer registers
C6.5.5 CNTVOFF, Counter-timer Virtual Offset register

The CNTVOFF characteristics are:

Purpose

Holds the 64-bit virtual offset. This is the offset between the physical count value visible in
CNTPCT and the virtual count value visible in CNTVCT.

Configurations

AArch32 System register CNTVOFF is architecturally mapped to AArch64 System register
CNTVOFF_EL2.

If EL2 is not implemented, this register is RES0 from EL3 and the virtual counter uses a fixed virtual
offset of zero.

Note
 When EL2 is implemented and is using AArch64, if HCR_EL2.{E2H, TGE} is {1, 1}, the virtual

counter uses a fixed virtual offset of zero when CNTVCT is read from Non-secure EL0.

When EL2 is implemented and can use AArch32, on a reset into an Exception level that is using
AArch32 this register resets to an IMPLEMENTATION DEFINED value that might be UNKNOWN.

Attributes

CNTVOFF is a 64-bit register.

Field descriptions

The CNTVOFF bit assignments are:

Bits [63:0]

Virtual offset.

Accessing the CNTVOFF

This register can be read using MRRC with the following syntax:

MRRC <syntax>

This register can be written using MCRR with the following syntax:

MCRR <syntax>

This syntax is encoded with the following settings in the instruction encoding:

Virtual offset

63 0

<syntax> opc1 coproc CRm

p15, 4, <Rt>, <Rt2>, c14 0100 1111 1110
C6-696 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

C6 AArch32 Register Descriptions
C6.5 Generic Timer registers
Accessibility

The register is accessible in software as follows:

<syntax>
Control Accessibility

E2H TGE NS EL0 EL1 EL2 EL3

p15, 4, <Rt>, <Rt2>, c14 x x 0 - - n/a -

p15, 4, <Rt>, <Rt2>, c14 x 0 1 - - RW RW

p15, 4, <Rt>, <Rt2>, c14 x 1 1 - n/a RW RW
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. C6-697
ID060316 Non-Confidential

C6 AArch32 Register Descriptions
C6.6 ARMv8.0 sections relating to these registers
C6.6 ARMv8.0 sections relating to these registers
The following sections of the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile are
included in this supplement to complement the register descriptions.

C6.6.1 Synchronous exception prioritization for exceptions taken to AArch32 state

In principle, any single instruction can generate a number of different synchronous exceptions, between the fetching
of the instruction, its decode, and eventual execution. This section describes the prioritization of such exceptions
when they are taken to an Exception level that is using AArch32.

Note
 • An exception that is taken to an Exception level that is using AArch32 must have been taken from an

Exception level that is using AArch32.

• The priority numbering in this list only shows the relative priorities of exceptions taken to an Exception level
that is using AArch32. This numbering has no global significance and, for example, does not correlate with
the equivalent AArch32 list in Synchronous exception prioritization for exceptions taken to AArch64 on
page B12-547.

For an exception that is taken to an Exception level that is using AArch32, exceptions are prioritized as follows,
where 1 is the highest priority.

1. Misaligned PC exceptions. A Misaligned PC exception can only be taken to an Exception level that is using
AArch32 as a result of:

• The CONSTRAINED UNPREDICTABLE handling of a branch to an unaligned address.

• Exiting from Debug state to AArch32 specifying an unaligned PC value.

A Misaligned PC exception that is taken to an Exception level that is using AArch32 is reported as a Prefetch
Abort exception.

2. Prefetch Abort exceptions.

3. Breakpoint exceptions or Address Matching Vector Catchexceptions.

Note
 An Exception Trapping Vector Catch exception is generated on exception entry for an exception that has been

prioritized as described in this section. This means that it does not have its own entry in this list.

4. Illegal Execution state exceptions.

5. Exceptions taken from EL1 to EL2 because of one of the following configuration settings:
• HSTR.Tn.
• HCR.TIDCP.

6. Undefined Instruction exceptions that occur as a result of one or more of the following:

• An attempt to execute an unallocated instruction encoding, including an encoding for an instruction
that is not implemented in the PE implementation.

• An attempt to execute an instruction that is defined never to be accessible at the current Exception
level regardless of any enables or traps.

• Debug state execution of an instruction encoding that is unallocated in Debug state.

• Non-debug state execution of an instruction encoding that is unallocated in Non-debug state.

• Execution of an HVC instruction, when HVC instructions are disabled by SCR.HCE or HCR.HCD.

• Execution of an HLT instruction when HLT instructions are disabled by EDSCR.HDE.

• In Debug state:

— Execution of a DCPS1 instruction in Non-secure EL0 when HCR.TGE is 1.
C6-698 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

C6 AArch32 Register Descriptions
C6.6 ARMv8.0 sections relating to these registers
— Execution of a DCPS2 instruction in EL1 or EL0 when SCR.NS is 0 or when EL2 is not
implemented.

— Execution of a DCPS3 instruction when EDSCR.SDD is 1 or when EL3 is not implemented.

— When the value of EDSCR.SDD is 1, execution in EL2, EL1, or EL0 of an instruction that is
trapped to EL3.

• Execution of an instruction that is UNDEFINED as a result of any of:

— Being in an IT block when SCTLR.ITD is 1, or when HSCTLR.ITD is 1.

— Executing a SETEND instruction when SCTLR.SED is 1, or when HSCTLR.SED is 1.

— Executing a CP15DMB, CP15DSB, or CP15ISB barrier instruction when SCTLR.CP15BEN is
0, or when HSCTLR.CP15BEN is 0.

• Execution of an instruction that is UNDEFINED because at least one of FPSCR.{Stride, Len} is nonzero,
when programming these bits to nonzero values is supported.

7. Exceptions taken to EL1, or taken to EL2 because the value of HCR.TGE is 1, that are generated because of
configurable access to instructions, and that are not covered by any of priorities 1-6.

8. Exceptions taken from EL0 to EL2 because of one of the following configuration settings:
• HSTR.Tn.
• HCR.TIDCP.

9. Exceptions taken to EL2 because of configuration settings in the HCPTR.

10. Exceptions taken to EL2 because of one of the following configuration settings:
• Any setting in HCR, other than the TIDCP bit.
• Any setting in CNTHCTL.
• Any setting in HDCR.

11. Exceptions taken to EL2 because of configurable access to instructions, and that are not covered by any of
priorities 1-10.

12. Exceptions caused by the SMC instruction being UNDEFINED because the value of SCR.SCD is 1.

13. Exceptions caused by the execution of an Exception generating instruction, SVC, HVC, SMC, or BKPT.

14. Exceptions taken to EL3 because of configuration settings in the SDCR. These might be taken from EL0,
EL1, or EL2.

15. Exceptions taken to EL3 because of configurable access to instructions, and that are not covered by any of
priorities 1-14.

16. Trapped floating-point exceptions, if supported.

17. Data Abort exceptions other than a Data Abort exception generated by a Synchronous external abort that was
not generated by a translation table walk. That is, any Data Abort exception that is not covered by item 19.
It is IMPLEMENTATION DEFINED whether Synchronous external aborts are prioritized here or as item 19.

18. Watchpoint exceptions.

19. Data Abort exception generated by a Synchronous external abort that was not generated by a translation table
walk. It is IMPLEMENTATION DEFINED whether Synchronous external aborts are prioritized here or as item 17.

For items 17-19, if an instruction results in more than one single-copy atomic memory access, the prioritization
between synchronous exceptions generated on each of those different memory accesses is not defined by the
architecture.

Note
 Exceptions generated by a translation table walk are reported and prioritized as either a Prefetch Abort exception,
priority 2 in this list, or a Data Abort exception, priority 17 in this list. See also AArch32 prioritization of
synchronous aborts from a single stage of address translation in Chapter G4 of the ARM ARM.
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. C6-699
ID060316 Non-Confidential

C6 AArch32 Register Descriptions
C6.6 ARMv8.0 sections relating to these registers
C6.6.2 Reserved values in System and memory-mapped registers and translation table entries

Unless otherwise stated, all unallocated or reserved values of fields with allocated values within the AArch32
System registers, memory-mapped registers, and translation table entries behave in one of the following ways:
• The encoding maps onto any of the allocated values, but otherwise does not cause CONSTRAINED

UNPREDICTABLE behavior.
• The encoding causes effects that could be achieved by a combination of more than one of the allocated

encodings.
• The encoding causes the field to have no functional effect.

Note
 These constraints are identical to those for the equivalent AArch64 definitions, as given in Reserved values in
System and memory-mapped registers and translation table entries on page B12-558.

C6.6.3 Using the BAS field in Address Match breakpoints

See Using the BAS field in Address Match breakpoints under the Breakpoint exceptions section in Chapter G2
AArch32 Self-hosted Debug of the ARMv8 ARM.

C6.6.4 Usage constraints

See Usage constraints under the Breakpoint exceptions section in Chapter G2 AArch32 Self-hosted Debug of the
ARMv8 ARM.
C6-700 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

Part D
ARMv8.1 Changes to External Debug

Chapter D1
PC Sample-based Profiling

This chapter describes the changes to the PC Sample-based Profiling Extension in ARMv8.1.It contains the
following section:
• Changes to PC Sample-based profiling on page D1-704.
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. D1-703
ID060316 Non-Confidential

D1 PC Sample-based Profiling
D1.1 Changes to PC Sample-based profiling
D1.1 Changes to PC Sample-based profiling
A control bit, SC2, is added to EDSCR to control whether PC Sample-based profiling samples CONTEXTIDR_EL2
or VTTBR_EL2.VMID value.

When the value of EDSCR.SC2 is 0:

• EDPCSRlo is unchanged.

• EDVIDSR.VMID is extended to EDVIDSR[15:0] to support sampling of the 16-bit VMID when the value
of VTCR_EL2.VS is 1.

When EDSCR.SC2 is 1:

• Reading EDPCSRlo has a side-effect of updating EDCIDSR, EDVIDSR, and EDPCSRhi:

— The value written to EDCIDSR is the same as when SC2 is set to 0.

— If the sampled PC is from Non-secure state and EL2 is using AArch64, EDVIDSR is written with the
value of CONTEXTIDR_EL2 associated with the most recent EDPSCR sample. Otherwise,
EDVIDSR becomes UNKNOWN.

— EDPCSRhi[23:0] records bits[53:32] of the sampled PC and EDPCSRhi[31:29] record the SCR.NS
bit state and the current Exception level.

• When any of the following applies, the PE behaves as if the value of EDSCR.SC2 is 0 for all purposes other
than a direct read of EDSCR:
— The PE is in Debug state.
— The PE is in Reset state.
— Sample-based profiling is prohibited.
— No instruction has been retired since the PE left Reset state.

D1.1.1 Identification mechanism

The EDDEVARCH.ARCHID[15:12] field identifies the support for the v8.1 changes to PC Sample-based profiling.

D1.1.2 See also

In this supplement
• EDDEVARCH.ARCHID[15:12].
• EDPCSR.
• EDSCR.SC2.
• EDVIDSR.
• Appendix F1 Notes on Using Debug and Performance Monitors.

In the ARM Architecture Reference Manual

The PC Sample-based Profiling Extension.
D1-704 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

Chapter D2
External Debug Register Descriptions

This chapter describes the External debug registers that are added or or affected by ARMv8.1, or by the changes to
the Performance Monitors Extension introduced with ARMv8.1. It contains the following sections:
• General information about External debug register descriptions on page D2-706.
• Debug registers on page D2-707.
• Performance Monitors registers on page D2-733
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. D2-705
ID060316 Non-Confidential

D2 External Debug Register Descriptions
D2.1 General information about External debug register descriptions
D2.1 General information about External debug register descriptions
This chapter provides full descriptions of all of the registers that are accessible through the external debug interface
and are affected by the introduction of ARMv8.1, or by the changes to the Performance Monitors Extension
introduced with ARMv8.

The registers descriptions in this chapter do not highlight where ARMv8.1 has changed the register field
descriptions. However:

• The field descriptions indicate any differences in behavior between ARMv8.0 and ARMv8.1.

• The descriptions of the features of ARMv8.1 elsewhere in this manual indicate where ARMv8.1 has
introduced new register fields, or significantly changed the effect of a register field.

Note
 The structure of the descriptions of memory-mapped registers, including all register that can be accessed through
the external debug interface, is unchanged between ARMv8.0 and ARMv8.1. That is, the restructuring of System
register descriptions described in General information about AArch64 System registers on page B12-232 and
General information about AArch32 System registers on page C6-590 does not apply to these memory-mapped
registers.
D2-706 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

D2 External Debug Register Descriptions
D2.2 Debug registers
D2.2 Debug registers
This section provides full descriptions of all of the debug registers that are accessible through the external debug
interface and are affected by the introduction of ARMv8.1. See General information about External debug register
descriptions on page D2-706 for more information about the descriptions of these registers.
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. D2-707
ID060316 Non-Confidential

D2 External Debug Register Descriptions
D2.2 Debug registers
D2.2.1 DBGBCR<n>_EL1, Debug Breakpoint Control Registers, n = 0 - 15

The DBGBCR<n>_EL1 characteristics are:

Purpose

Holds control information for a breakpoint. Forms breakpoint n together with value register
DBGBVR<n>_EL1.

Usage constraints

This register is accessible as follows:

Configurations

External register DBGBCR<n>_EL1 is architecturally mapped to AArch64 System register
DBGBCR<n>_EL1.

External register DBGBCR<n>_EL1 is architecturally mapped to AArch32 System register
DBGBCR<n>.

DBGBCR<n>_EL1 is in the Core power domain. RW fields in this register reset to architecturally
UNKNOWN values. These apply only on a Cold reset. The register is not affected by a Warm reset
and is not affected by an External debug reset.

If breakpoint n is not implemented then this register is unallocated.

Attributes

DBGBCR<n>_EL1 is a 32-bit register.

Field descriptions

The DBGBCR<n>_EL1 bit assignments are:

When the E field is zero, all the other fields in the register are ignored.

Bits [31:24]

Reserved, RES0.

BT, bits [23:20]

Breakpoint Type. Possible values are:

0000 Unlinked address match.

0001 Linked address match.

0010 Unlinked Context ID match.

0011 Linked Context ID match.

0100 Unlinked instruction address mismatch.

0101 Linked instruction address mismatch.

Off DLK OSLK EDAD SLK Default

Error Error Error Error RO RW

RES0

31 24

BT

23 20

LBN

19 16

SSC

15 14 13

RES0

12 9

BAS

8 5 4 3

PMC

2 1

E

0

RES0
HMC
D2-708 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

D2 External Debug Register Descriptions
D2.2 Debug registers
0110 Unlinked CONTEXTIDR_EL1 match (ARMv8.1).

0111 Linked CONTEXTIDR_EL1 match (ARMv8.1).

1000 Unlinked VMID match.

1001 Linked VMID match.

1010 Unlinked VMID and Context ID match.

1011 Linked VMID and Context ID match.

1100 Unlinked CONTEXTIDR_EL2 match (ARMv8.1).

1101 Linked CONTEXTIDR_EL2 match (ARMv8.1).

1110 Unlinked Full Context ID match (ARMv8.1).

1111 Linked Full Context ID match (ARMv8.1).

The field breaks down as follows:

• BT[3:1]: Base type.

000 Match address. DBGBVR<n>_EL1 is the address of an instruction.

001 Match Context ID. DBGBVR<n>_EL1.ContextID is a Context ID compared
against CONTEXTIDR_EL1 in ARMv8.0, and in ARMv8.1 when not in a Host
OS or a Host Application. In ARMv8.1, when in a Host OS or Host Application,
the Context ID is compared against CONTEXTIDR_EL1.

010 Mismatch address. DBGBVR<n>_EL1 is the address of an instruction to be
stepped.

011 Match CONTEXTIDR_EL1. DBGBVR<n>_EL1.ContextID is a Context ID
compared against CONTEXTIDR_EL1.

100 Match VMID. DBGBVR<n>_EL1.VMID is a VMID compared against
VTTBR_EL2.VMID.

101 Match VMID and Context ID. DBGBVR<n>_EL1.ContextID is a Context ID
compared against CONTEXTIDR_EL1, and DBGBVR<n>_EL1.VMID is a
VMID compared against VTTBR_EL2.VMID.

110 Match CONTEXTIDR_EL2. DBGBVR<n>_EL1.ContextID2 is a Context ID
compared against CONTEXTIDR_EL2.

111 Match Full Context ID. DBGBVR<n>_EL1.ContextID is compared against
CONTEXTIDR_EL1, and DBGBVR<n>_EL1.ContextID2 is compared against
CONTEXTIDR_EL2.

• BT[0]: Enable linking.

All other values are reserved. Constraints on breakpoint programming mean other values are
reserved under some conditions. For more information, including the effect of programming this
field to a reserved value, see Reserved DBGBCR<n>_EL1.BT values on page B8-70.

When this register has an architecturally-defined reset value, this field resets to a value that is
architecturally UNKNOWN.

LBN, bits [19:16]

Linked breakpoint number. For Linked address matching breakpoints, this specifies the index of the
Context-matching breakpoint linked to.

For all other breakpoint types this field is ignored and reads of the register return an UNKNOWN
value.

This field is ignored when the value of DBGBCR<n>_EL1.E is 0.

When this register has an architecturally-defined reset value, this field resets to a value that is
architecturally UNKNOWN.
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. D2-709
ID060316 Non-Confidential

D2 External Debug Register Descriptions
D2.2 Debug registers
SSC, bits [15:14]

Security state control. Determines the Security states under which a Breakpoint debug event for
breakpoint n is generated. This field must be interpreted along with the HMC and PMC fields, and
there are constraints on the permitted values of the {HMC, SSC, PMC} fields. For more
information, including the effect of programming the fields to a reserved set of values, see
"Reserved DBGBCR<n>_EL1.{SSC,HMC,PMC} values" in the ARM® Architecture Reference
Manual, ARMv8, for ARMv8-A architecture profile.

When this register has an architecturally-defined reset value, this field resets to a value that is
architecturally UNKNOWN.

HMC, bit [13]

Higher mode control. Determines the debug perspective for deciding when a Breakpoint debug
event for breakpoint n is generated. This field must be interpreted along with the SSC and PMC
fields, and there are constraints on the permitted values of the {HMC, SSC, PMC} fields. For more
information see DBGBCR<n>_EL1.SSC description.

When this register has an architecturally-defined reset value, this field resets to a value that is
architecturally UNKNOWN.

Bits [12:9]

Reserved, RES0.

BAS, bits [8:5]

Byte address select. Defines which half-words an address-matching breakpoint matches, regardless
of the instruction set and Execution state. In an AArch64-only implementation, this field is reserved,
RES1.

The permitted values depend on the breakpoint type.

For Address match breakpoints in either AArch32 or AArch64 state, the permitted values are:

All other values are reserved.

For more information, see Using the BAS field in Address Match breakpoints on page C6-700.

For Address mismatch breakpoints in an AArch32 stage 1 translation regime, the permitted values
are:

For more information, see Using the BAS field in Address Match breakpoints on page C6-700.

For Context matching breakpoints, this field is RES1 and ignored.

When this register has an architecturally-defined reset value, if this field is implemented as an RW
field, it resets to a value that is architecturally UNKNOWN.

BAS Match instruction at Constraint for debuggers

0011 DBGBVR<n>_EL1 Use for T32 instructions.

1100 DBGBVR<n>_EL1+2 Use for T32 instructions.

1111 DBGBVR<n>_EL1 Use for A64 and A32 instructions.

BAS Step instruction at Constraint for debuggers

0000 - Use for a match anywhere breakpoint.

0011 DBGBVR<n>_EL1 Use for stepping T32 instructions.

1100 DBGBVR<n>_EL1+2 Use for stepping T32 instructions.

1111 DBGBVR<n>_EL1 Use for stepping A64 and A32 instructions.
D2-710 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

D2 External Debug Register Descriptions
D2.2 Debug registers
Bits [4:3]

Reserved, RES0.

PMC, bits [2:1]

Privilege mode control. Determines the Exception level or levels at which a Breakpoint debug event
for breakpoint n is generated. This field must be interpreted along with the SSC and HMC fields,
and there are constraints on the permitted values of the {HMC, SSC, PMC} fields. For more
information see the DBGBCR<n>_EL1.SSC description.

When this register has an architecturally-defined reset value, this field resets to a value that is
architecturally UNKNOWN.

E, bit [0]

Enable breakpoint DBGBVR<n>_EL1. Possible values are:

0 Breakpoint disabled.

1 Breakpoint enabled.

When this register has an architecturally-defined reset value, this field resets to a value that is
architecturally UNKNOWN.

Accessing the DBGBCR<n>_EL1:

DBGBCR<n>_EL1 can be accessed through the external debug interface:

Component Offset

Debug 0x408 + 16n
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. D2-711
ID060316 Non-Confidential

D2 External Debug Register Descriptions
D2.2 Debug registers
D2.2.2 DBGBVR<n>_EL1, Debug Breakpoint Value Registers, n = 0 - 15

The DBGBVR<n>_EL1 characteristics are:

Purpose

Holds a virtual address, or a VMID and/or a context ID, for use in breakpoint matching. Forms
breakpoint n together with control register DBGBCR<n>_EL1.

Usage constraints

This register is accessible as follows:

Configurations

External register DBGBVR<n>_EL1 is architecturally mapped to AArch64 System register
DBGBVR<n>_EL1.

External register DBGBVR<n>_EL1[31:0] is architecturally mapped to AArch32 System register
DBGBVR<n>.

External register DBGBVR<n>_EL1[63:32] is architecturally mapped to AArch32 System register
DBGBXVR<n>.

DBGBVR<n>_EL1 is in the Core power domain. RW fields in this register reset to architecturally
UNKNOWN values. These apply only on a Cold reset. The register is not affected by a Warm reset
and is not affected by an External debug reset.

If breakpoint n is not implemented then this register is unallocated.

Attributes

How this register is interpreted depends on the value of DBGBCR<n>_EL1.BT.

• When DBGBCR<n>_EL1.BT is 0b0x0x, this register holds a virtual address.

• When DBGBCR<n>_EL1.BT is 0b001x, 0b011x, or 0b110x, this register holds a Context ID.

• When DBGBCR<n>_EL1.BT is 0b100x, this register holds a VMID.

• When DBGBCR<n>_EL1.BT is 0b101x, this register holds a VMID and a Context ID.

• When DBGBCR<n>_EL1.BT is 0b111x, this register holds two Context ID values.

For other values of DBGBCR<n>_EL1.BT, this register is RES0.

Field descriptions

The DBGBVR<n>_EL1 bit assignments are:

When DBGBCR<n>_EL1.BT==0b0x0x:

RESS, bits [63:49]

Reserved, Sign extended. Software must treat this field as RES0 if bit[48] is 0 or RES0, and as RES1
if bit[48] is 1.

Off DLK OSLK EDAD SLK Default

Error Error Error Error RO RW

RESS

63 49

VA

48 2 1 0

RES0
D2-712 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

D2 External Debug Register Descriptions
D2.2 Debug registers
Hardware always ignores the value of these bits and it is IMPLEMENTATION DEFINED whether:

• The bits are hardwired to a copy of bit [48], meaning writes to these bits are ignored, and
reads to the bits always return the hardwired value.

• The value in those bits can be written, and reads will return the last value written. The value
held in those bits is ignored by hardware.

VA, bits [48:2]

If the address is being matched in an AArch64 stage 1 translation regime, this field contains
bits[48:2] of the address for comparison.

If the address is being matched in an AArch32 stage 1 translation regime, the first 16 bits of this
field are RES0, and the rest of the field contains bits[31:2] of the address for comparison.

When this register has an architecturally-defined reset value, this field resets to a value that is
architecturally UNKNOWN.

Bits [1:0]

Reserved, RES0.

When DBGBCR<n>_EL1.BT==0b001x:

Bits [63:32]

Reserved, RES0.

ContextID, bits [31:0]

Context ID value for comparison.

The value is compared against CONTEXTIDR and CONTEXTIDR_EL1 in the following cases:

• The PE is in Secure state.

• In ARMv8.0.

• In ARMv8.1, when EL2 is using AArch32.

• In ARMv8.1, when EL2 is using AArch64, HCR_EL2.E2H is 0 and the PE is in Non-secure
EL0, EL1 or EL2.

• In ARMv8.1, when EL2 is using AArch64, HCR_EL2.{E2H, TGE} is {1, 0} and the PE is
in Non-secure EL0 or EL1.

In ARMv8.1, when EL2 is using AArch64 and HCR_EL2.E2H is 1, the value is compared against
CONTEXTIDR_EL2 in the following cases:

• The PE is executing at EL2.

• HCR_EL2.TGE is 1 and the PE is in Non-secure EL0.

When this register has an architecturally-defined reset value, this field resets to a value that is
architecturally UNKNOWN.

When DBGBCR<n>_EL1.BT==0b011x:

RES0

63 32

ContextID

31 0

RES0

63 32

ContextID

31 0
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. D2-713
ID060316 Non-Confidential

D2 External Debug Register Descriptions
D2.2 Debug registers
Bits [63:32]

Reserved, RES0.

ContextID, bits [31:0]

Context ID value for comparison against CONTEXTIDR_EL1.

When this register has an architecturally-defined reset value, this field resets to a value that is
architecturally UNKNOWN.

When DBGBCR<n>_EL1.BT==0b100x and EL2 implemented:

Bits [63:48]

Reserved, RES0.

VMID, bits [47:32] (In ARMv8.1)

VMID value for comparison.

The VMID is 8 bits in the following cases.

• In ARMv8.0.

• In ARMv8.1, when EL2 is using AArch32.

In ARMv8.1 when EL2 is using AArch64, it is IMPLEMENTATION DEFINED whether the VMID is 8
bits or 16 bits.

The upper 8 bits of this field are RES0 if any of the following apply:

• The implementation has an 8 bit VMID.

• VTCR_EL2.VS is 0.

• EL2 is using AArch32.

When this register has an architecturally-defined reset value, this field resets to a value that is
architecturally UNKNOWN.

Bits [47:40] (In ARMv8.0)

Reserved, RES0.

VMID, bits [39:32] (In ARMv8.0)

VMID value for comparison.

When this register has an architecturally-defined reset value, this field resets to a value that is
architecturally UNKNOWN.

Bits [31:0]

Reserved, RES0.

When DBGBCR<n>_EL1.BT==0b101x and EL2 implemented:

Bits [63:48]

Reserved, RES0.

RES0

63 48

VMID

47 32

RES0

31 0

RES0

63 48

VMID

47 32

ContextID

31 0
D2-714 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

D2 External Debug Register Descriptions
D2.2 Debug registers
VMID, bits [47:32] (In ARMv8.1)

VMID value for comparison.

The VMID is 8 bits in the following cases.

• In ARMv8.0.

• In ARMv8.1, when EL2 is using AArch32.

In ARMv8.1 when EL2 is using AArch64, it is IMPLEMENTATION DEFINED whether the VMID is 8
bits or 16 bits.

The upper 8 bits of this field are RES0 if any of the following apply:

• The implementation has an 8 bit VMID.

• VTCR_EL2.VS is 0.

• EL2 is using AArch32.

When this register has an architecturally-defined reset value, this field resets to a value that is
architecturally UNKNOWN.

Bits [47:40] (In ARMv8.0)

Reserved, RES0.

VMID, bits [39:32] (In ARMv8.0)

VMID value for comparison.

When this register has an architecturally-defined reset value, this field resets to a value that is
architecturally UNKNOWN.

ContextID, bits [31:0]

Context ID value for comparison against CONTEXTIDR_EL1.

When this register has an architecturally-defined reset value, this field resets to a value that is
architecturally UNKNOWN.

When DBGBCR<n>_EL1.BT==0b110x and EL2 implemented:

ContextID2, bits [63:32]

Context ID value for comparison against CONTEXTIDR_EL2.

When this register has an architecturally-defined reset value, this field resets to a value that is
architecturally UNKNOWN.

Bits [31:0]

Reserved, RES0.

When DBGBCR<n>_EL1.BT==0b111x and EL2 implemented:

ContextID2, bits [63:32]

Context ID value for comparison against CONTEXTIDR_EL2.

ContextID2

63 32

RES0

31 0

ContextID2

63 32

ContextID

31 0
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. D2-715
ID060316 Non-Confidential

D2 External Debug Register Descriptions
D2.2 Debug registers
When this register has an architecturally-defined reset value, this field resets to a value that is
architecturally UNKNOWN.

ContextID, bits [31:0]

Context ID value for comparison against CONTEXTIDR_EL1.

When this register has an architecturally-defined reset value, this field resets to a value that is
architecturally UNKNOWN.

Accessing the DBGBVR<n>_EL1:

DBGBVR<n>_EL1[31:0] can be accessed through the external debug interface:

DBGBVR<n>_EL1[63:32] can be accessed through the external debug interface:

Component Offset

Debug 0x400 + 16n

Component Offset

Debug 0x404 + 16n
D2-716 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

D2 External Debug Register Descriptions
D2.2 Debug registers
D2.2.3 EDCIDSR, External Debug Context ID Sample Register

The EDCIDSR characteristics are:

Purpose

Contains the sampled value of the Context ID, captured on reading the low half of EDPCSR.

Usage constraints

This register is accessible as follows:

Configurations

EDCIDSR is in the Core power domain. RW fields in this register reset to architecturally UNKNOWN
values. These apply only on a Cold reset. The register is not affected by a Warm reset and is not
affected by an External debug reset.

Implemented only if the OPTIONAL PC Sample-based Profiling Extension is implemented.

Attributes

EDCIDSR is a 32-bit register.

Field descriptions

The EDCIDSR bit assignments are:

CONTEXTIDR, bits [31:0]

The sampled value of the Context ID, captured on reading the low half of EDPCSR.

If EL1 is using AArch64, the Context ID is held in CONTEXTIDR_EL1.

If EL1 is using AArch32, the Context ID is held in CONTEXTIDR. If EL3 is implemented and is
using AArch32 then CONTEXTIDR is a Banked register, and EDCIDSR samples the current
Banked copy of CONTEXTIDR.

When this register has an architecturally-defined reset value, this field resets to a value that is
architecturally UNKNOWN.

Accessing the EDCIDSR:

EDCIDSR can be accessed through the external debug interface:

Off DLK OSLK Default

Error Error Error RO

CONTEXTIDR

31 0

Component Offset

Debug 0x0A4
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. D2-717
ID060316 Non-Confidential

D2 External Debug Register Descriptions
D2.2 Debug registers
D2.2.4 EDDEVARCH, External Debug Device Architecture register

The EDDEVARCH characteristics are:

Purpose

Identifies the programmers' model architecture of the external debug component.

Usage constraints

This register is accessible as follows:

Configurations

EDDEVARCH is in the Debug power domain.

Implementation of this register is OPTIONAL.

Attributes

EDDEVARCH is a 32-bit register.

Field descriptions

The EDDEVARCH bit assignments are:

ARCHITECT, bits [31:21]

Defines the architecture of the component. For debug, this is ARM Limited.

Bits [31:28] are the JEP 106 continuation code, 0x4.

Bits [27:21] are the JEP 106 ID code, 0x3B.

PRESENT, bit [20]

When set to 1, indicates that the DEVARCH is present.

This field is 1 in ARMv8.

REVISION, bits [19:16]

Defines the architecture revision. For architectures defined by ARM this is the minor revision.

For debug, the revision defined by ARMv8 is 0x0.

All other values are reserved.

ARCHID, bits [15:0]

Defines this part to be an ARMv8 debug component. For architectures defined by ARM this is
further subdivided.

For debug:

• Bits [15:12] are the architecture version:

— In ARMv8-A, this is 0x6.

Default

RO

ARCHITECT

31 21 20

REVISION

19 16

ARCHID

15 0

PRESENT
D2-718 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

D2 External Debug Register Descriptions
D2.2 Debug registers
— In ARMv8.1, this is 0x7.

• Bits [11:0] are the architecture part number, 0xA15.

This corresponds to the ARMv8 debug architecture version.

Accessing the EDDEVARCH:

EDDEVARCH can be accessed through the external debug interface:

Component Offset

Debug 0xFBC
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. D2-719
ID060316 Non-Confidential

D2 External Debug Register Descriptions
D2.2 Debug registers
D2.2.5 EDDFR, External Debug Feature Register

The EDDFR characteristics are:

Purpose

Provides top level information about the debug system in AArch64.

Usage constraints

This register is accessible as follows:

Note
 Debuggers must use EDDEVARCH to determine the Debug architecture version.

Configurations

EDDFR is in the Debug power domain.

In an ARMv8-A implementation, this register gives information from the AArch64 register
ID_AA64DFR0_EL1.

Attributes

EDDFR is a 64-bit register.

Field descriptions

The EDDFR bit assignments are:

Bits [63:32]

Reserved, RES0.

CTX_CMPs, bits [31:28]

Number of breakpoints that are context-aware, minus 1. These are the highest numbered
breakpoints.

In an ARMv8-A implementation that supports AArch64 state in at least one Exception level, this
field returns the value of ID_AA64DFR0_EL1.CTX_CMPs.

Bits [27:24]

Reserved, RES0.

WRPs, bits [23:20]

Number of watchpoints, minus 1. The value of 0b0000 is reserved.

In an ARMv8-A implementation that supports AArch64 state in at least one Exception level, this
field returns the value of ID_AA64DFR0_EL1.WRPs.

Bits [19:16]

Reserved, RES0.

Default

RO

RES0

63 32

CTX_CMPs

31 28

RES0

27 24

WRPs

23 20

RES0

19 16

BRPs

15 12

PMUVer

11 8

TraceVer

7 4

UNKNOWN

3 0
D2-720 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

D2 External Debug Register Descriptions
D2.2 Debug registers
BRPs, bits [15:12]

Number of breakpoints, minus 1. The value of 0b0000 is reserved.

In an ARMv8-A implementation that supports AArch64 state in at least one Exception level, this
field returns the value of ID_AA64DFR0_EL1.BRPs.

PMUVer, bits [11:8]

Performance Monitors extension version. Indicates whether System register interface to
Performance Monitors extension is implemented. Defined values are:

0000 Performance Monitors extension System registers not implemented.

0001 Performance Monitors extension System registers implemented, PMUv3.

0100 Performance Monitors extension System registers implemented, PMUv3, with a 16-bit
evtCount field, and if EL2 is implemented, the MDCR_EL2.HPMD bit is meaningful.

1111 IMPLEMENTATION DEFINED form of performance monitors supported, PMUv3 not
supported.

All other values are reserved.

In ARMv8-A the permitted values are 0000, 0001 and 1111.

In ARMv8.1 the permitted values are 0000, 0100 and 1111.

In an ARMv8-A implementation that supports AArch64 state in at least one Exception level, this
field returns the value of ID_AA64DFR0_EL1.PMUVer.

TraceVer, bits [7:4]

Trace support. Indicates whether System register interface to a trace macrocell is implemented.
Defined values are:

0000 Trace macrocell System registers not implemented.

0001 Trace macrocell System registers implemented.

All other values are reserved.

A value of 0000 only indicates that no System register interface to a trace macrocell is implemented.
A trace macrocell might nevertheless be implemented without a System register interface.

In an ARMv8-A implementation that supports AArch64 state in at least one Exception level, this
field returns the value of ID_AA64DFR0_EL1.TraceVer.

UNKNOWN, bits [3:0]

Reserved, UNKNOWN.

Accessing the EDDFR:

EDDFR[31:0] can be accessed through the external debug interface:

EDDFR[63:32] can be accessed through the external debug interface:

Component Offset

Debug 0xD28

Component Offset

Debug 0xD2C
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. D2-721
ID060316 Non-Confidential

D2 External Debug Register Descriptions
D2.2 Debug registers
D2.2.6 EDPCSR, External Debug Program Counter Sample Register

The EDPCSR characteristics are:

Purpose

Holds a sampled instruction address value.

Usage constraints

This register is accessible as follows:

Configurations

EDPCSR is in the Core power domain. RW fields in this register reset to architecturally UNKNOWN
values. These apply only on a Cold reset. The register is not affected by a Warm reset and is not
affected by an External debug reset.

Implemented only if the OPTIONAL PC Sample-based Profiling Extension is implemented.

Attributes

In ARMv8.1, the format of this register differs depending on the value of EDSCR.SC2.

Field descriptions

The EDPCSR bit assignments are:

When EDSCR.SC2 == 0:

This format applies in all ARMv8.0 implementations.

Bits [63:32]

PC Sample high word, EDPCSRhi. If EDVIDSR.HV == 0 then this field is RAZ, otherwise bits
[63:32] of the sampled instruction address value.

When this register has an architecturally-defined reset value, this field resets to a value that is
architecturally UNKNOWN.

Bits [31:0]

PC Sample low word, EDPCSRlo. Bits [31:0] of the sampled instruction address value. Reading
EDPCSRlo has the side-effect of updating EDCIDSR, EDVIDSR, and EDPCSRhi. However:

• If the PE is in Debug state, or PC Sample-based profiling is prohibited, EDPCSRlo reads as
0xFFFFFFFF and EDCIDSR, EDVIDSR, and EDPCSRhi become UNKNOWN.

• If the PE is in Reset state, the sampled value is unknown and EDCIDSR, EDVIDSR and
EDPCSRhi become UNKNOWN.

• If no instruction has been retired since the PE left Reset state, Debug state, or a state where
Non-invasive debug is not permitted, the sampled value is UNKNOWN and EDCIDSR,
EDVIDSR, and EDPCSRhi become UNKNOWN.

Off DLK OSLK SLK Default

Error Error Error RO RO

PC Sample high word, EDPCSRhi

63 32

PC Sample low word, EDPCSRlo

31 0
D2-722 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

D2 External Debug Register Descriptions
D2.2 Debug registers
• For a read of EDPCSRlo from the memory-mapped interface, if EDLSR.SLK == 1, meaning
the Software Lock is locked, then the access has no side-effects. That is, EDCIDSR,
EDVIDSR, and EDPCSRhi are unchanged.

When this register has an architecturally-defined reset value, this field resets to a value that is
architecturally UNKNOWN.

When EDSCR.SC2 == 1:

NS, bit [63]

Non-secure state sample. Indicates the Security state associated with the most recent EDPCSR
sample.

When this register has an architecturally-defined reset value, this field resets to a value that is
architecturally UNKNOWN.

EL, bits [62:61]

Exception level status sample. Indicates the Exception level associated with the most recent
EDPCSR sample.

00 Sample is from EL0.

01 Sample is from EL1.

10 Sample is from EL2.

11 Sample is from EL3.

When this register has an architecturally-defined reset value, this field resets to a value that is
architecturally UNKNOWN.

Bits [60:56]

Reserved, RES0.

Bits [55:32]

PC Sample high word, EDPCSRhi. Bits [55:32] of the sampled instruction address value.

When this register has an architecturally-defined reset value, this field resets to a value that is
architecturally UNKNOWN.

Bits [31:0]

PC Sample low word, EDPCSRlo. Bits [31:0] of the sampled instruction address value. Reading
EDPCSRlo has the side-effect of updating EDCIDSR, EDVIDSR, and EDPCSRhi. However:

• If the PE is in Debug state, or PC Sample-based profiling is prohibited, EDPCSRlo reads as
0xFFFFFFFF and EDCIDSR, EDVIDSR, and EDPCSRhi become UNKNOWN.

• If the PE is in Reset state, the sampled value is unknown and EDCIDSR, EDVIDSR and
EDPCSRhi become UNKNOWN.

• If no instruction has been retired since the PE left Reset state, Debug state, or a state where
Non-invasive debug is not permitted, the sampled value is UNKNOWN and EDCIDSR,
EDVIDSR, and EDPCSRhi become UNKNOWN.

• For a read of EDPCSRlo from the memory-mapped interface, if EDLSR.SLK == 1, meaning
the Software Lock is locked, then the access has no side-effects. That is, EDCIDSR,
EDVIDSR, and EDPCSRhi are unchanged.

When this register has an architecturally-defined reset value, this field resets to a value that is
architecturally UNKNOWN.

NS

63

EL

62 61

RES0

60 56

PC Sample high word, EDPCSRhi

55 32

PC Sample low word, EDPCSRlo

31 0
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. D2-723
ID060316 Non-Confidential

D2 External Debug Register Descriptions
D2.2 Debug registers
Accessing the EDPCSR:

EDPCSR[31:0] can be accessed through the external debug interface:

EDPCSR[63:32] can be accessed through the external debug interface:

Component Offset

Debug 0x0A0

Component Offset

Debug 0x0AC
D2-724 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

D2 External Debug Register Descriptions
D2.2 Debug registers
D2.2.7 EDSCR, External Debug Status and Control Register

The EDSCR characteristics are:

Purpose

Main control register for the debug implementation.

Usage constraints

This register is accessible as follows:

Configurations

EDSCR is in the Core power domain. Some or all RW fields of this register have defined reset
values. These apply only on a Cold reset. The register is not affected by a Warm reset and is not
affected by an External debug reset.

Attributes

EDSCR is a 32-bit register.

Field descriptions

The EDSCR bit assignments are:

Bit [31]

Reserved, RES0.

RXfull, bit [30]

DTRRX full. This bit is RO.

When this register has an architecturally-defined reset value, this field resets to 0.

TXfull, bit [29]

DTRTX full. This bit is RO.

Off DLK OSLK SLK Default

Error Error Error RO RW

31 30 29 28 27 26 25 24 23 22 21 20 19

NS

18 17 16 15 14

RW

13 10

EL

9 8

A

7 6

STATUS

5 0

RES0
RXfull
TXfull
ITO
RXO
TXU
PipeAdv
ITE
INTdis
TDA
MA
SC2
RES0
SDD

ERR
HDE

RES0
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. D2-725
ID060316 Non-Confidential

D2 External Debug Register Descriptions
D2.2 Debug registers
When this register has an architecturally-defined reset value, this field resets to 0.

ITO, bit [28]

ITR overrun. This bit is RO.

If the PE is in Non-debug state, this bit is UNKNOWN. ITO is set to 0 on entry to Debug state.

RXO, bit [27]

DTRRX overrun. This bit is RO.

When this register has an architecturally-defined reset value, this field resets to 0.

TXU, bit [26]

DTRTX underrun. This bit is RO.

When this register has an architecturally-defined reset value, this field resets to 0.

PipeAdv, bit [25]

Pipeline advance. This bit is RO. Set to 1 every time the PE pipeline retires one or more instructions.
Cleared to 0 by a write to EDRCR.CSPA.

The architecture does not define precisely when this bit is set to 1. It requires only that this happen
periodically in Non-debug state to indicate that software execution is progressing.

ITE, bit [24]

ITR empty. This bit is RO.

If the PE is in Non-debug state, this bit is UNKNOWN. It is always valid in Debug state.

INTdis, bits [23:22]

Interrupt disable. Disables taking interrupts (including virtual interrupts and System Error
interrupts) in Non-Debug state.

If external invasive debug is disabled, the value of this field is ignored.

If external invasive debug is enabled, the possible values of this field are:

00 Do not disable interrupts.

01 Disable interrupts taken to Non-secure EL1.

10 Disable interrupts taken only to Non-secure EL1 and Non-secure EL2. If external secure
invasive debug is enabled, also disable interrupts taken to Secure EL1.

11 Disable interrupts taken only to Non-secure EL1 and Non-secure EL2. If external secure
invasive debug is enabled, also disable all other interrupts.

The value of INTdis does not affect whether an interrupt is a WFI wake-up event, but can mask an
interrupt as a WFE wake-up event.

If EL3 and EL2 are not implemented, the values 0b01 and 0b10 are reserved. If programmed with a
reserved value the PE behaves as if INTdis has been programmed with a defined value, other than
for a direct read of EDSCR, and the value returned by a read of EDSCR.INTdis is UNKNOWN.

When this register has an architecturally-defined reset value, this field resets to 0.

TDA, bit [21]

Traps accesses to the following Debug System registers:

• AArch64: DBGBCR<n>_EL1, DBGBVR<n>_EL1, DBGWCR<n>_EL1,
DBGWVR<n>_EL1.

• AArch32: DBGBCR<n>, DBGBVR<n>, DBGBXVR<n>, DBGWCR<n>, DBGWVR<n>.

The possible values of this field are:

0 Accesses to Debug System registers do not generate a Software Access debug event.

1 Accesses to Debug System registers generate a Software Access debug event, if
OSLSR.OSLK is 0 and if halting is allowed.

When this register has an architecturally-defined reset value, this field resets to 0.
D2-726 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

D2 External Debug Register Descriptions
D2.2 Debug registers
MA, bit [20]

Memory access mode. Controls use of memory-access mode for accessing ITR and the DCC. This
bit is ignored if in Non-debug state and set to zero on entry to Debug state.

Possible values of this field are:

0 Normal access mode.

1 Memory access mode.

When this register has an architecturally-defined reset value, this field resets to 0.

SC2, bit [19] (In ARMv8.1)

Sample CONTEXTIDR_EL2. Controls whether the Sample-based Profiling Extension samples
CONTEXTIDR_EL2 or VTTBR_EL2.VMID.

0 Sample VTTBR_EL2.VMID.

1 Sample CONTEXTIDR_EL2.

When this register has an architecturally-defined reset value, this field resets to 0.

Bit [19] (In ARMv8.0)

Reserved, RES0.

NS, bit [18]

Non-secure status. Read-only. When in Debug state, gives the current Security state:

0 Secure state, IsSecure() == TRUE.

1 Non-secure state, IsSecure() == FALSE.

In Non-debug state, this bit is UNKNOWN.

Bit [17]

Reserved, RES0.

SDD, bit [16]

Secure debug disabled. This bit is RO.

On entry to Debug state:

• If entering in Secure state, SDD is set to 0.

• If entering in Non-secure state, SDD is set to the inverse of
ExternalSecureInvasiveDebugEnabled().

In Debug state, the value of the SDD bit does not change, even if
ExternalSecureInvasiveDebugEnabled() changes.

In Non-debug state:

• SDD returns the inverse of ExternalSecureInvasiveDebugEnabled(). If the authentication
signals that control ExternalSecureInvasiveDebugEnabled() change, a context
synchronization operation is required to guarantee their effect.

• This bit is unaffected by the Security state of the PE.

If EL3 is not implemented and the implementation is Non-secure, this bit is RES1.

Bit [15]

Reserved, RES0.

HDE, bit [14]

Halting debug enable. The possible values of this field are:

0 Halting disabled for Breakpoint, Watchpoint and Halt Instruction debug events.

1 Halting enabled for Breakpoint, Watchpoint and Halt Instruction debug events.

When this register has an architecturally-defined reset value, this field resets to 0.
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. D2-727
ID060316 Non-Confidential

D2 External Debug Register Descriptions
D2.2 Debug registers
RW, bits [13:10]

Exception level Execution state status. Read-only. In Debug state, each bit gives the current
Execution state of each EL:

However:

• The value of 1110 is only permitted at EL0.

• The values 110x are not permitted if either:

— EL2 is not implemented.

— EL3 is implemented and SCR_EL3.NS/SCR.NS == 0.

• The values 10xx are not permitted if EL3 is not implemented.

In Non-debug state, this field is RAO.

EL, bits [9:8]

Exception level. Read-only. In Debug state, this gives the current EL of the PE.

In Non-debug state, this field is RAZ.

A, bit [7]

System Error interrupt pending. Read-only. In Debug state, indicates whether a SError interrupt is
pending:

• If HCR_EL2.{AMO, TGE} = {1, 0} and in Non-secure EL0 or EL1, a virtual SError
interrupt.

• Otherwise, a physical SError interrupt.

0 No SError interrupt pending.

1 SError interrupt pending.

A debugger can read EDSCR to check whether an SError interrupt is pending without having to
execute further instructions. A pending SError might indicate data from target memory is corrupted.

UNKNOWN in Non-debug state.

ERR, bit [6]

Cumulative error flag. This field is RO. It is set to 1 following exceptions in Debug state and on any
signaled overrun or underrun on the DTR or EDITR.

When this register has an architecturally-defined reset value, this field resets to 0.

STATUS, bits [5:0]

Debug status flags. This field is RO.

The possible values of this field are:

000010 PE is in Non-debug state.

000001 PE is restarting, exiting Debug state.

RW Meaning

1111 All Exception levels are using AArch64.

1110 EL0 is using AArch32. All other Exception levels are using AArch64.

110x EL0 and EL1 are using AArch32. All other Exception levels are using AArch64. Never seen if
EL2 is not implemented in the current Security state.

10xx EL0, EL1, and, if implemented in the current Security state, EL2 are using AArch32. All other
Exception levels are using AArch64.

0xxx All Exception levels are using AArch32.
D2-728 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

D2 External Debug Register Descriptions
D2.2 Debug registers
000111 Breakpoint.

010011 External debug request.

011011 Halting step, normal.

011111 Halting step, exclusive.

100011 OS Unlock Catch.

100111 Reset Catch.

101011 Watchpoint.

101111 HLT instruction.

110011 Software access to debug register.

110111 Exception Catch.

111011 Halting step, no syndrome.

All other values of STATUS are reserved.

Accessing the EDSCR:

EDSCR can be accessed through the external debug interface:

Component Offset

Debug 0x088
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. D2-729
ID060316 Non-Confidential

D2 External Debug Register Descriptions
D2.2 Debug registers
D2.2.8 EDVIDSR, External Debug Virtual Context Sample Register

The EDVIDSR characteristics are:

Purpose

Contains sampled values captured on reading EDPCSR.

Usage constraints

This register is accessible as follows:

Configurations

EDVIDSR is in the Core power domain. RW fields in this register reset to architecturally UNKNOWN
values. These apply only on a Cold reset. The register is not affected by a Warm reset and is not
affected by an External debug reset.

Required only if the OPTIONAL PC Sample-based Profiling Extension is implemented and the
implementation includes at least one of EL2 and EL3. In an implementation that includes the PC
Sample-based Profiling Extension and has EL1 as the highest implemented exception level,
EDVIDSR can be implemented as a fixed-value register.

Attributes

In ARMv8.1, the format of this register differs depending on the value of EDSCR.SC2.

Field descriptions

The EDVIDSR bit assignments are:

When EDSCR.SC2 == 0:

This format applies in all ARMv8.0 implementations.

NS, bit [31]

Non-secure state sample. Indicates the Security state associated with the most recent EDPCSR
sample.

If EL3 is not implemented, this bit has a fixed read-only value.

When this register has an architecturally-defined reset value, this field resets to a value that is
architecturally UNKNOWN.

E2, bit [30]

Exception level 2 status sample. Indicates whether the most recent EDPCSR sample was associated
with EL2. If EDVIDSR.NS == 0, this bit is 0.

If EL2 is not implemented, this bit is RES0.

Off DLK OSLK Default

Error Error Error RO

NS

31 30 29 28

RES0

27 16

VMID

15 0

E2
E3
HV
D2-730 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

D2 External Debug Register Descriptions
D2.2 Debug registers
When this register has an architecturally-defined reset value, this field resets to a value that is
architecturally UNKNOWN.

E3, bit [29]

Exception level 3 status sample. Indicates whether the most recent EDPCSR sample was associated
with AArch64 EL3. If EDVIDSR.NS == 1 or the PE was in AArch32 state when EDPCSR was read,
this bit is 0.

If EL3 is not implemented, this bit is RES0.

When this register has an architecturally-defined reset value, this field resets to a value that is
architecturally UNKNOWN.

HV, bit [28]

EDPCSR high half valid. Indicates whether bits [63:32] of the most recent EDPCSR sample are
valid. If EDVIDSR.HV == 0, the value of EDPCSR[63:32] is RAZ.

When this register has an architecturally-defined reset value, this field resets to a value that is
architecturally UNKNOWN.

Bits [27:16]

Reserved, RES0.

VMID, bits [15:0]

VMID sample. The VMID associated with the most recent EDPCSR sample. If EDVIDSR.NS ==
0 or EDVIDSR.E2 == 1, this field is RAZ.

If EL2 is not implemented, this field is RES0.

If EL2 is implemented and is using AArch64, the VMID is held in VTTBR_EL2.VMID.

If EL2 is implemented and is using AArch32, the VMID is held in VTTBR.VMID.

In ARMv8.0 the VMID is 8 bits.

In ARMv8.1 it is IMPLEMENTATION DEFINED whether the VMID is 8 bits or 16 bits.

If the implementation has an 8 bit VMID, then the upper 8 bits of this field are RES0.

When this register has an architecturally-defined reset value, this field resets to a value that is
architecturally UNKNOWN.

When EDSCR.SC2 == 1:

CONTEXTIDR_EL2, bits [31:0]

If the PC Sample in EDPCSR is from EL2 using AArch64, this register contains the sampled value
of CONTEXTIDR_EL2, captured on reading the low half of EDPCSR.

Otherwise the value of this register is UNKNOWN.

When this register has an architecturally-defined reset value, this field resets to a value that is
architecturally UNKNOWN.

CONTEXTIDR_EL2

31 0
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. D2-731
ID060316 Non-Confidential

D2 External Debug Register Descriptions
D2.2 Debug registers
Accessing the EDVIDSR:

EDVIDSR can be accessed through the external debug interface:

Component Offset

Debug 0x0A8
D2-732 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

D2 External Debug Register Descriptions
D2.3 Performance Monitors registers
D2.3 Performance Monitors registers
This section provides full descriptions of all of the Performance Monitors registers that are accessible through the
external debug interface and are affected by the introduction of ARMv8.1, or by the changes to the Performance
Monitors Extension introduced with ARMv8. See General information about External debug register descriptions
on page D2-706 for more information about the descriptions of these registers.
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. D2-733
ID060316 Non-Confidential

D2 External Debug Register Descriptions
D2.3 Performance Monitors registers
D2.3.1 PMCEID2, Performance Monitors Common Event Identification register 2

The PMCEID2 characteristics are:

Purpose

Defines which common architectural and common microarchitectural feature events in the range
0x4000 to 0x401F are implemented. If a particular bit is set to 1, then the event for that bit is
implemented.

Usage constraints

This register is accessible as follows:

Configurations

External register PMCEID2 is architecturally mapped to AArch64 System register
PMCEID0_EL0[63:32].

External register PMCEID2[63:32] is architecturally mapped to AArch32 System register
PMCEID2.

PMCEID2 is in the Core power domain.

Attributes

PMCEID2 is a 32-bit register.

Field descriptions

The PMCEID2 bit assignments are:

ID[16415:16384], bits [31:0]

PMCEID2[31:0] maps to common events 0x4000 to 0x401F. For a list of event numbers and
descriptions, see .

For each bit:

0 The common event is not implemented.

1 The common event is implemented.

Bits that map to reserved event numbers are reserved to identify events that might be defined in
future revisions to the architecture.

Events that do not require additional features in the PMU can be defined retrospectively, meaning
that they can be implemented as part of a PMUv3 implementation.

Accessing the PMCEID2:

PMCEID2 can be accessed through the external debug interface:

Off DLK OSLK EPMAD SLK Default

Error Error Error Error RO RO

ID[16415:16384]

31 0

Component Offset

PMU 0xE28
D2-734 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

D2 External Debug Register Descriptions
D2.3 Performance Monitors registers
D2.3.2 PMCEID3, Performance Monitors Common Event Identification register 3

The PMCEID3 characteristics are:

Purpose

Defines which common architectural and common microarchitectural feature events in the range
0x4020 to 0x403F are implemented. If a particular bit is set to 1, then the event for that bit is
implemented.

Usage constraints

This register is accessible as follows:

Configurations

External register PMCEID3 is architecturally mapped to AArch64 System register
PMCEID1_EL0[63:32].

External register PMCEID3[63:32] is architecturally mapped to AArch32 System register
PMCEID3.

PMCEID3 is in the Core power domain.

Attributes

PMCEID3 is a 32-bit register.

Field descriptions

The PMCEID3 bit assignments are:

ID[16447:16416], bits [31:0]

PMCEID3[31:0] maps to common events 0x4020 to 0x403F. For a list of event numbers and
descriptions, see .

For each bit:

0 The common event is not implemented.

1 The common event is implemented.

Bits that map to reserved event numbers are reserved to identify events that might be defined in
future revisions to the architecture.

Events that do not require additional features in the PMU can be defined retrospectively, meaning
that they can be implemented as part of a PMUv3 implementation.

Accessing the PMCEID3:

PMCEID3 can be accessed through the external debug interface:

Off DLK OSLK EPMAD SLK Default

Error Error Error Error RO RO

ID[16447:16416]

31 0

Component Offset

PMU 0xE2C
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. D2-735
ID060316 Non-Confidential

D2 External Debug Register Descriptions
D2.3 Performance Monitors registers
D2.3.3 PMCR_EL0, Performance Monitors Control Register

The PMCR_EL0 characteristics are:

Purpose

Provides details of the Performance Monitors implementation, including the number of counters
implemented, and configures and controls the counters.

Usage constraints

This register is accessible as follows:

Configurations

External register PMCR_EL0[6:0] is architecturally mapped to AArch32 System register
PMCR[6:0].

External register PMCR_EL0[6:0] is architecturally mapped to AArch64 System register
PMCR_EL0[6:0].

PMCR_EL0 is in the Core power domain. Some or all RW fields of this register have defined reset
values. These apply on a Warm or Cold reset. The register is not affected by an External debug reset.

This register is only partially mapped to the internal PMCR System register. An external agent must
use other means to discover the information held in PMCR[31:11], such as accessing PMCFGR and
the ID registers.

Attributes

PMCR_EL0 is a 32-bit register.

Field descriptions

The PMCR_EL0 bit assignments are:

Bits [31:11]

Reserved, RAZ/WI. Hardware must implement this as RAZ/WI. Software must not rely on this
property as the behavior of reserved values might change in a future revision of the architecture.

Bits [10:7]

Reserved, RES0.

LC, bit [6]

Long cycle counter enable. Determines which PMCCNTR_EL0 bit generates an overflow recorded
by PMOVSR[31].

0 Cycle counter overflow on increment that changes PMCCNTR_EL0[31] from 1 to 0.

1 Cycle counter overflow on increment that changes PMCCNTR_EL0[63] from 1 to 0.

ARM deprecates use of PMCR_EL0.LC = 0.

In an AArch64-only implementation, this field is RES1.

Off DLK OSLK EPMAD SLK Default

Error Error Error Error RO RW

RAZ/WI

31 11

RES0

10 7

LC

6

DP

5

X

4

D

3

C

2

P

1

E

0

D2-736 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

D2 External Debug Register Descriptions
D2.3 Performance Monitors registers
When this register has an architecturally-defined reset value, if this field is implemented as an RW
field, it resets to a value that is architecturally UNKNOWN.

DP, bit [5]

Disable cycle counter when event counting is prohibited. The possible values of this bit are:

0 PMCCNTR_EL0, if enabled, counts when event counting is prohibited.

1 PMCCNTR_EL0 does not count when event counting is prohibited.

Event counting is prohibited when ProfilingProhibited(IsSecure(),PSTATE.EL) == TRUE.

When EL3 is not implemented, this field is RES0:

• In ARMv8.0.

• In ARMv8.1, only if EL2 is not implemented.

Otherwise this field is RW.

When this register has an architecturally-defined reset value, if this field is implemented as an RW
field it resets to:

• A value that is architecturally UNKNOWN if the reset is into an Exception level that is using
AArch64.

• 0 if the reset is into an Exception level that is using AArch32.

X, bit [4]

Enable export of events in an IMPLEMENTATION DEFINED event stream. The possible values of this
bit are:

0 Do not export events.

1 Export events where not prohibited.

This field enables the exporting of events over an event bus to another device, for example to an
OPTIONAL trace macrocell. If the implementation does not include such an event bus then this field
is RAZ/WI, otherwise it is an RW field.

In an implementation that includes an event bus, no events are exported when counting is prohibited.

This field does not affect the generation of Performance Monitors overflow interrupt requests or
signaling to a cross-trigger interface (CTI) that can be implemented as signals exported from the PE.

When this register has an architecturally-defined reset value, if this field is implemented as an RW
field it resets to:

• A value that is architecturally UNKNOWN if the reset is into an Exception level that is using
AArch64.

• 0 if the reset is into an Exception level that is using AArch32.

D, bit [3]

Clock divider. The possible values of this bit are:

0 When enabled, PMCCNTR_EL0 counts every clock cycle.

1 When enabled, PMCCNTR_EL0 counts once every 64 clock cycles.

In an AArch64-only implementation this field is RES0, otherwise it is an RW field.If
PMCR_EL0.LC == 1, this bit is ignored and the cycle counter counts every clock cycle.

When this register has an architecturally-defined reset value, if this field is implemented as an RW
field it resets to:

• A value that is architecturally UNKNOWN if the reset is into an Exception level that is using
AArch64.

• 0 if the reset is into an Exception level that is using AArch32.

C, bit [2]

Cycle counter reset. This bit is WO. The effects of writing to this bit are:

0 No action.
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. D2-737
ID060316 Non-Confidential

D2 External Debug Register Descriptions
D2.3 Performance Monitors registers
1 Reset PMCCNTR_EL0 to zero.

This bit is always RAZ.

Resetting PMCCNTR_EL0 does not clear the PMCCNTR_EL0 overflow bit to 0.

P, bit [1]

Event counter reset. This bit is WO. The effects of writing to this bit are:

0 No action.

1 Reset all event counters, not including PMCCNTR_EL0, to zero.

This bit is always RAZ.

Resetting the event counters does not clear any overflow bits to 0.

E, bit [0]

Enable. The possible values of this bit are:

0 All counters, including PMCCNTR_EL0, are disabled.

1 All counters are enabled by PMCNTENSET_EL0.

This bit is RW.

When this register has an architecturally-defined reset value, this field resets to 0.

Accessing the PMCR_EL0:

PMCR_EL0 can be accessed through the external debug interface:

Component Offset

PMU 0xE04
D2-738 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

D2 External Debug Register Descriptions
D2.3 Performance Monitors registers
D2.3.4 PMEVTYPER<n>_EL0, Performance Monitors Event Type Registers, n = 0 - 30

The PMEVTYPER<n>_EL0 characteristics are:

Purpose

Configures event counter n, where n is 0 to 30.

Usage constraints

This register is accessible as follows:

Configurations

External register PMEVTYPER<n>_EL0 is architecturally mapped to AArch64 System register
PMEVTYPER<n>_EL0.

External register PMEVTYPER<n>_EL0 is architecturally mapped to AArch32 System register
PMEVTYPER<n>.

PMEVTYPER<n>_EL0 is in the Core power domain. RW fields in this register reset to
architecturally UNKNOWN values. These apply on a Warm or Cold reset. The register is not affected
by an External debug reset.

Attributes

PMEVTYPER<n>_EL0 is a 32-bit register.

Field descriptions

The PMEVTYPER<n>_EL0 bit assignments are:

P, bit [31]

Privileged filtering bit. Controls counting in EL1. If EL3 is implemented, then counting in
Non-secure EL1 is further controlled by the NSK bit. The possible values of this bit are:

0 Count events in EL1.

1 Do not count events in EL1.

When this register has an architecturally-defined reset value, this field resets to a value that is
architecturally UNKNOWN.

U, bit [30]

User filtering bit. Controls counting in EL0. If EL3 is implemented, then counting in Non-secure
EL0 is further controlled by the NSU bit. The possible values of this bit are:

0 Count events in EL0.

1 Do not count events in EL0.

Off DLK OSLK EPMAD SLK Default

Error Error Error Error RO RW

P

31

U

30 29 28 27

M

26 25

RES0

24 16

evtCount

15 0

NSK
NSU
NSH
MT
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. D2-739
ID060316 Non-Confidential

D2 External Debug Register Descriptions
D2.3 Performance Monitors registers
When this register has an architecturally-defined reset value, this field resets to a value that is
architecturally UNKNOWN.

NSK, bit [29]

Non-secure EL1 (kernel) modes filtering bit. Controls counting in Non-secure EL1. If EL3 is not
implemented, this bit is RES0.

If the value of this bit is equal to the value of P, events in Non-secure EL1 are counted.

Otherwise, events in Non-secure EL1 are not counted.

When this register has an architecturally-defined reset value, this field resets to a value that is
architecturally UNKNOWN.

NSU, bit [28]

Non-secure EL0 (Unprivileged) filtering. Controls counting in Non-secure EL0. If EL3 is not
implemented, this bit is RES0.

If the value of this bit is equal to the value of U, events in Non-secure EL0 are counted.

Otherwise, events in Non-secure EL0 are not counted.

When this register has an architecturally-defined reset value, this field resets to a value that is
architecturally UNKNOWN.

NSH, bit [27]

Non-secure EL2 (Hypervisor) filtering. Controls counting in Non-secure EL2. If EL2 is not
implemented, this bit is RES0.

0 Do not count events in EL2.

1 Count events in EL2.

When this register has an architecturally-defined reset value, this field resets to a value that is
architecturally UNKNOWN.

M, bit [26]

Secure EL3 filtering bit. If EL3 is not implemented, this bit is RES0.

If the value of this bit is equal to the value of P, cycles in Secure EL3 are counted.

Otherwise, cycles in Secure EL3 are not counted.

Most applications can ignore this field and set its value to 0.

Note
 This field is not visible in the AArch32 PMEVTYPER System register.

When this register has an architecturally-defined reset value, this field resets to a value that is
architecturally UNKNOWN.

MT, bit [25]

Multithreading. When the implementation is multi-threaded, the valid values for this bit are:

0 Count events only on controlling PE.

1 Count events from any PE with the same affinity at level 1 and above as this PE.

When the implementation is not multi-threaded, this bit is RES0.

Note
 • An implementation is described as multi-threaded when the lowest level of affinity consists

of logical PEs that are implemented using a multi-threading type approach. That is, the
performance of PEs at the lowest affinity level is highly interdependent. On such an
implementation, the value of MPIDR_EL1.MT, when read at the highest implemented
Exception level, is 1.
D2-740 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

D2 External Debug Register Descriptions
D2.3 Performance Monitors registers
• Events from a different thread of a multithreaded implementation are not Attributable to the
thread counting the event.

When this register has an architecturally-defined reset value, this field resets to a value that is
architecturally UNKNOWN.

Bits [24:16]

Reserved, RES0.

evtCount, bits [15:0] (In ARMv8.1)

Event to count. The event number of the event that is counted by event counter
PMEVCNTR<n>_EL0.

Software must program this field with an event that is supported by the PE being programmed.

There are three ranges of event numbers:

• Event numbers in the range 0x000 to 0x03F are common architectural and microarchitectural
events.

• Event numbers in the range 0x040 to 0x0BF are ARM recommended common architectural and
microarchitectural events.

• Event numbers in the range 0x0C0 to 0x3FF are IMPLEMENTATION DEFINED events.

If evtCount is programmed to an event that is reserved or not supported by the PE, the behavior
depends on the event type:

• For the range 0x000 to 0x03F, no events are counted, and the value returned by a direct or
external read of the evtCount field is the value written to the field.

• For IMPLEMENTATION DEFINED events, it is UNPREDICTABLE what event, if any, is counted,
and the value returned by a direct or external read of the evtCount field is UNKNOWN.
UNPREDICTABLE in this case means the event must not expose privileged information.

Note
 UNPREDICTABLE means the event must not expose privileged information.

For IMPLEMENTATION DEFINED events:

• It is UNPREDICTABLE what event, if any, is counted. UNPREDICTABLE in this case means the
event must not expose privileged information.

• The value read back from evtCount is UNKNOWN.

ARM recommends that the behavior across a family of implementations is defined such that if a
given implementation does not include an event from a set of common IMPLEMENTATION DEFINED
events, then no event is counted and the value read back on evtCount is the value written.

When this register has an architecturally-defined reset value, this field resets to a value that is
architecturally UNKNOWN.

Bits [15:10] (In ARMv8.0)

Reserved, RES0.

evtCount, bits [9:0] (In ARMv8.0)

Event to count. The event number of the event that is counted by event counter
PMEVCNTR<n>_EL0.

Software must program this field with an event that is supported by the PE being programmed.

There are three ranges of event numbers:

• Event numbers in the range 0x000 to 0x03F are common architectural and microarchitectural
events.

• Event numbers in the range 0x040 to 0x0BF are ARM recommended common architectural and
microarchitectural events.
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. D2-741
ID060316 Non-Confidential

D2 External Debug Register Descriptions
D2.3 Performance Monitors registers
• Event numbers in the range 0x0C0 to 0x3FF are IMPLEMENTATION DEFINED events.

If evtCount is programmed to an event that is reserved or not supported by the PE, the behavior
depends on the event type:

• For the range 0x000 to 0x03F, no events are counted, and the value returned by a direct or
external read of the evtCount field is the value written to the field.

• For IMPLEMENTATION DEFINED events, it is UNPREDICTABLE what event, if any, is counted,
and the value returned by a direct or external read of the evtCount field is UNKNOWN.
UNPREDICTABLE in this case means the event must not expose privileged information.

Note
 UNPREDICTABLE means the event must not expose privileged information.

For IMPLEMENTATION DEFINED events:

• It is UNPREDICTABLE what event, if any, is counted. UNPREDICTABLE in this case means the
event must not expose privileged information.

• The value read back from evtCount is UNKNOWN.

ARM recommends that the behavior across a family of implementations is defined such that if a
given implementation does not include an event from a set of common IMPLEMENTATION DEFINED
events, then no event is counted and the value read back on evtCount is the value written.

When this register has an architecturally-defined reset value, this field resets to a value that is
architecturally UNKNOWN.

Accessing the PMEVTYPER<n>_EL0:

PMEVTYPER<n>_EL0 can be accessed through the external debug interface:

Component Offset

PMU 0x400 + 4n
D2-742 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

Part E
Architectural Pseudocode

Chapter E1
ARMv8.1 Pseudocode

This chapter defines pseudocode that describes various features of the ARMv8.1 architecture, for operation in
AArch64 and in AArch32 state, including a summary of the changes made by the introduction of ARMv8.1. It
contains the following sections:
• About the ARMv8.1 pseudocode chapter on page E1-746.
• Library pseudocode for AArch64 on page E1-747.
• Library pseudocode for AArch32 on page E1-807.
• Common library pseudocode on page E1-875.
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. E1-745
ID060316 Non-Confidential

E1 ARMv8.1 Pseudocode
E1.1 About the ARMv8.1 pseudocode chapter
E1.1 About the ARMv8.1 pseudocode chapter
This chapter provides the complete architectural pseudocode chapter from the ARM® Architecture Reference
Manual, ARMv8, for ARMv8-A architecture profile, updated to take account of the changes introduced by
ARMv8.1. ARMv8.1 pseudocode changes identifies the functions that are changed for ARMv8.1.

Note
 The extensive cross-referencing in the ARM architectural pseudocode means it is more appropriate to include the
full pseudocode library.

E1.1.1 ARMv8.1 pseudocode changes

The following functions have been updated in ARMv8.1:

AArch64

• aarch64/debug/breakpoint/AArch64.BreakpointValueMatch on page E1-747.

• aarch64/debug/pmu/AArch64.CountEvents on page E1-751.

• aarch64/exceptions/takeexception/AArch64.TakeException on page E1-762.

• aarch64/translation/checks/AArch64.CheckPermission on page E1-792.

• aarch64/translation/walk/AArch64.TranslationTableWalk on page E1-799.

AArch32

• aarch32/debug/breakpoint/AArch32.BreakpointValueMatch on page E1-808.

• aarch32/debug/pmu/AArch32.CountEvents on page E1-811.

• aarch32/exceptions/takeexception/AArch32.EnterMode on page E1-826.

• aarch32/exceptions/takeexception/AArch32.EnterMonitorMode on page E1-826.

• aarch32/translation/checks/AArch32.CheckPermission on page E1-860.

Shared

• shared/debug/halting/DCPSInstruction on page E1-881.

• shared/debug/samplebasedprofiling/CreatePCSample on page E1-888.

• shared/debug/samplebasedprofiling/EDPCSRlo on page E1-888.

• shared/functions/system/IsInHost on page E1-936.

• shared/translation/translation/HasS2Translation on page E1-947.

• shared/translation/translation/S1TranslationRegime on page E1-947.
E1-746 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

E1 ARMv8.1 Pseudocode
E1.2 Library pseudocode for AArch64
E1.2 Library pseudocode for AArch64

E1.2.1 aarch64/debug

aarch64/debug/breakpoint/AArch64.BreakpointMatch

 // AArch64.BreakpointMatch()
 // =========================
 // Breakpoint matching in an AArch64 translation regime.

 boolean AArch64.BreakpointMatch(integer n, bits(64) vaddress, integer size)
 assert !ELUsingAArch32(S1TranslationRegime());
 assert n <= UInt(ID_AA64DFR0_EL1.BRPs);

 enabled = DBGBCR_EL1[n].E == '1';
 ispriv = PSTATE.EL != EL0;
 linked = DBGBCR_EL1[n].BT == '0x01';
 isbreakpnt = TRUE;
 linked_to = FALSE;

 state_match = AArch64.StateMatch(DBGBCR_EL1[n].SSC, DBGBCR_EL1[n].HMC, DBGBCR_EL1[n].PMC,
 linked, DBGBCR_EL1[n].LBN, isbreakpnt, ispriv);
 value_match = AArch64.BreakpointValueMatch(n, vaddress, linked_to);

 if HaveAnyAArch32() && size == 4 then // Check second halfword
 // If the breakpoint address and BAS of an Address breakpoint match the address of the
 // second halfword of an instruction, but not the address of the first halfword, it is
 // CONSTRAINED UNPREDICTABLE whether or not this breakpoint generates a Breakpoint debug
 // event.
 match_i = AArch64.BreakpointValueMatch(n, vaddress + 2, linked_to);
 if !value_match && match_i then
 value_match = ConstrainUnpredictableBool();

 if vaddress<1> == '1' && DBGBCR_EL1[n].BAS == '1111' then
 // The above notwithstanding, if DBGBCR_EL1[n].BAS == '1111', then it is CONSTRAINED
 // UNPREDICTABLE whether or not a Breakpoint debug event is generated for an instruction
 // at the address DBGBVR_EL1[n]+2.
 if value_match then value_match = ConstrainUnpredictableBool();

 match = value_match && state_match && enabled;

 return match;

aarch64/debug/breakpoint/AArch64.BreakpointValueMatch

 // AArch64.BreakpointValueMatch()
 // ==============================

 boolean AArch64.BreakpointValueMatch(integer n, bits(64) vaddress, boolean linked_to)

 // "n" is the identity of the breakpoint unit to match against
 // "vaddress" is the current instruction address, ignored if linked_to is TRUE and for Context
 // matching breakpoints.
 // "linked_to" is TRUE if this is a call from StateMatch for linking.

 // If a non-existant breakpoint then it is CONSTRAINED UNPREDICTABLE whether this gives
 // no match or the breakpoint is mapped to another UNKNOWN implemented breakpoint.
 if n > UInt(ID_AA64DFR0_EL1.BRPs) then
 (c, n) = ConstrainUnpredictableInteger(0, UInt(ID_AA64DFR0_EL1.BRPs));
 assert c IN {Constraint_DISABLED, Constraint_UNKNOWN};
 if c == Constraint_DISABLED then return FALSE;
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. E1-747
ID060316 Non-Confidential

E1 ARMv8.1 Pseudocode
E1.2 Library pseudocode for AArch64

 // If this breakpoint is not enabled, it cannot generate a match. (This could also happen on a
 // call from StateMatch for linking.)
 if DBGBCR_EL1[n].E == '0' then return FALSE;

 context_aware = (n >= UInt(ID_AA64DFR0_EL1.BRPs) - UInt(ID_AA64DFR0_EL1.CTX_CMPs));

 // If BT is set to a reserved type, behaves either as disabled or as a not-reserved type.
 type = DBGBCR_EL1[n].BT;

 if ((type IN {'011x','11xx'} && !HaveVirtHostExt()) || // Context matching
 type == '010x' || // Reserved
 (type != '0x0x' && !context_aware) || // Context matching
 (type == '1xxx' && !HaveEL(EL2))) then // EL2 extension
 (c, type) = ConstrainUnpredictableBits();
 assert c IN {Constraint_DISABLED, Constraint_UNKNOWN};
 if c == Constraint_DISABLED then return FALSE;
 // Otherwise the value returned by ConstrainUnpredictableBits must be a not-reserved value

 // Determine what to compare against.
 match_addr = (type == '0x0x');
 match_vmid = (type == '10xx');
 match_cid = (type == '001x');
 match_cid1 = (type IN { '101x', 'x11x'});
 match_cid2 = (type == '11xx');
 linked = (type == 'xxx1');

 // If this is a call from StateMatch, return FALSE if the breakpoint is not programmed for a
 // VMID and/or context ID match, of if not context-aware. The above assertions mean that the
 // code can just test for match_addr == TRUE to confirm all these things.
 if linked_to && (!linked || match_addr) then return FALSE;

 // If called from BreakpointMatch return FALSE for Linked context ID and/or VMID matches.
 if !linked_to && linked && !match_addr then return FALSE;

 // Do the comparison.
 if match_addr then
 byte = UInt(vaddress<1:0>);
 if HaveAnyAArch32() then
 // T32 instructions can be executed at EL0 in an AArch64 translation regime.
 assert byte IN {0,2}; // "vaddress" is halfword aligned.
 byte_select_match = (DBGBCR_EL1[n].BAS<byte> == '1');
 else
 assert byte == 0; // "vaddress" is word aligned
 byte_select_match = TRUE; // DBGBCR_EL1[n].BAS<byte> is RES1
 top = AddrTop(vaddress, PSTATE.EL);
 BVR_match = vaddress<top:2> == DBGBVR_EL1[n]<top:2> && byte_select_match;
 elsif match_cid then
 if IsInHost() then
 BVR_match = (CONTEXTIDR_EL2 == DBGBVR_EL1[n]<31:0>);
 else
 BVR_match = (PSTATE.EL IN {EL0,EL1} && CONTEXTIDR_EL1 == DBGBVR_EL1[n]<31:0>);
 elsif match_cid1 then
 BVR_match = (PSTATE.EL IN {EL0,EL1} && !IsInHost() && CONTEXTIDR_EL1 == DBGBVR_EL1[n]<31:0>);

 if match_vmid then
 if !Have16bitVMID() || VTCR_EL2.VS == '0' then
 vmid = ZeroExtend(VTTBR_EL2.VMID<7:0>, 16);
 bvr_vmid = ZeroExtend(DBGBVR_EL1[n]<39:32>, 16);
 else
 vmid = VTTBR_EL2.VMID;
 bvr_vmid = DBGBVR_EL1[n]<47:32>;
 BXVR_match = (HaveEL(EL2) && !IsSecure() && PSTATE.EL IN {EL0,EL1} &&
 !IsInHost() &&
 vmid == bvr_vmid);
 elsif match_cid2 then
 BXVR_match = (!IsSecure() && HaveVirtHostExt() &&
 DBGBVR_EL1[n]<63:32> == CONTEXTIDR_EL2);
E1-748 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

E1 ARMv8.1 Pseudocode
E1.2 Library pseudocode for AArch64

 bvr_match_valid = (match_addr || match_cid || match_cid1);
 bxvr_match_valid = (match_vmid || match_cid2);

 match = (!bxvr_match_valid || BXVR_match) && (!bvr_match_valid || BVR_match);

 return match;

aarch64/debug/breakpoint/AArch64.StateMatch

 // AArch64.StateMatch()
 // ====================
 // Determine whether a breakpoint or watchpoint is enabled in the current mode and state.

 boolean AArch64.StateMatch(bits(2) SSC, bit HMC, bits(2) PxC, boolean linked, bits(4) LBN,
 boolean isbreakpnt, boolean ispriv)
 // "SSC", "HMC", "PxC" are the control fields from the DBGBCR[n] or DBGWCR[n] register.
 // "linked" is TRUE if this is a linked breakpoint/watchpoint type.
 // "LBN" is the linked breakpoint number from the DBGBCR[n] or DBGWCR[n] register.
 // "isbreakpnt" is TRUE for breakpoints, FALSE for watchpoints.
 // "ispriv" is valid for watchpoints, and selects between privileged and unprivileged accesses.

 // If parameters are set to a reserved type, behaves as either disabled or a defined type
 if ((HMC:SSC:PxC) IN {'011xx','100x0','101x0','11010','11101','1111x'} || // Reserved
 (HMC == '0' && PxC == '00' && (!isbreakpnt || !HaveAArch32EL(EL1))) || // Usr/Svc/Sys
 (SSC IN {'01','10'} && !HaveEL(EL3)) || // No EL3
 (HMC:SSC != '000' && HMC:SSC != '111' && !HaveEL(EL3) && !HaveEL(EL2)) || // No EL3/EL2
 (HMC:SSC:PxC == '11100' && !HaveEL(EL2))) then // No EL2
 (c, <HMC,SSC,PxC>) = ConstrainUnpredictableBits();
 assert c IN {Constraint_DISABLED, Constraint_UNKNOWN};
 if c == Constraint_DISABLED then return FALSE;
 // Otherwise the value returned by ConstrainUnpredictableBits must be a not-reserved value

 EL3_match = HaveEL(EL3) && HMC == '1' && SSC<0> == '0';
 EL2_match = HaveEL(EL2) && HMC == '1';
 EL1_match = PxC<0> == '1';
 EL0_match = PxC<1> == '1';

 case PSTATE.EL of
 when EL3 priv_match = EL3_match;
 when EL2 priv_match = EL2_match;
 when EL1 priv_match = if ispriv || isbreakpnt then EL1_match else EL0_match;
 when EL0 priv_match = EL0_match;

 case SSC of
 when '00' security_state_match = TRUE; // Both
 when '01' security_state_match = !IsSecure(); // Non-secure only
 when '10' security_state_match = IsSecure(); // Secure only
 when '11' security_state_match = TRUE; // Both

 if linked then
 // "LBN" must be an enabled context-aware breakpoint unit. If it is not context-aware then
 // it is CONSTRAINED UNPREDICTABLE whether this gives no match, or LBN is mapped to some
 // UNKNOWN breakpoint that is context-aware.
 lbn = UInt(LBN);
 first_ctx_cmp = (UInt(ID_AA64DFR0_EL1.BRPs) - UInt(ID_AA64DFR0_EL1.CTX_CMPs));
 last_ctx_cmp = UInt(ID_AA64DFR0_EL1.BRPs);
 if (lbn < first_ctx_cmp || lbn > last_ctx_cmp) then
 (c, lbn) = ConstrainUnpredictableInteger(first_ctx_cmp, last_ctx_cmp);
 assert c IN {Constraint_DISABLED, Constraint_NONE, Constraint_UNKNOWN};
 case c of
 when Constraint_DISABLED return FALSE; // Disabled
 when Constraint_NONE linked = FALSE; // No linking
 // Otherwise ConstrainUnpredictableInteger returned a context-aware breakpoint

 if linked then
 vaddress = bits(64) UNKNOWN;
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. E1-749
ID060316 Non-Confidential

E1 ARMv8.1 Pseudocode
E1.2 Library pseudocode for AArch64
 linked_to = TRUE;
 linked_match = AArch64.BreakpointValueMatch(lbn, vaddress, linked_to);

 return priv_match && security_state_match && (!linked || linked_match);

aarch64/debug/enables/AArch64.GenerateDebugExceptions

 // AArch64.GenerateDebugExceptions()
 // =================================

 boolean AArch64.GenerateDebugExceptions()
 return AArch64.GenerateDebugExceptionsFrom(PSTATE.EL, IsSecure(), PSTATE.D);

aarch64/debug/enables/AArch64.GenerateDebugExceptionsFrom

 // AArch64.GenerateDebugExceptionsFrom()
 // =====================================

 boolean AArch64.GenerateDebugExceptionsFrom(bits(2) from, boolean secure, bit mask)

 if OSLSR_EL1.OSLK == '1' || DoubleLockStatus() || Halted() then
 return FALSE;

 route_to_el2 = HaveEL(EL2) && !secure && (HCR_EL2.TGE == '1' || MDCR_EL2.TDE == '1');

 if HaveEL(EL3) && secure then
 enabled = MDCR_EL3.SDD == '0' && from != EL3;
 else
 enabled = TRUE;

 target = if route_to_el2 then EL2 else EL1;
 if from == target then
 enabled = enabled && MDSCR_EL1.KDE == '1' && mask == '0';

 return enabled;

aarch64/debug/pmu/AArch64.CheckForPMUOverflow

 // AArch64.CheckForPMUOverflow()
 // =============================
 // Signal Performance Monitors overflow IRQ and CTI overflow events

 boolean AArch64.CheckForPMUOverflow()

 pmuirq = (PMCR_EL0.E == '1' && PMINTENSET_EL1<31> == '1' && PMOVSSET_EL0<31> == '1');
 for n = 0 to UInt(PMCR_EL0.N) - 1
 if HaveEL(EL2) then
 E = (if n < UInt(MDCR_EL2.HPMN) then PMCR_EL0.E else MDCR_EL2.HPME);
 else
 E = PMCR_EL0.E;
 if E == '1' && PMINTENSET_EL1<n> == '1' && PMOVSSET_EL0<n> == '1' then pmuirq = TRUE;

 SetInterruptRequestLevel(InterruptID_PMUIRQ, if pmuirq then HIGH else LOW);

 CTI_SetEventLevel(CrossTriggerIn_PMUOverflow, if pmuirq then HIGH else LOW);

 // The request remains set until the condition is cleared. (For example, an interrupt handler
 // or cross-triggered event handler clears the overflow status flag by writing to PMOVSCLR_EL0.)

 return pmuirq;
E1-750 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

E1 ARMv8.1 Pseudocode
E1.2 Library pseudocode for AArch64
aarch64/debug/pmu/AArch64.CountEvents

 // AArch64.CountEvents()
 // =====================
 // Return TRUE if counter "n" should count its event.

 boolean AArch64.CountEvents(integer n)
 assert(n == 31 || n < UInt(PMCR_EL0.N));

 // Event counting is disabled in Debug state
 debug = Halted();

 if HaveEL(EL2) then
 E = (if n < UInt(MDCR_EL2.HPMN) || n == 31 then PMCR_EL0.E else MDCR_EL2.HPME);
 else
 E = PMCR_EL0.E;
 enabled = (E == '1' && PMCNTENSET_EL0<n> == '1');

 // Event counting might be prohibited
 prohibited = AArch64.ProfilingProhibited(IsSecure(), PSTATE.EL);
 if PSTATE.EL == EL2 && HaveHPMDExt() && (n < UInt(MDCR_EL2.HPMN) || n == 31) then
 prohibited = (MDCR_EL2.HPMD == '1' && !ExternalSecureNoninvasiveDebugEnabled());
 if prohibited && n == 31 then prohibited = (PMCR_EL0.DP == '1');

 // Event counting can be filtered by the {P, U, NSK, NSU, NSH, M} bits
 filter = (if n == 31 then PMCCFILTR_EL0<31:26> else PMEVTYPER_EL0[n]<31:26>);

 M = if !HaveEL(EL3) then '0' else (filter<5> EOR filter<0>);
 H = if !HaveEL(EL2) then '0' else filter<1>;
 P = filter<5>; U = filter<4>;
 if !IsSecure() && HaveEL(EL3) then
 P = P EOR filter<3>; U = U EOR filter<2>;

 case PSTATE.EL of
 when EL0 filtered = U == '1';
 when EL1 filtered = P == '1';
 when EL2 filtered = H == '0';
 when EL3 filtered = M == '1';

 return !debug && enabled && !prohibited && !filtered;

aarch64/debug/pmu/AArch64.ProfilingProhibited

 // AArch64.ProfilingProhibited()
 // =============================
 // Determine whether event counting is prohibited in the current state.

 boolean AArch64.ProfilingProhibited(boolean secure, bits(2) el)

 // Events are always counted in Non-secure state.
 if !secure then return FALSE;

 // Event counting in Secure state is prohibited unless any one of:
 // * EL3 is not implemented
 if !HaveEL(EL3) then return FALSE;

 // * EL3 is using AArch64 and MDCR_EL3.SPME == 1
 if MDCR_EL3.SPME == '1' then return FALSE;

 // * Allowed by the IMPLEMENTATION DEFINED authentication interface
 if ExternalSecureNoninvasiveDebugEnabled() then return FALSE;

 return TRUE;
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. E1-751
ID060316 Non-Confidential

E1 ARMv8.1 Pseudocode
E1.2 Library pseudocode for AArch64
aarch64/debug/takeexceptiondbg/AArch64.TakeExceptionInDebugState

 // AArch64.TakeExceptionInDebugState()
 // ===================================
 // Take an exception in Debug state to an Exception Level using AArch64.

 AArch64.TakeExceptionInDebugState(bits(2) target_el, ExceptionRecord exception)
 assert HaveEL(target_el) && !ELUsingAArch32(target_el) && UInt(target_el) >= UInt(PSTATE.EL);

 // If coming from AArch32 state, the top parts of the X[] registers might be set to zero
 from_32 = UsingAArch32();
 if from_32 then AArch64.MaybeZeroRegisterUppers();

 AArch64.ReportException(exception, target_el);

 PSTATE.EL = target_el; PSTATE.nRW = '0'; PSTATE.SP = '1';

 SPSR[] = bits(32) UNKNOWN;
 ELR[] = bits(64) UNKNOWN;

 // PSTATE.{SS,D,A,I,F} are not observable and ignored in Debug state, so behave as if UNKNOWN.
 PSTATE.<SS,D,A,I,F> = bits(5) UNKNOWN;
 DLR_EL0 = bits(64) UNKNOWN;
 DSPSR_EL0 = bits(32) UNKNOWN;
 PSTATE.IL = '0';
 if from_32 then // Coming from AArch32
 PSTATE.IT = '00000000'; PSTATE.T = '0'; // PSTATE.J is RES0
 if HavePANExt() && (PSTATE.EL == EL1 || IsInHost()) && SCTLR[].SPAN == '0' then
 PSTATE.PAN = '1';
 EDSCR.ERR = '1';
 UpdateEDSCRFields(); // Update EDSCR processor state flags.
 EndOfInstruction();

aarch64/debug/watchpoint/AArch64.WatchpointByteMatch

 // AArch64.WatchpointByteMatch()
 // =============================

 boolean AArch64.WatchpointByteMatch(integer n, bits(64) vaddress)

 top = AddrTop(vaddress, PSTATE.EL);
 bottom = if DBGWVR_EL1[n]<2> == '1' then 2 else 3; // Word or doubleword
 byte_select_match = (DBGWCR_EL1[n].BAS<UInt(vaddress<bottom-1:0>)> != '0');
 mask = UInt(DBGWCR_EL1[n].MASK);

 // If DBGWCR_EL1[n].MASK is non-zero value and DBGWCR_EL1[n].BAS is not set to '11111111', or
 // DBGWCR_EL1[n].BAS specifies a non-contiguous set of bytes behavior is CONSTRAINED
 // UNPREDICTABLE.
 if mask > 0 && !IsOnes(DBGWCR_EL1[n].BAS) then
 byte_select_match = ConstrainUnpredictableBool();
 else
 LSB = (DBGWCR_EL1[n].BAS AND NOT(DBGWCR_EL1[n].BAS - 1)); MSB = (DBGWCR_EL1[n].BAS + LSB);
 if !IsZero(MSB AND (MSB - 1)) then // Not contiguous
 byte_select_match = ConstrainUnpredictableBool();
 bottom = 3; // For the whole doubleword

 // If the address mask is set to a reserved value, the behavior is CONSTRAINED UNPREDICTABLE.
 if mask > 0 && mask <= 2 then
 (c, mask) = ConstrainUnpredictableInteger(3, 31);
 assert c IN {Constraint_DISABLED, Constraint_NONE, Constraint_UNKNOWN};
 case c of
 when Constraint_DISABLED return FALSE; // Disabled
 when Constraint_NONE mask = 0; // No masking
 // Otherwise the value returned by ConstrainUnpredictableInteger is a not-reserved value

 if mask > bottom then
 WVR_match = (vaddress<top:mask> == DBGWVR_EL1[n]<top:mask>);
E1-752 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

E1 ARMv8.1 Pseudocode
E1.2 Library pseudocode for AArch64
 // If masked bits of DBGWVR_EL1[n] are not zero, the behavior is CONSTRAINED UNPREDICTABLE.
 if WVR_match && !IsZero(DBGWVR_EL1[n]<mask-1:bottom>) then
 WVR_match = ConstrainUnpredictableBool();
 else
 WVR_match = vaddress<top:bottom> == DBGWVR_EL1[n]<top:bottom>;

 return WVR_match && byte_select_match;

aarch64/debug/watchpoint/AArch64.WatchpointMatch

 // AArch64.WatchpointMatch()
 // =========================
 // Watchpoint matching in an AArch64 translation regime.

 boolean AArch64.WatchpointMatch(integer n, bits(64) vaddress, integer size, boolean ispriv,
 boolean iswrite)
 assert !ELUsingAArch32(S1TranslationRegime());
 assert n <= UInt(ID_AA64DFR0_EL1.WRPs);

 // "ispriv" is FALSE for LDTR/STTR instructions executed at EL1 and all
 // load/stores at EL0, TRUE for all other load/stores. "iswrite" is TRUE for stores, FALSE for
 // loads.
 enabled = DBGWCR_EL1[n].E == '1';
 linked = DBGWCR_EL1[n].WT == '1';
 isbreakpnt = FALSE;

 state_match = AArch64.StateMatch(DBGWCR_EL1[n].SSC, DBGWCR_EL1[n].HMC, DBGWCR_EL1[n].PAC,
 linked, DBGWCR_EL1[n].LBN, isbreakpnt, ispriv);

 ls_match = (DBGWCR_EL1[n].LSC<(if iswrite then 1 else 0)> == '1');

 value_match = FALSE;
 for byte = 0 to size - 1
 value_match = value_match || AArch64.WatchpointByteMatch(n, vaddress + byte);

 return value_match && state_match && ls_match && enabled;

E1.2.2 aarch64/exceptions

aarch64/exceptions/aborts/AArch64.Abort

 // AArch64.Abort()
 // ===============
 // Abort and Debug exception handling in an AArch64 translation regime.

 AArch64.Abort(bits(64) vaddress, FaultRecord fault)

 if IsDebugException(fault) then
 if fault.acctype == AccType_IFETCH then
 if UsingAArch32() && fault.debugmoe == DebugException_VectorCatch then
 AArch64.VectorCatchException(fault);
 else
 AArch64.BreakpointException(fault);
 else
 AArch64.WatchpointException(vaddress, fault);
 elsif fault.acctype == AccType_IFETCH then
 AArch64.InstructionAbort(vaddress, fault);
 else
 AArch64.DataAbort(vaddress, fault);
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. E1-753
ID060316 Non-Confidential

E1 ARMv8.1 Pseudocode
E1.2 Library pseudocode for AArch64
aarch64/exceptions/aborts/AArch64.AbortSyndrome

 // AArch64.AbortSyndrome()
 // =======================
 // Creates an exception syndrome record for Abort and Watchpoint exceptions
 // from an AArch64 translation regime.

 ExceptionRecord AArch64.AbortSyndrome(Exception type, FaultRecord fault, bits(64) vaddress)

 exception = ExceptionSyndrome(type);

 d_side = type IN {Exception_DataAbort, Exception_Watchpoint};

 exception.syndrome = FaultSyndrome(d_side, fault);
 exception.vaddress = ZeroExtend(vaddress);
 if IPAValid(fault) then
 exception.ipavalid = TRUE;
 exception.ipaddress = fault.ipaddress;
 else
 exception.ipavalid = FALSE;

 return exception;

aarch64/exceptions/aborts/AArch64.CheckPCAlignment

 // AArch64.CheckPCAlignment()
 // ==========================

 AArch64.CheckPCAlignment()

 bits(64) pc = ThisInstrAddr();
 if pc<1:0> != '00' then
 AArch64.PCAlignmentFault();

aarch64/exceptions/aborts/AArch64.DataAbort

 // AArch64.DataAbort()
 // ===================

 AArch64.DataAbort(bits(64) vaddress, FaultRecord fault)

 route_to_el3 = HaveEL(EL3) && SCR_EL3.EA == '1' && IsExternalAbort(fault);
 route_to_el2 = (HaveEL(EL2) && !IsSecure() && PSTATE.EL IN {EL0,EL1} &&
 (HCR_EL2.TGE == '1' || IsSecondStage(fault)));

 bits(64) preferred_exception_return = ThisInstrAddr();
 vect_offset = 0x0;

 exception = AArch64.AbortSyndrome(Exception_DataAbort, fault, vaddress);

 if PSTATE.EL == EL3 || route_to_el3 then
 AArch64.TakeException(EL3, exception, preferred_exception_return, vect_offset);
 elsif PSTATE.EL == EL2 || route_to_el2 then
 AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);
 else
 AArch64.TakeException(EL1, exception, preferred_exception_return, vect_offset);

aarch64/exceptions/aborts/AArch64.InstructionAbort

 // AArch64.InstructionAbort()
 // ==========================

 AArch64.InstructionAbort(bits(64) vaddress, FaultRecord fault)

 route_to_el3 = HaveEL(EL3) && SCR_EL3.EA == '1' && IsExternalAbort(fault);
 route_to_el2 = (HaveEL(EL2) && !IsSecure() && PSTATE.EL IN {EL0,EL1} &&
E1-754 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

E1 ARMv8.1 Pseudocode
E1.2 Library pseudocode for AArch64
 (HCR_EL2.TGE == '1' || IsSecondStage(fault)));

 bits(64) preferred_exception_return = ThisInstrAddr();
 vect_offset = 0x0;

 exception = AArch64.AbortSyndrome(Exception_InstructionAbort, fault, vaddress);

 if PSTATE.EL == EL3 || route_to_el3 then
 AArch64.TakeException(EL3, exception, preferred_exception_return, vect_offset);
 elsif PSTATE.EL == EL2 || route_to_el2 then
 AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);
 else
 AArch64.TakeException(EL1, exception, preferred_exception_return, vect_offset);

aarch64/exceptions/aborts/AArch64.PCAlignmentFault

 // AArch64.PCAlignmentFault()
 // ==========================
 // Called on unaligned program counter in AArch64 state.

 AArch64.PCAlignmentFault()

 bits(64) preferred_exception_return = ThisInstrAddr();
 vect_offset = 0x0;

 exception = ExceptionSyndrome(Exception_PCAlignment);
 exception.vaddress = ThisInstrAddr();

 if UInt(PSTATE.EL) > UInt(EL1) then
 AArch64.TakeException(PSTATE.EL, exception, preferred_exception_return, vect_offset);
 elsif HaveEL(EL2) && !IsSecure() && HCR_EL2.TGE == '1' then
 AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);
 else
 AArch64.TakeException(EL1, exception, preferred_exception_return, vect_offset);

aarch64/exceptions/aborts/AArch64.SPAlignmentFault

 // AArch64.SPAlignmentFault()
 // ==========================
 // Called on an unaligned stack pointer in AArch64 state.

 AArch64.SPAlignmentFault()

 bits(64) preferred_exception_return = ThisInstrAddr();
 vect_offset = 0x0;

 exception = ExceptionSyndrome(Exception_SPAlignment);

 if UInt(PSTATE.EL) > UInt(EL1) then
 AArch64.TakeException(PSTATE.EL, exception, preferred_exception_return, vect_offset);
 elsif HaveEL(EL2) && !IsSecure() && HCR_EL2.TGE == '1' then
 AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);
 else
 AArch64.TakeException(EL1, exception, preferred_exception_return, vect_offset);

aarch64/exceptions/asynch/AArch64.TakePhysicalFIQException

 // AArch64.TakePhysicalFIQException()
 // ==================================

 AArch64.TakePhysicalFIQException()

 route_to_el3 = HaveEL(EL3) && SCR_EL3.FIQ == '1';
 route_to_el2 = (HaveEL(EL2) && !IsSecure() && PSTATE.EL IN {EL0,EL1} &&
 (HCR_EL2.TGE == '1' || HCR_EL2.FMO == '1'));
 bits(64) preferred_exception_return = ThisInstrAddr();
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. E1-755
ID060316 Non-Confidential

E1 ARMv8.1 Pseudocode
E1.2 Library pseudocode for AArch64
 vect_offset = 0x100;
 exception = ExceptionSyndrome(Exception_FIQ);

 if route_to_el3 then
 AArch64.TakeException(EL3, exception, preferred_exception_return, vect_offset);
 elsif PSTATE.EL == EL2 || route_to_el2 then
 assert PSTATE.EL != EL3;
 AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);
 else
 assert PSTATE.EL IN {EL0,EL1};
 AArch64.TakeException(EL1, exception, preferred_exception_return, vect_offset);

aarch64/exceptions/asynch/AArch64.TakePhysicalIRQException

 // AArch64.TakePhysicalIRQException()
 // ==================================
 // Take an enabled physical IRQ exception.

 AArch64.TakePhysicalIRQException()

 route_to_el3 = HaveEL(EL3) && SCR_EL3.IRQ == '1';
 route_to_el2 = (HaveEL(EL2) && !IsSecure() && PSTATE.EL IN {EL0,EL1} &&
 (HCR_EL2.TGE == '1' || HCR_EL2.IMO == '1'));
 bits(64) preferred_exception_return = ThisInstrAddr();
 vect_offset = 0x80;

 exception = ExceptionSyndrome(Exception_IRQ);

 if route_to_el3 then
 AArch64.TakeException(EL3, exception, preferred_exception_return, vect_offset);
 elsif PSTATE.EL == EL2 || route_to_el2 then
 assert PSTATE.EL != EL3;
 AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);
 else
 assert PSTATE.EL IN {EL0,EL1};
 AArch64.TakeException(EL1, exception, preferred_exception_return, vect_offset);

aarch64/exceptions/asynch/AArch64.TakePhysicalSystemErrorException

 // AArch64.TakePhysicalSystemErrorException()
 // ==

 AArch64.TakePhysicalSystemErrorException(boolean syndrome_valid, bits(24) syndrome)

 route_to_el3 = HaveEL(EL3) && SCR_EL3.EA == '1';
 route_to_el2 = (HaveEL(EL2) && !IsSecure() && PSTATE.EL IN {EL0,EL1} &&
 (HCR_EL2.TGE == '1' || (!IsInHost() && HCR_EL2.AMO == '1')));
 bits(64) preferred_exception_return = ThisInstrAddr();
 vect_offset = 0x180;

 exception = ExceptionSyndrome(Exception_SError);
 if syndrome_valid then
 exception.syndrome<24> = '1';
 exception.syndrome<23:0> = syndrome;
 else
 exception.syndrome<24> = '0';

 if PSTATE.EL == EL3 || route_to_el3 then
 AArch64.TakeException(EL3, exception, preferred_exception_return, vect_offset);
 elsif PSTATE.EL == EL2 || route_to_el2 then
 AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);
 else
 AArch64.TakeException(EL1, exception, preferred_exception_return, vect_offset);
E1-756 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

E1 ARMv8.1 Pseudocode
E1.2 Library pseudocode for AArch64
aarch64/exceptions/asynch/AArch64.TakeVirtualFIQException

 // AArch64.TakeVirtualFIQException()
 // =================================

 AArch64.TakeVirtualFIQException()
 assert HaveEL(EL2) && !IsSecure() && PSTATE.EL IN {EL0,EL1};
 assert HCR_EL2.TGE == '0' && HCR_EL2.FMO == '1'; // Virtual IRQ enabled if TGE==0 and FMO==1

 bits(64) preferred_exception_return = ThisInstrAddr();
 vect_offset = 0x100;

 exception = ExceptionSyndrome(Exception_FIQ);

 AArch64.TakeException(EL1, exception, preferred_exception_return, vect_offset);

aarch64/exceptions/asynch/AArch64.TakeVirtualIRQException

 // AArch64.TakeVirtualIRQException()
 // =================================

 AArch64.TakeVirtualIRQException()
 assert HaveEL(EL2) && !IsSecure() && PSTATE.EL IN {EL0,EL1};
 assert HCR_EL2.TGE == '0' && HCR_EL2.IMO == '1'; // Virtual IRQ enabled if TGE==0 and IMO==1

 bits(64) preferred_exception_return = ThisInstrAddr();
 vect_offset = 0x80;

 exception = ExceptionSyndrome(Exception_IRQ);

 AArch64.TakeException(EL1, exception, preferred_exception_return, vect_offset);

aarch64/exceptions/asynch/AArch64.TakeVirtualSystemErrorException

 // AArch64.TakeVirtualSystemErrorException()
 // ===

 AArch64.TakeVirtualSystemErrorException()
 assert HaveEL(EL2) && !IsSecure() && PSTATE.EL IN {EL0,EL1};
 assert HCR_EL2.TGE == '0' && HCR_EL2.AMO == '1'; // Virtual SError enabled if TGE==0 and AMO==1

 bits(64) preferred_exception_return = ThisInstrAddr();
 vect_offset = 0x180;

 exception = ExceptionSyndrome(Exception_SError);
 if boolean IMPLEMENTATION_DEFINED "Virtual System Error syndrome valid" then
 exception.syndrome<24> = '1';
 exception.syndrome<23:0> = bits(24) IMPLEMENTATION_DEFINED "Virtual System Error syndrome";

 HCR_EL2.VSE = '0';
 AArch64.TakeException(EL1, exception, preferred_exception_return, vect_offset);

aarch64/exceptions/debug/AArch64.BreakpointException

 // AArch64.BreakpointException()
 // =============================

 AArch64.BreakpointException(FaultRecord fault)
 assert PSTATE.EL != EL3;

 route_to_el2 = (HaveEL(EL2) && !IsSecure() && PSTATE.EL IN {EL0,EL1} &&
 (HCR_EL2.TGE == '1' || MDCR_EL2.TDE == '1'));

 bits(64) preferred_exception_return = ThisInstrAddr();
 vect_offset = 0x0;

DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. E1-757
ID060316 Non-Confidential

E1 ARMv8.1 Pseudocode
E1.2 Library pseudocode for AArch64
 vaddress = bits(64) UNKNOWN;
 exception = AArch64.AbortSyndrome(Exception_Breakpoint, fault, vaddress);

 if PSTATE.EL == EL2 || route_to_el2 then
 AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);
 else
 AArch64.TakeException(EL1, exception, preferred_exception_return, vect_offset);

aarch64/exceptions/debug/AArch64.SoftwareBreakpoint

 // AArch64.SoftwareBreakpoint()
 // ============================

 AArch64.SoftwareBreakpoint(bits(16) immediate)

 route_to_el2 = (HaveEL(EL2) && !IsSecure() && PSTATE.EL IN {EL0,EL1} &&
 (HCR_EL2.TGE == '1' || MDCR_EL2.TDE == '1'));

 bits(64) preferred_exception_return = ThisInstrAddr();
 vect_offset = 0x0;

 exception = ExceptionSyndrome(Exception_SoftwareBreakpoint);
 exception.syndrome<15:0> = immediate;

 if UInt(PSTATE.EL) > UInt(EL1) then
 AArch64.TakeException(PSTATE.EL, exception, preferred_exception_return, vect_offset);
 elsif route_to_el2 then
 AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);
 else
 AArch64.TakeException(EL1, exception, preferred_exception_return, vect_offset);

aarch64/exceptions/debug/AArch64.SoftwareStepException

 // AArch64.SoftwareStepException()
 // ===============================

 AArch64.SoftwareStepException()
 assert PSTATE.EL != EL3;

 route_to_el2 = (HaveEL(EL2) && !IsSecure() && PSTATE.EL IN {EL0,EL1} &&
 (HCR_EL2.TGE == '1' || MDCR_EL2.TDE == '1'));

 bits(64) preferred_exception_return = ThisInstrAddr();
 vect_offset = 0x0;

 exception = ExceptionSyndrome(Exception_SoftwareStep);
 if SoftwareStep_DidNotStep() then
 exception.syndrome<24> = '0';
 else
 exception.syndrome<24> = '1';
 exception.syndrome<6> = if SoftwareStep_SteppedEX() then '1' else '0';

 if PSTATE.EL == EL2 || route_to_el2 then
 AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);
 else
 AArch64.TakeException(EL1, exception, preferred_exception_return, vect_offset);

aarch64/exceptions/debug/AArch64.VectorCatchException

 // AArch64.VectorCatchException()
 // ==============================
 // Vector Catch taken from EL0 or EL1 to EL2. This can only be called when debug exceptions are
 // being routed to EL2, as Vector Catch is a legacy debug event.

 AArch64.VectorCatchException(FaultRecord fault)
 assert PSTATE.EL != EL2;
E1-758 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

E1 ARMv8.1 Pseudocode
E1.2 Library pseudocode for AArch64
 assert HaveEL(EL2) && !IsSecure() && (HCR_EL2.TGE == '1' || MDCR_EL2.TDE == '1');

 bits(64) preferred_exception_return = ThisInstrAddr();
 vect_offset = 0x0;

 vaddress = bits(64) UNKNOWN;
 exception = AArch64.AbortSyndrome(Exception_VectorCatch, fault, vaddress);

 AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);

aarch64/exceptions/debug/AArch64.WatchpointException

 // AArch64.WatchpointException()
 // =============================

 AArch64.WatchpointException(bits(64) vaddress, FaultRecord fault)
 assert PSTATE.EL != EL3;

 route_to_el2 = (HaveEL(EL2) && !IsSecure() && PSTATE.EL IN {EL0,EL1} &&
 (HCR_EL2.TGE == '1' || MDCR_EL2.TDE == '1'));

 bits(64) preferred_exception_return = ThisInstrAddr();
 vect_offset = 0x0;

 exception = AArch64.AbortSyndrome(Exception_Watchpoint, fault, vaddress);

 if PSTATE.EL == EL2 || route_to_el2 then
 AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);
 else
 AArch64.TakeException(EL1, exception, preferred_exception_return, vect_offset);

aarch64/exceptions/exceptions/AArch64.ExceptionClass

 // AArch64.ExceptionClass()
 // ========================
 // Return the Exception Class and Instruction Length fields for reported in ESR

 (integer,bit) AArch64.ExceptionClass(Exception type, bits(2) target_el)

 il = if ThisInstrLength() == 32 then '1' else '0';
 from_32 = UsingAArch32();
 assert from_32 || il == '1'; // AArch64 instructions always 32-bit

 case type of
 when Exception_Uncategorized ec = 0x00; il = '1';
 when Exception_WFxTrap ec = 0x01;
 when Exception_CP15RTTrap ec = 0x03; assert from_32;
 when Exception_CP15RRTTrap ec = 0x04; assert from_32;
 when Exception_CP14RTTrap ec = 0x05; assert from_32;
 when Exception_CP14DTTrap ec = 0x06; assert from_32;
 when Exception_AdvSIMDFPAccessTrap ec = 0x07;
 when Exception_FPIDTrap ec = 0x08;
 when Exception_CP14RRTTrap ec = 0x0C; assert from_32;
 when Exception_IllegalState ec = 0x0E; il = '1';
 when Exception_SupervisorCall ec = 0x11;
 when Exception_HypervisorCall ec = 0x12;
 when Exception_MonitorCall ec = 0x13;
 when Exception_SystemRegisterTrap ec = 0x18; assert !from_32;
 when Exception_InstructionAbort ec = 0x20; il = '1';
 when Exception_PCAlignment ec = 0x22; il = '1';
 when Exception_DataAbort ec = 0x24;
 when Exception_SPAlignment ec = 0x26; il = '1'; assert !from_32;
 when Exception_FPTrappedException ec = 0x28;
 when Exception_SError ec = 0x2F; il = '1';
 when Exception_Breakpoint ec = 0x30; il = '1';
 when Exception_SoftwareStep ec = 0x32; il = '1';
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. E1-759
ID060316 Non-Confidential

E1 ARMv8.1 Pseudocode
E1.2 Library pseudocode for AArch64
 when Exception_Watchpoint ec = 0x34; il = '1';
 when Exception_SoftwareBreakpoint ec = 0x38;
 when Exception_VectorCatch ec = 0x3A; il = '1'; assert from_32;
 otherwise Unreachable();

 if ec IN {0x20,0x24,0x30,0x32,0x34} && target_el == PSTATE.EL then
 ec = ec + 1;

 if ec IN {0x11,0x12,0x13,0x28,0x38} && !from_32 then
 ec = ec + 4;

 return (ec,il);

aarch64/exceptions/exceptions/AArch64.ReportException

 // AArch64.ReportException()
 // =========================
 // Report syndrome information for exception taken to AArch64 state.

 AArch64.ReportException(ExceptionRecord exception, bits(2) target_el)

 Exception type = exception.type;

 (ec,il) = AArch64.ExceptionClass(type, target_el);
 iss = exception.syndrome;

 // IL is not valid for Data Abort exceptions without valid instruction syndrome information
 if ec IN {0x24,0x25} && iss<24> == '0' then
 il = '1';

 ESR[target_el] = ec<5:0>:il:iss;

 if type IN {Exception_InstructionAbort, Exception_PCAlignment, Exception_DataAbort,
 Exception_Watchpoint} then
 FAR[target_el] = exception.vaddress;
 else
 FAR[target_el] = bits(64) UNKNOWN;

 if target_el == EL2 then
 if exception.ipavalid then
 HPFAR_EL2<39:4> = exception.ipaddress<47:12>;
 else
 HPFAR_EL2<39:4> = bits(36) UNKNOWN;

 return;

aarch64/exceptions/exceptions/AArch64.ResetControlRegisters

 // Resets System registers and memory-mapped control registers that have architecturally-defined
 // reset values to those values.
 AArch64.ResetControlRegisters(boolean cold_reset);

aarch64/exceptions/exceptions/AArch64.TakeReset

 // AArch64.TakeReset()
 // ===================
 // Reset into AArch64 state

 AArch64.TakeReset(boolean cold_reset)
 assert !HighestELUsingAArch32();

 // Enter the highest implemented Exception level in AArch64 state
 PSTATE.nRW = '0';
 if HaveEL(EL3) then
 PSTATE.EL = EL3;
 elsif HaveEL(EL2) then
E1-760 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

E1 ARMv8.1 Pseudocode
E1.2 Library pseudocode for AArch64
 PSTATE.EL = EL2;
 else
 PSTATE.EL = EL1;

 // Reset the system registers and other system components
 AArch64.ResetControlRegisters(cold_reset);

 // Reset all other PSTATE fields
 PSTATE.SP = '1'; // Select stack pointer
 PSTATE.<D,A,I,F> = '1111'; // All asynchronous exceptions masked
 PSTATE.SS = '0'; // Clear software step bit
 PSTATE.IL = '0'; // Clear Illegal Execution state bit

 // All registers, bits and fields not reset by the above pseudocode or by the BranchTo() call
 // below are UNKNOWN bitstrings after reset. In particular, the return information registers
 // ELR_ELx and SPSR_ELx have UNKNOWN values, so that it
 // is impossible to return from a reset in an architecturally defined way.
 AArch64.ResetGeneralRegisters();
 AArch64.ResetSIMDFPRegisters();
 AArch64.ResetSpecialRegisters();
 ResetExternalDebugRegisters(cold_reset);

 bits(64) rv; // IMPLEMENTATION DEFINED reset vector
 if HaveEL(EL3) then
 rv = RVBAR_EL3;
 elsif HaveEL(EL2) then
 rv = RVBAR_EL2;
 else
 rv = RVBAR_EL1;

 // The reset vector must be correctly aligned
 assert IsZero(rv<63:PAMax()>) && IsZero(rv<1:0>);

 BranchTo(rv, BranchType_UNKNOWN);

aarch64/exceptions/ieeefp/AArch64.FPTrappedException

 // AArch64.FPTrappedException()
 // ============================

 AArch64.FPTrappedException(boolean is_ase, integer element, bits(8) accumulated_exceptions)
 exception = ExceptionSyndrome(Exception_FPTrappedException);
 exception.syndrome<23> = '1'; // TFV
 if is_ase then exception.syndrome<10:8> = element<2:0>; // VECITR
 exception.syndrome<7,4:0> = accumulated_exceptions<7,4:0>; // IDF,IXF,UFF,OFF,DZF,IOF

 route_to_el2 = HaveEL(EL2) && !IsSecure() && HCR_EL2.TGE == '1';

 bits(64) preferred_exception_return = ThisInstrAddr();
 vect_offset = 0x0;

 if UInt(PSTATE.EL) > UInt(EL1) then
 AArch64.TakeException(PSTATE.EL, exception, preferred_exception_return, vect_offset);
 elsif route_to_el2 then
 AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);
 else
 AArch64.TakeException(EL1, exception, preferred_exception_return, vect_offset);

aarch64/exceptions/syscalls/AArch64.CallHypervisor

 // AArch64.CallHypervisor()
 // ========================
 // Performs a HVC call

 AArch64.CallHypervisor(bits(16) immediate)
 assert HaveEL(EL2);
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. E1-761
ID060316 Non-Confidential

E1 ARMv8.1 Pseudocode
E1.2 Library pseudocode for AArch64

 if UsingAArch32() then AArch32.ITAdvance();
 SSAdvance();

 bits(64) preferred_exception_return = NextInstrAddr();
 vect_offset = 0x0;

 exception = ExceptionSyndrome(Exception_HypervisorCall);
 exception.syndrome<15:0> = immediate;

 if PSTATE.EL == EL3 then
 AArch64.TakeException(EL3, exception, preferred_exception_return, vect_offset);
 else
 AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);

aarch64/exceptions/syscalls/AArch64.CallSecureMonitor

 // AArch64.CallSecureMonitor()
 // ===========================

 AArch64.CallSecureMonitor(bits(16) immediate)
 assert HaveEL(EL3) && !ELUsingAArch32(EL3);

 if UsingAArch32() then AArch32.ITAdvance();
 SSAdvance();

 bits(64) preferred_exception_return = NextInstrAddr();
 vect_offset = 0x0;

 exception = ExceptionSyndrome(Exception_MonitorCall);
 exception.syndrome<15:0> = immediate;

 AArch64.TakeException(EL3, exception, preferred_exception_return, vect_offset);

aarch64/exceptions/syscalls/AArch64.CallSupervisor

 // AArch64.CallSupervisor()
 // ========================
 // Calls the Supervisor

 AArch64.CallSupervisor(bits(16) immediate)

 if UsingAArch32() then AArch32.ITAdvance();
 SSAdvance();

 route_to_el2 = HaveEL(EL2) && !IsSecure() && PSTATE.EL == EL0 && HCR_EL2.TGE == '1';

 bits(64) preferred_exception_return = NextInstrAddr();
 vect_offset = 0x0;

 exception = ExceptionSyndrome(Exception_SupervisorCall);
 exception.syndrome<15:0> = immediate;

 if UInt(PSTATE.EL) > UInt(EL1) then
 AArch64.TakeException(PSTATE.EL, exception, preferred_exception_return, vect_offset);
 elsif route_to_el2 then
 AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);
 else
 AArch64.TakeException(EL1, exception, preferred_exception_return, vect_offset);

aarch64/exceptions/takeexception/AArch64.TakeException

 // AArch64.TakeException()
 // =======================
 // Take an exception to an Exception Level using AArch64.

E1-762 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

E1 ARMv8.1 Pseudocode
E1.2 Library pseudocode for AArch64
 AArch64.TakeException(bits(2) target_el, ExceptionRecord exception,
 bits(64) preferred_exception_return, integer vect_offset)
 assert HaveEL(target_el) && !ELUsingAArch32(target_el) && UInt(target_el) >= UInt(PSTATE.EL);

 // If coming from AArch32 state, the top parts of the X[] registers might be set to zero
 from_32 = UsingAArch32();
 if from_32 then AArch64.MaybeZeroRegisterUppers();

 if UInt(target_el) > UInt(PSTATE.EL) then
 boolean lower_32;
 if target_el == EL3 then
 if !IsSecure() && HaveEL(EL2) then
 lower_32 = ELUsingAArch32(EL2);
 else
 lower_32 = ELUsingAArch32(EL1);
 elsif IsInHost() && PSTATE.EL == EL0 && target_el == EL2 then
 lower_32 = ELUsingAArch32(EL0);
 else
 lower_32 = ELUsingAArch32(target_el - 1);
 vect_offset = vect_offset + (if lower_32 then 0x600 else 0x400);

 elsif PSTATE.SP == '1' then
 vect_offset = vect_offset + 0x200;

 spsr = GetPSRFromPSTATE();

 if !(exception.type IN {Exception_IRQ, Exception_FIQ}) then
 AArch64.ReportException(exception, target_el);

 PSTATE.EL = target_el; PSTATE.nRW = '0'; PSTATE.SP = '1';

 SPSR[] = spsr;
 ELR[] = preferred_exception_return;

 PSTATE.SS = '0';
 PSTATE.<D,A,I,F> = '1111';
 PSTATE.IL = '0';
 if from_32 then // Coming from AArch32
 PSTATE.IT = '00000000'; PSTATE.T = '0'; // PSTATE.J is RES0
 if HavePANExt() && (PSTATE.EL == EL1 || IsInHost()) && SCTLR[].SPAN == '0' then
 PSTATE.PAN = '1';
 BranchTo(VBAR[] + vect_offset, BranchType_EXCEPTION);
 EndOfInstruction();

aarch64/exceptions/traps/AArch64.AArch32SystemAccessTrap

 // AArch64.AArch32SystemAccessTrap()
 // =================================
 // Trapped AArch32 System register access other than due to CPTR_EL2 or CPACR_EL1.

 AArch64.AArch32SystemAccessTrap(bits(2) target_el, bits(32) aarch32_instr)
 assert HaveEL(target_el) && target_el != EL0 && UInt(target_el) >= UInt(PSTATE.EL);

 bits(64) preferred_exception_return = ThisInstrAddr();
 vect_offset = 0x0;

 exception = AArch64.AArch32SystemAccessTrapSyndrome(aarch32_instr);

 if target_el == EL1 && HaveEL(EL2) && !IsSecure() && HCR_EL2.TGE == '1' then
 AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);
 else
 AArch64.TakeException(target_el, exception, preferred_exception_return, vect_offset);
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. E1-763
ID060316 Non-Confidential

E1 ARMv8.1 Pseudocode
E1.2 Library pseudocode for AArch64
aarch64/exceptions/traps/AArch64.AArch32SystemAccessTrapSyndrome

 // AArch64.AArch32SystemAccessTrapSyndrome()
 // ===
 // Return the syndrome information for traps on AArch32 MCR, MCRR, MRC, MRRC, and VMRS instructions,
 // other than traps that are due to HCPTR or CPACR.

 ExceptionRecord AArch64.AArch32SystemAccessTrapSyndrome(bits(32) instr)

 ExceptionRecord exception;
 cpnum = UInt(instr<11:8>);

 bits(20) iss = Zeros();
 if instr<27:24> == '1110' && instr<4> == '1' && instr<31:28> != '1111' then
 // MRC/MCR
 case cpnum of
 when 10 exception = ExceptionSyndrome(Exception_FPIDTrap);
 when 14 exception = ExceptionSyndrome(Exception_CP14RTTrap);
 when 15 exception = ExceptionSyndrome(Exception_CP15RTTrap);
 otherwise Unreachable();
 iss<19:17> = instr<7:5>; // opc2
 iss<16:14> = instr<23:21>; // opc1
 iss<13:10> = instr<19:16>; // CRn
 iss<9:5> = LookUpRIndex(UInt(instr<15:12>), PSTATE.M)<4:0>; // Rt
 iss<4:1> = instr<3:0>; // CRm
 elsif instr<27:21> == '1100010' && instr<31:28> != '1111' then
 // MRRC/MCRR
 case cpnum of
 when 14 exception = ExceptionSyndrome(Exception_CP14RRTTrap);
 when 15 exception = ExceptionSyndrome(Exception_CP15RRTTrap);
 otherwise Unreachable();
 iss<19:16> = instr<7:4>; // opc1
 iss<14:10> = LookUpRIndex(UInt(instr<19:16>), PSTATE.M)<4:0>; // Rt2
 iss<9:5> = LookUpRIndex(UInt(instr<15:12>), PSTATE.M)<4:0>; // Rt
 iss<4:1> = instr<3:0>; // CRm
 elsif instr<27:25> == '110' && instr<31:28> != '1111' then
 // LDC/STC
 assert cpnum == 14;
 exception = ExceptionSyndrome(Exception_CP14DTTrap);
 iss<19:12> = instr<7:0>; // imm8
 iss<4> = instr<23>; // U
 iss<2:1> = instr<24,21>; // P,W
 if instr<19:16> == '1111' then // Literal addressing
 iss<9:5> = bits(5) UNKNOWN;
 iss<3> = '1';
 else
 iss<9:5> = LookUpRIndex(UInt(instr<19:16>), PSTATE.M)<4:0>; // Rn
 iss<3> = '0';
 else
 Unreachable();
 iss<0> = instr<20>; // Direction

 exception.syndrome<24:20> = ConditionSyndrome();
 exception.syndrome<19:0> = iss;

 return exception;

aarch64/exceptions/traps/AArch64.AdvSIMDFPAccessTrap

 // AArch64.AdvSIMDFPAccessTrap()
 // =============================
 // Trapped access to Advanced SIMD or FP registers due to CPACR[].

 AArch64.AdvSIMDFPAccessTrap(bits(2) target_el)

 bits(64) preferred_exception_return = ThisInstrAddr();
 vect_offset = 0x0;
E1-764 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

E1 ARMv8.1 Pseudocode
E1.2 Library pseudocode for AArch64

 route_to_el2 = (target_el == EL1 && HaveEL(EL2) && !IsSecure() && HCR_EL2.TGE == '1');

 if route_to_el2 then
 exception = ExceptionSyndrome(Exception_Uncategorized);
 AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);
 else
 exception = ExceptionSyndrome(Exception_AdvSIMDFPAccessTrap);
 exception.syndrome<24:20> = ConditionSyndrome();
 AArch64.TakeException(target_el, exception, preferred_exception_return, vect_offset);

 return;

aarch64/exceptions/traps/AArch64.CheckAArch32SystemAccess

 // AArch64.CheckAArch32SystemAccess()
 // ==================================
 // Check AArch32 System register access instruction for enables and disables

 AArch64.CheckAArch32SystemAccess(bits(32) instr)
 cp_num = UInt(instr<11:8>);
 assert cp_num IN {14,15};

 // Decode the AArch32 System register access instruction
 if instr<31:28> != '1111' && instr<27:24> == '1110' && instr<4> == '1' then // MRC/MCR
 cprt = TRUE; cpdt = FALSE; nreg = 1;
 opc1 = UInt(instr<23:21>);
 opc2 = UInt(instr<7:5>);
 CRn = UInt(instr<19:16>);
 CRm = UInt(instr<3:0>);
 elsif instr<31:28> != '1111' && instr<27:21> == '1100010' then // MRRC/MCRR
 cprt = TRUE; cpdt = FALSE; nreg = 2;
 opc1 = UInt(instr<7:4>);
 CRm = UInt(instr<3:0>);
 elsif instr<31:28> != '1111' && instr<27:25> == '110' && instr<22> == '0' then // LDC/STC
 cprt = FALSE; cpdt = TRUE; nreg = 0;
 opc1 = 0;
 CRn = UInt(instr<15:12>);
 else
 allocated = FALSE;

 //
 // Coarse-grain decode into CP14 or CP15 encoding space. Each of the CPxxxInstrDecode functions
 // returns TRUE if the instruction is allocated at the current Exception level, FALSE otherwise.
 if cp_num == 14 then
 // LDC and STC only supported for c5 in CP14 encoding space
 if cpdt && CRn != 5 then
 allocated = FALSE;
 else
 // Coarse-grained decode of CP14 based on opc1 field
 case opc1 of
 when 0 allocated = CP14DebugInstrDecode(instr);
 when 1 allocated = CP14TraceInstrDecode(instr);
 when 7 allocated = CP14JazelleInstrDecode(instr); // JIDR only
 otherwise allocated = FALSE; // All other values are unallocated

 elsif cp_num == 15 then
 // LDC and STC not supported in CP15 encoding space
 if !cprt then
 allocated = FALSE;
 else
 allocated = CP15InstrDecode(instr);

 // Coarse-grain traps to EL2 have a higher priority than Undefined Instruction
 if AArch64.CheckCP15InstrCoarseTraps(CRn, nreg, CRm) then
 // For a coarse-grain trap, if it is IMPLEMENTATION DEFINED whether an access from
 // Non-secure User mode is UNDEFINED when the trap is disabled, then it is
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. E1-765
ID060316 Non-Confidential

E1 ARMv8.1 Pseudocode
E1.2 Library pseudocode for AArch64
 // IMPLEMENTATION DEFINED whether the same access is UNDEFINED or generates a trap
 // when the trap is enabled.
 if PSTATE.EL == EL0 && !IsSecure() && !allocated then
 if boolean IMPLEMENTATION_DEFINED "UNDEF unallocated CP15 access at NS EL0" then
 UNDEFINED;
 AArch64.AArch32SystemAccessTrap(EL2, instr);

 else
 allocated = FALSE;

 if !allocated then
 UNDEFINED;

 // If the instruction is not UNDEFINED, it might be disabled or trapped to a higher EL.
 AArch64.CheckAArch32SystemAccessTraps(instr);

 return;

aarch64/exceptions/traps/AArch64.CheckAArch32SystemAccessTraps

 // Check for configurable disables or traps to a higher EL of an AArch32 System register access.
 AArch64.CheckAArch32SystemAccessTraps(bits(32) instr);

aarch64/exceptions/traps/AArch64.CheckCP15InstrCoarseTraps

 // AArch64.CheckCP15InstrCoarseTraps()
 // ===================================
 // Check for coarse-grained AArch32 CP15 traps in HSTR_EL2 and HCR_EL2.

 boolean AArch64.CheckCP15InstrCoarseTraps(integer CRn, integer nreg, integer CRm)

 // Check for coarse-grained Hyp traps
 if HaveEL(EL2) && !IsSecure() && PSTATE.EL IN {EL0,EL1} then
 // Check for MCR, MRC, MCRR and MRRC disabled by HSTR_EL2<CRn/CRm>
 major = if nreg == 1 then CRn else CRm;
 if !IsInHost() && !(major IN {4,14}) && HSTR_EL2<major> == '1' then
 return TRUE;

 // Check for MRC and MCR disabled by HCR_EL2.TIDCP
 if (HCR_EL2.TIDCP == '1' && nreg == 1 &&
 ((CRn == 9 && CRm IN {0,1,2, 5,6,7,8 }) ||
 (CRn == 10 && CRm IN {0,1, 4, 8 }) ||
 (CRn == 11 && CRm IN {0,1,2,3,4,5,6,7,8,15}))) then
 return TRUE;

 return FALSE;

aarch64/exceptions/traps/AArch64.CheckFPAdvSIMDEnabled

 // AArch64.CheckFPAdvSIMDEnabled()
 // ===============================
 // Check against CPACR[]

 AArch64.CheckFPAdvSIMDEnabled()
 if PSTATE.EL IN {EL0, EL1} then
 // Check if access disabled in CPACR_EL1
 case CPACR[].FPEN of
 when 'x0' disabled = TRUE;
 when '01' disabled = PSTATE.EL == EL0;
 when '11' disabled = FALSE;
 if disabled then AArch64.AdvSIMDFPAccessTrap(EL1);

 AArch64.CheckFPAdvSIMDTrap(); // Also check against CPTR_EL2 and CPTR_EL3
E1-766 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

E1 ARMv8.1 Pseudocode
E1.2 Library pseudocode for AArch64
aarch64/exceptions/traps/AArch64.CheckFPAdvSIMDTrap

 // AArch64.CheckFPAdvSIMDTrap()
 // ============================
 // Check against CPTR_EL2 and CPTR_EL3.

 AArch64.CheckFPAdvSIMDTrap()

 if HaveEL(EL2) && !IsSecure() then
 // Check if access disabled in CPTR_EL2
 if HaveVirtHostExt() && HCR_EL2.E2H == '1' then
 case CPTR_EL2.FPEN of
 when 'x0' disabled = !(PSTATE.EL == EL1 && HCR_EL2.TGE == '1');
 when '01' disabled = (PSTATE.EL == EL0 && HCR_EL2.TGE == '1');
 when '11' disabled = FALSE;
 if disabled then AArch64.AdvSIMDFPAccessTrap(EL2);
 else
 if CPTR_EL2.TFP == '1' then AArch64.AdvSIMDFPAccessTrap(EL2);

 if HaveEL(EL3) then
 // Check if access disabled in CPTR_EL3
 if CPTR_EL3.TFP == '1' then AArch64.AdvSIMDFPAccessTrap(EL3);

 return;

aarch64/exceptions/traps/AArch64.CheckForSMCTrap

 // AArch64.CheckForSMCTrap()
 // =========================
 // Check for trap on SMC instruction

 AArch64.CheckForSMCTrap(bits(16) imm)

 route_to_el2 = HaveEL(EL2) && !IsSecure() && PSTATE.EL IN {EL0,EL1} && HCR_EL2.TSC == '1';
 if route_to_el2 then
 bits(64) preferred_exception_return = ThisInstrAddr();
 vect_offset = 0x0;
 exception = ExceptionSyndrome(Exception_MonitorCall);
 exception.syndrome<15:0> = imm;
 AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);

aarch64/exceptions/traps/AArch64.CheckForWFxTrap

 // AArch64.CheckForWFxTrap()
 // =========================
 // Check for trap on WFE or WFI instruction

 AArch64.CheckForWFxTrap(bits(2) target_el, boolean is_wfe)
 assert HaveEL(target_el);

 case target_el of
 when EL1 trap = (if is_wfe then SCTLR[].nTWE else SCTLR[].nTWI) == '0';
 when EL2 trap = (if is_wfe then HCR_EL2.TWE else HCR_EL2.TWI) == '1';
 when EL3 trap = (if is_wfe then SCR_EL3.TWE else SCR_EL3.TWI) == '1';

 if trap then
 AArch64.WFxTrap(target_el, is_wfe);

aarch64/exceptions/traps/AArch64.CheckIllegalState

 // AArch64.CheckIllegalState()
 // ===========================
 // Check PSTATE.IL bit and generate Illegal Execution state exception if set.

 AArch64.CheckIllegalState()

DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. E1-767
ID060316 Non-Confidential

E1 ARMv8.1 Pseudocode
E1.2 Library pseudocode for AArch64
 if PSTATE.IL == '1' then
 route_to_el2 = HaveEL(EL2) && !IsSecure() && PSTATE.EL == EL0 && HCR_EL2.TGE == '1';

 bits(64) preferred_exception_return = ThisInstrAddr();
 vect_offset = 0x0;

 exception = ExceptionSyndrome(Exception_IllegalState);

 if UInt(PSTATE.EL) > UInt(EL1) then
 AArch64.TakeException(PSTATE.EL, exception, preferred_exception_return, vect_offset);
 elsif route_to_el2 then
 AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);
 else
 AArch64.TakeException(EL1, exception, preferred_exception_return, vect_offset);

aarch64/exceptions/traps/AArch64.MonitorModeTrap

 // AArch64.MonitorModeTrap()
 // =========================
 // Trapped use of Monitor mode features in a Secure EL1 AArch32 mode

 AArch64.MonitorModeTrap()

 bits(64) preferred_exception_return = ThisInstrAddr();
 vect_offset = 0x0;

 exception = ExceptionSyndrome(Exception_Uncategorized);

 AArch64.TakeException(EL3, exception, preferred_exception_return, vect_offset);

aarch64/exceptions/traps/AArch64.SystemRegisterTrap

 // AArch64.SystemRegisterTrap()
 // ============================
 // Trapped system register access other than due to CPTR_EL2 and CPACR_EL1

 AArch64.SystemRegisterTrap(bits(2) target_el, bits(2) op0, bits(3) op2, bits(3) op1, bits(4) crn,
 bits(5) rt, bits(4) crm, bit dir)
 assert UInt(target_el) >= UInt(PSTATE.EL);

 bits(64) preferred_exception_return = ThisInstrAddr();
 vect_offset = 0x0;

 exception = ExceptionSyndrome(Exception_SystemRegisterTrap);
 exception.syndrome<21:20> = op0;
 exception.syndrome<19:17> = op2;
 exception.syndrome<16:14> = op1;
 exception.syndrome<13:10> = crn;
 exception.syndrome<9:5> = rt;
 exception.syndrome<4:1> = crm;
 exception.syndrome<0> = dir;

 if target_el == EL1 && HaveEL(EL2) && !IsSecure() && HCR_EL2.TGE == '1' then
 AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);
 else
 AArch64.TakeException(target_el, exception, preferred_exception_return, vect_offset);

aarch64/exceptions/traps/AArch64.UndefinedFault

 // AArch64.UndefinedFault()
 // ========================

 AArch64.UndefinedFault()

 route_to_el2 = HaveEL(EL2) && !IsSecure() && PSTATE.EL == EL0 && HCR_EL2.TGE == '1';

E1-768 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

E1 ARMv8.1 Pseudocode
E1.2 Library pseudocode for AArch64
 bits(64) preferred_exception_return = ThisInstrAddr();
 vect_offset = 0x0;

 exception = ExceptionSyndrome(Exception_Uncategorized);

 if UInt(PSTATE.EL) > UInt(EL1) then
 AArch64.TakeException(PSTATE.EL, exception, preferred_exception_return, vect_offset);
 elsif route_to_el2 then
 AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);
 else
 AArch64.TakeException(EL1, exception, preferred_exception_return, vect_offset);

aarch64/exceptions/traps/AArch64.WFxTrap

 // AArch64.WFxTrap()
 // =================

 AArch64.WFxTrap(bits(2) target_el, boolean is_wfe)
 assert UInt(target_el) > UInt(PSTATE.EL);

 bits(64) preferred_exception_return = ThisInstrAddr();
 vect_offset = 0x0;

 exception = ExceptionSyndrome(Exception_WFxTrap);
 exception.syndrome<24:20> = ConditionSyndrome();
 exception.syndrome<0> = if is_wfe then '1' else '0';

 if target_el == EL1 && HaveEL(EL2) && !IsSecure() && HCR_EL2.TGE == '1' then
 AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);
 else
 AArch64.TakeException(target_el, exception, preferred_exception_return, vect_offset);

aarch64/exceptions/traps/CheckFPAdvSIMDEnabled64

 // CheckFPAdvSIMDEnabled64()
 // =========================
 // AArch64 instruction wrapper

 CheckFPAdvSIMDEnabled64()
 AArch64.CheckFPAdvSIMDEnabled();

E1.2.3 aarch64/functions

aarch64/functions/aborts/AArch64.CreateFaultRecord

 // AArch64.CreateFaultRecord()
 // ===========================

 FaultRecord AArch64.CreateFaultRecord(Fault type, bits(48) ipaddress,
 integer level, AccType acctype, boolean write, bit extflag,
 boolean secondstage, boolean s2fs1walk)

 FaultRecord fault;
 fault.type = type;
 fault.domain = bits(4) UNKNOWN; // Not used from AArch64
 fault.debugmoe = bits(4) UNKNOWN; // Not used from AArch64
 fault.ipaddress = ipaddress;
 fault.level = level;
 fault.acctype = acctype;
 fault.write = write;
 fault.extflag = extflag;
 fault.secondstage = secondstage;
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. E1-769
ID060316 Non-Confidential

E1 ARMv8.1 Pseudocode
E1.2 Library pseudocode for AArch64
 fault.s2fs1walk = s2fs1walk;

 return fault;

aarch64/functions/exclusive/AArch64.ExclusiveMonitorsPass

 // AArch64.ExclusiveMonitorsPass()
 // ===============================

 // Return TRUE if the Exclusive Monitors for the current PE include all of the addresses
 // associated with the virtual address region of size bytes starting at address.
 // The immediately following memory write must be to the same addresses.

 boolean AArch64.ExclusiveMonitorsPass(bits(64) address, integer size)

 // It is IMPLEMENTATION DEFINED whether the detection of memory aborts happens
 // before or after the check on the local Exclusive Monitor. As a result a failure
 // of the local monitor can occur on some implementations even if the memory
 // access would give an memory abort.

 acctype = AccType_ATOMIC;
 iswrite = TRUE;
 aligned = (address == Align(address, size));

 if !aligned then
 secondstage = FALSE;
 AArch64.Abort(address, AArch64.AlignmentFault(acctype, iswrite, secondstage));

 passed = AArch64.IsExclusiveVA(address, ProcessorID(), size);
 if !passed then
 return FALSE;

 memaddrdesc = AArch64.TranslateAddress(address, acctype, iswrite, aligned, size);

 // Check for aborts or debug exceptions
 if IsFault(memaddrdesc) then
 AArch64.Abort(address, memaddrdesc.fault);

 passed = IsExclusiveLocal(memaddrdesc.paddress, ProcessorID(), size);

 if passed then
 ClearExclusiveLocal(ProcessorID());
 if memaddrdesc.memattrs.shareable then
 passed = IsExclusiveGlobal(memaddrdesc.paddress, ProcessorID(), size);

 return passed;

aarch64/functions/exclusive/AArch64.IsExclusiveVA

 // An optional IMPLEMENTATION DEFINED test for an exclusive access to a virtual
 // address region of size bytes starting at address.
 //
 // It is permitted (but not required) for this function to return FALSE and
 // cause a store exclusive to fail if the virtual address region is not
 // totally included within the region recorded by MarkExclusiveVA().
 //
 // It is always safe to return TRUE which will check the physical address only.
 boolean AArch64.IsExclusiveVA(bits(64) address, integer processorid, integer size);

aarch64/functions/exclusive/AArch64.MarkExclusiveVA

 // Optionally record an exclusive access to the virtual address region of size bytes
 // starting at address for processorid.
 AArch64.MarkExclusiveVA(bits(64) address, integer processorid, integer size);
E1-770 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

E1 ARMv8.1 Pseudocode
E1.2 Library pseudocode for AArch64
aarch64/functions/exclusive/AArch64.SetExclusiveMonitors

 // AArch64.SetExclusiveMonitors()
 // ==============================

 // Sets the Exclusive Monitors for the current PE to record the addresses associated
 // with the virtual address region of size bytes starting at address.

 AArch64.SetExclusiveMonitors(bits(64) address, integer size)

 acctype = AccType_ATOMIC;
 iswrite = FALSE;
 aligned = (address != Align(address, size));

 memaddrdesc = AArch64.TranslateAddress(address, acctype, iswrite, aligned, size);

 // Check for aborts or debug exceptions
 if IsFault(memaddrdesc) then
 return;

 if memaddrdesc.memattrs.shareable then
 MarkExclusiveGlobal(memaddrdesc.paddress, ProcessorID(), size);

 MarkExclusiveLocal(memaddrdesc.paddress, ProcessorID(), size);

 AArch64.MarkExclusiveVA(address, ProcessorID(), size);

aarch64/functions/fusedrstep/FPRSqrtStepFused

 // FPRSqrtStepFused()
 // ==================

 bits(N) FPRSqrtStepFused(bits(N) op1, bits(N) op2)
 assert N IN {32, 64};
 bits(N) result;
 op1 = FPNeg(op1);
 (type1,sign1,value1) = FPUnpack(op1, FPCR);
 (type2,sign2,value2) = FPUnpack(op2, FPCR);
 (done,result) = FPProcessNaNs(type1, type2, op1, op2, FPCR);
 if !done then
 inf1 = (type1 == FPType_Infinity);
 inf2 = (type2 == FPType_Infinity);
 zero1 = (type1 == FPType_Zero);
 zero2 = (type2 == FPType_Zero);
 if (inf1 && zero2) || (zero1 && inf2) then
 result = FPOnePointFive('0');
 elsif inf1 || inf2 then
 result = FPInfinity(sign1 EOR sign2);
 else
 // Fully fused multiply-add and halve
 result_value = (3.0 + (value1 * value2)) / 2.0;
 if result_value == 0.0 then
 // Sign of exact zero result depends on rounding mode
 sign = if FPRoundingMode(FPCR) == FPRounding_NEGINF then '1' else '0';
 result = FPZero(sign);
 else
 result = FPRound(result_value, FPCR);
 return result;

aarch64/functions/fusedrstep/FPRecipStepFused

 // FPRecipStepFused()
 // ==================

 bits(N) FPRecipStepFused(bits(N) op1, bits(N) op2)
 assert N IN {32, 64};
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. E1-771
ID060316 Non-Confidential

E1 ARMv8.1 Pseudocode
E1.2 Library pseudocode for AArch64
 bits(N) result;
 op1 = FPNeg(op1);
 (type1,sign1,value1) = FPUnpack(op1, FPCR);
 (type2,sign2,value2) = FPUnpack(op2, FPCR);
 (done,result) = FPProcessNaNs(type1, type2, op1, op2, FPCR);
 if !done then
 inf1 = (type1 == FPType_Infinity);
 inf2 = (type2 == FPType_Infinity);
 zero1 = (type1 == FPType_Zero);
 zero2 = (type2 == FPType_Zero);
 if (inf1 && zero2) || (zero1 && inf2) then
 result = FPTwo('0');
 elsif inf1 || inf2 then
 result = FPInfinity(sign1 EOR sign2);
 else
 // Fully fused multiply-add
 result_value = 2.0 + (value1 * value2);
 if result_value == 0.0 then
 // Sign of exact zero result depends on rounding mode
 sign = if FPRoundingMode(FPCR) == FPRounding_NEGINF then '1' else '0';
 result = FPZero(sign);
 else
 result = FPRound(result_value, FPCR);
 return result;

aarch64/functions/memory/AArch64.CheckAlignment

 // AArch64.CheckAlignment()
 // ========================

 boolean AArch64.CheckAlignment(bits(64) address, integer alignment, AccType acctype,
 boolean iswrite)

 aligned = (address == Align(address, alignment));
 atomic = acctype IN { AccType_ATOMIC, AccType_ATOMICRW };
 ordered = acctype IN { AccType_ORDERED, AccType_ORDEREDRW, AccType_LIMITEDORDERED };
 vector = acctype == AccType_VEC;
 check = (atomic || ordered || SCTLR[].A == '1');

 if check && !aligned then
 secondstage = FALSE;
 AArch64.Abort(address, AArch64.AlignmentFault(acctype, iswrite, secondstage));

 return aligned;

aarch64/functions/memory/AArch64.MemSingle

 // AArch64.MemSingle[] - non-assignment (read) form
 // ==
 // Perform an atomic, little-endian read of 'size' bytes.

 bits(size*8) AArch64.MemSingle[bits(64) address, integer size, AccType acctype, boolean wasaligned]
 assert size IN {1, 2, 4, 8, 16};
 assert address == Align(address, size);

 AddressDescriptor memaddrdesc;
 bits(size*8) value;
 iswrite = FALSE;

 // MMU or MPU
 memaddrdesc = AArch64.TranslateAddress(address, acctype, iswrite, wasaligned, size);

 // Check for aborts or debug exceptions
 if IsFault(memaddrdesc) then
 AArch64.Abort(address, memaddrdesc.fault);

E1-772 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

E1 ARMv8.1 Pseudocode
E1.2 Library pseudocode for AArch64
 // Memory array access
 value = _Mem[memaddrdesc, size, acctype];
 return value;

 // AArch64.MemSingle[] - assignment (write) form
 // ===
 // Perform an atomic, little-endian write of 'size' bytes.

 AArch64.MemSingle[bits(64) address, integer size, AccType acctype, boolean wasaligned] = bits(size*8)
value
 assert size IN {1, 2, 4, 8, 16};
 assert address == Align(address, size);

 AddressDescriptor memaddrdesc;
 iswrite = TRUE;

 // MMU or MPU
 memaddrdesc = AArch64.TranslateAddress(address, acctype, iswrite, wasaligned, size);

 // Check for aborts or debug exceptions
 if IsFault(memaddrdesc) then
 AArch64.Abort(address, memaddrdesc.fault);

 // Effect on exclusives
 if memaddrdesc.memattrs.shareable then
 ClearExclusiveByAddress(memaddrdesc.paddress, ProcessorID(), size);

 // Memory array access
 _Mem[memaddrdesc, size, acctype] = value;
 return;

aarch64/functions/memory/CheckSPAlignment

 // CheckSPAlignment()
 // ==================
 // Check correct stack pointer alignment for AArch64 state.

 CheckSPAlignment()
 bits(64) sp = SP[];

 if PSTATE.EL == EL0 then
 stack_align_check = (SCTLR[].SA0 != '0');
 else
 stack_align_check = (SCTLR[].SA != '0');

 if stack_align_check && sp != Align(sp, 16) then
 AArch64.SPAlignmentFault();

 return;

aarch64/functions/memory/Mem

 // Mem[] - non-assignment (read) form
 // ==================================
 // Perform a read of 'size' bytes. The access byte order is reversed for a big-endian access.
 // Instruction fetches would call AArch64.MemSingle directly.

 bits(size*8) Mem[bits(64) address, integer size, AccType acctype]
 assert size IN {1, 2, 4, 8, 16};
 bits(size*8) value;
 integer i;
 boolean iswrite = FALSE;

 aligned = AArch64.CheckAlignment(address, size, acctype, iswrite);
 atomic = (aligned && !(acctype IN {AccType_VEC, AccType_VECSTREAM})) || size == 1;

DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. E1-773
ID060316 Non-Confidential

E1 ARMv8.1 Pseudocode
E1.2 Library pseudocode for AArch64
 if !atomic then
 assert size > 1;
 value<7:0> = AArch64.MemSingle[address, 1, acctype, aligned];

 // For subsequent bytes it is CONSTRAINED UNPREDICTABLE whether an unaligned Device memory
 // access will generate an Alignment Fault, as to get this far means the first byte did
 // not, so we must be changing to a new translation page.
 if !aligned then
 c = ConstrainUnpredictable();
 assert c IN {Constraint_FAULT, Constraint_NONE};
 if c == Constraint_NONE then aligned = TRUE;

 for i = 1 to size-1
 value<8*i+7:8*i> = AArch64.MemSingle[address+i, 1, acctype, aligned];
 else
 value = AArch64.MemSingle[address, size, acctype, aligned];

 if BigEndian() then
 value = BigEndianReverse(value);
 return value;

 // Mem[] - assignment (write) form
 // ===============================
 // Perform a write of 'size' bytes. The byte order is reversed for a big-endian access.

 Mem[bits(64) address, integer size, AccType acctype] = bits(size*8) value
 integer i;
 boolean iswrite = TRUE;

 if BigEndian() then
 value = BigEndianReverse(value);

 aligned = AArch64.CheckAlignment(address, size, acctype, iswrite);
 atomic = (aligned && !(acctype IN {AccType_VEC, AccType_VECSTREAM})) || size == 1;

 if !atomic then
 assert size > 1;
 AArch64.MemSingle[address, 1, acctype, aligned] = value<7:0>;

 // For subsequent bytes it is CONSTRAINED UNPREDICTABLE whether an unaligned Device memory
 // access will generate an Alignment Fault, as to get this far means the first byte did
 // not, so we must be changing to a new translation page.
 if !aligned then
 c = ConstrainUnpredictable();
 assert c IN {Constraint_FAULT, Constraint_NONE};
 if c == Constraint_NONE then aligned = TRUE;

 for i = 1 to size-1
 AArch64.MemSingle[address+i, 1, acctype, aligned] = value<8*i+7:8*i>;
 else
 AArch64.MemSingle[address, size, acctype, aligned] = value;
 return;

aarch64/functions/registers/AArch64.MaybeZeroRegisterUppers

 // AArch64.MaybeZeroRegisterUppers()
 // =================================
 // On taking an exception to AArch64 from AArch32, it is CONSTRAINED UNPREDICTABLE whether the top
 // 32 bits of registers visible at any lower Exception level using AArch32 are set to zero.

 AArch64.MaybeZeroRegisterUppers()
 assert UsingAArch32(); // Always called from AArch32 state before entering AArch64 state

 if PSTATE.EL == EL0 && !ELUsingAArch32(EL1) then
 first = 0; last = 14; include_R15 = FALSE;
 elsif PSTATE.EL IN {EL0,EL1} && HaveEL(EL2) && !IsSecure() && !ELUsingAArch32(EL2) then
 first = 0; last = 30; include_R15 = FALSE;
E1-774 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

E1 ARMv8.1 Pseudocode
E1.2 Library pseudocode for AArch64
 else
 first = 0; last = 30; include_R15 = TRUE;

 for n = first to last
 if (n != 15 || include_R15) && ConstrainUnpredictableBool() then
 _R[n]<63:32> = Zeros();

 return;

aarch64/functions/registers/AArch64.ResetGeneralRegisters

 // AArch64.ResetGeneralRegisters()
 // ===============================

 AArch64.ResetGeneralRegisters()

 for i = 0 to 30
 X[i] = bits(64) UNKNOWN;

 return;

aarch64/functions/registers/AArch64.ResetSIMDFPRegisters

 // AArch64.ResetSIMDFPRegisters()
 // ==============================

 AArch64.ResetSIMDFPRegisters()

 for i = 0 to 31
 V[i] = bits(128) UNKNOWN;

 return;

aarch64/functions/registers/AArch64.ResetSpecialRegisters

 // AArch64.ResetSpecialRegisters()
 // ===============================

 AArch64.ResetSpecialRegisters()

 // AArch64 special registers
 SP_EL0 = bits(64) UNKNOWN;
 SP_EL1 = bits(64) UNKNOWN;
 SPSR_EL1 = bits(32) UNKNOWN;
 ELR_EL1 = bits(64) UNKNOWN;
 if HaveEL(EL2) then
 SP_EL2 = bits(64) UNKNOWN;
 SPSR_EL2 = bits(32) UNKNOWN;
 ELR_EL2 = bits(64) UNKNOWN;
 if HaveEL(EL3) then
 SP_EL3 = bits(64) UNKNOWN;
 SPSR_EL3 = bits(32) UNKNOWN;
 ELR_EL3 = bits(64) UNKNOWN;

 // AArch32 special registers that are not architecturally mapped to AArch64 registers
 if HaveAArch32EL(EL1) then
 SPSR_fiq = bits(32) UNKNOWN;
 SPSR_irq = bits(32) UNKNOWN;
 SPSR_abt = bits(32) UNKNOWN;
 SPSR_und = bits(32) UNKNOWN;

 // External debug special registers
 DLR_EL0 = bits(64) UNKNOWN;
 DSPSR_EL0 = bits(32) UNKNOWN;

 return;
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. E1-775
ID060316 Non-Confidential

E1 ARMv8.1 Pseudocode
E1.2 Library pseudocode for AArch64
aarch64/functions/registers/AArch64.ResetSystemRegisters

 AArch64.ResetSystemRegisters(boolean cold_reset);

aarch64/functions/registers/PC

 // PC - non-assignment form
 // ========================
 // Read program counter.

 bits(64) PC[]
 return _PC;

aarch64/functions/registers/SP

 // SP[] - assignment form
 // ======================
 // Write to stack pointer from either a 32-bit or a 64-bit value.

 SP[] = bits(width) value
 assert width IN {32,64};
 if PSTATE.SP == '0' then
 SP_EL0 = ZeroExtend(value);
 else
 case PSTATE.EL of
 when EL0 SP_EL0 = ZeroExtend(value);
 when EL1 SP_EL1 = ZeroExtend(value);
 when EL2 SP_EL2 = ZeroExtend(value);
 when EL3 SP_EL3 = ZeroExtend(value);
 return;

 // SP[] - non-assignment form
 // ==========================
 // Read stack pointer with implicit slice of 8, 16, 32 or 64 bits.

 bits(width) SP[]
 assert width IN {8,16,32,64};
 if PSTATE.SP == '0' then
 return SP_EL0<width-1:0>;
 else
 case PSTATE.EL of
 when EL0 return SP_EL0<width-1:0>;
 when EL1 return SP_EL1<width-1:0>;
 when EL2 return SP_EL2<width-1:0>;
 when EL3 return SP_EL3<width-1:0>;

aarch64/functions/registers/V

 // V[] - assignment form
 // =====================
 // Write to SIMD&FP register with implicit extension from
 // 8, 16, 32, 64 or 128 bits.

 V[integer n] = bits(width) value
 assert n >= 0 && n <= 31;
 assert width IN {8,16,32,64,128};
 _V[n] = ZeroExtend(value);
 return;

 // V[] - non-assignment form
 // =========================
 // Read from SIMD&FP register with implicit slice of 8, 16
 // 32, 64 or 128 bits.

 bits(width) V[integer n]
E1-776 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

E1 ARMv8.1 Pseudocode
E1.2 Library pseudocode for AArch64
 assert n >= 0 && n <= 31;
 assert width IN {8,16,32,64,128};
 return _V[n]<width-1:0>;

aarch64/functions/registers/Vpart

 // Vpart[] - non-assignment form
 // =============================
 // Reads a 128-bit SIMD&FP register in up to two parts:
 // part 0 returns the bottom 8, 16, 32 or 64 bits of the register;
 // part 1 returns only the top 64 bits of the register.

 bits(width) Vpart[integer n, integer part]
 assert n >= 0 && n <= 31;
 assert part IN {0, 1};
 if part == 0 then
 assert width IN {8,16,32,64};
 return _V[n]<width-1:0>;
 else
 assert width == 64;
 return _V[n]<127:64>;

 // Vpart[] - assignment form
 // =========================
 // Write a 128-bit SIMD&FP register in up to two parts:
 // part 0 zero extends a 8, 16, 32, or 64-bit value to fill the whole register;
 // part 1 inserts a 64-bit value into the top 64 bits of the register.

 Vpart[integer n, integer part] = bits(width) value
 assert n >= 0 && n <= 31;
 assert part IN {0, 1};
 if part == 0 then
 assert width IN {8,16,32,64};
 _V[n] = ZeroExtend(value);
 else
 assert width == 64;
 _V[n]<127:64> = value<63:0>;

aarch64/functions/registers/X

 // X[] - assignment form
 // =====================
 // Write to general-purpose register from either a 32-bit or a 64-bit value.

 X[integer n] = bits(width) value
 assert n >= 0 && n <= 31;
 assert width IN {32,64};
 if n != 31 then
 _R[n] = ZeroExtend(value);
 return;

 // X[] - non-assignment form
 // =========================
 // Read from general-purpose register with implicit slice of 8, 16, 32 or 64 bits.

 bits(width) X[integer n]
 assert n >= 0 && n <= 31;
 assert width IN {8,16,32,64};
 if n != 31 then
 return _R[n]<width-1:0>;
 else
 return Zeros(width);
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. E1-777
ID060316 Non-Confidential

E1 ARMv8.1 Pseudocode
E1.2 Library pseudocode for AArch64
aarch64/functions/sysregisters/CNTKCTL

 // CNTKCTL[] - non-assignment form
 // ===============================

 CNTKCTLType CNTKCTL[]
 if IsInHost() then
 return CNTHCTL_EL2;
 return CNTKCTL_EL1;

aarch64/functions/sysregisters/CNTKCTLType

 type CNTKCTLType;

aarch64/functions/sysregisters/CPACR

 // CPACR[] - non-assignment form
 // =============================

 CPACRType CPACR[]
 if IsInHost() then
 return CPTR_EL2;
 return CPACR_EL1;

aarch64/functions/sysregisters/CPACRType

 type CPACRType;

aarch64/functions/sysregisters/ELR

 // ELR[] - non-assignment form
 // ===========================

 bits(64) ELR[bits(2) el]
 bits(64) r;
 case el of
 when EL1 r = ELR_EL1;
 when EL2 r = ELR_EL2;
 when EL3 r = ELR_EL3;
 otherwise Unreachable();
 return r;

 // ELR[] - non-assignment form
 // ===========================

 bits(64) ELR[]
 assert PSTATE.EL != EL0;
 return ELR[PSTATE.EL];

 // ELR[] - assignment form
 // =======================

 ELR[bits(2) el] = bits(64) value
 bits(64) r = value;
 case el of
 when EL1 ELR_EL1 = r;
 when EL2 ELR_EL2 = r;
 when EL3 ELR_EL3 = r;
 otherwise Unreachable();
 return;

 // ELR[] - assignment form
 // =======================

 ELR[] = bits(64) value
E1-778 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

E1 ARMv8.1 Pseudocode
E1.2 Library pseudocode for AArch64
 assert PSTATE.EL != EL0;
 ELR[PSTATE.EL] = value;
 return;

aarch64/functions/sysregisters/ESR

 // ESR[] - non-assignment form
 // ===========================

 ESRType ESR[bits(2) regime]
 bits(32) r;
 case regime of
 when EL1 r = ESR_EL1;
 when EL2 r = ESR_EL2;
 when EL3 r = ESR_EL3;
 otherwise Unreachable();
 return r;

 // ESR[] - non-assignment form
 // ===========================

 ESRType ESR[]
 return ESR[S1TranslationRegime()];

 // ESR[] - assignment form
 // =======================

 ESR[bits(2) regime] = ESRType value
 bits(32) r = value;
 case regime of
 when EL1 ESR_EL1 = r;
 when EL2 ESR_EL2 = r;
 when EL3 ESR_EL3 = r;
 otherwise Unreachable();
 return;

 // ESR[] - assignment form
 // =======================

 ESR[] = ESRType value
 ESR[S1TranslationRegime()] = value;

aarch64/functions/sysregisters/ESRType

 type ESRType;

aarch64/functions/sysregisters/FAR

 // FAR[] - non-assignment form
 // ===========================

 bits(64) FAR[bits(2) regime]
 bits(64) r;
 case regime of
 when EL1 r = FAR_EL1;
 when EL2 r = FAR_EL2;
 when EL3 r = FAR_EL3;
 otherwise Unreachable();
 return r;

 // FAR[] - non-assignment form
 // ===========================

 bits(64) FAR[]
 return FAR[S1TranslationRegime()];

DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. E1-779
ID060316 Non-Confidential

E1 ARMv8.1 Pseudocode
E1.2 Library pseudocode for AArch64
 // FAR[] - assignment form
 // =======================

 FAR[bits(2) regime] = bits(64) value
 bits(64) r = value;
 case regime of
 when EL1 FAR_EL1 = r;
 when EL2 FAR_EL2 = r;
 when EL3 FAR_EL3 = r;
 otherwise Unreachable();
 return;

 // FAR[] - assignment form
 // =======================

 FAR[] = bits(64) value
 FAR[S1TranslationRegime()] = value;
 return;

aarch64/functions/sysregisters/MAIR

 // MAIR[] - non-assignment form
 // ============================

 MAIRType MAIR[bits(2) regime]
 bits(64) r;
 case regime of
 when EL1 r = MAIR_EL1;
 when EL2 r = MAIR_EL2;
 when EL3 r = MAIR_EL3;
 otherwise Unreachable();
 return r;

 // MAIR[] - non-assignment form
 // ============================

 MAIRType MAIR[]
 return MAIR[S1TranslationRegime()];

aarch64/functions/sysregisters/MAIRType

 type MAIRType;

aarch64/functions/sysregisters/SCTLR

 // SCTLR[] - non-assignment form
 // =============================

 SCTLRType SCTLR[bits(2) regime]
 bits(32) r;
 case regime of
 when EL1 r = SCTLR_EL1;
 when EL2 r = SCTLR_EL2;
 when EL3 r = SCTLR_EL3;
 otherwise Unreachable();
 return r;

 // SCTLR[] - non-assignment form
 // =============================

 SCTLRType SCTLR[]
 return SCTLR[S1TranslationRegime()];
E1-780 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

E1 ARMv8.1 Pseudocode
E1.2 Library pseudocode for AArch64
aarch64/functions/sysregisters/SCTLRType

 type SCTLRType;

aarch64/functions/sysregisters/VBAR

 // VBAR[] - non-assignment form
 // ============================

 bits(64) VBAR[bits(2) regime]
 bits(64) r;
 case regime of
 when EL1 r = VBAR_EL1;
 when EL2 r = VBAR_EL2;
 when EL3 r = VBAR_EL3;
 otherwise Unreachable();
 return r;

 // VBAR[] - non-assignment form
 // ============================

 bits(64) VBAR[]
 return VBAR[S1TranslationRegime()];

aarch64/functions/system/AArch64.CheckAdvSIMDFPSystemRegisterTraps

 // Checks if an AArch64 MSR, MRS or SYS instruction on a SIMD or floating-point
 // register is trapped under the current configuration. Returns a boolean which
 // is TRUE if trapping occurs, plus a binary value that specifies the Exception
 // level trapped to.
 (boolean, bits(2)) AArch64.CheckAdvSIMDFPSystemRegisterTraps(bits(2) op0, bits(3) op1, bits(4) crn,
bits(4) crm, bits(3) op2, bit read);

aarch64/functions/system/AArch64.CheckSystemAccess

 // AArch64.CheckSystemAccess()
 // ===========================

 AArch64.CheckSystemAccess(bits(2) op0, bits(3) op1, bits(4) crn, bits(4) crm, bits(3) op2, bits(5) rt,
bit read)
 // Checks if an AArch64 MSR, MRS or SYS instruction is UNALLOCATED or trapped at the current
 // exception level, security state and configuration, based on the opcode's encoding.
 boolean unallocated = FALSE;
 boolean need_secure = FALSE;
 bits(2) min_EL;

 // Check for traps by HCR_EL2.TIDCP
 if HaveEL(EL2) && !IsSecure() && HCR_EL2.TIDCP == 1 && op0 == 'x1' && crn == '1x11' then
 // At Non-secure EL0, it is IMPLEMENTATION_DEFINED whether attempts to execute system
 // register access instructions with reserved encodings are trapped to EL2 or UNDEFINED
 rcs_el0_trap = boolean IMPLEMENTATION_DEFINED "Reserved Control Space EL0 Trapped";
 if PSTATE.EL == EL0 && rcs_el0_trap then
 AArch64.SystemRegisterTrap(EL2, op0, op2, op1, crn, rt, crm, read);
 elsif PSTATE.EL == EL1 then
 AArch64.SystemRegisterTrap(EL2, op0, op2, op1, crn, rt, crm, read);

 // Check for unallocated encodings
 case op1 of
 when '00x', '010'
 min_EL = EL1;
 when '011'
 min_EL = EL0;
 when '100'
 min_EL = EL2;
 when '101'
 if !HaveVirtHostExt() then UnallocatedEncoding();
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. E1-781
ID060316 Non-Confidential

E1 ARMv8.1 Pseudocode
E1.2 Library pseudocode for AArch64
 min_EL = EL2;
 when '110'
 min_EL = EL3;
 when '111'
 min_EL = EL1;
 need_secure = TRUE;
 if UInt(PSTATE.EL) < UInt(min_EL) then
 UnallocatedEncoding();
 elsif need_secure && !IsSecure() then
 UnallocatedEncoding();
 elsif AArch64.CheckUnallocatedSystemAccess(op0, op1, crn, crm, op2, read) then
 UnallocatedEncoding();

 // Check for traps on accesses to SIMD or floating-point registers
 (take_trap, target_el) = AArch64.CheckAdvSIMDFPSystemRegisterTraps(op0, op1, crn, crm, op2);
 if take_trap then
 AArch64.AdvSIMDFPAccessTrap(target_el);

 // Check for traps on access to all other system registers
 (take_trap, target_el) = AArch64.CheckSystemRegisterTraps(op0, op1, crn, crm, op2, read);
 if take_trap then
 AArch64.SystemRegisterTrap(target_el, op0, op2, op1, crn, rt, crm, read);

aarch64/functions/system/AArch64.CheckSystemRegisterTraps

 // Checks if an AArch64 MSR, MRS or SYS instruction on a system register is trapped
 // under the current configuration. Returns a boolean which is TRUE if trapping
 // occurs, plus a binary value that specifies the Exception level trapped to.
 (boolean, bits(2)) AArch64.CheckSystemRegisterTraps(bits(2) op0, bits(3) op1, bits(4) crn, bits(4) crm,
bits(3) op2, bit read);

aarch64/functions/system/AArch64.CheckUnallocatedSystemAccess

 // Checks if an AArch64 MSR, MRS or SYS instruction is unallocated under the current
 // configuration.
 boolean AArch64.CheckUnallocatedSystemAccess(bits(2) op0, bits(3) op1, bits(4) crn, bits(4) crm, bits(3)
op2, bit read);

aarch64/functions/system/AArch64.SysInstr

 // Execute a system operation with write (source operand).
 AArch64.SysInstr(integer op0, integer op1, integer crn, integer crm, integer op2, bits(64) val);

aarch64/functions/system/AArch64.SysInstrWithResult

 // Execute a system operation with read (result operand).
 // Returns the result of the operation.
 bits(64) AArch64.SysInstrWithResult(integer op0, integer op1, integer crn, integer crm, integer op2);

aarch64/functions/system/AArch64.SysRegRead

 // Read from a system register and return the contents of the register.
 bits(64) System_Get(integer op0, integer op1, integer crn, integer crm, integer op2);

aarch64/functions/system/AArch64.SysRegWrite

 // Write to a system register.
 AArch64.SysRegWrite(integer op0, integer op1, integer crn, integer crm, integer op2, bits(64) val);

E1.2.4 aarch64/instrs
E1-782 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

E1 ARMv8.1 Pseudocode
E1.2 Library pseudocode for AArch64
aarch64/instrs/branch/eret/AArch64.ExceptionReturn

 // AArch64.ExceptionReturn()
 // =========================

 AArch64.ExceptionReturn(bits(64) new_pc, bits(32) spsr)

 // Attempts to change to an illegal state will invoke the Illegal Execution state mechanism
 SetPSTATEFromPSR(spsr);
 ClearExclusiveLocal(ProcessorID());
 EventRegisterSet();

 if spsr<4> == '1' then
 // For an attempted to change to AArch32 state, align PC[1:0] according
 // to the target instruction set state. If the exception return is illegal,
 // it is IMPLEMENTATION DEFINED whether this alignment takes place.
 align_pc = boolean IMPLEMENTATION_DEFINED "Align PC on illegal exception return";
 if PSTATE.IL == '0' || align_pc then
 if spsr<5> == '1' then // T32
 new_pc = Align(new_pc, 2);
 else // A32
 new_pc = Align(new_pc, 4);

 // If the return was illegal, the 32 MSBs of the target PC might be zeroed
 if PSTATE.IL == '1' && ConstrainUnpredictableBool() then
 new_pc<63:32> = Zeros();

 if UsingAArch32() then
 // 32 most significant bits are ignored
 BranchTo(new_pc<31:0>, BranchType_UNKNOWN);
 else
 // For an illegal exception return it is IMPLEMENTATION DEFINED whether the return is
 // to the Exception level indicated by the SPSR, or to the Exception level
 // in which the exception return was executed.
 el_from_spsr = boolean IMPLEMENTATION_DEFINED "EL from SPSR on illegal exception return";
 target_el = PSTATE.EL;
 if PSTATE.IL == '1' && el_from_spsr then
 (-, target_el) = ELFromSPSR(spsr);
 new_pc = BranchAddr(new_pc, target_el);
 BranchToAddr(new_pc, BranchType_ERET);

aarch64/instrs/countop/CountOp

 enumeration CountOp {CountOp_CLZ, CountOp_CLS, CountOp_CNT};

aarch64/instrs/extendreg/DecodeRegExtend

 // DecodeRegExtend()
 // =================
 // Decode a register extension option

 ExtendType DecodeRegExtend(bits(3) op)
 case op of
 when '000' return ExtendType_UXTB;
 when '001' return ExtendType_UXTH;
 when '010' return ExtendType_UXTW;
 when '011' return ExtendType_UXTX;
 when '100' return ExtendType_SXTB;
 when '101' return ExtendType_SXTH;
 when '110' return ExtendType_SXTW;
 when '111' return ExtendType_SXTX;
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. E1-783
ID060316 Non-Confidential

E1 ARMv8.1 Pseudocode
E1.2 Library pseudocode for AArch64
aarch64/instrs/extendreg/ExtendReg

 // ExtendReg()
 // ===========
 // Perform a register extension and shift

 bits(N) ExtendReg(integer reg, ExtendType type, integer shift)
 assert shift >= 0 && shift <= 4;
 bits(N) val = X[reg];
 boolean unsigned;
 integer len;

 case type of
 when ExtendType_SXTB unsigned = FALSE; len = 8;
 when ExtendType_SXTH unsigned = FALSE; len = 16;
 when ExtendType_SXTW unsigned = FALSE; len = 32;
 when ExtendType_SXTX unsigned = FALSE; len = 64;
 when ExtendType_UXTB unsigned = TRUE; len = 8;
 when ExtendType_UXTH unsigned = TRUE; len = 16;
 when ExtendType_UXTW unsigned = TRUE; len = 32;
 when ExtendType_UXTX unsigned = TRUE; len = 64;

 // Note the extended width of the intermediate value and
 // that sign extension occurs from bit <len+shift-1>, not
 // from bit <len-1>. This is equivalent to the instruction
 // [SU]BFIZ Rtmp, Rreg, #shift, #len
 // It may also be seen as a sign/zero extend followed by a shift:
 // LSL(Extend(val<len-1:0>, N, unsigned), shift);

 len = Min(len, N - shift);
 return Extend(val<len-1:0> : Zeros(shift), N, unsigned);

aarch64/instrs/extendreg/ExtendType

 enumeration ExtendType {ExtendType_SXTB, ExtendType_SXTH, ExtendType_SXTW, ExtendType_SXTX,
 ExtendType_UXTB, ExtendType_UXTH, ExtendType_UXTW, ExtendType_UXTX};

aarch64/instrs/float/arithmetic/max-min/fpmaxminop/FPMaxMinOp

 enumeration FPMaxMinOp {FPMaxMinOp_MAX, FPMaxMinOp_MIN,
 FPMaxMinOp_MAXNUM, FPMaxMinOp_MINNUM};

aarch64/instrs/float/arithmetic/unary/fpunaryop/FPUnaryOp

 enumeration FPUnaryOp {FPUnaryOp_ABS, FPUnaryOp_MOV,
 FPUnaryOp_NEG, FPUnaryOp_SQRT};

aarch64/instrs/float/convert/fpconvop/FPConvOp

 enumeration FPConvOp {FPConvOp_CVT_FtoI, FPConvOp_CVT_ItoF,
 FPConvOp_MOV_FtoI, FPConvOp_MOV_ItoF};

aarch64/instrs/integer/bitfield/bfxpreferred/BFXPreferred

 // BFXPreferred()
 // ==============
 //
 // Return TRUE if UBFX or SBFX is the preferred disassembly of a
 // UBFM or SBFM bitfield instruction. Must exclude more specific
 // aliases UBFIZ, SBFIZ, UXT[BH], SXT[BHW], LSL, LSR and ASR.

 boolean BFXPreferred(bit sf, bit uns, bits(6) imms, bits(6) immr)
 integer S = UInt(imms);
 integer R = UInt(immr);
E1-784 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

E1 ARMv8.1 Pseudocode
E1.2 Library pseudocode for AArch64

 // must not match UBFIZ/SBFIX alias
 if UInt(imms) < UInt(immr) then
 return FALSE;

 // must not match LSR/ASR/LSL alias (imms == 31 or 63)
 if imms == sf:'11111' then
 return FALSE;

 // must not match UXTx/SXTx alias
 if immr == '000000' then
 // must not match 32-bit UXT[BH] or SXT[BH]
 if sf == '0' && imms IN {'000111', '001111'} then
 return FALSE;
 // must not match 64-bit SXT[BHW]
 if sf:uns == '10' && imms IN {'000111', '001111', '011111'} then
 return FALSE;

 // must be UBFX/SBFX alias
 return TRUE;

aarch64/instrs/integer/bitmasks/DecodeBitMasks

 // DecodeBitMasks()
 // ================

 // Decode AArch64 bitfield and logical immediate masks which use a similar encoding structure

 (bits(M), bits(M)) DecodeBitMasks(bit immN, bits(6) imms, bits(6) immr, boolean immediate)
 bits(M) tmask, wmask;
 bits(6) levels;

 // Compute log2 of element size
 // 2^len must be in range [2, M]
 len = HighestSetBit(immN:NOT(imms));
 if len < 1 then ReservedValue();
 assert M >= (1 << len);

 // Determine S, R and S - R parameters
 levels = ZeroExtend(Ones(len), 6);

 // For logical immediates an all-ones value of S is reserved
 // since it would generate a useless all-ones result (many times)
 if immediate && (imms AND levels) == levels then
 ReservedValue();

 S = UInt(imms AND levels);
 R = UInt(immr AND levels);
 diff = S - R; // 6-bit subtract with borrow

 esize = 1 << len;
 d = UInt(diff<len-1:0>);
 welem = ZeroExtend(Ones(S + 1), esize);
 telem = ZeroExtend(Ones(d + 1), esize);
 wmask = Replicate(ROR(welem, R));
 tmask = Replicate(telem);
 return (wmask, tmask);

aarch64/instrs/integer/ins-ext/insert/movewide/movewideop/MoveWideOp

 enumeration MoveWideOp {MoveWideOp_N, MoveWideOp_Z, MoveWideOp_K};
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. E1-785
ID060316 Non-Confidential

E1 ARMv8.1 Pseudocode
E1.2 Library pseudocode for AArch64
aarch64/instrs/integer/logical/movwpreferred/MoveWidePreferred

 // MoveWidePreferred()
 // ===================
 //
 // Return TRUE if a bitmask immediate encoding would generate an immediate
 // value that could also be represented by a single MOVZ or MOVN instruction.
 // Used as a condition for the preferred MOV<-ORR alias.

 boolean MoveWidePreferred(bit sf, bit immN, bits(6) imms, bits(6) immr)
 integer S = UInt(imms);
 integer R = UInt(immr);
 integer width = if sf == '1' then 64 else 32;

 // element size must equal total immediate size
 if sf == '1' && immN:imms != '1xxxxxx' then
 return FALSE;
 if sf == '0' && immN:imms != '00xxxxx' then
 return FALSE;

 // for MOVZ must contain no more than 16 ones
 if S < 16 then
 // ones must not span halfword boundary when rotated
 return (-R MOD 16) <= (15 - S);

 // for MOVN must contain no more than 16 zeros
 if S >= width - 15 then
 // zeros must not span halfword boundary when rotated
 return (R MOD 16) <= (S - (width - 15));

 return FALSE;

aarch64/instrs/integer/shiftreg/DecodeShift

 // DecodeShift()
 // =============
 // Decode shift encodings

 ShiftType DecodeShift(bits(2) op)
 case op of
 when '00' return ShiftType_LSL;
 when '01' return ShiftType_LSR;
 when '10' return ShiftType_ASR;
 when '11' return ShiftType_ROR;

aarch64/instrs/integer/shiftreg/ShiftReg

 // ShiftReg()
 // ==========
 // Perform shift of a register operand

 bits(N) ShiftReg(integer reg, ShiftType type, integer amount)
 bits(N) result = X[reg];
 case type of
 when ShiftType_LSL result = LSL(result, amount);
 when ShiftType_LSR result = LSR(result, amount);
 when ShiftType_ASR result = ASR(result, amount);
 when ShiftType_ROR result = ROR(result, amount);
 return result;

aarch64/instrs/integer/shiftreg/ShiftType

 enumeration ShiftType {ShiftType_LSL, ShiftType_LSR, ShiftType_ASR, ShiftType_ROR};
E1-786 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

E1 ARMv8.1 Pseudocode
E1.2 Library pseudocode for AArch64
aarch64/instrs/logicalop/LogicalOp

 enumeration LogicalOp {LogicalOp_AND, LogicalOp_EOR, LogicalOp_ORR};

aarch64/instrs/memory/memop/MemAtomicOp

 enumeration MemAtomicOp {MemAtomicOp_ADD,
 MemAtomicOp_BIC,
 MemAtomicOp_EOR,
 MemAtomicOp_ORR,
 MemAtomicOp_SMAX,
 MemAtomicOp_SMIN,
 MemAtomicOp_UMAX,
 MemAtomicOp_UMIN,
 MemAtomicOp_SWP};

aarch64/instrs/memory/memop/MemOp

 enumeration MemOp {MemOp_LOAD, MemOp_STORE, MemOp_PREFETCH};

aarch64/instrs/memory/prefetch/Prefetch

 // Prefetch()
 // ==========

 // Decode and execute the prefetch hint on ADDRESS specified by PRFOP

 Prefetch(bits(64) address, bits(5) prfop)
 PrefetchHint hint;
 integer target;
 boolean stream;

 case prfop<4:3> of
 when '00' hint = Prefetch_READ; // PLD: prefetch for load
 when '01' hint = Prefetch_EXEC; // PLI: preload instructions
 when '10' hint = Prefetch_WRITE; // PST: prepare for store
 when '11' return; // unallocated hint
 target = UInt(prfop<2:1>); // target cache level
 stream = (prfop<0> != '0'); // streaming (non-temporal)
 Hint_Prefetch(address, hint, target, stream);
 return;

aarch64/instrs/system/barriers/barrierop/MemBarrierOp

 enumeration MemBarrierOp {MemBarrierOp_DSB, MemBarrierOp_DMB, MemBarrierOp_ISB};

aarch64/instrs/system/hints/syshintop/SystemHintOp

 enumeration SystemHintOp {SystemHintOp_NOP, SystemHintOp_YIELD,
 SystemHintOp_WFE, SystemHintOp_WFI,
 SystemHintOp_SEV, SystemHintOp_SEVL};

aarch64/instrs/system/register/cpsr/pstatefield/PSTATEField

 enumeration PSTATEField {PSTATEField_DAIFSet, PSTATEField_DAIFClr,
 PSTATEField_PAN, // ARMv8.1
 PSTATEField_SP
 };
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. E1-787
ID060316 Non-Confidential

E1 ARMv8.1 Pseudocode
E1.2 Library pseudocode for AArch64
aarch64/instrs/system/sysops/sysop/SysOp

 // SysOp()
 // =======

 SystemOp SysOp(bits(3) op1, bits(4) CRn, bits(4) CRm, bits(3) op2)
 case op1:CRn:CRm:op2 of
 when '000 0111 1000 000' return Sys_AT; // S1E1R
 when '100 0111 1000 000' return Sys_AT; // S1E2R
 when '110 0111 1000 000' return Sys_AT; // S1E3R
 when '000 0111 1000 001' return Sys_AT; // S1E1W
 when '100 0111 1000 001' return Sys_AT; // S1E2W
 when '110 0111 1000 001' return Sys_AT; // S1E3W
 when '000 0111 1000 010' return Sys_AT; // S1E0R
 when '000 0111 1000 011' return Sys_AT; // S1E0W
 when '100 0111 1000 100' return Sys_AT; // S12E1R
 when '100 0111 1000 101' return Sys_AT; // S12E1W
 when '100 0111 1000 110' return Sys_AT; // S12E0R
 when '100 0111 1000 111' return Sys_AT; // S12E0W
 when '011 0111 0100 001' return Sys_DC; // ZVA
 when '000 0111 0110 001' return Sys_DC; // IVAC
 when '000 0111 0110 010' return Sys_DC; // ISW
 when '011 0111 1010 001' return Sys_DC; // CVAC
 when '000 0111 1010 010' return Sys_DC; // CSW
 when '011 0111 1011 001' return Sys_DC; // CVAU
 when '011 0111 1110 001' return Sys_DC; // CIVAC
 when '000 0111 1110 010' return Sys_DC; // CISW
 when '000 0111 0001 000' return Sys_IC; // IALLUIS
 when '000 0111 0101 000' return Sys_IC; // IALLU
 when '011 0111 0101 001' return Sys_IC; // IVAU
 when '100 1000 0000 001' return Sys_TLBI; // IPAS2E1IS
 when '100 1000 0000 101' return Sys_TLBI; // IPAS2LE1IS
 when '000 1000 0011 000' return Sys_TLBI; // VMALLE1IS
 when '100 1000 0011 000' return Sys_TLBI; // ALLE2IS
 when '110 1000 0011 000' return Sys_TLBI; // ALLE3IS
 when '000 1000 0011 001' return Sys_TLBI; // VAE1IS
 when '100 1000 0011 001' return Sys_TLBI; // VAE2IS
 when '110 1000 0011 001' return Sys_TLBI; // VAE3IS
 when '000 1000 0011 010' return Sys_TLBI; // ASIDE1IS
 when '000 1000 0011 011' return Sys_TLBI; // VAAE1IS
 when '100 1000 0011 100' return Sys_TLBI; // ALLE1IS
 when '000 1000 0011 101' return Sys_TLBI; // VALE1IS
 when '100 1000 0011 101' return Sys_TLBI; // VALE2IS
 when '110 1000 0011 101' return Sys_TLBI; // VALE3IS
 when '100 1000 0011 110' return Sys_TLBI; // VMALLS12E1IS
 when '000 1000 0011 111' return Sys_TLBI; // VAALE1IS
 when '100 1000 0100 001' return Sys_TLBI; // IPAS2E1
 when '100 1000 0100 101' return Sys_TLBI; // IPAS2LE1
 when '000 1000 0111 000' return Sys_TLBI; // VMALLE1
 when '100 1000 0111 000' return Sys_TLBI; // ALLE2
 when '110 1000 0111 000' return Sys_TLBI; // ALLE3
 when '000 1000 0111 001' return Sys_TLBI; // VAE1
 when '100 1000 0111 001' return Sys_TLBI; // VAE2
 when '110 1000 0111 001' return Sys_TLBI; // VAE3
 when '000 1000 0111 010' return Sys_TLBI; // ASIDE1
 when '000 1000 0111 011' return Sys_TLBI; // VAAE1
 when '100 1000 0111 100' return Sys_TLBI; // ALLE1
 when '000 1000 0111 101' return Sys_TLBI; // VALE1
 when '100 1000 0111 101' return Sys_TLBI; // VALE2
 when '110 1000 0111 101' return Sys_TLBI; // VALE3
 when '100 1000 0111 110' return Sys_TLBI; // VMALLS12E1
 when '000 1000 0111 111' return Sys_TLBI; // VAALE1
 return Sys_SYS;

aarch64/instrs/system/sysops/sysop/SystemOp

 enumeration SystemOp {Sys_AT, Sys_DC, Sys_IC, Sys_TLBI, Sys_SYS};
E1-788 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

E1 ARMv8.1 Pseudocode
E1.2 Library pseudocode for AArch64
aarch64/instrs/vector/arithmetic/binary/uniform/logical/bsl-eor/vbitop/VBitOp

 enumeration VBitOp {VBitOp_VBIF, VBitOp_VBIT, VBitOp_VBSL, VBitOp_VEOR};

aarch64/instrs/vector/arithmetic/unary/cmp/compareop/CompareOp

 enumeration CompareOp {CompareOp_GT, CompareOp_GE, CompareOp_EQ,
 CompareOp_LE, CompareOp_LT};

aarch64/instrs/vector/crypto/enabled/CheckCryptoEnabled64

 // CheckCryptoEnabled64()
 // ======================

 CheckCryptoEnabled64()
 AArch64.CheckFPAdvSIMDEnabled();
 return;

aarch64/instrs/vector/logical/immediateop/ImmediateOp

 enumeration ImmediateOp {ImmediateOp_MOVI, ImmediateOp_MVNI,
 ImmediateOp_ORR, ImmediateOp_BIC};

aarch64/instrs/vector/reduce/reduceop/Reduce

 // Reduce()
 // ========

 bits(esize) Reduce(ReduceOp op, bits(N) input, integer esize)
 integer half;
 bits(esize) hi;
 bits(esize) lo;
 bits(esize) result;

 if N == esize then
 return input;

 half = N DIV 2;
 hi = Reduce(op, input<N-1:half>, esize);
 lo = Reduce(op, input<half-1:0>, esize);

 case op of
 when ReduceOp_FMINNUM
 result = FPMinNum(lo, hi, FPCR);
 when ReduceOp_FMAXNUM
 result = FPMaxNum(lo, hi, FPCR);
 when ReduceOp_FMIN
 result = FPMin(lo, hi, FPCR);
 when ReduceOp_FMAX
 result = FPMax(lo, hi, FPCR);
 when ReduceOp_FADD
 result = FPAdd(lo, hi, FPCR);
 when ReduceOp_ADD
 result = lo + hi;

 return result;

aarch64/instrs/vector/reduce/reduceop/ReduceOp

 enumeration ReduceOp {ReduceOp_FMINNUM, ReduceOp_FMAXNUM,
 ReduceOp_FMIN, ReduceOp_FMAX,
 ReduceOp_FADD, ReduceOp_ADD};
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. E1-789
ID060316 Non-Confidential

E1 ARMv8.1 Pseudocode
E1.2 Library pseudocode for AArch64
E1.2.5 aarch64/translation

aarch64/translation/attrs/AArch64.InstructionDevice

 // AArch64.InstructionDevice()
 // ===========================
 // Instruction fetches from memory marked as Device but not execute-never might generate a
 // Permission Fault but are otherwise treated as if from Normal Non-cacheable memory.

 AddressDescriptor AArch64.InstructionDevice(AddressDescriptor addrdesc, bits(64) vaddress,
 bits(48) ipaddress, integer level,
 AccType acctype, boolean iswrite, boolean secondstage,
 boolean s2fs1walk)

 c = ConstrainUnpredictable();
 assert c IN {Constraint_NONE, Constraint_FAULT};

 if c == Constraint_FAULT then
 addrdesc.fault = AArch64.PermissionFault(ipaddress, level, acctype, iswrite,
 secondstage, s2fs1walk);
 else
 addrdesc.memattrs.type = MemType_Normal;
 addrdesc.memattrs.inner.attrs = MemAttr_NC;
 addrdesc.memattrs.inner.hints = MemHint_No;
 addrdesc.memattrs.outer = addrdesc.memattrs.inner;
 addrdesc.memattrs = MemAttrDefaults(addrdesc.memattrs);

 return addrdesc;

aarch64/translation/attrs/AArch64.S1AttrDecode

 // AArch64.S1AttrDecode()
 // ======================
 // Converts the Stage 1 attribute fields, using the MAIR, to orthogonal
 // attributes and hints.

 MemoryAttributes AArch64.S1AttrDecode(bits(2) SH, bits(3) attr, AccType acctype)

 MemoryAttributes memattrs;

 mair = MAIR[];
 index = 8 * UInt(attr);
 attrfield = mair<index+7:index>;

 if ((attrfield<7:4> != '0000' && attrfield<3:0> == '0000') ||
 (attrfield<7:4> == '0000' && attrfield<3:0> != 'xx00')) then
 // Reserved, maps to an allocated value
 (-, attrfield) = ConstrainUnpredictableBits();

 if attrfield<7:4> == '0000' then // Device
 memattrs.type = MemType_Device;
 case attrfield<3:0> of
 when '0000' memattrs.device = DeviceType_nGnRnE;
 when '0100' memattrs.device = DeviceType_nGnRE;
 when '1000' memattrs.device = DeviceType_nGRE;
 when '1100' memattrs.device = DeviceType_GRE;
 otherwise Unreachable(); // Reserved, handled above

 elsif attrfield<3:0> != '0000' then // Normal
 memattrs.type = MemType_Normal;
 memattrs.outer = LongConvertAttrsHints(attrfield<7:4>, acctype);
 memattrs.inner = LongConvertAttrsHints(attrfield<3:0>, acctype);
 memattrs.shareable = SH<1> == '1';
 memattrs.outershareable = SH == '10';
E1-790 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

E1 ARMv8.1 Pseudocode
E1.2 Library pseudocode for AArch64

 else
 Unreachable(); // Reserved, handled above

 return MemAttrDefaults(memattrs);

aarch64/translation/attrs/AArch64.TranslateAddressS1Off

 // AArch64.TranslateAddressS1Off()
 // ===============================
 // Called for stage 1 translations when translation is disabled to supply a default translation.
 // Note that there are additional constraints on instruction prefetching that are not described in
 // this pseudocode.

 TLBRecord AArch64.TranslateAddressS1Off(bits(64) vaddress, AccType acctype, boolean iswrite)
 assert !ELUsingAArch32(S1TranslationRegime());

 TLBRecord result;

 Top = AddrTop(vaddress, PSTATE.EL);
 if !IsZero(vaddress<Top:PAMax()>) then
 level = 0;
 ipaddress = bits(48) UNKNOWN;
 secondstage = FALSE;
 s2fs1walk = FALSE;
 result.addrdesc.fault = AArch64.AddressSizeFault(ipaddress, level, acctype,
 iswrite, secondstage, s2fs1walk);
 return result;

 default_cacheable = (HasS2Translation() && HCR_EL2.DC == '1');

 if default_cacheable then
 // Use default cacheable settings
 result.addrdesc.memattrs.type = MemType_Normal;
 result.addrdesc.memattrs.inner.attrs = MemAttr_WB; // Write-back
 result.addrdesc.memattrs.inner.hints = MemHint_RWA;
 result.addrdesc.memattrs.shareable = FALSE;
 result.addrdesc.memattrs.outershareable = FALSE;
 elsif acctype != AccType_IFETCH then
 // Treat data as Device
 result.addrdesc.memattrs.type = MemType_Device;
 result.addrdesc.memattrs.device = DeviceType_nGnRnE;
 result.addrdesc.memattrs.inner = MemAttrHints UNKNOWN;
 else
 // Instruction cacheability controlled by SCTLR_ELx.I
 cacheable = SCTLR[].I == '1';
 result.addrdesc.memattrs.type = MemType_Normal;
 if cacheable then
 result.addrdesc.memattrs.inner.attrs = MemAttr_WT;
 result.addrdesc.memattrs.inner.hints = MemHint_RA;
 else
 result.addrdesc.memattrs.inner.attrs = MemAttr_NC;
 result.addrdesc.memattrs.inner.hints = MemHint_No;
 result.addrdesc.memattrs.shareable = TRUE;
 result.addrdesc.memattrs.outershareable = TRUE;

 result.addrdesc.memattrs.outer = result.addrdesc.memattrs.inner;

 result.addrdesc.memattrs = MemAttrDefaults(result.addrdesc.memattrs);

 result.perms.ap = bits(3) UNKNOWN;
 result.perms.xn = '0';
 result.perms.pxn = '0';

 result.nG = bit UNKNOWN;
 result.contiguous = boolean UNKNOWN;
 result.domain = bits(4) UNKNOWN;
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. E1-791
ID060316 Non-Confidential

E1 ARMv8.1 Pseudocode
E1.2 Library pseudocode for AArch64
 result.level = integer UNKNOWN;
 result.blocksize = integer UNKNOWN;
 result.addrdesc.paddress.physicaladdress = vaddress<47:0>;
 result.addrdesc.paddress.NS = if IsSecure() then '0' else '1';
 result.addrdesc.fault = AArch64.NoFault();

 return result;

aarch64/translation/checks/AArch64.CheckPermission

 // AArch64.CheckPermission()
 // =========================
 // Function used for permission checking from AArch64 stage 1 translations

 FaultRecord AArch64.CheckPermission(Permissions perms, bits(64) vaddress, integer level,
 bit NS, AccType acctype, boolean iswrite)
 assert !ELUsingAArch32(S1TranslationRegime());

 wxn = SCTLR[].WXN == '1';

 if PSTATE.EL IN {EL0,EL1} || IsInHost() then
 priv_r = TRUE;
 priv_w = perms.ap<2> == '0';
 user_r = perms.ap<1> == '1';
 user_w = perms.ap<2:1> == '01';

 if (HavePANExt() && PSTATE.PAN == '1' && user_r && PSTATE.EL != EL0 &&
 !(acctype IN {AccType_DC,AccType_AT,AccType_UNPRIV,AccType_IFETCH})) then
 priv_r = FALSE; priv_w = FALSE;

 user_xn = perms.xn == '1' || (user_w && wxn);
 priv_xn = perms.pxn == '1' || (priv_w && wxn) || user_w;
 ispriv = PSTATE.EL != EL0 && acctype != AccType_UNPRIV;

 if ispriv then
 (r, w, xn) = (priv_r, priv_w, priv_xn);
 else
 (r, w, xn) = (user_r, user_w, user_xn);
 else
 // Access from EL2 or EL3
 r = TRUE;
 w = perms.ap<2> == '0';
 xn = perms.xn == '1' || (w && wxn);

 // Restriction on Secure instruction fetch
 if HaveEL(EL3) && IsSecure() && NS == '1' && SCR_EL3.SIF == '1' then
 xn = TRUE;

 if acctype == AccType_IFETCH then
 fail = xn;
 elsif acctype IN { AccType_ATOMICRW, AccType_ORDEREDRW } then
 fail = !r || !w;
 failedread = !r;
 elsif iswrite then
 fail = !w;
 failedread = FALSE;
 else
 fail = !r;
 failedread = TRUE;

 if fail then
 secondstage = FALSE;
 s2fs1walk = FALSE;
 ipaddress = bits(48) UNKNOWN;
 return AArch64.PermissionFault(ipaddress, level, acctype,
E1-792 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

E1 ARMv8.1 Pseudocode
E1.2 Library pseudocode for AArch64
 !failedread, secondstage, s2fs1walk);
 else
 return AArch64.NoFault();

aarch64/translation/checks/AArch64.CheckS2Permission

 // AArch64.CheckS2Permission()
 // ===========================
 // Function used for permission checking from AArch64 stage 2 translations

 FaultRecord AArch64.CheckS2Permission(Permissions perms, bits(64) vaddress, bits(48) ipaddress,
 integer level, AccType acctype, boolean iswrite,
 boolean s2fs1walk, boolean hwupdatewalk)

 assert HaveEL(EL2) && !IsSecure() && !ELUsingAArch32(EL2) && HasS2Translation();

 r = perms.ap<1> == '1';
 w = perms.ap<2> == '1';
 xn = perms.xn == '1';

 // Stage 1 walk is checked as a read, regardless of the original type
 if acctype == AccType_IFETCH && !s2fs1walk then
 fail = xn;
 elsif (acctype IN { AccType_ATOMICRW, AccType_ORDEREDRW }) && !s2fs1walk then
 fail = !r || !w;
 failedread = !r;
 elsif iswrite && !s2fs1walk then
 fail = !w;
 failedread = FALSE;
 elsif hwupdatewalk then
 fail = !w;
 failedread = !iswrite;
 else
 fail = !r;
 failedread = !iswrite;

 if fail then
 domain = bits(4) UNKNOWN;
 secondstage = TRUE;
 return AArch64.PermissionFault(ipaddress, level, acctype,
 !failedread, secondstage, s2fs1walk);
 else
 return AArch64.NoFault();

aarch64/translation/debug/AArch64.CheckBreakpoint

 // AArch64.CheckBreakpoint()
 // =========================
 // Called before executing the instruction of length "size" bytes at "vaddress" in an AArch64
 // translation regime.
 // The breakpoint can in fact be evaluated well ahead of execution, for example, at instruction
 // fetch. This is the simple sequential execution of the program.

 FaultRecord AArch64.CheckBreakpoint(bits(64) vaddress, integer size)
 assert !ELUsingAArch32(S1TranslationRegime());
 assert (UsingAArch32() && size IN {2,4}) || size == 4;

 match = FALSE;

 for i = 0 to UInt(ID_AA64DFR0_EL1.BRPs)
 match_i = AArch64.BreakpointMatch(i, vaddress, size);
 match = match || match_i;

 if match && HaltOnBreakpointOrWatchpoint() then
 reason = DebugHalt_Breakpoint;
 Halt(reason);
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. E1-793
ID060316 Non-Confidential

E1 ARMv8.1 Pseudocode
E1.2 Library pseudocode for AArch64
 elsif match && MDSCR_EL1.MDE == '1' && AArch64.GenerateDebugExceptions() then
 acctype = AccType_IFETCH;
 iswrite = FALSE;
 return AArch64.DebugFault(acctype, iswrite);
 else
 return AArch64.NoFault();

aarch64/translation/debug/AArch64.CheckDebug

 // AArch64.CheckDebug()
 // ====================
 // Called on each access to check for a debug exception or entry to Debug state.

 FaultRecord AArch64.CheckDebug(bits(64) vaddress, AccType acctype, boolean iswrite, integer size)

 FaultRecord fault = AArch64.NoFault();

 d_side = (acctype != AccType_IFETCH);
 generate_exception = AArch64.GenerateDebugExceptions() && MDSCR_EL1.MDE == '1';
 halt = HaltOnBreakpointOrWatchpoint();

 if generate_exception || halt then
 if d_side then
 fault = AArch64.CheckWatchpoint(vaddress, acctype, iswrite, size);
 else
 fault = AArch64.CheckBreakpoint(vaddress, size);

 return fault;

aarch64/translation/debug/AArch64.CheckWatchpoint

 // AArch64.CheckWatchpoint()
 // =========================
 // Called before accessing the memory location of "size" bytes at "address".

 FaultRecord AArch64.CheckWatchpoint(bits(64) vaddress, AccType acctype,
 boolean iswrite, integer size)
 assert !ELUsingAArch32(S1TranslationRegime());

 match = FALSE;
 ispriv = PSTATE.EL != EL0 && !(PSTATE.EL == EL1 && acctype == AccType_UNPRIV);

 for i = 0 to UInt(ID_AA64DFR0_EL1.WRPs)
 match = match || AArch64.WatchpointMatch(i, vaddress, size, ispriv, iswrite);

 if match && HaltOnBreakpointOrWatchpoint() then
 reason = DebugHalt_Watchpoint;
 Halt(reason);
 elsif match && MDSCR_EL1.MDE == '1' && AArch64.GenerateDebugExceptions() then
 return AArch64.DebugFault(acctype, iswrite);
 else
 return AArch64.NoFault();

aarch64/translation/faults/AArch64.AccessFlagFault

 // AArch64.AccessFlagFault()
 // =========================

 FaultRecord AArch64.AccessFlagFault(bits(48) ipaddress, integer level,
 AccType acctype, boolean iswrite, boolean secondstage,
 boolean s2fs1walk)

 extflag = bit UNKNOWN;
 return AArch64.CreateFaultRecord(Fault_AccessFlag, ipaddress, level, acctype, iswrite,
 extflag, secondstage, s2fs1walk);
E1-794 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

E1 ARMv8.1 Pseudocode
E1.2 Library pseudocode for AArch64
aarch64/translation/faults/AArch64.AddressSizeFault

 // AArch64.AddressSizeFault()
 // ==========================

 FaultRecord AArch64.AddressSizeFault(bits(48) ipaddress, integer level,
 AccType acctype, boolean iswrite, boolean secondstage,
 boolean s2fs1walk)

 extflag = bit UNKNOWN;
 return AArch64.CreateFaultRecord(Fault_AddressSize, ipaddress, level, acctype, iswrite,
 extflag, secondstage, s2fs1walk);

aarch64/translation/faults/AArch64.AlignmentFault

 // AArch64.AlignmentFault()
 // ========================

 FaultRecord AArch64.AlignmentFault(AccType acctype, boolean iswrite, boolean secondstage)

 ipaddress = bits(48) UNKNOWN;
 level = integer UNKNOWN;
 extflag = bit UNKNOWN;
 s2fs1walk = boolean UNKNOWN;

 return AArch64.CreateFaultRecord(Fault_Alignment, ipaddress, level, acctype, iswrite,
 extflag, secondstage, s2fs1walk);

aarch64/translation/faults/AArch64.AsynchExternalAbort

 // AArch64.AsynchExternalAbort()
 // =============================
 // Wrapper function for asynchronous external aborts

 FaultRecord AArch64.AsynchExternalAbort(boolean parity, bit extflag)

 type = if parity then Fault_AsyncParity else Fault_AsyncExternal;
 ipaddress = bits(48) UNKNOWN;
 level = integer UNKNOWN;
 acctype = AccType_NORMAL;
 iswrite = boolean UNKNOWN;
 secondstage = FALSE;
 s2fs1walk = FALSE;

 return AArch64.CreateFaultRecord(type, ipaddress, level, acctype, iswrite, extflag,
 secondstage, s2fs1walk);

aarch64/translation/faults/AArch64.DebugFault

 // AArch64.DebugFault()
 // ====================

 FaultRecord AArch64.DebugFault(AccType acctype, boolean iswrite)

 ipaddress = bits(48) UNKNOWN;
 level = integer UNKNOWN;
 extflag = bit UNKNOWN;
 secondstage = FALSE;
 s2fs1walk = FALSE;

 return AArch64.CreateFaultRecord(Fault_Debug, ipaddress, level, acctype, iswrite,
 extflag, secondstage, s2fs1walk);
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. E1-795
ID060316 Non-Confidential

E1 ARMv8.1 Pseudocode
E1.2 Library pseudocode for AArch64
aarch64/translation/faults/AArch64.NoFault

 // AArch64.NoFault()
 // =================

 FaultRecord AArch64.NoFault()

 ipaddress = bits(48) UNKNOWN;
 level = integer UNKNOWN;
 acctype = AccType_NORMAL;
 iswrite = boolean UNKNOWN;
 extflag = bit UNKNOWN;
 secondstage = FALSE;
 s2fs1walk = FALSE;

 return AArch64.CreateFaultRecord(Fault_None, ipaddress, level, acctype, iswrite,
 extflag, secondstage, s2fs1walk);

aarch64/translation/faults/AArch64.PermissionFault

 // AArch64.PermissionFault()
 // =========================

 FaultRecord AArch64.PermissionFault(bits(48) ipaddress, integer level,
 AccType acctype, boolean iswrite, boolean secondstage,
 boolean s2fs1walk)

 extflag = bit UNKNOWN;
 return AArch64.CreateFaultRecord(Fault_Permission, ipaddress, level, acctype, iswrite,
 extflag, secondstage, s2fs1walk);

aarch64/translation/faults/AArch64.TranslationFault

 // AArch64.TranslationFault()
 // ==========================

 FaultRecord AArch64.TranslationFault(bits(48) ipaddress, integer level,
 AccType acctype, boolean iswrite, boolean secondstage,
 boolean s2fs1walk)

 extflag = bit UNKNOWN;
 return AArch64.CreateFaultRecord(Fault_Translation, ipaddress, level, acctype, iswrite,
 extflag, secondstage, s2fs1walk);

aarch64/translation/translation/AArch64.CheckAndUpdateDescriptor

 // AArch64.CheckAndUpdateDescriptor()
 // ==================================
 // Check and update translation table descriptor if hardware update is configured

 FaultRecord AArch64.CheckAndUpdateDescriptor(DescriptorUpdate result, FaultRecord fault,
 boolean secondstage, bits(64) vaddress, AccType acctype,
 boolean iswrite, boolean s2fs1walk, boolean hwupdatewalk)

 // Check if access flag can be updated
 if result.AF && acctype != AccType_AT then
 if fault.type == Fault_None then
 hw_update_AF = TRUE;
 elsif ConstrainUnpredictable() == Constraint_TRUE then
 hw_update_AF = TRUE;
 else
 hw_update_AF = FALSE;

 // AP[2] / S2AP[2] is not updated for speculative access
 if result.AP && fault.type == Fault_None then
 write_perm_req = (iswrite || acctype IN {AccType_ATOMICRW,AccType_ORDEREDRW}) && !s2fs1walk;
E1-796 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

E1 ARMv8.1 Pseudocode
E1.2 Library pseudocode for AArch64
 hw_update_AP = (write_perm_req && !(acctype IN {AccType_AT,AccType_DC})) || hwupdatewalk;

 if hw_update_AF || hw_update_AP then
 if secondstage || !HasS2Translation() then
 descaddr2 = result.descaddr;
 else
 hwupdatewalk = TRUE;
 descaddr2 = AArch64.SecondStageWalk(result.descaddr, vaddress, acctype, iswrite, 8,
hwupdatewalk);
 if IsFault(descaddr2) then
 return descaddr2.fault;

 desc = _Mem[descaddr2,8,AccType_ATOMICRW];

 if hw_update_AF then
 desc<10> = '1';
 if hw_update_AP then
 desc<7> = (if secondstage then '1' else '0');

 _Mem[descaddr2,8,AccType_ATOMICRW] = desc;

 return fault;

aarch64/translation/translation/AArch64.FirstStageTranslate

 // AArch64.FirstStageTranslate()
 // =============================
 // Perform a stage 1 translation walk. The function used by Address Translation operations is
 // similar except it uses the translation regime specified for the instruction.

 AddressDescriptor AArch64.FirstStageTranslate(bits(64) vaddress, AccType acctype, boolean iswrite,
 boolean wasaligned, integer size)

 if HasS2Translation() then
 s1_enabled = HCR_EL2.TGE == '0' && HCR_EL2.DC == '0' && SCTLR_EL1.M == '1';
 else
 s1_enabled = SCTLR[].M == '1';

 ipaddress = bits(48) UNKNOWN;
 secondstage = FALSE;
 s2fs1walk = FALSE;

 if s1_enabled then // First stage enabled
 S1 = AArch64.TranslationTableWalk(ipaddress, vaddress, acctype, iswrite, secondstage,
 s2fs1walk, size);
 permissioncheck = TRUE;
 else
 S1 = AArch64.TranslateAddressS1Off(vaddress, acctype, iswrite);
 permissioncheck = FALSE;

 // Check for unaligned data accesses to Device memory
 if (!wasaligned && !IsFault(S1.addrdesc) && S1.addrdesc.memattrs.type == MemType_Device &&
 acctype != AccType_IFETCH) then
 S1.addrdesc.fault = AArch64.AlignmentFault(acctype, iswrite, secondstage);
 if !IsFault(S1.addrdesc) && permissioncheck then
 S1.addrdesc.fault = AArch64.CheckPermission(S1.perms, vaddress, S1.level,
 S1.addrdesc.paddress.NS,
 acctype, iswrite);

 // Check for instruction fetches from Device memory not marked as execute-never. If there has
 // not been a Permission Fault then the memory is not marked execute-never.
 if (!IsFault(S1.addrdesc) && S1.addrdesc.memattrs.type == MemType_Device &&
 acctype == AccType_IFETCH) then
 S1.addrdesc = AArch64.InstructionDevice(S1.addrdesc, vaddress, ipaddress, S1.level,
 acctype, iswrite,
 secondstage, s2fs1walk);

DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. E1-797
ID060316 Non-Confidential

E1 ARMv8.1 Pseudocode
E1.2 Library pseudocode for AArch64
 // Check and update translation table descriptor if required
 hwupdatewalk = FALSE;
 s2fs1walk = FALSE;
 S1.addrdesc.fault = AArch64.CheckAndUpdateDescriptor(S1.descupdate, S1.addrdesc.fault,
 secondstage, vaddress, acctype,
 iswrite, s2fs1walk, hwupdatewalk);

 return S1.addrdesc;

aarch64/translation/translation/AArch64.FullTranslate

 // AArch64.FullTranslate()
 // =======================
 // Perform both stage 1 and stage 2 translation walks for the current translation regime. The
 // function used by Address Translation operations is similar except it uses the translation
 // regime specified for the instruction.

 AddressDescriptor AArch64.FullTranslate(bits(64) vaddress, AccType acctype, boolean iswrite,
 boolean wasaligned, integer size)

 // First Stage Translation
 S1 = AArch64.FirstStageTranslate(vaddress, acctype, iswrite, wasaligned, size);
 if !IsFault(S1) && HasS2Translation() then
 s2fs1walk = FALSE;
 hwupdatewalk = FALSE;
 result = AArch64.SecondStageTranslate(S1, vaddress, acctype, iswrite, wasaligned, s2fs1walk,
 size, hwupdatewalk);
 else
 result = S1;

 return result;

aarch64/translation/translation/AArch64.SecondStageTranslate

 // AArch64.SecondStageTranslate()
 // ==============================
 // Perform a stage 2 translation walk. The function used by Address Translation operations is
 // similar except it uses the translation regime specified for the instruction.

 AddressDescriptor AArch64.SecondStageTranslate(AddressDescriptor S1, bits(64) vaddress,
 AccType acctype, boolean iswrite, boolean wasaligned,
 boolean s2fs1walk, integer size, boolean hwupdatewalk)
 assert HasS2Translation();

 s2_enabled = HCR_EL2.VM == '1' || HCR_EL2.DC == '1';
 secondstage = TRUE;

 if s2_enabled then // Second stage enabled
 ipaddress = S1.paddress.physicaladdress<47:0>;

 S2 = AArch64.TranslationTableWalk(ipaddress, vaddress, acctype, iswrite, secondstage,
 s2fs1walk, size);

 // Check for unaligned data accesses to Device memory
 if (!wasaligned && !IsFault(S2.addrdesc) && S2.addrdesc.memattrs.type == MemType_Device &&
 acctype != AccType_IFETCH) then
 S2.addrdesc.fault = AArch64.AlignmentFault(acctype, iswrite, secondstage);

 if !IsFault(S2.addrdesc) then
 S2.addrdesc.fault = AArch64.CheckS2Permission(S2.perms, vaddress, ipaddress, S2.level,
 acctype, iswrite, s2fs1walk, hwupdatewalk);
 // Check for instruction fetches from Device memory not marked as execute-never. As there
 // has not been a Permission Fault then the memory is not marked execute-never.
 if (!s2fs1walk && !IsFault(S2.addrdesc) && S2.addrdesc.memattrs.type == MemType_Device &&
 acctype == AccType_IFETCH) then
 S2.addrdesc = AArch64.InstructionDevice(S2.addrdesc, vaddress, ipaddress, S2.level,
E1-798 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

E1 ARMv8.1 Pseudocode
E1.2 Library pseudocode for AArch64
 acctype, iswrite,
 secondstage, s2fs1walk);

 // Check for protected table walk
 if (s2fs1walk && !IsFault(S2.addrdesc) && HCR_EL2.PTW == '1' &&
 S2.addrdesc.memattrs.type == MemType_Device) then
 S2.addrdesc.fault = AArch64.PermissionFault(ipaddress, S2.level, acctype,
 iswrite, secondstage, s2fs1walk);

 // Check and update translation table descriptor if required
 S2.addrdesc.fault = AArch64.CheckAndUpdateDescriptor(S2.descupdate, S2.addrdesc.fault,
 secondstage, vaddress, acctype,
 iswrite, s2fs1walk, hwupdatewalk);
 result = CombineS1S2Desc(S1, S2.addrdesc);
 else
 result = S1;

 return result;

aarch64/translation/translation/AArch64.SecondStageWalk

 // AArch64.SecondStageWalk()
 // =========================
 // Perform a stage 2 translation on a stage 1 translation page table walk access.

 AddressDescriptor AArch64.SecondStageWalk(AddressDescriptor S1, bits(64) vaddress, AccType acctype,
 boolean iswrite, integer size, boolean hwupdatewalk)

 assert HasS2Translation();

 s2fs1walk = TRUE;
 wasaligned = TRUE;
 return AArch64.SecondStageTranslate(S1, vaddress, acctype, iswrite, wasaligned, s2fs1walk,
 size, hwupdatewalk);

aarch64/translation/translation/AArch64.TranslateAddress

 // AArch64.TranslateAddress()
 // ==========================
 // Main entry point for translating an address

 AddressDescriptor AArch64.TranslateAddress(bits(64) vaddress, AccType acctype, boolean iswrite,
 boolean wasaligned, integer size)

 result = AArch64.FullTranslate(vaddress, acctype, iswrite, wasaligned, size);

 if !(acctype IN {AccType_PTW, AccType_IC, AccType_AT}) && !IsFault(result) then
 result.fault = AArch64.CheckDebug(vaddress, acctype, iswrite, size);

 // Update virtual address for abort functions
 result.vaddress = ZeroExtend(vaddress);

 return result;

aarch64/translation/walk/AArch64.TranslationTableWalk

 // AArch64.TranslationTableWalk()
 // ==============================
 // Returns a result of a translation table walk
 //
 // Implementations might cache information from memory in any number of non-coherent TLB
 // caching structures, and so avoid memory accesses that have been expressed in this
 // pseudocode. The use of such TLBs is not expressed in this pseudocode.

 TLBRecord AArch64.TranslationTableWalk(bits(48) ipaddress, bits(64) vaddress,
 AccType acctype, boolean iswrite, boolean secondstage,
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. E1-799
ID060316 Non-Confidential

E1 ARMv8.1 Pseudocode
E1.2 Library pseudocode for AArch64
 boolean s2fs1walk, integer size)
 if !secondstage then
 assert !ELUsingAArch32(S1TranslationRegime());
 else
 assert HaveEL(EL2) && !IsSecure() && !ELUsingAArch32(EL2) && HasS2Translation();

 TLBRecord result;
 AddressDescriptor descaddr;
 bits(64) baseregister;
 bits(64) inputaddr; // Input Address is 'vaddress' for stage 1, 'ipaddress' for stage 2

 descaddr.memattrs.type = MemType_Normal;

 // Derived parameters for the page table walk:
 // grainsize = Log2(Size of Table) - Size of Table is 4KB, 16KB or 64KB in AArch64
 // stride = Log2(Address per Level) - Bits of address consumed at each level
 // firstblocklevel = First level where a block entry is allowed
 // ps = Physical Address size as encoded in TCR_EL1.IPS or TCR_ELx/VTCR_EL2.PS
 // inputsize = Log2(Size of Input Address) - Input Address size in bits
 // level = Level to start walk from
 // This means that the number of levels after start level = 3-level

 if !secondstage then
 // First stage translation
 inputaddr = ZeroExtend(vaddress);
 top = AddrTop(inputaddr, PSTATE.EL);

 if PSTATE.EL == EL3 then
 inputsize = 64 - UInt(TCR_EL3.T0SZ);
 if inputsize > 48 then
 c = ConstrainUnpredictable();
 assert c IN {Constraint_FORCE, Constraint_FAULT};
 if c == Constraint_FORCE then inputsize = 48;
 if inputsize < 25 then
 c = ConstrainUnpredictable();
 assert c IN {Constraint_FORCE, Constraint_FAULT};
 if c == Constraint_FORCE then inputsize = 25;
 largegrain = TCR_EL3.TG0 == '01';
 midgrain = TCR_EL3.TG0 == '10';
 ps = TCR_EL3.PS;
 basefound = inputsize >= 25 && inputsize <= 48 && IsZero(inputaddr<top:inputsize>);
 disabled = FALSE;
 baseregister = TTBR0_EL3;
 descaddr.memattrs = WalkAttrDecode(TCR_EL3.SH0, TCR_EL3.ORGN0, TCR_EL3.IRGN0);
 reversedescriptors = SCTLR_EL3.EE == '1';
 lookupsecure = TRUE;
 singlepriv = TRUE;
 ha = TCR_EL3.HA;
 hd = TCR_EL3.HD;
 hierattrsdisabled = HaveHPDExt() && TCR_EL3.HPD == '1';
 elsif IsInHost() then
 if inputaddr<top> == '0' then
 inputsize = 64 - UInt(TCR_EL2.T0SZ);
 if inputsize > 48 then
 c = ConstrainUnpredictable();
 assert c IN {Constraint_FORCE, Constraint_FAULT};
 if c == Constraint_FORCE then inputsize = 48;
 if inputsize < 25 then
 c = ConstrainUnpredictable();
 assert c IN {Constraint_FORCE, Constraint_FAULT};
 if c == Constraint_FORCE then inputsize = 25;
 largegrain = TCR_EL2.TG0 == '01';
 midgrain = TCR_EL2.TG0 == '10';
 basefound = inputsize >= 25 && inputsize <= 48 && IsZero(inputaddr<top:inputsize>);
 disabled = TCR_EL2.EPD0 == '1';
 baseregister = TTBR0_EL2;
 descaddr.memattrs = WalkAttrDecode(TCR_EL2.SH0, TCR_EL2.ORGN0, TCR_EL2.IRGN0);
 hierattrsdisabled = HaveHPDExt() && TCR_EL2.HPD0 == '1';
E1-800 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

E1 ARMv8.1 Pseudocode
E1.2 Library pseudocode for AArch64
 else
 inputsize = 64 - UInt(TCR_EL2.T1SZ);
 if inputsize > 48 then
 c = ConstrainUnpredictable();
 assert c IN {Constraint_FORCE, Constraint_FAULT};
 if c == Constraint_FORCE then inputsize = 48;
 if inputsize < 25 then
 c = ConstrainUnpredictable();
 assert c IN {Constraint_FORCE, Constraint_FAULT};
 if c == Constraint_FORCE then inputsize = 25;
 largegrain = TCR_EL2.TG1 == '11'; // TG1 and TG0 encodings differ
 midgrain = TCR_EL2.TG1 == '01';
 basefound = inputsize >= 25 && inputsize <= 48 && IsOnes(inputaddr<top:inputsize>);
 disabled = TCR_EL2.EPD1 == '1';
 baseregister = TTBR1_EL2;
 descaddr.memattrs = WalkAttrDecode(TCR_EL2.SH1, TCR_EL2.ORGN1, TCR_EL2.IRGN1);
 hierattrsdisabled = HaveHPDExt() && TCR_EL2.HPD1 == '1';
 ps = TCR_EL2.IPS;
 reversedescriptors = SCTLR_EL2.EE == '1';
 lookupsecure = FALSE;
 singlepriv = FALSE;
 ha = TCR_EL2.HA;
 hd = TCR_EL2.HD;
 elsif PSTATE.EL == EL2 then
 inputsize = 64 - UInt(TCR_EL2.T0SZ);
 if inputsize > 48 then
 c = ConstrainUnpredictable();
 assert c IN {Constraint_FORCE, Constraint_FAULT};
 if c == Constraint_FORCE then inputsize = 48;
 if inputsize < 25 then
 c = ConstrainUnpredictable();
 assert c IN {Constraint_FORCE, Constraint_FAULT};
 if c == Constraint_FORCE then inputsize = 25;
 largegrain = TCR_EL2.TG0 == '01';
 midgrain = TCR_EL2.TG0 == '10';
 ps = TCR_EL2.PS;
 basefound = inputsize >= 25 && inputsize <= 48 && IsZero(inputaddr<top:inputsize>);
 disabled = FALSE;
 baseregister = TTBR0_EL2;
 descaddr.memattrs = WalkAttrDecode(TCR_EL2.SH0, TCR_EL2.ORGN0, TCR_EL2.IRGN0);
 reversedescriptors = SCTLR_EL2.EE == '1';
 lookupsecure = FALSE;
 singlepriv = TRUE;
 ha = TCR_EL2.HA;
 hd = TCR_EL2.HD;
 hierattrsdisabled = HaveHPDExt() && TCR_EL2.HPD == '1';
 else
 if inputaddr<top> == '0' then
 inputsize = 64 - UInt(TCR_EL1.T0SZ);
 if inputsize > 48 then
 c = ConstrainUnpredictable();
 assert c IN {Constraint_FORCE, Constraint_FAULT};
 if c == Constraint_FORCE then inputsize = 48;
 if inputsize < 25 then
 c = ConstrainUnpredictable();
 assert c IN {Constraint_FORCE, Constraint_FAULT};
 if c == Constraint_FORCE then inputsize = 25;
 largegrain = TCR_EL1.TG0 == '01';
 midgrain = TCR_EL1.TG0 == '10';
 basefound = inputsize >= 25 && inputsize <= 48 && IsZero(inputaddr<top:inputsize>);
 disabled = TCR_EL1.EPD0 == '1';
 baseregister = TTBR0_EL1;
 descaddr.memattrs = WalkAttrDecode(TCR_EL1.SH0, TCR_EL1.ORGN0, TCR_EL1.IRGN0);
 hierattrsdisabled = HaveHPDExt() && TCR_EL1.HPD0 == '1';
 else
 inputsize = 64 - UInt(TCR_EL1.T1SZ);
 if inputsize > 48 then
 c = ConstrainUnpredictable();
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. E1-801
ID060316 Non-Confidential

E1 ARMv8.1 Pseudocode
E1.2 Library pseudocode for AArch64
 assert c IN {Constraint_FORCE, Constraint_FAULT};
 if c == Constraint_FORCE then inputsize = 48;
 if inputsize < 25 then
 c = ConstrainUnpredictable();
 assert c IN {Constraint_FORCE, Constraint_FAULT};
 if c == Constraint_FORCE then inputsize = 25;
 largegrain = TCR_EL1.TG1 == '11'; // TG1 and TG0 encodings differ
 midgrain = TCR_EL1.TG1 == '01';
 basefound = inputsize >= 25 && inputsize <= 48 && IsOnes(inputaddr<top:inputsize>);
 disabled = TCR_EL1.EPD1 == '1';
 baseregister = TTBR1_EL1;
 descaddr.memattrs = WalkAttrDecode(TCR_EL1.SH1, TCR_EL1.ORGN1, TCR_EL1.IRGN1);
 hierattrsdisabled = HaveHPDExt() && TCR_EL1.HPD1 == '1';
 ps = TCR_EL1.IPS;
 reversedescriptors = SCTLR_EL1.EE == '1';
 lookupsecure = IsSecure();
 singlepriv = FALSE;
 ha = TCR_EL1.HA;
 hd = TCR_EL1.HD;
 if largegrain then
 grainsize = 16; // Log2(64KB page size)
 firstblocklevel = 2; // Largest block is 512MB (2^29 bytes)
 elsif midgrain then
 grainsize = 14; // Log2(16KB page size)
 firstblocklevel = 2; // Largest block is 32MB (2^25 bytes)
 else // Small grain
 grainsize = 12; // Log2(4KB page size)
 firstblocklevel = 1; // Largest block is 1GB (2^30 bytes)
 stride = grainsize - 3; // Log2(page size / 8 bytes)
 // The starting level is the number of strides needed to consume the input address
 level = 4 - RoundUp(Real(inputsize - grainsize) / Real(stride));

 else
 // Second stage translation
 inputaddr = ZeroExtend(ipaddress);
 inputsize = 64 - UInt(VTCR_EL2.T0SZ);
 if inputsize > 48 then
 c = ConstrainUnpredictable();
 assert c IN {Constraint_FORCE, Constraint_FAULT};
 if c == Constraint_FORCE then inputsize = 48;
 if inputsize < 25 then
 c = ConstrainUnpredictable();
 assert c IN {Constraint_FORCE, Constraint_FAULT};
 if c == Constraint_FORCE then inputsize = 25;
 largegrain = VTCR_EL2.TG0 == '01';
 midgrain = VTCR_EL2.TG0 == '10';
 ps = VTCR_EL2.PS;
 basefound = inputsize >= 25 && inputsize <= 48 && IsZero(inputaddr<63:inputsize>);
 disabled = FALSE;
 baseregister = VTTBR_EL2;
 descaddr.memattrs = WalkAttrDecode(VTCR_EL2.IRGN0, VTCR_EL2.ORGN0, VTCR_EL2.SH0);
 reversedescriptors = SCTLR_EL2.EE == '1';
 lookupsecure = FALSE;
 singlepriv = TRUE;
 ha = VTCR_EL2.HA;
 hd = VTCR_EL2.HD;

 startlevel = UInt(VTCR_EL2.SL0);
 if largegrain then
 grainsize = 16; // Log2(64KB page size)
 level = 3 - startlevel;
 firstblocklevel = 2; // Largest block is 512MB (2^29 bytes)
 elsif midgrain then
 grainsize = 14; // Log2(16KB page size)
 level = 3 - startlevel;
 firstblocklevel = 2; // Largest block is 32MB (2^25 bytes)
 else // Small grain
 grainsize = 12; // Log2(4KB page size)
E1-802 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

E1 ARMv8.1 Pseudocode
E1.2 Library pseudocode for AArch64
 level = 2 - startlevel;
 firstblocklevel = 1; // Largest block is 1GB (2^30 bytes)
 stride = grainsize - 3; // Log2(page size / 8 bytes)

 // Limits on IPA controls based on implemented PA size. Level 0 is only
 // supported by small grain translations
 if largegrain then // 64KB pages
 // Level 1 only supported if implemented PA size is greater than 2^42 bytes
 if level == 0 || (level == 1 && PAMax() <= 42) then basefound = FALSE;
 elsif midgrain then // 16KB pages
 // Level 1 only supported if implemented PA size is greater than 2^40 bytes
 if level == 0 || (level == 1 && PAMax() <= 40) then basefound = FALSE;
 else // Small grain, 4KB pages
 // Level 0 only supported if implemented PA size is greater than 2^42 bytes
 if level < 0 || (level == 0 && PAMax() <= 42) then basefound = FALSE;

 // If the inputsize exceeds the PAMax value, the behavior is CONSTRAINED UNPREDICTABLE
 inputsizecheck = inputsize;
 if inputsize > PAMax() && (!ELUsingAArch32(EL1) || inputsize > 40) then
 case ConstrainUnpredictable() of
 when Constraint_FORCE
 // Restrict the inputsize to the PAMax value
 inputsize = PAMax();
 inputsizecheck = PAMax();
 when Constraint_FORCENOSLCHECK
 // As FORCE, except use the configured inputsize in the size checks below
 inputsize = PAMax();
 when Constraint_FAULT
 // Generate a translation fault
 basefound = FALSE;
 otherwise
 Unreachable();

 // Number of entries in the starting level table =
 // (Size of Input Address)/((Address per level)^(Num levels remaining)*(Size of Table))
 startsizecheck = inputsizecheck - ((3 - level)*stride + grainsize); // Log2(Num of entries)

 // Check for starting level table with fewer than 2 entries or longer than 16 pages.
 // Lower bound check is: startsizecheck < Log2(2 entries)
 // Upper bound check is: startsizecheck > Log2(pagesize/8*16)
 if startsizecheck < 1 || startsizecheck > stride + 4 then basefound = FALSE;

 if !basefound || disabled then
 level = 0; // AArch32 reports this as a level 1 fault
 result.addrdesc.fault = AArch64.TranslationFault(ipaddress, level, acctype, iswrite,
 secondstage, s2fs1walk);
 return result;

 case ps of
 when '000' outputsize = 32;
 when '001' outputsize = 36;
 when '010' outputsize = 40;
 when '011' outputsize = 42;
 when '100' outputsize = 44;
 when '101' outputsize = 48;
 otherwise outputsize = 48;

 if outputsize > PAMax() then outputsize = PAMax();

 if outputsize != 48 && !IsZero(baseregister<47:outputsize>) then
 level = 0;
 result.addrdesc.fault = AArch64.AddressSizeFault(ipaddress, level, acctype, iswrite,
 secondstage, s2fs1walk);
 return result;

 // Bottom bound of the Base address is:
 // Log2(8 bytes per entry)+Log2(Number of entries in starting level table)
 // Number of entries in starting level table =
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. E1-803
ID060316 Non-Confidential

E1 ARMv8.1 Pseudocode
E1.2 Library pseudocode for AArch64
 // (Size of Input Address)/((Address per level)^(Num levels remaining)*(Size of Table))
 baselowerbound = 3 + inputsize - ((3-level)*stride + grainsize); // Log2(Num of entries*8)
 baseaddress = baseregister<47:baselowerbound>:Zeros(baselowerbound);

 ns_table = if lookupsecure then '0' else '1';
 ap_table = '00';
 xn_table = '0';
 pxn_table = '0';

 addrselecttop = inputsize - 1;

 repeat
 addrselectbottom = (3-level)*stride + grainsize;

 bits(48) index = ZeroExtend(inputaddr<addrselecttop:addrselectbottom>:'000');
 descaddr.paddress.physicaladdress = baseaddress OR index;
 descaddr.paddress.NS = ns_table;

 // If there are two stages of translation, then the first stage table walk addresses
 // are themselves subject to translation
 if secondstage || !HasS2Translation() then
 descaddr2 = descaddr;
 else
 hwupdatewalk = FALSE;
 descaddr2 = AArch64.SecondStageWalk(descaddr, vaddress, acctype, iswrite, 8, hwupdatewalk);
 // Check for a fault on the stage 2 walk
 if IsFault(descaddr2) then
 result.addrdesc.fault = descaddr2.fault;
 return result;

 // Update virtual address for abort functions
 descaddr2.vaddress = ZeroExtend(vaddress);

 desc = _Mem[descaddr2, 8, AccType_PTW];
 if reversedescriptors then desc = BigEndianReverse(desc);

 if desc<0> == '0' || (desc<1:0> == '01' && level == 3) then
 // Fault (00), Reserved (10), or Block (01) at level 3
 result.addrdesc.fault = AArch64.TranslationFault(ipaddress, level, acctype,
 iswrite, secondstage, s2fs1walk);
 return result;

 // Valid Block, Page, or Table entry
 if desc<1:0> == '01' || level == 3 then // Block (01) or Page (11)
 blocktranslate = TRUE;
 else // Table (11)
 if outputsize != 48 && !IsZero(desc<47:outputsize>) then
 result.addrdesc.fault = AArch64.AddressSizeFault(ipaddress, level, acctype,
 iswrite, secondstage, s2fs1walk);
 return result;

 baseaddress = desc<47:grainsize>:Zeros(grainsize);

 if !secondstage then
 // Unpack the upper and lower table attributes
 ns_table = ns_table OR desc<63>;
 if !secondstage && !hierattrsdisabled then
 ap_table<1> = ap_table<1> OR desc<62>; // read-only
 xn_table = xn_table OR desc<60>;
 // pxn_table and ap_table[0] apply in EL1&0 or EL2&0 translation regimes
 if !singlepriv then
 ap_table<0> = ap_table<0> OR desc<61>; // privileged
 pxn_table = pxn_table OR desc<59>;

 level = level + 1;
 addrselecttop = addrselectbottom - 1;
 blocktranslate = FALSE;
 until blocktranslate;
E1-804 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

E1 ARMv8.1 Pseudocode
E1.2 Library pseudocode for AArch64

 // Check block size is supported at this level
 if level < firstblocklevel then
 result.addrdesc.fault = AArch64.TranslationFault(ipaddress, level, acctype,
 iswrite, secondstage, s2fs1walk);
 return result;

 // Check for misprogramming of the contiguous bit
 if largegrain then
 contiguousbitcheck = level == 2 && inputsize < 34;
 elsif midgrain then
 contiguousbitcheck = level == 2 && inputsize < 30;
 else
 contiguousbitcheck = level == 1 && inputsize < 34;

 if contiguousbitcheck && desc<52> == '1' then
 if boolean IMPLEMENTATION_DEFINED "Translation fault on misprogrammed contiguous bit" then
 result.addrdesc.fault = AArch64.TranslationFault(ipaddress, level, acctype,
 iswrite, secondstage, s2fs1walk);
 return result;

 // Check the output address is inside the supported range
 if outputsize != 48 && !IsZero(desc<47:outputsize>) then
 result.addrdesc.fault = AArch64.AddressSizeFault(ipaddress, level, acctype,
 iswrite, secondstage, s2fs1walk);
 return result;

 // Unpack the descriptor into address and upper and lower block attributes
 outputaddress = desc<47:addrselectbottom>:inputaddr<addrselectbottom-1:0>;

 // Check for hardware update of AF and AP[2]/S2AP[2]
 hwupdate_access_flag = (HaveAccessFlagUpdateExt() && ha == '1');
 hwupdate_access_permission = (HaveDirtyBitMechanismExt() && hwupdate_access_flag && hd == '1');

 // Check Access Flag
 if desc<10> == '0' then
 if !hwupdate_access_flag then
 result.addrdesc.fault = AArch64.AccessFlagFault(ipaddress, level, acctype,
 iswrite, secondstage, s2fs1walk);
 return result;
 else
 result.descupdate.AF = TRUE;

 if hwupdate_access_permission && desc<51> == '1' then
 // If hw update of access permission field is configured consider AP[2] as '0' / S2AP[2] as '1'
 if !secondstage && desc<7> == '1' then
 desc<7> = '0';
 result.descupdate.AP = TRUE;
 elsif secondstage && desc<7> == '0' then
 desc<7> = '1';
 result.descupdate.AP = TRUE;

 // Required descriptor if AF or AP[2]/S2AP[2] needs update
 result.descupdate.descaddr = descaddr;

 xn = desc<54>;
 pxn = desc<53>;
 contiguousbit = desc<52>;
 nG = desc<11>;
 sh = desc<9:8>;
 ap = desc<7:6>:'1';
 memattr = desc<5:2>; // AttrIndx and NS bit in stage 1

 result.domain = bits(4) UNKNOWN; // Domains not used
 result.level = level;
 result.blocksize = 2^((3-level)*stride + grainsize);

 // Stage 1 translation regimes also inherit attributes from the tables
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. E1-805
ID060316 Non-Confidential

E1 ARMv8.1 Pseudocode
E1.2 Library pseudocode for AArch64
 if !secondstage then
 result.perms.xn = xn OR xn_table;
 result.perms.ap<2> = ap<2> OR ap_table<1>; // Force read-only
 // PXN, nG and AP[1] apply in EL1&0 or EL2&0 stage 1 translation regimes
 if !singlepriv then
 result.perms.ap<1> = ap<1> AND NOT(ap_table<0>); // Force privileged only
 result.perms.pxn = pxn OR pxn_table;
 // Pages from Non-secure tables are marked non-global in Secure EL1&0
 if IsSecure() then
 result.nG = nG OR ns_table;
 else
 result.nG = nG;
 else
 result.perms.ap<1> = '1';
 result.perms.pxn = '0';
 result.nG = '0';
 result.perms.ap<0> = '1';
 result.addrdesc.memattrs = AArch64.S1AttrDecode(sh, memattr<2:0>, acctype);
 result.addrdesc.paddress.NS = memattr<3> OR ns_table;
 else
 result.perms.ap<2:1> = ap<2:1>;
 result.perms.ap<0> = '1';
 result.perms.xn = xn;
 result.perms.pxn = '0';
 result.nG = '0';
 result.addrdesc.memattrs = S2AttrDecode(sh, memattr, acctype);
 result.addrdesc.paddress.NS = '1';

 result.addrdesc.paddress.physicaladdress = outputaddress;
 result.addrdesc.fault = AArch64.NoFault();
 result.contiguous = contiguousbit == '1';

 return result;
E1-806 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

E1 ARMv8.1 Pseudocode
E1.3 Library pseudocode for AArch32
E1.3 Library pseudocode for AArch32

E1.3.1 aarch32/debug

aarch32/debug/VCRMatch/AArch32.VCRMatch

 // AArch32.VCRMatch()
 // ==================

 boolean AArch32.VCRMatch(bits(32) vaddress)

 if UsingAArch32() && ELUsingAArch32(EL1) && IsZero(vaddress<1:0>) && PSTATE.EL != EL2 then
 // Each bit position in this string corresponds to a bit in DBGVCR and an exception vector.
 match_word = Zeros(32);

 if vaddress<31:5> == ExcVectorBase()<31:5> then
 if HaveEL(EL3) && !IsSecure() then
 match_word<UInt(vaddress<4:2>) + 24> = '1'; // Non-secure vectors
 else
 match_word<UInt(vaddress<4:2>) + 0> = '1'; // Secure vectors (or no EL3)
 if HaveEL(EL3) && ELUsingAArch32(EL3) && IsSecure() && vaddress<31:5> == MVBAR<31:5> then
 match_word<UInt(vaddress<4:2>) + 8> = '1'; // Monitor vectors

 // Mask out bits not corresponding to vectors.
 if !HaveEL(EL3) then
 mask = '00000000':'00000000':'00000000':'11011110'; // DBGVCR[31:8] are RES0
 elsif !ELUsingAArch32(EL3) then
 mask = '11011110':'00000000':'00000000':'11011110'; // DBGVCR[15:8] are RES0
 else
 mask = '11011110':'00000000':'11011100':'11011110';

 match_word = match_word AND DBGVCR AND mask;
 match = !IsZero(match_word);

 // Check for UNPREDICTABLE case - match on Prefetch Abort and Data Abort vectors
 if !IsZero(match_word<28:27,12:11,4:3>) && DebugTarget() == PSTATE.EL then
 match = ConstrainUnpredictableBool();
 else
 match = FALSE;

 return match;

aarch32/debug/authentication/AArch32.SelfHostedSecurePrivilegedInvasiveDebugEna
bled

 // AArch32.SelfHostedSecurePrivilegedInvasiveDebugEnabled()
 // ==

 boolean AArch32.SelfHostedSecurePrivilegedInvasiveDebugEnabled()
 // In the recommended interface, SelfHostedSecurePrivilegedInvasiveDebugEnabled returns
 // the state of the (DBGEN AND SPIDEN) signal.
 if !HaveEL(EL3) && !IsSecure() then return FALSE;
 return DBGEN == HIGH && SPIDEN == HIGH;

aarch32/debug/breakpoint/AArch32.BreakpointMatch

 // AArch32.BreakpointMatch()
 // =========================
 // Breakpoint matching in an AArch32 translation regime.

DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. E1-807
ID060316 Non-Confidential

E1 ARMv8.1 Pseudocode
E1.3 Library pseudocode for AArch32
 (boolean,boolean) AArch32.BreakpointMatch(integer n, bits(32) vaddress, integer size)
 assert ELUsingAArch32(S1TranslationRegime());
 assert n <= UInt(DBGDIDR.BRPs);

 enabled = DBGBCR[n].E == '1';
 ispriv = PSTATE.EL != EL0;
 linked = DBGBCR[n].BT == '0x01';
 isbreakpnt = TRUE;
 linked_to = FALSE;

 state_match = AArch32.StateMatch(DBGBCR[n].SSC, DBGBCR[n].HMC, DBGBCR[n].PMC,
 linked, DBGBCR[n].LBN, isbreakpnt, ispriv);
 (value_match, value_mismatch) = AArch32.BreakpointValueMatch(n, vaddress, linked_to);

 if size == 4 then // Check second halfword
 // If the breakpoint address and BAS of an Address breakpoint match the address of the
 // second halfword of an instruction, but not the address of the first halfword, it is
 // CONSTRAINED UNPREDICTABLE whether or not this breakpoint generates a Breakpoint debug
 // event.
 (match_i, mismatch_i) = AArch32.BreakpointValueMatch(n, vaddress + 2, linked_to);
 if !value_match && match_i then
 value_match = ConstrainUnpredictableBool();
 if value_mismatch && !mismatch_i then
 value_mismatch = ConstrainUnpredictableBool();

 if vaddress<1> == '1' && DBGBCR[n].BAS == '1111' then
 // The above notwithstanding, if DBGBCR[n].BAS == '1111', then it is CONSTRAINED
 // UNPREDICTABLE whether or not a Breakpoint debug event is generated for an instruction
 // at the address DBGBVR[n]+2.
 if value_match then value_match = ConstrainUnpredictableBool();
 if !value_mismatch then value_mismatch = ConstrainUnpredictableBool();

 match = value_match && state_match && enabled;
 mismatch = value_mismatch && state_match && enabled;

 return (match, mismatch);

aarch32/debug/breakpoint/AArch32.BreakpointValueMatch

 // AArch32.BreakpointValueMatch()
 // ==============================
 // The first result is whether an Address Match or Context breakpoint is programmed on the
 // instruction at "address". The second result is whether an Address Mismatch breakpoint is
 // programmed on the instruction, that is, whether the instruction should be stepped.

 (boolean,boolean) AArch32.BreakpointValueMatch(integer n, bits(32) vaddress, boolean linked_to)

 // "n" is the identity of the breakpoint unit to match against
 // "vaddress" is the current instruction address, ignored if linked_to is TRUE and for Context
 // matching breakpoints.
 // "linked_to" is TRUE if this is a call from StateMatch for linking.

 // If a non-existant breakpoint then it is CONSTRAINED UNPREDICTABLE whether this gives
 // no match or the breakpoint is mapped to another UNKNOWN implemented breakpoint.
 if n > UInt(DBGDIDR.BRPs) then
 (c, n) = ConstrainUnpredictableInteger(0, UInt(DBGDIDR.BRPs));
 assert c IN {Constraint_DISABLED, Constraint_UNKNOWN};
 if c == Constraint_DISABLED then return (FALSE,FALSE);

 // If this breakpoint is not enabled, it cannot generate a match. (This could also happen on a
 // call from StateMatch for linking.)
 if DBGBCR[n].E == '0' then return (FALSE,FALSE);

 context_aware = (n >= UInt(DBGDIDR.BRPs) - UInt(DBGDIDR.CTX_CMPs));

 // If BT is set to a reserved type, behaves either as disabled or as a not-reserved type.
 type = DBGBCR[n].BT;
E1-808 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

E1 ARMv8.1 Pseudocode
E1.3 Library pseudocode for AArch32

 if ((type IN {'011x','11xx'} && !HaveVirtHostExt()) || // Context matching
 (type == '010x' && HaltOnBreakpointOrWatchpoint()) || // Address mismatch
 (type != '0x0x' && !context_aware) || // Context matching
 (type == '1xxx' && !HaveEL(EL2))) then // EL2 extension
 (c, type) = ConstrainUnpredictableBits();
 assert c IN {Constraint_DISABLED, Constraint_UNKNOWN};
 if c == Constraint_DISABLED then return (FALSE,FALSE);
 // Otherwise the value returned by ConstrainUnpredictableBits must be a not-reserved value

 // Determine what to compare against.
 match_addr = (type == '0x0x');
 mismatch = (type == '010x');
 match_vmid = (type == '10xx');
 match_cid1 = (type == 'xx1x');
 match_cid2 = (type == '11xx');
 linked = (type == 'xxx1');

 // If this is a call from StateMatch, return FALSE if the breakpoint is not programmed for a
 // VMID and/or context ID match, of if not context-aware. The above assertions mean that the
 // code can just test for match_addr == TRUE to confirm all these things.
 if linked_to && (!linked || match_addr) then return (FALSE,FALSE);

 // If called from BreakpointMatch return FALSE for Linked context ID and/or VMID matches.
 if !linked_to && linked && !match_addr then return (FALSE,FALSE);

 // Do the comparison.
 if match_addr then
 byte = UInt(vaddress<1:0>);
 assert byte IN {0,2}; // "vaddress" is halfword aligned.
 byte_select_match = (DBGBCR[n].BAS<byte> == '1');
 BVR_match = vaddress<31:2> == DBGBVR[n]<31:2> && byte_select_match;
 elsif match_cid1 then
 BVR_match = (PSTATE.EL != EL2 && CONTEXTIDR == DBGBVR[n]<31:0>);

 if match_vmid then
 if ELUsingAArch32(EL2) then
 vmid = ZeroExtend(VTTBR.VMID, 16);
 bvr_vmid = ZeroExtend(DBGBXVR[n]<7:0>, 16);
 elsif !Have16bitVMID() || VTCR_EL2.VS == '0' then
 vmid = ZeroExtend(VTTBR_EL2.VMID<7:0>, 16);
 bvr_vmid = ZeroExtend(DBGBXVR[n]<7:0>, 16);
 else
 vmid = VTTBR_EL2.VMID;
 bvr_vmid = DBGBXVR[n]<15:0>;
 BXVR_match = (HaveEL(EL2) && !IsSecure() && PSTATE.EL IN {EL0,EL1} &&
 vmid == bvr_vmid);
 elsif match_cid2 then
 BXVR_match = (!IsSecure() && HaveVirtHostExt() &&
 !ELUsingAArch32(EL2) &&
 DBGBXVR[n]<31:0> == CONTEXTIDR_EL2);

 bvr_match_valid = (match_addr || match_cid1);
 bxvr_match_valid = (match_vmid || match_cid2);

 match = (!bxvr_match_valid || BXVR_match) && (!bvr_match_valid || BVR_match);

 return (match && !mismatch, !match && mismatch);

aarch32/debug/breakpoint/AArch32.StateMatch

 // AArch32.StateMatch()
 // ====================
 // Determine whether a breakpoint or watchpoint is enabled in the current mode and state.

 boolean AArch32.StateMatch(bits(2) SSC, bit HMC, bits(2) PxC, boolean linked, bits(4) LBN,
 boolean isbreakpnt, boolean ispriv)
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. E1-809
ID060316 Non-Confidential

E1 ARMv8.1 Pseudocode
E1.3 Library pseudocode for AArch32
 // "SSC", "HMC", "PxC" are the control fields from the DBGBCR[n] or DBGWCR[n] register.
 // "linked" is TRUE if this is a linked breakpoint/watchpoint type.
 // "LBN" is the linked breakpoint number from the DBGBCR[n] or DBGWCR[n] register.
 // "isbreakpnt" is TRUE for breakpoints, FALSE for watchpoints.
 // "ispriv" is valid for watchpoints, and selects between privileged and unprivileged accesses.

 // If parameters are set to a reserved type, behaves as either disabled or a defined type
 if ((HMC:SSC:PxC) IN {'011xx','100x0','101x0','11010','11101','1111x'} || // Reserved
 (HMC == '0' && PxC == '00' && !isbreakpnt) || // Usr/Svc/Sys
 (SSC IN {'01','10'} && !HaveEL(EL3)) || // No EL3
 (HMC:SSC:PxC == '11000' && ELUsingAArch32(EL3)) || // AArch64 only
 (HMC:SSC != '000' && HMC:SSC != '111' && !HaveEL(EL3) && !HaveEL(EL2)) || // No EL3/EL2
 (HMC:SSC:PxC == '11100' && !HaveEL(EL2))) then // No EL2
 (c, <HMC,SSC,PxC>) = ConstrainUnpredictableBits();
 assert c IN {Constraint_DISABLED, Constraint_UNKNOWN};
 if c == Constraint_DISABLED then return FALSE;
 // Otherwise the value returned by ConstrainUnpredictableBits must be a not-reserved value

 PL2_match = HaveEL(EL2) && HMC == '1';
 PL1_match = PxC<0> == '1';
 PL0_match = PxC<1> == '1';
 SSU_match = isbreakpnt && HMC == '0' && PxC == '00' && SSC != '11';

 if SSU_match then
 priv_match = PSTATE.M IN {M32_User,M32_Svc,M32_System};
 else
 case PSTATE.EL of
 when EL3, EL1 priv_match = if ispriv then PL1_match else PL0_match;
 when EL2 priv_match = PL2_match;
 when EL0 priv_match = PL0_match;

 case SSC of
 when '00' security_state_match = TRUE; // Both
 when '01' security_state_match = !IsSecure(); // Non-secure only
 when '10' security_state_match = IsSecure(); // Secure only
 when '11' security_state_match = TRUE; // Both

 if linked then
 // "LBN" must be an enabled context-aware breakpoint unit. If it is not context-aware then
 // it is CONSTRAINED UNPREDICTABLE whether this gives no match, or LBN is mapped to some
 // UNKNOWN breakpoint that is context-aware.
 lbn = UInt(LBN);
 first_ctx_cmp = (UInt(DBGDIDR.BRPs) - UInt(DBGDIDR.CTX_CMPs));
 last_ctx_cmp = UInt(DBGDIDR.BRPs);
 if (lbn < first_ctx_cmp || lbn > last_ctx_cmp) then
 (c, lbn) = ConstrainUnpredictableInteger(first_ctx_cmp, last_ctx_cmp);
 assert c IN {Constraint_DISABLED, Constraint_NONE, Constraint_UNKNOWN};
 case c of
 when Constraint_DISABLED return FALSE; // Disabled
 when Constraint_NONE linked = FALSE; // No linking
 // Otherwise ConstrainUnpredictableInteger returned a context-aware breakpoint

 if linked then
 vaddress = bits(32) UNKNOWN;
 linked_to = TRUE;
 (linked_match,-) = AArch32.BreakpointValueMatch(lbn, vaddress, linked_to);

 return priv_match && security_state_match && (!linked || linked_match);

aarch32/debug/enables/AArch32.GenerateDebugExceptions

 // AArch32.GenerateDebugExceptions()
 // =================================

 boolean AArch32.GenerateDebugExceptions()
 return AArch32.GenerateDebugExceptionsFrom(PSTATE.EL, IsSecure());
E1-810 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

E1 ARMv8.1 Pseudocode
E1.3 Library pseudocode for AArch32
aarch32/debug/enables/AArch32.GenerateDebugExceptionsFrom

 // AArch32.GenerateDebugExceptionsFrom()
 // =====================================

 boolean AArch32.GenerateDebugExceptionsFrom(bits(2) from, boolean secure)

 if from == EL0 && !ELStateUsingAArch32(EL1, secure) then
 mask = bit UNKNOWN; // PSTATE.D mask, unused for EL0 case
 return AArch64.GenerateDebugExceptionsFrom(from, secure, mask);

 if DBGOSLSR.OSLK == '1' || DoubleLockStatus() || Halted() then
 return FALSE;

 if HaveEL(EL3) && secure then
 spd = (if ELUsingAArch32(EL3) then SDCR.SPD else MDCR_EL3.SPD32);
 if spd<1> == '1' then
 enabled = spd<0> == '1';
 else
 // SPD == 0b01 is reserved, but behaves the same as 0b00.
 enabled = AArch32.SelfHostedSecurePrivilegedInvasiveDebugEnabled();
 if from == EL0 then enabled = enabled || SDER.SUIDEN == '1';
 else
 enabled = from != EL2;

 return enabled;

aarch32/debug/pmu/AArch32.CheckForPMUOverflow

 // AArch32.CheckForPMUOverflow()
 // =============================
 // Signal Performance Monitors overflow IRQ and CTI overflow events

 boolean AArch32.CheckForPMUOverflow()

 if !ELUsingAArch32(EL1) then return AArch64.CheckForPMUOverflow();

 pmuirq = (PMCR.E == '1' && PMINTENSET<31> == '1' && PMOVSSET<31> == '1');
 for n = 0 to UInt(PMCR.N) - 1
 if HaveEL(EL2) then
 hpmn = if !ELUsingAArch32(EL2) then MDCR_EL2.HPMN else HDCR.HPMN;
 hpme = if !ELUsingAArch32(EL2) then MDCR_EL2.HPME else HDCR.HPME;
 E = (if n < UInt(hpmn) then PMCR.E else hpme);
 else
 E = PMCR.E;
 if E == '1' && PMINTENSET<n> == '1' && PMOVSSET<n> == '1' then pmuirq = TRUE;

 SetInterruptRequestLevel(InterruptID_PMUIRQ, if pmuirq then HIGH else LOW);

 CTI_SetEventLevel(CrossTriggerIn_PMUOverflow, if pmuirq then HIGH else LOW);

 // The request remains set until the condition is cleared. (For example, an interrupt handler
 // or cross-triggered event handler clears the overflow status flag by writing to PMOVSCLR_EL0.)

 return pmuirq;

aarch32/debug/pmu/AArch32.CountEvents

 // AArch32.CountEvents()
 // =====================
 // Return TRUE if counter "n" should count its event.

 boolean AArch32.CountEvents(integer n)
 assert(n == 31 || n < UInt(PMCR.N));

 if !ELUsingAArch32(EL1) then return AArch64.CountEvents(n);
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. E1-811
ID060316 Non-Confidential

E1 ARMv8.1 Pseudocode
E1.3 Library pseudocode for AArch32

 // Event counting is disabled in Debug state
 debug = Halted();

 if HaveEL(EL2) then
 hpmn = if !ELUsingAArch32(EL2) then MDCR_EL2.HPMN else HDCR.HPMN;
 hpme = if !ELUsingAArch32(EL2) then MDCR_EL2.HPME else HDCR.HPME;
 E = (if n < UInt(hpmn) || n == 31 then PMCR.E else hpme);
 else
 E = PMCR.E;
 enabled = (E == '1' && PMCNTENSET<n> == '1');

 // Event counting might be prohibited
 prohibited = AArch32.ProfilingProhibited(IsSecure(), PSTATE.EL);
 if PSTATE.EL == EL2 && HaveHPMDExt() && (n < UInt(hpmn) || n == 31) then
 hpmd = (if !ELUsingAArch32(EL2) then MDCR_EL2.HPMD else HDCR.HPMD);
 prohibited = (hpmd == '1' && !ExternalSecureNoninvasiveDebugEnabled());
 if prohibited && n == 31 then prohibited = (PMCR.DP == '1');

 // Event counting can be filtered by the {P, U, NSK, NSU, NSH} bits
 filter = (if n == 31 then PMCCFILTR<31:27> else PMEVTYPER[n]<31:27>);

 H = if !HaveEL(EL2) then '0' else filter<0>;
 P = filter<4>; U = filter<3>;
 if !IsSecure() && HaveEL(EL3) then
 P = P EOR filter<2>; U = U EOR filter<1>;

 case PSTATE.EL of
 when EL0 filtered = U == '1';
 when EL1,EL3 filtered = P == '1';
 when EL2 filtered = H == '0';

 return !debug && enabled && !prohibited && !filtered;

aarch32/debug/pmu/AArch32.ProfilingProhibited

 // AArch32.ProfilingProhibited()
 // =============================
 // Determine whether event counting is prohibited in the current state.

 boolean AArch32.ProfilingProhibited(boolean secure, bits(2) el)

 if (el == EL0 && !ELUsingAArch32(EL1)) || !ELUsingAArch32(el) then
 return AArch64.ProfilingProhibited(secure, el);

 // Events are always counted in Non-secure state.
 if !secure then return FALSE;

 // Event counting in Secure state is prohibited unless any one of:
 // * EL3 is not implemented
 if !HaveEL(EL3) then return FALSE;

 // * EL3 is using AArch64 and MDCR_EL3.SPME == 1
 // * EL3 is using AArch32 and SDCR.SPME == 1
 spme = (if ELUsingAArch32(EL3) then SDCR.SPME else MDCR_EL3.SPME);
 if spme == '1' then return FALSE;

 // * Allowed by the IMPLEMENTATION DEFINED authentication interface
 if ExternalSecureNoninvasiveDebugEnabled() then return FALSE;

 // * EL3 or EL1 is using AArch32, executing at EL0, and SDER.SUNIDEN == 1.
 if el == EL0 && ELUsingAArch32(EL1) && SDER.SUNIDEN == '1' then return FALSE;

 return TRUE;
E1-812 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

E1 ARMv8.1 Pseudocode
E1.3 Library pseudocode for AArch32
aarch32/debug/takeexceptiondbg/AArch32.EnterHypModeInDebugState

 // AArch32.EnterHypModeInDebugState()
 // ==================================
 // Take an exception in Debug state to Hyp mode.

 AArch32.EnterHypModeInDebugState(ExceptionRecord exception)
 assert HaveEL(EL2) && !IsSecure() && ELUsingAArch32(EL2);

 AArch32.ReportHypEntry(exception);
 AArch32.WriteMode(M32_Hyp);
 SPSR[] = bits(32) UNKNOWN;
 ELR_hyp = bits(32) UNKNOWN;
 // In Debug state, the PE always execute T32 instructions when in AArch32 state, and
 // PSTATE.{SS,A,I,F} are not observable so behave as UNKNOWN.
 PSTATE.T = '1'; // PSTATE.J is RES0
 PSTATE.<SS,A,I,F> = bits(4) UNKNOWN;
 DLR = bits(32) UNKNOWN;
 DSPSR = bits(32) UNKNOWN;
 PSTATE.E = HSCTLR.EE;
 PSTATE.IL = '0';
 PSTATE.IT = '00000000';
 EDSCR.ERR = '1';
 UpdateEDSCRFields();
 EndOfInstruction();

aarch32/debug/takeexceptiondbg/AArch32.EnterModeInDebugState

 // AArch32.EnterModeInDebugState()
 // ===============================
 // Take an exception in Debug state to a mode other than Monitor and Hyp mode.

 AArch32.EnterModeInDebugState(bits(5) target_mode)
 assert ELUsingAArch32(EL1) && PSTATE.EL != EL2;

 if PSTATE.M == M32_Monitor then SCR.NS = '0';
 AArch32.WriteMode(target_mode);
 SPSR[] = bits(32) UNKNOWN;
 R[14] = bits(32) UNKNOWN;
 // In Debug state, the PE always execute T32 instructions when in AArch32 state, and
 // PSTATE.{SS,A,I,F} are not observable so behave as UNKNOWN.
 PSTATE.T = '1'; // PSTATE.J is RES0
 PSTATE.<SS,A,I,F> = bits(4) UNKNOWN;
 DLR = bits(32) UNKNOWN;
 DSPSR = bits(32) UNKNOWN;
 PSTATE.E = SCTLR.EE;
 PSTATE.IL = '0';
 PSTATE.IT = '00000000';
 if HavePANExt() && SCTLR.SPAN == '0' then PSTATE.PAN = '1';
 EDSCR.ERR = '1';
 UpdateEDSCRFields(); // Update EDSCR processor state flags.
 EndOfInstruction();

aarch32/debug/takeexceptiondbg/AArch32.EnterMonitorModeInDebugState

 // AArch32.EnterMonitorModeInDebugState()
 // ======================================
 // Take an exception in Debug state to Monitor mode.

 AArch32.EnterMonitorModeInDebugState()
 assert HaveEL(EL3) && ELUsingAArch32(EL3);
 from_secure = IsSecure();
 if PSTATE.M == M32_Monitor then SCR.NS = '0';
 AArch32.WriteMode(M32_Monitor);
 SPSR[] = bits(32) UNKNOWN;
 R[14] = bits(32) UNKNOWN;
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. E1-813
ID060316 Non-Confidential

E1 ARMv8.1 Pseudocode
E1.3 Library pseudocode for AArch32
 // In Debug state, the PE always execute T32 instructions when in AArch32 state, and
 // PSTATE.{SS,A,I,F} are not observable so behave as UNKNOWN.
 PSTATE.T = '1'; // PSTATE.J is RES0
 PSTATE.<SS,A,I,F> = bits(4) UNKNOWN;
 DLR = bits(32) UNKNOWN;
 DSPSR = bits(32) UNKNOWN;
 PSTATE.E = SCTLR.EE;
 PSTATE.IL = '0';
 PSTATE.IT = '00000000';
 if HavePANExt() then
 if !from_secure then
 PSTATE.PAN = '0';
 elsif SCTLR.SPAN == '0' then
 PSTATE.PAN = '1';
 EDSCR.ERR = '1';
 UpdateEDSCRFields(); // Update EDSCR processor state flags.
 EndOfInstruction();

aarch32/debug/watchpoint/AArch32.WatchpointByteMatch

 // AArch32.WatchpointByteMatch()
 // =============================

 boolean AArch32.WatchpointByteMatch(integer n, bits(32) vaddress)

 bottom = if DBGWVR[n]<2> == '1' then 2 else 3; // Word or doubleword
 byte_select_match = (DBGWCR[n].BAS<UInt(vaddress<bottom-1:0>)> != '0');
 mask = UInt(DBGWCR[n].MASK);

 // If DBGWCR[n].MASK is non-zero value and DBGWCR[n].BAS is not set to '11111111', or
 // DBGWCR[n].BAS specifies a non-contiguous set of bytes behavior is CONSTRAINED
 // UNPREDICTABLE.
 if mask > 0 && !IsOnes(DBGWCR[n].BAS) then
 byte_select_match = ConstrainUnpredictableBool();
 else
 LSB = (DBGWCR[n].BAS AND NOT(DBGWCR[n].BAS - 1)); MSB = (DBGWCR[n].BAS + LSB);
 if !IsZero(MSB AND (MSB - 1)) then // Not contiguous
 byte_select_match = ConstrainUnpredictableBool();
 bottom = 3; // For the whole doubleword

 // If the address mask is set to a reserved value, the behavior is CONSTRAINED UNPREDICTABLE.
 if mask > 0 && mask <= 2 then
 (c, mask) = ConstrainUnpredictableInteger(3, 31);
 assert c IN {Constraint_DISABLED, Constraint_NONE, Constraint_UNKNOWN};
 case c of
 when Constraint_DISABLED return FALSE; // Disabled
 when Constraint_NONE mask = 0; // No masking
 // Otherwise the value returned by ConstrainUnpredictableInteger is a not-reserved value

 if mask > bottom then
 WVR_match = (vaddress<31:mask> == DBGWVR[n]<31:mask>);
 // If masked bits of DBGWVR_EL1[n] are not zero, the behavior is CONSTRAINED UNPREDICTABLE.
 if WVR_match && !IsZero(DBGWVR[n]<mask-1:bottom>) then
 WVR_match = ConstrainUnpredictableBool();
 else
 WVR_match = vaddress<31:bottom> == DBGWVR[n]<31:bottom>;

 return WVR_match && byte_select_match;

aarch32/debug/watchpoint/AArch32.WatchpointMatch

 // AArch32.WatchpointMatch()
 // =========================
 // Watchpoint matching in an AArch32 translation regime.

 boolean AArch32.WatchpointMatch(integer n, bits(32) vaddress, integer size, boolean ispriv,
E1-814 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

E1 ARMv8.1 Pseudocode
E1.3 Library pseudocode for AArch32
 boolean iswrite)
 assert ELUsingAArch32(S1TranslationRegime());
 assert n <= UInt(DBGDIDR.WRPs);

 // "ispriv" is FALSE for LDRT/STRT instructions executed at EL1 and all
 // load/stores at EL0, TRUE for all other load/stores. "iswrite" is TRUE for stores, FALSE for
 // loads.
 enabled = DBGWCR[n].E == '1';
 linked = DBGWCR[n].WT == '1';
 isbreakpnt = FALSE;

 state_match = AArch32.StateMatch(DBGWCR[n].SSC, DBGWCR[n].HMC, DBGWCR[n].PAC,
 linked, DBGWCR[n].LBN, isbreakpnt, ispriv);

 ls_match = (DBGWCR[n].LSC<(if iswrite then 1 else 0)> == '1');

 value_match = FALSE;
 for byte = 0 to size - 1
 value_match = value_match || AArch32.WatchpointByteMatch(n, vaddress + byte);

 return value_match && state_match && ls_match && enabled;

E1.3.2 aarch32/exceptions

aarch32/exceptions/aborts/AArch32.Abort

 // AArch32.Abort()
 // ===============
 // Abort and Debug exception handling in an AArch32 translation regime.

 AArch32.Abort(bits(32) vaddress, FaultRecord fault)

 // Check if routed to AArch64 state
 route_to_aarch64 = PSTATE.EL == EL0 && !ELUsingAArch32(EL1);

 if !route_to_aarch64 && HaveEL(EL2) && !IsSecure() && !ELUsingAArch32(EL2) then
 route_to_aarch64 = (HCR_EL2.TGE == '1' || IsSecondStage(fault) ||
 (IsDebugException(fault) && MDCR_EL2.TDE == '1'));

 if !route_to_aarch64 && HaveEL(EL3) && !ELUsingAArch32(EL3) then
 route_to_aarch64 = SCR_EL3.EA == '1' && IsExternalAbort(fault);

 if route_to_aarch64 then
 AArch64.Abort(ZeroExtend(vaddress), fault);
 elsif fault.acctype == AccType_IFETCH then
 AArch32.TakePrefetchAbortException(vaddress, fault);
 else
 AArch32.TakeDataAbortException(vaddress, fault);

aarch32/exceptions/aborts/AArch32.AbortSyndrome

 // AArch32.AbortSyndrome()
 // =======================
 // Creates an exception syndrome record for Abort exceptions taken to Hyp mode
 // from an AArch32 translation regime.

 ExceptionRecord AArch32.AbortSyndrome(Exception type, FaultRecord fault, bits(32) vaddress)

 exception = ExceptionSyndrome(type);

 d_side = type == Exception_DataAbort;

 exception.syndrome = FaultSyndrome(d_side, fault);
 exception.vaddress = ZeroExtend(vaddress);
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. E1-815
ID060316 Non-Confidential

E1 ARMv8.1 Pseudocode
E1.3 Library pseudocode for AArch32
 if IPAValid(fault) then
 exception.ipavalid = TRUE;
 exception.ipaddress = ZeroExtend(fault.ipaddress);
 else
 exception.ipavalid = FALSE;

 return exception;

aarch32/exceptions/aborts/AArch32.CheckPCAlignment

 // AArch32.CheckPCAlignment()
 // ==========================

 AArch32.CheckPCAlignment()

 bits(32) pc = ThisInstrAddr();
 if (CurrentInstrSet() == InstrSet_A32 && pc<1> == '1') || pc<0> == '1' then
 if AArch32.GeneralExceptionsToAArch64() then AArch64.PCAlignmentFault();

 // Generate an Alignment fault Prefetch Abort exception
 vaddress = pc;
 acctype = AccType_IFETCH;
 iswrite = FALSE;
 secondstage = FALSE;
 AArch32.Abort(vaddress, AArch32.AlignmentFault(acctype, iswrite, secondstage));

aarch32/exceptions/aborts/AArch32.ReportDataAbort

 // AArch32.ReportDataAbort()
 // =========================
 // Report syndrome information for aborts taken to modes other than Hyp mode.

 AArch32.ReportDataAbort(boolean route_to_monitor, FaultRecord fault, bits(32) vaddress)

 // The encoding used in the IFSR or DFSR can be Long-descriptor format or Short-descriptor
 // format. Normally, the current translation table format determines the format. For an abort
 // from Non-secure state to Monitor mode, the IFSR or DFSR uses the Long-descriptor format if
 // any of the following applies:
 // * The Secure TTBCR.EAE is set to 1.
 // * The abort is synchronous and either:
 // - It is taken from Hyp mode.
 // - It is taken from EL1 or EL0, and the Non-secure TTBCR.EAE is set to 1.
 long_format = FALSE;
 if route_to_monitor && !IsSecure() then
 long_format = TTBCR_S.EAE == '1';
 if !IsAsyncAbort(fault) && !long_format then
 long_format = PSTATE.EL == EL2 || TTBCR.EAE == '1';
 else
 long_format = TTBCR.EAE == '1';

 d_side = TRUE;
 if long_format then
 syndrome = AArch32.FaultStatusLD(d_side, fault);
 else
 syndrome = AArch32.FaultStatusSD(d_side, fault);

 if fault.acctype == AccType_IC then
 if (!long_format &&
 boolean IMPLEMENTATION_DEFINED "Report I-cache maintenance fault in IFSR") then
 i_syndrome = syndrome;
 syndrome<10,3:0> = EncodeSDFSC(Fault_ICacheMaint, 1);
 else
 i_syndrome = bits(32) UNKNOWN;
 if route_to_monitor then
 IFSR_S = i_syndrome;
 else
E1-816 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

E1 ARMv8.1 Pseudocode
E1.3 Library pseudocode for AArch32
 IFSR = i_syndrome;

 if route_to_monitor then
 DFSR_S = syndrome;
 DFAR_S = vaddress;
 else
 DFSR = syndrome;
 DFAR = vaddress;

 return;

aarch32/exceptions/aborts/AArch32.ReportPrefetchAbort

 // AArch32.ReportPrefetchAbort()
 // =============================
 // Report syndrome information for aborts taken to modes other than Hyp mode.

 AArch32.ReportPrefetchAbort(boolean route_to_monitor, FaultRecord fault, bits(32) vaddress)

 // The encoding used in the IFSR can be Long-descriptor format or Short-descriptor format.
 // Normally, the current translation table format determines the format. For an abort from
 // Non-secure state to Monitor mode, the IFSR uses the Long-descriptor format if any of the
 // following applies:
 // * The Secure TTBCR.EAE is set to 1.
 // * It is taken from Hyp mode.
 // * It is taken from EL1 or EL0, and the Non-secure TTBCR.EAE is set to 1.
 long_format = FALSE;
 if route_to_monitor && !IsSecure() then
 long_format = TTBCR_S.EAE == '1' || PSTATE.EL == EL2 || TTBCR.EAE == '1';
 else
 long_format = TTBCR.EAE == '1';

 d_side = FALSE;
 if long_format then
 fsr = AArch32.FaultStatusLD(d_side, fault);
 else
 fsr = AArch32.FaultStatusSD(d_side, fault);

 if route_to_monitor then
 IFSR_S = fsr;
 IFAR_S = vaddress;
 else
 IFSR = fsr;
 IFAR = vaddress;

 return;

aarch32/exceptions/aborts/AArch32.TakeDataAbortException

 // AArch32.TakeDataAbortException()
 // ================================

 AArch32.TakeDataAbortException(bits(32) vaddress, FaultRecord fault)

 route_to_monitor = HaveEL(EL3) && SCR.EA == '1' && IsExternalAbort(fault);
 route_to_hyp = (HaveEL(EL2) && !IsSecure() && PSTATE.EL IN {EL0,EL1} &&
 (HCR.TGE == '1' || IsSecondStage(fault) ||
 (IsDebugException(fault) && HDCR.TDE == '1')));

 bits(32) preferred_exception_return = ThisInstrAddr();
 vect_offset = 0x10;
 lr_offset = 8;

 if IsDebugException(fault) then DBGDSCRext.MOE = fault.debugmoe;

 if route_to_monitor then
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. E1-817
ID060316 Non-Confidential

E1 ARMv8.1 Pseudocode
E1.3 Library pseudocode for AArch32
 AArch32.ReportDataAbort(route_to_monitor, fault, vaddress);
 AArch32.EnterMonitorMode(preferred_exception_return, lr_offset, vect_offset);
 elsif PSTATE.EL == EL2 || route_to_hyp then
 exception = AArch32.AbortSyndrome(Exception_DataAbort, fault, vaddress);
 if PSTATE.EL == EL2 then
 AArch32.EnterHypMode(exception, preferred_exception_return, vect_offset);
 else
 AArch32.EnterHypMode(exception, preferred_exception_return, 0x14);
 else
 AArch32.ReportDataAbort(route_to_monitor, fault, vaddress);
 AArch32.EnterMode(M32_Abort, preferred_exception_return, lr_offset, vect_offset);

aarch32/exceptions/aborts/AArch32.TakePrefetchAbortException

 // AArch32.TakePrefetchAbortException()
 // ====================================

 AArch32.TakePrefetchAbortException(bits(32) vaddress, FaultRecord fault)

 route_to_monitor = HaveEL(EL3) && SCR.EA == '1' && IsExternalAbort(fault);
 route_to_hyp = (HaveEL(EL2) && !IsSecure() && PSTATE.EL IN {EL0,EL1} &&
 (HCR.TGE == '1' || IsSecondStage(fault) ||
 (IsDebugException(fault) && HDCR.TDE == '1')));

 bits(32) preferred_exception_return = ThisInstrAddr();
 vect_offset = 0x0C;
 lr_offset = 4;

 if IsDebugException(fault) then DBGDSCRext.MOE = fault.debugmoe;

 if route_to_monitor then
 AArch32.ReportPrefetchAbort(route_to_monitor, fault, vaddress);
 AArch32.EnterMonitorMode(preferred_exception_return, lr_offset, vect_offset);
 elsif PSTATE.EL == EL2 || route_to_hyp then
 if fault.type == Fault_Alignment then // PC Alignment fault
 exception = ExceptionSyndrome(Exception_PCAlignment);
 exception.vaddress = ThisInstrAddr();
 else
 exception = AArch32.AbortSyndrome(Exception_InstructionAbort, fault, vaddress);
 if PSTATE.EL == EL2 then
 AArch32.EnterHypMode(exception, preferred_exception_return, vect_offset);
 else
 AArch32.EnterHypMode(exception, preferred_exception_return, 0x14);
 else
 AArch32.ReportPrefetchAbort(route_to_monitor, fault, vaddress);
 AArch32.EnterMode(M32_Abort, preferred_exception_return, lr_offset, vect_offset);

aarch32/exceptions/asynch/AArch32.TakePhysicalAsynchAbortException

 // AArch32.TakePhysicalAsynchAbortException()
 // ==

 AArch32.TakePhysicalAsynchAbortException(boolean parity, bit extflag,
 boolean syndrome_valid, bits(24) full_syndrome)

 // Check if routed to AArch64 state
 route_to_aarch64 = PSTATE.EL == EL0 && !ELUsingAArch32(EL1);

 if !route_to_aarch64 && HaveEL(EL2) && !IsSecure() && !ELUsingAArch32(EL2) then
 route_to_aarch64 = (HCR_EL2.TGE == '1' || (!IsInHost() && HCR_EL2.AMO == '1'));
 if !route_to_aarch64 && HaveEL(EL3) && !ELUsingAArch32(EL3) then
 route_to_aarch64 = SCR_EL3.EA == '1';

 if route_to_aarch64 then
 AArch64.TakePhysicalSystemErrorException(syndrome_valid, full_syndrome);

E1-818 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

E1 ARMv8.1 Pseudocode
E1.3 Library pseudocode for AArch32
 route_to_monitor = HaveEL(EL3) && SCR.EA == '1';
 route_to_hyp = (HaveEL(EL2) && !IsSecure() && PSTATE.EL IN {EL0,EL1} &&
 (HCR.TGE == '1' || HCR.AMO == '1'));
 bits(32) preferred_exception_return = ThisInstrAddr();
 vect_offset = 0x10;
 lr_offset = 8;

 fault = AArch32.AsynchExternalAbort(parity, extflag);
 vaddress = bits(32) UNKNOWN;

 if route_to_monitor then
 AArch32.ReportDataAbort(route_to_monitor, fault, vaddress);
 AArch32.EnterMonitorMode(preferred_exception_return, lr_offset, vect_offset);
 elsif PSTATE.EL == EL2 || route_to_hyp then
 exception = AArch32.AbortSyndrome(Exception_DataAbort, fault, vaddress);
 if PSTATE.EL == EL2 then
 AArch32.EnterHypMode(exception, preferred_exception_return, vect_offset);
 else
 AArch32.EnterHypMode(exception, preferred_exception_return, 0x14);
 else
 AArch32.ReportDataAbort(route_to_monitor, fault, vaddress);
 AArch32.EnterMode(M32_Abort, preferred_exception_return, lr_offset, vect_offset);

aarch32/exceptions/asynch/AArch32.TakePhysicalFIQException

 // AArch32.TakePhysicalFIQException()
 // ==================================

 AArch32.TakePhysicalFIQException()

 // Check if routed to AArch64 state
 route_to_aarch64 = PSTATE.EL == EL0 && !ELUsingAArch32(EL1);
 if !route_to_aarch64 && HaveEL(EL2) && !IsSecure() && !ELUsingAArch32(EL2) then
 route_to_aarch64 = HCR_EL2.TGE == '1' || (HCR_EL2.FMO == '1' && !IsInHost());

 if !route_to_aarch64 && HaveEL(EL3) && !ELUsingAArch32(EL3) then
 route_to_aarch64 = SCR_EL3.FIQ == '1';

 if route_to_aarch64 then AArch64.TakePhysicalFIQException();

 route_to_monitor = HaveEL(EL3) && SCR.FIQ == '1';
 route_to_hyp = (HaveEL(EL2) && !IsSecure() && PSTATE.EL IN {EL0,EL1} &&
 (HCR.TGE == '1' || HCR.FMO == '1'));
 bits(32) preferred_exception_return = ThisInstrAddr();
 vect_offset = 0x1C;
 lr_offset = 4;

 if route_to_monitor then
 AArch32.EnterMonitorMode(preferred_exception_return, lr_offset, vect_offset);
 elsif PSTATE.EL == EL2 || route_to_hyp then
 exception = ExceptionSyndrome(Exception_FIQ);
 AArch32.EnterHypMode(exception, preferred_exception_return, vect_offset);
 else
 AArch32.EnterMode(M32_FIQ, preferred_exception_return, lr_offset, vect_offset);

aarch32/exceptions/asynch/AArch32.TakePhysicalIRQException

 // AArch32.TakePhysicalIRQException()
 // ==================================
 // Take an enabled physical IRQ exception.

 AArch32.TakePhysicalIRQException()

 // Check if routed to AArch64 state
 route_to_aarch64 = PSTATE.EL == EL0 && !ELUsingAArch32(EL1);
 if !route_to_aarch64 && HaveEL(EL2) && !IsSecure() && !ELUsingAArch32(EL2) then
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. E1-819
ID060316 Non-Confidential

E1 ARMv8.1 Pseudocode
E1.3 Library pseudocode for AArch32
 route_to_aarch64 = HCR_EL2.TGE == '1' || (HCR_EL2.IMO == '1' && !IsInHost());
 if !route_to_aarch64 && HaveEL(EL3) && !ELUsingAArch32(EL3) then
 route_to_aarch64 = SCR_EL3.IRQ == '1';

 if route_to_aarch64 then AArch64.TakePhysicalIRQException();

 route_to_monitor = HaveEL(EL3) && SCR.IRQ == '1';
 route_to_hyp = (HaveEL(EL2) && !IsSecure() && PSTATE.EL IN {EL0,EL1} &&
 (HCR.TGE == '1' || HCR.IMO == '1'));
 bits(32) preferred_exception_return = ThisInstrAddr();
 vect_offset = 0x18;
 lr_offset = 4;

 if route_to_monitor then
 AArch32.EnterMonitorMode(preferred_exception_return, lr_offset, vect_offset);
 elsif PSTATE.EL == EL2 || route_to_hyp then
 exception = ExceptionSyndrome(Exception_IRQ);
 AArch32.EnterHypMode(exception, preferred_exception_return, vect_offset);
 else
 AArch32.EnterMode(M32_IRQ, preferred_exception_return, lr_offset, vect_offset);

aarch32/exceptions/asynch/AArch32.TakeVirtualAsynchAbortException

 // AArch32.TakeVirtualAsynchAbortException()
 // ===

 AArch32.TakeVirtualAsynchAbortException()
 assert HaveEL(EL2) && !IsSecure() && PSTATE.EL IN {EL0,EL1};
 if ELUsingAArch32(EL2) then // Virtual Asynchronous Abort enabled if TGE==0 and AMO==1
 assert HCR.TGE == '0' && HCR.AMO == '1';
 else
 assert HCR_EL2.TGE == '0' && HCR_EL2.AMO == '1';
 // Check if routed to AArch64 state
 if PSTATE.EL == EL0 && !ELUsingAArch32(EL1) then AArch64.TakeVirtualSystemErrorException();

 route_to_monitor = FALSE;

 bits(32) preferred_exception_return = ThisInstrAddr();
 vect_offset = 0x10;
 lr_offset = 8;

 vaddress = bits(32) UNKNOWN;
 parity = FALSE;
 extflag = bit IMPLEMENTATION_DEFINED "Virtual Asynchronous Abort ExT bit";
 fault = AArch32.AsynchExternalAbort(parity, extflag);

 if ELUsingAArch32(EL2) then HCR.VA = '0'; else HCR_EL2.VSE = '0';

 AArch32.ReportDataAbort(route_to_monitor, fault, vaddress);
 AArch32.EnterMode(M32_Abort, preferred_exception_return, lr_offset, vect_offset);

aarch32/exceptions/asynch/AArch32.TakeVirtualFIQException

 // AArch32.TakeVirtualFIQException()
 // =================================

 AArch32.TakeVirtualFIQException()
 assert HaveEL(EL2) && !IsSecure() && PSTATE.EL IN {EL0,EL1};
 if ELUsingAArch32(EL2) then // Virtual IRQ enabled if TGE==0 and FMO==1
 assert HCR.TGE == '0' && HCR.FMO == '1';
 else
 assert HCR_EL2.TGE == '0' && HCR_EL2.FMO == '1';

 // Check if routed to AArch64 state
 if PSTATE.EL == EL0 && !ELUsingAArch32(EL1) then AArch64.TakeVirtualFIQException();

E1-820 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

E1 ARMv8.1 Pseudocode
E1.3 Library pseudocode for AArch32
 bits(32) preferred_exception_return = ThisInstrAddr();
 vect_offset = 0x1C;
 lr_offset = 4;

 AArch32.EnterMode(M32_FIQ, preferred_exception_return, lr_offset, vect_offset);

aarch32/exceptions/asynch/AArch32.TakeVirtualIRQException

 // AArch32.TakeVirtualIRQException()
 // =================================

 AArch32.TakeVirtualIRQException()
 assert HaveEL(EL2) && !IsSecure() && PSTATE.EL IN {EL0,EL1};
 if ELUsingAArch32(EL2) then // Virtual IRQs enabled if TGE==0 and IMO==1
 assert HCR.TGE == '0' && HCR.IMO == '1';
 else
 assert HCR_EL2.TGE == '0' && HCR_EL2.IMO == '1';

 // Check if routed to AArch64 state
 if PSTATE.EL == EL0 && !ELUsingAArch32(EL1) then AArch64.TakeVirtualIRQException();

 bits(32) preferred_exception_return = ThisInstrAddr();
 vect_offset = 0x18;
 lr_offset = 4;

 AArch32.EnterMode(M32_IRQ, preferred_exception_return, lr_offset, vect_offset);

aarch32/exceptions/debug/AArch32.SoftwareBreakpoint

 // AArch32.SoftwareBreakpoint()
 // ============================

 AArch32.SoftwareBreakpoint(bits(16) immediate)

 if (HaveEL(EL2) && !IsSecure() && !ELUsingAArch32(EL2) &&
 (HCR_EL2.TGE == '1' || MDCR_EL2.TDE == '1')) || !ELUsingAArch32(EL1) then
 AArch64.SoftwareBreakpoint(immediate);

 vaddress = bits(32) UNKNOWN;
 acctype = AccType_IFETCH; // Take as a Prefetch Abort
 iswrite = FALSE;
 entry = DebugException_BKPT;

 fault = AArch32.DebugFault(acctype, iswrite, entry);
 AArch32.Abort(vaddress, fault);

aarch32/exceptions/debug/DebugException

 constant bits(4) DebugException_Breakpoint = '0001';
 constant bits(4) DebugException_BKPT = '0011';
 constant bits(4) DebugException_VectorCatch = '0101';
 constant bits(4) DebugException_Watchpoint = '1010';

aarch32/exceptions/exceptions/AArch32.ExceptionClass

 // AArch32.ExceptionClass()
 // ========================
 // Return the Exception Class and Instruction Length fields for reported in HSR

 (integer,bit) AArch32.ExceptionClass(Exception type)

 il = if ThisInstrLength() == 32 then '1' else '0';

 case type of
 when Exception_Uncategorized ec = 0x00; il = '1';
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. E1-821
ID060316 Non-Confidential

E1 ARMv8.1 Pseudocode
E1.3 Library pseudocode for AArch32
 when Exception_WFxTrap ec = 0x01;
 when Exception_CP15RTTrap ec = 0x03;
 when Exception_CP15RRTTrap ec = 0x04;
 when Exception_CP14RTTrap ec = 0x05;
 when Exception_CP14DTTrap ec = 0x06;
 when Exception_AdvSIMDFPAccessTrap ec = 0x07;
 when Exception_FPIDTrap ec = 0x08;
 when Exception_CP14RRTTrap ec = 0x0C;
 when Exception_IllegalState ec = 0x0E; il = '1';
 when Exception_SupervisorCall ec = 0x11;
 when Exception_HypervisorCall ec = 0x12;
 when Exception_MonitorCall ec = 0x13;
 when Exception_InstructionAbort ec = 0x20; il = '1';
 when Exception_PCAlignment ec = 0x22; il = '1';
 when Exception_DataAbort ec = 0x24;
 when Exception_FPTrappedException ec = 0x28;
 otherwise Unreachable();

 if ec IN {0x20,0x24} && PSTATE.EL == EL2 then
 ec = ec + 1;

 return (ec,il);

aarch32/exceptions/exceptions/AArch32.GeneralExceptionsToAArch64

 // AArch32.GeneralExceptionsToAArch64()
 // ====================================
 // Returns TRUE if exceptions normally routed to EL1 are being handled at an Exception
 // level using AArch64, because either EL1 is using AArch64 or TGE is in force and EL2
 // is using AArch64.

 boolean AArch32.GeneralExceptionsToAArch64()
 return ((PSTATE.EL == EL0 && !ELUsingAArch32(EL1)) ||
 (HaveEL(EL2) && !IsSecure() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1'));

aarch32/exceptions/exceptions/AArch32.ReportHypEntry

 // AArch32.ReportHypEntry()
 // ========================
 // Report syndrome information to Hyp mode registers.

 AArch32.ReportHypEntry(ExceptionRecord exception)

 Exception type = exception.type;

 (ec,il) = AArch32.ExceptionClass(type);
 iss = exception.syndrome;

 // IL is not valid for Data Abort exceptions without valid instruction syndrome information
 if ec IN {0x24,0x25} && iss<24> == '0' then
 il = '1';

 HSR = ec<5:0>:il:iss;

 if type IN {Exception_InstructionAbort, Exception_PCAlignment} then
 HIFAR = exception.vaddress<31:0>;
 HDFAR = bits(32) UNKNOWN;
 elsif type == Exception_DataAbort then
 HIFAR = bits(32) UNKNOWN;
 HDFAR = exception.vaddress<31:0>;

 if exception.ipavalid then
 HPFAR<31:4> = exception.ipaddress<39:12>;
 else
E1-822 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

E1 ARMv8.1 Pseudocode
E1.3 Library pseudocode for AArch32
 HPFAR<31:4> = bits(28) UNKNOWN;

 return;

aarch32/exceptions/exceptions/AArch32.ResetControlRegisters

 // Resets System registers and memory-mapped control registers that have architecturally-defined
 // reset values to those values.
 AArch32.ResetControlRegisters(boolean cold_reset);

aarch32/exceptions/exceptions/AArch32.TakeReset

 // AArch32.TakeReset()
 // ===================
 // Reset into AArch32 state

 AArch32.TakeReset(boolean cold_reset)
 assert HighestELUsingAArch32();

 // Enter the highest implemented Exception level in AArch32 state
 if HaveEL(EL3) then
 AArch32.WriteMode(M32_Svc);
 SCR.NS = '0'; // Secure state
 elsif HaveEL(EL2) then
 AArch32.WriteMode(M32_Hyp);
 else
 AArch32.WriteMode(M32_Svc);

 // Reset the CP14 and CP15 registers and other system components
 AArch32.ResetControlRegisters(cold_reset);
 FPEXC.EN = '0';

 // Reset all other PSTATE fields, including instruction set and endianness according to the
 // SCTLR values produced by the above call to ResetControlRegisters()
 PSTATE.<A,I,F> = '111'; // All asynchronous exceptions masked
 PSTATE.IT = '00000000'; // IT block state reset
 PSTATE.T = SCTLR.TE; // Instruction set: TE=0: A32, TE=1: T32. PSTATE.J is RES0.
 PSTATE.E = SCTLR.EE; // Endianness: EE=0: little-endian, EE=1: big-endian
 PSTATE.IL = '0'; // Clear Illegal Execution state bit

 // All registers, bits and fields not reset by the above pseudocode or by the BranchTo() call
 // below are UNKNOWN bitstrings after reset. In particular, the return information registers
 // R14 or ELR_hyp and SPSR have UNKNOWN values, so that it
 // is impossible to return from a reset in an architecturally defined way.
 AArch32.ResetGeneralRegisters();
 AArch32.ResetSIMDFPRegisters();
 AArch32.ResetSpecialRegisters();
 ResetExternalDebugRegisters(cold_reset);

 bits(32) rv; // IMPLEMENTATION DEFINED reset vector
 if HaveEL(EL3) then
 if MVBAR<0> == '1' then // Reset vector in MVBAR
 rv = MVBAR<31:1>:'0';
 else
 rv = bits(32) IMPLEMENTATION_DEFINED "reset vector address";
 else
 rv = RVBAR<31:1>:'0';

 // The reset vector must be correctly aligned
 assert rv<0> == '0' && (PSTATE.T == '1' || rv<1> == '0');

 BranchTo(rv, BranchType_UNKNOWN);
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. E1-823
ID060316 Non-Confidential

E1 ARMv8.1 Pseudocode
E1.3 Library pseudocode for AArch32
aarch32/exceptions/exceptions/ExcVectorBase

 // ExcVectorBase()
 // ===============

 bits(32) ExcVectorBase()
 if SCTLR.V == '1' then // Hivecs selected, base = 0xFFFF0000
 return Ones(16):Zeros(16);
 else
 return VBAR;

aarch32/exceptions/ieeefp/AArch32.FPTrappedException

 // AArch32.FPTrappedException()
 // ============================

 AArch32.FPTrappedException(bits(8) accumulated_exceptions)
 if AArch32.GeneralExceptionsToAArch64() then
 is_ase = FALSE;
 element = 0;
 AArch64.FPTrappedException(is_ase, element, accumulated_exceptions);

 FPEXC.DEX = '1';
 FPEXC.TFV = '1';
 FPEXC<7,4:0> = accumulated_exceptions<7,4:0>; // IDF,IXF,UFF,OFF,DZF,IOF

 AArch32.TakeUndefInstrException();

aarch32/exceptions/syscalls/AArch32.CallHypervisor

 // AArch32.CallHypervisor()
 // ========================
 // Performs a HVC call

 AArch32.CallHypervisor(bits(16) immediate)
 assert HaveEL(EL2);

 if !ELUsingAArch32(EL2) then
 AArch64.CallHypervisor(immediate);
 else
 AArch32.TakeHVCException(immediate);

aarch32/exceptions/syscalls/AArch32.CallSupervisor

 // AArch32.CallSupervisor()
 // ========================
 // Calls the Supervisor

 AArch32.CallSupervisor(bits(16) immediate)

 if AArch32.CurrentCond() != '1110' then
 immediate = bits(16) UNKNOWN;

 if AArch32.GeneralExceptionsToAArch64() then
 AArch64.CallSupervisor(immediate);
 else
 AArch32.TakeSVCException(immediate);

aarch32/exceptions/syscalls/AArch32.TakeHVCException

 // AArch32.TakeHVCException()
 // ==========================

 AArch32.TakeHVCException(bits(16) immediate)
 assert HaveEL(EL2) && ELUsingAArch32(EL2);
E1-824 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

E1 ARMv8.1 Pseudocode
E1.3 Library pseudocode for AArch32

 AArch32.ITAdvance();
 SSAdvance();

 bits(32) preferred_exception_return = NextInstrAddr();
 vect_offset = 0x08;

 exception = ExceptionSyndrome(Exception_HypervisorCall);
 exception.syndrome<15:0> = immediate;

 if PSTATE.EL == EL2 then
 AArch32.EnterHypMode(exception, preferred_exception_return, vect_offset);
 else
 AArch32.EnterHypMode(exception, preferred_exception_return, 0x14);

aarch32/exceptions/syscalls/AArch32.TakeSMCException

 // AArch32.TakeSMCException()
 // ==========================

 AArch32.TakeSMCException()
 assert HaveEL(EL3) && ELUsingAArch32(EL3);

 AArch32.ITAdvance();
 SSAdvance();

 bits(32) preferred_exception_return = NextInstrAddr();
 vect_offset = 0x08;
 lr_offset = 0;

 AArch32.EnterMonitorMode(preferred_exception_return, lr_offset, vect_offset);

aarch32/exceptions/syscalls/AArch32.TakeSVCException

 // AArch32.TakeSVCException()
 // ==========================

 AArch32.TakeSVCException(bits(16) immediate)

 AArch32.ITAdvance();
 SSAdvance();

 route_to_hyp = HaveEL(EL2) && !IsSecure() && PSTATE.EL == EL0 && HCR.TGE == '1';

 bits(32) preferred_exception_return = NextInstrAddr();
 vect_offset = 0x08;
 lr_offset = 0;

 if PSTATE.EL == EL2 || route_to_hyp then
 exception = ExceptionSyndrome(Exception_SupervisorCall);
 exception.syndrome<15:0> = immediate;
 if PSTATE.EL == EL2 then
 AArch32.EnterHypMode(exception, preferred_exception_return, vect_offset);
 else
 AArch32.EnterHypMode(exception, preferred_exception_return, 0x14);
 else
 AArch32.EnterMode(M32_Svc, preferred_exception_return, lr_offset, vect_offset);

aarch32/exceptions/takeexception/AArch32.EnterHypMode

 // AArch32.EnterHypMode()
 // ======================
 // Take an exception to Hyp mode.

 AArch32.EnterHypMode(ExceptionRecord exception, bits(32) preferred_exception_return,
 integer vect_offset)
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. E1-825
ID060316 Non-Confidential

E1 ARMv8.1 Pseudocode
E1.3 Library pseudocode for AArch32
 assert HaveEL(EL2) && !IsSecure() && ELUsingAArch32(EL2);

 spsr = GetPSRFromPSTATE();
 if !(exception.type IN {Exception_IRQ, Exception_FIQ}) then
 AArch32.ReportHypEntry(exception);
 AArch32.WriteMode(M32_Hyp);
 SPSR[] = spsr;
 ELR_hyp = preferred_exception_return;
 PSTATE.T = HSCTLR.TE; // PSTATE.J is RES0
 PSTATE.SS = '0';
 if !HaveEL(EL3) || SCR_GEN[].EA == '0' then PSTATE.A = '1';
 if !HaveEL(EL3) || SCR_GEN[].IRQ == '0' then PSTATE.I = '1';
 if !HaveEL(EL3) || SCR_GEN[].FIQ == '0' then PSTATE.F = '1';
 PSTATE.E = HSCTLR.EE;
 PSTATE.IL = '0';
 PSTATE.IT = '00000000';
 BranchTo(HVBAR + vect_offset, BranchType_UNKNOWN);
 EndOfInstruction();

aarch32/exceptions/takeexception/AArch32.EnterMode

 // AArch32.EnterMode()
 // ===================
 // Take an exception to a mode other than Monitor and Hyp mode.

 AArch32.EnterMode(bits(5) target_mode, bits(32) preferred_exception_return, integer lr_offset,
 integer vect_offset)
 assert ELUsingAArch32(EL1) && PSTATE.EL != EL2;

 spsr = GetPSRFromPSTATE();
 if PSTATE.M == M32_Monitor then SCR.NS = '0';
 AArch32.WriteMode(target_mode);
 SPSR[] = spsr;
 R[14] = preferred_exception_return + lr_offset;
 PSTATE.T = SCTLR.TE; // PSTATE.J is RES0
 PSTATE.SS = '0';
 if target_mode == M32_FIQ then
 PSTATE.<A,I,F> = '111';
 elsif target_mode IN {M32_Abort, M32_IRQ} then
 PSTATE.<A,I> = '11';
 else
 PSTATE.I = '1';
 PSTATE.E = SCTLR.EE;
 PSTATE.IL = '0';
 PSTATE.IT = '00000000';
 if HavePANExt() && SCTLR.SPAN == '0' then PSTATE.PAN = '1';
 BranchTo(ExcVectorBase() + vect_offset, BranchType_UNKNOWN);
 EndOfInstruction();

aarch32/exceptions/takeexception/AArch32.EnterMonitorMode

 // AArch32.EnterMonitorMode()
 // ==========================
 // Take an exception to Monitor mode.

 AArch32.EnterMonitorMode(bits(32) preferred_exception_return, integer lr_offset,
 integer vect_offset)
 assert HaveEL(EL3) && ELUsingAArch32(EL3);
 from_secure = IsSecure();
 spsr = GetPSRFromPSTATE();
 if PSTATE.M == M32_Monitor then SCR.NS = '0';
 AArch32.WriteMode(M32_Monitor);
 SPSR[] = spsr;
 R[14] = preferred_exception_return + lr_offset;
 PSTATE.T = SCTLR.TE; // PSTATE.J is RES0
 PSTATE.SS = '0';
E1-826 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

E1 ARMv8.1 Pseudocode
E1.3 Library pseudocode for AArch32
 PSTATE.<A,I,F> = '111';
 PSTATE.E = SCTLR.EE;
 PSTATE.IL = '0';
 PSTATE.IT = '00000000';
 if HavePANExt() then
 if !from_secure then
 PSTATE.PAN = '0';
 elsif SCTLR.SPAN == '0' then
 PSTATE.PAN = '1';
 BranchTo(MVBAR + vect_offset, BranchType_UNKNOWN);
 EndOfInstruction();

aarch32/exceptions/traps/AArch32.AArch32SystemAccessTrap

 // AArch32.AArch32SystemAccessTrap()
 // =================================
 // Trapped AArch32 System register access other than due to CPTR_EL2 or CPACR_EL1.

 AArch32.AArch32SystemAccessTrap(bits(2) target_el, bits(32) instr)
 assert HaveEL(target_el) && target_el != EL0 && UInt(target_el) >= UInt(PSTATE.EL);

 if !ELUsingAArch32(target_el) || AArch32.GeneralExceptionsToAArch64() then
 AArch64.AArch32SystemAccessTrap(target_el, instr);

 assert target_el IN {EL1,EL2};

 if target_el == EL2 then
 exception = AArch32.AArch32SystemAccessTrapSyndrome(instr);
 AArch32.TakeHypTrapException(exception);
 else
 AArch32.TakeUndefInstrException();

aarch32/exceptions/traps/AArch32.AArch32SystemAccessTrapSyndrome

 // AArch32.AArch32SystemAccessTrapSyndrome()
 // ===
 // Return the syndrome information for traps on AArch32 MCR, MCRR, MRC, MRRC, and VMRS instructions,
 // other than traps that are due to HCPTR or CPACR.

 ExceptionRecord AArch32.AArch32SystemAccessTrapSyndrome(bits(32) instr)

 ExceptionRecord exception;
 cpnum = UInt(instr<11:8>);

 bits(20) iss = Zeros();
 if instr<27:24> == '1110' && instr<4> == '1' && instr<31:28> != '1111' then
 // MRC/MCR
 case cpnum of
 when 10 exception = ExceptionSyndrome(Exception_FPIDTrap);
 when 14 exception = ExceptionSyndrome(Exception_CP14RTTrap);
 when 15 exception = ExceptionSyndrome(Exception_CP15RTTrap);
 otherwise Unreachable();
 iss<19:17> = instr<7:5>; // opc2
 iss<16:14> = instr<23:21>; // opc1
 iss<13:10> = instr<19:16>; // CRn
 iss<8:5> = instr<15:12>; // Rt
 iss<4:1> = instr<3:0>; // CRm
 elsif instr<27:21> == '1100010' && instr<31:28> != '1111' then
 // MRRC/MCRR
 case cpnum of
 when 14 exception = ExceptionSyndrome(Exception_CP14RRTTrap);
 when 15 exception = ExceptionSyndrome(Exception_CP15RRTTrap);
 otherwise Unreachable();
 iss<19:16> = instr<7:4>; // opc1
 iss<13:10> = instr<19:16>; // Rt2
 iss<8:5> = instr<15:12>; // Rt
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. E1-827
ID060316 Non-Confidential

E1 ARMv8.1 Pseudocode
E1.3 Library pseudocode for AArch32
 iss<4:1> = instr<3:0>; // CRm
 elsif instr<27:25> == '110' && instr<31:28> != '1111' then
 // LDC/STC
 assert cpnum == 14;
 exception = ExceptionSyndrome(Exception_CP14DTTrap);
 iss<19:12> = instr<7:0>; // imm8
 iss<4> = instr<23>; // U
 iss<2:1> = instr<24,21>; // P,W
 if instr<19:16> == '1111' then // Literal addressing
 iss<8:5> = bits(4) UNKNOWN;
 iss<3> = '1';
 else
 iss<8:5> = instr<19:16>; // Rn
 iss<3> = '0';
 else
 Unreachable();
 iss<0> = instr<20>; // Direction

 exception.syndrome<24:20> = ConditionSyndrome();
 exception.syndrome<19:0> = iss;

 return exception;

aarch32/exceptions/traps/AArch32.CheckAdvSIMDOrFPEnabled

 // AArch32.CheckAdvSIMDOrFPEnabled()
 // =================================
 // Check against CPACR, FPEXC, HCPTR, NSACR, and CPTR_EL3.

 AArch32.CheckAdvSIMDOrFPEnabled(boolean fpexc_check, boolean advsimd)

 if PSTATE.EL == EL0 && !ELUsingAArch32(EL1) then
 AArch64.CheckFPAdvSIMDEnabled();
 else
 cpacr_asedis = CPACR.ASEDIS;
 cpacr_cp10 = CPACR.cp10;

 if HaveEL(EL3) && ELUsingAArch32(EL3) && !IsSecure() then
 // Check if access disabled in NSACR
 if NSACR.NSASEDIS == '1' then cpacr_asedis = '1';
 if NSACR.cp10 == '0' then cpacr_cp10 = '00';

 if PSTATE.EL != EL2 then
 // Check if Advanced SIMD disabled in CPACR
 if advsimd && cpacr_asedis == '1' then UNDEFINED;

 // Check if access disabled in CPACR
 case cpacr_cp10 of
 when 'x0' disabled = TRUE;
 when '01' disabled = PSTATE.EL == EL0;
 when '11' disabled = FALSE;
 if disabled then UNDEFINED;

 // If required, check FPEXC enabled bit.
 if fpexc_check && FPEXC.EN == '0' then UNDEFINED;

 AArch32.CheckFPAdvSIMDTrap(advsimd); // Also check against HCPTR and CPTR_EL3

aarch32/exceptions/traps/AArch32.CheckFPAdvSIMDTrap

 // AArch32.CheckFPAdvSIMDTrap()
 // ============================
 // Check against CPTR_EL2 and CPTR_EL3.

 AArch32.CheckFPAdvSIMDTrap(boolean advsimd)

E1-828 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

E1 ARMv8.1 Pseudocode
E1.3 Library pseudocode for AArch32
 if HaveEL(EL2) && !IsSecure() && !ELUsingAArch32(EL2) then
 AArch64.CheckFPAdvSIMDTrap();
 else
 if HaveEL(EL2) && !IsSecure() then
 hcptr_tase = HCPTR.TASE;
 hcptr_cp10 = HCPTR.TCP10;

 if HaveEL(EL3) && ELUsingAArch32(EL3) && !IsSecure() then
 // Check if access disabled in NSACR
 if NSACR.NSASEDIS == '1' then hcptr_tase = '1';
 if NSACR.cp10 == '0' then hcptr_cp10 = '1';

 // Check if access disabled in HCPTR
 if (advsimd && hcptr_tase == '1') || hcptr_cp10 == '1' then
 exception = ExceptionSyndrome(Exception_AdvSIMDFPAccessTrap);
 exception.syndrome<24:20> = ConditionSyndrome();

 if advsimd then
 exception.syndrome<5> = '1';
 else
 exception.syndrome<5> = '0';
 exception.syndrome<3:0> = '1010'; // coproc field, always 0xA

 if PSTATE.EL == EL2 then
 AArch32.TakeUndefInstrException(exception);
 else
 AArch32.TakeHypTrapException(exception);

 if HaveEL(EL3) && !ELUsingAArch32(EL3) then
 // Check if access disabled in CPTR_EL3
 if CPTR_EL3.TFP == '1' then AArch64.AdvSIMDFPAccessTrap(EL3);

 return;

aarch32/exceptions/traps/AArch32.CheckForSMCTrap

 // AArch32.CheckForSMCTrap()
 // =========================
 // Check for trap on SMC instruction

 AArch32.CheckForSMCTrap()

 if HaveEL(EL2) && !IsSecure() && !ELUsingAArch32(EL2) then
 AArch64.CheckForSMCTrap(Zeros(16));
 else
 route_to_hyp = HaveEL(EL2) && !IsSecure() && PSTATE.EL IN {EL0,EL1} && HCR.TSC == '1';
 if route_to_hyp then
 exception = ExceptionSyndrome(Exception_MonitorCall);
 AArch32.TakeHypTrapException(exception);

aarch32/exceptions/traps/AArch32.CheckForWFxTrap

 // AArch32.CheckForWFxTrap()
 // =========================
 // Check for trap on WFE or WFI instruction

 AArch32.CheckForWFxTrap(bits(2) target_el, boolean is_wfe)
 assert HaveEL(target_el);

 // Check for routing to AArch64
 if !ELUsingAArch32(target_el) then
 AArch64.CheckForWFxTrap(target_el, is_wfe);
 return;

 case target_el of
 when EL1 trap = (if is_wfe then SCTLR.nTWE else SCTLR.nTWI) == '0';
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. E1-829
ID060316 Non-Confidential

E1 ARMv8.1 Pseudocode
E1.3 Library pseudocode for AArch32
 when EL2 trap = (if is_wfe then HCR.TWE else HCR.TWI) == '1';
 when EL3 trap = (if is_wfe then SCR.TWE else SCR.TWI) == '1';

 if trap then
 if (target_el == EL1 && HaveEL(EL2) && !IsSecure() && !ELUsingAArch32(EL2) &&
 HCR_EL2.TGE == '1') then
 AArch64.WFxTrap(target_el, is_wfe);

 if target_el == EL3 then
 AArch32.TakeMonitorTrapException();
 elsif target_el == EL2 then
 exception = ExceptionSyndrome(Exception_WFxTrap);
 exception.syndrome<24:20> = ConditionSyndrome();
 exception.syndrome<0> = if is_wfe then '1' else '0';
 AArch32.TakeHypTrapException(exception);
 else
 AArch32.TakeUndefInstrException();

aarch32/exceptions/traps/AArch32.CheckITEnabled

 // AArch32.CheckITEnabled()
 // ========================
 // Check whether the T32 IT instruction is disabled.

 AArch32.CheckITEnabled(bits(4) mask)

 if PSTATE.EL == EL2 then
 it_disabled = HSCTLR.ITD;
 else
 it_disabled = (if ELUsingAArch32(EL1) then SCTLR.ITD else SCTLR[].ITD);

 if it_disabled == '1' then
 if mask != '1000' then UNDEFINED;

 // Otherwise whether the IT block is allowed depends on hw1 of the next instruction.
 next_instr = AArch32.MemSingle[NextInstrAddr(), 2, AccType_IFETCH, TRUE];

 if next_instr IN {'11xxxxxxxxxxxxxx', '1011xxxxxxxxxxxx', '10100xxxxxxxxxxx',
 '01001xxxxxxxxxxx', '010001xxx1111xxx', '010001xx1xxxx111'} then
 // It is IMPLEMENTATION DEFINED whether the Undefined Instruction exception is
 // taken on the IT instruction or the next instruction. This is not reflected in
 // the pseudocode, which always takes the exception on the IT instruction. This
 // also does not take into account cases where the next instruction is UNPREDICTABLE.
 UNDEFINED;

 return;

aarch32/exceptions/traps/AArch32.CheckIllegalState

 // AArch32.CheckIllegalState()
 // ===========================
 // Check PSTATE.IL bit and generate Illegal Execution state exception if set.

 AArch32.CheckIllegalState()

 if AArch32.GeneralExceptionsToAArch64() then
 AArch64.CheckIllegalState();
 elsif PSTATE.IL == '1' then
 route_to_hyp = HaveEL(EL2) && !IsSecure() && PSTATE.EL == EL0 && HCR.TGE == '1';

 bits(32) preferred_exception_return = ThisInstrAddr();
 vect_offset = 0x04;

 if PSTATE.EL == EL2 || route_to_hyp then
 exception = ExceptionSyndrome(Exception_IllegalState);
 if PSTATE.EL == EL2 then
E1-830 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

E1 ARMv8.1 Pseudocode
E1.3 Library pseudocode for AArch32
 AArch32.EnterHypMode(exception, preferred_exception_return, vect_offset);
 else
 AArch32.EnterHypMode(exception, preferred_exception_return, 0x14);
 else
 AArch32.TakeUndefInstrException();

aarch32/exceptions/traps/AArch32.CheckSETENDEnabled

 // AArch32.CheckSETENDEnabled()
 // ============================
 // Check whether the AArch32 SETEND instruction is disabled.

 AArch32.CheckSETENDEnabled()

 if PSTATE.EL == EL2 then
 setend_disabled = HSCTLR.SED;
 else
 setend_disabled = (if ELUsingAArch32(EL1) then SCTLR.SED else SCTLR[].SED);
 if setend_disabled == '1' then
 UNDEFINED;

 return;

aarch32/exceptions/traps/AArch32.TakeHypTrapException

 // AArch32.TakeHypTrapException()
 // ==============================
 // Exceptions routed to Hyp mode as a Hyp Trap exception.

 AArch32.TakeHypTrapException(ExceptionRecord exception)
 assert HaveEL(EL2) && !IsSecure() && ELUsingAArch32(EL2);

 bits(32) preferred_exception_return = ThisInstrAddr();
 vect_offset = 0x14;

 AArch32.EnterHypMode(exception, preferred_exception_return, vect_offset);

aarch32/exceptions/traps/AArch32.TakeMonitorTrapException

 // AArch32.TakeMonitorTrapException()
 // ==================================
 // Exceptions routed to Monitor mode as a Monitor Trap exception.

 AArch32.TakeMonitorTrapException()
 assert HaveEL(EL3) && ELUsingAArch32(EL3);

 bits(32) preferred_exception_return = ThisInstrAddr();
 vect_offset = 0x04;
 lr_offset = if CurrentInstrSet() == InstrSet_A32 then 4 else 2;

 AArch32.EnterMonitorMode(preferred_exception_return, lr_offset, vect_offset);

aarch32/exceptions/traps/AArch32.TakeUndefInstrException

 // AArch32.TakeUndefInstrException()
 // =================================

 AArch32.TakeUndefInstrException()
 exception = ExceptionSyndrome(Exception_Uncategorized);
 AArch32.TakeUndefInstrException(exception);

 // AArch32.TakeUndefInstrException()
 // =================================

 AArch32.TakeUndefInstrException(ExceptionRecord exception)
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. E1-831
ID060316 Non-Confidential

E1 ARMv8.1 Pseudocode
E1.3 Library pseudocode for AArch32

 route_to_hyp = HaveEL(EL2) && !IsSecure() && PSTATE.EL == EL0 && HCR.TGE == '1';

 bits(32) preferred_exception_return = ThisInstrAddr();
 vect_offset = 0x04;
 lr_offset = if CurrentInstrSet() == InstrSet_A32 then 4 else 2;

 if PSTATE.EL == EL2 then
 AArch32.EnterHypMode(exception, preferred_exception_return, vect_offset);
 elsif route_to_hyp then
 AArch32.EnterHypMode(exception, preferred_exception_return, 0x14);
 else
 AArch32.EnterMode(M32_Undef, preferred_exception_return, lr_offset, vect_offset);

aarch32/exceptions/traps/AArch32.UndefinedFault

 // AArch32.UndefinedFault()
 // ========================

 AArch32.UndefinedFault()

 if AArch32.GeneralExceptionsToAArch64() then AArch64.UndefinedFault();

 AArch32.TakeUndefInstrException();

E1.3.3 aarch32/functions

aarch32/functions/aborts/AArch32.CreateFaultRecord

 // AArch32.CreateFaultRecord()
 // ===========================

 FaultRecord AArch32.CreateFaultRecord(Fault type, bits(40) ipaddress, bits(4) domain,
 integer level, AccType acctype, boolean write, bit extflag,
 bits(4) debugmoe, boolean secondstage, boolean s2fs1walk)

 FaultRecord fault;
 fault.type = type;
 if (type != Fault_None && PSTATE.EL != EL2 && TTBCR.EAE == '0' && !secondstage && !s2fs1walk &&
 AArch32.DomainValid(type, level)) then
 fault.domain = domain;
 else
 fault.domain = bits(4) UNKNOWN;
 fault.debugmoe = debugmoe;
 fault.ipaddress = ZeroExtend(ipaddress);
 fault.level = level;
 fault.acctype = acctype;
 fault.write = write;
 fault.extflag = extflag;
 fault.secondstage = secondstage;
 fault.s2fs1walk = s2fs1walk;

 return fault;

aarch32/functions/aborts/AArch32.DomainValid

 // AArch32.DomainValid()
 // =====================
 // Returns TRUE if the Domain is valid for a Short-descriptor translation scheme.

 boolean AArch32.DomainValid(Fault type, integer level)
 assert type != Fault_None;

E1-832 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

E1 ARMv8.1 Pseudocode
E1.3 Library pseudocode for AArch32
 case type of
 when Fault_Domain
 return TRUE;
 when Fault_Translation, Fault_AccessFlag, Fault_SyncExternalOnWalk, Fault_SyncParityOnWalk
 return level == 2;
 otherwise
 return FALSE;

aarch32/functions/aborts/AArch32.FaultStatusLD

 // AArch32.FaultStatusLD()
 // =======================
 // Creates an exception fault status value for Abort and Watchpoint exceptions taken
 // to Abort mode using AArch32 and Long-descriptor format.

 bits(32) AArch32.FaultStatusLD(boolean d_side, FaultRecord fault)
 assert fault.type != Fault_None;

 bits(32) fsr = Zeros();
 if d_side then
 if fault.acctype IN {AccType_DC, AccType_IC, AccType_AT} then
 fsr<13> = '1'; fsr<11> = '1';
 else
 fsr<11> = if fault.write then '1' else '0';
 if IsExternalAbort(fault) then fsr<12> = fault.extflag;
 fsr<9> = '1';
 fsr<5:0> = EncodeLDFSC(fault.type, fault.level);

 return fsr;

aarch32/functions/aborts/AArch32.FaultStatusSD

 // AArch32.FaultStatusSD()
 // =======================
 // Creates an exception fault status value for Abort and Watchpoint exceptions taken
 // to Abort mode using AArch32 and Short-descriptor format.

 bits(32) AArch32.FaultStatusSD(boolean d_side, FaultRecord fault)
 assert fault.type != Fault_None;

 bits(32) fsr = Zeros();
 if d_side then
 if fault.acctype IN {AccType_DC, AccType_IC, AccType_AT} then
 fsr<13> = '1'; fsr<11> = '1';
 else
 fsr<11> = if fault.write then '1' else '0';
 if IsExternalAbort(fault) then fsr<12> = fault.extflag;
 fsr<9> = '0';
 fsr<10,3:0> = EncodeSDFSC(fault.type, fault.level);
 if d_side then
 fsr<7:4> = fault.domain; // Domain field (data fault only)

 return fsr;

aarch32/functions/aborts/EncodeSDFSC

 // EncodeSDFSC()
 // =============
 // Function that gives the Short-descriptor FSR code for different types of Fault

 bits(5) EncodeSDFSC(Fault type, integer level)

 bits(5) result;
 case type of
 when Fault_AccessFlag
 assert level IN {1,2};
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. E1-833
ID060316 Non-Confidential

E1 ARMv8.1 Pseudocode
E1.3 Library pseudocode for AArch32
 result = if level == 1 then '00011' else '00110';
 when Fault_Alignment
 result = '00001';
 when Fault_Permission
 assert level IN {1,2};
 result = if level == 1 then '01101' else '01111';
 when Fault_Domain
 assert level IN {1,2};
 result = if level == 1 then '01001' else '01011';
 when Fault_Translation
 assert level IN {1,2};
 result = if level == 1 then '00101' else '00111';
 when Fault_SyncExternal
 result = '01000';
 when Fault_SyncExternalOnWalk
 assert level IN {1,2};
 result = if level == 1 then '01100' else '01110';
 when Fault_SyncParity
 result = '11001';
 when Fault_SyncParityOnWalk
 assert level IN {1,2};
 result = if level == 1 then '11100' else '11110';
 when Fault_AsyncParity
 result = '11000';
 when Fault_AsyncExternal
 result = '10110';
 when Fault_Debug
 result = '00010';
 when Fault_TLBConflict
 result = '10000';
 when Fault_Lockdown
 result = '10100'; // IMPLEMENTATION DEFINED
 when Fault_Exclusive
 result = '10101'; // IMPLEMENTATION DEFINED
 when Fault_ICacheMaint
 result = '00100';
 otherwise
 Unreachable();

 return result;

aarch32/functions/common/A32ExpandImm

 // A32ExpandImm()
 // ==============

 bits(32) A32ExpandImm(bits(12) imm12)

 // PSTATE.C argument to following function call does not affect the imm32 result.
 (imm32, -) = A32ExpandImm_C(imm12, PSTATE.C);

 return imm32;

aarch32/functions/common/A32ExpandImm_C

 // A32ExpandImm_C()
 // ================

 (bits(32), bit) A32ExpandImm_C(bits(12) imm12, bit carry_in)

 unrotated_value = ZeroExtend(imm12<7:0>, 32);
 (imm32, carry_out) = Shift_C(unrotated_value, SRType_ROR, 2*UInt(imm12<11:8>), carry_in);

 return (imm32, carry_out);
E1-834 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

E1 ARMv8.1 Pseudocode
E1.3 Library pseudocode for AArch32
aarch32/functions/common/DecodeImmShift

 // DecodeImmShift()
 // ================

 (SRType, integer) DecodeImmShift(bits(2) type, bits(5) imm5)

 case type of
 when '00'
 shift_t = SRType_LSL; shift_n = UInt(imm5);
 when '01'
 shift_t = SRType_LSR; shift_n = if imm5 == '00000' then 32 else UInt(imm5);
 when '10'
 shift_t = SRType_ASR; shift_n = if imm5 == '00000' then 32 else UInt(imm5);
 when '11'
 if imm5 == '00000' then
 shift_t = SRType_RRX; shift_n = 1;
 else
 shift_t = SRType_ROR; shift_n = UInt(imm5);

 return (shift_t, shift_n);

aarch32/functions/common/DecodeRegShift

 // DecodeRegShift()
 // ================

 SRType DecodeRegShift(bits(2) type)
 case type of
 when '00' shift_t = SRType_LSL;
 when '01' shift_t = SRType_LSR;
 when '10' shift_t = SRType_ASR;
 when '11' shift_t = SRType_ROR;
 return shift_t;

aarch32/functions/common/RRX

 // RRX()
 // =====

 bits(N) RRX(bits(N) x, bit carry_in)
 (result, -) = RRX_C(x, carry_in);
 return result;

aarch32/functions/common/RRX_C

 // RRX_C()
 // =======

 (bits(N), bit) RRX_C(bits(N) x, bit carry_in)
 result = carry_in : x<N-1:1>;
 carry_out = x<0>;
 return (result, carry_out);

aarch32/functions/common/SRType

 enumeration SRType {SRType_LSL, SRType_LSR, SRType_ASR, SRType_ROR, SRType_RRX};

aarch32/functions/common/Shift

 // Shift()
 // =======

DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. E1-835
ID060316 Non-Confidential

E1 ARMv8.1 Pseudocode
E1.3 Library pseudocode for AArch32
 bits(N) Shift(bits(N) value, SRType type, integer amount, bit carry_in)
 (result, -) = Shift_C(value, type, amount, carry_in);
 return result;

aarch32/functions/common/Shift_C

 // Shift_C()
 // =========

 (bits(N), bit) Shift_C(bits(N) value, SRType type, integer amount, bit carry_in)
 assert !(type == SRType_RRX && amount != 1);

 if amount == 0 then
 (result, carry_out) = (value, carry_in);
 else
 case type of
 when SRType_LSL
 (result, carry_out) = LSL_C(value, amount);
 when SRType_LSR
 (result, carry_out) = LSR_C(value, amount);
 when SRType_ASR
 (result, carry_out) = ASR_C(value, amount);
 when SRType_ROR
 (result, carry_out) = ROR_C(value, amount);
 when SRType_RRX
 (result, carry_out) = RRX_C(value, carry_in);

 return (result, carry_out);

aarch32/functions/common/T32ExpandImm

 // T32ExpandImm()
 // ==============

 bits(32) T32ExpandImm(bits(12) imm12)

 // PSTATE.C argument to following function call does not affect the imm32 result.
 (imm32, -) = T32ExpandImm_C(imm12, PSTATE.C);

 return imm32;

aarch32/functions/common/T32ExpandImm_C

 // T32ExpandImm_C()
 // ================

 (bits(32), bit) T32ExpandImm_C(bits(12) imm12, bit carry_in)

 if imm12<11:10> == '00' then
 case imm12<9:8> of
 when '00'
 imm32 = ZeroExtend(imm12<7:0>, 32);
 when '01'
 imm32 = '00000000' : imm12<7:0> : '00000000' : imm12<7:0>;
 when '10'
 imm32 = imm12<7:0> : '00000000' : imm12<7:0> : '00000000';
 when '11'
 imm32 = imm12<7:0> : imm12<7:0> : imm12<7:0> : imm12<7:0>;
 carry_out = carry_in;
 else
 unrotated_value = ZeroExtend('1':imm12<6:0>, 32);
 (imm32, carry_out) = ROR_C(unrotated_value, UInt(imm12<11:7>));

 return (imm32, carry_out);
E1-836 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

E1 ARMv8.1 Pseudocode
E1.3 Library pseudocode for AArch32
aarch32/functions/coproc/AArch32.CheckCP15InstrCoarseTraps

 // AArch32.CheckCP15InstrCoarseTraps()
 // ===================================
 // Check for coarse-grained CP15 traps in HSTR and HCR.

 boolean AArch32.CheckCP15InstrCoarseTraps(integer CRn, integer nreg, integer CRm)

 // Check for coarse-grained Hyp traps
 if HaveEL(EL2) && !IsSecure() && PSTATE.EL IN {EL0,EL1} then
 if PSTATE.EL == EL0 && !ELUsingAArch32(EL2) then
 return AArch64.CheckCP15InstrCoarseTraps(CRn, nreg, CRm);

 // Check for MCR, MRC, MCRR and MRRC disabled by HSTR<CRn/CRm>
 major = if nreg == 1 then CRn else CRm;
 if !(major IN {4,14}) && HSTR<major> == '1' then
 return TRUE;

 // Check for MRC and MCR disabled by HCR.TIDCP
 if (HCR.TIDCP == '1' && nreg == 1 &&
 ((CRn == 9 && CRm IN {0,1,2, 5,6,7,8 }) ||
 (CRn == 10 && CRm IN {0,1, 4, 8 }) ||
 (CRn == 11 && CRm IN {0,1,2,3,4,5,6,7,8,15}))) then
 return TRUE;

 return FALSE;

aarch32/functions/coproc/AArch32.CheckSystemAccess

 // AArch32.CheckSystemAccess()
 // ===========================
 // Check System register access instruction for enables and disables

 AArch32.CheckSystemAccess(integer cp_num, bits(32) instr)
 assert cp_num == UInt(instr<11:8>) && (cp_num IN {14,15});

 if PSTATE.EL == EL0 && !ELUsingAArch32(EL1) then
 AArch64.CheckAArch32SystemAccess(instr);
 return;

 // Decode the AArch32 System register access instruction
 if instr<31:28> != '1111' && instr<27:24> == '1110' && instr<4> == '1' then // MRC/MCR
 cprt = TRUE; cpdt = FALSE; nreg = 1;
 opc1 = UInt(instr<23:21>);
 opc2 = UInt(instr<7:5>);
 CRn = UInt(instr<19:16>);
 CRm = UInt(instr<3:0>);
 elsif instr<31:28> != '1111' && instr<27:21> == '1100010' then // MRRC/MCRR
 cprt = TRUE; cpdt = FALSE; nreg = 2;
 opc1 = UInt(instr<7:4>);
 CRm = UInt(instr<3:0>);
 elsif instr<31:28> != '1111' && instr<27:25> == '110' && instr<22> == '0' then // LDC/STC
 cprt = FALSE; cpdt = TRUE; nreg = 0;
 opc1 = 0;
 CRn = UInt(instr<15:12>);
 else
 allocated = FALSE;

 //
 // Coarse-grain decode into CP14 or CP15 encoding space. Each of the CPxxxInstrDecode functions
 // returns TRUE if the instruction is allocated at the current Exception level, FALSE otherwise.
 if cp_num == 14 then
 // LDC and STC only supported for c5 in CP14 encoding space
 if cpdt && CRn != 5 then
 allocated = FALSE;
 else
 // Coarse-grained decode of CP14 based on opc1 field
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. E1-837
ID060316 Non-Confidential

E1 ARMv8.1 Pseudocode
E1.3 Library pseudocode for AArch32
 case opc1 of
 when 0 allocated = CP14DebugInstrDecode(instr);
 when 1 allocated = CP14TraceInstrDecode(instr);
 when 7 allocated = CP14JazelleInstrDecode(instr); // JIDR only
 otherwise allocated = FALSE; // All other values are unallocated

 elsif cp_num == 15 then
 // LDC and STC not supported in CP15 encoding space
 if !cprt then
 allocated = FALSE;
 else
 allocated = CP15InstrDecode(instr);

 // Coarse-grain traps to EL2 have a higher priority than Undefined Instruction
 if AArch32.CheckCP15InstrCoarseTraps(CRn, nreg, CRm) then
 // For a coarse-grain trap, if it is IMPLEMENTATION DEFINED whether an access from
 // Non-secure User mode is UNDEFINED when the trap is disabled, then it is
 // IMPLEMENTATION DEFINED whether the same access is UNDEFINED or generates a trap
 // when the trap is enabled.
 if PSTATE.EL == EL0 && !IsSecure() && !allocated then
 if boolean IMPLEMENTATION_DEFINED "UNDEF unallocated CP15 access at NS EL0" then
 UNDEFINED;
 AArch32.AArch32SystemAccessTrap(EL2, instr);

 else
 allocated = FALSE;

 if !allocated then
 UNDEFINED;

 // If the instruction is not UNDEFINED, it might be disabled or trapped to a higher EL.
 AArch32.CheckSystemAccessTraps(instr);

 return;

aarch32/functions/coproc/AArch32.CheckSystemAccessTraps

 // Check for configurable disables or traps to a higher EL of an System register access.
 AArch32.CheckSystemAccessTraps(bits(32) instr);

aarch32/functions/coproc/CP14DebugInstrDecode

 // Decodes an accepted access to a debug System register in the CP14 encoding space.
 // Returns TRUE if the instruction is allocated at the current Exception level, FALSE otherwise.
 boolean CP14DebugInstrDecode(bits(32) instr);

aarch32/functions/coproc/CP14JazelleInstrDecode

 // Decodes an accepted access to a Jazelle System register in the CP14 encoding space.
 // Returns TRUE if the instruction is allocated at the current Exception level, FALSE otherwise.
 boolean CP14JazelleInstrDecode(bits(32) instr);

aarch32/functions/coproc/CP14TraceInstrDecode

 // Decodes an accepted access to a trace System register in the CP14 encoding space.
 // Returns TRUE if the instruction is allocated at the current Exception level, FALSE otherwise.
 boolean CP14TraceInstrDecode(bits(32) instr);

aarch32/functions/coproc/CP15InstrDecode

 // Decodes an accepted access to a System register in the CP15 encoding space.
 // Returns TRUE if the instruction is allocated at the current Exception level, FALSE otherwise.
 boolean CP15InstrDecode(bits(32) instr);
E1-838 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

E1 ARMv8.1 Pseudocode
E1.3 Library pseudocode for AArch32
aarch32/functions/exclusive/AArch32.ExclusiveMonitorsPass

 // AArch32.ExclusiveMonitorsPass()
 // ===============================

 // Return TRUE if the Exclusive Monitors for the current PE include all of the addresses
 // associated with the virtual address region of size bytes starting at address.
 // The immediately following memory write must be to the same addresses.

 boolean AArch32.ExclusiveMonitorsPass(bits(32) address, integer size)

 // It is IMPLEMENTATION DEFINED whether the detection of memory aborts happens
 // before or after the check on the local Exclusive Monitor. As a result a failure
 // of the local monitor can occur on some implementations even if the memory
 // access would give an memory abort.

 acctype = AccType_ATOMIC;
 iswrite = TRUE;
 aligned = (address == Align(address, size));

 if !aligned then
 secondstage = FALSE;
 AArch32.Abort(address, AArch32.AlignmentFault(acctype, iswrite, secondstage));

 passed = AArch32.IsExclusiveVA(address, ProcessorID(), size);
 if !passed then
 return FALSE;

 memaddrdesc = AArch32.TranslateAddress(address, acctype, iswrite, aligned, size);

 // Check for aborts or debug exceptions
 if IsFault(memaddrdesc) then
 AArch32.Abort(address, memaddrdesc.fault);

 passed = IsExclusiveLocal(memaddrdesc.paddress, ProcessorID(), size);

 if passed then
 ClearExclusiveLocal(ProcessorID());
 if memaddrdesc.memattrs.shareable then
 passed = IsExclusiveGlobal(memaddrdesc.paddress, ProcessorID(), size);

 return passed;

aarch32/functions/exclusive/AArch32.IsExclusiveVA

 // An optional IMPLEMENTATION DEFINED test for an exclusive access to a virtual
 // address region of size bytes starting at address.
 //
 // It is permitted (but not required) for this function to return FALSE and
 // cause a store exclusive to fail if the virtual address region is not
 // totally included within the region recorded by MarkExclusiveVA().
 //
 // It is always safe to return TRUE which will check the physical address only.
 boolean AArch32.IsExclusiveVA(bits(32) address, integer processorid, integer size);

aarch32/functions/exclusive/AArch32.MarkExclusiveVA

 // Optionally record an exclusive access to the virtual address region of size bytes
 // starting at address for processorid.
 AArch32.MarkExclusiveVA(bits(32) address, integer processorid, integer size);

aarch32/functions/exclusive/AArch32.SetExclusiveMonitors

 // AArch32.SetExclusiveMonitors()
 // ==============================

DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. E1-839
ID060316 Non-Confidential

E1 ARMv8.1 Pseudocode
E1.3 Library pseudocode for AArch32
 // Sets the Exclusive Monitors for the current PE to record the addresses associated
 // with the virtual address region of size bytes starting at address.

 AArch32.SetExclusiveMonitors(bits(32) address, integer size)

 acctype = AccType_ATOMIC;
 iswrite = FALSE;
 aligned = (address != Align(address, size));

 memaddrdesc = AArch32.TranslateAddress(address, acctype, iswrite, aligned, size);

 // Check for aborts or debug exceptions
 if IsFault(memaddrdesc) then
 return;

 if memaddrdesc.memattrs.shareable then
 MarkExclusiveGlobal(memaddrdesc.paddress, ProcessorID(), size);

 MarkExclusiveLocal(memaddrdesc.paddress, ProcessorID(), size);

 AArch32.MarkExclusiveVA(address, ProcessorID(), size);

aarch32/functions/float/CheckAdvSIMDEnabled

 // CheckAdvSIMDEnabled()
 // =====================

 CheckAdvSIMDEnabled()

 fpexc_check = TRUE;
 advsimd = TRUE;

 AArch32.CheckAdvSIMDOrFPEnabled(fpexc_check, advsimd);
 // Return from CheckAdvSIMDOrFPEnabled() occurs only if Advanced SIMD access is permitted

 // Make temporary copy of D registers
 // _Dclone[] is used as input data for instruction pseudocode
 for i = 0 to 31
 _Dclone[i] = D[i];

 return;

aarch32/functions/float/CheckAdvSIMDOrVFPEnabled

 // CheckAdvSIMDOrVFPEnabled()
 // ==========================

 CheckAdvSIMDOrVFPEnabled(boolean include_fpexc_check, boolean advsimd)
 AArch32.CheckAdvSIMDOrFPEnabled(include_fpexc_check, advsimd);
 // Return from CheckAdvSIMDOrFPEnabled() occurs only if VFP access is permitted
 return;

aarch32/functions/float/CheckCryptoEnabled32

 // CheckCryptoEnabled32()
 // ======================

 CheckCryptoEnabled32()
 CheckAdvSIMDEnabled();
 // Return from CheckAdvSIMDEnabled() occurs only if access is permitted
 return;
E1-840 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

E1 ARMv8.1 Pseudocode
E1.3 Library pseudocode for AArch32
aarch32/functions/float/CheckVFPEnabled

 // CheckVFPEnabled()
 // =================

 CheckVFPEnabled(boolean include_fpexc_check)
 advsimd = FALSE;
 AArch32.CheckAdvSIMDOrFPEnabled(include_fpexc_check, advsimd);
 // Return from CheckAdvSIMDOrFPEnabled() occurs only if VFP access is permitted
 return;

aarch32/functions/float/FPHalvedSub

 // FPHalvedSub()
 // =============

 bits(N) FPHalvedSub(bits(N) op1, bits(N) op2, FPCRType fpcr)
 assert N IN {32,64};
 rounding = FPRoundingMode(fpcr);
 (type1,sign1,value1) = FPUnpack(op1, fpcr);
 (type2,sign2,value2) = FPUnpack(op2, fpcr);
 (done,result) = FPProcessNaNs(type1, type2, op1, op2, fpcr);
 if !done then
 inf1 = (type1 == FPType_Infinity); inf2 = (type2 == FPType_Infinity);
 zero1 = (type1 == FPType_Zero); zero2 = (type2 == FPType_Zero);
 if inf1 && inf2 && sign1 == sign2 then
 result = FPDefaultNaN();
 FPProcessException(FPExc_InvalidOp, fpcr);
 elsif (inf1 && sign1 == '0') || (inf2 && sign2 == '1') then
 result = FPInfinity('0');
 elsif (inf1 && sign1 == '1') || (inf2 && sign2 == '0') then
 result = FPInfinity('1');
 elsif zero1 && zero2 && sign1 != sign2 then
 result = FPZero(sign1);
 else
 result_value = (value1 - value2) / 2.0;
 if result_value == 0.0 then // Sign of exact zero result depends on rounding mode
 result_sign = if rounding == FPRounding_NEGINF then '1' else '0';
 result = FPZero(result_sign);
 else
 result = FPRound(result_value, fpcr);
 return result;

aarch32/functions/float/FPRSqrtStep

 // FPRSqrtStep()
 // =============

 bits(32) FPRSqrtStep(bits(32) op1, bits(32) op2)
 FPCRType fpcr = StandardFPSCRValue();
 (type1,sign1,value1) = FPUnpack(op1, fpcr);
 (type2,sign2,value2) = FPUnpack(op2, fpcr);
 (done,result) = FPProcessNaNs(type1, type2, op1, op2, fpcr);
 if !done then
 inf1 = (type1 == FPType_Infinity); inf2 = (type2 == FPType_Infinity);
 zero1 = (type1 == FPType_Zero); zero2 = (type2 == FPType_Zero);
 bits(32) product;
 if (inf1 && zero2) || (zero1 && inf2) then
 product = FPZero('0');
 else
 product = FPMul(op1, op2, fpcr);
 result = FPHalvedSub(FPThree('0'), product, fpcr);
 return result;
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. E1-841
ID060316 Non-Confidential

E1 ARMv8.1 Pseudocode
E1.3 Library pseudocode for AArch32
aarch32/functions/float/FPRecipStep

 // FPRecipStep()
 // =============

 bits(32) FPRecipStep(bits(32) op1, bits(32) op2)
 FPCRType fpcr = StandardFPSCRValue();
 (type1,sign1,value1) = FPUnpack(op1, fpcr);
 (type2,sign2,value2) = FPUnpack(op2, fpcr);
 (done,result) = FPProcessNaNs(type1, type2, op1, op2, fpcr);
 if !done then
 inf1 = (type1 == FPType_Infinity); inf2 = (type2 == FPType_Infinity);
 zero1 = (type1 == FPType_Zero); zero2 = (type2 == FPType_Zero);
 bits(32) product;
 if (inf1 && zero2) || (zero1 && inf2) then
 product = FPZero('0');
 else
 product = FPMul(op1, op2, fpcr);
 result = FPSub(FPTwo('0'), product, fpcr);
 return result;

aarch32/functions/float/StandardFPSCRValue

 // StandardFPSCRValue()
 // ====================

 FPCRType StandardFPSCRValue()
 return '00000' : FPSCR.AHP : '11000000000000000000000000';

aarch32/functions/memory/AArch32.CheckAlignment

 // AArch32.CheckAlignment()
 // ========================

 boolean AArch32.CheckAlignment(bits(32) address, integer alignment, AccType acctype,
 boolean iswrite)

 if PSTATE.EL == EL0 && !ELUsingAArch32(S1TranslationRegime()) then
 A = SCTLR[].A; //use AArch64 register, when higher Exception level is using AArch64
 elsif PSTATE.EL == EL2 then
 A = HSCTLR.A;
 else
 A = SCTLR.A;
 aligned = (address == Align(address, alignment));
 atomic = acctype IN { AccType_ATOMIC, AccType_ATOMICRW };
 ordered = acctype IN { AccType_ORDERED, AccType_ORDEREDRW, AccType_LIMITEDORDERED };
 vector = acctype == AccType_VEC;

 // AccType_VEC is used for SIMD element alignment checks only
 check = (atomic || ordered || vector || A == '1');

 if check && !aligned then
 secondstage = FALSE;
 AArch32.Abort(address, AArch32.AlignmentFault(acctype, iswrite, secondstage));

 return aligned;

aarch32/functions/memory/AArch32.MemSingle

 // AArch32.MemSingle[] - non-assignment (read) form
 // ==
 // Perform an atomic, little-endian read of 'size' bytes.

 bits(size*8) AArch32.MemSingle[bits(32) address, integer size, AccType acctype, boolean wasaligned]
 assert size IN {1, 2, 4, 8, 16};
 assert address == Align(address, size);
E1-842 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

E1 ARMv8.1 Pseudocode
E1.3 Library pseudocode for AArch32

 AddressDescriptor memaddrdesc;
 bits(size*8) value;
 iswrite = FALSE;

 // MMU or MPU
 memaddrdesc = AArch32.TranslateAddress(address, acctype, iswrite, wasaligned, size);

 // Check for aborts or debug exceptions
 if IsFault(memaddrdesc) then
 AArch32.Abort(address, memaddrdesc.fault);

 // Memory array access
 value = _Mem[memaddrdesc, size, acctype];
 return value;

 // AArch32.MemSingle[] - assignment (write) form
 // ===
 // Perform an atomic, little-endian write of 'size' bytes.

 AArch32.MemSingle[bits(32) address, integer size, AccType acctype, boolean wasaligned] = bits(size*8)
value
 assert size IN {1, 2, 4, 8, 16};
 assert address == Align(address, size);

 AddressDescriptor memaddrdesc;
 iswrite = TRUE;

 // MMU or MPU
 memaddrdesc = AArch32.TranslateAddress(address, acctype, iswrite, wasaligned, size);

 // Check for aborts or debug exceptions
 if IsFault(memaddrdesc) then
 AArch32.Abort(address, memaddrdesc.fault);

 // Effect on exclusives
 if memaddrdesc.memattrs.shareable then
 ClearExclusiveByAddress(memaddrdesc.paddress, ProcessorID(), size);

 // Memory array access
 _Mem[memaddrdesc, size, acctype] = value;
 return;

aarch32/functions/memory/Hint_PreloadData

 Hint_PreloadData(bits(32) address);

aarch32/functions/memory/Hint_PreloadDataForWrite

 Hint_PreloadDataForWrite(bits(32) address);

aarch32/functions/memory/Hint_PreloadInstr

 Hint_PreloadInstr(bits(32) address);

aarch32/functions/memory/MemA

 // MemA[] - non-assignment form
 // ============================

 bits(8*size) MemA[bits(32) address, integer size]
 acctype = AccType_ATOMIC;
 return Mem_with_type[address, size, acctype];

 // MemA[] - assignment form
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. E1-843
ID060316 Non-Confidential

E1 ARMv8.1 Pseudocode
E1.3 Library pseudocode for AArch32
 // ========================

 MemA[bits(32) address, integer size] = bits(8*size) value
 acctype = AccType_ATOMIC;
 Mem_with_type[address, size, acctype] = value;
 return;

aarch32/functions/memory/MemO

 // MemO[] - non-assignment form
 // ============================

 bits(8*size) MemO[bits(32) address, integer size]
 acctype = AccType_ORDERED;
 return Mem_with_type[address, size, acctype];

 // MemO[] - assignment form
 // ========================

 MemO[bits(32) address, integer size] = bits(8*size) value
 acctype = AccType_ORDERED;
 Mem_with_type[address, size, acctype] = value;
 return;

aarch32/functions/memory/MemU

 // MemU[] - non-assignment form
 // ============================

 bits(8*size) MemU[bits(32) address, integer size]
 acctype = AccType_NORMAL;
 return Mem_with_type[address, size, acctype];

 // MemU[] - assignment form
 // ========================

 MemU[bits(32) address, integer size] = bits(8*size) value
 acctype = AccType_NORMAL;
 Mem_with_type[address, size, acctype] = value;
 return;

aarch32/functions/memory/MemU_unpriv

 // MemU_unpriv[] - non-assignment form
 // ===================================

 bits(8*size) MemU_unpriv[bits(32) address, integer size]
 acctype = AccType_UNPRIV;
 return Mem_with_type[address, size, acctype];

 // MemU_unpriv[] - assignment form
 // ===============================

 MemU_unpriv[bits(32) address, integer size] = bits(8*size) value
 acctype = AccType_UNPRIV;
 Mem_with_type[address, size, acctype] = value;
 return;

aarch32/functions/memory/Mem_with_type

 // Mem_with_type[] - non-assignment (read) form
 // ==
 // Perform a read of 'size' bytes. The access byte order is reversed for a big-endian access.
 // Instruction fetches would call AArch32.MemSingle directly.

E1-844 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

E1 ARMv8.1 Pseudocode
E1.3 Library pseudocode for AArch32
 bits(size*8) Mem_with_type[bits(32) address, integer size, AccType acctype]
 assert size IN {1, 2, 4, 8, 16};
 bits(size*8) value;
 integer i;
 boolean iswrite = FALSE;

 aligned = AArch32.CheckAlignment(address, size, acctype, iswrite);

 if !aligned then
 assert size > 1;
 value<7:0> = AArch32.MemSingle[address, 1, acctype, aligned];

 // For subsequent bytes it is CONSTRAINED UNPREDICTABLE whether an unaligned Device memory
 // access will generate an Alignment Fault, as to get this far means the first byte did
 // not, so we must be changing to a new translation page.
 c = ConstrainUnpredictable();
 assert c IN {Constraint_FAULT, Constraint_NONE};
 if c == Constraint_NONE then aligned = TRUE;

 for i = 1 to size-1
 value<8*i+7:8*i> = AArch32.MemSingle[address+i, 1, acctype, aligned];
 else
 value = AArch32.MemSingle[address, size, acctype, aligned];

 if BigEndian() then
 value = BigEndianReverse(value);
 return value;

 // Mem_with_type[] - assignment (write) form
 // ===
 // Perform a write of 'size' bytes. The byte order is reversed for a big-endian access.

 Mem_with_type[bits(32) address, integer size, AccType acctype] = bits(size*8) value
 integer i;
 boolean iswrite = TRUE;

 if BigEndian() then
 value = BigEndianReverse(value);

 aligned = AArch32.CheckAlignment(address, size, acctype, iswrite);

 if !aligned then
 assert size > 1;
 AArch32.MemSingle[address, 1, acctype, aligned] = value<7:0>;

 // For subsequent bytes it is CONSTRAINED UNPREDICTABLE whether an unaligned Device memory
 // access will generate an Alignment Fault, as to get this far means the first byte did
 // not, so we must be changing to a new translation page.
 c = ConstrainUnpredictable();
 assert c IN {Constraint_FAULT, Constraint_NONE};
 if c == Constraint_NONE then aligned = TRUE;

 for i = 1 to size-1
 AArch32.MemSingle[address+i, 1, acctype, aligned] = value<8*i+7:8*i>;
 else
 AArch32.MemSingle[address, size, acctype, aligned] = value;
 return;

aarch32/functions/registers/AArch32.ResetGeneralRegisters

 // AArch32.ResetGeneralRegisters()
 // ===============================

 AArch32.ResetGeneralRegisters()

 for i = 0 to 7
 R[i] = bits(32) UNKNOWN;
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. E1-845
ID060316 Non-Confidential

E1 ARMv8.1 Pseudocode
E1.3 Library pseudocode for AArch32
 for i = 8 to 12
 Rmode[i, M32_User] = bits(32) UNKNOWN;
 Rmode[i, M32_FIQ] = bits(32) UNKNOWN;
 if HaveEL(EL2) then Rmode[13, M32_Hyp] = bits(32) UNKNOWN; // No R14_hyp
 for i = 13 to 14
 Rmode[i, M32_User] = bits(32) UNKNOWN;
 Rmode[i, M32_FIQ] = bits(32) UNKNOWN;
 Rmode[i, M32_IRQ] = bits(32) UNKNOWN;
 Rmode[i, M32_Svc] = bits(32) UNKNOWN;
 Rmode[i, M32_Abort] = bits(32) UNKNOWN;
 Rmode[i, M32_Undef] = bits(32) UNKNOWN;
 if HaveEL(EL3) then Rmode[i, M32_Monitor] = bits(32) UNKNOWN;

 return;

aarch32/functions/registers/AArch32.ResetSIMDFPRegisters

 // AArch32.ResetSIMDFPRegisters()
 // ==============================

 AArch32.ResetSIMDFPRegisters()

 for i = 0 to 15
 Q[i] = bits(128) UNKNOWN;

 return;

aarch32/functions/registers/AArch32.ResetSpecialRegisters

 // AArch32.ResetSpecialRegisters()
 // ===============================

 AArch32.ResetSpecialRegisters()

 // AArch32 special registers
 SPSR_fiq = bits(32) UNKNOWN;
 SPSR_irq = bits(32) UNKNOWN;
 SPSR_svc = bits(32) UNKNOWN;
 SPSR_abt = bits(32) UNKNOWN;
 SPSR_und = bits(32) UNKNOWN;
 if HaveEL(EL2) then
 SPSR_hyp = bits(32) UNKNOWN;
 ELR_hyp = bits(32) UNKNOWN;
 if HaveEL(EL3) then
 SPSR_mon = bits(32) UNKNOWN;

 // External debug special registers
 DLR = bits(32) UNKNOWN;
 DSPSR = bits(32) UNKNOWN;

 return;

aarch32/functions/registers/AArch32.ResetSystemRegisters

 AArch32.ResetSystemRegisters(boolean cold_reset);

aarch32/functions/registers/ALUExceptionReturn

 // ALUExceptionReturn()
 // ====================

 ALUExceptionReturn(bits(32) address)
 if PSTATE.EL == EL2 then
 UNDEFINED;
 elsif PSTATE.M IN {M32_User,M32_System} then
E1-846 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

E1 ARMv8.1 Pseudocode
E1.3 Library pseudocode for AArch32
 UNPREDICTABLE; // UNDEFINED or NOP
 else
 AArch32.ExceptionReturn(address, SPSR[]);

aarch32/functions/registers/ALUWritePC

 // ALUWritePC()
 // ============

 ALUWritePC(bits(32) address)
 if CurrentInstrSet() == InstrSet_A32 then
 BXWritePC(address);
 else
 BranchWritePC(address);

aarch32/functions/registers/BXWritePC

 // BXWritePC()
 // ===========

 BXWritePC(bits(32) address)
 if address<0> == '1' then
 SelectInstrSet(InstrSet_T32);
 address<0> = '0';
 else
 SelectInstrSet(InstrSet_A32);
 // For branches to an unaligned PC counter in A32 state, the processor takes the branch
 // and does one of:
 // * Forces the address to be aligned
 // * Leaves the PC unaligned, meaning the target generates a PC Alignment fault.
 if address<1> == '1' && ConstrainUnpredictableBool() then
 address<1> = '0';
 BranchTo(address, BranchType_UNKNOWN);

aarch32/functions/registers/BranchWritePC

 // BranchWritePC()
 // ===============

 BranchWritePC(bits(32) address)
 if CurrentInstrSet() == InstrSet_A32 then
 address<1:0> = '00';
 else
 address<0> = '0';
 BranchTo(address, BranchType_UNKNOWN);

aarch32/functions/registers/D

 // D[] - non-assignment form
 // =========================

 bits(64) D[integer n]
 assert n >= 0 && n <= 31;
 base = (n MOD 2) * 64;
 return _V[n DIV 2]<base+63:base>;

 // D[] - assignment form
 // =====================

 D[integer n] = bits(64) value
 assert n >= 0 && n <= 31;
 base = (n MOD 2) * 64;
 _V[n DIV 2]<base+63:base> = value;
 return;
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. E1-847
ID060316 Non-Confidential

E1 ARMv8.1 Pseudocode
E1.3 Library pseudocode for AArch32
aarch32/functions/registers/Din

 // Din[] - non-assignment form
 // ===========================

 bits(64) Din[integer n]
 assert n >= 0 && n <= 31;
 return _Dclone[n];

aarch32/functions/registers/LR

 // LR - assignment form
 // ====================

 LR = bits(32) value
 R[14] = value;
 return;

 // LR - non-assignment form
 // ========================

 bits(32) LR
 return R[14];

aarch32/functions/registers/LoadWritePC

 // LoadWritePC()
 // =============

 LoadWritePC(bits(32) address)
 BXWritePC(address);

aarch32/functions/registers/LookUpRIndex

 // LookUpRIndex()
 // ==============

 integer LookUpRIndex(integer n, bits(5) mode)
 assert n >= 0 && n <= 14;

 case n of // Select index by mode: usr fiq irq svc abt und hyp
 when 8 result = RBankSelect(mode, 8, 24, 8, 8, 8, 8, 8);
 when 9 result = RBankSelect(mode, 9, 25, 9, 9, 9, 9, 9);
 when 10 result = RBankSelect(mode, 10, 26, 10, 10, 10, 10, 10);
 when 11 result = RBankSelect(mode, 11, 27, 11, 11, 11, 11, 11);
 when 12 result = RBankSelect(mode, 12, 28, 12, 12, 12, 12, 12);
 when 13 result = RBankSelect(mode, 13, 29, 17, 19, 21, 23, 15);
 when 14 result = RBankSelect(mode, 14, 30, 16, 18, 20, 22, 14);
 otherwise result = n;

 return result;

aarch32/functions/registers/Monitor_mode_registers

 bits(32) SP_mon;
 bits(32) LR_mon;

aarch32/functions/registers/PC

 // PC - non-assignment form
 // ========================

 bits(32) PC
 return R[15]; // This includes the offset from AArch32 state
E1-848 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

E1 ARMv8.1 Pseudocode
E1.3 Library pseudocode for AArch32
aarch32/functions/registers/PCStoreValue

 // PCStoreValue()
 // ==============

 bits(32) PCStoreValue()
 // This function returns the PC value. On architecture versions before ARMv7, it
 // is permitted to instead return PC+4, provided it does so consistently. It is
 // used only to describe A32 instructions, so it returns the address of the current
 // instruction plus 8 (normally) or 12 (when the alternative is permitted).
 return PC;

aarch32/functions/registers/Q

 // Q[] - non-assignment form
 // =========================

 bits(128) Q[integer n]
 assert n >= 0 && n <= 15;
 return _V[n];

 // Q[] - assignment form
 // =====================

 Q[integer n] = bits(128) value
 assert n >= 0 && n <= 15;
 _V[n] = value;
 return;

aarch32/functions/registers/Qin

 // Qin[] - non-assignment form
 // ===========================

 bits(128) Qin[integer n]
 assert n >= 0 && n <= 15;
 return Din[2*n+1]:Din[2*n];

aarch32/functions/registers/R

 // R[] - assignment form
 // =====================

 R[integer n] = bits(32) value
 Rmode[n, PSTATE.M] = value;
 return;

 // R[] - non-assignment form
 // =========================

 bits(32) R[integer n]
 if n == 15 then
 offset = (if CurrentInstrSet() == InstrSet_A32 then 8 else 4);
 return _PC<31:0> + offset;
 else
 return Rmode[n, PSTATE.M];

aarch32/functions/registers/RBankSelect

 // RBankSelect()
 // =============

 integer RBankSelect(bits(5) mode, integer usr, integer fiq, integer irq,
 integer svc, integer abt, integer und, integer hyp)

DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. E1-849
ID060316 Non-Confidential

E1 ARMv8.1 Pseudocode
E1.3 Library pseudocode for AArch32
 case mode of
 when M32_User result = usr; // User mode
 when M32_FIQ result = fiq; // FIQ mode
 when M32_IRQ result = irq; // IRQ mode
 when M32_Svc result = svc; // Supervisor mode
 when M32_Abort result = abt; // Abort mode
 when M32_Hyp result = hyp; // Hyp mode
 when M32_Undef result = und; // Undefined mode
 when M32_System result = usr; // System mode uses User mode registers
 otherwise Unreachable(); // Monitor mode

 return result;

aarch32/functions/registers/Rmode

 // Rmode[] - non-assignment form
 // =============================

 bits(32) Rmode[integer n, bits(5) mode]
 assert n >= 0 && n <= 14;

 // Check for attempted use of Monitor mode in Non-secure state.
 if !IsSecure() then assert mode != M32_Monitor;
 assert !BadMode(mode);

 if mode == M32_Monitor then
 if n == 13 then return SP_mon;
 elsif n == 14 then return LR_mon;
 else return _R[n]<31:0>;
 else
 return _R[LookUpRIndex(n, mode)]<31:0>;

 // Rmode[] - assignment form
 // =========================

 Rmode[integer n, bits(5) mode] = bits(32) value
 assert n >= 0 && n <= 14;

 // Check for attempted use of Monitor mode in Non-secure state.
 if !IsSecure() then assert mode != M32_Monitor;
 assert !BadMode(mode);

 if mode == M32_Monitor then
 if n == 13 then SP_mon = value;
 elsif n == 14 then LR_mon = value;
 else _R[n]<31:0> = value;
 else
 // It is CONSTRAINED UNPREDICTABLE whether the upper 32 bits of the X
 // register are unchanged or set to zero. This is also tested for on
 // exception entry, as this applies to all AArch32 registers.
 if !HighestELUsingAArch32() && ConstrainUnpredictableBool() then
 _R[LookUpRIndex(n, mode)] = ZeroExtend(value);
 else
 _R[LookUpRIndex(n, mode)]<31:0> = value;

 return;

aarch32/functions/registers/S

 // S[] - non-assignment form
 // =========================

 bits(32) S[integer n]
 assert n >= 0 && n <= 31;
 base = (n MOD 4) * 32;
 return _V[n DIV 4]<base+31:base>;
E1-850 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

E1 ARMv8.1 Pseudocode
E1.3 Library pseudocode for AArch32

 // S[] - assignment form
 // =====================

 S[integer n] = bits(32) value
 assert n >= 0 && n <= 31;
 base = (n MOD 4) * 32;
 _V[n DIV 4]<base+31:base> = value;
 return;

aarch32/functions/registers/SP

 // SP - assignment form
 // ====================

 SP = bits(32) value
 R[13] = value;
 return;

 // SP - non-assignment form
 // ========================

 bits(32) SP
 return R[13];

aarch32/functions/registers/_Dclone

 array bits(64) _Dclone[0..31];

aarch32/functions/system/AArch32.ExceptionReturn

 // AArch32.ExceptionReturn()
 // =========================

 AArch32.ExceptionReturn(bits(32) new_pc, bits(32) spsr)

 // Attempts to change to an illegal mode or state will invoke the Illegal Execution state
 // mechanism
 SetPSTATEFromPSR(spsr);
 ClearExclusiveLocal(ProcessorID());
 EventRegisterSet();

 // Align PC[1:0] according to the target instruction set state
 if spsr<5> == '1' then // T32
 new_pc = Align(new_pc, 2);
 else // A32
 new_pc = Align(new_pc, 4);

 BranchTo(new_pc, BranchType_UNKNOWN);

aarch32/functions/system/AArch32.ITAdvance

 // AArch32.ITAdvance()
 // ===================

 AArch32.ITAdvance()
 if PSTATE.IT<2:0> == '000' then
 PSTATE.IT = '00000000';
 else
 PSTATE.IT<4:0> = LSL(PSTATE.IT<4:0>, 1);
 return;
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. E1-851
ID060316 Non-Confidential

E1 ARMv8.1 Pseudocode
E1.3 Library pseudocode for AArch32
aarch32/functions/system/AArch32.SysRegRead

 // Read from a 32-bit AArch32 System register and return the register's contents.
 bits(32) AArch32.SysRegRead(integer cp_num, bits(32) instr);

aarch32/functions/system/AArch32.SysRegRead64

 // Read from a 64-bit AArch32 System register and return the register's contents.
 bits(64) AArch32.SysRegRead64(integer cp_num, bits(32) instr);

aarch32/functions/system/AArch32.SysRegReadCanWriteAPSR

 // AArch32.SysRegReadCanWriteAPSR()
 // ================================
 // Determines whether the AArch32 System register read instruction can write to APSR flags.

 boolean AArch32.SysRegReadCanWriteAPSR(integer cp_num, bits(32) instr)
 assert UsingAArch32();
 assert (cp_num IN {14,15});
 assert cp_num == UInt(instr<11:8>);

 opc1 = UInt(instr<23:21>);
 opc2 = UInt(instr<7:5>);
 CRn = UInt(instr<19:16>);
 CRm = UInt(instr<3:0>);

 if cp_num == 14 && opc1 == 0 && CRn == 0 && CRm == 1 && opc2 == 0 then // DBGDSCRint
 return TRUE;

 return FALSE;

aarch32/functions/system/AArch32.SysRegWrite

 // Write to a 32-bit AArch32 System register.
 AArch32.SysRegWrite(integer cp_num, bits(32) instr, bits(32) val);

aarch32/functions/system/AArch32.SysRegWrite64

 // Write to a 64-bit AArch32 System register.
 AArch32.SysRegWrite64(integer cp_num, bits(32) instr, bits(64) val);

aarch32/functions/system/AArch32.WriteMode

 // AArch32.WriteMode()
 // ===================
 // Function for dealing with writes to PSTATE.M from AArch32 state only.
 // This ensures that PSTATE.EL and PSTATE.SP are always valid.

 AArch32.WriteMode(bits(5) mode)
 (valid,el) = ELFromM32(mode);
 if !valid then
 PSTATE.IL = '1';
 else
 PSTATE.M = mode;
 PSTATE.EL = el;
 PSTATE.nRW = '1';
 PSTATE.SP = if mode IN {M32_User,M32_System} then '0' else '1';
 return;
E1-852 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

E1 ARMv8.1 Pseudocode
E1.3 Library pseudocode for AArch32
aarch32/functions/system/BadMode

 // BadMode()
 // =========

 boolean BadMode(bits(5) mode)
 case mode of
 when M32_User result = FALSE;
 when M32_FIQ result = FALSE;
 when M32_IRQ result = FALSE;
 when M32_Svc result = FALSE;
 when M32_Monitor result = !HaveEL(EL3);
 when M32_Abort result = FALSE;
 when M32_Hyp result = !HaveEL(EL2);
 when M32_Undef result = FALSE;
 when M32_System result = FALSE;
 otherwise result = TRUE;
 return result;

aarch32/functions/system/BankedRegisterAccessValid

 // BankedRegisterAccessValid()
 // ===========================
 // Checks for MRS (Banked register) or MSR (Banked register) accesses to registers
 // other than the SPSRs that are invalid. This includes ELR_hyp accesses.

 BankedRegisterAccessValid(bits(5) SYSm, bits(5) mode)

 case SYSm of
 when '000xx', '00100' // R8_usr to R12_usr
 if mode != M32_FIQ then UNPREDICTABLE;
 when '00101' // SP_usr
 if mode == M32_System then UNPREDICTABLE;
 when '00110' // LR_usr
 if mode IN {M32_Hyp,M32_System} then UNPREDICTABLE;
 when '010xx', '0110x', '01110' // R8_fiq to R12_fiq, SP_fiq, LR_fiq
 if mode == M32_FIQ then UNPREDICTABLE;
 when '1000x' // LR_irq, SP_irq
 if mode == M32_IRQ then UNPREDICTABLE;
 when '1001x' // LR_svc, SP_svc
 if mode == M32_Svc then UNPREDICTABLE;
 when '1010x' // LR_abt, SP_abt
 if mode == M32_Abort then UNPREDICTABLE;
 when '1011x' // LR_und, SP_und
 if mode == M32_Undef then UNPREDICTABLE;
 when '1110x' // LR_mon, SP_mon
 if !HaveEL(EL3) || !IsSecure() || mode == M32_Monitor then UNPREDICTABLE;
 when '11110' // ELR_hyp, only from Monitor or Hyp mode
 if !HaveEL(EL2) || !(mode IN {M32_Monitor,M32_Hyp}) then UNPREDICTABLE;
 when '11111' // SP_hyp, only from Monitor mode
 if !HaveEL(EL2) || mode != M32_Monitor then UNPREDICTABLE;
 otherwise
 UNPREDICTABLE;

 return;

aarch32/functions/system/CPSRWriteByInstr

 // CPSRWriteByInstr()
 // ==================
 // Update PSTATE.<N,Z,C,V,Q,GE,E,A,I,F,M> from a CPSR value written by an MSR instruction.

 CPSRWriteByInstr(bits(32) value, bits(4) bytemask)
 privileged = PSTATE.EL != EL0; // PSTATE.<A,I,F,M> are not writable at EL0

 // Write PSTATE from 'value', ignoring bytes masked by 'bytemask'
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. E1-853
ID060316 Non-Confidential

E1 ARMv8.1 Pseudocode
E1.3 Library pseudocode for AArch32
 if bytemask<3> == '1' then
 PSTATE.<N,Z,C,V,Q> = value<31:27>;
 // Bits <26:24> are ignored

 if bytemask<2> == '1' then
 // Bit <23> is RES0
 if privileged then
 PSTATE.PAN = value<22>;
 // Bits <21:20> are RES0
 PSTATE.GE = value<19:16>;
 if bytemask<1> == '1' then
 // Bits <15:10> are RES0
 PSTATE.E = value<9>; // PSTATE.E is writable at EL0
 if privileged then
 PSTATE.A = value<8>;

 if bytemask<0> == '1' then
 if privileged then
 PSTATE.<I,F> = value<7:6>;
 // Bit <5> is RES0
 // AArch32.WriteMode sets PSTATE.IL to 1 if 'value<4:0>' is not a legal mode value
 AArch32.WriteMode(value<4:0>);

 return;

aarch32/functions/system/ConditionPassed

 // ConditionPassed()
 // =================

 boolean ConditionPassed()
 return ConditionHolds(AArch32.CurrentCond());

aarch32/functions/system/CurrentCond

 bits(4) AArch32.CurrentCond();

aarch32/functions/system/InITBlock

 // InITBlock()
 // ===========

 boolean InITBlock()
 if CurrentInstrSet() == InstrSet_T32 then
 return PSTATE.IT<3:0> != '0000';
 else
 return FALSE;

aarch32/functions/system/LastInITBlock

 // LastInITBlock()
 // ===============

 boolean LastInITBlock()
 return (PSTATE.IT<3:0> == '1000');

aarch32/functions/system/SPSRWriteByInstr

 // SPSRWriteByInstr()
 // ==================

 SPSRWriteByInstr(bits(32) value, bits(4) bytemask)

 new_spsr = SPSR[];
E1-854 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

E1 ARMv8.1 Pseudocode
E1.3 Library pseudocode for AArch32

 if bytemask<3> == '1' then
 new_spsr<31:24> = value<31:24>; // N,Z,C,V,Q flags, IT[1:0],J bits

 if bytemask<2> == '1' then
 new_spsr<23:16> = value<23:16>; // IL bit, GE[3:0] flags

 if bytemask<1> == '1' then
 new_spsr<15:8> = value<15:8>; // IT[7:2] bits, E bit, A interrupt mask

 if bytemask<0> == '1' then
 new_spsr<7:0> = value<7:0>; // I,F interrupt masks, T bit, Mode bits

 SPSR[] = new_spsr; // UNPREDICTABLE if User or System mode

 return;

aarch32/functions/system/SPSRaccessValid

 // SPSRaccessValid()
 // =================
 // Checks for MRS (Banked register) or MSR (Banked register) accesses to the SPSRs
 // that are UNPREDICTABLE

 SPSRaccessValid(bits(5) SYSm, bits(5) mode)
 case SYSm of
 when '01110' // SPSR_fiq
 if mode == M32_FIQ then UNPREDICTABLE;
 when '10000' // SPSR_irq
 if mode == M32_IRQ then UNPREDICTABLE;
 when '10010' // SPSR_svc
 if mode == M32_Svc then UNPREDICTABLE;
 when '10100' // SPSR_abt
 if mode == M32_Abort then UNPREDICTABLE;
 when '10110' // SPSR_und
 if mode == M32_Undef then UNPREDICTABLE;
 when '11100' // SPSR_mon
 if !HaveEL(EL3) || mode == M32_Monitor || !IsSecure() then UNPREDICTABLE;
 when '11110' // SPSR_hyp
 if !HaveEL(EL2) || mode != M32_Monitor then UNPREDICTABLE;
 otherwise
 UNPREDICTABLE;

 return;

aarch32/functions/system/SelectInstrSet

 // SelectInstrSet()
 // ================

 SelectInstrSet(InstrSet iset)
 assert CurrentInstrSet() IN {InstrSet_A32, InstrSet_T32};
 assert iset IN {InstrSet_A32, InstrSet_T32};

 PSTATE.T = if iset == InstrSet_A32 then '0' else '1';

 return;

aarch32/functions/v6simd/Sat

 // Sat()
 // =====

 bits(N) Sat(integer i, integer N, boolean unsigned)
 result = if unsigned then UnsignedSat(i, N) else SignedSat(i, N);
 return result;
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. E1-855
ID060316 Non-Confidential

E1 ARMv8.1 Pseudocode
E1.3 Library pseudocode for AArch32
aarch32/functions/v6simd/SignedSat

 // SignedSat()
 // ===========

 bits(N) SignedSat(integer i, integer N)
 (result, -) = SignedSatQ(i, N);
 return result;

aarch32/functions/v6simd/UnsignedSat

 // UnsignedSat()
 // =============

 bits(N) UnsignedSat(integer i, integer N)
 (result, -) = UnsignedSatQ(i, N);
 return result;

E1.3.4 aarch32/translation

aarch32/translation/attrs/AArch32.DefaultTEXDecode

 // AArch32.DefaultTEXDecode()
 // ==========================

 MemoryAttributes AArch32.DefaultTEXDecode(bits(3) TEX, bit C, bit B, bit S, AccType acctype)

 MemoryAttributes memattrs;

 // Reserved values map to allocated values
 if (TEX == '001' && C:B == '01') || (TEX == '010' && C:B != '00') || TEX == '011' then
 bits(5) texcb;
 (-, texcb) = ConstrainUnpredictableBits();
 TEX = texcb<4:2>; C = texcb<1>; B = texcb<0>;

 case TEX:C:B of
 when '00000'
 // Device-nGnRnE
 memattrs.type = MemType_Device;
 memattrs.device = DeviceType_nGnRnE;
 when '00001', '01000'
 // Device-nGnRE
 memattrs.type = MemType_Device;
 memattrs.device = DeviceType_nGnRE;
 when '00010', '00011', '00100'
 // Write-back or Write-through Read allocate, or Non-cacheable
 memattrs.type = MemType_Normal;
 memattrs.inner = ShortConvertAttrsHints(C:B, acctype);
 memattrs.outer = ShortConvertAttrsHints(C:B, acctype);
 memattrs.shareable = (S == '1');
 when '00110'
 memattrs = MemoryAttributes IMPLEMENTATION_DEFINED;
 when '00111'
 // Write-back Read and Write allocate
 memattrs.type = MemType_Normal;
 memattrs.inner = ShortConvertAttrsHints('01', acctype);
 memattrs.outer = ShortConvertAttrsHints('01', acctype);
 memattrs.shareable = (S == '1');
 when '1xxxx'
 // Cacheable, TEX<1:0> = Outer attrs, {C,B} = Inner attrs
 memattrs.type = MemType_Normal;
 memattrs.inner = ShortConvertAttrsHints(C:B, acctype);
 memattrs.outer = ShortConvertAttrsHints(TEX<1:0>, acctype);
 memattrs.shareable = (S == '1');
E1-856 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

E1 ARMv8.1 Pseudocode
E1.3 Library pseudocode for AArch32
 otherwise
 // Reserved, handled above
 Unreachable();

 // transient bits are not supported in this format
 memattrs.inner.transient = FALSE;
 memattrs.outer.transient = FALSE;

 // distinction between inner and outer shareable is not supported in this format
 memattrs.outershareable = memattrs.shareable;

 return MemAttrDefaults(memattrs);

aarch32/translation/attrs/AArch32.InstructionDevice

 // AArch32.InstructionDevice()
 // ===========================
 // Instruction fetches from memory marked as Device but not execute-never might generate a
 // Permission Fault but are otherwise treated as if from Normal Non-cacheable memory.

 AddressDescriptor AArch32.InstructionDevice(AddressDescriptor addrdesc, bits(32) vaddress,
 bits(40) ipaddress, integer level, bits(4) domain,
 AccType acctype, boolean iswrite, boolean secondstage,
 boolean s2fs1walk)

 c = ConstrainUnpredictable();
 assert c IN {Constraint_NONE, Constraint_FAULT};

 if c == Constraint_FAULT then
 addrdesc.fault = AArch32.PermissionFault(ipaddress, domain, level, acctype, iswrite,
 secondstage, s2fs1walk);
 else
 addrdesc.memattrs.type = MemType_Normal;
 addrdesc.memattrs.inner.attrs = MemAttr_NC;
 addrdesc.memattrs.inner.hints = MemHint_No;
 addrdesc.memattrs.outer = addrdesc.memattrs.inner;
 addrdesc.memattrs = MemAttrDefaults(addrdesc.memattrs);

 return addrdesc;

aarch32/translation/attrs/AArch32.RemappedTEXDecode

 // AArch32.RemappedTEXDecode()
 // ===========================

 MemoryAttributes AArch32.RemappedTEXDecode(bits(3) TEX, bit C, bit B, bit S, AccType acctype)

 MemoryAttributes memattrs;

 region = UInt(TEX<0>:C:B); // TEX<2:1> are ignored in this mapping scheme
 if region == 6 then
 memattrs = MemoryAttributes IMPLEMENTATION_DEFINED;
 else
 base = 2 * region;
 attrfield = PRRR<base+1:base>;

 if attrfield == '11' then // Reserved, maps to allocated value
 (-, attrfield) = ConstrainUnpredictableBits();

 case attrfield of
 when '00' // Device-nGnRnE
 memattrs.type = MemType_Device;
 memattrs.device = DeviceType_nGnRnE;
 when '01' // Device-nGnRE
 memattrs.type = MemType_Device;
 memattrs.device = DeviceType_nGnRE;
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. E1-857
ID060316 Non-Confidential

E1 ARMv8.1 Pseudocode
E1.3 Library pseudocode for AArch32
 when '10'
 memattrs.type = MemType_Normal;
 memattrs.inner = ShortConvertAttrsHints(NMRR<base+1:base>, acctype);
 memattrs.outer = ShortConvertAttrsHints(NMRR<base+17:base+16>, acctype);
 s_bit = if S == '0' then PRRR.NS0 else PRRR.NS1;
 memattrs.shareable = (s_bit == '1');
 memattrs.outershareable = (s_bit == '1' && PRRR<region+24> == '0');
 when '11'
 Unreachable();

 // transient bits are not supported in this format
 memattrs.inner.transient = FALSE;
 memattrs.outer.transient = FALSE;

 return MemAttrDefaults(memattrs);

aarch32/translation/attrs/AArch32.S1AttrDecode

 // AArch32.S1AttrDecode()
 // ======================
 // Converts the Stage 1 attribute fields, using the MAIR, to orthogonal
 // attributes and hints.

 MemoryAttributes AArch32.S1AttrDecode(bits(2) SH, bits(3) attr, AccType acctype)

 MemoryAttributes memattrs;

 if PSTATE.EL == EL2 then
 mair = HMAIR1:HMAIR0;
 else
 mair = MAIR1:MAIR0;
 index = 8 * UInt(attr);
 attrfield = mair<index+7:index>;

 if ((attrfield<7:4> != '0000' && attrfield<3:0> == '0000') ||
 (attrfield<7:4> == '0000' && attrfield<3:0> != 'xx00')) then
 // Reserved, maps to an allocated value
 (-, attrfield) = ConstrainUnpredictableBits();

 if attrfield<7:4> == '0000' then // Device
 memattrs.type = MemType_Device;
 case attrfield<3:0> of
 when '0000' memattrs.device = DeviceType_nGnRnE;
 when '0100' memattrs.device = DeviceType_nGnRE;
 when '1000' memattrs.device = DeviceType_nGRE;
 when '1100' memattrs.device = DeviceType_GRE;
 otherwise Unreachable(); // Reserved, handled above

 elsif attrfield<3:0> != '0000' then // Normal
 memattrs.type = MemType_Normal;
 memattrs.outer = LongConvertAttrsHints(attrfield<7:4>, acctype);
 memattrs.inner = LongConvertAttrsHints(attrfield<3:0>, acctype);
 memattrs.shareable = SH<1> == '1';
 memattrs.outershareable = SH == '10';

 else
 Unreachable(); // Reserved, handled above

 return MemAttrDefaults(memattrs);

aarch32/translation/attrs/AArch32.TranslateAddressS1Off

 // AArch32.TranslateAddressS1Off()
 // ===============================
 // Called for stage 1 translations when translation is disabled to supply a default translation.
 // Note that there are additional constraints on instruction prefetching that are not described in
E1-858 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

E1 ARMv8.1 Pseudocode
E1.3 Library pseudocode for AArch32
 // this pseudocode.

 TLBRecord AArch32.TranslateAddressS1Off(bits(32) vaddress, AccType acctype, boolean iswrite)
 assert ELUsingAArch32(S1TranslationRegime());

 TLBRecord result;

 default_cacheable = (HasS2Translation() && ((if ELUsingAArch32(EL2) then HCR.DC else HCR_EL2.DC) ==
'1'));

 if default_cacheable then
 // Use default cacheable settings
 result.addrdesc.memattrs.type = MemType_Normal;
 result.addrdesc.memattrs.inner.attrs = MemAttr_WB; // Write-back
 result.addrdesc.memattrs.inner.hints = MemHint_RWA;
 result.addrdesc.memattrs.shareable = FALSE;
 result.addrdesc.memattrs.outershareable = FALSE;
 elsif acctype != AccType_IFETCH then
 // Treat data as Device
 result.addrdesc.memattrs.type = MemType_Device;
 result.addrdesc.memattrs.device = DeviceType_nGnRnE;
 result.addrdesc.memattrs.inner = MemAttrHints UNKNOWN;
 else
 // Instruction cacheability controlled by SCTLR/HSCTLR.I
 if PSTATE.EL == EL2 then
 cacheable = HSCTLR.I == '1';
 else
 cacheable = SCTLR.I == '1';
 result.addrdesc.memattrs.type = MemType_Normal;
 if cacheable then
 result.addrdesc.memattrs.inner.attrs = MemAttr_WT;
 result.addrdesc.memattrs.inner.hints = MemHint_RA;
 else
 result.addrdesc.memattrs.inner.attrs = MemAttr_NC;
 result.addrdesc.memattrs.inner.hints = MemHint_No;
 result.addrdesc.memattrs.shareable = TRUE;
 result.addrdesc.memattrs.outershareable = TRUE;

 result.addrdesc.memattrs.outer = result.addrdesc.memattrs.inner;

 result.addrdesc.memattrs = MemAttrDefaults(result.addrdesc.memattrs);

 result.perms.ap = bits(3) UNKNOWN;
 result.perms.xn = '0';
 result.perms.pxn = '0';

 result.nG = bit UNKNOWN;
 result.contiguous = boolean UNKNOWN;
 result.domain = bits(4) UNKNOWN;
 result.level = integer UNKNOWN;
 result.blocksize = integer UNKNOWN;
 result.addrdesc.paddress.physicaladdress = ZeroExtend(vaddress);
 result.addrdesc.paddress.NS = if IsSecure() then '0' else '1';
 result.addrdesc.fault = AArch32.NoFault();

 return result;

aarch32/translation/checks/AArch32.CheckDomain

 // AArch32.CheckDomain()
 // =====================

 (boolean, FaultRecord) AArch32.CheckDomain(bits(4) domain, bits(32) vaddress, integer level,
 AccType acctype, boolean iswrite)

 index = 2 * UInt(domain);
 attrfield = DACR<index+1:index>;
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. E1-859
ID060316 Non-Confidential

E1 ARMv8.1 Pseudocode
E1.3 Library pseudocode for AArch32

 if attrfield == '10' then // Reserved, maps to an allocated value
 // Reserved value maps to an allocated value
 (-, attrfield) = ConstrainUnpredictableBits();

 if attrfield == '00' then
 fault = AArch32.DomainFault(domain, level, acctype, iswrite);
 else
 fault = AArch32.NoFault();

 permissioncheck = (attrfield == '01');

 return (permissioncheck, fault);

aarch32/translation/checks/AArch32.CheckPermission

 // AArch32.CheckPermission()
 // =========================
 // Function used for permission checking from AArch32 stage 1 translations

 FaultRecord AArch32.CheckPermission(Permissions perms, bits(32) vaddress, integer level,
 bits(4) domain, bit NS, AccType acctype, boolean iswrite)
 assert ELUsingAArch32(S1TranslationRegime());

 if PSTATE.EL != EL2 then
 wxn = SCTLR.WXN == '1';
 if TTBCR.EAE == '1' || SCTLR.AFE == '1' || perms.ap<0> == '1' then
 priv_r = TRUE;
 priv_w = perms.ap<2> == '0';
 user_r = perms.ap<1> == '1';
 user_w = perms.ap<2:1> == '01';
 else
 priv_r = perms.ap<2:1> != '00';
 priv_w = perms.ap<2:1> == '01';
 user_r = perms.ap<1> == '1';
 user_w = FALSE;
 uwxn = SCTLR.UWXN == '1';

 if (HavePANExt() && PSTATE.PAN == '1' && user_r && PSTATE.EL != EL0 &&
 !(acctype IN {AccType_DC,AccType_AT,AccType_UNPRIV,AccType_IFETCH})) then
 priv_r = FALSE; priv_w = FALSE;

 user_xn = !user_r || perms.xn == '1' || (user_w && wxn);
 priv_xn = (!priv_r || perms.xn == '1' || perms.pxn == '1' ||
 (priv_w && wxn) || (user_w && uwxn));
 ispriv = PSTATE.EL != EL0 && acctype != AccType_UNPRIV;

 if ispriv then
 (r, w, xn) = (priv_r, priv_w, priv_xn);
 else
 (r, w, xn) = (user_r, user_w, user_xn);
 else
 // Access from EL2
 wxn = HSCTLR.WXN == '1';
 r = TRUE;
 w = perms.ap<2> == '0';
 xn = perms.xn == '1' || (w && wxn);

 // Restriction on Secure instruction fetch
 if HaveEL(EL3) && IsSecure() && NS == '1' then
 secure_instr_fetch = if ELUsingAArch32(EL3) then SCR.SIF else SCR_EL3.SIF;
 if secure_instr_fetch == '1' then xn = TRUE;

 if acctype == AccType_IFETCH then
 fail = xn;
 elsif acctype IN { AccType_ATOMICRW, AccType_ORDEREDRW } then
 fail = !r || !w;
E1-860 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

E1 ARMv8.1 Pseudocode
E1.3 Library pseudocode for AArch32
 failedread = !r;
 elsif iswrite then
 fail = !w;
 failedread = FALSE;
 else
 fail = !r;
 failedread = TRUE;

 if fail then
 secondstage = FALSE;
 s2fs1walk = FALSE;
 ipaddress = bits(40) UNKNOWN;
 return AArch32.PermissionFault(ipaddress, domain, level, acctype,
 !failedread, secondstage, s2fs1walk);
 else
 return AArch32.NoFault();

aarch32/translation/checks/AArch32.CheckS2Permission

 // AArch32.CheckS2Permission()
 // ===========================
 // Function used for permission checking from AArch32 stage 2 translations

 FaultRecord AArch32.CheckS2Permission(Permissions perms, bits(32) vaddress, bits(40) ipaddress,
 integer level, AccType acctype, boolean iswrite,
 boolean s2fs1walk)

 assert HaveEL(EL2) && !IsSecure() && ELUsingAArch32(EL2) && HasS2Translation();

 r = perms.ap<1> == '1';
 w = perms.ap<2> == '1';
 xn = !r || perms.xn == '1';

 // Stage 1 walk is checked as a read, regardless of the original type
 if acctype == AccType_IFETCH && !s2fs1walk then
 fail = xn;
 elsif (acctype IN { AccType_ATOMICRW, AccType_ORDEREDRW }) && !s2fs1walk then
 fail = !r || !w;
 failedread = !r;
 elsif iswrite && !s2fs1walk then
 fail = !w;
 failedread = FALSE;
 else
 fail = !r;
 failedread = !iswrite;

 if fail then
 domain = bits(4) UNKNOWN;
 secondstage = TRUE;
 return AArch32.PermissionFault(ipaddress, domain, level, acctype,
 !failedread, secondstage, s2fs1walk);
 else
 return AArch32.NoFault();

aarch32/translation/debug/AArch32.CheckBreakpoint

 // AArch32.CheckBreakpoint()
 // =========================
 // Called before executing the instruction of length "size" bytes at "vaddress" in an AArch32
 // translation regime.
 // The breakpoint can in fact be evaluated well ahead of execution, for example, at instruction
 // fetch. This is the simple sequential execution of the program.

 FaultRecord AArch32.CheckBreakpoint(bits(32) vaddress, integer size)
 assert ELUsingAArch32(S1TranslationRegime());
 assert size IN {2,4};
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. E1-861
ID060316 Non-Confidential

E1 ARMv8.1 Pseudocode
E1.3 Library pseudocode for AArch32

 match = FALSE;
 mismatch = FALSE;

 for i = 0 to UInt(DBGDIDR.BRPs)
 (match_i, mismatch_i) = AArch32.BreakpointMatch(i, vaddress, size);
 match = match || match_i;
 mismatch = mismatch || mismatch_i;

 if match && HaltOnBreakpointOrWatchpoint() then
 reason = DebugHalt_Breakpoint;
 Halt(reason);
 elsif (match || mismatch) && DBGDSCRext.MDBGen == '1' && AArch32.GenerateDebugExceptions() then
 acctype = AccType_IFETCH;
 iswrite = FALSE;
 debugmoe = DebugException_Breakpoint;
 return AArch32.DebugFault(acctype, iswrite, debugmoe);
 else
 return AArch32.NoFault();

aarch32/translation/debug/AArch32.CheckDebug

 // AArch32.CheckDebug()
 // ====================
 // Called on each access to check for a debug exception or entry to Debug state.

 FaultRecord AArch32.CheckDebug(bits(32) vaddress, AccType acctype, boolean iswrite, integer size)

 FaultRecord fault = AArch32.NoFault();

 d_side = (acctype != AccType_IFETCH);
 generate_exception = AArch32.GenerateDebugExceptions() && DBGDSCRext.MDBGen == '1';
 halt = HaltOnBreakpointOrWatchpoint();
 // Relative priority of Vector Catch and Breakpoint exceptions not defined in the architecture
 vector_catch_first = ConstrainUnpredictableBool();

 if !d_side && vector_catch_first && generate_exception then
 fault = AArch32.CheckVectorCatch(vaddress, size);

 if fault.type == Fault_None && (generate_exception || halt) then
 if d_side then
 fault = AArch32.CheckWatchpoint(vaddress, acctype, iswrite, size);
 else
 fault = AArch32.CheckBreakpoint(vaddress, size);

 if fault.type == Fault_None && !d_side && !vector_catch_first && generate_exception then
 return AArch32.CheckVectorCatch(vaddress, size);

 return fault;

aarch32/translation/debug/AArch32.CheckVectorCatch

 // AArch32.CheckVectorCatch()
 // ==========================
 // Called before executing the instruction of length "size" bytes at "vaddress" in an AArch32
 // translation regime.
 // Vector Catch can in fact be evaluated well ahead of execution, for example, at instruction
 // fetch. This is the simple sequential execution of the program.

 FaultRecord AArch32.CheckVectorCatch(bits(32) vaddress, integer size)
 assert ELUsingAArch32(S1TranslationRegime());

 match = AArch32.VCRMatch(vaddress);
 if size == 4 && !match && AArch32.VCRMatch(vaddress + 2) then
 match = ConstrainUnpredictableBool();

E1-862 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

E1 ARMv8.1 Pseudocode
E1.3 Library pseudocode for AArch32
 if match && DBGDSCRext.MDBGen == '1' && AArch32.GenerateDebugExceptions() then
 acctype = AccType_IFETCH;
 iswrite = FALSE;
 debugmoe = DebugException_VectorCatch;
 return AArch32.DebugFault(acctype, iswrite, debugmoe);
 else
 return AArch32.NoFault();

aarch32/translation/debug/AArch32.CheckWatchpoint

 // AArch32.CheckWatchpoint()
 // =========================
 // Called before accessing the memory location of "size" bytes at "address".

 FaultRecord AArch32.CheckWatchpoint(bits(32) vaddress, AccType acctype,
 boolean iswrite, integer size)
 assert ELUsingAArch32(S1TranslationRegime());

 match = FALSE;
 ispriv = PSTATE.EL != EL0 && !(PSTATE.EL == EL1 && acctype == AccType_UNPRIV);

 for i = 0 to UInt(DBGDIDR.WRPs)
 match = match || AArch32.WatchpointMatch(i, vaddress, size, ispriv, iswrite);

 if match && HaltOnBreakpointOrWatchpoint() then
 reason = DebugHalt_Watchpoint;
 Halt(reason);
 elsif match && DBGDSCRext.MDBGen == '1' && AArch32.GenerateDebugExceptions() then
 debugmoe = DebugException_Watchpoint;
 return AArch32.DebugFault(acctype, iswrite, debugmoe);
 else
 return AArch32.NoFault();

aarch32/translation/faults/AArch32.AccessFlagFault

 // AArch32.AccessFlagFault()
 // =========================

 FaultRecord AArch32.AccessFlagFault(bits(40) ipaddress, bits(4) domain, integer level,
 AccType acctype, boolean iswrite, boolean secondstage,
 boolean s2fs1walk)

 extflag = bit UNKNOWN;
 debugmoe = bits(4) UNKNOWN;
 return AArch32.CreateFaultRecord(Fault_AccessFlag, ipaddress, domain, level, acctype, iswrite,
 extflag, debugmoe, secondstage, s2fs1walk);

aarch32/translation/faults/AArch32.AddressSizeFault

 // AArch32.AddressSizeFault()
 // ==========================

 FaultRecord AArch32.AddressSizeFault(bits(40) ipaddress, bits(4) domain, integer level,
 AccType acctype, boolean iswrite, boolean secondstage,
 boolean s2fs1walk)

 extflag = bit UNKNOWN;
 debugmoe = bits(4) UNKNOWN;
 return AArch32.CreateFaultRecord(Fault_AddressSize, ipaddress, domain, level, acctype, iswrite,
 extflag, debugmoe, secondstage, s2fs1walk);
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. E1-863
ID060316 Non-Confidential

E1 ARMv8.1 Pseudocode
E1.3 Library pseudocode for AArch32
aarch32/translation/faults/AArch32.AlignmentFault

 // AArch32.AlignmentFault()
 // ========================

 FaultRecord AArch32.AlignmentFault(AccType acctype, boolean iswrite, boolean secondstage)

 ipaddress = bits(40) UNKNOWN;
 domain = bits(4) UNKNOWN;
 level = integer UNKNOWN;
 extflag = bit UNKNOWN;
 debugmoe = bits(4) UNKNOWN;
 s2fs1walk = boolean UNKNOWN;

 return AArch32.CreateFaultRecord(Fault_Alignment, ipaddress, domain, level, acctype, iswrite,
 extflag, debugmoe, secondstage, s2fs1walk);

aarch32/translation/faults/AArch32.AsynchExternalAbort

 // AArch32.AsynchExternalAbort()
 // =============================
 // Wrapper function for asynchronous external aborts

 FaultRecord AArch32.AsynchExternalAbort(boolean parity, bit extflag)

 type = if parity then Fault_AsyncParity else Fault_AsyncExternal;
 ipaddress = bits(40) UNKNOWN;
 domain = bits(4) UNKNOWN;
 level = integer UNKNOWN;
 acctype = AccType_NORMAL;
 iswrite = boolean UNKNOWN;
 debugmoe = bits(4) UNKNOWN;
 secondstage = FALSE;
 s2fs1walk = FALSE;

 return AArch32.CreateFaultRecord(type, ipaddress, domain, level, acctype, iswrite, extflag,
 debugmoe, secondstage, s2fs1walk);

aarch32/translation/faults/AArch32.DebugFault

 // AArch32.DebugFault()
 // ====================

 FaultRecord AArch32.DebugFault(AccType acctype, boolean iswrite, bits(4) debugmoe)

 ipaddress = bits(40) UNKNOWN;
 domain = bits(4) UNKNOWN;
 level = integer UNKNOWN;
 extflag = bit UNKNOWN;
 secondstage = FALSE;
 s2fs1walk = FALSE;

 return AArch32.CreateFaultRecord(Fault_Debug, ipaddress, domain, level, acctype, iswrite,
 extflag, debugmoe, secondstage, s2fs1walk);

aarch32/translation/faults/AArch32.DomainFault

 // AArch32.DomainFault()
 // =====================

 FaultRecord AArch32.DomainFault(bits(4) domain, integer level, AccType acctype, boolean iswrite)

 ipaddress = bits(40) UNKNOWN;
 extflag = bit UNKNOWN;
 debugmoe = bits(4) UNKNOWN;
 secondstage = FALSE;
E1-864 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

E1 ARMv8.1 Pseudocode
E1.3 Library pseudocode for AArch32
 s2fs1walk = FALSE;

 return AArch32.CreateFaultRecord(Fault_Domain, ipaddress, domain, level, acctype, iswrite,
 extflag, debugmoe, secondstage, s2fs1walk);

aarch32/translation/faults/AArch32.NoFault

 // AArch32.NoFault()
 // =================

 FaultRecord AArch32.NoFault()

 ipaddress = bits(40) UNKNOWN;
 domain = bits(4) UNKNOWN;
 level = integer UNKNOWN;
 acctype = AccType_NORMAL;
 iswrite = boolean UNKNOWN;
 extflag = bit UNKNOWN;
 debugmoe = bits(4) UNKNOWN;
 secondstage = FALSE;
 s2fs1walk = FALSE;

 return AArch32.CreateFaultRecord(Fault_None, ipaddress, domain, level, acctype, iswrite,
 extflag, debugmoe, secondstage, s2fs1walk);

aarch32/translation/faults/AArch32.PermissionFault

 // AArch32.PermissionFault()
 // =========================

 FaultRecord AArch32.PermissionFault(bits(40) ipaddress, bits(4) domain, integer level,
 AccType acctype, boolean iswrite, boolean secondstage,
 boolean s2fs1walk)

 extflag = bit UNKNOWN;
 debugmoe = bits(4) UNKNOWN;
 return AArch32.CreateFaultRecord(Fault_Permission, ipaddress, domain, level, acctype, iswrite,
 extflag, debugmoe, secondstage, s2fs1walk);

aarch32/translation/faults/AArch32.TranslationFault

 // AArch32.TranslationFault()
 // ==========================

 FaultRecord AArch32.TranslationFault(bits(40) ipaddress, bits(4) domain, integer level,
 AccType acctype, boolean iswrite, boolean secondstage,
 boolean s2fs1walk)

 extflag = bit UNKNOWN;
 debugmoe = bits(4) UNKNOWN;
 return AArch32.CreateFaultRecord(Fault_Translation, ipaddress, domain, level, acctype, iswrite,
 extflag, debugmoe, secondstage, s2fs1walk);

aarch32/translation/translation/AArch32.FirstStageTranslate

 // AArch32.FirstStageTranslate()
 // =============================
 // Perform a stage 1 translation walk. The function used by Address Translation operations is
 // similar except it uses the translation regime specified for the instruction.

 AddressDescriptor AArch32.FirstStageTranslate(bits(32) vaddress, AccType acctype, boolean iswrite,
 boolean wasaligned, integer size)

 if PSTATE.EL == EL2 then
 s1_enabled = HSCTLR.M == '1';
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. E1-865
ID060316 Non-Confidential

E1 ARMv8.1 Pseudocode
E1.3 Library pseudocode for AArch32
 elsif HaveEL(EL2) && !IsSecure() then
 tge = (if ELUsingAArch32(EL2) then HCR.TGE else HCR_EL2.TGE);
 dc = (if ELUsingAArch32(EL2) then HCR.DC else HCR_EL2.DC);
 s1_enabled = tge == '0' && dc == '0' && SCTLR.M == '1';
 else
 dc = (if ELUsingAArch32(EL2) then HCR.DC else HCR_EL2.DC);
 s1_enabled = dc == '0' && SCTLR.M == '1';

 ipaddress = bits(40) UNKNOWN;
 secondstage = FALSE;
 s2fs1walk = FALSE;

 if s1_enabled then // First stage enabled
 use_long_descriptor_format = PSTATE.EL == EL2 || TTBCR.EAE == '1';
 if use_long_descriptor_format then
 S1 = AArch32.TranslationTableWalkLD(ipaddress, vaddress, acctype, iswrite, secondstage,
 s2fs1walk, size);
 permissioncheck = TRUE; domaincheck = FALSE;
 else
 S1 = AArch32.TranslationTableWalkSD(vaddress, acctype, iswrite, size);
 permissioncheck = TRUE; domaincheck = TRUE;
 else
 S1 = AArch32.TranslateAddressS1Off(vaddress, acctype, iswrite);
 permissioncheck = FALSE; domaincheck = FALSE;

 // Check for unaligned data accesses to Device memory
 if (!wasaligned && !IsFault(S1.addrdesc) && S1.addrdesc.memattrs.type == MemType_Device &&
 acctype != AccType_IFETCH) then
 S1.addrdesc.fault = AArch32.AlignmentFault(acctype, iswrite, secondstage);
 if !IsFault(S1.addrdesc) && domaincheck then
 (permissioncheck, abort) = AArch32.CheckDomain(S1.domain, vaddress, S1.level, acctype,
 iswrite);
 S1.addrdesc.fault = abort;

 if !IsFault(S1.addrdesc) && permissioncheck then
 S1.addrdesc.fault = AArch32.CheckPermission(S1.perms, vaddress, S1.level,
 S1.domain, S1.addrdesc.paddress.NS,
 acctype, iswrite);

 // Check for instruction fetches from Device memory not marked as execute-never. If there has
 // not been a Permission Fault then the memory is not marked execute-never.
 if (!IsFault(S1.addrdesc) && S1.addrdesc.memattrs.type == MemType_Device &&
 acctype == AccType_IFETCH) then
 S1.addrdesc = AArch32.InstructionDevice(S1.addrdesc, vaddress, ipaddress, S1.level,
 S1.domain, acctype, iswrite,
 secondstage, s2fs1walk);

 return S1.addrdesc;

aarch32/translation/translation/AArch32.FullTranslate

 // AArch32.FullTranslate()
 // =======================
 // Perform both stage 1 and stage 2 translation walks for the current translation regime. The
 // function used by Address Translation operations is similar except it uses the translation
 // regime specified for the instruction.

 AddressDescriptor AArch32.FullTranslate(bits(32) vaddress, AccType acctype, boolean iswrite,
 boolean wasaligned, integer size)

 // First Stage Translation
 S1 = AArch32.FirstStageTranslate(vaddress, acctype, iswrite, wasaligned, size);
 if !IsFault(S1) && HasS2Translation() then
 s2fs1walk = FALSE;
 result = AArch32.SecondStageTranslate(S1, vaddress, acctype, iswrite, wasaligned, s2fs1walk,
 size);
 else
E1-866 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

E1 ARMv8.1 Pseudocode
E1.3 Library pseudocode for AArch32
 result = S1;

 return result;

aarch32/translation/translation/AArch32.SecondStageTranslate

 // AArch32.SecondStageTranslate()
 // ==============================
 // Perform a stage 2 translation walk. The function used by Address Translation operations is
 // similar except it uses the translation regime specified for the instruction.

 AddressDescriptor AArch32.SecondStageTranslate(AddressDescriptor S1, bits(32) vaddress,
 AccType acctype, boolean iswrite, boolean wasaligned,
 boolean s2fs1walk, integer size)
 assert HasS2Translation();
 assert IsZero(S1.paddress.physicaladdress<47:40>);
 hwupdatewalk = FALSE;
 if !ELUsingAArch32(EL2) then
 return AArch64.SecondStageTranslate(S1, ZeroExtend(vaddress, 64), acctype, iswrite,
 wasaligned, s2fs1walk, size, hwupdatewalk);

 s2_enabled = HCR.VM == '1' || HCR.DC == '1';
 secondstage = TRUE;

 if s2_enabled then // Second stage enabled
 ipaddress = S1.paddress.physicaladdress<39:0>;

 S2 = AArch32.TranslationTableWalkLD(ipaddress, vaddress, acctype, iswrite, secondstage,
 s2fs1walk, size);

 // Check for unaligned data accesses to Device memory
 if (!wasaligned && !IsFault(S2.addrdesc) && S2.addrdesc.memattrs.type == MemType_Device &&
 acctype != AccType_IFETCH) then
 S2.addrdesc.fault = AArch32.AlignmentFault(acctype, iswrite, secondstage);

 if !IsFault(S2.addrdesc) then
 S2.addrdesc.fault = AArch32.CheckS2Permission(S2.perms, vaddress, ipaddress, S2.level,
 acctype, iswrite, s2fs1walk);
 // Check for instruction fetches from Device memory not marked as execute-never. As there
 // has not been a Permission Fault then the memory is not marked execute-never.
 if (!s2fs1walk && !IsFault(S2.addrdesc) && S2.addrdesc.memattrs.type == MemType_Device &&
 acctype == AccType_IFETCH) then
 domain = bits(4) UNKNOWN;
 S2.addrdesc = AArch32.InstructionDevice(S2.addrdesc, vaddress, ipaddress, S2.level,
 domain, acctype, iswrite,
 secondstage, s2fs1walk);

 // Check for protected table walk
 if (s2fs1walk && !IsFault(S2.addrdesc) && HCR.PTW == '1' &&
 S2.addrdesc.memattrs.type == MemType_Device) then
 domain = bits(4) UNKNOWN;
 S2.addrdesc.fault = AArch32.PermissionFault(ipaddress, domain, S2.level, acctype,
 iswrite, secondstage, s2fs1walk);

 result = CombineS1S2Desc(S1, S2.addrdesc);
 else
 result = S1;

 return result;

aarch32/translation/translation/AArch32.SecondStageWalk

 // AArch32.SecondStageWalk()
 // =========================
 // Perform a stage 2 translation on a stage 1 translation page table walk access.

DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. E1-867
ID060316 Non-Confidential

E1 ARMv8.1 Pseudocode
E1.3 Library pseudocode for AArch32
 AddressDescriptor AArch32.SecondStageWalk(AddressDescriptor S1, bits(32) vaddress, AccType acctype,
 boolean iswrite, integer size)

 assert HasS2Translation();

 s2fs1walk = TRUE;
 wasaligned = TRUE;
 return AArch32.SecondStageTranslate(S1, vaddress, acctype, iswrite, wasaligned, s2fs1walk,
 size);

aarch32/translation/translation/AArch32.TranslateAddress

 // AArch32.TranslateAddress()
 // ==========================
 // Main entry point for translating an address

 AddressDescriptor AArch32.TranslateAddress(bits(32) vaddress, AccType acctype, boolean iswrite,
 boolean wasaligned, integer size)

 if !ELUsingAArch32(S1TranslationRegime()) then
 return AArch64.TranslateAddress(ZeroExtend(vaddress, 64), acctype, iswrite, wasaligned,
 size);
 result = AArch32.FullTranslate(vaddress, acctype, iswrite, wasaligned, size);

 if !(acctype IN {AccType_PTW, AccType_IC, AccType_AT}) && !IsFault(result) then
 result.fault = AArch32.CheckDebug(vaddress, acctype, iswrite, size);

 // Update virtual address for abort functions
 result.vaddress = ZeroExtend(vaddress);

 return result;

aarch32/translation/walk/AArch32.TranslationTableWalkLD

 // AArch32.TranslationTableWalkLD()
 // ================================
 // Returns a result of a translation table walk using the Long-descriptor format
 //
 // Implementations might cache information from memory in any number of non-coherent TLB
 // caching structures, and so avoid memory accesses that have been expressed in this
 // pseudocode. The use of such TLBs is not expressed in this pseudocode.

 TLBRecord AArch32.TranslationTableWalkLD(bits(40) ipaddress, bits(32) vaddress,
 AccType acctype, boolean iswrite, boolean secondstage,
 boolean s2fs1walk, integer size)
 if !secondstage then
 assert ELUsingAArch32(S1TranslationRegime());
 else
 assert HaveEL(EL2) && !IsSecure() && ELUsingAArch32(EL2) && HasS2Translation();

 TLBRecord result;
 AddressDescriptor descaddr;
 bits(64) baseregister;
 bits(40) inputaddr; // Input Address is 'vaddress' for stage 1, 'ipaddress' for stage 2
 domain = bits(4) UNKNOWN;

 descaddr.memattrs.type = MemType_Normal;

 // Fixed parameters for the page table walk:
 // grainsize = Log2(Size of Table) - Size of Table is 4KB in AArch32
 // stride = Log2(Address per Level) - Bits of address consumed at each level
 constant integer grainsize = 12; // Log2(4KB page size)
 constant integer stride = grainsize - 3; // Log2(page size / 8 bytes)

 // Derived parameters for the page table walk:
 // inputsize = Log2(Size of Input Address) - Input Address size in bits
E1-868 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

E1 ARMv8.1 Pseudocode
E1.3 Library pseudocode for AArch32
 // level = Level to start walk from
 // This means that the number of levels after start level = 3-level

 if !secondstage then
 // First stage translation
 inputaddr = ZeroExtend(vaddress);
 if PSTATE.EL == EL2 then
 inputsize = 32 - UInt(HTCR.T0SZ);
 basefound = inputsize == 32 || IsZero(inputaddr<31:inputsize>);
 disabled = FALSE;
 baseregister = HTTBR;
 descaddr.memattrs = WalkAttrDecode(HTCR.SH0, HTCR.ORGN0, HTCR.IRGN0);
 reversedescriptors = HSCTLR.EE == '1';
 lookupsecure = FALSE;
 singlepriv = TRUE;
 else
 basefound = FALSE;
 disabled = FALSE;
 t0size = UInt(TTBCR.T0SZ);
 if t0size == 0 || IsZero(inputaddr<31:(32-t0size)>) then
 inputsize = 32 - t0size;
 basefound = TRUE;
 disabled = TTBCR.EPD0 == '1';
 baseregister = TTBR0;
 descaddr.memattrs = WalkAttrDecode(TTBCR.SH0, TTBCR.ORGN0, TTBCR.IRGN0);
 t1size = UInt(TTBCR.T1SZ);
 if (t1size == 0 && !basefound) || (t1size > 0 && IsOnes(inputaddr<31:(32-t1size)>)) then
 inputsize = 32 - t1size;
 basefound = TRUE;
 disabled = TTBCR.EPD1 == '1';
 baseregister = TTBR1;
 descaddr.memattrs = WalkAttrDecode(TTBCR.SH1, TTBCR.ORGN1, TTBCR.IRGN1);
 reversedescriptors = SCTLR.EE == '1';
 lookupsecure = IsSecure();
 singlepriv = FALSE;
 // The starting level is the number of strides needed to consume the input address
 level = 4 - RoundUp(Real(inputsize - grainsize) / Real(stride));

 else
 // Second stage translation
 inputaddr = ipaddress;
 inputsize = 32 - SInt(VTCR.T0SZ);
 // VTCR.S must match VTCR.T0SZ[3]
 if VTCR.S != VTCR.T0SZ<3> then
 (-, inputsize) = ConstrainUnpredictableInteger(32-7, 32+8);
 basefound = inputsize == 40 || IsZero(inputaddr<39:inputsize>);
 disabled = FALSE;
 baseregister = VTTBR;
 descaddr.memattrs = WalkAttrDecode(VTCR.IRGN0, VTCR.ORGN0, VTCR.SH0);
 reversedescriptors = HSCTLR.EE == '1';
 lookupsecure = FALSE;
 singlepriv = TRUE;

 startlevel = UInt(VTCR.SL0);
 level = 2 - startlevel;
 if level <= 0 then basefound = FALSE;

 // Number of entries in the starting level table =
 // (Size of Input Address)/((Address per level)^(Num levels remaining)*(Size of Table))
 startsizecheck = inputsize - ((3 - level)*stride + grainsize); // Log2(Num of entries)

 // Check for starting level table with fewer than 2 entries or longer than 16 pages.
 // Lower bound check is: startsizecheck < Log2(2 entries)
 // That is, VTCR.SL0 == '00' and SInt(VTCR.T0SZ) > 1, Size of Input Address < 2^31 bytes
 // Upper bound check is: startsizecheck > Log2(pagesize/8*16)
 // That is, VTCR.SL0 == '01' and SInt(VTCR.T0SZ) < -2, Size of Input Address > 2^34 bytes
 if startsizecheck < 1 || startsizecheck > stride + 4 then basefound = FALSE;

DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. E1-869
ID060316 Non-Confidential

E1 ARMv8.1 Pseudocode
E1.3 Library pseudocode for AArch32
 if !basefound || disabled then
 level = 1; // AArch64 reports this as a level 0 fault
 result.addrdesc.fault = AArch32.TranslationFault(ipaddress, domain, level, acctype, iswrite,
 secondstage, s2fs1walk);
 return result;

 if !IsZero(baseregister<47:40>) then
 level = 0;
 result.addrdesc.fault = AArch32.AddressSizeFault(ipaddress, domain, level, acctype, iswrite,
 secondstage, s2fs1walk);
 return result;

 // Bottom bound of the Base address is:
 // Log2(8 bytes per entry)+Log2(Number of entries in starting level table)
 // Number of entries in starting level table =
 // (Size of Input Address)/((Address per level)^(Num levels remaining)*(Size of Table))
 baselowerbound = 3 + inputsize - ((3-level)*stride + grainsize); // Log2(Num of entries*8)
 baseaddress = baseregister<39:baselowerbound>:Zeros(baselowerbound);

 ns_table = if lookupsecure then '0' else '1';
 ap_table = '00';
 xn_table = '0';
 pxn_table = '0';

 addrselecttop = inputsize - 1;

 repeat
 addrselectbottom = (3-level)*stride + grainsize;

 bits(40) index = ZeroExtend(inputaddr<addrselecttop:addrselectbottom>:'000');
 descaddr.paddress.physicaladdress = ZeroExtend(baseaddress OR index);
 descaddr.paddress.NS = ns_table;

 // If there are two stages of translation, then the first stage table walk addresses
 // are themselves subject to translation
 if secondstage || !HasS2Translation() then
 descaddr2 = descaddr;
 else
 descaddr2 = AArch32.SecondStageWalk(descaddr, vaddress, acctype, iswrite, 8);
 // Check for a fault on the stage 2 walk
 if IsFault(descaddr2) then
 result.addrdesc.fault = descaddr2.fault;
 return result;

 // Update virtual address for abort functions
 descaddr2.vaddress = ZeroExtend(vaddress);

 desc = _Mem[descaddr2, 8, AccType_PTW];
 if reversedescriptors then desc = BigEndianReverse(desc);

 if desc<0> == '0' || (desc<1:0> == '01' && level == 3) then
 // Fault (00), Reserved (10), or Block (01) at level 3
 result.addrdesc.fault = AArch32.TranslationFault(ipaddress, domain, level, acctype,
 iswrite, secondstage, s2fs1walk);
 return result;

 // Valid Block, Page, or Table entry
 if desc<1:0> == '01' || level == 3 then // Block (01) or Page (11)
 blocktranslate = TRUE;
 else // Table (11)
 if !IsZero(desc<47:40>) then
 result.addrdesc.fault = AArch32.AddressSizeFault(ipaddress, domain, level, acctype,
 iswrite, secondstage, s2fs1walk);
 return result;

 baseaddress = desc<39:grainsize>:Zeros(grainsize);

 if !secondstage then
E1-870 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

E1 ARMv8.1 Pseudocode
E1.3 Library pseudocode for AArch32
 // Unpack the upper and lower table attributes
 ns_table = ns_table OR desc<63>;
 ap_table<1> = ap_table<1> OR desc<62>; // read-only
 xn_table = xn_table OR desc<60>;
 // pxn_table and ap_table[0] apply only in EL1&0 translation regimes
 if !singlepriv then
 ap_table<0> = ap_table<0> OR desc<61>; // privileged
 pxn_table = pxn_table OR desc<59>;

 level = level + 1;
 addrselecttop = addrselectbottom - 1;
 blocktranslate = FALSE;
 until blocktranslate;

 // Check the output address is inside the supported range
 if !IsZero(desc<47:40>) then
 result.addrdesc.fault = AArch32.AddressSizeFault(ipaddress, domain, level, acctype,
 iswrite, secondstage, s2fs1walk);
 return result;

 // Unpack the descriptor into address and upper and lower block attributes
 outputaddress = desc<39:addrselectbottom>:inputaddr<addrselectbottom-1:0>;

 // Check the access flag
 if desc<10> == '0' then
 result.addrdesc.fault = AArch32.AccessFlagFault(ipaddress, domain, level, acctype,
 iswrite, secondstage, s2fs1walk);
 return result;
 xn = desc<54>;
 pxn = desc<53>;
 contiguousbit = desc<52>;
 nG = desc<11>;
 sh = desc<9:8>;
 ap = desc<7:6>:'1';
 memattr = desc<5:2>; // AttrIndx and NS bit in stage 1

 result.domain = bits(4) UNKNOWN; // Domains not used
 result.level = level;
 result.blocksize = 2^((3-level)*stride + grainsize);

 // Stage 1 translation regimes also inherit attributes from the tables
 if !secondstage then
 result.perms.xn = xn OR xn_table;
 result.perms.ap<2> = ap<2> OR ap_table<1>; // Force read-only
 // PXN, nG and AP[1] apply only in EL1&0 stage 1 translation regimes
 if !singlepriv then
 result.perms.ap<1> = ap<1> AND NOT(ap_table<0>); // Force privileged only
 result.perms.pxn = pxn OR pxn_table;
 // Pages from Non-secure tables are marked non-global in Secure EL1&0
 if IsSecure() then
 result.nG = nG OR ns_table;
 else
 result.nG = nG;
 else
 result.perms.ap<1> = '1';
 result.perms.pxn = '0';
 result.nG = '0';
 result.perms.ap<0> = '1';
 result.addrdesc.memattrs = AArch32.S1AttrDecode(sh, memattr<2:0>, acctype);
 result.addrdesc.paddress.NS = memattr<3> OR ns_table;
 else
 result.perms.ap<2:1> = ap<2:1>;
 result.perms.ap<0> = '1';
 result.perms.xn = xn;
 result.perms.pxn = '0';
 result.nG = '0';
 result.addrdesc.memattrs = S2AttrDecode(sh, memattr, acctype);
 result.addrdesc.paddress.NS = '1';
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. E1-871
ID060316 Non-Confidential

E1 ARMv8.1 Pseudocode
E1.3 Library pseudocode for AArch32

 result.addrdesc.paddress.physicaladdress = ZeroExtend(outputaddress);
 result.addrdesc.fault = AArch32.NoFault();
 result.contiguous = contiguousbit == '1';

 return result;

aarch32/translation/walk/AArch32.TranslationTableWalkSD

 // AArch32.TranslationTableWalkSD()
 // ================================
 // Returns a result of a translation table walk using the Short-descriptor format
 //
 // Implementations might cache information from memory in any number of non-coherent TLB
 // caching structures, and so avoid memory accesses that have been expressed in this
 // pseudocode. The use of such TLBs is not expressed in this pseudocode.

 TLBRecord AArch32.TranslationTableWalkSD(bits(32) vaddress, AccType acctype, boolean iswrite,
 integer size)
 assert ELUsingAArch32(S1TranslationRegime());

 // This is only called when address translation is enabled
 TLBRecord result;
 AddressDescriptor l1descaddr;
 AddressDescriptor l2descaddr;
 bits(40) outputaddress;

 // Variables for Abort functions
 ipaddress = bits(40) UNKNOWN;
 secondstage = FALSE;
 s2fs1walk = FALSE;

 // Default setting of the domain
 domain = bits(4) UNKNOWN;

 // Determine correct Translation Table Base Register to use.
 bits(64) ttbr;
 n = UInt(TTBCR.N);
 if n == 0 || IsZero(vaddress<31:(32-n)>) then
 ttbr = TTBR0;
 disabled = (TTBCR.PD0 == '1');
 else
 ttbr = TTBR1;
 disabled = (TTBCR.PD1 == '1');
 n = 0; // TTBR1 translation always works like N=0 TTBR0 translation

 // Check this Translation Table Base Register is not disabled.
 if disabled then
 level = 1;
 result.addrdesc.fault = AArch32.TranslationFault(ipaddress, domain, level, acctype, iswrite,
 secondstage, s2fs1walk);
 return result;

 // Obtain descriptor from initial lookup.
 l1descaddr.paddress.physicaladdress = ZeroExtend(ttbr<31:14-n>:vaddress<31-n:20>:'00');
 l1descaddr.paddress.NS = if IsSecure() then '0' else '1';
 IRGN = ttbr<0>:ttbr<6>; // TTBR.IRGN
 RGN = ttbr<4:3>; // TTBR.RGN
 SH = ttbr<1>:ttbr<5>; // TTBR.S:TTBR.NOS
 l1descaddr.memattrs = WalkAttrDecode(SH, RGN, IRGN);

 if !HaveEL(EL2) || IsSecure() then
 // if only 1 stage of translation
 l1descaddr2 = l1descaddr;
 else
 l1descaddr2 = AArch32.SecondStageWalk(l1descaddr, vaddress, acctype, iswrite, 4);
 // Check for a fault on the stage 2 walk
E1-872 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

E1 ARMv8.1 Pseudocode
E1.3 Library pseudocode for AArch32
 if IsFault(l1descaddr2) then
 result.addrdesc.fault = l1descaddr2.fault;
 return result;

 // Update virtual address for abort functions
 l1descaddr2.vaddress = ZeroExtend(vaddress);

 l1desc = _Mem[l1descaddr2, 4, AccType_PTW];
 if SCTLR.EE == '1' then l1desc = BigEndianReverse(l1desc);

 // Process descriptor from initial lookup.
 case l1desc<1:0> of
 when '00' // Fault, Reserved
 level = 1;
 result.addrdesc.fault = AArch32.TranslationFault(ipaddress, domain, level, acctype,
 iswrite, secondstage, s2fs1walk);
 return result;

 when '01' // Large page or Small page
 domain = l1desc<8:5>;
 level = 2;
 pxn = l1desc<2>;
 NS = l1desc<3>;

 // Obtain descriptor from level 2 lookup.
 l2descaddr.paddress.physicaladdress = ZeroExtend(l1desc<31:10>:vaddress<19:12>:'00');
 l2descaddr.paddress.NS = if IsSecure() then '0' else '1';
 l2descaddr.memattrs = l1descaddr.memattrs;

 if !HaveEL(EL2) || IsSecure() then
 // if only 1 stage of translation
 l2descaddr2 = l2descaddr;
 else
 l2descaddr2 = AArch32.SecondStageWalk(l2descaddr, vaddress, acctype, iswrite, 4);
 // Check for a fault on the stage 2 walk
 if IsFault(l2descaddr2) then
 result.addrdesc.fault = l2descaddr2.fault;
 return result;

 // Update virtual address for abort functions
 l2descaddr2.vaddress = ZeroExtend(vaddress);

 l2desc = _Mem[l2descaddr2, 4, AccType_PTW];
 if SCTLR.EE == '1' then l2desc = BigEndianReverse(l2desc);

 // Process descriptor from level 2 lookup.
 if l2desc<1:0> == '00' then
 result.addrdesc.fault = AArch32.TranslationFault(ipaddress, domain, level, acctype,
 iswrite, secondstage, s2fs1walk);
 return result;

 nG = l2desc<11>;
 S = l2desc<10>;
 ap = l2desc<9,5:4>;

 if SCTLR.AFE == '1' && l2desc<4> == '0' then
 // Hardware access to the Access Flag is not supported in ARMv8
 result.addrdesc.fault = AArch32.AccessFlagFault(ipaddress, domain, level, acctype,
 iswrite, secondstage, s2fs1walk);
 return result;

 if l2desc<1> == '0' then // Large page
 xn = l2desc<15>;
 tex = l2desc<14:12>;
 c = l2desc<3>;
 b = l2desc<2>;
 blocksize = 64;
 outputaddress = ZeroExtend(l2desc<31:16>:vaddress<15:0>);
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. E1-873
ID060316 Non-Confidential

E1 ARMv8.1 Pseudocode
E1.3 Library pseudocode for AArch32
 else // Small page
 tex = l2desc<8:6>;
 c = l2desc<3>;
 b = l2desc<2>;
 xn = l2desc<0>;
 blocksize = 4;
 outputaddress = ZeroExtend(l2desc<31:12>:vaddress<11:0>);

 when '1x' // Section or Supersection
 NS = l1desc<19>;
 nG = l1desc<17>;
 S = l1desc<16>;
 ap = l1desc<15,11:10>;
 tex = l1desc<14:12>;
 xn = l1desc<4>;
 c = l1desc<3>;
 b = l1desc<2>;
 pxn = l1desc<0>;
 level = 1;

 if SCTLR.AFE == '1' && l1desc<10> == '0' then
 // Hardware management of the Access Flag is not supported in ARMv8
 result.addrdesc.fault = AArch32.AccessFlagFault(ipaddress, domain, level, acctype,
 iswrite, secondstage, s2fs1walk);
 return result;

 if l1desc<18> == '0' then // Section
 domain = l1desc<8:5>;
 blocksize = 1024;
 outputaddress = ZeroExtend(l1desc<31:20>:vaddress<19:0>);
 else // Supersection
 domain = '0000';
 blocksize = 16384;
 outputaddress = l1desc<8:5>:l1desc<23:20>:l1desc<31:24>:vaddress<23:0>;

 // Decode the TEX, C, B and S bits to produce the TLBRecord's memory attributes
 if SCTLR.TRE == '0' then
 if RemapRegsHaveResetValues() then
 result.addrdesc.memattrs = AArch32.DefaultTEXDecode(tex, c, b, S, acctype);
 else
 result.addrdesc.memattrs = MemoryAttributes IMPLEMENTATION_DEFINED;
 else
 result.addrdesc.memattrs = AArch32.RemappedTEXDecode(tex, c, b, S, acctype);

 // Set the rest of the TLBRecord, try to add it to the TLB, and return it.
 result.perms.ap = ap;
 result.perms.xn = xn;
 result.perms.pxn = pxn;
 result.nG = nG;
 result.domain = domain;
 result.level = level;
 result.blocksize = blocksize;
 result.addrdesc.paddress.physicaladdress = ZeroExtend(outputaddress);
 result.addrdesc.paddress.NS = if IsSecure() then NS else '1';
 result.addrdesc.fault = AArch32.NoFault();

 return result;

aarch32/translation/walk/RemapRegsHaveResetValues

 boolean RemapRegsHaveResetValues();
E1-874 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

E1 ARMv8.1 Pseudocode
E1.4 Common library pseudocode
E1.4 Common library pseudocode

E1.4.1 shared/debug

shared/debug/ClearStickyErrors/ClearStickyErrors

 // ClearStickyErrors()
 // ===================

 ClearStickyErrors()
 EDSCR.TXU = '0'; // Clear TX underrun flag
 EDSCR.RXO = '0'; // Clear RX overrun flag
 if Halted() then // in Debug state
 EDSCR.ITO = '0'; // Clear ITR overrun flag
 EDSCR.ERR = '0'; // Clear cumulative error flag
 return;

shared/debug/DebugTarget/DebugTarget

 // DebugTarget()
 // =============

 bits(2) DebugTarget()
 secure = IsSecure();
 return DebugTargetFrom(secure);

shared/debug/DebugTarget/DebugTargetFrom

 // DebugTargetFrom()
 // =================
 // Returns the debug exception target Exception level

 bits(2) DebugTargetFrom(boolean secure)

 if HaveEL(EL2) && !secure then
 if ELUsingAArch32(EL2) then
 route_to_el2 = (HDCR.TDE == '1' || HCR.TGE == '1');
 else
 route_to_el2 = (MDCR_EL2.TDE == '1' || HCR_EL2.TGE == '1');
 else
 route_to_el2 = FALSE;

 if route_to_el2 then
 target = EL2;
 elsif HaveEL(EL3) && HighestELUsingAArch32() && secure then
 target = EL3;
 else
 target = EL1;

 return target;

shared/debug/DoubleLockStatus/DoubleLockStatus

 // DoubleLockStatus()
 // ==================
 // Returns the state of the OS Double Lock.
 // FALSE if OSDLR_EL1.DLK == 0 or DBGPRCR_EL1.CORENPDRQ == 1 or the PE is in Debug state.
 // TRUE if OSDLR_EL1.DLK == 1 and DBGPRCR_EL1.CORENPDRQ == 0 and the PE is in Non-debug state.

 boolean DoubleLockStatus()
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. E1-875
ID060316 Non-Confidential

E1 ARMv8.1 Pseudocode
E1.4 Common library pseudocode

 if ELUsingAArch32(EL1) then
 return DBGOSDLR.DLK == '1' && DBGPRCR.CORENPDRQ == '0' && !Halted();
 else
 return OSDLR_EL1.DLK == '1' && DBGPRCR_EL1.CORENPDRQ == '0' && !Halted();

shared/debug/FindWatchpoint/FindWatchpoint

 // FindWatchpoint()
 // ================

 integer FindWatchpoint()
 address = FAR[];
 base = Align(address, ZVAGranuleSize());
 limit = base + ZVAGranuleSize();
 repeat
 for i = 0 to UInt(ID_AA64DFR0_EL1.WRPs)
 if WatchpointByteMatch(i, address) then // Candidate found
 return i;
 address = address + 1;
 if address == limit then address = base; // Wrap round, as this must be a DC ZVA
 while address != FAR[];
 return -1; // No candidate found (should not happen)

shared/debug/authentication/AllowExternalDebugAccess

 // AllowExternalDebugAccess()
 // ==========================
 // Returns the status of EDPRSR.EDAD.

 boolean AllowExternalDebugAccess()
 // The access may also be subject to OS lock, power-down, etc.
 if ExternalInvasiveDebugEnabled() then
 if ExternalSecureInvasiveDebugEnabled() then
 return TRUE;
 elsif HaveEL(EL3) then
 return (if ELUsingAArch32(EL3) then SDCR.EDAD else MDCR_EL3.EDAD) == '0';
 else
 return !IsSecure();
 else
 return FALSE;

shared/debug/authentication/AllowExternalPMUAccess

 // AllowExternalPMUAccess()
 // ========================
 // Returns the status of EDPRSR.EPMAD.

 boolean AllowExternalPMUAccess()
 // The access may also be subject to OS lock, power-down, etc.
 if ExternalNoninvasiveDebugEnabled() then
 if ExternalSecureNoninvasiveDebugEnabled() then
 return TRUE;
 elsif HaveEL(EL3) then
 return (if ELUsingAArch32(EL3) then SDCR.EPMAD else MDCR_EL3.EPMAD) == '0';
 else
 return !IsSecure();
 else
 return FALSE;
E1-876 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

E1 ARMv8.1 Pseudocode
E1.4 Common library pseudocode
shared/debug/authentication/Debug_authentication

 signal DBGEN;
 signal NIDEN;
 signal SPIDEN;
 signal SPNIDEN;

shared/debug/authentication/ExternalInvasiveDebugEnabled

 // ExternalInvasiveDebugEnabled()
 // ==============================

 boolean ExternalInvasiveDebugEnabled()
 // In the recommended interface, ExternalInvasiveDebugEnabled returns the state of the DBGEN
 // signal.
 return DBGEN == HIGH;

shared/debug/authentication/ExternalNoninvasiveDebugAllowed

 // ExternalNoninvasiveDebugAllowed()
 // =================================

 boolean ExternalNoninvasiveDebugAllowed()
 // Return TRUE if Trace and Sample-based profiling are allowed
 return (ExternalNoninvasiveDebugEnabled() &&
 (!IsSecure() || ExternalSecureNoninvasiveDebugEnabled() ||
 (ELUsingAArch32(EL1) && PSTATE.EL == EL0 && SDER.SUIDEN == '1')));

shared/debug/authentication/ExternalNoninvasiveDebugEnabled

 // ExternalNoninvasiveDebugEnabled()
 // =================================

 boolean ExternalNoninvasiveDebugEnabled()
 // In the recommended interface, ExternalNoninvasiveDebugEnabled returns the state of the (DBGEN
 // OR NIDEN) signal.
 return ExternalInvasiveDebugEnabled() || NIDEN == HIGH;

shared/debug/authentication/ExternalSecureInvasiveDebugEnabled

 // ExternalSecureInvasiveDebugEnabled()
 // ====================================

 boolean ExternalSecureInvasiveDebugEnabled()
 // In the recommended interface, ExternalSecureInvasiveDebugEnabled returns the state of the
 // (DBGEN AND SPIDEN) signal.
 // CoreSight allows asserting SPIDEN without also asserting DBGEN, but this is not recommended.
 if !HaveEL(EL3) && !IsSecure() then return FALSE;
 return ExternalInvasiveDebugEnabled() && SPIDEN == HIGH;

shared/debug/authentication/ExternalSecureNoninvasiveDebugEnabled

 // ExternalSecureNoninvasiveDebugEnabled()
 // =======================================

 boolean ExternalSecureNoninvasiveDebugEnabled()
 // In the recommended interface, ExternalSecureNoninvasiveDebugEnabled returns the state of the
 // (DBGEN OR NIDEN) AND (SPIDEN OR SPNIDEN) signal.
 if !HaveEL(EL3) && !IsSecure() then return FALSE;
 return ExternalNoninvasiveDebugEnabled() && (SPIDEN == HIGH || SPNIDEN == HIGH);
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. E1-877
ID060316 Non-Confidential

E1 ARMv8.1 Pseudocode
E1.4 Common library pseudocode
shared/debug/cti/CTI_SetEventLevel

 // Set a Cross Trigger multi-cycle input event trigger to the specified level.
 CTI_SetEventLevel(CrossTriggerIn id, signal level);

shared/debug/cti/CTI_SignalEvent

 // Signal a discrete event on a Cross Trigger input event trigger.
 CTI_SignalEvent(CrossTriggerIn id);

shared/debug/cti/CrossTrigger

 enumeration CrossTriggerOut {CrossTriggerOut_DebugRequest, CrossTriggerOut_RestartRequest,
 CrossTriggerOut_IRQ, CrossTriggerOut_RSVD3,
 CrossTriggerOut_TraceExtIn0, CrossTriggerOut_TraceExtIn1,
 CrossTriggerOut_TraceExtIn2, CrossTriggerOut_TraceExtIn3};

 enumeration CrossTriggerIn {CrossTriggerIn_CrossHalt, CrossTriggerIn_PMUOverflow,
 CrossTriggerIn_RSVD2, CrossTriggerIn_RSVD3,
 CrossTriggerIn_TraceExtOut0, CrossTriggerIn_TraceExtOut1,
 CrossTriggerIn_TraceExtOut2, CrossTriggerIn_TraceExtOut3};

shared/debug/dccanditr/CheckForDCCInterrupts

 // CheckForDCCInterrupts()
 // =======================

 CheckForDCCInterrupts()
 commrx = (EDSCR.RXfull == '1');
 commtx = (EDSCR.TXfull == '0');

 // COMMRX and COMMTX support is optional and not recommended for new designs.
 // SetInterruptRequestLevel(InterruptID_COMMRX, if commrx then HIGH else LOW);
 // SetInterruptRequestLevel(InterruptID_COMMTX, if commtx then HIGH else LOW);

 // The value to be driven onto the common COMMIRQ signal.
 commirq = ((commrx && MDCCINT_EL1.RX == '1') ||
 (commtx && MDCCINT_EL1.TX == '1'));
 SetInterruptRequestLevel(InterruptID_COMMIRQ, if commirq then HIGH else LOW);

 return;

shared/debug/dccanditr/DBGDTRRX_EL0

 // DBGDTRRX_EL0[] (external write)
 // ===============================
 // Called on writes to debug register 0x08C.

 DBGDTRRX_EL0[boolean memory_mapped] = bits(32) value

 if EDPRSR<6:5,0> != '001' then // Check DLK, OSLK and PU bits
 IMPLEMENTATION_DEFINED "signal slave-generated error";
 return;

 if EDSCR.ERR == '1' then return; // Error flag set: ignore write

 // The Software lock is OPTIONAL.
 if memory_mapped && EDLSR.SLK == '1' then return; // Software lock locked: ignore write

 if EDSCR.RXfull == '1' || (Halted() && EDSCR.MA == '1' && EDSCR.ITE == '0') then
 EDSCR.RXO = '1'; EDSCR.ERR = '1'; // Overrun condition: ignore write
 return;

 EDSCR.RXfull = '1';
 DTRRX = value;
E1-878 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

E1 ARMv8.1 Pseudocode
E1.4 Common library pseudocode

 if Halted() && EDSCR.MA == '1' then
 EDSCR.ITE = '0'; // See comments in EDITR[] (external write)

 if !UsingAArch32() then
 ExecuteA64(0xD5330501<31:0>); // A64 "MRS X1,DBGDTRRX_EL0"
 ExecuteA64(0xB8004401<31:0>); // A64 "STR W1,[X0],#4"
 X[1] = bits(64) UNKNOWN;
 else
 ExecuteT32(0xEE10<15:0> /*hw1*/, 0x1E15<15:0> /*hw2*/); // T32 "MRS R1,DBGDTRRXint"
 ExecuteT32(0xF840<15:0> /*hw1*/, 0x1B04<15:0> /*hw2*/); // T32 "STR R1,[R0],#4"
 R[1] = bits(32) UNKNOWN;

 // If the store aborts, the Data Abort exception is taken and EDSCR.ERR is set to 1
 if EDSCR.ERR == '1' then
 EDSCR.RXfull = bit UNKNOWN;
 DBGDTRRX_EL0 = bits(32) UNKNOWN;
 else
 // "MRS X1,DBGDTRRX_EL0" calls DBGDTR_EL0[] (read) which clears RXfull.
 assert EDSCR.RXfull == '0';

 EDSCR.ITE = '1'; // See comments in EDITR[] (external write)
 return;

 // DBGDTRRX_EL0[] (external read)
 // ==============================

 bits(32) DBGDTRRX_EL0[boolean memory_mapped]
 return DTRRX;

shared/debug/dccanditr/DBGDTRTX_EL0

 // DBGDTRTX_EL0[] (external read)
 // ==============================
 // Called on reads of debug register 0x080.

 bits(32) DBGDTRTX_EL0[boolean memory_mapped]

 if EDPRSR<6:5,0> != '001' then // Check DLK, OSLK and PU bits
 IMPLEMENTATION_DEFINED "signal slave-generated error";
 return bits(32) UNKNOWN;

 underrun = EDSCR.TXfull == '0' || (Halted() && EDSCR.MA == '1' && EDSCR.ITE == '0');
 value = if underrun then bits(32) UNKNOWN else DTRTX;

 if EDSCR.ERR == '1' then return value; // Error flag set: no side-effects

 // The Software lock is OPTIONAL.
 if memory_mapped && EDLSR.SLK == '1' then // Software lock locked: no side-effects
 return value;

 if underrun then
 EDSCR.TXU = '1'; EDSCR.ERR = '1'; // Underrun condition: block side-effects
 return value; // Return UNKNOWN

 EDSCR.TXfull = '0';

 if Halted() && EDSCR.MA == '1' then
 EDSCR.ITE = '0'; // See comments in EDITR[] (external write)

 if !UsingAArch32() then
 ExecuteA64(0xB8404401<31:0>); // A64 "LDR W1,[X0],#4"
 else
 ExecuteT32(0xF850<15:0> /*hw1*/, 0x1B04<15:0> /*hw2*/); // T32 "LDR R1,[R0],#4"

 // If the load aborts, the Data Abort exception is taken and EDSCR.ERR is set to 1
 if EDSCR.ERR == '1' then
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. E1-879
ID060316 Non-Confidential

E1 ARMv8.1 Pseudocode
E1.4 Common library pseudocode
 EDSCR.TXfull = bit UNKNOWN;
 DBGDTRTX_EL0 = bits(32) UNKNOWN;
 else
 if !UsingAArch32() then
 ExecuteA64(0xD5130501<31:0>); // A64 "MSR DBGDTRTX_EL0,X1"
 else
 ExecuteT32(0xEE00<15:0> /*hw1*/, 0x1E15<15:0> /*hw2*/); // T32 "MSR DBGDTRTXint,R1"
 // "MSR DBGDTRTX_EL0,X1" calls DBGDTR_EL0[] (write) which sets TXfull.
 assert EDSCR.TXfull == '1';

 if !UsingAArch32() then
 X[1] = bits(64) UNKNOWN;
 else
 R[1] = bits(32) UNKNOWN;

 EDSCR.ITE = '1'; // See comments in EDITR[] (external write)

 return value;

 // DBGDTRTX_EL0[] (external write)
 // ===============================

 DBGDTRTX_EL0[boolean memory_mapped] = bits(32) value
 // The Software lock is OPTIONAL.
 if memory_mapped && EDLSR.SLK == '1' then return; // Software lock locked: ignore write
 DTRTX = value;
 return;

shared/debug/dccanditr/DBGDTR_EL0

 // DBGDTR_EL0[] (write)
 // ====================
 // System register writes to DBGDTR_EL0, DBGDTRTX_EL0 (AArch64) and DBGDTRTXint (AArch32)

 DBGDTR_EL0[] = bits(N) value
 // For MSR DBGDTRTX_EL0,<Rt> N=32, value=X[t]<31:0>, X[t]<63:32> is ignored
 // For MSR DBGDTR_EL0,<Xt> N=64, value=X[t]<63:0>
 assert N IN {32,64};
 if EDSCR.TXfull == '1' then
 value = bits(N) UNKNOWN;
 // On a 64-bit write, implement a half-duplex channel
 if N == 64 then DTRRX = value<63:32>;
 DTRTX = value<31:0>; // 32-bit or 64-bit write
 EDSCR.TXfull = '1';
 return;

 // DBGDTR_EL0[] (read)
 // ===================
 // System register reads of DBGDTR_EL0, DBGDTRRX_EL0 (AArch64) and DBGDTRRXint (AArch32)

 bits(N) DBGDTR_EL0[]
 // For MRS <Rt>,DBGDTRTX_EL0 N=32, X[t]=Zeros(32):result
 // For MRS <Xt>,DBGDTR_EL0 N=64, X[t]=result
 assert N IN {32,64};
 bits(N) result;
 if EDSCR.RXfull == '0' then
 result = bits(N) UNKNOWN;
 else
 // On a 64-bit read, implement a half-duplex channel
 // NOTE: the word order is reversed on reads with regards to writes
 if N == 64 then result<63:32> = DTRTX;
 result<31:0> = DTRRX;
 EDSCR.RXfull = '0';
 return result;
E1-880 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

E1 ARMv8.1 Pseudocode
E1.4 Common library pseudocode
shared/debug/dccanditr/DTR

 bits(32) DTRRX;
 bits(32) DTRTX;

shared/debug/dccanditr/EDITR

 // EDITR[] (external write)
 // ========================
 // Called on writes to debug register 0x088.

 EDITR[boolean memory_mapped] = bits(32) value
 if EDPRSR<6:5,0> != '001' then // Check DLK, OSLK and PU bits
 IMPLEMENTATION_DEFINED "signal slave-generated error";
 return;

 if EDSCR.ERR == '1' then return; // Error flag set: ignore write

 // The Software lock is OPTIONAL.
 if memory_mapped && EDLSR.SLK == '1' then return; // Software lock locked: ignore write

 if !Halted() then return; // Non-debug state: ignore write

 if EDSCR.ITE == '0' || EDSCR.MA == '1' then
 EDSCR.ITO = '1'; EDSCR.ERR = '1'; // Overrun condition: block write
 return;

 // ITE indicates whether the processor is ready to accept another instruction; the processor
 // may support multiple outstanding instructions. Unlike the "InstrCompl" flag in [v7A] there
 // is no indication that the pipeline is empty (all instructions have completed). In this
 // pseudocode, the assumption is that only one instruction can be executed at a time,
 // meaning ITE acts like "InstrCompl".
 EDSCR.ITE = '0';

 if !UsingAArch32() then
 ExecuteA64(value);
 else
 ExecuteT32(value<15:0>/*hw1*/, value<31:16> /*hw2*/);

 EDSCR.ITE = '1';

 return;

shared/debug/halting/DCPSInstruction

 // DCPSInstruction()
 // =================
 // Operation of the DCPS instruction in Debug state

 DCPSInstruction(bits(2) target_el)

 SynchronizeContext();

 case target_el of
 when EL1
 if PSTATE.EL == EL2 || (PSTATE.EL == EL3 && !UsingAArch32()) then handle_el = PSTATE.EL;
 elsif HaveEL(EL2) && !IsSecure() && HCR_EL2.TGE == '1' then UndefinedFault();
 else handle_el = EL1;

 when EL2
 if !HaveEL(EL2) then UndefinedFault();
 elsif PSTATE.EL == EL3 && !UsingAArch32() then handle_el = EL3;
 elsif IsSecure() then UndefinedFault();
 else handle_el = EL2;

 when EL3
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. E1-881
ID060316 Non-Confidential

E1 ARMv8.1 Pseudocode
E1.4 Common library pseudocode
 if EDSCR.SDD == '1' || !HaveEL(EL3) then UndefinedFault();
 handle_el = EL3;
 from_secure = IsSecure();
 if ELUsingAArch32(handle_el) then
 if PSTATE.M == M32_Monitor then SCR.NS = '0';
 assert UsingAArch32(); // Cannot move from AArch64 to AArch32
 case handle_el of
 when EL1
 AArch32.WriteMode(M32_Svc);
 if HavePANExt() && SCTLR.SPAN == '0' then
 PSTATE.PAN = '1';
 when EL2 AArch32.WriteMode(M32_Hyp);
 when EL3
 AArch32.WriteMode(M32_Monitor);
 if HavePANExt() then
 if !from_secure then
 PSTATE.PAN = '0';
 elsif SCTLR.SPAN == '0' then
 PSTATE.PAN = '1';
 if handle_el == EL2 then
 ELR_hyp = bits(32) UNKNOWN; HSR = bits(32) UNKNOWN;
 else
 LR = bits(32) UNKNOWN;
 SPSR[] = bits(32) UNKNOWN;
 PSTATE.E = SCTLR[].EE;
 else // Targeting AArch64
 if UsingAArch32() then AArch64.MaybeZeroRegisterUppers();
 ELR[] = bits(64) UNKNOWN; SPSR[] = bits(32) UNKNOWN; ESR[] = bits(32) UNKNOWN;
 PSTATE.nRW = '0'; PSTATE.SP = '1'; PSTATE.EL = handle_el;

 DLR_EL0 = bits(64) UNKNOWN; DSPSR_EL0 = bits(32) UNKNOWN;
 UpdateEDSCRFields(); // Update EDSCR processor state flags.

 return;

shared/debug/halting/DRPSInstruction

 // DRPSInstruction()
 // =================
 // Operation of the A64 DRPS and T32 ERET instructions in Debug state

 DRPSInstruction()

 SynchronizeContext();

 SetPSTATEFromPSR(SPSR[]);

 // PSTATE.{N,Z,C,V,Q,GE,SS,D,A,I,F} are not observable and ignored in Debug state, so
 // behave as if UNKNOWN.
 if UsingAArch32() then
 PSTATE.<N,Z,C,V,Q,GE,SS,A,I,F> = bits(13) UNKNOWN;
 // In AArch32, all instructions are T32 and unconditional.
 PSTATE.IT = '00000000'; PSTATE.T = '1'; // PSTATE.J is RES0
 else
 PSTATE.<N,Z,C,V,SS,D,A,I,F> = bits(9) UNKNOWN;
 DLR_EL0 = bits(64) UNKNOWN; DSPSR_EL0 = bits(32) UNKNOWN;

 UpdateEDSCRFields(); // Update EDSCR processor state flags.

 return;

shared/debug/halting/DebugHalt

 constant bits(6) DebugHalt_Breakpoint = '000111';
 constant bits(6) DebugHalt_EDBGRQ = '010011';
 constant bits(6) DebugHalt_Step_Normal = '011011';
E1-882 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

E1 ARMv8.1 Pseudocode
E1.4 Common library pseudocode
 constant bits(6) DebugHalt_Step_Exclusive = '011111';
 constant bits(6) DebugHalt_OSUnlockCatch = '100011';
 constant bits(6) DebugHalt_ResetCatch = '100111';
 constant bits(6) DebugHalt_Watchpoint = '101011';
 constant bits(6) DebugHalt_HaltInstruction = '101111';
 constant bits(6) DebugHalt_SoftwareAccess = '110011';
 constant bits(6) DebugHalt_ExceptionCatch = '110111';
 constant bits(6) DebugHalt_Step_NoSyndrome = '111011';

shared/debug/halting/DisableITRAndResumeInstructionPrefetch

 DisableITRAndResumeInstructionPrefetch();

shared/debug/halting/ExecuteA64

 // Execute an A64 instruction in Debug state.
 ExecuteA64(bits(32) instr);

shared/debug/halting/ExecuteT32

 // Execute a T32 instruction in Debug state.
 ExecuteT32(bits(16) hw1, bits(16) hw2);

shared/debug/halting/ExitDebugState

 // ExitDebugState()
 // ================

 ExitDebugState()
 assert Halted();
 SynchronizeContext();

 // Although EDSCR.STATUS signals that the processor is restarting, debuggers must use EDPRSR.SDR
 // to detect that the processor has restarted.
 EDSCR.STATUS = '000001'; // Signal restarting
 EDESR<2:0> = '000'; // Clear any pending Halting debug events

 new_pc = DLR_EL0;
 spsr = DSPSR;

 // If this is an illegal return, SetPSTATEFromPSR() will set PSTATE.IL.
 SetPSTATEFromPSR(spsr); // Can update privileged bits, even at EL0.

 if UsingAArch32() then
 if ConstrainUnpredictableBool() then new_pc<0> = '0';
 BranchTo(new_pc<31:0>, BranchType_UNKNOWN); // AArch32 branch
 else
 // If targeting AArch32 then possibly zero the 32 most significant bits of the target PC
 if spsr<4> == '1' && ConstrainUnpredictableBool() then
 new_pc<63:32> = Zeros();
 BranchTo(new_pc, BranchType_DBGEXIT); // A type of branch that is never predicted

 (EDSCR.STATUS,EDPRSR.SDR) = ('000010','1'); // Atomically signal restarted
 UpdateEDSCRFields(); // Stop signalling processor state.
 DisableITRAndResumeInstructionPrefetch();

 return;

shared/debug/halting/Halt

 // Halt()
 // ======

 Halt(bits(6) reason)
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. E1-883
ID060316 Non-Confidential

E1 ARMv8.1 Pseudocode
E1.4 Common library pseudocode

 CTI_SignalEvent(CrossTriggerIn_CrossHalt); // Trigger other cores to halt

 DLR_EL0 = ThisInstrAddr();
 DSPSR_EL0 = GetPSRFromPSTATE();
 DSPSR_EL0.SS = PSTATE.SS; // Always save PSTATE.SS

 EDSCR.ITE = '1'; EDSCR.ITO = '0';
 if IsSecure() then
 EDSCR.SDD = '0'; // If entered in Secure state, allow debug
 elsif HaveEL(EL3) then
 EDSCR.SDD = (if ExternalSecureInvasiveDebugEnabled() then '0' else '1');
 else
 assert EDSCR.SDD == '1'; // Otherwise EDSCR.SDD is RES1
 EDSCR.MA = '0';

 // PSTATE.{SS,D,A,I,F} are not observable and ignored in Debug state, so behave as if
 // UNKNOWN. PSTATE.{N,Z,C,V,Q,GE} are also not observable, but since these are not changed on
 // exception entry, this function also leaves them unchanged. PSTATE.{E,M,nRW,EL,SP} are
 // unchanged. PSTATE.IL is set to 0.
 if UsingAArch32() then
 PSTATE.<SS,A,I,F> = bits(4) UNKNOWN;
 // In AArch32, all instructions are T32 and unconditional.
 PSTATE.IT = '00000000'; PSTATE.T = '1'; // PSTATE.J is RES0
 else
 PSTATE.<SS,D,A,I,F> = bits(5) UNKNOWN;
 PSTATE.IL = '0';

 StopInstructionPrefetchAndEnableITR();
 EDSCR.STATUS = reason; // Signal entered Debug state
 UpdateEDSCRFields(); // Update EDSCR processor state flags.

 return;

shared/debug/halting/HaltOnBreakpointOrWatchpoint

 // HaltOnBreakpointOrWatchpoint()
 // ==============================
 // Returns TRUE if the Breakpoint and Watchpoint debug events should be considered for Debug
 // state entry, FALSE if they should be considered for a debug exception.

 boolean HaltOnBreakpointOrWatchpoint()
 return HaltingAllowed() && EDSCR.HDE == '1' && OSLSR_EL1.OSLK == '0';

shared/debug/halting/Halted

 // Halted()
 // ========

 boolean Halted()
 return !(EDSCR.STATUS IN {'000001', '000010'}); // Halted

shared/debug/halting/HaltingAllowed

 // HaltingAllowed()
 // ================
 // Returns TRUE if halting is currently allowed, FALSE if halting is prohibited.

 boolean HaltingAllowed()
 if Halted() || DoubleLockStatus() then
 return FALSE;
 elsif IsSecure() then
 return ExternalSecureInvasiveDebugEnabled();
 else
 return ExternalInvasiveDebugEnabled();
E1-884 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

E1 ARMv8.1 Pseudocode
E1.4 Common library pseudocode
shared/debug/halting/Restarting

 // Restarting()
 // ============

 boolean Restarting()
 return EDSCR.STATUS == '000001'; // Restarting

shared/debug/halting/StopInstructionPrefetchAndEnableITR

 StopInstructionPrefetchAndEnableITR();

shared/debug/halting/UpdateEDSCRFields

 // UpdateEDSCRFields()
 // ===================
 // Update EDSCR processor state fields

 UpdateEDSCRFields()

 if !Halted() then
 EDSCR.EL = '00';
 EDSCR.NS = bit UNKNOWN;
 EDSCR.RW = '1111';
 else
 EDSCR.EL = PSTATE.EL;
 EDSCR.NS = if IsSecure() then '0' else '1';
 EDSCR.RW<1> = (if ELUsingAArch32(EL1) then '0' else '1');
 if PSTATE.EL != EL0 then
 EDSCR.RW<0> = EDSCR.RW<1>;
 else
 EDSCR.RW<0> = (if UsingAArch32() then '0' else '1');
 if !HaveEL(EL2) || (HaveEL(EL3) && SCR_GEN[].NS == '0') then
 EDSCR.RW<2> = EDSCR.RW<1>;
 else
 EDSCR.RW<2> = (if ELUsingAArch32(EL2) then '0' else '1');
 if !HaveEL(EL3) then
 EDSCR.RW<3> = EDSCR.RW<2>;
 else
 EDSCR.RW<3> = (if ELUsingAArch32(EL3) then '0' else '1');

 return;

shared/debug/haltingevents/CheckExceptionCatch

 // CheckExceptionCatch()
 // =====================
 // Check whether an Exception Catch debug event is set on the current Exception level

 CheckExceptionCatch()
 // Called after taking an exception, that is, such that IsSecure() and PSTATE.EL are correct
 // for the exception target.
 base = if IsSecure() then 0 else 4;
 if HaltingAllowed() && EDECCR<UInt(PSTATE.EL) + base> == '1' then
 Halt(DebugHalt_ExceptionCatch);

shared/debug/haltingevents/CheckHaltingStep

 // CheckHaltingStep()
 // ==================
 // Check whether EDESR.SS has been set by Halting Step

 CheckHaltingStep()
 if HaltingAllowed() && EDESR.SS == '1' then
 // The STATUS code depends on how we arrived at the state where EDESR.SS == 1.
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. E1-885
ID060316 Non-Confidential

E1 ARMv8.1 Pseudocode
E1.4 Common library pseudocode
 if HaltingStep_DidNotStep() then
 Halt(DebugHalt_Step_NoSyndrome);
 elsif HaltingStep_SteppedEX() then
 Halt(DebugHalt_Step_Exclusive);
 else
 Halt(DebugHalt_Step_Normal);

shared/debug/haltingevents/CheckOSUnlockCatch

 // CheckOSUnlockCatch()
 // ====================
 // Called on unlocking the OS Lock to pend an OS Unlock Catch debug event

 CheckOSUnlockCatch()
 if EDECR.OSUCE == '1' && !Halted() then EDESR.OSUC = '1';

shared/debug/haltingevents/CheckPendingOSUnlockCatch

 // CheckPendingOSUnlockCatch()
 // ===========================
 // Check whether EDESR.OSUC has been set by an OS Unlock Catch debug event

 CheckPendingOSUnlockCatch()
 if HaltingAllowed() && EDESR.OSUC == '1' then
 Halt(DebugHalt_OSUnlockCatch);

shared/debug/haltingevents/CheckPendingResetCatch

 // CheckPendingResetCatch()
 // ========================
 // Check whether EDESR.RC has been set by a Reset Catch debug event

 CheckPendingResetCatch()
 if HaltingAllowed() && EDESR.RC == '1' then
 Halt(DebugHalt_ResetCatch);

shared/debug/haltingevents/CheckResetCatch

 // CheckResetCatch()
 // =================
 // Called after reset

 CheckResetCatch()
 if EDECR.RCE == '1' then
 EDESR.RC = '1';
 // If halting is allowed then halt immediately
 if HaltingAllowed() then Halt(DebugHalt_ResetCatch);

shared/debug/haltingevents/CheckSoftwareAccessToDebugRegisters

 // CheckSoftwareAccessToDebugRegisters()
 // =====================================
 // Check for access to Breakpoint and Watchpoint registers.

 CheckSoftwareAccessToDebugRegisters()

 os_lock = (if ELUsingAArch32(EL1) then DBGOSLSR.OSLK else OSLSR_EL1.OSLK);
 if HaltingAllowed() && EDSCR.TDA == '1' && os_lock == '0' then
 Halt(DebugHalt_SoftwareAccess);
E1-886 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

E1 ARMv8.1 Pseudocode
E1.4 Common library pseudocode
shared/debug/haltingevents/ExternalDebugRequest

 // ExternalDebugRequest()
 // ======================

 ExternalDebugRequest()
 if HaltingAllowed() then
 Halt(DebugHalt_EDBGRQ);
 // Otherwise the CTI continues to assert the debug request until it is taken.

shared/debug/haltingevents/HaltingStep_DidNotStep

 // Returns TRUE if the previously executed instruction was executed in the inactive state, that is,
 // if it was not itself stepped.
 boolean HaltingStep_DidNotStep();

shared/debug/haltingevents/HaltingStep_SteppedEX

 // Returns TRUE if the previously executed instruction was a Load-Exclusive class instruction
 // executed in the active-not-pending state.
 boolean HaltingStep_SteppedEX();

shared/debug/haltingevents/RunHaltingStep

 // RunHaltingStep()
 // ================

 RunHaltingStep(boolean exception_generated, bits(2) exception_target, boolean syscall,
 boolean reset)
 // "exception_generated" is TRUE if the previous instruction generated a synchronous exception
 // or was cancelled by an asynchronous exception.
 // if "exception_generated" == TRUE then "exception_target" is the target of the exception, and
 // "syscall" is TRUE if the exception is a synchronous exception where the preferred return
 // address is the instruction following that which generated the exeception.
 // "reset" = TRUE if exiting reset state into the highest EL.
 if reset then assert !Halted(); // Cannot come out of reset halted

 active = EDECR.SS == '1' && !Halted();

 if active && reset then // Coming out of reset with EDECR.SS set.
 EDESR.SS = '1';
 elsif active && HaltingAllowed() then
 if exception_generated && exception_target == EL3 then
 advance = syscall || ExternalSecureInvasiveDebugEnabled();
 else
 advance = TRUE;
 if advance then EDESR.SS = '1';

 return;

shared/debug/interrupts/InterruptID

 enumeration InterruptID {InterruptID_PMUIRQ, InterruptID_COMMIRQ, InterruptID_CTIIRQ,
 InterruptID_COMMRX, InterruptID_COMMTX};

shared/debug/interrupts/SetInterruptRequestLevel

 // Set a level-sensitive interrupt to the specified level.
 SetInterruptRequestLevel(InterruptID id, signal level);
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. E1-887
ID060316 Non-Confidential

E1 ARMv8.1 Pseudocode
E1.4 Common library pseudocode
shared/debug/samplebasedprofiling/CreatePCSample

 // CreatePCSample()
 // ================

 CreatePCSample()
 // In a simple sequential execution of the program, CreatePCSample is executed each time the PE
 // executes an instruction that can be sampled. An implementation is not constrained such that
 // reads of EDPCSRlo return the current values of PC, etc.

 pc_sample.valid = ExternalNoninvasiveDebugAllowed() && !Halted();
 pc_sample.pc = ThisInstrAddr();
 pc_sample.el = PSTATE.EL;
 pc_sample.rw = if UsingAArch32() then '0' else '1';
 pc_sample.ns = if IsSecure() then '0' else '1';
 pc_sample.contextidr = if ELUsingAArch32(EL1) then CONTEXTIDR else CONTEXTIDR_EL1;
 if HaveEL(EL2) && !IsSecure() then
 if ELUsingAArch32(EL2) then
 pc_sample.vmid = ZeroExtend(VTTBR.VMID, 16);
 elsif !Have16bitVMID() || VTCR_EL2.VS == '0' then
 pc_sample.vmid = ZeroExtend(VTTBR_EL2.VMID<7:0>, 16);
 else
 pc_sample.vmid = VTTBR_EL2.VMID;
 if HaveVirtHostExt() && !IsSecure() && !ELUsingAArch32(EL2) then
 pc_sample.contextidr_el2 = CONTEXTIDR_EL2;
 else
 pc_sample.contextidr_el2 = bits(32) UNKNOWN;
 return;

shared/debug/samplebasedprofiling/EDPCSRlo

 // EDPCSRlo[] (read)
 // =================

 bits(32) EDPCSRlo[boolean memory_mapped]

 if EDPRSR<6:5,0> != '001' then // Check DLK, OSLK and PU bits
 IMPLEMENTATION_DEFINED "signal slave-generated error";
 return bits(32) UNKNOWN;

 // The Software lock is OPTIONAL.
 update = !memory_mapped || EDLSR.SLK == '0'; // Software locked: no side-effects

 if pc_sample.valid then
 sample = pc_sample.pc<31:0>;
 if update then
 if HaveVirtHostExt() && EDSCR.SC2 == '1' then
 EDPCSRhi.PC = (if pc_sample.rw == '0' then Zeros(24) else pc_sample.pc<55:32>);
 EDPCSRhi.EL = pc_sample.el;
 EDPCSRhi.NS = pc_sample.ns;
 else
 EDPCSRhi = (if pc_sample.rw == '0' then Zeros(32) else pc_sample.pc<63:32>);
 EDCIDSR = pc_sample.contextidr;
 if HaveVirtHostExt() && EDSCR.SC2 == '1' then
 EDVIDSR = pc_sample.contextidr_el2;
 else
 EDVIDSR.VMID = (if HaveEL(EL2) && pc_sample.ns == '1' && pc_sample.el IN {EL1,EL0}
 then pc_sample.vmid else Zeros(16));
 EDVIDSR.NS = pc_sample.ns;
 EDVIDSR.E2 = (if pc_sample.el == EL2 then '1' else '0');
 EDVIDSR.E3 = (if pc_sample.el == EL3 then '1' else '0') AND pc_sample.rw;
 // The conditions for setting HV are not specified if PCSRhi is zero.
 // An example implementation may be "pc_sample.rw".
 EDVIDSR.HV = (if !IsZero(EDPCSRhi) then '1' else bit IMPLEMENTATION_DEFINED "0 or 1");
 else
 sample = Ones(32);
 if update then
E1-888 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

E1 ARMv8.1 Pseudocode
E1.4 Common library pseudocode
 EDPCSRhi = bits(32) UNKNOWN;
 EDCIDSR = bits(32) UNKNOWN;
 EDVIDSR = bits(32) UNKNOWN;

 return sample;

shared/debug/samplebasedprofiling/PCSample

 type PCSample is (
 boolean valid,
 bits(64) pc,
 bits(2) el,
 bit rw,
 bit ns,
 bits(32) contextidr,
 bits(32) contextidr_el2,
 bits(16) vmid
)

 PCSample pc_sample;

shared/debug/softwarestep/CheckSoftwareStep

 // CheckSoftwareStep()
 // ===================
 // Take a Software Step exception if in the active-pending state

 CheckSoftwareStep()

 // Other self-hosted debug functions will call AArch32.GenerateDebugExceptions() if called from
 // AArch32 state. However, because Software Step is only active when the debug target Exception
 // level is using AArch64, CheckSoftwareStep only calls AArch64.GenerateDebugExceptions().
 if !ELUsingAArch32(DebugTarget()) && AArch64.GenerateDebugExceptions() then
 if MDSCR_EL1.SS == '1' && PSTATE.SS == '0' then AArch64.SoftwareStepException();

shared/debug/softwarestep/DebugExceptionReturnSS

 // DebugExceptionReturnSS()
 // ========================
 // Returns value to write to PSTATE.SS on an exception return or Debug state exit.

 bit DebugExceptionReturnSS(bits(32) spsr)
 assert Halted() || Restarting() || PSTATE.EL != EL0;

 SS_bit = '0';

 if MDSCR_EL1.SS == '1' then
 if Restarting() then
 enabled_at_source = FALSE;
 elsif UsingAArch32() then
 enabled_at_source = AArch32.GenerateDebugExceptions();
 else
 enabled_at_source = AArch64.GenerateDebugExceptions();

 if IllegalExceptionReturn(spsr) then
 dest = PSTATE.EL;
 else
 (valid, dest) = ELFromSPSR(spsr); assert valid;

 secure = IsSecureBelowEL3() || dest == EL3;

 if ELUsingAArch32(dest) then
 enabled_at_dest = AArch32.GenerateDebugExceptionsFrom(dest, secure);
 else
 mask = spsr<9>;
 enabled_at_dest = AArch64.GenerateDebugExceptionsFrom(dest, secure, mask);
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. E1-889
ID060316 Non-Confidential

E1 ARMv8.1 Pseudocode
E1.4 Common library pseudocode

 ELd = DebugTargetFrom(secure);
 if !ELUsingAArch32(ELd) && !enabled_at_source && enabled_at_dest then
 SS_bit = spsr<21>;

 return SS_bit;

shared/debug/softwarestep/SSAdvance

 // SSAdvance()
 // ===========
 // Advance the Software Step state machine.

 SSAdvance()

 // A simpler implementation of this function just clears PSTATE.SS to zero regardless of the
 // current Software Step state machine. However, this check is made to illustrate that the
 // processor only needs to consider advancing the state machine from the active-not-pending
 // state.
 target = DebugTarget();
 step_enabled = !ELUsingAArch32(target) && MDSCR_EL1.SS == '1';
 active_not_pending = step_enabled && PSTATE.SS == '1';

 if active_not_pending then PSTATE.SS = '0';

 return;

shared/debug/softwarestep/SoftwareStep_DidNotStep

 // Returns TRUE if the previously executed instruction was executed in the inactive state, that is,
 // if it was not itself stepped.
 boolean SoftwareStep_DidNotStep();

shared/debug/softwarestep/SoftwareStep_SteppedEX

 // Returns TRUE if the previously executed instruction was a Load-Exclusive class instruction
 // executed in the active-not-pending state.
 boolean SoftwareStep_SteppedEX();

E1.4.2 shared/exceptions

shared/exceptions/exceptions/ConditionSyndrome

 // ConditionSyndrome()
 // ===================
 // Return CV and COND fields of instruction syndrome

 bits(5) ConditionSyndrome()

 bits(5) syndrome;

 if UsingAArch32() then
 cond = AArch32.CurrentCond();
 if PSTATE.T == '0' then // A32
 syndrome<4> = '1';
 // A conditional A32 instruction that is known to pass its condition code check
 // can be presented either with COND set to 0xE, the value for unconditional, or
 // the COND value held in the instruction.
 if ConditionHolds(cond) && ConstrainUnpredictableBool() then
 syndrome<3:0> = '1110';
 else
 syndrome<3:0> = cond;
E1-890 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

E1 ARMv8.1 Pseudocode
E1.4 Common library pseudocode
 else // T32
 // When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:
 // * CV set to 0 and COND is set to an UNKNOWN value
 // * CV set to 1 and COND is set to the condition code for the condition that
 // applied to the instruction.
 if boolean IMPLEMENTATION_DEFINED "Condition valid for trapped T32" then
 syndrome<4> = '1';
 syndrome<3:0> = cond;
 else
 syndrome<4> = '0';
 syndrome<3:0> = bits(4) UNKNOWN;
 else
 syndrome<4> = '1';
 syndrome<3:0> = '1110';

 return syndrome;

shared/exceptions/exceptions/Exception

 enumeration Exception {Exception_Uncategorized, // Uncategorized or unknown reason
 Exception_WFxTrap, // Trapped WFI or WFE instruction
 Exception_CP15RTTrap, // Trapped AArch32 MCR or MRC access to CP15
 Exception_CP15RRTTrap, // Trapped AArch32 MCRR or MRRC access to CP15
 Exception_CP14RTTrap, // Trapped AArch32 MCR or MRC access to CP14
 Exception_CP14DTTrap, // Trapped AArch32 LDC or STC access to CP14
 Exception_AdvSIMDFPAccessTrap, // HCPTR-trapped access to SIMD or FP
 Exception_FPIDTrap, // Trapped access to SIMD or FP ID register
 // Trapped BXJ instruction not supported in ARMv8
 Exception_CP14RRTTrap, // Trapped MRRC access to CP14 from AArch32
 Exception_IllegalState, // Illegal Execution state
 Exception_SupervisorCall, // Supervisor Call
 Exception_HypervisorCall, // Hypervisor Call
 Exception_MonitorCall, // Monitor Call or Trapped SMC instruction
 Exception_SystemRegisterTrap, // Trapped MRS or MSR system register access
 Exception_InstructionAbort, // Instruction Abort or Prefetch Abort
 Exception_PCAlignment, // Misaligned PC
 Exception_DataAbort, // Data Abort
 Exception_SPAlignment, // Misaligned SP
 Exception_FPTrappedException, // IEEE trapped FP exception
 Exception_SError, // SError interrupt or Asynchronous Abort
 Exception_Breakpoint, // (Hardware) Breakpoint
 Exception_SoftwareStep, // Software Step
 Exception_Watchpoint, // Watchpoint
 Exception_SoftwareBreakpoint, // Software Breakpoint Instruction
 Exception_VectorCatch, // AArch32 Vector Catch
 Exception_IRQ, // IRQ interrupt
 Exception_FIQ}; // FIQ interrupt

shared/exceptions/exceptions/ExceptionRecord

 type ExceptionRecord is (Exception type, // Exception class
 bits(25) syndrome, // Syndrome record
 bits(64) vaddress, // Virtual fault address
 boolean ipavalid, // Physical fault address is valid
 bits(48) ipaddress) // Physical fault address for second stage faults

shared/exceptions/exceptions/ExceptionSyndrome

 // ExceptionSyndrome()
 // ===================
 // Return a blank exception syndrome record for an exception of the given type.

 ExceptionRecord ExceptionSyndrome(Exception type)

 ExceptionRecord r;

DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. E1-891
ID060316 Non-Confidential

E1 ARMv8.1 Pseudocode
E1.4 Common library pseudocode
 r.type = type;

 // Initialize all other fields
 r.syndrome = Zeros();
 r.vaddress = Zeros();
 r.ipavalid = FALSE;
 r.ipaddress = Zeros();

 return r;

shared/exceptions/traps/ReservedValue

 // ReservedValue()
 // ===============

 ReservedValue()

 if UsingAArch32() && !AArch32.GeneralExceptionsToAArch64() then
 AArch32.TakeUndefInstrException();
 else
 AArch64.UndefinedFault();

shared/exceptions/traps/UnallocatedEncoding

 // UnallocatedEncoding()
 // =====================

 UnallocatedEncoding()

 // If the unallocated encoding is an AArch32 CP10 or CP11 instruction, FPEXC.DEX must be written
 // to zero. This is omitted from this code.
 if UsingAArch32() && !AArch32.GeneralExceptionsToAArch64() then
 AArch32.TakeUndefInstrException();
 else
 AArch64.UndefinedFault();

E1.4.3 shared/functions

shared/functions/aborts/EncodeLDFSC

 // EncodeLDFSC()
 // =============
 // Function that gives the Long-descriptor FSC code for types of Fault

 bits(6) EncodeLDFSC(Fault type, integer level)

 bits(6) result;
 case type of
 when Fault_AddressSize result = '0000':level<1:0>; assert level IN {0,1,2,3};
 when Fault_AccessFlag result = '0010':level<1:0>; assert level IN {1,2,3};
 when Fault_Permission result = '0011':level<1:0>; assert level IN {1,2,3};
 when Fault_Translation result = '0001':level<1:0>; assert level IN {0,1,2,3};
 when Fault_SyncExternal result = '010000';
 when Fault_SyncExternalOnWalk result = '0101':level<1:0>; assert level IN {0,1,2,3};
 when Fault_SyncParity result = '011000';
 when Fault_SyncParityOnWalk result = '0111':level<1:0>; assert level IN {0,1,2,3};
 when Fault_AsyncParity result = '011001';
 when Fault_AsyncExternal result = '010001';
 when Fault_Alignment result = '100001';
 when Fault_Debug result = '100010';
 when Fault_TLBConflict result = '110000';
 when Fault_Lockdown result = '110100'; // IMPLEMENTATION DEFINED
 when Fault_Exclusive result = '110101'; // IMPLEMENTATION DEFINED
E1-892 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

E1 ARMv8.1 Pseudocode
E1.4 Common library pseudocode
 otherwise Unreachable();

 return result;

shared/functions/aborts/FaultSyndrome

 // FaultSyndrome()
 // ===============
 // Creates an exception syndrome value for Abort and Watchpoint exceptions taken to
 // AArch32 Hyp mode or an Exception Level using AArch64.

 bits(25) FaultSyndrome(boolean d_side, FaultRecord fault)
 assert fault.type != Fault_None;

 bits(25) iss = Zeros();
 if d_side then
 if IsSecondStage(fault) && !fault.s2fs1walk then iss<24:14> = LSInstructionSyndrome();
 if fault.acctype IN {AccType_DC, AccType_IC, AccType_AT} then
 iss<8> = '1'; iss<6> = '1';
 else
 iss<6> = if fault.write then '1' else '0';
 if IsExternalAbort(fault) then iss<9> = fault.extflag;
 iss<7> = if fault.s2fs1walk then '1' else '0';
 iss<5:0> = EncodeLDFSC(fault.type, fault.level);

 return iss;

shared/functions/aborts/IPAValid

 // IPAValid()
 // ==========
 // Return TRUE if the IPA is reported for the abort

 boolean IPAValid(FaultRecord fault)
 assert fault.type != Fault_None;

 if fault.s2fs1walk then
 return fault.type IN {Fault_AccessFlag, Fault_Permission, Fault_Translation,
 Fault_AddressSize};
 elsif fault.secondstage then
 return fault.type IN {Fault_AccessFlag, Fault_Translation, Fault_AddressSize};
 else
 return FALSE;

shared/functions/aborts/IsAsyncAbort

 // IsAsyncAbort()
 // ==============
 // Returns TRUE if the abort currently being processed is an asynchronous abort, and FALSE
 // otherwise.

 boolean IsAsyncAbort(Fault type)
 assert type != Fault_None;

 return (type IN {Fault_AsyncExternal, Fault_AsyncParity});

 // IsAsyncAbort()
 // ==============

 boolean IsAsyncAbort(FaultRecord fault)
 return IsAsyncAbort(fault.type);
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. E1-893
ID060316 Non-Confidential

E1 ARMv8.1 Pseudocode
E1.4 Common library pseudocode
shared/functions/aborts/IsDebugException

 // IsDebugException()
 // ==================

 boolean IsDebugException(FaultRecord fault)
 assert fault.type != Fault_None;
 return fault.type == Fault_Debug;

shared/functions/aborts/IsExternalAbort

 // IsExternalAbort()
 // =================
 // Returns TRUE if the abort currently being processed is an external abort and FALSE otherwise.

 boolean IsExternalAbort(Fault type)
 assert type != Fault_None;

 return (type IN {Fault_SyncExternal, Fault_SyncParity, Fault_AsyncExternal, Fault_AsyncParity,
 Fault_SyncExternalOnWalk, Fault_SyncParityOnWalk});

 // IsExternalAbort()
 // =================

 boolean IsExternalAbort(FaultRecord fault)
 return IsExternalAbort(fault.type);

shared/functions/aborts/IsFault

 // IsFault()
 // =========
 // Return TRUE if a fault is associated with an address descriptor

 boolean IsFault(AddressDescriptor addrdesc)
 return addrdesc.fault.type != Fault_None;

shared/functions/aborts/IsSecondStage

 // IsSecondStage()
 // ===============

 boolean IsSecondStage(FaultRecord fault)
 assert fault.type != Fault_None;

 return fault.secondstage;

shared/functions/aborts/LSInstructionSyndrome

 bits(11) LSInstructionSyndrome();

shared/functions/common/ASR

 // ASR()
 // =====

 bits(N) ASR(bits(N) x, integer shift)
 assert shift >= 0;
 if shift == 0 then
 result = x;
 else
 (result, -) = ASR_C(x, shift);
 return result;
E1-894 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

E1 ARMv8.1 Pseudocode
E1.4 Common library pseudocode
shared/functions/common/ASR_C

 // ASR_C()
 // =======

 (bits(N), bit) ASR_C(bits(N) x, integer shift)
 assert shift > 0;
 extended_x = SignExtend(x, shift+N);
 result = extended_x<shift+N-1:shift>;
 carry_out = extended_x<shift-1>;
 return (result, carry_out);

shared/functions/common/Abs

 // Abs()
 // =====

 integer Abs(integer x)
 return if x >= 0 then x else -x;

 // Abs()
 // =====

 real Abs(real x)
 return if x >= 0.0 then x else -x;

shared/functions/common/Align

 // Align()
 // =======

 integer Align(integer x, integer y)
 return y * (x DIV y);

 // Align()
 // =======

 bits(N) Align(bits(N) x, integer y)
 return Align(UInt(x), y)<N-1:0>;

shared/functions/common/BitCount

 // BitCount()
 // ==========

 integer BitCount(bits(N) x)
 integer result = 0;
 for i = 0 to N-1
 if x<i> == '1' then
 result = result + 1;
 return result;

shared/functions/common/CountLeadingSignBits

 // CountLeadingSignBits()
 // ======================

 integer CountLeadingSignBits(bits(N) x)
 return CountLeadingZeroBits(x<N-1:1> EOR x<N-2:0>);
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. E1-895
ID060316 Non-Confidential

E1 ARMv8.1 Pseudocode
E1.4 Common library pseudocode
shared/functions/common/CountLeadingZeroBits

 // CountLeadingZeroBits()
 // ======================

 integer CountLeadingZeroBits(bits(N) x)
 return N - 1 - HighestSetBit(x);

shared/functions/common/Elem

 // Elem[] - non-assignment form
 // ============================

 bits(size) Elem[bits(N) vector, integer e, integer size]
 assert e >= 0 && (e+1)*size <= N;
 return vector<e*size+size-1 : e*size>;

 // Elem[] - non-assignment form
 // ============================

 bits(size) Elem[bits(N) vector, integer e]
 return Elem[vector, e, size];

 // Elem[] - assignment form
 // ========================

 Elem[bits(N) &vector, integer e, integer size] = bits(size) value
 assert e >= 0 && (e+1)*size <= N;
 vector<(e+1)*size-1:e*size> = value;
 return;

 // Elem[] - assignment form
 // ========================

 Elem[bits(N) &vector, integer e] = bits(size) value
 Elem[vector, e, size] = value;
 return;

shared/functions/common/Extend

 // Extend()
 // ========

 bits(N) Extend(bits(M) x, integer N, boolean unsigned)
 return if unsigned then ZeroExtend(x, N) else SignExtend(x, N);

 // Extend()
 // ========

 bits(N) Extend(bits(M) x, boolean unsigned)
 return Extend(x, N, unsigned);

shared/functions/common/HighestSetBit

 // HighestSetBit()
 // ===============

 integer HighestSetBit(bits(N) x)
 for i = N-1 downto 0
 if x<i> == '1' then return i;
 return -1;
E1-896 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

E1 ARMv8.1 Pseudocode
E1.4 Common library pseudocode
shared/functions/common/Int

 // Int()
 // =====

 integer Int(bits(N) x, boolean unsigned)
 result = if unsigned then UInt(x) else SInt(x);
 return result;

shared/functions/common/IsOnes

 // IsOnes()
 // ========

 boolean IsOnes(bits(N) x)
 return x == Ones(N);

shared/functions/common/IsZero

 // IsZero()
 // ========

 boolean IsZero(bits(N) x)
 return x == Zeros(N);

shared/functions/common/IsZeroBit

 // IsZeroBit()
 // ===========

 bit IsZeroBit(bits(N) x)
 return if IsZero(x) then '1' else '0';

shared/functions/common/LSL

 // LSL()
 // =====

 bits(N) LSL(bits(N) x, integer shift)
 assert shift >= 0;
 if shift == 0 then
 result = x;
 else
 (result, -) = LSL_C(x, shift);
 return result;

shared/functions/common/LSL_C

 // LSL_C()
 // =======

 (bits(N), bit) LSL_C(bits(N) x, integer shift)
 assert shift > 0;
 extended_x = x : Zeros(shift);
 result = extended_x<N-1:0>;
 carry_out = extended_x<N>;
 return (result, carry_out);

shared/functions/common/LSR

 // LSR()
 // =====

DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. E1-897
ID060316 Non-Confidential

E1 ARMv8.1 Pseudocode
E1.4 Common library pseudocode
 bits(N) LSR(bits(N) x, integer shift)
 assert shift >= 0;
 if shift == 0 then
 result = x;
 else
 (result, -) = LSR_C(x, shift);
 return result;

shared/functions/common/LSR_C

 // LSR_C()
 // =======

 (bits(N), bit) LSR_C(bits(N) x, integer shift)
 assert shift > 0;
 extended_x = ZeroExtend(x, shift+N);
 result = extended_x<shift+N-1:shift>;
 carry_out = extended_x<shift-1>;
 return (result, carry_out);

shared/functions/common/LowestSetBit

 // LowestSetBit()
 // ==============

 integer LowestSetBit(bits(N) x)
 for i = 0 to N-1
 if x<i> == '1' then return i;
 return N;

shared/functions/common/Max

 // Max()
 // =====

 integer Max(integer a, integer b)
 return if a >= b then a else b;

 // Max()
 // =====

 real Max(real a, real b)
 return if a >= b then a else b;

shared/functions/common/Min

 // Min()
 // =====

 integer Min(integer a, integer b)
 return if a <= b then a else b;

 // Min()
 // =====

 real Min(real a, real b)
 return if a <= b then a else b;

shared/functions/common/NOT

 bits(N) NOT(bits(N) x);
E1-898 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

E1 ARMv8.1 Pseudocode
E1.4 Common library pseudocode
shared/functions/common/Ones

 // Ones()
 // ======

 bits(N) Ones(integer N)
 return Replicate('1',N);

 // Ones()
 // ======

 bits(N) Ones()
 return Ones(N);

shared/functions/common/ROR

 // ROR()
 // =====

 bits(N) ROR(bits(N) x, integer shift)
 assert shift >= 0;
 if shift == 0 then
 result = x;
 else
 (result, -) = ROR_C(x, shift);
 return result;

shared/functions/common/ROR_C

 // ROR_C()
 // =======

 (bits(N), bit) ROR_C(bits(N) x, integer shift)
 assert shift != 0;
 m = shift MOD N;
 result = LSR(x,m) OR LSL(x,N-m);
 carry_out = result<N-1>;
 return (result, carry_out);

shared/functions/common/Replicate

 // Replicate()
 // ===========

 bits(N) Replicate(bits(M) x)
 assert N MOD M == 0;
 return Replicate(x, N DIV M);

 bits(M*N) Replicate(bits(M) x, integer N);

shared/functions/common/RoundDown

 integer RoundDown(real x);

shared/functions/common/RoundTowardsZero

 // RoundTowardsZero()
 // ==================

 integer RoundTowardsZero(real x)
 return if x == 0.0 then 0 else if x >= 0.0 then RoundDown(x) else RoundUp(x);
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. E1-899
ID060316 Non-Confidential

E1 ARMv8.1 Pseudocode
E1.4 Common library pseudocode
shared/functions/common/RoundUp

 integer RoundUp(real x);

shared/functions/common/SInt

 // SInt()
 // ======

 integer SInt(bits(N) x)
 result = 0;
 for i = 0 to N-1
 if x<i> == '1' then result = result + 2^i;
 if x<N-1> == '1' then result = result - 2^N;
 return result;

shared/functions/common/SignExtend

 // SignExtend()
 // ============

 bits(N) SignExtend(bits(M) x, integer N)
 assert N >= M;
 return Replicate(x<M-1>, N-M) : x;

 // SignExtend()
 // ============

 bits(N) SignExtend(bits(M) x)
 return SignExtend(x, N);

shared/functions/common/UInt

 // UInt()
 // ======

 integer UInt(bits(N) x)
 result = 0;
 for i = 0 to N-1
 if x<i> == '1' then result = result + 2^i;
 return result;

shared/functions/common/ZeroExtend

 // ZeroExtend()
 // ============

 bits(N) ZeroExtend(bits(M) x, integer N)
 assert N >= M;
 return Zeros(N-M) : x;

 // ZeroExtend()
 // ============

 bits(N) ZeroExtend(bits(M) x)
 return ZeroExtend(x, N);

shared/functions/common/Zeros

 // Zeros()
 // =======

 bits(N) Zeros(integer N)
 return Replicate('0',N);
E1-900 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

E1 ARMv8.1 Pseudocode
E1.4 Common library pseudocode

 // Zeros()
 // =======

 bits(N) Zeros()
 return Zeros(N);

shared/functions/crc/BitReverse

 // BitReverse()
 // ============

 bits(N) BitReverse(bits(N) data)
 bits(N) result;
 for i = 0 to N-1
 result<N-i-1> = data<i>;
 return result;

shared/functions/crc/HaveCRCExt

 // HaveCRCExt()
 // ============

 boolean HaveCRCExt()
 return HasArchVersion(ARMv8p1) || boolean IMPLEMENTATION_DEFINED "Have CRC extension";

shared/functions/crc/Poly32Mod2

 // Poly32Mod2()
 // ============

 // Poly32Mod2 on a bitstring does a polynomial Modulus over {0,1} operation

 bits(32) Poly32Mod2(bits(N) data, bits(32) poly)
 assert N > 32;
 for i = N-1 downto 32
 if data<i> == '1' then
 data<i-1:0> = data<i-1:0> EOR poly:Zeros(i-32);
 return data<31:0>;

shared/functions/crypto/AESInvMixColumns

 bits(128) AESInvMixColumns(bits (128) op);

shared/functions/crypto/AESInvShiftRows

 bits(128) AESInvShiftRows(bits(128) op);

shared/functions/crypto/AESInvSubBytes

 bits(128) AESInvSubBytes(bits(128) op);

shared/functions/crypto/AESMixColumns

 bits(128) AESMixColumns(bits (128) op);

shared/functions/crypto/AESShiftRows

 bits(128) AESShiftRows(bits(128) op);
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. E1-901
ID060316 Non-Confidential

E1 ARMv8.1 Pseudocode
E1.4 Common library pseudocode
shared/functions/crypto/AESSubBytes

 bits(128) AESSubBytes(bits(128) op);

shared/functions/crypto/HaveCryptoExt

 boolean HaveCryptoExt();

shared/functions/crypto/ROL

 // ROL()
 // =====

 bits(N) ROL(bits(N) x, integer shift)
 assert shift >= 0 && shift <= N;
 if (shift == 0) then
 return x;
 return ROR(x, N-shift);

shared/functions/crypto/SHA256hash

 // SHA256hash()
 // ============

 bits(128) SHA256hash (bits (128) X, bits(128) Y, bits(128) W, boolean part1)
 bits(32) chs, maj, t;

 for e = 0 to 3
 chs = SHAchoose(Y<31:0>, Y<63:32>, Y<95:64>);
 maj = SHAmajority(X<31:0>, X<63:32>, X<95:64>);
 t = Y<127:96> + SHAhashSIGMA1(Y<31:0>) + chs + Elem[W, e, 32];
 X<127:96> = t + X<127:96>;
 Y<127:96> = t + SHAhashSIGMA0(X<31:0>) + maj;
 <Y, X> = ROL(Y : X, 32);
 return (if part1 then X else Y);

shared/functions/crypto/SHAchoose

 // SHAchoose()
 // ===========

 bits(32) SHAchoose(bits(32) x, bits(32) y, bits(32) z)
 return (((y EOR z) AND x) EOR z);

shared/functions/crypto/SHAhashSIGMA0

 // SHAhashSIGMA0()
 // ===============

 bits(32) SHAhashSIGMA0(bits(32) x)
 return ROR(x, 2) EOR ROR(x, 13) EOR ROR(x, 22);

shared/functions/crypto/SHAhashSIGMA1

 // SHAhashSIGMA1()
 // ===============

 bits(32) SHAhashSIGMA1(bits(32) x)
 return ROR(x, 6) EOR ROR(x, 11) EOR ROR(x, 25);
E1-902 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

E1 ARMv8.1 Pseudocode
E1.4 Common library pseudocode
shared/functions/crypto/SHAmajority

 // SHAmajority()
 // =============

 bits(32) SHAmajority(bits(32) x, bits(32) y, bits(32) z)
 return ((x AND y) OR ((x OR y) AND z));

shared/functions/crypto/SHAparity

 // SHAparity()
 // ===========

 bits(32) SHAparity(bits(32) x, bits(32) y, bits(32) z)
 return (x EOR y EOR z);

shared/functions/exclusive/ClearExclusiveByAddress

 // Clear the global Exclusive Monitors for all PEs EXCEPT processorid if they
 // record any part of the physical address region of size bytes starting at paddress.
 // It is IMPLEMENTATION DEFINED whether the global Exclusive Monitor for processorid
 // is also cleared if it records any part of the address region.
 ClearExclusiveByAddress(FullAddress paddress, integer processorid, integer size);

shared/functions/exclusive/ClearExclusiveLocal

 // Clear the local Exclusive Monitor for the specified processorid.
 ClearExclusiveLocal(integer processorid);

shared/functions/exclusive/ClearExclusiveMonitors

 // ClearExclusiveMonitors()
 // ========================

 // Clear the local Exclusive Monitor for the executing PE.

 ClearExclusiveMonitors()
 ClearExclusiveLocal(ProcessorID());

shared/functions/exclusive/ExclusiveMonitorsStatus

 // Returns '0' to indicate success if the last memory write by this PE was to
 // the same physical address region endorsed by ExclusiveMonitorsPass().
 // Returns '1' to indicate failure if address translation resulted in a different
 // physical address.
 bit ExclusiveMonitorsStatus();

shared/functions/exclusive/IsExclusiveGlobal

 // Return TRUE if the global Exclusive Monitor for processorid includes all of
 // the physical address region of size bytes starting at paddress.
 boolean IsExclusiveGlobal(FullAddress paddress, integer processorid, integer size);

shared/functions/exclusive/IsExclusiveLocal

 // Return TRUE if the local Exclusive Monitor for processorid includes all of
 // the physical address region of size bytes starting at paddress.
 boolean IsExclusiveLocal(FullAddress paddress, integer processorid, integer size);
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. E1-903
ID060316 Non-Confidential

E1 ARMv8.1 Pseudocode
E1.4 Common library pseudocode
shared/functions/exclusive/MarkExclusiveGlobal

 // Record the physical address region of size bytes starting at paddress in
 // the global Exclusive Monitor for processorid.
 MarkExclusiveGlobal(FullAddress paddress, integer processorid, integer size);

shared/functions/exclusive/MarkExclusiveLocal

 // Record the physical address region of size bytes starting at paddress in
 // the local Exclusive Monitor for processorid.
 MarkExclusiveLocal(FullAddress paddress, integer processorid, integer size);

shared/functions/exclusive/ProcessorID

 // Return the ID of the currently executing PE.
 integer ProcessorID();

shared/functions/extension/HaveAtomicExt

 // HaveAtomicExt()
 // ===============

 boolean HaveAtomicExt()
 return HasArchVersion(ARMv8p1);

shared/functions/extension/HaveHPDExt

 // HaveHPDExt()
 // ============

 boolean HaveHPDExt()
 return HasArchVersion(ARMv8p1);

shared/functions/extension/HaveHPMDExt

 // HaveHPMDExt()
 // =============

 boolean HaveHPMDExt()
 return HasArchVersion(ARMv8p1);

shared/functions/extension/HavePANExt

 // HavePANExt()
 // ============

 boolean HavePANExt()
 return HasArchVersion(ARMv8p1);

shared/functions/extension/HaveQRDMLAHExt

 // HaveQRDMLAHExt()
 // ================

 boolean HaveQRDMLAHExt()
 return HasArchVersion(ARMv8p1);

 boolean HaveAccessFlagUpdateExt()
 return HasArchVersion(ARMv8p1);

 boolean HaveDirtyBitMechanismExt()
 return HasArchVersion(ARMv8p1);
E1-904 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

E1 ARMv8.1 Pseudocode
E1.4 Common library pseudocode
shared/functions/extension/HaveVirtHostExt

 // HaveVirtHostExt()
 // =================

 boolean HaveVirtHostExt()
 return HasArchVersion(ARMv8p1);

shared/functions/float/fixedtofp/FixedToFP

 // FixedToFP()
 // ===========

 // Convert M-bit fixed point OP with FBITS fractional bits to
 // N-bit precision floating point, controlled by UNSIGNED and ROUNDING.

 bits(N) FixedToFP(bits(M) op, integer fbits, boolean unsigned, FPCRType fpcr, FPRounding rounding)
 assert N IN {32,64};
 assert M IN {32,64};
 bits(N) result;
 assert fbits >= 0;
 assert rounding != FPRounding_ODD;

 // Correct signed-ness
 int_operand = Int(op, unsigned);

 // Scale by fractional bits and generate a real value
 real_operand = Real(int_operand) / 2.0^fbits;

 if real_operand == 0.0 then
 result = FPZero('0');
 else
 result = FPRound(real_operand, fpcr, rounding);

 return result;

shared/functions/float/fpabs/FPAbs

 // FPAbs()
 // =======

 bits(N) FPAbs(bits(N) op)
 assert N IN {32,64};
 return '0' : op<N-2:0>;

shared/functions/float/fpadd/FPAdd

 // FPAdd()
 // =======

 bits(N) FPAdd(bits(N) op1, bits(N) op2, FPCRType fpcr)
 assert N IN {32,64};
 rounding = FPRoundingMode(fpcr);
 (type1,sign1,value1) = FPUnpack(op1, fpcr);
 (type2,sign2,value2) = FPUnpack(op2, fpcr);
 (done,result) = FPProcessNaNs(type1, type2, op1, op2, fpcr);
 if !done then
 inf1 = (type1 == FPType_Infinity); inf2 = (type2 == FPType_Infinity);
 zero1 = (type1 == FPType_Zero); zero2 = (type2 == FPType_Zero);
 if inf1 && inf2 && sign1 == NOT(sign2) then
 result = FPDefaultNaN();
 FPProcessException(FPExc_InvalidOp, fpcr);
 elsif (inf1 && sign1 == '0') || (inf2 && sign2 == '0') then
 result = FPInfinity('0');
 elsif (inf1 && sign1 == '1') || (inf2 && sign2 == '1') then
 result = FPInfinity('1');
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. E1-905
ID060316 Non-Confidential

E1 ARMv8.1 Pseudocode
E1.4 Common library pseudocode
 elsif zero1 && zero2 && sign1 == sign2 then
 result = FPZero(sign1);
 else
 result_value = value1 + value2;
 if result_value == 0.0 then // Sign of exact zero result depends on rounding mode
 result_sign = if rounding == FPRounding_NEGINF then '1' else '0';
 result = FPZero(result_sign);
 else
 result = FPRound(result_value, fpcr, rounding);
 return result;

shared/functions/float/fpcompare/FPCompare

 // FPCompare()
 // ===========

 bits(4) FPCompare(bits(N) op1, bits(N) op2, boolean signal_nans, FPCRType fpcr)
 assert N IN {32,64};
 (type1,sign1,value1) = FPUnpack(op1, fpcr);
 (type2,sign2,value2) = FPUnpack(op2, fpcr);
 if type1==FPType_SNaN || type1==FPType_QNaN || type2==FPType_SNaN || type2==FPType_QNaN then
 result = '0011';
 if type1==FPType_SNaN || type2==FPType_SNaN || signal_nans then
 FPProcessException(FPExc_InvalidOp, fpcr);
 else
 // All non-NaN cases can be evaluated on the values produced by FPUnpack()
 if value1 == value2 then
 result = '0110';
 elsif value1 < value2 then
 result = '1000';
 else // value1 > value2
 result = '0010';
 return result;

shared/functions/float/fpcompareeq/FPCompareEQ

 // FPCompareEQ()
 // =============

 boolean FPCompareEQ(bits(N) op1, bits(N) op2, FPCRType fpcr)
 assert N IN {32,64};
 (type1,sign1,value1) = FPUnpack(op1, fpcr);
 (type2,sign2,value2) = FPUnpack(op2, fpcr);
 if type1==FPType_SNaN || type1==FPType_QNaN || type2==FPType_SNaN || type2==FPType_QNaN then
 result = FALSE;
 if type1==FPType_SNaN || type2==FPType_SNaN then
 FPProcessException(FPExc_InvalidOp, fpcr);
 else
 // All non-NaN cases can be evaluated on the values produced by FPUnpack()
 result = (value1 == value2);
 return result;

shared/functions/float/fpcomparege/FPCompareGE

 // FPCompareGE()
 // =============

 boolean FPCompareGE(bits(N) op1, bits(N) op2, FPCRType fpcr)
 assert N IN {32,64};
 (type1,sign1,value1) = FPUnpack(op1, fpcr);
 (type2,sign2,value2) = FPUnpack(op2, fpcr);
 if type1==FPType_SNaN || type1==FPType_QNaN || type2==FPType_SNaN || type2==FPType_QNaN then
 result = FALSE;
 FPProcessException(FPExc_InvalidOp, fpcr);
 else
E1-906 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

E1 ARMv8.1 Pseudocode
E1.4 Common library pseudocode
 // All non-NaN cases can be evaluated on the values produced by FPUnpack()
 result = (value1 >= value2);
 return result;

shared/functions/float/fpcomparegt/FPCompareGT

 // FPCompareGT()
 // =============

 boolean FPCompareGT(bits(N) op1, bits(N) op2, FPCRType fpcr)
 assert N IN {32,64};
 (type1,sign1,value1) = FPUnpack(op1, fpcr);
 (type2,sign2,value2) = FPUnpack(op2, fpcr);
 if type1==FPType_SNaN || type1==FPType_QNaN || type2==FPType_SNaN || type2==FPType_QNaN then
 result = FALSE;
 FPProcessException(FPExc_InvalidOp, fpcr);
 else
 // All non-NaN cases can be evaluated on the values produced by FPUnpack()
 result = (value1 > value2);
 return result;

shared/functions/float/fpconvert/FPConvert

 // FPConvert()
 // ===========

 // Convert floating point OP with N-bit precision to M-bit precision,
 // with rounding controlled by ROUNDING.

 bits(M) FPConvert(bits(N) op, FPCRType fpcr, FPRounding rounding)
 assert M IN {16,32,64};
 assert N IN {16,32,64};
 bits(M) result;

 // Unpack floating-point operand optionally with flush-to-zero.
 (type,sign,value) = FPUnpack(op, fpcr);

 alt_hp = (M == 16) && (fpcr.AHP == '1');

 if type == FPType_SNaN || type == FPType_QNaN then
 if alt_hp then
 result = FPZero(sign);
 elsif fpcr.DN == '1' then
 result = FPDefaultNaN();
 else
 result = FPConvertNaN(op);
 if type == FPType_SNaN || alt_hp then
 FPProcessException(FPExc_InvalidOp,fpcr);
 elsif type == FPType_Infinity then
 if alt_hp then
 result = sign:Ones(M-1);
 FPProcessException(FPExc_InvalidOp, fpcr);
 else
 result = FPInfinity(sign);
 elsif type == FPType_Zero then
 result = FPZero(sign);
 else
 result = FPRound(value, fpcr, rounding);

 return result;

 // FPConvert()
 // ===========

 bits(M) FPConvert(bits(N) op, FPCRType fpcr)
 return FPConvert(op, fpcr, FPRoundingMode(fpcr));
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. E1-907
ID060316 Non-Confidential

E1 ARMv8.1 Pseudocode
E1.4 Common library pseudocode
shared/functions/float/fpconvertnan/FPConvertNaN

 // FPConvertNaN()
 // ==============

 // Converts a NaN of one floating-point type to another

 bits(M) FPConvertNaN(bits(N) op)
 assert N IN {16,32,64};
 assert M IN {16,32,64};
 bits(M) result;
 bits(51) frac;

 sign = op<N-1>;

 // Unpack payload from input NaN
 case N of
 when 64 frac = op<50:0>;
 when 32 frac = op<21:0>:Zeros(29);
 when 16 frac = op<8:0>:Zeros(42);

 // Repack payload into output NaN, while
 // converting an SNaN to a QNaN.
 case M of
 when 64 result = sign:Ones(M-52):frac;
 when 32 result = sign:Ones(M-23):frac<50:29>;
 when 16 result = sign:Ones(M-10):frac<50:42>;

 return result;

shared/functions/float/fpcrtype/FPCRType

 type FPCRType;

shared/functions/float/fpdecoderm/FPDecodeRM

 // FPDecodeRM()
 // ============

 // Decode most common AArch32 floating-point rounding encoding.

 FPRounding FPDecodeRM(bits(2) rm)
 case rm of
 when '00' return FPRounding_TIEAWAY; // A
 when '01' return FPRounding_TIEEVEN; // N
 when '10' return FPRounding_POSINF; // P
 when '11' return FPRounding_NEGINF; // M

shared/functions/float/fpdecoderounding/FPDecodeRounding

 // FPDecodeRounding()
 // ==================

 // Decode floating-point rounding mode and common AArch64 encoding.

 FPRounding FPDecodeRounding(bits(2) rmode)
 case rmode of
 when '00' return FPRounding_TIEEVEN; // N
 when '01' return FPRounding_POSINF; // P
 when '10' return FPRounding_NEGINF; // M
 when '11' return FPRounding_ZERO; // Z
E1-908 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

E1 ARMv8.1 Pseudocode
E1.4 Common library pseudocode
shared/functions/float/fpdefaultnan/FPDefaultNaN

 // FPDefaultNaN()
 // ==============

 bits(N) FPDefaultNaN()
 assert N IN {16,32,64};
 constant integer E = (if N == 16 then 5 elsif N == 32 then 8 else 11);
 constant integer F = N - E - 1;
 sign = '0';
 exp = Ones(E);
 frac = '1':Zeros(F-1);
 return sign : exp : frac;

shared/functions/float/fpdiv/FPDiv

 // FPDiv()
 // =======

 bits(N) FPDiv(bits(N) op1, bits(N) op2, FPCRType fpcr)
 assert N IN {32,64};
 (type1,sign1,value1) = FPUnpack(op1, fpcr);
 (type2,sign2,value2) = FPUnpack(op2, fpcr);
 (done,result) = FPProcessNaNs(type1, type2, op1, op2, fpcr);
 if !done then
 inf1 = (type1 == FPType_Infinity);
 inf2 = (type2 == FPType_Infinity);
 zero1 = (type1 == FPType_Zero);
 zero2 = (type2 == FPType_Zero);
 if (inf1 && inf2) || (zero1 && zero2) then
 result = FPDefaultNaN();
 FPProcessException(FPExc_InvalidOp, fpcr);
 elsif inf1 || zero2 then
 result = FPInfinity(sign1 EOR sign2);
 if !inf1 then FPProcessException(FPExc_DivideByZero, fpcr);
 elsif zero1 || inf2 then
 result = FPZero(sign1 EOR sign2);
 else
 result = FPRound(value1/value2, fpcr);
 return result;

shared/functions/float/fpexc/FPExc

 enumeration FPExc {FPExc_InvalidOp, FPExc_DivideByZero, FPExc_Overflow,
 FPExc_Underflow, FPExc_Inexact, FPExc_InputDenorm};

shared/functions/float/fpinfinity/FPInfinity

 // FPInfinity()
 // ============

 bits(N) FPInfinity(bit sign)
 assert N IN {16,32,64};
 constant integer E = (if N == 16 then 5 elsif N == 32 then 8 else 11);
 constant integer F = N - E - 1;
 exp = Ones(E);
 frac = Zeros(F);
 return sign : exp : frac;

shared/functions/float/fpmax/FPMax

 // FPMax()
 // =======

 bits(N) FPMax(bits(N) op1, bits(N) op2, FPCRType fpcr)
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. E1-909
ID060316 Non-Confidential

E1 ARMv8.1 Pseudocode
E1.4 Common library pseudocode
 assert N IN {32,64};
 (type1,sign1,value1) = FPUnpack(op1, fpcr);
 (type2,sign2,value2) = FPUnpack(op2, fpcr);
 (done,result) = FPProcessNaNs(type1, type2, op1, op2, fpcr);
 if !done then
 if value1 > value2 then
 (type,sign,value) = (type1,sign1,value1);
 else
 (type,sign,value) = (type2,sign2,value2);
 if type == FPType_Infinity then
 result = FPInfinity(sign);
 elsif type == FPType_Zero then
 sign = sign1 AND sign2; // Use most positive sign
 result = FPZero(sign);
 else
 result = FPRound(value, fpcr);
 return result;

shared/functions/float/fpmaxnormal/FPMaxNormal

 // FPMaxNormal()
 // =============

 bits(N) FPMaxNormal(bit sign)
 assert N IN {16,32,64};
 constant integer E = (if N == 16 then 5 elsif N == 32 then 8 else 11);
 constant integer F = N - E - 1;
 exp = Ones(E-1):'0';
 frac = Ones(F);
 return sign : exp : frac;

shared/functions/float/fpmaxnum/FPMaxNum

 // FPMaxNum()
 // ==========

 bits(N) FPMaxNum(bits(N) op1, bits(N) op2, FPCRType fpcr)
 assert N IN {32,64};

 (type1,-,-) = FPUnpack(op1, fpcr);
 (type2,-,-) = FPUnpack(op2, fpcr);

 // treat a single quiet-NaN as -Infinity
 if type1 == FPType_QNaN && type2 != FPType_QNaN then
 op1 = FPInfinity('1');
 elsif type1 != FPType_QNaN && type2 == FPType_QNaN then
 op2 = FPInfinity('1');

 return FPMax(op1, op2, fpcr);

shared/functions/float/fpmin/FPMin

 // FPMin()
 // =======

 bits(N) FPMin(bits(N) op1, bits(N) op2, FPCRType fpcr)
 assert N IN {32,64};
 (type1,sign1,value1) = FPUnpack(op1, fpcr);
 (type2,sign2,value2) = FPUnpack(op2, fpcr);
 (done,result) = FPProcessNaNs(type1, type2, op1, op2, fpcr);
 if !done then
 if value1 < value2 then
 (type,sign,value) = (type1,sign1,value1);
 else
 (type,sign,value) = (type2,sign2,value2);
 if type == FPType_Infinity then
E1-910 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

E1 ARMv8.1 Pseudocode
E1.4 Common library pseudocode
 result = FPInfinity(sign);
 elsif type == FPType_Zero then
 sign = sign1 OR sign2; // Use most negative sign
 result = FPZero(sign);
 else
 result = FPRound(value, fpcr);
 return result;

shared/functions/float/fpminnum/FPMinNum

 // FPMinNum()
 // ==========

 bits(N) FPMinNum(bits(N) op1, bits(N) op2, FPCRType fpcr)
 assert N IN {32,64};

 (type1,-,-) = FPUnpack(op1, fpcr);
 (type2,-,-) = FPUnpack(op2, fpcr);

 // Treat a single quiet-NaN as +Infinity
 if type1 == FPType_QNaN && type2 != FPType_QNaN then
 op1 = FPInfinity('0');
 elsif type1 != FPType_QNaN && type2 == FPType_QNaN then
 op2 = FPInfinity('0');

 return FPMin(op1, op2, fpcr);

shared/functions/float/fpmul/FPMul

 // FPMul()
 // =======

 bits(N) FPMul(bits(N) op1, bits(N) op2, FPCRType fpcr)
 assert N IN {32,64};
 (type1,sign1,value1) = FPUnpack(op1, fpcr);
 (type2,sign2,value2) = FPUnpack(op2, fpcr);
 (done,result) = FPProcessNaNs(type1, type2, op1, op2, fpcr);
 if !done then
 inf1 = (type1 == FPType_Infinity);
 inf2 = (type2 == FPType_Infinity);
 zero1 = (type1 == FPType_Zero);
 zero2 = (type2 == FPType_Zero);
 if (inf1 && zero2) || (zero1 && inf2) then
 result = FPDefaultNaN();
 FPProcessException(FPExc_InvalidOp, fpcr);
 elsif inf1 || inf2 then
 result = FPInfinity(sign1 EOR sign2);
 elsif zero1 || zero2 then
 result = FPZero(sign1 EOR sign2);
 else
 result = FPRound(value1*value2, fpcr);
 return result;

shared/functions/float/fpmuladd/FPMulAdd

 // FPMulAdd()
 // ==========
 //
 // Calculates addend + op1*op2 with a single rounding.

 bits(N) FPMulAdd(bits(N) addend, bits(N) op1, bits(N) op2, FPCRType fpcr)
 assert N IN {32,64};
 rounding = FPRoundingMode(fpcr);
 (typeA,signA,valueA) = FPUnpack(addend, fpcr);
 (type1,sign1,value1) = FPUnpack(op1, fpcr);
 (type2,sign2,value2) = FPUnpack(op2, fpcr);
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. E1-911
ID060316 Non-Confidential

E1 ARMv8.1 Pseudocode
E1.4 Common library pseudocode
 inf1 = (type1 == FPType_Infinity); zero1 = (type1 == FPType_Zero);
 inf2 = (type2 == FPType_Infinity); zero2 = (type2 == FPType_Zero);
 (done,result) = FPProcessNaNs3(typeA, type1, type2, addend, op1, op2, fpcr);

 if typeA == FPType_QNaN && ((inf1 && zero2) || (zero1 && inf2)) then
 result = FPDefaultNaN();
 FPProcessException(FPExc_InvalidOp, fpcr);

 if !done then
 infA = (typeA == FPType_Infinity); zeroA = (typeA == FPType_Zero);

 // Determine sign and type product will have if it does not cause an Invalid
 // Operation.
 signP = sign1 EOR sign2;
 infP = inf1 || inf2;
 zeroP = zero1 || zero2;

 // Non SNaN-generated Invalid Operation cases are multiplies of zero by infinity and
 // additions of opposite-signed infinities.
 if (inf1 && zero2) || (zero1 && inf2) || (infA && infP && signA != signP) then
 result = FPDefaultNaN();
 FPProcessException(FPExc_InvalidOp, fpcr);

 // Other cases involving infinities produce an infinity of the same sign.
 elsif (infA && signA == '0') || (infP && signP == '0') then
 result = FPInfinity('0');
 elsif (infA && signA == '1') || (infP && signP == '1') then
 result = FPInfinity('1');

 // Cases where the result is exactly zero and its sign is not determined by the
 // rounding mode are additions of same-signed zeros.
 elsif zeroA && zeroP && signA == signP then
 result = FPZero(signA);

 // Otherwise calculate numerical result and round it.
 else
 result_value = valueA + (value1 * value2);
 if result_value == 0.0 then // Sign of exact zero result depends on rounding mode
 result_sign = if rounding == FPRounding_NEGINF then '1' else '0';
 result = FPZero(result_sign);
 else
 result = FPRound(result_value, fpcr);

 return result;

shared/functions/float/fpmulx/FPMulX

 // FPMulX()
 // ========

 bits(N) FPMulX(bits(N) op1, bits(N) op2, FPCRType fpcr)
 assert N IN {32,64};
 bits(N) result;
 (type1,sign1,value1) = FPUnpack(op1, fpcr);
 (type2,sign2,value2) = FPUnpack(op2, fpcr);
 (done,result) = FPProcessNaNs(type1, type2, op1, op2, fpcr);
 if !done then
 inf1 = (type1 == FPType_Infinity);
 inf2 = (type2 == FPType_Infinity);
 zero1 = (type1 == FPType_Zero);
 zero2 = (type2 == FPType_Zero);
 if (inf1 && zero2) || (zero1 && inf2) then
 result = FPTwo(sign1 EOR sign2);
 elsif inf1 || inf2 then
 result = FPInfinity(sign1 EOR sign2);
 elsif zero1 || zero2 then
 result = FPZero(sign1 EOR sign2);
E1-912 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

E1 ARMv8.1 Pseudocode
E1.4 Common library pseudocode
 else
 result = FPRound(value1*value2, fpcr);
 return result;

shared/functions/float/fpneg/FPNeg

 // FPNeg()
 // =======

 bits(N) FPNeg(bits(N) op)
 assert N IN {32,64};
 return NOT(op<N-1>) : op<N-2:0>;

shared/functions/float/fponepointfive/FPOnePointFive

 // FPOnePointFive()
 // ================

 bits(N) FPOnePointFive(bit sign)
 assert N IN {32,64};
 constant integer E = (if N == 32 then 8 else 11);
 constant integer F = N - E - 1;
 exp = '0':Ones(E-1);
 frac = '1':Zeros(F-1);
 return sign : exp : frac;

shared/functions/float/fpprocessexception/FPProcessException

 // FPProcessException()
 // ====================
 //
 // The 'fpcr' argument supplies FPCR control bits. Status information is
 // updated directly in the FPSR where appropriate.

 FPProcessException(FPExc exception, FPCRType fpcr)
 // Determine the cumulative exception bit number
 case exception of
 when FPExc_InvalidOp cumul = 0;
 when FPExc_DivideByZero cumul = 1;
 when FPExc_Overflow cumul = 2;
 when FPExc_Underflow cumul = 3;
 when FPExc_Inexact cumul = 4;
 when FPExc_InputDenorm cumul = 7;
 enable = cumul + 8;
 if fpcr<enable> == '1' then
 // Trapping of the exception enabled.
 // It is IMPLEMENTATION DEFINED whether the enable bit may be set at all, and
 // if so then how exceptions may be accumulated before calling FPTrapException()
 IMPLEMENTATION_DEFINED "floating-point trap handling";
 elsif UsingAArch32() then
 // Set the cumulative exception bit
 FPSCR<cumul> = '1';
 else
 // Set the cumulative exception bit
 FPSR<cumul> = '1';
 return;

shared/functions/float/fpprocessnan/FPProcessNaN

 // FPProcessNaN()
 // ==============

 bits(N) FPProcessNaN(FPType type, bits(N) op, FPCRType fpcr)
 assert N IN {32,64};
 assert type IN {FPType_QNaN, FPType_SNaN};
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. E1-913
ID060316 Non-Confidential

E1 ARMv8.1 Pseudocode
E1.4 Common library pseudocode

 topfrac = if N == 32 then 22 else 51;
 result = op;
 if type == FPType_SNaN then
 result<topfrac> = '1';
 FPProcessException(FPExc_InvalidOp, fpcr);
 if fpcr.DN == '1' then // DefaultNaN requested
 result = FPDefaultNaN();
 return result;

shared/functions/float/fpprocessnans/FPProcessNaNs

 // FPProcessNaNs()
 // ===============
 //
 // The boolean part of the return value says whether a NaN has been found and
 // processed. The bits(N) part is only relevant if it has and supplies the
 // result of the operation.
 //
 // The 'fpcr' argument supplies FPCR control bits. Status information is
 // updated directly in the FPSR where appropriate.

 (boolean, bits(N)) FPProcessNaNs(FPType type1, FPType type2,
 bits(N) op1, bits(N) op2,
 FPCRType fpcr)
 assert N IN {32,64};
 if type1 == FPType_SNaN then
 done = TRUE; result = FPProcessNaN(type1, op1, fpcr);
 elsif type2 == FPType_SNaN then
 done = TRUE; result = FPProcessNaN(type2, op2, fpcr);
 elsif type1 == FPType_QNaN then
 done = TRUE; result = FPProcessNaN(type1, op1, fpcr);
 elsif type2 == FPType_QNaN then
 done = TRUE; result = FPProcessNaN(type2, op2, fpcr);
 else
 done = FALSE; result = Zeros(); // 'Don't care' result
 return (done, result);

shared/functions/float/fpprocessnans3/FPProcessNaNs3

 // FPProcessNaNs3()
 // ================
 //
 // The boolean part of the return value says whether a NaN has been found and
 // processed. The bits(N) part is only relevant if it has and supplies the
 // result of the operation.
 //
 // The 'fpcr' argument supplies FPCR control bits. Status information is
 // updated directly in the FPSR where appropriate.

 (boolean, bits(N)) FPProcessNaNs3(FPType type1, FPType type2, FPType type3,
 bits(N) op1, bits(N) op2, bits(N) op3,
 FPCRType fpcr)
 assert N IN {32,64};
 if type1 == FPType_SNaN then
 done = TRUE; result = FPProcessNaN(type1, op1, fpcr);
 elsif type2 == FPType_SNaN then
 done = TRUE; result = FPProcessNaN(type2, op2, fpcr);
 elsif type3 == FPType_SNaN then
 done = TRUE; result = FPProcessNaN(type3, op3, fpcr);
 elsif type1 == FPType_QNaN then
 done = TRUE; result = FPProcessNaN(type1, op1, fpcr);
 elsif type2 == FPType_QNaN then
 done = TRUE; result = FPProcessNaN(type2, op2, fpcr);
 elsif type3 == FPType_QNaN then
 done = TRUE; result = FPProcessNaN(type3, op3, fpcr);
E1-914 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

E1 ARMv8.1 Pseudocode
E1.4 Common library pseudocode
 else
 done = FALSE; result = Zeros(); // 'Don't care' result
 return (done, result);

shared/functions/float/fprecipestimate/FPRecipEstimate

 // FPRecipEstimate()
 // =================

 bits(N) FPRecipEstimate(bits(N) operand, FPCRType fpcr)
 assert N IN {32, 64};
 (type,sign,value) = FPUnpack(operand, fpcr);
 if type == FPType_SNaN || type == FPType_QNaN then
 result = FPProcessNaN(type, operand, fpcr);
 elsif type == FPType_Infinity then
 result = FPZero(sign);
 elsif type == FPType_Zero then
 result = FPInfinity(sign);
 FPProcessException(FPExc_DivideByZero, fpcr);
 elsif (N == 32 && Abs(value) < 2.0^-128)
 || (N == 64 && Abs(value) < 2.0^-1024) then
 case FPRoundingMode(fpcr) of
 when FPRounding_TIEEVEN
 overflow_to_inf = TRUE;
 when FPRounding_POSINF
 overflow_to_inf = (sign == '0');
 when FPRounding_NEGINF
 overflow_to_inf = (sign == '1');
 when FPRounding_ZERO
 overflow_to_inf = FALSE;
 result = if overflow_to_inf then FPInfinity(sign) else FPMaxNormal(sign);
 FPProcessException(FPExc_Overflow, fpcr);
 FPProcessException(FPExc_Inexact, fpcr);
 elsif fpcr.FZ == '1'
 && ((N == 32 && Abs(value) >= 2.0^126)
 || (N == 64 && Abs(value) >= 2.0^1022)) then
 // Result flushed to zero of correct sign
 result = FPZero(sign);
 FPProcessException(FPExc_Underflow, fpcr);
 else
 // Scale to a double-precision value in the range 0.5 <= x < 1.0, and
 // calculate result exponent. Scaled value has copied sign bit,
 // exponent = 1022 = double-precision biased version of -1,
 // fraction = original fraction extended with zeros.

 if N == 32 then
 fraction = operand<22:0> : Zeros(29);
 exp = UInt(operand<30:23>);
 else // N == 64
 fraction = operand<51:0>;
 exp = UInt(operand<62:52>);

 if exp == 0 then
 if fraction<51> == 0 then
 exp = -1;
 fraction = fraction<49:0>:'00';
 else
 fraction = fraction<50:0>:'0';
 scaled = '0' : '01111111110' : fraction<51:44> : Zeros(44);

 if N == 32 then
 result_exp = 253 - exp; // In range 253-254 = -1 to 253+1 = 254
 else // N == 64
 result_exp = 2045 - exp; // In range 2045-2046 = -1 to 2045+1 = 2046

 // Call C function to get reciprocal estimate of scaled value.
 // Input is rounded down to a multiple of 1/512.
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. E1-915
ID060316 Non-Confidential

E1 ARMv8.1 Pseudocode
E1.4 Common library pseudocode
 estimate = recip_estimate(scaled);

 // Result is double-precision and a multiple of 1/256 in the range 1 to 511/256.
 // Convert to scaled single-precision result with copied sign bit and high-order
 // fraction bits, and exponent calculated above.

 fraction = estimate<51:0>;
 if result_exp == 0 then
 fraction = '1' : fraction<51:1>;
 elsif result_exp == -1 then
 fraction = '01' : fraction<51:2>;
 result_exp = 0;
 if N == 32 then
 result = sign : result_exp<N-25:0> : fraction<51:29>;
 else // N == 64
 result = sign : result_exp<N-54:0> : fraction<51:0>;

 return result;

shared/functions/float/fprecpx/FPRecpX

 // FPRecpX()
 // =========

 bits(N) FPRecpX(bits(N) op, FPCRType fpcr)
 assert N IN {32,64};
 bits(N) result;
 integer esize = if N == 32 then 8 else 11;
 bits(esize) exp;
 bits(esize) max_exp;
 bits(N-esize-1) frac = Zeros();

 if N == 32 then
 exp = op<23+esize-1:23>;
 else
 exp = op<52+esize-1:52>;
 max_exp = Ones(esize) - 1;

 (type,sign,value) = FPUnpack(op, fpcr);
 if type == FPType_SNaN || type == FPType_QNaN then
 result = FPProcessNaN(type, op, fpcr);
 else
 if IsZero(exp) then // Zero and denormals
 result = sign:max_exp:frac;
 else // Infinities and normals
 result = sign:NOT(exp):frac;

 return result;

shared/functions/float/fpround/FPRound

 // FPRound()
 // =========

 // Convert a real number OP into an N-bit floating-point value using the
 // supplied rounding mode RMODE.

 bits(N) FPRound(real op, FPCRType fpcr, FPRounding rounding)
 assert N IN {16,32,64};
 assert op != 0.0;
 assert rounding != FPRounding_TIEAWAY;
 bits(N) result;

 // Obtain format parameters - minimum exponent, numbers of exponent and fraction bits.
 if N == 16 then
 minimum_exp = -14; E = 5; F = 10;
E1-916 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

E1 ARMv8.1 Pseudocode
E1.4 Common library pseudocode
 elsif N == 32 then
 minimum_exp = -126; E = 8; F = 23;
 else // N == 64
 minimum_exp = -1022; E = 11; F = 52;

 // Split value into sign, unrounded mantissa and exponent.
 if op < 0.0 then
 sign = '1'; mantissa = -op;
 else
 sign = '0'; mantissa = op;
 exponent = 0;
 while mantissa < 1.0 do
 mantissa = mantissa * 2.0; exponent = exponent - 1;
 while mantissa >= 2.0 do
 mantissa = mantissa / 2.0; exponent = exponent + 1;

 // Deal with flush-to-zero.
 if fpcr.FZ == '1' && N != 16 && exponent < minimum_exp then
 // Flush-to-zero never generates a trapped exception
 if UsingAArch32() then
 FPSCR.UFC = '1';
 else
 FPSR.UFC = '1';
 return FPZero(sign);

 // Start creating the exponent value for the result. Start by biasing the actual exponent
 // so that the minimum exponent becomes 1, lower values 0 (indicating possible underflow).
 biased_exp = Max(exponent - minimum_exp + 1, 0);
 if biased_exp == 0 then mantissa = mantissa / 2.0^(minimum_exp - exponent);

 // Get the unrounded mantissa as an integer, and the "units in last place" rounding error.
 int_mant = RoundDown(mantissa * 2.0^F); // < 2.0^F if biased_exp == 0, >= 2.0^F if not
 error = mantissa * 2.0^F - Real(int_mant);

 // Underflow occurs if exponent is too small before rounding, and result is inexact or
 // the Underflow exception is trapped.
 if biased_exp == 0 && (error != 0.0 || fpcr.UFE == '1') then
 FPProcessException(FPExc_Underflow, fpcr);

 // Round result according to rounding mode.
 case rounding of
 when FPRounding_TIEEVEN
 round_up = (error > 0.5 || (error == 0.5 && int_mant<0> == '1'));
 overflow_to_inf = TRUE;
 when FPRounding_POSINF
 round_up = (error != 0.0 && sign == '0');
 overflow_to_inf = (sign == '0');
 when FPRounding_NEGINF
 round_up = (error != 0.0 && sign == '1');
 overflow_to_inf = (sign == '1');
 when FPRounding_ZERO, FPRounding_ODD
 round_up = FALSE;
 overflow_to_inf = FALSE;

 if round_up then
 int_mant = int_mant + 1;
 if int_mant == 2^F then // Rounded up from denormalized to normalized
 biased_exp = 1;
 if int_mant == 2^(F+1) then // Rounded up to next exponent
 biased_exp = biased_exp + 1; int_mant = int_mant DIV 2;

 // Handle rounding to odd aka Von Neumann rounding
 if error != 0.0 && rounding == FPRounding_ODD then
 int_mant<0> = '1';

 // Deal with overflow and generate result.
 if N != 16 || fpcr.AHP == '0' then // Single, double or IEEE half precision
 if biased_exp >= 2^E - 1 then
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. E1-917
ID060316 Non-Confidential

E1 ARMv8.1 Pseudocode
E1.4 Common library pseudocode
 result = if overflow_to_inf then FPInfinity(sign) else FPMaxNormal(sign);
 FPProcessException(FPExc_Overflow, fpcr);
 error = 1.0; // Ensure that an Inexact exception occurs
 else
 result = sign : biased_exp<N-F-2:0> : int_mant<F-1:0>;
 else // Alternative half precision
 if biased_exp >= 2^E then
 result = sign : Ones(N-1);
 FPProcessException(FPExc_InvalidOp, fpcr);
 error = 0.0; // Ensure that an Inexact exception does not occur
 else
 result = sign : biased_exp<N-F-2:0> : int_mant<F-1:0>;

 // Deal with Inexact exception.
 if error != 0.0 then
 FPProcessException(FPExc_Inexact, fpcr);

 return result;

 // FPRound()
 // =========

 bits(N) FPRound(real op, FPCRType fpcr)
 return FPRound(op, fpcr, FPRoundingMode(fpcr));

shared/functions/float/fprounding/FPRounding

 enumeration FPRounding {FPRounding_TIEEVEN, FPRounding_POSINF,
 FPRounding_NEGINF, FPRounding_ZERO,
 FPRounding_TIEAWAY, FPRounding_ODD};

shared/functions/float/fproundingmode/FPRoundingMode

 // FPRoundingMode()
 // ================

 // Return the current floating-point rounding mode.

 FPRounding FPRoundingMode(FPCRType fpcr)
 return FPDecodeRounding(fpcr.RMode);

shared/functions/float/fproundint/FPRoundInt

 // FPRoundInt()
 // ============

 // Round OP to nearest integral floating point value using rounding mode ROUNDING.
 // If EXACT is TRUE, set FPSR.IXC if result is not numerically equal to OP.

 bits(N) FPRoundInt(bits(N) op, FPCRType fpcr, FPRounding rounding, boolean exact)
 assert rounding != FPRounding_ODD;
 assert N IN {32,64};

 // Unpack using FPCR to determine if subnormals are flushed-to-zero
 (type,sign,value) = FPUnpack(op, fpcr);

 if type == FPType_SNaN || type == FPType_QNaN then
 result = FPProcessNaN(type, op, fpcr);
 elsif type == FPType_Infinity then
 result = FPInfinity(sign);
 elsif type == FPType_Zero then
 result = FPZero(sign);
 else
 // extract integer component
 int_result = RoundDown(value);
 error = value - Real(int_result);
E1-918 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

E1 ARMv8.1 Pseudocode
E1.4 Common library pseudocode

 // Determine whether supplied rounding mode requires an increment
 case rounding of
 when FPRounding_TIEEVEN
 round_up = (error > 0.5 || (error == 0.5 && int_result<0> == '1'));
 when FPRounding_POSINF
 round_up = (error != 0.0);
 when FPRounding_NEGINF
 round_up = FALSE;
 when FPRounding_ZERO
 round_up = (error != 0.0 && int_result < 0);
 when FPRounding_TIEAWAY
 round_up = (error > 0.5 || (error == 0.5 && int_result >= 0));

 if round_up then int_result = int_result + 1;

 // Convert integer value into an equivalent real value
 real_result = Real(int_result);

 // Re-encode as a floating-point value, result is always exact
 if real_result == 0.0 then
 result = FPZero(sign);
 else
 result = FPRound(real_result, fpcr, FPRounding_ZERO);

 // Generate inexact exceptions
 if error != 0.0 && exact then
 FPProcessException(FPExc_Inexact, fpcr);

 return result;

shared/functions/float/fprsqrtestimate/FPRSqrtEstimate

 // FPRSqrtEstimate()
 // =================

 bits(N) FPRSqrtEstimate(bits(N) operand, FPCRType fpcr)
 assert N IN {32, 64};
 (type,sign,value) = FPUnpack(operand, fpcr);
 if type == FPType_SNaN || type == FPType_QNaN then
 result = FPProcessNaN(type, operand, fpcr);
 elsif type == FPType_Zero then
 result = FPInfinity(sign);
 FPProcessException(FPExc_DivideByZero, fpcr);
 elsif sign == '1' then
 result = FPDefaultNaN();
 FPProcessException(FPExc_InvalidOp, fpcr);
 elsif type == FPType_Infinity then
 result = FPZero('0');
 else
 // Scale to a double-precision value in the range 0.25 <= x < 1.0, with the
 // evenness or oddness of the exponent unchanged, and calculate result exponent.
 // Scaled value has copied sign bit, exponent = 1022 or 1021 = double-precision
 // biased version of -1 or -2, fraction = original fraction extended with zeros.

 if N == 32 then
 fraction = operand<22:0> : Zeros(29);
 exp = UInt(operand<30:23>);
 else // N == 64
 fraction = operand<51:0>;
 exp = UInt(operand<62:52>);

 if exp == 0 then
 while fraction<51> == 0 do
 fraction = fraction<50:0> : '0';
 exp = exp - 1;
 fraction = fraction<50:0> : '0';
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. E1-919
ID060316 Non-Confidential

E1 ARMv8.1 Pseudocode
E1.4 Common library pseudocode

 if exp<0> == '0' then
 scaled = '0' : '01111111110' : fraction<51:44> : Zeros(44);
 else
 scaled = '0' : '01111111101' : fraction<51:44> : Zeros(44);

 if N == 32 then
 result_exp = (380 - exp) DIV 2;
 else // N == 64
 result_exp = (3068 - exp) DIV 2;

 // Call C function to get reciprocal estimate of scaled value.
 estimate = recip_sqrt_estimate(scaled);

 // Result is double-precision and a multiple of 1/256 in the range 1 to 511/256.
 // Convert to scaled single-precision result with copied sign bit and high-order
 // fraction bits, and exponent calculated above.

 if N == 32 then
 result = '0' : result_exp<N-25:0> : estimate<51:29>;
 else // N == 64
 result = '0' : result_exp<N-54:0> : estimate<51:0>;
 return result;

shared/functions/float/fpsqrt/FPSqrt

 // FPSqrt()
 // ========

 bits(N) FPSqrt(bits(N) op, FPCRType fpcr)
 assert N IN {32,64};
 (type,sign,value) = FPUnpack(op, fpcr);
 if type == FPType_SNaN || type == FPType_QNaN then
 result = FPProcessNaN(type, op, fpcr);
 elsif type == FPType_Zero then
 result = FPZero(sign);
 elsif type == FPType_Infinity && sign == '0' then
 result = FPInfinity(sign);
 elsif sign == '1' then
 result = FPDefaultNaN();
 FPProcessException(FPExc_InvalidOp, fpcr);
 else
 result = FPRound(Sqrt(value), fpcr);
 return result;

shared/functions/float/fpsub/FPSub

 // FPSub()
 // =======

 bits(N) FPSub(bits(N) op1, bits(N) op2, FPCRType fpcr)
 assert N IN {32,64};
 rounding = FPRoundingMode(fpcr);
 (type1,sign1,value1) = FPUnpack(op1, fpcr);
 (type2,sign2,value2) = FPUnpack(op2, fpcr);
 (done,result) = FPProcessNaNs(type1, type2, op1, op2, fpcr);
 if !done then
 inf1 = (type1 == FPType_Infinity);
 inf2 = (type2 == FPType_Infinity);
 zero1 = (type1 == FPType_Zero);
 zero2 = (type2 == FPType_Zero);
 if inf1 && inf2 && sign1 == sign2 then
 result = FPDefaultNaN();
 FPProcessException(FPExc_InvalidOp, fpcr);
 elsif (inf1 && sign1 == '0') || (inf2 && sign2 == '1') then
 result = FPInfinity('0');
E1-920 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

E1 ARMv8.1 Pseudocode
E1.4 Common library pseudocode
 elsif (inf1 && sign1 == '1') || (inf2 && sign2 == '0') then
 result = FPInfinity('1');
 elsif zero1 && zero2 && sign1 == NOT(sign2) then
 result = FPZero(sign1);
 else
 result_value = value1 - value2;
 if result_value == 0.0 then // Sign of exact zero result depends on rounding mode
 result_sign = if rounding == FPRounding_NEGINF then '1' else '0';
 result = FPZero(result_sign);
 else
 result = FPRound(result_value, fpcr, rounding);
 return result;

shared/functions/float/fpthree/FPThree

 // FPThree()
 // =========

 bits(N) FPThree(bit sign)
 assert N IN {32,64};
 constant integer E = (if N == 32 then 8 else 11);
 constant integer F = N - E - 1;
 exp = '1':Zeros(E-1);
 frac = '1':Zeros(F-1);
 return sign : exp : frac;

shared/functions/float/fptofixed/FPToFixed

 // FPToFixed()
 // ===========

 // Convert N-bit precision floating point OP to M-bit fixed point with
 // FBITS fractional bits, controlled by UNSIGNED and ROUNDING.

 bits(M) FPToFixed(bits(N) op, integer fbits, boolean unsigned, FPCRType fpcr, FPRounding rounding)
 assert N IN {32,64};
 assert M IN {32,64};
 assert fbits >= 0;
 assert rounding != FPRounding_ODD;

 // Unpack using fpcr to determine if subnormals are flushed-to-zero
 (type,sign,value) = FPUnpack(op, fpcr);

 // If NaN, set cumulative flag or take exception
 if type == FPType_SNaN || type == FPType_QNaN then
 FPProcessException(FPExc_InvalidOp, fpcr);

 // Scale by fractional bits and produce integer rounded towards minus-infinity
 value = value * 2.0^fbits;
 int_result = RoundDown(value);
 error = value - Real(int_result);

 // Determine whether supplied rounding mode requires an increment
 case rounding of
 when FPRounding_TIEEVEN
 round_up = (error > 0.5 || (error == 0.5 && int_result<0> == '1'));
 when FPRounding_POSINF
 round_up = (error != 0.0);
 when FPRounding_NEGINF
 round_up = FALSE;
 when FPRounding_ZERO
 round_up = (error != 0.0 && int_result < 0);
 when FPRounding_TIEAWAY
 round_up = (error > 0.5 || (error == 0.5 && int_result >= 0));

 if round_up then int_result = int_result + 1;
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. E1-921
ID060316 Non-Confidential

E1 ARMv8.1 Pseudocode
E1.4 Common library pseudocode

 // Generate saturated result and exceptions
 (result, overflow) = SatQ(int_result, M, unsigned);
 if overflow then
 FPProcessException(FPExc_InvalidOp, fpcr);
 elsif error != 0.0 then
 FPProcessException(FPExc_Inexact, fpcr);

 return result;

shared/functions/float/fptwo/FPTwo

 // FPTwo()
 // =======

 bits(N) FPTwo(bit sign)
 assert N IN {32,64};
 constant integer E = (if N == 32 then 8 else 11);
 constant integer F = N - E - 1;
 exp = '1':Zeros(E-1);
 frac = Zeros(F);
 return sign : exp : frac;

shared/functions/float/fptype/FPType

 enumeration FPType {FPType_Nonzero, FPType_Zero, FPType_Infinity,
 FPType_QNaN, FPType_SNaN};

shared/functions/float/fpunpack/FPUnpack

 // FPUnpack()
 // ==========
 //
 // Unpack a floating-point number into its type, sign bit and the real number
 // that it represents. The real number result has the correct sign for numbers
 // and infinities, is very large in magnitude for infinities, and is 0.0 for
 // NaNs. (These values are chosen to simplify the description of comparisons
 // and conversions.)
 //
 // The 'fpcr' argument supplies FPCR control bits. Status information is
 // updated directly in the FPSR where appropriate.

 (FPType, bit, real) FPUnpack(bits(N) fpval, FPCRType fpcr)
 assert N IN {16,32,64};

 if N == 16 then
 sign = fpval<15>;
 exp16 = fpval<14:10>;
 frac16 = fpval<9:0>;
 if IsZero(exp16) then
 // Produce zero if value is zero
 if IsZero(frac16) then
 type = FPType_Zero; value = 0.0;
 else
 type = FPType_Nonzero; value = 2.0^-14 * (Real(UInt(frac16)) * 2.0^-10);
 elsif IsOnes(exp16) && fpcr.AHP == '0' then // Infinity or NaN in IEEE format
 if IsZero(frac16) then
 type = FPType_Infinity; value = 2.0^1000000;
 else
 type = if frac16<9> == '1' then FPType_QNaN else FPType_SNaN;
 value = 0.0;
 else
 type = FPType_Nonzero;
 value = 2.0^(UInt(exp16)-15) * (1.0 + Real(UInt(frac16)) * 2.0^-10);

 elsif N == 32 then
E1-922 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

E1 ARMv8.1 Pseudocode
E1.4 Common library pseudocode

 sign = fpval<31>;
 exp32 = fpval<30:23>;
 frac32 = fpval<22:0>;
 if IsZero(exp32) then
 // Produce zero if value is zero or flush-to-zero is selected.
 if IsZero(frac32) || fpcr.FZ == '1' then
 type = FPType_Zero; value = 0.0;
 if !IsZero(frac32) then // Denormalized input flushed to zero
 FPProcessException(FPExc_InputDenorm, fpcr);
 else
 type = FPType_Nonzero; value = 2.0^-126 * (Real(UInt(frac32)) * 2.0^-23);
 elsif IsOnes(exp32) then
 if IsZero(frac32) then
 type = FPType_Infinity; value = 2.0^1000000;
 else
 type = if frac32<22> == '1' then FPType_QNaN else FPType_SNaN;
 value = 0.0;
 else
 type = FPType_Nonzero;
 value = 2.0^(UInt(exp32)-127) * (1.0 + Real(UInt(frac32)) * 2.0^-23);

 else // N == 64

 sign = fpval<63>;
 exp64 = fpval<62:52>;
 frac64 = fpval<51:0>;
 if IsZero(exp64) then
 // Produce zero if value is zero or flush-to-zero is selected.
 if IsZero(frac64) || fpcr.FZ == '1' then
 type = FPType_Zero; value = 0.0;
 if !IsZero(frac64) then // Denormalized input flushed to zero
 FPProcessException(FPExc_InputDenorm, fpcr);
 else
 type = FPType_Nonzero; value = 2.0^-1022 * (Real(UInt(frac64)) * 2.0^-52);
 elsif IsOnes(exp64) then
 if IsZero(frac64) then
 type = FPType_Infinity; value = 2.0^1000000;
 else
 type = if frac64<51> == '1' then FPType_QNaN else FPType_SNaN;
 value = 0.0;
 else
 type = FPType_Nonzero;
 value = 2.0^(UInt(exp64)-1023) * (1.0 + Real(UInt(frac64)) * 2.0^-52);

 if sign == '1' then value = -value;
 return (type, sign, value);

shared/functions/float/fpzero/FPZero

 // FPZero()
 // ========

 bits(N) FPZero(bit sign)
 assert N IN {16,32,64};
 constant integer E = (if N == 16 then 5 elsif N == 32 then 8 else 11);
 constant integer F = N - E - 1;
 exp = Zeros(E);
 frac = Zeros(F);
 return sign : exp : frac;

shared/functions/float/vfpexpandimm/VFPExpandImm

 // VFPExpandImm()
 // ==============

DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. E1-923
ID060316 Non-Confidential

E1 ARMv8.1 Pseudocode
E1.4 Common library pseudocode
 bits(N) VFPExpandImm(bits(8) imm8)
 assert N IN {32,64};
 constant integer E = (if N == 32 then 8 else 11);
 constant integer F = N - E - 1;
 sign = imm8<7>;
 exp = NOT(imm8<6>):Replicate(imm8<6>,E-3):imm8<5:4>;
 frac = imm8<3:0>:Zeros(F-4);
 return sign : exp : frac;

shared/functions/integer/AddWithCarry

 // AddWithCarry()
 // ==============
 // Integer addition with carry input, returning result and NZCV flags

 (bits(N), bits(4)) AddWithCarry(bits(N) x, bits(N) y, bit carry_in)
 integer unsigned_sum = UInt(x) + UInt(y) + UInt(carry_in);
 integer signed_sum = SInt(x) + SInt(y) + UInt(carry_in);
 bits(N) result = unsigned_sum<N-1:0>; // same value as signed_sum<N-1:0>
 bit n = result<N-1>;
 bit z = if IsZero(result) then '1' else '0';
 bit c = if UInt(result) == unsigned_sum then '0' else '1';
 bit v = if SInt(result) == signed_sum then '0' else '1';
 return (result, n:z:c:v);

shared/functions/memory/AccType

 enumeration AccType {AccType_NORMAL, AccType_VEC, // Normal loads and stores
 AccType_STREAM, AccType_VECSTREAM, // Streaming loads and stores
 AccType_ATOMIC, AccType_ATOMICRW, // Atomic loads and stores
 AccType_ORDERED, AccType_ORDEREDRW, // Load-Acquire and Store-Release
 AccType_LIMITEDORDERED, // Load-LOAcquire and Store-LORelease
 AccType_UNPRIV, // Load and store unprivileged
 AccType_IFETCH, // Instruction fetch
 AccType_PTW, // Page table walk
 // Other operations
 AccType_DC, // Data cache maintenance
 AccType_IC, // Instruction cache maintenance
 AccType_AT}; // Address translation

shared/functions/memory/AddrTop

 // AddrTop()
 // =========

 integer AddrTop(bits(64) address, bits(2) el)
 // Return the MSB number of a virtual address in the current stage 1 translation
 // regime. If EL1 is using AArch64 then addresses from EL0 using AArch32
 // are zero-extended to 64 bits.
 if UsingAArch32() && !(el == EL0 && !ELUsingAArch32(EL1)) then
 // AArch32 translation regime.
 return 31;
 else
 // AArch64 translation regime.
 case el of
 when EL0, EL1
 tbi = if address<55> == '1' then TCR_EL1.TBI1 else TCR_EL1.TBI0;
 when EL2
 tbi = TCR_EL2.TBI;
 when EL3
 tbi = TCR_EL3.TBI;
 return (if tbi == '1' then 55 else 63);
E1-924 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

E1 ARMv8.1 Pseudocode
E1.4 Common library pseudocode
shared/functions/memory/AddressDescriptor

 type AddressDescriptor is (
 FaultRecord fault, // fault.type indicates whether the address is valid
 MemoryAttributes memattrs,
 FullAddress paddress,
 bits(64) vaddress
)

shared/functions/memory/Allocation

 constant bits(2) MemHint_No = '00'; // No allocate
 constant bits(2) MemHint_WA = '01'; // Write-allocate, Read-no-allocate
 constant bits(2) MemHint_RA = '10'; // Read-allocate, Write-no-allocate
 constant bits(2) MemHint_RWA = '11'; // Read-allocate and Write-allocate

shared/functions/memory/BigEndian

 // BigEndian()
 // ===========

 boolean BigEndian()
 boolean bigend;
 if UsingAArch32() then
 bigend = (PSTATE.E != '0');
 elsif PSTATE.EL == EL0 then
 bigend = (SCTLR[].E0E != '0');
 else
 bigend = (SCTLR[].EE != '0');
 return bigend;

shared/functions/memory/BigEndianReverse

 // BigEndianReverse()
 // ==================

 bits(width) BigEndianReverse (bits(width) value)
 assert width IN {8, 16, 32, 64, 128};
 integer half = width DIV 2;
 if width == 8 then return value;
 return BigEndianReverse(value<half-1:0>) : BigEndianReverse(value<width-1:half>);

shared/functions/memory/BranchAddr

 // BranchAddr()
 // ============
 // Return the virtual address with tag bits removed for storing to the program counter.

 bits(64) BranchAddr(bits(64) vaddress, bits(2) el)
 assert !UsingAArch32();
 msbit = AddrTop(vaddress, el);
 if msbit == 63 then
 return vaddress;
 elsif el IN {EL0, EL1} && vaddress<msbit> == '1' then
 return SignExtend(vaddress<msbit:0>);
 else
 return ZeroExtend(vaddress<msbit:0>);

shared/functions/memory/Cacheability

 constant bits(2) MemAttr_NC = '00'; // Non-cacheable
 constant bits(2) MemAttr_WT = '10'; // Write-through
 constant bits(2) MemAttr_WB = '11'; // Write-back
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. E1-925
ID060316 Non-Confidential

E1 ARMv8.1 Pseudocode
E1.4 Common library pseudocode
shared/functions/memory/DataMemoryBarrier

 DataMemoryBarrier(MBReqDomain domain, MBReqTypes types);

shared/functions/memory/DataSynchronizationBarrier

 DataSynchronizationBarrier(MBReqDomain domain, MBReqTypes types);

shared/functions/memory/DescriptorUpdate

 type DescriptorUpdate is (
 boolean AF, // AF needs to be set
 boolean AP, // AP[2] / HAP[2] will be modified
 AddressDescriptor descaddr // Descriptor to be updated
)

shared/functions/memory/DeviceType

 enumeration DeviceType {DeviceType_GRE, DeviceType_nGRE, DeviceType_nGnRE, DeviceType_nGnRnE};

shared/functions/memory/Fault

 enumeration Fault {Fault_None,
 Fault_AccessFlag,
 Fault_Alignment,
 Fault_Background,
 Fault_Domain,
 Fault_Permission,
 Fault_Translation,
 Fault_AddressSize,
 Fault_SyncExternal,
 Fault_SyncExternalOnWalk,
 Fault_SyncParity,
 Fault_SyncParityOnWalk,
 Fault_AsyncParity,
 Fault_AsyncExternal,
 Fault_Debug,
 Fault_TLBConflict,
 Fault_Lockdown,
 Fault_Exclusive,
 Fault_ICacheMaint};

shared/functions/memory/FaultRecord

 type FaultRecord is (Fault type, // Fault Status
 AccType acctype, // Type of access that faulted
 bits(48) ipaddress, // Intermediate physical address
 boolean s2fs1walk, // Is on a Stage 1 page table walk
 boolean write, // TRUE for a write, FALSE for a read
 integer level, // For translation, access flag and permission faults
 bit extflag, // IMPLEMENTATION DEFINED syndrome for external aborts
 boolean secondstage, // Is a Stage 2 abort
 bits(4) domain, // Domain number, AArch32 only
 bits(4) debugmoe) // Debug method of entry, from AArch32 only

shared/functions/memory/FullAddress

 type FullAddress is (
 bits(48) physicaladdress,
 bit NS // '0' = Secure, '1' = Non-secure
)
E1-926 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

E1 ARMv8.1 Pseudocode
E1.4 Common library pseudocode
shared/functions/memory/Hint_Prefetch

 // Signals the memory system that memory accesses of type HINT to or from the specified address are
 // likely in the near future. The memory system may take some action to speed up the memory accesses
 // when they do occur, such as pre-loading the the specified address into one or more caches as
 // indicated by the innermost cache level target (0=L1, 1=L2, etc) and non-temporal hint stream.
 // Any or all prefetch hints may be treated as a NOP. A prefetch hint must not cause a synchronous
 // abort due to alignment or translation faults and the like. Its only effect on software visible
 // state should be on caches and TLBs associated with address, which must be accessable by reads,
 // writes or execution as defined in the translation regime of the current Exception level.
 // It is guaranteed not to access Device memory.
 // A Prefetch_EXEC hint must not result in an access that could not be performed by a speculative
 // instruction fetch, therefore if all associated MMUs are disabled, then it cannot access any
 // memory location that cannot be accessed by instruction fetches.
 Hint_Prefetch(bits(64) address, PrefetchHint hint, integer target, boolean stream);

shared/functions/memory/MBReqDomain

 enumeration MBReqDomain {MBReqDomain_Nonshareable, MBReqDomain_InnerShareable,
 MBReqDomain_OuterShareable, MBReqDomain_FullSystem};

shared/functions/memory/MBReqTypes

 enumeration MBReqTypes {MBReqTypes_Reads, MBReqTypes_Writes, MBReqTypes_All};

shared/functions/memory/MemAttrHints

 type MemAttrHints is (
 bits(2) attrs, // The possible encodings for each attributes field are as below
 bits(2) hints, // The possible encodings for the hints are below
 boolean transient
)

shared/functions/memory/MemType

 enumeration MemType {MemType_Normal, MemType_Device};

shared/functions/memory/MemoryAttributes

 type MemoryAttributes is (
 MemType type,

 DeviceType device, // For Device memory types
 MemAttrHints inner, // Inner hints and attributes
 MemAttrHints outer, // Outer hints and attributes

 boolean shareable,
 boolean outershareable
)

shared/functions/memory/Permissions

 type Permissions is (
 bits(3) ap, // Access permission bits
 bit xn, // Execute-never bit
 bit pxn // Privileged execute-never bit
)

shared/functions/memory/PrefetchHint

 enumeration PrefetchHint {Prefetch_READ, Prefetch_WRITE, Prefetch_EXEC};
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. E1-927
ID060316 Non-Confidential

E1 ARMv8.1 Pseudocode
E1.4 Common library pseudocode
shared/functions/memory/TLBRecord

 type TLBRecord is (
 Permissions perms,
 bit nG, // '0' = Global, '1' = not Global
 bits(4) domain, // AArch32 only
 boolean contiguous, // Contiguous bit from page table
 integer level, // In AArch32 Short-descriptort format, indicates Section/Page
 integer blocksize, // Describes size of memory translated in KBytes
 DescriptorUpdate descupdate, // [ARMv8.1A] Context for hardware update of translation table
descriptor
 AddressDescriptor addrdesc
)

shared/functions/memory/_Mem

 // These two _Mem[] accessors are the hardware operations which perform
 // single-copy atomic, aligned, little-endian memory accesses of size
 // bytes from/to the underlying physical memory array of bytes.
 //
 // The functions address the array using desc.PADDRESS which supplies:
 //
 // * A 48-bit physical address
 // * A single NS bit to select between Secure and Non-secure parts of
 // the array.
 //
 // The acctype parameter describes the access type: normal, exclusive,
 // ordered, streaming, etc.
 bits(8*size) _Mem[AddressDescriptor desc, integer size, AccType acctype];

 _Mem[AddressDescriptor desc, integer size, AccType acctype] = bits(8*size) value;

shared/functions/registers/BranchTo

 // BranchTo()
 // ==========

 // Set program counter to a new address, which may include a tag in the top eight bits,
 // with a branch reason hint for possible use by hardware fetching the next instruction.

 BranchTo(bits(N) target, BranchType branch_type)
 Hint_Branch(branch_type);
 if N == 32 then
 assert UsingAArch32();
 _PC = ZeroExtend(target);
 else
 assert N == 64 && !UsingAArch32();
 _PC = BranchAddr(target<63:0>, PSTATE.EL);
 return;

shared/functions/registers/BranchToAddr

 // BranchToAddr()
 // ==============

 // Set program counter to a new address, which does not include a tag in the top eight bits,
 // with a branch reason hint for possible use by hardware fetching the next instruction.

 BranchToAddr(bits(N) target, BranchType branch_type)
 Hint_Branch(branch_type);
 if N == 32 then
 assert UsingAArch32();
 _PC = ZeroExtend(target);
 else
E1-928 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

E1 ARMv8.1 Pseudocode
E1.4 Common library pseudocode
 assert N == 64 && !UsingAArch32();
 _PC = target<63:0>;
 return;

shared/functions/registers/BranchType

 enumeration BranchType {BranchType_CALL, BranchType_ERET, BranchType_DBGEXIT,
 BranchType_RET, BranchType_JMP, BranchType_EXCEPTION,
 BranchType_UNKNOWN};

shared/functions/registers/Hint_Branch

 // Report the hint passed to BranchTo() and BranchToAddr(), for consideration when processing
 // the next instruction.
 Hint_Branch(BranchType hint);

shared/functions/registers/NextInstrAddr

 // Return address of the next instruction.
 bits(N) NextInstrAddr();

shared/functions/registers/ResetExternalDebugRegisters

 // Reset the External Debug registers in the Core power domain.
 ResetExternalDebugRegisters(boolean cold_reset);

shared/functions/registers/ThisInstrAddr

 // ThisInstrAddr()
 // ===============
 // Return address of the current instruction.

 bits(N) ThisInstrAddr()
 assert N == 64 || (N == 32 && UsingAArch32());
 return _PC<N-1:0>;

shared/functions/registers/_PC

 bits(64) _PC;

shared/functions/registers/_R

 array bits(64) _R[0..30];

shared/functions/registers/_V

 array bits(128) _V[0..31];

shared/functions/sysregisters/SPSR

 // SPSR[] - non-assignment form
 // ============================

 bits(32) SPSR[]
 bits(32) result;
 if UsingAArch32() then
 case PSTATE.M of
 when M32_FIQ result = SPSR_fiq;
 when M32_IRQ result = SPSR_irq;
 when M32_Svc result = SPSR_svc;
 when M32_Monitor result = SPSR_mon;
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. E1-929
ID060316 Non-Confidential

E1 ARMv8.1 Pseudocode
E1.4 Common library pseudocode
 when M32_Abort result = SPSR_abt;
 when M32_Hyp result = SPSR_hyp;
 when M32_Undef result = SPSR_und;
 otherwise Unreachable();
 else
 case PSTATE.EL of
 when EL1 result = SPSR_EL1;
 when EL2 result = SPSR_EL2;
 when EL3 result = SPSR_EL3;
 otherwise Unreachable();

 return result;

 // SPSR[] - assignment form
 // ========================

 SPSR[] = bits(32) value
 if UsingAArch32() then
 case PSTATE.M of
 when M32_FIQ SPSR_fiq = value;
 when M32_IRQ SPSR_irq = value;
 when M32_Svc SPSR_svc = value;
 when M32_Monitor SPSR_mon = value;
 when M32_Abort SPSR_abt = value;
 when M32_Hyp SPSR_hyp = value;
 when M32_Undef SPSR_und = value;
 otherwise Unreachable();
 else
 case PSTATE.EL of
 when EL1 SPSR_EL1 = value;
 when EL2 SPSR_EL2 = value;
 when EL3 SPSR_EL3 = value;
 otherwise Unreachable();

 return;

shared/functions/system/ArchVersion

 enumeration ArchVersion {
 ARMv8p0,
 ARMv8p1,
 };

shared/functions/system/ClearEventRegister

 ClearEventRegister();

shared/functions/system/ConditionHolds

 // ConditionHolds()
 // ================

 // Return TRUE iff COND currently holds

 boolean ConditionHolds(bits(4) cond)
 // Evaluate base condition.
 case cond<3:1> of
 when '000' result = (PSTATE.Z == '1'); // EQ or NE
 when '001' result = (PSTATE.C == '1'); // CS or CC
 when '010' result = (PSTATE.N == '1'); // MI or PL
 when '011' result = (PSTATE.V == '1'); // VS or VC
 when '100' result = (PSTATE.C == '1' && PSTATE.Z == '0'); // HI or LS
 when '101' result = (PSTATE.N == PSTATE.V); // GE or LT
 when '110' result = (PSTATE.N == PSTATE.V && PSTATE.Z == '0'); // GT or LE
 when '111' result = TRUE; // AL

E1-930 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

E1 ARMv8.1 Pseudocode
E1.4 Common library pseudocode
 // Condition flag values in the set '111x' indicate always true
 // Otherwise, invert condition if necessary.
 if cond<0> == '1' && cond != '1111' then
 result = !result;

 return result;

shared/functions/system/CurrentInstrSet

 // CurrentInstrSet()
 // =================

 InstrSet CurrentInstrSet()

 if UsingAArch32() then
 result = if PSTATE.T == '0' then InstrSet_A32 else InstrSet_T32;
 // PSTATE.J is RES0. Implementation of T32EE or Jazelle state not permitted.
 else
 result = InstrSet_A64;
 return result;

shared/functions/system/CurrentPL

 // CurrentPL()
 // ===========

 PrivilegeLevel CurrentPL()
 return PLOfEL(PSTATE.EL);

shared/functions/system/EL0

 constant bits(2) EL3 = '11';
 constant bits(2) EL2 = '10';
 constant bits(2) EL1 = '01';
 constant bits(2) EL0 = '00';

shared/functions/system/ELFromM32

 // ELFromM32()
 // ===========

 // Convert an AArch32 mode encoding to an Exception level.
 // Returns (valid,EL):
 // 'valid' is TRUE if 'mode<4:0>' encodes a valid mode for the current state.
 // 'EL' is the Exception level decoded from 'mode'.

 (boolean,bits(2)) ELFromM32(bits(5) mode)
 bits(2) el;
 boolean valid = TRUE;
 case mode of
 when M32_Monitor
 el = EL3;
 when M32_Hyp
 el = EL2;
 valid = !HaveEL(EL3) || SCR_GEN[].NS == '1';
 when M32_FIQ, M32_IRQ, M32_Svc, M32_Abort, M32_Undef, M32_System
 el = if HaveEL(EL3) && HighestELUsingAArch32() && SCR.NS == '0' then EL3 else EL1;
 when M32_User
 el = EL0;
 otherwise
 valid = FALSE; // Passed an illegal mode value
 if valid then valid = HaveAArch32EL(el);
 if !valid then el = bits(2) UNKNOWN;
 return (valid, el);
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. E1-931
ID060316 Non-Confidential

E1 ARMv8.1 Pseudocode
E1.4 Common library pseudocode
shared/functions/system/ELFromSPSR

 // ELFromSPSR()
 // ============

 // Convert an SPSR value encoding to an Exception level.
 // Returns (valid,EL):
 // 'valid' is TRUE if 'spsr<4:0>' encodes a valid mode for the current state.
 // 'EL' is the Exception level decoded from 'spsr'.

 (boolean,bits(2)) ELFromSPSR(bits(32) spsr)
 if spsr<4> == '0' then // AArch64 state
 el = spsr<3:2>;
 if HighestELUsingAArch32() then // No AArch64 support
 valid = FALSE;
 elsif !HaveEL(el) then // Exception level not implemented
 valid = FALSE;
 elsif spsr<1> == '1' then // M[1] must be 0
 valid = FALSE;
 elsif el == EL0 && spsr<0> == '1' then // for EL0, M[0] must be 0
 valid = FALSE;
 elsif el == EL2 && HaveEL(EL3) && SCR_EL3.NS == '0' then
 valid = FALSE; // EL2 only valid in Non-secure state
 else
 valid = TRUE;
 elsif !HaveAnyAArch32() then // AArch32 not supported
 valid = FALSE;
 else // AArch32 state
 (valid, el) = ELFromM32(spsr<4:0>);
 if !valid then el = bits(2) UNKNOWN;
 return (valid,el);

shared/functions/system/ELStateUsingAArch32

 // ELStateUsingAArch32()
 // =====================

 boolean ELStateUsingAArch32(bits(2) el, boolean secure)
 // See ELStateUsingAArch32K() for description. Must only be called in circumstances where
 // result is valid (typically, that means 'el IN {EL1,EL2,EL3}').
 (known, aarch32) = ELStateUsingAArch32K(el, secure);
 assert known;
 return aarch32;

shared/functions/system/ELStateUsingAArch32K

 // ELStateUsingAArch32K()
 // ======================

 (boolean,boolean) ELStateUsingAArch32K(bits(2) el, boolean secure)
 // Returns (known, aarch32):
 // 'known' is FALSE for EL0 if the current Exception level is not EL0 and EL1 is
 // using AArch64, since it cannot determine the state of EL0; TRUE otherwise.
 // 'aarch32' is TRUE if the specified Exception level is using AArch32; FALSE otherwise.
 boolean aarch32;
 known = TRUE;
 if !HaveAArch32EL(el) then
 aarch32 = FALSE; // All levels are using AArch64
 elsif HighestELUsingAArch32() then
 aarch32 = TRUE; // All levels are using AArch32
 else
 aarch32_below_el3 = HaveEL(EL3) && SCR_EL3.RW == '0';
 aarch32_at_el1 = (aarch32_below_el3 || (HaveEL(EL2) && !secure && HCR_EL2.RW == '0' &&
 !(HCR_EL2.E2H == '1' && HCR_EL2.TGE == '1' && HaveVirtHostExt())));

 if el == EL0 && !aarch32_at_el1 then // Only know if EL0 using AArch32 from PSTATE
E1-932 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

E1 ARMv8.1 Pseudocode
E1.4 Common library pseudocode
 if PSTATE.EL == EL0 then
 aarch32 = PSTATE.nRW == '1'; // EL0 controlled by PSTATE
 else
 known = FALSE; // EL0 state is UNKNOWN
 else
 aarch32 = (aarch32_below_el3 && el != EL3) || (aarch32_at_el1 && el IN {EL1,EL0});
 if !known then aarch32 = boolean UNKNOWN;
 return (known, aarch32);

shared/functions/system/ELUsingAArch32

 // ELUsingAArch32()
 // ================

 boolean ELUsingAArch32(bits(2) el)
 return ELStateUsingAArch32(el, IsSecureBelowEL3());

shared/functions/system/ELUsingAArch32K

 // ELUsingAArch32K()
 // =================

 (boolean,boolean) ELUsingAArch32K(bits(2) el)
 return ELStateUsingAArch32K(el, IsSecureBelowEL3());

shared/functions/system/EndOfInstruction

 // Terminate processing of the current instruction.
 EndOfInstruction();

shared/functions/system/EventRegisterSet

 // Set the local event register in this PE.
 EventRegisterSet();

shared/functions/system/EventRegistered

 boolean EventRegistered();

shared/functions/system/GetPSRFromPSTATE

 // GetPSRFromPSTATE()
 // ==================
 // Return a PSR value which represents the current PSTATE

 bits(32) GetPSRFromPSTATE()
 bits(32) spsr = Zeros();
 spsr<31:28> = PSTATE.<N,Z,C,V>;
 if HavePANExt() then spsr<22> = PSTATE.PAN;
 spsr<21> = PSTATE.SS;
 spsr<20> = PSTATE.IL;
 if PSTATE.nRW == '1' then // AArch32 state
 spsr<27> = PSTATE.Q;
 spsr<26:25> = PSTATE.IT<1:0>;
 spsr<19:16> = PSTATE.GE;
 spsr<15:10> = PSTATE.IT<7:2>;
 spsr<9> = PSTATE.E;
 spsr<8:6> = PSTATE.<A,I,F>; // No PSTATE.D in AArch32 state
 spsr<5> = PSTATE.T;
 assert PSTATE.M<4> == PSTATE.nRW; // bit [4] is the discriminator
 spsr<4:0> = PSTATE.M;
 else // AArch64 state
 spsr<9:6> = PSTATE.<D,A,I,F>;
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. E1-933
ID060316 Non-Confidential

E1 ARMv8.1 Pseudocode
E1.4 Common library pseudocode
 spsr<4> = PSTATE.nRW;
 spsr<3:2> = PSTATE.EL;
 spsr<0> = PSTATE.SP;
 return spsr;

shared/functions/system/HasArchVersion

 // HasArchVersion()
 // ================

 // Return TRUE if the implemented architecture includes the extensions defined in the specified
 // architecture version.

 boolean HasArchVersion(ArchVersion version)
 return version == ARMv8p0 || boolean IMPLEMENTATION_DEFINED;

shared/functions/system/HaveAArch32EL

 // HaveAArch32EL()
 // ===============

 boolean HaveAArch32EL(bits(2) el)
 // Return TRUE if Exception level 'el' supports AArch32
 if !HaveEL(el) then
 return FALSE;
 elsif !HaveAnyAArch32() then
 return FALSE; // No exception level can use AArch32
 elsif HighestELUsingAArch32() then
 return TRUE; // All exception levels must use AArch32
 elsif el == EL0 then
 return TRUE; // EL0 must support using AArch32
 return boolean IMPLEMENTATION_DEFINED;

shared/functions/system/HaveAnyAArch32

 // HaveAnyAArch32()
 // ================
 // Return TRUE if AArch32 state is supported at any Exception level

 boolean HaveAnyAArch32()
 return boolean IMPLEMENTATION_DEFINED;

shared/functions/system/HaveEL

 // HaveEL()
 // ========
 // Return TRUE if Exception level 'el' is supported

 boolean HaveEL(bits(2) el)
 if el IN {EL1,EL0} then
 return TRUE; // EL1 and EL0 must exist
 return boolean IMPLEMENTATION_DEFINED;

shared/functions/system/HighestEL

 // HighestEL()
 // ===========
 // Returns the highest implemented Exception level.

 bits(2) HighestEL()
 if HaveEL(EL3) then
 return EL3;
 elsif HaveEL(EL2) then
E1-934 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

E1 ARMv8.1 Pseudocode
E1.4 Common library pseudocode
 return EL2;
 else
 return EL1;

shared/functions/system/HighestELUsingAArch32

 // HighestELUsingAArch32()
 // =======================
 // Return TRUE if configured to boot into AArch32 operation

 boolean HighestELUsingAArch32()
 if !HaveAnyAArch32() then return FALSE;
 return boolean IMPLEMENTATION_DEFINED; // e.g. CFG32SIGNAL == HIGH

shared/functions/system/Hint_Debug

 Hint_Debug(bits(4) option);

shared/functions/system/Hint_Yield

 Hint_Yield();

shared/functions/system/IllegalExceptionReturn

 // IllegalExceptionReturn()
 // ========================

 boolean IllegalExceptionReturn(bits(32) spsr)

 // Check for return:
 // * To an unimplemented Exeception level.
 // * To EL2 in Secure state.
 // * To EL0 using AArch64 state, with SPSR.M[0]==1.
 // * To AArch64 state with SPSR.M[1]==1.
 // * To AArch32 state with an illegal value of SPSR.M.
 (valid, target) = ELFromSPSR(spsr);
 if !valid then return TRUE;

 // Check for return to higher Exception level
 if UInt(target) > UInt(PSTATE.EL) then return TRUE;

 spsr_mode_is_aarch32 = (spsr<4> == '1');

 // Check for return:
 // * To EL1, EL2 or EL3 with register width specified in the SPSR different from the
 // Execution state used in the Exception level being returned to, as determined by
 // the SCR_EL3.RW or HCR_EL2.RW bits, or as configured from reset.
 // * To EL0 using AArch64 state when EL1 is using AArch32 state as determined by the
 // SCR_EL3.RW or HCR_EL2.RW bits or as configured from reset.
 // * To AArch64 state from AArch32 state (should be caught by above)

 (known, target_el_is_aarch32) = ELUsingAArch32K(target);
 assert known || (target == EL0 && !ELUsingAArch32(EL1));
 if known && spsr_mode_is_aarch32 != target_el_is_aarch32 then return TRUE;

 // Check for illegal return from AArch32 to AArch64
 if UsingAArch32() && !spsr_mode_is_aarch32 then return TRUE;

 // Check for return to EL1 in Non-secure state when HCR_EL2.TGE is set
 if target == EL1 && !IsSecureBelowEL3() && HCR_EL2.TGE == '1' then return TRUE;

 return FALSE;
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. E1-935
ID060316 Non-Confidential

E1 ARMv8.1 Pseudocode
E1.4 Common library pseudocode
shared/functions/system/InstrSet

 enumeration InstrSet {InstrSet_A64, InstrSet_A32, InstrSet_T32};

shared/functions/system/InstructionSynchronizationBarrier

 InstructionSynchronizationBarrier();

shared/functions/system/InterruptPending

 boolean InterruptPending();

shared/functions/system/IsInHost

 // IsInHost()
 // ==========
 // Returns TRUE if HaveVirtHostExt() is TRUE and executing within a Host OS or an EL0 application
 // of a Host OS using AArch64 with HCR_EL2.E2H set to 1, and FALSE otherwise.

 boolean IsInHost()
 return (!IsSecure() && HaveVirtHostExt() && !ELUsingAArch32(EL2) &&
 HCR_EL2.E2H == '1' && (PSTATE.EL == EL2 || HCR_EL2.TGE == '1'));

shared/functions/system/IsSecure

 // IsSecure()
 // ==========

 boolean IsSecure()
 // Return TRUE if current Exception level is in Secure state.
 if HaveEL(EL3) && !UsingAArch32() && PSTATE.EL == EL3 then
 return TRUE;
 elsif HaveEL(EL3) && UsingAArch32() && PSTATE.M == M32_Monitor then
 return TRUE;
 return IsSecureBelowEL3();

shared/functions/system/IsSecureBelowEL3

 // IsSecureBelowEL3()
 // ==================

 // Return TRUE if an Exception level below EL3 is in Secure state
 // or would be following an exception return to that level.
 //
 // Differs from IsSecure in that it ignores the current EL or Mode
 // in considering security state.
 // That is, if at AArch64 EL3 or in AArch32 Monitor mode, whether an
 // exception return would pass to Secure or Non-secure state.

 boolean IsSecureBelowEL3()
 if HaveEL(EL3) then
 return SCR_GEN[].NS == '0';
 elsif HaveEL(EL2) then
 return FALSE;
 else
 // TRUE if processor is Secure or FALSE if Non-secure;
 return boolean IMPLEMENTATION_DEFINED;

shared/functions/system/Mode_Bits

 constant bits(5) M32_User = '10000';
 constant bits(5) M32_FIQ = '10001';
 constant bits(5) M32_IRQ = '10010';
E1-936 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

E1 ARMv8.1 Pseudocode
E1.4 Common library pseudocode
 constant bits(5) M32_Svc = '10011';
 constant bits(5) M32_Monitor = '10110';
 constant bits(5) M32_Abort = '10111';
 constant bits(5) M32_Hyp = '11010';
 constant bits(5) M32_Undef = '11011';
 constant bits(5) M32_System = '11111';

shared/functions/system/PLOfEL

 // PLOfEL()
 // ========

 PrivilegeLevel PLOfEL(bits(2) el)
 case el of
 when EL3 return if HighestELUsingAArch32() then PL1 else PL3;
 when EL2 return PL2;
 when EL1 return PL1;
 when EL0 return PL0;

shared/functions/system/PSTATE

 ProcState PSTATE;

shared/functions/system/PrivilegeLevel

 enumeration PrivilegeLevel {PL3, PL2, PL1, PL0};

shared/functions/system/ProcState

 type ProcState is (
 bits (1) N, // Negative condition flag
 bits (1) Z, // Zero condition flag
 bits (1) C, // Carry condition flag
 bits (1) V, // oVerflow condition flag
 bits (1) D, // Debug mask bit [AArch64 only]
 bits (1) A, // Asynchronous abort mask bit
 bits (1) I, // IRQ mask bit
 bits (1) F, // FIQ mask bit
 bits (1) PAN, // Privileged Access Never Bit [v8.1-A]
 bits (1) SS, // Software step bit
 bits (1) IL, // Illegal Execution state bit
 bits (2) EL, // Exception Level
 bits (1) nRW, // not Register Width: 0=64, 1=32
 bits (1) SP, // Stack pointer select: 0=SP0, 1=SPx [AArch64 only]
 bits (1) Q, // Cumulative saturation flag [AArch32 only]
 bits (4) GE, // Greater than or Equal flags [AArch32 only]
 bits (8) IT, // If-then bits, RES0 in CPSR [AArch32 only]
 bits (1) J, // J bit, RES0 [AArch32 only, RES0 in SPSR and CPSR]
 bits (1) T, // T32 bit, RES0 in CPSR [AArch32 only]
 bits (1) E, // Endianness bit [AArch32 only]
 bits (5) M // Mode field [AArch32 only]
)

shared/functions/system/RestoredITBits

 // RestoredITBits()
 // ================
 // Get the value of PSTATE.IT to be restored on this exception return.

 bits(8) RestoredITBits(bits(32) spsr)
 it = spsr<15:10,26:25>;

 // When PSTATE.IL is set, it is CONSTRAINED UNPREDICTABLE whether the IT bits are each set
 // to zero or copied from the SPSR.
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. E1-937
ID060316 Non-Confidential

E1 ARMv8.1 Pseudocode
E1.4 Common library pseudocode
 if PSTATE.IL == '1' then
 if ConstrainUnpredictableBool() then return '00000000';
 else return it;

 // The IT bits are forced to zero when they are set to a reserved value.
 if !IsZero(it<7:4>) && IsZero(it<3:0>) then
 return '00000000';

 // The IT bits are forced to zero when returning to A32 state, or when returning to an EL
 // with the ITD bit set to 1, and the IT bits are describing a multi-instruction block.
 itd = if PSTATE.EL == EL2 then HSCTLR.ITD else SCTLR.ITD;
 if (spsr<5> == '0' && !IsZero(it)) || (itd == '1' && !IsZero(it<2:0>)) then
 return '00000000';
 else
 return it;

shared/functions/system/SCRType

 type SCRType;

shared/functions/system/SCR_GEN

 // SCR_GEN[]
 // =========

 SCRType SCR_GEN[]
 // AArch32 secure & AArch64 EL3 registers are not architecturally mapped
 assert HaveEL(EL3);
 bits(32) r;
 if HighestELUsingAArch32() then
 r = SCR;
 else
 r = SCR_EL3;
 return r;

shared/functions/system/SendEvent

 // Signal an event to all PEs.
 SendEvent();

shared/functions/system/SetPSTATEFromPSR

 // SetPSTATEFromPSR()
 // ==================
 // Set PSTATE based on a PSR value

 SetPSTATEFromPSR(bits(32) spsr)

 SynchronizeContext();

 PSTATE.SS = DebugExceptionReturnSS(spsr);

 if IllegalExceptionReturn(spsr) then
 PSTATE.IL = '1';
 else
 // State that is reinstated only on a legal exception return
 PSTATE.IL = spsr<20>;
 if spsr<4> == '1' then // AArch32 state
 AArch32.WriteMode(spsr<4:0>); // Sets PSTATE.EL correctly
 else // AArch64 state
 PSTATE.nRW = '0';
 PSTATE.EL = spsr<3:2>;
 PSTATE.SP = spsr<0>;

 // If PSTATE.IL is set and returning to AArch32 state, it is CONSTRAINED UNPREDICTABLE whether
E1-938 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

E1 ARMv8.1 Pseudocode
E1.4 Common library pseudocode
 // the T bit is set to zero or copied from SPSR.
 if PSTATE.IL == '1' && PSTATE.nRW == '1' then
 if ConstrainUnpredictableBool() then spsr<5> = '0';

 // State that is reinstated regardless of illegal exception return
 PSTATE.<N,Z,C,V> = spsr<31:28>;
 if PSTATE.nRW == '1' then // AArch32 state
 PSTATE.Q = spsr<27>;
 PSTATE.IT = RestoredITBits(spsr);
 PSTATE.GE = spsr<19:16>;
 PSTATE.E = spsr<9>;
 PSTATE.<A,I,F> = spsr<8:6>; // No PSTATE.D in AArch32 state
 PSTATE.T = spsr<5>; // PSTATE.J is RES0
 else // AArch64 state
 PSTATE.<D,A,I,F> = spsr<9:6>; // No PSTATE.<Q,IT,GE,E,T> in AArch64 state

 if HavePANExt() then PSTATE.<PAN> = spsr<22>;

 return;

shared/functions/system/SynchronizeContext

 SynchronizeContext();

shared/functions/system/ThisInstr

 bits(32) ThisInstr();

shared/functions/system/ThisInstrLength

 integer ThisInstrLength();

shared/functions/system/Unreachable

 Unreachable()
 assert FALSE;

shared/functions/system/UsingAArch32

 // UsingAArch32()
 // ==============
 // Return TRUE if the current Exception level is using AArch32, FALSE if using AArch64.

 boolean UsingAArch32()
 boolean aarch32 = (PSTATE.nRW == '1');
 if !HaveAnyAArch32() then assert !aarch32;
 if HighestELUsingAArch32() then assert aarch32;
 return aarch32;

shared/functions/system/WaitForEvent

 WaitForEvent();

shared/functions/system/WaitForInterrupt

 WaitForInterrupt();
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. E1-939
ID060316 Non-Confidential

E1 ARMv8.1 Pseudocode
E1.4 Common library pseudocode
shared/functions/unpredictable/ConstrainUnpredictable

 // Return the appropriate Constraint result to control the caller's behavior. The return value
 // is IMPLEMENTATION DEFINED within a permitted list for each UNPREDICTABLE case.
 // (The permitted list is determined by an assert or case statement at the call site.)
 Constraint ConstrainUnpredictable();

shared/functions/unpredictable/ConstrainUnpredictableBits

 // This is a variant of ConstrainUnpredictable for when the result can be Constraint_UNKNOWN.
 // If the result is Constraint_UNKNOWN then the function also returns UNKNOWN value, but that
 // value is always an allocated value; that is, one for which the behavior is not itself
 // CONSTRAINED.
 (Constraint,bits(width)) ConstrainUnpredictableBits();

shared/functions/unpredictable/ConstrainUnpredictableBool

 // ConstrainUnpredictableBool()
 // ============================

 // This is a simple wrapper function for cases where the constrained result is either TRUE or FALSE.

 boolean ConstrainUnpredictableBool()

 c = ConstrainUnpredictable();
 assert c IN {Constraint_TRUE, Constraint_FALSE};
 return (c == Constraint_TRUE);

shared/functions/unpredictable/ConstrainUnpredictableInteger

 // This is a variant of ConstrainUnpredictable for when the result can be Constraint_UNKNOWN. If
 // the result is Constraint_UNKNOWN then the function also returns an UNKNOWN value in the range
 // low to high, inclusive.
 (Constraint,integer) ConstrainUnpredictableInteger(integer low, integer high);

shared/functions/unpredictable/Constraint

 enumeration Constraint {// General:
 Constraint_NONE, Constraint_UNKNOWN,
 Constraint_UNDEF, Constraint_NOP,
 Constraint_TRUE, Constraint_FALSE,
 Constraint_DISABLED,
 Constraint_UNCOND, Constraint_COND, Constraint_ADDITIONAL_DECODE,
 // Load-store:
 Constraint_WBSUPPRESS, Constraint_FAULT,
 // IPA too large
 Constraint_FORCE, Constraint_FORCENOSLCHECK};

shared/functions/vector/AdvSIMDExpandImm

 // AdvSIMDExpandImm()
 // ==================

 bits(64) AdvSIMDExpandImm(bit op, bits(4) cmode, bits(8) imm8)
 case cmode<3:1> of
 when '000'
 imm64 = Replicate(Zeros(24):imm8, 2);
 when '001'
 imm64 = Replicate(Zeros(16):imm8:Zeros(8), 2);
 when '010'
 imm64 = Replicate(Zeros(8):imm8:Zeros(16), 2);
 when '011'
 imm64 = Replicate(imm8:Zeros(24), 2);
 when '100'
E1-940 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

E1 ARMv8.1 Pseudocode
E1.4 Common library pseudocode
 imm64 = Replicate(Zeros(8):imm8, 4);
 when '101'
 imm64 = Replicate(imm8:Zeros(8), 4);
 when '110'
 if cmode<0> == '0' then
 imm64 = Replicate(Zeros(16):imm8:Ones(8), 2);
 else
 imm64 = Replicate(Zeros(8):imm8:Ones(16), 2);
 when '111'
 if cmode<0> == '0' && op == '0' then
 imm64 = Replicate(imm8, 8);
 if cmode<0> == '0' && op == '1' then
 imm8a = Replicate(imm8<7>, 8); imm8b = Replicate(imm8<6>, 8);
 imm8c = Replicate(imm8<5>, 8); imm8d = Replicate(imm8<4>, 8);
 imm8e = Replicate(imm8<3>, 8); imm8f = Replicate(imm8<2>, 8);
 imm8g = Replicate(imm8<1>, 8); imm8h = Replicate(imm8<0>, 8);
 imm64 = imm8a:imm8b:imm8c:imm8d:imm8e:imm8f:imm8g:imm8h;
 if cmode<0> == '1' && op == '0' then
 imm32 = imm8<7>:NOT(imm8<6>):Replicate(imm8<6>,5):imm8<5:0>:Zeros(19);
 imm64 = Replicate(imm32, 2);
 if cmode<0> == '1' && op == '1' then
 if UsingAArch32() then ReservedEncoding();
 imm64 = imm8<7>:NOT(imm8<6>):Replicate(imm8<6>,8):imm8<5:0>:Zeros(48);

 return imm64;

shared/functions/vector/PolynomialMult

 // PolynomialMult()
 // ================

 bits(M+N) PolynomialMult(bits(M) op1, bits(N) op2)
 result = Zeros(M+N);
 extended_op2 = ZeroExtend(op2, M+N);
 for i=0 to M-1
 if op1<i> == '1' then
 result = result EOR LSL(extended_op2, i);
 return result;

shared/functions/vector/SatQ

 // SatQ()
 // ======

 (bits(N), boolean) SatQ(integer i, integer N, boolean unsigned)
 (result, sat) = if unsigned then UnsignedSatQ(i, N) else SignedSatQ(i, N);
 return (result, sat);

shared/functions/vector/SignedSatQ

 // SignedSatQ()
 // ============

 (bits(N), boolean) SignedSatQ(integer i, integer N)
 if i > 2^(N-1) - 1 then
 result = 2^(N-1) - 1; saturated = TRUE;
 elsif i < -(2^(N-1)) then
 result = -(2^(N-1)); saturated = TRUE;
 else
 result = i; saturated = FALSE;
 return (result<N-1:0>, saturated);
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. E1-941
ID060316 Non-Confidential

E1 ARMv8.1 Pseudocode
E1.4 Common library pseudocode
shared/functions/vector/UnsignedRSqrtEstimate

 // UnsignedRSqrtEstimate()
 // =======================

 bits(32) UnsignedRSqrtEstimate(bits(32) operand)

 if operand<31:30> == '00' then // Operands <= 0x3FFFFFFF produce 0xFFFFFFFF
 result = Ones(32);
 else
 // Generate double-precision value = operand * 2^(-32). This has zero sign bit, with:
 // exponent = 1022 or 1021 = double-precision representation of 2^(-1) or 2^(-2)
 // fraction taken from operand, excluding its most significant one or two bits.
 if operand<31> == '1' then
 dp_operand = '0 01111111110' : operand<30:0> : Zeros(21);
 else // operand<31:30> == '01'
 dp_operand = '0 01111111101' : operand<29:0> : Zeros(22);

 // Call C function to get reciprocal estimate of scaled value.
 estimate = recip_sqrt_estimate(dp_operand);

 // Result is double-precision and a multiple of 1/256 in the range 1 to 511/256.
 // Multiply by 2^31 and convert to an unsigned integer - this just involves
 // concatenating the implicit units bit with the top 31 fraction bits.
 result = '1' : estimate<51:21>;

 return result;

shared/functions/vector/UnsignedRecipEstimate

 // UnsignedRecipEstimate()
 // =======================

 bits(32) UnsignedRecipEstimate(bits(32) operand)

 if operand<31> == '0' then // Operands <= 0x7FFFFFFF produce 0xFFFFFFFF
 result = Ones(32);
 else
 // Generate double-precision value = operand * 2^(-32). This has zero sign bit, with:
 // exponent = 1022 = double-precision representation of 2^(-1)
 // fraction taken from operand, excluding its most significant bit.
 dp_operand = '0 01111111110' : operand<30:0> : Zeros(21);

 // Call C function to get reciprocal estimate of scaled value.
 estimate = recip_estimate(dp_operand);

 // Result is double-precision and a multiple of 1/256 in the range 1 to 511/256.
 // Multiply by 2^31 and convert to an unsigned integer - this just involves
 // concatenating the implicit units bit with the top 31 fraction bits.
 result = '1' : estimate<51:21>;

 return result;

shared/functions/vector/UnsignedSatQ

 // UnsignedSatQ()
 // ==============

 (bits(N), boolean) UnsignedSatQ(integer i, integer N)
 if i > 2^N - 1 then
 result = 2^N - 1; saturated = TRUE;
 elsif i < 0 then
 result = 0; saturated = TRUE;
 else
 result = i; saturated = FALSE;
 return (result<N-1:0>, saturated);
E1-942 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

E1 ARMv8.1 Pseudocode
E1.4 Common library pseudocode
E1.4.4 shared/translation

shared/translation/attrs/CombineS1S2AttrHints

 // CombineS1S2AttrHints()
 // ======================

 MemAttrHints CombineS1S2AttrHints(MemAttrHints s1desc, MemAttrHints s2desc)

 MemAttrHints result;

 if s2desc.attrs == '01' || s1desc.attrs == '01' then
 result.attrs = bits(2) UNKNOWN; // Reserved
 elsif s2desc.attrs == MemAttr_NC || s1desc.attrs == MemAttr_NC then
 result.attrs = MemAttr_NC; // Non-cacheable
 elsif s2desc.attrs == MemAttr_WT || s1desc.attrs == MemAttr_WT then
 result.attrs = MemAttr_WT; // Write-through
 else
 result.attrs = MemAttr_WB; // Write-back

 result.hints = s1desc.hints;
 result.transient = s1desc.transient;

 return result;

shared/translation/attrs/CombineS1S2Desc

 // CombineS1S2Desc()
 // =================
 // Combines the address descriptors from stage 1 and stage 2

 AddressDescriptor CombineS1S2Desc(AddressDescriptor s1desc, AddressDescriptor s2desc)

 AddressDescriptor result;

 result.paddress = s2desc.paddress;

 if IsFault(s1desc) || IsFault(s2desc) then
 result = if IsFault(s1desc) then s1desc else s2desc;
 elsif s2desc.memattrs.type == MemType_Device || s1desc.memattrs.type == MemType_Device then
 result.memattrs.type = MemType_Device;
 if s1desc.memattrs.type == MemType_Normal then
 result.memattrs.device = s2desc.memattrs.device;
 elsif s2desc.memattrs.type == MemType_Normal then
 result.memattrs.device = s1desc.memattrs.device;
 else // Both Device
 result.memattrs.device = CombineS1S2Device(s1desc.memattrs.device,
 s2desc.memattrs.device);
 else // Both Normal
 result.memattrs.type = MemType_Normal;
 result.memattrs.device = DeviceType UNKNOWN;
 result.memattrs.inner = CombineS1S2AttrHints(s1desc.memattrs.inner, s2desc.memattrs.inner);
 result.memattrs.outer = CombineS1S2AttrHints(s1desc.memattrs.outer, s2desc.memattrs.outer);
 result.memattrs.shareable = (s1desc.memattrs.shareable || s2desc.memattrs.shareable);
 result.memattrs.outershareable = (s1desc.memattrs.outershareable ||
 s2desc.memattrs.outershareable);

 result.memattrs = MemAttrDefaults(result.memattrs);

 return result;
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. E1-943
ID060316 Non-Confidential

E1 ARMv8.1 Pseudocode
E1.4 Common library pseudocode
shared/translation/attrs/CombineS1S2Device

 // CombineS1S2Device()
 // ===================
 // Combines device types from stage 1 and stage 2

 DeviceType CombineS1S2Device(DeviceType s1device, DeviceType s2device)

 if s2device == DeviceType_nGnRnE || s1device == DeviceType_nGnRnE then
 result = DeviceType_nGnRnE;
 elsif s2device == DeviceType_nGnRE || s1device == DeviceType_nGnRE then
 result = DeviceType_nGnRE;
 elsif s2device == DeviceType_nGRE || s1device == DeviceType_nGRE then
 result = DeviceType_nGRE;
 else
 result = DeviceType_GRE;

 return result;

shared/translation/attrs/LongConvertAttrsHints

 // LongConvertAttrsHints()
 // =======================
 // Convert the long attribute fields for Normal memory as used in the MAIR fields
 // to orthogonal attributes and hints

 MemAttrHints LongConvertAttrsHints(bits(4) attrfield, AccType acctype)
 assert !IsZero(attrfield);

 MemAttrHints result;

 if S1CacheDisabled(acctype) then // Force Non-cacheable
 result.attrs = MemAttr_NC;
 result.hints = MemHint_No;
 else
 if attrfield<3:2> == '00' then // Write-through transient
 result.attrs = MemAttr_WT;
 result.hints = attrfield<1:0>;
 result.transient = TRUE;
 elsif attrfield<3:0> == '0100' then // Non-cacheable (no allocate)
 result.attrs = MemAttr_NC;
 result.hints = MemHint_No;
 result.transient = FALSE;
 elsif attrfield<3:2> == '01' then // Write-back transient
 result.attrs = attrfield<1:0>;
 result.hints = MemAttr_WB;
 result.transient = TRUE;
 else // Write-through/Write-back non-transient
 result.attrs = attrfield<3:2>;
 result.hints = attrfield<1:0>;
 result.transient = FALSE;

 return result;

shared/translation/attrs/MemAttrDefaults

 // MemAttrDefaults()
 // =================
 // Supply default values for memory attributes, including overriding the shareability attributes
 // for Device and Non-cacheable memory types.

 MemoryAttributes MemAttrDefaults(MemoryAttributes memattrs)

 if memattrs.type == MemType_Device then
 memattrs.inner = MemAttrHints UNKNOWN;
 memattrs.outer = MemAttrHints UNKNOWN;
E1-944 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

E1 ARMv8.1 Pseudocode
E1.4 Common library pseudocode
 memattrs.shareable = TRUE;
 memattrs.outershareable = TRUE;
 else
 memattrs.device = DeviceType UNKNOWN;
 if memattrs.inner.attrs == MemAttr_NC && memattrs.outer.attrs == MemAttr_NC then
 memattrs.shareable = TRUE;
 memattrs.outershareable = TRUE;

 return memattrs;

shared/translation/attrs/S1CacheDisabled

 // S1CacheDisabled()
 // =================

 boolean S1CacheDisabled(AccType acctype)
 if ELUsingAArch32(S1TranslationRegime()) then
 if PSTATE.EL == EL2 then
 enable = if acctype == AccType_IFETCH then HSCTLR.I else HSCTLR.C;
 else
 enable = if acctype == AccType_IFETCH then SCTLR.I else SCTLR.C;
 else
 enable = if acctype == AccType_IFETCH then SCTLR[].I else SCTLR[].C;

 return enable == '0';

shared/translation/attrs/S2AttrDecode

 // S2AttrDecode()
 // ==============
 // Converts the Stage 2 attribute fields into orthogonal attributes and hints

 MemoryAttributes S2AttrDecode(bits(2) SH, bits(4) attr, AccType acctype)

 MemoryAttributes memattrs;

 if attr<3:2> == '00' then // Device
 memattrs.type = MemType_Device;
 case attr<1:0> of
 when '00' memattrs.device = DeviceType_nGnRnE;
 when '01' memattrs.device = DeviceType_nGnRE;
 when '10' memattrs.device = DeviceType_nGRE;
 when '11' memattrs.device = DeviceType_GRE;

 elsif attr<1:0> != '00' then // Normal
 memattrs.type = MemType_Normal;
 memattrs.outer = S2ConvertAttrsHints(attr<3:2>, acctype);
 memattrs.inner = S2ConvertAttrsHints(attr<1:0>, acctype);
 memattrs.shareable = SH<1> == '1';
 memattrs.outershareable = SH == '10';

 else
 memattrs = MemoryAttributes UNKNOWN; // Reserved

 return MemAttrDefaults(memattrs);

shared/translation/attrs/S2CacheDisabled

 // S2CacheDisabled()
 // =================

 boolean S2CacheDisabled(AccType acctype)
 if ELUsingAArch32(EL2) then
 disable = if acctype == AccType_IFETCH then HCR2.ID else HCR2.CD;
 else
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. E1-945
ID060316 Non-Confidential

E1 ARMv8.1 Pseudocode
E1.4 Common library pseudocode
 disable = if acctype == AccType_IFETCH then HCR_EL2.ID else HCR_EL2.CD;

 return disable == '1';

shared/translation/attrs/S2ConvertAttrsHints

 // S2ConvertAttrsHints()
 // =====================
 // Converts the attribute fields for Normal memory as used in stage 2
 // descriptors to orthogonal attributes and hints

 MemAttrHints S2ConvertAttrsHints(bits(2) attr, AccType acctype)
 assert !IsZero(attr);

 MemAttrHints result;

 if S2CacheDisabled(acctype) then // Force Non-cacheable
 result.attrs = MemAttr_NC;
 result.hints = MemHint_No;
 else
 case attr of
 when '01' // Non-cacheable (no allocate)
 result.attrs = MemAttr_NC;
 result.hints = MemHint_No;
 when '10' // Write-through
 result.attrs = MemAttr_WT;
 result.hints = MemHint_RWA;
 when '11' // Write-back
 result.attrs = MemAttr_WB;
 result.hints = MemHint_RWA;

 result.transient = FALSE;

 return result;

shared/translation/attrs/ShortConvertAttrsHints

 // ShortConvertAttrsHints()
 // ========================
 // Converts the short attribute fields for Normal memory as used in the TTBR and
 // TEX fields to orthogonal attributes and hints

 MemAttrHints ShortConvertAttrsHints(bits(2) RGN, AccType acctype)

 MemAttrHints result;

 if S1CacheDisabled(acctype) then // Force Non-cacheable
 result.attrs = MemAttr_NC;
 result.hints = MemHint_No;
 else
 case RGN of
 when '00' // Non-cacheable (no allocate)
 result.attrs = MemAttr_NC;
 result.hints = MemHint_No;
 when '01' // Write-back, Read and Write allocate
 result.attrs = MemAttr_WB;
 result.hints = MemHint_RWA;
 when '10' // Write-through, Read allocate
 result.attrs = MemAttr_WT;
 result.hints = MemHint_RA;
 when '11' // Write-back, Read allocate
 result.attrs = MemAttr_WB;
 result.hints = MemHint_RA;

E1-946 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

E1 ARMv8.1 Pseudocode
E1.4 Common library pseudocode
 result.transient = FALSE;

 return result;

shared/translation/attrs/WalkAttrDecode

 // WalkAttrDecode()
 // ================

 MemoryAttributes WalkAttrDecode(bits(2) SH, bits(2) ORGN, bits(2) IRGN)

 MemoryAttributes memattrs;

 AccType acctype = AccType_NORMAL;

 memattrs.type = MemType_Normal;
 memattrs.inner = ShortConvertAttrsHints(IRGN, acctype);
 memattrs.outer = ShortConvertAttrsHints(ORGN, acctype);
 memattrs.shareable = SH<1> == '1';
 memattrs.outershareable = SH == '10';

 return MemAttrDefaults(memattrs);

shared/translation/translation/HasS2Translation

 // HasS2Translation()
 // ==================
 // Returns TRUE if stage 2 translation is present for the current translation regime

 boolean HasS2Translation()
 return (HaveEL(EL2) && !IsSecure() && !IsInHost() && PSTATE.EL IN {EL0,EL1});

shared/translation/translation/Have16bitVMID

 // Returns TRUE if EL2 and support for a 16-bit VMID are implemented.
 boolean Have16bitVMID();

shared/translation/translation/PAMax

 // PAMax()
 // =======
 // Returns the IMPLEMENTATION DEFINED upper limit on the physical address
 // size for this processor, as log2().

 integer PAMax()

 case ID_AA64MMFR0_EL1.PARange of
 when '0000' pa_size = 32;
 when '0001' pa_size = 36;
 when '0010' pa_size = 40;
 when '0011' pa_size = 42;
 when '0100' pa_size = 44;
 when '0101' pa_size = 48;
 otherwise Unreachable();

 return pa_size;

shared/translation/translation/S1TranslationRegime

 // S1TranslationRegime()
 // =====================
 // Returns the Exception level controlling the current Stage 1 translation regime. For the most
 // part this is unused in code because the system register accessors (SCTLR[], etc.) implicitly
 // return the correct value.
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. E1-947
ID060316 Non-Confidential

E1 ARMv8.1 Pseudocode
E1.4 Common library pseudocode

 bits(2) S1TranslationRegime()
 if PSTATE.EL != EL0 then
 return PSTATE.EL;
 elsif IsSecure() && HaveEL(EL3) && ELUsingAArch32(EL3) then
 return EL3;
 elsif IsInHost() then
 return EL2;
 else
 return EL1;
E1-948 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

Part F
Appendixes

Appendix F1
Notes on Using Debug and Performance Monitors

This appendix describes aspects of the use of Debug, including the Performance Monitors, that are affected by
ARMv8.1 or by the changes to the Performance Monitors introduced with ARMv8.1. It contains the following
sections:
• Self-hosted debug on page F1-952.
• External debug on page F1-953.
• Performance Monitors on page F1-954.
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. F1-951
ID060316 Non-Confidential

Appendix F1 Notes on Using Debug and Performance Monitors
F1.1 Self-hosted debug
F1.1 Self-hosted debug
Software uses the MDSCR_EL1.KDE, MDCR_EL2.TDE, and HCR_EL2.TGE controls to configure the current
debug domain, and the DBGBCR<n>_EL1.{SSC, HMC, PMC} and the DBGWCR<n>_EL1.{SSC, HMC, PAC}
fields to configure the Exception levels at which breakpoints and watchpoints trigger exceptions. This table shows
the use of those controls.

F1.1.1 Use of the case {SSC, HMC, PMC} == {0x, 0, 01}

The configuration {00, 1, 01} can be used in cases where:

• Guest OS is being debugged by Guest, that is, MDCR_EL2.TDE==0 and HCR_EL2.TGE==0. These
breakpoints and watchpoints will not generate an exception at EL2 when MDCR_EL2.TDE==0 and
HCR_EL2.TGE==0.

• Host OS is being debugged by Host, but only when HCR_EL2.TGE==1.

This means the code for these two cases can be identical. The values shown allow the Host OS, and Host OS and
Hypervisor cases to be the same.

If debug exceptions are not being used from EL2, the Host OS uses MDSCE_EL2.{MDE, SS} as a quick path to
disable all breakpoints, watchpoints, and software step when switching from a Guest using self-hosted debug into
a Host App. This prevents breakpoints and watchpoints programmed by the Guest from generating exceptions in
the Host App.

What is being
debugged

Exception
level

Who is the
debugger KDE TGE TDE Value programmed

into {SSC, HMC, PMC}
Access to
BCR/WCR

Guest App EL0 Guest OS 0 0 0 {0x, 0, 10} EL1 and EL2

Guest OS EL1 Guest OS 1 0 0 {0x, 0, 01}a EL1 and EL2

Guest App EL0 Host OS 0 0 1 {0x, 0, 10} EL2 only

Guest OS EL1 Host OS 0 0 1 {0x, 0, 01} EL2 only

Host App EL0 Host OS 0 1 X {0x, 0, 10} EL2 only

Host OS EL2 Host OS 1 1 X {11, 1, 00} EL2 only

Host OS and Hypervisor EL2 Host OS 1 X 1 {11, 1, 00} EL2 only

a. See Use of the case {SSC, HMC, PMC} == {0x, 0, 01}.
F1-952 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

Appendix F1 Notes on Using Debug and Performance Monitors
F1.2 External debug
F1.2 External debug
An external debugger uses the DBGBCR<n>_EL1.{SSC, HMC, PMC} and the DBGWCR<n>_EL1.{SSC, HMC,
PAC} fields to configure the Exception levels at which breakpoints and watchpoints trigger entry to Debug state,
and the context matching breakpoints described in Self-hosted debug on page F1-952 to link that to a particular Host
or Guest Operating System or App. This table shows the use of those controls.

What is being
debugged

Exception
level

Value programmed into
{SSC, HMC, PMC} Linked to Context matching type BT

value

Guest App EL0 {01, 0, 10} Linked Full Context ID match 1111

Guest OS EL1 {01, 0, 01} Linked CONTEXTIDR_EL2 match 1101

Host App EL0 {01, 0, 10} Linked CONTEXTIDR_EL2 match 1101

Host OS and Hypervisor EL2 {11, 1, 00} Unlinked -
DDI0557A.b Copyright © 2016 ARM Limited or its affiliates. All rights reserved. F1-953
ID060316 Non-Confidential

Appendix F1 Notes on Using Debug and Performance Monitors
F1.3 Performance Monitors
F1.3 Performance Monitors
Software uses the MDCR_EL2.TPM control to configure the current profiling domain, and the
PMEVTYPER<n>_EL1.{P, U, NSH} fields to configure the Exception levels at which the counters count events.
This table shows the use of those controls.

If profiling is not being used at EL2, the Host Operating System uses PMCR_EL1.E as a quick path to disable all
counters when switching from a Guest using profiling into a Host App. This prevents counters programmed by the
Guest from counting events in the Host App.

F1.3.1 Partitioning counters

A Host can also use MDCR_EL2.HPMN to partition the counters and present only a subset to a Guest. In this case,
the Guest can program these counters, but not those programmed by the Host.

If the Host also sets MDCR_EL2.HPMD, then the counters programmed by the Guest will not count at EL2.
However, they will count inside any Host App. The counters reserved by the Host will count at EL2, if the NSH bit
is set.

What is being profiled Exception
level Profiler TGE HPMD TPM

Value
programmed into
{P, U, NSH}

General
access to
PM* registers

Guest App EL0 Guest OS 0 1 0 {1, 0, 0} EL1 and EL2a

Guest OS EL1 Guest OS 0 1 0 {0, 1, 0} EL1 and EL2a

Guest OS and App EL1, EL0 Guest OS 0 1 0 {0, 0, 0} EL1 and EL2a

Guest App EL0 Host OS 0 x 1 {1, 0, 0} EL2 only

Guest OS EL1 Host OS 0 x 1 {0, 1, 0} EL2 only

Guest OS and App EL1, EL0 Host OS 0 x 0 {0, 0, 0} EL2 only

Host App EL0 Host OS 1 x x {1, 0, 0} EL2 onlyb

Host OS and Hypervisor EL2 Host OS x 0 1 {1, 1, 1} EL2 only

Guest and Host OS,
Hypervisor, and App

EL2, EL1,
EL0

Host OS x 0 1 {0, 0, 1} EL2 only

a. EL1 can also grant access to the Performance Monitors to EL0 using PMUSERENR_EL0.
b. If TPM == 0, then EL2 can also grant access to the performance monitors to EL0 using PMUSERENR_EL0.
F1-954 Copyright © 2016 ARM Limited or its affiliates. All rights reserved. DDI0557A.b
Non-Confidential ID060316

	ARM Architecture Reference Manual Supplement ARMv8.1, for ARMv8-A architecture profile
	Contents
	Preface
	About this supplement
	Using this book
	Part A, Introduction and Architecture Overview
	Part B, ARMv8.1 Changes in the AArch64 Architecture
	Part C, ARMv8.1 Changes in the AArch32 Architecture
	Part D, ARMv8.1 Changes to External Debug
	Part E, Architectural Pseudocode
	Part F, Appendixes

	Conventions
	Typographic conventions
	Numbers
	Pseudocode descriptions
	Assembler syntax descriptions

	Additional reading
	ARM publications

	Feedback
	Feedback on this book

	Part A: ARMv8.1 Architecture Introduction and Overview
	A1: Introduction
	A1.1 About this ARMv8.1 supplement
	A1.2 About the ARMv8.1 architecture
	A1.2.1 Features supported by AArch64
	A1.2.2 Features supported by AArch32
	A1.2.3 Updates to External debug register descriptions
	A1.2.4 Dependencies
	A1.2.5 See also
	In the ARM Architecture Reference Manual

	Part B: ARMv8.1 Changes in the AArch64 Architecture
	B1: New Atomic Instructions
	B1.1 About atomic instructions
	B1.1.1 Behavior in Debug state
	B1.1.2 Impact on Performance Monitors
	B1.1.3 ESR_ELx fault codes for atomic instructions
	B1.1.4 Possible implementation restrictions on using atomic instructions
	B1.1.5 Identification mechanism
	B1.1.6 See also
	In this supplement
	In the ARM Architecture Reference Manual

	B2: AArch64 SIMD Instructions for Rounding Double Multiply Add/Subtract
	B2.1 About the new instructions
	B2.1.1 Behavior in Debug state
	B2.1.2 Identification mechanism
	B2.1.3 See also
	In this supplement
	In the ARM Architecture Reference Manual

	B3: Hierarchical Permission Disables
	B3.1 About Hierarchical Permission Disables
	B3.1.1 Identification mechanism
	B3.1.2 See also
	In this supplement
	In the ARM Architecture Reference Manual

	B4: Hardware Updates to Access Flag and Dirty State
	B4.1 About hardware management of the Access flag and of dirty state
	B4.1.1 Changes to the translation tables
	B4.1.2 Hardware management of the Access flag
	B4.1.3 Hardware management of dirty state
	Implications of enabling the dirty state management mechanism

	B4.1.4 Ordering of hardware updates to the translation tables
	B4.1.5 Restriction on memory types for hardware updates on page tables
	B4.1.6 Use of the Contiguous bit with hardware updates of the translation table entries
	B4.1.7 Using break-before-make when updating translation table entries
	B4.1.8 Identification mechanism
	B4.1.9 See also
	In this supplement
	In the ARM Architecture Reference Manual

	B5: AArch64 Privileged Access Never
	B5.1 About the Privileged Access Never (PAN) bit
	B5.1.1 Behavior in Debug state
	B5.1.2 Identification mechanism
	B5.1.3 See also
	In this supplement
	In the ARM Architecture Reference Manual

	B6: Limited Ordering Regions
	B6.1 About limited ordering regions
	B6.1.1 LoadLOAcquire, StoreLORelease
	B6.1.2 Specification of the LORegions
	B6.1.3 Pseudocode enhancements
	B6.1.4 Behavior in Debug state
	B6.1.5 Identification mechanism
	B6.1.6 See also
	In this supplement
	In the ARM Architecture Reference Manual

	B7: 16-bit VMID
	B7.1 VMID size
	B7.1.1 Impact on debug
	B7.1.2 Identification mechanism
	B7.1.3 See also
	In this supplement
	In the ARM Architecture Reference Manual

	B8: Virtualization Host Extensions
	B8.1 About the Virtualization Host Extensions
	B8.1.1 State added by the Virtualization Host Extensions
	B8.1.2 Behavior of HCR_EL2.E2H
	B8.1.3 Asynchronous exception masking
	B8.1.4 System and Special-purpose register redirection
	B8.1.5 System and Special-purpose register aliasing
	B8.1.6 Impact on Debug
	ARMv8.1 changes to breakpoint types defined by DBGBCRn_EL1.BT
	Breakpoint context comparisons
	Reserved DBGBCR<n>_EL1.BT values

	B8.1.7 Impact on Performance Monitors
	Exception-related events

	B8.1.8 Identification mechanism
	B8.1.9 See also
	In this supplement
	In the ARM Architecture Reference Manual

	B9: AArch64 Performance Monitors Extension
	B9.1 Changes to the Performance Monitors Extension
	B9.1.1 Extended event number space
	B9.1.2 Required events
	B9.1.3 Identification mechanism
	B9.1.4 See also
	In this supplement
	In the ARM Architecture Reference Manual

	B10: A64 Instruction Set Encoding
	B10.1 Loads and stores
	B10.1.1 Load/store exclusive
	B10.1.2 Atomic memory operations

	B10.2 Data processing - SIMD and floating point
	B10.2.1 Advanced SIMD scalar three same extra
	B10.2.2 Advanced SIMD scalar x indexed element
	B10.2.3 Advanced SIMD three same
	B10.2.4 Advanced SIMD vector x indexed element
	B10.2.5 See also
	In the ARM Architecture Reference Manual

	B11: A64 Instructions
	B11.1 Alphabetical list of instructions
	B11.1.1 CAS, CASA, CASAL, CASL
	B11.1.2 CASB, CASAB, CASALB, CASLB
	B11.1.3 CASH, CASAH, CASALH, CASLH
	B11.1.4 CASP, CASPA, CASPAL, CASPL
	B11.1.5 LDADD, LDADDA, LDADDAL, LDADDL
	B11.1.6 LDADDB, LDADDAB, LDADDALB, LDADDLB
	B11.1.7 LDADDH, LDADDAH, LDADDALH, LDADDLH
	B11.1.8 LDCLR, LDCLRA, LDCLRAL, LDCLRL
	B11.1.9 LDCLRB, LDCLRAB, LDCLRALB, LDCLRLB
	B11.1.10 LDCLRH, LDCLRAH, LDCLRALH, LDCLRLH
	B11.1.11 LDEOR, LDEORA, LDEORAL, LDEORL
	B11.1.12 LDEORB, LDEORAB, LDEORALB, LDEORLB
	B11.1.13 LDEORH, LDEORAH, LDEORALH, LDEORLH
	B11.1.14 LDLAR
	B11.1.15 LDLARB
	B11.1.16 LDLARH
	B11.1.17 LDSET, LDSETA, LDSETAL, LDSETL
	B11.1.18 LDSETB, LDSETAB, LDSETALB, LDSETLB
	B11.1.19 LDSETH, LDSETAH, LDSETALH, LDSETLH
	B11.1.20 LDSMAX, LDSMAXA, LDSMAXAL, LDSMAXL
	B11.1.21 LDSMAXB, LDSMAXAB, LDSMAXALB, LDSMAXLB
	B11.1.22 LDSMAXH, LDSMAXAH, LDSMAXALH, LDSMAXLH
	B11.1.23 LDSMIN, LDSMINA, LDSMINAL, LDSMINL
	B11.1.24 LDSMINB, LDSMINAB, LDSMINALB, LDSMINLB
	B11.1.25 LDSMINH, LDSMINAH, LDSMINALH, LDSMINLH
	B11.1.26 LDUMAX, LDUMAXA, LDUMAXAL, LDUMAXL
	B11.1.27 LDUMAXB, LDUMAXAB, LDUMAXALB, LDUMAXLB
	B11.1.28 LDUMAXH, LDUMAXAH, LDUMAXALH, LDUMAXLH
	B11.1.29 LDUMIN, LDUMINA, LDUMINAL, LDUMINL
	B11.1.30 LDUMINB, LDUMINAB, LDUMINALB, LDUMINLB
	B11.1.31 LDUMINH, LDUMINAH, LDUMINALH, LDUMINLH
	B11.1.32 MSR (immediate)
	B11.1.33 SQRDMLAH (by element)
	B11.1.34 SQRDMLAH (vector)
	B11.1.35 SQRDMLSH (by element)
	B11.1.36 SQRDMLSH (vector)
	B11.1.37 STADD, STADDL
	B11.1.38 STADDB, STADDLB
	B11.1.39 STADDH, STADDLH
	B11.1.40 STCLR, STCLRL
	B11.1.41 STCLRB, STCLRLB
	B11.1.42 STCLRH, STCLRLH
	B11.1.43 STEOR, STEORL
	B11.1.44 STEORB, STEORLB
	B11.1.45 STEORH, STEORLH
	B11.1.46 STLLR
	B11.1.47 STLLRB
	B11.1.48 STLLRH
	B11.1.49 STSET, STSETL
	B11.1.50 STSETB, STSETLB
	B11.1.51 STSETH, STSETLH
	B11.1.52 STSMAX, STSMAXL
	B11.1.53 STSMAXB, STSMAXLB
	B11.1.54 STSMAXH, STSMAXLH
	B11.1.55 STSMIN, STSMINL
	B11.1.56 STSMINB, STSMINLB
	B11.1.57 STSMINH, STSMINLH
	B11.1.58 STUMAX, STUMAXL
	B11.1.59 STUMAXB, STUMAXLB
	B11.1.60 STUMAXH, STUMAXLH
	B11.1.61 STUMIN, STUMINL
	B11.1.62 STUMINB, STUMINLB
	B11.1.63 STUMINH, STUMINLH
	B11.1.64 SWP, SWPA, SWPAL, SWPL
	B11.1.65 SWPB, SWPAB, SWPALB, SWPLB
	B11.1.66 SWPH, SWPAH, SWPALH, SWPLH

	B11.2 ARMv8.0 sections relating to these instructions
	B11.2.1 Load-Acquire, Store-Release
	B11.2.2 Load/Store addressing modes

	B12: AArch64 Register Descriptions
	B12.1 General information about AArch64 System registers
	B12.1.1 The register descriptions included in this supplement
	B12.1.2 Changes to ESR_ELx

	B12.2 General system control registers
	B12.2.1 ACTLR_EL1, Auxiliary Control Register (EL1)
	B12.2.2 ACTLR_EL2, Auxiliary Control Register (EL2)
	B12.2.3 AFSR0_EL1, Auxiliary Fault Status Register 0 (EL1)
	B12.2.4 AFSR0_EL2, Auxiliary Fault Status Register 0 (EL2)
	B12.2.5 AFSR1_EL1, Auxiliary Fault Status Register 1 (EL1)
	B12.2.6 AFSR1_EL2, Auxiliary Fault Status Register 1 (EL2)
	B12.2.7 AMAIR_EL1, Auxiliary Memory Attribute Indirection Register (EL1)
	B12.2.8 AMAIR_EL2, Auxiliary Memory Attribute Indirection Register (EL2)
	B12.2.9 CONTEXTIDR_EL1, Context ID Register (EL1)
	B12.2.10 CONTEXTIDR_EL2, Context ID Register (EL2)
	B12.2.11 CPACR_EL1, Architectural Feature Access Control Register
	B12.2.12 CPTR_EL2, Architectural Feature Trap Register (EL2)
	B12.2.13 ELR_EL1, Exception Link Register (EL1)
	B12.2.14 ELR_EL2, Exception Link Register (EL2)
	B12.2.15 ESR_EL1, Exception Syndrome Register (EL1)
	B12.2.16 ESR_EL2, Exception Syndrome Register (EL2)
	B12.2.17 ESR_EL3, Exception Syndrome Register (EL3)
	B12.2.18 FAR_EL1, Fault Address Register (EL1)
	B12.2.19 FAR_EL2, Fault Address Register (EL2)
	B12.2.20 HACR_EL2, Hypervisor Auxiliary Control Register
	B12.2.21 HCR_EL2, Hypervisor Configuration Register
	B12.2.22 HSTR_EL2, Hypervisor System Trap Register
	B12.2.23 ID_AA64DFR0_EL1, AArch64 Debug Feature Register 0
	B12.2.24 ID_AA64ISAR0_EL1, AArch64 Instruction Set Attribute Register 0
	B12.2.25 ID_AA64MMFR1_EL1, AArch64 Memory Model Feature Register 1
	B12.2.26 ID_DFR0_EL1, AArch32 Debug Feature Register 0
	B12.2.27 ID_ISAR5_EL1, AArch32 Instruction Set Attribute Register 5
	B12.2.28 ID_MMFR3_EL1, AArch32 Memory Model Feature Register 3
	B12.2.29 LORC_EL1, LORegion Control (EL1)
	B12.2.30 LOREA_EL1, LORegion End Address (EL1)
	B12.2.31 LORID_EL1, LORegionID (EL1)
	B12.2.32 LORN_EL1, LORegion Number (EL1)
	B12.2.33 LORSA_EL1, LORegion Start Address (EL1)
	B12.2.34 MAIR_EL1, Memory Attribute Indirection Register (EL1)
	B12.2.35 MAIR_EL2, Memory Attribute Indirection Register (EL2)
	B12.2.36 PAN, Privileged Access Never
	B12.2.37 SCR_EL3, Secure Configuration Register
	B12.2.38 SCTLR_EL1, System Control Register (EL1)
	B12.2.39 SCTLR_EL2, System Control Register (EL2)
	B12.2.40 SPSR_abt, Saved Program Status Register (Abort mode)
	B12.2.41 SPSR_EL1, Saved Program Status Register (EL1)
	B12.2.42 SPSR_EL2, Saved Program Status Register (EL2)
	B12.2.43 SPSR_EL3, Saved Program Status Register (EL3)
	B12.2.44 SPSR_fiq, Saved Program Status Register (FIQ mode)
	B12.2.45 SPSR_irq, Saved Program Status Register (IRQ mode)
	B12.2.46 SPSR_und, Saved Program Status Register (Undefined mode)
	B12.2.47 TCR_EL1, Translation Control Register (EL1)
	B12.2.48 TCR_EL2, Translation Control Register (EL2)
	B12.2.49 TCR_EL3, Translation Control Register (EL3)
	B12.2.50 TTBR0_EL1, Translation Table Base Register 0 (EL1)
	B12.2.51 TTBR0_EL2, Translation Table Base Register 0 (EL2)
	B12.2.52 TTBR1_EL1, Translation Table Base Register 1 (EL1)
	B12.2.53 TTBR1_EL2, Translation Table Base Register 1 (EL2)
	B12.2.54 VBAR_EL1, Vector Base Address Register (EL1)
	B12.2.55 VBAR_EL2, Vector Base Address Register (EL2)
	B12.2.56 VTCR_EL2, Virtualization Translation Control Register
	B12.2.57 VTTBR_EL2, Virtualization Translation Table Base Register

	B12.3 Debug registers
	B12.3.1 DBGBCR<n>_EL1, Debug Breakpoint Control Registers, n = 0 - 15
	B12.3.2 DBGBVR<n>_EL1, Debug Breakpoint Value Registers, n = 0 - 15
	B12.3.3 DSPSR_EL0, Debug Saved Program Status Register
	B12.3.4 MDCR_EL2, Monitor Debug Configuration Register (EL2)
	B12.3.5 MDSCR_EL1, Monitor Debug System Control Register

	B12.4 Performance Monitors registers
	B12.4.1 PMCEID0_EL0, Performance Monitors Common Event Identification register 0
	B12.4.2 PMCEID1_EL0, Performance Monitors Common Event Identification register 1
	B12.4.3 PMCR_EL0, Performance Monitors Control Register
	B12.4.4 PMEVTYPER<n>_EL0, Performance Monitors Event Type Registers, n = 0 - 30

	B12.5 Generic Timer registers
	B12.5.1 CNTHCTL_EL2, Counter-timer Hypervisor Control register
	B12.5.2 CNTHP_CTL_EL2, Counter-timer Hypervisor Physical Timer Control register
	B12.5.3 CNTHP_CVAL_EL2, Counter-timer Hypervisor Physical Timer CompareValue register
	B12.5.4 CNTHP_TVAL_EL2, Counter-timer Hypervisor Physical Timer TimerValue register
	B12.5.5 CNTHV_CTL_EL2, Counter-timer Virtual Timer Control register (EL2)
	B12.5.6 CNTHV_CVAL_EL2, Counter-timer Virtual Timer CompareValue register (EL2)
	B12.5.7 CNTHV_TVAL_EL2, Counter-timer Virtual Timer TimerValue register (EL2)
	B12.5.8 CNTKCTL_EL1, Counter-timer Kernel Control register
	B12.5.9 CNTP_CTL_EL0, Counter-timer Physical Timer Control register
	B12.5.10 CNTP_CVAL_EL0, Counter-timer Physical Timer CompareValue register
	B12.5.11 CNTP_TVAL_EL0, Counter-timer Physical Timer TimerValue register
	B12.5.12 CNTV_CTL_EL0, Counter-timer Virtual Timer Control register
	B12.5.13 CNTV_CVAL_EL0, Counter-timer Virtual Timer CompareValue register
	B12.5.14 CNTV_TVAL_EL0, Counter-timer Virtual Timer TimerValue register
	B12.5.15 CNTVCT_EL0, Counter-timer Virtual Count register
	B12.5.16 CNTVOFF_EL2, Counter-timer Virtual Offset register

	B12.6 System instructions
	B12.6.1 AT S12E0R, Address Translate Stages 1 and 2 EL0 Read
	B12.6.2 AT S12E0W, Address Translate Stages 1 and 2 EL0 Write
	B12.6.3 AT S12E1R, Address Translate Stages 1 and 2 EL1 Read
	B12.6.4 AT S12E1W, Address Translate Stages 1 and 2 EL1 Write
	B12.6.5 AT S1E0R, Address Translate Stage 1 EL0 Read
	B12.6.6 AT S1E0W, Address Translate Stage 1 EL0 Write
	B12.6.7 AT S1E1R, Address Translate Stage 1 EL1 Read
	B12.6.8 AT S1E1W, Address Translate Stage 1 EL1 Write
	B12.6.9 TLBI ASIDE1, TLB Invalidate by ASID, EL1
	B12.6.10 TLBI ASIDE1IS, TLB Invalidate by ASID, EL1, Inner Shareable
	B12.6.11 TLBI VAAE1, TLB Invalidate by VA, All ASID, EL1
	B12.6.12 TLBI VAAE1IS, TLB Invalidate by VA, All ASID, EL1, Inner Shareable
	B12.6.13 TLBI VAALE1, TLB Invalidate by VA, All ASID, Last level, EL1
	B12.6.14 TLBI VAALE1IS, TLB Invalidate by VA, All ASID, EL1, Inner Shareable
	B12.6.15 TLBI VAE1, TLB Invalidate by VA, EL1
	B12.6.16 TLBI VAE1IS, TLB Invalidate by VA, EL1, Inner Shareable
	B12.6.17 TLBI VALE1, TLB Invalidate by VA, Last level, EL1
	B12.6.18 TLBI VALE1IS, TLB Invalidate by VA, Last level, EL1, Inner Shareable
	B12.6.19 TLBI VMALLE1, TLB Invalidate by VMID, All at stage 1, EL1
	B12.6.20 TLBI VMALLE1IS, TLB Invalidate by VMID, All at stage 1, EL1, Inner Shareable

	B12.7 ARMv8.0 sections relating to these registers
	B12.7.1 Mismatched memory attributes
	B12.7.2 Synchronous exception prioritization for exceptions taken to AArch64
	B12.7.3 Asynchronous exception routing
	B12.7.4 Address tagging in AArch64 state
	B12.7.5 Scope of the A64 TLB maintenance instructions
	B12.7.6 Invalidation of TLB entries from stage 2 translations
	B12.7.7 Events, event numbers, and mnemonics
	B12.7.8 Operation of the CompareValue views of the timers
	B12.7.9 Operation of the TimerValue views of the timers
	B12.7.10 Reserved values in System and memory-mapped registers and translation table entries

	Part C: ARMv8.1 Changes in the AArch32 Architecture
	C1: A32/T32 Advanced SIMD Instructions for Rounding Double Multiply Add/Subtract
	C1.1 About the new instructions
	C1.1.1 Behavior in Debug state
	C1.1.2 Identification mechanism
	C1.1.3 See also
	In this supplement
	In the ARM Architecture Reference Manual

	C2: AArch32 Privileged Access Never
	C2.1 About the Privileged Access Never bit
	C2.1.1 Behavior in Debug state
	C2.1.2 Identification mechanism
	C2.1.3 See also
	In this supplement
	In the ARM Architecture Reference Manual

	C3: AArch32 Performance Monitors Extension
	C3.1 Changes to the Performance Monitors Extension
	C3.1.1 Extended event number space
	C3.1.2 Required events
	C3.1.3 Identification mechanism
	C3.1.4 See also
	In this supplement
	In the ARM Architecture Reference Manual

	C4: A32/T32 Instruction Set Encoding
	C4.1 Advanced SIMD data-processing
	C4.1.1 Advanced SIMD three registers of the same length
	C4.1.2 Advanced SIMD two registers and a scalar
	C4.1.3 Miscellaneous 16-bit instructions
	C4.1.4 See also
	In the ARM Architecture Reference Manual

	C5: A32 and T32 Instructions
	C5.1 Alphabetical list of instructions
	C5.1.1 SETPAN
	C5.1.2 VQRDMLAH
	C5.1.3 VQRDMLSH

	C5.2 ARMv8.0 sections relating to these instructions
	C5.2.1 Pseudocode description of saturation
	C5.2.2 Standard assembler syntax fields
	C5.2.3 Advanced SIMD scalars
	C5.2.4 Enabling Advanced SIMD and floating-point support

	C6: AArch32 Register Descriptions
	C6.1 General information about AArch32 System registers
	C6.1.1 The AArch32 register descriptions included in this supplement

	C6.2 General system control registers
	C6.2.1 CPSR, Current Program Status Register
	C6.2.2 ID_DFR0, Debug Feature Register 0
	C6.2.3 ID_ISAR5, Instruction Set Attribute Register 5
	C6.2.4 ID_MMFR3, Memory Model Feature Register 3
	C6.2.5 SCTLR, System Control Register
	C6.2.6 SPSR, Saved Program Status Register
	C6.2.7 SPSR_abt, Saved Program Status Register (Abort mode)
	C6.2.8 SPSR_fiq, Saved Program Status Register (FIQ mode)
	C6.2.9 SPSR_hyp, Saved Program Status Register (Hyp mode)
	C6.2.10 SPSR_irq, Saved Program Status Register (IRQ mode)
	C6.2.11 SPSR_mon, Saved Program Status Register (Monitor mode)
	C6.2.12 SPSR_svc, Saved Program Status Register (Supervisor mode)
	C6.2.13 SPSR_und, Saved Program Status Register (Undefined mode)

	C6.3 Debug registers
	C6.3.1 DBGBCR<n>, Debug Breakpoint Control Registers, n = 0 - 15
	C6.3.2 DBGBVR<n>, Debug Breakpoint Value Registers, n = 0 - 15
	C6.3.3 DBGBXVR<n>, Debug Breakpoint Extended Value Registers, n = 0 - 15
	C6.3.4 DBGDIDR, Debug ID Register
	C6.3.5 DBGDSCRext, Debug Status and Control Register, External View
	C6.3.6 DSPSR, Debug Saved Program Status Register
	C6.3.7 HDCR, Hyp Debug Control Register

	C6.4 Performance Monitors registers
	C6.4.1 PMCEID2, Performance Monitors Common Event Identification register 2
	C6.4.2 PMCEID3, Performance Monitors Common Event Identification register 3
	C6.4.3 PMCR, Performance Monitors Control Register
	C6.4.4 PMEVTYPER<n>, Performance Monitors Event Type Registers, n = 0 - 30

	C6.5 Generic Timer registers
	C6.5.1 CNTHV_CTL, Counter-timer Virtual Timer Control register (EL2)
	C6.5.2 CNTHV_CVAL, Counter-timer Virtual Timer CompareValue register (EL2)
	C6.5.3 CNTHV_TVAL, Counter-timer Virtual Timer TimerValue register (EL2)
	C6.5.4 CNTVCT, Counter-timer Virtual Count register
	C6.5.5 CNTVOFF, Counter-timer Virtual Offset register

	C6.6 ARMv8.0 sections relating to these registers
	C6.6.1 Synchronous exception prioritization for exceptions taken to AArch32 state
	C6.6.2 Reserved values in System and memory-mapped registers and translation table entries
	C6.6.3 Using the BAS field in Address Match breakpoints
	C6.6.4 Usage constraints

	Part D: ARMv8.1 Changes to External Debug
	D1: PC Sample-based Profiling
	D1.1 Changes to PC Sample-based profiling
	D1.1.1 Identification mechanism
	D1.1.2 See also
	In this supplement
	In the ARM Architecture Reference Manual

	D2: External Debug Register Descriptions
	D2.1 General information about External debug register descriptions
	D2.2 Debug registers
	D2.2.1 DBGBCR<n>_EL1, Debug Breakpoint Control Registers, n = 0 - 15
	D2.2.2 DBGBVR<n>_EL1, Debug Breakpoint Value Registers, n = 0 - 15
	D2.2.3 EDCIDSR, External Debug Context ID Sample Register
	D2.2.4 EDDEVARCH, External Debug Device Architecture register
	D2.2.5 EDDFR, External Debug Feature Register
	D2.2.6 EDPCSR, External Debug Program Counter Sample Register
	D2.2.7 EDSCR, External Debug Status and Control Register
	D2.2.8 EDVIDSR, External Debug Virtual Context Sample Register

	D2.3 Performance Monitors registers
	D2.3.1 PMCEID2, Performance Monitors Common Event Identification register 2
	D2.3.2 PMCEID3, Performance Monitors Common Event Identification register 3
	D2.3.3 PMCR_EL0, Performance Monitors Control Register
	D2.3.4 PMEVTYPER<n>_EL0, Performance Monitors Event Type Registers, n = 0 - 30

	Part E: Architectural Pseudocode
	E1: ARMv8.1 Pseudocode
	E1.1 About the ARMv8.1 pseudocode chapter
	E1.1.1 ARMv8.1 pseudocode changes

	E1.2 Library pseudocode for AArch64
	E1.2.1 aarch64/debug
	E1.2.2 aarch64/exceptions
	E1.2.3 aarch64/functions
	E1.2.4 aarch64/instrs
	E1.2.5 aarch64/translation

	E1.3 Library pseudocode for AArch32
	E1.3.1 aarch32/debug
	E1.3.2 aarch32/exceptions
	E1.3.3 aarch32/functions
	E1.3.4 aarch32/translation

	E1.4 Common library pseudocode
	E1.4.1 shared/debug
	E1.4.2 shared/exceptions
	E1.4.3 shared/functions
	E1.4.4 shared/translation

	Part F: Appendixes
	F1: Notes on Using Debug and Performance Monitors
	F1.1 Self-hosted debug
	F1.1.1 Use of the case {SSC, HMC, PMC} == {0x, 0, 01}

	F1.2 External debug
	F1.3 Performance Monitors
	F1.3.1 Partitioning counters

